
Coordinated by  

Suleman Mazhar

Edited by  

Xuebo Zhang, Haixin Sun and Arata Kaneko

Published in  

Frontiers in Marine Science

Ocean observation based 
on underwater acoustic 
technology, 
volume II

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/research-topics/56407/ocean-observation-based-on-underwater-acoustic-technology-volume-ii/overview
https://www.frontiersin.org/research-topics/56407/ocean-observation-based-on-underwater-acoustic-technology-volume-ii/overview
https://www.frontiersin.org/research-topics/56407/ocean-observation-based-on-underwater-acoustic-technology-volume-ii/overview
https://www.frontiersin.org/research-topics/56407/ocean-observation-based-on-underwater-acoustic-technology-volume-ii/overview


December 2024

Frontiers in Marine Science frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-5751-8 
DOI 10.3389/978-2-8325-5751-8

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


December 2024

Frontiers in Marine Science 2 frontiersin.org

Ocean observation based on 
underwater acoustic technology, 
volume II

Topic editors

Xuebo Zhang — Northwest Normal University, China

Haixin Sun — Xiamen University, China

Arata Kaneko — Hiroshima University, Japan

Topic coordinator

Suleman Mazhar — Harbin Engineering University, China

Citation

Zhang, X., Sun, H., Kaneko, A., Mazhar, S., eds. (2024). Ocean observation based on 

underwater acoustic technology, volume II. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-5751-8

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-5751-8


December 2024

Frontiers in Marine Science frontiersin.org3

05	 DOA estimation of underwater acoustic co-frequency 
sources for the coprime vector sensor array
Xiao Chen, Hao Zhang, Yong Gao and Zhen Wang

18	 Investigating the reliable acoustic path properties in a global 
scale
Ying Liu, Cheng Chen and Xiao Feng

29	 Simulation of sonar reverberation signal considering the 
ocean multipath and Doppler effect
Sen Zhang, Jian Wu and Tianqi Yin

43	 A Wasserstein generative adversarial network with gradient 
penalty for active sonar signal reverberation suppression
Zhen Wang, Hao Zhang, Wei Huang, Xiao Chen, Ning Tang and 
Yuan An

62	 A wide-beam NCS algorithm for multi-receiver SAS based on 
azimuth spectrum superposition
Mingqiang Ning, Heping Zhong, Han Li, Mengbo Ma, Lili Dai and 
Jinsong Tang

74	 Enhancing ocean environment prediction in Yellow Sea 
through targeted observation using ocean acoustic 
tomography
Cui Baolong, Liu Jingyi, Guo Wuhong and Da Lianglong

89	 Research on underwater acoustic field prediction method 
based on physics-informed neural network
Libin Du, Zhengkai Wang, Zhichao Lv, Lei Wang and Dongyue Han

103	 Anchor boxes adaptive optimization algorithm for maritime 
object detection in video surveillance
Jiachun Zheng, Shijia Zhao, Zhiping Xu, Lei Zhang and Jiantao Liu

115	 MGFGNet: an automatic underwater acoustic target 
recognition method based on the multi-gradient flow global 
feature enhancement network
Zhe Chen, Jianxun Tang, Hongbin Qiu and Mingsong Chen

136	 Broadband high-resolution direction of arrival estimation 
using the generalized weighted Radon transform
Mingyang Lu, Dajun Sun, T. Aaron Gulliver, Yunfei Lv and Jidan Mei

146	 A simplified decision feedback Chebyshev function link 
neural network with intelligent initialization for underwater 
acoustic channel equalization
Manli Zhou, Hao Zhang, Tingting Lv, Wei Huang, Yingying Duan and 
Yong Gao

175	 Long-term statistics and wind dependence of near-bottom 
and deep-sea ambient noise in the northwest South China 
Sea
Wei Guo, Juan Liu, Guojun Xu, Guangming Li and Pan Xu

Table of
contents

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/


December 2024

Frontiers in Marine Science 4 frontiersin.org

185	 Measurement of backscattering strength of artificial bubbles 
in the Southern Sea of the Korean Peninsula
Ho Seuk Bae and Won-Ki Kim

196	 Acoustic tomographic inversion of 3D temperature fields 
with mesoscale anomaly in the South China Sea
Chuanzheng Zhang, Ze-Nan Zhu, Cong Xiao, Xiao-Hua Zhu and 
Zhao-Jun Liu

207	 Estimating three-dimensional current fields in the Yeosu Bay 
using coastal acoustic tomography system
Yerin Hwang, Eun-Joo Lee, Hajin Song, Byoung-Nam Kim, 
Ho Kyung Ha, Yohan Choi, Jae-Il Kwon and Jae-Hun Park

220	 A back propagation neural network-based approach for 
inverting layered seabed acoustic parameters in shallow 
waters
Jiahui Wang, Zhiqiang Cui, Hanhao Zhu, Lei Meng, Weihua Song and 
Xu Liu

233	 Application of coastal acoustic tomography: calibration of 
open boundary conditions on a numerical ocean model for 
tidal currents
Naokazu Taniguchi, Hidemi Mutsuda, Masazumi Arai, Yuji Sakuno, 
Kunihiro Hamada, Chen-Fen Huang, JenHwa Guo, 
Toshiyuki Takahashi, Kengo Yoshiki and Hironori Yamamoto

248	 A mobile prototype-based localization approach using 
inertial navigation and acoustic tracking for underwater
Kun Ye, Zhicheng Tan, Wei Wang, Tian Tian, Lang Zhou and 
Yongjun Wang

258	 Modeling sound speed profile based on ocean normal mode
Ke Qu, Weifeng Yin, Fengqin Zhu and Lei Meng

271	 Reconstructing the sound speed profile of South China Sea 
using remote sensing data and long short-term memory 
neural networks
Yu Zhao, Pan Xu, Guangming Li, Zhenyi Ou and Ke Qu

282	 A high-precision positioning method for deep-towed 
multichannel seismic arrays
Zhengrong Wei, Yanliang Pei, Xiangqian Zhu, Kai Liu, Xiaobo Zhang, 
Le Zong and Xinyu Li

299	 Precise and low-complexity method for underwater Doppler 
estimation based on acoustic frequency comb waveforms
Jie Li, ZhiWen Qian, DeYue Hong and JingSheng Zhai

309	 A TMSBL underwater acoustic channel estimation method 
based on dictionary learning denoising
Chuanxi Xing, Yanling Ran, Mao Lu, Guangzhi Tan and Qiang Meng

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Xuebo Zhang,
Northwest Normal University, China

REVIEWED BY

Keyu Chen,
Xiamen University, China
Rongbin Lin,
Shenzhen Research Institute of Xiamen
University, China
Pan Huang,
Weifang University, China

*CORRESPONDENCE

Hao Zhang

zhanghao@ouc.edu.cn

RECEIVED 24 April 2023

ACCEPTED 12 July 2023
PUBLISHED 09 August 2023

CITATION

Chen X, Zhang H, Gao Y and Wang Z
(2023) DOA estimation of underwater
acoustic co-frequency sources for the
coprime vector sensor array.
Front. Mar. Sci. 10:1211234.
doi: 10.3389/fmars.2023.1211234

COPYRIGHT

© 2023 Chen, Zhang, Gao and Wang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 09 August 2023

DOI 10.3389/fmars.2023.1211234
DOA estimation of
underwater acoustic co-
frequency sources for the
coprime vector sensor array

Xiao Chen1, Hao Zhang1,2*, Yong Gao1 and Zhen Wang1

1Department of Electronic Engineering, Ocean University of China, Qingdao, China, 2Department of
Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
A coprime array with fewer sensors can achieve the same resolution as a uniform

linear array. However, when detecting co-frequency targets, there can be

prominent false alarms due to overlaps between the main and grating lobes of

subarrays. This study proposes a direction-of-arrival (DOA) estimationmethod to

obtain the co-frequency target directions from high grating lobes. The method

utilizes joint processing of sound pressure and vibration velocity data from vector

hydrophones of a coprime vector hydrophone array and designs joint-cross

terms (JCTs) using channel combinations. Based on JCTs, we establish a

characteristic data point identification algorithm. The method in this paper can

stably and accurately acquire co-frequency target directions from high grating

lobes without decoherence operation. Simulation results demonstrate that the

proposed algorithm achieves accurate DOA estimation even with reduced

signal-to-noise ratio (SNR) and fewer data points. Additionally, a sea

experiment confirms the rationality and efficiency of the proposed algorithm,

providing new ideas for co-frequency source detection using coprime vector

sensor arrays.

KEYWORDS

direction-of-arrival (DOA) estimation, co-frequency sources, coprime vector sensor
array, sound pressure and vibration velocity joint processing, vector hydrophone
1 Introduction

Direction-of-arrival (DOA) estimation is an essential aspect of array signal processing

that holds immense significance in multiple fields, including acoustics, radar, and wireless

communications (Zhang et al., 2022; Xie et al., 2023; Zhang et al., 2023). Classic techniques

for DOA estimation involve subspace theory and typically utilize methods such as multiple

signal classification (MUSIC) (Schmidt, 1986) and estimating signal parameters via

rotational invariance techniques (ESPRIT) (Roy and Kailath, 1989). In these algorithms,

uncorrelated incident signals are assumed, and coherent signals will fail due to the

covariance matrix’s rank deficit. To handle coherent signal situations, several techniques
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have been suggested, such as spatial smoothing (SS) (Pillai and

Kwon, 1989) and forward/backward SS (FBSS) (Shan et al., 1985).

The SS method achieves DOA estimation of coherent signals but at

the cost of decreasing array aperture. The FBSS method can

enhance estimation accuracy but does not fully address signal

decoherence. Furthermore, these techniques typically consider

ULAs, with sparse linear arrays being less commonly employed.

Coprime line arrays (CLAs) offer a systematic array setup beyond

Nyquist sampling while minimizing mutual coupling between array

elements (Vaidyanathan and Pal, 2010; Vaidyanathan and Pal, 2011;

Adhikari et al., 2013; Zhang et al., 2013; Tan et al., 2014; Adhikari and

Buck, 2015; Di Martino and Iodice, 2017; Qin et al., 2017; Zhou et al.,

2017; Alawsh and Muqaibel, 2018; Mei et al., 2018; Adhikari, 2019;

Moghadam and Shirazi, 2019; Alawsh and Muqaibel, 2020; Alawsh and

Muqaibel, 2021; Moghadam and Shirazi, 2022). The research on DOA

estimation of the coprime array is mainly carried out from two aspects.

On the one hand, it is implemented from the physical array domain. On

the other hand, it is achieved in the virtual array domain. For processing

the physical array elements, a DOA estimation method utilizes a

decomposed CLA and solves a joint covariance matrix optimization

problem. The method enables the reconstruction of the interference-

plus-noise covariance matrix and weight vector computation for the

minimum variance distortionless response (MVDR) beamformer that

minimizes variance distortion (Zhou et al., 2016; Zhou et al., 2017). The

DOA estimation in the physical array domain suffers from high grating

lobes caused by the intersensor spacing, which is greater than l
2 (where l

is the wavelength of the signal), and many methods have been

investigated in order to reduce the effect of grating lobes. For scalar

CLAs, Product andMin algorithms were proposed to calculate the signal

spatial power spectral density (PSD) and resolve the grating lobe

problems (Adhikari and Buck, 2017). The array factors can be

established based on a uniform linear array for single-target direction

estimation. The array factors should satisfy that the beam response of the

uniform linear array has the opposite amplitude with one subarray of the

CLA (Liu and Buck, 2015). Extending the coprime array is also a way to

settle the grating lobe matters. Some methods have been suggested to

extend CLAs by changing the positions of grating lobes and sidelobes of

the beam output for two coprime subarrays (Adhikari et al., 2013;

Adhikari et al., 2014; Chen et al., 2023). The methods above for

suppressing grating lobes are developed when the signals are

incoherent. In the virtual array domain, the investigation of the

coprime vector sensor array has received more attention. Nowadays,

DOA estimation for coprime vector sensor arrays has already been

developed in the radar field. A six-sensor coprime electromagnetic

vector-sensor (EMVS) array (Fu et al., 2021) was used in a new

method. The method involved a nuclear norm minimization (NNM)

problem to create an extended covariance matrix for DOA information.

Then, the issue of DOA estimating in a two-dimensional space was

examined for a multiple-input multiple-output (MIMO) radar with

coprime EMVS arrays operating in a bistatic configuration (Yang

et al., 2021). However, these methods are used to process uncorrelated

signals for the coprime vector sensor array, while coherent signals are less

considered in the application. Moreover, the main advantage of these

algorithms in the radar field is the high degree of freedom for DOA

estimation. For underwater array target detection, such a high degree of

freedom is not an urgent need to be achieved.
Frontiers in Marine Science 026
In underwater signal detection, vector hydrophone linear arrays

are often used. Each vector hydrophone can be composed of

hydrophone and velocity sensors. Owing to the frequency-

independent dipole directivity of the vector hydrophone, a vector

hydrophone linear array has similar performance but with a smaller

array aperture compared with a sound pressure array. Moreover,

vector hydrophone arrays have attracted wide attention for their

left–right discrimination, which acoustic pressure arrays cannot

provide (Hawkes and Nehorai, 1998). Furthermore, when the

signals of vibration velocity and sound pressure are combined,

the combination holds strong anti-isotropic noise ability (Santos

et al., 2011; Felisberto et al., 2016; Felisberto et al., 2018). As for

practical applications, fulfilling coprime array configuration in

underwater vector sensor arrays is a recently new attempt (Chen

et al., 2023). Moreover, the issue about DOA estimation of co-

frequency signals for underwater coprime vector sensor array is still

expected to be addressed.

When the target is incoherent, the array will output high grating

sidelobes but not exceed the magnitude of the output in the direction

where the targets are located, and this issue has been studied. However,

when the targets are co-frequency, overlapping high grating sidelobes

can cause higher array output than the magnitudes of the target

directions. As a result, the actual targets may be obscured, and the

DOA estimation performance will deteriorate. In this paper, we

propose an algorithm that utilizes a coprime vector hydrophone

array to achieve DOA estimation of two co-frequency signals. We

aim to address the issue of concealed targets due to high grating lobes.

Thus, the target directions can be identified accurately from the high

grating lobes, thereby avoiding false alarms. To enhance robustness, we

employ the conventional beamformer (CBF) based on the entire

coprime array as the preprocessing method. Joint-cross terms (JCTs)

are constructed based on the vector hydrophone subarrays, and the

channel combinations of vector hydrophones are utilized in the

algorithm. Additionally, we design a characteristic data point

identification method based on JCTs. Unlike existing techniques, the

proposed method does not perform spatial smoothing, but it is highly

effective in processing coherent signals with the same frequency.

Simulation results and experimental data analysis validate the

effectiveness of the proposed algorithm. The paper’s contributions

can be summarized as follows.
1. Firstly, the paper analyzes the cause of the high grating lobes

in coprime vector sensor arrays when two co-frequency

signals are present. JCTs are constructed using the

characteristics of coprime arrays and vector hydrophones,

which imply the DOA information.

2. Secondly, a DOA estimation method based on

characteristic data point identification algorithm using

JCTs is designed, which achieves stable extraction of co-

frequency targets’ directions.
This paper is organized as follows. In Section 2, we establish the

mathematical signal model of the coprime vector sensor array and

attain the array beam output. Next, we advance the situation in

which strong grating lobes appear and present an example. In

Section 3, we present the DOA estimation method. The DOA
frontiersin.org
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estimation method based on characteristic data point identification

is introduced based on JCTs to achieve the direction extraction. We

validate the method through simulation in Section 4 and

experimental data processing in Section 5. Finally, we summarize

the article in Section 6.

Notations: The uppercase bold characters denote matrices,

while their lowercase counterparts denote vectors. ( · )*, ( · )H , and

( · )T represent the complex conjugate, conjugate transpose, and

transpose, respectively. bmI stands for the unit matrix. ⊗
represents the Kronecker product.
2 Co-frequency signals model

An underwater acoustic vector sensor linear array consists of

two sparse uniform vector sensor linear subarrays with M and N

physical sensors, respectively. The values of M and N are coprime.

The first subarray containing M sensors is spaced apart by Nd,

whereasMd spaces apart the second subarray containing N sensors.

Here, d = l=2 represents the intersensor unit spacing, where l
indicates the wavelength of the narrowband signal received by the

array. With two subarrays sharing the first sensor, the other sensors

of each subarray are arranged according to the original structure,

and the array configuration is represented in Figure 1 and Equation

(1).

S = Mnd, 0 ≤ n ≤ N − 1f g ∪ Nmd, 0 ≤ m ≤ M − 1f g (1)

Assuming that the far-field narrowband co-frequency coherent

signal impinges on the coprime vector hydrophone from the

direction q0, the received signal can be modeled as:

X(t)¼½x1(t), x2(t),⋯ x3(M+N−1)(t)�T
     = a(q0)⊗ u(q0)z(t) + N(t)

(2)

where. denotes the signal waveform vector and N(t) = ½nT1 (t),
nT2 (t),⋯ nT3(M+N−1)(t)�T ∼ CN (0,s 2

n I) d e n o t e s s t a t i s t i c a l l y

independent Gaussian noise component with s 2
n , where s 2

n is the

noise power. Here, ni(t) = ½np(t), nvx(t), nvy(t)�T , i = 1, 2,⋯M + N
Frontiers in Marine Science 037
−1 and np(t), nvx(t), and nvy(t) denote the pressure component and

the horizontal velocity x and y direction components of the noise

vector at the ith element, and they are mutually independent. a(q) is
the steering vector connected with DOA ql given by:

a(q0) = ½1, e−j2pl d2sin(q0),…, e−j
2p
l dM+N−1 sin (q0)�T (3)

where ½d1, d2,…, dM+N−1� ∈ S. Here, d1 = 0 by taking the first

array element as a reference, which can be shown in Figure 1. The

velocity components of three-dimensional vector hydrophones are

displayed in Figure 2. For two-dimensional vector hydrophones in

practical application, the 3 × 1 steering vector can be obtained as:

u(q0) = ½1, cos(q0), sin(q0)�T (4)

Without regard to the noise component, the CBF is given by the

following equation (Yang and Ye, 2019):

BvCLA =
1

(M + N − 1)2
wH
vCLAzvCLA

�� ��2 (5)

wvCLA = wCLA ⊗u(q) (6)

wCLA = e−j
2p
l dCLAsin(q) (7)

where wCLA denotes the weight of the array beamformer and

dCLA ∈ S. When there is only one source, the beam output of the

array can achieve the maximum output in the source direction.

However, when two sources have the same frequency, the large

cross-term appears in Eq. (5). The large cross-term will result in

large beam outputs in other non-target directions, ultimately

leading to false alarms or incorrect bearing estimation results.

Figure 3 also explains the situation. The positions indicated by

the arrows in the figure represent the grating lobe locations for a

coprime vector sensor array. When two subarrays’ grating lobes

caused by co-frequency signals overlap, a high output will be

generated for the whole array. The directions with grating lobes

relation can be explained by the following formula (Adhikari et al.,

2014):
FIGURE 1

Coprime array configuration.
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https://doi.org/10.3389/fmars.2023.1211234
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2023.1211234
cosa ±
2
M

k1 = cosb ±
2
N
k2 (8)

where k1 = 0, 1, 2,…, k2 = 0, 1, 2,…, and a and b are two angles

satisfying the overlapping relationship of grating lobes. For

instance, as shown in Figure 4, the directions of q1 = 57∘ and q1 =
87∘ marked by the black dotted lines are the true co-frequency

sources’ directions, whereas the directions of q1 = 32∘ and q1 = 105∘

marked by the red dotted boxes are the false-alarm directions. In

Figure 4A, the main lobe of one subarray and the grating lobe of the
Frontiers in Marine Science 048
other subarray coincide, or the grating lobe of one subarray and the

grating lobe of the other subarray coincide (as shown in red dotted

boxes). Consequently, ambiguity emerges in comparable amplitude

beam output to true sources, as shown in Figure 4B.
3 DOA estimation for two co-
frequency sources

3.1 Constructing joint-cross terms for
coprime vector hydrophone array

The correlation coefficient between sound pressure and

vibration velocity in the isotropic noise field is 0, which means

that the joint processing of sound pressure and vibration velocity

for the acoustic vector signal suppresses the noise. Therefore,

without regard to the noise component, the data channel of the

acoustic vector hydrophone is transformed by rotation and

combination, and Eq. (9) is obtained

vc(t) = vx(t)cos(j) + vy(t)sin(j)

   = s(t)cos(q − j)
(9)

vs(t) = −vx(t)sin(j) + vy(t)cos(j)

   = s(t)sin(q − j)
(10)

where vx(t) and vy(t) represent the velocity components of

a vector hydrophone, and they are mutually orthogonal. vc(t) and
FIGURE 3

The distribution characteristics of zero point, grating lobes, and sidelobes of a coprime vector sensor array output.
FIGURE 2

The view of a vector hydrophone geometry.
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vs(t) stand for the combined transformation of the velocity channel

of vector hydrophone, where j is the electron rotation angle and

s(t) is the sound pressure signal received by the hydrophone. In this

paper, the combination of sound pressure and vibration velocity is

used as

½p(t) + vc(t)�vs(t) = s2(t)Bs(q) (11)

where

Bs(q) = (1 + cos(q − j))sin(q − j) (12)

p(t) indicates the sound pressure of a vector hydrophone. We

can see that Bs(q) = 0 when q = j and the noise reduction process

is carried out by using the correlation characteristics between signal

and noise. Therefore, by rotating the acoustic vector hydrophone

data and selecting an appropriate rotation angle j, the noise can be

reduced, thereby reducing the SNR threshold and making it possible

to explore weak targets.

For a single uniform sparse vector hydrophone array, when

there is a target from a certain orientation (take the target with an
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orientation of 40° as an example), the spatial spectrum output of the

sparse vector array using conventional beamforming obtained

based on Eq. (12) can be shown as Figure 5. It can be seen that

the spatial spectrum output based on vector hydrophone combined

channels shows a concave point at target orientation. However,

there is an unreliability in using concave points to determine target

orientations when the noise is considered. Moreover, for a single

sparse array, this unreliability will become more acute as the spacing

of array elements increases.

The CBF for a coprime vector hydrophone array produces two

spatial spectra but contains ambiguous orientation concave points

due to the spatial undersampling of the subarrays. Inspired by the

Product theorem (Adhikari et al., 2014; Adhikari and Buck, 2017),

which resolves the spatial frequency ambiguities by performing

complex conjugate multiplication between two coprime subarrays

(Vaidyanathan and Pal, 2010), we proposed a DOA estimation

method based on JCTs for coprime vector hydrophone array. Let

pM(t), vxM (t), and vyM (t) be the acoustic pressure and the x-axis and

y-axis velocity data of acoustic particles received by the vector

hydrophones from the subarray with M sensors, respectively.
BA

FIGURE 5

Comparison of treating each channel as normal and combining channels for a vector hydrophone. (A) Spatial spectrum output of a vector uniform
line array without considering noise. (B) Spatial spectrum output of a vector sparse line array without considering noise.
BA

FIGURE 4

The situation of the blurred orientation output caused by the overlapping of subarray grating lobes. (A) Beam output for two subarrays of the
coprime vector sensor array. (B) Beam output of the whole coprime vector sensor array.
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Meanwhile, let pN (t), vxN (t), and vyN (t) be the acoustic pressure and

the x-axis and y-axis velocity data of acoustic particles received by

the vector hydrophones from the subarray withN sensors. The JCTs

for coprime vector hydrophone array can be constructed as

J1(t) = (pM(t) + vcM(t))vsN (t)

J2(t) = (pN (t) + vcN (t))vsM(t)

(
(13)

where for the subarray with M sensors

vcM(t) = vxM(t) cos  (j) + vyM(y) sin  (j)

vsM(t) = −vxM(t) sin  (j) + vyM(t) cos  (j)

(
(14)

and for the subarray with N sensors

vcN (t) = vxN (t) cos  (j) + vyN (y) sin  (j)

vsN (t) = −vxN (t) sin  (j) + vyN (t) cos  (j)

(
(15)
3.2 Estimating DOA based on JCTs for
coprime vector hydrophone array

Based on CBF, we define the spatial spectrum output concave

point discriminant algorithm

F(q) = B�NM(q) · B* MN (q) (16)

where BNM(q) and BMN (q) are the subarray beam output

obtained by beamforming after vector coprime array channel

combination based on Eqs. (4) to (7), and Eqs. (13) to (15).

Compared with one single sparse array, the relation between two

sparse subarrays of the coprime vector hydrophone array is

established, thus improving the reliability of the concave points

judgment. Let Q be the search step and qs be the suspected target’s

orientation. The discriminating process can be expressed as

D1
p = IF(F(qs) − F(qs − Q) < 0)     

  ·IF(F(qs) − F(qs + Q) < 0),   

D2
p = IF(F(qs + Q) − F(qs) < 0)     

  · IF(F(qs + Q) − F(qs + 2Q) < 0),

D3
p = IF(F(qs − Q) − F(qs − 2Q) < 0) 

  ·IF(F(qs − Q) − F(qs) < 0) :   

(17)

where "IF()" indicates if conditional operation.
3.3 Major steps and practical application

The algorithm steps mainly focus on the data preprocessing, the

constructions of JCTs and characteristic data point identification

algorithm, and the source directions determination. The

preprocessing is conducted based on Eq. (5), and the result can

be robust because of the CBF, which can be validated in Section 4.

The suspected targets’ orientations are predetermined with the

beam output of the whole coprime vector sensor array. The JCTs
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are established by taking advantage of the channel data

combination of the vector sensor array on Eq. (13). Based on

JCTs, the discriminant algorithm for identifying the concave

points can be achieved by Eq. (16). In either case, one single

target or two detected with a specified detection threshold, the

source direction can be determined. Since there is no possibility of

false-alarm lobes of array output in either case, only the true output

is presented. Furthermore, for more suspected directions, whether

there are false targets will be determined according to Eq. (8), and

coherent sources can be identified efficiently based on Eq. (17). The

pseudo-code of the proposed method is exhibited in Algorithm 1.
Require:
Input data: Array beam data St

2: Initialize parameters: Signal integral

length Ts, Angle search range Qs, Detection

threshold DT, the flag for grating lobes exist

or not Flag ¼ 0, Concave point set Qc, Target

direction set Qf.
Ensure:

while LengthðStÞ ¼ Ts do
4: for j ¼ 1 :Qs do

Beamforming Bj with Eq. (5)

6: end for

Output BQ

8: Update Qf with DT

Update Flag with Eq. (8)

10: if Flag ¼ 1 then

Update Qc with Eq (13) to Eq (17)

12: if ((Qf ∩ Qc) ≠ ∅) then

Update Qf

14: else

DT adjustment

16: end if

end if
18: end while

Output Qf
ALGORITHM 1
Pseudo code of the major steps for the overall algorithm.
4 Simulation analysis

4.1 Accuracy performance

Numerical simulations are conducted to assess the performance

of the proposed method. Furthermore, MUSIC based on the SS

(Pillai and Kwon, 1989) and FBSS methods (Shan et al., 1985) are

used as comparison methods. A coprime vector hydrophone array

with 10 sensors (M = 5 and N = 6) is adopted in all examples.

The first part of the simulations investigates the situation in

Figure 4. Two coherent sources with the same frequency, 500 Hz,

come from the directions q1 = 57:8∘ and q2 = 86:2∘, respectively,
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which are shown in red circles in Figure 4B. The grating lobe caused

by the same frequency and coherence of the signal leads to wrong

target directions of q3 = 32∘ and q4 = 105∘ , which are presented in

blue circles. The DOA estimation performance of different

algorithms is evaluated using the root-mean-square error

(RMSE), which is described as
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
IKo

I
i=1oK

k=1(q̂ k(i) − qk)
2

r
(18)

where q̂ k(i) denotes the estimated DOA of qk for the i th

independent trial and I and K, respectively, denote the number of

Monte Carlo simulation experiments and the number of sources.

The suggested method, as shown in Figure 6, consistently produces
BA C

FIGURE 6

Estimation reliability comparison for two coherent sources with the same frequency when SNR = 10 dB and snapshot is 1000. (A) Results of the Pillai
and Kwon (1989) method. (B) Results of the Shan et al. (1985) method. (C) Result of the proposed method.
BA

FIGURE 7

RMSE of DOA estimation. Each simulated point is averaged based on 500 trials. (A) RMSE versus SNR for two coherent sources with the same
frequency. The snapshot is 1,000. (B) RMSE versus snapshot for two coherent sources with the same frequency. The SNR is 10 dB.
BA

FIGURE 8

Method performance comparison. (A) Method performance comparison when the SNR = 10 dB and the signal snapshot is 1,000. (B) Method
performance comparison when the SNR = −10 dB and the signal snapshot is 1,000.
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reliable estimates of true DOAs. When the SNR varies from −15 dB

to 15 dB, the quantity of snapshots is set to a constant value of 1,000.

As shown in Figure 7, the RMSE is reduced with the increase of

SNR. Furthermore, when the SNR is fixed at 10 dB, it can be

observed that three estimation results become more stable, and the

proposed method demonstrates enhanced accuracy as the number

of snapshots increases.
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The technique of spatial smoothing processing is a widely

employed method for decorrelation in practical applications,

serving as a foundation for numerous studies. Next, we implement

and compare the approaches based on signal covariance matrix

recovery (CMR) (Pan et al., 2022) and sparse signal reconstruction

using compressive sensing (CS) (Das et al., 2016) with our method.

The directions of co-frequency signals are 47.9° and 78.5°, with an
B

A

C

FIGURE 9

Sensitivity of the algorithm to array element position errors. (A) Array setup with and without element position errors. (B) DOA results based on
different methods with element position errors, SNR = 0 dB, q1 = 47.9°C and q2 = 78.5°C. (C) The magnified details for DOA results.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1211234
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2023.1211234
SNR of 10 dB and a signal snapshot of 1000. From Figure 8A, it can

be observed that the proposed and the CS methods can obtain the

target direction information. The CMR method also achieves high-

amplitude output in target directions but suffers from ambiguity. In

Figure 8B, when the SNR decreases, both the method in this paper

and the CMR method show ambiguous orientation, and the CS

method shows direction misjudgment.
4.2 Sensitivity to position errors

In array signal processing, the signal mismatch is a critical issue.

In this part, the element position errors are considered to assess the

impact of signal mismatch on the proposed method (Yang, 2017).

The spacings between array elements were assumed to hold the

random error with a mean of 15% of the unit spacing between two

sensors, which can be shown as Figure 9A. Receiver positions are

represented by symbols, with the desired locations denoted by "☆"

and the actual locations denoted by " ∘". In Figure 9B, one can find

that in the presence of array element errors, the SS method has a

DOA estimation bias. In comparison, the FBSS method performs a

better DOA estimation accuracy. Compared with the two methods,

the method of this work can obtain more accurate DOA estimation

results. In addition, it can be seen from Figure 9C that the DOA

estimation results of the method depend on the beam output

obtained by the conventional beamforming (shown in the legend

of "Array output" in the figure). Therefore, the DOA estimation

error of the method will be affected by the array beamforming

output. However, the algorithm still inherits the robustness of CBFs.
4.3 Bearing time record performance

This part simulates the bearing time record (BTR) under low

SNR. As shown in Figure 10, the red "*" represents the detection

result of the algorithm. Figure 10A conducts the simulation for two

targets with directions changing. Furthermore, the simulation

design ensures high grating lobe interference in the direction

change interval (SNR = 0 dB). It can be seen from the figure that

many high grating lobe interferences have a severe impact on the

target detection results. However, this paper’s method can detect

targets’ actual orientations more stably and accurately. Figure 10B

depicts the scenario where two co-frequency targets generate the

high grating lobes, with the SNR of both targets being −5 dB, while

the targets move in a constant azimuth. It can be seen that there is

substantial interference in the direction of the end fire of the array,

which will seriously deteriorate the performance of DOA detection.

The red "*" shows that the proposed algorithm in this paper

demonstrates a stable estimation of true DOAs.
4.4 Attempts in the case of multiple targets

Multiple co-frequency target detection can be divided into

three main cases: (1) All targets fall into the relation of
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overlapping grating lobes. (2) None of the targets fall into the

relationship of overlapping grating lobes. (3) Some of the targets

hold overlapping grating lobe relation. We set M = 5, N = 6, SNR

= −7 dB, and f = 500 Hz. For the first case, there are targets from

the directions of 47.9°, 57.8°, 78.5°, and 86.2° respectively, and all

of them satisfy the grating lobe overlapping relation. In

Figure 11A, one can find that due to the grating lobes, the real

directions are submerged within the false alarms, affecting the

accurate detection of targets. For the second case, the source

directions are set as 30°, 38°, 50°, and 63°. These directions are

not in the relationship of grating lobes overlapping. In

Figure 11B, without the grating lobes overlapping, array grating

lobes will not mask the true direction, and the algorithm can

directly obtain the correct target directions’ information.

However, when some of the targets fall into the relation of

overlapping grating lobes, they are from the directions of 20°,

30°, 47.9°, and 78.5°, respectively. As shown in Figure 11C, the

method proposed in this article cannot accurately determine the

target’s true direction from the overlapped lobes of partial targets.

Because of the complex grating lobe relationships caused by

multiple targets, the feature relationships of the JCTs are

affected. Future research will focus on studying and attempting

array interference suppression techniques to address this issue.
B

A

FIGURE 10

BTR for bearing-changing targets. (A) SNR = 0 dB. (B) SNR = −5 dB.
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5 Experiment data analysis

The experiment data analysis has been presented in this part. As

shown in Figure 12, the experiment data were collected on an

extended coprime vector hydrophone array with 12 sensors on the

ocean bottom at a (water) depth of 35 m. The shipborne sound

source emits signals to simulate the sound source. The vector

hydrophone picks up the underwater sound signal, then transmits

the data to the base station through the hydrophone array’s data
Frontiers in Marine Science 1014
acquisition and transmission system. The base station performs

signal processing and realizes the display and reporting of the target

detection results. M = 2 and N = 3 for the extended coprime vector

hydrophone and the array expansion factor e =3 (Chen et al., 2023).

A moving sound source transmitting at the frequency of 375 Hz

moves in a straight line along the direction of 57°. In order to

validate the proposed algorithm, the signal data from the direction

of 86° have been added to the received signals of the coprime array.

The added signal will produce grating lobes in the array output that
B

A

C

FIGURE 11

Simulation results of algorithm performance in multiple targets case. (A) All targets satisfy the grating lobes overlapping relation. (B) None of the
targets satisfy the grating lobes overlapping relation. (C) Some of the targets satisfy the grating lobes overlapping relation.
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overlap with the source array output. In Figure 13A, one can find

that many strong grating lobe interferences show up after the signal

was added, deteriorating the performance of source detection and

DOA estimation. The proposed method can obtain the DOA

information of targets more accurately. Because the signal data

from the direction of 86° are artificially added, the DOA estimation

method shows more stable results, which are shown in Figure 13B.

In the second experiment, the sound source transmits the signal at

the frequency of 315 Hz and moves in the direction of 43°, as shown
Frontiers in Marine Science 1115
in Figure 14A. In order to increase the grating lobe interferences,

the signal from 67° has been included in the original received array

signal. Owing to the additional signal, the grating lobes from two

sources coincide, resulting in many grating lobe interferences in the

array output. The real targets have been buried in strong grating

lobe interferences and wide array beams. It can be observed that the

proposed method achieves the extraction of real targets from the

strong grating lobe interferences and then realizes the targets’ DOA

estimation, as shown in Figure 14B.
FIGURE 12

The experimental layout.
B

A

FIGURE 13

BTR in experiment. (A) q1 = 57°C and q2 = 86°C. (B) Results of the proposed method.
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6 Conclusion

This paper investigates the problem of false alarms that can

deteriorate the performance of DOA estimation for two co-

frequency sources in a coprime vector hydrophone array. These

false alarms are caused by the overlap of main lobes and grating

lobes from subarrays. To address this issue, we propose a DOA

estimation method that involves JCTs connected with subarrays

from a coprime vector hydrophone array. Based on JCTs, we design

a method to identify characteristic data points. The proposed

method eliminates false-alarm directions without smoothing and

detects true DOAs without ambiguity. Simulation and BTR results

from the sea experiment data demonstrate that the algorithm

performs well and provides a new approach for DOA estimation

of coprime vector sensor arrays. Applying large aperture arrays will

be a major trend in ocean observation and maritime combat, like

marine life detection, UUV (unmanned underwater vehicle), and

USV (unmanned surface vehicle) operations. Coprime arrays and

their related signal-processing methods will play an important role

in the marine domain. The method proposed in this article can also

be applied to combined active and passive sonar detection and

multi-base sonar cooperative detection. Furthermore, with the

application of deep learning in ocean observation, combining

deep learning concepts with the method presented in this article

may achieve more efficient results in ocean observation, such as

target recognition and tracking.
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Investigating the reliable
acoustic path properties
in a global scale

Ying Liu, Cheng Chen* and Xiao Feng

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an,
Shaanxi, China
Leveraging the benefits of low transmission loss and high signal-to-noise ratio,

the reliable acoustic path (RAP) has been extensively employed in various

underwater applications. In this study, we investigate RAP properties on a

global scale. Acoustic simulations were conducted using global grids with a

0.25° × 0.25° spatial resolution, revealing that RAP range is positively correlated

with ocean depth. Contrary to the prevailing belief that RAP properties are

relatively unaffected by sound speed variations, our findings indicate that

sound speed profiles (SSPs) play a crucial role in determining RAP properties

by altering the RAP from 15 km to 50 km at a constant ocean depth of 4000 m.

Additionally, the receiver angle can vary by nearly 5 km at the same source

location due to SSP variations. Consequently, utilizing highly accurate SSPs can

enhance the performance of underwater localization or communication systems

that rely on RAP.

KEYWORDS

ocean acoustic propagation, properties of reliable acoustic path, sound speed profile
variation, bathymetry variation, transmission loss
Introduction

Ocean acoustic propagation has long been recognized as sensitive to various ocean

environmental parameters (Heitsenrether and Mohsen, 2004; Dosso et al., 2007a; Dosso

et al., 2007b; Lermusiaux et al., 2010; Pecknold and Osler, 2012; Ngodock et al., 2022;

Zhang et al., 2023a; Zhang et al., 2023b), such as bathymetry, geo-acoustic parameters,

sound speed fields, and sea surface roughness. This sensitivity renders underwater acoustic

activities, including localization and communication, highly dependent on the ocean

environment. In deep ocean acoustic propagation studies, sound energy is typically

categorized into distinct propagation patterns, including surface duct propagation,

convergence zone propagation, bottom bounce propagation, and reliable acoustic path

propagation. These propagation patterns exhibit varying levels of sensitivity to changes in

the ocean environment. For instance, surface duct energy propagation is sensitive to the
frontiersin.org0118
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thickness of the surface duct (Chen et al., 2016; Chen et al., 2019;

Duan et al., 2016), convergence zone propagation is sensitive to the

thermocline gradient (Worcester et al., 2013; Chen et al., 2017;

Khan et al., 2021), and bottom bounce propagation is sensitive to

geo-acoustic parameters (Choi and Peter, 2004; Heaney et al., 2013;

Yang et al., 2017).

The Reliable Acoustic Path (RAP), which represents the direct

path between a source and receiver, is generally considered to be less

sensitive to ocean environment fluctuations. Moreover, RAP boasts

low transmission loss (TL) compared to boundary-reflected paths

(Duan et al., 2012) and lower ambient noise levels, with noise below

the critical depth being nearly 20 dB less than above it (Gaul et al.,

2007). Due to these advantages, such as low TL and high signal-to-

noise ratio (SNR), RAP has been widely employed in underwater

acoustic localization and communication. Duan et al. utilized RAP

multipath time de-lays recorded by a single hydrophone for

localizing a moving source (Duan et al., 2014), while the

interference structure of RAP was leveraged to estimate source

depth with robust performance (Duan et al., 2019). Recently, Qu

et al. conducted a comprehensive spatial gain analysis for vertical

line arrays in RAP regions (Qiu et al., 2018), and Tompson

incorporated RAP as a crucial sound propagation factor in deep

ocean acoustic networks, achieving impressive performance in high

SNR scenarios (Thompson, 2009).

Besides localization and communication, RAP sound energy

has also been applied in geo-acoustic inversion and ocean

tomography. Geo-acoustic parameters in the Philippine Sea were

obtained using RAP sound energy (Xu et al., 2019), and Varamo

et al. examined the feasibility of RAP tomography by employing a

mobile ship with an acoustic source transmitting to a fixed bottom

hydrophone at the ALOHA Cabled Observatory (Varamo and

Howe, 2016).

Despite the growing interest in RAP over the past half-century,

the effects of sound speed profiles (SSPs) on RAP properties remain

underexplored. Xiao et al. demonstrated that RAP TL is relatively

insensitive to seasonal SSP variations (Xiao et al., 2016); however, in

some cases, seasonal SSP variations may be minimal compared to

global spatial variations.

The properties of the Reliable Acoustic Path (RAP) are highly

significant, and prior to our study, there had been no global research
Frontiers in Marine Science 0219
conducted on this topic. The prevailing impression was that RAP

was insensitive to sound speed profiles; however, our findings have

proven otherwise. Through extensive analysis and research, we have

demonstrated the sensitivity of RAP to sound speed profiles.

In our study, we conducted a global investigation of Reliable

Acoustic Path (RAP) properties and their variations, identifying

ocean depth and sound speed profile (SSP) structure as the primary

influencing factors. The findings of this paper offer valuable insights

for leveraging RAP in underwater acoustic localization and

communication. The impact of SSP structure on RAP is found to

be significant, with RAP range varying up to 35 kilometers for a

depth of 4000 meters. Dynamically complex regions, like the

Kuroshio Extension, exhibit substantial variations in SSP even at

the same locat ion , resu l t ing in notab le changes in

RAP characteristics.

Deep-sea positioning methods heavily rely on underwater

acoustic propagation characteristics and rely on angle information

from measurements for precise underwater localization.

Inaccuracies in the sound speed profile can lead to significant

reductions in positioning accuracy. For effective underwater

acoustic communication, acquiring sufficient environmental

information is crucial to obtain more precise underwater acoustic

channel characteristics.

In conclusion, this comprehensive study enhances our

understanding of RAP properties across different regions

worldwide, providing essential guidance for utilizing RAP in

underwater applications such as localization and communication.
Properties of reliable acoustic path

Figure 1 presents a typical case of 2D transmission loss of the

reliable acoustic propagation. The SSP was the Munk profile as

shown in Figure 1A. The source frequency was 200 Hz, the ocean

depth was 5000 m, and the source depth was 4800 m. Figure 1B

shows that when the source was deployed near the ocean bottom,

the coverage of the RAP was bowl shaped. The radiance of the RAP

could reach nearly 40 km near the surface, suggesting that the

receiver deployed in this case could detect targets within this range

with a high SNR ratio.
BA

FIGURE 1

2D transmission loss of the RAP. (A) Sound speed profile (B) 2D transmission loss.
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In order to validate the model and simulation method employed

in this study, we utilized acoustic experiment data collected from a

specific region in the Western Pacific Ocean in 2021 and compared

it to the simulated results. For the comparison with the

experimental data, we used a ray model and the acoustic

reciprocity method, setting the source depth at 5470m and the

receiving depth at 300m. In the Figure 2, Figure 2A displays the

two-dimensional propagation loss acquired through simulation

using real topography, sediment characteristics, and sound speed

profiles, while Figure 2B presents a comparison between the

propagation loss at 200Hz and the experimental data at a

receiving depth of 300m. As evident in the figure, both the

simulated results and the experimental data exhibit a rapid

decline trend at the edge of the reliable acoustic paths, with

similar magnitudes, implying that the model and modeling

methods used in this study are relatively trustworthy. Moreover,

the ray model has mature applications in acoustic field simulation.

The results of the model are reliable in deep-sea areas, and are

effective for the analysis of reliable acoustic paths in this study.

Here, we focused on two RAP properties, namely, the RAP

radiance near the sea surface and the receiver direction that varies

with the source range. In the previous studies of Duan et al (Heaney

et al., 2013), they showed that the receiver direction is sensitive to

the source locations. Figure 3 presents the receiver directions and

the source locations. The source/receiver set is the same as that in

Figure 1. At a water depth of 5000 meters and a source depth of

4800 meters, the sound speed profile follows the Munk curve as

shown in Figure 1A. The seafloor has a minor impact on the arrival

structure and is set with a sound speed of 1600 m/s, density of 1.8 g/

cm³, and an attenuation coefficient of 0.8 dB/wavelength. In

Figure 3, the receiver directions of the direct path (also named

RAP), the bottom reflected path with no surface reflection, the

surface reflected path with no bottom reflection and the surface and

bottom reflected path are denoted as B0T0, B1T0, B0T1 and B1T1,

respectively. We notice that the receiver directions of the RAP

arrival and the other paths are sensitive to the source ranges. Thus,

determining the source range with the RAP arrivals has practical

significance. However, when we use the physics-based RAP arrival

to estimate the source location, we should be aware that the RAP
Frontiers in Marine Science 0320
properties could be affected by the ocean acoustic environment. For

the RAP case, the SSP structure and the ocean depth should be

considered. Detailed analyses were carried out on a global scale to

study the variation pattern.
Characterization of the reliable
acoustic path worldwide

The Etopo1 database was used as the bathymetry data (Hirt and

Rexer, 2015). The WOA18 annual database (Locarnini et al., 2018;

Zweng et al., 2018) was used in this paper to provide the

temperature and salinity profiles for the computation of the SSPs.

The empirical formula (Lovett, 1978) is shown in Equation (1),

where C (m/s) refers to the sound speed, T (°C) refers to the

temperature, and S (‰) refers to the salinity. P (kg/cm²) is the static

pressure of the immediate ocean water column.

C = 1449:22 + DCT + DCS + DCP + DCSTP (1)

Here,

DCT = 4:6233T � 5:4585(10)� 2T2

+ 2:822(10)� 4T3 � 5:07(10)� 7T4

DCP = 1:60518(10)� 1P + 1:0279(10)� 5P2

+ 3:451(10)� 9P3 � 3:503(10)� 12P4

DCS = 1:391(S� 35)� 7:8(10)� 2(S� 35)2

DCSTP = (S� 35)½� 1:197(10)-3T + 2:61(10)-4P� 1:96(10)-1P2 � 2:09(10)-6PT�
+P½ � 2:796(10)-4T + 1:3302(10)-5T2 � 6:644(10)-8T3�

+P2½ � 2:391(10)-1T + 9:286(10)-10T2� � 1:745(10)-10P3T

To study the effects of the ocean depth and the SSPs on the RAP

properties, we conducted acoustic model simulation on each grid of

the WOA18 database. The SSPs were obtained from the WOA18

data of the same grids, and the ocean depths were obtained by
BA

FIGURE 2

The measured data compared to the simulated result. (A) Two-dimensional Propagation loss (B) Propagation loss comparison.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1213002
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2023.1213002
interpolating the ETOPO1 bathymetry over the grids. On each grid,

we set up a reasonable range-independent case model because the

RAP does not interact with the sea bottom. Thus, the combined

effects of the ocean depth and SSP variations on the RAP properties

could be obtained on the global scale.

Figure 4A presents the bathymetry from the ETOPO1 database.

In Figure 4B, the maximum range of the RAP at the surface has a

0.25° × 0.25° spatial resolution. On each grid point, we set up an

acoustic model to calculate the maximum range of the RAP near the

surface. The source 200 m above the ocean bottom, and the source

frequency was 200 Hz. The SSP was obtained from the WOA18

annual database. The grids with an ocean depth smaller than 2500

m were excluded. The reason for choosing a grid of less than 2500m

lies in the focus of our study, which is primarily concerned with

deep-sea areas. Given that the sound speed profile inflection points

in most sea areas are around 1000m, we wanted to take into account

more common situations, enabling us to observe and analyze a

more comprehensive structure of the sound speed profile. As a

compromise, we chose a depth of 2500m as a boundary point.

Figure 4B indicates that the maximum range of the RAP varies

from 20 km to 60 km. The comparison of Figures 4A, B shows that

the maximum range of the RAP is weakly related to the ocean

depth. Figure 4C presents the relation between the ocean depth and

the maximum range of the RAP with a scatter plot. The maximum

range of the RAP increases with the ocean depth. For example, at

the ocean depth of 4000 m, the maximum RAP range is 15–50 km.

Given that the two factors affecting the RAP range are the ocean
Frontiers in Marine Science 0421
depth and the SSP structure, the effect of the SSP structure on the

RAP range should be examined.

Figure 5A presents the latitudinal Sound Speed Profiles (SSPs)

at a longitude of 160.125°E, revealing significant variations in the

SSP structure. In Figure 5B, the bathymetry along the same line is

displayed, excluding depths smaller than 2500 meters. Figure 5C

shows the relationship between the maximum range of the Reliable

Acoustic Path (RAP) and ocean depth, indicating a linear trend

between the range and the ocean depth.

The structurally consistent sound speed profile was utilized to

examine the impact of ocean bathymetry on the reliable acoustic

path range under the same sound speed profile conditions. Figure 6

illustrates the variation in the RAP range. The left subplot depicts

the SSP used, while the right subplot exhibits the RAP variation as

we vary the water depth from 2600 to 5500 meters.

From analyzing Figures 5, 6, it is evident that there is a linear

trend between the RAP range and ocean depth. However, the range

can vary significantly even at the same ocean depth. This variation

can be attributed to the considerable differences in the SSP structure

for the same ocean depth, resulting in variations in the RAP range.

To determine the effects of the SSP structure on the RAP

properties on the global scale, we clustered the global SSPs

obtained from the WOA18 data into 12 groups. There are

numerous approaches for classifying transonic airfoil shapes, each

resulting in different categorizations. The 12 categories used in this

study were chosen purely to facilitate analysis, and the results could

be presented even more concisely in a 4 x 3 matrix. The profiles with
B

C D

A

FIGURE 3

Receiver directions and source locations for different arrivals: (A) B0T0 (B) B1T0 (C) B0T1 (D) B1T1.
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a maximum depth exceeding 4500 were used, and a total of 242934

profiles were available for use. The temperature and salinity profiles

were used to obtain the SSPs on each grid. Figure 7A shows the 12

types of SSPs, and Figure 7B presents their distributions around

the world.

The 12 types of SSPs were then used to study the effects of the

SSP structure on the RAP properties. Figure 8 presents the TL and
Frontiers in Marine Science 0522
the rays corresponding to the 12 types of SSPs. In Figure 8A, the 2D

TLs for the 12 cases with a maximum depth of 4500 m are

presented. The source depth was 4300 m, and the source

frequency was 200 Hz. Figure 8B presents the 2D TLs for the

upper 500 m for the 12 cases. The major difference could be

observed near the edge of the RAP, and the SSPs could result in a

significant variation pattern of the TL on the upper 500-m deep
B

C

A

FIGURE 4

(A) Bathymetry of the global ocean, (B) the maximum range of the RAP in the global ocean scale, and (C) the relation between the ocean depth and
the maximum range of the RAP.
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layers. In Figure 8C, the ray’s geometry is illustrated with green

lines, indicating the case with surface and non-bottom reflections,

and the red lines represent the case with no surface or bottom

reflection. Figure 8C clearly indicates that the variation of the SSP

structure could result in a significant change in RAP properties.

Table 1 lists the maximum range of the RAP for the 12 types of

SSPs with an ocean depth 4500 m and a source depth of 200 m

above the ocean bottom. The maximum range varies from 25 km to

42 km, which could be significant in many cases when the RAP is

used for underwater localization or communication.

Then, we investigated the possible effect of SSP variation on

underwater localization. Figure 9 shows the effects of SSP variation

on the receiver angle. Figure 9 reveals that the effects of the SSP

variation on the receiver angles increase with the source range. For

example, at the receiver angle of -10°, the source range could vary by
Frontiers in Marine Science 0623
approximately 1 km when the source range is lower than 15 km. At

the receiver angle of -5°, the source range could vary by nearly 5 km

when the source range reaches or exceeds 20 km. The variation of

the source range at the same receiver angle is large, even in the case

of 1-km variation because the 1 km variation could be a significant

localization error when we attempt to detect underwater sources

with the RAP rays.

Specifically, we selected the Kuroshio Extension region to study

the effect of the Kuroshio Extension front on the RAP properties. In

Figure 10, the left subplot is of the SSPs on the two sides of the

Kuroshio Extension front. The right subplot is of the effects of the

two SSPs on the receiver angles of the RAP. Figure 10 suggests that

the SSPs could induce great variation in the receiver angle. At the

25-km range, the variation of the source range could vary by

approximately 1 km in the upper 500-m deep layers at the same
B

C

A

FIGURE 5

(A) SSPs, (B) the bathymetry and (C) the relation between maximum range of the RAP and the ocean depth along the latitudinal direction at the
longitude 160.125°E.
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FIGURE 6

The range variation of the Reliable Acoustic Path (RAP) along with the bathymetry variation. The left subplot represents the Sound Speed Profile (SSP)
used, while the right subplot shows the RAP variation as we vary the water depth from 2600 to 5500 meters.
B

A

FIGURE 7

(A) 12 types of SSPs around the global ocean, and (B) the distribution of the 12 groups of SSPs (each color referring to one group of SSPs).
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B

C

A

FIGURE 8

TLs and rays corresponding to the 12 types of the SSPs. (A) 2D TL with the maximum depth down to 4500 m, (B) 2D TL with the maximum depth
range down to 500 m, (C) the ray figure (the grey lines refer to the eigenrays with one time of surface reflection and non-bottom reflection, the red
lines refer the eigenrays with no bottom or surface reflection).
TABLE 1 Maximum range of the RAP for the 12 types of SSPs.

Type 1 2 3 4 5 6 7 8 9 10 11 12

Range 32 31 33 32 34 40 42 37 34 25 34 37
F
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receiver angle. Even in some specific regions, the dynamics of the

ocean front could result in a significant change in RAP properties.

Thus, if we want to make full use of the RAP for underwater

activities, then SSPs with high accuracy should be used to avoid a

large error.
Conclusions

In this study, we examined the RAP properties on a global scale

using SSPs calculated from temperature and salinity profiles within

the WOA18 annual database, and ocean depth data from the
Frontiers in Marine Science 0926
ETOPO1 dataset. Acoustic modeling was conducted on each grid

of the WOA18 data at a 0.25° × 0.25° spatial resolution, and the

maximum RAP range across the global ocean was calculated.

Results indicate that the RAP range increases with ocean depth,

albeit with a weak correlation. At a consistent ocean depth of 4000

meters, the RAP range can vary between 15 and 50 kilometers, with

the SSP structure being the main variable.

We also investigated the effect of SSPs on RAP properties by

clustering global SSPs into 12 groups, yielding 12 distinct SSP types.

Acoustic simulations revealed that the RAP range could vary

between 25 and 42 kilometers when using these 12 SSPs.

Additionally, the impact of SSP variation on receiver angles was
FIGURE 10

SSPs in the Kuroshio Extension region (left) and the effect of SSPs on the receiver angles of the RAP (right).
B

C D

A

FIGURE 9

Effects of the SSP variation on the receiver angle (A) B0T0, (B) B0T1, (C) B1T0, (D) B1T1, (the SSPs used here were the 12 types from the cluster result).
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studied. Results demonstrated that receiver angle variation

increases with source range, reaching up to 5 kilometers at a 20-

kilometer distance. This variation can introduce significant

localization errors when using the RAP for underwater source

localization with inappropriate SSPs. Therefore, careful

consideration of SSP structure is essential when leveraging the

RAP for underwater activities.
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Simulation of sonar
reverberation signal
considering the ocean
multipath and Doppler effect

Sen Zhang1*, Jian Wu1,2 and Tianqi Yin1

1Naval University of Engineering, Wuhan, Hubei, China, 291497 Unit, Ningbo, Zhejiang, China
In order to achieve accurate modeling and simulation of sonar reverberation

signals, four types of multi-path underwater reverberation models are

established considering Doppler effect under the condition of separating the

sound source and hydrophone. The simulation of underwater reverberation

signals under static or uniform linear motion conditions is carried out for single

point for the separating the sound source and hydrophone transceiver, as well as

horizontal linear array. The non-stop-and-hop model of reverberation signals is

presented. And the underwater reverberation signals in the array element domain

and beam domain are obtained. From the simulation results of the improved

model, it can be seen that the spatiotemporal two-dimensional characteristics

and Doppler expansion are consistent with theoretical analysis. The frequency

shift of the horizontal linear array reverberation signal is approximately sinusoidal

with the directionality angle of the linear array. Comparing the simulation results

of the improved model with traditional models, the improved model can more

accurately simulate sonar reverberation signals.

KEYWORDS

reverberation, ray acoustics, ocean multipath, bottom scattering, Doppler, accurate
modeling, signal simulation, towed linear array
1 Introduction

Ocean reverberation refers to the acoustic signal generated at the receiving point caused

by the scattering of a large number of random inhomogeneous bodies in the undulating sea

surface, uneven seabed, and seawater medium during the propagation of sound waves

(Yangang et al., 2020). Consequently, a sonar reverberation signal will have a negative

impact on the precise reception and identification of the target underwater acoustic signal

(Bing et al., 2016). In addition, the movement of the signal transceiver will inevitably

introduce a frequency shift in the ocean reverberation signal caused by the Doppler effect

(Yuliang, 2020). Therefore, it is important to introduce a more accurate model of ocean

reverberation signals. The present study establishes four types of multipath sound rays,
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which are then modeled and simulated under the consideration of

the Doppler effect (Yulu et al., 2017).
2 Models and methods

When it comes to simulating the ocean reverberation signal,

reference (Danping, 2020) followed four distinct steps to obtain the

simulated reverberation: a) start from the shallow sea environment,

b) adopt the normal mode propagation model, c) introduce the

probability density function of Rayleigh distribution, and d)

accumulate the reverberation generated by each scatterer at

different distances. In contrast, Zhou et al. (2020) based their

method on the ray-normal mode analogy, using the normal mode

to simulate the reverberation field in shallow water (Zhou et al.,

2020). In both studies, the reverberation is simulated under the

condition that both the sound source and the hydrophone are

placed close to each other (Liya, 2018). established the attenuation

model of deep seabed reverberation intensity with time and the

model of seabed reverberation signal based on the principles of

statistical physics. In reference (Yangang et al., 2020), the

reverberation sequence signal was obtained by convoluting the

equivalent reverberation scattering sequence with the transmitted

signal. Lijun et al. (2021) used the small slope approximation and

the ray theory sound field algorithm to evaluate the scattering effect

of the rough interface in the full grazing angle range, and the

multipath factor was then employed to establish the reverberation

intensity model of the sea surface and seabed. Based on the ray

acoustic model, reference (Teng et al., 2021) used the channel

convolution method and the echo signal to derive the echo signal

in the ideal environment and the shallow water environment,

respectively, with reverberation interference. In reference (Runze

et al., 2021), the interface reverberation was described as the

incoherent superposition result of different multipath

reverberation fading processes, and a reverberation intensity

model was established, using the physical parameters of the sea

surface and seabed as variables. However, a limiting factor of these

studies was that they did not consider the influence of the

Doppler effect.

Siwei et al (Kou et al., 2021). proposed that when the sonar

platform moves, the reverberation and echo entering the sonar

array from different incidence cone angles have different Doppler

frequency shifts; however, this study only examined the case of

direct incidence of the receiver through the first scattering on the

seabed. In addition, the ocean multipath factor was not taken into

consideration. In reference (Sibo, 2018), three-dimensional bistatic

multipath reverberation signals were modeled and simulated,

while at the same time, the authors analyzed the space-time

characteristics of bistatic reverberation, including Doppler

frequency shift and reverberation directivity. In addition, that

study investigated the suppression of reverberation signals using

the space-time optimal processing method. However, the influence

of the Doppler stretching effect on the pulse width of the

reverberation signal was still not regarded.

Therefore, it becomes evident that current research on

simulating ocean reverberation signals tends to ignore the
Frontiers in Marine Science 0230
Doppler stretching effect on the pulse width of the reverberation

signal. Furthermore, several research studies have not considered

the influence of the Doppler frequency shift on the reverberation

signal, while others have not considered the multipath factor of the

ocean. Consequently, to realize the accurate modeling and

simulation of sonar reverberation signals, based on the ray

acoustics theory and the principle of sound field superposition

(Jun et al., 2012; Tao, 2007), the influence of the Doppler stretching

effect on the signal pulse width has been analyzed under the

condition that the sound source and the hydrophone are

separated. As a result, four types of ocean reverberation models

considering the Doppler effect have been established. On this basis,

the reverberation model of the sonar signal is simulated, the single-

point transceiver is extended to the horizontal towed linear array,

and the seafloor reverberation signals in the array element space

and beam space are obtained (Jincheng, 2019). The space-time two-

dimensional characteristics and Doppler spread in the simulation

results are consistent with the theoretical analysis. Comparing the

simulation results of the improved model and the traditional model,

the improved model can simulate the sonar reverberation signal

more accurately.
2.1 Ocean multipath model for
reverberation signal simulation

In the present study, the marine environment refers to the

environment in which the depth of the seawater is much lower

than the length of the sound propagation path in the seawater. In this

environment, reverberation in the seawater stems largely from the

scattering of sound waves on the seafloor, and the intensity of seafloor

reverberation is mainly contributed by four types of multipath sound

rays (Minghui, 2011). Hence, the simulation of seafloor reverberation

signals mainly considers four types of multipath sound rays, as shown

in Figure 1 (Sibo and Song, 2016).

In this figure, H represents the depth of the sea. The paths of

these four types of sound rays involve the following: a) sound

source, scattering at the bottom surface, and hydrophone; b) sound

source, scattering at the bottom surface, sea surface reflection, and

hydrophone; c) sound source, sea surface reflection, scattering at the

bottom surface, and hydrophone; d) sound source, sea surface

reflection, scattering at the bottom surface, second sea surface

reflection, and hydrophone.

In general, the combined transmitter and receiver can be regarded

as a special case of a separated transmitter and receiver. Therefore,

considering that the towed linear array sonar to be analyzed is a

separated transmitter and receiver, the present study investigated the

establishment of a sonar reverberation simulation model under the

condition of a separated sound source and hydrophone.
2.2 Reverberation signal model considering
the Doppler effect

The model in this paper is based on the following

three hypotheses:
frontiersin.org
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Fron
Hypothesis 1: Sound waves propagate in the form of spherical

waves.

Hypothesis 2: The absorption of sound waves is neglected, and

thus scattering is calculated at the sea bottom, and

reflection is calculated at the sea surface.

Hypothesis 3: Scattering of the sea bottom is uniform.
The influence of the Doppler effect on sonar reverberation

signal mainly affects signal frequency and signal pulse width.
2.2.1 Doppler effect on signal frequency
Let us consider a sinusoidal signal where the signal (Jian, 2019)

source moves at a radial rate v relative to the hydrophone. Let the

velocity of the sound source close to the hydrophone be positive and

the velocity of the sound source far away from the hydrophone

negative. If the frequency of the signal is f, the wavelength is l, and
the propagation speed of the signal in the medium is c, the

frequency of the signal after the Doppler effect becomes f′, and

the wavelength becomes l′. Consequently (Xianwen et al., 2022),

the Doppler shift is given by Df = f′-f or

Df =
v

c − v
· f (1)

In the rectangular coordinate system, a sound source is assumed

to be moving with a velocity vt, the hydrophone moves with a

velocity vr, and the bottom scatterer dA is static, whereas all other

environmental conditions remain unchanged. The Doppler shift

models of four types of multipath sound rays are discussed

respectively in the following.
tiers in Marine Science 0331
2.2.1.1 Doppler shift model of the first type of sound ray

As shown in Figure 2-1, SS represents the sound source, RE is

the receiving element, r1 is the propagation vector of the first

segment of the sound ray, and r2 is the propagation vector of the

second segment of the sound ray. Furthermore, j is the scattering

azimuth angle, qI is the grazing angle of the incident sound ray, qs is
the grazing angle of the scattered sound ray, and n is a scattering

element serial number (Sheng and Xucheng, 2010).

First, we investigate the section of the first type of sound ray

from the sound source SS to the bottom scatterer dA. Let the

frequency shift of the signal received by the seafloor scatterer be

Df1t. In accordance with the physical meaning of the vector dot

product, the radial velocity vt on r1 can be expressed as

v1 =
Vt · r1
r1j j (2)

If we substitute the relevant parameters of the first type of sound

ray into Equation (1), the variation of the signal frequency Df1t of
the first type of sound ray transmitted from the sound source to the

scattering element dA can be obtained as follows (Zhongchen et al.,

2013):

Df1t =
v1

c − v1
· f (3)

If we substitute Equation (2) into Equation (3), we can obtain

the frequency shift of the sound source as it hits the seafloor

scattering element via r1:

Df1t =
Vt · r1

c · r1j j − Vt · r1
· f (4)
H

the first kind of sound ray

source

seabed

sea level

receive meta

the second kind of sound ray

H H

H

source

sea level

receive meta

seabed

source

receive meta

seabed

sea level

the third kind of sound ray the forth kind of sound ray

source

sea level

receive meta

seabed

FIGURE 1

The four types of multipath sound rays contributing to the intensity of seafloor reverberation.
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Similarly, considering the propagation of the first type of sound

ray from the scattering element dA through r2 to the hydrophone

RE, we can assume that the frequency of the signal scattered by the

first type of sound ray on the seabed is f1b.

Consequently, the relationship between f1b and the original

frequency f of the signal is:

f1b = f + Df1t (5)

Assuming that the velocity of the hydrophone is vr, the

frequency shift Df1r of the received signal for the first type of

sound ray from the seafloor scatterer dA to the hydrophone is

Df1r =
Vr · r2

c · r2j j − Vr · r2
· f1b (6)
Frontiers in Marine Science 0432
and the total Doppler shift of the first type of sound ray is:

(Yao, 2013)

Df1 = Df1t + Df1r =
Vt · r1

c · r1j j − Vt · r1
+

Vr · r2
c · r2j j − Vr · r2

· 1 +
Vt · r1

c · r1j j − Vt · r1

� �� �
· f

(7)

According to formulas (5 − 5) and (5 − 13) in (Minghui, 2011),

the first type of sound ray reverberation signal model p1(t1k) can be

obtained as (Yali, 2018):

p1(t1k) = o
N1

n=1

1
r1j j · r2j j · s t − tkð Þ ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI1

n sin qS1
n

q
dA · m

0 n1
p · exp jjn1 Þ�

where s(t − tk) is the signal emitted by the sound source, and s(t)

passes through tk.
X

Z

tV

rV

1r

1n�
1I
n� 1S

n�

dA

Y

SS

RE

2r

dA
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2n�
2I
n� 2S

n�

X

Y

SS RE

RE�

tV rV

�rV

1r 2r

3r
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sea level
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Z
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X
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�tV

�1r

1r
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1. The first type of sound line 2. The second type of sound line

3. The third type of sound line 4. The fourth type of sound line

FIGURE 2

Four types of sound line.
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Considering the Doppler shift, after replacing s(t − tk) with a

complex signal exp ½j2p(f + Df1)(t − t1k)� (Zhang et al., 2021a;

Zhang et al., 2022a), we can get the first type of sound line

reverberation signal model p1(t1k) as:

p1(t1k) = o
N1

n=1

1
r1j j · r2j j · exp½j2p(f + Df 1)(t − t1k)�

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI1

n sin qS1
n

q
dA · m

0 n1
p · exp jjn1� �

(8)

where the first term (jr1j · jr2j)−1 reflects the signal propagation
loss; r1 is the vector of sound sources to seafloor scattering elements;

the second term exp ½j2p(f + Df1)(t − t1k)� is the complex signal

arriving at the hydrophone after the frequency shift and time delay;

f is the frequency of the transmitted signal; Df1 is the total Doppler
shift of the first type of sound; t1k = (jr1j + jr2j)=c is the signal

propagation time delay; and the third term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI1

n sin qS1
n

p
dA ·

m
0 n1
p · exp (jjn1) is the scattering coefficient of the seabed sound

pressure; dA is the scattering element area; m
0 n1
p is a proportional

constant, which is subject to the Gaussian distribution (Xiaohui

et al., 2017); jn1 is the transient phase, which is subject to the (0 ∼
2p) uniform distribution; n is the serial number of seabed scattering

elements; qI1
n is the incidence grazing angle; qS1

n is the scattering

grazing angle; N1 is the total number of scattering elements.

Similarly, the three remaining types of sound ray Doppler

shift models and reverberation signal models can be

deduced accordingly.

2.2.1.2 The Doppler shift model of the second
type of sound ray

As shown in Figure 2-2, the frequency change of the second type

sound ray signal is given by the following equations:

Df2t =
Vt · r1

c · r1j j − Vt · r1
· f (9)

Df2r =
Vr · (r2 + r

0
3)

c r2 + r
0
3

		 		 − V
0
r · (r2 + r

0
3)

· f2b (10)

where V
0
r is the velocity of the virtual source RE′ of the

hydrophone RE which is symmetrical to the sea surface, r
0
3 is the

vector from the intersection of the scattered sound ray and the sea

surface to the virtual source RE′, and r3 is the propagation vector of

the third segment of the sound ray, f2b = f + Df2t .
The total Doppler shift of the second type of sound ray is

Df2 = Df2t + Df2r

=
Vt · r1

c · r1j j − Vt · r1
+

V
0
r · (r2 + r

0
3)

c r2 + r
0
3

		 		 − V
0
r · (r2 + r

0
3)

· 1 +
Vt · r1

c · r1j j − Vt · r1

� �" #
· f

(11)

and the model of the second type of sound ray reverberation

signal p2(t2k) is

p2(t2k) = o
N1

n=1

m

r1j j · r2 + r
0
3

		 		 · exp½j2p(f + Df2)(t − t2k)�

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI2

n sin qS2
n

q
dA · m

0n2
p · exp (jjn2)

(12)
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Here, the first term m · (jr1j · jr2 + r
0
3j)

−1

represents the signal

propagation loss, the second term exp ½j2p(f + Df2)(t − t2k)� is

the complex signal arriving at the hydrophone after the frequency

shift and time delay, and the third term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI2

n sin qS2
n

p
dA · m

0 n2
p ·

exp (jjn2) is the sea bottom sound pressure scattering coefficient, m

is the sea surface reflectivity, m
0 n2
p obeys a Gaussian distribution, jn2

obeys a (0 e 2p) uniform distribution, and t2k = (jr1j + jr2j + jr3j)=c
is the signal propagation delay.

2.2.1.3 The Doppler shift model of the third type
of sound ray

As shown in Figure 2-3, the amount of change in the frequency

of the third type of sound ray signal:

Df3t =
V

0
t · (r

0
1 + r2)

c r
0
1 + r2

		 		 − V
0
t · (r

0
1 + r2)

· f (13)

Df3r =
Vr · r3

c · r3j j − Vr · r3
· f3b (14)

where V
0
t is the velocity of the virtual source SS′, whose sound

source SS is symmetrical to the sea surface, and r
0
3 is the vector from

the intersection point of the incident sound ray and the sea surface

to SS′, f3b = f + Df3t .
The total Doppler shift of the third type of sound ray is:

Df3 = Df3t + Df3r

=
V

0
t · r

0
1 + r2


 �
c r

0
1 + r2

		 		 − V
0
t · r

0
1 + r2

� � + Vr · r3
c · r3j j − Vr · r3

· 1 +
V

0
t · r

0
1 + r2


 �
c r

0
1 + r2

		 		 − V
0
t · r

0
1 + r2

� �
0
@

1
A

2
4

3
5 · f

(15)

and the model of the third type of sound ray reverberation

signal p3(t3k) is

p3(t3k) = o
N1

n=1

m
r01 + r2j j · r3j j · exp j2p(f + Df3)(t − t3k)½ �

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI3

n sin qS3
n

q
dA · m

0 n3
p · exp jjn3� �

(16)

The first term m · ðjr01¢ + r2j · jr3jÞ−1 represents the signal

propagation loss, the second term exp½j2p(f + Df3)(t − t3k)� is the
complex signal arriving at the hydrophone after the frequency shift

and time delay, and the third term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI3

n sin qS3
n

p
dA · m

0 n3
p ·

exp ðjjn3Þ is the scattering coefficient of the seabed sound

pressure, m
0 n3
p obeys a Gaussian distribution, jn3 obeys a (0 ∼ 2p)

uniform distribution, and t3k = (jr1j + jr2j + jr3j)=c is the signal

propagation delay.
2.2.1.4 Doppler shift model of the fourth type
of sound ray

As shown in Figure 2-4, the amount of change in the frequency

of the fourth type of sound ray signal is

Df4t =
V 0
t · (r

0
1 + r2)

c r01 + r2
		 		 − V 0

t · (r
0
1 + r2)

· f (17)
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Df4r =
V 0
r · (r3 + r04)

c r3 + r04
		 		 − V 0

r · (r3 + r04)
· f4b (18);

where r01 is the vector from the intersection point of the incident

sound ray and the sea surface to SS’, r4 is the propagation vector of

the fourth segment of the sound ray, and r
0
4 is the vector from the

intersection point of the scattered sound ray and the sea surface to

the virtual source RE′, f4b = f + Df4t .
Consequently, the total Doppler frequency shift of the fourth

type of sound ray is (Zhang et al., 2021b):

Df4 = Df4t + Df4r

=
V

0
t · r

0
1 + r2


 �
c r

0
1 + r2

		 		 − V
0
t · r

0
1 + r2

� � + V
0
r · r3 + r

0
4


 �
c r3 + r

0
4

		 		 − V
0
r · r3 + r

0
4

� � ·

1 +
V

0
t · r

0
1 + r2


 �
c r

0
1 + r2

		 		 − V
0
t · r

0
1 + r2

� �
0
@

1
A
3
5 · f

2
66666666666664

(19)

and the model of the fourth type of sound ray reverberation

signal p4(t4k) is:

p4(t4k) = o
N1

n=1

m2

r
0
1 + r2

		 		 · r3 + r
0
4

		 		 · exp j2p f + Df4ð Þ t − t4kð Þ½ �

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI4

n sin qS4
n

q
dA · m

0 n4
p · exp jjn4� �

(20)

The first term of Equation 20 m2ðjr01 + r2j · jr3 + r
0
4jÞ−1

represents the signal propagation loss, the second term exp½j2p(f +
Df4)(t − t4k)� is the complex signal arriving at the hydrophone after

the frequency shift and time delay, and the third termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qI4

n sin qS4
n

p
dA · m

0 n4
p · exp (jjn4) is the scattering coefficient of

the seabed sound pressure, m
0 n4
p obeys a Gaussian distribution, jn4

obeys a (0 ∼ 2p) uniform distribution, and t4k = (jr1j + jr2j + jr3j +
jr4j)=c is the signal propagation delay.
2.2.2 Influence of the Doppler effect on the
signal pulse width

As shown in Figure 3, c is the signal speed, l is the wavelength, t
is the pulse width, and k is the number of cycles, i.e., the signal

contains k wavelengths. The signal will be affected by the Doppler

stretching effect, and will thus have a new wavelength l′ and a new

pulse width t′ (Xiye et al., 2009). According to the relationship

between distance, speed, and time, we can easily obtain that:

t =
k · l
c

(21)

t 0 =
k · l0

c
(22)

If we substitute f · l = c and f 0 · l0 = c into Equation (21) and

Equation (22), respectively, then we can obtain the relationship

between the signal pulse width before and after the Doppler

stretching effect:
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t 0 =
f
f 0
t (23)

Simulation and results.
2.3 Underwater reverberation simulation

The geometric model of seabed reverberation simulation is

shown in Figure 4 (Zhang and Yang, 2022). The towed linear

array is horizontally arranged along the negative direction of the Y

axis, where SS is the transmission source of the towed linear array

located on the Z axis (Xiaohui et al., 2017). Furthermore, RE is the

receiving element of the towed linear array, i is the serial number of

the receiving element, N is the total number of receiving elements, d

is the distance between the receiving elements, H is the depth of the

sea water, and h is the distance of the towed linear array from the

sea floor. The distance between the transmitting source SS and RE1
is 2d (Jinhua et al., 2020; Yonghong, 2011). The motion states of the
X

Y

Z

minR
maxR

SS1RE2REiRE 3RE2NRE �1NRE �NRE
d 2d

h H

dA

V
sea surface

seabed

FIGURE 4

Geometric modeling of seabed reverberation simulation.
�
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FIGURE 3

Influence of the Doppler stretching effect on the signal pulse width.
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transmitting source and the receiving element are the same. The sea

floor scattering area is an annular area, which assumes the origin as

the center of a circle with an inner diameter Rmin and an outer

diameter Rmax, and dA is a sea floor scattering element (Meina et al.,

2017; Zhao et al., 2011). The transmitting source sends out a

complex signal described by s(t) = exp (j2pft) (Zhiguang and

Zhiqiang, 2016), with a pulse width of t, sea surface reflectivity of

m, and speed c (Zhang et al., 2022b).

2.3.1 Reverberation signal simulation of a single
scattering unit by a single sound source and a
single hydrophone

In this section, we simulate the reverberation signal received by

RE1, which is emitted by the sound source SS and is incident to RE1,

via a single scattering element dA (Yuqiang et al., 2018). The

simulation parameters are shown in the following Table 1:

In this paper, the reverberation model, represented by

Equations (24), (25), (26), and (27), takes into consideration both

the ocean multipath and Doppler effect. Depending on whether the

transmitting source and the single receiving element RE1 are

stationary or moving, the simulation results are shown in

Figures 5, 6, respectively.

Figure 5 demonstrates a time domain diagram of a single

bottom scatterer’s reverberation signal. A single source emits a

sinusoidal pulse signal with a fixed frequency pulse width of 0.5(s).

After passing through the single scattering element dA, the single

hydrophone RE1, receives the time domain map of the signal. The

blue part of the figure is the time domain plot of the signal received

by RE1 while the trailing linear array is stationary. Conversely, the

red part of the figure is the time domain plot of the signal received

by RE1 when the linear array is dragged. Thus, when the transceiver

device is stationary, the signal frequency of the four types of voice
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lines remains unchanged because there is no Doppler shift. Hence,

the superimposed signal of the four types of voice lines still basically

maintains the shape of sinusoidal pulses (blue part). When the

transceiver device moves, the signals of the four types of voice lines

undergo different degrees of Doppler shift. The superposition of

four types of sound lines with different frequencies forms a signal

(red part), in which the envelope amplitude changes following the

law of sine and cosine. Moreover, under the same motion state, the

Doppler frequency shift of the four types of voice lines is calculated

by the Doppler shift model of the four types of voice lines, and the

accurate modeling and simulation of sonar reverberation signals are

realized. Additionally, owing to the influence of the Doppler effect

on the signal pulse width, the signal pulse width of the light-colored

part of the figure is shortened, and the analysis graph shows the

pulse width change Dt = t
0
− t = −0:005 (s).

In addition, Figure 6 exhibits a spectrum diagram of the

reverberation signal generated by a single bottom scatterer (Yanzi

et al., 2018). It can be seen that the peak center of the spectrum

increases following the movement of the transceiver, as opposed to

when the transceiver remains stationary, and the analysis graph

demonstrates that the frequency shift is Df = 35 Hz (Huang and

Gao, 2014). When in motion, the spectrum is extended due to the

different Doppler frequency shifts of the four types of sound rays

moving at the same speed.

Although (Minghui, 2011) provides the models of four types of

multipath sound ray reverberation signals, the authors do not

investigate the influence of the Doppler effect on the four types of

sound ray reverberation signals in detail. To compare the traditional

model, which does not consider the multipath and the Doppler

effect, with the improved model presented in this paper, we

employed the first type of bistatic sound ray model equations (5 −

12) stated in Chapter 5 of (Minghui, 2011) to compare the

simulation results with the present model.

In the case of motion, Figure 7 shows a comparison of the

simulation time domain of a single seafloor scatterer:

The blue graph in Figure 7 is a time domain plot of the received

signal simulated based on a traditional model. Conversely, the red

graph is a time domain plot of the received signal simulated using

the improved model. Figure 7 reveals that the time domain of the

reverberation signals of the improved and traditional models is as

follows: 1. The pulse width of the improved model signal is longer

than that of the traditional model signal, which is due to the

influence of the multipath, and part of the sound ray propagation

path is longer. Since the Doppler frequency shift is not considered

by the traditional model, the reverberation amplitude will remain

constant. Compared with the traditional model, the reverberation

envelope of the improved model changes according to the sine and

cosine law, which is due to the superposition of reverberation

signals formed by the different Doppler shifts of the four types of

sound rays. The reverberation time domain amplitude of the

traditional model is smaller than the signal amplitude under static

conditions in Figure 5 because the traditional first type of sound ray

model does not consider multipath superposition. It can be seen

that the improved model can reflect the space-time characteristics

of reverberation signals more accurately in the case of a single

source, single hydrophone, and single scatterer.
TABLE 1 Parameters used to simulate the single seafloor scattering
element reverberation.

Title Symbol Value

Type of sea Homogeneous

Type of seabed Flat seabed

Reflection coefficient of the seafloor Obeys a (0–1)
distribution

Sea depth (m) H 60.0

Distance between the line array and the
seabed (m)

h 45.0

Line array speed (m/s) V 10.0 or 0

Line array element spacing d 0.25

Complex signal frequency (Hz) f 3000

Complex signal pulse width (s) t 0.50

Sea surface reflectivity m 0.80

Velocity (m/s) c 1500

Seafloor scattering element coordinates (xb, yb, zb) (0,101,0)
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The frequency domain comparison between the improved

model and the traditional model is shown in Figure 8:

From Figure 8, we can see that the peak frequency of the

improved model increases due to the influence of the Doppler shift,

and the spectrum of the improved model is extended compared

with the traditional model because of the different Doppler

frequency shifts of different sound rays caused by the ocean

multipath. Therefore, the improved model can reflect the

spectrum characteristics of the reverberation signal more

accurately. In addition, the improved model presented in this

study can simulate the reverberation signal more accurately under
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the condition of a single source, single hydrophone, and single

scattering unit by analyzing the respective space-time and

spectrum characteristics.

2.3.2 Reverberation signal simulation of a towed
linear array

In this section, we simulate the reverberation signal of a towed

linear array using the parameters shown in Table 2 and the

simulation results are shown in Figures 9–12.

The “angle” in Figures 9–12 describes the directivity angle of the

dragged line array (Zhe et al., 2017; Zelin, 2019; Junchao, 2021).
FIGURE 6

Spectrogram of a single seafloor scattering element reverberation signal.
FIGURE 5

Time domain map of a single seafloor scattering element reverberation signal.
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Furthermore, different angles correspond to scattering elements at

different positions. A comparison between Figures 11, 12

demonstrates that the reverberation signal frequency decreases

when the directivity angle is negative, and increases when the

directivity angle is positive. Figure 12 also shows that the frequency

shift of the reverberation signal is approximately sinusoidal with the

directivity angle of the linear array, a finding which is consistent with

the theoretical analysis (Xiaodong et al., 2011; Yanqiu, 2015; Zhu

et al., 2023; Zhang et al., 2023a; Zhang et al., 2023b).
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Figures 13, 14 show the reverberation signal simulation of the

traditional model under the condition of towed linear array motion

A comparison between Figures 13 and 10 reveals that the

maximum amplitude of the reverberation signal of the traditional

model is 0.12, which is smaller than the maximum amplitude of the

reverberation signal of the improvedmodel (0.22). This improvement

can be explained by the fact that the improved model considers the

superposition of multipath sound rays. Furthermore, a comparison

between Figures 14 and 12 demonstrates that potential changes in the
FIGURE 8

Frequency domain comparison diagram of a single seafloor scattering element reverberation signal.
FIGURE 7

Comparison of the time domain diagram of a single seafloor scattering element reverberation signal.
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directivity angle of the linear array do not induce any frequency shift

in the reverberation signal of the traditional model. This is because

the traditional model does not consider the Doppler frequency

shift factor.

Overall, our findings clearly show that the improved model

presented in this study can simulate the reverberation signal

significantly more accurately compared to the traditional models
Frontiers in Marine Science 1038
by analyzing space-time and spectral characteristics under the

condition of a towed linear array.

3 Conclusion and discussion

Under the condition of a single sound source, single

hydrophone, and single scattering unit, our simulation data
FIGURE 9

Space-time distribution of a stationary dragging line array reverberation signal.
TABLE 2 Dragging line array reverberation simulation parameters.

Title Symbol Value

Type of sea Homogeneous

Type of seabed Flat seabed

Reflection coefficient of the seafloor Obeys a (0–1) distribution

Sea depth (m) H 1200

Distance between the line array and the seabed (m) h 900

Line array speed (m/s) V 10 or 0

Number of line array receiving elements N 64

Element spacing d 0.25

Complex signal frequency (Hz) f 3000

Complex signal pulse width (s) t 0.50

Sea surface reflectivity m 0.80

Velocity (m/s) c 1500

Inner radius (m) dmin 1200

Outer radius (m) dmax 12500
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showed that the envelope amplitude of the reverberation signal

changes according to the sine and cosine law, while changes in the

pulse width and spectrum of the signal will occur when the

transceiver moves in response to the Doppler effect. A

comparison between the simulation results of the improved and
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the traditional models clearly demonstrates that the reverberation

pulse width of the improved model is longer than that of the

traditional model due to the ocean multipath. In addition, the

reverberation envelope of the improvement model changes

according to the sine and cosine law, caused by the superposition
FIGURE 11

Space-frequency distribution of a stationary dragging line array reverberation signal.
FIGURE 10

Space-time distribution of a panned dragging line array reverberation signal.
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of reverberation signals formed by the different Doppler frequency

shifts of the four types of sound rays considered, as opposed to the

reverberation signal amplitude of the traditional model which

remains unchanged. When assessing the space-frequency
Frontiers in Marine Science 1240
characteristics of the two models, the peak frequency of the

improved model was increased and the spectrum width was

extended due to the different Doppler frequency shift of the

multipath sound ray. It can also be seen that the reverberation
FIGURE 12

Space-frequency distribution of a panned dragging line array reverberation signal.
FIGURE 13

Space-time distribution of a panned dragging line array traditional model reverberation signal.
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signal model that considers both the ocean multipath and the

Doppler effect can reflect the variation in the frequency and pulse

width of the reverberation signal far more accurately.

Under the condition of a towed linear array, the relationship

between the frequency shift of the reverberation signal and the

directivity angle of the linear array is approximately sinusoidal

when the linear array is in uniform linear motion, and the space-

time two-dimensional characteristics and Doppler spread in the

simulation results are consistent with the theoretical analysis. Our

findings confirm that the model established on the premise of

single-point transceiver separation can be well-extended to the case

of multi-point separation. Consequently, the proposed model has

broad universal applicability and can be used to simulate more

diverse combinations of sonar array elements.

When it comes to space-time characteristics, our data showed

that the reverberation amplitude of the improved model is larger

than that of the traditional model due to the superposition of

multipath sound rays in the ocean. Finally, pertaining to the spatial

frequency characteristics, the improved model can reflect the

frequency domain characteristics of reverberation signals more

accurately than the traditional model.

Conclusively, the reverberation signal model considering both

the ocean multipath and the Doppler effect can simulate the sonar

reverberation signal more accurately than the traditional models

presented in current literature.
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FIGURE 14

Space-frequency distribution of a panned dragging line array traditional model reverberation signal.
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Reverberation is the primary background interference of active sonar systems in

shallow water environments, affecting target position detection accuracy.

Reverberation suppression is a signal processing technique used to improve

the clarity and accuracy of received signals by eliminating the echoes,

reverberations, and noise that occur during underwater propagation. Existing

reverberation suppression methods include algorithms based on Time-

Frequency domain processing, noise reduction, adaptive filtering, and spectral

subtraction, but their performance in high-reverberation environments (echo of

small targets) still does not meet the requirements of target detection. To

address the impact of high reverberation environments, we propose a

structural suppression method based on the Wasserstein gradient penalty

generative adversarial network (RSWGAN-GP). The reverberation suppression

generation network uses a one-dimensional convolutional network structure to

process normalized time-domain signals and achieves the reconstruction of the

reverberation signal through Encoder-Decoder. The proposedmethod is verified

through accurate and effective data collection during sea trials. Comparative

results show that RSWGAN-GP effectively suppresses reverberation in

observation signals with multiple bright spots, improving the signal-to-

reverberation ratio by approximately 10 dB compared to other excellent

algorithms and enhancing the information analysis and feature extraction

capabilities of active sonar signals.

KEYWORDS
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1 Introduction

Sonar can accurately detect fixed targets and determine target

distance, it has poor concealment and limited range and is

susceptible to reverberation interference. The detection signal

emitted by active sonar encounters obstacles or targets in the

propagation path of water, and is then affected by reflection,

refraction, and scattering, resulting in signal delay and overlap.

The signals are subsequently received at the receivers, forming echo

signals with reverberation (Huang and Wang, 2019). The influence

of reverberation on active sonar like synthetic aperture sonar

(Zhang et al., 2023a; Zhang et al., 2023b), communication sonar

(Yu et al., 2018), multibeam sonar (Neasham et al., 2007) and other

active sonars should be completely reviewed. Underwater interface

reverberation is an important factor limiting the detection

performance of active sonar in shallow water environments.

Unlike noise interference, reverberation has non-smooth

statistical characteristics and is usually mixed with the target

echo, which is challenging to distinguish (Faure, 1964).

Previous works on reverberation in signal processing mainly

focus on the study of detectors under specific reverberation

conditions (Bharathi and Mohanty, 2019) and the spatiotemporal

distribution characteristics of reverberation; researchers have

studied robust detection performance under various reverberation

distribution conditions. Some researchers have attempted to reduce

the effect of reverberation on target echo by designing a

transmission waveform, such as frequency-hopping signals

encoded with particular frequencies (Costas, 1984), Q-function

sonar signals (Cox and Lai, 1994), and SFM signals (Ward, 2001).

However, enough high frequency is needed to achieve a

reverberation suppression effect, which leads to a low utilization

rate of the low-frequency band and affects the range accuracy.

Some researchers study anti-reverberation processing on signals

received by sonar. Marine reverberation has a strong temporal

correlation with target echo signals.Target echo signals cannot be

effectively found by regularly matched filtering methods as the two

spectra overlap in the frequency domain. In order to improve the

performance of coherent processing in reverberation, Kay et al. used

the AR pre-whitening processing method to filter out reverberation

as white noise under certain conditions (Kay and Salisbury, 1990).

Higher gain and more effectively detected target echoes can be

obtained through matched filter by Wu et al. (Wu et al., 2018), but

local stationarity of the reverberation is required as a premise

(Widrow et al., 1967), which is widely used in ALE (Adaptive

Line Enhancement) algorithm (Ma et al., 2021). However, it has

strict requirements for the channel environment. H.M. Ozaktas and

L.B. Almeida filtered the signal based on the time-frequency focus

difference between the echo and reverberation in the Fourier

transform domain to achieve reverberation suppression (Ozaktas

et al., 1996; Zhang et al., 2019; Mejjaoli and Omri, 2020). However,

The LMS algorithm performs adaptive filtering based on the error

between input and output of the channel, which has strict

requirements on the channel environment. Freburger et al. used

the principal component inversion algorithm to project the received

signal into two subspaces based on the power difference between

different backgrounds, thereby achieving reverberation separation
Frontiers in Marine Science 0244
(Freburger and Tufts, 1997). When the power of the target echo

signal is similar to that of the reverberation signal, distinguishing

between the two becomes difficult.

With the development of artificial intelligence (AI) technology,

deep neural networks have brought new research ideas to solve the

shallow sea sonar reverberation problem. As a hot research direction

in the field of machine learning, GAN (Ashraf et al., 2021) has

become a popular model in the field of deep learning due to its

advantages of generating high-quality samples, learning unlabeled

data, supporting multi-modal data and innovation (Zhan et al., 2019)

(Dong and Yang, 2018). Recently, Gans have evolved from image

generation to reverberation data generation Hu et al. (2023). Gans are

also used to generate spatial impulse responses, with the aim of

enhancing high-quality RIRs with existing real RIRs (Ratnarajah

et al., 2023). In the field of underwater acoustic engineering, it is

theoretically feasible to use GAN for active sonar reverberation

suppression to solve the problem of reverberation suppression

under high reverberation environment.

This paper proposes a Wasserstein generative adversarial

network model with a gradient penalty (RSWGAN-GP) to solve

reverberation suppression of sonar signals. Sonar signals are

different from the picture, and a one-dimensional convolutional

approach is built in this paper to process the signal data. The

generation side of the adversarial network is made according to the

U-net network (Ronneberger et al., 2015) to encode the original

reverberation signal data, and the decoder generates the anti-

reverberant signal data. The discriminator uses the design idea of

SkipNet (Abrahamyan et al., 2021) that the discriminator to achieve

a balance of speed and accuracy. In order to realize the fast and

accurate training of the countermeasure network, the structure

design referred to WGAN-GP comprehensively. In the

experiment, simulation is used to supplement the data set to solve

the difficulty of Marine experiment data sampling and insufficient

data set. Our main contributions are concluded as follows:
1) In order to solve the difficulty of feature extraction in a

reverberation environment, we propose a Wasserstein

generative adversarial network model with a gradient

penalty method

2) Underwater active sonar reverberation simulation with echo

targets is proposed to obtain many marine reverberation

signals, solving the problem of insufficient training sets.
The rest of the article is organized as follows. Section 2 starts with

a brief review of some related works. In Section 3, some data

preliminary work is presented, which includes RSWGAN-GP

reverberation data generation, signal time gain control, and

automatic gain control. In Section 4, the reverberation suppression

method based on RSWGAN-GP is proposed, and the generation

network, discrimination network, and error loss are explained

respectively. In Section 5, experiments are given to verify the

effectiveness of the method, and in Section 6, conclusions are given.

In active sonar, the commonly used detection signals include single

continuous wave (CW), LFM, NLFM, BPSK and other signals. In this

paper, the research object of active sonar signal feature enhancement

is selected as the typical CW signal for research.
frontiersin.org
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2 Related works

2.1 Reverberation suppression methods

Traditional methods for reverberation suppression typically

focus on mapping the feature subspace. The differences between

reverberation and target echoes have been investigated in the

domains of Doppler space, discrete wavelet, and fractional

Fourier. Previous research provides essential features for reducing

reverberation and aiding target detection. For moving targets, in

particular, target tracking can achieve reverberation suppression.

However, these methods could be limited in low signal-to-

reverberation ratio (SRR) and high reverberation scenes. When

the echo of a tiny target is received, the target’s echo is weak and

covered by reverberation, and its feature subspace is weak and

difficult to find.

Low-rank and sparsity theories developed a decade ago have

found wide applications in image processing for tasks such as

background modeling, camera calibration, and optical character

recognition (Chandrasekaran et al., 2011). They have also been

introduced to underwater acoustic engineering for reverberation

suppression and target detection (Qian and Cao, 2019). In the case

of fixed-position active sonar, the received signal from multiple

pings exhibits significant stationarity. Considering the echo data

from a single ping as a frame, multiple frames can be constructed

over time and decomposed into dynamic and steady components.

The steady components display similar strength distributions over

time and can be viewed as a low-rank matrix. On the other hand,

the dynamic components, consisting of reverberation fluctuations

and target echoes, can be treated as a sparse matrix.

Consequently, reverberation suppression methods based on

low-rank and sparse matrix decomposition have been proposed.

These include techniques such as non-negative matrix factorization,

principal component analysis, and robust principal component

analys i s (RPCA) (Chalapathy et a l . , 2017) . For the

implementation of processing large matrix factorization,

alternative methods have been developed to expedite the process,

such as accelerated proximal gradient, augmented Lagrange

multiplier, and alternate direction multiplier methods (ADMM)

(LiXiukun et al., 2015). Zhu et al. applied low-rank and sparse

matrix estimation to decompose received data, enhancing

reverberation suppression techniques’ robustness (Zhu et al., 2022).

These reverberation suppression methods can achieve the

purpose of reverb suppression to a certain extent. However, they

still perform limited at a low signal-to-reverberation ratio.
2.2 Application of artificial intelligence in
reverberation suppression

With the development and rise of artificial intelligence in recent

years, algorithms combining artificial intelligence with anti-

reverberation technology continue to surge, such as support

vector machines, CNN (Song et al., 2019), RNN (Chen et al.,

2022), and GAN In the beginning, it was simply a simple

addition to machine learning. For example, Zhu et al. designed a
Frontiers in Marine Science 0345
feature kernel function SVM based on the non-Gaussian difference

between reverberation and target echo to detect the signal in the

reverberation background. This method improves the recognition

quality of reverberant background, and its effect is better than the

adaptive filtering algorithm (Wu et al., 2008). Jiang Keyu et al.

processed the lake test data (Jiang et al., 2007) and used RBF neural

network to detect the target echo in reverberation to be better.

Xiang et al. proposed a reverberation suppression method for

underwater moving target detection based on a robust

autoencoder (Zhu and Sun, 2008). Xiao et al. proposed an ABNN

focusing on the frequency domain characteristics of the target,

which suppresses environmental noise and ship interference and

makes the accuracy of target detection and recognition higher (Xiao

et al., 2021).

The deep learning technology’s continuous development and

innovation, many neural network architectures with good

performance and robust stability have emerged. For instance,

multilayer perceptrons (MLP) and long short-term memory

(LSTM) networks have been developed to learn mappings from a

window of reverberated frames (or “context” windows) to a source

frame, thus learning to deliberate by inverse transformations Han

et al. (2015); Wang et al. (2017); Wuth et al. (2020). Additionally,

Zhao et al. Zhao et al. (2018) proposed an LSTM-based late

reverberation suppression strategy that learned the difference

between the source and reverberated signals; therefore,

dereverberation is performed by subtracting the late reverberation

estimation from the observed reverberated signal.

The application of deep learning provides another effective

method for reverberation suppression. Artificial intelligence has

relatively excellent performance and effect. It can achieve many

effects that cannot be achieved by traditional methods, which makes

the development of anti-reverberation technology in recent years

mainly biased to- wards the direction of artificial intelligence.

The above studies show that the combination of deep learning

has specific feasibility for sonar signal reverberation suppression.

However, reverberation suppression still needs to be improved

under high reverberation environments and different underwater

signal environments. At the same time, the extraction ability of

effective information in the signal still cannot meet the needs of the

complex environment.
2.3 The relationship between artificial
intelligence methods and
traditional methods

In terms of underwater reverberation suppression, the initial

reference of artificial intelligence (AI) and machine learning

methods is to make up for the shortcomings of traditional

methods and complement and combine them. In a new study, it

was found that artificial intelligence could complete the task better

to replace it entirely (Koh et al., 2020).

Traditional methods are mainly based on signal processing and

digital filtering techniques, which involve preprocessing, filtering,

and noise reduction operations to suppress reverberation in

underwater sound signals (Singer et al., 2009). These methods
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often rely on domain knowledge and expertise to analyze and model

the reverberation characteristics, followed by the design of

corresponding algorithms for processing. While traditional

methods can reduce the impact of underwater reverberation, their

effectiveness is limited when dealing with complex reverberation

environments and signals.

AI methods, on the other hand, utilize machine learning and

deep learning techniques to learn and recognize reverberation

features and perform suppression automatically (Hao et al., 2023).

By training models with large amounts of data, AI methods can

possess more substantial generalization and adaptability, making

them capable of handling more complex underwater reverberation

environments and signals. Compared to traditional methods, AI

methods exhibit higher levels of automation and intelligence in

underwater reverberation suppression.

Traditional methods and AI methods can be combined in the

context of underwater reverberation suppression. Traditional

methods can provide basic processing techniques and approaches

for preprocessing and initial reverberation suppression, which AI

methods can further optimize and enhance (Yin et al., 2023). For

instance, traditional methods can be used for filtering and noise

reduction of underwater sound signals, and the processed signals

can be used as training data for training AI models to achieve better

reverberation suppression.

In the current research, some scholars have found that traditional

methods and artificial intelligence methods are complementary in

terms of underwater reverberation suppression and can be combined.

Other scholars have used AI alone to replace traditional methods and

improve reverberation suppression (Weiss et al., 2023).
3 Preliminary

After the signal is received, the received signal will be processed

by the active sonar system. In this part, the hardware implementation

of the processing will be reproduced by the following algorithm. At

the same time, the signals that generate the training set data will be

processed in the same way.

The active sonar device processes the received signal in the

following way. After the hardware receives the sonar signal, the

sonar signal will go through time-varying gain and automatic signal

gain control processing so that the long-distance echo signal power

is stronger and more convenient for subsequent processing. After

processing, the generated training set is closer to the actual data.

Figure 1 shows the signal state of each process.

The processing of the signal in the hardware device after

receiving is shown in Figures 1B–D, and the signal processing

process will be explained below.

The echo received by the active sonar system, and the generated

echo signal with target information in Section 4.1 are shown in

Figure 1A, and the circled position is the target echo.Time-Variable

Gain (TVG) Innami and Kasai (2012). According to the sonar

equation, it can be obtained that the echo margin of the sonar is

determined by the difference between the echo signal level and the

background interference level.
Frontiers in Marine Science 0446
DT = (SL − 2TL + TS) − (NL − DI) (1)

In Eq. (1), DT represents the detection threshold and is the

strength of the echo signal received by the sonar, TL represents the

propagation loss because the active sonar is bidirectional, so 2TL

defines its complete propagation loss; SL represents the sound

source level; NL represents the noise level; DI represents the

directivity index; TS represents the target strength. For most

sonar systems, including multibeam sonar, the propagation loss

(TL) is compensated by the TVG device inside the receiver. The

ideal TVG curve should follow the expectation of sonar propagation

loss, i.e.

TL = 10log10r + ar (2)

In Eq. (2), r represents the action distance, and a is the loss

factor, a function of frequency. Figure 1B shows that the signal

passes through the TVG and that the distant signal is no longer

attenuated as the distance increases.

Signal Automatic Gain Control (AGC) (Zhang et al., 2017). In

practice, automatic gain control is typically implemented through

circuit design. However, AGC needs to be implemented for the

experimental simulation of the sonar data set. The signal

adjustment must be automatically adjusted based on the input

and output data size, which initially requires numerous

logarithmic operations. In order to implement these operations

are avoided, a simple comparison operation is used with a gain

lookup table instead. The algorithm can be described as follows.

20lg(G(n + 1)) − 20lg(G(n)) = −10lg((
R2

R02 )
m0
) (3)

The left side is transformed into the adjusted value between two

adjacent gain coefficients G(n + 1) and G(n) in dB format for better

clarity. Following the estimation of the average power of the output

signal, a comparison is made with the reference power to determine

the appropriate method for adjusting the gain coefficient based on the

outcome of this comparison. In Figure 1C, the AGC equalizes the

signal strength and partially suppresses reverberation through

processing. There are hardware limitations to consider in practical

usage. The hardware restricts the received signal and simulates how

the part of the signal that exceeds the limit would appear. Figure 1D

illustrates this simulation. Figure 1E displays the desired output result

of the network, which will be utilized to calculate the Jensen-Shannon

Divergence (JSD), aiming to bring the output result closer to it.

In both experimental and simulation data, some signals exhibit

peak clipping phenomena and cannot be restored to complete sine

waves, making traditional methods ineffective. After undergoing the

above (B), (C), and (D) processing and normalization, the simulated

signal has inputs with the same dynamic range.
4 Reverberation suppression in
RSWGAN-GP

In order to solve the problem of limited suppression effect in a

high reverberation environment, a reverberation suppression
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framework based on the Generative adversarial network is

proposed. A nonlinear mapping from the sonar detection signal

with reverberation to the sonar signal with reverberation

suppression is established, where the input data is the signal

propagation time series. The output is the corresponding time

series after reverberation suppression. Due to the scarcity of

actual data with reverberation signals, the training of RSWGAN-

GP will face the problem of overfitting, reducing its generalization

performance. To this end, the generation of virtual reverberation

data is implemented in this section by combining statistical

modeling and a multi-highlight model. The training data set is

expanded by mixing real and virtual reverberation data while

ensuring the consistency of its distribution pattern. Then, the

theoretical signal gain control was calculated by signal

propagation theory to form a time series signal for artificial

intelligence model learning. The implementation of this part is

shown in Figure 2.

The data generated in Part 4.1 is mixed with real data for Part

4.3, 4.4, and the gradient penalty part is invoked for training.
4.1 Underwater active sonar
reverberation simulation

Underwater reverberation consists of volume reverberation,

surface reverberation, and submarine reverberation. Sea surface

reverberation and submarine reverberation are collectively referred

to as interface reverberation.

To model the network, a significant amount of experimental

data is necessary. Therefore, in this paper, we will simulate sonar
Frontiers in Marine Science 0547
reverberation data. The reverberation simulation comprises three

parts: the generation of reverberation, the simulation of echoes, and

environmental noise simulation.

As shown in Figure 3, at Point M, a non-directional signal is

emitted to activate the ring energizer.. The reverberation model is

illustrated in the figure. Point M represents the transducer, the

distance from M to the interface xoy is h, and the signal is emitted

without any specific direction. At time t, the ring of scatterers

contributing to the reverberation is inside the ring. (Sun

et al., 2010).

It is assumed that the number of scatterers generating

reverberation on the i-th ring is Q. The emitted signal is denoted

as s(t), and its strength is A. The length of theMA is represented by

r, and the wave number is k, where k = 2p f =c. The speed of sound

in the ocean is represented as c, and the scattering coefficient of the

q-th scatterer is Riq = aiqe
jyiq . Where r = ct=2,MB = c(t − T)=2, the

ring area S = pr(r2 −MB2). If the unit area is △ S, so the number

of scatterers contributing to the reverberation in the ith ring is N,

N = ½S=△ S�, and ½ � denotes the integer command, 1 ≤ q ≤ Q.

Therefore, the scattering characteristic function at time t can be

expressed as:

Pi(t) = o
Q

q=1

A
r
e−jkrRiq

1
r
e−ikr (4)

   =
A
r2 o

Q

q=1
e−j2kraiqe

jyiq (5)

where a represents the amplitude and y represents the

phaseain, a and y in are both random numbers following the
B

C D

E

A

FIGURE 1

Signal processing. (A) The echo received by the active sonar system. (B) The echo signal is processed by TVG. (C) The echo signal is processed by
AGC. (D) The echo signal received and processed by sonar. (E) Target echo signal hidden in sonar signal.
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Gaussian distribution with the constraint of, 0 ≤ aiq ≤ 1, 0 ≤ yiq ≤

2p . The process of generating reverberation involves convolving the

emission signal with the scattering characteristic function.

Therefore, the reverberation at time t can be expressed as the

following formula:

R(t) = s(t)⊗ Pi(t) (6)

Active sonar is utilized for detecting underwater targets, which

involves reverberation and capturing the target echo signal. When

the sonar signal hits the object, it generates a new echo through the

multi-point superposition of the target body, enabling the active

sonar to receive it (Hodges, 2011).

In addition to reverberation noise, target echo is an essential

component of active sonar signals. The sonar is assumed to have an

array of ½1⋯m⋯Z� elements for reception. The target echo signal

received by the m-th array element can be expressed as:

E(t) = o
Z

m=1
o
I

i=1
biS(t − tmi)exp½Wmi(t) + 2p fd(t) · (t − tmi) − yi� (7)

In Eq. (7) the coordinate of the m-th array element (xm, ym, zm)

is represented by a vector~rm. I represents the number of highlights

of the target, bi represents the reflection coefficient of the i-th

highlight, S(t) represents the envelope of the transmitted signal, tmi

represents the time delay experienced by the sound wave incident

on the i-th highlight and then reflected the m-th array element,

Wmi(t) represents the angular frequency change of the sound wave

irradiated to the i-th highlight and then reflected the m-th array

element, fd represents the Doppler shift, and yi represents the

random phase shift of the i-th highlight echo, uniformly distributed

between (0 ∼ 2p). Different objects can be simulated by adjusting

the number of highlights.

For environmental noise simulation, the spatial and physical

characteristics of the Marine environment are complex, and the

noise level depends on mixing multiple noise sources. This paper

adopts an AR modeling method to simulate and synthesize Marine

environmental noise (Chen et al., 2018). Firstly, an uncorrelated

Gaussian white noise sequence v(n) is generated, and the Marine

environmental noise can be obtained by passing v(n) through an AR
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filter with a specific temporal correlation. Mark the Marine

environmental noise as W(n), then the generation process of

Marine environmental noise is shown in Eq. (8):

W(n) = −o
p

k=1

ap(k)W(n − k) + sυb0v(n) (8)

p represents the order of the AR filter, υ(n) Gaussian white

noise, and s 2
υ b

2
0 represents variance of Marine ambient noise.AR

filter coefficients ap(k) and b0 can be solved by Levinson-Durbin

(Diniz et al., 2010) method.

The data generated by the above three equations are normalized

respectively, and the corresponding weight is assigned. The

obtained signal is denoted as S(t), and the obtained signal is

shown in Figure 1A, where the signal marked in the yellow box

represents the echo position of the target.

  S(t) = R(t) + aE(t) + lW,  a , l ∈ ½0, 1� (9)

Here, a represents the trade-off between E(t) and R(t). l is an

adjustable parameter that controls the degree of the strength

fluctuation. Through the adjustment of parameters a and l,
enable diversity in the data set, the desired SIR (Signal to

interference ratio, 10loɡ(a2P(E(t))=P(R(t)))) and SINR (Signal to

interference plus noise ratio, 10loɡ(a2P(E(t))=½P(R(t)) + l2P(W)�)
) are achieved, where P represents power.

4.2 Implementation mechanism of the
generative adversarial network

GAN is an effective data generation network, including

Generator (G) and Discriminator (D). The G-analysis process is a

minimal game process, and the discriminator and generator finally

reach Nash equilibrium.

The adversarial training optimization process for generators

and discriminators can be expressed as follows:

min
G

 max
D

V(G,D) = Ex∼Pr ½log(D(x))� + E~x∼Pɡ ½log(1 − D(~x))� (10)

In Eq. (9), x is the actual data, Pr is the actual data distribution,

Pɡ is the generated data ~x = G(z) distribution. The objective
FIGURE 2

Reverberation suppression RSWGAN-GP construction.
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function expressed by minG maxD V (G,D) is to minimize the JSD

between the expectation data distribution Prand the generated data

distribution, provided that the D is optimal.

In that case, the JSD cannot measure the distance between the

generated and actual data distribution. Training the GAN by

optimizing the JSD will result in not finding the correct

optimization target, which is prone to the problem of unstable

training gradient and model collapse.

In order to solve the problems mentioned above, the

Wasserstein Generative Adversarial (Wasserstein GAN, WGAN)

network proposes to use Wasserstein distance as an optimization

method for training GANs. To satisfy the Lipschitz continuity,

WGAN limits the weights to a specific range to enforce the

Lipschitz continuity, but it is leads to poor generation results.

WGAN-GP is a gradient penalty-based WGAN. WGAN-GP

improves the Lipschitz continuity constraint by using gradient

penalty instead of weight clipping in WGAN.

The objective function of WGAN-GP is:

max  
D

V  (G,D) = Ex∼Pr ½D(x)� − E~x∼Pɡ ½D(~x)�

− lEx̂ −Px̂ ½( ∥∇x̂ D(x̂ ) ∥2 −1)
2� (11)

min  
G

L (G,D) = Ex∼Pr ½D(x)� − E~x∼Pɡ ½D(~x)� (12)

In the formula, l is the gradient penalty term coefficient, Px̂ is

the sampling distribution of the gradient penalty term, the

discriminator maximization maxD V (G,D), and the generator

minimization minG L(G,D).WGAN-GP provides a stable training

method that requires little parameter tuning to solve training

gradient disappearance and gradient explosion.
4.3 Reverberation suppression
generator network

In the previous step, the shape of processed data is ½B,N�,
meaning that there are B test data of length N. B is divided into

multiple b. Our goal is to separate a mixture signal S ∈ ½−1, 1�Nm�b

into K source signals S
0 1,…S

0 K with Sk ∈ ½−1, 1�Ns�B for all k ∈
f1,…,Kg, K is set to 1 by default in this paper, B as the batch size at

training time and Nm and Nsas the respectivenumbers of signal

length. For model variants with no extra input context, we have

Nm = Ns and make predictions for the echo part of the input. Here

we input the data S into the neural network structure and perform

feature extraction on the data. It is divided into two parts to

introduce the G network. The first part is the realization of data

crop and concat, and the second part will introduce the whole

generator network.

4.3.1 Data concatenation
It is challenging work to extract sonar signal features using one-

dimensional convolution. A well-designed deep network structure

is crucial for obtaining more valuable dataset recognition features.

As the number of network layers increases, training deep networks

becomes labor-intensive due to the common insurmountable
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problem. To address this issue, optimizing data concatenation

when passing network parameters can be more effective. The

implementation of this approach in the paper is shown in Figure 4.

In Figure 4, the signal feature x is passed from the previous layer

and is processed by the conv1 … convn layers to obtain the data xn.

convy processes x through another branch line to obtain the result

convy(x). Then, the result xn ⊕ convy(x) is obtained, and

subsequent processing continues, done to prevent the loss of

original features after multiple convolutions. The convolution of

the branch is used to process the data and obtain the final data. In

Figure 4A, the data crop operation is equivalent to ⊕, which is the

operation of skip connect in Figure 4B.

The network construction will be built with network blocks and

have the u-net network structure. The network has ‘ + n layers, and

each layer is labelled ½1,…, ‘ − 1, ‘, ‘ + 1,…, ‘ + n�, where ‘ − n = 1.

For a stacked-layer structure (consisting of several stacked

layers), the learned feature is recorded as H(x‘−n) when the input

is x. When ‘ is 0, the accumulation layer only performs identity

mapping, and the network performance will not be degraded. It

allows the accumulation layer to learn new features based on the

input features, resulting in better performance. A convolutional

block of length ‘ + n can be expressed as:

x‘+n = Fd(x‘−n−1,w‘−n−1), n < 1, n ∈ N
x‘+n = Fu(x‘+n−1,w‘+n−1), n > 1, n ∈ N
x‘ = Fm(x‘,w‘), n = 1

:

8>><
>>: (13)

  x‘+n = F(x‘+n,w‘+n)⊕ H(x‘−n) (14)

The convolution result can be obtained by iteratively

convolving the output x from y‘−n block to y‘+n−1 block, where ‘ +

n ranges from ‘ − n − 1 to ‘ + n − 1. The input and output of the
FIGURE 3

Reverberation model.
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formula are represented by x‘, and each residual unit typically

contains a multi-layer structure. Fd is the downsampling block

function, Fu is the upsampling block function, representing the

learned residual, and H(x‘) = xl represents the identity mapping.

The learned features from the shallow layer ‘ to the deep layer L are

expressed as:

  xL = xl +o
L−1

i=1
F(xi,wi) (15)

The determination of L depends on the shortest distance L
detected by the sonar, that is, the number of data pointsN processed

by the sonar equipment. The size of L can be solved by the formula

L = loɡ2(L � Fs=N � c), where Fs is the sampling rate of the active

sonar brother and c represents the speed of sound propagation in

water (m/s).

4.3.2 The generator network structure of
RSWGAN-GP

The generator side of RSWGAN-GP is called G, which is

constructed by a U-shaped network. It utilizes a one-dimensional

convolution network that convolves specifically on signals while

adding skip connections based on their original basis to enhance

accuracy in signal feature extraction, as shown in Figure 5.

As shown in Figure 5, the signal data S is directly input into the

encoder layer X1
En to start the one-dimensional convolution

operation. The network structure’s transmission process and

main characteristics are shown in the figure, where G isspecially

designed for processing sonar acoustic signals. The role of the

encoder is to transform the input sequence into a low-dimensional

representation that can capture the critical features of the input

sequence. The decoder transforms the encoding vector into the

target sequence and dynamically generates the content related to the

target, as shown at X3
De. The decoder receives the feature map from

the same-scale encoder layer X3
En directly. Its data scale will not
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change, still 96� 25600. The convolution of multiple neural

networks may weaken data features with the increase of

convolutional layers, so the data crop structure is utilized to

reduce the loss of information, as shown in Figure 4.

In the generation part of the RSWGAN-gp network, we

formulate the network running result X1
De as follows: let i indexes

the down-sampling layer along the encoder, N refers to the total

number of the encoder. The stack of feature maps represented by

Xi
De, is computed as:

Xi
De =

Xi
En,

H ½C D Xk
En

� �� �i−1

k=1
, C Xi

En

� �
,|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Scales :  1th∼ith

C U Xk
De

� �� �L

k=i+1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Scales :  (i+1)th∼Nth

0
BB@

1
CCA

i=L

i = 1,⋯   ; L − 1

8>>><
>>>:

(16)

Where function C( · ) denotes a convolution operation, H( · )

realizes the feature aggregation mechanism with a convolution

followed by a batch normalization and a Leaky-ReLU activation

function. D( · ) and U( · ) indicate up- and down-sampling

operation respectively, and ½, � represents the concatenation.
The convolution operation C of the signal is shown in the

following formula:

  Xi+1
j = (o

K

k
o
F

c=0
w i+1
c Xi

j+c) + bias (17)

Where Xl ,Xl+1 and w are inputs, outputs and weight

parameters, respectively; 1� F is the size of a single kernel; K is

the number of kernels. Here, the kernel size of 1� F is shared for

the whole input feature maps, called weight sharing.

It is worth mentioning that our proposed generator network is more

efficient with fewer parameters. As for the decoder of the generator part,

the depth of the feature map in a generation is symmetric to the encoder,

and thus Xi
De, also has 12� 2i, channels. The number of parameters in

ith decoder stage of Pi
De can be computed as:
B

A

FIGURE 4

Data concatenation. (A) There are changes in the signal data processing process. (B) Show the process of signal data transmission.
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Pi
De = DF � DF � d Xi+1

De

� �� d Xi
De

� �
+ d Xi

De

� �2+d Xi
En + Xi

De

� �� d Xi
De

� �h i
(18)

where DF is the convolution kernel size, d( · ) denotes the depth

of the nodes.

In G, the convolution with a stride of 1 maintains the output

length equal to the input length. A downsampling method D( · ) is

employed to increase the receptive field of the original data by ½1=2�.
The signal data SNm�B = ½s1, s2, s3, s4,⋯, sm−3, sm−2, sm−1, sm� i s

downsampled to ½s1, s3,⋯, sn−2, sn�. After convolving the data to

obtain its minimum scale, corresponding upsampling ½�2� is used
along with interpolation to restore the data to its original scale. The

signal is transformed from Sn to S
0
n after processing, while the signal

length remains unchanged.

The network is symmetric, with the first half using

downsampling and the second half using upsampling. The

network’s construction affects the length of data processing and

the shortest distance for processing sonar signals. When the

downsampling block has L layers, the number of input points is

at least 2L. An 11-layer symmetric network structure is used in the

experiments, so the minimum input signal points are 211 = 2048.

However, if only the signal data with a length of 2048 is input, it will

output only one value after 11 downsamplings, leading to less

feature representation. For XL
En to be greater than 1 in the middle

of the convolution, the data signal length for training should be at

least J = 2� 2048 = 4096. The shortest detection distance of

convolution is L, and its formula is as follows:

    L =
J

2� Fs
� c (19)

Where Fs stands for the sampling frequency, based on the

example calculation, we can determine that the shortest detection

range of the active sonar after processing is 12.3m in the network

constructed with an 11-layer downsampling block.
4.4 Reverberation suppression
discriminator network

This section describes the discriminator part of building the

adversarial network (D). The discriminator plays a crucial role in
Frontiers in Marine Science 0951
the GAN. It helps the generator to generate more realistic signals

after the downsample (achieving unity in the frequency domain). It

improves the GAN’s ability to understand the training data, which

lays the foundation for generating higher-quality sonar signals. In

this will generate the signal S
0
n and the required E(Sn) input. In order

to improve the accuracy of D, a one-dimensional convolutional

discriminator network of SkipNet suitable for underwater acoustic

signals is constructed by referring to the DenseNet Gao et al. (2020)

structure. The main structure and the overall structure are

introduced in the following.

When training the network, the complexity of the GAN network

will bring problems such as long training time and difficulty in

discovering signal features. The discriminator network uses

traditional convolution to process longer underwater acoustic

signals, which requires the design of a deeper network, which

wastes time and may lead to feature disappearance and network

degradation problems. Introducing SkipNet blocks can reduce the

construction of network depth and training time. The skip

connection makes it a flexible and efficient neural network

architecture with good accuracy and resource efficiency performance.

In the more compact convolution, where rich features are less

readily available due to the limited number of parameters, the

different features that emerge from activation map-pings derived

from data points during model inference may indicate the existence

of a set of unique descriptors that are necessary to distinguish

between different classes of objects. In contrast, data points with low

feature diversity may need to provide sufficient unique descriptors

to make valid predictions, called random predictions. Random

prediction can negatively affect the optimization process and

impair the final performance. This paper presents a series of

Skipnet block models structured to fuse the previously convolved

information using a skip net whenever a portion of the convolution

passes to show the importance of diversity.

As shown in Figure 6, After downsampling the signal, the signal

features will be put into the next layer and skipnet for multiple

convolution. Finally, the results of two parts will be added. The

feature signal obtained by addition is subjected to the same

processing after downsampling once. This can be expressed using

the following formula:

x‘ = h‘(x‘−1) + H‘(H‘−1 ⋯H‘−n(x‘−n)) (20)
FIGURE 5

Generator network.
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In Eq. (20), X represents the feature data after the convolution

operation. h( · ) stands for SkipBlock, which can be expressed as

h  =  ( Downsampled jBN  j Conv j BN  j Activationj Downsampled ),

and H stands for the main convolution process. x‘ adds the results

above the main line and the sideline.

The RSWGAN-GP network uses convolution with a skip

network with skipBlock to implement the discriminative signal

network. Due to the difference between signal and image

processing, the feature extraction is carried out in the form of

one-dimensional convolution, and the subsequent dimension

reduction processing is transformed from pooling to down-

sampling processing, which is more suitable for the processing of

signal features Nakaoka et al. (2021). Figure 7 shows the

implementation of the discriminative signal network.

In the discriminator network, the generator G is initialized and

given a reverberation signal data vector as input. The generator

generates signals based on the mapping of the input vector, creating

generated data. The discriminator network then judges and

identifies the generated data, producing a classification probability

that results in a judgment (true or false). During discriminator

training, actual data is also inputted to train the discriminator. The

de-reverberation signal is labeled 1 (effective reverberation

suppression), while the signal without effective reverberation

suppression is labeled 0. The loss LDis generated based on the

generated result. In this paper, a non-densely connected network is

designed to avoid redundancy and too many parameters in the

signal processing network. The Desenet is designed without dense
Frontiers in Marine Science 1052
connections. Sparse connections are used instead, maintaining the

same effect.

When the signal generated by the generator network meets the

requirements of the signal-to-reverberation ratio, the generator

network will stop training, and the final signal generator is the

underwater reverberation suppression model.
4.5 Loss functions

This section presents the calculation of reverberation suppression

loss for RSWGAN-GP. Due to the sinusoidal signal characteristics and

the influence of phase difference, the original WGAN-GP calculation

method cannot converge the training results. Therefore, a new method

is used to preprocess the loss calculation before training.

This paper gives the main parameters of the generation network

and the discriminant network used in the paper. The main

parameters of the network will be described in Tables 1, 2.

In Table 1, the signal input is 102400×1, and the data mapped

into the same scale by the generation network is also 102400×1. In

Table 2, the signal input is 102400×1, and the Classification

probabilities are formed after the convolution and linear layer

processing. The output scale is 1×1, which is used as the output

of the discriminator in GAN.

This paper uses the signal-to-reverberation ratio(SRR) to

evaluate the signal after reverberation suppression. The SRR will

be used to indicate the degree of signal suppression.
FIGURE 6

Discriminator SkipNet.
FIGURE 7

Discriminator network.
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SRR = 10loɡ10(
PSignal − Preverberation

Preverberation
) (21)

In Eq. (21), PSignal is the power of the activated sonar signal,

Preverberation is the power of the reverberation signal, and PSignal −

Preverberation is the power of the target echo signal. SRR can be used to

indicate the degree of reverberation suppression. Denote byR( · ) in

the following calculations.

The reverberation suppression network approach of RSWGAN-

GP introduces the Wasserstein distance on top of the reverberation

suppression model of GAN, and Eq. (22) shows the distance.

W(Pr , Pf ) = i n f
g
Q

(Pr ,Pf )

E(ŝ ,x̂ ),g ½∥R(ŝ ) −R(s0) ∥� (22)

In Eq. (22), E( · ) is the calculated expectation; ŝ is the desired

sonar signal after actual reverberation suppression, and s0 is the sonar
signal after raw reverberation suppression;

Q
(Pr , Pf ) isR(ŝ ) −R(s0)

, the set of joint probability distributions of the corresponding

expected signal Prprobability distribution and the generated signal

Pf ; inf ( · ) is the exact bound taken down; E(ŝ ,s0),g ½∥R(ŝ ) −R(s0) ∥�is
the expected value of the relative distance of the local discharge signal

under the set of joint probability distributions g .
Frontiers in Marine Science 1153
In Eq. (22), the lower exact expectation bound is difficult to find

so that the Wasserstein distance can be converted into the

Kantorovich-Rubinstein dual form. Eq. (23) shows the

Wasserstein distance’s dual structure.

W(Pr , Pf ) = sup
∥D ∥L≤1

Eŝ ,Pr ½D(ŝ )� − Es0 ,Pf ½D(s0)� (23)

In Eq. (23). D(x) is the distance cost function of discriminator

D; ∥D ∥L ≤ 1 indicates that the discriminator distance cost

function satisfies the 1-Lipschitz restriction. The GP in

RSWGAN-GP indicates the gradient penalty function to satisfy

the 1-Lipschitz restriction, and its loss function is shown in Eq. (19).

LG = −EZ∼Pz � ½D(G(Z))�
LD = −Ez ∼ Pz � ½D(G(Z))� − EX∼Pr � ½D(ŝ )� + GPjs0
GPjs0 = lEs0∼Ps0 ½( ∥∇x̂ D(x̂ jC) ∥p −1)2�

:

8>><
>>: (24)

LGis the generator loss function; LDis the discriminator loss

function; G(Z) is the suppressed sonar signal generated by the

generator; PZ is the prior distribution of the input sonar signal Z;

GPjs0 is the gradient penalty term; l is the canonical term

coefficient; and ∥ · ∥P is the P-parameter.
TABLE 1 Generation network.

Num Layer Act./Norm. Output shape Num Layer Act./Norm. Output shape

0 Signal Latent vector – 102400×1
14

upsample Conv1d Datacrop12 LReLU/BN 50×576
50×288

1 Conv1d downsample LReLU/BN
-

102400×24
51200×24

15 upsample Conv1d Datacrop11 LReLU/BN 100×522
100×264

2 Conv1d downsample LReLU/BN
-

51200×48
26500×48

16 upsample Conv1d Datacrop10 LReLU/BN 200×504
200×240

3 Conv1d downsample LReLU/BN
-

26500×96
12800×96

17 upsample Conv1d Datacrop9 LReLU/BN 400×456
400×216

4 Conv1d downsample LReLU/BN
-

12800×120
6400×120

18 upsample Conv1d Datacrop8 LReLU/BN 800×408
800×192

5 Conv1d downsample LReLU/BN
-

6400×144
3200×144

19 upsample Conv1d Datacrop7 LReLU/BN 1600×360
1600×168

6 Conv1d downsample LReLU/BN
-

3200×168
1600×168

20 upsample Conv1d Datacrop6 LReLU/BN 3200×312
3200×144

7 Conv1d downsample LReLU/BN
-

1600×192
800×192

21 upsample Conv1d Datacrop5 LReLU/BN 6400×576
6400×288

8 Conv1d downsample LReLU/BN
-

800×216
400×216

22 upsample Conv1d Datacrop4 LReLU/BN 6400×264
6400×120

9 Conv1d downsample LReLU/BN
-

400×240
200×240

23 upsample Conv1d Datacrop3 LReLU/BN 12800×216
12800×96

10 Conv1d downsample LReLU/BN
-

200×264
100×264

24 upsample Conv1d Datacrop2 LReLU/BN 25600×168
25600×72

11 Conv1d downsample LReLU/BN
-

100×288
50×288

25 upsample Conv1d Datacrop1 LReLU/BN 51200×120
51200×48

12 Conv1d downsample LReLU/BN
-

50×288
25×288

26 upsample Conv1d Datacrop0 LReLU/BN 102400×72
102400×24

13 Conv1d LReLU/BN 25×288 27 Conv1d tanh 102400×1
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5 Experimental verification

This section validates the advancedness of the proposed model

and method. For this purpose, we conducted marine experiments to

verify that RSWGAN-GP can effectively suppress the reverberation

of sonar signals and collect actual data in the field for verification.

RSWGAN-GP, with other excellent reverberation suppression

methods, compared to prove the effectiveness of the reverberation

suppression method proposed. The following sections explain the

detailed description and summary of the experiments.

In the experiment, the active sonar with 30-element with a self-

receiving function is used to transmit a continuous wave (CW) signal

with a fs = 250kHz sampling rate and a f = 30kHz frequency. The size

of the training data set is 6000 data samples in total, among which 2520

actual sonar data samples are obtained through experiments, and 3480

data samples are generated by the underwater active sonar

reverberation simulation method. The simulation data and actual

data are randomly arranged, and the training set and the verification

set are in a 5:1 ratio. The actual data are used to verify the reverberation

suppression effect of the model obtained at the end of training. The

experiments were conducted in one of the bays in Qingdao. Figure 8

shows the experimental scenario.
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Figure 8A is a schematic diagram of the relative position of the

active sonar and the target during the test. In the figure, xh1 = 200m

is the shortest distance from the relative position, and xh2 = 300m is

the longest distance from the relative position, active sonar is at the

same position as the target at sea level ds = dt ∈ ½5, 10�. In

Figure 8B, the experiment in the harbor can minimize the error

caused by the ship’s swing caused by wind and waves. The

narrowest point of the harbor exit is 200m, and the target ship

tows the target at a distance of 200-300m from the active sonar.

Figures 8A, B show the experimental active sonar equipment and

the detected target, respectively. The detected target is a cylindrical

object with an internal cavity with a diameter of 533mm and a

length of 3m. The essential experimental data of the validation

method are obtained in sea trials.

The data are collected and used as the validation set to validate

each epoch in the training process. The active sonar of the signal is

subjected to reverberation suppression, and the signal change

during training is shown in Figure 9.

In Figure 9, the time domain diagram shows that the model is

trained by mixing simulation data with actual acquisition data, and

the trained model is used to process the experimental results of the

active sonar signal data of the ocean experiment. The figure shows

the results of sonar signal processing of model pairs produced by

different iterations. In the Epoch 1-50 iteration training process, the

processed sonar signal still has the phenomenon of signal chipping.

Still, it shows the state of strong reverberation, and the target

position cannot be visually observed from the time domain.

Starting from Epoch 60-100, the chipping phenomenon of the

echo signal disappears, the correct sinusoidal signal can be

restored, and the neural network can already find the desired

target feature state. From Epoch 110 onwards, the target can be

precisely located, and in subsequent training iterations, the target

echo feature can be highlighted while suppressing the strong

reverberation state during sonar propagation. When the model

training iteration is above Epoch 210, the target echo signal can be

observed macroscopically from the time domain diagram.

Reverberation changes in the middle state of the network as

shown below:

The above-processed feature map, which results from the

processing of the network XN
En = XN

De, results in a 288×25 feature

array. Feature array is where the network will generate features,

which will then be upsampled to recover the signal. In Figure 10,

some features of the signal increase and decrease as the epoch

increases, representing anti-reverberation operations. From

Figure 10A, it can be seen that the convolution features of the

signal at the beginning are dispersed to each corner of the array.

After iteration, some features weaken, as shown in Figure 10B,

which is reflected in the signal that the reverberation part begins to

weaken, and then the features disappear, as shown in Figure 10C.

Finally, the target echo features are enhanced, as shown in

Figure 10D, and the corresponding display in the echo signal

explored by sonar is the enhancement of the echo signal.

During the training process, convergence is achieved by

continuously correcting errors. The loss curve changes during the

training process of RSWGAN-GP, including the generator loss

curve and the discriminator loss curve, as shown in Figure 11.
TABLE 2 Discrimination network.

Num Layer Act./Norm. Output shape

0 Signal Latent vector – 102400×1

1
Conv1d Downsample LReLU/BN

-
102400×24
51200×24

2
Conv1d Downsample LReLU/BN

-
51200×48
26500×48

3
Conv1d

Downsamplee
LReLU/BN

-
26500×96
12800×96

4
Conv1d Downsample LReLU/BN

DataAdd
12800×120
6400×120

5
Conv1d Downsample LReLU/BN

DataAdd
6400×144
3200×144

6
Conv1d Downsample LReLU/BN

DataAdd
3200×168
1600×168

7
Conv1d Downsample LReLU/BN

Dataadd4
1600×192 800×192

8
Conv1d Downsample LReLU/BN

DataAdd
800×216
400×216

9
Conv1d Downsample LReLU/BN

DataAdd
400×240
200×240

10
Conv1d Downsample LReLU/BN

Dataadd7
200×264
100×264

11
Conv1d Downsample LReLU/BN

DataAdd
100×288 50×288

12
Conv1d

Downsamplee
LReLU/BN
DataAdd

50×288
25×288

13
Conv1d Downsample LReLU/BN

DataAdd
25×1
13×1

14 Linear sigmoid 1×1
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Figure 10 shows the training loss curves of RSWGAN-GP under

various weight decay and learning rate(lr) settings. Figure 10A is the

line chart of the generator loss variation, and Figure 10B is the curve

chart of the discriminator loss variation. By setting different

parameter values, rapid convergence of the network can be

achieved when weight decay and learning rate are set to 0.00001

and 0.0001, respectively. As shown in the figure, in the WGAN-GP

network, the generator loss continuously approaches 0, and the

discriminator loss continuously approaches 0. The loss of the

generator shows a rising trend, and the loss of the discriminator

shows a decreasing trend. During training, the generator and
Frontiers in Marine Science 1355
discriminator are in a state of mutual competition, and their loss

values should fluctuate up and down. The trend shown in the figure

represents the main direction.

For applications where target detection will be performed after

signal processing, the difference between before and after signal

processing is shown in Figure 12.

Figure 12 shows the target position detection map after

nonlinear processors in matching fields on CW signal processing

Sun and Li (2019), where the target indicates the target’0s location,

which is about 204 m—the comparison between the original data

and the data after RSWGAN-GP processing is shown. In the
B

C D

A

FIGURE 8

Experimental environment and equipment. (A) Sonar and target underwater deployment status. (B) Sonar and target experiment terrain environment
and experiment method. (C) Active sonar equipment during the experiment. (D) Target equipment during the experiment.
FIGURE 9

Active sonar reverberation suppression changing graph.
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original data, before the target position, there is the influence of

reverberation on its judgment. When making a prediction, the

highest correlation position changes and the highest point in front

is judged as the target position. When comparing the red line with

the blue line, it is evident that the signal processed by RSWGAN-GP

can reduce the influence of reverberation when making target

judgments, increasing the success rate of target judgments. Here,

four contrasting points are selected, as shown in Table 3.

Among the data points, the first three are reverberation points,

and the comparison shows that the reverberation is well suppressed,

and the fourth is the target point. The SRR is improved after echo

suppression. The data comparison can prove that the well-trained

model can suppress the reverberation well, making the correlation

increase by 0.022 and the reverberation part decrease by 0.3

on average.

There are many excellent algorithms in water acoustics

reverberation suppression, here will use collected data for various

methods to compare with the method proposed in this paper. The

comparison results after processing the sonar signal are shown

in Figure 13.

In Figure 13A, the Original signal is unprocessed, the

reverberation power is 0.398, the signal echo power is 0.432, and

its SRR is 0.361dB, the highlighted red part indicates the position of

the target echo, which cannot be effectively identified from the

figure. 2D-AR PreWhitener is used to eliminate correlation and

frequency correlation in the signal Li et al. (2008) so that the signal

is flatter in the frequency domain, and the processed echo sonar

signal shows the position of the target echo. The least mean square
Frontiers in Marine Science 1456
filter (LMS) processes the echo signal Kim et al. (2000), and the

reverberation component is suppressed, decreasing amplitude.

Adaptive fractional Fourier transforms (FrFt) for suppressing

reverberation Yu et al. (2022), Although the reverberation is

partially suppressed, the actual impact is not apparent. The PCI-

SVM reverberation suppression method combines Principal

Component Inversion (PCI) and Support Vector Machine (SVM)

techniques Wang et al. (2021). This method selects suitable and

effective feature values through SVM to extract the main features for

reverberation suppression. The figure shows that this method

performs better than the previous ones. We present the impact of

the RSWGAN-GP method proposed in this paper. Compared to the

excellent methods, the reverberation component is effectively

suppressed, and the echo component is more visible and

prominent. The detailed data comparison is presented in Table 4.

Figure 13B compares SRR results processed by different

methods under different SINR environments. In actual use, the

reverberation signal processing SINR is between 0 dB and 10 dB. In

order to reflect the processing ability of a high reverberation

environment, the signal is mainly concentrated between -10 dB

and 10 dB (data comparison in the middle of the two blue colors in

the figure). As can be seen from the figure, RSWGAN-GP and PCI-

SVM methods are significantly superior to other methods. At the

same time, RSWGAN-GP is 3 dB higher than the PCI-SVMmethod

at SINR -10 dB, and the advantages become more evident as SINR

increases. The advantage of RSWGAN-GP is that it can learn many

high reverberation data to improve the processing ability of high-

reverberation data. In Figures 13A, B, we compare different
B

C D

A

FIGURE 10

The intermediate state of the network changes. (A) Initial network intermediate layer processing result. (B) After 50 iterations. (C) After 100 iterations.
(D) After 150 iterations.
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reverberation suppression methods to demonstrate the effectiveness

of RSWGAN-GP in suppressing reverberation.

Figure 14 shows the processing results and time-frequency

distribution of raw signal, AR pre-whitening, LMS, FrFt, PCI-

SVM and RSWGAN-GP, respectively. Experimental results show
Frontiers in Marine Science 1557
that the algorithm can effectively suppress reverberation and extract

target echo components under high SRR conditions. At the same

time, the time-frequency structure of the target highlight echo

remains unchanged. The processing results of the original signal

distribution are shown in Figure 14A. It can be seen that there is
B

A

FIGURE 11

Results for different parameters. (A) The discriminator loss varies with epoch. (B) The generator loss varies with epoch.
FIGURE 12

Matching field result.
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some substantial reverberation interference near the target echo, but

its energy is weaker than the target echo. The signal processed by

2D-AR PreWhitener, LMS, FrFt and PCI-SVM is shown in Figures

14B–E, and the target echo energy is still not obvious. As shown in

Figure 14F, the RSWAGN-GP processing results show that the

overall reverberation background has been effectively removed, and

only a tiny part of weak background interference remains near the

target echo.

The superiority of the proposed method can be seen in

Figures 12, 13, and the detailed parameters are listed here for

comparison, including reverberation amplitude, echo amplitude,

reverberation power, echo power and SRR. The specific parameters

are shown in Table 4.

The findings in Table 4 demonstrate that the RSWGAN-GP

method proposed in this study is the most efficient technique for

attenuating reverberation compared to the other methods evaluated.
Frontiers in Marine Science 1658
With a remarkable improvement in the reverberation ratio by 15dB,

RSWGAN-GP significantly enhances speech quality from 0.83dB to

16.79 dB. The PCI-SVM algorithm comes in a close second, mainly

when the optimal rank is 42, as determined by the SVM classification

experiment, resulting in a significant improvement in the SRR by

around 13dB. The 2D-AR PreWhitener, LMS, and FrFt techniques

also improve the reverberant environment by -0.024dB, -2.68dB, and

0.12dB, respectively. Nevertheless, their ultimate effects are less

substantial than those of RSWGAN-GP and PCI-SVM.

The effectiveness of the RSWGAN-GP method proposed in this

paper for suppressing reverberation in sonar signals is demonstrated

through experiments. Using experimental data from the ocean during

training shows that features are extracted and amplified during the

training iterations. By comparing the results of the algorithms, it is

evident that this method can significantly improve signal quality. The

improved SRR is 15.169 dB, demonstrating the method’s effectiveness

and superiority for reverberation suppression.
6 Conclusion

Reverberation suppression of echo signals is a crucial issue in

active sonar systems. This paper presents a novel RSWGAN-GP

method for suppressing reverberation in sonar signals using the

generative adversarial network. This reverberation suppression
TABLE 3 Target detection correlation comparison.

Num Before treatment After treatment Difference

1 0.417 0.205 -0.212

2 1 0.419 -0.581

3 0.553 0.32 -0.233

4 0.962 0.984 0.022
B

A

FIGURE 13

Sonar signal comparison of reverberation suppression methods. (A) Original signal diagram and signal diagram processed by 2D-AR Prewhitening,
LMS, Frft, PCI-SVM, RSWGAN-GP methods. (B) SRR changes with SINR after model reverberation suppression.
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network employs a one-dimensional convolutional network to

process the signal content. RSWGAN-GP refers to U-net and

DenseNet, using skip network structure and dense connection

network to suppress sonar signal reverberation efficiently.
Frontiers in Marine Science 1759
Comparison using actual collected data demonstrates the

effectiveness of the proposed method, which can effectively

suppress the active sonar reverberation signal, improving SRR by

approximately 10 dB, better than other methods.
TABLE 4 Experimental data comparison table.

Reverberation power Echo Power SRR(dB) Improve SRR(dB)

Original Data 0.398 0.432 0.361 0

2D-AR PreWhitener 0.096 0.087 0.35 -0.011

LMS 0.036 0.051 1.525 1.164

FrFt 0.086 0.094 0.414 0.053

PCI-SVM 0.0105 0.0562 7.2925 6.932

RSWGAN-GP 0.01 0.1265 11.021 10.659
B

C D

E F

A

FIGURE 14

Time-frequency distributions. (A) Signal original state .(B) After 2D-AR PreWhitener processing. (C) After LMS processing. (D) After FrFt processing. (E)
After PCI-SVM processing. (F) After RSWGAN-GP processing.
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Through several experiments, it was discovered that the

processing model trained by RSWGAN-GP has specific

requirements for the transmission pulse width. The transmission

pulse width of the signal needs to be adjusted for different detection

distances, but the model’s pulse width for echo signal processing is

not sensitive to the width. However, this relationship may be

specific to the dataset used. In future research, efforts will be

made to improve the model’s generalization capabilities to

process signals with different pulse widths efficiently.
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The existing multi-receiver synthetic aperture sonar (SAS) imaging algorithms are

suitable for narrow-beam width, which will lead to a decrease in imaging quality

under wide-beam condition and are not in line with the development needs of

SAS. We propose a non-linear chirp scaling algorithm (NCSA) for wide beam

multi-receiver SAS. Firstly, the point target reference spectrum (PTRS) of each

receiver is obtained by the Lagrange inversion theorem (LIT), and then the under-

sampled signal in the azimuth frequency domain is obtained through azimuth

spectrum extension; Then, considering the cubic term of range frequency in the

PTRS and the linear variation of equivalent frequency modulation slope with

range, each receiver is imaged using the NCSA, and coherent superposition is

performed in the azimuth frequency domain to eliminate spectrum aliasing

caused by azimuth spectrum extension; Finally, the azimuth inverse transform

is performed on the superimposed signal to obtain the focusing imaging.

Computer simulation experiments and field data verify that this method is

superior to the existing SAS imaging algorithm, improving the quality of wide-

beam imaging, avoiding the interpolation operation of the traditional range-

Doppler algorithm, and saving computation cost.

KEYWORDS

multi-receiver, synthetic aperture sonar, Lagrange inversion theorem, non-linear chirp
scaling, azimuth spectrum superposition
1 Introduction

Synthetic Aperture Sonar (SAS) has played a very important role in ocean exploration,

and its functions are constantly expanding, requiring high resolution, long detection

distance, and strong detection capabilities for buried objects(Zhang and Tan, 2018; Tan

et al., 2019; Ma et al., 2020; Zhang et al., 2021a; Tian et al., 2022; Zhang et al., 2023).

According to the characteristics of underwater sound wave propagation, the lower the

frequency of the transmitted signal, the stronger the detection distance and buried object

detection ability; According to the definition for azimuth resolution, higher azimuth

resolution can be achieved by using smaller transmitter (Marx et al., 2000; Zhang et al.,
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2023; Zhu et al., 2023), waveform diversity (Zhu et al., 2023), and

advanced synthetic aperture processing (Zhang and Ying, 2022;

Zhang et al., 2022b; Zhang et al., 2023). Both low frequency and

high-resolution imaging will involve wide-beam imaging

algorithms. It is necessary to research wide-beam imaging

algorithms to improve imaging resolution, detection distance, and

the capability of buried objects.

Although SAS technology originated from synthetic aperture

radar (SAR)(Qian et al., 2021; Li et al., 2022), the low speed of sound

velocity underwater results in two main differences between wide-

beam SAS and wide-beam SAR: low sound velocity under water

causes azimuth moving distance during sending and receiving

(AMDSR) to be not negligible, making the commonly used stop-

and-hop assumption (Bonifant, 1999; Wilkinson, 2001; Callow,

2003) not applicable to SAS, A more complex non-stop-and-hop

assumption must be used (Zhang et al., 2022); In addition, low

sound velocity underwater can also cause a contradiction between

the farthest detection distance and pulse repetition frequency (PRF)

(Xu et al., 2003; Wang et al., 2015). To solve this contradiction, SAS

normally adopts a multi-receiver configuration. This type of SAS is

commonly referred to as multi-receiver SAS (Zhang et al., 2021a;

Yang and Liu, 2022; Zhang et al., 2022a).

At present, imaging algorithms for wide-beam multi-receiver

SAS can be divided into two categories: point by point imaging

algorithms and line by line imaging algorithms. The point by point

imaging algorithms is inefficient, which is a common problem of the

two-dimensional time-domain imaging algorithms. Although the

fast point by point imaging algorithms (Liu et al., 2009; Giardina,

2012; Duan et al., 2017; Synnes et al., 2017; Zhang and Yang, 2022)

avoid this problem to some extent, compared with the line by line

imaging algorithm, the computation efficiency is still too low. The

line by line imaging algorithms use interpolation or Chirp Scaling

(Raney et al., 1994; Wang et al., 2009; Liao and Liu, 2017; Zhang and

Yang, 2019; Li et al., 2021; Huang and Yang, 2022) operation in the

range Doppler domain or two-dimensional frequency domain to

realize the range cell migration correction (RCMC) of all targets in

the scene, so as to obtain higher efficiency than point by point

imaging algorithms. Although the algorithm efficiency has

improved, the imaging quality under wide beam conditions will

decrease, so there are few line by line wide beam imaging

algorithms. A commonly used method (Zhang et al., 2014) uses

the range-Doppler algorithm (RDA) (Jiang et al., 2004; Tian et al.,

2016; Zhang et al., 2019) to process the echo signal for each receiver

by using method of series reversion (MSR), and then carries out

coherent stacking for accurate wide-beam imaging, we called it the

RDA-MSR. However, the computation load of individual receiver

imaging is high, and the interpolation of RDA-MSR will increase

the computation load more significantly, which is not conducive to

real-time imaging. Moreover, the derivation of the point target

reference spectrum (PTRS) in the RDA-MSR is not accurate

enough, and as the beam width increases, the PTRS error will

also increase. Therefore, the actual applicable beam width is not

large; A research (Zhang, 2014) used the macro range cell migration

correction (MRCMC) between different receivers, thereby

transforming the multi-receiver SAS into the traditional

monostatic SAS model, we called it the RDA-MRCMC. Although
Frontiers in Marine Science 0263
this method improves processing efficiency, the phase error caused

by the increase in beamwidth and bandwidth may exceed p=4,
thereby affecting imaging quality (Wu et al., 2016; Zhang et al.,

2018; Zhang et al., 2018; Wu et al., 2019; Ma et al., 2023). The poor

performance of the above methods is a limitation of RDA itself.

(Zhang et al., 2021b) used the NCSA to develop a wide beam

imaging algorithm, but the PTRS obtained by PCA (Bellettini and

Pinto, 2002; Gough et al., 2004; Zhang et al., 2023) is not

accurate enough.

This paper has three main contributions: firstly, this paper uses

LIT to obtain the most accurate PTRS, which has smaller errors

compared to the MSR in (Zhang et al., 2014) and is more suitable

for wide beam imaging; Secondly, this paper uses the NCSA to

preserve the range frequency to the cubic term of the PTRS obtained

by LIT, and the frequency modulation slope varies with range,

making it more suitable for wide band and wide swath model;

Thirdly, the NCSA avoids interpolation and has higher

computational efficiency compared to the RDA-MSR, while also

achieving better imaging results compared to the RDA-MRCMC,

balancing imaging quality and efficiency.

This paper is organized as follows: multi-receiver SAS model

establishment and approximation, imaging algorithm derivation,

and algorithm validation. In SAS model establishment and

approximation, we use Lagrange inversion theorem (LIT)(Xiong

et al., 2011; Vu et al., 2014; Zhang et al., 2017) to avoid tedious

algebraic processing and the lengthy expression of stationary phase

point, thereby obtaining the more accurate PTRS of each receiver

compared to the RDA-MSR and the RDA-MRCMC, and then

extending the azimuth spectrum to obtain under-sampling

azimuth frequency domain signals. In imaging algorithm

derivation, firstly, to adapt to the wide-beam condition, the cubic

term of range frequency in the PTRS and the linear variation of

equivalent frequency modulation slope with range are considered;

Then, each receiver is imaged using the NCSA and then coherent

superposition is performed in the azimuth frequency domain to

eliminate the impact of spectrum aliasing caused by azimuth under-

sampling. Compared with the RDA-MSR, the proposed method

avoids interpolation and has high computational efficiency; Finally,

fusing superimposed signal to obtain the focusing result. In

algorithm validation, we use simulation data and field data to

verify the effectiveness of the proposed method. The results show

that this method saves computation costs, and the simulation

imaging results of point targets under wide-beam are better than

the existing methods, improving the imaging quality.
2 Establishment and approximation of
multiple receiver SAS model

2.1 Accurate range history of point targets

The relative position between receivers and transmitter is

shown in Figure 1, with the direction of the platform moving

forward as the positive direction, and the transmitter in the middle

of all the receivers. r is the range, x is the azimuth; the distance

between the ith receiver and the transmitter is di; the time elapsed
frontiersin.org
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between the transmission of a pulse and its reception by the ith

receiver is t*i . Rt(t; r) is the propagation path of the transmitting

signal, and Rr,i(t; r) is the propagation path of the ith receiver. To

illustrate the geometric relationship, the SAS at different times in

the Figure 1 are not on the same straight line, but in reality, they are

on the same straight line and move along the x-axis in the positive

direction at velocity v.

During the process of moving at v m/s, the transmitter

transmits linear frequency modulation (LFM) signal at a fixed

pulse repetition frequency (PRF) in orthogonal mode

simultaneously. At time t, for the point target P(r, 0), according

to the geometric relationship, the path from the transmitter to the

ith receiver scattered by the point target P(r, 0) can be expressed as

follows:

R*i (t; r) = Rt(t; r) + Rr,i(t; r)

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + (vt)2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + (vt + di + vt*i (t; r))

2
q

(1)

where, t*i (t; r) is the time interval between signal transmission

and reception, so the propagation path of sound waves can be

written as:

R*i (t; r) = c · t*i (t; r) (2)

The exact expression of t*i (t; r) can be obtained by combining

(1) and (2), and t*i (t; r) can be expressed as

t*i (t; r) =
1

c2 − v2
· v(vt + di) + c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vt)2 + r2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v(vt + di) + c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(vt)2 + r2

ph i  2
+(c2 − v2) 2(vt)di + d2i

� �r( )

(3)
2.2 Error analysis of AMDSR

Under the narrow-beam assumption, it is generally

approximated t*i as a range variance 2r=c, resulting in the error

of AMDSR is

Dx = (t*i − 2r=c)v (4)
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According to the system parameters shown in Table 1, different

receivers have different baseline lengths relative to the transmitter.

We analyzed the receiver with the maximum baseline length

and calculated Dx across the whole swath under different beam

widths. The results are shown in Figure 2.

As shown in Figure 2, Dx is maximum at the edge of the beam

and increases with range and beam width. The maximum value of

narrow-beam SAS is shown in. Figure 2A is 0.0009m, far less than

half the length of a receiver (0.025m); the maximum value of wide-

beam SAS shown in Figure 2B is 0.007m, which can be compared

with the half-length of receiver, which may lead to the problem of

azimuth non-uniform sampling. Therefore, under the condition of

wide-beam, t*i cannot be approximated to 2r=c, and the azimuth

variance must be considered, which means that the range history

R*i (t; r) must adopt a more accurate form.
2.3 Point target echo response model

The accurate range history has a complex form and cannot

obtain an analytical expression for the PTRS. The current wide

beam algorithms generally use the MSR (Neo et al., 2007; Wu et al.,

2016; Zhang et al., 2021), which approximates the accurate range

history using Taylor expansion. For example, reference (Zhang

et al., 2014) preserves the fourth order term of Taylor expansion, as

follows

Ri(t; r) = k0,i + k1,it + k2,it
2 + k3,it

3 + k4,it
4 (5)

where,

kn,i =
1
n !

dnR∗
i (t; r)
dtn

j
t=0

 (n = 0, 1, 2, 3, 4) (6)

The range history error obtained using the parameters shown in

Table 1 is shown in Figure 3, ϵ is range error, l is the wavelength

of signal.

It can be seen that under the beam width shown in Table 1, the

four-order expansions of the range history can no longer meet the

requirement that the maximum range history error is less than (1/
FIGURE 1

Geometric diagram of multi-receiver SAS.
TABLE 1 MADOM SAS simulation parameters.

Parameters Values Units

Beam width 25.18 °

Center frequency 20 kHz

Signal bandwidth 10 kHz

Transmitter size 0.15 m

Receiver size 0.075 m

Number of receivers 40 -

SAS platform velocity 5.0 m/s

Swath [7.5, 300] m
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16)l, and the phase error caused cannot be ignored. Meanwhile,

preserving different expansion terms has different range history

error. In theory, the higher the expansion terms, the more accurate

the range history, and the smaller the range history error. We plot

the curve of the maximum range history error within the whole

beam as a function of the number of Taylor expansions, as shown in

Figure 4. It can be seen that the range history error does not

decrease indefinitely with the number of expansions. The reason

why the error cannot be infinitely reduced is that (Zhang et al.,

2014) used narrow beam approximation. When the expansion

reaches 10, the range history error is 0.216l, which is still greater

than (1/16)l. Therefore, this research uses the LIT to derive the

PTRS using the original range history, which does not make any

approximation to the range history.

Let f0 be the carrier frequency of the transmitting signal; Kr is

the frequency modulation slope of the transmitted signal; wr( · ) is

the envelope of the transmitted signal; wa( · ) is the analytical

expression for the antenna pattern; A0 is the signal’s amplitude, it

is independent with the imaging quality, so we ignore it in the next

context. After demodulation, the baseband form of the ith echo

signal can be expressed as
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ssi(t , t; r) = A0 · wr t −
Ri(t; r)

c

� �
· wa(t)

· exp −j
2p f0Ri(t; r)

c

� �

· exp jpKr t −
Ri(t; r)

c

� �2� �
(7)

To obtain each receiver’s PTRS, the Principle of Stationary

Phase (PSP) is performed to simplify range FFT on the baseband

signal, and the range spectrum signal is obtained:

Ssi(fr , t; r) = A0A1Wr(fr)wa(t) exp −j
2p(f0 + fr)Ri(t; r)

c

� �

exp −jp
fr
Kr

2� �
(8)

where, Wr(fr) = wr(
fr
Kr
), and Wr( · ) is the range frequency

envelope, then perform azimuth FFT on (8) to obtain

SSi(fr , fa; r) =
Z +∞

−∞
Ssi(fr , t; r) exp ( − j2p fat)dt (9)
FIGURE 3

Range history error after retaining 4 terms.
BA

FIGURE 2

Approximation Error of AMDSR (A) narrow-beam (B) wide-beam.
FIGURE 4

Maximum range history error vs the number of terms.
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According to PSP, if the derivative of the phase in the integral

expression with respect to t is 0 and the phase stationary time is

assumed to be ~t, the following equation can be obtained

fa = −
(f0 + fr)

c
·
dRi(~t; r)

dt
(10)

From (10), it can be seen that fa is a function of ~t. According to

the LIT (Zhang et al., 2017), if fa is close-form at a certain value ~t0
and fa(~t0) ≠ 0, which is different from the approximation of Ri(~t; r)

in MSR, we can directly obtain the close-form solution of ~t.

~t = o
3

n=1
lim
~t→0

½fa(~t) − fa(0)�n
n !

dn−1

dtn−1
~t − 0

fa(~t) − fa(0)

� �n
(11)

Take ~t0 = 0 and n = 3, and bring (10) into (11), then there is

~ti = −
1

R(2)
i (0; r)

fa − fa(0)
f0 + fr

c

� �
−

R(3)
i (0; r)

2(R(2)
i (0; r))3

fa − fa(0)
f0 + fr

c

� �2

+
1
6

R(4)
i (0; r)

(R(2)
i (0; r))4

−
1
2
(R(3)

i (0; r))2

(R(2)
i (0; r))5

 !
fa − fa(0)
f0 + fr

c

� �3

(12)

The PTRS of the ith receiver is obtained by integrating (12) into

the phase of (9), and we can get

SSi(fr , fa; r) = A · Wr(fr) · Wa(fa) · exp (jji(fr , fa; r)) (13)

where,

ji(fr , fa; r) = −
2p(f0 + fr)Ri(~ti; r)

c
− p

fr
Kr

2

− 2p fa~ti (14)

In order to analyze the phase errors between the PTRS obtained

by different methods and the accurate PTRS, we selected the

receiver 40 as the analysis object according to the parameters of

the wide-beam SAS system shown in Table 1. We obtained the

PTRS’s phase errors of the MSR and LIT at 3 point targets at

different ranges, as shown in Figures 5, 6A–C. represent the phase

errors of point targets at ranges of 50m, 150m, and 250m,

respectively. Comparing Figures 5, 6, it can be seen that the phase

error increases with the range and the azimuth frequency. However,

the phase error of the LIT is always significantly smaller than MSR.

The maximum value of phase error of LIT in (0m, 250m) is

0.019rad, which is much smaller than p=4 (Ning et al., 2023).

Therefore, under the wide-beam SAS system parameter, the method

proposed in this paper can meet the requirements of high-

resolution imaging across the whole swath.
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Expanding (14) to a series of fr . To apply the method in this

research to the wide beam condition, we reserve the cubic term to

obtain:

ji(fa, fr ; r) = jaz,i(fa; r) + jrcmc,i(fa; r)fr + jrcf
2
r + jsrc,i(fa; r)f

2
r

+ jcubic,i(fa; r)f
3
r (15)

where, jaz,i(fa; r) is the azimuth modulation term; jrcmc,i(fa; r) is

the range migration term; jrc is the range frequency modulation

term; jsrc,i(fa; r) is the second range compression term; jcubic,i(fa; r)

is the third-order coupling term of range and azimuth. According to

the definitions of Rrd,i(fa; r) and Kmi(fa; r), we can get

Rrd,i(fa; r) =
jrcmc,i(fa; r)

−2p
· c (16)

Kmi(fa; r) =
p

jsrc,i(fa; r) + jrc
(17)

Rrd,i(fa; r) is the range migration curve of the ith receiver in the

range-Doppler domain; Kmi(fa; r) is the equivalent frequency

modulation slope of the range compression filter for the ith

receiver. Bring (16) and (17) into (15), SSi(fr, fa; r) can be

rewritten as

SSi(fr, fa; r) = Wr(fr)Wa(fa) exp (

+ jjaz,i(fa; r))exp −j
2pRrd,i(fa; r)

c
fr

� �

exp +j
p

Kmi(fa; r)
f 2r

� �
exp +jjcubic,i(fa; r)f

3
r

	 

 

(18)

The different receiver has different coefficients such as Rrd,i and

Kmi, which means that for the same point target, the different

receiver has different point target echo responses. Therefore, it is

necessary to perform matching filtering processing separately for

each receiver.
3 Imaging algorithm derivation

The flowchart of the imaging algorithm is shown in Figure 7,

where FFT represents the Fast Fourier Transform; IFFT is Inverse

Fast Fourier Transform. The algorithm includes six-fold FFT/IFFT,

one-fold azimuth spectrum extension, six-fold phase multiplication,
B CA

FIGURE 5

Phase error of PTRS of MSR at different ranges (A) r=50m (B) r=150 m (C) r=250m.
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FIGURE 7

Algorithm flowchart.
B CA

FIGURE 6

Phase error of PTRS of LIT at different ranges (A) r=50m (B) r=150 m (C) r=250m.
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and one-fold azimuth spectrum superposition. The azimuth

spectrum extension is used to increase the length of one receiver’s

data to meet the requirements of signal processing, but the

processed signal is highly under-sampled in the azimuth

frequency, which can cause azimuth spectrum aliasing. The

azimuth spectrum coherent superposition is used to suppress the

azimuth spectrum aliasing caused by azimuth under-sampling.
3.1 Approximation of equivalent frequency
modulation slope

Compared to traditional RDA and CSA, this paper considers

the linear relationship of Kmi with r and approximates Kmi at the

reference range

Kmi(fa; r) = Kmi,rref + Ksi,rref · (r − rref ) (19)

where Ksi,rref is the first derivative of Kmi(fa; r) at rref , expressed

as

Ksi,rref = −p ·
j 0
src,i(fa; rref )

(jsrc,i(fa; rref ) + jrc)
2 (20)

where, rref generally takes the center position of the

whole swath.
3.2 Cubic phase filtering

In order to eliminate the influence of the cubic term of fr , a

cubic phase filter is performed on SSi(fa, fr; r) in the 2D frequency

domain. The expression of the cubic phase filter is

Hcubic,i(fr , fa; r) = exp (j2pYi(fa)f
3
r =3) (21)

where, Yi(fa) is the coefficient of the cubic phase filter that varies

with the azimuth frequency fa, with the aim offiltering out the cubic

phase of the range frequency fr and the cubic phase error generated

by subsequent nonlinear Chirp Scaling. Since jcubic,i(fa; r) is weakly

dependent on the range (Neo et al., 2008), jcubic,i(fa; rref ) can

substitute jcubic,i(fa; r), and Ymi(fa) is the error after the cubic

phase filtering

Yi(fa) = Ymi(fa) −
3
2p

jcubic,i(fa; rref ) (22)

The obtained PTRS after cubic phase filtering on (7) is

SSc,i(fr , fa; r) = SSi(fr , fa; r) · Hcubic,i(fr , fa; r)

= Wr(fr)Wa(fa)� exp (jjaz,i(fa; r))� exp −j 2pRrd,i(fa ;r)
c fr

� �
� exp j p

Kmi(fa ;r)
f 2r

� �
� exp j 2pYmif

3
r

3

� �
(23)
3.3 Non-linear chirp scaling

Using PSP for range IFFT, the signal obtained in the range-

Doppler domain is
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sSi(t , fa; r) = wr
Kmi

Kr
t −

2r
cgi

� �� �
Wa(fa) exp (

+ jjaz,i(fa; r)) exp ( − jpKmi(t

− td)
2) exp −j

2pYmiKm
3
i (t − td)3

3

� �
(24)

where gi = 2
R
0
rd,i(fa ;rref )

.

Let the expression of the non-linear chirp scaling equation be

Hcs,i(t , fa) = exp ( − jpq2,i(t − tref )
2)

· exp −j
2pq3,i(t − tref )3

3

� �
(25)

where, q2,i and q3,i are undetermined coefficients, which will be

solved later in the text.

Perform non-linear Chirp Scaling on sSi(t , fa; r) to obtain

sScs,i(t , fa; r) = sSi(t , fa; r)� Hcs,i(t , fa) (26)

To obtain the coefficients of the cubic phase filter and the

scaling equation, the range IFFT of sScs,i(t , fa; r) is performed to the

2D frequency domain, and then the series expansion of fr is

performed, retaining the cubic term. After the above operation,

we can obtain

SScs,i(frfa;r ) = Wr(fr) · Wa(fa) exp j 2p (Km3
i Ymi+q3,i)f

3
r

3(Kmi+q2,i)
3

� �
exp j p

Kmi+q2,i
f 2r

� �
exp j

2pKmi(td−tref )(Km2
i Ymiq2,i−q3,i)

Kmi+q2,i)
3 f 2r

� �
exp j −

2p(tdKmi+q2,itref )
Kmi+q2,i

fr
� �

exp j
2pKm2

i (td−tref )
2(KmiYmiq

2
2,i+q3,i)

(Kmi+q2,i)
3 fr

� �
exp jjaz,i(fa; r)
	 


exp −j
pKmiq2,i(td−tref )2

Kmi+q2,i

� �
exp j

2pKm3
i (td−tref )

3(Ymiq
3
2,i−q3,i)

3(Kmi+q2,i)
3

� �
(27)

After bringing (19) and t = 2r=(cgi), tref = 2rref =(cgi), and Dt =

td − tref into (27), and then expanding the coefficients of each order

of fr into the series of Dt , we can obtain the three undetermined

coefficients as follows

Ym,i =
Ksi,rref (2ai − 1)

2Km3
i rref (ai − 1)

(28)

q2,i = Kmi,rref (ai − 1) (29)

q3,i =
(ai − 1)Ksi,rref

2
(30)

where ai =
gi(fac)
gi(fa)

, the phase expression of the scaled signal

obtained by bringing (28), (29) and (30) into (27) is

fcs,i(frfa; r) =
p f 2r

Kmi,rref
ai
+

f 3r Ksi,rref p
3ai(ai−1)Km

3
i,ref

+ − 4p
gic

+ 4p
cgiai

� �
rref −

4pr
cgiai

� �
fr + jaz,i(fa; r)

−
pKmi,rref

(ai−1)Dt2

ai
−

(ai−1)Ksi,rref pDt
3

3ai

(31)
3.4 Range processing

By compensating for the first, second, and bulk RCMC terms in

a phase multiplication, and simultaneously completing bulk RCMC,

range compression, and cubic coupling term compensation, the
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phase multiplication factor is

Hr,i(fa, fr ; rref ) = exp j
4p
gic

−
4p
cgiai

� �
rref fr

� �
exp j

p
Kmi,refai

f 2r

 !
exp j

Ksi,ref p
3ai(ai − 1)Km3

i,ref

f 3r

 !

(32)

Perform range IFFT, and the obtained the phase of signal in

range-Doppler domain is

sSrc,i(fa; r) = pr t −
2r
cgiai

� �
:Wa(fa) exp (jjaz,i(fa; r))exp −j

(ai − 1)ksi,ref pDt3

3ai

� �
exp −j

pKmi,ref (ai − 1)Dt2

ai

� �

(33)

where pr( · ) is the Sinc function.
3.5 Azimuth processing

The azimuth compressing term Ha,i(fa; r) and the extra phase

compensation factor He,i(fa; r) are respectively

Ha,i(fa; r) = exp −j jaz,i fa; rð Þ	 
	 

(34)

He,i(fa; r) = exp j
p(ai − 1)Kmi,rref Dt

2

ai

 !
exp +j

p(ai − 1)Ksi,rref Dt
3

3ai

 !

(35)

After compensation, coherent superposition in the azimuth

frequency domain is performed on each receiver, and then the

azimuth IFFT is performed to obtain the focused SAS image.
4 Algorithm validation

4.1 Simulation experiment

To verify the effectiveness of the algorithm proposed in this

research, simulations were conducted on ideal point targets at

different ranges. The positions of 10 ideal point targets are shown
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in Figure 8, where P1 ∼ P5 are close-range targets and P6 ∼ P10 are

long-range targets. Computer CPU is Intel i7-10700@2.90G, RAM

is 32 GB, Matlab version R2020a.

In the simulation experiment, it is assumed that the distribution

of the transmitter and receiver is shown in Figure 1, and the

parameters are shown in Table 1. The wide-beam imaging

algorithms proposed in the RDA-MSR (Zhang et al., 2014), the

RDA-MRCMC (Zhang, 2014), and this research were used to image

point targets shown in Figure 8. The imaging results obtained are

shown in Figure 9, where Figures 9A, B are the results of the RDA-

MSR; Figures 9C, D are the results of the RDA-MRCMC;

Figures 9E, F are the results of the proposed method in this

research. It can be seen that the RDA-MRCMC has the worst

imaging performance. This is because transforming the multi-

receiver SAS into a mono-static SAS model, although the imaging

process was simplified, there were significant errors.

To quantitatively compare the effectiveness of different methods,

we take the range and azimuth slices of point targets P1 and P6 as

shown in Figures 10, 11, respectively, with amplitude units in dB.

The blue dashed line represents the RDA-MSR, the green

dashed line represents the RDA-MRCMC, and the red solid line

represents the method in this research. The impulse response width

(IRW), peak side lobe ratio (PSLR), and integral side lobe ratio

(ISLR) of the range slice and azimuth slice were measured, and the

results are shown in Table 2.

From Table 2, it can be seen that the imaging effect of the

proposed method is similar to that of the RDA-MSR, but the

interpolation operation in this method is not efficient enough. We

calculated the time required for imaging the point target echo signal

in the scene shown in Figure 8, as shown in Table 3, our method

avoids interpolation and saves about half of the time of the RDA-

MSR and demonstrates the advantages of computation cost.
4.2 Field test

To further validate the effectiveness of our method, imaging was

performed on the data obtained from a sea trial of ChinSAS in 2017

(Zhang et al., 2012). The parameters of ChinSAS-150 are as follows:

carrier frequency is 75kHz, transmitter’s length is 0.16m, receiver’s

length is 0.08m, the signal bandwidth is 20kHz, the total number of

receivers participating in imaging is 37, SAS platform speed is 2.5m/

s, and size of imaging block is 40m(azimuth)×50m(range). Based on

the comprehensive analysis of the above parameters, the system

operates in a narrow-beam scenario. Comparing Figures 12A–C, it

is not difficult to find that the imaging results of all methods are

almost identical, but the proposed method is faster than the RDA-

MSR. This demonstrates the effectiveness of our method in practical

applications. Due to the lack of publicly available field data on wide-

beam multi-receiver SAS in China, the advantages of this method in

wide-beam imaging still need further verification. We will next

carry out the development of low-frequency wide-beam SAS and

verify its practicality with the method proposed in this research as

soon as possible.
FIGURE 8

Simulation point targets setting.
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We recorded the operation time of the field data imaging

under different methods, as shown in Table 4. It can be

seen from the Table 4 that the proposed method takes two-

thirds of the time required for RDA-MSR. Although the
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proposed method takes longer than RDA-MRCMC, this

method will have better focusing result under wide beam

conditions, so it is a compromise between computation load

and imaging quality.
B

C D

E F

A

FIGURE 9

Imaging results of different methods (A) P1 ~ P5 (RDA-MSR) (B) P6 ~ P10 (RDA-MSR) (C) P1 ~ P5 (RDA-MRCMC) (D) P6 ~ P10 (the RDA-MRCMC) (E) P1
~ P5 (the proposed method) (F) P6 ~ P10 (the proposed method).
BA

FIGURE 10

Slices of P1 (A) Range slice (B) Azimuth slice.
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TABLE 2 Quality parameters of different methods.

Methods Indicators
P1 P6

Range Azimuth Range Azimuth

The accurate RDA

PSLR(dB) -13.11 -16.47 -12.82 -16.20

ISLR(dB) -10.66 -14.80 -11.04 -14.85

IRW(cm) 7.79 8.32 7.60 9.06

The rough RDA

PSLR(dB) -13.09 -16.66 -12.97 -12.69

ISLR(dB) -10.41 -16.99 -11.15 -13.69

IRW(cm) 7. 76 7.89 7.61 9.80

The proposed method

PSLR(dB) -13.15 -17.76 -13.25 -16.58

ISLR(dB) -10.51 -17.05 -10.94 -15.62

IRW(cm) 7.75 7.89 7.54 8.74
F
rontiers in Marine Science
 1071
 fr
Bold values represent the optimal results.
TABLE 3 Time cost of different methods under simulation.

Methods The RDA-MSR The RDA-MRCMC The proposed method

Time(s) 302.16 109.75 167.78
BA

FIGURE 11

Slices of P6 (A) Range slice (B) Azimuth slice.
B CA

FIGURE 12

Comparison of results from different methods when processing field data (A) the RDA-MSR (B) the RDA-MRCMC (C) the proposed method.
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5 Conclusion

This research proposes a NCSA for multi-receiver SAS based on

azimuth spectrum superposition, which adopts the more accurate

PTRS based on LIT and the NCS algorithm to solve the problem of

poor imaging quality of existing wide-beammulti-receiver SAS. The

algorithm provided in this study provides theoretical support for

the future development of low-frequency wide-beam SAS.
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Ocean Acoustic Tomography (OAT) is an efficient and economical marine

acoustic observation technique. Targeted observation is an appealing

procedure to reduce the uncertainty of ocean environment prediction through

additional observation. This study aimed to assess the validity of OAT as an

observation method for targeted observation. OAT based on Niche Genetic

Algorithm was employed to extract sound speed and temperature profiles from

acoustic transmission time, utilizing data from the 2019 Yellow Sea experiment.

The inversion results were compared with measurement data, which are found

to be accurate and reliable. To further evaluate OAT as targeted observation

method, the vertical bias structure of OAT was added on synchronous

measurement data in the sensitive area of targeted observation to simulate

OAT observation in sensitive area. This simulated data was then incorporated into

a 3D-Var assimilation system to improve the short-term prediction of the target

region. Comparing the predictions derived with the measurement data at the

verification time, it shows that the simulated OAT observation improved the

quality of target region prediction, indicating that OAT can be an effective

observation method for targeted observation. An Observing System Simulation

Experiment was conducted to assess the impact of OAT characteristics on

prediction improvement. The results show that both adding observation nodes

and extending the observation duration have positive effects, while extending the

observation duration performs better.

KEYWORDS

ocean environment prediction, targeted observation, ocean acoustic tomography,
niche genetic algorithm, observation system simulation experiment
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1 Introduction

Ocean acoustic tomography (OAT) is a marine remote sensing

technique by utilizing the sound field generated from measured

properties (Worcester, 2019). This method extracts acoustic

characteristics, such as Sound Speed Profile (SSP), through the

analysis of travel time or other acoustic signals. Corresponding

marine environment characteristics is inverted through the ocean-

acoustic coupled relationship. The concept of OAT was initially

proposed by Munk and Wunsch (Munk and Wunsch, 1979; Munk

et al, 1995), aiming to investigate mesoscale phenomena such as

vortices, convection, and internal waves. An advantage of OAT over

other methods is its ability to facilitate long-term, large-area, and

cost-effective ocean monitoring, taking advantage of the

characteristics that acoustic signals transmit over long distances

and acoustic propagation is sensitive to the marine environment

(Dushaw et al, 2001).

Numerous OAT experiments have been conducted since the

1980s, showcasing the versatility and potential of this technique.

RTE83 experiment (DeFerrari and Nguyen, 1986; Howe, 1987)

validated the feasibility of flow velocity inversion using a single

source-receiver pair of acoustic nodes in a range-dependent

environment, achieving success at a distance of 300km in Atlantic

Ocean. In 1988-1989, Greenland Sea Tomography experiment (Jin

et al, 1993) became the first to employ mobile nodes to estimate the

effect of sea ice on acoustic pulses. SLICE89 experiment (Howe et al,

1991) combined acoustic tomography with ocean models to enable

ocean forecasting on a scale of 1000-2000km. AMODE experiment

(Dushaw et al, 2001) conducted in 1991 utilized mobile nodes to

measure eddy currents in Northwest Atlantic. Acoustic

Thermometry of Ocean Climate (ATOC) experiment, organized

by International Ocean Research Association (Dushaw and

Worester, 2001; Dushaw, 1999), stands out as a remarkable

achievement. This experiment incorporated vertical line arrays,

submarine receiving arrays, and US Army’s SOSUS system to

receive low-frequency acoustic signals propagating over basin

distances. Its purpose was to monitor long-term temperature

changes and global warming as indicators of climate trends. In

2001, ASIAEX experiment (Duda et al, 2004), conducted in

collaboration with various countries and organizations, focused

on the seas surrounding China. Its primary objective was to

investigate the interaction mechanism between the acoustic field

and the water bodies. It is shown that the mutual correlation

function and Green’s function of marine environmental noise

have the similarity of arrival time structure, based on which some

scholars proposed the idea of using marine environmental noise for

passive acoustic tomography, and the idea was realised by

experimental observation (Gasparini et al, 1997; Fried et al, 2013;

Li et al, 2019). The presence of mesoscale processes such as ocean

fronts/vortices in the oceans has led to the development of acoustic

tomography for horizontally varying environmental (Carrière and

Hermand, 2008; Yang et al, 2022);. In recent years, coastal acoustic

tomography technology has made significant progress, particularly

in monitoring semi-enclosed environments such as ports and bays

(Yamoaka et al, 2002; Zhu et al, 2010; Zhu et al, 2013). Additionally,

acoustic tomography has been applied to observe mesoscale
Frontiers in Marine Science 0275
phenomena such as internal waves (Lynch et al, 1996; Dahl et al,

2004; Li et al, 2014) and Kuroshio current (Yuan et al, 1999;

Lebedev et al, 2003; Huang et al, 2013; Taniguchi et al, 2023).

Currently, experimental research primarily emphasizes coastal

velocity inversion, with limited studies focusing on marine

environment inversion, especially in the context of oceanic

environment prediction.

The essence of acoustic tomography lies in the recognition of

acoustic signal propagation time and structure. Several mainstream

methods are commonly used in this field, including ray travel time

tomography (Munk et al, 1995), matched-peak tomography

(Skarsoulis et al, 1996), modal travel time tomography (Shang,

1989), modal-phase tomography, and modal-horizontal-refraction

tomography (Shang et al, 2000). Ray travel time tomography, being

the most classic and widely used method, employs matching filters to

measure the travel time. Matched-peak tomography locates the

maximum peak value in the arrival pattern and analyzes the peak

structure of the signal to determine the travel time accurately. Modal

travel time tomography, on the other hand, relies on the principles of

normal mode theory to identify the arrival time. Normal wave phase

tomography and horizontal refraction tomography, which are

similar, replace the normal wave travel time with the normal wave

phase or horizontal refraction angle. These substitutions are then

substituted into algorithms to obtain the desired travel time

information. Regarding the acquisition algorithms of travel time,

two common approaches are utilized: the perturbation method

(Munk et al, 1995) and the matching field method (Taroudakis and

Markaki, 1997). The perturbation method assumes that the difference

between the theoretical calculation and measured propagation delays

is proportional to the difference in sound velocity. However, this

method tends to be less accurate in complex and non-linear marine

environments. In contrast, the matching field method aims to obtain

the optimal solution that corresponds to the measured values through

acoustic and marine models. The effectiveness of this method relies

on the accuracy of the model and the efficiency of the optimization

algorithm employed.

Targeted observation, also known as adaptive observation, is a

strategy approach aimed at reducing numerical prediction

uncertainty through employing additional observations. In this

strategy, the goal is to improve the prediction quality of a specific

area, referred to as the target region, at a designated verification

time. To achieve this, additional observations are deployed within

sensitive areas to acquire additional information. This additional

information is subsequently assimilated into the ocean model to

refine Initial Conditions (ICs) and improve the prediction accuracy

(Rabier et al, 1996; Rabier et al, 1996; Snyder, 1996; Mu, 2013).

Originally introduced in atmospheric studies, targeted observation

has undergone validation through a series of field experiments such

as FASTEX (Joly et al, 1999), NOPREX (Langland et al, 1999), and

WSRP (Szunyogh et al, 2000). Recognizing its potential, World

Meteorological Organization (WMO) proposed The Observing

System Research and Predictability Experiment (THORPEX),

which integrated targeted observation concepts into a scientific

framework for improving global high-impact weather prediction

(Parsons et al, 2017). More recently, the concept of targeted

observation has been extended to oceanic prediction studies,
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https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baolong et al. 10.3389/fmars.2023.1259864
although the focus has primarily been on large-scale ocean

phenomena, such as Indian Ocean Dipole (Feng et al, 2016) and

Kuroshio (Kramer et al, 2012; Wang et al, 2013; Zhang et al, 2017).

However, there remains a scarcity of researches related to the

acoustic field within targeted observation studies.

The identification of sensitive areas, a crucial aspect of targeted

observation, relies on two types of algorithms. The first type is based

on ensemble prediction techniques, such as Ensemble Kalman Filter

(EnKF) (Hamill and Snyder, 2002) and Ensemble Transform

Kalman Filter (ETKF) (Bishop et al, 2001). These algorithms

specifically focus on calculating the reduction in forecast error

covariance resulting from different observation configurations

(Wei et al, 2008; Zhang et al, 2015; Feng et al, 2019;

Thiruvengadam et al, 2021). The second type of algorithm is

based on adjoint mode techniques, which include approaches

such as Singular Vectors (SV) (Buizza and Montani, 1999),

adjoint sensitivity (Baker and Daley, 2000), and Conditional

Nonlinear Optimal Perturbation (CNOP) (Mu et al, 2003). CNOP

extends the concept of SV to nonlinear systems, focusing on

identifying the initial perturbation that exhibits most rapid

growth in the forecast. Targeted observation based on CNOP has

demonstrated its wide applicability in high-impact weather events

prediction and air-sea coupling events prediction (Dushaw et al,

2001; Duan and Hu, 2015; Duan and Mu, 2018; Chan et al., 2022;

Liu et al, 2023).

A field experiment was conducted at Yellow Sea of China in

August 2019, comprising two main components: an OAT

experiment and a targeted observation experiment. In this study,

OAT experiment data served as the foundation for validating the

effectiveness of OAT in accurately inverting the vertical speed and

temperature structure using Niche Genetic Algorithm (NGA). To

simulate the OAT observation for targeted observation, the bias

structure was extracted and incorporated into the measurements

within the sensitive area of targeted observation. Subsequently, the

simulated observations were integrated into a 3D-Var assimilation

model to improve the short term (7 days) prediction accuracy of the

target region. Thus, considering the large-area coverage and long-

term observation capabilities characteristics of OAT, an Observing

System Simulation Experiments (OSSE) was deployed to investigate

the impact of increasing the observation area and extending the

observation time on the prediction quality.
2 Materials and methods

2.1 Ocean model

Regional Ocean Modeling System (ROMS), specifically the

Rutgers version, is employed in this study to simulate the

thermocline distribution and circulation structure of Yellow Sea.

The ROMSmodel is an open-source ocean model based on 3D non-

linear oblique pressure equations employing techniques as split-

explicit , free-surface, topography following-coordinate
Frontiers in Marine Science 0376
(Shchepetkin and McWilliams, 2005). The model domain covers

geographical extent from 23.7°N to 41.3°N and 117°E to 132.5°E,

with a horizontal resolution of 1/24° and 32 vertical levels. To

initiate the model, a cold start is performed, and the integration is

carried out for 25 model years. Topography data of the model

domain is from ETOPO2 dataset. The initial temperature and

salinity data are derived from HYCOM+NCODA multiyear

averaged (1998-2018) reanalysis data. Initial current velocities and

sea surface height are set to zero. Surface forcing factors, including

wind stress, heat flux, and water exchange, are obtained from

multiyear averaged (1998–2018) ECMWF Re-Analysis-interim

data. For the open boundaries, the forcing condition of the model

is driven from the multiyear averaged monthly HYCOM +NCODA

reanalysis data. Further details on the model setup and validation

can be found in references Hu et al. (2021) and Liu et al. (2021).

In addition to the climatology run, a hindcast run is conducted

based on the results obtained. For the analysis presented in this

study, daily-averaged temperature profile data from the hindcast

run are utilized.
2.2 Acoustic tomography algorithm

Due to the nonlinearities of ocean and acoustic models, the

parsing solution of SSP may not be feasible. Therefore, SSP solution

requires the implementation of a suitable searching algorithm. In

this study, NGA (Malfoud, 1995) is employed as an effective

approach to obtain optimal search speed and prevent

premature convergence.

NGA adopts a crossover algorithm that aims to reduce the

uncertainty of individual offspring while maintaining diverse

populations. Parents and offspring are preserved and compete

with each other, leading to increased selection pressure. The

fundamental concept is to calculate Hamming distance between

every two individuals. If Hamming distance is below a specific

threshold, individual with lower fitness level is penalized, making it

more likely to be eliminated during the evolutionary process.

Consequently, individuals are dispersed in the constrained space

at a certain distance, ensuring the diversity of the population is

maintained. NGA process can be summarized as follows (Figure 1):
1) Calculate Empirical Orthogonal Function (Shen et al, 1999)

and determine the coefficient range based on Ocean-

Acoustic Coupling Model (OACM) (Da et al, 2015) and

the measured sound velocity profiles, treating them as the

sample group;

2) Generate a population ofM individuals randomly within the

range of EOF coefficients, considering the specified

operation precision;

3) Calculate the fitness of each individual as follows:
F =
1

ok½tk − t k�2
(1)
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where tk is the calculated value of the travel time of the fastest

characteristic sound rays received by each hydrophone using Bellhop

model; tk is the travel time measured during the experiment (k=1, 2,

3…, K), and K is the number of the hydrophones;
Fron
4) Sort the individuals in descending order according to their

fitness Fi , and mark the first N (N<M) individuals;

5) Apply selection, crossover, and mutation operations to the

population of M individuals;

6) Execute a niche elimination operation by combine the M

individuals obtained in Step 5 with the first N individuals

from Step 4, resulting in a new population of M+N

individuals. Calculate Hamming distance between each

pair of individuals (Xi and  Xj) in the new population

according to the following equation:
Xi − Xj

�� �� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oK

k=1(xik − xjk)
2

q
(2)

i = 1, 2,…,M + N − 1
tiers in Marine Science 0477
  j = i + 1,…,M + N

where xik represents the k-th variable of the i-th individual.

When Hamming distance is less than L, the individuals with lower

fitness in Xi and Xj are subject to a penalty function to reduce their

fitness values;
7) From the population of M + N individuals, select the firstM

individuals with higher fitness values to generate the new

population. If the termination condition has been met, the

result is considered as the final output of NGA. Otherwise,

repeat Step 3-6.
2.3 Assimilation method

The observation data from targeted observation is incorporated

into 3D-Var system to improve the ICs. Numerical simulations of

ocean circulation patterns are assimilated with data the ocean
FIGURE 1

Schematic diagram of Niche Genetic Algorithm.
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environment observed by a wide range of instruments, guided by

the statistical Bayesian conditional probability theory, to produce

new numerical results. Such assimilated numerical results for the

ocean environment contain both the extrapolation of the

thermodynamic equations of ocean dynamics and the observed

scenarios of the real state of the ocean environment. The numerical

ocean model compensates for the shortcomings of the observations,

which are always scattered and relatively sparse, and the

observations control the uncertainties brought about by the non-

linearities in the ocean dynamics and thermodynamic equations.

3D-Var aims to achieve an optimal state solution by minimizing

the cost function. The equation of the cost function is as follows:

J x½ � = 1
2
(x − xb)

TB−1(x − xb) +
1
2
L(H(x) − y0)½ �TO−1 L(H(x) − y0)½ �

(3)

where x is the analysis variable; xb is the background field; y0 is

the observation value; B is the background error covariance; O is the

observation error covariance; H is the observation operator; O−1 is

the inverse matrix of the corresponding matrix; (x − xb)
T is the

transpose of the corresponding matrix; and L is the filter operator.

In this study, “Analysis variable” refers to the vertical temperature

profile result from assimilation. “Background field” refers to the

prediction of temperature profile obtained from the ROMS model.

“Observation value” refers to the XBT measured temperature

profile. The observation update residuals are collected and

spatially filtered by the filtering operator L, and the results are fed

back to the grid point where the state x is located. L can be

calculated as follows:

Lij = W
(a, bij)

oK
j=1W(a, bij)

(4)

W(a, bij) =

− 1
4

b
a
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b
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b
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8>><
>>:

where a is the characteristic distance of the observation

response; b is the distance between the observation point and the

model grid point; and K is the total number of observations.

Parameter a determines the scale of the multiscale method, and

also the reduction ratio of each level of the scale grid to the original

pattern grid when the grid varies.

The process of assimilation can be summarized as follows,
Fron
1) Observation: quality control of acquired data and

production of observation data sets;

2) Assimilation: the observation dataset and model results are

fed into the assimilation system module, which performs

scale-by-scale 3D variational assimilation after grid

transformation.

3) Forecasting: the assimilation results are substituted into the

ocean model as initial values to obtain new numerical

forecasts.
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In this study, the process of ‘Observation - Assimilation -

Forecasting’ is repeated with the number of observation cycles.
3 Experiment

An experiment was conducted in August 2019 on the northwest

continental slope of the Yellow Sea with the objective of improving

short-term (7-day) thermal structure predictions during the

summer season. The experiment consisted of two main

components: OAT and targeted observation sections.
3.1 Targeted observation experiment

The targeted observation experiment was conducted from 18th

to 25th August with the aim of improving short-term (7-day)

thermal structure predictions. The experiment focused on a

selected target region, denoted by a red box in Figure 2, which is

located near the margin of Yellow Sea Cold Water Mass (YSCWM).

In this region, Vertical Thermal Structure (VTS) is influenced by

various dynamic processes, as well as complex topography.

Consequently, the prediction of VTS in this region is associated

with significant uncertainties (Hu et al, 2021). To determine the

sensitive areas within the target region, an adjoint-free CNOP

algorithm was employed. The identified sensitive areas were

found to be oriented northeast to southwest, extending from the

northeast towards the target region. These sensitive areas are likely

influenced by the southwestward background currents.

In the target region, a total of 5 buoys were deployed to gather

data for the experiment. These buoys were composed of

temperature loggers and pressure–temperature–conductivity

loggers, enabling the collection of temperature profile at a vertical

interval of 2m. The sampling interval of loggers is 10 minutes. The

collected data from the buoys in the target region were utilized for

validation purposes. Furthermore, shipboard temperature,

conductivity, and depth measurements were conducted, resulting

in 21 temperature profiles measured within the targeted region. In

the sensitive region identified through CNOP (green area in

Figure 2), eXpendable Bathy Thermographs (XBT) were

employed to collect temperature profiles 4 times a day (4:30-7:30,

10:30- 13:30, 16:30-19:30, 22:30-01:30) along predesigned routes

(i.e., triangles in Figure 2). The data acquired from XBT in the time-

varying sensitive area were then substituted into cycle data

assimilation process to refine the prediction of the target region at

the 7-th day following XBT deployment (verification time). The

refined prediction obtained from this assimilation, as well as the

basic prediction, were both compared against the data measured by

the buoys in the target region. These comparisons served to verify

the effectiveness of the targeted observation approach. The

experimental results demonstrated that observations within the

identified sensitive area, which aimed at reducing initial errors,

led to a more significant improvement in VTS prediction of the

target region at the verification time compared to similar actions
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conducted solely within the target region itself (Hu et al, 2021; Liu

et al, 2021). This study focuses on the application of acoustic

tomography in targeted observation, and as such, the conclusions

of the targeted observation experiment will not be repeated.
3.2 OAT experiment

OAT experiment was designed to validate the feasibility of

acoustic tomography for the inversion of the marine environment.

The experiment was carried out on August 25 in the southern

region of the targeted observation experiment, as denoted by the

blue box in Figure 2. NGA algorithm was employed to invert SSP

using acoustic travel time data. Subsequently, based on OACM, the

corresponding temperature profile was calculated through the

inversion of SSP obtained from NGA algorithm.

A launching ship was employed during the experiment to deploy

fixed-depth explosive as the acoustic source. The launching ship

moved away from the receiving ship and followed a predetermined

trajectory from point S1 (approximately 10 nautical miles away from

the receiving ship) to point S6 (approximately 22.5 nautical miles). At

intervals of 2.5 nautical miles along this trajectory, the launching ship

came to a halt and dropped 3 kinds of bombs at controlled depths: 7,

25, and 35m. The depths of explosions and distances between
Frontiers in Marine Science 0679
launching and receiving ships are shown in Table 1. To capture the

acoustic signals generated by the explosions, a standard hydrophone

was fixed at a depth of 10m on the stern of the launching ship. This

hydrophone was utilized to record the explosion time and the

corresponding source level.

On the receiving ship, a vertical array comprising 15-element

hydrophones was deployed on the port aft deck. The hydrophone

array spanned depths ranging from 5 to 33m, with a uniform

interval of 2m. The receiving ship remained anchored at a fixed

position throughout the experiment, enabling the recording of the

acoustic signals. The schematic diagram of OAT experiment is

shown in Figure 3. Examples of signals received by hydrophones are

shown in Figure 4.

Both the launching and receiving vessels were equipped with a

multi-channel hydroacoustic signal synchronization acquisition

system. This system facilitated the acquisition of the explosion

sound source signals from the launching ship and the hydroacoustic

signals recorded by the hydrophone array on the receiving ship.

Importantly, the embedded a GPS module, enabling the acquisition

of precise GPS clock information and position data for real-time

synchronization of the explosion sound source signals. This

synchronization ensured accurate temporal alignment between

the recorded acoustic signals and facilitated reliable analysis of

the acoustic data obtained during the experiment.
FIGURE 2

Schematic diagram of the experiment. The red open rectangle indicates the location of the target region of targeted observation experiment. The
green area is the sensitive area in which the data were obtained on 20 August during CNOP, and which is extended from northeast to southwest
towards the target region. The red closed stars indicate five temperature profile buoy stations, carried out during Aug 18-25. The yellow, grey and
blue closed triangles locate thirty-six XBT locations, obtained on Aug 18, 19 and 20, respectively, and the yellow, grey and blue closed circles locate
twenty-one shipboard CTD stations, obtained at the same date allocation. The violet closed squares, accompanied by a vertical array of S1, S2, S3,
S4, S5 and S6, indicates 6 fixed-depth explosive acoustic source locations for OAT experiment on Aug 20. The lower right figure shows the position
of the ocean model domain, in which the white open rectangle indicates the position of the experiment.
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TABLE 1 Depths of explosions and distances between launching and receiving ships.

Explosion serial number Depth of explosion (m) Location Range (km) Average travel time (s)

1 7

S1

18.65 12.3457

2 35 18.68 12.3389

3 25 18.72 12.3983

4 35 18.72 12.4057

5 7

S2

23.95 15.8577

6 25 23.95 15.8925

7 35 23.96 15.8875

8 25
S3

29.14 19.3528

9 35 29.13 19.3142

10 7
S4

34.20 22.7262

11 35 34.20 22.7157

12 7

S5

39.27 27.1309

13 25 39.27 26.0844

14 35 39.27 26.1230

15 7

S6

44.45 29.5747

44.42
16 25 29.5574

17 35 44.45 29.5425
F
rontiers in Marine Science
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FIGURE 3

Schematic diagram of OAT experiment. Launching ships dropped fixed-depth explosive at specific ranges, while the explosion time were recorded
using a hydrophone fixed at the stern. Receiving ship recorded acoustic signals with a 15-element vertical hydrophones array at a fixed location.
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4 Result

4.1 Ocean environment inversion based
on OAT

The steps of inverting the ocean environment in section 2.2

were executed as follows:
Fron
1) A total of 29 SSPs were measured by the launching and

receiving ships during the OAT experiment. The covariance

matrix eigenvectors and eigenvalues of these SSPs were

computed. As the largest three eigenvalues accounted for

more than 95% of the sum of all the eigenvalues, so the 3-

order EOFs was used. The eigenfunctions corresponding to

top 3 eigenvalues are the EOF functions. The EOF

coefficients of every SSP were calculated;

2) The EOF coefficients obtained above were augmented with a

normal perturbation to generate an initial population with a

population size of 500. The population size of 500 was

found in the simulations to cover the variable space of the

EOF coefficients well and achieve as large a diversity of

populations as possible;

3) The positioning and timing information is obtained through

synchronous GPS data collected by the standard

hydrophone on the launching ship and the hydrophone

array on the receiving ship. The travel time of the acoustic
tiers in Marine Science 0881
signal is calculated using the first wave peak of the signal

received by the receiving ship and the signal pulse received

by the launching ship. A matched filter algorithm was used

to determine the travel times of different eigenrays and the

eigenray with the min travel time is consider as the fastest

eigenray. The time obtained above is considered as the

travel time of the fastest eigenray (Table 1). It’s worth

mentioning that there is a distance (30m) between the

bomb launching point and the hydrophone on the

launching ship. So, an extra delay is added on travel time.

Considering that the depth of 0-15m is a homogeneous

layer and the speed of sound is 1535m/s, it is necessary to

add another 0.0195s to the travel time. In this way, the tk in
equation (1) is calculated. Subsequently, the BELLHOP

acoustic model is employed to calculate the intrinsic

acoustic propagation delay from the sound source to each

hydrophone i.e., tk in equation (1). Thus, the fitness Fi of

the individuals of each population was calculated according

to equation (1);

4) The 500 individuals were sorted by Fi and the top 100

individuals were labelled, i.e., the crowding factor was set to

1/5 (De Jong, 1975; Zhang, 2013; Cui et al, 2021);

5) Selection, crossover and mutation operations of genetic

algorithm were performed on all 500 individuals to

produce the next generation. The maximum number of

genetic generations was set to be 40, the mating probability
FIGURE 4

Examples of signals received by hydrophones on the launching and receiving ships. The figure on the left is the signal example received by the
hydrophone on the launching ship. The figures on the right are the signal examples received by the receiving ship at point S1, 33m, 27m, 15m, and
7m depth hydrophones from top to bottom. The horizontal axis is the time axis, 1308 means 13:08 p.m., and the values under the horizontal axis
represent the corresponding seconds.
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Fron
to be 0.5, the mutation probability to be 0.2. The parameters

are the result of a comprehensive consideration after

simulation, which takes into account both the need to

traverse the entire search space and also the computational

efficiency;

6) The Hemming distances between the 500 individuals

generated in the step 5 and the 100 individuals labeled in

the step 4 were calculated according to equation (2). The

less adapted of the two individuals within specific distance

was penalized. Thus, 500 individuals (out of 500 + 100

individuals above) with higher fitness Fi are the next

generation.
The above steps were repeated until the fitness function of the

optimal individual satisfied the termination condition, then the

corresponding SSP of the optimal individual was output as the

inversion result.

The SSP obtained from the experiments of 35m bombs at 6

release points (S1-S6) and measured data are selected as samples

and shown in Figure 5. The measured data are XBT measurement

from launching and receiving vessels during the experiment. Due to

the limited availability of salinity data (only 2 CTD measurements

per buoy), the salinity profile is assimilated with measured data

based on ROMS dataset, shown in Figure 6A. The average SSP of

OAT is shown in Figure 6B. Consequently, the temperature profile

is extracted using OACM and illustrated in Figure 6C. Figure 6

reveals that the biases primarily originate in the thermocline depth,
tiers in Marine Science 0982
while the biases in the sea surface mixed layer and deeper layers are

relatively smaller. Root Mean Square Error (RMSE) for SSP and

temperature profile is calculated to be 1.07m/s and 0.40°C,

respectively. Specifically, RMSE in thermocline depth (15-40m) is

1.21m/s and 0.47°C. These results are considered accurate, taking

into account the limited number of blast sources and the duration of

the experiment. The findings suggest that NGA algorithm-based

OAT can reliably invert the marine environment in Yellow Sea.
4.2 Application of OAT in
targeted observation

As OAT experiment was not conducted within the sensitive

area of targeted observation, a simulation experiment was employed

to verify the impact of OAT on ocean environment prediction.

Considering the variation characteristics of temperature in the

OAT experiment area and the sensitive area are quite different, it’s

irrational to assimilate OAT inversion result as targeted observation

data directly. In this study, the temperature bias obtained from the

acoustic tomography inversion and the temperature measurement

data from XBT in the sensitive area were combined to simulate the

acoustic tomography inversion data within the sensitive area. The

vertical bias structure is related only to the OAT inversion method,

but not the region. Thus, the simulated observations of “truth +

bias” avoid the influence of the bias in different regions on the

results. These simulated OAT observation data were then brought
FIGURE 5

Comparisons of NGA results and measured data obtained from the experiments of 35m bombs at 6 release points (S1-S6).
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A B C

FIGURE 6

Results of OAT inversion. (A) Salinity profile after assimilation with measured data based on ROMS dataset, (B) Comparison of average SSP obtained
from OAT and measured data, (C) Comparison of average temperature profiles obtained from OAT and measured data.
FIGURE 7

Comparisons of sound speed profile at different buoy station at verification time (day 7), including measured data (black line), basic prediction (blue
line), assimilation results from XBT measured data (green line) and assimilation results from OAT inversion simulation data (red line).
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into the assimilation system to obtain updated ICs, leading to

improved predictions through the use of 3D-Var and ROMS

methods. The prediction results at the verification time were

compared between the basic prediction, the measured data from

buoys in the target region (noted by red stars in Figure 2), the

assimilation of XBT measured data, and the assimilation of the

simulated OAT assimilation. The comparison results are shown

in Figure 7.

The results demonstrate that both the simulated OAT

observation and Exp observation(XBT result) significantly

improve the accuracy of temperature profile forecasts compared

to the basic prediction at the verification time. These results are

closer to the measured data, particularly in surface and thermocline

layers. It should be noted that the comparison does not include the

deeper layers since the buoy depths do not reach the seafloor.

RMSEs of the basic prediction, Exp, and OAT simulation data

compared to the measured data at 5 buoys are calculated and

presented in Table 2. Overall, Exp yields more accurate results than

OAT simulation data, primarily due to the introduced bias of OAT

inversion. On average, RMSE of XBT prediction is reduced by

68.1%, while RMSE of OAT prediction is decreased by 49.9%

comparing with basic prediction. On the other hand, setting VTS
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at W3 buoy as an example, the RMSEs of these predictions along

with a Ctrl Run, which is the result of assimilation based on

observation in the target region, are shown in Figure 8. From

Figure 8, the bias of XBT and OAT results change on a similar

trajectory. At the verification time, the RMSE in the target region

was greatly reduced by experiment with deploying XBT observation

and simulated OAT observation in the identified sensitive area

(XBT result and OAT result) than that of experiment with

observations being deployed in the verification area itself (Ctrl

Run). These findings demonstrate that OAT can serve as a reliable

observation method for targeted observation.

The simulation experiment described above provides validation

regarding the influence of OAT data from XBT locations. However,

the unique characteristics of acoustic tomography, including its

large-area coverage and long-term observation capabilities under

low-cost conditions, necessitate further verification of OAT’s

influence on prediction using OSSE. For the OSSE, two sets of

predictions with different ICs and same driving conditions are

selected: “True Run” and “Ctrl Run”. “True Run” and “Ctrl Run”

are predictions from same boundary and driving conditions, but

different initial conditions. “True Run” is regarded as the real ocean

measured data. “Ctrl Run” is regarded as the basic prediction
TABLE 2 RMSEs of basic prediction, experimental data, and OAT data compared with measured data in the target region at 7-th day.

Position W1 W2 W3 W4 W5

Basic prediction (m/s) 7.31 6.43 5.59 6.88 5.3

Exp result (m/s) 2.44 2.06 1.51 1.85 2.2

OAT result (m/s) 3.82 3.90 1.93 2.96 3.2
frontier
FIGURE 8

Temporal evolution of vertical integration RMSEs of SSP at W3 station, including basic prediction (blue line), assimilation results from XBT measured
data in sensitive area (green line), OAT inversion simulation data in sensitive area (red line) and measured data in the target region (Ctrl Run-black
line).
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without additional observation. Targeted observation data from the

sensitive area, extracted from “True Run”, is combined with OAT

inversion bias to simulate OAT targeted observation data. This

OAT targeted observation data is then assimilated with data from

“Ctrl Run” using 3D-Var system, resulting in the generation of “Exp

Run”. By comparing the predictions of “Ctrl Run” and “Exp Run”

with “True Run” at the verification time, the impact of OAT as a

targeted observation method on prediction can be analyzed
Frontiers in Marine Science 1285
(Figure 9). To further investigate the effect of OAT observations

on prediction quality under different conditions, various

experiment setups were employed. EXP1 replicates the same OAT

observation condition as XBT measurement. Observations were

carried out at the locations of the triangular markers of the three Z-

lines in the sensitive area of Figure 2 from day 1 to day 3. EXP2

simulates observation on all ocean model nodes in the sensitive

area, meaning the observation area is 4 times the area of EXP1,
FIGURE 9

Schematic diagram of Observing System Simulation Experiments (OSSE). Targeted observation data from the sensitive area at the targeting time is
extracted from “True Run”. This data is then combined with OAT inversion bias and assimilated with data from “Ctrl Run” to generate “Exp Run”.
FIGURE 10

Results of OSSE. Vertical sound speed bias structures of different experiment conditions are configured, including Ctrl Run (black line), EXP1 for basic
OAT observation (blue line), EXP2 for larger observation area (green line), EXP3 for extended observation time (black line), and EXP4 for both a larger
observation (cyan line) area and an extended observation time (red line).
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while the observation keeps the same(day 1-3). EXP3 takes

observation in the same area as EXP1 while the observations time

is extended, which indicates that observations are located on the

triangular locations from day 1 to day 5. EXP4 is the combination of

EXP2 and EXP3, i.e., observations are carried out on all ocean

model nodes in the sensitive area from day 1 to day 5. The results of

these experiments are depicted in Figure 10 and Table 3.

The results of EXP1 reinforce the finding that OAT can improve

prediction quality, thereby validating its utility as a targeted

observation method. EXP2 and EXP3 demonstrate that increasing

the observation area and extending the observation time further

improve the prediction quality. However, it is observed that the

enhancement in prediction quality is more pronounced with an

extended observation time. This phenomenon can be attributed to

the fact that both the horizontal resolution of the ocean model

employed and the assimilation radius of the 3D-Var system exceed

the observation spacing. Consequently, expanding the observation

area may not yield enough additional valuable environmental

information. Conversely, extending the observation time not only

provides more observations but also reduces the time interval

between the final observations and the verification time. EXP4

results reveal that the combination of increasing the observation

area and extending the observation time improves the prediction

quality for maximum. However, improvement achieved through

this approach is not notably different from that achieved solely by

extending the observation time. Furthermore, extending the

observation time is more cost-effective and logistically feasible

compared to deploying additional observation nodes during sea

trials. Consequently, prolonged observations duration emerges as

an efficient and economical approach to observation, thereby

offering reference for the implementation of acoustic tomography

targeted observation projects.
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5 Summary

OAT is a cost-effective, long-term, and wide-area ocean

monitoring method that obtains acoustic signals to invert marine

environment characteristics. In this study, the validity of OAT for

the marine environment inversion was verified using data collected

during the 2019 Yellow Sea experiment. The OAT inversion biases

were incorporated into measurements obtained from the sensitive

area, identified by CNOP method, to simulate OAT observations

from the sensitive area. These simulated OAT observations were

substituted into a 3D-Var assimilation system to improve the

quality of ICs and subsequently enhance the short term (7-day)

prediction of the target region. These findings confirm the

effectiveness of OAT as a targeted observation method.

Considering the large-scale and long-duration nature of OAT,

OSSE method was employed to further test the impact of OAT

on prediction quality. Specifically, the effects of adding observation

nodes and extending the observation duration were examined. The

results show that both approaches and their combination have

positive effects in reducing prediction uncertainty. However, it was

found that extending the observation duration is a more

efficient strategy.

This study aims to verify the feasibility of acoustic tomography

as a targeted observation method in a simulated environment using

actual measurement data. It is important to note that the findings of

this study are yet to be validated in sea trials. Additionally, most

existing acoustic tomography observation methods utilize fixed or

submerged buoys, while the sensitive area for targeted observation

changes with time. Therefore, it is crucial to investigate optimal

selection strategies for observation nodes that can yield the highest

improvement in prediction quality. Additionally, it is necessary to

examine the effect of parameter variations in the ocean model and

assimilation model on acoustic tomography and its corresponding

targeted observations. Understanding the interrelationships and

contribution of these parameters to the prediction quality requires

further investigation.
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Libin Du, Zhengkai Wang, Zhichao Lv*, Lei Wang
and Dongyue Han

College of Ocean Science and Engineering, Shandong University of Science and Technology,
Qingdao, China
In the field of underwater acoustic field prediction, numerical simulation

methods and machine learning techniques are two commonly used methods.

However, the numerical simulation method requires grid division. The machine

learning method can only sometimes analyze the physical significance of the

model. To address these problems, this paper proposes an underwater acoustic

field prediction method based on a physics-informed neural network (UAFP-

PINN). Firstly, a loss function incorporating physical constraints is introduced,

incorporating the Helmholtz equation that describes the characteristics of the

underwater acoustic field. This loss function is a foundation for establishing the

underwater acoustic field prediction model using a physics-informed neural

network. The model takes the coordinate information of the acoustic field point

as input and employs a fully connected deep neural network to output the

predicted values of the coordinates. The predicted value is refined using the loss

function with physical information, ensuring the trained model possesses clear

physical significance. Finally, the proposed prediction model is analyzed and

validated in two dimensions: the two-dimensional acoustic field and the three-

dimensional acoustic field. The results show that the mean square error between

the prediction and simulation values of the two-dimensional model is only 0.01.

The proposed model can effectively predict the distribution of the two-

dimensional underwater sound field, and the model can also predict the sound

field in the three-dimensional space.
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1 Introduction

High-precision underwater acoustic field model is of great

significance for underwater acoustic communication, sonar

effectiveness evaluation, underwater target recognition and

location, etc. Establishing a high-precision underwater acoustic

field prediction model is one of the important research contents

in underwater acoustic field. For example, the establishment of

highly accurate underwater acoustic field can help synthetic

aperture sonar (SAS) to obtain higher resolution sonar images.

Zhang (2023) proposed a new method to simulate the original SAS

echo. The transmitted signal was Fourier transformed and

multiplied by the phase shift of the delay, and the spectrum of

the echo signal was accurately obtained. Yang et al. (2023) proposed

a multi-receiver SAS imaging algorithm based on Loffeld Bistatic

formula (LBF). Zhang et al. (2021) proposed a multi-receiver SAS

image processing method and proved that under certain conditions,

the bistable formula of Loffeld can be simplified to the same formula

as the spectrum based on phase center approximation. Zhang et al.

(2023) proposed a SAS imaging algorithm by rerepresenting the

Loffeld bistable formula (LBF), which includes quasi-monostable

(QM) and multi-receiver deformed (MD) phases, as range-variant

phase and range-invariant phase. In the process of SAS signal

transmission, there will be attenuation, and the establishment of

high-precision underwater acoustic field can compensate the

attenuation signal accordingly. At present,the numerical

simulation and the machine learning are common methods to

forecast the underwater acoustic field. The numerical simulation

method mainly uses ray method, normal mode method, parabola

method, beam integration method (Belibassakis et al., 2014) to

establish physical models and calculate underwater acoustic field.

Kiryanov et al. (2015) established a random non-uniform wave field

model for evaluating sound velocity field based on the results of

deep-sea acoustic long-range propagation test. Miller (1954)

introduced the coupled mode to extend the solution range of the

differential equation to the number of waveguides dependent on the

distance. For the normal mode method, the finite element method is

usually used to build the acoustic field model, and the KRAKEN

model is widely used to build the acoustic field by finite element as a

representative model. Zhou and Luo (2021) established a finite

element model for predicting underwater acoustic field based on

Cartesian coordinate system in a two-dimensional environment,

whose universality is better than that of KRAKENmodel. Teng et al.

(2010) used the boundary element method to simulate the acoustic
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field around two kinds of underwater communication transducers,

and the prediction results are generally applicable. The spectral

method is a high precision method for solving differential

equations, and it also plays an important role in promoting the

calculation of underwater acoustic field. Tu et al. (2022) used

spectral method and coupled modes to solve the acoustic field of

underwater linear source. In this paper, Chebyshev-Tau spectral

method was used to solve the horizontal wave number of irrelevant

segments in the approximate range, and a global matrix was

constructed to solve the coupling coefficient of the acoustic field

and synthesize the complete acoustic field. Tu et al. (2021) used

Chebyshev-Tau spectral method to construct the normal mode

model of underwater acoustic field, and converted the relevant

differential equations into a complex matrix eigenvalue problem

formed by orthogonal basis with Chebyshev polynomials to solve

the horizontal beam. Tu et al. (2020) used Chebyshev-Tau spectral

method to solve the normal mode model and parabolic equation,

and the solution accuracy was higher than that of the finite element

method. Although the numerical simulation method can directly

forecast the underwater acoustic field by using the physical rules,

the numerical solution often needs to divide the regular grid to

simplify the model calculation, and it is difficult to predict the

acoustic field model with irregular boundaries. With the

development of computer hardware, the neural network, which is

one of the important methods in machine learning, has been used

more and more to predict underwater acoustic field. Ahmed et al.

(2021) established a machine learning model to predict the sound

velocity profile in deep water and shallow water. The accuracy of

this model reached 99.99% and the prediction effect was better than

the acoustic field model forecasted by the equation. Based on the

self-defined loss function, He et al. (2022) constructed a single

output joint neural network and a multi-output neural network

with physical constraints to accurately forecast the beam and

feature function of the underwater acoustic field.

Machine learning method has greatly improved the accuracy of

underwater acoustic field prediction, but there are some obvious

problems. First of all, the model trained by the neural network does

not have a clear physical meaning, and it has poor adaptability to

different environments. Secondly, the neural network needs a large

amount of historical data as support to ensure that the trained

model has a high accuracy. Figure 1 (Karniadakis et al., 2021) shows

the relationship between data volume and physical parameters in

the model prediction problem. In case 1, assuming clear physical

laws and boundary conditions are known, the corresponding
FIGURE 1

The relationship between data volume and physical rules.
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problem can be solved according to physical rules. In this case, the

numerical simulation method can be used to predict the underwater

acoustic field. In case 2, only a large amount of data is known but

the specific physical rules are not clear, and machine learning can be

used to predict the acoustic field problem. The real underwater

acoustic field prediction is a problem in case 3: there are sufficient

data but some parameters in the physical rules are not clear, which

cannot be solved directly by the physical rules.

Physics-informed neural network (PINN) is a new kind of

neural network, which is used to solve the problem of case 3 in

Figure 1. It essentially trains the neural network with physical

equations as constraints, so that the prediction model can meet

certain physical rules. The method has been applied to geophysics,

fluid mechanics, plasma dynamics, high dimensional system

problems, quantum chemistry, materials science and other fields

closely related to physics. Zhu et al. (2021) introduced a deep

learning framework for inversion of seismic data. This paper

combined DNN and numerical partial differential equation

solvers to solve problems such as seismic wave velocity

estimation, fault rupture imaging, seismic location and source

time function inversion. Raissi et al. (2019) combined Navier-

Stokes equations with deep learning to build a model based on

physics-informed neural network and predict pressure distributions

in incompressible fluids. Shukla et al. (2020) used physics-informed

neural network to detect cracks on the surface of materials, designed

a trained PINN to solve the problem of identification and

characterization of cracks on the surface of metal plates, and

solved the acoustic wave equation using measured ultrasonic

surface acoustic wave data with a frequency of 5 MHz. Wu et al.

(2022) introduced the Helmholtz equation and its corresponding

boundary conditions into neural networks to establish physics-

informed neural networks describing acoustic problems. These

neural network algorithms can not only reflect the distribution of

training data samples, but also follow the physical laws described by

partial differential equations. Pfau et al. (2020) combined the wave

function of Fermi-Dirac statistics with deep learning networks to

calculate the solution of the multi-electron Schrodinger equation.

Rotskoff et al. (2022) used PINN method to solve the high-

dimensional problem and gave the results of the probability

distribution in the 144-dimensional Allen-Cahn type system,

indicating that the method is effective for high-dimensional

systems, but its adaptability needs to be optimized for more

complex systems. Zhang et al. (2022) used deep neural network

to modify the displacement factor of surrounding rock of Verruijt-

Booker solution, and constructed the correlation between the

surface settlement and the spatial position of tunnel excavation

face. Then, the physics equations of the corrected solutions were

used to construct PINN, and the results were better than those of

DNN alone. Zou et al. (2023) designed a PINN model to solve the

seismic wave equation. Du et al. (2023) used the three-dimensional

function equation and other physical rules to form a loss function,

and trained the neural network by minimizing the loss function.

The final output satisfied the function equation and the result was

better than the traditional calculation result.

In the underwater acoustic field, wave theory is usually used to

describe underwater acoustic propagation. In this paper, the
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underwater sound propagation equation is derived based the

framework of wave theory, which is used as constraint to train

the deep neural network, and finally the underwater acoustic field

prediction model with practical physical significance is obtained.

The specific arrangement of this paper is as follows:
1) Deriving the Helmholtz equation of underwater acoustic

propagation in homogeneous medium and establishing the

model of underwater acoustic propagation based on the

Helmholtz equation.

2) Designing a fully connected deep neural network.

Introducing Helmholtz equation into the training process

of neural network. Establishing a physics-informed neural

network based on the Helmholtz equation.

3) Adjusting different training parameters of neural network,

analyzing model training efficiency and prediction

accuracy, and finding the best network design parameters.
The rest of the paper is organized as follows: in Chapter 2, the

Helmholtz equation describing the distribution of sound pressure in

underwater acoustic field is derived. In Chapter 3, the structure of

underwater acoustic field prediction physics-informed neural

network (UAFP-PINN) is described in detail. In Chapter 4,

UAFP-PINN is used to forecast the 2D and 3D underwater

acoustic fields, and the prediction results are analyzed in detail.

Finally, the conclusion and summary is mentioned in Chapter 5.

2 Theory

2.1 Helmholtz equation

Wave theory is a strict mathematical method, which can be used

to derive the Helmholtz equation describing the law of underwater

sound propagation. For ideal fluids, the wave equation for sound

pressure can be written as follows (Jensen et al., 2011):

r∇ ·
1
r
∇ p

� �
−
1
c2

∂2 p
∂ t2

= 0 (1)

In the above formula, p is the sound pressure value of the

acoustic field, r is the density of the medium, c is the speed of sound

in the medium, and both density and speed of sound are functions

of space and time. ∇   is a Hamiltonian operator. To simplify the

calculation, assuming that the density does not vary with space

(Jensen et al., 2011), Formula 1 can be simplified to the following

formula:

∇2 p −
1
c2

∂2 p
∂ t2

= 0 (2)

Formula 2 is the wave equation in a homogeneous medium,

which can be approximated to the ocean acoustic field in a

homogeneous medium for a smaller scale ocean acoustic field

model. ∇2 stands for Laplace operator. For simple harmonic

wave, ∂2

∂ t2 = −w2, w is radiant frequency, introducing the

potential function Y = pffiffi
r

p , Formula 2 can be written as the

following formula (Liu et al., 2019):
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∇2 Y + k2(x, y, z)Y = 0   (3)

In Formula 3,Y is the potential function, k is the wave number

in the medium, which is calculated by the formula k = w
c . The

density in a uniform medium is a constant, and it can be seen from

the potential function formula that there is a linear relationship

between the sound pressure and the potential function, so the sound

pressure also satisfies Formula 3. The Helmholtz equation

describing the sound pressure can be written as follows:

∇2 p + k2(x, y, z)p = 0 (4)

The Formula 4 describes the sound pressure relationship

between adjacent positions of sound waves in a uniform medium.

The beam k in the medium is a position function of space. The

equation belongs to the partial differential equation with variable

coefficient. In order to simplify the calculation, the density r and the

sound velocity c of the medium are regarded as constant value. In

this paper, k   is a fixed constant in the model presented.
2.2 Physics-informed neural network

Most physical laws can be expressed in the form of partial

differential equations, but it is difficult to find specific analytical

solutions of higher-order partial differential equations, which are

usually approximated by various methods. The superiority of neural

network is that it is a universal approximator. If the neural network

has at least one nonlinear hidden layer, as long as the network has a

sufficient number of neurons, it can fully approximate the

continuous function defined on any compact subset in theory.
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Neural network is a data-driven approximation tool, and its

obvious disadvantage is that it needs a large amount of historical

data for training. The trained model reflects the characteristics of

the data dimension, and cannot clearly represent the physical

characteristics of the result. In order to solve these defects of

neural networks, the training process of neural networks can

incorporate partial differential equations describing physical laws

to constrain this model, so that the training results contain

corresponding physical characteristics. This kind of neural

network is called physics-informed neural network(PINN), and

its general structure is shown in Figure 2 (Karniadakis et al., 2021).

As shown in Figure 2, PINN consists of two parts: the deep

neural network prediction part and the partial differential equation

constraint part. Using the location (x, y, z) as input, the predicted

value P   in the region W is predicted after passing through the fully

connected layer. The mean square error is calculated as the loss

function 1, denoted as LOSS1 in Figure 2. The predicted value is put

into the pre-set partial differential equation and its loss function

LOSS2 is calculated. Finally, two kinds of loss functions are

combined to train the deep neural network as constraints.

An optimizer is an algorithm used to optimize the model

parameters in deep learning, which updates the model parameters

according to the gradient information of the loss function, so that the

model can gradually approximate the optimal results. The optimizers

commonly used in neural networks are stochastic gradient descent

(SGD), Adam, AdaGrad and RMSProp. Two optimizers, SGD and

Adam, are used to train the PINN in this paper. SGD is one of the most

basic optimizers in neural networks. Adam is an optimizer that

combines momentum method and adaptive learning rate

adjustment, which is a commonly used optimizer in neural networks.
FIGURE 2

General structure of PINN.
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3 UAFP-PINN

This section introduces the underwater acoustic field prediction

model based on physics-informed neural network(UAFP-PINN),

builds a fully connected deep neural network with six hidden layers,

and uses Helmholtz equation to construct the loss function in the

neural network and add it to the training of the neural network.

This section introduces the specific content of UAFP-PINN model

from three parts: model structure, loss function based on Helmholtz

equation and model activation function.
3.1 Frame of prediction

The neural network takes the position coordinate of sound

pressure P as the input and the corresponding sound pressure value

as the output for training. The network consists of one input layer,

six hidden layers and one output layer. In order to verify

the difference between two-dimensional and three-dimensional

model, two-dimensional and three-dimensional physics-informed

neural network is established respectively, and the models are

trained using (x, z, p) and (x, y, z, p) as inputs respectively.

The input layer of the neural network is the coordinate information

of sound pressure, the output layer is the predicted sound pressure, and

there are six hidden layers in this neural network. The number of

neurons in the hidden layer was (8, 16, 32, 64, 128, 256) and each

neuron is connected by full connection. The i neuron in layer l − 1 and

the j neuron in layer l are connected by weighting parameters wl
ji. Each

neuron trains the model through input weighting parameters  wl
ji and

bias terms   bl in layer l − 1. Figure 3 shows the computational

relationship between the two related neurons. In the feedforward

model, Formula 5 shows the output of the k neuron in the next

layer l (Bishop and Nasrabadi, 2006). s   is the activation function,

which is covered in the third part of this section.

ulk = s oNl−1
j=1 w

l
kju

l−1
j + blk

� �
(5)
3.2 Loss function

The key of physics-informed neural network is to train the

neural network with physical partial differential equation which

describes the state of object. The traditional neural network usually

use the mean square error of predicted and simulated values to

evaluate the training results. In this study, a Helmholtz equation

describing underwater sound propagation is added as another loss

function. The loss function of the mean square error and the loss

function of the physical constraint are used as constraints to train

the model. The loss function of mean square error is denoted as

LOSS1 and the loss function of physical constraint is denoted as

LOSS2 (Borrel-Jensen et al., 2021).

The reference formula of loss function LOSS1 is the formula for

calculating mean square error, and the specific content is shown in

Formula 6:
Frontiers in Marine Science 0593
MSE =
1
no

n
i=1 Pi − Tij j2 (6)

In the above formula, MSE represents the mean square error, n

is the total number of samples, P is the predicted value, and T is the

true value. Formula 6 is one of the important indicators to measure

the accuracy and precision of the prediction model.

For the prediction model in this paper, the sound pressure value

predicted by the neural network is denoted as ppre, the

corresponding simulated sound pressure value is denoted as ptra,
and the number of samples is denoted as N, then the mean square

error loss function LOSS1 of the neural network is shown as

Formula 7:

LOSS1 =
1
No

N
i=1(p

pre
i − ptrai )2 (7)

The mean square error loss function LOSS1 represents the

degree of similarity between the predicted value and the

simulated value. Traditional neural networks use this loss

function to continuously approximate the predicted value to the

simulated value. In essence, the model trained by means of

the mean square error loss function represents the characteristics

of the data dimension.

The sound pressure value   ppre predicted by the neural network

is a function of spatial coordinates, and the Laplacian operator of

the sound pressure p in formula 4 can be expressed as:

∇2 p =
∂2 p
∂ x2

+
∂2 p
∂ y2

+
∂2 p
∂ z2

(8)

According to Formula 4, k is the medium beam and the

calculation formula is k = w
c , w is the radiation frequency, c is

the medium sound speed. Bringing Formula 8 into Formula 4 gives
FIGURE 3

Computational relationship between adjacent neurons.
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the Helmholtz equation with the predicted values.

L =
∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2
+ k2ppre (9)

Formula 9 describes the Helmholtz equation of the predicted

value of the neural network, which is a vector, and defines the

square of the 2-norm of this vector as the loss function LOSS2 of the

physical constraint (Song et al., 2022), from which the expression of

the loss function of the physical constraint can be obtained as:

LOSS2 =║ ∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2
+ k2ppre║

2

2
(10)

The physical constraint loss function LOSS2 represents the

physical characteristics of the predicted value and brings

the predicted value into the Helmholtz equation describing the

underwater sound field. The model trained with the loss function 2

represents the characteristics of the physical dimension.

In order to make the trained neural network have both data

characteristics and physical characteristics, the mean square error

loss function LOSS1 and physical constraint loss function LOSS2 will

be combined in this paper. In order to make the model better fitting

effect and have strong physical interpretability, the two loss

functions will be summed with the same weight. As a whole, the

LOSS function LOSS trains the model. The model trained by the

LOSS function has clear physical interpretability. The calculation

formula of the loss function is as follows:

LOSS =
1
No

N
i=1(p

pre
i − ptrai )2 +║ ∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2

+ k2ppre║
2

2
(11)
3.3 Activation function

As an important parameter in deep neural network training, the

activation function (s ) has great influence on the training efficiency

and prediction accuracy of the neural network. The activation

functions are mainly used to introduce nonlinear properties that

enables neural networks to learn and represent complex nonlinear

relationships. The activation function is typically applied to each

neuron in a neural network, converts the input signal to nonlinear

and passes the transformed result to the next layer. In the training of

neural network, common activation functions mainly include tangent

activation function (Tanh(x)), sine activation function (sin(x)), Relu

function (Relu(x)), and arctangent activation function (Atan(x)). The

images of these four activation functions are shown in Figure 4.

The tangent function is more commonly used in cases where the

neuronal output has negative values, such as symmetric centralized

data. Using tangential activation functions can help neural network

introduce nonlinear transformations so that neural network can

learn and represent more complex patterns and relationships. The

tangent activation function outputs a negative value when the input

is negative and a positive value when the input is positive. This

makes the tangent activation function more suitable for processing

data with positive and negative symmetries.
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The sine function is a nonlinear activation function that maps

the input values to an output range between -1 and 1. Sine

activation functions have nonlinear properties, which can help

neural network model learn and represent nonlinear patterns

and relationships.

The Relu function is one of the widely used activation functions

in deep learning, especially in the hidden layer. Its main advantages

are computational efficiency and avoiding gradient saturation

problems. Relu function passes positive values and truncate

negative values to zero, which makes Relu sparsely active, that is,

only some neurons are activated while others are zero. Sparse

activation can provide higher model representation and help to

reduce the computational load and complexity of the model.

The arctangent function can help mitigate gradient vanishing or

gradient explosion problems in some cases because it has a gentler

gradient as the input approaches the boundary, and these problems

can affect the model’s learning ability and convergence.

In this study, the tangent function, the sine function, the Relu

function and the arctangent function (Al-Safwan et al., 2021; Song

et al., 2022) are used to predict the model. Different activation

functions are selected to observe the decline of the model’s loss

function, and the effect of different activation functions is evaluated

according to the model prediction effect. Finally, we select the

activation function that best fits PINN model.
4 Experiment

4.1 Data

In order to verify the feasibility of the physics-informed neural

network, an ocean environment model is established using

COMSOL software. A point sound source is placed at the edge of

the ocean environment to simulate the excitation conditions of the

underwater acoustic field, and the effectiveness of the physics-

information neural network is verified according to the acoustic

field data.

The test area is 30 meters long, 10 meters wide and 10 meters

high, and the test point sound source is located at coordinates

(0,5,5). The upper boundary of the area is the air-sea interface,

which can be approximated as an absolute soft boundary, and the

sound pressure values on the boundary are satisfied the condition

p(x, y, z) = 0; the lower boundary of the area is a hard submarine

interface, which can be approximated as an absolute hard boundary,

and the sound pressure values on the boundary are satisfied the

formula ∂ p
∂ z = 0. The surrounding boundary is a perfectly matched

layer (Chen et al., 2013). Due to the small scale of the area, the

density of seawater in the area can be approximately constant, the

average density of seawater is 1025 kg=m3, and the sound velocity in

the seawater medium is 1500m=s. The structure of the area model is

shown in Figure 5.

In order to avoid the influence of reverberation on the acoustic

field, the point sound source with a frequency of 100 Hz is selected

in this paper, the sound wave is a sine wave, and the amplitude is

selected as one. Figure 6 shows the spatial acoustic field distribution

at 0.1s drawn by COMSOL according to the above conditions, and
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Figure 7 shows the sound pressure distribution at XZ-plane when

coordinate y is five meters.

In this paper, the sound pressure data in 2-dimensional plane and

3-dimensional space are predicted respectively. In this study, prediction

data and test data are separated. A total of 28,100 sets of simulated

values are collected in the 2-dimensional plane data training set and

112,400 sets of simulated values are collected in the test set. A set of 2-

dimensional plane training data is collected every 0.1 m. A total of

352,500 sets of simulated values are collected in the 3-dimensional

training set and 982,150 sets of simulated values are collected in the test

set. A set of 3-dimensional training data is collected every 0.2 m.
4.2 Introduction to experimental
environment

The experimental environment will affect the predicted rate, so

this section describes the hardware configuration for the

experiment. The GPU is NVIDIA GeForce GT370, the CPU is

Intel i7-9700, the operating system is Windows10, and the memory

is 64 GB. This paper establishes a prediction model based on Python
Frontiers in Marine Science 0795
language, and uses Pytorch framework to establish a neural

network. The compiler uses Pycharm2018.
4.3 Hyper parameter setting

In the experiment, the adaptive moment estimation (Adam)

optimizer and stochastic gradient Descent (SGD) are used to

analyze the influence of the optimizer on the prediction accuracy of

the model. For this optimization process, the first-order momentum

factor, second-order momentum factor and Fuzz factor in Adam are

configured as 0.9, 0.999 and 0.0000001, respectively. The initial

learning rate is set to 0.001, the weight attenuation factor is set to

0.0005, and 1/10 of the total training data is used for a batch. Before

the actual test, a small batch of test data was used for training, and it is

found that the model could converge within 100 times. Therefore, the

number of iterations of the 2-dimensional model is set to 500 epochs

and the number of iterations of the 3-dimensional model was set to

250 epochs. Finally, in order to ensure that the weight of data-driven

and physical constraints is the same, the two loss functions are

summed with the same proportional coefficient 1 and combined into
A B

DC

FIGURE 4

(A) is the tangent activation function, (B) is the sine activation function, (C) is the Relu activation function, and (D) is the arctangent activation function.
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an overall loss function to train the model. For the specific loss

function, see Formula 11.
4.4 Results and analysis

In order to verify the effectiveness of the underwater acoustic

field prediction model, 2D underwater acoustic prediction model

based on physics-informed neural network (2D UAFP-PINN) and

3D underwater acoustic prediction model based on physics-

information neural network (3D UAFP-PINN) are established by

using 2D and 3D acoustic field data. The two models are used to

predict the acoustic field data of the test location, adjust different
Frontiers in Marine Science 0896
optimizers and activation functions to analyze the optimal model

parameters, and finally evaluate the model by analyzing the

statistical characteristics between the predicted values and the

simulated values.

4.4.1 2D UAFP-PINN
In this section, a 2D underwater acoustic prediction model

based on physics-informed neural network (2D UAFP-PINN) is

established, and the effects of different activation functions and

optimizers on the prediction accuracy of the model are analyzed.

Model parameters are as follows: there are 28100 sets of training

data and 112,400 sets of test data;The training iteration epochs are

500 times, the data of each training is 1/10 of the total training data.
FIGURE 6

Sound pressure distribution at t= 0.1s.
FIGURE 5

Area model structure.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1302077
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du et al. 10.3389/fmars.2023.1302077
It selects different activation functions and optimizers to train the

model and gets the curve of loss function with training times.

Figure 8 shows the change curves of the different loss functions

using the two optimizers. Since the loss function reached the

optimal trend after about 100 training times, only the results of

the first 100 training times are shown in the figure to make it clearer.

As can be seen from Figure 8, when the Relu activation function

is combined with the Adam optimizer, the loss function drops to the

lowest values, reaching 1.09, and the minimum trend is reached

when the training times are about 13 times. The model convergence

speed is faster than other activation functions. Therefore, using the

Adam optimizer, the loss function decreases faster than the SGD

optimizer, indicating that the Adam optimizer is more suitable for

the training of 2D UAFP-PINN model. In summary, it can be seen

that using the Adam optimizer and Relu activation function is the

best choice for the 2D UAFP-PINN model.

In order to verify the prediction effect of this model, 112,400 sets

of data simulated by COMSOL are selected as simulation values to
Frontiers in Marine Science 0997
evaluate this model. In this paper, the validity of the forecast results

is analyzed from four perspectives: R-squared (R2), mean square

error (MSE), mean absolute error (MAE) and absolute error

distribution. R-squared is a common regression model evaluation

metric used to measure the model’s ability to explain the target

variable. The value range of R-squared is between zero and one,

when it is closer to one indicates that the model has a better ability

to explain the target variable, and when it is closer to zero indicates

that the model has a worse ability to explain the target variable. The

expression of R-squared is as follows:

R2 = 1 −
SSE
SST

= 1 −o(yi − byi)2
o(yi − �y)2

  (12)

Where yi are the simulated values of the test set, ŷi are the

predicted values by PINN, �y are the mean of the simulated values.

SSE represents the sum of squares of residuals, which is the sum of

squares of the difference between the predicted values and the
A B

FIGURE 8

(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer.
FIGURE 7

Sound pressure distribution in the XZ-plane at y=5 m.
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simulated values. SST represents the total sum of squares, which is

the sum of squares of the difference between the predicted values

and the mean of the simulated values.

The formula for calculating the mean square error can be

referred to formula 6 in Section 3.2 of the article. The formula for

calculating the mean absolute error is as follows:

MAE =
1
no

n
i=1 Pi − Tij j (13)

In the above formula, MAE represents the mean absolute error,

n is the total number of samples, P is the predicted value, and T is

the true value.

Table 1 shows the results of R-squared, mean square error and

absolute mean values error of predicted values and simulated values

of different activation functions under the Adam optimizer, and

Figure 9 shows the absolute error distribution of predicted

and simulated values of different activation functions. Table 1 and

Figure 9 show the statistical characteristics between the predicted

values and the simulated values.

The R-squared values represents the correlation between the

predicted values and the simulated values, and the larger the value,

the stronger the correlation between the predicted values and the

simulated values. It can be seen from Table 1 that the model using

Relu activation function for prediction has the strongest correlation

with the simulated values, that the R-squared value is 0.98953.The

mean square error between the predicted values and the simulated

values is only 0.01047 Pa when the model uses Relu activation

function, and the mean square error of other activation functions

are all around 0.75.The mean absolute error between the predicted

values and the simulated values is only 0.06759 Pa when the model

uses Relu activation function, and other activation functions’ mean

absolute error are all around 0.67 Pa. The data predicted by the Relu

activation function is very close to the simulated values. Figure 9

shows the distribution of absolute error between the predicted and

simulated values of several activation functions. It can be analyzed

from the figure that the absolute error of the data predicted by the

Relu activation function is distributed within 0.05 Pa, and the data

with an absolute error higher than 0.3 Pa is basically not distributed,

while the error distribution of the other three activation functions

are basically similar, and most of them are concentrated within

1.5 Pa. It can be analyzed that the prediction accuracy is much lower

than that of the Relu activation function. Therefore, the best

activation function and optimizer for this model are Relu

and Adam.
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4.4.2 3D UAFP-PINN
In this section, a 3D underwater acoustic prediction model

based on physics-informed neural network (3D UAFP-PINN) is

established, and the effects of different activation functions and

optimizers on the prediction accuracy of the model are analyzed.

Model parameters are as follows: there are 352500 pieces of training

data and 982150 sets of test data; The training iteration epochs are

250 times, the data of each training is 1/10 of the total training data.

It selects different activation functions and optimizers to train the

model and gets the curve of loss function with training times.

Figure 10 shows the variation curves of the different loss functions

using the two optimizers. The optimal trend reached by the loss

function after about 20 training sessions. To make it clearer, Adam

only shows the results of the first 100 training sessions in the figure,

while SGD only shows the results of the first 20 training sessions.

It can be seen from Figure 10 that when Relu activation function

and Adam optimizer are used, the loss function decreases to the lowest

degree, reaching 6.94, and reaches the lowest trend when the training

times are about 10 times. The model convergent speed is faster than

other activation functions. The loss function has the best decreasing

effect when the optimizer chooses Adam. It can be concluded that the

loss function reduction effect using the Adam optimizer is slightly

better than that of the SGD optimizer. In summary, it can be seen that

using the Adam optimizer and the Relu activation function is the best

choice for the PINN framework. However, compared with the two-

dimensional training model, with the increase of data dimension, the

training complexity greatly increases, and the gap between the

optimization effect of the optimizer and the activation function on

the network is also significantly reduced, which indicates that with the

increase of data dimension, it is necessary to appropriately increase the

network complexity to represent the features of higher-dimensional

data. Simply changing the activation function and the optimizer does

not make the model convergence better.

In order to verify the prediction effect of the model, 982,152

pieces of data were selected to evaluate the model. Table 2 shows the

results of R-squared, mean square error and absolute values error of

the predicted values and the simulated values using different

activation functions under the Adam optimizer. Figure 11 shows

the absolute error distribution between the predicted values and the

simulated values of different activation functions, which is used to

visually display the error distribution of the predicted values.

As can be seen from Table 2, the largest R-squared value is the

result predicted by Relu activation function, which reaches 0.47823,

and the predicted values have a relatively high correlation with the

simulated values. The correlations of the other three functions are very

low. From themean square error and the mean absolute error, it can be

seen that the prediction effect of Relu activation function is much better

than that of other activation functions. From the absolute error

distribution in Figure 11, the absolute error range of the four

activation functions is basically the same, but the absolute error of

Relu activation function is mostly concentrated within 0.5 Pa, and the

absolute error distribution is the largest around 0.25 Pa, and there is a

small peak around 1.0 Pa. However, compared with the prediction

results of other activation functions, the prediction effect of Relu
TABLE 1 Statistical results of different activation functions.

Activation
function

R-squared MSE MAE

Tanh 0.24107 0.75893 0.68727

Sin 0.23773 0.76223 0.67919

Relu 0.98953 0.01047 0.06759

Atan 0.23879 0.76121 0.67166
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activation function is obviously better than that of the other three

activation functions.

Comparing the 2D UAFP-PINN and 3D UAFP-PINN training

and forecasting results, under the condition of Adam optimizer and

Relu activation function, the 2D UAFP-PINN model is much better

than the 3D UAFP-PINN model, and the error difference between
Frontiers in Marine Science 1199
the two models can reach tens of times. The reason for the big

difference between the two models is that the complexity of the

acoustic field will also increase with the increase of the dimension of

the forecast data. Therefore, if the number of hidden layers and

neurons of the 3D model remains the same as that of the 2D model,

the fitting effect of the 3D model will have the problem of
A B

FIGURE 10

(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer.
A B

DC

FIGURE 9

(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.
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underfitting. If the dimension of the prediction model is increased,

the number of hidden layers and neurons of the model should be

increased to match the corresponding complexity and prevent the

problem of underfitting.
5 Conclusion

Compared with the numerical method to solve the underwater

acoustic field, PINN has the advantage that it can handle the

acoustic field of different media and irregular shape models.

PINN does not use a regular network to predict the acoustic field.

It can be predicted at any point in the input region if the position is

known, and there is no limit to the irregular shape of the model. For
Frontiers in Marine Science 12100
the three-dimensional acoustic field, the calculation cost of the

numerical method will increase sharply due to the addition of one

dimension of the data, and PINN can quickly forecast the high-

dimensional acoustic field space.

In addition to PINN, there are machine learning-based methods

to predict acoustic fields. Onasami et al. (2021) used deep neural

networks and long and short time memory networks to model

underwater acoustic channels, and established a data-driven

underwater acoustic channel model. The acoustic field prediction

model based on machine learning is mainly a data-driven method,

which needs a lot of training data to support, and has certain

timeliness. The underwater acoustic field is time-varying, and it is

often difficult to predict the time-varying underwater acoustic field

when the model is trained using only historical data. The advantage

of PINN is that new constraint variables can be added via partial

differential equations, and it has good environmental adaptability.

According to the experimental data, the convergence rate of the

model loss function is fast.

The experimental results show that PINN using Relu activation

function and Adam optimizer can effectively predict the underwater

acoustic field. The model is constrained by the Helmholtz equation

describing the underwater acoustic field and combined with the

excellent model approximation characteristics of the neural

network. It can realize the acoustic field prediction in the case of
A B

DC

FIGURE 11

(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.
TABLE 2 Statistical results of different activation functions.

Activation
function

R-squared MSE MAE

Tanh 0.10428 0.89572 0.70253

Sin 0.09045 0.90955 0.70488

Relu 0.47823 0.52177 0.51988

Atan 0.09411 0.90589 0.70217
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small samples. The Helmholtz equation, which describes the

underwater acoustic field, gives the parameters that affect the

acoustic field, such as medium density, medium sound velocity,

sound source position, vibration frequency, etc. These parameters

cannot be given directly in the loss function as constraints to be

trained. For the underwater acoustic field of large-scale medium, the

sound velocity and the density of medium change with space, so it is

difficult for the network to predict the underwater acoustic field of

large-scale medium. The main limitation of the underwater acoustic

field prediction model proposed in this paper is that the scale of

trained model is small. If the source frequency, medium density,

and medium sound velocity change, the new network model needs

to be retrained separately for these changing conditions. To solve

this problem, the source position, medium density, sound velocity

and different boundary conditions can be used as new inputs to

train the network model together with the coordinate information.

Song et al. (2022) and Alkhalifah et al. (2020) used the similar

method to generate wave field solutions of multiple seismic sources

with one network, and solved the problem of seismic field

adaptation of different seismic sources. In addition, time can also

be used as input to add time constraint term to Helmholtz equation,

and it can establish a kind of physics-informed neural network for

spatial-time cooperative prediction. Finally, the combination of

transfer learning and PINN is a research direction to solve the

problem of underwater sound field model prediction in

different scenes.

Using PINN to predict underwater acoustic field, it is necessary

to adjust the structure and training amount of prediction network

according to the complexity of acoustic field. By comparing the

prediction results of 2D UAFP-PINN and 3D UAFP-PINN models

in this paper, the following conclusions can be drawn: with the

increase of model dimensions, the complexity of model prediction

will increase accordingly, and simply changing the activation

function and optimizer cannot effectively improve the prediction

accuracy of the model. For acoustic fields with more complex

dimensions, it is necessary to increase the complexity of the

model with more neurons and hidden layers to adapt to more

complex physical environments, so as to achieve better

prediction results.

In this paper, it establishes physics-informed neural network to

forecast underwater acoustic field. By analyzing several activation

functions and the accuracy of the results predicted by the optimizer,

it is found that the Relu activation function and the Adam optimizer

can accurately predict the sound pressure value of the two-

dimensional acoustic field. For three-dimensional space, the

accuracy of PINN prediction is lower than the two-dimensional

acoustic field prediction model, because the complexity of the

problem increases with the increase of the dimension of acoustic

field. Therefore, it is also necessary to adjust the number of hidden

layers and the number of neurons in the network structure. The

two-dimensional and three-dimensional neural network structure

in this paper is the same as that of neurons, and subsequent work

can be verified in this direction. Compared with the numerical

method, this method can adapt to different media environments,

has certain physical characteristics, and the prediction accuracy can
Frontiers in Marine Science 13101
be improved by adjusting the network structure and parameters, so

it is an effective method for underwater acoustic field prediction.
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Anchor boxes adaptive
optimization algorithm for
maritime object detection in
video surveillance

Jiachun Zheng1, Shijia Zhao1, Zhiping Xu1*,
Lei Zhang1 and Jiantao Liu2

1Xiamen Key Laboratory of Marine Intelligent Terminal R&D and Application, The School of Ocean
Information Engineering, Jimei University, Xiamen, China, 2Fujian Electronic Port Co., Ltd,
Xiamen, China
With the development of themarine economy, video surveillance has become an

important technical guarantee in the fields of marine engineering, marine public

safety, marine supervision, and maritime traffic safety. In video surveillance,

maritime object detection (MOD) is one of the most important core

technologies. Affected by the size of maritime objects, distance, day and night

weather, and changes in sea conditions, MOD faces challenges such as false

detection, missed detection, slow detection speed, and low accuracy. However,

the existing object detection algorithms usually adopt predefined anchor boxes

to search and locate for objects of interest, making it difficult to adapt to

maritime objects’ complex features, including the varying scale and large

aspect ratio difference. Therefore, this paper proposes a maritime object

detection algorithm based on the improved convolutional neural network

(CNN). Firstly, a differential-evolutionary-based K-means (DK-means) anchor

box clustering algorithm is proposed to obtain adaptive anchor boxes to satisfy

the maritime object characteristics. Secondly, an adaptive spatial feature fusion

(ASFF) module is added in the neck network to enhance multi-scale feature

fusion. Finally, focal loss and efficient intersection over union (IoU) loss are

adopted to replace the original loss function to improve the network

convergence speed. The experimental results on the Singapore maritime

dataset show that our proposed algorithm improves the average precision by

7.1%, achieving 72.7%, with a detection speed of 113 frames per second,

compared with You Only Look Once v5 small (YOLOv5s). Moreover, compared

to other counterparts, it can achieve a better speed–accuracy balance, which is

superior and feasible for the complex maritime environment.

KEYWORDS

maritime video surveillance, object detection, anchor box, You Only Look Once,
adaptive spatial feature fusion
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1 Introduction
With the rapid development of global economy and trade,

maritime traffic is becoming heavier and denser, bringing a

higher risk of maritime traffic accidents. Accurate and rapid

maritime object detection is largely beneficial for maritime

surveillance, thus effectively reducing the risk of maritime traffic

accidents. Affected by maritime objects’ distance, weather, and sea

conditions, traditional maritime video surveillance mainly relies on

manual methods. However, the monitors will inevitably experience

visual fatigue when the monitoring behavior continues, leading to

false or missed detection of maritime objects and even grave

consequences. To solve these problems, an intelligent processing

algorithm is adopted to detect object instance in maritime images,

and it plays an increasingly important role in maritime object

detection tasks.

Traditional maritime object detection algorithms generally follow

a three-phase detection framework, namely, horizon detection, static-

background subtraction, and foreground segmentation (Lyu et al.,

2022). In the first phase, Fefilatyev et al. (2012) utilized Hough

transform to detect the horizon position and thus reduced the object

search space, and used threshold segmentation to obtain the maritime

ship object after image registration. In the second phase, Chen et al.

(2018) proposed a Gaussian mixture model to judge the pixels in the

foreground part of the image, and then utilized background

subtraction and adjacent frame continuity to segment the ship

object. In the last phase, Chan (2021) proposed a maritime noise

prior method to reduce the interference of noise on the sea surface,

and thus improved the accuracy of foreground detection in complex

maritime scenarios, and this method was based on a dark channel

prior and observation of sea surface characteristics. From these

works, it can be found that each phase of this traditional detection

framework needs to be designed carefully and manually to ensure the

detection performance. Furthermore, these algorithms (Fefilatyev

et al., 2012; Chen et al., 2018; Chan, 2021; Zhu et al., 2023) could

not efficiently extract high-dimensional semantic information; not

only do they need to consume more manpower and time resources,

but also the algorithms are easy to be disturbed by the complex

marine environment, and they find it difficult to achieve stable

maritime object detection.

Benefiting from deep learning (DL) technologies, the object

detection algorithms based on the convolutional neural network

(CNN) have aroused great interest of scholars. Based on the multi-

layer topology structure, CNN can realize the automatic extraction

of high-dimensional semantic information of images with stronger

anti-interference ability (Simonyan and Zisserman, 2014; Girshick,

2015). CNN-based object detection algorithms are divided into two

kinds: two-stage and one-stage algorithms. Generally, the former

represented by the R-CNN series has a higher accuracy with a lower

speed (Girshick, 2015; Ren et al., 2015; Sun et al., 2021). The latter

represented by You Only Look Once (YOLO) series runs faster with

a lower accuracy (Redmon and Farhadi, 2018; Bochkovskiy et al.,

2020; Ultralytics, 2021; Wang et al., 2023). These DL-based object

detection algorithms give a new direction for the research of

maritime object detection. Bousetouane and Morris (2016)
Frontiers in Marine Science 02104
proposed a Fast-R-CNN-based surveillance algorithm for ship

classification and detection in maritime scenarios to improve

accuracy with faster speed. To improve marine object detection

accuracy, Fu et al. (2021) fused a convolutional attention module in

the YOLOv4 framework to enhance valid features and suppress

invalid ones. Chang et al. (2022) proposed a modified YOLOv3

model with lower computation complexity through adjustment of

input image size, number of convolution kernel, and detection scale,

and then introduced the spatial pyramid pooling module to further

improve the maritime ship detection accuracy. Recently, many

useful technologies have emerged, such as multiple access (Chen

et al., 2023; Xie et al., 2023), joint/separated source and channel

coding (Xu et al., 2019; Xu et al., 2021; Fang et al., 2023; Xu et al.,

2023), index modulation (Dai et al., 2023), and multi-receiver

synthetic aperture sonar (Zhang et al., 2021; Zhang. et al., 2022;

Yang, 2023; Zhang, 2023; Zhang et al., 2023a; Zhang et al., 2023b;

Zhang et al., 2023c). The DL-based object detection algorithms

combined with different technologies can build a better maritime

object detection system to promote ocean observation.

In summary, DL-based maritime object detection algorithms are

simpler, more efficient, and more robust against sea surface noise

interference, compared with traditional algorithms. However, existing

DL-based maritime object detection algorithms mainly focus on the

improvement and optimization of CNN structures, neglecting the

characteristics of maritime object instances. To solve this problem,

an anchor box adaptive object detection algorithm based on the

characteristics of maritime object instances is proposed for maritime

video surveillance. The main contributions are as follows:
(1) A differential-evolutionary-based K-means (DK-means)

anchor box clustering algorithm is proposed to generate

adaptive anchor boxes to adapt for the characteristics of

maritime object instances, improving the detection

performance without extra computation.

(2) An adaptive spatial feature fusion (ASFF) module is added

in the neck network to enhance multi-scale feature fusion to

improve the detection performance.

(3) A new loss function that adopts focal loss and efficient

intersection over union (IoU) loss is defined for the

maritime object characteristics to improve network

convergence speed.

(4) On the Singapore maritime dataset, the proposed method

achieves 72.7% AP, outperforming the YOLOv5 small

(YOLOv5s) by 7.1% with 113 FPS.

(5) The proposed method can perform better than the

YOLOv5s in multi-scale maritime objection detection

with tighter predicted bounding boxes and fewer number

of redundant bounding boxes.
This paper is organized as follows: Section 2 describes the

overall research of the proposed methodology in detail. The

experimental results including ablation studies, performance

comparison, and detection results are shown in Section 3. The

paper is concluded in Section 4.
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2 Proposed model and optimization

In the maritime surveillance, both real-time and accuracy of

object detection need to be considered essentially. Thus, the one-

stage object algorithm is chosen as the detection algorithm, which

can realize speed–accuracy trade-off efficiently in the maritime

object detection. Moreover, compared with other one-stage object

algorithms, the YOLOv5s model is lightweight with a higher

detection accuracy; thus, we choose it as our baseline model. The

purpose of this study is to develop a maritime object detection

model considering the characteristics of maritime object instances,

and this optimized model can achieve higher accuracy while

remaining lightweight.

This section details the main method of the proposed anchor

boxes’ adaptive objection detection algorithm. Section 2.1 describes

the overall structure of our model. The details of the proposed

anchor boxes’ adaptive algorithm is described in Section 2.2.

Sections 2.3 and 2.4 introduce the adaptive spatial feature fusion

module and the loss function adopted, respectively.
2.1 Overall structure of our model

Figure 1 provides a detailed depiction of our model’s structure,

which is composed of three components: the backbone structure,

the enhanced neck, and the head. The backbone structure is tasked

with extracting features from input images using predefined anchor

boxes. Then, the enhanced neck is specifically designed to augment

the fusion of these features. Lastly, the head plays the role of

predicting maritime objects at three different scales. In the

context of object detection algorithms that employ the anchor

boxes’ mechanism, it is common practice to predefine nine

anchor boxes of varying sizes and scales for feature maps. This

strategy is implemented to ensure a high level of accuracy in object

detection. To adapt to the characteristics of maritime object
Frontiers in Marine Science 03105
instances, we adopt the optimized anchor boxes (OABs) as a

predefined substitute for the original ones, and the OABs are

generated by the proposed DK-means algorithm.

In the training process, the input labeled images are performed by

data augmentation operations to increase feature diversity at first.

Then, the processed images are performed by feature extraction and

subsampling operations in the backbone network part. After three

subsampling stages, the backbone generates three different scale

feature maps. These feature maps are fed into the enhanced neck

network part to reinforce semantic information in shallow feature

maps and spatial information in deep feature maps. In the enhanced

neck network, the ASFF modules (Liu et al., 2019) are utilized to

enhance the multi-scale feature fusion, thus improving the multi-

scale detection ability. Finally, the enhanced feature maps are fed into

the head network part to obtain the predicted results. The loss values

are calculated by comparing them with the label values, and the

network parameters are updated through gradient information.

Moreover, to make the trained network parameters more

consistent with the characteristics of maritime objects, the loss

function used in YOLOv5s are also optimized and improved. In

the model inference process, the final detection results are obtained

after non-maximum suppression (NMS) operation.
2.2 Anchor boxes adaptive algorithm

The predefined anchor boxes in the original detection model are

sensitive to object scale: Specifically, smaller anchor boxes are

ineffective at detecting larger objects, while larger anchor boxes

struggle to accurately capture smaller objects. The mismatch

between the aspect ratio of anchor boxes and the objects will

result in the decrease in detection accuracy. How to obtain

appropriate anchor boxes that can satisfy the characteristics of the

maritime object instances is the key to improving the detection

accuracy of the maritime object instances.
FIGURE 1

The overall structure of the detection model.
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2.2.1 Characteristic analysis of maritime
object instances

In this part, the Singapore marine dataset (SMD) (Prasad et al.,

2017) is taken as an example to analyze the characteristics of the

maritime object instances. According to the standard of the

Common Objects in Context (COCO) dataset, the maritime

object instances in the SMD can be classified into three classes:

detection objects with an area less than 32×32 pixels are defined as

small objects, detection objects with an area greater than 32 × 32

pixels and less than 96 × 96 pixels are defined as medium objects,

and detection objects with an area greater than 96 × 96 pixels are

defined as large objects. With these definitions, the scale

distributions of the maritime object instances are shown in

Figure 2A. From this figure, it can be seen that different types of

maritime objects nearly have the different scales. Moreover, the

scales of the different types of maritime objects are mainly medium

and small. In Figure 2B, it can be found that maritime objects

generally have a relatively high aspect ratio. Furthermore, the aspect

ratio of the detection object can even reach 17.66 in extreme cases.

From the above analysis, it can be concluded that maritime

object detection usually faces the following problems:
Fron
(1) The detection object has varying scales.

(2) The detection object has large aspect ratio difference.
2.2.2 Details of the proposed algorithm

In the YOLO series frameworks, the K-means clustering

algorithm is usually adopted to generate adaptive anchor boxes,

which will be used for training the detection model (Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020). However, influenced by the

initial clustering centers, the results of the K-means clustering

algorithm easily fall into the local optimal solution, making it

difficult to generate the optimal predefined anchor boxes. The
tiers in Marine Science 04106
differential evolution (DE) algorithm (Storn and Price, 1997) is a

kind of global search optimization algorithm that achieves evolution

from the current population to the next generation through

operations such as mutation, crossover, and selection, thus

possessing the ability to search for global optimal solutions in the

solution space. To solve this problem, the DE algorithm is introduced

to reduce the dependence on the initial clustering centers and

enhance global search ability. Through this method, the

dependence of the K-means algorithm on initial values can be

reduced and more robust predefined anchors can be obtained. The

improved K-means clustering algorithm with the DE method is

named DK-means clustering algorithm, which is shown in

Algorithm 1. The parameters include the number of iteration Nt,

the number of anchor boxes K, the population size Np, andN ≜{1,2,
…, N p}. The sample dataset is denoted byD. The tth generation of the

population is denoted by ct = Xt
1,X

t
2,⋯,Xt

Np

n o
, and the i-th

candidate is denoted by Xt
i .

The algorithm mainly includes three parts:
1) Line 1: The first part generates the initial population c0

according to the sample dataset.

2) Lines 2–8: The second part finds Np candidates for group

anchor boxes by the DE process including mutation and

crossover operations at Nt generations.

3) Lines 9–11: The third part chooses the final optimized

results for the output group anchor boxes as the

clustering centers. Then, divide real anchors boxes into

clusters with corresponding clustering centers Xt+1
ibest

according to the closest distance principle.

4) Line 12: Return the optimized anchor boxes as the output of

this algorithm.
Remark 1: The best group anchors are chosen according to

maximizing the IoU values as follows:
FIGURE 2

Characteristics of maritime object instances in the SMD dataset. (a) area and number of large, medium and small objects of each class and (b) width
to height ratio distribution of class and bbox.
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Kbest = argmini∈N (f (X t)), (Eq: 1)

where the function f(·) returns the IoU values, and the Kbest-th

candidate in the population is the optimized results.
2.3 Adaptive spatial feature
fusion optimization

In the object detection, multi-scale features can be utilized to

improve the model detection performance. When an image is input

into CNN, different resolution feature maps can be obtained to detect

objects at different scales, according to the different downsampling

rates. Shallow feature maps with high resolution are suitable for

detecting small objects due to their rich detailed information and

small receptive fields, and deep feature maps with low resolution are

suitable for detecting large objects due to their strong semantic

information and large receptive fields. Therefore, fully utilizing the

semantic and detailed information of features at different scales is of

great significance for improving the object detection accuracy. To fully

utilize multi-scale features, an adaptive spatial feature fusion (ASFF)

module is introduced to the neck module to enhance multi-scale

feature fusion. Figure 3 shows details of the ASSF module. The

feature maps F4, F5, and F6 are fused adaptively and enhanced by

the ASFF module at different spatial scales, and then transferred to

head module. The feature fusion process can be represented by

ylij = a l
ij · x

1→l
ij + b l

ij · x
2→l
ij + g l

ij · x
3→l
ij , (Eq: 5)

where ylij represents the (i, j)-th feature vector of the output

feature yl, and xn→l
ij represents the (i, j) feature vector after adjusting

nth level feature map to the same size of the lth level feature map.

a l
ij, b l

ij, g l
ij ∈ 0, 1½ � represent spatial importance weights of three

different scale feature maps at the l-th level feature map,

respectively, and a l
ij + b l

ij + g l
ij = 1. They can be defined by the

softmax function. For example, a l
ij can be calculated by
Frontiers in Marine Science 05107
a l
ij =

el
l
aij

el
l
aij + e

ll
bij + el

l
gij

, (Eq: 6)
Input: D, Nt, K, Np, real anchor boxes.

Output: Real anchor boxes cluster results.

1: Generate Np candidates Xi
0 randomly from D for i ∈ N,

and every candidate has K anchor boxes.

Here, Xt
i = (xi,1 ,xi,2,⋯,xi,K).

2: for t = 1 → Nt do

3: for i = 1→ Np do

4: Mutation operations are performed with random r1,r2,

r3 ∈ N, and r1   ≠ r2 ≠ r3:

Vt
i = Xt

r1 + 0:5(Xt
r2 − Xt

r3), (Eq: 2)

where Vt
i = (vt

i,1,v
t
i,2 ,⋯,vt

i,j), and j = {1,2,…,d} is the

dimension number of the sample in the dataset.

5: Crossover operations are performed:

ut
i,j =

vt
i,j ,with probability pc,

xt
i,j ,with probability 1 − pc;

(
(Eq: 3)

where Ut
i = (ut

i,1 ,u
t
i,2,⋯,ut

i,j), and j = {1,2,…,d}.

6: Fitness function calculation:

Xt+1
i =

Ut
i ,f Ut

i

� �
≤ f Xt

i

� �
Xt
i ,f Ut

i

� �
> f Xt

i

� �
(

(Eq: 4)

7: end for\∗ Np ∗\

8: end for\∗ Nt ∗\

9: ibest = argmaxi∈N(X
t+1
i )

10: Choose the results of Xt+1
ibest

as the clustering centers.

11: Divide real anchors boxes into clusters with

corresponding clustering centers Xt+1
ibest

according to

closest distance principle.

12: return cluster results.
FIGURE 3

Adaptive spatial feature fusion module.
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Algorithm 1. DK-means clustering algorithm.

where ll
aij
, ll

aij
and ll

bij are the control parameters of the

softmax function, which can be trained and learned by 1 × 1

convolution operation.
2.4 Loss function optimization

The loss function L used in our improved network is a

combination of three loss functions: the classification loss Lcls, the

localization lossLreg, and the confidence lossLobj. It is represented by

 L = l1Lcls + l2Lreg + l3Lobj, (Eq: 7)

where l1, l2, and l3 represent balance factors, whose values are 1.0,
0.05, and 0.1, respectively. They are used to control the impact of

different loss functions on the network training process. In the YOLOv5

model, cross entropy (CE) loss function Lce is adopted as classification

and confidence loss functions, and the complete IoU (CIoU) loss is

adopted as localization loss. The CE loss function is represented by

Lce (p, y)  =   − ylog (p)  −  (1  − y) log (1  − p), (Eq: 8)

where y denotes the true value of the label category and y ∈ { ± 1},

and p denotes category prediction probability when y = 1 and p∈ [0,1].

In the task of bounding box regression, the localization loss

function is divided into two categories: n-norm-based and IoU-

based loss (Tian et al., 2022). To reduce the sensitivity of the model

to the scale changes of object and improve convergence speed of the

model, the complete IoU (CIoU) loss is adopted as localization loss

in the YOLOv5 model and it is expressed by

Lciou(b
pr , bgt) = 1 − IoU +

r2 bpr , bgtð Þ
c2

+ lv, (Eq: 9)

where IoU represents the intersection over union between the

predicted bounding box and the ground truth bounding box, bpr and

bgt represent centers of the predicted bounding box and the ground

truth bounding box respectively, and c is the diagonal length of the

smallest covering box. r( · ) = bpr − bgtk k2 represents the Euclidean

distance between the center points of two bounding boxes, l
represents the balance factor, and v represents the consistency of the

aspect ratio between the predicted bounding box and the ground truth

bounding box. IoU can be described as Figure 4 and is expressed by

IoU =
bpr ∩ bgtj j
bpr ∪ bgtj j , (Eq: 10)

and v is expressed by

v =
4
p2 arctan 

wgt

hgt
− arctan 

wpr

hpr

� �
, (Eq: 11)

where wgt and wpr represent the width of the ground truth and

the predicted bounding boxes respectively, and hgt and hpr represent

the height of the ground truth and the predicted bounding boxes

respectively. Thus, Equation 7 becomes

L = l1Lcls
ce + l2Lreg

ciou + l3Lobj
ce (Eq: 12)
Frontiers in Marine Science 06108
where Lcls
ce and Lobj

ce represent the cross entropy loss adopted for

the classification loss and the confidence loss functions, and Lreg
ciou

represents the CIoU loss adopted for the localization loss function.

2.4.1 Focal loss function
To improve detection accuracy, the anchor box detection

mechanism usually requires a dense set of the distribution of

anchor boxes in images, which can easily lead to an imbalanced

problem between positive and negative samples. To alleviate this

imbalanced problem, a focal loss (FL) function (Lin et al., 2017) is

introduced. Define pt as

pt =
p, if   y = 1,

1 − p, otherwise :

(
(Eq: 13)

Thus, Equation 8 can be rewritten as

Lce(pt) = −log (pt) : (Eq: 14)

The FL function is expressed by

Lfocal = −at(1 − pt)
g log (pt), (Eq: 15)

where (1 − pt)
g represents an adjustment factor, g represents an

adjustable focusing parameter, and at represents a balanced

parameter. Equation 7 can be modified as

L = l1Lcls
focal + l2Lreg

ciou + l3Lobj
ce , (Eq: 16)

where Lcls
focal represents the FL function, which is adopted for the

classification loss.
2.4.2 Efficient IoU loss function
From Equation 11, it can be found that v just considers the

aspect ratio difference between the predicted bounding box and the

ground truth bounding box, ignoring the difference between specific

values of width and height. In this way, the penalty term v is almost

no longer effective, as the width and height cannot be

simultaneously enlarged or reduced. To make the detection model

more suitable for the maritime objects with varying scales in the

marine environment, we adopt the idea of the efficient IoU (EIoU)

(Zhang Y.-F.et al., 2022), and the v is modified as

v =
r2 wpr ,wgtð Þ

C2
w

+
r2 hpr , hgtð Þ

C2
h

, (Eq: 17)

where C2
w and C2

h are the width and height of the smallest

enclosing box covering the ground truth and predicted bounding

boxes, and r2(wpr ,wgt) and r2(hpr , hgt) are the width and height

difference between the ground truth bounding box and the

predicted bounding box, respectively. According to Equation 17,

Equation 16 can be further modified as

L = l1Lcls
focal + l2Lreg

eiou + l3Lobj
ce , (Eq: 18)

whereLreg
eiou is the EIoU loss function, and the only difference between

the EIoU used in this paper and the CIoU is the penalty term. The EIoU

loss will bring faster convergence speed and better localization effect.
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3 Experimental result and analysis

3.1 Dataset construction

In this section, the experiments adopt SMD (Prasad et al., 2017),

which contains large video data with labeled bounding boxes.

Detection objects in SMD include nine categories, namely, ferry,

buoy, vessel/ship, speed boat, boat, kayak, sail boat, flying bird/

plane, and other. In the DL-based object detection algorithms, the

construction of a sizable and representative dataset is the first and

important step. By sampling images from the SMD at one time per

five frames, 6,350 maritime images are obtained, and each image

has a resolution of 1,920 × 1,080 pixels. They are split into train,

validation, and test sets at a ratio of 6:2:2 with COCO style. The

dataset construction process is shown in Figure 5.
3.2 Experimental environment

The experiments are all carried out using PyTorch 1.12.1 and

CUDA 11.3 on an NVIDIA RTX 3090 GPU and an Intel Core i9-

10920X CPU. The details of the experimental hardware and

software environment are shown in Table 1. A momentum

gradient descent algorithm with a momentum value of 0.937 is

adopted in the train model. In the train process, the input image is
Frontiers in Marine Science 07109
fixed at 640 × 640, the batch size is set to 32, and the total number of

train epochs is set to 150. The initial learning rate is set to 0.0025

and the linear decline strategy is used as the learning rate

attenuation strategy. Moreover, to maintain the stability of the

model in the initial train stage, a warm-up training strategy is

adopted in the first three epochs to gradually increase the learning

rate from 0 to the initial learning rate. Moreover, for each stage in

Figure 1 (represented as S1,S2,S3,S4), we respectively configure the

number of bottlenecks as [3, 6, 9, 3], and perform downsampling

operation within the first convolution layer of each stage. In

addition, we adhere to the yolov5s configuration, setting the

scaling factors for width and depth to 0.5 and 0.33, respectively.
3.3 Evaluation metrics

Average precision (AP) (Padilla et al., 2021) is utilized as an

indicator to evaluate the accuracy of the maritime object detection

algorithm. AP can be expressed by

AP =
1
No

N

i=1
∫10P(R)dR, (Eq: 19)

where N represents the number of object categories, and P and

R represent precision and recall rate respectively, which are

expressed by
FIGURE 4

Description of IoU.
FIGURE 5

The construction process of the dataset.
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P =
TP

TP + FP
, (Eq: 20)

R =
TP

TP + FN
, (Eq: 21)

where TP represents the number of correct predicted positive

samples, FP represents the number of negative samples predicted as

positive samples, and FN represents the number of positive samples

predicted as negative samples. From Equations 19–21, it can be

inferred that P and R measure the model’s ability to accurately

predict and locate objects respectively, and AP is the comprehensive

evaluation of these two indicators. Here, the AP value means that

the IoU threshold is set from 0.50 to 0.95 with a 0.05 step. AP50 and

AP75 mean that the IoU threshold is set to 0.5 and 0.75, respectively.

APS, APM, and APL denote small, medium, and large ground-truth

objects, respectively.

Moreover, frames per second (FPS) is used to measure model

detection speed. Model size and floating point operations (FLOPs)

are used for evaluating the occupied memory of the model and

calculation complexity, respectively, and they are as follows:

Params = KW · KH · Cin · Cout , (Eq: 22)

FLOPs = KW · KH · Cin · Cout · FW · FH , (Eq: 23)

Where KW and KH represent the width and height of the

convolutional kernel, respectively, Cin and Cout represent the

number of input and output channels, respectively, and FW and

FH represent the width and height of the feature map.
3.4 Detection performance comparison
with different anchor box algorithms

In this part, the predefined anchor boxes, which are obtained

from different clustering algorithms, are shown in Table 2 and the

detection performance on the SMD dataset with different anchor

boxes is shown in Table 3. From Table 3, it can be seen that

YOLOv5s with predefined anchor boxes generated by the K-means

and DK-means algorithm improve AP value by 1.9% and 3.3%,

respectively, when compared with the original method, and the DK-

means algorithm can perform better than the K-means algorithm

by 1.4%. Moreover, when the threshold of IoU increases to 0.75, the
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DK-means algorithm can achieve 6.0% AP value improvement,

compared with the original method. Furthermore, in the DK-means

method, the small object detection performance APS is improved by

6.5% and the medium object detection performance APM is

improved by 4.3% with a slight large object detection

performance loss, when compared with the original method.
3.5 Ablation studies

This section presents the ablation studies to illustrate the effects

of FL function, ASFF module, and the DK-means algorithm in the

detection model. The ablation studies are shown in Table 4, where

✓ and ✗ denote the detection model with or without relevant

modules or algorithm, respectively. The first line in this table show

the YOLOv5s (baseline model) without any improvement. When

single EIoU, FL function, or the ASFF module is adopted, the AP

values are increased by approximately 0.4%, 2.2%, or 1.7% with

improvement of multi-scale detection ability, respectively. As

shown in the last line in this table, when the DK-mean algorithm

is further adopted, the AP value is increased by 3.3%. Compared to

the standard detection model, the optimized scheme can achieve

4.8% improvement and the small and medium object detection

performances are also increased by 10.9% and 4.8% respectively.
3.6 Detection performance comparison
with other object techniques

In this part, the proposed detection model performance

comparison with other object detection techniques is shown in

Table 5. The comparison models include YOLOX-s (Ge et al., 2021),

YOLOv8-s (Ultralytics, 2023), YOLOv7-tiny (Wang et al., 2023),

YOLOv5s (Ultralytics, 2021), YOLOv5m (Ultralytics, 2021), and

YOLOv5l (Ultralytics, 2021). From Table 5, it can be seen that the

proposed detection model can achieve best results between accuracy

and detection speed. The AP value of our model is 0.6%, 1.6%, 1.6%,

3.7%, 4.8%. and 5.7% higher than that of YOLOv5l, YOLOv5m,

YOLOv8s, YOLOX-s, YOLOv5s, and YOLOv7-tiny, respectively,

which means that our proposed model has the best accuracy among
TABLE 1 Experimental hardware/software environment.

Configuration Project Model Parameter

Hardware
Environment

CPU RAM Intel Core i9-10920X
64 GB

GPU NVIDIA RTX3090 (24GB)

Software Environment
System Pytorch Ubuntu 20.04

V1.12.1

Python V3.8

CUDA V11.3
TABLE 2 The results of different anchor box algorithms.

Algorithm 80 × 80 40 × 40 20 × 20

(10,13) (30,61) (116,90)

Original method (16,30) (62,45) (156,198)

(33,23) (59,119) (373, 326)

(11,9) (54,15) (46,53)

K-means (22,8) (34,26) (149,52)

(20,15) (87,23) (263,94)

(11,9) (45,13) (47, 39)

DK-means (19, 7) (31,22) (135,41)

(17,12) (69,18) (189,70)
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these counterparts. The proposed model’s FPS value is 113 and

detects faster than YOLOv51, YOLOX-s, and YOLOv5s. Moreover,

the model size of the proposed model is smaller than YOLOv5m

and YOLOv5l, and the FLOPs of the proposed model are fewer than

YOLOX-s, YOLOv5m, YOLOv51, and YOLOv8s. All these show

that the proposed model can achieve satisfactory results among

accuracy, detection speed, model size, and calculation complexity.

The detection results on the SeaShips dataset (Shao et al., 2018) are

shown in Table 6. The SeaShips is a large dataset dedicated to maritime

shipping detection, and it includes 31,455 images with 7,000 open-source

images.We also divided the open-source part of the Seaships dataset in a
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6:2:2 ratio with a COCO format, which is consistent with the processing

method of the SMD dataset. Here, the proposed method is compared

with the baseline YOLOv5s. From this table, we can see that our

proposed model performs better than the YOLOv5s in many aspects.

These means that our model can perform well on other datasets.
3.7 Detection results on the SMD dataset

Figure 6 shows the detection results of the proposed model in

different weather and light intensity conditions on the SMD dataset.

Figure 7 shows the detection result comparisons between

YOLOv5s and the proposed model. The subfigures in the first

column are the detection results of YOLOv5s, and those in the

second column are the detection results of the proposed model. From

this figure, it can be seen that the proposed detection model can

achieve more accurate detection of maritime object instances with

tighter predicted bounding boxes and fewer number of redundant

bounding boxes.
4 Conclusions

In this paper, we propose a maritime object detection

algorithm for maritime video surveillance. At first, a DE-based
TABLE 4 Ablation experiments.

EIoU FL function ASFF module DK-means AP AP50 AP75 APS APM APL

✗ ✗ ✗ ✗ 67.9% 96.1% 73.3% 52.2% 61.8% 87.3%

✓ ✗ ✗ ✗ 68.3% 96.2% 75.7% 54.8% 61.1% 87.4%

✗ ✓ ✗ ✗ 70.1% 96.2% 76.9% 56.8% 64.1% 87.5%

✗ ✗ ✓ ✗ 69.6% 97.0% 74.7% 55.0% 62.9% 87.8%

✗ ✗ ✗ ✓ 71.2% 97.5% 79.3% 58.7% 66.1% 86.6%

✓ ✓ ✗ ✗ 69.9% 96.6% 77.3% 60.0% 63.7% 87.7%

✗ ✓ ✓ ✗ 71.1% 97.2% 77.4% 58.6% 64.5% 88.5%

✓ ✓ ✓ ✓ 72.7% 97.7% 81.1% 63.1% 66.6% 87.0%
fro
The bold values mean that the best values in the relevant columns of the table.
TABLE 5 The experi|mental results with different object detection
algorithms on the SMD dataset.

Methods AP Model
Size

FLOPs FPS

YOLOX-s (Ge
et al., 2021)

69.0% 8.97M 13.40G 86

YOLOv8s
(Ultralytics, 2023)

71.1% 11.14M 14.28G 182

YOLOv7-tiny
(Wang

et al., 2023)

67.0% 6.23M 6.89G 143

YOLOv5s
(Ultralytics, 2021)

67.9% 7.24M 8.27G 131

YOLOv5m
(Ultralytics, 2021)

71.1% 21.19M 24.53G 104

YOLOv5l
(Ultralytics, 2021)

72.1% 46.56M 54.65G 82

Proposed model 72.7% 10.14M 10.81G 113
The bold values mean that the best values in the relevant columns of the table.
TABLE 6 The experimental results on the Seaships dataset.

Methods AP AP50 AP75 APS APM APL

YOLOv5s
(Ultralytics, 2021)

68.2% 97.7% 81.7% − 51.2% 69.3%

Proposed model 80.1% 98.9% 92.7% − 61.5% 81.3%
ntie
TABLE 3 The experimental results of different anchor box algorithms on the SMD test dataset.

Algorithms AP AP50 AP75 APS APM APL

Original method 67.9% 96.1% 73.3% 52.2% 61.8% 87.3%

K-means 69.8% 97.2% 78.1% 54.3% 64.4% 86.8%

DK-means 71.2% 97.5% 79.3% 58.7% 66.1% 86.6%
The bold values mean that the best values in the relevant columns of the table.
rsin.org

https://doi.org/10.3389/fmars.2023.1290931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zheng et al. 10.3389/fmars.2023.1290931
K-means anchor box clustering algorithm, considering the

maritime object characteristics, is proposed to realize the

adaptive anchor boxes. Then, to enhance the multi-scale feature

fusion, the neck network adopts the ASFF module. Lastly, the loss

function integrates the focal loss and efficient IoU loss is defined to

alleviate the samples’ imbalanced problem and consider the

varying scales of the maritime objects. All consider the

complexity characteristic of maritime objects. The ablation

studies show that the proposed algorithm meets the multi-scale
Frontiers in Marine Science 10112
maritime object detection performance. The experimental results

show that AP can reach 72.7%, which is 4.8% higher than

YOLOv5s, and better than YOLOv5m and YOLOv5l; this

algorithm does not occupy high additional computational

resources, and its inference speed can reach 113 FPS, which can

achieve better speed–accuracy balance.

How to make the proposed model lightweight for resource-

constrained devices with less detection accuracy loss will be a

meaningful topic for future research.
FIGURE 6

Detection results of the proposed model in various environment conditions.
FIGURE 7

Detection result comparisons of different object detection algorithms.
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MGFGNet: an automatic
underwater acoustic target
recognition method based on
the multi-gradient flow global
feature enhancement network

Zhe Chen1,2, Jianxun Tang3*, Hongbin Qiu1,2

and Mingsong Chen1,3

1School of Information and Communication, Guilin University of Electronic Technology, Guilin,
Guangxi, China, 2Cognitive Radio and Information Processing Key Laboratory Authorized by China’s
Ministry of Education Foundation, Guilin University of Electronic Technology, Guilin, Guangxi, China,
3School of Ocean Engineering, Guilin University of Electronic Technology, Beihai, Guangxi, China
The recognition of underwater acoustic targets plays a crucial role in marine

vessel monitoring. However, traditional underwater target recognition models

suffer from limitations, including low recognition accuracy and slow prediction

speed. To address these challenges, this article introduces a novel approach

called the Multi-Gradient Flow Global Feature Enhancement Network

(MGFGNet) for automatic recognition of underwater acoustic targets. Firstly, a

new spectrogram feature fusion scheme is presented, effectively capturing both

the physical and brain-inspired features of the acoustic signal. This fusion

technique enhances the representation of underwater acoustic data, resulting

in more accurate recognition results. Moreover, MGFGNet utilizes the multi-

gradient flow network and incorporates a multi-dimensional feature

enhancement technique to achieve fast and precise end-to-end recognition.

Finally, a loss function is introduced to mitigate the influence of unbalanced data

sets on model recognition performance using Taylor series. This further

enhances model recognition performance. Experimental evaluations were

conducted on the DeepShip dataset to assess the performance of our

proposed method. The results demonstrate the superiority of MGFGNet,

achieving a recognition rate of 99.1%, which significantly surpasses

conventional methods. Furthermore, MGFGNet exhibits improved efficiency

compared to the widely used ResNet18 model, reducing the parameter count

by 51.28% and enhancing prediction speed by 33.9%. Additionally, we evaluated

the generalization capability of our model using the ShipsEar dataset, where

MGFGNet achieves a recognition rate of 99.5%, indicating its superior

performance when applied to unbalanced data. The promising results obtained

in this study highlight the potential of MGFGNet in practical applications.

KEYWORDS

underwater acoustic target recognition, underwater acoustic signal processing, feature
enhancement, deep learning, feature fusion
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1 Introduction

With the development of artificial intelligence, there is an

increasing focus on utilizing AI-based methods to address

research challenges in aquaculture. Fisheries and aquaculture

constitute a global industry valued at $200 billion (Gladju et al.,

2022). As this industry continues to expand, traditional processes

involving essential technologies such as aquaculture environment

monitoring, feeding, and fish behavior surveillance (Wu et al., 2022)

incur significant costs. Hence, the urgent need arises to employ

artificial intelligence technologies to enhance the economic, social,

and environmental sustainability of the fish supply chain (Lim,

2022). AI-based aquaculture technologies primarily encompass

environmental monitoring, intelligent feeding, biological behavior

monitoring, and fishing vessel motion tracking (Setiyowati

et al., 2022).

Environmental monitoring relies on water quality management

systems to control the health of aquaculture water, preventing

widespread diseases or issues such as slow growth in fish fry due

to water quality problems (Hu et al., 2022). Koparan et al. (2018)

developed an intelligent unmanned aerial vehicle to continuously

monitor the water quality of a 1.1-hectare pond through intelligent

sampling and analysis. Given that feed costs constitute over 60% of

aquaculture expenses (Boyd et al., 2022), effective control of feed

distribution is crucial. Lim and Whye, (2023) proposed a system

that monitors fish behavior by detecting water wave vibrations

caused by competitive feeding, thereby assessing fish hunger levels

and significantly reducing feed consumption.

Biological behavior monitoring encompasses various aspects.

Ahmed et al. (2022) and Darapaneni et al. (2022) employed

computer vision and underwater optical imaging techniques,

respectively, to obtain underwater images of fish activities for

disease detection and prevention before widespread mortality.

Fishing activities require strict control over timing and quantity

globally. Bradley et al. (2019) and Kritzer, (2020) integrated

automatic identification with artificial intelligence technology,

utilizing underwater acoustic target recognition systems to track

fishing vessel movements in real-time and predict their fishing

activities, ensuring legitimacy.

In summary, due to the rapid development of computer vision

technology effectively addressing the first three issues in aquaculture,

our research focus shifts towards utilizing underwater acoustic target

recognition technology for vessel motion monitoring.

Underwater acoustic target recognition involves collecting

target radiated noise using hydrophones, analyzing and

processing the data to discern target types (Ma et al., 2022). It

holds significant importance in maritime vessel monitoring and

underwater vehicle detection. Acoustic target recognition models

typically consist of two modules: feature extraction and feature

classification (Hong et al., 2021), and research in this field revolves

around these modules.

Traditional methods of underwater acoustic target feature

extraction can be categorized into signal physics-based and brain-

like computing methods (Zhu et al., 2023). Signal physics-based

methods rely on basic characteristics, temporal features, and non-

Gaussian characteristics of underwater acoustic signals (Yao X.
Frontiers in Marine Science 02116
et al., 2023). This includes time-domain features like zero-crossing

distribution, frequency-domain features like cepstral analysis (Zhu

et al., 2022), and joint time-frequency domain features such as

wavelet transforms (Han et al., 2022; Liu et al., 2022; Tian et al.,

2023). Brain-like computing features for underwater acoustic

signals include Mel-frequency cepstral coefficients (MFCC)

simulating nonlinear processing of the human ear (Di et al.,

2023) and Gammatone filtering simulating peripheral auditory

processing (Zhou et al., 2022). Traditional classifier models

include case-based reasoning (Ali et al., 2018) and perceptron

neural networks (Linka and Kuhl, 2023). While traditional

methods provide explicit directional analysis based on the

physical meaning of underwater acoustic signals, they depend on

prior knowledge and exhibit poor model generalization (Xiao

et al., 2021).

Deep learning models, including Convolutional Neural

Networks (CNN) (Yao Q. et al., 2023), provide new solutions for

underwater acoustic target recognition (Jin and Zeng, 2023). Wang

and Zeng (2015). demonstrated the feasibility of CNN models in

underwater acoustic target recognition by testing them on three

different measured acoustic targets. Studies have validated the

applicability of deep learning in feature extraction. Huang et al.

(2021) used autoassociative neural networks (AANN) to directly

process mixed time-domain information of raw acoustic data

without prior information, filtering ocean background noise, and

obtaining effective spectral features of underwater acoustic targets.

Additionally, research on deep learning-based classifiers is active. Li

J. et al. (2022) designed AResNet to enhance feature extraction

capability by increasing the width of the ResNet (He et al., 2016)

residual network and incorporating channel attention mechanisms.

Yang S. et al. (2023) developed LW-SEResNet10 to improve target

recognition accuracy by reducing the number of ResNet residual

structures and adding attention mechanisms. These classifiers

operate similarly, performing feature extraction first and then

inputting the features to obtain classification results.

Despite the advantages of existing deep learning-based

underwater acoustic target recognition models in addressing some

shortcomings of traditional methods, several challenges persist:
1. Existing models have independent feature extraction and

classifiers (Zhufeng et al., 2022), failing to meet end-to-end

underwater acoustic target recognition requirements.

2. Current feature extraction methods primarily use two-

dimensional feature methods based on signal physics or

brain-like computing features or their fusion methods (Li J.

et al., 2022; Yang S. et al., 2023), overlooking the high-

dimensional features of underwater acoustic data, resulting

in insufficient representation capabilities of fused features.

3. Current classifiers mainly enhance feature extraction

capabilities by stacking convolutional layers (Ji et al.,

2023). However, due to the mixture of ocean

environmental noise and partial information of

underwater acoustic target features (Xu et al., 2019),

standard convolutional operations tend to lose some

effective features of underwater acoustic targets and

erroneously retain ocean environmental noise (Li J. et al.,
frontiersin.org
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2022), reducing the capability to extract effective features in

underwater acoustic target recognition models. Thus, the

model ’s parameter quantity and its recognition

performance cannot achieve an effective balance, failing

to meet the requirements of fast recognition speed and high

accuracy in underwater acoustic target recognition.

4. As underwater acoustic data collection requires substantial

financial and labor support, most existing publicly available

underwater acoustic datasets exhibit imbalances in sample

quantities across categories (Zhou et al., 2021). When

training deep learning-based target recognition models,

this can lead to overfitting phenomena (Li B. et al., 2022),

suppressing model recognition performance.
To address these issues, we propose a novel underwater acoustic

target automatic recognition network model based on a multi-

gradient flow global feature enhancement network, referred to

as MGFGNet.

Contributions of this work include:
1. Introducing a high-dimensional feature fusion method

based on signal analysis and brain-like features.

2. Proposing a multi-gradient network to reduce model

parameters and enhance feature extraction capabilities.

3. Presenting an adaptive feature fusion and enhancement

module to enrich the physical, channel, and contextual

information of pre-existing features.

4. Inventing a loss function, adding only three hyperparameters,

and transforming the multi-classification task into multiple

binary classification tasks, significantly improving the

model’s ability to suppress sample imbalances and

recognition accuracy.
The following outlines the general structural framework of the

remaining content in this article. Section 2 provides a detailed

exposition of the Ship Radiated Noise Classification Method,

known as MGFGNet. In Section 3, qualitative and quantitative

experiments are conducted to compare MGFGNet with existing

advanced underwater acoustic target recognition models, followed

by an analysis of the experimental findings. Finally, Section 4 serves

as the conclusion of this article.
tiers in Marine Science 03117
2 Methods

This section primarily delineates MGFGNet. Section 2.1

provides an overview of its architectural framework. Sections 2.2

through 2.5 subsequently delve into its Feature Extraction and

Fusion Module (FEFM), the Multi-gradient Flow Block with

Attention (Multi-grad Block), the Context Augmentation and

Fusion Module (CAFM), and the dynamic classification loss

function known as Taylor-MCE Loss.
2.1 Proposed model

MGFGNet comprises two core modules: FEFM and the

MGFGNet classifier. Figure 1 illustrates its detailed architecture.

FEFM utilizes various feature extraction algorithms based on

signal analysis and brain-like features to extract multidimensional

features from vessel radiated noise signals. Subsequently, multiple

three-dimensional features are fused using the proposed feature

fusion method to form high-dimensional fused features, which

serve as inputs to the MGFGNet network.

The MGFGNet classifier primarily consists of the Multi-grad

Block module and the CAFMmodule. The Multi-grad Block utilizes

a multi-gradient flow network and residual modules to rapidly

extract deep abstract features with different receptive fields from

underwater acoustic target signals while reducing model

parameters. Simultaneously, it leverages the multi-head self-

attention mechanism (MHSA) (Han et al., 2021) to enhance the

model’s focus on foreground information, aiming to preserve the

spatiotemporal characteristics of target line spectra in the acoustic

energy spectrogram. This enhances the model’s ability to extract

effective information from sonar signals.

The CAFM module uses dilated convolutions with different

dilation rates to adaptively fuse and enhance contextual

information with a broad range of receptive fields, enriching the

feature representation of physical, channel, and contextual

information extracted by the preceding module. Finally, the

Taylor-MCE Loss is employed to calculate prediction loss,

addressing the issue of suppressing model recognition

performance on imbalanced datasets. The Taylor-MCE Loss

incorporates Taylor series (Gonzalez and Miikkulainen, 2021)
FIGURE 1

MGFGNet model architecture.
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into binary cross-entropy loss (BCE) (Ruby and Yendapalli, 2020),

including two components: one suppresses imbalances in sample

components, and the other is a low-order term of the perturbation

factor aimed at enhancing model recognition accuracy.

Additionally, it transforms the multi-class classification task into

multiple independent binary classification tasks.
2.2 Feature extraction and fusion module

Although deep learning-based feature extraction methods can

capture more profound abstract features compared to traditional

signal processing methods, they also come with a substantial

increase in computational costs (Aggarwal et al., 2022). Vessel

radiated noise primarily consists of mechanical noise,

hydrodynamic noise, and propeller noise (Yang et al., 2019).

Additionally, different feature extraction methods express distinct

signal characteristics, and using multiple features for fusion can

yield improved recognition results (Li Y. et al., 2022). Therefore,

this paper, based on the generation mechanism of ship radiated

noise, employs a fusion feature extraction method grounded in

signal physical characteristics and brain-like features to represent

underwater acoustic signals in multiple dimensions.

The fusion features in this paper mainly comprise energy-

enhanced features from three types of features: CQT (Singh et al.,

2022), delta MFCC (Nouhaila et al., 2022), and double delta MFCC

(Nouhaila et al., 2022).

Firstly, since vessel radiated noise carries a significant amount

of valid information in the low-frequency subband (Zhang et al.,

2023), CQT provides better frequency resolution in the low-

frequency subband (Mateo and Talavera, 2020). Hence, CQT is

utilized as one of the feature extraction methods.

Secondly, MFCC, as a static feature, can not only eliminate ocean

background noise but also effectively represent the spectral

information of underwater acoustic targets. However, it lacks

dynamic temporal signal features (Yang S. et al., 2023). To

introduce temporal dynamic information, this paper performs local

estimation of the differential operation along the time axis for the

MFCC feature, obtaining delta MFCC and double-delta MFCC

features. Both of these feature extraction methods are incorporated

into the extraction of underwater acoustic target features.

Furthermore, as the single-channel feature information

(graphically represented as a grayscale image) formed by these

feature extraction methods can only express three-dimensional
Frontiers in Marine Science 04118
information of underwater sound, such as time, frequency, and

energy domains, this paper expands the single-channel energy

domain digital features of the above feature extraction methods

into three-channel energy domain features using a color space

representation. The detailed expansion method is described

as follows.

Finally, this feature extraction and fusion module are embedded

in the front end of the target recognition network, significantly

reducing the computational burden of the classifier while achieving

end-to-end target recognition.

Figure 2 illustrates our raised feature extraction method. Its

process consists of four main parts:

1. In the first step, CQT features and MFCC features

are extracted.

2.2.1 CQT extraction process
In the feature extraction process, the frame length is 2048 and

the frame overlap is the portion between two frames of size 75% of

the frame length, then using a Hanning window with a window size

equal to the frame length for each frame signal.

The CQT transform of a finite length sequence x(n) is

XCQT (k) =
1
Nk

o
Nk � 1

n=0
x(n)wNk

(n)e� j2pQNk
n (1)

where wNk
(n) is a Hanning window of length Nk; Q is a constant

factor in the CQT; k is the CQT frequency number, and the value of

Nk is related to the value of k.

Q =
1

2
1
b � 1

; (2)

where b is the number of frequency spectral lines, the

fk = fmin � 2
k
b , k = 0, 1,…,K � 1; (3)

Nk =⌈Q
fs
fk⌉, k = 0, 1,…,K � 1; (4)

where CQT information are stored in a matrix XCQT (k,n),

fmin = 1, fs = 22050. Since the sampling rate of the raw underwater

acoustic data is 22050Hz for 5s, the shape of the CQT is 128×216.

2.2.2 MFCC extraction process
In the feature extraction process, the frame length and frame

overlap are set to be the same as in the CQT extraction process. A

Hanning window with a window size equal to the frame length is
FIGURE 2

Feature extraction process for fused features.
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then used for each frame. The short-time Fourier transform is then

used to filter the noise and the sum of squares is used to obtain the

power spectrum. Then 128 Mel filter banks were used to filter the

information of each frame and logarithm was obtained to obtain

Mel spectrum. Finally, MFCC was obtained by logarithm fitting the

Mel spectrum to human hearing and discrete cosine transform

(DCT). Since the sampling rate of the raw underwater acoustic data

is a 5s signal at 22050Hz, the shape of the MFCC is 128×216.

2. The second step focuses on the extraction of delta MFCC and

double-delta MFCC features by adding delta features and double-

delta features to the MFCC features.

3. The third step focuses on transforming the above three

features into spectrograms based on the size of 512, 12 and 0 for

Hop length, bins per octave and tuning, respectively, with a preset

image size of 3 × 640 × 480 for per image. Figure 3 illustrates the

time-domain waveform diagram of radiated noise of a ship in the

Deepship (Irfan et al., 2021) dataset and the spectrum diagram of

CQT, delta MFCC and double-delta MFCC.

4. In the fourth step, the spectral graphs of CQT, delta MFCC

and double-delta MFCC are fused respectively in channel

dimension. The detailed fusion process is as follows.
2.2.3 Feature compression
as a result of the image pixel values reflected the important degree

of information, so each spectrum diagram of three channel dimension

values together to form a characteristic picture of 640 x 480.
Frontiers in Marine Science 05119
2.2.4 Feature range mapping
Since the original pixel size range of each channel dimension is

0-255, the pixel value range of the feature map at this time is 0-765.

To facilitate input for subsequent model calculations, map it to the

range [0,255].

2.2.5 Feature fusion
Finally, the mapped features are in the order of CQT and two

MFCC-derived features from top to bottom in the channel

dimension to form a fusion feature with a shape of 3×640×480.

The formula of the fusion process above is expressed as:

T
0
= Map(concat(o

2

j=0
TCQT
j ,o

2

j=0
TdeltaMFCC
j ,o

2

j=0
Tdouble� deltaMFCC
j )) (5)

Where TCQT

j represents the feature map of the J-th layer in the

channel dimension of the CQT spectral graph feature matrix, TdeltaMFCC
j

and Tdouble−deltaMFCC
j have the same meaning. Concat represents connecting

matrices in the channel dimension. Map represents the range mapping

of matrix data, a matrix T with data range of (xmin,xmax), mapping its

data to the range of (ymin,ymax), and the mapped matrix is

Map =
ymax � ymin

xmax � xmin
� (T �Txmin

) + Tymin
; (6)

Where Txmin
, and Tymin

both represent a constant matrix with the

same latitude as T, and its content is the value represented by the

Angle symbol.
B

C D

A

FIGURE 3

Spectrogram feature plots of radiated noise from a ship in the Deepship database: (A) Time-domain waveform; (B) CQT; (C) Delta MFCC; (D)
Double-delta MFCC.
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2.3 Multi-gradient flow with
attention block

Existing models primarily increase the depth of the network to

enhance feature extraction capabilities, but this leads to an increase

in parameters while also losing a substantial amount of valuable

information (Ji et al., 2023). In order to reduce the model’s

parameter count and enhance i t s abi l i ty to extract

multidimensional features, this paper, inspired by the Cross Stage

Partial Network (CSPNet) (Wang et al., 2020), which efficiently

extracts effective feature information to alleviate model complexity,

proposes the Multi-gradient flow bottleneck with attention Block

(Multi-grad Block).

The Multi-grad Block concatenates multiple residual modules

(Resblocks) to form a multi-gradient flow network. This structure

enables the rapid acquisition of target information and gradient

flow information from different receptive fields, accelerating the

model’s feature extraction speed while reducing the model’s

parameter count. Since traditional convolution operations lack

sufficient discrimination between the spectra of multiple target

lines and ocean background noise during feature extraction (Li J.

et al., 2022), MHSA is introduced in the Resblock to increase the

model’s focus on targets rather than background noise or other

irrelevant elements (Han et al., 2021). The detailed model structure

is illustrated in Figure 4.

The detailed calculation process for the MHSA is as follows.

MHSA is calculated as follows.

MH(A,B,C) = Concat(H1,H2,…,Hh)W
O; (7)

where A, B, C denote the query vector, key vector and value

vector respectively, Hi illustrates the output of the i-th head, h is the

number of headers, and W° is the output transformation matrix.

The output of each header headi can be expressed as

headi = Attention(QWA
i ,KW

B
i ,VW

C
i ) (8)
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where WA
i , W

B
i , W

C
i are the A, B, and C transformation

matrices for the i-th header, respectively, and Attention is a self-

attentive calculation function with the following equation.

Attention(Ah,Bh,Ch) = softmax (
AhB

T
hffiffiffiffiffi
dk

p )Ch; (9)

Where dk is the dimension of the key vector, softmax function

mainly performs normalization, calculates the weight of each key

vector, then multiplies the weight by the value vector, and finally

performs weighted summation to get the attention output.
2.4 Context augmentation and
fusion module

Due to the complex distribution of targets in the hybrid

spectrogram generated by the feature extraction and fusion

module of the original underwater acoustic signal, there are

numerous small targets locally and larger, medium-sized targets

globally (Wang B. et al., 2023). Using a single receptive field cannot

fully capture the multidimensional features of the original signal,

which reduces target classification accuracy (Wang Z. et al., 2023).

To address these issues, this article introduces the Context

Augmentation and Fusion Module (CAFM).

CAFM, as depicted in Figure 5, employs dilated convolution

with varying rates to extract feature information from different

receptive fields effectively (Gao et al., 2023). It enhances and fuses

the multidimensional feature information obtained from the

preceding gradient flow feature extraction module. Here’s a

breakdown of its structure:
1. The effective feature information obtained from the pre-

gradient flow feature extraction module is rapidly

processed using dilated convolution with three distinct

rate values.
FIGURE 4

Model structure of Multi-grad Block.
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2. Target feature information is subsequently enhanced

separately by the adaptive feature enhancement module

and the cascade computing module.

3. The effective features derived from the adaptive feature

enhancement module and the cascade computing module

are then weighted and fused.
The former approach initially employs 1×1 convolution to

compress and decrease the dimension of the pre-feature maps to

single-channel feature maps. It then concatenates the feature maps

in increasing rate order and calculates the weights for each channel

using softmax. Finally, it enhances the channel dimension features

through softmax-weighted multiplication.

The latter approach concatenates the feature maps obtained via

expansion convolution at different rates to create a new feature map.
2.5 Taylor-MCE Loss

Existing mainstream classification loss functions primarily

encompass the Cross-entropy Loss (CE) (Ho and Wookey, 2019)

and its variations tailored for specific classification tasks. These

adaptations include log loss (LL) (Lin et al., 2022) and BCE (Ruby

and Yendapalli, 2020) for binary classification and focal loss (FL)

(Lin et al., 2017) and categorical cross-entropy (CCE) (Ho and

Wookey, 2019) for multi-class classification. However, the presence

of a severe class imbalance among categories in underwater acoustic

datasets poses a significant challenge (Zhou et al., 2021). Utilizing

the aforementioned classification loss functions often leads to

model overfitting (Leng et al., 2022), subsequently impacting

recognition accuracy.

To tackle this challenge, this article introduces a novel loss

function termed the Taylor-MCE Loss (Multiple Cross-Entropy

Joint Loss Function based on Taylor Series). The Taylor-MCE Loss

combines the polynomial terms derived from Taylor series
tiers in Marine Science 07121
expansion with BCE, FL, and low-order perturbation factors. It

then transforms the multi-class classification task into a set of

independent binary classification tasks, effectively resolving the

issue of sample imbalance within the dataset and significantly

enhancing the model’s recognition performance.

The detailed design process is as follows:

1. Selection of the base loss function

Multi-class classification aims to calculate the likelihood of an

object belonging to multiple categories, while binary classification

seeks to identify whether an object is a specific category (e.g.,

discerning whether an object is a dog or not). Although these

tasks may seem to differ only in the number of predicted categories,

they have fundamental distinctions. In standard multi-class

classification, CCE serves as the loss function, primarily relying

on softmax to calculate the likelihood of an object belonging to

multiple categories and selecting the category with the highest

probability as the prediction. In contrast, binary classification

tasks primarily employ BCE as the loss function, using sigmoid

(output values between 0 and 1) to determine whether an object is

closer to category 0 or category 1.

To select a more suitable base loss function and assess whether

binary classification loss functions can be adapted for multi-class

tasks, we conducted experiments in multi-class target recognition.

The application of binary classification loss functions in multi-class

tasks involved treating each category as an independent binary

classification task. During our experiments, we made an intriguing

observation: when inter-class sample sizes were balanced, CCE

exhibited stable performance. However, in cases of sample

imbalance, the use of BCE for multi-class tasks resulted in a

significant improvement in accuracy compared to CCE (refer to

Table 1 for details).

Treating each category as an individual binary classification task

ensured that predictions for each category were mutually exclusive

and independent (Ruby and Yendapalli, 2020), thereby addressing

an issue. The problem when using CCE was that multiple categories
FIGURE 5

CAFM operation flows.
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were predicted simultaneously [mutually exclusive but not

independent (Ho and Wookey, 2019)]. Models employing CCE

often favored categories with larger sample sizes, potentially

overshadowing smaller categories during training (Leng et al.,

2022). Additionally, BCE’s core function was to enhance

foreground weights while suppressing backgrounds (considering

all other categories as backgrounds when predicting a single

category) (Ruby and Yendapalli, 2020). This effectively balanced

feature acquisition for different categories.

2. Exploring the relationship between loss functions using

taylor series

The mutual constraints imposed by multiple categories can slow

down model convergence. While combining multiple loss functions

can enhance convergence speed and recognition accuracy (Li et al.,

2019), it can also increase computational complexity. To minimize

computational overhead while mitigating the impact of imbalanced

datasets on the model, we drew inspiration from the Taylor series

(Gonzalez and Miikkulainen, 2021) and explored the mathematical

properties of BCE’s polynomial form and loss functions designed to

address imbalanced datasets. Our goal was to introduce minimal

perturbation terms that retained the essential functionality of the

loss function.

Since BCE can be represented as:

LBCE(a, b) = � bi log (a)� (1� bi) log (1� a); (10)

where bi ∈ {0,1} represents labels, and a represents predicted

probabilities, and BCE is a special form of CCE, assuming
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at =
a, b = 1

1� a, otherwise;

(
(11)

CCE can be expressed as:

LCCE(a, b) = − log (at) (12)

Applying Taylor series to CCE, the expression becomes:

LCCE = � log (at) =o
∞

i=1

1
i
(1� at)

i (13)

By observing the relationship between the Taylor expansion of

CCE and FL, it is apparent that FL is equivalent to a horizontal shift

(modulation factor) c of CCE. This is expressed as:

LFL = � (1� at)
c log (at) = (1� at)

cLCCE (14)

BCE is a special form of CCE; therefore, their physical

properties are fundamentally consistent, differing mainly in the

prediction process. To enhance the model’s ability to address

imbalanced datasets, we introduced an element to strengthen the

suppression of imbalanced samples within the original BCE. This

addition involved increasing the horizontal offset, resulting in the

loss function:

LTaylor�MCE
0 = a1LBCE + a2(1� at)

cLBCE

= ½a1 + a2(1� at)
c�LBCE (15)

where a1 + a2 = 1 represents a scaling factor.

3. Analyzing the impact of gradient on loss functions

To enhance model recognition accuracy with minimal

computational overhead, we compared the gradients of various

loss functions and evaluated the influence of low-order and high-

order terms on model recognition accuracy. The gradients of the

aforementioned two loss functions (Eqs. 13 and 14) are expressed as

follows:

−
dLCCE
dat

=o
∞

i=1
(1� at)

i� 1 = 1 + (1� at) + (1 − at)
2 +… (16)

−
dLFL
dat

=o
∞

i=1
(1 +

c
i
)(1� at)

i+c� 1

= (1 + c)(1� at) + (1 +
c
2
)(1� at)

1+c +… (17)

From the equations, it is evident that CCE possesses a fixed

gradient term of 1. As i surpasses 1 and ai approaches 1, the ith

gradient tends towards zero. FL exhibits similar characteristics but

introduces an additional perturbation factor (c). Consequently, the

coefficients of high-order, low-order, and high-order terms

collectively influence the outcomes of the loss function. The high-

order parts primarily serve to suppress model errors, while the low-

order components play a crucial role in fine-tuning the model to

reach correct conclusions (Zhang et al., 2023). Therefore, we

introduce a perturbation factor into the low-order term coefficients

of CCE to enhance the model’s recognition performance.

In summary, to mitigate the impact of sample imbalance on the

model while minimizing the increase in parameter complexity, we
TABLE 1 Recognition accuracy, convergence time and number of
parameters of CAFM at different locations of MGFGNet.

Model
Model

convergence
time (hours)

Parameters
(M) Accuracy

MGFGNet
(-)

0.766 5.576
0.968

MGFGNet
(+)

0.617 5.742
0.985

MGFGNet
(1)

0.635 5.742
0.985

MGFGNet
(2)

0.642 5.742
0.985

MGFGNet
(3)

0.654 5.742
0.987

MGFGNet
(4)

0.661 5.742
0.986

MGFGNet
(5)

0.673 5.742
0.986

MGFGNet
(6)

0.677 5.742
0.989

MGFGNet
(7)

0.692 5.742
0.991

MGFGNet
(8)

0.711 5.754
0.988
Bold font indicates the best-performing values within their respective columns.
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propose the Taylor-MCE Loss. The expression is as follows:

LTaylor�MCE = a1LBCE + a2(1� at)
cLBCE + b1(1� at) (18)

where b1 ∈ [-1,∞) represents the perturbation factor.
3 Experimentation and analysis

To evaluate the performance of MGFGNet in a real underwater

environment, we employ authentic underwater acoustic public

datasets for both qualitative and quantitative comparisons. These

comparisons involve MGFGNet and various versions with varying

network depth and width of mainstream existing underwater

acoustic target recognition models, including ResNet and

EfficientNet (Mateo and Talavera, 2020).
3.1 Experimental dataset

3.1.1 Deepship
To assess the model’s performance under ideal conditions, this

study employed the Deepship dataset (Irfan et al., 2021), comprised

of underwater acoustic data from vessels recorded by Northwestern

Polytechnical University in the marine environment beneath the sea

surface at depths ranging from 141 to 147 meters in the Georgia

Strait Delta from 2016 to 2018. The data and time labels for this

dataset were obtained by deploying sensors to locate vessel

positions. Only singular vessel signals within a 2-kilometer range

of the sonar device were considered, and recording ceased whenever

a vessel exceeded this range. The dataset encompasses data from

265 vessels, including Cargo ships, Passenger Ships, Oil Tankers,

and Tugs.

The data underwent preprocessing, with all WAV format audio

files standardized to a 22,050Hz sample rate. Additionally, the
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underwater acoustic data were segmented into 5-second units,

resulting in over 30,000 labeled sound samples. Recognizing that

the model’s recognition accuracy is proportional to the sample size

of the training set, a significant number of samples were allocated

for model training to mitigate the risk of overfitting. To prevent

substantial fluctuations in the model’s recognition accuracy due to a

small sample size, a portion of the data was reserved for validating

and testing the model’s performance. Consequently, for optimal

model parameter training, a large portion of the data was allocated

to model training, with only a small amount used for validation and

testing, following an 8:1:1 split ratio for the training, validation, and

test sets. Table 2 provides details of the dataset division.

3.1.2 ShipsEar
So as to assess the model’s capacity to adapt to diverse maritime

environments, emphasizing its generalization capability, this study

incorporated an additional authentic dataset of ship radiated noise

collected in a real-world marine setting. The data collection took place

along the Atlantic coast of Spain and encompasses recordings from 11

distinct ship types. These 11 ship categories were subsequently classified

into four classes based on ship categorization, with the actual ocean

background noise measurements, taken within these four categories,

amalgamated to construct a five-class underwater acoustic dataset.

The dataset encompasses a total of 90 audio recordings, with

individual recording durations varying from 15 seconds to 10

minutes. To ensure experimental precision, the “ShipsEar” dataset

(Santos-Domıńguez et al., 2016) underwent preprocessing identical

to that applied to the “Deepship” dataset. A comprehensive class

distribution is outlined in Table 3.

It is conspicuous that in the “Deepship” dataset, class

proportions for classes 1-4 approximate ratios of 1:1.2:1.15:1.06.

Conversely, the “ShipsEar” dataset presents imbalanced class

proportions for classes 1-5, displaying a ratio of approximately

1.64:1.34:3.76:2.17:1. Consequently, when compared to the
TABLE 2 Details of the four categories in the Deepship dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Cargo Ship 7621 6097 762 762

2 Passenger Ship 9211 7369 921 921

3 Oil Tanker 8776 7022 877 877

4 Tug 8085 6467 809 809
TABLE 3 Details of the five categories of the ShipsEar dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Fishing boats, Trawlers, Mussel boats, Tugboats, Drafgers 369 296 37 36

2 Motoboats, Pilot boats, Sailboats 301 241 30 30

3 Passenger ferries 843 675 84 84

4 Ocean liner, Ro-Ro vessels 486 389 49 48

5 Background noise recordings 224 180 22 22
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“Deepship” dataset, the “ShipsEar” dataset not only illustrates class

imbalance but also contains significantly fewer samples,

representing approximately 1/15 of the “Deepship” dataset. Such

a dataset is highly susceptible to overfitting during the training

process due to its limited sample size. Additionally, class imbalance

can lead to notably reduced accuracy in recognizing classes with

fewer samples.
3.1.3 SCTD
Synthetic Aperture Sonar (SAS) images (Huang and Yang,

2022; Wang and Huang, 2023; Yang, 2023; Zhang, 2023), known for

their high resolution, significantly aid in target recognition in

underwater acoustics. In order to assess the model’s performance

on a high-resolution underwater acoustic image dataset, this study

introduces the SCTD dataset (Zhou et al., 2021). Since the original

SCTD dataset is primarily designed for target detection tasks and its

structure is not conducive to underwater acoustic target recognition

models, certain modifications were implemented to adapt it to the

classification task. Specifically, for the aircraft, human, and

shipwreck categories within SCTD, the following steps were taken:

Firstly, multiple targets within a single image were individually

cropped to ensure that each final image contains only one target,

aligning it with the training sample format for target recognition.

Secondly, to augment the samples and balance the

representation of each category, random cropping and flipping

techniques were employed.

Finally, the dataset was partitioned into training, testing, and

validation sets in an 8:1:1 ratio, as detailed in Table 4.
3.2 Hyperparameter setting

During the experimental process, the underwater acoustic target

recognition model, MGFGNet, employed the Adaptive Moment

Estimation optimizer (Adam) (Irfan et al., 2021) to mitigate sample

noise interference. For this optimization process, the first-order

momentum factor, second-order momentum factor, and Fuzz

factor within Adam were configured at 0.9, 0.999, and 0.0000001,

respectively. The initial learning rate was set to 0.001, with a weight

decay coefficient of 0.0005, and a batch size of 32 was utilized.

Finally, a1 = 0.5, a2 = 0.5, c = 5 and b1 = 5 in Taylor-MCE Loss are

set. The model was trained for 120 epochs (iterations) using the

aforementioned parameters. Throughout the experimental process

described below, unless otherwise specified, the experiment

parameters mentioned above were consistently applied.
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3.3 Experimental environment and
performance indicators

The experiments were conducted on the PyTorch platform,

running on the Windows 10. The hardware setup employed for

these experiments is detailed in Table 5. To mitigate the potential

influence of experimental variability, a systematic approach was

taken. It involved the training and testing of various models, both

qualitatively and quantitatively. Subsequently, a comparative

analysis of algorithmic performance was performed.

Given that Accuracy can reflect the model’s recognition

capability across multiple classes, while Precision and Recall can

indicate the overall classification performance of the model, these

three evaluation criteria are employed to assess different models.

Their formulas are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
; (19)

precision =
TP

TP + FP
; (20)

recall =
TP

TP + FN
; (21)

where TP represents instances that were originally true positive

samples and were correctly predicted as positive samples by the

underwater acoustic target recognition model. TN corresponds to

instances that were originally true negative samples and were

accurately predicted as negative samples by the model. FP

signifies instances that were originally true negative samples but

were erroneously classified as positive samples by the underwater

acoustic target recognition model. FN stands for instances that were

originally true positive samples but were incorrectly predicted as

negative samples by the model.
3.4 Ablation experiments

3.4.1 Feature ablation experiments
To confirm the representational capabilities of the feature

extraction approach raised in this study for original underwater

acoustic signals, Table 6 presents an extensive comparison of

diverse characteristics abstraction approachs on the Deepship.

This comparison encompasses the original two-dimensional

features, their corresponding three-dimensional counterparts, and

the three-dimensional feature fusion approach introduced in

Section 2.2 within the MGFGNet model. Notably, the recognition
TABLE 4 Details of the three categories of the SCTD dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Aircraft 575 459 58 58

2 Human 546 436 55 55

3 Shipwreck 488 390 49 49
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accuracy of spectral features for each feature extraction method

surpasses that of the original two-dimensional features. Delta

MFCC, owing to its ability to capture temporal correlations of

MFCC, exhibits higher experimental accuracy than MFCC features,

albeit with a modest 0.2% increase. Similarly, double-delta MFCC

records a mere 0.4% improvement over delta MFCC since it

primarily focuses on local estimations along the time axis for the

differential operations of MFCC. CQT features, reflecting the

frequency distribution patterns of underwater acoustic targets,

outperform MFCC and its derivative features in terms of

classification accuracy, thereby validating the superiority of CQT

features over mel-spectrogram features (Domingos et al., 2022) in

underwater acoustic target recognition. The horizontal comparison

of spectral feature extraction methods among various feature

extraction techniques exhibits similar characteristics as

mentioned above.

It’s worth mentioning that the overall accuracy of the fusion

feature approach proposed in Section 2.2 surpasses that of other

feature extraction techniques, achieving 99.1%. This represents a

substantial increase of 3.9%, 3.7%, and 3.3% over the spectral

features of MFCC, delta MFCC, and double-delta MFCC,

respectively. Additionally, it outperforms CQT’s spectral features

by 1.6%. Moreover, there is a substantial increase in recognition

accuracy across all categories compared to the spectral feature

extraction methods of the remaining four features, thus validating

the superiority of the fusion approach based on signal processing

and brain-like features proposed in this study.

So as to provide a clearer illustration of the computational cost

and efficiency of the feature extraction and fusion method
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introduced in this paper, we conducted additional experiments to

assess the performance metrics of various feature extraction

techniques. The testing dataset comprised 10 sets, each containing

10 noise data samples, and the experimental results represent the

average of these 10 sets. Detailed experimental data is displayed

in Table 6.

It is evident that the execution time for each feature extraction

method’s feature mapping technique increased by only

approximately 0.0003 in comparison to the original method, with

a memory consumption increment of around 20 MiB.

Concurrently, the execution time of the feature extraction and

fusion method proposed in this paper, which integrates three

original feature components, remains within the same order of

magnitude as their individual runtimes, indicating minimal

additional time overhead.

Moreover, the memory consumption of the proposed method

in this paper remains approximately at 350 MiB, aligning with the

memory usage of all other feature extraction methods. This

reaffirms the superiority and efficiency of the proposed method.

3.4.2 CAFM ablation experiment
So as to comprehensively evaluate the computational cost,

convergence time, and performance of the feature extraction and

fusion method presented in this paper at various positions within

MGFGNet, a series of experiments were conducted. The

experimental results on the Deepship dataset are presented in

Table 1. In the model parameter nomenclature, the suffix

indicates the layer within the target recognition model as depicted

in Figure 1. For instance, “MGFGNet (1)” signifies the placement of

the CAFM module after Layer 1 of MGFGNet, “-” indicates the

absence of the CAFM module, and “+” denotes its placement at the

beginning of MGFGNet, as illustrated in Figure 1.

Firstly, the integration of the CAFM module results in a modest

2.9% increase in model parameters compared to the original model.

However, it significantly expedites the model’s convergence speed.

Furthermore, the convergence speed varies when the CAFM

module is positioned at different locations within the model, and
TABLE 6 Recognition Accuracy of MGFG model on Deepship dataset using different features and the memory consumption and efficiency of each
feature extraction method.

Feature Cargo Passenger Ship Tanker Tug all Time consumption (s) Memory used (MiB)

MFCC 0.542 0.671 0.670 0.843 0.683 0.00033257 348.960938

MFCC Spec 0.930 0.950 0.951 0.975 0.952 0.00060603 368.828125

delta MFCC 0.629 0.655 0.623 0.849 0.687 0.00134368 352.488281

delta MFCC Spec 0.946 0.949 0.944 0.977 0.954 0.00166959 373.804688

double-delta MFCC 0.606 0.681 0.681 0.794 0.691 0.00137352 351.417969

double-delta MFCC Spec 0.946 0.957 0.957 0.97 0.958 0.00169537 372.640625

CQT 0.765 0.767 0.771 0.865 0.791 0.00353861 352.429688

CQT Spec 0.973 0.973 0.973 0.984 0.975 0.00356747 372.406250

Fusion Feature 0.929 0.929 0.977 0.993 0.957 0.00381105 357.812500

Fusion Feature of Spec 0.984 0.985 0.994 1 0.991 0.00384105 376.367188
Bold font indicates the best-performing values within their respective columns.
TABLE 5 Details of the hardware environment for the experiment.

Hardware name Parameters Number

CPU Intel Xeon Sliver 4310 2

GPU NVIDIA Tesla A100 80G 1

RAM SAMSUNG RECC DDR4 32GB 8
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the speed is directly proportional to the sequence of the CAFM

within the model. This is primarily due to the enhanced

discriminability between background and target foreground in the

feature maps when this module is applied, resulting in accelerated

model convergence speed. Notably, after introducing the CAFM,

the convergence time consistently remains between 0.6 and 0.7

hours, confirming the model’s stability. In this experiment,

convergence is defined as the point at which the loss remains

unchanged in the thousandths place for three consecutive iterations.

Additionally, the incorporation of the CAFM module leads to a

minimum 1.7% enhancement in recognition accuracy within

MGFGNet, validating the CAFM module’s capacity to boost

model recognition accuracy through feature fusion and

enhancement. However, the placement of the CAFM module also

exerts an impact on recognition accuracy. For example, when the

CAFM module is positioned at the head of MGFGNet and after

Layer 1-2, the model exhibits improved recognition accuracy due to

the fusion of multiscale acoustic target information and enhanced

channel features. However, when the CAFM is placed at Layer 1, it

leads to a rapid extraction of raw input features through a large

convolutional kernel (kernel size of 6), resulting in the loss of

significant valuable features and, consequently, inhibiting

recognition accuracy. Furthermore, there is no subsequent feature

enhancement in the feature extraction process, causing lower

recognition accuracy compared to when the CAFM is placed after

Layer 3-6.

Conversely, placing the CAFM module after Layer 3-6

introduces the Multi-gradient Block in front of the CAFM

module, enriching the fused and enhanced features with a

substantial amount of multi-gradient flow contextual

information compared to the original information. This, in turn,

enhances target feature information, leading to improved

recognition accuracy. The highest recognition accuracy is

achieved when the CAFM module is placed after Layer 7, as the

model has undergone all the Multi-gradient Blocks by this stage,

resulting in feature maps rich in multi-gradient flow, physical

features, and numerous feature details. When the CAFM module

is employed for feature fusion and enhancement at this stage, it

effectively increases the importance of target information, thereby

enhancing recognition accuracy.

However, due to the feature enhancement process preserving a

substantial amount of suppressed background features, direct

utilization of these feature maps for predictions can compromise

experimental accuracy (Hu et al., 2018; Hou et al., 2021). Therefore,

after employing the feature enhancement module, it is necessary to

conduct further feature extraction on the enhanced feature maps

using convolutional or feature extraction modules. This step helps

discard numerous non-target features. For instance, attention

mechanisms (AM) (Yang S. et al., 2023) and channel attention

modules (CAM) (Li J. et al., 2022) both serve as feature

enhancement modules. Ablation experiments have demonstrated

that utilizing feature extraction or convolutional modules after

feature enhancement enhances model recognition accuracy (Li J.

et al., 2022; Yang S. et al., 2023). This substantiates why placing

CAFM after Layer 7 results in higher recognition accuracy

compared to after Layer 8.
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3.4.3 Classification loss function
ablation experiments

To assess the impact of the Taylor-MCE Loss on MGFGNet,

this paper compared the recognition results of MGFGNet with

various loss versions, including BCE, CCE, FL, and Taylor-MCE

Loss, utilizing the Deepship dataset. The numbers 1, 2, and 3

following Taylor-MCE represent a1LBCE , a2(1 − at)
cLBCE , and

b1(1 − at), respectively. Notably, a1 and a2 have real values only

when coexisting; otherwise, both are set to 1. A comprehensive

summary of the experimental results is presented in Table 7.

Firstly, it is evident that Taylor-MCE Loss outperforms CCE,

FL, and BCE in terms of recognition accuracy, demonstrating

improvements of 2.4%, 2.2%, and 1.9%, respectively. The

recognition accuracy of CCE and FL is quite similar. FL is

derived from CCE through lateral shifting, aimed at mitigating

the issue of sample imbalance. However, within the context of the

Deepship dataset, where various classes exhibit a good balance, its

effectiveness in addressing sample imbalance is reduced, resulting in

a modest improvement of 0.2% compared to CCE. BCE, serving as a

special form of CCE for binary classification, achieves a recognition

accuracy improvement of 0.5%. This is primarily because BCE

transforms multi-class classification into multiple binary

classification tasks, where the predictions for each class are

mutually exclusive and independent. This approach addresses a

problem present in CCE where multiple classes are predicted

simultaneously, leading the model to favor classes with larger

sample sizes. This imbalance gradually drowns out smaller classes

during training, providing a key rationale for choosing BCE as the

base loss function for Taylor-MCE Loss. Taylor-MCE (1,3),

inclusive of low-order perturbation terms (b1(1 − at)), contributes

to the model’s improved recognition accuracy, resulting in a

significant advantage over Taylor-MCE (1,2), which only

encompasses the component for addressing imbalance

(a2(1 − at)
cLBCE). This finding reinforces the conclusion that low-

order terms enhance recognition accuracy (Zhang et al., 2023).

Taylor-MCE (2,3) achieves similar recognition accuracy to (1,3),

primarily due to the relatively balanced distribution of class samples

in the Deepship dataset, rendering the influence of (2,3) insufficient

to significantly alter recognition accuracy.
TABLE 7 Recognition accuracy of MGFGNet with different classification
loss functions on Deepship and ShipsEar.

Loss
Function

Accuracy
(Deepship)

Accuracy
(ShipsEar)

CCE 0.967 0.937

FL 0.969 0.953

BCE 0.972 0.959

Taylor-MCE (1,2) 0.977 0.982

Taylor-MCE (1,3) 0.985 0.972

Taylor-MCE (2,3) 0.983 0.976

Taylor-MCE 0.991 0.995
Bold font indicates the best-performing values within their respective columns.
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As the Deepship dataset comprises a substantial number of

samples with a relatively balanced class distribution, it does not

effectively validate the loss function’s ability to suppress small

samples and enhance recognition accuracy in unbalanced

datasets. To further confirm the adaptability of Taylor-MCE Loss

to imbalanced, small-sample underwater sound datasets, we

conducted experiments using different classification loss functions

on the ShipsEar dataset, characterized by class imbalance and

limited sample sizes. A detailed overview of the experimental

results is provided in Table 7. The unique sample characteristics

of ShipsEar, featuring fewer samples and imbalanced class

distributions, result in notable differences in model recognition

accuracy when employing various loss functions. CCE, due to its

lack of optimization for class imbalance, exhibits lower recognition

accuracy compared to other loss functions. Both FL and BCE, which

address class imbalance using different approaches (FL introduces

horizontal shifting on top of CCE, while BCE transforms multi-class

into multiple binary classification tasks to mitigate imbalance), yield

similar and significantly improved recognition accuracy compared

to CCE. In contrast, the results of the various versions of Taylor-

MCE Loss are entirely opposite to those observed in the Deepship

dataset. Given that the ShipsEar dataset has fewer samples and

imbalanced class distributions, it necessitates substantial

suppression of the imbalance component. When utilizing only the

low-order perturbation term to enhance recognition accuracy,

specifically Taylor-MCE (1,2), its recognition accuracy surpasses

BCE by 2.3%, compared to the mere 0.9% improvement. Taylor-

MCE effectively balances recognition accuracy and mitigates model
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overfitting attributed to class imbalance during training, ultimately

yielding a recognition accuracy of 99.5%. This figure is 5.8%, 4.2%,

and 3.6% higher than CCE, FL, and BCE, respectively.

These experiments affirm the adaptability of Taylor-MCE Loss

to small-sample, imbalanced datasets, significantly enhancing

model recognition accuracy.
3.5 Performance analysis

In this section, we compare the performance of MGFGNet with

existing state-of-the-art target recognition models [such as ResNet

(He et al., 2016), EfficientNet (Koonce, 2021), DenseNet (Iandola

et al., 2014), etc.] under the same experimental conditions,

examining various aspects.

3.5.1 Model identification accuracy and
parameter analysis

To validate whether MGFGNet outperforms existing mainstream

target recognition models, we trained and validated MGFGNet and

other mainstream models under the experimental conditions described

in Sections 3.2 and 3.3. The parameters of each model and their

experimental accuracy on the Deepship test set are presented in Table 8.

It is noteworthy that, to reduce the training time for various models, we

modified the training epochs for all models on the Deepship dataset to 90.

This decision is supported by the observation, as depicted in Figure 6, that

MGFGNet exhibits a tendency toward convergence in loss before 90

epochs, with the optimal model being formed around the 71st epoch.
TABLE 8 Details of the number of parameters and the recognition accuracy on the Deepship dataset for various models.

Model MFCC delta MFCC double-delta MFCC CQT Fusion Feature Parameters (M)

ResNet18 (He et al., 2016) 0.939 0.942 0.947 0.963 0.970 11.7

ResNet34 (He et al., 2016) 0.929 0.937 0.942 0.966 0.971 21.8

ResNet50 (He et al., 2016) 0.921 0.933 0.937 0.952 0.965 25.6

ResNet101 (He et al., 2016) 0.913 0.931 0.937 0.947 0.953 44.5

EfficientNet_b0 (Koonce, 2021) 0.931 0.941 0.949 0.964 0.971 5.3

EfficientNet_b1 (Koonce, 2021) 0.930 0.938 0.945 0.967 0.968 7.8

EfficientNet_b2 (Koonce, 2021) 0.917 0.935 0.939 0.955 0.959 9.1

EfficientNet_b3 (Koonce, 2021) 0.915 0.931 0.934 0.945 0.951 12.2

DenseNet (Iandola et al., 2014) 0.866 0.871 0.878 0.913 0.931 1.1

CSPDenseNet (Wang et al., 2020) 0.889 0.896 0.913 0.937 0.951 0.9

CSPResNet18 (Wang et al., 2020) 0.938 0.945 0.953 0.966 0.973 5.6

MobileNetV1 (Howard et al., 2017) 0.759 0.787 0.793 0.822 0.841 3.2

MobileNetV2 (Sandler et al., 2018) 0.876 0.888 0.893 0.907 0.921 2.2

MobileNetV3-S (Howard et al., 2019) 0.732 0.747 0.752 0.773 0.806 1.5

MobileNetV3-L (Howard et al., 2019) 0.820 0.822 0.829 0.877 0.894 4.2

ViT (Dosovitskiy et al., 2020) 0.871 0.875 0.879 0.882 0.889 86.6

MGFGNet 0.952 0.954 0.958 0.975 0.991 5.7
Bold font indicates the best-performing values within their respective columns.
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Clearly, MGFGNet demonstrates experiment accuracy superior

to existing mainstream target recognition models across various

feature input scenarios. This validates the robust feature extraction

capability of MGFGNet in diverse experimental environments.

Furthermore, CSPNet (Wang et al., 2020) not only reduces

model parameters but also effectively promotes the model’s feature

extraction capability. For instance, testing the original versions of

ResNet18 (He et al., 2016) and DenseNet (Iandola et al., 2014),

along with their versions incorporating CSPNet, reveals a noticeable

reduction in parameters and an improvement in model

performance under various feature inputs. MGFGNet, based on

the CSPNet philosophy with the multi-gradient flow module as a

primary component, successfully achieves an effective balance

between recognition accuracy and parameter count.

The size of the model’s parameters also influences recognition

accuracy. Models with either too many or too few parameters yield

suboptimal experimental accuracy. For example, ViT (Dosovitskiy

et al., 2020) has significantly more parameters than other models,

yet its recognition rate is lower than most models. In contrast, the

MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al.,

2019) series, characterized by smaller parameter counts as

lightweight models, generally exhibits lower recognition accuracy

compared to other models. However, DenseNet and CSPDenseNet

(Wang et al., 2020), despite having fewer parameters, achieve high

recognition accuracy. This is mainly attributed to the dense

connectivity in DenseNet, ensuring low-dimensional feature

information and a stronger gradient flow (Iandola et al., 2014).

Within the same model, variations in recognition accuracy due to

changes in model depth show a negative correlation with the number

of parameters. As the number of parameters increases from ResNet18

to ResNet101 in the ResNet model, the recognition accuracy gradually

decreases. A similar trend is observed in the EfficientNet (Koonce,

2021) model. However, different network models do not exhibit this

phenomenon due to diverse feature extraction methods. For example,

ResNet18 and EfficientNet_b3 have similar parameter counts, but

ResNet18 outperforms EfficientNet_b2 in recognition accuracy across

various feature extraction methods. Different versions of MobileNet do

not show this phenomenon because new feature extraction or

enhancement modules are introduced in each version.
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3.5.2 Analysis of computational load, training
time, and prediction time

To assess the training and inference efficiency of MGFGNet,

this section analyzes the time consumption for training and

inference of MGFGNet and its comparative models. Detailed

comparative results are provided in Table 9. It is noteworthy that,

to reduce the training time of the models, we maintained

consistency with Section 3.5.1 and modified the training epochs

for all models on the Deepship dataset to 90. The convergence

definition for this experiment is when the value of the thousandth

loss percentile remains unchanged for three consecutive times

during the training process, indicating model convergence.

During the experiments, variations in the training and

prediction times of models were observed in different operating

environments. To ensure the accuracy of experimental data, each

model, during its runtime, had the host free of other GPU-intensive

deep learning tasks, preventing interference with the experimental

results. Additionally, to mitigate random factors, all experimental

data are the averages of results obtained from five repeated

experiments. Floating Point Operations per Second (FLOPs) are

used to measure the computational complexity of the model.

Training time refers to the total time for model training and

validation. Inference time denotes the total time required for

predicting 3369 individual samples from the validation set

of Deepship.

Notably, MGFGNet exhibits superior inference time compared

to all comparative models, especially the lightweight MobileNet

series commonly used in embedded systems, demonstrating its

practical utility. This is primarily attributed to the inference time

reduction effect of CSPNet (Wang et al., 2020). For instance, the

inclusion of CSPNet in ResNet and DenseNet also significantly

reduces inference time. MGFGNet, incorporating the CSPNet

philosophy through the Multi-grad Block, outperforms

EfficientNet_b0 in prediction time, despite having similar

parameter counts and FLOPs values.

Furthermore, MGFGNet achieves convergence in the fewest

epochs, indicating a faster convergence rate. This is mainly due to

Taylor-Loss suppressing the rate of model variation under different

numbers of input categories, thereby accelerating model
BA

FIGURE 6

Variation of parameters during MGFGNet training: (A) Loss variation plot; (B) Precision, recall, and accuracy variation plot.
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convergence. It is observed that within models of the same

architecture, parameters and convergence epochs exhibit a

positive correlation, as seen in ResNet and EfficientNet series.

While MobileNet has a smaller parameter count, its frequent

occurrence of gradient vanishing during training, mainly due to

the use of depthwise separable convolution, leads to extensive time

spent correcting and updating the model, resulting in an increased

number of convergence epochs.

Additionally, while MGFGNet’s training time is lower than that of

most target recognition models, it still exceeds that of ResNet18,

ResNet34, and CSPResNet18. This is mainly because the Multi-grad

Block module, based on the CSPNet philosophy, invented in

MGFGNet, reduces the number of parameters but increases the

computational workload for backward gradient updates (Wang et al.,

2020), thus extending the model’s training time. The increased training

time for CSPDenseNet and ResNet18 with CSPNet also validates this

characteristic. However, since practical applications primarily require

low prediction times for rapid target recognition, this drawback has

minimal impact in real-world scenarios.

Finally, upon contrasting Tables 8 and 9, it becomes evident

that there is no inherent correlation between the training time,

model parameters, and FLOPs for the models. For instance, when

compared to ResNet18, DenseNet, CSPDenseNet, and the

MobileNet series all exhibit smaller parameter counts and FLOPs.

However, these models demonstrate longer training times than

ResNet18. A similar experimental pattern is observed between the

EfficientNet and ResNet series.
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3.5.3 Model stability validation
Figure 6 presents the loss variation chart as well as the precision,

recall, and accuracy variation charts on the validation set during the

same 120-epoch training process on the Deepship dataset.

From the loss curve, it can be observed that the network gradually

stabilizes after the 60th epoch. By examining the changes in precision,

recall, and accuracy on the validation set during the training process,

with smooth variations and the absence of overfitting, it can be

concluded that the proposed underwater acoustic target recognition

model, MGFGNet, demonstrates stability.

3.5.4 Robustness analysis of models.
To assess the robustness of MGFGNet, i.e., the extent to which

the model is affected by small variations in the data, we utilized

spectrogram features of MFCC and its derived characteristics. Due

to the high similarity between spectrograms of MFCC and its

derived features (Yang S. et al., 2023), this study thoroughly

compared the dependency of various models on different input

conditions based on spectrogram features of MFCC and its

derivatives, as illustrated in Figure 7.

It is evident that MGFGNet exhibits a relatively small disparity

in experimental accuracy when considering spectrogram features of

MFCC and its derived characteristics. However, there is still some

improvement, indicating that MGFGNet can capture minor

variations in the derived features of MFCC without causing

significant predictive differences due to slight changes. This

validates the robustness of the model.
TABLE 9 Floating-point computation vs. training and predicting time.

Model FLOPs@224(B) Training Time (hours) Epochs at convergence Predicting Time(s) Support

ResNet18 3.7 1.075 52 56 3369

ResNet34 7.4 1.391 68 59 3369

ResNet50 8.5 1.868 75 67 3369

ResNet101 15.9 4.975 98 104 3369

EfficientNet_b0 1.0 3.423 83 91 3369

EfficientNet_b0 1.5 5.121 91 102 3369

EfficientNet_b0 1.7 5.368 97 104 3369

EfficientNet_b0 2.4 5.753 102 107 3369

DenseNet 1.6 4.792 62 135 3369

CSPDenseNet 1.4 4.872 57 119 3369

CSPResNet18 0.5 1.397 48 42 3369

MobileNetV1 0.6 4.693 96 66 3369

MobileNetV2 0.4 4.401 72 63 3369

MobileNetV3-S 0.1 2.661 65 55 3369

MobileNetV3-L 0.2 3.100 78 75 3369

ViT 17.6 7.295 107 139 3369

MGFGNet 0.7 1.779 41 37 3369
fr
Bold font indicates the best-performing values within their respective columns.
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ResNet18, DenseNet, and ViT models demonstrate comparable

recognition accuracy across these three different feature extraction

methods. In contrast, other models exhibit significant variations in

model responses under these three feature extraction methods,

indicating their reliance on features with high separability.

3.5.5 Generalizability analysis of the model
Due to varying predictive capabilities of models across different

variable domains (distinct real underwater acoustic datasets), it is

essential to assess the generalization performance of MGFGNet on

additional datasets. This study conducts experiments placing each

model under the experimental conditions defined in Sections 3.2

and 3.3, utilizing the shipsEar dataset. Detailed experimental results

are presented in Table 10.

Evidently, MGFGNet exhibits a recognition accuracy

surpassing all comparative models, achieving 99.5%. Furthermore,

it is observed that MGFGNet achieves a 100% recognition rate for

all categories except Class 1. This fact indicates a robust

generalization capability of the model.

Additionally, on the shipsEar dataset, the ResNet series, Efficient

series, and DenseNet also demonstrate strong performance, with

recognition accuracies exceeding 93%. It is noteworthy that, with the

involvement of CSPNet, DenseNet and ResNet18 show improved

recognition accuracy, exceeding 96%, validating their enhancement

in model feature extraction capabilities (Wang et al., 2020).

Finally, the MobileNet series performs poorly, with MGFGNet

surpassing the highest recognition accuracy within its series,
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MobileNetV2, by 12.2%, and outperforming the lowest accuracy

in MobileNetV3Small by 35%.

3.5.6 Scalability analysis
In order to further validate the scalability of MGFGNet on high-

resolution sonar images, this study conducted experimental

analyses, comparing MGFGNet with 16 other underwater

acoustic target recognition models on the high-resolution sonar

dataset SCTD. The recognition accuracy of each model is depicted

in Figure 8.

Clearly, MGFGNet’s recognition rate continues to surpass that

of all other models, confirming the model’s scalability. Due to the

interference of underwater background noise, which results in poor

separability between targets and background in sonar images

(Huang and Yang, 2022), the multi-gradient flow model proposed

in MGFGNet, based on CSPNet and MHSA, enhances the model’s

attention to targets (Wang et al., 2020; Han et al., 2021), ensuring

the retention of a substantial amount of relevant target information

during the feature extraction process. Additionally, further feature

enhancement and fusion through CAFM contribute to an improved

distinction between target foreground and background, effectively

enhancing the model’s recognition accuracy.

It is noteworthy that, as indicated in the performance and

parameter analysis in Section 4.2, under the same model

architecture, depth and recognition rate exhibit a proportional

relationship in underwater sonar image target recognition. For

instance, the recognition rates of the ResNet series and EfficientNet
FIGURE 7

Recognition accuracy of multiple models under MFCC, delta MFCC and double-delta MFCC features.
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FIGURE 8

Details of the recognition Accuracy of the model on the SCTD dataset.
TABLE 10 Details of the models’s recognition Accuracy on the shipsEar dataset.

Model Class 1 Class 2 Class 3 Class 4 Class 5 All

ResNet18 0.944 0.933 0.952 0.979 0.955 0.954

ResNet34 0.917 0.933 0.952 0.979 0.955 0.950

ResNet50 0.917 0.933 0.952 0.979 0.955 0.950

ResNet101 0.889 0.900 0.952 0.979 0.955 0.941

EfficientNet_b0 0.889 0.933 0.988 0.958 0.909 0.950

EfficientNet_b1 0.889 0.933 0.976 0.979 0.909 0.950

EfficientNet_b2 0.861 0.933 0.988 0.958 0.909 0.945

EfficientNet_b3 0.833 0.867 0.964 0.979 0.935 0.931

DenseNet 0.944 0.933 0.976 0.958 0.864 0.950

CSPDenseNet 0.972 0.9 0.988 0.958 0.955 0.964

CSPResNet18 0.972 1 0.964 0.979 0.909 0.968

MobileNetV1 0.861 0.8 0.905 0.792 0.818 0.85

MobileNetV2 0.889 0.867 0.917 0.854 0.727 0.873

MobileNetV3-S 0.667 0.6 0.655 0.625 0.682 0.645

MobileNetV3-L 0.917 0.867 0.786 0.854 0.909 0.845

ViT 0.944 0.933 0.929 0.938 0.909 0.875

MGFGNet 0.972 1 1 1 1 0.995
F
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Bold font indicates the best-performing values within their respective columns.
sin.org

https://doi.org/10.3389/fmars.2023.1306229
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2023.1306229
series validate this conclusion. Conversely, lightweight models such as

MobileNet perform poorly, with recognition rates not exceeding 73%,

once again confirming that MobileNet is not well-suited for

underwater acoustic target recognition scenarios.

3.5.7 Computational bottleneck analysis
Due to the challenges associated with acquiring underwater

acoustic datasets, the currently available open datasets are primarily

limited to two ship radiated noise datasets: Deepship and ShipsEar.

Given that the ShipsEar dataset comprises multiple ship types within

each category and has a limited data volume, we conducted

experiments with a substantial sample dataset extracted from

Deepship to examine MGFGNet’s recognition accuracy in relation

to dataset size and to identify potential computational bottlenecks.

This dataset, which was subject to preprocessing, included a total of

33,693 samples. Figure 9 presents the model accuracy of MGFGNet

for various training set sizes sourced from Deepship.

The numerical values in the dataset version indicate the

quantity of samples randomly chosen from each category in the

Deepship dataset to form the training set for model training, while

the test set configuration remained consistent with that presented in

Table 2. The results clearly show that as the training set sizes for

each category range from 100 to 800, the network model’s

recognition accuracy experiences rapid growth. Beyond the 800

mark, recognition accuracy tends to plateau, although there is still

noticeable improvement as the dataset size increases. Importantly,

no indications of encountering computational bottlenecks

were observed.
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4 Conclusion

An underwater acoustic object identification model MGFGNet

based on multi-gradient flow global feature enhancement network

is raised in this article. Firstly, by embedding feature extraction

module into the target recognition network, the whole target

recognition network forms an end-to-end model with underwater

acoustic signal as input and classification result as output. Secondly,

the invention of Muti-grad block uses multi-gradient flow network

to obtain underwater acoustic signal features quickly and effectively,

reducing the quantity of model parameters and feature extraction

time. Then the CAFMmodule is used for multi-dimensional feature

fusion and feature enhancement to improve the effective

characteristic weight of underwater sound. Finally, the Taylor-

MCE Loss function is introduced, which enhances model

recognition accuracy and mitigates sample imbalance issues

within the binary cross-entropy loss. This is achieved by

incorporating low-order perturbation terms into the binary cross-

entropy loss to suppress sample imbalance components.

Consequently, the multi-class classification task is transformed

into a set of independent binary classification tasks, effectively

addressing the problem of dataset sample imbalance and

improving model recognition performance.

The experimental results show that on the Deepship and

ShipsEar underwater acoustic data sets, the feature extraction and

fusion methods raised in this article have better ability to represent

the original underwater acoustic signals. Compared with

mainstream underwater acoustic target recognition models such
FIGURE 9

Details of the recognition Accuracy of the model on different versions of the Deepship dataset.
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as ResNet and EfficientNet, the recognition accuracy of MGFGNet

was greatly improved, and the inference time was greatly reduced.

MGFGNet network has simple structure and few parameters, which

can meet the requirements of end-to-end high precision and low

latency in underwater acoustic target identification.

The experimental results of the model proposed in this article

have the following potential implications for current underwater

target recognition models:

Firstly, our feature extraction and fusion methods have

demonstrated that traditional spectrogram-based feature extraction

methods are better suited for representing the raw underwater

acoustic features. This suggests that current methods for extracting

underwater target features, such as those based on signal analysis and

bio-inspired features, can be effectively combined with computer vision’s

feature enhancement techniques (e.g., channel and spatial feature

enhancement methods) to further enhance feature representation.

Secondly, the design and experimentation with the Multi-grad

block in our proposed classifier have shown that multi-gradient flow

networks can better extract deep abstract features of the model while

reducing the number of model parameters. This enables underwater

target recognition models to depart from the mainstream design

pattern of extracting effective features for underwater targets solely

through convolution and residual network stacking.

Furthermore, the design of the CAFM in our proposed classifier

has demonstrated that incorporating feature fusion and

enhancement modules before the classification module in the

classifier can significantly enhance the model’s recognition

accuracy. This enhancement may be related to feature loss during

the extraction of effective features before classification and the

numerical loss during the normalization process, as this process

lacks specific loss control. This can lead to similarities between

foreground and background values, making it difficult for the model

to effectively recognize the target foreground. Subsequent research

can focus on designing feature fusion and feature enhancement

modules to improve the distinguishability between target

foreground and background.

Lastly, the loss function designed in this paper was explored using

the Taylor series, revealing factors influencing the loss function’s

functionality, such as lateral shifting to address sample imbalance and

boosting model recognition accuracy through low-order terms in the

Taylor expansion of the function. This enables future research to

introduce fewer hyperparameters while gaining more benefits,

providing a reference for subsequent studies and better explaining

the underlying physical meaning of the loss function.

Additionally, the experimental results of the model proposed in

this paper open up potential avenues for future research:
Fron
1. Deep learning-based underwater target recognition models

have encountered certain bottlenecks, primarily due to

their reliance on convolution and residual network

stacking, which can lead to limitations in accuracy. The

model design approach presented in this paper transforms

traditional underwater target recognition into underwater

image target recognition, broadening the model

construction methods. In the future, lightweight module

design methods from computer vision and ideas for feature
tiers in Marine Science 19133
enhancement and fusion based on the characteristics of

underwater feature images can be introduced to enhance

the model’s efficiency and recognition accuracy, enabling

real-time applications.

2. Existing underwater target recognition models mainly employ

multi-class classification, but empirical evidence suggests that

converting traditional multi-class tasks into multiple binary

classification tasks is more suitable for underwater target

recognition. Therefore, future research can delve into

designing more effective underwater target recognition

models based on multiple binary classification tasks that

align with the physical characteristics of underwater sound.

3. Current research primarily focuses on building underwater

target recognition models, with limited attention to loss

function research. Traditional classification loss functions

are primarily designed for object image classification and

may not be highly adaptable to underwater target feature.

Future research can focus on designing loss functions that

better align with underwater target features based on the

physical characteristics of underwater targets.
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Yunfei Lv1,2,3* and Jidan Mei1,2,3*
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Acoustic Engineering, Harbin Engineering University, Harbin, China, 4Department of Electrical and
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Traditional direction of arrival (DOA) estimation algorithms typically have poor

spatial resolution and robustness. In this paper, we propose a broadband high-

resolution DOA estimation method based on the generalized weighted Radon

transform (GWRT). The array signal can be converted into the frequency-

wavenumber (f-k) domain using the conditional wavenumber spectrum

function (CWSF). Then, a linear integral mathematical model for high-

resolution DOA estimation is derived by transforming the f-k domain into the

azimuth-energy domain using the GWRT. Computer simulation and sea trials

were conducted to validate the feasibility and performance of the proposed

method. The results obtained indicate that the proposed method yields a lower

sidelobe level and can more effectively suppress the output energy in the non-

target direction when compared to the conventional beamforming (CBF),

steered minimum variance (STMV), and deconvolution (DCV) methods. Further,

the proposed method provides improved spatial resolution and robustness in a

multi-target environment.
KEYWORDS

direction of arrival estimation, generalized weighted Radon transform, broadband
signal, high-resolution, low sidelobe levels
1 Introduction

Target azimuth is an important parameter for the identification, detection, positioning,

and tracking of underwater targets (Luo and Shen, 2021; Chen et al., 2023; Xie et al., 2023;

Zhao et al., 2023). Array signal processing has been shown to be effective for the direction of

arrival (DOA) estimation. The methods can be classified as traditional beamforming,

subspace-based, deconvolution (DCV), and transform domain.
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The most commonly employed traditional beamforming

method is the conventional beamforming (CBF). However, CBF

has the disadvantages of wide beamwidths and poor spatial

resolution due to the Rayleigh limit. Several high-resolution

methods have been proposed to overcome these such as the

maximum entropy algorithm (Burg, 1975) and the minimum

variance distortionless response (MVDR) algorithm (Capon,

1969). These methods improve the spatial resolution but suffer

from poor performance when used to detect broadband signals in

actual ocean environments. This is because they are sensitive to

signal mismatch and cannot estimate the DOA of coherent sound

sources (Somasundaram, 2012). The steered minimum variance

(STMV) algorithm was proposed to overcome these problems

(Krolik and Swingler, 1989). STMV has better spatial resolution

for coherent acoustic sources and fast convergence, but poor

robustness (Somasundaram et al., 2015). The Rayleigh limit was

overcome with the subspace-based algorithm multiple signal

classification (MUSIC) (Schmidt, 1986). Subsequent subspace-

based algorithms such as estimation of signal parameters via

rotational invariance techniques (ESPRIT) (Roy and Kailath,

1989), root-multiple signal classification (RMUSIC) (Rao and

Hari, 1989), maximum likelihood (ML) (Stoica and Nehorai,

1989), and weighted subspace fitting (WSF) (Bengtsson and

Ottersten, 2001) provide improved performance but have

sensitivity and snapshot deficiency problems when used in

practical applications (Baggeroer and Cox, 1999). Another issue is

that the number of acoustic sources is usually unknown and this

makes it difficult to estimate the signal and noise subspaces.

Further, existing algorithms can only be used to estimate DOA

for incoherent or weak-coherent acoustic sources, making detection

of coherent signals difficult in the actual ocean environments.

The above algorithms are either sensitive to array element

errors or limited to array aperture. Various studies on the

formation structure have been introduced to improve the

performance of the algorithms (Zhang et al., 2021; Zhou et al.,

2022; Yang, 2023; Ye et al., 2023). Additionally, in recent years,

there has been a growing focus on researching robust high-

resolution beamforming algorithms. Deconvolution (DCV)

algorithms have attracted widespread attention for underwater

acoustic applications. DCV was initially considered with both

uniform linear arrays and circular arrays (Yang, 2017; Yang,

2018). It was shown that the performance is better than CBF. The

super-directivity performance of DCV with a small-sized array was

verified using the SwellEx96 horizontal array (Yang, 2019).

However, these DCV methods are only suitable for arrays with a

shift-invariant point spread function (PSF) beam pattern, such as a

horizontal line array or circular array. Therefore, new DCV

methods were developed for shift-variant PSF beam patterns. A

DCV method based on non-negative least squares (NNLS) and an

improved NNLS method called extended Richardson-Lucy (Ex-RL)

were presented which provide high resolution, robustness, and

excellent array gain (Sun et al., 2019; Sun et al., 2020).

Transform domain methods were originally developed to

estimate seismic wave velocity and azimuth (Cheng et al., 2018).

More specifically, the frequency-wavenumber (f-k) power spectrum
Frontiers in Marine Science 02137
can be obtained using the space-time two-dimensional Fourier

transform of the seismic signal. Then, the f-k power spectrum can

be converted into the transform domain to extract the velocity and

azimuth of the waves. While transform domain methods have been

widely used in seismic exploration (Zywicki and Rix, 1999), there

have been few DOA estimation applications. The least squares line

fitting (LSLF) algorithm was employed to obtain the slope of the

local peak-energy line in the f-k domain and then the sum of the

points on this line was used as an estimate of the energy output of

the azimuth spectrum (Li et al., 2019). However, this method is

sensitive to outliers in the image since it minimizes the sum of the

squares of the distances from the points to the line. Thus, the

performance can be degraded significantly, particularly in low

signal-to-noise ratio (SNR) environments or when there are

multiple adjacent targets. In this paper, a broadband high-

resolution DOA estimation method based on the generalized

weighted Radon transform (GWRT) is proposed. The array signal

is converted into the f-k domain by solving the conditional

wavenumber spectrum function (CWSF) and then the

mathematical relationship between the spatial distribution of

broadband signal energy in the f-k domain and target azimuth is

obtained. To improve performance, image gradient information is

utilized as weights for the GWRT, and a linear integral

mathematical model is derived by the GWRT processing in the f-

k domain. The resulting model contains the complete image

information in the f-k domain. This is then converted into the

azimuth-energy domain to realize high-resolution DOA estimation.

The proposed method does not require prior knowledge of the

number of sources or signal pre-estimation. In addition, it is not

sensitive to outliers in the image and the results in the f-k domain

provide higher transform gain and better robustness. Both

simulation and sea-trial experiments are conducted to validate the

proposed method. The results obtained indicate that the proposed

method has better performance and offers several advantages

compared with existing approaches as follows.
1. The proposed method produces a narrow mainlobe width

similar to, or better than, many commonly used high-

resolution methods such as STMV and DCV.

2. The proposed method produces lower sidelobe levels than

the CBF, STMV, and DCV methods.

3. The proposed method has better robustness to position

errors compared to the STMV and DCV methods.

4. The proposed method exhibits good performance when

there are multiple targets and when the target signal

is weak.
The remainder of this paper is organized as follows. Section 2

introduces the broadband signal model and DOA estimation using

the CWSF is presented. In Section 3, we derive the expression of the

mathematical model for DOA estimation using GWRT. The

performance of the proposed method is evaluated via simulation

and compared with other DOA methods in Section 4. The results of

the sea-trial experiments are given in Section 5. Finally, Section 6

provides a summary of the paper.
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2 Signal modeling

We consider a linear sensor array with M receivers uniformly

spaced at a distance d. The signal is assumed to be from a

broadband source located at the far field of the array. This signal

has a look direction q and arrives at the array as a plane wave. Then,

q is the azimuth angle of the target, which is defined as the

anticlockwise angle between the horizontal array and the target as

shown in Figure 1. Therefore, the signal received by element m at

time t can be expressed as

xm(t) = ams(t) + nm(t) (1)

where  m = 1, 2,⋯,M, s(t) is the incident signal, nm(t) is the

noise received by element m, which is uncorrelated with s(t),

am   is the array manifold factor of element m which is equal to

exp j2pf m − 1ð Þd cos q=cð Þ, and  f   and c  are frequency and the

speed of sound, respectively.

As the actual data processing is based on a discrete-time model,

the received signal should be sampled at   fs. Therefore, the signal

received by element m can be expressed as

xm(l) =   xm(t)jt=l=fs ,   l = 1,⋯, L (2)

where L is the number of samples which is an integer. The discrete

Fourier transform (DFT) of xm(l) gives the corresponding

frequency spectrum

Xm (f ) =   1LoL
l=1xm(l)e

− j2p fl
L : (3)

Then, the frequency-wavenumber spectrum of the received

signal can be obtained by applying the DFT to Xm (f ) with Q points

in the spatial domain as

  I(k, f ) = 1
QoM

m=1Xm (f )e−j2pmk=Q

= 1
QoM

m=1 S (f )e
j2p f (m−1)d cos q

cð Þ + Nm(f )
i
e−j2pmk=Q

h (4)

where k is the wavenumber which is an integer in the range −

Q=2 ≪ k < Q=2,Q is an integer withQ ≫ M, S (f )   is the frequency

spectrum of s(t), Nm (f ) is the frequency spectrum of nm(t).
Frontiers in Marine Science 03138
From Equation (4), the frequency-wavenumber power spectral

density can be expressed as

Y (k, f ) = lim
Q,L→∞

EfIH(k, f )I(k, f )g

= jS(f )j2
sin pM fd cos q=c − k

Q

� �h i
Q sin p fd cos q=c − k

Q

� �h i
������

������
2

+M
s 2

Q2

(5)

where Ef·g  denotes expectation, superscript H denotes conjugate

transpose, and s 2   is the noise power. The frequency power spectra

Y (f )   can be expressed as

Y (f ) =  oQ=2
k=−Q=2Y (k, f ) : (6)

To mitigate the impact of high-frequency attenuation and

enhance the outcomes of high-frequency components within Y
(k, f ), the CWSF (Beall et al., 1982) is employed to derive the

conditional wavenumber spectral density Y (kjf ) from Equations

(5) and Equations (6). Y (kjf ) can be expressed as

Y (kjf ) =  
Y (k, f )
Y (f )

 

=
jS(f )j2

M(jS(f )j2 + s2)
w

fd cos q
c

−
k
Q

� �����
����2+ s 2

Q2(jS(f )j2 + s 2)

(7)

where w(v) = j sin (pMv)
Q sin (pv) j is a periodic function with period 1. It is

symmetric about v = 0, and has its maximum value when   v = 0.

The first zero points of w(v)   are v0 = ±1=M, hence the mainlobe

width is 2=M.

In this paper, we only consider w(v) for a single cycle. From

Equation (7),Y (kjf ) has its maximum value when v = fd cos q
c − k

Q = 0,

and mainlobe width 2Q=M. Figure 2 gives Y (kjf ) for a broadband

signal. This shows that the target energy is concentrated in the

mainlobe, and the peak-energy points in the mainlobe are on a

straight line r passing through the origin. The slope   e   of the line

  r can be expressed as e = k
f =

Qd cos q
c . Therefore, e is a linear function

of   cos q .
3 DOA estimation method based
on GWRT

As mentioned above, q   can be accurately estimated using the

slope of the line r in Y (kjf ), thus realizing high-resolution DOA

estimation. However, there will be sidelobels and perhaps outliers in

Y (kjf ) due to the windowing effect of the DFT and the random

fluctuation noise which makes determining r difficult. To solve

these issues, morphological grayscale reconstruction is used to

extract regional maxima in Y (kjf ) and obtain the reconstructed

matrix Ynew(kjf ) (Vincent, 1992; Vincent, 1993). This method

utilizes erosion and dilation operations based on a structuring

element to reconstruct or eliminate specific regions in an image,

which removes most of the outliers and significantly reduces

the sidelobes.

The generalized Radon transform (GRT) is commonly used to

extract information from images (Radon, 1986; Hansen and Toft,
FIGURE 1

Uniform linear array geometry.
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1996; Ramm and Katsevich, 2020; Sun et al., 2021). However, it only

considers amplitude information and ignores gradient information,

which is not ideal. Image gradients provide the rates and directions

of change for the pixels, which is useful information. Therefore, we

propose a method based on the GWRT to achieve the integration of

a multivariate function over a given path. Compared with the GRT,

the GWRT makes full use of the image gradient information as its

weights, thus providing better results. For a two-dimensional

Euclidean space, the GWRT can be defined for a continuous

image as (Alpatov et al., 2015)

Uweighted(p) = ∫∫(x,y)∈c(p) 〈∇f(x, y),~n 〉2 dxdy (8)

where p is a vector containing the parameters of the line,

and   c(p),  (x, y), and   f(x, y) are, respectively, a known line,

space coordinates, and the intensity of points on a line in the

two-dimensional image   f.∇,  〈 〉, and ~n in Equation (8) are,

respectively, the gradient operator, scalar product operation, and

the unit normal vector which is perpendicular to the line c(p). As

the transform will be obtained from discrete-time data, the

GWRT in discrete form is used rather than the integral form.

The GWRT of Ynew(kjf ) in discrete form can be expressed as

Uweighted(q) =ofmax
fminocos q=1

cos q=−1〈∇Ynew f , k = ef = Qfd cos q
c

� �
,~n〉2 (9)

where  fmin   and  fmax  are the lower and upper limits of frequency

employed, respectively, with   fmax  ≤ c=2d. Equation (9) converts

Ynew(kjf ) into a one-dimensional matrix Uweighted(q) which reflects

the energy distribution related to the parameter   q. The position of

the maximum value of Uweighted(q) is the DOA estimation.

Asmentioned above, the slope of the peak-energy line inY (kjf ) is a
function of the signal direction q . Therefore, the lines inY (kjf ) must be

discernible so targets from different directions can be distinguished. In

other words, the difference in coordinates on the k-axis for   fmax  must be

equal to or greater than the mainlobe width of Y (kjf ) which means

fmaxQd
c ( cos q1 − cos q2) ≥ 2Q

M   (10)
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where   cos q1   and  cosq2   represent the directions of two targets.

Then, the difference in directions should satisfy

cos q1 − cos q2 ≥ 2c
Mfmaxd

:   (11)

Equation (11) is a function of   fmax, so this frequency should be

large to obtain high-resolution performance. Note that the

mainlobe of Ynew(kjf ) will be much narrower than that of Y (kjf )
due to the morphological grayscale reconstruction operation.

Therefore, the resolution of the GWRT will be less than 2c
Mfmaxd

,

which confirms that the proposed method has high-

resolution performance.

The steps of the proposed method are as follows.
1) Obtain Y (kjf ) using Equtaions (1–7).

2) Perform morphological grayscale reconstruction to obtain

the matrix Ynew(kjf ).
3) Compute the GWRT of Ynew(kjf ) to convert the image

information in the f-k domain into the azimuth-energy

domain to realize high-resolution DOA estimation.
4 Simulation analysis

The performance of the proposed method is evaluated for a

scalar towed array measurement system. Consider a line array of 32

receivers uniformly spaced at a distance d=0.25 m. The proposed

method is compared with three commonly used DOA estimation

methods, namely CBF, STMV, and DCV.
4.1 Single source

Consider a broadband target located in the direction of the

array with cos q = 0:5. The target signal is a broadband noise and is

assumed to have random amplitude and phase. The broadband

spectrum is between 1500 Hz and 3000 Hz, and   fs = 20 kHz. The

direction scanning range is cos q ∈ −1, 1½ �, the scanning interval is
1/1800 rad, and Q=256. The SNR is 10 dB, and the noise is assumed

to be isotropic and uncorrelated at the receivers. Y (kjf )
and Ynew(kjf ) obtained using Steps 1 and 2 in Section 3 are

shown in Figures 3A, B, respectively.

Comparing Figures 3A, B reveals that Ynew(kjf ) is more

prominent and the mainlobe width is narrower. This confirms the

improvement due to morphological grayscale reconstruction. The

DOA estimation results obtained from the GWRT of Ynew(kjf ) are
given in Figures 3C, D for SNRs 10 dB and -10 dB, respectively.

These results show that all methods can accurately estimate the

direction of the target for both SNR values. The sidelobe levels

increase as the SNR decreases, but the proposed method still

exhibits the lowest sidelobe levels. The GWRT method also has a

narrower mainlobe width than the CBF and STMV methods, and it

is similar to that of the DCVmethod. Therefore, the GWRTmethod

has the advantages of lower sidelobe levels and narrower mainlobe

which will result in better performance.
FIGURE 2

Y (kjf) for a broadband signal.
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4.2 Sensitivity to position errors

Sensitivity to signal mismatch is an important consideration for

DOA estimation methods. In this section, the performance

degradation due to signal mismatch is evaluated with random

position errors for the receivers. Figure 4A gives the actual

receiver positions in the line array (denoted by *) and the

erroneous positions (denoted by o). The position errors have a

mean of 0.04 m which can be considered worst case. It is assumed

that these errors are unknown and DOA estimation is conducted

assuming a straight line array. The other simulation conditions are

the same as above. The corresponding DOA estimation results are

given in Figure 4B for an SNR of 10 dB.

Compared to Figure 3C, these results show that the sidelobe

levels increase with position errors. The STMV method has the

greatest performance degradation, and the DCV method has false

peaks which may significantly affect the estimation accuracy. The

GWRT method still has the lowest sidelobe levels and so has good

robustness even with position errors.
Frontiers in Marine Science 05140
4.3 Multiple sources

To further evaluate the proposed method, the performance with

three targets is now obtained. The three broadband targets are

located at the far field of the array with directions cos q = −0:05,

cos q = 0:05, and cos q = 0:2. The SNRs of these targets are -5dB,

10dB and -5dB, respectively. The other simulation conditions are

the same as above. Figure 5A presents  Y (kjf ) and the DOA

estimation results are shown in Figure 5B.

These results indicate the CBF and STMV methods only

identify the second and third targets. This is because the

directions of the first and second targets are close and the energy

difference is large. The DCV and GWRT methods are able to

distinguish all three targets. Although these methods have similar

mainlobe widths, the former method produces false peaks and has

higher sidelobe levels, making it easy for weak targets to be missed.

The peak-energy lines in Figure 5A corresponding to the first and

third targets are barely distinguishable due to the strong

interference from the second target. However, the proposed
A B

DC

FIGURE 3

DOA estimation results for a single source. (A) Y (kjf). (B) Ynew(kjf). (C) SNR=10 dB. (D) SNR= -10 dB.
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method uses information in the azimuth-energy domain which

confirms the advantages of the GWRT. Therefore, the proposed

method herein has excellent anti-jamming capability and high-

resolution performance even with multiple targets having

different SNRs.
4.4 DOA estimation versus SNR and
array size

The performance of the proposed method is now evaluated for

different SNRs and numbers of array elements. The other

simulation conditions are the same as in Section 4.1.

4.4.1 Effect of SNR
An increase in noise and/or interference affects the sidelobe

levels and so can degrade performance as noise suppression and

interference discrimination are determined by these levels   (Ma

et al., 2021). In this section, the highest sidelobe level in the azimuth

spectrum and the root mean square error (RMSE) of the estimated
Frontiers in Marine Science 06141
azimuth are considered as the SNR varies from -10 dB to 10 dB. The

RMSE of the estimated azimuth is calculated as

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
J oJ

j=1(q̂ j − q)2
q

(12)

where J is the number of Monte Carlo trials, and q̂ j and q are the

estimated azimuth for the jth independent experiment and the true

orientation of the target, respectively. The scanning interval is 1/

18000 rad herein. The average results for 100 Monte Carlo trials are

given in Figure 6. Figure 6A shows that the highest sidelobe level

decreases with increasing SNR for all four methods. For SNR>5dB,

the highest sidelobe level with the CBF method is around -13 dB,

and the performance of the STMV method is slightly worse than

with the DCV method. The sidelobe levels with the GWRT method

are lower than the other methods for all SNR values, and at least 4

dB less than with the DCV method which is the second best. The

SNR in underwater acoustic applications is often low so the

proposed method is preferable. Additionally, the Cramér-Rao

bound (CRB) (Feng and Huang, 2007) is included as a reference

for DOA estimation performance, as shown in Figure 6B. The
A B

FIGURE 5

DOA estimation results for multiple sources. (A) Y (kjf). (B) Azimuth spectrum.
A B

FIGURE 4

DOA estimation results for four methods with position errors. (A) Top view of the array configuration. (B) SNR=10 dB.
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RMSE of the GWRT method is smaller in comparison to the DCV

and STMV methods, with only a slight increase relative to the

CBF method.

4.4.2 Effect of the number of array elements
Angle resolution is the smallest angle difference between the

directions of two targets and is an important criterion in evaluating

DOA estimation methods. The angle resolution Dq of the four

algorithms was evaluated for different numbers of array elements

and frequency bands. The number of elements varies from 12 to 36,

and the frequency bands are 2500 Hz to 3000 Hz and 1500 Hz to

3000 Hz, respectively. The average angle resolution for 100 Monte

Carlo trials for an SNR of 10 dB is given in Figure 7. This shows that

the angle resolution improves with an increase in the number of

elements with all four methods. The DCV method exhibits the

highest resolution, followed by the GWRT method and the STMV,

all of which outperform the CBF. Comparing Figures 7A, B

indicates that the performance of the STMV method is severely

degraded with a wider frequency band. The main reason is that the
Frontiers in Marine Science 07142
covariance matrix is obtained by averaging the covariance matrices

for each frequency point, and increasing the number of frequency

points decreases the accuracy of this matrix and thus the angle

resolution. However, the GWRT method has better robustness with

broadband signals. Furthermore, as discussed in Section 3, the

resolution of the GWRT can be less than 2c
Mfmaxd

, which is

consistent with these results.
5 Sea-trial results

To evaluate the performance of the proposed method in

practical applications, DOA estimation results were obtained for a

towed line array with 32 elements uniformly spaced at 2 m. The

experiments were conducted in Huanghai Sea, China in the summer

of 2014. The water depth was approximately 40 m and the towed

array was about 20 m above the sea floor. The recorded data

suggests that the received signals include signals from passing

vessels, experimental vessels, and the broadband pulses
A B

FIGURE 7

The angle resolution versus the number of array elements for two frequency bands and four methods. (A) 2500~3000Hz. (B) 1500~3000Hz.
A B

FIGURE 6

The performance versus SNR for four methods. (A) The highest sidelobe level versus SNR for four methods. (B) The RMSE versus SNR for
four methods.
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transmitted by the experimental vessels. The sampling frequency

was equal to 8 kHz, with a total of 120 data frames, each comprising

4096 samples. The data within the frequency range of 1500 to

3000 Hz was processed using the CBF, STMV, DCV, and GWRT

methods and the bearing time records (BTRs) are given in Figure 8.

Additionally, the low-frequency analysis and recording (LOFAR)

for the data from one element is shown in Figure 9.

The BTRs for the CBF method in Figure 8A show that due to

the Rayleigh limit and the ambient ocean noise, the mainlobe width

for each target is relatively wide so it is not possible to distinguish

the targets located in the directions around  cosq = 0:78   and

cosq=0.88. Figure 8B indicates that the STMV method has a

narrower mainwidth but still fails to distinguish the two targets.

The BTRs for the DCV and GWRT methods in Figures 8C, D,

respectively, have much clearer backgrounds than with the CBF and

STMV methods. The target trajectories are clearly distinguishable

with a much narrower mainlobe width for each target. Figure 8 also

shows a set of broadband pulse signals in the direction of around

cos q = 0:30. There are two clear focused points in the red circle in

Figure 8D which are not as well distinguished by other methods.

This indicates that the GWRT method has a lower background
Frontiers in Marine Science 08143
noise level and thus better weak target detection and anti-

interference capability.

Figure 10 gives the BTRs for the four methods at 60 s. These

results indicate that the target located in the direction of around

cos q = 0:78 cannot be distinguished by the CBF and STMV

methods due to the strong inference from the target located in

the direction of around cos q = 0:88. Conversely, both the DCV

and GWRT methods clearly distinguish these targets. The GWRT

method has a mainlobe width similar to that of the DCV method

but the sidelobe levels are lower. Thus, it is better able to suppress

the interference due to strong targets and noise which makes it

easier to detect weak targets. Therefore, the proposed method

provides better high-resolution performance in multiple

target environments.
6 Conclusion

A generalized weighted Radon transform to estimate the DOA

for broadband targets was proposed. The GWRT was used on the

conditional wavenumber spectrum density to convert image
A B

DC

FIGURE 8

BTRs for four methods. (A) CBF. (B) STMV. (C) DCV. (D) GWRT.
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information in the f-k domain to the azimuth-energy domain for

high-resolution DOA estimation. Simulation and sea-trial results

were presented which show that the proposed method is simple and

effective and does not require a priori information. It is not sensitive

to the outliers and thus provides good robustness even with position

errors. Furthermore, it produces a narrow mainlobe with low
Frontiers in Marine Science 09144
sidelobe levels which results in good performance when there are

multiple targets and the target SNR is low. However, the proposed

method is only applicable for broadband signals and it is not

suitable for real-time applications. Therefore, a short-time model

for DOA estimation with narrow-band signals will be considered as

future work.
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A simplified decision feedback
Chebyshev function link neural
network with intelligent
initialization for underwater
acoustic channel equalization
Manli Zhou1†, Hao Zhang1,2†, Tingting Lv1*, Wei Huang1,
Yingying Duan1 and Yong Gao1

1Department of Electronic Engineering, Ocean University of China, Qingdao, China, 2Department of
Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
Introduction: In shallow-water environments, the reliability of underwater

communication links is often compromised by significant multipath effects. Some

equalization techniques such as decision feedback equalizer, and deep neural

network equalizer suffer from slow convergence and high computational complexity.

Methods: To address this challenge, this paper proposes a simplified decision

feedback Chebyshev function link neural network equalizer (SDF-CFLNNE). The

structure of the SDF-CFLNNE employs Chebyshev polynomial function

expansion modules to directly and non-linearly transform the input signals into

the output layer, without the inclusion of hidden layers. Additionally, it feeds the

decision signal back to the input layer rather than the function expansion

module, which significantly reduces computational complexity. Considering

that, in the training phase of neural networks, the random initialization of

weights and biases can substantially impact the training process and the

ultimate performance of the network, this paper proposes a chaotic sparrow

search algorithm combining the osprey optimization algorithm and Cauchy

mutation (OCCSSA) to optimize the initial weights and thresholds of the

proposed equalizer. The OCCSSA utilizes the Piecewise chaotic population

initialization and combines the exploration strategy of the ospreywith the

Cauchy mutation strategy to enhance both global and local search capabilities.

Rseults: Simulations were conducted using underwater multipath signals

generated by the Bellhop Acoustic Toolbox. The results demonstrate that the

performance of the SDFCFLNNE initialized by OCCSSA surpasses that of CFLNN-

based and traditional nonlinear equalizers, with a notable improvement of 2-6 dB

in terms of signal-to-noise ratio at a bit error rate (BER) of 10−4 and a reduced

mean square error (MSE). Furthermore, the effectiveness of the proposed

equalizer was validated using the lake experimental data, demonstrating lower

BER and MSE with improved stability.
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Discussion: This underscores thepromise of employing the SDFCFLNNE

initialized by OCCSSA as a promising solution to enhance the robustness of

underwater communication in challenging environments.
KEYWORDS

decision feedback equalizer, Chebyshev function link artificial neural network, sparrow
search algorithm, osprey optimization algorithm, chaotic mapping, Cauchy mutation
1 Introduction
The shallow water acoustic environment is complex and

changeable, which often exhibits intricate signal multipath effects

and Doppler frequency shifts (Stojanovic and Preisig, 2009; Huang

et al., 2018). The multipath propagation of underwater acoustic

(UWA) signals originates from the effects of acoustic boundaries

(such as reflection from the water surface and seabed), refraction

caused by the non-uniformly distributed dissound speed in the

water, as well as scattering from particles. The complex multipath

results in significant signal time spreading, thereby causing severe

intersymbol interference. In typical shallow water acoustic

communications, intersymbol interference may span over

hundreds of symbols. Consequently, at the receiver end, it is

essential for the channel equalization to possess strong adaptive

channel tracking capabilities (Song et al., 2006; Wang et al., 2021).

This poses a significant challenge for reliable and efficient UWA

communication (Zhang et al., 2018).

To combat intersymbol interference caused by time-varying

multipath propagation, extensive research has been conducted on

various channel equalization techniques. Single-carrier schemes

and time-domain equalization techniques offer high spectral

efficiency and robustness, albeit at the cost of high receiver

complexity (Stojanovic and Preisig, 2009; Zhang et al., 2018). The

proposed adaptive step-size least mean square performs well for

many channel types, but for certain complex non-stationary UWA

channels, the rapid tracking capability of recursive least square is

essential (Freitag et al., 1997). To achieve reliable coherent

communication over UWA channels, a receiver was designed

which combines the recursive least square algorithm with a

second-order digital phase-locked loop for carrier synchronization

and performs fractionally spaced decision feedback equalization of

the received signals. The parameters of this receiver are adaptively

adjusted (Stojanovic et al., 1994). An adaptive nonlinearity

(piecewise linear) was introduced into the channel equalization

algorithm and its effectiveness was demonstrated through highly

realistic experiments conducted on real-field data as well as accurate

simulations of UWA channels (Kari et al., 2017). In recent years, in

order to alleviate propagation errors, expedite convergence speed,

and further enhance receiver performance, there has been growing

research on adaptive turbo equalization (He et al., 2019; Xi et al.,
02147
2019; Qin et al., 2020). Considering the sparsity inherent in UWA

channels, sparse matrices have been utilized to construct sparse

equalizers, aiming to achieve faster convergence and lower error

rates (Xi et al., 2020; Wang et al., 2021; Wang et al., 2021).

Additionally, the equalization challenges in an impulsive

interference single-carrier modulation system based on a

parameterized model are addressed, and a two-step equalization

algorithm is proposed (Ge et al., 2022). The robust equalization for

single-carrier underwater acoustic communication in sparse

impulsive interference environment was proposed (Wei et al.,

2023). This algorithm is based on the framework of variational

Bayesian inference and possesses the unique capability of

simultaneously accounting for the sparsity inherent in the

channel and impulse interference. At the same time, several

waveform design (Zhu et al., 2023) and enhanced receiver

schemes (Zhang et al., 2021; Liu et al., 2023) were proposed to

further address inter-symbol interference and multipath

propagation issues. However, the complex multipath effect of the

UWA channels contributes to the slow convergence rate and

extensive computational requirements of traditional equalization

algorithms. As a result, there is substantial room for improvement

in UWA communication systems.

In recent years, machine learning techniques have garnered

attention across various fields. Particularly, deep learning (DL)

technology holds tremendous potential for addressing non-

parametric problems such as object detection and recognition

(Tsai et al., 2013), speech recognition (Zhang and Wang, 2016),

target tracking (Milan et al., 2017), wireless communication (Wang

et al., 2017; Ma et al., 2018; van Heteren, 2022; Mishra et al., 2023).

In order to reduce the computational costs of traditional equalizers,

machine learning-based equalizers have been introduced to mitigate

intersymbol interference. Channel equalization can be viewed as a

classification problem, where the equalizer is designed as a decision

device with the motivation to classify the transmitted signals as

accurately as possible (Zhang and Yang, 2020). Gibson et al.

introduced an adaptive equalizer employing a neural network

architecture based on multilayer perceptrons (MLP) to counter

intersymbol interference on linear channels with Gaussian white

noise (Gibson et al., 1989). Chang et al. proposed a neural network-

based decision feedback equalizer (DFE) that obviates the need for

time-consuming complex-valued backpropagation training

algorithms (Chang and Wang, 1995). Gao et al. demonstrated
frontiersin.org
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that in underwater digital communication scenarios, their proposed

blind equalizer achieves faster convergence speed and smaller mean

square error (MSE) compared to original MLP-based equalizers

that require training data (Gao et al., 2009). Zhang et al. proposed

a DL-based time-varying UWA channel single-carrier

communication receiver to adapt to the dynamic characteristics

of UWA channels. The receiver operates in an alternating mode

between online training and testing (Zhang et al., 2019b). Zhang

et al. introduced a DL-based UWA communication orthogonal

frequency-division multiplexing receiver. A stack of convolutional

layers with skip connections effectively extracts meaningful features

from the received signal and reconstructs the original transmitted

symbols (Zhang et al., 2022). Radial basis function (RBF) neural

networks have garnered the attention of many researchers due to

their simple structure and high learning efficiency, and have been

utilized for addressing channel equalization issues (Lee and Sankar,

2007; Guha and Patra, 2009; Ning et al., 2009).

However, with a higher channel order, a greater number of RBF

centers are required, ultimately resulting in an excessive

computational burden. To overcome these drawbacks of MLP

and RBF, another novel single-layer neural network, known as

the Functional Link Neural Network (FLNN), was proposed by

Paul. Due to the non-linear processing of signals in the FLNN, it can

generate arbitrarily complex decision regions (Patra et al., 1999).

This network features a simple structure with only input and output

layers, and the hidden layer is entirely replaced by non-linear

mappings. These mappings are introduced through the expansion

of input patterns using trigonometric polynomials and other basis

functions like Gaussian polynomials, orthogonal polynomials,

Legendre polynomials, and Chebyshev polynomials (Burse et al.,

2010). The FLNN increases the dimensionality of the input signal

space by a set of linearly independent non-linear functions, thus

reducing computational load and allowing for straightforward

hardware implementation (Patra et al., 2008; Zhang and Yang,

2020). Moreover, research indicates that non-linear equalizers

based on FLNN outperform MLP, RBF, and PPN equalizers in

terms of MSE, convergence rate, bit error rate (BER), and

computational complexity (Patra et al., 1999). Lee et al.

introduced a Chebyshev Neural Network for static function

approximation, which is more computationally efficient than

trigonometric polynomials when expanding the input space for

extended static function approximation and non-linear dynamic

system identification (Lee and Jeng, 1998). Patra et al. have

employed Chebyshev Functional Link Neural Networks (CFLNN)

for channel equalization of four quadrature amplitude modulation

signals (Patra and Kot, 2002; Patra et al., 2005). Hussain combined

traditional DFE with FLNN, proposing a Decision Feedback

Functional Link Neural Network Equalizer (DFFLNN) (Hussain

et al., 1997). Building upon this, they introduced a Chebyshev

orthogonal polynomial cascaded FLNN for non-linear channel

equalization (Zhao and Zhang, 2008) and an adaptive DFE based

on the combination of the FIR and FLNN (Zhao et al., 2011).

Moreover, Convolutional Neural Network (He et al., 2023),

Recurrent Neural Networks (Kechriotis et al., 1994; Chagra et al.,
Frontiers in Marine Science 03148
2005; Xiao et al., 2008; Zhao et al., 2010; Li et al., 2021; Qiao et al.,

2022), Fuzzy Neural Networks (Heng et al., 2006; Chang and Ho,

2009; Chang and Ho, 2011), Extreme Learning Machines (Yang

et al., 2018; Liu et al., 2019), Wavelet Neural Networks (Xiao and

Dong, 2015), Support Vector Machines (Zhang et al., 2019a), other

neural network models and Deep Reinforcement Learning (He and

Tao, 2023) have been employed for channel equalization.

Swarm intelligence optimization algorithms are a class of bio-

inspired algorithms inspired by the behavioral patterns of certain

social organisms in the natural world. The central idea is to conduct

both global and local searches within a solution space to find

optimal solutions. These algorithms provide a new approach to

solving complex problems without centralized control or a global

model. In recent years, new swarm intelligence optimization

algorithms have continuously emerged. Scholars have drawn

inspiration from the behavior of various animals such as ants,

wolves, birds, moths, whales, sparrows, and more to propose a series

of swarm intelligence optimization algorithms, including the

Particle Swarm Optimization (PSO) algorithm (Kennedy and

Eberhart, 1995), the Grey Wolf Optimization (GWO) algorithm

(Mirjalili et al., 2014), the Whale Optimization Algorithm (WOA)

(Mirjalili and Lewis, 2016), the Bald Eagle Search (BES) algorithm

(Alsattar et al., 2020), the Sparrow Search Algorithm (SSA)

(Xue and Shen, 2020), the Cooperation Search Algorithm (CSA)

(Feng et al., 2021), artificial gorilla troops optimizer(GTO)

(Abdollahzadeh et al., 2021), white shark optimizer(WSO)(Braik

et al., 2022), dung beetle optimizer(DBO)(Xue and Shen, 2023) and

Osprey Optimization Algorithm(OOA)(Dehghani and Trojovskỳ,

2023). The Sparrow Search Algorithm (SSA) was first introduced by

Xue et al. in 2020 (Xue and Shen, 2020). In comparison to other

algorithms, SSA offers several advantages, including fast

convergence, strong optimization capabilities, and a wider range

of application scenarios. As a result, SSA has garnered the attention

of researchers from various fields. However, SSA does have

limitations in terms of initial population quality, search

capabilities, and population diversity. To address these issues, the

Improved Sparrow Search Algorithm (ISSA) was proposed (Song

et al., 2020). ISSA introduces non-linear decay in the position

updates of producers, which facilitates the exploration and

utilization of the search space. ISSA incorporates a mutation

strategy to update the positions of scavengers with lower energy,

combining chaotic search with local development by higher-energy

scavengers. This enhances diversity and prevents falling into local

optima. At the same time, the Tent mapping is used to initialize the

population. Then, for the producers, an adaptive weight strategy is

combined with the Levy flight mechanism, making the fusion

search approach more comprehensive and flexible. Finally, in the

scavenger stage, a variable spiral search strategy is employed to

provide a more detailed search scope (Ouyang et al., 2021).

Traditional network equalizers suffer from problems such as

large steady-state errors, slow convergence, susceptibility to local

minima during the search process, and the curse of dimensionality.

Moreover, in the training phase of neural networks, the random

initialization of weights and biases can substantially impact the
frontiersin.org
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training process and the ultimate performance of the network. In

contrast, swarm intelligence optimization algorithms exhibit strong

convergence and high precision advantages in the optimization

process of practical problems. Therefore, they have become popular

research topics in the field of equalizer optimization methods. A

modified constant modulus algorithm digital channel equalizer

learning algorithm based on PSO is proposed by Sahu (Sahu and

Majumder, 2021). The particle swarm algorithm is employed as the

training algorithm, resulting in a shorter convergence time and

better performance compared to traditional LMS algorithms. This

equalizer avoids introducing any phase ambiguity and does not get

trapped in local optima. A novel training strategy using the Fuzzy

Firefly Algorithm is proposed for channel equalization (Mohapatra

et al., 2022). By employing an appropriate network topology and

parameters, the suggested training system exhibits enhanced

exploration and exploitation capabilities, as well as the ability to

address local minima issues. An enhanced Grasshopper

Optimization Algorithm (GOA) is proposed for nonlinear

wireless communication channel equalization (Ingle and Jatoth,

2023). By combining Levy flights and greedy selection operators

with the basic GOA, the diversity of the swarm is increased.

Simulation results on four nonlinear channels demonstrate the

exploration and exploitation capabilities of the improved

Grasshopper Optimization Algorithm in terms of MSE and BER

performance. An effective equalizer based on artificial neural

networks is proposed by Shwetha (Shwetha et al., 2023). The

Battle Royale Optimization method, as introduced, is utilized to

train the weights of the neural network. The effectiveness of this

approach is demonstrated through the evaluation of performance

metrics such as MSE, mean squared residual error, and BER.

In shallow water acoustic propagation, there often exists

severe multipath effects. Traditional equalization techniques

may require hundreds of taps, greatly increasing system

complexity. While the DFFLNNE (Hussain et al., 1997)

outperforms FLNNE and traditional DFE, but it increases the
Frontiers in Marine Science 04149
dimensionality of the input layer, raising the complexity of the

network structure. Simultaneously, during the training phase of

the network, random initialization of weights and biases can affect

the neural network’s training process and final performance.

Improper initialization can lead to problems such as gradient

vanishing or exploding, causing training to be infeasible or overly

slow. To enhance communication reliability without increasing

system complexity, this paper proposes a simplified decision

feedback Chebyshev functional link neural network equalizer

(SDF-CFLNNE) initialized with swarm intelligence optimization

algorithms. The papers contributions can be summarized

as follows.
1. To address the issue of unreliability in underwater

communication links caused by significant strong

multipath effects in shallow-water environments, we

propose a simplified decision feedback Chebyshev

function link neural network equalizer.

2. To optimize the initial weights and thresholds of the

proposed equalizer, We propose a Chaotic Sparrow

Search Algorithm combining osprey optimization

algorithm and Cauchy mutation. This approach mitigates

the instability resulting from random weight initialization

in the network equalizer.
The rest of this paper is organized as follows. In Section 2, a

novel simplified decision feedback Chebyshev functional link neural

network equalizer is proposed to address the unreliability of

communication due to multipath effects. In Section 3, a chaotic

sparrow search algorithm combining osprey optimization

algorithm and Cauchy mutation is proposed for intelligent

optimization of network weight and bias initialization. We

validate the method through simulation and lake experimental

data processing in Section 4. Finally, conclusions are given in

Section 5.
FIGURE 1

The structural diagram of the CFLNNE.
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2 A novel simplified decision feedback
Chebyshev functional link neural
network equalizer

2.1 Decision feedback Chebyshev
functional link neural network equalizer

To overcome intersymbol interference caused by multipath

effects, a channel equalizer is embedded in the receiver to restore

the transmitted signal. The FLNNE (Patra et al., 1999) has no

hidden layers and is composed solely of a function extension

module and a single-layer perceptron. This composition enables

the generation of complex decision regions through the creation of

nonlinear decision boundaries. In contrast to the linear weighting of

input patterns generated by linear connections in MLP, the function

expansion module enhances the dimensionality of input patterns by

applying a set of linearly independent functions to elements or the

entire pattern itself, thus enhancing its representation in high-

dimensional space. Moreover, due to its single-layer structure,

this FLNN structure exhibits lower computational complexity

and faster convergence speed compared to other traditional

neural networks. As widely recognized, utilizing the optimal

approximation theory, Chebyshev orthogonal polynomials possess

a robust capability for nonlinear approximation (Patra et al., 2005).

The function expansion module in this context is composed of

Chebyshev polynomials and their outer products, serving to

simulate nonlinear channels, to construct the Chebyshev

Functional Link Neural Network Equalizer (CFLNNE). The

Figure 1 illustrates the structure of the CFLNNE.

Chebyshev polynomials are a set of orthogonal polynomials

defined as solutions to the Chebyshev differential equation, denoted

as Tn(x). Chebyshev polynomials are computationally more

tractable compared to trigonometric polynomials. The first

several Chebyshev polynomials are given by T0(x) = 1, T1(x) = x,
Frontiers in Marine Science 05150
and T2(x) = 2x2 − 1. When the input signal is Xk= [x1(k),x2(k),…,xM
(k)]T, the higher-order Chebyshev polynomials for −1< x< 1 can be

generated using the following recursion formula Equation 1:

c1(Xk)  = T0(Xk)  =  1,

c2(Xk)  = T1(Xk)  = Xk,

⋮

cn+2(Xk)  = Tn+1(Xk)  =  2XkTn(Xk)  − Tn−1(Xk)

(1)

In CFLNNE, the input signal denoted as Xk, is expanded into N

linearly independent functions using Chebyshev polynomials, and

can be represented as Ck= [c1(Xk)c2(Xk)…cN(Xk)]
T.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 2 and 3:

uj(k) =o
N

i=1
wji(k)ci(Xk) + bj(k) i = 1, 2,…,N ; j = 1, 2,…M : (2)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)ci(Xk) + bj(k)) i = 1, 2,…,N ; j

= 1, 2,…M : (3)

where w represents the weight coefficients from the input layer

to the output layer, and b represents the bias of the output layer. The

nonlinear activation function here is f(·) = tanh(·), and its derivative

is denoted as f′(·).
The output signal after decision device can be represented as

Equation 4:

s(k) = sign(ŷ (k)) =
−1  if ŷ (k) < 0

1  if ŷ (k) ≥ 0

(
(4)

Taking advantage of the traditional decision feedback equalizer’s

ability to mitigate inter-symbol interference introduced by the preceding

information symbol, Hussain et al. integrated the DFE with a FLNN,
FIGURE 2

The structural diagram of the DF-CFLNNE.
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creating the decision feedback functional link neural network (Hussain

et al., 1997). To further enhance the nonlinear approximation

capabilities of the function link module, the DFE is combined with

CFLNNE to form a decision feedback Chebyshev functional link neural

network (DF-CFLNNE), as illustrated in Figure 2.

The input signal Xk= [x1(k),x2(k),…,xM(k)]
T and feedback

signal Sk =  ½s1(k),…, sN2
(k)�T from the decision device are jointly

used as the input signal Zk= [Xk, Sk] for the DF-CFLNNE, where N2

represents the order of the feedback delay path. The key distinction

from CFLNNE is that CFLNNE takes only Xk as its input signal,

without the feedback signals from the decision device.

Subsequently, the input signal Zk of DF-CFLNNE is expanded

into N linearly independent functions using Chebyshev

polynomials, denoted as Ck= [c1(Zk),c2(Zk),…,cN(Zk)]
T, where Ck

serves as the input to the network’s input layer.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 5 and 6:

uj(k) =o
N

i=1
wji(k)ci(Zk) + bj(k) i = 1, 2,…,N ; j = 1, 2,…M : (5)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)ci(Zk) + bj(k)) i = 1, 2,…,N ; j

= 1, 2,…M : (6)

For convenience, these values of functions can be represented in

matrix form as Equation 7:

Ŷ k = f (WkCk + Bk) (7)

whereWk is anM ×N dimensional matrix, i.e.,Wk= [wj1,wj2,…,

wjN]. Bk is an M ×1 dimensional matrix, i.e., Bk= [b1,b2,…,bM]. The
Frontiers in Marine Science 06151
output of the entire network can be represented in matrix form as

Ŷ k = ½ŷ 1, ŷ 2,…ŷ M �T .
We use the MSE as the loss function, which can be represented

as Equation 8:

Jk =o(Dk − bY k)
2 (8)

where Dk represents the desired output sequence at time

instant k.

The backpropagation algorithm is employed here to train the

DF-CFLNN. The training process is expressed as follows Equations

9 and 10:

dJk
dWk

= ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Wk

= 2(Dk − Ŷ k) · f
0(Uk) · Ck

= 2(Dk − Ŷ k) · (1 − Ŷ
2
k) · Ck

(9)

dJk
dBk

= ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Bk

= 2(Dk − Ŷ k) · f
0(Uk)

= 2(Dk − Ŷ k) · (1 − Ŷ
2
k)

(10)

According to the gradient descent algorithm, there will be

Equations 11 and 12:

Wk = Wk − m
dJk
dWk

(11)

Bk = Bk − m
dJk
dBk

(12)

where the parameter µ denotes the learning factor.
FIGURE 3

The structural diagram of the SDF-CFLNNE.
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2.2 Simplified decision feedback
Chebyshev functional link neural
network equalizer

DF-CFLNNE increases the system’s performance at the cost of

increased complexity. In order to reduce hardware costs without

compromising system performance, a simplified DF-CFLNNE

(SDF-CFLNNE) structure is proposed as illustrated in Figure 3.

In the SDF-CFLNNE structure, the post-decision output signal

is directly fed back to the input layer of the neural network, rather

than being used as an input signal to the network, and it no longer

goes through the function expansion module. Namely, the input

layer signal is composed of the Chebyshev polynomial function

expansion of the received signal, denoted as Ck= [c1(Xk),c2(Xk),…,

cN(Xk)]
T, and the feedback signal fafter decision, denoted as Sk =

 ½s1(k),…, sN2
(k)�T , which can be represented as Gk =  ½c1(Xk), c2(Xk

),…, cN (Xk), s1(k),…, sN2
(k)�T = ½g1(k),…, gP(k)�T , P = N + N2. I t

can be observed from Figures 2, 3 that the number of input

signals in SDF-CFLNNE is fewer compared to DF-CFLNNE.

Consequently, the number of signals after the function expansion

module for SDF-CFLNNE is significantly reduced compared to

DF-CFLNNE. This streamlined system structure enhances

computational efficiency.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 13 and 14:

uj(k) =o
N

i=1
wji(k)gi(k) + bj(k) i = 1, 2,…, P; j = 1, 2,…M : (13)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)gi(k) + bj(k)) i = 1, 2,…, P; j

= 1, 2,…M : (14)

where w represents the weight coefficients from the input layer

to the output layer, and b represents the bias of the output layer. The

nonlinear activation function here is f(·) = tanh(·).

For convenience, these values of functions can be represented in

matrix form as Equation 15:

bY k = f (WkGk + Bk) (15)

where Wk is an M ×P dimensional matrix, i.e., Wk= [wj1,wj2,…,

wjP]. Bk is an M ×1 dimensional matrix, i.e., Bk= [b1,b2,…,bM]. The

output of the entire network can be represented in matrix form as

Ŷ k = ½ŷ 1, ŷ 2, ŷ M �T . We still adopt the MSE, as given in Equation 8,

as the loss function.

The BP algorithm is employed here to train the SDF-CFLNN.

According to Equations 9 and 10, the training process is expressed

as follows Equations 16 and 17:

Wk+1 = Wk − m dJk
dWk

= Wk − m ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Wk

= Wk − 2m(Dk − Ŷ k) · f
0(Uk) · Gk

= Wk − 2m(Dk − Ŷ k) · (1 − Ŷ
2
k) · Gk

(16)
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Bk+1 = Bk − m dJk
dBk

= Bk − m ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Bk

= Bk − 2m(Dk − Ŷ k) · f
0(Uk)

= Bk − 2m(Dk − Ŷ k) · (1 − Ŷ
2
k)

(17)

where the parameter µ denotes the learning factor.

SDF-CFLNNE directly inputs the decision feedback signal into

the network’s input layer instead of the function expansion module,

reducing the number of neurons in the input layer. In this way, we

can obtain the improvement of system performance from the

feedback signal without increasing the number of neurons in the

input layer of the network. It reduces system complexity, enhances

computational efficiency, and accelerates convergence speed.
3 A novel chaotic sparrow search
algorithm combining osprey
optimization algorithm and
Cauchy mutation

In this section, a OCCSSA is proposed to solve the impact of the

random initialization of network weights on the convergence of the

training process and network performance. This algorithm utilizes

chaotic mapping for random population initialization and

combines the osprey optimization algorithm with the Cauchy

mutation criterion to update the positions in the SSA. The use of

the osprey optimization algorithm.

(OOA) in the initial phase provides a global exploration

strategy, where a random attack on one of the food sources helps

mitigate the SSA’s over-reliance on the previous generation’s

sparrow positions for updates. In the second phase, Cauchy

mutation is applied to perturb individuals in the sparrow

positions, thereby expanding the search scope of the SSA and

enhancing its ability to escape local optima.
3.1 Preliminaries

We briefly introduce the basic framework of SSA, chaotic

mapping, OOA, Cauchy mutation, and some basic concepts.

3.1.1 Sparrow search algorithm
Sparrows are typically gregarious birds. Captive house sparrows

come in two different types, referred to as “producers” and

“scroungers” (Barnard and Sibly, 1981). The producers actively

search for sources of food, while the scroungers obtain food through

the producers. Additionally, these birds are typically capable of

flexibly employing behavioral strategies and switching between

producing and scrounging (Liker and Barta, 2002). It can be said

that, in order to find food, the sparrows often utilize both producer

and scrounger strategies simultaneously (Barnard and Sibly, 1981;

Xue and Shen, 2020).
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Assuming there are N sparrows in a d-dimensional search

space, the position of each sparrow can be represented by the

following matrix Equation 18:

X =

x1,1 x1,2 … … x1,d

x2,1 x2,2 … … x2,d

⋮ ⋮ ⋮ ⋮ ⋮

xN ,1 xN ,2 … … xN ,d

2
666664

3
777775 (18)

The positions of sparrows in the search space are randomly

initialized using Equation 19.

xi,j = lbj + ri,j · (ubj − lbj) (19)

where xi,j represents the position of the i-th sparrow in the j-th

dimension. ri,j is a random number in the interval [0,1]. lbj and ubj
are the lower and upper bounds of the j-th dimension of the

problem variables, respectively.

The fitness values of all sparrows can be represented by the

following vector Equation 20:

FX =

f (½x1,1 x1,2 … … x1,d�)
f (½x2,1 x2,2 … … x2,d�)
⋮ ⋮ ⋮ ⋮ ⋮

f (½xN ,1 xN ,2 … … xN ,d�)

2
666664

3
777775 (20)

The first stage is the exploration phase. The producers with

better fitness values are given preference when it comes to acquiring

food during the search process. Additionally, because producers

take on the responsibility of food searching and guiding the entire

population’s movement, they have a wider search area compared to

the scroungers. Moreover, when a sparrow detects a predator, it

initiates an alarm by chirping. If the alarm value surpasses a

predefined safety threshold, producers must lead all the

scroungers to a safe zone. Throughout each iteration, the

positions of producers are updated as follows Equation 21:

Xt+1
i,j =

Xt
i,j · exp  (

−i
a · iter max 

)  if R2 < ST

Xt
i,j + Q · L  if R2 ≥ ST

(
(21)

where t represents the current iteration number, j = 1, 2,…, d :

Xt+1
i,j represents the value of the j-th dimension for the i-th sparrow

at the t-th iteration. itermax signifies the maximum number of

iterations. a ∈ (0,1] is a random number. Q is a random number

following a normal distribution. L is a matrix of size 1 × d in which

every element is equal to 1. R2 (where R2 ∈ [0,1]) represents the

alarm value. ST (where ST ∈ [0.5,1]) stands for the safety threshold.

If R2< ST, it signifies an absence of predators in the vicinity,

prompting the producers to transition into an expansive search

mode. However, when R2 ≥ ST, it signifies that certain sparrows

have detected predators, necessitating a swift relocation of all

sparrows to alternative safe areas.

The second phase is the development phase. Scroungers follow

the producers who can offer the best food to search for

nourishment. Meanwhile, some scroungers may continuously

monitor the producers, and if they notice a producer has found
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good food, they immediately leave their current location to compete

for the food. If they succeed, they can acquire the producer’s food

immediately. The position update formula for the scroungers is as

follows Equation 22:

Xt+1
i,j =

Q · exp  
Xt
worst −X

t
i,j

i2

� �
 if i > N=2

Xt+1
P + Xt

i,j − Xt+1
P

��� ��� · A+ · L  otherwise 

8><
>: (22)

where XP represents the optimal position occupied by the

producer. Xworst represents the current global worst location. A is

a 1×dmatrix where each element is randomly set as 1 or −1, and A+

= AT(AAT)−1. If i > N/2, it indicates that the i-th scrounger, with the

worst fitness value, is highly likely to be in a starved state.

When they sense danger, sparrows located at the edge of the

flock quickly move towards a safe area, while those in the middle of

the flock move randomly to get closer to others. We assume that the

sparrows aware of the danger constitute between 10% and 20% of

the total population. The initial positions of these sparrows are

randomly generated within the entire population and can be

expressed using the following formula Equation 23:

Xt+1
i,j =

Xt
best  + b · Xt

i,j − Xt
best 

��� ���  if fi > fg

Xt
i,j + K · (

Xt
i,j−X

t
worst j j

(fi−fw)+ϵ
)  if fi = fg

8><
>: (23)

where Xbest is the current global optimal location. b, as a step

size control parameter, is a random number following a normal

distribution with a mean of 0 and a variance of 1. K ∈ [−1,1] is a

random number and denotes the direction in which the sparrow

moves and is also the step size control coefficient. ϵ is a small

constant to avoid division by zero errors. Here, fi represents the

fitness value of the current sparrow, and fg and fw are the current

global best and worst fitness values, respectively.

If fi > fg, this signifies that the sparrow is positioned at the

group’s periphery. Xbest denotes the location of the population

center and is considered safe. If fi= fg, it implies that sparrows in

the middle of the group have sensed danger and must approach

the others.

3.1.2 Chaotic mapping
A chaotic matrix is a typical source of “ordered chaos,”

exhibiting unique characteristics of randomness and state

transitivity. Under certain “rules,” chaotic sequences traverse all

different states within a defined range. Chaotic sequences generally

possess several key features, including nonlinearity, sensitivity to

initial conditions, transitivity, randomness, strange attractors

(chaotic attractors), global stability and local instability, and long-

term unpredictability.

In the context of intelligent optimization algorithms, random

initialization of the population is often achieved using a uniform

distribution. Compared to standard random search based on

conventional probability distributions, the use of chaotic

mappings in intelligent optimization algorithms can help

popula t ions escape loca l minima and enable fas ter

iterative searches.
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3.1.3 Osprey optimization algorithm
The OOA was proposed by Mohammad Dehghani and Pavel

Trojovský in 2023(Dehghani and Trojovskỳ, 2023), simulating the

hunting behavior of ospreys.

The first phase is the exploration phase, involving the locating

and capturing of fish. Ospreys, with their powerful vision, are

formidable predators capable of spotting fish beneath the water’s

surface. Once they’ve pinpointed a fish’s location, they dive

underwater to attack and capture it. The initial stage of

population update in OOA draws inspiration from this natural

osprey behavior. Modeling how ospreys hunt fish results in

substantial alterations to the ospreys’ positions within the search

space. This, in turn, enhances OOA’s ability to explore and locate

optimal regions while avoiding local optima.

Let’s assume there are N ospreys in a d-dimensional search

space. For each osprey, the positions of other ospreys in the search

space that have a better objective function value are considered

underwater fish. The set of fish for each osprey is specified using

Equation 24.

FPi = Xk j k ∈ 1, 2,…,Nf g∧ Fk < Fif g∪​ Xbest f g (24)

where FPi is the set of fish positions for the i-th osprey and Xbest

is the best candidate solution.

The osprey employs a random process to detect the location of

one of these fishes, and it initiates an attack. Through modeling the

osprey’s movement as it approaches the fish, a new position is

computed for the osprey by Equation 25 and Equation 26.

xP1i,j = xi,j + ri,j · (SFi,j − Ii,j · xi,j) (25)

xP1i,j =

xP1i,j , lbj ≤ xP1i,j ≤ ubj

lbj, x
P1
i,j < lbj

ubj, x
P1
i,j > ubj

8>>><
>>>:

(26)

This new position, if it results in a better objective function

value, replaces the osprey’s previous position by Equation 27.

Xi =
XP1
i , FP1

i < Fi

Xi,  else 

(
(27)

where xP1i,j is the new position of the i-th osprey in the j-th

dimension in the first phase, FP1
i is its fitness value, and SFi,j is the

fish chosen by the i-th osprey in the j-th dimension. ri,j is a random

number within the range [1,2], and Ii,j is a random number chosen

from the set {1,2}.

The second phase is known as the development stage. After

successfully capturing a fish, the osprey relocates it to a secure and

suitable spot for consumption. This modeling, involving the

relocation of the fish, introduces minor adjustments to the

osprey’s positions within the search space. Consequently, it

enhances OOA’s capability for exploiting the local search and

converging towards improved solutions around the identified ones.

In the OOA design, the emulation of osprey behavior involves

initially determining a new random position for each individual in

the population, akin to a “fish-eating spot.” This calculation is based
Frontiers in Marine Science 09154
on Equation 28. Subsequently, if this new position results in an

improved objective function value, it is employed to replace the

previous position of the respective osprey according to Equation 29.

xP2i,j = xi,j +
lbj + r · (ubj − lbj)

t
(28)

xP2i,j =

xP2i,j , lbj ≤ xP2i,j ≤ ubj

lbj, x
P1
i,j < lbj

ubj, x
P1
i,j > ubj

8>>><
>>>:

(29)

This new position, if it results in a better objective function

value, replaces the osprey’s previous position by Equation 30.

Xi =
XP2
i , FP2

i < Fi

Xi,  else 

(
(30)

where xP2i,j is the new position of the i-th osprey in the j-th

dimension in the second phase, FP2
i is its fitness value, and SFi,j is the

fish chosen by the i-th osprey in the j-th dimension. r is a random

number within the range of [1,2], t represents the current iteration

count, and T is the maximum number of iterations.
3.1.4 Cauchy mutation
The Cauchy mutation is derived from the Cauchy distribution.

The probability density function of the one-dimensional Cauchy

distribution is given by Equation 31:

f (x) =
1
p
·

a
a + x2

(31)

here, when a = 1, it is the standard Cauchy distribution.

The Cauchy distribution is similar to the standard normal

distribution. It is a continuous probability distribution that has

smaller values near the origin, is more elongated towards the ends,

and approaches zero at a slower rate. Therefore, compared to

the normal distribution, it can introduce larger disturbances. By

utilizing Cauchy mutation for perturbing individuals in the sparrow

position updates, the SSA’s search scope is expanded, leading to an

improved ability to escape local optima.
3.2 Chaotic sparrow search algorithm
combining osprey optimization algorithm
and Cauchy mutation

Traditional SSA employs a random initialization method for the

population, which can lead to premature convergence and slower

convergence speed. To address this, this paper adopts a chaotic

population initialization approach. This ensures randomness in

the population while enhancing the algorithm’s convergence

performance and diversifying the population. This helps prevent

algorithm stagnation caused by a homogenous population.

The positions of sparrows in the search space are initialized

using Piecewise chaotic mapping, as shown in Equation 32.
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xi,j = lbj + chaosi,j˙(ubj − lbj) (32)

Where chaosi,j represents the chaotic mapping.

The first phase is the exploration phase. For producers, the

Equation 25 of OOA’s global exploration strategy in the first phase

replaces the original producer position update Equation 21 of the

SSA. OOA aims to address the SSA’s overreliance on the update

method based on the positions of the previous generation

of sparrows.

The update method for the positions of producers in the

sparrow algorithm is determined based on the simulation of the

osprey’s movement toward fish. For each sparrow, the locations of

other sparrows in the search space with superior fitness values are

considered as food. Equation 33 is utilized to determine the set of

superior food chosen by each sparrow.

FPi =   Xk j k ∈   1, 2,…,Nf g ∧ Fk <  Fif g  ∪   Xbestf g (33)

where FPi represents the food collection for the i-th sparrow,

and Xbest is the position of the best sparrow.

The sparrows randomly detect the position of one of the foods

and go hunting. During each iteration, the positions of the

producers are updated according to Equation 34. If the updated

position is better, the sparrow’s previous position is replaced.

Xt+1
i,j =

Xt
i,j + ri,j · (SFi,j − Ii,j · X

t
i,j)  if R2 < ST

Xt
i,j + Q · L  if R2 ≥ ST

(
(34)

where SFi,j represents the food chosen by the i-th sparrow in the

j-th dimension.

The second phase is the development stage. Scroungers often

focus their search around the best discoverers. Food competition

can also occur during this period, where a scrounger tries to become

the producer. To prevent the algorithm from getting trapped in
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local optima, a Cauchy mutation strategy is introduced into the

equation for updating the scroungers. The updated scrounger

position equation, replacing the original SSA’s scrounger position

update equation, is as follows:

Xt+1
i,j = Xbest(t) + cauchy(0, 1)⊕ Xbest(t) (35)

where Xbest represents the current global best position. cauchy

(0,1) is the standard Cauchy distribution function, and ⊕
denotes multiplication.

The sparrows that sense danger still undergo updates according

to Equation 23.

The pseudocode for OCCSSA, which we have proposed, is

presented in Algorithm 1.
4 Simulation and lake
experiments results

4.1 Simulation validation and comparison

4.1.1 Comparison of the neural
network equalizers

We used Bellhop Acoustic Toolbox to generate a time-varying

UWA channel model to evaluate equalizers (Zhou et al., 2022). The

parameters for the time-varying Bellhop channel simulator are

listed in Table 1. We conducted simulations in three different

underwater acoustic channel environments, with the different

transmitter depth and seabed medium. The sound speed profile

of 200 m is shown in Figure 4. The acoustic transmission loss

obtained using the acoustic toolbox is shown in the Figures 5A, C, E.

The maximum transmission loss is approximately 70 dB. The

channel impulse response plot from the sound source to the

receiving point is shown in the Figures 5B, D, F.
Input: Max_iter: maximum iteration; PD: the number of

producers; SD: the number of sparrows who perceive the

danger; R2: the alarm value; n: the population size.

Output: Xbest: the current global best position.

1: Initialize: Using Equation 32 to initialize the

population

2: while iter< Max_iter do

3: Sort the fitness values to find the current best and

worst individuals.

4: R2 = rand(1)

5: for i =1: PD do

6: Find a better food location using Equation 33.

7: Producers randomly select a food and update their

positions using Equation 34.

8: end for

9: Find the optimal population and record as Xbest.

10: for i = (PD + 1): n do

11: Scroungers use the Cauchy mutation strategy to

update their positions using Equation 35.
TABLE 1 Bellhop simulation parameters setup.

Parameter CH1 CH2 CH3

Modulation type QPSK QPSK QPSK

Sound source frequency 10 kHz 10 kHz 10 kHz

Sound pressure level 195 dB 195 dB 195 dB

Angle of sound wave emitted
by transmitter point

−20° ∼
+ 20°

−20° ∼
+ 20°

−20° ∼
+ 20°

Sea water depth 200 m 200 m 200 m

Transmitter depth 80 m 80 m 150 m

Receiver depth 40 m 40 m 40 m

Distance from receiving point
to transmitter point

3 km 3 km 3 km

P-wave speed of sound
in bottom

1511.96 m/s 1511.96 m/s 1511.96 m/s

Density at the cutoff depth of
the seabed medium

1.421 g/cm3 2.034 g/cm3 1.421 g/cm3

Attenuation coefficient of the
seabed medium

0.078
dB/

wavelength

0.479
dB/

wavelength

0.078
dB/

wavelength
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Fron
12: end for

13: for i = 1: SD do

14: Sparrows partially aware of danger update their

positions using Equation 23.

15: end for

16: Obtain the global best value Xbest.

17: iter = iter + 1

18: end while

19: return Xbest
Algorithm 1. The pseudocode of OCCSSA.

We will compare equalizers based on MLP (Gibson et al., 1989),

CFLNN (Patra et al., 2005), DFCFLNN (Zhao and Zhang, 2008)and

traditional DFE with phase-locked loop (PLL) (Stojanovic

et al., 1994).

CFLNN has 10 feedforward taps, and its input signal is

represented as Xk= [rk,i,rk,q,rk+1,i,rk+1,q,…, rk+9,i,rk+9,q]
T. Here, rk,

irepresents the I-path of the k-th signal, and rk,q represents the

Qpath of the k-th signal. The input signal is transformed into 121

dimensions through a six-order Chebyshev transformation.

Therefore, the input layer has 121 nodes, and the output layer has

2 nodes. In DF-CFLNN, the tap coefficient of feedback is 2, and the

input signal consists of Xk= [rk,i,rk,q,rk+1,i,rk+1,q,…,rk+9,i,rk+9,q]
T and

the feedback signal Sk= [sk,i,sk,q,sk−1,i,sk−1,q] from the decision device.

The input signal is transformed into 97 dimensions through a four

order Chebyshev transformation. Therefore, the input layer has 97

nodes, and the output layer has 2 nodes. In SDF-CFLNN, the tap

coefficient of feedback is 2, and the input signal Xk=[rk,i,rk,q,rk+1,i,rk

+1,q,…,rk+9,i,rk+9,q]
T is transformed into 41 dimensions through a

two-order Chebyshev transformation. The input layer has 45 nodes,

including 41 nodes for input signals and 4 nodes for feedback

signals. The parameters for each equalizer are as shown in Table 2.

To enhance the reliability, we conducted 30 independent trials

on each equalizer. In our setup, we use 10,000 QPSK signals as input

data, with 80% serving as training data and 20% as testing data. In
tiers in Marine Science 11156
each trial, the maximum iteration count was set to 1000. Since

this paper focuses on the learning and equalization capabilities of

neural networks, in our simulations, we assumed perfect time

sequence recovery.

The simulated BER graph is shown in the Figures 6A, C, E. It

can be observed that our proposed SDFCFLNNE exhibits the best

BER performance in two different underwater acoustic

environments, followed by DF-CFLNNE, traditional DFE-PLL,

and CFLNNE in descending order. In complex underwater

environments, the MLP equalizer performs poorly and is the least

effective. The MSE iteration curve at SNR=10 dB is shown in the

Figures 6B, D, F. SDF-CFLNNE converges the fastest, with minimal

initial oscillations, and exhibits smooth and stable convergence. It

also has the smallest MSE value when reaching a steady state. In

CH1, SDF-CFLNNE reaches convergence in about 20 iterations,

while DFCFLNNE and CFLNNE reach convergence around 300

iterations with minor oscillations. MLP achieves basic convergence

in approximately 70 iterations but experiences significant

oscillations. In CH2, SDFCFLNNE reaches convergence in about

40 iterations, while DF-CFLNNE, CFLNNE, and MLP all converge

around 300 iterations with minor oscillations.
4.1.2 Comparison of the swarm intelligence
optimization algorithms
4.1.2.1 Benchmark test functions

Benchmark test functions are typically utilized to evaluate the

performance of optimization algorithms. We utilized the CEC2005

benchmark test functions as provided in Table 3 (Suganthan et al.,

2005) to assess the applicability and effectiveness of the proposed

OCSSA algorithm.
4.1.2.2 Comparison of chaotic mapping methods

In order to select the more effective chaotic mapping, we

initialized the population of OCCSSA using ten different chaotic
FIGURE 4

The sound speed profile of 200 m.
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mappings, namely Tent, Logistic, Cubic, Chebyshev, Piecewise,

Sinusoidal, Sine, ICMIC, Circle, and Bernoulli.

The experimental test environment is as follows: 12th Gen Intel

(R) Core(TM) i7-12700H CPU with a base frequency of 2.70 GHz

and 16.0 GB of RAM. The operating system used is Windows 11,
Frontiers in Marine Science 12157
and the integrated development environment (IDE) is

Matlab 2021a.

To increase the credibility of the algorithm, we conducted 30

independent trials on each test function. The maximum iteration

count was set to 500, and the population size was 50. The
TABLE 2 Network parameter configuration.

Parameter DFE-PLL MLP CFLNN DF-CFLNN SDF-CFLNN

Tap coefficient of feedforward 100 10 10 10 10

Tap coefficient of feedback 50 – 2 2 2

Order of Chebyshev polynomials – – 6 4 2

Number of nodes in the input layer – 20 121 97 45

Number of nodes in the hidden layer – 41 – – –

Number of nodes in the output layer – 4 4 4 4

Step size – 0.005 0.025 0.025 0.025
B

C D

E F

A

FIGURE 5

The channel information. (A) The transmission loss at CH1. (B) the impulse response at CH1. (C) The transmission loss at CH2. (D) the impulse
response at CH2. (E) The transmission loss at CH3. (F) the impulse response at CH3.
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TABLE 3 Details of the CEC2005 benchmark suite.

Classification Function Dim [Xmin,
Xmax]

Fmin

Unimodal benchmark functions F1(x) =o
  n

i=1

x2i
30 [100,100] 0

F2(x) =o
  n

i=1

j x2i j +
Y   n
i=1

j xi j
30 [100,100] 0

F3(x) =o
  n

i=1
o
  i

j−1

xj

 !2 30 [100,100] 0

F4(x) = maxi xij jf g, 1 ≤ i ≤ n 30 [100,100] 0

F5(x) = o
n−1

  i

100(xi+1 − x2i )
2 + (xi − 1)2

� � 30 [30,30] 0

F6(x) =o
  n

i=1

(½xi + 0:5�)2 30 [100,100] 0

F7(x) =o
  n

i=1

ix4i + random½0, 1) 30 [1.28,1.28] 0

Multimodal benchmark functions F8(x) =o
  n

i=1

− xi sin  (
ffiffiffiffiffiffiffi
xij j

p
) 30 [500,500] 418.9829

× dim

F9(x) =o
  n

i=1

½x2i − 10 cos  (2pxi) + 10� 30 [5.12,5.12] 0

F10(x) = −20 exp   −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

  n

i=1

x2i

s !
Þ − exp  

1
2o
  2

i=1

cos  (2pxi)

 !
+ 20 + e

30 [32,32] 0

F11(x) =
1

4000o
  n

i=1

x2i −
Yn
i=1

cos  
xiffiffi
i

p
� 	

+ 1
30 [600,600] 0

F12(x) =
p
n 10 sin  (py1) +o

  n

i=1

(yi − 1)2½1 + 10 sin2 (pyi)� + (yn − 1)2
( )

yi = 1 + xi+1
4 u(xi , a, k,m) =

k(xi − a)m , xi > a

0,−a < xi < a

k( − xi − a)m , xi < −a

8>>>><
>>>>:

30 [50,50] 0

F13 = 0:1 sin2 (3px1) +o
  n

i=1

(xi − 1)2½1 + sin2 (3px1 + 1)� + (xn − 1)2½1 + sin2 (2pxn)�
( )

+o
  n

i=1

u(xi , 5, 100, 4)

30 [50,50] 0

Fixed-Dimension multimodal
benchmark functions

F14(x) =
1
500

+o
 25

j=1

1

j +o
2

i=1

(xi − aij)
6

0
BBB@

1
CCCA

−1 2 [65,65] 1

F15(x) =o
 11

i=1

ai −
x1(b

2
1 + b1x2)

b21 + b1x3 + x4


 �2 4 [5,5] 0.00030

F16(x) = 4x21 − 2:1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42

2 [5,5] 1.0316

F17(x) = x2 −
5:1
4p2 x

2
1 +

5
p
x1 − 6

� 	2

+10 1 −
1
8p

� 	
cos  x1 + 10

2 [5,5] 0.398

F18(x) = ½1 + (x1 + x2 + x3)
2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)�

�½30 + (2x1 − 3x2)
2 � (18 − 32x1 + 12x2 + 48x2 − 36x1x2 + 27x22)�

2 [−2,2] 3

F19(x) = −o
  4

i=1

ci exp   −o
  4

j=1

aij(xj − pij)
2

 !
3 [0,1] 3.86
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experimental results indicate that overall, the Piecewise chaotic

mapping exhibited superior convergence speed and accuracy. We

selected the results for F15 and F21, where the convergence effects

are more pronounced, for illustration, as shown in Figure 7.

Therefore, we chose the Piecewise mapping as the method for

random population initialization. The expression for the Piecewise

mapping is as shown in Equation 36.
Frontiers in Marine Science 14159
x(t + 1) =

x(t)
p , 0 ≤ x(t) < p

x(t)−p
0:5−p , p ≤ x(t) < 0:5

1−p−x(t)
0:5−p , 0:5 ≤ x(t) < 1 − p

1−x(t)
p , 1 − p ≤ x(t) < 1

8>>>>>>><
>>>>>>>:

(36)
TABLE 3 Continued

Classification Function Dim [Xmin,
Xmax]

Fmin

F20(x) = −o
  4

i=1

ci exp   −o
6

j=1

aij(xj − pij)
2

 !
6 [0,1] 3.32

F21(x) = −o
  5

i=1

½(X − ai)(X − ai)
T + ci�−1 4 [0,10] 10.1532
fr
B

C D

E F

A

FIGURE 6

The comparison of the four CFLNN-based and DFE-PLL-based equalizers for CH1, CH2 and CH3. (A) The BER performance for CH1. (B) The MSE
performance for CH1 at SNR=10 dB. (C) The BER performance for CH2. (D) The MSE performance for CH2 at SNR=10 dB. (E) The BER performance
for CH3. (F) The MSE performance for CH3 at SNR=10 dB.
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where p  =  0:4,  x(1)  =  rand.

4.1.2.3 Comparison with the improved SSA-type
optimization algorithms

Precision and convergence speed are important indicators for

measuring the quality of an algorithm. In order to better validate the

effectiveness of the proposed algorithm, this section assesses

performance metrics, including convergence precision, using

CEC2005 benchmark test functions. This section reproduces SSA

(Xue and Shen, 2020), ISSA (Song et al., 2020), and the Adaptive

Spiral Flying Sparrow Search Algorithm (ASFSSA) (Ouyang et al.,

2021) to compare their performance against the proposed

optimization algorithm.
Frontiers in Marine Science 15160
To enhance the algorithm’s reliability, we conducted 30

independent trials on each test function. In each trial, the

maximum iteration count was set to 500, and the population size

was 50. The safety threshold was set to 0.8, and the number of

producers and sparrows sensing danger was both set to 20% of the

population size. Tables 4–6 provide the optimization indicators for

each algorithm during the optimization process, including the

average objective function value, standard deviation, median, best

value, average runtime, and algorithm ranking. Under the same

standard test functions, the average represents the convergence

accuracy of the algorithm, while the standard deviation reflects its

stability. The algorithm ranking in this paper is based on both the

average and standard deviation, where smaller values indicate better
TABLE 4 The comparative data for the improved SSA-type optimization algorithms on the CEC2005 multi-modal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F8

SSA -3952.9522 -2788.2072 -3355.182 300.0432 -3338.7384 0.28386 4

ASFSSA -4189.8289 -3081.3567 -3601.1772 276.0404 -3594.6031 0.65211 2

ISSA -4189.8289 -2641.0282 -3190.4933 322.1179 -3151.9709 0.56114 3

OCCSSA -4189.8289 -4189.8289 -4189.8289 1.8807e-12 -4189.8289 0.36753 1

F9

SSA 0 0 0 0 0 0.2154 4

ASFSSA 0 0 0 0 0 0.57664 1

ISSA 0 0 0 0 0 0.54976 3

OCCSSA 0 0 0 0 0 0.36489 2

F10

SSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.23346 4

ASFSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.61848 1

ISSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.54772 3

OCCSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.37073 2

F11

SSA 0 0 0 0 0 0.36387 4

ASFSSA 0 0 0 0 0 0.66729 1

ISSA 0 0 0 0 0 0.6481 3

OCCSSA 0 0 0 0 0 0.453 2

(Continued)
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FIGURE 7

The convergence curves of initializing the OCCSSA population with ten different chaotic mappings: (A) F15. (B) F21.
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TABLE 4 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F12

SSA 4.7116e-32 1.2762e-28 7.7739e-30 2.3715e-29 3.8534e-31 0.43226 2

ASFSSA 4.7864e-31 9.1663e-27 7.9713e-28 2.0578e-27 4.4766e-29 1.1384 4

ISSA 4.7116e-32 4.9052e-32 4.7649e-32 6.1095e-34 4.7237e-32 1.0566 1

OCCSSA 5.2199e-32 2.0845e-27 1.102e-28 3.8796e-28 3.7765e-30 0.76728 3

F13

SSA 1.473e-32 1.4984e-26 9.0349e-28 2.7677e-27 3.5795e-29 0.66066 3

ASFSSA 2.0893e-32 8.6921e-27 7.6682e-28 2.13e-27 2.6357e-29 1.1247 2

ISSA 1.3128e-30 0.010987 0.0018312 0.0041648 4.867e-28 1.0698 4

OCCSSA 1.3498e-32 9.19e-28 3.9444e-29 1.6717e-28 1.3786e-30 0.79072 1

F14

SSA 0.998 12.6705 5.868 5.5657 2.9821 1.8161 4

ASFSSA 0.998 10.7632 3.9379 3.9286 2.9821 2.4586 3

ISSA 0.998 12.6705 1.7179 2.1848 0.998 1.9249 2

OCCSSA 0.998 0.998 0.998 2.9156e-16 0.998 1.5888 1

F15

SSA 3.0749e-4 3.5402e-4 3.0904e-4 8.4967e-06 3.0749e-4 0.079858 2

ASFSSA 3.0749e-4 0.0012232 4.3684e-4 2.5835e-4 3.0749e-4 0.19687 3

ISSA 3.0749e-4 0.0015941 6.61e-4 4.7977e-4 3.764e-4 0.13209 4

OCCSSA 3.0749e-4 3.075e-4 3.0749e-4 3.599e-09 3.0749e-4 0.1641 1

F16

SSA -1.0316 -1.0316 -1.0316 6.3208e-16 -1.0316 0.083546 3

ASFSSA -1.0316 -1.0316 -1.0316 5.2964e-16 -1.0316 0.5866 2

ISSA -1.0316 -1.0316 -1.0316 6.5843e-16 -1.0316 0.31525 4

OCCSSA -1.0316 -1.0316 -1.0316 4.9651e-16 -1.0316 0.38597 1

F17

SSA 0.39789 0.39789 0.39789 0 0.39789 0.2027 2

ASFSSA 0.39789 0.39789 0.39789 0 0.39789 0.53944 3

ISSA 0.39789 0.39789 0.39789 0 0.39789 0.29137 1

OCCSSA 0.39789 0.39789 0.39789 0 0.39789 0.41833 4

F18

SSA 3 30 3.9 4.9295 3 0.22676 2

ASFSSA 3 3 3 1.2176e-15 3 0.61142 1

ISSA 3 30 3.9 4.9295 3 0.32566 3

OCCSSA 3 30 7.5 10.2343 3 0.41765 4

F19

SSA -3.8628 -3.8628 -3.8628 2.5391e-15 -3.8628 0.28393 3

ASFSSA -3.8628 -3.8628 -3.8628 2.3557e-15 -3.8628 0.70925 2

ISSA -3.8628 -3.8549 -3.8625 0.001439 -3.8628 0.45951 4

OCCSSA -3.8628 -3.8628 -3.8628 2.1787e-15 -3.8628 0.504 1

F20

SSA -3.322 -3.2031 -3.2507 0.059241 -3.2031 0.27128 3

ASFSSA -3.322 -3.2031 -3.2744 0.059241 -3.322 0.68092 2

ISSA -3.322 -3.2031 -3.2784 0.058273 -3.322 0.48302 4

OCCSSA -3.322 -3.2031 -3.3141 0.030164 -3.322 0.47212 1

F21

SSA -10.1532 -5.0552 -9.6434 1.5555 -10.1532 0.26862 2

ASFSSA -10.1532 -5.0552 -8.4682 2.3059 -10.0281 0.55033 4

(Continued)
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TABLE 4 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

ISSA -10.1532 -5.0552 -8.6174 2.372 -10.1511 0.33206 3

OCCSSA -10.1532 -10.1532 -10.1532 5.1842e-15 -10.1532 0.48869 1
F
rontiers in Marine S
cience
 17162
 frontie
TABLE 5 The comparative data for the swarm intelligence optimization algorithms on the CEC2005 multimodal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F8

PSO -8.7193e+3 -3.9441e+3 -6.6761e+3 1.0476e+3 -6.7351e+3 0.097544 8

GWO -7.9899e+3 -5.0501e+3 - -6.4564e+3 - 6.2055e+3 -6.5501e+3 0.21649 9

WOA -1.2568e+4 8.5968e+3 1.1133e+4 1.4966e+3 -1.1671e+4 0.085122 4

BES -9.8392e+3 -4.8897e+3 -6.8080e+3 1.5443e+3 -6.3557e+3 1.7086 7

CSA -1.2567e+4 -5.7760e+3 -8.0776e+3 2.6827e+3 -6.3615e+3 0.082586 6

GTO -1.2569e+4 -1.2569e+4 -1.2569e+4 6.8563e-07 -1.2569e+4 0.35746 1

WSO -4.4925e+3 -3.0767e+3 -3.6360e+3 3.6998e+3 -3.5819e+3 0.068351 10

DBO -1.2352 + 4 -6.8907e+3 -9.3852e+3 1.3641e+3 -9.3650e+3 0.076335 5

OOA -1.2569e+4 -9.0163e+3 -1.1266e+4 1.7415e+3 -1.2569e+4 0.17756 3

OCCSSA -1.2569e+4 -1.2451e+4 -1.2569e+4 21.6229 -1.2569e+4 0.49263 2

F9

PSO 101.3281 218.3835 152.4089 26.5922 151.7649 0.075587 9

GWO 0 8.9196 1.8651 2.6026 4.2633e-13 0.18007 6

WOA 0 0 0 0 0 0.051678 4

BES 0 0 0 0 0 1.3967 5

CSA 7.9697 47.8554 27.9259 11.4001 25.4951 0.054526 8

GTO 0 0 0 0 0 0.29075 3

WSO 15.7193 146.5208 39.0134 27.0612 29.6164 0.068292 10

DBO 0 25.8689 2.1348 5.4652 0 0.061137 7

OOA 0 0 0 0 0 0.093629 2

OCCSSA 0 0 0 0 0 0.41125 1

F10

PSO 1.318 3.306 2.3647 0.46286 2.3992 0.077702 9

GWO 3.9524e-14 6.4393e-14 4.4142e-14 5.8377e-15 4.3077e-14 0.17897 7

WOA 4.4409e-16 7.5495e-15 3.8784e-15 2.5523e-15 3.9968e-15 0.055302 6

BES 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 1.4385 1

CSA 19.9668 19.9668 19.9668 4.9591e-12 19.9668 0.057118 8

GTO 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.29324 4

WSO 2.9679 5.4777 4.0622 0.65712 4.0067 0.072419 10

OOA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.10506 3

DBO 4.4409e-16 3.9968e-15 5.6251e-16 6.4863e-16 4.4409e-16 0.06724 5

OCCSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.42693 2

F11
PSO 0.033408 0.16374 0.093846 0.033652 0.091152 0.13796 8

GWO 0 0.027649 0.0036764 0.0076973 0 0.23287 6
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algorithm performance and higher rankings. In cases where the

average and standard deviation are the same, the comparison is

based on the convergence speed in the convergence curves. When

the convergence speeds are similar, the average runtime is

considered. The optimal values, algorithms with a ranking of 1,

and the shortest average running time among all compared

algorithms are highlighted in bold.

The data results for the CEC2005 tests are presented in Table 4.

Since the optimization of neural network weights involves multi-

modal functions, we utilized the second-class functions (F8-F13)

and third-class functions (F14-F21) from the CEC2005 benchmark

test functions. In the case of CEC2005 multi-modal functions,

despite these functions having multiple local optima, the

proposed algorithm was able to successfully solve the
Frontiers in Marine Science 18163
optimization problems. OCCSSA demonstrated the overall best

performance, especially in F8, F13-F15, and F19-F21, where it

achieved the best values for each indicator, ranking first. For F9-

F11, ASFSSA performed the best, with OCCSSA ranking second.

The runtime falls within a moderate range. From the convergence

curve plots in Figure 8, it is evident that OCCSSA exhibited superior

convergence speed and accuracy in F8, F14-F17, and F19-F21

compared to other algorithms. However, in the case of F18,

OCCSSA performed poorly, with lower convergence accuracy

than other algorithms. Overall, OCCSSA demonstrated good

convergence speed and accuracy, as well as strong resistance to

local optima in multi-modal functions. The introduction of

multiple strategies significantly improved the algorithm’s stability

and search capabilities.
TABLE 5 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

WOA 0 0.13137 0.0043788 0.023984 0 0.10538 7

BES 0 0 0 0 0 1.0244 4

CSA 1.0139 1.7255 1.1649 0.14593 1.1152 0.10955 9

GTO 0 0 0 0 0 0.3944 3

WSO 1.1382 2.3146 1.5244 0.25651 1.4776 0.12313 10

DBO 0 0 0 0 0 0.072711 5

OOA 0 0 0 0 0 0.19774 2

OCCSSA 0 0 0 0 0 0.51511 1

F12

PSO 0.0030888 0.12305 0.037425 0.030208 0.028614 0.4018 8

GWO 0.013497 0.048772 0.02788 0.0086555 0.02709 0.52616 7

WOA 0.0013778 0.11719 0.0092898 0.020855 0.0041805 0.40458 6

BES 1.5705e-32 3.0953e-32 1.669e-32 3.7477e-33 1.5705e-32 2.6525 1

CSA 1.8485 11.4071 3.9982 1.784 3.6541 0.39943 10

GTO 2.024e-13 7.5911e-09 7.1513e-10 1.5397e-09 1.1799e-10 0.98566 4

WSO 0.19453 2.8473 1.1124 0.63026 0.94623 0.40955 9

DBO 1.0548e-11 1.2499e-07 4.8707e-09 2.2709e-08 2.9129e-10 0.26447 5

OOA 1.5705e-32 1.0317e-11 4.11e-13 1.8928e-12 1.5705e-32 0.84577 3

OCCSSA 1.5705e-32 1.9101e-27 1.1224e-28 3.9124e-28 4.7087e-32 1.0582 2

F13

PSO 0.11726 0.69786 0.35562 0.17123 0.33052 0.41634 7

GWO 0.098496 0.73036 0.38326 0.17023 0.38972 0.5469 6

WOA 0.047162 0.69122 0.21665 0.17243 0.16514 0.40542 5

BES 0.097371 2.9661 2.6729 0.79559 2.9661 2.6043 8

CSA 2.3803 71.6642 33.0108 23.2431 37.6155 0.41566 10

GTO 1.1212e-12 0.010987 0.0011045 0.0033508 4.046e-09 0.99464 3

WSO 3.5379 35.3039 15.231 8.2623 15.3338 0.41094 9

DBO 1.7766e-09 0.29615 0.076464 0.078188 0.092316 0.26475 4

OOA 1.3498e-32 7.8895e-10 2.6368e-11 1.4403e-10 1.733e-29 0.79109 2

OCCSSA 1.3498e-32 1.6778e-26 1.047e-27 3.4861e-27 1.2296e-30 0.9622 1
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TABLE 6 The comparative data for the swarm intelligence optimization algorithms on the CEC2005 fixed dimension multi-modal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

F14

PSO 0.998 6.9033 1.8561 1.363 1.992 0.92824 7

GWO 0.998 12.6705 4.4237 4.2869 2.9821 1.0034 9

WOA 0.998 10.7632 2.2114 2.471 0.998 0.95681 8

BES 0.998 12.6705 3.208 4.3568 0.998 4.1981 10

CSA 0.998 1.992 1.0311 0.18148 0.998 0.96765 4

GTO 0.998 0.998 0.998 0 0.998 2.0796 2

WSO 0.998 0.998 0.998 2.4089e-13 0.998 0.91439 3

DBO 0.998 2.9821 1.0641 0.36225 0.998 0.39187 5

OOA 0.998 2.0263 1.1648 0.37943 0.998 1.982 6

OCCSSA 0.998 0.998 0.998 2.9733e-16 0.998 1.7201 1

F15

PSO 5.5339e-4 1.0887e-3 8.9695e-4 1.466e-4 8.9653e-4 1.2332e-2 4

GWO 3.075e-4 2.0363e-2 5.0635e-3 8.5883e-3 3.1016e-4 0.03277 10

WOA 3.0888e-4 1.5269e-3 6.5179e-4 3.8321e-4 5.3985e-4 0.01804 9

BES 3.0749e-4 1.2232e-3 3.3801e-4 1.671e-4 3.0749e-4 0.95058 5

CSA 3.0749e-4 1.2232e-3 5.1769 e-4 3.5264e-4 3.0749e-4 0.035304 7

GTO 3.0749e-4 1.2232e-3 3.6853e-4 2.3232e-4 3.0749e-4 0.2191 6

WSO 3.0749e-4 3.0749e-4 3.0749 e-4 2.4691e-8 3.0749 0.03571 2

DBO 3.0749e-4 1.4887e-3 7.3946e-4 3.5861e-4 7.8266e-4 0.060859 8

OOA 3.0987e-4 8.2964e-4 4.4708e-4 1.3792e-4 3.870e-4 0.1038 3

OCCSSA 3.0749e-4 3.0749e-4 3.0749e-4 2.8651e-08 3.0749e-4 0.38096 1

F16

PSO -1.0316 -1.0316 -1.0316 5.1334e-16 -1.0316 0.020588 2

GWO -1.0316 -1.0316 -1.0316 1.5011e-08 -1.0316 0.055229 8

WOA -1.0316 -1.0316 -1.0316 5.1596e-10 -1.0316 0.045389 7

BES -1.0316 -1.0316 -1.0316 4.1946e-11 -1.0316 1.3678 6

CSA -1.0316 -1.0316 -1.0316 6.5195e-16 -1.0316 0.038116 5

GTO -1.0316 -1.0316 -1.0316 6.4539e-16 -1.0316 0.21813 4

WSO -1.0316 -1.0316 -1.0316 1.4226e-06 -1.0316 0.036043 9

DBO -1.0316 -1.0316 -1.0316 6.3877e-16 -1.0316 0.056909 3

OOA -1.0316 -1.0312 -1.0316 8.2782e-05 -1.0316 0.10267 10

OCCSSA -1.0316 -1.0316 -1.0316 4.8787e-16 -1.0316 0.40119 1

F17

PSO 0.39789 0.39789 0.39789 0 0.39789 0.0087385 4

GWO 0.39789 0.3979 0.39789 1.8026e-06 0.39789 0.039837 6

WOA 0.39789 0.3979 0.39789 3.0404e-06 0.39789 0.034851 7

BES 0.39789 0.3979 0.39789 3.2532e-06 0.39789 1.3276 8

CSA 0.39789 0.39789 0.39789 0 0.39789 0.027288 5

GTO 0.39789 0.39789 0.39789 0 0.39789 0.20295 2

WSO 0.39789 0.39793 0.39789 7.3998e-06 0.39789 0.027323 9

DBO 0.39789 0.39789 0.39789 0 0.39789 0.049667 1
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TABLE 6 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

OOA 0.39789 0.40128 0.39801 6.1782e-04 0.39789 0.086509 10

OCCSSA 0.39789 0.39789 0.39789 0 0.39789 0.39572 3

F18

PSO 3 3 3 4.7063e-15 3 0.0080774 2

GWO 3 3.0001 3 1.6003e-05 3 0.038497 5

WOA 0.0013778 0.11719 0.0092898 0.020855 0.0041805 0.40458 10

BES 3 3 3 1.3143e-15 3 1.3119 6

CSA 3 3 3 1.2315e-15 3 0.027287 7

GTO 3 3 3 7.8233e-16 3 0.19681 1

WSO 3 3 3 1.7992e-15 3 0.024549 4

DBO 3 3 3 1.1186e-15 3 0.046369 8

OOA 3 3.0674 3.0023 0.012296 3 0.079621 9

OCCSSA 3 3 3 3.4586e-15 3 0.37656 3

F19

PSO -3.8628 -3.8628 -3.8628 2.3646e-15 -3.8628 0.024082 2

GWO -3.8628 -3.8552 -3.8618 0.0022799 -3.8627 0.060494 8

WOA -3.8628 -3.8504 -3.8609 0.0032281 -3.8622 0.052052 9

BES -3.8628 -3.8628 -3.8628 2.7101e-15 -3.8628 1.4188 6

CSA -3.8628 -3.8628 -3.8628 2.6543e-15 -3.8628 0.043274 4

GTO -3.8628 -3.8628 -3.8628 2.6823e-15 -3.8628 0.22995 5

WSO -3.8628 -3.8628 -3.8628 2.7101e-15 -3.8628 0.040928 7

DBO -3.8628 -3.8628 -3.8628 2.6543e-15 -3.8628 0.059415 3

OOA -3.8628 -3.679 -3.8038 0.046934 -3.8076 0.11594 10

OCCSSA -3.8628 -3.8628 -3.8628 2.2629e-15 -3.8628 0.42646 1

F20

PSO -3.322 -3.2031 -3.2705 0.059923 -3.322 - 0.030683 3

GWO -3.322 -3.1345 -3.2654 0.072981 3.322 0.073937 5

WOA -3.322 - -2.8401 -3.2149 0.10919 -3.1884 0.047003 9

BES 3.322 -3.2031 -3.2586 0.060328 -3.2031 1.443 6

CSA -3.322 -3.2014 -3.2585 0.060388 -3.2031 0.039499 7

GTO -3.322 -3.2031 -3.2705 0.059923 -3.322 0.24303 4

WSO -3.322 -3.2031 -3.318 0.021707 -3.322 0.044449 2

DBO -3.322 -3.0839 -3.2459 0.08448 -3.2625 0.061138 8

OOA -3.2121 -1.8054 -2.6624 0.29428 -2.6389 0.11226 10

OCCSSA -3.322 -3.322 -3.322 1.6739e-15 -3.322 0.4264 1

F21

PSO -10.1532 -2.6305 -7.6382 3.0198 -10.1532 0.031031 10

GWO -10.153 -5.0552 -9.3055 1.9253 -10.1518 0.077393 5

WOA -10.1531 -5.0551 -8.9603 2.1912 -10.147 0.061021 7

BES -10.1532 -5.0552 -7.6028 2.5911 -7.5825 1.4532 8

CSA -10.1532 -5.1008 -9.1427 2.0555 -10.1532 0.050115 6

GTO -10.1532 -10.1532 -10.1532 6.3278e-15 -10.1532 0.24091 3

(Continued)
F
rontiers in Marine S
cience
 20165
 frontie
rsin.org

https://doi.org/10.3389/fmars.2023.1331635
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2023.1331635
TABLE 6 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

WSO -10.1532 -10.1532 -10.1532 5.0459e-15 -10.1532 0.049681 1

DBO -10.1532 -2.6305 -6.7838 2.675 -5.1008 0.065969 9

OOA -10.1532 -10.1532 -10.1532 3.0155e-07 -10.1532 0.12924 4

OCCSSA -10.1532 -10.1532 -10.1532 5.3086e-15 -10.1532 0.41797 2
F
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FIGURE 8

The convergence curve comparison graph of the improved SSA-type optimization algorithms on CEC2005 Multi-Modal functions: (A) F8. (B) F9.
(C) F10. (D) F11. (E) F12. (F) F13. (G) F14. (H) F15. (I) F16. (J) F17. (K) F18. (L) F19. (M) F20. (N) F21.
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4.1.2.4 Comparison with other swarm intelligence
optimization algorithms

To further validate the effectiveness of the proposed algorithm,

we compared OCCSSA with other recent swarm intelligence

optimization algorithms. These include PSO (Kennedy and

Eberhart, 1995), GWO (Mirjalili et al., 2014), WOA (Mirjalili and

Lewis, 2016), BES (Alsattar et al., 2020), CSA (Feng et al., 2021),

GTO (Abdollahzadeh et al., 2021), DBO (Braik et al., 2022), WSO

(Xue and Shen, 2023), and OOA (Dehghani and Trojovskỳ, 2023).

To enhance the credibility of the algorithm, we conducted 30

independent trials on each test function. In each trial, the maximum

iteration count was set to 500, and the population size was 50.
Frontiers in Marine Science 22167
The data results for CEC2005 tests are presented in Tables 5, 6.

In CEC2005 multi-modal functions, despite the presence of

multiple local optima, the proposed algorithm was able to

successfully solve the optimization problems. OCCSSA

demonstrated the best overall performance, especially in F8-F11,

F13-F16, and F20, where it achieved the best values for each

indicator, ranking first. For F12 and F21, OCCSSA ranked

second, just behind BES and WSO, respectively. In the case of

F17 and F18, OCCSSA ranked third. Due to its higher algorithm

complexity, the runtime was in the middle to lower range. From the

convergence curve plots in Figure 9, it is evident that OCCSSA

exhibited overall better convergence speed and accuracy compared
B C

D E F

G H I

J K L

M N

A

FIGURE 9

The convergence curve comparison graph of the swarm intelligence optimization algorithms on CEC2005 Multi-Modal functions: (A) F8. (B) F9. (C) F10.
(D) F11. (E) F12. (F) F13. (G) F14. (H) F15. (I) F16. (J) F17. (K) F18. (L) F19. (M) F20. (N) F21.
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to other algorithms. Overall, OCCSSA displayed strong resistance

to local optima in multi-modal functions, and the introduction of

multiple strategies significantly improved the algorithm’s stability

and search capabilities, with good convergence speed and accuracy.
4.1.3 Comparison of the random initialization and
OCCSSA initialization of SDF-CFLNNE

During the training phase of a neural network, random

initialization of weights and biases can significantly impact the

training process and the final performance of the network. To

address the issues related to improper initialization, such as

gradient vanishing or exploding, and infeasible or slow

convergence of the training process, the SDF-CFLNNE initialized

intelligently with OCCSSA is proposed. The flowchart is as shown

in the Figure 10.

First, determine the topology of SDF-CFLNN and encode its

weights and thresholds. Then, input the encoded population into

OCCSSA for initialization using the Piecewise chaotic map. Next,
Frontiers in Marine Science 23168
calculate the fitness of the initial population and identify the best

and worst population members. OCCSSA updates the positions of

producers, scroungers, and scouts. The updated fitness is compared

to the original best value, and the global best position is updated.

When the maximum iteration is reached, obtain the best population

as the initial weights and thresholds for training and testing

the network.

We compared the SDFCFLNN equalizers with random

initialization (R-SDFCFLNNE) and OCCSSA initialization

(OCCSSA-SDFCFLNNE) in both CH1 and CH2 channel

environments. To enhance the reliability of the algorithm, we

conducted 10 independent experiments. In each experiment, the

maximum iteration limit was set to 200, and SDF-CFLNNE still

used the parameters from Table 2. For OCCSSA, we used a

population size of 50, a safety threshold of 0.8, and the number of

producers and the number of sparrows sensing danger were both set

to 20% of the population size.

The BER performance of the R-SDFCFLNNE and OCCSSA-

SDFCFLNNE are shown in Figures 11A, C, E. OCCSSA-
FIGURE 10

The flowchart of the OCCSSA-SDFCFLNNE.
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SDFCFLNNE exhibits a slightly lower BER compared to R-

SDFCFLNNE. Using CH1 as an example, as observed from

Figures 6A, 11A, it is evident that at a BER of 10−3, CFLNNE

requires the SNR exceeding 20 dB, DF-CFLNNE requires the SNR

of 16 dB, DFE requires the SNR of 13.8 dB, SDF-CFLNNE requires

the SNR of 12.8 dB, and OCCSSA-SDFCFLNNE requires the SNR

of 12.5 dB. OCCSSA-SDFCFLNNE demonstrates an improvement

SNR of 0.2-8 dB compared to CFLNN-based and traditional

equalizers. At a BER of 10−4, CFLNNE requires the SNR

exceeding 20 dB, DFE requires the SNR of 19.7 dB, DF-CFLNNE

requires the SNR of 18.8 dB, SDF-CFLNNE requires the SNR of

15.5 dB, and OCCSSA-SDFCFLNNE requires the SNR of 13.5 dB.

OCCSSA-SDFCFLNNE outperforms CFLNN-based and traditional

equalizers, demonstrating an improvement SNR of 2-6 dB.

The MSE performance of the R-SDFCFLNNE and OCCSSA-

SDFCFLNNE are shown in Figures 11B, D, F. Both of them

converge at almost the same rate. However, R-SDFCFLNNE
Frontiers in Marine Science 24169
exhibits minor oscillations in the early iterations, and the curve

becomes smooth after convergence. In contrast, OCCSSA-

SDFCFLNNE has an extremely smooth convergence curve, which

is more stable. The MSE value of OCCSSA-SDFCFLNNE is smaller

when it reaches a steady state, indicating more accurate signal

recovery. When using OCCSSA initialization, it takes into account

the specific characteristics and constraints of the communication

channel to provide an optimal set of weight values for network

initialization. This can lead to better initial conditions for the

network, resulting in improved convergence and signal recovery.
4.2 Lake experiments and results

The analysis of lake experimental data has been presented in this

part. On the day of the experiment, there was a slight surface fluctuation

on the lake. Before conducting the lake experiments, the hydrophones
B

C D

E F

A

FIGURE 11

The comparison of the R-SDFCFLNNE and OCCSSA-SDFCFLNNE for CH1, CH2 and CH3. (A) The BER performance for CH1. (B) The MSE
performance for CH1 at SNR=10 dB. (C) The BER performance for CH2. (D) The MSE performance for CH2 at SNR=10 dB. (E) The BER performance
for CH3. (F) The MSE performance for CH3 at SNR=10 dB.
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FIGURE 12

The layout diagram of transmitter and receiver.
FIGURE 13

The frame format of the transmitting QPSK signal.
FIGURE 14

The signal processing flow.
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and other experimental equipment underwent meticulous calibration

performed. Additionally, we carried out tasks such as assessing electrical

connections and confirming the reliability of communication links

within a controlled water tank environment. The equipment

connection and layout for the transmitting ship and the receiving ship
Frontiers in Marine Science 26171
areas shownin theFigure12.Thedistancebetween the transmitting ship

andthereceivingship is either939m.Both the transmittingandreceiving

transducers are positioned 10 meters underwater.

The system employs QPSK modulation to facilitate data

transmission. The signal frame format, as illustrated in Figure 13,

has been specifically tailored for complex underwater acoustic

conditions. Each data frame incorporates key elements such as

Doppler estimation, frame synchronization headers, training

sequences, data content, and frame intervals. This frame format is

engineered to offer robust anti-Doppler capabilities and effectively

mitigate cumulative timing errors. The signal undergoes

amplification by a power amplifier and is then transmitted via a

transducer. Simultaneously, multiple cycles of underwater acoustic

signals are collected by the receivers using a digital collector linked

to the transducer. The collected data are processed by DFE-PLL, R-

SDFCFLNNE and OCCSSA-SDFCFLNNE. The signal processing

flow at the receiving end is depicted in the Figure 14.
TABLE 7 The BER comparison of every frame.

Frame DFE-
PLL

R-
SDFCFLNNE

OCCSSA-
SDFCFLNNE

1 0.1641 0.1222 0.0941

2 0.0962 0.0587 0.0425

3 0.1377 0.0959 0.0877

4 0.0854 0.0311 0.0195

5 0.1176 0.0734 0.0567
B

C D
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A

FIGURE 15

The lake experimental results. (A) The MSE performance for DFE-PLL. (B) The Demodulation correct symbol (blue) and transmission error symbol
(red) for DFE-PLL. (C) The MSE performance for R-SDFCFLNNE. (D) The Demodulation correct symbol (blue) and transmission error symbol (red) for
R-SDFCFLNNE. (E) The MSE performance for OCCSSA-SDFCFLNNE. (F) The Demodulation correct symbol (blue) and transmission error symbol (red)
for OCCSSA-SDFCFLNNE.
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The experimental results are shown in Table 7. We can observe

that in the data processing of each frame, OCCSSA-SDFCFLNNE

exhibits the lowest BER, followed by R-SDFCFLNNE, and DFE-PLL

performing the least favorably. We’ve displayed the MSE

convergence curves and the correct and incorrect symbol plots for

the second frame of data. Figures 15A, C, E clearly demonstrate that

the MSE curve in OCCSSA-SDFCFLNNE converges smoothly and

reaches the lowest value, indicating a superior resistance to

interference. While R-SDFCFLNNE exhibits minor initial

fluctuations, DFE-PLL’s MSE values fluctuate significantly during

the initial phase. In Figures 15B, D, F, where blue represents

correctly demodulated symbols and red represents incorrectly

demodulated symbols, it’s evident that OCCSSA-SDFCFLNNE

has the fewest incorrect symbols and the best overall performance.
5 Conclusion

In the sha l l ow-wate r env i ronment s , underwa te r

communication links are susceptible to significant multipath

effects. To address issues such as slow convergence and high

system complexity in traditional channel equalizers, this paper

proposes a simplified decision feedback Chebyshev function link

neural network equalizer (SDF-CFLNNE). The SDF-CFLNNE

structure’s innovative approach employs Chebyshev polynomial

function expansion modules, eliminating the need for hidden

layers and enabling a direct, nonlinear transformation of input

signals into the output layer. Additionally, it incorporates the

feedback of decision signals into the input layer of the SDF-

CFLNN directly, instead of the function expansion module, which

significantly reduces computational complexity. However, the

effectiveness of neural networks crucially depends on the initial

weights and biases, and random initialization can profoundly

impact both the training process and the eventual performance of

the network. To address this challenge, a novel chaotic sparrow

search algorithm combining osprey optimization algorithm and

Cauchy mutation (OCCSSA) is proposed. OCCSSA leverages a

Piecewise chaotic population initialization strategy, combining the

osprey’s exploration tactics with the Cauchy mutation strategy to

bolster global and local search capabilities. Simulation experiments,

utilizing underwater multipath signals generated by the Bellhop

Acoustic Toolbox, unequivocally demonstrate that the

SDFCFLNNE initialized by OCCSSA outperforms both CFLNN-

based and traditional nonlinear equalizers. Notably, it achieves an

impressive 2-6 dB improvement in SNR at a BER of 10−4 and

exhibits a significantly reduced MSE. Furthermore, lake

experimental data was employed to validate the effectiveness of

the proposed equalizer. These results underscore the remarkable

potential of the SDFCFLNNE initialized by OCCSSA as a

compelling solution for significantly enhancing the reliability of

underwater communication, particularly in the face of the

challenges posed by complex underwater environments. This
Frontiers in Marine Science 27172
research paves the way for more robust and efficient underwater

communication systems, promising increased performance and

greater accuracy in signal recovery.
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Long-term statistics and wind
dependence of near-bottom and
deep-sea ambient noise in the
northwest South China Sea
Wei Guo1, Juan Liu1*, Guojun Xu1, Guangming Li2 and Pan Xu1

1College of Meteorology and Oceanography, National University of Defense Technology,
Changsha, China, 2Cutting-edge Technology Research Center, National Innovation Institute of
Defense Technology, Beijing, China
Research on ocean ambient noise is highly important for environment

monitoring, marine mammal protection, underwater communication and

navigation. In this paper, we present the long-term statistics and wind

dependence of near-bottom and deep-sea ambient noise in the northwest

South China Sea, at a depth of 1240 m. The data were collected from 11th July

2022 to 31st December 2022 together with local wind speeds ranging from 1 to

58 knots (two typhoons involved), and the processing frequency band is between

20 and 2000 Hz. The long-term mean noise level is calculated along with its

skewness, kurtosis and percentile distributions. Diurnal and monthly average of

noise levels are analyzed, and the large fluctuations in lower (≤100 Hz) and higher

(≥400 Hz) frequencies are respectively caused by the variation of the number of

nearby and distant ships and the diverse distributions of the windspeeds in

individual months. We find that the noise level in winter (Dec.) is 10~11 dB

higher than that in summer (Jul.) at higher frequencies. The probability densities

of noise levels in the situation of a fixed wind speed are likely to obey the Burr

distributions in low frequencies (50 and 100 Hz) and the Weibull distributions in

high frequencies (400 and 1000 Hz). In addition, the mean noise levels for

different Beaufort scales match well with the 5-dB-addtion Wenz curves, and a

mathematic relationship is acquired between the noise level and wind speed in

the experimental site. The results are of great representativeness, and are

significant to data-driven noise modelling, evaluation and improvement of

sonar performance in the region of South China Sea with an incomplete deep-

water sound channel.
KEYWORDS

Northwest South China Sea, near-bottom and deep-sea ambient noise observation,

long-term statistics, monthly variations, wind dependence
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1 Introduction

Ocean ambient noise has been studied and measured for several

decades, and a considerable amount of research has been performed

to analyze the statistics and characteristics of ambient noise. Most

notable is the approximate empirical law proposed by (Wenz, 1962)

that ambient noise is a composite of multiple components,

generated by distinct types of sources. These noise sources vary in

origin, frequency and time period (Hildebrand, 2009). In general,

earthquake activity and surface wave interactions dominate ocean

ambient noise at the frequencies less than 10 Hz, anthropogenic

noise from ships and natural noise driven by wind compete in the

frequency band from 50 to 500 Hz. Wind-driven noise dominates

between 500 Hz to 25 kHz, and its generation is due to the

interaction of the wind with the sea surface (Deane and Stokes,

2002). Earlier studies have pointed out that the level of wind-driven

noise is locally dependent on the wind speed in the vicinity of the

receiver (Wenz, 1962; Urick, 1983). Additionally, marine animals

(Širović et al., 2013; Romagosa et al., 2017) and rainfall events

(Medwin et al., 1992) are also contributors of ocean ambient noise,

and the generated noise possesses seasonal and occurrent features.

Long-term statistics of ocean ambient noise have been

investigated at plenty of locations in the global ocean, ranging from

tropical/subtropical Pacific region (Farrokhrooz et al., 2017; Niu et al.,

2021; Yang et al., 2023) and South China Sea (Da et al., 2014; Jiang

et al., 2017; Shi et al., 2019), and temperate North Pacific region

(McDonald et al., 2006; Seger et al., 2015; Schwock and Abadi, 2021),

to polar region (Chen and Schmidt, 2017; Bonnel et al., 2021; Mo

et al., 2023). The motivation of these previous works is to acquire the

diel, monthly or seasonal variations of ambient noise in different

areas, and describe the relationship between noise and meteorological

data at the recording locations. It has been proven that the

environmental conditions and regions in the global ocean can both
Frontiers in Marine Science 02176
affect the results of ambient noise level and corresponding spectral

characteristics, e.g., diverse wind speeds in regions with different

bathymetry profiles and sound speed distributions lead to deviation

of wind-driven noise (Barclay and Lin, 2019). As a consequence, it

becomes necessary to choose a representative region to analyze the

characteristics of ambient noise. The northwest South China Sea is a

typical region in which there are significant shipping lanes,

incomplete sound channels in deep water (usually indicating a

deep-water environment having a sound channel axis and

meanwhile the sound speed at water-seabed interface is lower than

that at water-air interface), dramatically varying bathymetry profiles

and frequent oceanic/atmospheric dynamic processes. But up to the

present, there are few studies on long-term statistics and

characteristics of ambient noise in this region. The existing long-

term observations in South China Sea concerns mostly the noise

recorded by hydrophones deployed at the depths above or near the

sound channel axis (Jiang et al., 2017; Shi et al., 2019). The near-

bottom noise is studied yet in the shallow water region (water

depth<200 m) (Da et al., 2014). It is thus valuable to acquire the

data and analyze the characteristics of near-bottom ambient noise in

the deep-water region of South China Sea having an incomplete

deep-water sound channel, since it could provide extra valuable

information for subaqueous activities that rely on sound for

detection, communication, navigation and echolocation.

In this paper, we investigate the long-term statistics and wind-

dependent characteristics of ambient noise using data collected

from a noise measurement experiment conducted at a near-bottom

deep-water site in the northwest South China Sea. The autonomous,

bottom-mounted acoustic recording system was deployed at the

deep-water site in the northwest South China Sea at 17°08
0
N   112°

02
0
E with water depth of 1240 m (marked as the red solid circle in

Figure 1). The recorder (hydrophone) was moored near sea bottom

with sampling frequency at 4000 Hz and effective bandwidth from
Observing 

Site

FIGURE 1

The experimental site in the northwest South China Sea. The red solid circle gives the observing site.
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20 to 2000 Hz. The ambient noise data was collected for 5 min every

one hour from 11th July 2022 to 31st December 2022. With

anomalous, incomplete and pile-driving noise data excluded, the

selected dataset consists of 19090 time samples, each of 1 min. The

synchronous 10-m wind speed data was provided by Ventusky1 at

7 km resolution in the observing area and at 3h intervals throughout

the experimental time period. Monthly variations of noise levels are

analyzed. Additionally, distributions of noise levels at a fixed wind

speed are discussed, and average noise levels for different wind

speed groups (Beaufort scales) are presented, along with the

comparison with Wenz curves. The mathematic expression of

wind dependence on noise level is acquired, which can be used to

predict wind-driven noise levels near the experimental area in South

China Sea. The paper’s main contributions are twofold. First, we

take the lead in measuring and analyzing the statistics of near-

bottom ambient noise in the region of South China Sea with an

incomplete deep-water sound channel, giving the detailed results

about the spectrogram, diurnal and monthly averages of noise

levels. Further, we provide the expression of wind-driven noise

levels in the experimental area through regression. These results

have representativeness for other incomplete deep-water areas in

South China Sea, and can provide guidance on analysis of seasonal

and yearly variations of ocean ambient noise in South China Sea,

data-driven noise modelling, communications, sonar designing and

ocean tomography.
2 Long-term statistics of
ambient noise

Figure 2 is the spectrogram of the dataset. The processed

frequency band is from 20 to 2000 Hz. The raw data for any one

hour (5 min) is processed using the Welch’s method with a 10s-

Hamming window, and a 50%-overlapping FFT algorithm is

introduced, leading to 59 periodograms with frequency resolution

given by 0.1 Hz. These resulting periodograms are then averaged and

converted to decibels (dB) in the 1/3-octave bandwidth. Here the 1/

3-octave frequency band from 20 to 2000 Hz is divided into 21 1/3-

octave frequency bands with center frequencies of 20, 25, 31.5, 40, 50,

63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250,

1600 and 2000 Hz. Figure 2 is acquired when repeating the process

mentioned above for every 1h data segment until the entire dataset is

processed. The 10-m wind speeds (in red solid line, knots) during the

experimental period, ranging from 1 to 58 knots, are also overlaid to

show the correlation with noise levels. In addition, Figure 2 indicates

clearly the effect of the typhoon ‘Nesat’ and ‘Nalgae’ occurred from

16th Oct. to 19th Oct. and from 29th Oct. to 2nd Nov., resp., together

with that of a series of strong and rapidly varied wind speeds

occurred from 14th Dec. to 18th Dec. It can be roughly seen in

Figure 2 that wind speeds and ambient noise levels are very well

correlated in the higher frequency band f ∈ ½400, 2000� Hz, i.e.,

higher wind speed correlates with higher noise intensity. Figure 3A

shows the detailed spectrogram during the typhoons ‘Nesat’ and
1 Ventusky. Czech Republic. www.ventusky.com.
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‘Nalgae’, and Figures 3B, C give respectively the relevant variations of

ambient noise levels at 100 Hz, 400 Hz and 1000 Hz versus wind

speeds.We can see that except for some coincidently abnormal peaks

for all the three frequencies, trends of the noise levels at 400 Hz and

1000 Hz basically coincide with wind speeds. Figures 2, 3 indicate

there is no obvious correlation between wind speeds and ambient

noise levels in the lower frequency band f ∈ ½20, 100� Hz. The

specific correlation coefficient between ambient noise and wind

speeds will be demonstrated in Sec. 3. By the way, it is noticed

that the ambient noise levels during November are much higher than

other months in the frequency band from 20 to 200 Hz. It is possibly

due to higher shipping noise during that period. Considering that

shipping noise depends mainly on the kinds, number, distribution,

speeds and tracks of nearby ships and sound propagation, analysis

on shipping noise is quite challenging and complicated. Since we

focus on the characteristics and wind-dependence of ocean ambient

noise, we will not discuss the effect of shipping noise in this paper.

More details about shipping noise to interpret the features of low-

frequency noise will be studied in future work.

The long-term statistics of the ambient noise levels are shown in

Figure 4. The mean, standard deviation (STD), 5%, 50% (median)

and 95% percentiles, which describe the average value and

heterogeneity of the data, are shown in Figure 4A. The maximum

and minimum of the mean ambient noise level are 88.5 and 57.9 dB

re 1 mPa2/Hz occurring at 31.5 Hz and 1600 Hz, resp. The mean

value is larger than the median value in the frequency band f ∈
½20, 125� Hz, while the median value prevails from 160 to 2000 Hz.

The absolute differences between the mean values and median

values are not greater than 1.3 dB re 1 mPa2/Hz. The 5% and 95%

percentiles represent the lower- and upper-limits of the

overwhelming majority of the data. Figure 4B shows skewness,

kurtosis and standard deviation for the entire noise levels. Skewness

represents tailedness of the distribution and kurtosis represents

peakedness giving information about outliers. Distant shipping

leads to positive skewness (f ∈ ½20, 200� Hz) while wind-

generated noise leads to negative skewness (f ∈ ½400, 2000� Hz).

In general, it shows that the higher mean values are accompanied by

higher skewness and kurtosis. But abnormities emerge in the

frequency band f ∈ ½63:5, 125� Hz, in which the mean values

decrease steadily while the values of skewness and kurtosis show

abrupt peaks. The abnormal higher skewness and kurtosis suggest

that much of the variance is the result of the competition between

wind-generated noise and shiping noise with a wide fluctuation

range of windspeeds and number of ships. Considering that the

STD exhibits local minima (3.3 to 3.6 dB re 1 mPa2/Hz) in this

frequency band, we deduce that the probability density of the noise

levels obeys a centralized and non-normal distribution.

In certain area, ocean ambient noise has significant diurnal

variability (Klusek and Lisimenka, 2016). Here we focus on the

diurnal variation of ambient noise in the experimental area. Figure 5

shows the day and night comparison of ambient noise level. There is

only a small difference between the mean day and mean night values

in the frequency band from 20 to 2000 Hz. The maximum deviation

is 0.72 dB re 1 mPa2/Hz (at 1600 Hz). At the frequency band between

20 and 500 Hz, the deviation is not more than 0.23 dB re 1 mPa2/Hz.

The STD during the day is larger from 80 to 2000 Hz, and is less in
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B C

A

FIGURE 3

(A) Spectrogram of the ambient noise during the typhoons ‘Nesat’ and ‘Nalgae’ with wind speed (red solid line, in knots). Ambient noise levels at
100 Hz (blue solid line), 400 Hz (magenta dash-dotted line) and 1000 Hz (black dotted line) during the typhoons: (B) ‘Nesat’ and (C) ‘Nalgae’ with
wind speed (red squares). M/D: Month/Day.
FIGURE 2

Spectrogram of the ambient noise from 11/07/2022 to 31/12/2022 with wind speed (red solid line, in knots). The frequencies range from 20 to
2000 Hz, and the color bar value represents the noise level in dB re 1 mPa2/Hz. M/D: Month/Day.
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the remaining frequency band. There is thus no remarkable

difference between the mean day and mean night noise levels.

Figure 6 shows the monthly average ambient noise levels varied

over time. The monthly variation is relatively large (approximately 6

dB re 1 mPa2/Hz at 200Hz and 12 dB re 1 mPa2/Hz at 20 and 2000Hz).
Due to the noises of distant shipping, the levels at frequencies below

100 Hz are higher in all months, and meanwhile, the average level for

November is 7~12 dB re 1 mPa2/Hz greater than those for other

months, which is shown in Figure 2 as well. In this case nearby ships

play a nonnegligible role in the noise level. Noise levels at frequencies

above 200 Hz are relatively lower (<70 dB re 1 mPa2/Hz), which are

dominated mainly by wind and waves. The spread of noise levels in

this frequency band is nearly 11 dB re 1 mPa2/Hz, which is principally

caused by the diverse distributions of the wind speeds in individual

months. The monthly average wind speeds are given in Figure 6 as

well, which indicates clearly that the higher monthly average wind
Frontiers in Marine Science 05179
speed corresponds to the higher monthly average noise level at

frequencies above 400 Hz. In addition, it can be seen that at higher

frequencies (≥400 Hz), the noise level during December (in winter) is

highest, and is 10~11 dB higher than that during July (in summer).

This phenomenon coincides with the conclusion drawn in (Niu et al.,

2021), and the reason is that wind speeds are higher in winter, which is

consistent with the variation in wind speeds in the experimental area

(see Figure 2).
3 Wind-dependent characteristics of
ambient noise

In this section, we investigate the dependence of the ambient

noise in the experimental site on wind speeds. Figure 7 shows the
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Day and night comparison of mean value and standard deviation of ambient noise levels.
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probability histogram of 10-m wind speeds during the entire period

of acoustic recordings. The wind speeds are given in units of knots

and with 3h intervals. It can be seen that over half of the wind

speeds are within the interval from 7 to 21 knots, corresponding to

Beaufort scales from 3 to 5. We then analyze the distribution of

ambient noise levels when the wind speed is fixed. Figure 8 show the

probability histograms of noise levels at 50Hz, 100 Hz, 400 Hz and

1000 Hz, reps., when the wind speed is 12 knots. The red solid lines

and black dashed lines represent respectively the Burr distributions

and Weibull distributions fitted to the noise levels at four

frequencies. For the cases of 50 Hz and 100 Hz, the noise levels

are dominated by ships rather than the wind speed. It is shown in
Frontiers in Marine Science 06180
Figures 8A, B that the spreads of the noise levels are approximately

23~24 dB re 1 mPa2/Hz. The large spreads of the noise levels result

from the variation of the number of nearby and distant ships.

Besides, the probability density distributions appear to match the

Burr distribution better. While for the cases of 400 Hz and 1000 Hz,

wind speeds play a dominant role in noise levels, Figures 8C, D

show that the spreads of the noise levels are approximately 12~14

dB re 1 mPa2/Hz, and the probability density distribution is likely to

match the Weibull distribution better. The distributions of noise

levels at different frequencies can be applied to simulating non-

Gaussian and non-white spectra and time series of ambient noise,

and provide effective assistance for accurately predicting the
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Probability distribution of wind speeds during the entire period of acoustic recordings.
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capacity of underwater communications or performance

of detection.

Figure 9 shows the mean ambient noise levels for multiple

Beaufort scales from 2 to 8. It can be seen that the wind
Frontiers in Marine Science 07181
dependence of the noise level is weak in the lower frequency

region (≤100 Hz), and tends to be noticeable at frequencies larger

than 200 Hz, where the noise level increases with the Beaufort scale.

The increments of noise levels between adjacent Beaufort scales are
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Probability distribution of ambient noise levels at (A) 50Hz, (B) 100 Hz, (C) 400 Hz and (D) 1000 Hz with fixed wind speed at 12 knots.
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nearly 2 dB re 1 mPa2/Hz at 200 Hz and 3.5 dB re 1 mPa2/Hz at

1000 Hz. A comparison of data from (Wenz, 1962) and this work is

also presented. The case of comparison here is specified as in

Figure 2B of (Wenz, 1962), representing noise levels in deep

ocean. The Wenz curves are converted to the units used

throughout this paper, and are exhibited as the green dashed lines

with circles (Beaufort 2) and with squares (Beaufort 8) with an extra

5 dB re 1 mPa2/Hz added on the original noise levels. It is known that

the received level of wind-driven noise is determined by two factors.

One is the noise source spectral level which should be only

dependent on wind speeds. The other is the environmental

conditions, i.e., sound speed profiles, bathymetry, etc., which

influence the propagation of wave generated by noise sources.

Thus, in different observing regions there should be diverse

differences between the observing noise levels and Wenz curve.

Recent work has revealed that the mean noise levels acquired at 6

locations of the Pacific Ocean at different Beaufort scales are 7-dB

higher than Wenz curve(Yang et al., 2023). Here the additional 5 dB

re 1 mPa2/Hz can be regarded as the correction caused by the

difference of environmental conditions between two observing

areas. It is apparent that the presented data and the 5-dB-added

Wenz curves are in excellent agreement.

It has been found by many authors (Crouch and Burt, 2005;

Klusek and Lisimenka, 2016) that the noise level and wind speed

can be linked by the following expression

NL(f ) =  10 · n(f )log10U +M(f Þ; (1)

where NL is the measured noise level at the central frequency of the

1/3-octave frequency band in dB re 1 mPa2/Hz, U is the 10-m wind

speed in knots, and f represents the central frequency in the 1/3-

octave frequency band. n andM are the wind-dependence coefficient

and offset, resp., and they are both dependent on the frequency.
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The correlation coefficients of the noise levels and 10-m

wind speeds of the presented dataset are analyzed here to

inspect the dependence. The Pearson correlation coefficients r(f)

are written as

r(f ) =  
cov(NL,  U)
sNL · sU

 

=   oN
i=1(NLi − NL)( log10 (Ui) − log10 U)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(NLi − NL)2

q
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1( log10 (Ui) − log10 U)2
q (2)

where cov (,) and s represent the covariance and STD, resp. ( · )

represents the mean value. Figure 10 shows the errorbar of r(f) in

the frequency band from 20 to 2000 Hz, which is computed from

Equation (2). For the frequency between 20 and 160 Hz, ambient

noise is dominated by shiping noise, the correlation coefficient is

less than 0.4. The noise level is weakly correlated with the

(logarithm of) wind speed. In the frequency band from 200 to

315 Hz, the correlation coefficient increases gradually, r(f ) ∈
  (0:4,   0:8), indicating that the impact of 10-m wind speed on the

noise level are non-negligible. In the frequency band from 400 to

2000 Hz, the correlation coefficient is above 0.8, indicating a strong

correlation between the noise level and wind speed. It means that

the noise level is dominantly determined by the wind speed in this

frequency band, which can be verified in Figure 2 as well. The STD

ranges from 0.020 to 0.033, which is quite small and corroborates

the previous conclusion that wind dominates the ocean ambient

noise between 400 and 2000 Hz. The wind-dependence coefficient n

and the offsetM are then computed in the frequency band from 400

to 2000 Hz using a LMSE regression. These results are listed in

Table 1 together with the correlation coefficients. These correlation

coefficients r(f) are identical with the mean values in Figure 10.

Since the correlation coefficients are relatively small from 20 to
FIGURE 10

Errorbar (mean and standard deviation) of correlation coefficients between noise levels and wind speeds. The frequency band ranges from 20 Hz
to 2000 Hz.
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315 Hz, it is not necessary to analyze the wind-dependence

coefficient and the offset. We observe an approximately quadratic

wind dependence in the frequency band from 500 to 2000 Hz. These

results can be adopted to predict the noise level in the area

surrounding the experimental site employing Equation (1).
4 Conclusions

This paper reports on the ambient noise measured by a near-

bottom acoustic recording system deployed at the deep-water site in

the northwest South China Sea, together with the synchronous 10-m

wind speeds ranging from 1 to 58 knots, covering the effect of two

typhoons passing by the experiment site, during the latter half of

2022. To our knowledge, this study was the first to report on the

near-bottom ambient noise properties in the region of South China

Sea with an incomplete deep-sea sound channel. The collected noise

data provides significant information about the long-term statistics

of ambient noise in this area. In the absence of transient events, the

noise levels at low frequencies range between 58~100 dB re 1 mPa2/
Hz (20 to 200 Hz) and 51~72 dB re 1 mPa2/Hz (200 to 400 Hz). In the

high frequency range (400 to 2000 Hz), which is typically dominated

by wind, the noise levels range from 45 to 70 dB re 1 mPa2/Hz. No

significant difference is observed between mean day and mean night

noise levels, but there are great monthly variations (7~12 dB re 1

mPa2/Hz) in the mean levels from 20 to 200 Hz, revealing a wide

varying range of the number of nearby and distant ships. At the

frequencies larger than 400 Hz, the monthly variations in the mean

levels are mainly caused by the differences among the average wind

speeds in individual months, and the noise is 10~11 dB higher in

winter (December) than in summer (July). Besides, in the situation of

fixed wind speed (12 knots), we have observed that the probability

densities of noise levels obey the Burr distribution at lower

frequencies (50 and 100 Hz), and are likely to obey Weibull
Frontiers in Marine Science 09183
distribution at higher frequencies (400 and 1000 Hz). These

distributions of noise levels can be employed to simulate the

spectra and time series of the non-Gaussian and non-white

ambient noise. Ambient noise levels exhibit continual increase

with increasing wind speed group or Beaufort scale for frequencies

between 200 to 2000 Hz, and the noise levels for different Beaufort

scales are in excellent agreement with the Wenz curves with a 5-dB

addition. We analyze the wind-dependence coefficient and offset of

noise levels, and acquire a mathematic expression of wind

dependence from 400 to 2000 Hz. The present observing site is at

a depth of over 1200 m, corresponding to the deep ocean with an

incomplete sound channel. In the northwest South China Sea, most

of areas except coastal regions are at the depth between 1000 and

3000 m, thus the present data can at least cover most of the

northwest part of South China Sea, and the results can be

employed to predict noise levels in the experimental area. We

hope the presented results could be utilized to discuss the trends

in the ambient noise statistics and characteristics in relation to

changes in ocean traffic and meteorological condition in South

China Sea.
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Bubbles greatly affect the propagation of sound waves as the acoustic

characteristics of a bubble cluster in water are distinct from those of

undisturbed water. Therefore, bubble clusters affect the ability of sensors to

detect underwater targets by blocking or reflecting sound waves. Additionally,

the bubble wakes produced by ships in movement can be detected by wake-

homing torpedoes, thus greatly threatening the safety of the ship. Thus, research

on bubble dynamics in water is crucial for the development of military

technology. Recently, we conducted a quantitative estimation of the acoustic

characteristics of artificial bubbles, including their backscattering strength,

existence time, population density spectrum level and void fraction in an ideal

water-tank environment. Based on our previous findings, the present study

sought to measure the acoustic characteristics of artificial bubbles using an

acoustic Doppler current profiler (ADCP) in the southern sea of the Korean

Peninsula, which is a real marine environment. Additionally, we validated the

ADCP measurements by comparing them to those obtained using a scattering

strength measurement system (SSMS) developed by our team. Collectively, our

findings provide a basis for the development of military technology, as well as for

the study of bubble in water.
KEYWORDS

backscattering strength, artificial bubble, acoustic Doppler current profiler, sea
experiment, military technology
1 Introduction

Understanding the characteristics of bubbles naturally generated in real marine

environments is a very important topic in the fields of oceanography and underwater

acoustics. Therefore, many studies have explored the characteristics of naturally occurring

bubbles. Keiffer et al. (1995) measured the surface backscattering and reverberation

strengths induced by a bubble layer below the water surface and compared them with
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sound wave propagation and scattering models in the low to

moderate frequency range (Keiffer et al., 1995). Caruthers et al.

(1999) studied bubble distribution by measuring the acoustic

attenuation caused by the bubbles generated in rip currents of

very shallow waters (Caruthers et al., 1999). Trevorrow (2003)

determined the volume scattering strength of a bubble layer

below the water surface in the high-frequency band. To compare

the acoustic scattering of bubbles caused by natural wind currents to

that induced by the sea bottom roughness, Dahl (2003) measured

the acoustic backscattering strength of the sea surface. The gas

columns that naturally leak from the sea bottom are also often

studied because they have a significant impact on the ocean

environment (Schneider von Deimling et al., 2007; Gulf of

Mexico Expedition, 2011; Schneider von Deimling and Weinrebe,

2014; Urban et al., 2017).

The study of bubbles in water is very important not only

because it provides insights into natural phenomena but also for

military purposes. Bubbles in water rise to the surface due to their

buoyancy and dissipate gradually. However, smaller bubbles remain

in the water for several tens of minutes (United States Office of

Scientific Research and Development, 1946). Therefore, these small

bubbles could potentially be used in military applications. Bubble

layers can interfere with acoustic wave propagation due to their

strong attenuation properties. Therefore, bubble clusters can hinder

underwater target detection by affecting the detection performance

of sonar, thus protecting underwater facilities and equipment from

potential attacks. Similarly, the noise emitted by a moving ship can

be detected by an enemy sonar, which highlights the vital

importance of noise reduction. Noise can be attenuated by

generating artificial bubbles around the ship. Additionally, given

that wake-homing torpedoes, which is a strong threat to the ship,

acoustically track the wake generated by moving ships, the small

bubbles in the wake that persist in the water for long periods are

very unfavorable for the ship ’s defense. Therefore, the

characteristics of artificial bubbles in water have attracted the

attention of many military experts and researchers.

The ship wakes generated by propeller rotation and hull resistance

are dominant factors that determine the formation of artificial bubbles

in the ocean. Therefore, many studies have sought to measure ship

wakes using a wide variety of equipment to extract the signatures of

the ship. Culver and Trujillo (2007) measured the density and size

distribution of the ship wake using an upward single-beam sonar

mounted on an autonomous underwater vehicle. Stanic et al. (2009)

derived the void fraction and the sound speed of the wake using bi-

static sonar. Ji et al. (2009) characterized the spatial distribution of

bubbles by measuring their backscattering intensity at several

positions under the ship wake using a self-manufactured sonar

instrument, and Leighton et al. (2011) acquired the backscattering

signal of the wake of a 3,900-ton ship using a wake penetration sonar

developed by the research team. Li et al. (2014) acquired spatial

scattering images of ship wakes with a multi-beam bathymetric sonar,

and Karoui et al. (2015) measured ship wakes using forward-looking

sonar, which is often equipped on unmanned vehicles.

In addition to the wake caused by ships, several studies have

measured the effects of artificially generated bubble clusters.

Rustemeier et al. (2012) collaborated with Atlas Elektronik in
Frontiers in Marine Science 02186
Germany to create a bubble curtain by injecting compressed air

into lake water, after which they measured the changes in acoustic

attenuation by the bubble curtain. To reduce the noise generated by

ships, compressed air was sprayed to generate a bubble column in a

large cavitation tunnel, after which the insertion loss was measured

by Park et al. (2021). Except for the aforementioned studies, very

few studies have assessed the use of artificial bubbles as a defense

mechanism against wake-homing torpedoes for military purposes

(Guelou et al., 2002; Guelou et al., 2005).

The quantitative characterization of the acoustic properties of

bubble clusters is known to be quite challenging. Unlike in natural

bubble studies, there are physical restrictions that affect the

generation of artificial bubbles, thus limiting their study in

natural environments. Our team recently estimated the acoustic

properties (backscattering strength, existence time, population

density spectrum level, and void fractions) of artificial bubble

clusters using a bubble-generating material (BGM) designed by

our team using an acoustic Doppler current profiler (ADCP) (Bae

et al., 2022). This study was conducted in a water-tank (i.e., in stable

experimental conditions) to quantify the acoustic characteristics of

the generated bubbles, and the results were compared to those

obtained with highly reliable commercial equipment. However, the

salinity, temperature, density, flow, and concentration of organic

and inorganic compounds in seawater are different from those of

fresh waters in the tank experiments. Moreover, marine

environments exhibit strong spatiotemporal variation compared

to that in the water-tank experiments. Therefore, the acoustic

characteristics of artificial bubbles in marine environments will

likely be different.

The present study sought to expand upon our previous work by

characterizing the acoustic characteristics of artificial bubbles in a

real marine environment (the southern sea of the Korean

Peninsula) using ADCP. To validate the backscattering strength

derived from the ADCP results, we simultaneously acquired

another dataset using a scattering strength measurement system

(SSMS) developed by our research team. Section 2 briefly introduces

the measurement devices and methods. Section 3 describes our

experimental design in the southern sea of the Korean Peninsula.

Section 4 describes our quantitative results and Section 5

summarizes our findings and conclusions.
2 Measurement devices and approach

We measured the backscattering strength of artificial bubble

clusters generated in the water-tank using an ADCP in our previous

study (Bae et al., 2022). The ADCP can measure the echo intensities

reflected from bubble clusters, and received intensities can be

converted into backscattering strength by the equation presented

by Bae et al. (2022). Here, the acoustic characteristics of artificial

bubble clusters were estimated using the same procedures. To

validate the ADCP-based estimations, an SSMS (i.e., a stand-

alone sonar device) was developed to record the acoustic signals

with a high resolution.

Figure 1A shows the ADCP used in our experiment. We

selected the Workhorse Sentinel 300 model produced by Teledyne
frontiersin.org
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RD Instruments) because it is widely used in Korea and our group is

highly experienced in its use and deployment. Additionally, this

equipment was used in our previous water-tank experiment (Bae

et al., 2022). Figure 1B shows the SSMS developed by our team,

which records acoustic signals to overcome limitations when

measuring underwater bubbles with an ADCP. Basically, the

method of receiving acoustic signals is the same as ADCP.

However, it has a higher resolution than the commercial ADCP.

Moreover, it features a vertical direction beam instead of a tilted

beam such as that in the ADCP system, which enables it to identify

the exact target position without additional slant correction. The

acoustic hydrophone and projector were physically separated from

each other to reduce electrical noise. This device was designed to use

an arbitrary operating frequency range from 450 to 550 kHz to

avoid acoustic interferences with other acoustic sonar devices.

Afterward, acoustic signals at a 64 kHz sampling frequency were

recorded via frequency modulation (FM). This SSMS can transmit

the pulse type continuous wave (CW), FM, or arbitrary signals with

a length of 0.5–10.0 ms. The acoustic source level varies depending

on the operating frequency, but in the frequency used in this study,

the magnitude of the source level was 197.0 dB.

The scattering strength induced by the bubble cluster can be

easily derived using both sonar instruments. In the case of the

ADCP instrument, the manufacturer provides a transform equation

to determine the backscattering strength from the echo intensity as

a function of depth (Deines, 1999; Mullison, 2017). Scattering

strength can also be directly obtained through the sonar equation

from the volume scattering theory (Urick, 1983). In this study,

scattering strength was estimated using the sonar equation because

it can account for the precise transmission loss in the ocean

environment. Additionally, it allows for the direct application of

the parameters from our SSMS device. From the sonar equation,

backscattering strength can be determined as described by Equation

(1) (Urick, 1983; Bae et al., 2022):

Sv = RL + 2TL − SL − 10logV (1)

where the RL is the received level reflected from the bubble cluster

and the TL is the transmission loss. We applied Jurng’s approach to

obtain the TL (Jurng, 1996). SL is the transmitted acoustic pressure

level and V is the volume of the acoustic beam.
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3 Sea experiment design

3.1 Overview of experiment

To obtain the backscattering strength of the artificial bubbles in

a real marine environment, various factors were considered when

designing our experimental plan. Figure 2 shows a schematic of our

sea experiment. First, the most suitable experimental area to stably

deploy the measurement equipment was identified, after which data

were acquired in the calmest conditions possible. Moreover, we

identified the most appropriate measuring period and time to

obtain better quality data by accounting for environmental factors

including the weather and a tide. Artificial bubbles were then

generated after deploying the measurement devices. A drone was

used to avoid interference from other acoustic signals. The drone

can perfectly drop our designed BGMs for generating artificial

bubbles in a wide area without any interferences. The BGMs were

dropped near the sea surface to artificially generate a bubble cluster,

after which the backscattered acoustic signals reflected and

scattered from the bubbles were recorded with the two

measurement devices.

The main purpose of this measurement was to obtain acoustic

characteristics related exclusively to the artificial bubbles. Therefore,

mock-up models with the same shape, size, and density as the

BGMs were first dropped to obtain reference data in the absence of

bubbles. Afterward, the acoustic characteristics of the bubbles were

measured by dropping the BGMs with the drone.
3.2 Experiment area

Various factors affect the conditions of marine environments,

including water depth, water current and tide, fisheries and harbors,

and the presence of restricted zones. Therefore, to identify the

optimal conditions for our experiments, potential interference

factors must be identified and addressed in advance. Among the

aforementioned factors, water current and tide are the most

influential. Therefore, potential areas were identified using

numerical methods and an electrical marine chart. Water depth

and bottom properties were examined using the marine database,
A B

FIGURE 1

Acoustic measurement devices: (A) ADCP; (B) SSMS.
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and information on fisheries and harbor and water current speeds

were obtained from the Korea Hydrographic and Oceanographic

Agency (KHOA). Additionally, other limitations such as drone

flight restriction zones and no-flight zones were verified using the

spatial information open platform provided by the Ministry of

Land, Infrastructure, and Transport of Korea (MLIT). After visually

identifying the interference factors such as actual ship traffic and

fishing nets, the experimental area was finally decided (Figure 3).

The selected area was located in the southern part of the Korean

Peninsula, which is characterized by its complex coastline and the

presence of several small islands that act as a natural barrier against

wind currents. Additionally, there is a wave-absorbing revetment in

the area and the water current during neap tide is relatively slow

compared to other candidate sites that were considered. These

environmental conditions were favorable to successfully conduct

our experiments.
Frontiers in Marine Science 04188
3.3 Artificial bubble generation

The bubbles to be measured were generated with a BGM, which

generates artificial bubbles through a chemical reaction with water

while sinking slowly from the sea surface. The BGM was shaped as

pellets to ensure stable sinking to the desired depth. Additionally,

precautions were taken to ensure that the formulation of the BGM

did not adversely affect the ecosystem or human health.
3.4 BGM dropping method

The main concern in determining how to drop the BGMs was to

avoid physical interference with other objects such as a boat.

Therefore, a drone was adapted for this purpose. As shown in

Figure 4, a medium-size drone was selected to minimize the effects
FIGURE 3

Location and photograph of the sea experiment.
FIGURE 2

Schematic of the sea experiment.
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of meteorological factors such as the wind. To evenly distribute the

BGM pellets on the sea surface, an additional rotation plate was

mounted under the drone body so that when the pellets passed

through it when they were ejected. The rotation rate of the rotation

plate and open angle of the gate were adjusted by conducting land

experiments in advance. Another consideration of drone operation

is related to the operation environment. For example, landing

coordinates change because the drone is operated on the ship deck.

Figure 5 shows the BGM pellets distributed on the sea surface

using the drone. Figure 5A is the top view at the moment of

dropping the BGM and Figure 5B shows the artificial bubble cluster

on the sea surface after dropping the pellets.
3.5 Measurement equipment setting

To measure the backscattering strength of the artificial bubbles,

the ADCP was settled on the sea bottom, after which water current

speed data were acquired using its operating software. The

acquisition bin size was set to 1 m, which is directly related to its

spatial resolution. The distribution of bubbles in the water varies in

time and space, and therefore an acoustic ping was transmitted and

received at 1-second intervals to characterize the variation of

backscattering strength in more detail. Finally, the depth-

dependent echo intensities of the four transmitted pings toward

different directions were obtained for every second during

the experiment.

Measurement parameters of the SSMS can set up more suitable

for the experiemnt compared to ADCP. The frequency band was set

to 470.0 kHz to avoid acoustic interference and to enhance the

resolution relative to that of ADCP (307.2 kHz). To increase the

time resolution, the transmission interval was set to 0.1 seconds

with a 1.0 ms pulse length to acquire 10 times more pings than the

ADCP system. To improve the spatial resolution, the sample rate

was set to 64 kHz, which is sampling numer per second, which is the

sampling unit. Both measurement devices were mounted

horizontally on the sea bottom using a gimbal (Figure 1).
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4 Results

4.1 Marine environment analysis

The main measurement was conducted for 90 minutes from

10:00 a.m. to 11:30 a.m., and the CTD (conductivity, temperature,

and depth) sensor was operated for 30 minutes before the main

measurement to obtain marine environmental changes. Figure 6

shows the observed water temperature, salinity, and sound speed.

From 09:35 to 11:35, the profiles of the water temperature and

salinity remained largely constant at 15.3°C and 33.6 PSU

(Figures 6A, B). In Figure 6C, the sound speed profiles derived

from the observed CTD data were also within a relatively constant

range of 1,506.2 to 1,506.7 m/s. These constant features are

characteristic of the areas surrounding the Korean Peninsula in

winter, which is attributed to the coverage of the entire surface layer

by the water mass of the Tsushima Warm Current (Lim, 1976).

These conditions are very favorable for the acquisition of acoustic

data for quantitative analysis.

Figure 7 shows the water currents in the experiment site using

the Aanderaa RCM Blue 5450 (gray arrow) and Aanderaa Seaguard

II DCP (black arrow) instruments, both of which are water current

measurement sonars. The RCM was deployed at 3.4 m and 8.4 m

depths with 1 minutes intervals, and the DCP system was moored at

depths of 6.0 to 24.5 m with a depth interval of 0.5 m and a time

interval of 10 minutes. In Figure 7, the lengths of the arrows

represent the current speed and the arrow directions represent

the direction of the current. Comparing the data of the RCM system

installed at a depth of 8.4 m with the data of the DCP system

moored at a depth of 8.5 m, the overall speed and direction of the

water current were largely equal.

From 10:00 a.m. to 11:30 a.m., the direction of the water current

according to the RCM changed from a southwest direction (240°) to

a west direction (280°) at a depth of 3.4 m with an average speed of

4.5 cm/s. At a depth of 8.4 m, the direction of the water current

changed from a southwest direction (240°) to a northwest direction

(300°) with an average speed of 5.2 cm/s. The water current
A B

FIGURE 4

(A) Drone and (B) mounted rotation plate.
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measured by DCP showed a directional change from 250° to 320°

with an average speed of 4.9 cm/s. Therefore, the observed water

current changes determined using the two instruments were almost

identical to each other. Although the depth-dependent speed

changes of the water current measured using the DCP system

were not significant, the waters appeared to rotate clockwise as

depth increased. Particularly, the rotation of the water current

increased with depth at 11:00. The rotation angles at 6 m and

23.5 m depths were 274° and 329°, respectively.

Upon analyzing the variability of the water current with depth

and time, the current speed during the measurement was

approximately 4.9 cm/s, meaning that the BGM pellets did not

move substantially from the experiment site. As time goes by and

the depth increases, the water current rotated from southwest to

northwest (i.e., clockwise) but the difference in the direction of the

current was small (within 60°). These findings suggested that the

BGM pellets may have moved in an almost constant direction while
Frontiers in Marine Science 06190
they sank into the water column. Therefore, the measured results

were highly reliable because the marine environment was ideal,

similar to the indoor watertank.
4.2 Backscattering strength measurements
using ADCP

In this sea experiment, the backscattering stength of the bubble

cluster was obtained using ADCP. The measured acoustic signal

from ADCP was converted to backscattering stength based on the

equation described in Section 2.

Figure 8 shows two-dimensional (2-D) sections for the

backscattering strength converted from the echo intensity

recorded using the ADCP for 4,500 seconds. In the figure, the x-

axis represents time (or ping number) and the y-axis indicates the

distance from the sea bottom. Figures 8A-D correspond to beam 1
A B C

FIGURE 6

CTD measurement results: (A) water temperature, (B) salinity, and (C) sound speed.
A B

FIGURE 5

Top views of distributed results of the BGM: (A) at the moment of dropping the BGM; (B) distributed bubble cluster after dropping.
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and beam 4, respectively. The backscattering strength shown in

Figure 8C was the strongest, meaning that the BGMs were mainly

distributed near the direction of beam 3. From these results, it is

possible to identify the distribution characteristics of BGM that are

difficult to directly confirm in sea experiments. Based on the results

of this analysis, we mainly used data from beam #3.

Artificial bubbles are continuously created as the BGM sinks.

Therefore, to understand the distribution characteristics of bubble

clusters, it is necessary to understand the sinking characteristics of

the BGM. In this experiment, we attempted to understand the

characteristics of the bubble cluster created as the BGM sinks by

comparing it with the sea experimental results using the BGM

Mock-up model. Figure 9 shows 2-D sections of the backscattering

strength of the reference experiment (mock-up model) and the
Frontiers in Marine Science 07191
artificial bubble (BGM) experiments derived using beam #3 of the

ADCP, which is the direction in which the recorded backscattering

strength was the strongest, as shown in Figure 8C. Figure 9A shows

the result when mock-up models that do not generate artificial

bubbles were dropped as a reference. Figures 9B-D show the

backscattering strengths of the artificial bubbles of the different

BGM dropping experiments with a white contour line indicating –

50 dB. When the mock-up model was dropped, only the reflected

signal by the models could be identified, and it was confirmed that

the sinking speed was approximately 13 cm/s based on the change

in water depth over time, which was in good agreement with our

desired value. In the figure, the backscattering signals by the mock-

up models were identified only to a depth of approximately 15 m

from the sea surface. This indicates that the available observation
A B

C D

FIGURE 8

Backscattering strength derived from ADCP data: beams (A) #1, (B) #2, (C) #3, and (D) #4 of the ADCP.
FIGURE 7

Measurement results of the water/tidal current.
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depth in the steering direction using ADCP was approximately 15

m from the surface. Our experiments also confirmed the generation

of artificial bubbles as the BGM pellets sank (Figures 9B-D). The

backscattering signal was weakened due to a gradual dissipation of

bubbles in the lower part of the bubble cluster. Therefore, our

results not only allowed for the estimation of the sinking speed of

the BGM pellets but also demonstrated that the artificial bubbles

occurred at depths of up to 8–10 m from the surface. Additionally,

our observations confirmed that the generated bubbles persisted for

more than a few minutes. Figure 10 shows the depth-dependent

backscattering strength of the reference data at the time indicated

by the vertical white dashed line in Figure 9A. Figure 10A shows the

individual backscattering strength of the four steering beams.
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In beam #3, the backscattering strength by the mock-up models

reached –25.0 to –30.0 dB, whereas the scattering strength at other

depths (except near the sea surface) was approximately –65.0 and –

70.0 dB and remained mostly constant. In general, the

backscattering strength increases as it reaches the sea surface due

to the presence of floating particles moved by the wind, waves, and

tidal currents, and these characteristics are shown in Figure 10A.

Our results were generally 15.0 dB higher than the backscattering

strength of –80.0 and –85.0 dB observed in our previous watertank

study (Bae et al., 2022). Figure 10B compares the backscattering

strength derived from the sonar equation in Equation (1) with the

result obtained using the method described in the previous study,

which was provided by the manufacturer. Both methods exhibited
  

A B

FIGURE 10

Backscattering strength profiles for the mock-up models: (A) each beam responses and (B) converted results with different equations.
  

A B

  

C D

FIGURE 9

(A) Reference backscattering strength and (B-D) backscattering strengths of the bubble cluster for different BGM dropping experiments.
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similar trends, but some quantitative bias errors were observed. We

estimated that these biases derived from some differences between

the approaches. Specifically, the transmission loss for the

manufacturer’s method does not account for the characteristics of

the area including the absorption. Furthermore, parameter

correction for water temperature is also required for the

manufacturer’s approach, but this was not taken into account.

Figure 11 shows the magnitude of the backscattering strength

for each depth at the time indicated by the vertical white dashed line

in the presence of the artificial bubbles depicted in Figures 10B-D.

The results for the four steering beams are shown together.

Although there were slight differences in the results of the three

experiments due to the spatiotemporal variations of the marine

environment, the magnitude of the backscattering strength by the

bubble cluster increased up to 50.0 dB compared to when there were

no bubbles. These results are also consistent with those of our

previous watertank experiments (Bae et al., 2022). In the vicinity of

the sea surface, the maximum backscattering strength was

calculated at approximately –10.0 dB, and assuming –50.0 dB as

the bubble boundary, the distribution depth of the artificial bubbles

used in the experiment was estimated to range from 8.0 to 10.0 m.

These results indicate that the backscattering strength of artificial

bubbles can be effectively measured through sea experiments

using ADCP.
4.3 Backscattering strength using the SSMS

Using ADCP, we were able to effectively measure the

backscattering strength of the artificial bubbles. However, ADCP

is a device that steers a beam with a specific frequency in a specific

direction. Therefore, some verifications are needed because

unwanted distortions may occur. For this reason, we developed
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SSMS with high resolution and vertical beam steering, and

attempted to compare the results of maritime experiments using

SSMS with the results obtained through ADCP for verification.

Figure 12A shows the calculated backscattering strength of the

mock-up model (i.e., without artificial bubbles) and corresponds to

the case illustrated in Figure 9A. The constructed SSMS allowed for

the acquisition of data with higher temporal and spatial resolutions

than the ADCP. Moreover, the ADCP results could not be observed

at a depth of ≥15 m from the sea surface due to the tilted steering

beam angle. In contrast, the beam of the SSMS was toward the sea

surface directly and therefore the acquired data could be observed

for all depths. Figure 12B shows the results of the backscattering

strength acquired by the SSMS for the same experiment illustrated

in Figure 9C, which corresponds to the ADCP data obtained in the

presence of artificial bubbles. The calculated backscattering strength

was very similar to that of our ADCP experiments. Furthermore,

the identified characteristics in the ADCP data were also observed

with very high resolution.

Figure 13A shows the backscattering strength profiles at 180

seconds, when the bubbles reached their maximum depth in the

water column (Figure 12B). In the figure, the dashed lines represent

the raw data, whereas the solid line represents the results after applying

a moving average. The processed results exhibited similar trends and

magnitudes compared to the ADCP #3 beam data in Figure 11B, and

therefore our results validated the ADCP data. Figure 13B shows the

backscattering strengths of the artificial bubbles at different times with

60-second intervals (vertical dotted white lines in Figure 12B).

According to our results, the backscattering strength increases from

the vicinity of the sea surface to the bottom as the bubble cluster

extended. Additionally, the backscattering strength at a depth of less

than 10m from surface increased gradually from its original magnitude

at 60 seconds to the magnitude at 180 seconds, which values is the

strongest magnitude, and decreased gradually.
A B C

FIGURE 11

Backscattering strength profiles for the bubble cluster obtained by ADCP: (A) 1,900 s, (B) 2,790 s, and (C) 3,590 s.
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5 Conclusions

The study of bubble characteristics in water is not only important

in the field of natural sciences but also provides a basis for the

development of military technology. Particularly, measuring the

acoustic characteristics of artificial bubbles is the first step toward

their military application. In our previous study, we measured the

acoustic characteristics of artificial bubble clusters generated by BGM

pellets in an ideal watertank environment. In this study, we measured

the acoustic characteristics of artificial bubbles in a real marine

environment where, unlike in controlled laboratory conditions, the

water temperature, salinity, and concentrations of organic and

inorganic compounds change in a time- and space-dependent manner.

To quantitatively measure the acoustic properties of artificial

bubbles in a real ocean environment, a sea site suitable for our

experimental purposes was selected in the southern sea of the Korean

Peninsula. Additionally, to avoid any interference between the

bubbles generated by the BGM pellets and other materials during

the dropping, the BGMs were remotely dropped using a drone.

During the measurements, water temperature and salinity were

largely constant throughout the entire layer, thus mimicking the ideal
Frontiers in Marine Science 10194
conditions of a watertank. Because the measurement was carried out

during a neap tide, the observed current speed was approximately 4.9

cm/s, thus providing ideal conditions to conduct our experiments.

To obtain the backscattering strength of the artificial bubbles,

echo intensities were acquired using an ADCP. Moreover, the ADCP

approach was validated by comparing its measurement results with

those obtained with the SSMS. The measured results for each BGM

dropping experiment showed similar trends. Specifically, artificial

bubbles were generated as the BGM sank and backscattering strength

weakened as bubbles began to dissipate from the lower part of the

cluster. In addition to observing the acoustic characteristics of the

artificial bubbles, physical properties were also evaluated, such as

the sinking speed of the BGM pellets.

Our experimental design had some inherent limitations because

real marine environments change considerably in a time- and space-

dependent manner. However, the measurement method proposed

herein is expected to be highly applicable because it provides a

simple way to measure the acoustic signatures of bubbles in water.

Collectively, our findings demonstrated that our proposed approach

could be applied not only for the exploration of basic science concepts

but also for the development of military applications.
 

A B

FIGURE 13

Backscattering strength profiles for the bubble cluster obtained by the SSMS: (A) raw and moving average example and (B) result profiles with
different time represented in Figure 12B.
A B

FIGURE 12

Backscattering strength obtained from the SSMS: (A) mock-up model and (B) bubble cluster data.
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Acoustic tomographic inversion
of 3D temperature fields
with mesoscale anomaly
in the South China Sea
Chuanzheng Zhang1,2, Ze-Nan Zhu1, Cong Xiao1,
Xiao-Hua Zhu1,2,3* and Zhao-Jun Liu1,2

1State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography,
Ministry of Natural Resources, Hangzhou, China, 2Southern Marine Science and Engineering
Guangdong Laboratory (Zhuhai), Zhuhai, China, 3School of Oceanography, Shanghai Jiao Tong
University, Shanghai, China
Acoustic tomographic inversion is based on travel times measured along the

transmission paths between all station pairs to reconstruct three-dimensional

temperature structures with mesoscale anomalies. In this study, tomographic

simulation experiments were designed based on the Hybrid Coordinate Ocean

Model (HYCOM) reanalysis data to reconstruct mesoscale phenomena from travel

time data obtained from five, seven, and nine stations in the South China Sea over a

domain of 100 × 100 km. The travel times for each station pair were calculated in

the vertical section using the Bellhop acoustic ray simulationmethod. Six Empirical

orthogonal function (EOF) modes of sound speed along the sound transmission

paths in a vertical slice were used to formulate the inversion equations. The

horizontal-slice distributions of temperature in the tomography domain were

reconstructed using the grid-segmented method for each depth layer. For

station-to-station distances greater than 100 km, the performance of inversion

was best for the seven-station case rather than for the nine-station case, with the

highest horizontal resolution of the three cases. This case study concluded that the

seven-station case rather than the nine-station case provided an optimal station

number for reconstructing the three-dimensional temperature fields.
KEYWORDS

ocean acoustic tomography, inversion of three-dimensional temperature fields,
mesoscale phenomena, HYCOM data, South China Sea
1 Introduction

Ocean mesoscale eddies are globally widespread and play important roles in ocean heat

transport and energy dissipation. Mesoscale phenomena are the best targets for ocean

acoustic tomography because of the movement and variability of eddies (Munk et al., 1995).

In the northern part of the South China Sea (SCS), mesoscale eddies are generated by

Kuroshio intrusion through the Luzon Strait (Liu et al., 2008).
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Ocean acoustic tomography (OAT) is an innovative method that

is widely used in oceanography (Munk and Wunsch, 1979; Munk

et al., 1995; Kaneko et al., 2020). The OAT was proposed as an

advanced underwater remote sensing technology, which was

applicable to reconstruct the three-dimensional structures of ocean

dynamic parameters. Acoustic stations are located at the periphery of

an observation area, tomography domain is measured by sound

traveling among the acoustic stations (Zheng et al., 1997; Zhu et al.,

2013, Zhu et al., 2017; Syamsudin et al., 2019) to realize synchronous

observation of rapidly varying mesoscale temperature fields, which

are difficult to achieve using conventional shipboard and point

mooring observations (Zhang et al., 2015). Several different vertical

temperature distributions were assumed to be suitable for performing

vertical inversion in coastal seas (Park et al., 2021). However, due to

the complexity of the deep-sea environment, the sound speed profile

is difficult to represent using a simple function. The Empirical

orthogonal function (EOF) decomposes the vertical structure of

sound speed into multiple principal components, and the

characteristic feature of sound speed profiles can be accurately

reconstructed by inverting the coefficients of the major EOF modes

(LeBlanc and Middleton, 1980; Fukumori and Wunsch, 1991). The

propagation time information observed by acoustic tomography can

also be used to invert the coefficients of individual EOF modes.

Tomographic mapping of three-dimensional mesoscale temperature

fields has frequently been studied, with stochastic inversion (the

Gauss–Markov method) being applied in most studies. However, the

solution provides less flexibility because the covariance of the

expected solution is required prior to inversion (Cornuelle et al.,

1985; Howe et al., 1987; Yuan et al., 1999). Consequently, more

flexible inversion methods are preferred.

The SCS is the largest marginal sea adjacent to the northwestern

Pacific Ocean. Recent observations have shown that the SCS exhibits

frequent mesoscale eddies (Wang et al., 2003, Wang et al., 2008; Chen

et al., 2011; Nan et al., 2011; Chu et al., 2020). In this study,

tomographic inversion of mesoscale eddies was performed for a

model domain of 100 × 100 km in the northern SCS. The acoustic

tomography network strategy was designed using temperature and

salinity outputs from the Hybrid Coordinate Ocean Model

(HYCOM) data. This study aimed to reconstruct three-dimensional

mesoscale sound speed fields in the northern SCS using tomographic

inversion under different station configurations.

A new method was proposed by combining the EOF method in

the vertical slice and the grid-segmented method in the horizontal

slice. Sections 2 and 3 describe the model and the forward

formulation, respectively. The process and method of inversion

are described in Section 4. Section 5 presents the simulation results

under different station configurations. The discussion is presented

in Section 6. Finally, Section 7 concludes the study.
2 Model

2.1 Ray simulation in a vertical slice

The process of sound propagation between acoustic stations is

affected by many factors, the most important of which are the sound
Frontiers in Marine Science 02197
speed profile (SSP), sound frequency, and bottom topography. The

BELLHOP ray tracing method was used to simulate the sound

propagation process between each of the transmitter-receiver

station pairs. This was achieved using the time- and domain-

averaged sound speed profile (the reference sound speed),

calculated from the temperature and salinity data within the

tomography region (MacKenzie, 1981). In the process of

determining the ray patterns along the transmission paths between

the station pairs, the sound speed distribution used is independent of

range, while the bottom topography used is related to range. Figure 1

shows a typical ray pattern along each transmission path, along with

the reference sound speed profile. Surface-bottom reflected rays were

constructed in all sections (Figures 1A, B) that traversed the entire

vertical section of the water body, indicating that the tomographic

technique could measure the sound speed field over the entire section.

All the parameters of multipath travel time, ray path, and ray length

were required to execute the vertical section inversion. To distinguish

the multipath travel time, this study used a 480Hz sound source as an

example, and the travel time difference in the selected typical sound

rays was greater than the time resolution of acoustic tomography (2.1

ms), defined as the one-digit length of theM sequence for modulation

number=1 (Q=1). The M sequence is a pseudo-random signal that

has no correlation with ambient noises. It is a powerful tool to delete

the effect of ambient noises in received signals and increases

remarkably signal-to-noise ratio (SNR). For station distances

varying between different station pairs, the number of typical

sound rays was 38 at a maximum of 105 km distance (Figure 1A)

and 12 at a minimum of 33 km distance (Figure 1B), and the average

number was 25 for all station distances at 30–140 km. Note that apart

from the bottom topography, the distance between the acoustic

stations was a major factor affecting the density of acoustic rays

within the vertical section (Figure 1C). A shadow zone is a space that

cannot be covered with acoustic rays. The shorter the distance, the

smaller the density of the acoustic rays and the larger the shadow

zones. As long as a sufficient number of acoustic rays are obtained,

the influence of shadow zones on inversion results is weak.
2.2 Empirical orthogonal function method

From the HYCOM reanalysis data from 1993 to 2011, we

accumulated the vertical profiles of the sound speed to take

seasonal averages using the daily temperature, salinity, and depth

data, interpolated to 1 m interval data, and then subtracted the

climatologically averaged sound speed from the daily data to obtain

the deviated sound speed profiles (Figure 2A). The deviated SSP

varied greatly with time and showed different vertical structures in the

upper ocean in the different seasons. In the upper 200 m, the deviated

sound speeds notably varied owing to the main thermocline, with a

variation range of approximately ±15 m/s. The range of variation in

the deviated sound speeds decreased with increasing depth. At a

1000 m depth, the variation in deviated sound speeds was only within

±2 m/s. Different seasonal profiles showed that the deviated sound

speed varied within ±5m/s in the subsurface layer, where the seasonal

thermocline of the SSC was present (Wang et al., 2022). EOF

decomposition was applied to the deviated sound-speed profile
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data, and the first six EOF modes were calculated (Figure 2B). The

contribution rates of the six EOF modes were 81.7%, 12.4%, 3.5%,

1.0%, 0.9%, 0.5%, respectively, and the first three modes were the

major modes accounting for the contribution rate of 97.6%. The

deviated sound speed showed a large variability in the upper 400 m,
Frontiers in Marine Science 03198
and the variability diminished rapidly with depth. For the first several

modes of the EOF, near-surface-intensified phenomena were also

prominent in the upper 150 m, where the deviated sound speed had a

large value. At depths greater than 600 m, the speed of the deviating

sound decreased rapidly.
A B

FIGURE 2

EOF decomposition for the deviated sound speed profiles. (A) The vertical profiles of deviated sound speed data accumulated from 1993 to 2011;
(B) The vertical profiles of deviated sound speeds for the first six EOF modes.
FIGURE 1

The typical ray pattern simulated using the Bellhop ray tracing scheme together with the reference sound speed profile. (A, B) show the typical ray
patterns for L=105 km and L=33 km, respectively. The background color indicates the time- and domain-averaged reference sound speed profiles.
(C) shows the number of rays plotted against the station distances. The open star marks indicated the mean of the ray number, calculated for every
horizontal grid box of 10 km.
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2.3 Configuration of the projected rays in a
horizontal slice

The HYCOM reanalysis product was developed earlier and is

currently the longest-time-scale high-resolution dataset with

eddy-resolving resolution (Adams et al., 2011). Based on the

hydrographic data (temperature and salinity) with a time

resolution of 1 d and a horizontal resolution of 1/12° in the

HYCOM dataset, we selected a 1° × 1° latitude-longitude model

domain (approximately 104 × 111 km) in the southwest of the

Luzon Strait, where the Kuroshio frequently intrudes. Mesoscale

eddies that frequently appear in this area (Chen et al., 2011),

where are the targets of acoustic tomography. In the analysis, the

effects of station number on the accuracy of the inversion and the

standard configuration of stations with asymmetry were

considered. Figure 3 shows the standard configurations for the

five-, seven-, and nine-station cases. The total number of

rectangular grids was M=7 × 7 = 49. With an increase in the

number of acoustic stations, the number of acoustic transmission

lines increased exponentially. The five-, seven-, and nine-station

cases constructed ten, twenty-one, and thirty-six transmission

paths in the horizontal domain, respectively. The observational

information, acquired from sound propagation among

tomographic stations, increased with exponential growth rather

than the linear growth obtained by conventional mooring stations

(Zhang et al., 2017).
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2.4 Warm eddy

The temperature distribution on January 6, 2011, was selected

with a focus on the warm eddy in the simulated domain. To facilitate

comparison, the horizontal-slice distributions of the depth-averaged

temperatures are shown at every 50-m depth with a 7 × 7 grid, as

shown in Figure 4. In the upper layer (100–600 m), the core of

temperature anomaly due to warm eddies intensified with a

maximum temperature anomaly of approximately 2°C at a depth

of 100–150 m. The eddies penetrated deeply, extending from 100 m

to 600 m. The core of the temperature anomaly gradually weakened

as depth increased, constructing an incline toward the southeast.
3 Forward formulation

3.1 Vertical slice

The propagation of acoustic signals in the ocean can be

approximated by using refracted acoustic rays. The propagation

of ray paths in the vertical section depends on the vertical

distribution of sound speed and velocity (Munk et al., 1995). This

study focused on the influence of sound speed on propagation time

without considering the velocity. The travel time deviation (dti) for
the i-th ray path traveling between the acoustic station pair is

expressed as follows (Zhang et al., 2015):
A B

C

FIGURE 3

The standard configuration for (A) five, (B) seven, and (C) nine stations superimposed on the horizontal-slice inversion grid. The grids are numbered
as 1–49; A–I are the names of the stations.
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dti = ti − t0i ≈
Z
Gi

dC(x, z)
C0(z)

2 dL                     (1)

When sound is transmitted from a source, it propagates in a

stratified ocean; refracted rays passing through different depths are

constructed, and various travel times are obtained from a receiver.

For the vertical-slice inversion, the tomographic domain is

decomposed into N depth layers such that the travel time

deviation (Equation 1) is reduced to a discrete form as follows:

dti ≈ −o
N

z=1

lizdCz(x)
C2
0z

                        (2)

where liz represents the actual length of the i-th ray through the

z-th layer and C0z and dCz(x) represent the reference sound speed

and the average sound speed deviation of the z-th layer, respectively.

The purpose of vertical-slice inversion was to reconstruct the

vertical distribution of the layer-average sound speed deviations

(dCz(x)) using the travel time deviation as known variables. In this

study, we considered a method in which the depth layer is

decomposed into 4000 sublayers with an interval of 1 m. Because of

the limited travel time information, only the sound speed deviation for

typical layers was calculated (Taniguchi et al., 2013; Dai et al., 2023).

The EOF decomposition method was introduced to reduce the

number of unknown inversion variables. In this study, the first six

EOF modes (M=6) for the sound speed deviation were introduced.

Subsequently, Equation (2) was transformed into
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dti ≈ −o
N

z=1
o
J

j=1

lizMz(j)
C0z  

2 aj                   (3)

where Mz(j) is the value of the j-th EOF mode crossing the z-th

layer, and aj is the coefficient for the j-th EOF mode. The goal of

formulation is to determine the unknown variables (aj) at every

observation time when travel time deviation (dti) is acquired.

Finally, the vertical slice distribution of the average sound speed

deviation was reconstructed using the following formula:

dCz(x) = Mz(j)aj   (for j = 1, 2… 6)         (4)

As a result of applying the EOF mode method, the number of

unknown variables (the coefficient number of the EOF modes) was

considerably reduced.
3.2 Horizontal slice

The tomography domain was surrounded by five, seven, and nine

acoustic stations, typical cases for constructing ten, twenty-one, and

thirty-six transmission paths, respectively. The horizontal-layered

distribution of the sound speed deviation obtained in the vertical-

slice inversion and the lengths of the transmission paths crossing

individual grids were used in the horizontal-slice inversion as known

variables. The formulation for the horizontal-slice inversion is

represented as follows:
A B D

E F G

I

H

J K L

M N

C

O P

Q R S T

FIGURE 4

The horizontal-slice depth-average temperature distribution every 50 m with the 7 × 7 grid. The depth information is indicated at the top of each
figure (A–T). The color bar of temperature is also indicated at the right of each figure.
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dCz(x) = o
M

x=1

liz(x)dCz(x)
Liz

                      (5)

where dCz(x) is the layer-average sound speed deviation for the

x-th grid at the z-th layer obtained from Equation (4), liz(x) is the

length of the i-th ray projected onto the z-th horizontal layer crossing

the x-th grid, dCz(x) is the sound speed deviation of the x-th grid at

the z-th layer, and Liz is the length of the i-th projected ray at the z-

th layer.

Three-dimensional mesoscale sound speed fields were

reconstructed by combining the vertical and horizontal slice

inversions. The simulation region was divided into a depth range

of 50 m from the surface to 1000 m. To better describe mesoscale

eddies, the three-dimensional distribution of sound speed was

converted into a three-dimensional distribution of temperature

according to the correlation formula using the sound speed

deviation and taking depth as a variable. From the surface to a

depth of 1000 m at an interval of 50 m, a change of 1 ms-1 in sound

speed was equivalent to temperature changes of 0.5–0.2 °C.
4 Inversion

Equations (3) and (5), which correspond to the vertical- and

horizontal-slice inversions, respectively, are expressed in matrix

form as follows:
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y = Ex + n               (6)

where y is the simulated data set vector, x is the unknown

variable vector, E is the transform matrix, and n is the noise vector.

In this study, the tapered least-squares method was adopted to

obtain the optimal solution. In the tapered least squares method, we

can express the objective function as follows:

J = (y − Ex)T (y − Ex) + a2xTx        (7)

where a is the damping parameter. The expected solution ~x is

obtained, so that to minimize the objective function as follows:

~x = (ETE + a2I)−1ETy           (8)

The L-curve method developed by Hansen and O’Leary (1993)

was used to determine the optimal value of a . Consequently, the
optimal solution of the sound speed deviation fields was obtained

more flexibly than with stochastic inversion, which requires the

covariance of the expected solution prior to inversion.
5 Results

Figure 5 shows the horizontal-slice contour maps of

temperature fields with warm eddy anomaly, reconstructed by

inversion for the five-station number. The results of 20 depth
A B D
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H
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C
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FIGURE 5

Contour maps of the horizontal-slice temperature fields, reconstructed for five acoustic stations. The depth range is indicated at the top of each
figure (A–T). The color bar of temperature is also indicated at the right of each figure.
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averaged temperature fields at a 50 m interval from the surface to a

depth of 1000 m are shown in Figures 5A–T, 6A–T, 7A–T show the

contour maps of temperature for seven- and nine-station cases,

respectively. The mesoscale anomaly was intensified in the depth

layers of 100–600 m, as visible in the 50 m-interval depth-average

temperature field (Figure 4), and rapidly diminished with depth in

the layers deeper than 600 m. The core of the anomaly, which

corresponded to the mesoscale eddies existing in the depth range of

50–600 m, was not clear in Figure 5 (five-station case). The cores

were reconstructed with almost the same horizontal positions as

Figure 4 in the depth range of 100–550 m for Figure 6 (seven-station

case) and in the depth range of 150–500 m for Figure 7 (nine-

station case).
6 Discussion

6.1 Correlation coefficient and root mean
squares difference

To evaluate the performance of the tomographic inversion, the

inverted temperature at the m-th grid point of each layer was

compared with the HYCOM data using two indices, CCOE and

RMSD, as follows:
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CCOE = ot
i=1(Thycom − Thycom)(Tinv − Tinv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ot
i=1(Thycom − Thycom)

2ot
i=1(Tinv − Tinv)

2
q         (9)

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t o

t
t=1(Tinv − Thycom)2

r
                (10)

where   t is the time and Thycom and Tinv represent the HYCOM

and inverted temperatures at each layer, respectively. Thycom and

Tinv represent the average values of HYCOM and the inverted

temperatures over all grid points in each layer, respectively.
6.2 Temporal change of horizontal-slice
inversion results

The CCOE (Equation 9) and RMSD (Equations 10) for the

HYCOM data and the inversion results averaged over the

simulation domain were calculated for the three acoustic stations.

Figure 8 shows the time plot of the comparison results for the entire

year of 2011 in the second layer, where the sound speed

(temperature) anomaly had the largest value. Within one year,

the temperature varied from 20.0 °C to 26.5 °C. In general, all three

sets of temporal data varied with similar tendencies. The CCOE and

RMSD were 0.980 and 0.297 °C for the five-station case, 0.991 and
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FIGURE 6

Contour maps of the horizontal-slice temperature fields, reconstructed for seven acoustic stations. Others are similar to Figure 5.
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FIGURE 7

Contour maps of the horizontal-slice temperature fields, reconstructed for nine acoustic stations. Others are similar to Figure 5.
FIGURE 8

Time series of the 2011 HYCOM data (red line) and inversion results for five-station (black line), seven-station (blue line), and nine-station (green line)
cases in the second layer. CCOE and RMSD are indicated in the lower right of the figure.
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0.197 °C for the seven-station case, and 0.989 and 0.220 °C for the

nine-station case, respectively. The RMSD was the smallest for the

seven-station case, whereas the nine-station case had the highest

horizontal resolution of the three cases.
6.3 Performance of inversion

Statistical analyses of the RMSD at each layer provided an

important indicator of the inversion performance. In the following

analysis, the entire depth layer, from the surface to a depth of

1000 m, was divided into 20 sublayers every 50 m.

The mean and standard deviation (STD) of the RMSD were

calculated for every grid of each depth layer, implying that the

inversion accuracy varied with depth (Figure 9). The mean and STD

of the RMSD were maximal in the second layer around the main

thermocline. Its value was 0.64 °C for the five-station case, 0.55 °C

for the seven-station case, and 0.78 °C for the nine-station case,

showing that the seven-station case had a minimum value of mean.

The results also showed that the nine-station case had the

maximum value of the STD around the second layer. The mean

and STD of the RMSD showed a decreasing trend with the number
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of depth layers. Therefore, the performance of inversion was best for

the seven-station case rather than for the nine-station case, with the

highest resolution of the three cases.

The accuracy of horizontal-slice inversion depends on the

spatial resolution (Park and Kaneko, 2001; Zhang et al., 2017).

The number of stations determines the number of transmission

paths required. The spatial resolution was formulated using the area

(A) of the simulation domain and the number (Nr) of acoustic

transmission paths, as follows:

LHr =

ffiffiffiffiffiffi
A
Nr

s
(11)

where A = 104 × 111 km =11,544 km2. For the three station

configurations on a horizontal slice, the spatial resolutions were

calculated using Equation (11) and are listed in Table 1.

In this study, the results for the mesoscale anomaly inversion

showed that the inversion performance for the seven-station case was

better than that for the nine-station case, with a higher spatial

resolution. This means that the accuracy of three-dimensional

inversion depends on the horizontal-slice spatial resolution as well as

the vertical-slice spatial resolution. To illustrate the vertical-slice

inversion performance more directly, the RMSD for the vertical-slice

inverted temperature of the full water depth and HYCOM data were

plotted against station distance and ray number (Figure 10). When the

distance between stations increased from 30 km to 100 km, the RMSD

for the vertical-slice inversion significantly decreased with increasing

distances. For distances greater than 100 km, the RMSD was

approximately constant (Figure 10A). Similarly, the RMSD for the

vertical-slice inversion decreased as the number of acoustic rays

increased (Figure 10B). With increasing distance, oceanic signals with

smaller length scales were filtered out, increasing the smoothness of the

inversion. In addition, the larger the number of refracted rays, the

smaller the shadow zone, resulting in a higher vertical-slice resolution.
TABLE 1 Number of stations, number of transmission paths, and
horizontal-slice spatial resolutions calculated for the three cases of
station configurations.

Number
of stations

Number of
transmission

paths

Horizontal
Resolution (km)

5 10 34.0

7 21 23.4

9 36 17.9
FIGURE 9

Layer dependence of the mean and STD of RMSD for the HYCOM and inverted data at each depth layer. The dots and vertical bars indicate the
mean and STD, respectively. The results for five-, seven-, and nine-station cases are indicated with the blue, black, and red colors as simulated in the
legend at the upper right of the figure.
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The RMSD was close to a constant value for ray numbers greater

than 30. The RMSD of the vertical slice was larger due to the small

distance between station pairs of the nine-station case. However, the

RMSD was more balanced due to the more appropriate distances in the

seven-station case. Significantly, the comparison of temperature profiles

from the vertical-slice inversion and HYCOM results for different

station configurations during mesoscale eddy period is presented in

Supplementary Figure S1 of the Supplementary material.
7 Conclusion

Mesoscale eddies are difficult to measure synchronously using

conventional shipboard methods because their horizontal scales are

greater than 100 km. This can be achieved through acoustic

tomography methods using a network of multiple acoustic stations

located at the periphery of the observation domain. By simulating the

OAT experiment using HYCOM reanalysis data, we tested three types

of OAT station configurations: five, seven, and nine acoustic stations

located at the periphery of a 104 × 111 km domain. The simulation

fields were in the northern SCS, withmesoscale eddies generated due to

the intrusion of the Kuroshio through the Luzon Strait.

A new inversion method was proposed by combining the EOF

method in a vertical slice and the grid-segmented method in a

horizontal slice. The tapered least-squares method combined with

the L-curve method was used in the inversion process. The

performance of the inversion was evaluated for the three cases of

five, seven, and nine stations using the correlation coefficient (CCOE)

and root mean square difference (RMSD) for the inverted and

HYCOM reanalysis data. For a 100 × 100 km domain, the seven-

station case provided an optimal number to reconstruct the mesoscale

eddy phenomena rather than the nine-station case, with the highest
Frontiers in Marine Science 10205
horizontal resolution of the three cases. This means that the accuracy of

the three-dimensional inversion depends on the horizontal-slice spatial

resolution as well as the vertical-slice spatial resolution. Furthermore,

the horizontal-slice spatial resolution, ray number, and station distance

affect the vertical-slice inversion accuracy. The fewer the number of

refracted rays, the greater the shadow zone. A longer station distance

smoothens out oceanic phenomena at smaller scales.

In this study, we proposed ocean acoustic tomography as an

underwater remote sensing technique that is fully capable of

observing mesoscale eddies.
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Observation of current speeds in coastal seas is crucial because it can provide

useful information for ship operations, fishing activities, and rapid responses to

marine disasters. Coastal acoustic tomography (CAT) is a technology that can

continuously monitor environmental changes such as current velocity and water

temperature using reciprocal acoustic signals between CAT stations in coastal

seas. This technology is different from traditional pointwise or intermittent

sectional observations in that it can produce time-varying two- or three-

dimensional current fields. The results of previous studies using CAT systems

have been limited to reproducing horizontal maps of depth-averaged two-

dimensional current fields. Utilizing results from a high-resolution coastal

ocean model, this study developed a novel technique for estimating three-

dimensional (3-D) current fields by combining the inverse method with an

artificial intelligence (AI) model. Following three steps are the procedure for

the test of estimating the 3-D current fields. First, utilizing the ray tracing model

‘Bellhop,’ reciprocal travel times among five CAT stations using the coastal ocean

model outputs are computed. These five stations correspond to the locations

where in-situ CAT systems were established for continuous monitoring of

current changes in Yeosu Bay, Korea. Subsequently, the range-averaged

currents at the five layers were estimated by incorporating this travel time

difference data into an AI model trained using the same coastal ocean model

outputs. Finally, the inverse method is applied to each layer to estimate the 3-D

current fields. The validation results revealed that the newly developed method

performed well in both summer and winter. Time-varying two-layer-like current

fields were reasonably produced, occasionally revealing an out-of-phase

relationship between the upper and lower layers depending on the tidal

phases. This method yielded average root-mean-squared errors of less than 4

cm/s on six simulation paths for acoustic signal propagation. Furthermore, when
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the same method was applied to in-situ CAT observations, the average

correlation coefficient (R) of the along-channel current of each layer was

found to be approximately 0.9 or higher. These results suggest that this novel

method can be effectively applied to the continuous monitoring of 3-D current

fields in coastal seas using a CAT system.
KEYWORDS

coastal acoustic tomography, inverse method, three-dimensional current field
estimation, empirical orthogonal function, artificial intelligence model
1 Introduction

1.1 Background

Coastal acoustic tomography (CAT) is an emerging technology

designed to monitor coastal environments. This technology evolved

from ocean acoustic tomography, which was originally developed

by Munk and Wunsch (1979), and has been adapted for coastal

applications. Unlike traditional in-situ current measurement

methods such as stationary or intermittent sectional observations,

CAT can estimate time-varying temperature and current fields

using reciprocally transmitted acoustic signals between CAT

stations. This approach is cost-effective and provides valuable

observational results for many coastal regions (Kaneko et al., 2020).

Research estimating the current field using CAT has primarily

focused on calculating the depth-averaged horizontal two-dimensional

current field. Park and Kaneko (2001) presented an inverse method for

estimating the current field by applying the L-curve method to CAT

data. Subsequently, current field measurements were conducted by

applying this inverse method to CAT observations among multiple

stations (e.g., Yamoaka et al., 2002; Zhu et al., 2012; Zhang et al., 2017).

Additionally, research has been conducted to estimate horizontal

current fields considering coastal effects using coast-fitting

tomographic inversion in semi-enclosed seas (Chen et al., 2020), as

well as assimilating CAT observation data into numerical models to

reproduce current fields (Park and Kaneko, 2000; Zhu et al., 2021). As

the need for three-dimensional (3-D) current field observations in

coastal areas has increased, 3-D current fields have been derived by

assimilating CAT observation data into a numerical model with

unstructured triangular grids (Zhu et al., 2017). However, 3-D

current field estimation from inverse analysis rather than from the

data assimilation method using a numerical ocean model with a large

number of calculations and a complex calculation procedure has not

been reported so far. Kaneko et al. (2020) proposed a method for 3-D

mapping of the current field from the sound speed deviation data of

CAT through a two-step inversion procedure from vertical to

horizontal slices. This method is feasible when multi-ray

identification of 2nd or 3rd rays which pass through multiple layers

along the sound transmission path is possible. However, because this is

almost impossible in coastal areas, where the distances between stations
02208
are short and the water depth is shallow, this method cannot be applied

to CAT data.

In this study, we combine an artificial intelligence (AI) model

and an empirical orthogonal function (EOF) with an existing

inverse method to develop a new 3-D current field estimation

method. This method has the advantage of fully reflecting the

current pattern of the study area by applying EOF and

simultaneously reducing the number of unknowns during inverse

analysis, thereby enabling the effective estimation of currents in

underdetermined systems with a minimal number of observations.

Moreover, by employing a pre-trained AI model, this method

allows the rapid estimation of the 2-D current field along the

section between two CAT stations using single-ray acoustic

observations of CAT. The newly developed method was applied

to in-situ CAT data to demonstrate its applicability for continuous

current field monitoring using the CAT system in coastal seas.
1.2 Study area

The study area was Yeosu Bay, located in the southern part of

the Republic of Korea, as shown in Figure 1. Because Yeosu Bay is

characterized by shallow depth, complex coastline, and active ship

traffic, there has been a growing need for real-time monitoring of

current fields in this region. This region is dominated by tidal

currents and shows a typical two-layer structure with opposing

flows; the upper-layer currents from the estuarine area flow

southward, whereas the lower-layer currents flow northward

(Pritchard, 1952; Lee and Kim, 2007).

In this study, the target area for current field estimation was

selected as a channel with a high current velocity in Yeosu Bay

(Figure 1C). Six transmission paths were established by

designating two stations on the west (Yeosu side) and three

stations on the east (Namhae side) and connecting the stations

to the west and east, as presented in Figure 1C. The ‘Transmission

Path’ S1 is between stations K1 and K3, S2 is between K1 and K2,

S3 is between K1 and K5, S4 is between K4 and K3, S5 is between

K4 and K2, and S6 is between K4 and K5. Hereinafter, the term

‘path’ follows the definition of ‘Transmission Path.’ The CAT

stations obtained through the high-resolution ocean numerical
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model results coincide with the actual locations where in-situ CAT

observations are being conducted. The in-situ observation stations

are the land station, except K4 which is located on the barge. This

study utilized a numerical ray tracing model to validate the newly

developed 3-D current field estimation method. The newly

developed method was applied to in-situ CAT data. The

locations of the five CAT stations and the two Acoustic Doppler

Current Profiler (ADCP) mooring sites are listed in Table 1.
2 Data and methods

2.1 Data

The data utilized in this study were data assimilated real-time

ocean prediction modeling results from the Korea Operational

Oceanography System (KOOS), which was developed by the

Korea Institute of Ocean Science and Technology (KIOST). The

temporal and spatial resolutions of the data and their durations are

summarized in Table 2. The depth, current, sea level, temperature,

and salinity results from the KOOS model were used as input data

for the Bellhop ray tracing model (Porter, 2011). The current data

from the KOOS model were used for the EOF analysis, and the

eigenvectors derived from the EOF analysis were used for inverse

estimation. Additional information regarding the input data used to

train the AI model is presented in Supplementary Figures 1, 2.
Frontiers in Marine Science 03209
The in-situ application of the method was performed from

September to October 2023 and validated against the ADCP

mooring data at P1 and P2 (Figure 1C). The observation periods

are presented in Table 2. The temporal resolutions were 20 min and

1 h, respectively, which are finer than that of the KOOS model;

however, because the inverse method was built using the KOOS

model, the in-situ application was also performed at 3-

hour intervals.
2.2 Methods

In this study, the 3-D current field was estimated using the

following three procedures. First, the reciprocal travel time

difference (Dt) of each transmission path is computed through the

ray tracing simulation. Second, Dt′ for each layer and path are

computed using the AI model, which is trained with Dt. Finally,
inverse analysis was applied to each layer, resulting in a 3-D current

field consisting of five layers.

2.2.1 Ray tracing simulation
The first step, the ray tracing simulation, uses a numerical ray

tracing model ‘Bellhop’ to calculate the reciprocal travel time

difference (Dt). The Bellhop model requires the following files as

inputs: ‘.bty’, ‘.ati’, ‘.env’, and ‘.ssp’. The ‘.bty’ and ‘.ati’ files contain

information on the topography and water level of the simulation
TABLE 1 Locations of CAT stations and ADCP mooring sites.

CAT stations Latitude (°N) Longitude (°E)
ADCP

Mooring
Sites

Latitude (°N) Longitude (°E)

K1 34.8477 127.7755
P1 34.8423 127.7886

K2 34.8314 127.8144

K3 34.8492 127.8113

P2 34.8262 127.7917K4 34.8220 127.7778

K5 34.8164 127.8278
FIGURE 1

Study area in the Yeosu Bay, Korea. (A) Map of the Korean Peninsula. (B) Map of Yeosu and Namhae located in the South Sea of Korea, including the
(C) Yeosu Bay. Black dots in (C) indicate the CAT stations and the lines connected between the CAT stations are paths for acoustic transmission
simulation. Yellow triangles in (C) indicate ADCP mooring sites (P1, P2).
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path. The ‘.ssp’ file contains the sound speed and current along the

transmission path. The sound speed used here was calculated using

temperature and salinity using the equation from Del Grosso

(1974). The ‘.env’ file contains parameters such as the depth of

the source and receiver, number of beams, and launching degree.

The Bellhop model uses these input data to output the travel time

(ti) between two stations from the current [u(x,y,z,t)] and sound

speed [C(x,y,z,t)].

ti = ∮  
Li

ds
C x, y, z, tð Þ + u x, y, z, tð Þ · n

If the Bellhop model is performed for both directions, we get the

reciprocal travel time (t+, t–) from ‘. ray’ file. The final output of the

ray tracing simulation is reciprocal travel time difference (Dt = t+– t–).

The ray tracing simulation is performed for each of the six

transmission paths to obtain a time series of six reciprocal travel

time differences (Dt1 –Dt6). Supplementary Figure 1 shows a detailed

flowchart including the input and output data of the Bellhop model

and the final output. Supplementary Figure 3 shows time series of ray

tracing. ‘Calculated v’ is the current made from the ray tracing results,

and ‘model v’ is the KOOS model current data. They show similar

trends of mean velocity, implying that Dt is mainly affected by

velocity along the path.

2.2.2 AI model
In the second process, the range-averaged currents in the five

layers in the vertical section of the six transmission paths were

obtained using the AI model. The input data for the AI model are

presented in Supplementary Table 1, and the data locations are

provided in Supplementary Figure 2. The data duration was

approximately four years (May 2019 to April 2023), including the

period used for training the AI model. The collected data were

preprocessed to normalize and enhance their learning ability. The

other designs used for training the AI model are presented in

Supplementary Table 2. The design of the “training process” is as

follows. The “test set” consisted of January–February and July–

August 2022, the periods covered by the inverse analysis. During

this period, no learning took place, and only real simulations were

conducted. For all periods except the “test set,” about 2/3 of the data

is “training set,” and the remaining 1/3 is “validation set.”

Independent training is conducted for each of the three non-

overlapping “validation sets.” The initial values of these models

were randomized, and training was performed three times for each
Frontiers in Marine Science 04210
model, resulting in nine ensemble model sets. The final model

results were obtained by averaging nine ensemble models. This

ensemble process provided robust model results. Although the

direction-based loss function typically uses the mean squared

error (MSE), the model used in this study focuses on learning the

upper modes by utilizing the EOF results as learning weights,

resulting in the establishment of an optimized direction-based

loss function.

The AI model was designed to estimate the principal

component (PC) time series of EOF using appropriate AI model

layers for input data with different structures and dimensions (see

Supplementary Figure 4). To simulate the current caused by the

difference in sea level between the southern and northern parts of

Yeosu Bay, sea level data were only extracted at the southern and

northern boundaries of the domain. Because the two boundaries

have different lengths of data (11 and 8 nodes, respectively), a dense

layer was utilized to have the same length of nodes, and then applied

to a 1-D convolutional long short-term memory (ConvLSTM1D)

filter to handle the spatial dimension. The calculation of the sea level

difference was not entirely dependent on the neural network, and a

subtraction layer was added to directly calculate the difference

between the two lines. The dimension of sea level data passed

through ConvLSTM1D is compressed from [time, space, feature] to

[time, feature]. Ocean data, atmospheric data, and Bellhop model

output data have dimensions of [time, feature], resulting in merging

with compressed sea level data. The merged data pass through a

dense layer and a hyperbolic tangent (nonlinear activation

function), and then pass through an LSTM layer that handles the

time series. In this procedure, the time dimension was removed,

leaving the [feature] dimension. The tidal-current input field

consisting of [latitude, longitude, depth, (U, V)] dimensions were

passed through the 3-D convolutional layer and compressed into

[feature] dimensions. Finally, the layer is merged with the layer that

passes through the LSTM and is compressed into three dense layers

to obtain the length of the PC time series (1st–10th modes) of the

EOF. The PC time series estimated using this process was then dot-

produced using the eigenvectors obtained from the EOF analysis to

obtain the current fields along the six vertical sections.

The validation results are presented in Supplementary Table 3

and Supplementary Figures 5, 6. Supplementary Table 3 shows the

average root-mean-squared error (RMSE) of the along-path velocity

for the six vertical sections compared with the true value, and

Supplementary Figure 5 shows the RMSE fields of the six vertical
TABLE 2 Summary of the data used in this study.

Type Period (MM/YYYY)
Resolution

Temporal Spatial

Model

Ray tracing simulation 05/2019–12/2022

3 hours

300 m
(horizontal)

14 m
(vertical)

EOF for Inverse estimation 01/2022–12/2022

Validation of Inverse estimation
01–02/2022 and
07–08/2022

Observation
In-situ CAT data 09–10/2023 20 min .

ADCP mooring data 09–10/2023 1 hour 0.5 m (vertical)
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sections. The bias fields are shown in the same format as in

Supplementary Figure 6. The surface layer has a high variability

in current and a relatively small number of modeling runs owing to

sea level fluctuations, resulting in a high error. Finally, the output of

the AI model is the range-averaged current at the five layers in the

vertical section of the six transmission paths.

2.2.3 Inverse analysis
The third step is a new method of inverse analysis using EOF.

Dividing the distance of each transmission path by the range-

averaged current at five layers in the vertical section for the six

transmission paths obtained from the AI model, a matrix Yik

consisting of Dt′ for each layer and path is obtained as follows:

Yik =

Dt
0
11 ⋯ Dt

0
1k

⋮ ⋱ ⋮

Dt
0
i1 ⋯ Dt

0
ik

2
664

3
775  

where i and k represent the six transmission paths and five

layers, respectively. Using this matrix, inverse analysis yields the

horizontal current fields for each layer.

The EOF analysis results using the KOOS 3-D current fields are

shown in Figure 2. The KOOS model data for Yeosu Bay, which

originally comprised 12 horizontal layers, were averaged into five

layers. The layers were categorized based on the spatial pattern of

the current value deviation over time. 1st and 2nd layers show the

greatest variation across the domain; therefore, to reflect this, we

averaged them and used them as Layer 1 of the inverse analysis.

Layers 2, 3, 4, and 5 of the inverse analysis were used by averaging

the 3rd–5th, 6th–7th, 8th–10th, and 11th–12th layers of the KOOS

model, respectively.

Figure 2 shows the eigenvector field and PC time series for the

first three modes with significant patterns obtained from EOF

analysis. The results are presented for layers 1, 3, and 4,

representing the upper, middle, and lower layers, respectively.

This is characterized by the dominance of north-south

reciprocating components in mode 1. The first five modes were

used in the ‘E matrix’ of inverse analysis. The five modes explained

90.73% and 98.80% of the u- and v-component variance,

respectively. The eigenvectors of the five modes are extracted for

each transmission path and layer. Using the extracted vectors, ‘E

matrix’ was defined as follows:

Eijk =
2
C2
0

Z Ri

0
ujkcosq i + vjksinq i   ds

where, i, j and k are the paths, modes, and layers, respectively; Ri is

the length of each path; and C0 is the reference sound speed. qi is the
angle between each transmission path and the x-axis. Then, Eijk, Yik, the

unknown matrix X, and error e have the following relationships:

Y = EX + e

Applying the L-curve method to this relationship yields the

point at which error(e) and solution(X) are optimally balanced

(Hansen and O’Leary, 1993; Park and Kaneko, 2001). This inverse

analysis for layer 1 (k=1, skipped notation) can be expressed as the
Frontiers in Marine Science 05211
following matrix: When this is performed for all five layers, we

obtain the X matrix (j*k), which is dot-produced with the

eigenvectors to yield a 3-D current field (Uk, Vk) by summing

over each mode, as follows:

Xkj =

a11⋯a1j b11⋯b1j

a21⋯a2j b21⋯b2j

⋮ ⋮ ⋮ ⋮

ak1⋯akj bk1⋯bkj

2
666664

3
777775
 ,

Uk=uk1ak1+uk2ak2+ ⋯+ukjakj , and Vk=vk1bk1+vk2bk2+ ⋯+vkjbkj:
3 Results

3.1 Validation of along-path current
of KOOS

First, we validated the KOOS model output data used in this

study. The shipboard ADCP data observed along the paths between

two stations in the domain were used. The shipboard ADCP

observation period and the number of transection observations

for each path are listed in Table 3. Observations were conducted

during both the spring and neap tidal periods. Comparisons of the

along-path-averaged velocities between the observations and the

KOOS outputs showed highly correlated features, as shown in

Figure 3. The RMSE values were 0.09, 0.12, 0.07 m/s, correlation

coefficient (R) values were 0.88, 0.78, and 0.95, and p-values were

0.00, 0.01, 0.05 for S2, S3, and S4, respectively. This confirmed that

the current field reproduced by the KOOS model was suitable for

this study.
3.2 Validation for three-dimensional
current field estimation

3.2.1 Validation for the along-path
current velocity

The method presented in Section 2.2 was applied to all five

horizontal layers in the domain, resulting in a 3-D current field. The

estimated current field was validated by comparison with KOOS

outputs. Owing to the characteristics of CAT, sound waves

propagating along a path are significantly affected by the along-

path current velocity. For this reason, current velocity was

converted to the along-path current velocity (u cosq + v sinq),
which is used in validation. Therefore, S1 (K1–K3) and S6 (K4–K5),

which are nearly zonal to the latitude line, were slightly influenced

by the north-south components of the current.

Figure 4 shows a comparison between the KOOS and estimated

current fields for the along-path current velocity on S4 (K4–K3).

Each figure compares the true values with the inverse estimation

results using scatter plots and time-series plots. The results are

shown for layers 1, 3, and 4 to present the characteristics of the

current fields in the upper, middle, and lower layers, respectively.
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The estimated current field successfully reproduced the tidal

variations, including the flood-ebb and spring-neap cycles, for the

current velocity of the true values. Table 4 summarizes the average

RMSE and R for all six paths and layers 1, 3, and 4. The estimated

current field reproduced the KOOS current fields for all paths well,

with average RMSE values less than 4 cm/s and average R values

exceeding 0.9.

3.2.2 Vertical and horizontal current fields
Yeosu Bay is dominated by the v-component, and the upper and

lower layers sometimes exhibit opposite phases, depending on the

tidal phase. This can be observed from snapshots of v-component

along the section, which are presented in Figure 5. When comparing

the true values in the first column with the estimated current fields

in the second column, the two-layer structure is reproduced

similarly in the contours in the first row. In addition, the flood

tidal period-averaged contours show a northward flow in all five

layers, and the ebb tidal period-averaged contours show a

southward flow, which is very similar between the estimated and

true values. The difference (True - estimation) is higher than -3.8
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cm/s and lower than 3.2 cm/s. For the other paths, snapshots are not

presented because they show patterns like those of S1 (K1–K3).

Figure 6 shows snapshots of the vector representations of the

horizontal current field in each layer. Both the southward and

northward current periods produced current fields with low errors
FIGURE 2

Three-dimensional EOF analysis results. (Rows) Eigenvectors for the first 3 modes (columns from left to right) at Layers 1, 3, and 4 (top three rows).
Bottom panels represent time series of the principal components for the first 3 modes for u- (red) and v-components (black).
TABLE 3 Summary of shipboard ADCP observations.

Period
(MM/YYYY)

Path
Number of
transection
observation

05/2022
S2 K1–K2 6

S3 K1–K5 4

07/2022–08/2022
S2 K1–K2 6

S3 K1–K5 4

05/2023

S2 K1–K2 3

S3 K1–K5 3

S4 K4–K3 4
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across the domain (Figure 6). In addition, the two-layer structure

with a southward (northward) current in the upper (lower) layer

was reproduced well (Figure 6). Figures 5, 6 present the validation

results for the summer season (July and August 2022) when

stratification is pronounced and the current structure is

relatively complex.
4 Discussion

4.1 RMSE and PVE of three-dimensional
current fields

The RMSE fields of the estimated current for each layer during

the validation period are shown in Figure 7. The spatially averaged
Frontiers in Marine Science 07213
RMSE values for each layer are indicated in parentheses. The error

of the u-component is slightly lower than that of the v-component.

The errors were somewhat higher in the upper layer than in the

middle and bottom layers and were larger in areas where the

simulation path did not intersect or at the edges of the domain.

The percent of variance explained (PVE) for each layer indicates

the degree to which the estimated current field reproduces the

variability compared to the true value. It is calculated using the

equation ‘PVE = (1– serr
2/strue

2)*100’, where strue
2 and serr

2

represent the variance of the true value and the error (true value –

calculated value), respectively. Figure 8 shows the PVE for each layer.

The values in each title within the parentheses, expressed as

percentages, represent the average PVE values within the domain

enclosed by the six simulation paths. The average PVE for the u-

component ranged from 49.8% to 68.9%, with approximately 10%
FIGURE 3

Comparison of along-path averaged velocity between ADCP observations and KOOS model outputs. Blue and red dots indicate ADCP observations
carried out in 2022 and 2023, respectively. RMSE, R (correlation coefficient) values, and p-values are calculated for the entire period.
FIGURE 4

Comparison between the true value (KOOS model outputs, black) and results from the inverse estimation (blue) on S4 (K4–K3).
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variation among the layers. For the v-component, the average PVE

ranges from 93.8% to 96.0%, with a variation of approximately 1%

among the layers. This result suggests that the higher RMSE in the

upper layer compared to the middle and bottom layers can be

attributed to the higher current velocity values and variability in the

upper layer. The higher PVE for the v-component compared to the u-

component is interpreted to be caused by the EOF related to the

domain characteristics represented by the simple current pattern in

the v-component.
4.2 Noise test using the AI model

In contrast to ray-tracing simulations utilizing the Bellhop

model, in-situ data may encompass a diverse array of noise. To

assess the impact of noise within in-situ data on inverse analysis, a
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noise test was conducted, artificially introducing noise to the

results (Dt) of the ray-tracing simulation. The noise was

configured to follow a random normal distribution, and 11

experiments were structured based on varying noise intensities.

The application of noise in each experiment is governed by the

following equation:

Dts = Dt + N 0, 1ð Þ*s ,  s = s 0
*n

Here, n was established based on the maximum, minimum, and

mean values derived from the observational results of CAT and the

ray-tracing simulation results (Table 5). Table 6 lists the mean

values of the RMSE for the along-path current calculated from the

AI model noise test. The difference in RMSE between Case 1 (no

noise) and Case 7 (noise with a magnitude of 10×s’) was computed

to be less than 1 cm/s. And RMSE difference between Case 1 and

Case 11 (noise with a magnitude of 200×s’) was calculated to be less
FIGURE 5

V-component along the section between K1 and K3 averaged (top panels) during July–August 2022, (middle panels) during the flood tidal period, and
(bottom panels) during the ebb tidal period. First and second columns represent the true current field from the KOOS model and the results from the
inverse estimation, respectively. Third column represents the difference between them (True - Estimation). Gray-shading indicates the sea floor.
TABLE 4 RMSE (unit: cm/s) and R (correlation coefficient) values between the true current fields (KOOS model outputs) and inverse estimations.

Value Layer
Transmission Path

S1 S2 S3 S4 S5 S6

RMSE
[cm/s]

1 3.8 3.9 3.4 3.3 3.1 3.1

3 2.0 2.1 2.1 2.1 1.6 1.7

4 2.0 2.7 3.4 2.5 1.7 2.1

R

1 0.90 0.98 0.99 0.99 0.96 0.96

3 0.91 0.99 0.99 0.99 0.96 0.98

4 0.93 0.99 0.99 0.99 0.97 0.99
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than 4.4 cm/s. This implies that even with a 20-fold increase in the

magnitude of noise, the increase in error was less than 2.2 times.

Consequently, the AI model demonstrated the capability of

reducing the noise inherent in the observational results of CAT.

Therefore, these experiments suggest the feasibility of conducting

quality control of CAT data using an AI model.
4.3 Application to in-situ CAT observation

The method in Section 2.2 is applied to in-situ CAT observation

data using same method and data except for Dt. Here, the in-situ

data were utilized instead of Bellhop outputs. The validation of the

estimated current field using in-situ CAT data was performed by
Frontiers in Marine Science 09215
comparison with the ADCP mooring data. Each subplot is a scatter

plot for each layer and the ADCPmooring site. Note that the station

K1 was moved southward (34.8397°N, 127.7748°E) to obtain stable

and high quality in-situ observation data. The map in Figure 9 is

provided to indicate the relocated K1 station.

The v-component exhibited a lower RMSE and higher correlation

coefficient than the u-component, which is attributed to the

alignment of the current direction of the v-component with the

along-channel direction. Upon examining the KOOS model as of

September and October 2022, it was observed that the v-component

had a minimum of 3.8 times and a maximum of 9.9 times higher

standard deviation in the five layers than the u-component at the

nearest grid to P1 and P2, respectively. In contrast, the observed

currents at P1 and P2 showed a standard deviation of at least
FIGURE 6

Snapshots of mapped current velocity at Layers 1, 3, and 4. Magenta and blue arrows indicate the results from the inverse estimation and the true
value from KOOS model, respectively.
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2.3times and up to 6.1 times higher for the v-component than for the

u-component in the five layers. This indicates a significant deviation

between the two components of the current velocity in the KOOS

model used to develop the proposed method in this study. These

characteristics of the KOOSmodel output and its spatial resolution of

300 m appear to account for the differences between the components

in the validation results. This issue may be addressed in a future study

by improving our 3-D current field inverse method by utilizing a
Frontiers in Marine Science 10216
high-resolution coastal ocean model with spatial and temporal

resolutions of 100 m and 30 min, respectively.
5 Conclusion

In this paper, we propose a new method for estimating the three-

dimensional current field by combining AI and inverse methods.
FIGURE 7

RMSE of u-component and v-component in January, February, July, and August 2022. Black lines indicate simulation paths, and gray-shaded parts are land.
FIGURE 8

PVE of u-component and v-component in January, February, July, and August 2022. Black lines indicate simulation paths, and gray-shaded parts are land.
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Ray-tracing simulations were performed using the Bellhop model,

and the range-averaged currents at five layers and six simulation

paths were obtained from the AI model. The inverse method is

applied to each of the five horizontal layers, resulting a 3-D current

fields. The significance of this study can be summarized as follows:

First, the 3-D current field was estimated for the first time by

combining AI and inverse methods. The CAT in-situ

observations are theoretically capable of identifying rays

passing through all layers, but this is challenging in practice,

making it difficult to estimate current fields in the vertical

sections of the experimental paths. An AI model was employed

to obtain the current fields in the vertical sections. Furthermore,

applying the EOF of the current fields to the inverse method
Frontiers in Marine Science 11217
simplified the coastal boundary condition problem by

incorporating the current-field characteristics of the domain

through the first five EOF modes.

Second, the noise test of the AI model showed that it can

handle the noise generated by the observations; therefore, it is

applicable to CAT in-situ observations, which are expected to

contain more noisy signals than ray tracing simulations. In fact,

after applying the AI model to CAT in-situ observations taken in

the domain over a one-month period starting on September 22,

2023, the estimated current fields showed that the along-channel

velocity matched well with the ADCP mooring data at the two

points inside the domain (R > 0.85). These results suggest that our

novel 3-D current field estimation method is applicable to in-situ
TABLE 5 CAT observation and Bellhop Model output data used for determining standard deviation (unit: sec, %).

Transmission Path

CAT observation
(Dt, [sec]) Bellhop Model Output

(Dt, [sec])

Ratio
(CAT Observation/Bellhop Model, [%])

Before QC After QC Before QC After QC

S1 4.11e-02 6.67e-04 2.92e-04 141.0 2.3

S2 8.04e-02 2.17e-02 6.62e-04 121.0 32.8

S3 7.36e-02 2.75e-02 1.10e-03 66.9 25.0

S4 2.78e-02 1.08e-03 6.30e-04 44.1 1.7

S5 6.64e-02 6.95e-03 3.30e-04 201.0 21.1

S6 4.57e-02 2.97e-03 4.30e-04 106.0 6.9

min 44.1 1.7

max 201.1 32.8

mean 113.4 15.0
TABLE 6 RMSE of the along-path-averaged velocity between true value (KOOS model output) and the results from AI model noise test (unit: cm/s).

Case
Std.

(s = s’*n)
Path

S1 S2 S3 S4 S5 S6

1 s’*0 2.39 2.97 3.19 3.06 2.46 2.25

2 s’*1 2.40 2.99 3.20 3.07 2.48 2.26

3 s’*2 2.42 3.00 3.22 3.10 2.49 2.28

4 s’*3 2.47 3.04 3.25 3.12 2.52 2.32

5 s’*4 2.52 3.14 3.31 3.15 2.57 2.37

6 s’*5 2.53 3.15 3.38 3.18 2.64 2.42

7 s’*10 2.90 3.53 3.82 3.54 2.97 2.76

8 s’*25 3.85 4.61 4.93 4.53 3.72 3.66

9 s’*50 4.81 5.66 6.23 5.79 4.55 4.38

10 s’*100 5.36 6.40 7.17 6.62 5.03 4.86

11 s’*200 5.79 6.77 7.58 7.11 5.36 5.13
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CAT data in the Yeosu Bay. In addition, since the high-resolution

KOOS model outputs are available all around the coastal seas of

Korea, its application would be possible to other coastal areas

where the CAT system is installed to continuously monitor 3-D

current changes.
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“Light blue and red dots indicate u- and v-components, respectively.”.
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Introduction: Existing methods primarily focus on earth acoustic parameters

inversion under specific layered structures. However, they face challenges with

experimental data from unknown seabed stratification, hindering accurate

parameter inversion.

Methods: To address this, a novel algorithm combines Back Propagation Neural

Network (BPNN) for distinguishing seabed stratification and inverting acoustic

parameters. Simulated sound pressure data disturb seabed parameters as input,

enabling feature recognition for training the neural network inversion model.

Acoustic parameters are then estimated under identified stratification using the

sound field model.

Results: The inversion model is validated using simulation and pool shrinkage

data. Results show the neural network model effectively stratifies simulation and

experimental data, providing accurate inversion results for acoustic parameters

corresponding to distinct layers.

Discussion: The neural network model's accuracy and practicality are confirmed

through hierarchical judgment of scale test data and acoustic parameter

inversion. This approach introduces a new perspective for shallow sea acoustic

parameter inversion, offering a promising application scenario.
KEYWORDS

seabed stratification, acoustic parameters inversion, BPNN, fast field method (FFM),
scale test
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1 Introduction

Underwater acoustic parameters are important physical

parameters for studying acoustic propagation characteristics in

shallow seas. With the development of acoustic technology and

the popularity of machine algorithms, it is convenient and efficient

to in-vert underwater acoustic parameters using acoustic methods

(Li and Zhang, 2017). Aiming at parameters inversion, a large

number of underwater acoustic parameters inversion works have

been carried out by predecessors, and many methods for

underwater acoustic parameters in-version have been developed,

such as the acoustic parameters inversion method based on

transmission loss (Dragna and Blanc-Benon, 2017), the seafloor

sediment parameters were estimated using the genetic algorithm

and bottom reflection loss curve with wide grazing angles (Wang

et al., 2023), a solution to the problem of stratified seabed

parameters estimation using the sound field matching meth-od

with vertical angle spectra (Xue et al., 2023),three-dimensional

sediment modelling and inversion of geoacoustic parameters

using a cross-dimensional Bayesian approach with wideband

acoustic sources (Ke et al., 2013), the acoustic signal arrival time

(Wang et al., 2023), and the waveguide dispersion characteristics

(Kerzhakov and Kulinich, 2016). Among them, the most widely

used methods can be summarized as the matching field inversion of

underwater acoustic parameters by using the physical

characteristics of underwater acoustic signals combined with the

global optimization algorithm (Potty et al., 2017). Different physical

characteristics are used as the forward model, and then through

various optimization algorithms, such as Genetic algorithms (GA)

and Simulated Annealing algorithms (SA), the objective function is

solved to obtain the parameters results to be in-verted. Existing

studies focus on the inversion calculation of geoacoustic parameters

un-der specific stratification structures (Wang, 2008; Zhu et al.,

2013). The statistical characteristics of the hydroacoustic echo

signal reflected from the seabed, which produces a sudden

change, reflect the existence of the seabed boundary. That is, on

behalf of the seabed, there is a layered structure. There is no

coverage of the sedimentary layer in the base. The seabed can be

regarded as a semi-infinite seabed (Gerstoft, 1994). Such as the base

is covered by a layer of sedimentary layer. As a result of this time,

the physical characteristics of the physical characteristics of the

seabed and semi-infinite seabed have a large difference and cannot

be used to solve a similar problem of the semi-infinite seabed (Zhao

et al., 2023). And so the previous introduction of the stratified

seabed model, due to the oceanic motion and crustal movement of a

stochastic, and so the base covered by the number of sedimentary

layers is also not given to a fixed number of layers, it needs to be

reflected according to the characteristics of the signal (Zhu et al.,

2023b). When processing experimental data under unknown seabed

stratification, the inversion results of geoacoustic parameters

following the stratification cannot be accurately given. In

addition, when the existing classical optimization algorithms are

applied, the iterative optimization calculation between the input

data and the optimal solution not only consumes a lot of computing

time, but also easily falls into the optimal local solution (Zhu

et al., 2023a).
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Given the performance advantages of neural network

algorithms in data processing, many scholars have tried to apply

neural network models in classification research and parameters

inversion in recent years. Chen, Yang et al. used migration learning

and convolutional neural network to study the classification of

sediments such as sand, reef and mud (Song and Wang, 2022).

Huang has applied the Convolutional neural network (CNN) model

to the geo-physical inversion, successfully realizing the inversion of

some geological parameters, and proving that the neural network

model has strong generalization applicability in the inversion

problem (Feng et al., 2022). Wu et al. used a single-hidden layer

feedforward neural network an extreme learning machine to

perform inversion in shallow water depth remote sensing and

obtained relatively accurate inversion results (Chen et al., 2022).

Li, Wen et al. applied the back-propagation neural network (BPNN)

model to electromagnetic inversion and effective wave height field

parameters inversion. They improved the differential evolution

algorithm of the BPNN model to achieve a more efficient and

accurate inversion target (Yang et al., 2021). Due to BPNN’s

powerful nonlinear fitting capability, this algorithm can

automatically learn and identify hidden patterns and relationships

from data. When dealing with the acoustic and geological

complexities of shallow waters, it can provide highly accurate and

reliable results. Therefore, using BPNN for seabed stratification and

acoustic parameters inversion in shallow seas is worth further study

(Pang et al., 2021).

Inspired by the numerous successful applications of neural

network models in target classification and parameters inversion,

this study employs the BPNN for hierarchical structure assessment

and geoacoustic parameters inversion. Focused on the shallow-sea

sound pressure field, the research employs neural network

algorithms to establish a relational model between the predicted

sound pressure field and the acoustic parameters to be retrieved

(Wang et al., 2022). Subsequently, the model is utilized to achieve

accurate hierarchical structure assessment and geoacoustic

parameters inversion within a predefined shallow-sea

environment. The study is divided into four main sections: the

first section provides an overview of geoacoustic parameters

inversion methods based on sound pressure fields. The

subsequent section introduces the methods of hierarchical

assessment and geoacoustic parameters inversion using the BPNN

models. The third section assesses the application’s effectiveness

and the performance of the neural network models through

simulation and experimental data. Finally, the research concludes

its findings.
2 Method

2.1 Forward modeling of shallow sea
sound field

Acoustic parameters in shallow seas are important

environmental parameters that determine the distribution

characteristics of acoustic fields in shallow sea environments. The

change of acoustic parameters in the seabed will have a significant
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impact on the distribution characteristics of the acoustic pressure

field in water so that the geoacoustic parameters can be retrieved

from the measurement data of the acoustic pressure field in the

shallow sea (Kerzhakov and Kulinich, 2016).

In the model, the harmonic point source is located on the

symmetry axis of the cylindrical coordinate. In shallow sea

waveguide environments, the characteristics of seafloor sediments

play an indispensable role in influencing marine acoustic fields.

Various parameters of sediment layers affect the reflection,

transmission, and the paths and directions of sound wave

propagation at the seabed boundary. Therefore, investigating the

properties of seafloor sediments is crucial for understanding the

propagation patterns of marine acoustic fields (Li et al., 2020). In

this context, seawater is considered as a homogeneous isotropic

fluid medium, and the seafloor sediments as an elastomeric

medium. A forward modeling approach for sound field

propagation in layered seabed environments is thus established,

as depicted in Figure 1. Due to the axial symmetry of the column

coordinate system, the three-dimensional problem can be

transformed into a two-dimensional (r, z) plane for solving (Wen

et al., 2021), z=0 represents the sea surface, and the downward

direction of the sea surface is the positive direction of the z-axis of

depth, and the positive axis of r represents the propagation direction

of the sound field.

In the model, it is assumed that the seafloor is regarded as the

superposition of n layers of sediments, and the depth of seawater

layer is set as H1. The sound source with frequency f0 is located at zs
depth of seawater layer. The density and sound velocity in seawater

layer are r1 and c1, respectively. The depth of the sedimentary layer

n is denoted by hn, and the longitudinal wave sound velocity, shear

wave sound velocity, density, longitudinal wave sound velocity

attenuation and shear wave sound velocity attenuation of the

sedimentary layer are denoted by cpn、csn、rbn、apn、asn
Frontiers in Marine Science 03222
respectively. The above 6 types of parameters are the submarine

acoustic parameters to be retrieved in this study. Under the wave

theory, each physical quantity in the above model can be

represented by the displacement potential function f. f1 is the

displacement potential function of seawater layer. And the research

object of this article sound pressure meets p=r1w2f1 (angular

frequency w=2pf0), can be obtained by solving the displacement

potential function of fluid, the sound pressure values at various

points in the detailed theoretical derivation see literature (Li et al.,

2019). Since the displacement potential function in the seawater

layer satisfies formula 1 as follows:

1
r

∂
∂ r (r

∂2 f1
∂ z2 ) +

∂2 f1
∂ z2 + k21f1 = −4pd (r, z − zs)

0 ≤ z ≤ H1

(
(1)

The sediments of potential function fn can be represented as

follows:

1
r

∂
∂ r (r

∂ fpn
∂ r ) +

∂2 fpn
∂ z2 + k2pnfpn = 0

m�m� ysn − k2snysn = 0;Hn ≤ z ≤ Hn+1

8<
: (2)

Where d(r,z) is the original function, k represents the wave

number of each seafloor, where k=w/cm, w=2pf0, pn and sn are the

uncertainties contained in the solution, The flow function and

potential function of f and y correspond to pn and sn

respectively. Then the formal solution of formula 2 is as follows:

f1(r, z) = ∫
∞

0
Z1(z, x)J0(xr)xdx (3)

Where Z is the ordinary differential formula of depth z and x of
horizontal wavenumber, J0 is the zero-order Bessel function.

According to the derivation results of formula 3, the sound

pressure field in the water layer can be expressed as follows::

p(r, z) = r1w
2∫
∞

0
Z1(z, x)J0(xr)xdx (4)

For the solution of formula (4), the Normal Mode Method

(NMM) and Fast Field Method (FFM) can be used to solve formula

(4). For shallow sea environments, FFM converts the integral

formula in formula (4) into Fourier transform form for the direct

solution, which is more suitable for fast calculation of sound field in

shallow sea (Frederick et al., 2020). Therefore, FFM is selected in

this study to conduct a forward simulation of the sound pressure

field in the above parametric model.
2.2 BPNN inversion model of geoacoustic
parameters inversion

Due to the complexity of the marine environment, factors such

as sediment layer density, porosity, and average particle size can all

influence acoustic parameters. Consequently, establishing a precise

functional relationship between acoustic parameters and shallow

water acoustic pressure fields presents a significant challenge. To

address this challenge, a non-linear mapping approach utilizing a
FIGURE 1

Schematic diagram of the sound field model in cylindrical coordinates.
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BPNN is employed (Van Komen et al., 2020). On the other hand,

the BPNN is capable of approximating functions through the

training of input and output vectors. When feature vectors are

input into the network, they can produce results that closely

approximate the desired output values. BPNN are a type of multi-

layer feedforward neural network that employs both forward signal

propagation and backward error propagation to adjust weights and

thresholds to minimize the error function value. This iterative

process ensures that the modified network output aligns closely

with the desired output values (Xu and Pan, 2018).

Therefore, in response to the challenge of inverting seabed

bottom properties in the presence of uncertain seabed sediment

layering, a method utilizing a BPNN based on shallow water

acoustic pressure field data is proposed. Given the inherent

coupling between acoustic parameters and the potential for multi-

valued solutions, especially in multi-layer seabed environments,

training a single neural network directly poses the risk of

convergence issues and encounters difficulties due to the vast

search space (Zhou et al., 2019).

To address such complexities, this study employs a staged

supervised learning approach for multi-layer seabed acoustic

parameter inversion. The stepwise seabed layering and parameter

inversion process is depicted in Figure 2A. It involves feeding

preprocessed and standardized acoustic pressure signals into the

NET-1 network, which serves as a classifier for segregating shallow

water acoustic pressure data into various seabed layer categories.

Based on the classification outcomes, the data is directed to different

networks, facilitating targeted acoustic parameter inversion. To

accommodate current computational capabilities and practical

requirements, this paper primarily discusses scenarios involving

seabed layering, specifically semi-infinite seabed (NET-2-1), single

sediment layer (NET-2-2), and double sediment layers (NET-2-3).

In cases where NET-1 classifies the acoustic pressure data as

originating from a single sediment layer, the data is subsequently

input into the NET-2-2 network for further acoustic parameter

inversion. NET-1 is designed as a single-label classifier solely for
Frontiers in Marine Science 04223
layer categorization, without any data alteration. The BPNNmodels

employed for layer categorization in semi-infinite seabed, single

sediment layer, and double sediment layer environments are

denoted as NET-2-X, where X represents the specific

environment (X=1, 2, 3). In total, four BPNN models are trained

(Qian et al., 2019).

In the two-step inversion process, the objective of the first step

is to determine the seabed type by initially inputting acoustic

pressure data into the NET-1 network. The NET model is

constructed using a single hidden layer, where neurons within the

same layer are not interconnected. In forward propagation, the

activation function f(x) links the input signal - acoustic pressure

field data pj(ri, zi) - with the hyperparameter matrix [w, b]. The

activation function f(x) selected is the Sigmoid function. The signal

flows forward from the input layer to the output layer, with w=[wkv,

wvl] where wkv represents the weight from the input layer to the

hidden layer, and wvl represents the weight from the hidden layer to

the output layer (Stoll and Kan, 1981). Additionally, bv signifies the

threshold for each neuron in the hidden layer. The backward

feedback signal is the error signal E, when the error falls within

the predetermined range, network training is terminated. The

experimental setup precision is set to 10-3. which reflects the

discrepancy between the network model’s inversion results and

the true values. For network training, the cross-entropy function

ECE is utilized. The calculation of the cross-entropy function is

performed as shown in formula (5). NET-1 functions as a single-

label classifier, generating outputs based on the categorization of

seabed layering, distinguishing between scenarios such as semi-

infinite seabed (NET-2-1), single sediment layer (NET-2-2), and

double sediment layers (NET-2-3).

ECE = −
1
Mt
o
Mt

i=1
o
Q

q=1
tiq ln yiq (5)

After determining the seabed layering structure, the subsequent

step involves the stratified inversion of acoustic parameters. In this

second phase, we draw inspiration from the application of matched-
BA

FIGURE 2

Schematic diagram of seabed stratification and parameters inversion calculation based on BPNN model: (A) Flow diagram; (B) BPNN (NET 2-1) model.
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field acoustic parameter inversion methods. For varying seabed

layering conditions, the acoustic signals are input into dedicated

BPNN models associated with shallow-water multi-layered seabed

environments, based on the classification results obtained from

NET-1. The architecture of the NET-2-X models closely resembles

that of the NET model. As an illustration, consider the NET-2-1

model, as depicted in Figure 2B. i set of acoustic pressure data from

different receiver positions (ri, zi), where (1≤i≤ I), form the input

data, denoted asp= [p1(r1, z1), …, pj(ri, zi), …, pm(rI, zI)]m×I.

Corresponding ground sound parameters Y=[cpn, csn, rbn, apn,

asn]m×5 are employed as output results for model construction

(Zhu et al., 2012).

The number of neurons in each layer can be determined based

on formula (6):

v =
ffiffiffiffiffiffiffiffi
I + l

p
+ a (6)

Where n represents the number of input layer nodes, which

corresponds to the simulated acoustic pressure data points, and a is

a constant coefficient.

The partial derivatives of weight parameters between the input

set of acoustic pressures, denoted as p, and the hidden layer are

represented as Dwjv, while the partial derivatives of weights between

the hidden layer and the ground sound parameters Y are

represented as Dwvl. The learning rate, h, is employed during the

computation. In this process, the iteration step t is continually

updated based on whether the EMSE value satisfies the

predetermined accuracy. The adjustment of parameters, wjv、wvl

is achieved through the modification of weight values, aiming to

minimize errors. The parameter descent is carried out using a

gradient descent approach (Zhang et al., 2021). The method for

modifying parameters wjv and wvl is as follows, as expressed in the

(formulas 7, 8).

wkv(t + 1) = wkv(t) + Dwkv (7)

wvl(t + 1) = wvl(t) + Dwvl (8)

The assessment of the training network’s effectiveness is based

on the Root Mean Square Error (RMSE), as described in formula

(9).

EMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Mt
o
Mt

i
½Ysim − Yinv�2

s
(9)

Where Yrea,pre=[cp, cs, rb, ap, as], a matrix comprising the

parameters to be inverted, with Yrearepresenting the simulated

values and Yprerepresenting the inverted values.

The sound pressure input undergoes a nonl inear

transformation within the network, ultimately resulting in the

geophysical parameters (Cheng et al., 2021). In this process, the

inputs and outputs of the hidden layer are denoted as Ikvand Ivl,

respectively. The final inversion result, Ypre, is computed as shown

in formula (10).

Ysim = f (Ivl) = f o
v

k=1

wvlIvl

" #
(10)
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To determine an appropriate network structure, this paper

simplifies the seafloor into two layers, thus establishing the BPNN

inversion model (Zhu et al., 2017). In this model, the input layer

receives simulated sound pressure data, denoted as “p,” which

includes a set of sound pressure data pj(ri, zi), where the range of

i extends from 1 to I. The number of neurons in the hidden layer is

set at 9, and this choice is influenced by various factors, one of

which is the empirical rule for parameter a, which is set to a = -15

in this context (Zheng et al., 2021). Furthermore, the number of

neurons in the output layer, represented as “l,” is determined based

on the number of geophysical parameters that need to be inverted.

For instance, have lNET-1 = 4, lNET-2-1 = 5, lNET-2-2 = 11, lNET-2-3 = 17.
2.3 Data generation and fitting verification

The equations should be inserted in editable format from the

equation editor. Considering the variation range of ground sound

parameters in shallow sea (Li et al., 2019), the parameters training

range of the BPNN model for ground sound parameters inversion

under a preset environment is set as shown in Table 1.

The simulated sound pressure field data is a set of horizontal

equally spaced receiving sound pressure fields under the set sound

source depth zs=20m, receiving depth zr=10m and seawater depth
TABLE 1 BPNN model training set search range.

Stratification
Geoacoustic
parameters

Search range

Sea Layer

c1(m/s) 1500

r1(g/cm3) 1.025

h1(m) 100

Single sedimentary layer
(NET 2-1)

cp2 (m/s) 1800-2200

cs2 (m/s) 900-1100

rb (g/cm3) 1.4-1.6

ap2 (dB·l-1) 0.1-0.3

as2 (dB·l-1) 0.1-0.3

h2(m) 15-25

Double sedimentary
layers(NET 2-2)

cp3 (m/s) 2700-3300

cs3 (m/s) 1350-1650

rb3 (g/cm3) 1.8-2.2

ap3 (dB·l-1) 0.1-0.3

as3 (dB·l-1) 0.1-0.3

h3(m) 25-35

Three sedimentary layers
(NET 2-3)

cp4 (m/s) 3600-4400

cs4 (m/s) 1800-2200

rb4 (g/cm3) 2.25-2.35

ap4 (dB·l-1) 0.1-0.3

as4 (dB·l-1) 0.1-0.3
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H=100m. The receiving points are spaced 2m apart, and a total of

I=720 receiving points are set. The model training samples adopted

by NET2-X are 2200 groups of sound pressure data randomly

generated in each layer within the search range in Table 1, among

which 200 groups are randomly divided into training sets and the

other 200 groups into test sets. Each group (Layered structure) of

the training set and its corresponding environmental sound

pressure are mapped into the model one by one for training.

When the error function EMSE reaches the set accuracy s=0.01,
the training is completed (Huang et al., 2018).

The verification set is generated using random values. The

changes in loss function and prediction accuracy in the training

process of NET-1 are shown in Figure 3. As can be seen from

Figure 3A, after a certain batch of training, the error of the training

curve is reduced to s, the network stops training, and the confusion

matrix further verifies that NET-1 also has a good classification

effect on the verification data, and can complete the classification

calculation of the submarine stratified structure.

In Figure 3B, the inside of each orange box represents the

number of incorrectly predicted samples, the main diagonal

represents the number of correctly predicted samples, and the

light gray rectangle box at the lower right represents the

prediction accuracy of the corresponding sample attributes,

that is, the accuracy of 95% in the training process.NET 2-X

conducts training for neural networks under three hierarchical

structures respectively. To enhance the credibility of the model,

the Mean Absolute Error (MAE) was introduced as an evaluation

metric to assess the predictive accuracy of the model. The

calculation results are shown in Table 2. Taking the NET2-1

scenario as an example, a smaller MAE value indicates better

predictive capability of the model. The calculated results

demonstrate that the inversion error of the model is small,

indicating that the BP neural network performs well in the

inversion of shallow-sea acoustic parameters. Consequently,

the constructed BP neural network model exhibits good and

stable predictive performance in the inversion of shallow seabed
Frontiers in Marine Science 06225
acoustic parameters, with high computational efficiency and

reliability of the prediction results.

The changes in loss function in the training process are shown in

Figure 4. Taking NET 2-2, which corresponds to the layered structure

of the seabed as a single sedimentary layer, as an example, after the

completion of training, the EMSE value reached the setting accuracy

after 200 iterations. The error reduction process was relatively stable,

indicating that the error reduction speed and training effect of the

whole neural network in the training is considerable. Although with

the increase of inversion parameters, the number of iteration steps to

reach the accuracy setting in the NET 2-X training increased, the

target accuracy was reached within 500 iterations, which effectively

constructed BPNN model that could meet the inversion accuracy of

layered submarine acoustic parameters.

By controlling the training parameters and adjusting the

training function, the overfitting phenomenon can be eliminated

in the process of network training, and the generalization ability of

the model can be improved. The highly generalized multi-output

model can solve the multi-value problem caused by the coupling

relationship between the seabed parameters in the inversion process

to some extent, to realize the purpose of simultaneously inverting

multiple seabed acoustic parameters.
2.4 Simulation result analysis

Simulation data and experimental data are used to test the

performance of BPNN model respectively, and the network

prediction results are used in the seabed stratification calculation

and earth acoustic parameters inversion of the measured data of the

pool (Yu et al., 2020).
BA

FIGURE 3

NET-1 training analysis: (A) Loss function; (B) Visual analysis.
TABLE 2 NET 2-1Parameter setting of the inversion algorithm.

MAE cp cs rb ap as

value 2.8187 1.5010 0.0175 0.2103 0.0518
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ntiersin.org

https://doi.org/10.3389/fmars.2024.1349478
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1349478
As a classification model, NET-1 can be directly evaluated based

on the classification accuracy of the test set, as shown in formula

(11).

Ea =
Nt

N
� 100% (11)

Where, Nt is the number of correct samples for stratification and

N= m-Mt, which is the number of total test samples. As a regression

analysis problem, to quantify the error between the inversion results of

each parameters and the preset truth value, the performance function

R2 was introduced to represent the coincidence degree between the

inversion value and the true value numerically. The closer the R2 value

was to 1, the closer the inversion result was to the preset truth value

(Zhang, 2023). The calculation method is shown in Formula 12.

R2 =

No
N

i=1
YeYr −o

N

i=1
Yeo

N

i=1
Yr

 !2

No
N

i=1
Y2
e − o

N

i=1
Yr

 !2" #
No

N

i=1
Y2
r − o

N

i=1
Ye

 !2" # (12)

To verify the robustness of the training completion network, the

sound pressure of the test set generated within the search interval

and some environmental noise are added as test data. The total

number of samples in the test set is 10% of the training set.
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Figure 5 shows the layering results of NET-1 on part of the test

set. The layering accuracy Ea=99% proves that NET-1 can effectively

perform layering calculations on sound pressure field information

under different layering structures. In the figure, “x” represents the

predicted value, “o” represents the true value, and the Y-axis

represents the search range of the number of hierarchical structures.

At the same time, the NET 2-X model is trained. Taking NET 2-

2 as an example, Figure 6 shows the results of underwater acoustic

parameters inversion of NET 2-2. The solid line and “×” in the

figure correspond to the real value and predicted value of the test

data set respectively.

Figure 6 shows the degree of fitting between the predicted value

and the preset value of each parameter in the test set in the inversion

model. During verification, the fitting degree of the inversion results

of cpn, csn, rbn, and hn is maintained above 0.90, showing an

excellent inversion effect. The error variation of parameters apn

and asn is relatively large, but the R2 value of each parameter is

above 0.80, The overall error appears to be within acceptable limits.

It can be seen that the BPNNmodel constructed has good and stable

prediction performance for shallow sea floor acoustic parameters

inversion, and the prediction results have high reliability.

Figures 6A–F shows the ground sound parameter training

results of the first sedimentary layer, and Figures 6G–K shows the

ground sound parameter training results of the second sedimentary

layer. As can be seen from the figure, the training effect of the first

layer is better and the degree of fitting is higher. It can be seen from

the literature that different parameters have different influences on

acoustic propagation characteristics, especially cpn and csn have the

greatest influence on acoustic field characteristics, so the accuracy of

inversion results of these parameters is higher than other

parameters. From the fitting degree in the training process, it can

be seen that the fitting degree of cpn and csn parameters is better,

which accords with the law of sound field calculation in the forward

modeling model, which proves the applicability of the method.

A group of sound pressure data with a single true value is used

for inversion calculation. Substitute the true value sound pressure

data into the neural network models, and the classification results

are shown in Table 3. It can be seen from Table 3 that the

classification probabilities of Net 2-X model for the seabed

layered structure under the true sound pressure are: X=1,

rate=1.21×10-3; X=2, rate=0.99; X=3, rate=1.52×10-4,The data is

determined to be acoustic pressure data from a two-layer seabed.
FIGURE 5

Seabed stratification results of NET-1.
FIGURE 4

NET 2-2 loss function changes.
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After determining the bottom stratification structure, The input

data will be brought into the corresponding neural network model Net

2-X for inversion calculation and the acoustic parameters inversion

values are shown in Table 3. To verify the correctness of hierarchical

judgment, the sound field calculation model at X= 1,2 and 3 is used for

inversion discussion and comparison with X=2 respectively. Figure 7

shows the comparison between the Transmission Loss (TL) curve
frontiersin.or
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FIGURE 6

NET-2-2 Comparison between the actual and predicted values of 200 samples of single sediment. (A–K) are inversion results of 11 parameters in the
case of NET 2-2, respectively.
TABLE 3 Prediction results of Net 2-X.

Net 2-X Number of parameters Classification Rate

X=1 5 1.21×10-3

X=2 11 0.99

X=3 17 1.52×10-4
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calculated by setting the truth value of acoustic parameters and the TL

curve calculated by using inversion results. It can be seen from the

comparison that the distribution characteristics of the two curves are

consistent, which further proves the accuracy of the inversion results of

the subsurface acoustic parameters of the preset model based on BPNN

model (Yang, 2023).

Combining the classification results in Table 3, the parameters

inversion results in Table 4 and the comparison of TL curves under

the three hierarchical structures in Figure 8, the above results show

that when the actual model matches the inversion model exactly the

prediction is X=2, which proves that the model is the best-

parameterized model. At the same time, the TL comparison

obtained by the inversion parameters of the X=1, 2, and 3 models

also proves the above conclusion. When X=2, the parameters
Frontiers in Marine Science 09228
inversion results in Table 4 are consistent with the present. The

above simulation results prove that this method can theoretically

achieve accurate inversion of seabed layered structures and seabed

geoacoustic parameters.
3 Measurements and results

3.1 Introduction of experiment

Previous studies have shown that, under the assumption that

various acoustic parameters in waveguides are unchanged, the idea

of equal ratio can be used to simulate the acoustic propagation test

in the actual ocean by using the equal ratio of high-frequency sound

sources in the laboratory, and the expression only changes the ratio,

while the propagation characteristics of the sound field remain

unchanged. Based on simulation verification of the accuracy and

applicability of the proposed method, the feasibility of the proposed

inversion method in practical application is further verified in this

section combined with the experimental data of the muffler pool

shrinkage. The experiment was carried out in a hydrating pool,

using a uniform and high-hardness polyvinyl chloride (PVC)

plate (the density of PVC was 1.20g/cm-3) as a “semi-infinite

elastic seabed”.

To verify the applicability of the inversion method, two schemes

were adopted in the experiment as follows:
1. There is only PVC plate, simulating elastic semi-

infinite seabed.

2. The way of laying fine sand on PVC plate simulates the

shallow sea waveguide environment with a single layer of

elastic sediment and an elastic version of the infinite seabed,

and the thickness of the sediment simulated by fine sand is

about 250 mm.
B

C D

A

FIGURE 7

Comparison between X=2 simulated TL curve and X=1, 2, 3inversion TL curve: (A) TL curve under true value; (B) Comparison of TL curves of Net 2-1
models and true value. (C) Comparison of TL curves of Net 2-2 and true value. (D) Comparison of TL curves of Net 2-3 and true value.
TABLE 4 Simulation parameters setting and search range.

Submarine
stratification

Parameters
True
value

Inversion
results

Single sedimentary layer

cp1 (m/s) 2000.00 2040.48

cs1 (m/s) 1000.00 1027.30

rb1 (g/cm3) 1.50 1.52

ap1 (dB·l-1) 0.20 0.19

as1 (dB·l-1) 0.20 0.20

h1(m) 20.00 20.11

Double
sedimentary layer

cp2 (m/s) 3000.00 3021.44

cs2 (m/s) 1500.00 1468.33

rb2 (g/cm3) 2.00 2.01

ap2 (dB·l-1) 0.20 0.18

as2 (dB·l-1) 0.20 0.20
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Only the stratification of the sea floor was different between the

two schemes, and other experimental factors were consistent. The

layout of experimental equipment 1 is shown in Figure 8A,

The other is shown in Figure 8B. The depth of the sound source

and the receiving hydrophone are set to 200mm, and the depth of

the fluid layer is 300mm. The speed of sound calculated in the

laboratory at room temperature is 1450.212 m·s-1. High-frequency

underwater sound waves are transmitted by a fixed location sound

source at a frequency of 155KHz and received by a single TC4038

standard hydrophone at different locations at equal intervals. To

improve the measurement accuracy, a high-precision controllable

moving platform was selected to limit the error within 2um and the

unit accuracy was 2mm. A total of 500 position points were

measured during the experiment. Each position was measured 10

times and the average value was taken as the final test data.
3.2 Model selection and inversion results

The computational process of the acoustic field measured under

two experimental schemes is illustrated in Figure 2A. Initially, the

layered structure is assessed using NET-1. The types of input data

include semi-infinite seabed and two-layer seabed, with the layering
Frontiers in Marine Science 10229
results depicted in Figure 9, presented in the form of probabilities. It

is observed that the NET-1 model’s probabilistic assessment for the

two input acoustic pressure signals as semi-infinite seabed and

single sediment seabed is 99%, consistent with the scale model

experiments. Additionally, a comparison between the simulated

annealing algorithm and the classical annealing algorithm was

conducted, incorporating the respective NET 2-X (X=1,2) models.

The inversion results obtained by BPNN and SA are shown in

Table 5. In the pool experiment, PVC boards with a density of 1.20 g/cm³

were used to simulate the seabed layer, and the thickness of the fine sand

layer, representing the sediment layer, was set to 250 mm. Utilizing the

data acquired from the pool experiment, the Back Propagation Neural

Network (BPNN) inversion results indicated the simulated seabed layer

density to be 1.23 g/cm³, and the inferred thickness of the sediment layer

to be 251.13 mm. The relative errors were found to be 2.5% and 0.51%,

respectively, demonstrating good accuracy of the inversion process. In

addition, the inversion results obtained in this paper are compared with

those obtained from PVC plates simulating the same material of semi-

infinite seabed. The velocity of P-wave and S-wave in the semi-infinite

seabed is 2399.364 m/s and 1242.978m/s. The relative error is controlled

below 5%.

Considering the coupling effect of multiple parameters, to

further verify the accuracy of inversion, the comparison between
B

C

A

FIGURE 8

The equipment in the experiment: (A) Schematic diagram of the experiment under a single sedimentary layer (PVC); (B) Schematic diagram of the
experiment under a double sedimentary layer (PVC+sand); (C) Experimental equipment layout physical map.
BA

FIGURE 9

Judgment of two types of layered seabed structures: (A) NET2-1 judgment for semi-infinite seabed layering, (B) NET2-2 judgment for two-layer
seabed stratification.
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the dispersion curve of BPNN inversion and the measured

dispersion curve is shown in Figure 10. And under the two

experimental schemes, the comparison curve of propagation loss

between BPNN model and SA inversion algorithm on measured

data is shown in Figure 11.

Figure 10 shows the frequency-wave number spectrum

measured by the water tank. It can be seen from the spectrum

that the energy of the received sound pressure signal is mainly

distributed in the range of 145kHz-175kHz, and its peak value is

around 155kHz, which is consistent with the performance index of

the sound source set in the experiment. In order to verify the

effectiveness of the BPNN inversion approach and to compare the

TL computed from the inversion results for both semi-infinite and

two-layer seabed configurations with the TL measured in scale-

down experiments, the following findings were observed: For the

semi-infinite single-layer seabed scenario, the TL was generally

consistent. In the case of the two-layer seabed, taking into

account various uncertainties such as the replacement of the

sediment layer with fine sand and the homogeneity of the sand,

certain discrepancies were observed. However, the overall trend of
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the TL was closely aligned. This demonstrates that the inversion

method proposed in this article yields results for the inversion of

parameters such as longitudinal wave and shear wave velocities in

multi-layer seabed structures that are in substantial agreement with

the actual data.
3.3 Result analysis¿

Geoacoustic parameters inversion is a nonlinear and multi-

parameter optimization problem, so the inversion results obtained

by different inversion methods are not the same, but all have the

same reliable reference value. The coupling of multiple parameters

often leads to the experimental phenomenon of the same result in

different parameters combinations, so it is necessary to discuss the

sensitivity of different parameters to determine the reference weight

of the choice of results.

The applicability of multi-parameter inversion using BPNN can

be obtained from spectrum analysis and comparison with SA

algorithm. From the comparison and verification of TL curves of

the two experiments, it can be seen that when the seafloor structure

is inversion for single-layer, the inverse performance results of
FIGURE 10

Comparison between BP inversion and measured dispersion curve.
BA

FIGURE 11

BP and SA inversion TL curve compared with measured TL: (A) Comparison diagram of TL curve under experimental scheme 1; (B) Comparison of
propagation loss curves under experimental scheme 2ganxie.
TABLE 5 Scheme 2 inversion results of measured data.

Submarine
stratification

Parameters
BP
inversion
results

SA
inversion
results

Single
sedimentary
layer (Sand)

cp1 (m/s) 2074.84 2073.65

cs1 (m/s) 1090.56 1093.76

rb1 (g/cm3) 1.13 1.11

ap1 (dB·l-1) 0.99 0.10

as1 (dB·l-1) 0.10 0.10

h1(m) 251.378 249.69

Semi-infinite
layer (PVC)

cp2 (m/s) 2436.37 2440.16

cs2 (m/s) 1250.50 1255.81

rb2 (g/cm3) 1.19 1.21

ap2 (dB·l-1) 0.11 0.10

as2 (dB·l-1) 0.11 0.10
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BPNN and SA algorithm have higher accuracy; when the seafloor is

inversion for double-layer seafloor, the number of ground acoustic

parameters increases, the inversion difficulty increases, and the

multi-parameter coupling is enhanced, so there is a relatively

obvious deviation. However, in terms of the inversion results of

the two algorithms, the root mean square error of the TL curve

obtained by the experiment is 121.92 and 160.19, respectively,

compared with that of BPNN TL curve and SA TL curve.

Relatively speaking, the error of the inversion results of BPNN is

smaller and more valuable for reference.
4 Conclusions

By employing the BPNN inversion method to train an extensive

dataset of simulated information, a computational model has been

established with the capability to effectively evaluate the stratified

structure of the seabed along with its acoustic parameters. Within

this study, the BPNN inversion algorithm has been applied to the

inversion of Earth’s acoustic parameters, thus contributing to the

advancement of fields in geophysics and ocean acoustics. This

approach holds significant promise for practical applications in

the realms of seabed resource exploration, ocean environmental

investigations, marine engineering, and the exploitation of ocean

resources, among others.

Our research findings can be succinctly summarized as follows:

The Fast Field Method (FFM) was utilized to derive theoretical

predictions for the shallow-sea sound pressure field. Subsequently, a

model was established within the BPNN framework, connecting the

predicted sound pressure field with the underlying acoustic

parameters. The measured sound pressure field data were then

processed through the neural network model to obtain inversion

results. Both simulated and experimental data confirm the accuracy

of this proposed method in retrieving geoacoustic parameters.

The acoustic pressure field in water is influenced by five crucial

acoustic parameters associated with shallow seabed conditions:

bottom density, p-wave velocity, S-wave velocity, p-wave velocity

attenuation, and S-wave velocity attenuation. Our results reveal that

the accuracy of the inversion results for S-wave velocity (cp), p-wave

velocity (cs), and sedimentary layer density (rb) surpasses that of S-
wave attenuation (ap) and p-wave attenuation (as). The first three

acoustic parameters exert a more pronounced impact on the

propagation characteristics of the shallow-sea sound pressure field,

thus demonstrating a more apparent correlation with the acoustic

pressure data. This further illustrates the effectiveness of employing

the BPNN model for inversion in the context of shallow

seabed layering.

Given the practical complexities of shallow seabed conditions,

compounded by the influence of various underwater noises on

sound field distribution, actual computational results may exhibit

some deviation from real-world scenarios. Additionally, the coupling

relationships between seabed physical parameters and the sensitivity of

each parameter can impact calculation accuracy. To address these

limitations, we have optimized the BPNNmodel by adjusting its neural

network structure and introducing random noise in subsequent

research, thus enhancing the reliability of the Earth’s acoustic
Frontiers in Marine Science 12231
parameter inversion model. Moreover, we have conducted an

exhaustive exploration and discussion concerning the impact of

network configuration parameters on the accuracy of inversion results.

These revisions are aimed at addressing the reviewer’s concerns

and enhancing the clarity and impact of the conclusion section.
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Application of coastal acoustic
tomography: calibration of open
boundary conditions on a
numerical ocean model for
tidal currents
Naokazu Taniguchi1*, Hidemi Mutsuda1, Masazumi Arai1,
Yuji Sakuno1, Kunihiro Hamada1, Chen-Fen Huang2,
JenHwa Guo3, Toshiyuki Takahashi4, Kengo Yoshiki4

and Hironori Yamamoto4

1Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-
Hiroshima, Japan, 2Institute of Oceanography, National Taiwan University, Taipei, Taiwan,
3Department of Engineering Science and Ocean Engineering, National Taiwan University,
Taipei, Taiwan, 4Fukken Co., LTD, Hiroshima, Japan
Coastal acoustic tomography (CAT), which measures path-averaged currents

from reciprocal acoustic transmission experiments and reconstructs velocity

fields from the multiple path-averaged current data, is useful for monitoring tidal

currents in coastal shallow water, especially if data assimilation is employed.

Previous CAT data assimilation studies have focused on state estimation

problems, i.e., the reconstruction of tidal currents and following dynamical

discussion. In this study, we investigate the use of path-averaged currents in a

boundary control problem. Specifically, we aim to use the observed path-

averaged currents to determine the parameters of a numerical ocean model,

which were tidal amplitudes and phases as the open boundary conditions in this

study. We investigate two methods: using the ensemble Kalman filter (EnKF)

results and a linearization approach called model Green’s function method. Both

calibration methods decreased the amplitudes of tidal constituents at the open

boundaries. We compare the model performance between the model

predictions with and without the calibration of the open boundary conditions.

The model predictions with the calibrated open boundary conditions improved

the agreement with the observed path-averaged current. We also implemented

the sequential updates of EnKF with the two calibrated open boundary

conditions. The EnKF results with the independently calibrated two open

boundary conditions improved the agreement with the comparison data

obtained by acoustic Doppler current profiler measurement compared with

the original EnKF result with the initial open boundary conditions.
KEYWORDS

tidal currents, reciprocal acoustic transmission, coastal acoustic tomography, data
assimilation, open boundary condition, boundary control problem, ensemble Kalman
filter, model Green’s function
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1 Introduction

Sound waves are a practical tool for remotely sensing the ocean

interior where the electromagnetic waves cannot penetrate and thus

cannot be used as an observational tool. There are various

applications that actively or passively use sound as a tool to know

the ocean (or ocean-related issues), and those applications are

termed acoustical oceanography (e.g., Howe et al., 2019). One

such example of acoustical oceanography is using sound to infer

the two- or three-dimensional fields of ocean sound speed and

ocean currents (e.g., Worcester, 1977; Elisseeff et al., 1999; Dushaw

et al., 2001, 2010). Sound travels faster through the warm (and high-

salinity) water and with the direction of the ocean currents than

through the cold (and less saline) water and against the ocean

currents; thus, one can inversely estimate the sound speed and

ocean currents by transmitting a sound pulse and measuring the

travel time of the received pulse between multiple sources and

receivers located horizontally separately. The effects of sound speed

and current on the travel time can be separated by making

transmissions in the forward and reverse directions between a

pair of transceivers, namely a reciprocal transmission. The sound

speed is related to the sum of the travel times of a reciprocal

transmission, while the magnitude of ocean current is related to the

differential travel times. Sound travels through the ocean at about

1,500 m s−1, which is sufficiently fast compared with the timescales

of ocean mesoscale eddies and the speed of observation vessels.

Thus, this acoustical method is unique in the sense that one can

estimate the nearly instantaneous state of the ocean interior. The

method is known as ocean acoustic tomography (OAT; Munk and

Wunsch, 1979; Munk et al., 1995). It is often referred to as acoustic

thermometry (Dushaw et al., 2009) or coastal acoustic tomography

(CAT; Kaneko et al., 2020) when the method is specially used to

study large-scale ocean temperature estimation or dynamics of

coastal shallow waters with relatively small spatial scales. This

paper is closely related to CAT, and we focus on the method as a

reconstruction tool of tidal currents in coastal shallow water.

Reconstructing velocity fields of tidal currents from observed

travel times corresponds to solving an inverse problem. In CAT

inverse problems, it is often the case that there is no unique solution

(namely, the problem is ill-posed). Previous studies have solved their

inverse problems and found solutions using some prior knowledge or

regularization methods (e.g., Yamaoka et al., 2002; Yamaguchi et al.,

2005). Researchers have tried to improve the estimations in such ill-

posed problems by deploying a relatively large number of transceivers

(Zhang et al., 2017a), by distributing transceivers to form a sensor

network (Huang et al., 2013; Zhang et al., 2017b), or by using ships or

autonomous vehicles to augment the travel time observation on

various paths (Huang et al., 2019). Another promising approach

for sparse observation (compared with a dimension of states) is data

assimilation. In data assimilation, predictions from dynamical models

(numerically modeled Navier-Stokes equations, for example) are

optimally combined with observation data (e.g., Carrassi et al.,

2018). Several CAT studies have implemented the ensemble

Kalman filter (EnKF; Evensen, 1994, 2003) as a data assimilation
Frontiers in Marine Science 02234
scheme. These CAT data assimilation with EnKF have improved

reconstruction compared to the results obtained by solving data-

oriented inverse problems (e.g., Park and Kaneko, 2000; Lin et al.,

2005; Zhu et al., 2017). The authors also demonstrated the usefulness

of CAT data assimilation; strong and rapid spatiotemporal variation

in the tidal current, including an island wake with multiple vortex

generation at a downstream side of an island, was reconstructed by a

CAT data assimilation with EnKF scheme (Taniguchi et al., 2023). As

described here, previous CAT studies have mainly focused on

reconstructing velocity fields of tidal currents; these may be termed

state estimation problems (Munk et al., 1995).

In this study, as opposed to the previous CAT studies for state

estimation problems, we investigate the use of reciprocal acoustic

transmission data to ask what open boundary conditions are

required to drive the ocean model so that it reproduces the

sequence of observed states. Such a problem may be referred to as

a boundary control problem (Munk et al., 1995) in contrast to the

state estimation problem. Specifically, using the observation data

and the numerical model used in the previous report (Taniguchi

et al., 2023), we control (or calibrate or optimize) the parameters of

the open boundary condition, which were tidal amplitudes and

phases and determined in a somewhat ad-hoc way, by using the

observed path-averaged currents. Since open boundary conditions

can affect the states throughout the model domain while path-

averaged currents obtained by reciprocal acoustic transmission

contain the non-local information averaged over the paths, it is

expected that path-averaged currents can effectively be used to

control open boundary conditions. For this purpose, we investigate

two methods: the use of EnKF results and a linearization approach

proposed by Menemenlis et al. (2005). In the first method, data

assimilation with the EnKF scheme can sequentially update the

velocity fields of tidal currents as with the previous report

(Taniguchi et al., 2023); then, we apply a harmonic analysis to the

time series of normal velocities at open boundary grids and re-

compute the amplitudes and phases of tidal constituents there. The

second method is termed model green’s function approach in

Menemenlis et al. (2005). The method assumes that the

differences between the observed values and model-predicted

values with initial model parameters can be represented by a

linear combination of the sensitivity of model predictions to those

model parameters. With the assumption, the practical method

involves the numerical experiments of model sensitivity to the

parameters followed by solving a linear inverse problem to find

howmuch one should deviate the model parameters from the initial

values. The method has been used widely as the parameter

optimization method in many studies, including tide-related

studies with local and regional scales (e.g., Moon et al., 2012;

Kobayashi et al., 2016). We compare the model prediction

accuracy between the models with and without the calibration of

the open boundary conditions. Also, with the calibrated tidal

parameters determined by the two methods, we re-perform the

sequential data assimilation with EnKF to estimate the velocity

fields at each transmission time. We shall show that both EnKF

results with the independently calibrated two open boundary
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conditions improve the agreement with the acoustic Doppler

current profiler observations compared to the original EnKF

results with uncertain open boundary conditions.
2 Materials and methods

2.1 Field experiment

An experiment on reciprocal acoustic transmission between

four acoustic stations was conducted in an area named Mihara-Seto

in the Seto Inland Sea, Japan, from the end of October to December

2020. Figure 1 shows the geographical location of the observation

site and the locations of the four acoustic stations named S1, S2, S3,

and S4. The coast blocks the transmission between the S1 and S4

stations, i.e., the travel time between them is not observable. During

the first two weeks of the experiment, the reciprocal transmissions

between the S2 and S3 stations failed almost every low tide, which

might be due to the existence of shallow sand banks near the S3

station. Two weeks after the experiment started, we slightly moved

the location of S3 to prevent the sound propagation block by the

shallow bank. The distances between the five station pairs (S1 and

S2, S1 and S3, S2 and S3, S2 and S4, and S3 and S4) were 2,842,

4,930, 2,895, 4,300, and 4,220 m, respectively, after the S3 location

was moved.

The acoustic transmitting/receiving system used for this travel

time measurement was a further modified version of the system

used in a preliminary experiment in the same area in 2019

(Taniguchi et al., 2021a), which was a modification of the system

originally used in a moving ship tomography study (Huang et al.,

2019). The system consisted of three primary items: a

microcontroller with peripheral electrical circuits, a global

navigation satellite system (GNSS) receiver module and antenna,

and an electro-acoustic transducer. The electro-acoustic transducer

used in this experiment was the Model T235 of Neptune Sonar,
Frontiers in Marine Science 03235
which can operate over a frequency range of 10–25 kHz, and was

used as a transceiver (i.e., both transmitter and hydrophone). The

deployments of the transceivers were the same as those in the

preliminary experiment (Taniguchi et al., 2021a). The sound

transmission circuit consisted of a full-bridge inverter and a step-

up voltage transformer. The amplified signal was fed to the

transducer with an additional tuning inductor. The source level at

full resonance was estimated to be 190 dB re 1 µPa at 1 m. The

received signals were amplified and demodulated into in-phase and

quadrature components. These two signals were digitized by a 12-

bit analog-to-digital converter in the microcontroller. The sampling

frequency was twice the carrier frequency of the transmitted signal.

The digitized data were then recorded on an SD memory card on

the electrical circuit board.

A pulse compression method has been implemented to increase

the signal-to-noise ratio (SNR) without sacrificing the time

resolution. The transmission signal was a binary phase-shift keyed

signal encoded by a pseudo-random binary sequence called a

maximal length sequence, which is often referred to as an m-

sequence, with a carrier frequency of 18.018 kHz. The length of the

m-sequences was 2,047 digits, and each digit contained four carrier

cycles. The last 63 and the first 64 digits of the m-sequence were

added to the head and tail of the m-sequence, respectively, to achieve

the original autocorrelation property of repeated m-sequences during

the matched filtering operation (Taniguchi et al., 2021b). The

duration of the transmitted signal was then 482 ms. The four

stations transmitted the signal in synchronization with the GNSS

timing pulse, but with fixed time lags given to each station so that the

arrival signals of other stations did not overlap at all stations

(Taniguchi et al., 2021b). At the receiver side, the arrival signal

appeared as sharp arrival pulses after calculating the cross-correlation

between the received (demodulated) signal and the replica of the

transmitted m-sequence. A post processing gain of this matched-

filtering was 33 dB. Such reciprocal transmissions were performed

every two minutes. More information on the system and signal for
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FIGURE 1

(A, B) Geographical location of observation site (Mihara-Seto) in the Seto Inland Sea, Japan; (C) domain of a numerical ocean model used in this
study with the corresponding locations of acoustic stations (four red circles with labels S1, S2, S3, and S4) while the color indicates the water depth.
The two black triangles in panel (B) is the location where astronomical tide information is obtained: Takehara for the west and Itozaki for the east. In
panel (C), the black dashed line indicates the tracks of shipboard acoustic Doppler current profiling (ADCP) observation performed on Oct. 30. The
ADCP observation was also performed nearly along the transmission paths (red solid lines) on Oct. 31 except for the path between the S2 and
S3 stations.
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the reciprocal acoustic transmission experiment can be found in the

authors’ previous papers (Taniguchi et al., 2021a, 2021b, 2023).

In the shallow water environment of the observation site,

acoustic waves propagating along multiple ray paths arrive at the

receiver nearly simultaneously, forming an arrival pulse that is

slightly wider than the pulse width of a single ray arrival (Taniguchi

et al., 2021a). In such cases, it is difficult to determine the arrival

time of individual rays. Thus, the time at which the height of the

received arrival pattern first exceeded 14 dB was adopted as the

travel time in this study. By adopting such a relatively low threshold,

we aimed to capture the arrival time associated with the first arrival,

which would be composed of the arrivals of direct and surface-

reflected rays (Taniguchi et al., 2021a). We confirmed that 14 dB is

generally higher than the noise level and captures the rising edge of

the first arrival pulses.

For each paired reciprocal acoustic transmission, differential

travel times (td) were computed from the determined travel times

and converted to path-averaged current (u) as follows (Worcester,

1977; Howe et al., 1987; Zheng et al., 1997):

u = −
c20
2L

td , (1)

where L is the transceiver-to-transceiver distance, and c0 is the

reference sound speed value estimated using the sum of the

reciprocal travel times. In this study, we computed the td as, for

example, td = tS1←S2 − tS2←S1, i.e., the travel times of sound pulses

from the station with a larger id to the station with a smaller id

minus those from a smaller id to a larger id. In this case, with the

minus sign in Equation 1, a positive value of u indicates that the

direction of the path-averaged current is from the station with a

larger id to the station with a smaller id. The erroneous estimates of

the path-averaged velocity were removed and linearly interpolated

if the data gaps were less than 10 minutes.

The water is well mixed in the sea around the observation site,

and there is no density stratification. This condition allows the tidal

currents to be nearly vertically uniform at the observation site. The

vertically uniform velocity structure was also confirmed using the

ADCP observation results (Taniguchi et al., 2021a). Therefore, the

path-averaged currents determined from detecting the first arrival

can be identified as the depth- and range-averaged currents. The

above method of travel time determination made the path-averaged

currents consistent with the acoustic Doppler current profiler

(ADCP) results, as seen in the Results section.

Hourly shipboard ADCP observations were performed on

October 30 and 31 to obtain velocity data for comparison with

model and data assimilation results. Readers can refer to Taniguchi

et al. (2023) for the ADCP operation parameters. Twenty-one cross-

sections of velocity data were obtained along the north-south

transect (black dashed in Figure 1) and along the transmission

lines (red solid lines in Figure 1) from these ADCP observations.

The obtained ADCP velocities were averaged over the depths at

each location and also spatially (horizontally) averaged over about

100 m so that the spatial resolution of the ADCP velocity data is

nearly the same as that of a numerical ocean model.
Frontiers in Marine Science 04236
2.2 Numerical ocean model

A numerical ocean model used in this study was the same as

that used in the authors’ previous study (Taniguchi et al., 2023) and

was based on shallow water equations for the depth-averaged two-

dimensional flows. The prognostic variables are eastward and

northward components of the depth-averaged velocity (U and V)

and tidal height, which is defined as a sea-surface height with

respect to a mean sea level. The model domain with a horizontal

grid space of 100 m is shown in Figure 1. The shallow water

equations are solved numerically using the finite difference method

with the numerical discretization and integration schemes following

those used in the Princeton Ocean Model (POM; Blumberg and

Mellor, 1987). The time integration with a time step of 1 s was

performed using a leap-frog scheme with a Robert-Asselin filter

with an additional modification proposed by Williams (2009).

The present model has six open boundaries (two at the west,

east, and south), where prescribed tidal forcing (sea surface

elevation and normal velocity) drives the model interior. The

same boundary conditions were given to the two open boundaries

at the west or east; thus, four open boundary conditions drove the

model interior. A Flather condition is applied to the tidal height and

normal velocity at the four open boundaries, following the form

shown by Carter and Merrifield (2007). The tangential velocities at

the boundary grids were given by the values of neighboring interior

grids (i.e., a zero-gradient condition).

The normal velocity v and tidal height z at the open boundary

grids were given by the sum of variation due to five tidal

constituents:

v(t) =o
5

i=1
Ai cos  

2p t
Ti

+ qi
� �

 , (2)

z (t) =o
5

i=1
Bi cos  

2p t
Ti

+ fi
� �

 , (3)

where Ai (Bi), Ti, and qi (fi) are the amplitude, period, and phase of

the five tidal constituents, respectively. Note that Ti is known value

for each tidal constituent. The five tidal constituents are M2, S2, N2,

K1, and O1 tides in this study. These five constituents are the five

largest constituents in the Seto Inland Sea, including the

observation site. The following three largest contributions are

from the Sa, K2, and P1 tides. Since it requires observations with

periods of about half or one year to separate the contribution of

these tides from other tides by a harmonic analysis (the Rayleigh

criterion; e.g., Schureman, 1958), we did not consider these tides

because of the shorter duration of our travel time measurement.

The forms of Equations 2, 3 are also expressed in the exchangeable

forms of Equations 4, 5:

v(t) =o
5

i=1
ai cos  

2p t
Ti

� �
+ bi sin  

2p t
Ti

� �� �
 , (4)

z (t) =o
5

i=1
ci cos  

2p t
Ti

� �
+ di sin  

2p t
Ti

� �� �
  : (5)
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The prescribed tidal heights z(t) at the west and east boundaries
were derived from astronomical tides at the nearest tide stations:

Takehara for the west and Itozaki for the east (triangles in

Figure 1B). There is no tide station near the two southern

boundaries. Thus, the tidal elevations at the southwestern and

southeastern boundaries were given by the same tidal heights as

the western and eastern boundaries.

Because there is no information on normal velocities at the open

boundaries, these were determined via an ad-hoc way with the

information on the observed path-averaged current as follows. We

applied a harmonic analysis to the observed path-averaged current

between the S1 and S3 stations and estimated the amplitudes and

phases of each tidal constituent. We considered the estimated

phases as representative phases for tidal currents at the

observation site. Next, we computed the phase differences

between the astronomical tides (for the tidal height) and the

path-averaged currents for each constituent. Then, we shifted the

phases of the path-averaged current by the estimated phase

differences and set them to the phases for the normal velocity. As

for the amplitudes, we obtained the maximum tidal current at the

center of the channel located at the northeastern boundary as about

2.8 m s−1 from a nautical chart (not shown here). This maximum

current speed was multiplied by 0.8 to roughly convert it to section-

averaged current speed, resulting in a maximum section-averaged

current of 2.2 m s−1. Here, the relationship between the maximum

and the section-averaged flow with coefficient 0.8 was derived by

referring to those relationships in turbulent pipe flow with the one-

seventh power low. Then, the amplitudes of the estimated five tidal

constituents of the path-averaged current were scaled so that the

reconstructed tidal currents by the five constituents reached 2.2 m

s−1 at the maximum during a spring tide. We set these scaled

amplitudes as the amplitudes for the normal velocity at the

northeastern boundary. Then, amplitudes of the five constituents

at other western and southern boundaries were determined so that

the volume transport through these boundaries without the tidal

heights equaled that at the northeastern boundary. As described

here, the open boundary conditions were derived arbitrarily,

particularly for the normal velocity. Therefore, controlling

(calibrating) those boundary conditions is expected to improve

the reconstruction of tidal currents.
2.3 Open boundary condition improvement

2.3.1 Ensemble method
In the previous report (Taniguchi et al., 2023), we demonstrated

that data assimilation with EnKF improves the reconstruction of

tidal currents compared with the model prediction without data

assimilation. The calibration of the open boundary conditions uses

the results of the data assimilation with EnKF. Specifically, by

applying harmonic analysis to the time series of velocity fields

obtained by the data assimilation with EnKF, we re-compute the

amplitudes and phases of tidal constituents at the open boundary

grids. We focus on a relatively narrow area in the present study (see

Figure 1). In such a narrow area, tidal currents are spatially

correlated throughout the model domain, and thus, ensemble
Frontiers in Marine Science 05237
correlation in the covariance can be used as the physical (or real)

correlation between the states. The velocity at the open boundaries

would have been reasonably updated by EnKF via those physical

correlations, even though the open boundaries are somewhat apart

from the transmission paths. Thus, applying harmonic analysis to

the results of EnKF data assimilation, one can determine better

amplitudes and phases of the tidal constituents.

The EnKF implementation is nearly identical to that in the

previous paper (Taniguchi et al., 2023). Readers can refer to

Taniguchi et al. (2023) for the EnKF implementation specific to

the present study. Below, we describe some key features. Ensembles

of 98 members are created by perturbing the amplitudes and phases

of the forcing tidal height and normal velocity at the open boundary

girds; this method, i.e., perturbing boundary condition by adding

noise to each ensemble, is commonly used in CAT data assimilation

with EnKF. The model integration started at 00:00 on October 25,

2020, with no motion as the initial condition. The data assimilation

step (EnKF updates) started at 16:00 on October 28, which is the

approximate time when the path-averaged currents for all the

station pairs started to be measured. The model state update was

repeated every two minutes. If the number of successful reciprocal

transmissions was two or less, the EnKF update was skipped at that

time. The state vector contains the east-west and north-south

velocity components (U and V) and tidal height at all grids. Both

the velocities and tidal height were updated, although the tidal

height was not observed in the reciprocal acoustic transmission

experiment. The covariance localization was not implemented

because the state vector must be updated throughout the model

domain, including the open boundary grids. The covariance

inflation was implemented with an inflation factor of 1.02.

A difference from the previous implementation was the value of

observation error covariance, which is used to make perturbed

measurements (Burgers et al., 1998) and to compute the data error

covariance matrix in Kalman gain. During the investigation, we

found that specifying small observation errors (e.g., 0.025 m s−1;

Taniguchi et al., 2021a) led to implausible updates of the state vector

and spurious variation apart from the observations sometimes. The

value of the observation error 0.025 m s−1 was obtained as a time-

averaged value on the S1S2 path (Taniguchi et al., 2021a), and this

value was likely to underestimate the observation error for some

specific periods. Thus, after some trial and error, we set the

observation error to 0.05 m s−1 (0.052 m2 s−2 in a variance), twice

the value we obtained as the time-averaged path-averaged current

precision. Additional consideration was given to the data error

covariance. The present model aimed to reproduce relatively large

tidal vortices that are found in the Seto Inland Sea (e.g., Arai, 2004),

and it can simulate the generation of an island wake with a size of

about 1 km (Taniguchi et al., 2023). By contrast, the observed path-

averaged currents may contain contributions from smaller spatial

scale features. Thus, there may be representation errors between the

numerical model and the observed path-averaged currents. In the

presence of representation errors, spurious variations will appear in

the model prediction if the model is tightly fitted to the observed

data. After some trial and error, we further reduced the impact of

the observations by adding a diagonal matrix with a value of 0.082

m2 s−2 to the observational error covariance matrix in the Kalman
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gain. The added noise was somewhat large, but the EnKF updates

keep the model state close to the observed path-averaged currents

because of frequent updates of two minutes.

The EnKF updates were continually performed for 30 days. The

data for 30 days were used in the harmonic analysis because the

separation between M2 and N2 constituents needs nearly 30 days

(Rayleigh criterion; e.g., Schureman, 1958). The updated tidal heights

and normal velocities at the open boundary grids were averaged along

the boundary and stacked for 30 days. Then, the harmonic analysis

was applied to these time series at each open boundary to determine

the amplitudes and phases of five tidal constituents (Ai, Bi, qi, fi); and
these obtained amplitudes and phases of the tidal constituents

provide the new open boundary conditions. Note that, in the

narrow model domain of the present model, the tidal currents have

a physical correlation throughout the model domain. Thus, the EnKF

can reasonably update the U or V values, although they can easily

recover to the values specified as the boundary forcing.

2.3.2 Linearization method
Menemenlis et al. (2005) proposed a method for adjusting

control parameters used in a general circulation model by using

the results of model parameter sensitivity experiments. The method

linearizes an ocean model prediction about a particular model

trajectory and was named model Green’s function approach

following a similar linearization method used in Menemenlis and

Wunsch (1997), where model Green’s function was defined as the

response of a general circulation model to unit perturbations of

their state vector. Implementing the method is easy because we only

need to repeat a model simulation to determine the model

sensitivity to the control parameters. With the results of the

sensitivity experiments, the problem is linearized and eventually

reduced to solving a linear inverse problem. Following their

method, we calibrate the open boundary condition, i.e., tidal

amplitudes and phases of the normal velocities at the

open boundaries.

In order to apply the method to our present study, we consider

the results of harmonic analysis applied to the time series of the

observed five path-averaged currents for 30 days as the observation

data. Thus, the observation vector y contains the amplitudes and

phases (equivalently, the coefficients a and b in Equation 4) of the

five tidal constituents for the five paths of the reciprocal

transmission as follows:

yT =  aS1S2M2
,  bS1S2M2

,  aS1S2S2 ,  bS1S2S2 ,  ⋯,  aS3S4O1
,  bS3S4O1

 
� �

 , (6)

where we use boldface to represent vector variables as column

vectors, and the superscript T indicates the transpose of a matrix

(vector); the superscript characters on the right-hand side of

Equation 6 indicate the station pairs for the reciprocal

transmission experiment.

Observation equivalents must be predicted from the numerical

ocean model. To do so, we express the time stepping of the

numerical ocean model as

x(t + Dt) = M(x(t),h) , (7)
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where x is the state vector and includes east-west and north-south

components of the depth-averaged velocities at all model grids;

Function M represents the one-step-ahead integration of our

numerical ocean model; h is a model parameter vector. We

consider the parameters in the boundary forcing as the model

parameters; that is, h in Equation 7 contains ai and bi in Equation 4

for the five tidal constituents and at the four open boundaries:

hT = ½ aWM2
,  bWM2

,  aWS2 ,  b
W
S2 ,  ⋯,  aSEO1

,  bSEO1
 � , (8)

where the superscript characters on the right-hand side indicate the

locations of the open boundaries; for example, W and SE for west and

southeast boundaries, respectively. Note that although there are other

model parameters, such as a bottom drag coefficient and kinematic

eddy viscosity coefficient, those are fixed in the present study, and we

omit them from the model parameters and equations. To relate the

outputs from the numerical ocean model with the observation vector y,
we consider a vector accumulating the state vector at the transmission

times (i.e., every two minutes) for 30 days as shown in Equation 9:

zT = ½ xT1 ,  xT2 ,  ⋯,  xT21600 � , (9)

where the subscript indicates the index corresponding to the

transmission time within 30 days. This accumulated state vector z
and the above observation y are related by an observation equation:

y = f (z) + ϵ, (10)

where function f is a composite function corresponding to the

operation that converts the model velocity fields to path-averaged

currents and then derives the harmonic constants ai and bi for the

five transmission paths. The residual vector is introduced to

represent the error term between y and f(z). Since vector z
depends solely on h provided that the same model is used and

other parameters are fixed, Equation 10 can also be written in terms

of model parameter vector h as follows:

y = ɡ(h) + ϵ, (11)

where ɡ has a functionality similar to f but with a model run with

parameters h.
Solving Equation 11 for h (or, finding h that minimizes ϵTϵ) is a

nonlinear inverse problem, but one can linearize ɡ(h). To linearize

ɡ(h), we assume that optimal parameter values can be expressed as the

sum of initial values (h0) and control value (hc). With the expression h
= h0 + hc, we linearize ɡ(h) around h0, and Equation 11 becomes:

y = ɡ(h0) +
∂ ɡ
∂h
jh=h0

hc + ϵ0, (12)

or, equivalently,

yd = Ghc + ϵ0 , (13)

where yd = y − ɡ(h0), and
∂ ɡ
∂h jh=h0

in Equation 12 is replaced with

matrix G. This matrix G is a sensitivity matrix formed by

G =  ⋯,  
ɡ(h0 + kjej) − ɡ(h0)

kj
,  ⋯  

" #
 , (14)
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where ej is a unit vector, and thus kjej is a vector that has a value (kj)
only at j-th element and has 0 at other elements. Thus, constructing

matrix G corresponds to evaluating the model sensitivity to each

element of h.
By solving Eqiation 13, we obtain an estimate of the optimal h

by h0 + hc. Assuming that hc and ϵ0 are modeled as Gaussian

distributions with zero mean and covariance S and R, we seek hc
that minimizes the following cost function:

J = (yd − Ghc)
TR−1(yd − Ghc) + hT

c S
−1hc : (15)

The expected solution that minimizes J of Equation 15 has the

following analytical form:

bh c = GTR−1G + S−1
� 	−1

GTR−1yd, (16)

which corresponds to that called Gauss-Markov estimates (Munk

et al., 1995). Optimal tidal amplitudes and phases are then obtained

as ĥ = h0 + ĥ c.

One needs to perform a series of sensitivity experiments to

construct matrix G of Equation 14. Kobayashi et al. (2016)

mentioned that the results of the sensitivity experiments were

independent of the perturbation values in the sensitivity

experiments. Yet, the perturbation in the sensitivity experiments

should be large enough for the resulting perturbation to appear in

the path-averaged currents. In the present study, the sensitivity

experiments were performed with a constant value of kj of +0.1 m

s−1 for all j (i.e., for all a and b in Equation 8). We confirmed that

perturbing the coefficients (a and b) for the normal velocities by

+0.1 m s−1 caused the change in the harmonic analysis results of the

resulting path-averaged currents in the sensitivity experiments.

When we compute the solution of Equation 16, the covariance

R and S are required, but the values representing those in the true

fields cannot be known precisely, and thus, we specified the values

in R and S based on our estimate of the size of the elements in ϵ0 and
hc. The number of data used in the harmonic analysis was 21,565,

21,576, 17,875, 21,138, and 21,159 for the S1S2, S1S3, S2S3, S2S4,

and S3S4 pairs (paths), respectively. With such a sufficient number

of data, the expected error variance of the least squares solution (â

and b̂ for all the paths) in the harmonic analysis was about 0.0012
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m2 s−2 assuming measurement noise in the path-averaged currents

of 0.1 m s−1. Although the accurate values in R were unknown, they

were expected to be somewhat larger than 0.0012 m2 s−2 because of

other sources for ϵ0. In the present study, we then set R as a diagonal

matrix with a value of 0.012 m2 s−2 for all the elements. Here, each

element in ϵ0 was expected to have no correlation with each other.

Our expectation for S was that the coefficients of tidal constituents

with large amplitude (i.e., M2 and S2) would be more uncertain and

specified by larger variances than those of the other constituents

(N2, K1, and O1). In the present study, we set S as a diagonal matrix

with values of 0.052, 0.042, and 0.032 m2 s−2 for the elements

associated with M2, S2, and other tidal constituents, respectively.

The variances for the M2 and S2 constituents (0.05
2 and 0.042) were

about three and two times the variance of the other constituents (3

× 0.032 and 2 × 0.032), respectively. After obtaining a solution, we

confirmed that (yd − Gĥ )T (yd − Gĥ ) was nearly equal to the trace

of R (0.006 and 0.0055, respectively), and at the same time, the

elements in ĥ were not unrealistic values and did not deviate

extraordinarily from our expectations.
3 Results

Table 1 summarizes the initial and calibrated normal velocities

as the open boundary condition: the amplitudes and phases of the

five tidal constituents at the four open boundaries. The most

apparent change is that the amplitudes after the calibration are

smaller than those before the calibration for both calibration

methods, particularly on the M2 and S2 constituents. For

example, the M2 amplitude at the eastern boundary had an initial

value of 1.30 m s−1, and when the boundary condition was

calibrated by using the EnKF results and linearization method,

the amplitudes decreased to 1.07 and 1.12 m s−1 (i.e., about 18% and

14% reduction), respectively. The amplitude decreased at other

boundaries, too. The decrease in the amplitudes is reasonable

because the present ocean model would overly predict the

velocity of tidal currents compared with ADCP observation

(Taniguchi et al., 2023). The amplitude of the S2 constituent also

decreased after the boundary calibration. The ratio of M2 and S2
TABLE 1 Summary of the initial and calibrated boundary conditions (amplitude and phase).

Amplitude (m s-1) Phase (deg.)

M2 S2 N2 K1 O1 M2 S2 N2 K1 O1

West
Initial values

EnKF
Linearization

0.58
0.49
0.42

0.23
0.20
0.19

0.12
0.11
0.11

0.10
0.09
0.10

0.04
0.04
0.03

71
79
73

253
260
249

146
155
149

197
201
195

236
241
240

Southwest
Initial values

EnKF
Linearization

0.65
0.56
0.50

0.26
0.22
0.23

0.13
0.11
0.12

0.11
0.10
0.11

0.05
0.05
0.04

71
80
69

253
261
251

146
156
143

197
206
203

236
245
236

East
Initial values

EnKF
Linearization

1.30
1.07
1.12

0.52
0.43
0.48

0.26
0.23
0.22

0.22
0.19
0.20

0.10
0.09
0.09

81
82
81

262
266
262

155
157
155

202
205
202

241
242
241

Southeast
Initial values

EnKF
Linearization

0.80
0.68
0.69

0.32
0.27
0.26

0.16
0.14
0.16

0.14
0.12
0.13

0.06
0.05
0.05

81
83
85

262
263
260

155
156
162

202
205
201

241
245
253
fro
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constituents (AS2=AM2
), which related to the amplitude during the

spring and neap tides, was 0.4 at the initial values and remained

nearly the same after the calibration; but, slightly large variations

are found in the results with the linearization method (0.38–0.46 for

the four boundaries). The amplitudes of the N2, K1, and O1 also

decreased by the calibration in general. The phases of the tidal

constituents are delayed by the calibration with the ensemble

method, particularly at the west and southwest boundaries; for

example, the phase of the M2 constituent at the west boundary is 71

and 79 degrees before and after the calibration. As a result, the

difference in the phases between the west (and southwest) and east

(and southeast) becomes smaller in the calibration results with the

ensemble method. On the other hand, there is no clear trend about

the phase in the calibration results with the linearization method.

We ran the numerical models with the calibrated open

boundary conditions and predicted path-averaged currents.

Figure 2 shows the results of harmonic analysis (reconstructed

time series) applied to the observed and predicted path-averaged

currents. The difference between the predicted and the observed

path-averaged current decreased by the calibration of the open

boundary condition (Figure 2B). Although the amplitude of the

tidal constituents decreased by the boundary condition calibration,

the amplitude of the observed path-averaged current is further

small. When we compare the two methods, the linearization

method resulted in the time series slightly closer to the observed

results about the magnitude, which can be seen as the difference

from the observed results (Figure 2B). The improvements by the

boundary condition calibration are summarized in Table 2, which

shows root-mean-squared differences (RMSD) between the

observed and model-predicted path-averaged currents and their

percent error relative to the observations. The improvements are

mainly attained in the paths diagonally crossing the main course of

the current (i.e., the S1-S3, S2-S3, and S3-S4 pairs). On the other

hand, the improvements are minor for the paths crossing the main

course at the right angle (the S1-S2 and S3-S4 pairs). Since the RMS

magnitudes of the path-averaged currents for these paths are

relatively small, the relative error remains large. Besides, there

remains a clear phase error in the S3S4 path (Figure 2A5), while

there is less phase error in other paths.

Figure 3A shows the observed and predicted path-averaged

currents time series. The figure also shows the ADCP results (black

thick lines), where the ADCP velocities were calculated by

projecting the ADCP velocities at each observation point and

averaging them over each transect. The observed path-averaged

currents (gray solid lines) show high-frequency variation

superimposed on sinusoidal variation. The path-averaged currents

during the ADCP observations are consistent with the

corresponding ADCP results. Thus, it is argued that the acoustic

differential travel time signal captured the tidal current as a path-

averaged quantity, and such high-frequency variations in the path-

averaged currents indicate complex spatio-temporal features of the

tidal currents.

The amplitude of the modeled path-averaged currents

decreased because of the reduced tidal forcing (the normal

velocity) at the open boundaries (Figure 3A). However, the high-

frequency variation with periods of about 1–2 hours is not well
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reproduced, as shown in the plots of the difference between the

modeled and observed path-averaged currents (Figure 3B). In

particular, the magnitude of the high-frequency variation on the

S3S4 path (Figure 3A5) is comparable to the tidal sinusoidal

variation (with a period of the M2 constituent); this may be one

reason why a phase error appears on this path in the harmonic

analysis result (Figure 2A5). Because the periods of the tidal

constituents (e.g., about 12.4 hour for the M2 constituent) are

much longer than the periods of fluctuations in the model error

(Figure 3B) or the high-frequency (short-period) variations in the

path-averaged currents, calibration of the tidal boundary condition

is not effective in improving the reproducibility of these high-

frequency variations.

Figures 4, 5 show the comparisons of velocity vectors between

the model predictions and ADCP observations in the form of spatial

velocity fields and scatter plots, respectively. Table 3 summarizes

the performance metrics of the comparisons: correlation coefficients

and RMSD for the eastward and northward currents (rU and rV;

RMSDU and RMSDV). We also computed fractional error variance

(FEV) for the results with the initial and calibrated boundary

conditions. The FEV is defined as

FEV =
〈 jUi + jVi − (UADCP

i + jVADCP
i )j2 〉

〈 jUADCP
i + jVADCP

i j2 〉 , (17)

where j × j = −1, and | · | and 〈 · 〉 indicate computing the absolute

value and the averaging over the all ADCP data, respectively. Note

that, for the comparisons with the ADCP results with Equation 17,

the model results were spatiotemporally interpolated to obtain the

velocity at the same locations and times as each ADCP velocity. In

general, the model without the boundary condition calibration

predicts the flow speed in the east-west component greater than

that of the ADCP observations. This is evident in both the spatial

velocity fields (Figure 4) and the scatter plots (the black triangles

and corresponding regression lines in Figures 5A, C). The slope of

the regression between the ADCP results and the model predictions

without boundary calibration is 1.11 for the east-west component.

The east-west components in the model prediction with the

calibrated normal velocity are more compatible with the ADCP

observations due to the reduced magnitude of the normal velocity at

the open boundaries. With the calibrated boundary condition, the

slopes became 0.99 and 0.90, for the ensemble and linearization

methods, respectively. The linearization method decreased the slope

a little too much. The RMSDU decreased from 0.29 m s−1 to 0.26

and 0.27 m s−1 in the results of the boundary-calibrated model

predictions (Table 3). In the spatial velocity map, the improvements

are evident during the westward flow (transects starting at 13:00 and

14:00 on Oct. 30 and transects at 13:00, 14:00, and 15:00 on Oct. 31;

Figure 4). Other examples of improvements in the spatial velocity

map are found, for example, along transects starting at 8:00 and 9:00

on Oct. 30, although some degradation is also found (e.g., transects

starting at 10:00 on Oct. 30 and 31).

Improvements in the north-south velocity component is not

clear. The regression slopes became smaller in the boundary-

calibrated model predictions than in the results without the

calibrated boundary condition (Figures 5B, D). Also, the
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correlation coefficient decreased and RMSD increased (Table 3).

Controlling the boundary condition to fit path-averaged currents

does not minimize errors in east-west and north-south components

independently. When the path-averaged currents are used as the

data, the error in the east-west component mainly decreased

because the contribution to the path-averaged currents from the

east-west component is larger than those from the north-south

component. Thus, the calibration does not always improve the

north-south component of the velocity. However, it is true that the

FEV (i.e., total error variance) is still decreased by the boundary

condition calibration.

We evaluated if the boundary condition calibration affects

sequential updates with EnKF by re-running EnKF updates with

the calibrated boundary conditions. Although there were no

distinguishable improvements in vector maps (like Figure 7 in
Frontiers in Marine Science 09241
Taniguchi et al., 2023), there were still some changes in EnKF

results. Figure 6 exhibits the comparisons of velocity components

between EnKF results and ADCP observations. For the eastward

component of velocity, the EnKF results without the boundary

calibration are still larger than the ADCP observations when the

current magnitude is relatively large. This trend is found as that the

EnKF results without the boundary condition calibration (black

triangles) are higher than the identity line (1:1 line; black dashed

line) at the first quadrant and lower than the 1:1 line at the third

quadrant. The EnKF results with the new boundary condition (blue

dots and red crosses in panels A and C) are more condensed around

the 1:1 line than those without the boundary condition. The velocity

magnitude of the northward component is small. Thus the

difference between the EnKF results with and without the

boundary calibration is not clear in the scatter plot. However,
(A1)

(B1)

(A2)

(B2)

(A3)

(B3)

(A4)

(B4)

(A5)

(B5)

FIGURE 2

(A1–A5) Reconstructed path-averaged currents by using five taidal constituents (M2, S2, N2, K1, and O1). The black line is from the observation and
colored lines are model-predicted results: the blue, red, and yellow lines are the results with open boundary conditions of initial values, derived from
EnKF results, and from linearization method, respectively. The five panels with label 1–5 correspond to the results of the S1-S2, S1-S3, S2-S3, S2-S4,
and S3-S4 station pairs. (B1–B5) The difference of the model-predicted path-averaged currents (reconstructed by using five tidal constituents) with
respect to the observed results. The line colors and panel’s label number are the same as those in (A1–A5).
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some outliers in the EnKF results without boundary calibration are

well suppressed. Table 3 summarizes the comparisons of the EnKF

results with ADCP observation. The EnKF results with the

calibrated boundary condition improved its agreement with the
Frontiers in Marine Science 10242
ADCP observations. The RMSD for both eastward and northward

components and for both the ensemble and linearization methods

decreased. The FEV is 7.0% and 7.5% for the ensemble and

linearization methods. These FEV values are smaller than the
(A1)

(B1)

(A2)

(B2)

(A3)

(B3)

(A4)

(B4)

(A5)

(B5)

FIGURE 3

(A1–A5) Comparisons of the observed (gray) and model-predicted (colored) path-averaged currents. The blue, red, and yellow lines are the results
with the open boundary conditions of initial values, derived from EnKF results, and from linearization method, respectively. The thick black bars are
the ADCP results averaged over each transmission path. The five panels with label 1–5 correspond to the results of the S1-S2, S1-S3, S2-S3, S2-S4,
and S3-S4 station pairs. (B1–B5) The difference of the model-predicted path-averaged currents with respect to the observed results. The line colors
and panel’s label number are the same as those in (A1–A5).
TABLE 2 Root-mean-squared differences (RMSD) between the model-predicted and the observed path-averaged currents for 30 days (m s−1) and its
relative error (%).

Boundary condition S1-S2 S1-S3 S2-S3 S2-S4 S3-S4

RMSD
initial values
EnKF
Linearization

0.103
0.100
0.095

0.135
0.117
0.104

0.118
0.104
0.898

0.151
0.135
0.125

0.105
0.098
0.094

Relative error
initial values
EnKF
Linearization

80
77
74

39
33
20

37
33
28

46
41
38

106
100
96
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result obtained from the EnKF with 980 ensemble members in the

previous report (FEV of 8.2%; Taniguchi et al., 2023).

Menemenlis et al. (2005) suggested that the parameter

calibrations would be repeated to obtain better parameter values

in strongly nonlinear conditions. We iterated the parameter

calibration five times by re-computing the sensitivity matrix G in

each iteration. Figure 7 shows the calibrated amplitudes of the M2

constituent at the four boundaries over the iterations. Although the

M2 magnitude gradually changes and converges to some values, the

largest change was at the first iteration. A similar trend was found in

the magnitudes of the other constituents. In the EnKF for CAT, the

boundary condition is perturbed to generate an ensemble, so

relatively minor boundary modification after the first iteration

might not affect the EnKF results. The FEV for the EnKF result

with the boundary condition after the fifth iteration was 7.4, and

there is not much additional improvement.
4 Summary and discussion

In this paper, we demonstrated that the CAT path-averaged

currents can also be used in a boundary control problem, i.e., to

calibrate or tune the open boundary condition, which was the

normal velocities at the open boundaries in this study. The two

methods were able to derive nearly the same calibration results,

particularly for the amplitude; both methods decreased the

amplitudes of tidal constituents from the initial values. With
Frontiers in Marine Science 11243
the calibrated normal velocities, the agreement of the model-

predicted velocity with the ADCP observations improved,

although the improvements in the model prediction by the

calibration were minor. A reason would be that the initial

values of the normal velocities , which were ad-hoc ly

determined using the observed path-averaged currents, were

already reasonable to represent the major patterns of the tidal

currents at the observation sites. Also, although we only used the

velocity information and calibrated the normal velocities, the

tidal height would have to be measured and calibrated as well as

the normal velocities because the phase difference between the

tidal current and height is one of the key factors controlling the

velocity fields at the site. The EnKF data assimilation with the

new boundary condition also improved the results in terms of the

agreement with ADCP observations; in the EnFK results with the

new boundary condition, the overestimated velocity magnitude,

which was found in the EnKF results with the original boundary

condition (Taniguchi et al., 2023) and due likely to the overly

specified amplitude of the initial open boundary condition,

decreased so that the agreement with ADCP results become

better. Thus, the calibration of the boundary condition would

be desired work, particularly when the boundary condition is

uncertain. Related to the present study with the CAT, we are

purposing developments of a real-time monitoring system of

velocity fields of tidal currents. The practical implementation of

the present method will be to perform the reciprocal acoustic

transmission experiment first to calibrate the boundary
(A1)

(B1)

(C1)

(A2)

(B2)

(C2)

(A3)

(B3)

(C3)

(A4)

(B4)

(C4)

FIGURE 4

Comparisons of velocity vectors between the ADCP results (blue) and model-prediction (red). The model prediction results are obtained from the
original boundary condition, the normal velocity calibrated by using the ensemble method, and those by using the linearization method from the top
to the bottom, respectively. Panels (A1, B1, C1) are the comparisons with the ADCP results on Oct. 30, and panels (A2–A4, B2–B4, C2–C4) are the
comparisons with the ADCP results on Oct. 31.
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condition, followed by the real-time monitoring with sequential

assimilation with the calibrated model boundary condition.

Both two methods can control the tidal boundary condition. We

do not provide the decision about which is better. The EnKFmethod is

easier in terms of implementation because it performs sequential

assimilation twice with the same computation code but with different

boundary conditions. However, this method may limit the size of the

model domain or target. The EnKF scheme updates the model states

using the information on state covariance. Thus, if there is no

correlation between the velocity fields at observation locations and at

open boundaries, then the EnKF scheme cannot reasonably update the

model states at open boundaries. Also, one may need to use relatively

large ensemble members to suppress spurious correlation because the

covariance localization, which reduces EnKF update impacts at grids

far from the observation site, would be prohibited. The linearization

method is not limited by the model size and can be used to adjust

control parameters in a general circulation model (Menemenlis et al.,
Frontiers in Marine Science 12244
2005). However, if we include more constituents (over-tides and

compound tides) as the target for the calibration, the necessary

computation increases as the number of model parameters increases.

Areas of improvement remain. First, tidal height was not

observed in the experiment; thus, the tidal height information was

not used to calibrate boundary conditions and in the EnKF updates.

The performance of the boundary condition calibration is expected

to be improved by adding the tidal height observations. Or, one may

observe the tidal height variations at open boundaries independent

of reciprocal transmission experiment in order to determine the

reliable amplitudes and phases of the tidal constituents at the open

boundaries; in this case, one will focus only on updating velocity

information by using the reciprocal transmission experiment data

like that performed in this study. In the present model, the tidal

elevations and normal velocities were constant along each open

boundary. The model prediction may improve by specifying

variable condition along the boundary and/or adding more
(A) (B)

(D)(C)

FIGURE 5

Scatter plots of ADCP observation results and model predictions without (black triangles) and with (colored) the calibration of open boundary
condition (A, B) by applying a harmonic analysis to the EnKF results, and (C, D) by the linearization approach. In each panel, gray dashed line is the
1:1 line, and the solid lines indicate the linea regression lines.
TABLE 3 Summary of the comparison with ADCP observed currents.

Boundary condition rU rV RMSDU (m/s) RMSDV (m/s) FEV (%)

model
initial values
EnKF
Linearization

0.95
0.94
0.94

0.68
0.56
0.53

0.29
0.26
0.27

0.20
0.23
0.21

19.6
19.3
18.5

EnKF
Initial values
EnKF
Linearization

0.97
0.97
0.97

0.88
0.89
0.88

0.20
0.17
0.18

0.12
0.11
0.12

8.5
7.0
7.5
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constituents of overtides and compound tides for high frequency

variation; however, controlling those additional parameters

increases the computation when the linearlization method is

employed. Also, controlling other model parameters, such as the

coefficients for bottom drag and eddy viscosity, may contribute to

further improvements.

The improvement of the EnKF results by the boundary

condition calibration is slight (reduction of about 1% in FEV and

0.02–0.03 m s−1 in RMSDU and 0.01 m s−1 in RMSDV; Table 3).

Figure 8 shows the ensemble spread s for the east-west and north-

south velocity components, computed immediately after the EnKF

updates and averaged over two days of Oct. 30 and 31 (the days the

ADCP observation was conducted). The ensemble spread s is about

0.15 m s−1 in the east-west component and about 0.1 m s−1 in the

north-south component in the tomography domain. The standard

error of the ensemble mean is estimated as s=
ffiffiffi
n

p
, where n is the

number of ensemble members, and the values are 0:15=
ffiffiffiffiffi
98

p
  ≈

 0:015 for the east-west component and 0:1=
ffiffiffiffiffiffi
98 

p
≈  0:01 for the

north-south component. By comparing the RMSD improvements

with these estimated standard errors of the mean, the improvement

in the east-west component is expected to be statistically

meaningful. By repeating the EnKF assimilation with the

calibrated boundary conditions multiple times (with randomly

generated ensemble members), we also confirmed that the

resulting FEV and RMSDs changed slightly in each EnKF run;

the EnKF results with the boundary calibration were consistently

better (smaller FEV and RMSDU). Although minor improvements

do not contribute to the refinement of the instantaneous velocity
Frontiers in Marine Science 13245
fields of the tidal currents in a velocity map, it will be important

when we focus on residual currents (or time-averaged flow), which

are much smaller in magnitude compared to tidal currents and will

be the subject when we start monitoring tidal currents operationally

with EnKF-CAT.
(A) (B)

(D)(C)

FIGURE 6

Scatter plots of ADCP observation results and EnKF results without (black triangles) and with (colored) the calibration of open boundary condition
(A, B) by applying a harmonic analysis to EnKF results, and (C, D) by linearization approach.
FIGURE 7

The variation of the M2 amplitude for the normal velocity of the
open boundary conditions on each iteration obtained by the
linearization method. The values at the 0-th and first iterations
correspond to those listed with labels Initial values and Linearization
in Table 1.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1351390
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Taniguchi et al. 10.3389/fmars.2024.1351390
There is also room for improvement in CAT data assimilation.

As shown by Cornuelle and Worcester (1996), path-averaged

measurements (path-averaged currents in this study) determine

the lower wavenumber information better than the higher

wavenumbers, and determining the high wavenumber

information requires a sufficiently small measurement error. The

present EnKF implementation uses a relatively large data error

covariance to suppress implausible EnKF updates. Thus, while the

present EnKF reasonably determines the low wavenumber

structure, it may lack the ability to determine the high

wavenumber variation found in the ADCP observations. The

need for a relatively large data error covariance may be due in

part to representation errors. If the representation errors in a model

are sufficiently small, then the data error covariance can only be

given by the measurement noise in the path-averaged currents.

Thus, more sophisticated numerical models are suitable for CAT

data assimilation to fully exploit the information in the path-

averaged currents. It will also be necessary to investigate how

precise models are needed to effectively use the information in

the path-averaged currents will also be required.

CAT with data assimilation is a promising tool for

reconstructing the tidal velocity fields in coastal shallow water.

However, there are still space for improving the CAT for the

reconstructions of tidal currents. The present study is one such

example. Since the velocity fields (and thus tidal currents) in coastal

shallow water are essential information for various studies related to

the ocean, improving the CAT performance to represent the ocean

currents contributes to the progress of those fields.
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A mobile prototype-based
localization approach using
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tracking for underwater
Kun Ye1, Zhicheng Tan1,2*, Wei Wang1, Tian Tian1, Lang Zhou3

and Yongjun Wang2

1School of Informatics, Xiamen University, Xiamen, China, 2School of Aeronautics and Astronautics,
Guilin University of Aerospace Technology, Guilin, China, 3School of Electronic Science and
Engineering (National Model Microelectronics College), Xiamen University, Xiamen, China
During underwater operations, divers must determine their own trajectories

using the Inertial Navigation System (INS) they carry to improve operational

efficiency. However, the INS contains a sensor bias that is also incorporated into

the quadratic integration process to obtain the displacement, resulting in

trajectory drift of the divers during prolonged self-guidance. To overcome the

above problem, other aids are needed to correct the accumulated error of the

INS. The single-beacon Assisted Inertial Navigation (AIN) method can improve

the flexibility of inertial error correction while simplifying the localization

equipment, which is suitable for the INS cumulative error correction scenario

of divers. However, most of the traditional single-beacon assisted correction

methods do not consider the effect of acoustic line bending on hydroacoustic

ranging, and at the same time, they do not consider the problem of singular or

pathological coefficient matrices introduced by inertial navigation neighbor

localization deviations. Based on the above two shortcomings, this paper uses

the acoustic velocity profile for acoustic line tracking, combines the localization

idea of Mobile Primitives (MP), and proposes an MP-based acoustic line tracking-

Assisted Inertial Navigation Localization (AINL) method, which constructs a

sliding time window (STW) by taking the historical positioning of divers as a

virtual primitive, and combines the nonlinear optimization method for iterative

optimization search as a means to improve the accuracy and stability of self-

navigation of the divers.
KEYWORDS

underwater active localization, assisted inertial navigation localization, sound source
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1 Introduction

Marine localization and navigation technology is widely used in

many fields such as diving and salvage, resource exploration, and

environmental monitoring [Luo et al. (2021); Zhang et al. (2021); Su

et al. (2023); Zhang et al. (2024); Ye et al. (2023)]. Diving is the

primary means by which humans explore, exploit and strategize the

oceans [Brown and Wang (2013); Kaneko and Kubota (2021)]. The

localization and navigation methods for divers mainly include the

hydroacoustic localization method, which uses sound waves as

information carriers, and the combined navigation method based

on INS. Among them, INS is very suitable for diver navigation

scenarios due to its good autonomy, continuity, stealth and real-time

advantages in the navigation process (Lyu et al. (2022)). However, the

drift deviation of the inertial sensor in INS causes the localization

error of divers to accumulate over time, and it is difficult for a single

INS to meet the application requirements of long-term underwater

navigation Liu et al. (2021). Therefore, it is necessary to use other

auxiliary methods to correct the accumulated error of the INS in time.

Acoustic wave, as the only information carrier that can be transmitted

over long distances underwater, has become an effective means to

AIN for error correction [Cheng et al. (2022)].

Literature [Zhang et al. (2023)] designed two combined navigation

schemes for Autonomous Underwater Vehicles (AUV) for different

surface and underwater navigation requirements, respectively.

Literature [Xu et al. (2022)] proposed a decentralized co-location

method based on Adaptive Cubature Kalman Filter (ACKF) to

improve the navigation accuracy of two lead AUVs. Literature

[Zhang et al. (2022)] designed a Kalman Filter (KF) method based

on a hybrid distribution model derived from acoustic signal round trip

delay and pitch angle measurement models to reduce the effect of

underwater carrier motion on navigation accuracy, but did not

fundamentally eliminate the INS cumulative error. Literature [Ju-

Cheng et al. (2017)] proposed an AUV navigation augmentation

method based on single beacon ranging, which effectively suppresses

the INS cumulative error by introducing distance, speed, and azimuth

as measurement information. The single-beacon localization

technique, which uses a single acoustic beacon to assist INS in self-

navigation, not only simplifies the transponder deployment process of

traditional hydroacoustic positioning systems, but also provides a high

degree of localization flexibility with navigation accuracy similar to that

of INS combined with traditional hydroacoustic localization systems

[Hegrens et al. (2009)]. Literature [Jin et al. (2019)] combined acoustic
Frontiers in Marine Science 02249
localization and inertial navigation to propose a low-cost single beacon

inertial navigation augmentation localization method, but it assumes a

constant underwater acoustic velocity and does not consider the

problem of acoustic line bending. Literature [Zhang et al. (2019)]

proposed an AUV self-localization method based on Virtual Long

Baseline (VLBL) and STW, but the method sets the ocean acoustic

velocity to a fixed value without sound line correction, and the

corresponding coefficient matrix is prone to singular or pathological

situations, at which time it is difficult to directly solve the spatial

localization of the AUV.

Therefore, this paper focuses on the basic array deployment

problem of diver localization scenarios, adopts a single beacon on

the water surface for Acoustic-Assisted Inertial Navigation

Localization (AAINL), and combines the localization ideas of

acoustic velocity field inversion and MP to reduce the

deployment cost of the localization system while meeting the

scenario requirements of high accuracy, near real-time and high

flexibility of diver self-navigation. The localization method in this

paper can effectively improve the accuracy, robustness and

flexibility of localization estimation of the divers, which is of great

practical value and significance for protecting the personal safety for

divers and improving the efficiency of underwater operations.
2 Problem and methodologies

2.1 Inertial navigation and
localization scenarios

Aiming at the problem of cumulative localization errors generated

by divers in long-term inertial navigation scenarios, this paper proposes

an AINL method based on acoustic line tracking of MP, and the

localization scenario is shown in Figure 1A. Three adjacent locations

P0, P1, P2, where the diver receives the acoustic signal from the surface

beacon (SB) during the moving process, are selected as virtual

primitives to construct the first STW, in which the adjacent

displacements of the INS output and the slant distances obtained

from the acoustic tracking are combined to solve the spatial localization

of the diver at the nearest instant by the system of joint localization

equations. The STW is updated and iterated as the diver moves until

the corrected localization accuracy meets the requirements.

Figure 1B shows the components of the first two STWs, where

the orange dashed box represents the first STW constructed by P0,
BA

FIGURE 1

Localization scenarios for acoustic tracking inertial navigation methods based on MP. (A) Localization Scenarios; (B) STW.
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P1, and P2, and is denoted as STW 1. Assuming the initial

localization is P0(x0,y0, z0), acoustic tracking is used to obtain the

slant distance between the diver and the beacon as R0. After a period

of time, the coordinates of divers are P1(x1,y1, z1), the relative

displacement of P0 and P1 is recorded in the INS as DP10 = (Dx10,
Dy10), and acoustic tracking is again used to obtain the slant

distance R1. The third time the acoustic signal is received, the

corresponding coordinate is set to P2(x2,y2, z2), and the

displacements of P1 and P2, DP21 = (Dx21, Dy21), and the slant

distance, R2, are recorded. The two-dimensional coordinates P0 and

P1 (depth measured by the pressure transducer) are expressed as the

difference between the coordinates to be solved, P2, and the relative

displacement of the known INS in the form of Equation 1:

(x0, y0) = ((x2 − Dx20), (y2 − Dy20))

(x1, y1) = ((x2 − Dx21), (y2 − Dy21))
,

(
(1)

where Dx20 = Dx10 + Dx21 and Dy20 = Dy10 + Dy21 :
Combined with the slant distance Ri(i = 0, 1, 2) obtained by

acoustic tracking, the system of joint nonlinear localization

equations is:

R0  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(x2  − Dx20)  − xs�2  + ½(y2  − Dy20)  − ys�2  + (z0  − zs)

2
q

R1  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½(x2  − Dx21)  − xs�2  + ½(y2  − Dy21)  − ys�2  + (z1  − zs)

2
q

R2  =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2  − xs)

2  + (y2  −  ys)
2  + (z2  − zs)

2
p

:

8>>>><
>>>>:

(2)

In (2), the depth zi(i = 0,1,2) at each localization is measured by

the pressure transducer, which can be considered a known quantity.

The coordinate estimation problem for the diver P2 can be

transformed into the problem of solving the corresponding system

of localization equations in (2). Considering that the deviation of the

adjacent localizations of the INS output may cause the problem of

singular or pathological coefficient matrix, this paper adopts a

nonlinear optimization method to iteratively search for the optimal

solution of the localization of divers Wang et al. (2022).
2.2 Localization p process

Figure 2 shows the overall flow of the localization method in this

paper, which includes a delay estimation module, a sound tracking

module, an inertial navigation module, a nonlinear optimization

module, and a STW iterative update module. The inverse sound
Frontiers in Marine Science 03250
velocity profiles are based on Array for Real-time Geostrophic

Oceanography (Argo) data at 116.63-119.63E and 17.5-18.5N after

Multi-Layer Perceptron (MLP) estimation of the first five orders of

Principal Components (PC) estimation for better range.

The INS solution of the Inertial Navigation Module requires the

following four steps in sequence: attitude update, coordinate

transformation, velocity update, and localization update.

The acoustic line tracking module, as a crucial component of

the inertial navigation-based error correction, aims to obtain the

acoustic distance measurement information between the diver and

the SB, thus providing the slant distance required for the nonlinear

optimization process. The acoustic tracking module is first provided

with the time of arrival (TOA) of the beacon acoustic signal by the

time delay estimation module. Then, an iterative dichotomous

search is performed to correct the acoustic line curvature based

on the initial grazing angle of the acoustic line. Considering the

shallow sea environment where divers operate, the acoustic signal is

easily disturbed by multipath channels and environmental noise

during propagation, so the TOA method should be selected with

both multipath and noise resistance. In this paper, Second

Generalized Cross Correlation (SGCC) is selected as the

localization method to estimate the TOA of the received signal

from the diver in order to avoid pseudo peaks in the cross

correlation Yang et al. (2010). The method steps are as follows:

First, the autocorrelation operation is performed on x1(t) to

obtain the autocorrelation function Rx1x1(t). Second, the mutual

correlation function Rx1x2(t) of x1(t) and x2(t) is calculated,

followed by the calculation of the mutual power spectral

function GRR(f) of Rx1x1 and Rx1x2. Then, the frequency domain

filtering of GRR(f) is performed in conjunction with the

generalized frequency weighting function yg(f). Finally, the

filtered secondary mutual power spectrum is subjected to

Fourier Inverse Transform to obtain the Second Generalized

Cross Correlation function R(g)
y1y2 , as shown in Equation 3:

R(g)
y1y2 (t) =

Z ∞

−∞
yg(f )GRR(f )e

j2p f tdf : (3)

Since the method in this paper corresponds to the active

localization scenario, when the power of the acoustic signals

emitted by SB is large, the function normalizes the amplitude of

the reciprocal power spectrum in the frequency domain, and is able
FIGURE 2

The general flowchart of the localization method in this paper.
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to effectively sharpen the correlation peaks in active localization

scenarios with large signal power, and is suitable for underwater

acoustic environments with low or moderate reverberation, and the

expression for the phase transformation (PHAT) weighting

function is given by yg(f ) =
1

GRR(f )j j.
When searching for peaks for (3), the time corresponding to the

peaks is the time delay for the diver to receive the signal as D̂ , as

shown in Equation 4:

D̂ = arg max
t

½R(g)
y1y2 �

� �
: (4)

The SGCC-PHAT method in the attempted study combines

both good noise immunity and multipath immunity, and is more

suitable than other algorithms for delay estimation scenarios of

diver-received signals in the noisy environment of the shallow sea.

The nonlinear optimization module is mentioned in the

next section.
2.3 Nonlinear optimization

The system of localization Equation (2) is transformed into the

following form if the depth of divers, the coordinates of the single

beacon on the water surface and the acoustic distance

measurements R1, R2, R3 are known:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0  − (z0  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2  − (Dx20  + xs)�2  + ½y2  − (Dy20)  + ys)�2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1  − (z1  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2  − (Dx21  + xs)�2 +

q
½y2  − (Dy21)  + ys)�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2  − (z2  − zs)

2
p

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2  − xs)

2  + (y2  − ys)
2

p
,

8>>>><
>>>>:

(5)

where (Dx20,Dy20) is the coordinate change of INS outputs P0
and P2 in the inertial reference system.

If the coordinate (x2, y2) to be solved is set to (x, y), the Equation

(5) is expressed in the form of the following error vector:

e(x, y)  =  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x  −  (Dx20  +  xs)�2  +  ½y  −  (Dy20)  +  ys)�2

q
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0  −  (z0  −  (zs)

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x  −  (Dx21  +  xs)�2  +  ½y  −  (Dy21)  +  ys)�2

q
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1  −  (z1  −  (zs)

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x  −  xs)

2  +  (y  −  ys)
2

p
  −  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2  −  (z2  −  zs)

2
p

2
66664

3
77775 :

(6)

Squaring the Equation (6) yields the objective function E(x, y) as

follows:

E(x, y) =
1
2
e(x, y)Te(x, y) =

1
2o

3

i=1
e2i (x, y) : (7)

The sum of squares of the minimized range error terms

according to Equation (5–7), and then use the iterative method to

nonlinearly optimize the above least squares problem. The

localization method in this paper uses the Levenberg-Marquardt

(LM) method for nonlinear optimization of the spatial localization

of divers in the following way:

First, the coordinates to be solved are set as a vector x(x,y). The

error term e(x) is linearized based on a first order Taylor series

expansion with the expression in Equation 8:
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e(x + Dx) ≈ e(x) + J(x)Dx, (8)

where J(x) is the Jacobi matrix of e(x) with respect to x and Dx is
the iteration step.

The minimization objective function is then approximated as a

linear least squares problem to solve for the increment, as shown in

Equation 9:

Dx* = arg min
Dx

1
2
‖ e xð Þ + J xð ÞDx ‖2 (9)

The LM method introduces a damping coefficient µ in the

construction of the incremental equation, which can be expressed as

Equation 10:

(J(x)TJ(x) + mI)Dx = −J(x)Te(x), (10)

where I is the unit array; the initial value of the damping

coefficient, µ0 = t × max{aii}, where A0 = J(x0)
TJ(x0), aii is the

diagonal elements of A0; and t is a constant, usually set to 10−3 or 1.
The quality of each iteration step is evaluated according to the

change in the goodness of approximation m, which defines the gain

ratio r, as shown in Equation 11:

r =
e(x + Dx) − e(x)

J(x)Dx
: (11)

The denominator represents the degree of decrease of the first-

order differential component in each iteration, and the numerator

represents the decrease of the actual function. When r is small, it

means that the approximation degree of the iteration step is poor,

and µ should be increased accordingly; on the contrary, when r is

large, µ should be decreased. In this paper, the localization method

adopts the µ updating strategy as follows: when r  >  0,  m  =
 m �   max   1

3 , 1  −  (2r  −  1)3
� �

; otherwise, µ = µ × n n = 2 × n,
the initial value n0 = 2. After adjusting the damping coefficient, it is

first substituted into the increment equation to compute the

increment amount, and then the increment amount is iterated to

update the localization, and then a new round of iteration is started,

and the iteration is stopped only when the increment amount is

sufficiently small or the gradient of the descent is sufficiently small.
3 Simulation results and analysis

3.1 Simulation analysis of delay
estimation module

To investigate the estimation performance of the SGCC-PHAT

method in the delay estimation module in shallow sea localization

scenarios, this subsection compares the delay estimation effects of

different cross-correlation algorithms in terms of noise resistance

and multipath resistance, respectively. Assuming that the receiver

and transmitter have completed time synchronization, the anti-

noise performance of the method is analyzed by adding Gaussian

white noise of different power to the transmit signal; and the

multipath resistance of the method is explored by simulating the

shallow sea multipath channel using the BELLHOP channel model.
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First, the noise immunity performance of the four cross-

correlation algorithms is analyzed. In this simulation, a single-

frequency sine wave with a frequency of 1000 Hz is used as the

transmit signal in this 167 simulation. The signal is sampled at 50

kHz, with 1024 samples and a real-time delay value of 100 sample

intervals (i.e., 2 ms). The simulation analyzes the noise immunity of

the four cross-correlation algorithms from the two scenarios of high

signal-to-noise ratio (SNR) (20 dB) and low SNR (-20 dB).

Figure 3 shows the delay estimation results of the Cross

Correlation (CC) algorithm, the Generalized Cross Correlation-

PHAT (GCC-PHAT) algorithm, the Second Cross Correlation

(SCC) algorithm, and the SGCC-PHAT method at high SNR.

Overall, all four algorithms can accurately estimate the true delay

value of the received signal below 20 dB. From the horizontal

comparison, it can be observed that when the signal power is greater

than the noise power, the GCC-PHAT method has sharper

correlation peaks compared to the CC algorithm, the peak

spreading of the CC method leads to a reduction in the resolution

of the peaks, and the SGCC-PHAT method and the SCC method

have a similar pattern. From the longitudinal comparison, it can be

observed that the amplitude of the interference noise around the

peaks is significantly reduced in the SGCC-PHAT method

compared with the GCC-PHAT algorithm, thus verifying that the

two cross-correlation operations can sharpen the peaks and further

inhibit the noise from interfering with the signal. The above

simulation verifies the good resolution of the SGCC-PHAT

method for delay estimation under high SNR conditions, as well

as a certain resistance to side flap interference.
Frontiers in Marine Science 05252
Figure 4 compares the estimation performance of the four types

of cross-correlation algorithms under low SNR conditions. Among

the four algorithms, only CC and SCC estimate accurately, the true

value of delay of GCC-PHAT is overwhelmed by a large amount of

noise, and the estimate of SGCC-PHAT method contains a small

amount of bias (0.00012 s). From the side-by-side comparison, it

can be seen that CC has better noise immunity compared to GCC-

PHAT, and the true delay value can still be estimated under low

SNR conditions. The estimation accuracy of GCC-PHAT decreases

sharply with the increase of noise power under the low SNR

conditions. This phenomenon occurs because the PHAT

weighting function in GCC-PHAT relies on phase delay

estimation. When the signal is flooded with noise, the phase of

the noise occupies the main component in the estimation result, so

the estimation error increases sharply. Compared with GCC, CC

has better noise immunity because it preserves the amplitude

information in the frequency domain. From the longitudinal

comparison, although the estimation accuracy of SGCC-PHAT

decreases accordingly under the low SNR condition, its

estimation error is generally very small (0.00012 s) compared to

GCC-PHAT, which confirms that SGCC-PHAT has better noise

suppression ability compared to GCC-PHAT. From the above

simulation analysis of the anti-noise performance, it can be seen

that under the high SNR condition, the SGCC has a sharper

correlation peak compared with the SCC and is more sensitive to

the estimation error; under the low SNR condition, the SGCC-

PHAT benefits from the two cross-correlation operations to inhibit

the interference of the noise on the signal better than the GCC-
B

C D

A

FIGURE 3

Estimation performance comparison of four cross-correlation algorithms under high SNR conditions (20 dB). (A) CC; (B) GCC-PHAT; (C) SCC; (D)
SGCC-PHAT.
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PHAT, and it has a higher robustness. Considering that the water

SB in the localization scenario of this chapter is actively

transmitting acoustic signals as a sound source, there is no low

SNR environmental condition, in which case it is feasible and

superior to choose the SGCC-PHAT as the delay estimation

method for localization in this chapter.

Second, simulation analysis is performed to analyze the anti-

multipath performance of the four types of cross-correlation

algorithms. In this simulation, the BELLHOP model is selected to

simulate the underwater multipath channel, and the received acoustic

signal is obtained by calculating the convolution of the transmitted

signal and the channel impulse response, and the different cross-

correlation algorithms are applied to the received signal for time delay

estimation. It should be noted that the sound velocity profile used in

the BELLHOP model is the inverted sound velocity profile of August

2017 in the China South Sea, and the rest of the parameter settings are

shown in Table 1. Considering the complexity of the underwater

environment, in this simulation, the linear frequency modulation

(LFM) signal is selected as the transmission signal, the center

frequency of the signal is set to 30 kHz, the bandwidth is 5 kHz,

the duration is 20 ms, and the real propagation time of the acoustic

signal can be obtained from the model calculation as 0. 65645 s. The

LFM signal before and after passing through the BELLHOP channel

is shown in Figure 5, and the change of the waveform shows that the

received signal is not only delayed in time, but also the multipath

effect leads to different degrees of attenuation of the signal amplitude.

Based on the received signals shown in Figure 5, the antimultipath

performance of the four types of cross-correlation algorithms is
Frontiers in Marine Science 06253
compared, and a total of thirty simulations are performed, which

shows that the SGCC-PHAT has a better antimultipath capability,

and only one simulation result is shown as shown in Figure 6. The

figure reflects the ability of different cross-correlation algorithms to

resist the multipath effect in the shallow sea, fromwhich it can be seen

that the GCC-PHAT and the SGCC-PHAT have better anti-

polymath performance compared to the other two algorithms, and

the delay estimation error of both of them is only 0. This verifies that

the SGCC-PHAT can resist the multipath effect in the shallow sea,

and the estimation error of CC and SCC is extended to 0.00001s. This

verifies that SGCC-PHAT can resist the multipath effect in the

shallow sea, and SCC is more effective in the shallow sea. SGCC-

PHAT can extract the propagation delay of the direct signal in the
TABLE 1 BELLHOP model parameterization.

Parameter Name Value

Sound Source Depth (m) 40

Receiver Depth (m) 60

Transmitter to Receiver Horizontal Distance (m) 1000

Acoustic Frequency (kHz) 30

Number of voices 30

Sound Line Exit Angle Sector (°) -15∼15

Seabed Sediment Sound Velocity (m/s) 1600

Seafloor Sediment Density (g/cm3) 1.8
front
B

C D

A

FIGURE 4

Estimation performance comparison of four cross-correlation algorithms under low SNR conditions (-20 dB). (A) CC; (B) GCC-PHAT; (C) SCC; (D)
SGCC-PHAT.
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multipath channel better than CC and SGCC, and is more suitable for

the localization scenarios the shallow sea operation of divers.

In summary, this subsection verifies, based on simulation, that

the SGCC-PHAT has both good anti-noise performance and anti-

multipath performance, and is more suitable than other algorithms

for the delay estimation scenarios of the received signals of divers in

the noise environment of the shallow sea, and thus the methodology
Frontiers in Marine Science 07254
in this chapter selects the SGCC-PHAT as a delay estimation method

for the voice tracking module with feasibility and superiority.
3.2 Nonlinear module simulation
and analysis

This subsection demonstrates the INS cumulative error

correction results of the proposed method, and also explores the

effect of the transmission period of SB on the INS cumulative error

correction. Based on the received signal delay estimation using the

SGCC-PHAT algorithm, the INS cumulative error correction

performance of the proposed method is simulated and analyzed.

The Inertial Measurement Unit sensor error settings in the

simulation are the same as in Table 2, and the measurement period

is set to 0.1 seconds. The diver is moving at a speed of

approximately 1 knot. The SB is placed at a depth of 0.5 m

underwater, and the corresponding latitude and longitude are

17.5016N and 116.6016E. In this simulation, the East-North-Up

(ENU) coordinate system is used as the reference coordinate system

for navigation, and the initial localizations of divers of 17.5N and

116.6E are used as the origin of the reference system, and the

relative localizations of the moving trajectory of divers and the SB

are shown in Figure 7. The simulation uses Root Mean Square Error

(RMSE) to measure localization accuracy.

Table 3 shows the localization errors for different STWs for a

beacon transmission period of 20 seconds, and from the analysis of

the graphs, it can be seen that the localization errors of the four STWs
B

C D

A

FIGURE 6

Estimation performance comparison of four cross-correlation algorithms under BELLHOP multi-traffic channels. (A) CC; (B) GCC-PHAT; (C) SCC;
(D) SGCC-PHAT.
FIGURE 5

Comparison of signal waveforms before and after passing through
the BELLHOP channel.
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are less than 5 meters, and the corresponding localization errors of

the second and third STWs are reduced to about 1 meter, which

improves the accuracy of INS localization by about 98% compared

with the INS localization accuracy, and the percentage of localization

error is less than 0.5%, and the high-precision correction of the

cumulative INS error is achieved in a minimum of only three STWs.

Next, the number of STWs is selected as four, and the total

simulation time is set to 1000 seconds, of which the first 420 seconds

is for Purely Inertial Navigation (PIN), and the AAINL is performed in

420-520 seconds, thus simulating the actual operation scenario in

which the diver moves for a certain period of time and then

performs error correction. Figure 8 shows the localization trajectory

and error of this method when the transmission period of the SB is 20

seconds, 40 seconds, 60 seconds and 80 seconds. The black line in the

figure indicates the ideal motion trajectory of divers during 420 seconds

to 520 seconds, the blue line indicates the motion trajectory of divers

output by the INS, and the red line corresponds to themotion trajectory

of divers after AINL by the method of this paper. The depth of divers is

measured by the pressure sensor with negligible numerical error.

From Figure 8, it can be observed that the cumulative INS error

causes the localization of divers solved by PIN to deviate seriously

from the true value, and the acoustic-assisted correction using SB in

method of this papers can estimate the localization of divers closer

to the true coordinates. The reason why the MP trajectory in
Frontiers in Marine Science 08255
Figure 8 is close to the ideal trajectory at the beginning and then

gradually moves away from it is that in the iteration of the STW, the

accuracy of the localization of divers first gradually improves with

the introduction of acoustic ranging, and then, due to the increase

in the distance between the diver and the SB, the accuracy of

acoustic ranging at this time decreases, leading to the increase in the

localization error corresponding to the fourth STW.

From the left vertical comparison of each figure in Figure 8, it can be

seen that although the moving trajectories vary under different acoustic

distance measurement cycles, they are generally closer to the real value

than the trajectories output by the INS, and the above phenomenon is

attributed to the fact that method of this papers uses acoustic ranging to

introduce the auxiliary information of distance constraints.

Further observation shows that when the diver is closer to the SB,

the accuracy of this method is higher, indicating that the distance

between the SB and the diver is a key factor affecting the performance

of acoustic assisted localization, and the beacon should be deployed as

close as possible to the moving trajectory of divers. The localization

errors under different acoustic measurement cycles are shown in the

right vertical comparison of each figure in Figure 8, from which it can

be seen that the localization error of method of this papers is

significantly smaller than the INS localization error. As the

cumulative error of the INS increases, the localization error of the

MP also increases. When the beacon transmission period is 40 seconds,

the localization errors of the four STWs are less than 10 meters; when

the beacon transmission period is 60 seconds, the maximum

localization error corresponding to the STWs is close to 20 meters;

when the beacon transmission period further increases to 80 seconds,

the maximum error corresponding to the STWs has exceeded 20

meters. The reason for the above increase in the localization error of the

MP is that the size of the SB transmission period essentially reflects the

distance between adjacent localizations in the STW, i.e., the length of

the baseline between the MP. Increasing the beacon transmission

period leads to a larger distance between neighboring localizations in

the STW, at which time the INS cumulative error also increases, and

substituting the relative displacement with a larger deviation into the

set of nonlinear localization equations increases the auxiliary

localization error. The method in this paper has the problem of

choosing the beacon transmission period, because the INS neighbor

displacement is introduced as a known quantity, and the localization

accuracy improvement is limited by the INS cumulative error.

The localization accuracy improvement values for the four

transmission cycles compared with INS in Figure 8 are shown in

Table 4, fromwhich it can be seen that as the beacon transmission cycle

increases, the localization accuracy improvement of method of this

papers as a whole shows a decreasing trend, which is related to the

increase of the INS neighborhood localization deviation. It should be

noted that the localization accuracy of the method in this paper is also

related to the distance of the diver from the SB, so the larger value of the

localization accuracy improvement under each transmission period in

the table tends to correspond to the STW closest to the beacons.

According to the simulation verification, the localizationmethod in this

paper has a certain degree of error correction effect in transmission

cycles less than 200 seconds.

From the above simulation analysis, it can be seen that the

localization method in this paper can effectively correct the
TABLE 2 Inertial Measurement Unit (IMU) sensor error
parameter settings.

Sensor
Type

Error Parameters Numeric
Value

Gyros

Constant Drift (°/h) 0.05

Angular Velocity Random Walk

(°/
ffiffiffi
h

p
)

0.01

Accelerometer
Constant Zero Offset µg √ 50

Speed Random Wandering µg/
ffiffiffiffiffiffi
Hz

p
10
FIGURE 7

Diver motion trajectory and SB localization.
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cumulative error of INS under different beacon broadcasting cycles, and

the effect of improving the localization accuracy is very significant. The

factors affecting the estimation accuracy of the localization method in

this paper are mainly the broadcasting period of the SB and the

proximity of the diver to the SB. In this paper, the 20-second

transmission period is chosen as the acoustic distance measurement

period for the AINL, and the SB is placed as close as possible to the

trajectory of divers to realize the fast and high-precision INS error

correction. Considering that divers need to quickly correct the

accumulated INS error during underwater operation, designing too

manyMPwill causemore serious localization deviation and thus reduce

the localization accuracy, so this paper chooses three MP to construct a

STW In the process of localization, three to four STWs can quickly

eliminate the accumulated INS error, and choosing toomany STWs not
Frontiers in Marine Science 09256
only increases the computational complexity, but also is prone to the

interference of acoustic ranging distance and affects the correction effect.
4 Conclusion

In this paper, an acoustic tracking AINLmethod based onMP is

proposed. Considering that it is difficult to lay a large number of

acoustic base arrays in a short time for the sudden operation

scenarios of divers, acoustic tracking assisted localization using a

single beacon on the water surface combined with acoustic line

tracking combines the flexibility and simplicity of single beacon

localization and improves the aquatic acoustic localization accuracy

of divers. The localization idea of MP is introduced, and a STW
TABLE 3 Comparison of localization errors for a 20-second beacon duration.

STW Number 1 2 3 4

AINL Error(m) 3.2881 1.1322 0.8715 4.8232

INS Localization Error(m) 51.9373 55.9669 60.0731 64.4272

Improved Localization Accuracy(%) 93.67 97.98 98.55 92.51

Percent Localization Error(%) 1.43 0.47 0.35 1.86
B

C D

A

FIGURE 8

Diver trajectories and localization errors under different beacon transmission cycles. (A) Beacon transmission time of 20 seconds; (B) Beacon
transmission time of 40 seconds; (C) Beacon transmission time of 60 seconds; (D) Beacon transmission time of 80 seconds.
TABLE 4 Improving the localization accuracy of the method of this paper over INS with different beacon transmission periods.

Broadcast PeriodSTW Number 1 2 3 4

20 seconds 93.67% 97.98% 98.55% 92.51%

40 seconds 93.88% 96.25% 86.90% 92.31%

60 seconds 61.08% 89.91% 92.86% 76.35%

80 seconds 85.59% 87.45% 81.75% 78.74%
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consisting of three virtual primitives is constructed using the

current localization of divers and two historical positions, and the

spatial localization of divers at the nearest moment is solved based

on the acoustic distance measurement and the inertial navigation

displacement in the neighboring measurement period. To solve the

problem of singularity or pathology in the coefficient matrix of the

localization equation system due to the deviation of the neighboring

localizations of the inertial guides, the LM method is used for

nonlinear iterative optimization search. Then, how to realize the

time synchronization between the SB and the diver is investigated

and the corresponding underwater experiments are carried out.
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Introduction: Statistical methods such as empirical orthogonal functions (EOFs)

are often used to model the sound speed profile (SSP). However, their statistical

nature often leads to the sample dependence and physical fuzziness.

Method: This study proposes a technique for modeling the SSP from the

perspective of ocean dynamics. It employs the ocean normal mode, which is

the mode of fluid particles motion, to deduce perturbations in the SSP, which is

called the ocean mode basis (OMB).

Result: The results of SSP reconstruction of in-situ samples showed that a few

leading orders of the OMB can provide a compact representation of the SSP.

Oscillations of the contours and gradient of the sound speed in thermocline were

analyzed by using the first two orders of the projection coefficients of the

relationship between the OMB and the baroclinic mode. As a physical model,

this technique can also be used to characterize the dynamics of internal solitary

waves. Furthermore, the OMB derived from archival date was used for SSP

inversion. The results showed that the OMB can reconstruct SSP of a

reasonable resolution without requiring in-situ samples.

Discussion: Compared with statistical models, the OMB can better explain the

ocean dynamics underlying variations in the SSP while requiring fewer samples.
KEYWORDS

sound speed profile, empirical orthogonal function, internal solitary wave, inversion,
basis function
1 Introduction

Sound speed profile (SSP) is the basic acoustic characteristic of the water column in the

ocean. The properties of sound propagation are strongly influenced by temporal and spatial

changes in the SSP due to the ocean dynamics. Conversely, the water column can be

observed and analyzed by examining the SSP and perturbations in it. Information on the

ocean, ranging from the large-scale marine environmental monitoring of the global climate

to the fine-scale analysis of internal waves and turbulence in local seas, can be obtained

from SSP inversion (Behringer et al., 1982; Yang and Liu, 2017). SSP plays an important
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role in underwater applications (Xing et al., 2021, Zhang et al., 2021;

Xing et al., 2023; Yang, 2024; Zhang, 2024, Zhang et al., 2024 ).

To provide constraints on the search space for inversion, it is

necessary to apply a dimensionality reduction technique to model a

refined SSP. As a technique of principal component analysis,

empirical orthogonal functions (EOFs) have been the most widely

used method for modeling SSPs in recent decades. LeBlance first

proved that the EOF can describe the SSP without losing much

information by using a few groups of basis vectors and projection

coefficients (LeBlanc and Middleton, 1980). The EOF was

subsequently used in a considerable amount of research on SSPs,

including ocean tomography (Li et al., 2015), uncertainty analysis of

inversion (Jiang and Chapman, 2009), perturbation analysis of the

sound field (Hjelmervik et al., 2012), and rapid environmental

assessment (Chen et al., 2018). Moreover, Bianco and Cheng used

machine learning to reduce error in the reconstruction of SSPs

while using fewer coefficients (Bianco and Gerstoft, 2017; Cheng

et al., 2022). This effort indicated that the resolution of the SSP

model can be improved by lifting the orthogonality restriction.

However, it remains difficult to satisfy certain demands of ocean

observation in light of the statistical nature of the SSP model

currently in use. To form the basis vectors, the abovementioned

SSP models obtain the rules of perturbation of the sample data

mainly by statistical methods: The basis vectors are entirely the

products of numerical analysis. Early studies on ocean observation

and analysis suggested that statistical models do not necessarily

correspond to the true dynamical characteristics or modes of the

ocean physical behavior (Dommenget and Latif, 2002; Behera et al.,

2003). In addition, there are certain requirements on the sample size

and temporal–spatial coverage of SSPs for basis generation that

pose a barrier to SSP modeling in scenarios where in-situ samples

are lacking. This paper proposes a technique to model the SSP from

the perspective of its physical mechanism. Based on the ocean

normal mode (ONM), which represents the dynamic characteristics

of fluid particles, the SSP is represented by a basis derived from the

stratification characteristics of the water column. This study shows

that the physical model can better explain the dynamic activity of

the ocean, and mitigate to a greater extent, the reliance on samples

than the statistical model.

The ONM refers to the dynamic mode that describes the

vertical velocity of fluid particles. According to Gill’s definition

(Gill, 1982), numerous normal modes can be obtained through the

motion equation of a stratified fluid. Mode zero is the barotropic

mode, which is unrelated to the depth and is a response to

fluctuations on the sea surface. Baroclinic modes, which start with

mode one, originate from fluctuations in the density interface.

These modes are vital for describing the dynamic process in the

ocean interior, and are defined as the ONM. The ONM has been

used in oceanography to analyze the process of transformation of

marine energy, and to explain the dynamic activity of the ocean

interior at various scales, even linking it to variations in the climate

(Liu, 1999; Zhang and Liu, 1999; Moon et al., 2004; Qiu et al., 2007).

Therefore, a derived basis for SSPs based on the ONM has the

potential to explain the dynamic mechanism of the ocean

environment. The ONM is obtained from the stratification
Frontiers in Marine Science 02259
characteristics of the water column, and reduces the dependence

on samples for the basis acquisition.

This paper proposes a sound speed profile model based on the

ONM. The SSPs are reconstructed by using the bases derived from

in-situ data and archival date, and the results are evaluated against

EOF-based methods. In Section 2, theories related to the SSP model

are presented. In Section 3, SSP reconstruction is carried out based

on the in-situ data, and the dynamic processes of the ocean are

analyzed according to the bases and projection coefficients. Section

4 contains a description of the calculation of the basis using

climatological mean data, following by SSP inversion. Finally,

Section 5 offers the conclusions of the paper.
2 Theory

To provide a compact presentation, the SSP model is usually

expressed as

c(z) = c0(z) +o
M

n=1
anyn(z), (1)

where c(z) is the reconstruction of the SSP model, z represents

the discrete point in depth, and c0(z) is the invariant component of

the SSP. The corresponding perturbation component is

approximated by the superposition of M orders of oscillation

pattern yn(z), the amplitude of which is weighted by the

corresponding coefficient an. There are different statements for

Equation (1) in different studies, and this paper claims that the

term “basis” refers to the vertical oscillation pattern and “projection

coefficient” refers to the weight coefficient.

For EOF technology, SSP modeling is implemented by extracting

the principal component of a sufficient number of samples. As SSP

samples subtract the average value of the profiles, the anomaly vectors

X can be obtained. The result is a p × q matrix, where p and q

represent discrete points of depth and sample size, respectively. The

singular value decomposition (SVD) is

(R − lI)K = 0, (2)

where R is the covariance matrix of X, l is the eigenvalue of R, I

is an identity matrix, and K =  ½k1, k2, · · ·, kq� is a p×q matrix with

EOF columns. The leading perturbation feature kn in Equation (2),

which corresponds larger eigenvalue and describes more total

variance of samples, is selected as the basis in Equation (1), and

the corresponding projection coefficient is usually obtained as a

result of inversion.

To elaborate the dynamic mechanism and the method used to

determine the physical basis, the derivation begins from the

equation of a continuously stratified fluid. The motion equation

of fluid particles in the vertical direction is:

1
r0

d
dz

r0
dW
dz

� �
+
N2W
k 2 = 0, (3)

where W is the velocity, r0 is the density, N is the buoyancy

frequency, and k is the phase speed along the horizontal direction.
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After introducing the Boussinesq approximation (i.e.,r0 varies more

slowly than W), Equation (3) can be simplified to the simpler

Sturm–Liouville problem:

dW2

dz2
+
N2W
k 2 = 0: (4)

Based on the boundary condition W = 0 on the sea surface and

the seabed for Equation (4), the movement of the fluid particles can

be expressed by the superposition of many ONMs:

W(z) = o
M

n=1
Bnfn(z)e

i(knx+lny−s t), (5)

where fn(z) is the n − th order ONM with amplitude Bn, x and y

are the eastern and northern directions along the horizontal,

respectively, kn and ln are their corresponding wavenumbers, and

s is the frequency in Equation (5). The displacement x of fluid

particles in time t causes a variation in sound speed (Munk and

Zachariasen, 1976):

Dc = x
dc
dz

: (6)

The sound speed is a function of temperature T, salinity S, and

depth (Kim et al., 2015):

dc(T , S, z)
dz

= bTz + g Sz + 0:016, (7)

where

b = 4:95 − 0:11T + 0:00087T2 − 0:01S

g = 1:34 − 0:01T

∂T
∂ z

= Tz ,
∂ S
∂ z

= Sz :

The change in sound speed with temperature, salinity, and

depth is approximately linear in Equation (7). For a fixed depth,

once the temperature rises by 1°C, the sound speed increases by

about 4 m/s, while for a 1 psu increase in salinity, the corresponding

increase in sound speed is only 1.1 m/s. Considering that the

interval of changes in salinity in most seas across the world is

much smaller than that in temperature, the latter is often a crucial

factor influencing sound speed. Thus, only the temperature, i.e., d

c=dz ≈ bTz is considered. The variations in profiles of the sound

speed and temperature are often consistent, and the approximation

has been proved to be reasonable in previous applications (Song

et al., 2014). In a follow-up study, the approximation was shown to

ensure enough precision in most seas. Equation (6) can then be

expressed as Dc = bTzx. The vertical profile of the ocean has

remarkable time-variant characteristics that can be decomposed

into a steady background profile and perturbation. The background

profile is often stable at a large time scale, and disturbance is caused

mainly by the short-term meso- and micro-scale dynamic activities,

and do not change properties of the background profile. Therefore,

SSP c(t) can be expressed as c0 + Dc, where c0 is the background SSP

corresponding to fluid particles in equilibrium x =  0,Dc is the
Frontiers in Marine Science 03260
perturbation of the SSP caused by the integration of fluid particle

motion. Then, Equation (6) can be expressed as:

c(t) = c0 − b
∂T
∂ z o

M

n=1

Bnfn
is

ei(knx+lny−s t) : (8)

The reconstitution Equation (8) of the sound speed model

corresponding to Equation (1) is:

yn(z) =
∂T
∂ z

fn, (9)

an = −b
Bn

is
ei(knx+lny−s t) : (10)

Equation (9) is the basis derived from the ONM reflecting the

perturbation in the SSP caused by the dynamic activity of the water

column, that is, the ocean mode basis (OMB). In Equation (10), the

real component is the projection coefficient of the corresponding

OMB. In ocean observation, it usually serves as the result of

inversion extracted from the acoustic signal.

It is clear from Equation (9) that the OMB is the basis of the

physical modes. After SSP inversion, the results can be translated

into the ONMs and their corresponding amplitudes by Equations

(9) and (10), and such dynamic parameters as pressure, flow

velocity, Ursell number, and Ostrovsky coefficient can then be

discussed (Farmer et al., 2009; Yang et al., 2009). In addition, the

vertical mode is an effective tool to explain the interior fluctuations

in the ocean. From the vertical motion of the fluid particle, the OMB

can explain dynamic ocean phenomena.

It is also clear that the OMB does not require a large number of

samples. The OMB is deduced from the stratification characteristics

of the water column—that is, the buoyancy frequency of the

background profile. On the one hand, the stratification

information can be extracted from the in-situ measurement. On

the other hand, they can be obtained from historical data, and even

from ocean numerical models. When using background profile

from archival data or ocean numerical models for OMB calculation,

in-site samples are not required. In comparison with statistical

model, the requirements related to sample size are laxer. In the

following sections, the acquisition and application of the OMB

using in-situ data and archival data are detailed. Considering the

current understanding of varied statistical basis functions and their

effectiveness in inverse problem applications, EOF is selected as the

counterpart in our paper for subsequent research.
3 OMB application based on in
situ data

3.1 Datasets

The SSP data were calculated from two sets of temperature data,

collected in August 2011 in the Yellow Sea and May 2001 in the

South China Sea. The mooring locations are shown in Figure 1.

The SSP data were calculated from two sets of temperature data,

collected in August 2011 in the Yellow Sea and May 2001 in the
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South China Sea. The SSP data for the two experiments are shown

in Figure 2. In August 2011, a thermistor string was anchored

offshore Tsingtao (35.66°N 121.00°E) in the Yellow Sea, where this

was a semi-closed continental shelf and shallow sea. The depth was

40 m. The thermistor string was composed of 19 units, located at

depths ranging from 8.9 to 31.6 m. The sampling interval was 0.5

min. In this area, cold water mass was the characteristic. Owing to

intense radiation on the sea surface in the summer, the sea surface
Frontiers in Marine Science 04261
temperature rises to the annual maximum. Under the impact of

these two factors, the span of mean temperature measured by the

thermistor string was about 16°C, forming a strong thermocline. At

the same time, The strong linear internal wave activity was noted.

Under the influence of local circulation, with the measuring points

located in the low-salt zone along the coast, the salinity of the water

column stabilized at about 31 psu. The thermistor string, located

near the continental slope (21.55°N, 117.35°E) in May 2001, was a

part the measurement of the Asia Sea International Acoustic

Experiment (ASIAEX). The depth was 139 m, the thermistor

string was composed of 13 units ranging in depth from 21.7 to

135.1 m, and the sampling interval was 1 min. As the measuring

location was in the tropics, the water temperature was higher than

that in the Yellow Sea. Due to a combination of the bottom slope

and transbasin waves, strong internal tidal and internal solitary

wave were formed. Moreover, the variety in the amplitudes of the

sound speed contour reached up to 70 m owing to internal solitary

waves. The salinity was stylized at approximately 34 psu.

Because diurnal tidals were dominant in both areas, the cycle of

a diurnal tide (24 h) was set as the time window to test using SSP

models. The averaging method was applied to continuously

measured in-situ data to extract the background profile. The

salinity values were taken from CTD measurements near anchor

positions of the thermistor string. As the variation in the salinity of

multiple groups of CTD measurements was small, the salinity

profile closest to the thermistor string was used. The buoyancy

frequency and the ONM were calculated using the mean

temperature profiles from the thermistor string and the salinity

profile from the CTD. The OMB was then obtained by Equation (9).

The mean temperature profiles of the thermistor did not cover the

depth of the mixing layer, which might have led to extrapolation

errors in the background profile under the sea surface. However, the
B

A

FIGURE 2

Variation in the SSP over 24 hours calculated from the thermistor string. (A) Yellow Sea in 2011. (B) South China Sea in 2001.
FIGURE 1

Locator map of the thermistor string. The asterisks show the anchor
positions in the Yellow Sea and the South China Sea.
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CTD measurements in two experiments indicated that the mixing

layer under the sea surface was thin, and linear extrapolation errors

were thus acceptable. The OMN for mixing layers of different

depths were also simulated, and the results showed that even in

the presence of a thick mixing layer, the ONM values were nearly

identical to those with a thin layer. Therefore, linear extrapolation

was used on the depth data obtained from the thermistor string. In

the subsequent analysis, the range of depth refers to the measured

range of the thermistor string at a resolution of 0.1 m.
3.2 SSP reconstruction compared with EOF

The OMB and the EOF were calculated using the background

profile and the SSP samples, respectively, as shown in Figure 3. The first

three order on the Yellow Sea had good consistency while the first two

orders for the South China Sea were similar. As the order increased, the

difference between the bases increased. In general, the first three orders

described a large part of the total variance. This suggests that the main

statistical characteristics of SSP perturbation as determined using the

EOF were consistent with the motion laws of the fluid particles

determined using the OMB. Due to the impact of circulation and the

geometric, dynamic activities in the South China Sea are more complex
Frontiers in Marine Science 05262
than in the Yellow Sea. This might have led to more factors

contributing to the statistical perturbation component compared

with that using the OMB. There were certain differences in the

higher-order models, but did this not have a significant impact on

the reconstruction owing to their smaller weights than in the first two

orders. Some vertical perturbation features of the ONM were retained

to determine the distribution of the OMB. For example, the OMB

values showed an increasing number of changes in sign as the number

of modes increased, and the maximum first-order amplitude appeared

in the depth interval of the maximum change in sound speed.

Table 1 lists the cumulative proportions of variance for the

different orders. It shows small differences in the proportions of the

leading orders between the OMB and the EOF for each set of

experimental data. The proportion of the EOF was slightly higher

than that of the OMB. In case the number of samples is sufficient,

the random and fine disturbances caused by some factors unrelated

to the ONM can be better embodied by the EOFs. For both the EOF

and the OMB, the first five orders of reconstruction exceeded 95%

of the commonly used threshold, which means the resolution of the

SSP reconstruction of the OMB was close to that of the EOF with a

sufficient number of samples.

To analyze the reconstructions of the OMB and the EOF, the

mean reconstruction error ME of a set of p discrete points and q
B

A

FIGURE 3

Comparison of the first five orders between the OMB and the EOF. (A) Yellow Sea in 2011. (B) South China Sea in 2001: from left to right are, in
order, the first to the fifth orders.
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samples is defined as follows:

ME =
1
qo

q

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
po

p
i=1(cj(zi) − c0j(zi))

s
, (11)

where cj (zi) represents the SSP of the j − th sample at the i − th

depth, and the apostrophe refers to the reconstruction value. The

values of ME in Equation (11) of different orders are shown in

Table 2. The results correspond to the results in Table 1. The EOF,

with a sufficient number of samples, yielded a smaller error than the

OMB. However, there was little difference in the error between

them. For both seas, the OMB provided reasonable results. To

illustrate the representational resolution of the OMB, the SSPs were

reconstructed using the five orders of the OMB and EOF, and

compared with the measured values in Figure 4. The SSP could be

reconstructed accurately for the two sets of data using five orders

bases. In particular for data from the South China Sea, the precision

of reconstruction could still be guaranteed by the OMB even in case

of significant anomalies caused by internal solitary waves. An

analysis of results with large errors revealed that samples with

large reconstruction errors in the two reconstruction methods were

nearly identical. SSP perturbation caused by turbulence or water

mass was difficult to express using the OMB, and could not

constitute the principal component of perturbation (EOF). When

the cumulative proportions of variance is low, their reconstruction

accuracy will be affected.
3.3 Ocean dynamic analysis based on OMB

As a physical basis, the most appealing feature of the OMB is

that the coefficient obtained from inversion can directly explain the

ocean environment. In this section, dynamic changes in the sound

speed contours (isotherm) and internal solitary waves are analyzed.

According to oceanographic analysis, different baroclinic modes

correspond to different dynamic processes. The relative proportion

of the ONM in an area of the sea reflects the leading dynamic
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activity. As it is the leading mode, it is important for the adjustment

of ocean dynamics for the first two baroclinic modes. According to

work by Liu (Liu, 1999; Zhang and Liu, 1999), the fluctuation

resulting from Ekman pumping is mainly reflected in the first

baroclinic mode, that is, changes in the depth of the thermocline.

The second baroclinic mode occurs mainly due to the anomaly

originating in fluctuation in buoyancy, and is manifested as a

variation in the thickness of the thermocline. For the first-order

ONM, the symbols were consistent in the water column, showing

that the fluid particles moved in the same direction at different

depths. The second-order ONM manifested as a variation in the

inverse symbols of the upper and lower boundaries of the

thermocline, that is, a variation in the thickness of the

thermocline. Owing to the high variance of the first two orders in

SSP construction, the projection coefficient of the first-order OMB

can be used to represent changes in the depth of the sound speed

contours in the thermocline. Furthermore, the variation in the

sound speed gradient with the depth of the thermocline can be

described by the projection coefficient of the second-order OMB.

Figure 5 shows a comparison of the projection coefficients and

the structural parameters of the thermocline of the SSP. Figures 5A–

C show that the first-order projection coefficient was in accordance

with the trend of variation in the sound speed contour with depth.

Figures 5B, D show similar results. The Pearson coefficients of the

structural parameter of the thermocline and the corresponding

projection coefficient are shown in Table 3. They suggest that the

first two coefficients were highly relevant to changes in the depth of

the sound speed contour and the sound speed gradient, which could

be used to monitor them. The difference between reconstruction

and the measured samples was small, which confirms the precision

of reconstruction.

The relationships among the OMBs can also help explain the

dynamic activity of the ocean. CR1  = da1=dt is used to represent

the change rate of the first-order projection coefficient, and CR2  =

da2=dt is that in the second-order projection coefficient. According

to the 2.5-dimensional internal wave Lamb model and experimental

observations of the Strait of Messina, Casagrande formulated the
TABLE 2 Mean reconstruction error M E for different orders.

M E (m/s) 1 order 2 orders 3 orders 4 orders 5 orders

OMB (2011) 1.55 1.15 0.86 0.74 0.63

EOF (2011) 1.43 1.03 0.79 0.64 0.52

OMB (2001) 1.15 0.79 0.72 0.60 0.48

EOF (2001) 1.02 0.70 0.50 0.41 0.31
TABLE 1 Cumulative proportions of variance for different orders.

1 order 2 orders 3 orders 4 orders 5 orders

OMB (2011) 78.6% 88.3% 93.5% 95.1% 96.5%

EOF (2011) 81.6% 90.6% 94.5% 97.6% 98.4%

OMB (2001) 80.5% 90.7% 92.4% 94.7% 96.6%

EOF (2001) 84.6% 92.3% 96.2% 97.5% 98.6%
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following dynamic laws of internal solitary waves (Casagrande et al.,

2009): In the first half of an internal solitary wave, the disturbance

of the pycnocline at a depth is controlled by the variation of the

first-order baroclinic mode, corresponding to the change in CR1.

The deviation in the pycnocline can lead to opposite circulation in

the upward and downward sides of its depth, where this mainly

manifests as a variation in the second-order baroclinic mode, which

corresponds to a change in CR2. As the first two ONMs are

orthogonal, the signs of CR1 and CR2 are opposite to each other.
Frontiers in Marine Science 07264
At the end of first half of the wave, the variation in the pycnocline

reaches its peaks, and the corresponding values of CR1 and CR2 are

zero. In the first half of an internal solitary wave, CR1 and CR2

undergo an irregular-arch change and have opposite signs. In the

second half of the wave, CR1 and CR2 undergo inverse processes to

those in the first half of the wave. Thus, the variations in CR1 and

CR2 are similar during an internal solitary wave. Their zero points

are consistent but their signs are opposite, which indicates a double

oscillation pattern.
B

A

FIGURE 4

Comparison of SSP reconstruction of 24 example profiles on the hour from 01:00 hrs to 24:00 hrs. (A) Yellow Sea in 2011. (B) South China Sea
in 2001.
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Figure 6 shows an example of the analysis of the double

oscillation pattern. The SSPs had prominent internal solitary

wave trains. In the first two internal solitary waves, the CR1 and

CR2 exhibited clear double oscillation patterns with a large

amplitude. Although the third wave was smaller, its start and end

times were identified, and it too was determined to have a double

oscillation pattern. The fourth wave was visually identical but its
Frontiers in Marine Science 08265
dynamic characteristics were significantly different, and it did not

have a double oscillation pattern. This analysis of the OMB

confirmed waves of the internal solitary train. Furthermore, the

amplitudes and wavelength characteristics could also be estimated.

Double oscillation was also observed when analyzing the density

EOF but not in the velocity EOF (Vázqueze et al., 2006; Casagrande

et al., 2010). By contrast, the connection of the OMB to physical
TABLE 3 Pearson correlation coefficient of the projection coefficient (PC) and the structural parameters of the thermocline.

2011 2001

1st PC 2st PC 1st PC 2st PC

Depth of sound isospeed line

(Sample/reconstruction) 0.95/0.96 \ 0.93/0.95 \

Sound speed gradient

(Sample/reconstruction) \ 0.95/0.96 \ 0.93/0.97
fron
B

C D

A

FIGURE 5

Comparison of the structural parameters of the thermocline and projection coefficients. (A) Depth of the sound speed contour (1518 m/s) and the
first-order projection coefficient in the Yellow Sea in 2011. (B) Sound speed gradient at depths ranging from 11.4 m to 19.2 m, and the second-order
projection coefficient in the Yellow Sea in 2011. (C) Depth of the sound speed contour (1528 m/s), and the first-order projection coefficient in the
South China Sea in 2001. (D) Sound speed gradient at depths ranging from 24 m to 78.1 m, and the second-order projection coefficient in the South
China Sea in 2001. From top to bottom, the plots show the corresponding projection coefficient, the structural parameters of the thermocline of the
reconstructed SSP, and those of the sample SSP, respectively. Min–max normalization was carried out.
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properties was closer. Based on the OMB and its coefficient, the

dynamic activity of the ocean could be analyzed using a

combination of baroclinic modes, which is useful for interpreting

the results of inversion.
4 Application of OMB based on
archival data

Another attractive feature of the OMB is its lax requirements of

sample size. Theoretically, a representative background profile is

sufficient to calculated the OMB. With the development of Argo,

underwater gliders, and other measurement methods, a large

number of samples of the global profile have been accumulated.

In combination with ocean numerical models, many database

products have been developed to provide the statistical mean and

objectively analyzed mean temperature–salinity profile. In this

section, the effectiveness of the OMB extracted from archival data

is tested in case of the absence of in-situ data. The background

profile was extracted from climatological filed data of the World

Ocean Atlas 2013 (WOA13), published by the National

Oceanographic Data Center (NODC, https://www.nodc.noaa.gov/

OC5/woa13), and data on acoustic propagation were from

ASIAEX2001 in the East China Sea.

The acoustic propagation experiment of ASIAEX2001 in the

East China Sea was carried out at a depth of 105 m. A total of 32

vertical arrays were hung over a receiving ship. On the course away

from the receiving ship, a launching ship released the broadband
Frontiers in Marine Science 09266
explosive sources of 38 g TNT with a rated depth of 50 m. CTD

measurements were carried out many times in this experiment, and

the SSPs are shown in Figure 7. Some SSPs around a depth of 60 m

were low, possibly because of the cold water mass. The invariant

component of the SSPs was calculated from the mean profile of all

measured CTD values. As the CTD survey was not conducted

during the acoustic propagation experiment, the effectiveness of the

OMB was evaluated through matched field tomography, obtained

by the EOF extracted from CTD samples and the OMB extracted

from the archival data.

Considering that there were clear seasonal characteristics in the

oceanic background profile, the objectively analyzed mean summer

profile (1955–2012), recorded by WOA13 at a spatial resolution of

0.25°, was used. The climatological profiles of the experimental

areas are shown in Figure 8. The thermocline in summer covered

almost the entire water column, and salinity changed by little. At a

depth of 20–70 m, the buoyant frequency was high. This

corresponded to the thermocline in CTD measurements,

reflecting seasonal background characteristics.

Based on the results of the reconstruction test, three orders with

the highest reconstruction accuracy was adopted for the SSP

inversion. A comparison of the first three orders of the basis

between the OMB calculated by archival data and the EOF

calculated by CTD samples is shown in Figure 9. A certain

similarity was noted in the distribution between them, but large

differences were also noted in terms of the depth of the extrema and

fine structure. This indicates that the seasonal background can

embody the macroscopic dynamic characteristics. However, there
FIGURE 6

Internal solitary wave from 00:00 hrs to 03:00 hrs on May 19, 2001 in the South China Sea. The figure on top shows the SSPs and that at the bottom
shows the corresponding CR1 and CR2. During an internal solitary wave, CR1 increased first and then returned to zero at the maximum wave
amplitude. As the wave amplitude decreased, CR1 increased with the opposite sign, and then decreased to zero. The change in the amplitude of
CR2 was similar to that of CR1 but opposite in sign. The patterns of changes in CR1 and CR2 are defined as double oscillation.
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was a large difference between the mean climate and in-situ

measurements. The key focus of the OMB application was to

determine whether the resolution was sufficient to describe the

SSP based on the OMB extracted from historical data products.

SSP inversion was carried out using conventional matched field

processing. All environmental parameters except the projection

coefficient were set as known quantities. Based on the broadband

Bartlett processor, 35 frequency points in the frequency band 99–

201 Hz were processed in the inversion. The optimal values of the

first three orders of vector quantity a were searched using the

genetic algorithm in the optimization space to implement the

minimum cost function E(a):

E(a) =
1
Lo

L

l=1

oN
n=1p

e
nl(a)p

c
nl(a)*

�� ��
oN

n=1 penl(a)
�� ��2�½oN

n=1 pcnl(a)
�� ��2� , (12)

where L is the number of frequency points, N is the number of

hydrophones, penl(a) and pcnl(a) are the measured sound pressure
FIGURE 8

The background profiles extracted from WOA13. Buoyancy frequency was calculated based on temperature and salinity.
FIGURE 7

SSPs measured by the CTD. The dark line represents the mean SSP,
and the other lines show the samples.
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and the sound pressure of the replica field at the a − th frequency

point, respectively, when the projection coefficient was a. The

asterisk in Equation (12) indicates the conjugation. According to

the experimental results, a density of 1.86 g/cm3 was set on the half

space seabed. The sound speed and attenuation coefficient were

1610 m/s and 0.15 dB/l, respectively.
Figure 10 shows the inversion results for two explosive sources

10.2 km from the receiver. It is clear that the inversion results of the

OMB and the EOF were similar. The absolute errors of the two

inversion results are 0.15 m/s and 0.22 m/s, respectively. The root

mean square error of the two inversion results are 0.21 m/s and 0.27

m/s, respectively. This indicates that the OMB can guarantee a

similar resolution to that of the EOF. In general, features of the

seasonal stratification were stable, and the principal characteristics
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of the ocean dynamics were controlled by it. This shows that the

effects of the other factors of the sea area were small. The

application of the OMB without in-situ data had different effects

at different times and in different spaces. In the sea area where the

dynamic activities were controlled mainly by the baroclinic mode,

for which reliable historical data were available, the OMB should

have reasonable precision. However, in areas with complex dynamic

activities, such as those influenced by air–sea interaction and water

mass, and where perturbations in the sound speed are short term,

in-situ measurements are indispensable to obtain an accurate

background profile. Drastic perturbations at a small range of

depth occurring randomly are difficult to express, whether by the

physical or the statistical SSP model.

As currently available ocean data products can provide

profile-related information worldwide, OMB can be theoretically

calculated for applications without any in-situ measurement,

where the statistical model cannot do this. However, when

features of the water column stratification obtained from

archival data are not consistent with the empirical situation, in-

situ samples are needed for accurate SSP modeling. A compromise

is to measure the profile during the slack tide to obtain

stratification-related information for the OMB. This not only

reduces the sample size needed, but also ensures the real-time

determination of the stratification features.
5 Conclusions

The ONM is an important means of explaining the kinetic

energy and heat transfer of the water column, and can be used to

describe the structure of the profile. A typical example is the analysis

of internal waves,

where Ursell number and Ostrovsky number calculated by

ONM can effectively explain the motion and transport status of

water column (Farmer et al., 2009; Yang et al., 2009). Based on this

physical mode, an SSP model was proposed and tested in this paper.

In contrast to the statistical model applied widely in research, the

SSP perturbation described by the OMB is based on the motion law

of fluid particles.

The OMB can explain the ocean environment directly through

the ONM. In tests involving SSP reconstruction in the Yellow Sea

and the South China Sea, the OMB yielded reasonable precision. In

combination with the barotropic mode, it made possible analyses of

the thermocline structures and internal solitary waves using the first

two orders of the projection coefficient.

Another feature of the OMB is that it has no rigid requirement

on sample size compared with the statistical model. The regional

OMB was extracted through the objectively analyzed mean profile

of WOA13. SSP inversion was carried out for data from

ASIAEX2001 on the East China Sea, and the results of SSP

inversion were similar to those of the EOF. Although the global

OMB could be obtained using archival data without in-situ

measurements, precision was difficult to guarantee due to the

inconsistency between the mean stratification features obtained

through historical data and those determined in real time. A

more feasible method is to obtain the real-time background
FIGURE 10

Two inversion results at 10.2 km. Due to the uncertainty of source
depth, acoustic focalization was carried out before the SSP
inversion. The actual source depth was 48 m and 49 m, respectively.
The agreement between OMB and EOF is better than that in the
former inversion using the rated depth of 50 m (Qu et al., 2019).
Both methods have resolution to reflect the relief of source
depth mismatch.
FIGURE 9

Comparison of the first three orders between OMB and EOF.
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profile by few measurements. The archival data can then serve for

scenarios where measurements are unavailable.

The improvement to the SSP model effected by the OMB is in

providing a bridge to directly link the dynamic mechanism of the

ocean with the perturbation of SSP. By using few leading orders of

basis vectors and projection coefficients, it can provide a compact

representation of SSPs for inversion and the determination of ocean

dynamics. It presents an alternative to the statistical model.
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Introduction: Sound waves are refracted along the direction of their propagation

owing to spatial and temporal fluctuations in the speed of sound in seawater.

Errors are compounded when sound speed profiles (SSPs) with low precision are

used to detect and locate distant underwater targets because an accurate SSP is

critical for the identification of underwater objects based on acoustic data. Only

sparse historical spatiotemporal data on the SSP of the South China Sea are

available owing to political issues, its complex atmospheric system, and the

unique topography of its seabed, because of which frequent oceanicmovements

at the mesoscale affect the accuracy of inversion of its SSP.

Method: In this study, we propose a method for the inversion of the SSP of the

South China Sea based on a long short-term memory model. We use

continuous-time data on the SSP of the South China Sea as well as satellite

observations of the height and temperature of the sea surface to make use of the

long-term and short-term memory-related capacities of the proposed model.

Result: It can achieve highly accurate results while using a small number of

samples by virtue of the unique structure of its memory. Compared with the

single empirical orthogonal function regression method, the inversion accuracy

of this model is improved by 24.5%, and it performed exceptionally well in regions

with frequent mesoscale movements.

Discussion: This enables it to effectively address the challenges posed by the

sparse sample distribution and the frequent mesoscale movements of the South

China Sea.
KEYWORDS

sound speed profile, remote sensing observation data, long short-term memory, sound
speed disturbance, empirical orthogonal function
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1 Introduction

The sound speed profile (SSP) is an important oceanic

parameter that is used in a variety of marine acoustic

applications, such as underwater target identification, underwater

communication, and marine environmental monitoring

(Teymorian et al., 2009; Xu et al., 2013; Liu L. et al., 2021; Luo

et al., 2022; Su et al., 2022; Zhan et al., 2023). The speed of sound

varies significantly even in adjacent areas of the sea due to the

complexity and variability of the marine environment. Even though

it is the largest territorial marine area in China, research on the

characteristics of the South China Sea began relatively late owing to

political and territorial issues. According to the most recent map

of the global seabed published in 2023, only about one-third of

the seabed of the South China Sea has been surveyed thus far. The

speed of sound is among the most significant factors that currently

limit the accuracy of detection of underwater targets. Researchers

have spent a considerable amount of time and effort in reducing

errors in the speed of sound and ray tracing to improve the accuracy

of detection of underwater engineering (Xu et al., 2005). By

denoising the signal and optimizing the algorithm, the researchers

reduce the impact of low precision sound speed on underwater

engineering applications (Li et al., 2022b; Li et al., 2022a; Li

et al., 2022c).

Researchers have identified links between the parameters of

profiles of the sea surface and subsurface, and have proposed a

number of methods to satisfy the increasingly stringent demands on

the precision and speed of marine data in ocean engineering

(Carnes et al., 1990; Stammer, 1997; Wunsch, 1997; Liu Y. et al.,

2021; Yan et al., 2022). Remote sensing technology can be used to

capture near-real-time and large-scale data on the ocean surface,

where this enables the rapid acquisition of SSPs in the ocean. The

corresponding techniques have provided us with a better

understanding of the underlying processes of deep ocean motion

(Klemas and Yan, 2014). Initial research in the area used linear

approaches to infer the SSPs from the parameters of remote sensing

data obtained from satellites. The empirical orthogonal function

(EOF) was used as the basic function in this process. It plays a

critical role in limiting the dimensionality of the parameters,

reducing the computational load during inversion, and filtering

out minor errors during computations (LeBlanc and Middleton,

1980). Carnes discovered that the parameters of satellite remote

sensing, such as the height and temperature of the sea surface, are

essential for inferring the temperature profiles of water bodies

(Carnes et al., 1994). This insight led to the development of the

EOF-based method of inversion called the single empirical

orthogonal regression function (sEOFr). Chen et al. used this

approach to invert the global SSPs, and showed that the sEOFr

method can be used to directly infer the SSP without converting the

temperature (Chen et al., 2018). The United States Navy

successfully used this method in a modular ocean data

assimilation system (Rahaman et al., 2016). While these methods

are effective, the relationship between the parameters of the sea are

not linear, and errors are thus inevitably generated when using the

linear sEOFr method to describe the physical relationship between
Frontiers in Marine Science 02272
the relevant parameters. Jain found that errors in data on the

inverted SSP primarily converged at depths ranging from 40 to

125 m owing to intense oceanic movements in the South China Sea

at the mesoscale. Linear methods struggle to resolve such

parametric relationships (Jain and Ali, 2006).

Su et al. used machine learning-based techniques instead of

linear methods to investigate the relationship between parameters

of the ocean. They used classical machine learning methods and

support vector regression to predict global ocean temperatures

beyond 1000 m by using satellite remote sensing data (Su et al.,

2015; Su et al., 2019). Machine learning methods not only have

advantages over conventional techniques in inferring the

temperature profiles, but also in inferring the SSP. Ou used a

tree-based algorithm along with parameters of remote sensing to

invert the SSP, and reported a 25% improvement in the accuracy of

the outcomes (Ou et al., 2022). Furthermore, Li et al. successfully

inverted the SSP of the South China Sea by using a non-linear

approach based on self-organizing maps (Li et al., 2021).

Inverting the SSP by using machine learning methods in

conjunction with the parameters of remote sensing remarkably

improves the accuracy of the results. However, the sEOFr method as

well as other currently used techniques require a large number of

training samples to deliver accurate results, and deliver subpar

performance in the presence of intense activity at the mesoscale.

The underwater terrain of the South China Sea is characterized by a

deep ocean basin surrounded by sloped land, where the southwest

slopes are higher than those in the northeast. The water bodies in

the central and northern basins of the sea exchange water with the

Pacific Ocean via certain straits, while the southern shelf near the

Equator exchanges water with the Java Sea via the Malay Peninsula

and the Borneo passage. Hence, the South China Sea contains water

masses with varied origins and, thus, different hydrological

characteristics. The tropical oceanic climate of the region is

notable for its alternating rotation of southwestern winds in the

summer and northeastern winds in the winter, and this leads to the

formation of a complex atmospheric system. Scant historical data

on the South China Sea have been accumulated for political reasons,

which makes it challenging to invert its SSP. This task is rendered

more onerous owing to the complex mechanism of disturbance in

the SSP caused by the atmospheric system and the unique terrain of

the area.

The authors of this study propose a long short-term memory

(LSTM) based algorithm to invert the SSP of the South China Sea

by using the parameters of remote sensing. The linear constraints

in the relation between the parameters of the surface and the

ocean can be eliminated by introducing an artificial neural

network. The unique memory structure of the LSTM network

can be used to overcome the problem of the small number of

samples as well as the complex mechanism of disturbance in the

SSP in the area. We used the root mean-squared error (RMSE) and

mean absolute error (MAE) to compare the proposed method

with the sEORr method, and the results showed that it is more

accurate, and requires a smaller number of data samples.

Moreover, it delivers better performance in regions featuring

greater disturbances.
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2 Data

We chose the South China Sea as the location for the inversion of

the SSP because it is particularly challenging in this regard owing to

frequent oceanic movements in the region. We used the LSTMmodel

in conjunction with remote sensing data to precisely invert the SSP.

We used a variety of datasets, including remote sensing data to create

a regression database, data from Argo to construct SSP fields under

water, and WOA18 data to compute the background profiles. The

data used here had been collected from 2009 to 2018.

The remote sensing dataset included information on the height

and temperature of the sea surface from the L4 satellite observation

product of the Copernicus project (https://resources.marine.

copernicus.eu). The data had a one-day temporal resolution and a

spatial resolution of 0.25°. The experiments involved computing the

mean values of all the data on the height and temperature of the sea

surface, and then deriving the sea surface height anomaly and the

sea surface temperature anomaly from them to establish a

regression database.

The Argo data were obtained from the Argo dataset on the

global ocean (2009–2018), and were preprocessed to remove

anomalous data while retaining data within the undistorted range

of depth of 5–1000 m. The Argo data had been obtained by using

Argo floats, which are capable of simultaneously measuring the

temperature and salinity profiles of seawater. The SSP is a function

of the temperature, salinity, and hydrostatic pressure, and can be

calculated by using the empirical formula proposed by Del Grosso

to determine the SSP (Del Grosso, 1974). Figure 1 shows the entire

set of 3,883 samples used for this study. A segment of continuously

measured data was selected to train and test the LSTM model, and

was called the TEST dataset. It is represented by the black dots in

Figure 1. The TEST dataset contained 269 samples that were

arranged chronologically from July 9, 2014 to April 2, 2015.

The background profiles represented the stable and unchanging

portion of the SSP, and are typically represented by the average

values of all profiles. WOA18 data were used to calculate the

background profiles in this study. These data were obtained from
Frontiers in Marine Science 03273
the National Oceanic and Atmospheric Administration’s National

Centers for Environmental Information (https://www.nodc.

noaa.gov/OC5/woa18/), and combined multiple datasets with

measurements of the temperature, salinity, density, and other

climate-averaged data from various global oceanic regions. The

experiments made use of annually averaged data that were obtained

at a spatial resolution of 0.25° ×0.25°from 2009 to 2018. In this

paper, WOA data at the center point of the inversion region (15.5°

N, 145.5°E) is selected as the background profile of this experiment,

and the specific profile values are shown in Figure 2.
3 Inversion of sound speed profiles

3.1 Construction of the basis function of
the sound speed profile

Basis functions serve as a method of dimension reduction in the

context of the problem of inverting the field of sound speed, and their

accuracy has a significant influence on the precision of calculation of

the field of sound speed. Figure 3 shows how to extract the basis

function EOF from the historical data and obtain the corresponding

disturbance coefficient. Finally, the reliability of SSP reconstructed by

perturbation coefficient is verified. The shift of the ssp sample relative

to the mean is called a disturbance. SSPdisturbanceArgo SSP represents the

difference between the SSP field and the background profile, and is

denoted by the perturbation in the field of the sound speed.

COV� EOF = EOF� l (1)

We calculated the covariance matrix, COV, of the disturbance

in the speed field and performed orthogonal decomposition by

Equation 1. In this equation, EOF represents the basis functions of

the SSP while l stands for the eigenvalue matrix.

The EOF can be used to identify the primary modes of changes

in water. The role of EOF is to reduce the dimensionality of the data,

reducing the amount of computation while avoiding the

introduction of additional noise. Figure 4 shows the amplitudes of
FIGURE 1

Distribution of the experimental samples (the black dots are test
samples and the rest are training samples).
FIGURE 2

Background profile.
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the first 5 orders of EOF for this experiment. It shows that most of

the disturbance in the water is concentrated in the depth of 100–

200m, and there is basically no disturbance below 500m.It is widely

assumed that a contribution of 95% can represent a majority of

disturbances in water. Based on l, the contribution rate of each

mode of EOF can be calculated. Figure 5 illustrates the distribution

of the contributions of the first five modes, accounting for 70.69%,

16%, 4.86%, 3.30%, and 1.58% of the total, for an overall

contribution of 96.43%. We thus used the first five orders of the

EOF as the basis functions for the experiments in this study.
Frontiers in Marine Science 04274
The least square method is used to fit the EOF and the sound

speed field, and the disturbance coefficient is obtained. Then the

perturbation coefficient and EOF are used to calculate the sound

speed field to ensure the accuracy of the perturbation coefficient and

EOF. A comparison between the reconstructed values obtained

from this inversion and the actual values yielded an RMSE of 0.62

m/s. Such a small error indicates that the shape functions of the

EOF adequately represented a significant part of the variance in

disturbances within the region, thus ensuring a relatively

accurate reconstruction.
FIGURE 3

Flowchart of preprocessing of the sound speed profile.
FIGURE 4

Amplitude of the first 5 EOFs.
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3.2 Single empirical orthogonal
regression function

The parameters of remote sensing at the same time and at the

same location can be linearly related to those of the seabed. We

created a regression database by using a large amount of historical

data to establish a regression relationship among the temperature of

the sea surface, its height, and the coefficients of perturbation.

wi,j = a + b� A + g � B + d � A� B (2)

This procedure entailed fitting a linear equation by using the

database, expressed as Equation 2. where wi,j denotes the j-th order

coefficient of perturbation of the i-th sample, and A and B denote

anomalies in the height and the temperature of the sea surface,

respectively. Linear fitting was used to obtain the coefficients a,  b,
 g ,  and d. The corresponding coefficients of perturbation were

obtained by entering the parameters of remote sensing, and the

field of sound field of the South China Sea could then be inverted.

The sEOFr method is based on linear regression between the

parameters of remote sensing and the coefficients of projection.

This linear relationship is derived from statistical results

obtained from a large number of samples collected from the sea.

In general, the errors tended to be concentrated in cases involving
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prominent differences between individual characteristics and

statistical features.
3.3 Inversion of sound speed profile by
using LSTM model

Given that the relationships between the parameters of the

ocean were not purely linear, error was concentrated in regions

featuring conspicuous perturbations. We propose a method of SSP

inversion based on the LSTM neural network to improve the

accuracy of inversion. Hochreiter created the LSTM model, which

is an iterative version of the RNN model (Hochreiter and

Schmidhuber, 1997). The LSTM model contains a memory cell

that enables it to incorporate historical data, assess the relevance of

information, improve its retention of valid information, filter out

irrelevant information, and generate an output (Jain et al., 2019;

Khataei Maragheh et al., 2022).

Figure 6 shows the structure of the LSTMmodel. It is composed

of a forget gate, an input gate, and an output gate. Based on the

previous output and the current input, the forget gate decides

whether to forget the previous information or add it to the

current memory cell.
FIGURE 5

Distributions of contributions of the basis function.
FIGURE 6

Diagram of the LSTM model.
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Ft = sigmoid(ϵf ½Ot−1, Xt� + q1)*Ct−1 (3)

Equation 3 is the calculation principle of the forgetting gate.

where Ot−1denotes the output data from the previous time step, Xt

denotes the input data in the current time step, Ct−1denotes the

memory cell of the previous time step, and sigmoid denotes the

activation function used to screen information within the range

(0,1). In this experiment, Xt refers to sea surface height data and sea

surface temperature data. q1is a bias term that serves as an

additional input for the corresponding neuron, and ϵf is the

weight that represents the strength of the connection between

units of the corresponding gate. The forget gate allows for the

reinforcement of useful information while discarding irrelevant

information, thus avoiding such problems as gradient explosion

and the vanishing gradient that are caused by multiple iterations

(Wang et al., 2020).

It =  sigmoid(ϵi½Ot−1, Xt� + q2)*tanh(ϵc½Ot−1, Xt� + q3) + Ft (4)

The input gate is used to validate information and update the

memory cell It, which is calculated by Equation 4. where ϵi and ϵc  
are weights, and q2 and q3are bias terms that are used with the

hyperbolic tangent (tanh) activation function in the interval (-1, 1).

The tanh function is used by the input gate to generate the memory

cell for the current time step. There are two steps involved, the first

is to control the value between (0, 1) by the s function, and the

second is to generate the cell state of the current input by a tanh

function. Following this, the information is filtered and added to the

memory cell from the previous time step to enable it to be updated.

Ot =  sigmoid(ϵo½Ot−1, Xt� + q4)*tanh(It)  (5)

The output gate determines the output data and passes them to

the next time step. The relevant calculation formula is shown in

Equation 5. where  Otrepresents the output from the hidden layer at

time t, ϵois its weight, and q4is a bias term. In this experiment, Ot is

the EOF coefficient.

Figure 7 shows the training and testing of the LSTM model. S1-

S269 in Figure 5 is the input data corresponding to sample No. 1–
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269 in the test example, including sea surface height data and sea

surface temperature data. “C1-C269” refers to the output data

corresponding to samples 1–269 in the test sample, and the

output data is the EOF coefficient. We used the parameters of

remote sensing as the input to the model and obtained the

coefficients of perturbation as the output in the experiments. To

train the LSTM neural network model, the parameters of remote

sensing were fed to the input gate. The specific operational

procedure entails utilizing the actual values of samples 1–8 as

inputs for training the model, while the predicted value of sample

9 is generated as the output. Subsequently, the model undergoes

training with the true values of samples 2–9, leading to the

prediction of the value for sample 10. This iterative process

continues until the model output yields the predicted value for

sample 269, thereby culminating in the prediction of values for

samples 9 through 269.The model was continually adjusted by

being trained on temporally sequential data, and the RMSE was

used as the loss function. Following this, the parameters of remote

sensing for the next time step were entered to yield the

corresponding coefficients of perturbation for SSP inversion. The

EOF coefficient of the output is tested and then brought into

Equations 6, 7. The SSP based on LSTM model inversion is

calculated. The SSP can be expressed as the background profile

plus the disturbance value. The background profile was obtained

from WOA data. The sound speed disturbance value is obtained by

multiplying the EOF coefficient calculated by the model with the

EOF extracted previously. M is the order of EOF selected in the

experiment.

SSP = dSSP + SSPdisturbance (6)

SSPdisturbance =o
M

j=1
wjEOF(j),M ∈ (1, 2, 3, 4, 5) (7)

LSTM model is a nonlinear model, which has the advantage of

preventing gradient vanishing and gradient explosion when dealing

with long series data. Compared with linear sEOFr model, it is more
FIGURE 7

Flowchart of inversion of the field of sound speed by using the LSTM model.
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suitable for complex ocean dynamic model. The use of the LSTM

model allowed us to apply an incremental approach to invert the

sound field of the TEST dataset. SSP has a strong time correlation,

LSTM algorithm can learn the correct time pattern by memorizing

the structure, and predict the subsequent data. When we used a

continuous temporal duration of eight for training, the model was

able to maintain a relatively high accuracy of training with a small

number of training samples in the experiment. This method

reduced the reliance of the model on a large number of samples

while maintaining a high accuracy.
4 Results and analysis of inversion

4.1 Evaluation of results of inversion of
sEOFr and LSTM

Temperature, salinity, and pressure are the primary

determinants of the speed of sound. Its speed increases by

approximately 4.2 m/s for every 1°C increase in the temperature

of water, an increase of 0.1% in the salinity of water corresponds to

that of 0.13 m/s in the speed of sound, while a 1 atm increase in

water pressure corresponds to a 0.17 m/s increase in the

sound speed.

From the sea surface to the 100 m underwater, the seawater is

referred to as the mixed layer because it receives sunlight exposure,

allowing it to absorb solar heat, resulting in relatively higher

temperatures and minor temperature variations. The thermocline

is a layer located approximately 100 m beneath the mixed layer. The

temperature drops rapidly with depth at this thermocline. The

thermocline in the South China Sea, which is located in a medium-

to-low-latitude region, was assumed to be 100 m deep in our

experiments. The rapid change in the temperature of this layer

led to prominent fluctuations in the sound speed. Furthermore,

eddies at the mesoscale, internal waves, and other oceanic activities

occur frequently in this area (Hu et al., 2000; Sun et al., 2020). The

complex combination of these factors contributes to the difficulty of

inverting the SSP. Figure 8 shows the variation of the error in the

direction of depth. The factors mentioned earlier cause the error in

the model inversion results to be concentrated at a depth of about

100 m. The variance in the temperature gradually stabilized below

the thermocline, thus reducing the errors in modeling. In this study,

Figure 9 shows the average inversion errors of the two models in

different seasons. The results indicate that the errors of the LSTM

model increase in July, December, and April, corresponding to

seasons with substantial variations. This is attributed to the poor

performance of the LSTMmodel during seasonal changes, as it only

utilizes the preceding 8 time steps of predicted samples for training.

As the seasonal transitions stabilize, the errors of the LSTM model

decrease. In contrast, the sEOFr model, being based on a linear

model statistically derived from annual sound speed profile data,

exhibits larger errors during winter due to significant sound

speed disturbances.

Figure 10 shows the spatial distributions of errors in the fields of

sound obtained by the two models. The average error of the LSTM

model was 1.76 m/s while that of the sEOFr model was 2.33 m/s.
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Errors incurred by the latter were mostly concentrated in the blue-

framed area in the figure (119° E–119.5° E, 18° N–18.5° N).

Mesoscale eddies were frequently active at this location, especially

with intense Ekman aspiration activity (Xiao et al., 2013) that led to

the mixing of deep and surface waters to thicken the mixed layer of

the ocean. However, the sound speed field in the sea area where the

thickness of the mixed layer is large will produce a large

disturbance. Figure 11 shows the spatial distribution of sound

speed disturbance values. The area in which error was

concentrated and that in which the disturbance was large

significantly overlapped, indicating that the disturbance-related

values were a key factor influencing the accuracy of inversion of

the model. The RMSE of the linear sEOFr model in the error

concentration area is 3.83 m/s, 1.50 m/s higher than the overall

RMSE, and the accuracy is reduced by 64% The RMSE of the LSTM

model is 2.16m/s, which is only 0.40m/s higher than the overall

RMSE, and the accuracy is only reduced by 23%.In this area, the
FIGURE 8

Distribution of error incurred by the model with depth below the
sea surface.
FIGURE 9

The distribution of errors in different seasons. (from July 9, 2014 to
April 3, 2015).
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inversion accuracy of LSTMmodel is improved by 43.6% compared

with sEOFr model. It also shows that the linear model was unable to

handle disturbances in this area, where this led to the concentration

of error, while the LSTM model continued to deliver better

performance and higher robustness in such scenarios.
4.2 Analysis of area of error concentration

We further investigated the relationship between the RMSE of

the reconstructed profile and the values of disturbance in the profile

obtained by the Argo data, as shown in Figure 12.

SSPrmse
sEOFr = 0:30� SSPdisturbance

Argo SSP + 1:161 (8)

SSPrmse
LSTM = 0:12� SSPdisturbance

Argo SSP + 1:323 (9)

The blue line in the figure represents the results of fitting of the

sEOFr model according to Equation 8. Equation 9 shows the results
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of fitting of the LSTM model, which are represented by the red line

in Figure 12. For a deviation of 1 m/s between the profile of the Argo

data and the background profile, the error of the sEOFr model

increased by 0.30 m/s while that of the LSTM model increased by

only 0.12 m/s. The average speed of disturbance in the concentrated

area was 8.49 m/s. When Equation 8 is applied to this average

disturbance, the calculated RMSE was 3.71 m/s, which is smaller

than the actual value of 3.83 m/s. When this average disturbance is

substituted into Equation 9, the RMSE was 2.34 m/s, which is

greater than the actual error of 2.16 m/s.

The sEOFr model exhibited an advantage over the LSTMmodel

when the disturbance was minor. This is because it is based on a

statistical relationship derived from a large amount of historical

data. Conversely, the LSTM model delivered superior performance

when handling profiles featuring substantial disturbances, with an

accuracy that was 43.6% higher on average. Furthermore, the

greater the disturbance was (in areas where oceanic activity was
FIGURE 10

Spatial distribution of the error incurred in the inversion of the SSP.
FIGURE 11

Spatial distribution of the values of disturbance in the sound speed.
FIGURE 12

Relationship between Argo profile data reconstruction error and
disturbance value.
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frequent and disturbances were substantial) the better was the

performance of the LSTM model.
4.3 Validity of results of inversion of
acoustic field

The proposed LSTM method guarantees a high accuracy of

reconstruction of the SSP, but may not explicitly reveal certain

errors in the fine structure of its results. The primary goal of

reconstructing the SSP is to calculate the acoustic field, which

enables the observation of the fine structure of the SSP. It is

important to predict acoustic fields in sonar systems so that

targets can be accurately detected. In this section, we report the

use of Kraken software to calculate the loss of acoustic transmission

in the profile reconstructed by the LSTM model (Model Kraken

software is referenced from http://oalib.hlsresearch.com/

AcousticsToolbox/), with a significant improvement in the

accuracy of reconstruction. The structure of these profiles is

illustrated in Figure 13A. Given that the inversion results of the

models are only valid within 1000 meters, and the sound speed

disturbances below 1000 meters are relatively small, the difference

in inversion errors between the two models is not significant. We

utilized WOA18 data to fit the sound speed distribution in waters

deeper than 1000 meters using empirical formulas. The sound

source was 80 m deep, the receiver depth is 80 m with a

frequency of 100 Hz, a density of seafloor of 1.5 g/cm3, the

seabed sound speed is 1550 m/s, an attenuation coefficient of 0.15

dB/l, and a depth of water of 3500 m. Figure 13B displays the

transmission loss calculated by using the SSPs obtained under these

conditions. The sEOFr model recorded an RMSE of 3.83 dB in its

calculation of the non-coincident loss of transmission, with 90% of

the points yielding errors of 7.75 dB or smaller. The RMSE of the

LSTM model was 1.68 dB, with 90% of the points yielding errors of

3.65 dB or smaller. The loss of transmission of both models peaked

at 5.5 km, but the loss incurred by the sEOFr model was different by

14.58 dB from the Argo profile, while the LSTM model yielded a

difference of only 6.24 dB from it by comparison. After 15 km, the
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transmission loss calculated by the sEOFr method exhibited a

prominent shift in the structure of interference, while the

interference structure of LSTM method is basically consistent

with Argo. This suggests that the results of inversion of the LSTM

model accurately described actual changes in the transmission loss.

In most cases, its error was consistently below 3.65 dB.

Table 1 summarizes the reconstruction results of the two

models. The sEOFr model used 3,620 samples to train the model.

LSTM trains the model using only 268 samples, of which 8 are the

number of samples trained at one time. LSTM model can

reconstruct SSP with fewer samples, and its reconstructed RMSE

is 1.76m/s, which is more accurate than sEOFr model. In the

disturbed area, the accuracy of sEOFr decreases significantly,

while the accuracy of LSTM model decreases only a little. The

error of sEOFr model is more than twice that of LSTM in predicting

propagation loss, and the absolute error range is also twice that of

LSTM. Compared with sEOFr model, LSTM model can better solve

the problem of sparse sample, large disturbance in sea area, and

forecast transmission loss.
5 Conclusions

In this paper, we proposed a method of SSP inversion based on

the LSTM network. By using the parameters of remote sensing as

inputs to the model, this method can be used to derive the

coefficients of disturbance for SSP inversion. We tested the
A B

FIGURE 13

(A, B) Analysis of transmission loss calculated by using the sound speed profile.
TABLE 1 Comparison of inversion results of the two models.

Model sEOFr LSTM

Number of training samples 3620 268(8)

The RMSE of reconstruct SSP (m/s) 2.33 1.76

The RMSE of the disturbed concentration area (m/s) 3.83 2.16

The RMSE of forecast transmission loss (dB) 3.83 1.68

The bounds absolute error of forecast transmission
losses (dB)

14.58 6.24
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proposed method on data from the South China Sea and compared

its performance with that of the sEOFr model. The results revealed

that it had a higher accuracy of inversion of the SSP. It recorded an

RMSE that was smaller than that of the sEOFr model by 0.57 m/s,

with a 24.46% improvement in accuracy. The concentration of

disturbances complicates inversion and reduces the accuracy of the

model. However, the memory structure of the proposed LSTM

model enabled it to perform well in areas with concentrated

disturbances in the sound speed. Furthermore, it delivered

excellent performance when the disturbances were large. It

reduced the RMSE by 1.67 m/s for such areas in comparison with

the sEOFr model, resulting in a 43.60% higher accuracy. This

demonstrated its superior performance and robustness in regions

with a high concentration of disturbances.

The acoustic field for the profile with the highest improvement

in accuracy in inversion based on the LSTM model was calculated

by using Kraken software. Its RMSE for the non-coincident loss of

transmission was 1.68 dB, with 90% of the error points falling below

3.65 dB. This constituted an improvement of greater than 50% over

the sEOFr model, and shows that the proposed LSTM method of

SSP inversion can accurately predict changes in the TL.

The proposed non-linear method of SSP inversion is better suited

to non-linear relationships between the parameters of the ocean, and

yields more accurate outcomes for areas in which traditional models

struggle to address concentrated disturbances. The transmission loss

in the SSP derived from its approach to inversion more closely

approximates the actual profile. This method is important for quickly

obtaining the underwater sound field, where this is important for

predicting the acoustic field for target detection in sonar systems and

underwater acoustic communication.
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Qingdao, China, 2First Institute of Oceanography of Ministry of Natural Resources, Qingdao, China,
3Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China,
4Key Laboratory of Deep Sea Mineral Resources Development, Shandong (Preparatory),
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(Preparatory), Qingdao, China
Kuiyang-ST2000 is a deep-towed multichannel seismic system that provides

high-resolution exploration of sub-seabed geological formations. Due to the

uncertainty of the sound speed at full ocean depth, the travel-time positioning of

sea surface reflected waves still has flaws in positioning arrays. This research

reveals that the average sound speed of seawater selected for computing the

array position only affects the vertical displacement of the arrays. thus, a

polynomial fitting method is proposed to position the arrays. Because the

nonuniform mass distribution complicates the array shape, first, the weight of

the digital transmission unit is balanced by one designed floater so that the array

shape becomes a simple convex curve during towing conditions. Afterward, one

general sound speed is used to calculate the initial array position; then, the

polynomial fitting method is used to tune the sound speed so that the seismic

source and hydrophones are on the same convex curve. Finally, an accurate array

position is calculated by the proposed positioning method, and the submarine

shallow strata are imaged at a high resolution.
KEYWORDS

deep-towed multichannel seismic system, array shape, array positioning, sound speed
at full ocean depth, polynomial fitting
1 Introduction

The accuracy of array positioning is closely related to the data processing quality of

deep-towed seismic exploration systems (Howard and Syck, 1992; Lu et al., 2003).

Generally, vertical accuracy is required to reach a sampling interval (Dt), and horizontal

accuracy is required to reach the 1/4 wavelength of the seismic wave (Krödel et al., 2015).

However, the towing depth of deep-towed seismic systems is greater than 1000 m;

therefore, navigation via a global positioning cannot be used to determine the geometric
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relationship between the source and the arrays. Additionally, due to

the influences of retracting and releasing the towing cable, the

instability of the towing speed and the variation in the deep-sea

environment, the seismic source and arrays inevitably float up and

down during the data acquisition process. Many researchers have

focused on methods for aligning arrays (Varypaev and Kushnir,

2020; Nanni et al., 2022), positioning arrays (Vickery, 1998; Lan and

Ding, 2012), and calibrating arrays (Fikes et al., 2019; Che

et al., 2021).

The Deep Tow Array Geophysical System (DTAGS) is the first

deep-towed multichannel seismic survey system developed by the

Naval Ocean Research and Development Activity to measure the

geoacoustic parameters of the ocean floor (Fagot et al., 1980;

Chapman et al., 2002; Ker et al., 2010). The array positioning

system of DTAGS relies mainly on depth sensors installed on

towed vehicles and hydrophone 28 (at 138 m), hydrophone 38 (at

288 m) and hydrophone 48 (at 438 m) of the arrays. The water

pressure and temperature are measured in a timely manner, and the

values are converted to depth values according to an empirical

formula for sea area measurements. Initially, the arrays between

adjacent depth sensors are simplified as one straight line, and the

position of each hydrophone in the arrays is calculated via linear

interpolation (Rowe and Gettrust, 1993). However, this assumption

does not conform to the real shape of the arrays, resulting in large

errors in seismic data processing. These errors reduce the signal-to-

noise ratio of the seismic data after stacking imaging. The travel time

of a sea surface reflection (SSR) wave has been used to locate the

arrays, improving the accuracy of the relative positions between the

source and hydrophone in single-shot gathering (Walia and Hannay,

1999). The array shape calculated with depth sensors is

simultaneously constrained by the travel time of direct waves and

SSR waves, and the genetic algorithm can be used to optimize the

sound speed by He (He et al., 2009). Although the positioning

accuracy is improved, it is still unsatisfactory because the water

depths measured by depth sensors have errors of 3-5 m. Following

that, it was determined that direct waves and SSR waves can be picked

upmore accurately from waveform envelope lines (Kong et al., 2012).

However, due to the time delay in data acquisition, direct wave signals

can be measured only at the last 3~4 hydrophones, and the

positioning of the front hydrophones is not accurate.

A microelectromechanical system (MEMS) is installed on each

array channel (hydrophone) in the deep-towed seismic system SYSIF,

developed by the French oceanographic institute IFREMER. The

array shape can be identified by attitude angles, such as the pitch, roll

and yaw angles (Marsset et al., 2014). One convex curve was expected;

however, the ethernet switch installed in a digital transmission unit

(DTU) had a mass of 1.3 kg. The weights of these DTUs were greater

than their buoyancy, which deformed the straight line of the arrays

and generated a “W” shape (Colin et al., 2020). Additionally, the

inversion accuracy is limited by the accuracy of the MEMS.

Bathymetry mapping was established through multibeam data, and

the array position calculated by MEMS sensors was used for forward

modeling. The relationships between the calculated travel times of

seafloor reflections and actual travel-time records were analyzed, and

the array positions calculated from MEMS data were obviously

optimized (Marsset et al., 2018). The accuracy of this positioning
Frontiers in Marine Science 02283
method depends on the bathymetry results. However, accurate

bathymetry in areas with complex seabed topographies is difficult

to establish. With the assumption that the seafloor was locally flat, the

filtered MEMS data were optimized by one local optimization

method (Colin et al., 2020). The travel times of direct and seafloor

reflection waves were the constraint conditions, and the positioning

results were consistent with the array shape in seawater. However,

this method does not work when the seafloor slope is high, which is

the general case in reality.

Array positioning relies mainly on the travel time of the direct

wave and the SSR wave in the Kuiyang-ST2000 deep-towed seismic

system. The travel-time positioning results of sea trials in 2019

revealed that the arrays exhibited a “W” shape (Wei et al., 2020).

Moreover, numerical simulations demonstrated that the “W” shape

was generated by the unbalanced weight of the DTUs and the

insufficient drag force provided by the drogue (Zhu et al., 2020). To

balance the additional weight of the DTU, a floater was designed

and installed on each DTU. In a sea trial in 2021, both the numerical

simulation and the travel time of the SSR wave demonstrated that

the array shape was a simple convex curve under general towing

conditions. Therefore, a weighted least squares polynomial fitting

method is proposed to optimize the sound speed at a full ocean

depth so that the seismic source and the arrays form a simple

convex curve. High-precision array positioning for the Kuiyang-

ST2000 deep-towed seismic exploration system was achieved with

the corrected sound speed, and the energy groups of the velocity

spectrum were well concentrated in both deep and shallow layers.

This paper is organized as follows: the Kuiyang-ST2000 system,

the travel-time positioning, and the array shape correction method,

is introduced in Section 2. A deep-towed array location

modification method is presented in Section 3. A typical

application is presented in section 4. The conclusions and

prospects are given in Section 5.
2 Method

2.1 Kuiyang-ST2000 system

The Kuiyang-ST2000 deep-towed high-resolution seismic

system is shown in Figure 1 (Pei et al., 2022). The plasma spark

source sound level is 216 dB, and the dominant frequency is 750 Hz

(frequency bandwidth: 150–1200 Hz). The source wavelet is a pulse.

The arrays are composed of a zero-buoyancy front section

(Figure 1H), a working section (Figure 1G), a balance section

(Figure 1I) and a drogue (Figure 1J). The length of the front

section is 12.5 m. The working section consists of three segments

connected by DTUs (Figure 1F), which are used to convert analog

signals to digital signals. Each segment is 50 m in length and

contains 16 channels with spacings of 3.125 m. The system is

equipped with an ultra-short-baseline (USBL) (Figure 1B), a

conductivity-temperature-depth (CTD) sensor module

(Figure 1K), a depth sensor (Figure 1C), and an altimeter

(Figure 1D). The Kuiyang-ST2000 system has a maximum towing

speed of 3 knots and can operate at depths of up to 2056 meters.
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2.2 Travel-time positioning

The travel-time positioning method is based on the geometric

seismic principle, as shown in Figure 2.

According to the geometric relationship (Eli, 2010), the position

of hydrophones can be calculated by the following equations:

dir =
(tisvw)

2 − (tidvf )
2

4ds
, (1)

xih =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tidvf )

2 − (dir − ds)
2

q
: (2)

where dir and xih are the depth and horizontal offset of the ith

hydrophone, respectively; tid and tis are the travel times of the direct

wave and SSR wave picked by the ith hydrophone, respectively; vw is the

average sound speed of seawater at full ocean depth; vf is the sound

speed of seawater near the seafloor as measured by the CTD sensor;

and ds is the seismic source depth measured by the depth sensor.

Figure 3 shows the one-shot seismic record (S2750) collected in

the South China Sea in 2019. The seismic records include the travel

times of the direct waves, reflected waves from the strata and

reflected waves from the sea surface, as shown in Figures 3A–C,
Frontiers in Marine Science 03284
respectively. Finally, the array shape calculated by using the travel-

time positioning method is shown in Figure 3D.

2.2.1 Positioning analysis
Because the sound speed of seawater varies with water depth,

temperature and salinity, the assumption that the average sound speed

of seawater is 1484.5 m/s is not accurate for every shot. Figure 4 shows

the positioning results at velocities of 1483 m/s, 1485 m/s, and 1487 m/

s. The positioning differences generated at velocities of 1483 m/s and

1487 m/s compared to 1485 m/s are illustrated in Figure 5. Even

though the sound speed of seawater exhibits a small deviation, the array

shape or inclination angle of the arrays with a still water level remains

unchanged. The sound speed only affects the vertical position of the

arrays. Fortunately, the vertical position of the seismic source is

determined in a timely manner by the depth sensor, and the

geometrical relationship between the towed vehicle and the arrays

indicates that the vertical position of the seismic source can be used to

adjust the sound speed of seawater. However, because the DTU

between two adjacent working segments is made of stainless steel,

the weight of the DTU is greater than its buoyancy. These redundant

gravity forces the arrays to form a “W” shape, which makes it difficult

to determine the geometrical relationship.
B

CD E
F

G
H

I

JK

A

FIGURE 1

Components of the Kuiyang-ST2000 deep-towed high-resolution seismic system. (A: electro-optical cable; B: USBL; C: depth sensor; D: altimeter;
E: plasma spark source; F: DTU; G: working section; H: front section; I: balance section; J: drogue; K: CTD).
FIGURE 2

Travel-time positioning (direct and reflected wave paths) schematic diagram. (S, seismic source; Gi’, hydrophone mirror; Gi, hydrophone; dr
i, depth

of hydrophone; ds, depth of seismic source; xh
i, horizontal offset; xd

i, travel distance of direct wave; L, travel distance of sea-surface reflection wave).
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2.3 Array shape correction

2.3.1 Floaters
The segment joint (DTU) is made of stainless steel and has a mass

of 1.85 kg in air. The mass of occupied seawater is approximately

1.1 kg, so an excess of 0.75 kg should be balanced to reach zero

buoyancy. Therefore, a floater is designed, as shown in Figure 6A.

These devices can withstand pressures reaching a water depth of

3000 m. Thus, each floater provides equivalent buoyancy compared

to the weight of the DTU. A photograph of the floater is shown in
Frontiers in Marine Science 04285
Figure 6B, and the arrays equipped with the floaters are shown

in Figure 6C.
2.3.2 Numerical model
To verify the performance of the floaters, an array model is

established. The numerical modeling of the arrays and floaters are

shown below. Via the lumped mass method, the array model is

established with respect to the relative velocity element frame, as

shown in Figure 7. The array is divided into 21 elements. The node
B

C D

A

FIGURE 3

Examples of seismic records of sea surface reflection waves and travel-time positioning results. (A) Direct wave, (B) Seafloor reflection wave, (C) Sea
surface reflection wave, (D) Array shape by travel-time positioning.
FIGURE 4

Travel-time positioning results with different acoustic velocities at shot point S2750.
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connected to the towed vehicle is defined as the 1st node, while the

end node is defined as the 22nd node.

The arrays are subjected mainly to internal tension and

damping forces, hydrodynamic forces, and self-inertial forces in

water. The tension and damping forces are calculated from the axial

extension and the extension velocity, respectively, and are oriented

in the same direction as the element orientation vector. According

to the Morison formula, the drag resistance is proportional to the

square of the relative velocity of the cable in water. These forces are

simply expressed in Equation (3), as per.

Ti
b =

pd2c
4 Ee ib,

Di
b = CdA

iT ( _N
i+1
g − _N

i
g)z,

Wi
g = ( pd

2
c

4 l0rc −
pd2c
4 l0rf )g,

Fi
b = − 1

2 Cnrf dcli Vi
b

�� ��Vi
b,

8>>>>>>><
>>>>>>>:

(3)
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where the cable tension Ti
b is defined by the axial strain e ib,

elastic modulus E, and cable diameter dc. e ib is defined by the current
length of the ith element li and the initial length l0, as shown in

Equation (4). The damping force Di
b is expressed by the velocity

difference between the terminal nodes in the element orientation

direction. Cd is the damping coefficient of the cable, and _N
i
g is the

node velocity with respect to the global frame. �z is the unit vector of

the ith element orientation vector Ei
g , which is obtained from the

node position vectors Ni+1
g and Ni

g , as shown in Equation (4). The

transformation matrix AiT is used to convert the velocity from the

global frame to the element-fixed frame. Wi
g is the weight of the

cable in water, and g indicates that the force is oriented in the same

direction as gravity. rc and rf are the densities of the cable and

seawater, respectively. Fi
b is the hydrodynamic force acting on the ith

element, and Cn is the normal drag coefficient of the cable. Vi
b and

Vi
g are the relative velocities of the ith element with respect to the

element-fixed frame and global frame, respectively. The average
FIGURE 5

Depth differences with respect to the sound speed of seawater 1485 m/s.
B

C

A

FIGURE 6

Floaters and arrays. (A) Buoyancy block model, (B) Installation of buoyancy blocks, (C) Array with buoyancy blocks installed.
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velocity of the terminal nodes is used to express the velocity of the

given element, as shown in Equation (4). Vi
f is the velocity of the

water particle at the ith node.

Ei
g = Ni+1

g − Ni
g ,

e ib =
li−l0
l0

,

li =
ffiffiffiffiffiffiffiffiffiffi
Eit
g E

i
g

q
,

Vi
b = AiTVi

g ,

Vi
g =

_N
i+1
g + _N

i
g−V

i+1
f −Vi

f

2 :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(4)

To consider the inertia force of the added mass, the mass matrix

of the ith element in the element-fixed frame is given by Equation (5),

where CA is the added mass coefficient. As the cable is continuous in

the z-direction, the added mass is ignored along the cable axis.

Mi
b =

pd2c
4 l0rc + CA

pd2c
4 l0rf 0 0

0 pd2c
4 l0rc + CA

pd2c
4 l0rf 0

0 0 pd2c
4 l0rc

0
BBB@

1
CCCA :

(5)

The ith node mass matrixMi
g
is expressed using the mass matrix

of the elements Mi−1
b

and Mi
b
, as shown in Equation (6). The

transformation matrix Ai is used to convert the mass matrices from

the element-fixed frame to the global frame.

Mi
g
=
1
2
Ai−1Mi−1

b A(i−1)T +
1
2
AiMi

bA
iT : (6)

Finally, the element loads are shared equally by two terminal

nodes. Moreover, the governing equation for the ith node is

determined by the loads acting on the (i-1)th and ith elements, as

given in Equation (7). €N
i
g represents the acceleration of the ith node.
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Mi
g
€N
i
g = Ai(Ti

c + Di
c +

1
2 F

i
D) +

1
2 (F

i
W + Fi−1

W )−

    Ai−1(Ti−1
c + Di−1

c − 1
2 F

i−1
D ) :

(7)

Because the weight is balanced with the buoyancy, the floater

introduces only additional mass effects and hydrodynamic forces at

the node position where the floater is mounted. Considering the

mass of the DTU and floater, an additional mass of 2.87 kg is added

to the mass matrix. The ocean current in the deep sea is very small,

so the velocity and acceleration of the water particles are ignored

here. Because the towing speed changes smoothly during formal

towing, the additional mass effect of seawater is also ignored here.

Finally, the additional drag force introduced by the floater is

expressed by Equation (8), which is a function of the cross area

and towing speed. Ctb and Cnb are the tangential and normal drag

coefficients, respectively. Atb and Anb are the cross areas of the

floater in the tangential and normal directions, respectively. The

node velocity in the element frame is used to carry out the drag

force, and Vi,x
b , Vi,y

b , and Vi,z
b are the x-, y- and z-components of the

node velocity at the ith floater, respectively. Fi,x
bd , F

i,y
bd , and Fi,z

bd are the

x-, y-, and z-components of the additional drag generated by

the floater in the element frame, respectively. Finally, these forces

are converted to the global frame.

Fi,x
bd = − 1

2 Ctbrf Atb Vi,x
b

�� ��Vi,x
b ,

Fi,y
bd = − 1

2 Cnbrf Anb Vi,y
b

��� ���Vi,y
b ,

Fi,z
bd = − 1

2 Cnbrf Anb Vi,z
b

�� ��Vi,z
b :

8>>><
>>>:

(8)

The modeling parameters of the arrays and floaters are

listed in Tables 1 and 2, respectively. The drag coefficients

of the floaters are measured via computational fluid

dynamics simulation.
FIGURE 7

Modeling of arrays using the lumped mass method (Zhu et al., 2020).
TABLE 1 Modeling parameters of the arrays.

Parameter dc (m) L (m) rc (kg/m3) E Cd Cn Ct CA

Value 0.046 210 1025 2.1e8 100 1 0.01 1
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2.3.3 Correction effect
An array model with floaters was established, and the array

shape under various towing conditions was studied via numerical

simulation. The towing conditions include rising, diving and flat

towing, as shown in Figure 8A. Because the floaters balance the

weight of the DTUs, the arrays no longer form a “W” shape but

become a simple convex curve, as illustrated in Figure 8. Because of

the seismic source on the convex curve, a reasonable sound speed

can be easily adjusted with the simple convex curve.

The arrays equipped with floaters were used in the 2021 sea trial,

and the location is indicated by the red point shown in Figure 9. The
Frontiers in Marine Science 07288
sea conditions were calm with ripples, and the water depth was

approximately 1400-1600 m. The seismic records from the 2019 sea

trial are shown in Figures 10A and C. Because floaters are not installed,

the seismic records indicate that the sea surface reflection waves have

broken lines and that the sea seafloor reflection waves exhibit a “W”

shape. However, when the arrays are equipped with floaters, the

seismic records exhibit simple convex curves, as shown in

Figures 10B and D.

Two examples of sea surface reflection (SSR) records

(Figures 11B, C) and travel-time positioning results (Figures 11D,

F) are presented in Figure 11, revealing smooth curves in both the
TABLE 2 Cross-sectional area and drag coefficient of the floaters.

Parameter Atb (m2) Anb (m2) Ctb Cnb

Value 0.012 0.015 0.74 1.24
B

C D

E F

A

FIGURE 8

Array shape with floaters under different towing conditions. (A) Shot point distribution, (B) Array shape at shot (A), (C) Array shape at shot
(B), (D) Array shape at shot (C), (E) Array shape at shot (D), (F) Array shape at shot (E).
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morphology of the sea surface reflection waves and the positioning

structure of the towed array. Although few hydrophones jump out

(S2129), the arrays equipped with floaters indeed exhibit a convex

curve. Abnormal hydrophones are generated by phase distortion

(waveform change), which is the general case in seismic exploration.

Importantly, the seismic source is not on this convex curve (green

dashed line), which indicates that the sound speed of seawater

should be optimized and that abnormal hydrophones should be

eliminated when forming the shape curve of seismic arrays.
3 Location modification

Both the numerical simulation and travel-time positioning results

reveal that the array shape equipped with floaters is a simple convex

curve under stable towing conditions. Because the depth of the seismic

source is determined by the depth sensor and because the sound speed

affects the vertical displacement of the arrays, if the assumed sound

speed is greater than or less than the real velocity, then the seismic

source is not on the convex curve. According to the weighted least

squares polynomial fitting method, the sound speed of seawater can be

optimized so that the seismic source and the arrays are on the same

convex curve.

For a series of given points, which are the position coordinates

of the source and hydrophones, the nth-order polynomial function f

(x) used for fitting is shown by Equation (8b) (Parrilo and

Sturmfels, 2003).

f (x) = a0 + a1x + a2x
2 +⋯+anx

n : (8b)

where a0, a1, … an are the polynomial coefficients. Except for

the abnormal points, herein, all the hydrophones are used to fit this

convex curve. The differences between the polynomial function f(x)

and the yi values of the given points should be minimized, as shown
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in Equation (9) (Burden and Faires, 2010). wi represents the weight

coefficient, xi represents the horizontal displacement of the

hydrophone relative to the towed vehicle, and yi represents the

vertical depth of the towed vehicle and hydrophones.

s(a0, a1,⋯, an) = min (o
N

i=1
wi½f (xi) − yi�2) : (9)

Because the weighted least squares method is used to determine the

polynomial function f(x), this method is called weighted least squares

polynomial fitting (Chen and Guo, 2023; Ke et al., 2023). The fitting

quality can be evaluated by the goodness of fit R2 and the root mean

square error S, as shown in Equations (10) and (11), respectively.

R2 =
o
N

i=1
½f (xi) − y�2)

o
N

i=1
(yi − y)2)

, (10)

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1
½yi − f (xi)�2)

s
, (11)

where �y is the average value of the hydrophone depth calculated

by the travel-time positioning method f(xi) is the vertical depth of

the hydrophone after fitting. The polynomial fitting becomes

optimal when the goodness of fit R2 is close to 1 or the root mean

square error S is the minimum.

To demonstrate the feasibility of the proposed method, two shot

points, S2329 and S2350, were selected for positioning optimization.

The sea floor is approximately flat at these two points. The seismic

records of the SSR waves from the sea trial are shown in Figure 12.

Based on the sound speed at the sea floor measured by the CTD

sensor, the positioning results of the sea floor reflection (SFR) waves

are shown in Figure 13. Additionally, the SSR positioning results of
FIGURE 9

Location and water depth in the 2021 sea trial.
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the SSR waves are also illustrated with the assumption that the

average sound speed of seawater is 1484.5 m/s at the full depth of

the survey area. The shape of the array cable generated by the SSR is

similar to that generated by the SFR, but the seismic source is not on

the extension line of the convex curve generated by the SSR. Because

the sea floor is approximately flat at these two shots and because of

the high speed of seawater at the sea floor measured by the CTD, the

positioning results of the SFR are more accurate than those of the

SSR. Therefore, the assumed average sound speed of seawater (vw)

at the full depth of the survey area, i.e., 1484.5 m/s, needs to

be adjusted.

The steps to optimize the travel-time positioning are as follows:
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Step 1: The range of the sound speed of seawater at full depth

(vmin, vmax) is defined according to experience (vmin= vw-5 m/s, and

vmax= vw+5 m/s). The initial position of the arrays (xh
i, dr

i) is

determined by using Equations (1) and (2) with vw and vf.

Step 2: Source coordinates (0, ds) and hydrophone coordinates

(xh
i, dr

i) are combined in a data set {(0, ds), (xh
1, dr

1), (xh
2, dr

2), …,

(xh
48, dr

48)}, and the weighted least squares polynomial is

subsequently used for fitting. The weight coefficient w is set to

0.01 for the abnormal hydrophones, which are indicated by phase

distortion in Figure 11. However, the weight coefficient for the other

hydrophones is 1.0. One large root mean square error S is derived if

the seismic source is not on the curve of the arrays calculated with

the current vw, for example, ‘curve a’ or ‘curve c’, as shown in
B

C

D

A

FIGURE 10

Recorded patterns in the 2019 (A: direct and seafloor reflection waves; B: sea surface reflection waves) and 2021 (C: direct and seafloor reflection
waves; D: sea surface reflection waves) sea trials.
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Figure 14. The optimized accuracy depends on the order of the

polynomial fit, which is defined in this step. Taking S2329 and

S2350 as examples, Table 3 shows the relationships among the

polynomial fitting order, goodness of fit R2 and root mean square

error S. As the fitting order increases, the goodness of fit approaches

1.0, and the root mean square error decreases. However, a long

computation time is needed, and the stability of the fitting

calculation decreases when the fitting order is larger than 4; thus,

a fourth-order polynomial is sufficient herein. The polynomial

function is f(x)=a0+a1x+a2x
2+a3x

3+a4x
4.
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Step 3: The sound speed vi is increased by a step of 0.001 m/s

from vmin to vmax, and the goodness of fit R2 and root mean square

error S are calculated.

Step 4: The velocity vi with the maximum goodness of fit (R2) or

the minimum root mean square error (S) is taken as the optimal

sound speed for the final calculation of the array position (horizontal

offset xro
i and vertical depth dro

i). Moreover, the fitted value f(xi) is

obtained. Because all the points {(0, ds), (xro
i, f(xi))} are on a convex

curve, such as curve b, whose extension (dotted green line) passes

through the shot point, f(xi) is taken as the final hydrophone depth
B
C

D E
F

A

FIGURE 11

Wave field records and sea-surface reflection positioning results after array correction (A: direct and seafloor reflection wave at S0028; B: sea-
surface reflection wave at S0028; C: sea-surface reflection positioning result at S0028; D: direct and seafloor reflection wave at S2129; E: sea
surface reflection wave at S2129; and F: sea surface reflection positioning result at S2129).
FIGURE 12

Seismic records from sea surface reflections at shots S2329 and S2350.
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FIGURE 14

Polynomial fitting diagram.
TABLE 3 Relationships between the fitting order and fitting quality for shots S2329 and S2350.

Order of
Polynomial

n=2 n=3 n=4 n=5

S2329
R2 0.9991 0.9991 0.9995 0.9995

S 0.2062 0.2051 0.1455 0.1453

S2350
R2 0.9997 0.9998 0.9998 0.9998

S 0.1046 0.1001 0.0988 0.0987
F
rontiers in Marine Science
 11292
B

A

FIGURE 13

Positioning results calculated by the seafloor reflection wave and sea surface reflection wave. (A) Comparison of sea-surface reflection wave and
seafloor reflection wave positioning results for shot point S2329, (B) Comparison of sea-surface reflection wave and seafloor reflection wave
positioning results for shot point S2350.
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value, which also solves the phase distortion problem of abnormal

hydrophones and reduces the influence of ocean waves.

According to the above processes, the array shape at shot S2329

was fitted by using a fourth-order polynomial, i.e., f(x)=a0+a1x

+a2x
2+a3x

3+a4x
4. The coefficients and fitting parameters of the

polynomial are shown in Table 4. The goodness of fit is 0.9995, and

the root mean square error is only 0.1355. Theoretically, the seismic

source depth ds is the intercept of the fitting polynomial on the

depth axis; thus, it is equal to the constant term a0. The fitting result

a0 shown in Table 4 is approximately equal to the seismic source

depth ds, indicating that the fitting quality is high.

The comparison between the optimization results and the initial

positioning results is shown in Figure 15, and the root mean square

error and goodness of fit are shown in Figure 16. Compared to that

of seafloor reflection positioning, the depth errors in SSR

positioning before and after polynomial fitting are shown in

Figures 17A and B, respectively. These results indicate that the
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polynomial fitting method is accurate and that the absolute values

of the errors are less than 0.15 m (~0.1 ms).

Similarly, the array shape at shot point S2350 was fitted by the

proposed method. The parameters of the fitted polynomials are shown

in Table 5. The goodness offit is 0.9940, and the rootmean square error

is only 0.0660. In addition, the fitted polynomial a0 is equal to the

seismic source depth ds, indicating that the fitting is optimal.

The array shapes obtained by the polynomial fitting method and

by the assumed average speed of 1484.5 m/s are shown in Figure 18.

The root mean square error and goodness of fit are shown in

Figure 19. Compared to those of the seafloor reflection positioning,

the depth errors in SSR positioning before and after polynomial

fitting are shown in Figures 20A and B, respectively. The absolute

values of the depth errors are less than 0.14 m (~0.09 ms) after

polynomial fitting.

Additionally, the positions of the arrays at shot points S0028 and

S2129 were also corrected according to the above processes. The
TABLE 4 Polynomial fitting parameters at shot 2329.

R2 S vo (m/s) ds (m) a0 a1 a2 a3 a4

0.9995 0.1355 1485.305 1406.5 1406.499 0.216 -0.012 1.993×10-5 5.782×10-8
FIGURE 15

Travel-time positioning before and after correction at shot S2329.
BA

FIGURE 16

Fitting quality at shot S2329. (A) Root mean square error, (B) Goodness of fit.
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TABLE 5 Polynomial fitting parameters at shot point S2350.

R2 S vo (m/s) ds (m) a0 a1 a2 a3 a4

0.9997 0.092 1485.241 1359.7 1359.699 0.236 0.010 4.177×10-4 -5.615×10-9
F
rontiers in Marine
 Science
 13294
BA

FIGURE 17

Depth error of sea surface reflection positioning compared to seafloor reflection positioning at shot S2329. (A) Before optimization,
(B) After optimization.
BA

FIGURE 19

Fitting quality at shot point S2350. (A) Root mean square error, (B) Goodness of fit.
FIGURE 18

Travel-time positioning before and after correction at shot S2350.
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BA

FIGURE 20

Depth error of sea surface reflection positioning compared to seafloor reflection positioning at shot point S2350. (A) Before optimization,
(B) After optimization.
TABLE 6 Polynomial fitting parameters at shot points S0025 and S2129.

Shot point R2 S ds (m) a0 a1 a2 a3 a4

S0028 0.9999 0.1668 1440.9 1440.907 -0.008 -0.002 1.645×10-6 -2.610×10-10

S2129 0.999 0.2322 1427.3 1427.319 -0.271 9.305×10-4 -8.836×10-7 -7.133×10-10

S2390 0.9994 0.0920 1434.2 1434.200 -0.052 – – –
F
rontiers in Marine
 Science
 14295
B

A

FIGURE 21

Travel-time positioning before and after correction. (A) Comparison of the corrected sea-surface reflection wave positioning results and seafloor
reflection wave positioning results for shot point S0028, (B) Comparison of the corrected sea-surface reflection wave positioning results and
seafloor reflection wave positioning results for shot point S2129.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1351327
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2024.1351327
B

A

FIGURE 22

Velocity semblance panels before and after travel-time positioning correction. (A) Before travel-time positioning correction. (B) After travel-time
positioning correction.
FIGURE 23

Seabed stack profile before (left) and after (right) travel-time positioning correction.
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polynomial fitting parameters, goodness of fit R2 and root mean

square error S for the array positioning are listed in Table 6. The

seismic source is not on the convex curve, generating an assumed

velocity of 1484.5 m/s, as shown in Figure 21. However, the sound

speed of seawater is optimized by the polynomial fitting method, and

the seismic source and the positioning results of the arrays are on the

same convex curve (dashed green line). In addition, although there

are phase distortions in some channels at shot S2129, the weighted

least squares polynomial method overcomes inaccurate positioning.
4 Application

The prestack shot gathers in the sea trial with Kuiyang-

ST2000 conducted in 2021 in the Qiongdongnan area in the

South China Sea are selected, as shown in Figure 8. The main

acquisition parameters of the deep-towed multichannel seismic

datasets are as follows: the source energy is 3000 J, shot spacing is

6.25 m, trace spacing is 3.125 m, minimum offset is 12.5 m, trace

number is 48, recording duration is 3000 ms, and sampling rate

is 8 kHz.

We utilize the SSR travel-time positioning method described in

Section 2.2 to obtain the initial values of the towed array. Based on

the characteristics of the towed array structure described in Section

2.3, we applied the correction method outlined in Chapter 3 to

determine the accurate positions of the hydrophone array in the

towed cable. Figure 22A shows the velocity spectra of common

middle point (CMP) gathered on survey lines corrected by floating

datum (with reference to the datum setting as land complex surface

data processing; the shot point and hydrophone point are placed on

a relatively smooth float datum) in seismic data processing (Yilmaz,

2001). The focusing of the energy group of the velocity spectrum

calculated by the semblance coefficient method (Kirlin, 1992) is not

highly concentrated in either the deep layer or the shallow layer

before positioning correction. The focusing of the energy group in

the velocity spectrum is highly concentrated in both the deep layer

and shallow layer after correction, as shown in Figure 22B, and the

resolution of the velocity spectrum is notably improved. The

preliminary stack profiles before and after correction are shown

in Figure 23. The phase continuity and signal-to-noise ratio are

obviously improved after correction, as shown in Figure 23B,

compared with the uncorrected (Figure 23A), especially within

the yellow boxes, and this approach can accurately describe the

geological structure morphology under the seabed.
5 Conclusions

To correct for the “W” shape of seismic arrays, floaters were

installed at the DTUs of the Kuiyang-ST2000 deep-towed seismic

system. The corrected arrays presented a simple smooth convex
Frontiers in Marine Science 16297
curve during towing conditions, which was demonstrated by both

the numerical simulation and travel-time positioning of the sea

trial. Given the geometrical relationship between towed vehicles and

seismic arrays, the weighted least squares polynomial fitting method

is proposed herein to optimize the average sound speed of seawater

at full ocean depth. The final positioning accuracy (0.15 m/~0.1 ms)

was less than the system sampling interval of 0.125 ms, which met

the accuracy requirements of the Kuiyang-ST2000 deep-towed

seismic system. Additionally, the energy groups of the velocity

spectrum were also highly concentrated in both the deep layer

and shallow layer after positioning correction, and the signal-to-

noise ratio and resolution of superposition imaging were effectively

improved in the seabed stack profile. The conclusions of general

validity are listed here for reference.
(1) The array shape follows a simple smooth convex curve

when the additional weights of the DTUs are balanced

by floaters.

(2) Weighted least squares polynomial fitting is an efficient

method for obtaining the accurate average sound speed of

seawater at full ocean depth under the constraint that the

seismic source is located on a smooth convex curve.

(3) Because seafloor reflection positioning is limited by the

constraint that the seafloor is flat, sea surface reflection

positioning can be widely used when the average sound

speed at full ocean depth is known.

(4) The phase distortions generated by abnormal hydrophones

can be repaired via the proposed polynomial fitting method.
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Krödel, S., Thomé, N., and Daraio, C. (2015). Wide band-gap seismic metastructures.
Extreme Mech. Lett. 4, 111–117. doi: 10.1016/j.eml.2015.05.004

Lan, H., and Ding, Y. (2012). Ordering, positioning and uniformity of quantum dot
arrays. Nano Today 7, 94–123. doi: 10.1016/j.nantod.2012.02.006

Lu, F., Milios, E., Stergiopoulos, S., and Dhanantwari, A. (2003). New towed-array
shape-estimation scheme for real-time sonar systems. IEEE J. ocea. eng. 28, 552–563.
doi: 10.1109/JOE.2003.816694

Marsset, B., Ker, S., Thomas, Y., and Colin, F. (2018). Deep-towed high resolution
seismic imaging II: Determination of P-wave velocity distribution. Deep-Sea Res. Part I-
Oceanogr. Res. Pap. 132, 29–36. doi: 10.1016/j.dsr.2017.12.005

Marsset, B., Menut, E., Ker, S., Thomas, Y., Regnault, J. P., Leon, P., et al. (2014).
Deep-towed High Resolution multichannel seismic imaging. Deep-Sea Res. Part I-
Oceanogr. Res. Pap. 93, 83–90. doi: 10.1016/j.dsr.2014.07.013

Nanni, U., Roux, P., Gimbert, F., and Lecointre, A. (2022). Dynamic imaging of
glacier structures at high-resolution using source localization with a dense seismic
array. Geophys. Res. Lett. 49, e2021GL095996. doi: 10.1029/2021GL095996

Parrilo, P. A., and Sturmfels, B. (2003). Minimizing polynomial functions.
Algorithmic and quantitative real algebraic geometry, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 60, 83–99.

Pei, Y., Wen, M., Zhang, L., Yu, K., Kan, G., Zong, L., et al. (2022). Development of a
high-resolution deep-towed multi-channel seismic exploration system: Kuiyang
ST2000. J. Appl. Geophys. 198, 104575. doi: 10.1016/j.jappgeo.2022.104575

Rowe, M. M., and Gettrust, J. F. (1993). Faulted structure of the bottom simulating
reflector on the Blake Ridge, Western North-Atlantic. Geology 21, 833–836.
doi: 10.1130/0091-7613(1993)021<0833:FSOTBS>2.3.CO;2

Varypaev, A., and Kushnir, A. (2020). Statistical synthesis of phase alignment
algorithms for localization of wave field sources. Multidimens. Syst. Signal Process.
31, 1553–1578. doi: 10.1007/s11045-020-00722-3

Vickery, K. (1998). “Acoustic positioning systems. A practical overview of current
systems,” in Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles
(Cat. No. 98CH36290) (IEEE), 5–17. doi: 10.1109/AUV.1998.744434

Walia, R., and Hannay, D. (1999). Source and receiver geometry corrections for deep towed
multichannel seismic data. Geophys. Res. Lett. 26, 1993–1996. doi: 10.1029/1999GL900402

Wei, Z., Pei, Y., and Liu, B. (2020). A new deep-towed,multi-channel high-resolution
seismic system and its preliminary application in the South China Sea. Oil Geophys.
Prospect. 55, 965–972. doi: 10.13810/j.cnki.issn.1000-7210.2020.05.004

Yilmaz, Ö. (2001). Seismic data analysis: Processing, inversion, and interpretation of
seismic data. Soc. Explor. geophys. doi: 10.1190/1.9781560801580

Zhu, X., Wei, Z., Pei, Y., Yu, K., and Zong, L. (2020). Dynamic modeling and position
prediction of deep-towed seismic array. J. Shandong Univers. Eng. Sci. 50, 9–16.
frontiersin.org

https://doi.org/10.1190/1.1500364
https://doi.org/10.1109/ACCESS.2021.3061446
https://doi.org/10.1109/ACCESS.2021.3061446
https://doi.org/10.1190/geo2019-0686.1
https://doi.org/10.1190/geo2019-0686.1
https://doi.org/10.1109/MWSYM.2019.8701107
https://doi.org/10.1109/MWSYM.2019.8701107
https://doi.org/10.1190/1.3072620
https://doi.org/10.1109/48.126976
https://doi.org/10.1088/1361-6501/acb72d
https://doi.org/10.1111/j.1365-246X.2010.04700.x
https://doi.org/10.1190/1.1443314
https://doi.org/10.1007/s11430-012-4377-4
https://doi.org/10.1016/j.eml.2015.05.004
https://doi.org/10.1016/j.nantod.2012.02.006
https://doi.org/10.1109/JOE.2003.816694
https://doi.org/10.1016/j.dsr.2017.12.005
https://doi.org/10.1016/j.dsr.2014.07.013
https://doi.org/10.1029/2021GL095996
https://doi.org/10.1016/j.jappgeo.2022.104575
https://doi.org/10.1130/0091-7613(1993)021%3C0833:FSOTBS%3E2.3.CO;2
https://doi.org/10.1007/s11045-020-00722-3
https://doi.org/10.1109/AUV.1998.744434
https://doi.org/10.1029/1999GL900402
https://doi.org/10.13810/j.cnki.issn.1000-7210.2020.05.004
https://doi.org/10.1190/1.9781560801580
https://doi.org/10.3389/fmars.2024.1351327
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Lei Kou,
Qilu University of Technology (Shandong
Academy of Sciences), China

REVIEWED BY

Xiao Feng,
Nanjing University of Posts and
Telecommunications, China
Jian Wang,
Kunming University of Science and
Technology, China

*CORRESPONDENCE

ZhiWen Qian

zhiwenqian@tju.edu.cn

RECEIVED 03 January 2024

ACCEPTED 26 June 2024
PUBLISHED 31 July 2024

CITATION

Li J, Qian Z, Hong D and Zhai J (2024)
Precise and low-complexity method for
underwater Doppler estimation based on
acoustic frequency comb waveforms.
Front. Mar. Sci. 11:1365095.
doi: 10.3389/fmars.2024.1365095

COPYRIGHT

© 2024 Li, Qian, Hong and Zhai. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 31 July 2024

DOI 10.3389/fmars.2024.1365095
Precise and low-complexity
method for underwater Doppler
estimation based on acoustic
frequency comb waveforms
Jie Li1, ZhiWen Qian1,2*, DeYue Hong1 and JingSheng Zhai1

1School of Marine Science and Technology Tianjin University, Tianjin, China, 2Key Laboratory of
Marine Environmental Survey Technology and Application, Ministry of Nature Resources,
Guangzhou, China
Ocean observation has advanced rapidly in recent decades due to its crucial role

in resource exploration and scientific research, with the Doppler factor being

widely utilized. However, the precision of Doppler estimation is frequently

constrained by frequency resolution. Traditional frequency estimation methods

using single-tone signals face considerable challenges with low accuracy and

poor robustness. In response, this paper introduces a novel Doppler-sensitive

Acoustic Frequency Comb (AFC) for estimating the Doppler factor, enabling

multiple measurements with a single transmission and reception of the signal.

The proposed Combined Uneven Uncertainty (CUU) method based on AFC

achieves a bias of less than 1.1×10-5, significantly surpassing the optimal result of

3.2×10-5 attained by other frequency estimation methods in the absence of

noise. Compared to traditional single-tonemethods, the AFC approach improves

spectral leakage performance and enhances estimation accuracy without

increasing computational complexity. Experimental results demonstrate that

the CUU method realizes a difference performance of less than 3.4×10-6,

notably lower than that of 3.2×10-5 induced by coherent spectral leakage in

fast Fourier Transform (FFT).
KEYWORDS

underwater acoustic communication, acoustic frequency comb, Doppler estimation,
spectral leakage, Fourier transform
1 Introduction

Merely 5% of the ocean is currently understood by humanity, necessitating the

advancement of acoustic applications to address escalating human ocean activities,

encompassing mineral mining and scientific research (Mikhail et al., 2014). Sonar, as the

sole critical instrument facilitating long-distance transmission in the ocean, assumes a

crucial role in ocean observation, but its capability is impeded by the complex oceanic

environment, characterized by undulating sea surfaces, turbulent flows, ambient noise,
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uneven seabeds, and the pervasive underwater Doppler effect.

Wherein, underwater Doppler can induce drastic time-frequency

shifts, which can seriously limit the performance of acoustic

applications such as dynamic underwater location (Chan and

Jardine, 1990), synthetic aperture sonar (SAS) imaging (Zhang

et al., 2021; Zhang et al., 2024), underwater communication

(Chen et al., 2015; Ahmad et al., 2018), and sound monitoring

(Greene and Hendricks, 2015; Yang and Fang, 2021). Thus, accurate

Doppler estimation and compensation are of great importance for

the above acoustic applications. However, the Doppler estimation is

difficult to measure precisely mainly due to the low sound speed

underwater, the influence of ocean currents and waves, marine

environmental noise, and multipath effects (Gong et al., 2020; Wan

et al., 2020). Thus, accurate and strongly robust Doppler estimation

methods remain the primary challenges for underwater

sonar applications.

In this hot topic, various methods have been used to overcome

challenges. In the time domain, some methods such as the maximum

likelihood estimation algorithm (Rife and Boorstyn, 1974), the phase

information of autocorrelation functions (Kay, 1989), the block

Doppler method (Sharif et al., 2000), and the constructed

ambiguity function (Sen and Nehorai, 2010) are successively

proposed. These approaches are simple and easy to implement, but

balancing estimation accuracy with computational complexity

remains a further improvement. Another focus is the use of the

fast Fourier transform (FFT) with the transformation into the

frequency domain, thereby significantly enhancing the efficiency

and performance of ocean observation systems (Yang, 2023; Zhang,

2023). To overcome the coherent pitfall of spectral leakage in FFT (Li

and Chen, 2008), a rough estimation followed by a fine estimation is

proved to be an effective Doppler estimation method, but with limited

estimation accuracy, particularly in large deviation scenarios (Quinn,

1994; Macleod, 1998; Jacobsen and Kootsookos, 2007; Candan, 2011).

Zero padding (Fang et al., 2012) and the iterative method

(Aboutanios et al., 2005) were used to improve the estimation

accuracy, but associated with a higher computational cost.

Therefore, reconciling the contradiction between high-accuracy

Doppler estimation and low-complexity computational processing

proves to be a daunting challenge. There is a great need to explore an

algorithm that provides precise Doppler estimation with low

computational cost.

The optical frequency comb (OFC) invented by the Nobel Prize

winners Hänsch and Hall (Jones et al., 2000; Hänsch, 2006; Hall,

2006), consists of frequency components evenly distributed in the

frequency domain. It was successfully used in the wavelength

calibration of astronomical spectrometers, and the measurement

accuracy was significantly improved, making it possible to observe

the Doppler phenomenon in astronomy, including the movement of

planets and even the expansion of the universe (Braje et al., 2008;

Steinmetz et al., 2008). Similar to the OFC generation, the acoustic

frequency comb (AFC) has been extended to the distance

measurement in the underwater acoustic field, achieving a

precision of less than 50 mm (Wu et al., 2019). Despite that, the

employment of the AFC signal for Doppler estimation remains to be
Frontiers in Marine Science 02300
discovered. In our work, the AFC signal is performed to estimate the

Doppler factor. The quantitative relationship between the AFC and

the Doppler factor in the time-frequency domains is derived

theoretically. At the cost of bandwidth, conducting one

measurement can acquire the phonon frequency shifts of multiple

frequency components. Thus, the Doppler factor at the same time can

be calculated multiple times, resulting in a precise Doppler estimation

after carrying out mathematical statistics, and without any increment

in computational expense.
2 Preliminaries

2.1 Properties of AFC signal

Unlike traditional narrow-band wave signals (e.g., continuous

waves, CW) and wide-band wave signals (e.g., linear frequency

modulation, LFM), AFC consists of a series of modes with the same

amplitude, phase, and evenly distributed frequencies, as shown in

Figure 1. In the time domain, the AFC signals have narrow pulse

width, high stability of frequency, large instantaneous power and

good coherence, which can be mathematically expressed by

Equations 1–3:

s(t) = rect(
t
T
)om

n=1AEncos(2p fnt + qn), (1)

rect(
t
T
) =

1,     0 ≤ t ≤ T ,

0, t < 0   or   t > T ,

(
(2)

fn = fceo + (n − 1)frep, (3)

where rect is the rectangular pulse function, t is the time, T is the

pulse period, n is an integer, m is the number of modes, A is the

power amplification factor, En is the amplitude of individual mode,

fn   is the frequency of individual mode, qn is the initial phase, fceo is
the initial frequency, frep is the interval frequency.

The strictly evenly distributed frequency intervals and the

extremely precise amplitude and phase lead to the stability of the

measurement results with fceo and frep well referenced to an Rb

clock. Thus, through the coherent superposition of each highly

stable frequency component, the pulse signal with a narrow pulse

width and high peak power in the time domain can be formed. Each

pulse contains all harmonic components and the corresponding

frequency and phase information can be calculated by Fourier

transform. The echo waveforms of AFC can be expressed as

Equation 4:

r(t) = a · s½(1 + D)(t − 2R=c)� + w(t), (4)

where a is the gain coefficient of the echo intensity, D is the

Doppler factor, R is the distance between the signal source and the

moving target, c is the velocity of sound, and w(t) is white noise

(Equation 5).
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D =
2v
c − v

≈
2v
c
  (5)

where v is the radial velocity of a moving target.
2.2 Time domain characterization of the
Doppler factor

Assume that at time t0, the pulse front of the signal hits a fast-

moving target with speed n and reflects it back. After the time

interval of td , i.e. at moment t1, the pulse back edge hits the moving

target. During this time, the target moves the distance vtd .
Frontiers in Marine Science 03301
According to the quantitative relationship in Figures 2A, B, the

following equations can be obtained:

ct = ctd + vtd , (6)

ct 0 = ctd − vtd , (7)

where c is the velocity of sound, t and t 0are the duration of the

emitted and received pulse. From Equation 6 and Equation 7, it can

be easily deduced as

t
t0

=
c + v
c − v

: (8)
FIGURE 1

The composition of the AFC signal in the time and frequency domains.
A

B

C

FIGURE 2

(A) The AFC waveform of the transmitted signal when it first touches the moving target; (B) The AFC waveform of the echo signal when it just leaves
the moving target; (C) The time-domain compression phenomenon caused by the Doppler effect.
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Suppose the number of periods of the transmitted signal is NT ,

obviously with no change in two moments. The frep and f
0
rep can be

determined using the following equations:

frep =
NT

t
, (9)

f
0
rep =

NT

t 0
: (10)

According to Equations 8–10, the equation can be deduced as

Equation 11

f
0
rep =

c + v
c − v

frep = (1 + D)frep : (11)

The direction of movement of the target is set as positive. As can

be seen from Figure 2C, the Doppler effect leads to compression of

the AFC signal in the time domain when the target moves toward

the transmitter and the receiver. The severity of the Doppler effect

can be reflected via the peak intervals of the signal envelope.
3 CUU estimator for the Doppler
factor based on AFC waveforms

3.1 Spectrum analysis

Fourier transform is performed on the received signal,

X(w) = F r(t)f g(w) =
Z ∞

−∞
r(t)e−jwtdt :   (12)

According to the linear property and time-shift property of

Fourier transform, the Equation 12 can be written as

F r(t)f g(w) = a · e−jw
2R
c · F s½(1 + D)t�f g(w) : (13)

Due to the time-domain scaling property of the Fourier

transform, Equation 13 can be further rewritten as
Frontiers in Marine Science 04302
F r(t)f g(w) = e−jw
2R
c ·

a
1 + D

· F s(t)f g w
1 + D

� �
:   (14)

Set e−jw
2R
c · a

1+D as b, and make w
1+D as w 0, and the Equation 14

can be written as

F r(t)f g(w) = b ·om
n=1F cos

2p(1 + D)fnt
1 + D

� �� �
(w 0) :     (15)

w 0 is changed to w , and Equation 15 is simplified to

F r(t)f g(w) = b ·om
n=1F cos (2p(1 + D)f nt)f g(w) :   (16)

Applying the discrete Fourier transform to Equation 16, we can

get

X(k) = b ·om
n=1oN−1

i=0 cos(2p(1 + D)fniTs)e
−j2pkiN ,   (17)

where Ts is the sampling interval.

It can be seen from Equation 17, the frequency domain

characteristics of the echo signal are the linear superposition of

individual phonon signals. Since the phonon modes are Doppler-

sensitive single-tone signals, the Doppler factor can be determined

by each independent component. This is equivalent to obtaining

multiple Doppler factor measurements from just one set of

transmitting and receiving pulse signals. The frequency of the

received signal can also be expressed as Equation 18:

frn = (1 + Dn)fn : (18)

According to the relationship between the repetition frequency

and period of the AFC signal, it is also consistent with Equation 11.

The AFC signal consists of multiple signals with separate single-

tone components, each affected by the Doppler effect, resulting in

the Doppler frequency shift phenomenon. The frequency shift of

each phonon mode can be directly calculated by fdn = frn − fn. frn
can be quickly determined by the FFT of the received signals

followed by peak detection, and fn is the given information of the

broadcast signal.

As can be seen from Figure 3A, the frequency shift between the

first frequency component of the transmitted waveform and the
A B

FIGURE 3

(A) The frequency distribution at both the transmitter and the receiver sides; (B) The frequency shift for each phonon mode.
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received waveform is 200 Hz, and the last is 350 Hz. It varies linearly

with the frequency of the emitted phonon mode (Figure 3B). The

phonon modes of the transmitted signals differ from each other. Still,

the variable size of the frequency shift fdn for each frequency

component can be determined, corresponding to the same Doppler

factor. This means the Doppler factor can be calculated multiple times

with just one measurement, leading to a more accurate estimate.
3.2 System modeling

Different frequency components with the same frequency

resolution lead to different deviations for different phonons

(Figure 4A). The variance of Dn can be deduced as: D(Dn) =

1=(12f 2n ), assuming that the frequency resolution is 1 Hz and the

fdn is evenly distributed in the range from -0.5 Hz to 0.5 Hz. To obtain

a more precise estimate, we calculate the weight of each measurement

by taking the inverse of the variance of Dn. The sum of these inverses

is then utilized to standardize the weight of each measurement.

Further derivation of the Doppler factor is as Equation 19

D =om
n=1

f 2n

om
n=1f

2
n

Dn : (19)

To further clarify the principle of the AFC-based Doppler

estimation method, an AFC signal with an initial frequency of

100 kHz, an interval frequency of 500 Hz, a cutoff frequency of 200

kHz, and an initial phase of 0 rad for all phonon modes is

constructed. The Doppler factor is set to 0.02 with a frequency

resolution of 1 Hz, and the duration is set at 50 ms. The received

signal in the time domain is transformed by FFT. The uncertainty of

each individual phonon mode can be induced by the frequency

resolution, and all Doppler shifts correspond to the same Doppler
Frontiers in Marine Science 05303
factor. This distortion can be eliminated by multiple unequal

precision measurements (Figure 4B), a mode similar to the

principle of the CUU estimation method.

As shown in Figure 5, as d ranges from 0.05 to 0.45, which is the

ratio of offset frequency to frequency resolution, the bias of single-tone

signal after FFT does not exceed 3.2×10-5. While the AFC-based

method keeps a bias of less than 1.1×10-5. Traditional Doppler factor

estimation using single-tone waveforms is limited by the number of

samples of the Fourier transform N, which inevitably leads to the

spectral leakage. However, the use of AFC waveforms can enable the

acquisition of multiple different Doppler factor values across different

phonon modes, which is equivalent to carrying out numerous

measurements of the identical Doppler factor simultaneously. In this

way, the utilization of the spectrum has been significantly improved. It

can be further reduced by increasing the number of phonon modes,

and there is almost no additional computational effort.
4 Numerical section

4.1 Experimental parameters

To demonstrate the effectiveness of the proposed method, two

sets of Monte Carlo experiments were conducted using the

methods listed in Table 1, which were repeated 1000 times. In

the experiments, the duration of the single-tone signals and the

AFC signal were both set at 50 ms. The AFC was set with a starting

frequency of 10 kHz, a cutoff frequency of 17.5 kHz, and an

interval frequency of 0.5 kHz, the frequency of the single-tone

signal was set to 14 kHz, the sampling rate and the sampling

number were set to 96 kHz. The conditions for two series of tests

were set as follows:
A

B

FIGURE 4

(A) The frequency offset and deviation for each phonon mode; (B) The Doppler factor and deviation with respect to the frequency of phonon mode.
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1) Keep d of the single-tone signals unchanged at 0.45, convert it
to an equivalent Doppler factor, and gradually increase the input

signal-to-noise ratio (SNR) from -2 dB to 10 dB. Observe the bias

and the root mean square error (RMSE);

2) The number of sampling points was reduced to half of the

previous, and other parameters remained the same as in experiment

1. Observe the RMSE with SNR.

The Cramer-Rao bound (CRB) can be used to indicate the best-

estimated performance, although it is not typically applicable for

biased estimators. It can be expressed by Equation 20
Frontiers in Marine Science 06304
var(f̂ ) ≥ CRB =
3f 2s

2p2N(N2 − 1)SNR
,   (20)

where fs is the sampling frequency. The variance of the Doppler

factor can be obtained through the variance transfer formula.
4.2 Numerical results

As shown in Figure 6, the deviation of the true Doppler factor

by the CUUmethod based on AFC does not exceed 1.1×10-5 when d
is 0.45. In contrast, alternative frequency estimation methods have a

minimal bias of 1.5×10-5 and a maximal bias of 5.3×10-5. It is

noteworthy that the CUUmethod has a bias with a maximum value

that is smaller than the minimum value observed in other frequency

estimation methods.

Figure 7 demonstrates that at a frequency resolution of 1 Hz, the

RMSE of the proposed method is no greater than 1.5×10-5,

significantly lower than 2.9×10-5 observed with other frequency

estimation methods. At a frequency resolution of 2 Hz, the RMSE

for the proposed method is lower than 1.8×10-5, better than 6.0×10-5

for other methods, as shown in Figure 8. In both scenarios, the RMSE

of the AFC-based method is closer to the CR bound, showing the

high accuracy and robustness of the CUU method based on AFC.
4.3 Experimental results

In order to provide further validation for the effectiveness of the

proposed method, Watermark, a widely accessible benchmark for

physical-layer techniques in underwater acoustic communications,
FIGURE 5

Bias of different estimators in the absence of noise.
TABLE 1 Estimation expressions of different methods.

Methods Expressions

Quinn
(Quinn, 1994)

a1 = Real X(k − 1)=X(k)f g, a2 = Real X(k + 1)=X(k)f g, d1 =
a1=(1 − a1),   d2 = a2=(1 − a2)if d1 > 0  and d2 > 0, d̂ = d2
else d̂ = d1 D = d̂ =fcw

Macleod
(Macleod, 1998)

d =
Real(X(k − 1)X(k)* − X(k + 1)X(k)*)

Real(2 X(k)j j2−X(k − 1)X(k)* − X(k + 1)X(k)*)
d̂ =

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 8d2

p
− 1)=(4d) D = d̂ =fcw

Jacobsen
(Jacobsen and
Kootsookos,
2007)

d̂ = Real
X(k − 1) − X(k + 1)

2 X(k) − X(k − 1) − X(k + 1)

� �
D = d̂ =fcw

Candan
(Candan, 2011)

d̂ =
tan (p=N)

p=N
Real

X(k − 1) − X(k + 1)
2 X(k) − X(k − 1) − X(k + 1)

� �
D =

d̂ =fcw

Proposed Dn =
frn − fn
fn

, n = 1, 2…,m D = om
n=1

f 2n

om
n=1f

2
n

Dn
Real denotes the real part.
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FIGURE 6

Variation of bias with respect to SNR for d = 0.45 with a frequency resolution of 2 Hz.
FIGURE 7

Variation of RMSE with respect to SNR for d = 0.45 with a frequency resolution of 1 Hz.
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A

B

C

FIGURE 9

(A) The spectrum of the AFC echo signal; (B) The spectrum of the CW echo signal; (C) The experimental difference-d performance.
FIGURE 8

Variation of RMSE with respect to SNR for d = 0.45 with a frequency resolution of 2 Hz.
TABLE 2 The computational requirements of different methods.

Methods
Complex multipli-

cations (×)
Complex Addi-

tions (+)
Complex multiplications (×)

(N = 128×1024)
Complex Additions (+)

(N = 128×1024)

Quinn (Quinn, 1994) (N/2)*log2N+2 N*log2N 1114114 2228224

Macleod (Macleod, 1998) (N/2)*log2N+5 N*log2N+3 1114117 2228227

Jacobsen (Jacobsen and
Kootsookos, 2007)

(N/2)*log2N+1 N*log2N+3
1114113 2228227

Candan (Candan, 2011) (N/2)*log2N+1 N*log2N+3 1114113 2228227

Proposed (N/2)*log2N N*log2N 1114112 2228224
F
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was employed. This benchmark is based on empirical

measurements of the time-varying impulse response collected at

sea (van Walree et al., 2017).

The Norway-Oslofjord (NOF1) channel with the large available

bandwidth was selected to validate the practical efficacy of underwater

communication. In the single-input single-output (SISO) scenario, the

time-varying impulse response (TVIR) of the transmitted signal

affected by the Doppler effect is obtained, and the signal packet is

retrieved through serial acquisition processes. The signal has been

established with a SNR of 20 dB, a pulse length of 50 ms, a frequency

resolution of 1Hz, and other parameters consistent with the first Monte

Carlo experiment in Section 4.1. Figure 9A demonstrates that due to

the frequency-selective fading of underwater acoustic channels, the

magnitude of each frequency component varies, while the AFC signal

spectrum remains uniformly spaced. By calculating the Doppler shift

based on frequency rather than phase, the impact of multipath effects is

limited. Contrary to conventional methods that primarily focus on

spectral peaks and their adjacent lines while disregarding the remaining

spectrum, our proposed approach considers signals from different

frequencies under the influence of the same Doppler effect, leading

to distinct spectral peaks at various positions on the spectrum. Unlike

the singular spectral peak observed in CW signal circumstance

(Figure 9B), each spectral peak of the AFC signal effectively reflects

the potency of the Doppler effect. The cumulative effect of multiple

measurements leads to the estimation of the Doppler factor aligning

closely with the true value, thereby enhancing the accuracy of

estimation and resulting in improved estimation precision

(Figure 9C). The difference of the CUU method utilizing the AFC

signal is below 3.4×10-6, notably lower than that of the 3.2×10-5

induced by spectral leakage.
4.4 Computational burden

Table 2 shows the calculation scales of the methods. It can be

seen that the computational cost of the proposed algorithm is lower

than that of other frequency estimation methods for single-tone

signals. The proposed method does not require additional complex

multiplication and complex addition, and it achieves a better

Doppler estimation performance. Essentially, this is because the

CUU method makes full use of spectrum information.

5 Conclusion

In this paper, we proposed a novel acoustic broadband signal,

AFC, to estimate the Doppler factor of underwater acoustic

applications. The quantitative relationship between the AFC and

the Doppler factor in the time and frequency domains was derived

theoretically. At the expense of bandwidth, the phonon frequency

shifts of multiple frequency components can be determined by one

measurement, allowing the Doppler factor to be calculated multiple

times simultaneously, resulting in a precise Doppler estimate. The

proposed method maintains a low computational cost and improved

spectral leakage performance by means of CUU. Besides, the

uncertainty can be calculated from a single measurement, not

available with other methods.
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The AFC-based method keeps a bias of less than 1.1×10-5, while

the bias of single-tone signal after performing FFT does not exceed

3.2×10-5 in the absence of noise. In the presence of additive white

Gaussian noise, the bias of the AFC-based CUUmethod is less than

1.1×10-5, significantly lower than the observed bias of 5.3×10-5 with

other estimation methods at a frequency resolution of 1 Hz. The

RMSE of the proposed method is no greater than 1.5×10-5,

significantly lower than 2.9×10-5 observed with other frequency

estimation methods. At a frequency resolution of 2 Hz, the RMSE

for the proposed method is 1.8×10-5, compared to 6.0×10-5 for other

methods. In the SISO scenario of Watermark, The difference of the

CUU method utilizing the AFC signal is below 3.4×10-6, notably

lower than that of the 3.2×10-5 induced by spectral leakage in FFT.

Both numerical simulations and experimental results demonstrate

that the CUU method based on AFC outperforms traditional

frequency estimation methods for single-tone signals in terms of

accuracy and computational efficiency. This introduces a new

platform for acoustic applications and enhances the accuracy of

Doppler estimation.
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A TMSBL underwater acoustic
channel estimation method
based on dictionary
learning denoising
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and Qiang Meng1,2
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2Yunnan Key Laboratory of Unmanned Autonomous System, Yunnan Minzu University,
Kunming, China
The shallow sea underwater acoustic channel exhibits a significant sparse

multipath structure. The temporally multiple sparse Bayesian learning (TMSBL)

algorithm can effectively estimate this sparse multipath channel. However, the

complexity of the algorithm is high, the signal-to-noise ratio (SNR) of shallow-

sea underwater acoustic communication is low, and the estimation performance

of the TMSBL algorithm is greatly affected by noise. To address this problem, an

improved TMSBL underwater acoustic channel estimation method based on a

dictionary learning noise reduction algorithm is proposed. Firstly, the K-Singular

Value Decomposition (K-SVD) dictionary learning method is used to reduce the

noise of the received pilot matrix, reducing the influence of noise on the signal.

Then, the Generalized Orthogonal Matching Pursuit (GOMP) channel estimation

method is combined to obtain a priori information such as the perceptual matrix

and hyperparameter matrix for TMSBL channel estimation; and the noise

variance is obtained by using the null subcarrier calculation instead of

iteratively updating the noise variance in the TMSBL, to improve the estimation

accuracy and reduce the algorithmic complexity. Finally, the TMSBL channel

estimation method is used to estimate the underwater acoustic channels of

different symbols jointly. The simulation results show that the normalized mean

square error of the channel estimation of the improved TMSBL method is

reduced by about 92.2% compared with the TMSBL algorithm, obtaining higher

estimation accuracy; running time is reduced by about 45.6%, and there is also

better performance in terms of the running speed, which provides a reference for

underwater acoustic channel estimation.
KEYWORDS

underwater acoustic channel estimation, temporally multiple sparse Bayesian learning,
K-SVD dictionary learning, underwater sparse channel estimation, orthogonal
frequency division multiplexing
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1 Introduction

Underwater acoustic communication is a crucial means of

transmitting information in the ocean due to its high reliability

and data transmission rates (Xu et al., 2016; Xing et al., 2021b;

Zhang et al., 2021; Zhang et al., 2024). The use of Orthogonal

Frequency Division Multiplexing (OFDM) technology is

widespread in high-speed underwater acoustic communication

due to its effectiveness against frequency-selective fading, efficient

band utilization, robust resistance to multipath propagation, and

straightforward implementation of channel equalization (Jia et al.,

2022). The underwater acoustic channel is considered one of the

most complex channels due to its multipath, time-varying,

frequency-varying, and null-varying characteristics (Xing et al.,

2022; Xing et al., 2023). In the underwater acoustic channel of

shallow seas, reflections and scattering from the seafloor and sea

surface cause significant delay extension and multipath effects.

These effects result in a sparse multipath structure at the

receiving end (Tong et al., 2022; Yang, 2023; Zhang, 2023). The

multipath structure is formed at the receiving end. The shallow sea

underwater acoustic channel’s complex and variable nature

significantly impacts the OFDM communication system (Yin

et al., 2021). To ensure communication quality, it is necessary to

estimate the channel state at the receiving end. The key

characteristic parameters obtained through channel estimation are

used to adjust the signal processing method, which serves as a

crucial basis for achieving channel matching and improving the

quality of signal recovery. This is of great importance in improving

the performance of underwater acoustic OFDM communications in

shallow sea environments.

The underwater acoustic channel exhibits significant sparse

characteristics. However, traditional channel estimation algorithms,

such as Least Square (LS) and Minimum Mean Square Error

(MMSE), fail to leverage the sparsity of the underwater acoustic

channel, necessitating a large number of pilot signals for accurate

channel estimation, resulting in serious occupation of spectral

resources (Meng and Liu, 2023). To achieve accurate channel

estimation that exploits the sparsity of the channel, compressed

sensing techniques are employed for sparse channel estimation

with a large number of zero taps in the time domain response (Wu

and Tong, 2017; Jiang et al., 2021; Meng and Liu, 2023). Matching

Pursuit (MP) is a greedy iterative algorithm widely employed in

compressed sensing for sparse channel estimation. It exhibits higher

estimation accuracy compared to methods such as LS and MMSE

(Cotter and Rao, 2002). Another category of compressed sensing

reconstruction algorithms, including Least Absolute Shrinkage And

Selection Operator (LASSO) (Tibshirani, 1996) and Basis Pursuit

(BP) (Chen et al., 2001), constitutes convex optimization tracking

algorithms grounded in paradigm constraints. They seek the

approximation of sparse signals by converting a non-convex

problem into a solvable convex problem. These algorithms, in

comparison with traditional methods, harness the sparse

characteristics of the underwater acoustic channel, leading to

higher estimation accuracy. However, their performance is

significantly influenced by sparsity selection, and their

computational complexity is high, rendering practical applications
Frontiers in Marine Science 02310
challenging. To enhance the channel estimation technique, we

leverage the priori knowledge of the sparse signal. Introducing the

sparse Bayesian learning class algorithm, based on the Bayesian

criterion, into the sparse channel estimation problem (Chen et al.,

2020; Lyu et al., 2021) yields improved estimation performance and

has been extensively researched.

Algorithms for sparse signal reconstruction using sparse

Bayesian learning have been extensively researched in recent

years (Wipf and Rao, 2004; Wipf and Rao, 2007; Zhang and Rao,

2011). Wipf and Rao, 2004 (Wipf and Rao, 2004) introduced the

Sparse Bayesian Learning (SBL) algorithm for sparse signal

reconstruction in single-measurement models; Subsequently, in

2007 (Wipf and Rao, 2007), they extended it to multi-

measurement models and derived the Multiple Sparse Bayesian

Learning (MSBL) algorithm for sparse signal reconstruction. In

(Zhang and Rao, 2011) the Temporal Sparse Bayesian Learning

(TSBL) algorithm and its extension, the TMSBL algorithm based on

the MSBL algorithm, are derived. Among these algorithms, the

TMSBL algorithm not only leverages the channel sparsity property

but also explores the correlation between channels. It considers the

priori distribution of the channel and incorporates space-time

information, resulting in high channel estimation accuracy.

Consequently, the TMSBL algorithm has found widespread use in

underwater channel estimation (Qiao et al., 2018; Hong et al., 2022).

Consequently, the TMSBL algorithm finds extensive application in

underwater channel estimation. In (Qiao et al., 2018), the TMSBL

algorithm is incorporated into the channel estimation of slow time-

varying underwater acoustic OFDM communication systems.

Correlation is utilized to jointly estimate the channels of several

consecutive blocks. This approach achieves optimal performance in

strongly time-correlated channels and maintains robustness in

weakly time-correlated channels. However, it is more sensitive to

noise, which leads to degraded estimation accuracy and increased

computational complexity in low signal-to-noise ratio scenarios. In

(Hong et al., 2022), singular value decomposition noise reduction is

performed to address the above challenges. Using LS channel

estimation to obtain a priori information such as perception

matrix and hyperparameter matrix of TMSBL for high-precision

and low-complexity underwater acoustic OFDM communication.

However, due to the increased noise sensitivity of the LS channel

estimation method and the limited effectiveness of the singular

value decomposition for noise reduction, the accuracy of the

channel estimation is reduced under low signal-to-noise

ratio conditions.

Dictionary learning algorithms provide effective noise reduction

and are widely used in image denoising, active sonar target

classification, and weak signal detection in underwater acoustic

(Wang et al., [[NoYear]]; Zhu et al., 2020; Xing et al., 2021a). It is

common for existing channel estimation methods to incorrectly

identify noise as channel tap coefficients in environments with a low

signal-to-noise ratio (SNR). This reduces the accuracy of channel

estimation and increases the computational complexity. To address

the limitations of the previously mentioned channel estimation

methods and to account for the sparse multipath structure of the

signal in the shallow sea underwater acoustic channel, we utilize the

dictionary learning algorithm for TMSBL underwater acoustic
frontiersin.org
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channel estimation. As a result, we propose an enhanced TMSBL

underwater acoustic channel estimation method based on the

dictionary learning noise reduction algorithm. Initially, the

enhanced K-SVD dictionary learning algorithm is employed to

reduce the noise of the received pilot matrix, thereby enhancing the

accuracy of channel estimation under low signal-to-noise ratio

conditions. Subsequently, the initialization parameter matrix and

perception matrix of TMSBL are acquired by integrating the GOMP

channel estimation method. This integration alleviates the

limitation of the TMSBL method, where noise is erroneously

estimated as a channel tapping coefficient. Lastly, the null

subcarrier of the OFDM system is utilized to obtain a more

precise noise variance, replacing the step of updating the noise

variance in TMSBL. This modification reduces the complexity of

the TMSBL algorithm and enhances estimation accuracy. The

paper’s contributions can be summarized as follows.
Fron
1. The K-SVD dictionary learning algorithm is employed in

the domain of underwater acoustic communication to

denoise the received signal pilot matrix, thereby

mitigating the impact of noise on channel estimation

accuracy and enhancing the performance of underwater

acoustic OFDM communication systems.

2. The GOMP channel estimation method is employed to

derive the time-domain underwater acoustic channel

impulse response and the initialization and perception

matrices for the TMSBL algorithm, thereby reducing the

number of iterations and the computational complexity of

the TMSBL algorithm. Furthermore, the incorporation of

the priori knowledge addresses the limitation of the TMSBL

method, which is prone to misestimating noise as a channel

tap coefficient. This enhances the overall performance of

channel estimation.
The rest of the article is organized as follows. In Section 2, the

received signal model and the TMSBL channel estimation method

are introduced. Section 3 presents enhanced TMSBL channel

estimation methodologies, including a K-SVD dictionary

learning-based noise reduction technique and a method for

obtaining TMSBL priori knowledge using the GOMP algorithm.

The efficacy of the proposed algorithm is substantiated through

simulations in Section 4. Further validation of the algorithm using

sea trial experimental data is provided in Section 5, demonstrating

its effectiveness in real marine environments. The paper concludes

in Section 6.
2 TMSBL-based underwater acoustic
channel estimation method

2.1 Received signal model

In underwater acoustic communications in shallow seas, signal

propagation is significantly affected by reflections, diffraction, and

scattering from both the sea surface and seafloor. This results in a
tiers in Marine Science 03311
complex multipath structure of the underwater acoustic channel.

The underwater acoustic channel exhibits a significant sparse

characteristic due to signal energy absorption by seawater during

most of the multipath propagation. The mathematical expression

for the channel impact response of the underwater acoustic time-

varying channel is given by (Cheng and Wang, 2022).

h(t, t) =o
L

i=1
hi(t)d

�
t − ti(t)

�
(1)

where h(t) is the channel impulse response at time t, and L is the

multipath number, the hi(t) and ti(t) are denoted as the gain and

delay of the ith path at time t, respectively.

Consider an OFDM system with N subcarriers, L pilots, and

channel coherence time significantly exceeding the OFDM symbol

period. If the impulse response of the channel remains time-

invariant within one OFDM symbol period, (Equation 1) can be

expressed as follows:

h(t) =o
L

i=1
hid (t − ti) (2)

Assuming the cyclic prefix of OFDM symbols exceeds the

maximum multipath delay of the channel, the frequency domain

expression for the OFDM communication system is:

y = XFh + v (3)

where y ∈ CN�1 is the received signal, X ∈ CN�N is the

diagonalization matrix with diagonal elements representing the

transmitted signals. F ∈ CN�M is the DFT matrix, and h ∈ CM�1

is the time domain channel impulse response. The v follows CN
(0, lΙN ) of Gaussian white noise. From the received signal y out of
the pilot signal, the received model of the pilot signal is:

yp = XpFph + vp (4)

where yp ∈ Cp�1 is the received pilot signal, Xp ∈ Cp�p is the

diagonalization matrix with diagonal elements representing the

known pilot signals. Fp ∈ Cp�M is the corresponding DFT matrix

at the pilot position. The system model described in (Equation 4) is

a single-measurement model. A multi-measurement model is

considered: several different OFDM symbols are modeled with

the following expressions:

Yp = XpFpH + Vp = FpH + Vp (5)

Among them. Yp = ½yp,1, yp,2,…, yp,L� ∈ Cp�L represents the

received pilot matrix of L OFDM symbols, and Fp ∈ Cp�M is the

perception matrix, H = ½h1, h2,…, hL� ∈ CM�L.
2.2 TMSBL underwater acoustic
channel estimation

The article uses the TMSBL algorithm (Qiao et al., 2018), using

temporal correlation to jointly estimate (Equation 5) of H the

estimation reconstruction problem. Firstly, the priori probability

of each Hi is modeled as:
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p(H i; gi,Bi) eN(0, giBi),       i = 1,…,M (6)

where Hi is the ith row of H, i.e., the number of channels

tapping coefficients for different OFDM symbols at the same

moment; gi is the nonnegative hyperparameter matrix that controls

the sparsity of each row in H. When gi = 0, H i = 0; Bi is a positive

definite matrix, which represents the temporal correlation structure

among the elements within Hi and can be estimated using the

TMSBL algorithm for the positive definite matrix B. (Equation 6)

can be written as:

p(H i;G ,Bi) =
YM
i=1

p(H i; gi,Bi) (7)

where G is the hyperparameter matrix G = diag(g ) = diag(½g1,
g2,…, gM�T ).

Hi, Obeying the mean Gaussian probability distribution, its

posterior probability can be written as:

p
�
hljyp,l ;G

�
∼ N(ml ,S),       l = 1, 2,…, L (8)

where the mean and covariance can be expressed as:

∑ = s−2FH
p Fp + G (r)−1

� �−1 (9)

M = ½m1,m2,…, mL� = s−2SFH
p Yp (10)

Of these, ml and M are respectively the estimated values of Hi

andH. G (r) is the estimated value of the G update matrix for the first

r iteration of the Expectation Maximization (EM) algorithm. The

hyperparameters are estimated using the EM algorithm. The E-step

update rule of the EM algorithm is given in (Equations 9, 10). The

M-step update rule is given in:

g i =
1
L MiB

−1MH
i + ∑(i, i) (11)

B = 1
Mo

M

i=1

S(i,i)
g i

 !
B + 1

Mo
M

i=1

HH
i Hi

g i
(12)

s 2 = 1
pL ‖Yp −FpH ‖2F + s 2

p Tr
�
FpGFH

p (s 2I +FpGFH
p )

−1
�
(13)

where ‖ � ‖2F denotes the quadratic of the F-parameter of the

vector Tr( � ) is the trace of the matrix. The joint estimation of the

channel impulse response after the iteration of the EM algorithm is

completed Ĥ = M.

(Equation 13) is the updated formula for the noise variance,

which is calculated using the null subcarriers of the OFDM system:

s 2 = E½ Ynj j2� (14)

where Yn is the frequency domain null subcarrier. Using

(Equation 14) to obtain a more accurate noise variance, a more

accurate channel estimation can be obtained. This reduces the

influence of the noise variance by the TMSBL input parameters

such as the number of iterations, the threshold, and the received

frequency-conducting matrix. At the same time, it can reduce the
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TMSBL algorithm for the s2 update step in the TMSBL algorithm,

reducing the complexity of the algorithm.
3 Improved TMSBL channel
estimation method

The conventional TMSBL channel estimation method is

susceptible to misidentifying noise as channel tapping coefficients

in low SNR conditions of underwater acoustic channels, resulting in

reduced channel estimation accuracy. Simultaneously, the increase

in channel length leads to heightened computational complexity.

Furthermore, the TMSBL algorithm inadequately utilizes the

characteristics of the underwater acoustic channel for selecting

the initial parameters of the EM algorithm, leading to excessive

iterations and slower convergence in computation.

Aiming at the limitations of the traditional TMSBL algorithm,

the K-SVD dictionary learning algorithm is used on the receiver

side to perform noise reduction and reconstruction of the received

pilot matrix Yp, and obtains the noise-reduced receiver pilot matrix

Y
0
p, enhancing channel estimation accuracy under low SNR

conditions. Following this, the GOMP algorithm is utilized to

estimate the underwater acoustic channel, acquiring a priori

knowledge for the TMSBL algorithm. This knowledge involves

removing invalid atoms and smaller hyperparameters from the

dictionary. Finally, the TMSBL algorithm, combined with the a

priori knowledge from the GOMP algorithm, conducts joint

channel estimation for different OFDM symbols. The block

diagram of the receiver system based on the improved TMSBL

channel estimation method is depicted in Figure 1.
3.1 K-SVD-based noise reduction of the
received pilot matrix

According to the theory of sparse decomposition, Yp can be

decomposed into Yp = XpFpH + Vp = A(Xs + Xn). Where A ∈
Cp�J is the redundant dictionary matrix, Xs and Xn are the sparse

coefficient matrices corresponding to XpFpH and Vp, respectively.

As the signal is sparse, whereas the noise is not sparse, and the

coefficient values are generally very small, existing only in a finite

number of non-zero coefficients, the approximated signal obtained

by the linear combination of these sparse counterparts of the

atoms contains the vast majority of the information about the

signal, while the vast majority of the noise is discarded, thus

realizing the purpose of noise cancellation. Let X = Xs + Xn, then

Yp = AX. Where X ∈ CJ�L is the sparse coefficient matrix. To

achieve the sparse decomposition of the signal, a suitable dictionary

needs to be constructed. The dictionary learning algorithm is

employed to construct a suitable redundant dictionary to enhance

signal reconstruction.

The K-SVD dictionary learning algorithm is a new dictionary

learning algorithm proposed by Aharon and Elad et al (Aharon

et al., 2006). The primary concept behind the K-SVD algorithm

involves updating a set of atoms in the dictionary along with their
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sparse coefficients simultaneously. Through iterations of updating a

set of atoms within the dictionary, if, when updating any atom, the

remaining atoms remain unchanged, the dictionary is then updated

with the sparse coefficients. ai with no change in the remaining

atoms, the ai new sparse coefficients will be obtained after the

update Xi. When the error reaches the threshold, the whole

dictionary post-sparse matrix is updated. Its solution model is:

   min
A, xif gJi=1o

J

i=1
‖Yp − AX ‖2F   s : t :  ‖ xi ‖  0 ≤ k,   1 ≤ i ≤ J (15)

where ‖Yp − AX ‖2F = ‖Yp −oJ
i=1aix

i
T ‖2F = ‖ (Yp −oi≠Kaix

i
T ) − aKx

K
T ‖2F .

ai denotes the ith atom in the redundant dictionary A, and xiT
denotes the ith row vector of the sparse coefficient matrix X. aK is

the updated atom, and xKT is the sparse solution corresponding to

the updated atom. Then the error matrix of the signal is:

EK = Yp −o
i≠K

aix
i
T (16)

where EK is the error matrix of the signal. At this point the

solution model can be described as:

o
aK ,xKT

‖EK − aKx
K
T‖2

F (17)

To avoid the loss of sparsity in the sparse solution, the EK in the

corresponding xKT non-zero positions is extracted to obtain a new

E
0
K , the corresponding sparse coefficient vector is x

K
T
0, then (17) can

be converted to:

o
aK ,xKT

‖E
0

K − aKx
K
T
0 ‖2F (18)

Then the singular value decomposition algorithm is used to E
0
K

solving:

E
0
K = U∑VT (19)

where U is the left singular matrices, take its first column as the

update atom, i.e., aK = U(�, 1). V is the right singular matrix, take its

first row with the first singular value as the xKT } = S(1, 1)VT (1, �).
Then the corresponding update is obtained as xKT , i.e., by updating
each atom of the redundant dictionary in turn, the optimal sparse
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solution corresponding to each atom can be obtained. When all the

atoms are updated, the updated dictionary and the optimal sparse

coefficient matrix are obtained.

The GOMP algorithm is employed to achieve a sparse

representation of the received pilot matrix, yielding the sparse

coefficient matrix. Following this, the K-SVD dictionary learning

algorithm is applied to mitigate the noise present in the received

signal, resulting in the acquisition of the noise-reduced received

pilot matrix Y
0

p . The specific noise reduction process is shown

in Figure 2.
3.2 A priori knowledge acquisition based
on GOMP channel estimation

Obtaining the time-domain shock response of the underwater

acoustic channel using GOMP channel estimation algorithm

hGOMP. To obtain the a priori knowledge of the TMSBL, the

initial parameters of the EM algorithm are chosen based on the

characteristics of the underwater acoustic channel, effectively

reducing the algorithm’s complexity.

Time-domain impact response of underwater acoustic channel

obtained using GOMP channel estimation algorithm.

hGOMP =  argmin
 h  ‖Y ′

p −Fp,Li
hi ‖ (20)

where Fp,Li
is the perceptual matrix corresponding to the set of

indexes after the ith update of atoms, and hi is the channel estimate

after the ith iteration.

Set the average energy superposition function Q of the channel

to be (Hong et al., 2022):

Q = 1
Lo

L

i=1
hGOMPi (21)

Among them. hGOMPi is the ith column of hGOMP, i.e., the

channel time-domain impulse response of the ith OFDM symbol.

Set the threshold as TQ = amax(Q) where a is the energy

coefficient, determined based on the characteristics of the

underwater acoustic channel and considering the computational

complexity. Compare the channel average energy superposition

function Q and the threshold TQ of the channel:
FIGURE 1

Block diagram of the receiver system based on the improved TMSBL channel estimation method.
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WGOMP(i) =
1,          Q(i) ≥ TQ

0,          Q(i) < TQ

      i = 1, 2,…,M :

(
(22)

whereWGOMP is the hyperparameter vector of TMSBL. When the

channel average energy superposition function Q is greater than the

threshold, indicating that, at this time, the hyperparameter control

channel impulse response is the channel tapping coefficient, WGOMP

= 1; on the contrary, it is considered that the hyperparameter is too

small and its control channel impulse response probability is the

noise, the WGOMP = 0.

Define the initial hyperparameter matrix as G = diag(WGOMP),

whose diagonal elements are hyperparameter vectors WGOMP. Take

the positions G whose diagonal elements are equal to zero as the

indexed set s and eliminate the atoms corresponding to s in the

dictionary matrixFp to obtain the initialized dictionary matrix F
0

p

of the improved TMSBL algorithm.

Finally, the noise-canceled pilot receiver matrix Y
0

p , the initial

hyperparameter matrix G, and the initialized dictionary matrix F
0

p

are substituted into the TMSBL channel estimation method for

underwater acoustic channel estimation.
4 Simulation results and analysis

The simulation to validate the performance of the proposed

algorithm is conducted using the implementation of an underwater

acoustic OFDM communication system. An OFDM symbol

comprises 1024 subcarriers, with 256 designated as frequency-
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conducting subcarriers (utilizing a comb-conducting structure), 30

as null subcarriers, and 738 as data subcarriers. Sixty-five OFDM

symbols are transmitted in each frame, and the signal is modulated

using 16QAM. The specific OFDM parameters are configured as

presented in Table 1.

The simulated channel is generated using the BELLHOP

underwater acoustic channel model to obtain the underwater

acoustic channel impulse response. The sound velocity profile of

the real marine environment, as experimented in the Yellow Sea in

2013, is depicted in Figure 3. This sound velocity profile is imported

into BELLHOP, setting the sound source depth to 10m, the

hydrophone depth to 9m, and the distance between the two to

be 2000m. The seafloor is modeled as an elastic seafloor with

seawater density of 1.5g/cm³, seafloor absorption of 0.5dB, and

the resulting channel impulse response is shown in Figure 4 as

obtained through simulation. The seabed absorption is 0.5dB,

and the sound line grazing angle is [-35°, 35°], leading to

the channel impulse response displayed in Figure 4, obtained

through simulation.

In order to measure the estimation accuracy of the proposed

algorithm, the normalised mean square error (NMSE) of the

channel estimation is defined as:

NMSE = (o
L−1

i=0
‖ bhi − h ‖2F = ‖ h ‖2F )=L (23)

where ĥi denotes the channel estimate of the ith OFDM symbol,

h is the true OFDM underwater acoustic channel impulse response,

and L is the number of OFDM symbols.
FIGURE 2

Flowchart of KSVD dictionary learning algorithm for noise reduction.
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The primary simulated comparison algorithms include LS,

GOMP, TMSBL, and the enhanced TMSBL with the LS priori

knowledge acquisition (LS-TMSBL) (Hong et al., 2022). The

simulation is divided into two main aspects: firstly, the comparison

of the normalized mean square error of the channel estimation to

verify the performance of the channel estimation method; secondly,

the comparison of the time used for the channel estimation to verify

the complexity of the channel estimation method.
4.1 Simulation results and
performance analysis

The proposed algorithm is described as KSVD-GOMP-TMSBL

algorithm for simplicity of expression. The main comparison

algorithms for the simulation are LS, GOMP, TMSBL, and LS-

TMSBL methods, setting the maximum number of iterations rmax =

5000 and the error threshold is thresh = 1� 10−6.
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Figure 5 displays the normalized mean square error plots for

channel estimation using LS, GOMP, TMSBL, LS-TMSBL, and

KSVD-GOMP-TMSBL algorithms. The received pilot matrix was

denoised using the K-SVD dictionary learning method. The energy

coefficient a is set to 0.05, and GOMP sparsity is fixed at 30. It can

be observed from Figure 5 that the LS algorithm, devoid of channel

sparsity utilization, exhibits poor estimation performance. The

GOMP algorithm slightly outperforms the LS algorithm.

The TMSBL algorithm, capitalizing on both the sparse nature of

the channel and the temporal correlation between different symbols,

demonstrates superior performance in channel estimation. The LS-

TMSBL algorithm, incorporating the LS algorithm to acquire a

priori knowledge of the TMSBL algorithm and influenced by the

energy coefficient, exhibits performance slightly lower than the

TMSBL algorithm. The KSVD-GOMP-TMSBL algorithm,

leveraging the K-SVD dictionary learning algorithm for noise

reduction, GOMP to obtain a priori knowledge of the TMSBL,

and null subcarriers to determine noise variance, demonstrates

improved performance compared to the comparison algorithms.

Figure 6 displays the normalized mean square error plots for

channel estimation using LS, GOMP, TMSBL, LS-TMSBL, and

KSVD-GOMP-TMSBL algorithms. No denoising was applied to

the received pilot matrix. The energy coefficient a is set to 0.05,

and GOMP sparsity is fixed at 30. It is evident from Figure 6

that, without noise reduction, the LS algorithm is more

susceptible to noise, leading to a degradation in the performance

of the LS-TMSBL algorithm. In contrast, the TMSBL algorithm

and the KSVD-GOMP-TMSBL algorithm are relatively less

affected by noise. The KSVD-GOMP-TMSBL algorithm improve

its performance by obtaining the null subcarrier through

noise variance.

Overall, the KSVD-GOMP-TMSBL algorithm exhibits

improved channel estimation performance. The use of the K-SVD

dictionary learning algorithm for noise reduction on the received

pilot matrix enables the algorithm to achieve accurate estimation
TABLE 1 OFDM system parameter settings.

parameters numerical

No. of subcarriers (number) 1024

Sampling frequency (kHz) 10

Number of comb pilots 256

Number of empty
subcarriers (number)

30

OFDM symbol duration (ms) 102.4

Cyclic prefix duration (ms) 25.6

Number of symbols 65

mapping method 16QAM

Training symbolic numbers 1
FIGURE 3

Velocity of acoustic profile.
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results even at low SNR. The algorithm’s performance is further

enhanced by obtaining precise noise variance through null

subcarriers instead of iteratively updating the noise variance.

Additionally, the algorithm demonstrates some improvement in

estimation performance even without noise reduction processing,

showcasing its ability to mitigate certain noise interferences. The

factors influencing the KSVD-GOMP-TMSBL algorithm are

subsequently analyzed from various perspectives.

First, discuss the impact of the dictionary learning noise

reduction method on the algorithm’s performance. Figure 7

shows the lofar plot (left) of the received pilot matrix at an SNR

of -10dB and the lofar plot (right) of the received pilot matrix after

noise reduction using dictionary learning. It is clear that the lofar

plots are significantly clearer after noise reduction. The SNR of the

received pilot matrix before noise reduction is -10.28dB, and after
Frontiers in Marine Science 08316
noise reduction, it improves to 2.36dB. This demonstrates the

superior noise reduction effect of the dictionary learning

algorithm on the received matrix.

In Figure 8, compare the effectiveness of noise reduction

between the dictionary learning algorithm and the singular value

decomposition (SVD) noise reduction method. The figure

demonstrates the impact of two noise reduction methods on the

performance of both the TMSBL and GOMP-TMSBL algorithms.

From Figure 8, the dictionary learning noise reduction method

significantly improves channel estimation in both algorithms

compared to the singular value decomposition method. For the

GOMP-TMSBL algorithm, the NMSE of channel estimation under

the dictionary learning noise reduction method is 0.0566,

representing an almost tenfold decrease compared to the singular

value decomposition noise reduction method. This demonstrates
FIGURE 5

Channel estimation error with K-SVD dictionary learning noise reduction.
FIGURE 4

Channel impulse response.
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that the dictionary learning noise reduction method is highly

effective in noise reduction.

Figure 9 compares the channel estimation error of the KSVD-

GOMP-TMSBL algorithm with other comparison algorithms,

without noise reduction processing, to investigate the impact of

dictionary learning noise reduction algorithms on the performance

of channel estimation methods. As shown in Figure 9, the

estimation error of the GOMP-TMSBL algorithm is 6.616, while

the estimation error of the KSVD-GOMP-TMSBL algorithm is
Frontiers in Marine Science 09317
0.5973 at a signal-to-noise ratio of -10 dB. The estimation error of

the KSVD-GOMP-TMSBL algorithm is reduced by approximately

91.1% compared to the GOMP-TMSBL algorithm. This indicates

that the performance of the channel estimation algorithm is

improved by performing noise reduction on the received pilot

matrix using the dictionary learning algorithm.

Next, discuss the impact of the energy coefficient (a) on the

KSVD-GOMP-TMSBL algorithm. The KSVD-GOMP-TMSBL

algorithm in the a value will affect the size of the threshold and,
FIGURE 6

Channel estimation error without noise reduction processing.
FIGURE 7

Lofar comparison figure of receive pilot matrix before(left) and after(right) noise reduction.
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consequently, the hyperparameter matrix. When the a value is too

small, the threshold becomes insufficient, leading to noise being

misestimated as channel tapping coefficients, thereby affecting the

accuracy of channel estimation. Conversely, when the a value is too

large, the threshold becomes excessive, causing real but smaller

channel tapping coefficients to be mistaken as noise, thus affecting

the algorithm’s performance. The chosen value of a significantly

impacts the performance of the KSVD-GOMP-TMSBL algorithm.

Figure 10 shows the energy coefficient a channel estimation error

when different values are taken, where the GOMP algorithm

sparsity is taken to be 30. From the figure, it can be observed that

when the 0:01 ≤ a ≤ 0:10 the estimation errors of the KSVD-

GOMP-TMSBL algorithms are relatively close, both achieve a

better performance. When a = 0:15, the estimation performance

of the KSVD-GOMP-TMSBL algorithm is closer to that when a
Frontiers in Marine Science 10318
takes the value in the range [0:01 e 0:10]. However, as the threshold

is critical at a = 0.15, confusion between channel tapping

coefficients and noise can arise, which affects the algorithm’s

stability, exhibiting significant fluctuations when the signal-to-

noise ratio is 11dB. For a > 0:15, the estimation performance of

the KSVD-GOMP-TMSBL algorithm is poorer, and it is slightly

inferior to the TMSBL algorithm when the signal-to-noise ratio

reaches a certain value. Therefore, to ensure optimal channel

estimation performance and algorithm stability, the value of a
should be in the range of [0:01e 0:10].

The performance of the conventional GOMP algorithm is

notably influenced by sparsity. Figure 11 illustrates the channel

estimation error of the GOMP algorithm with varying sparsity

values, with the energy coefficient (a) set to 0.05. It is evident from

the figure that the subpar channel estimation performance when the
FIGURE 8

Channel estimation error with different noise reduction methods.
FIGURE 9

Channel estimation error with and without noise reduction.
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sparsity is 5 is attributed to the multipath complexity of the shallow

sea environment. In such an environment, where the number of

propagated multipaths is higher, opting for a small sparsity value

may erroneously set the channel’s tapping coefficient to 0 when

deriving hyperparameters from the a priori knowledge of the

TMSBL. This leads to a biased channel estimation. The

performance of the KSVD-GOMP-TMSBL algorithm is more

consistent when the sparsity is set to the other five values, all of

which surpass the TMSBL algorithm, enabling superior estimation

performance. Thus, the KSVD-GOMP-TMSBL algorithm only

needs to adopt a larger sparsity value, as the algorithm is

minimally affected by the specific value of sparsity. Consequently,

the performance of the KSVD-GOMP-TMSBL algorithm is not

influenced by the sparsity chosen by the GOMP algorithm.
Frontiers in Marine Science 11319
The influence of noise variance calculation methods on the

performance of the TMSBL algorithm and the KSVD-GOMP-

TMSBL algorithm is discussed below. Figure 12 illustrates the

channel estimation errors of the KSVD-GOMP-TMSBL algorithm

employing two noise variance calculation methods. At an SNR of

-10 dB, the NMSE of the channel estimation for the KSVD-GOMP-

TMSBL algorithm is 1.058 when the noise variance is computed

through iterative updating using (Equation 13). Conversely, the

NMSE is reduced to 0.5579 when the noise variance is determined

using the null subcarrier in conjunction with (Equation 14).

Compared to the previous method, employing null subcarriers to

acquire the noise variance diminishes the NMSE of the channel

estimation of the KSVD-GOMP-TMSBL algorithm by

approximately 47.27%. It is evident that utilizing the null
FIGURE 10

Channel estimation error for different energy coefficients.
FIGURE 11

NMSE for different sparsities.
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subcarrier to determine noise variance in the OFDM system can

enhance the performance of the KSVD-GOMP-TMSBL algorithm

and improve the accuracy of channel estimation.

In the following sections, the proposed algorithm is compared

with other methods. Figure 13 illustrates the NMSE of various

channel estimation methods. The SBL method (Wipf and Rao,

2004) addresses the multi-measurement model by sequentially

processing columns to estimate the channel. The TMSBL method

(Qiao et al., 2018) leverages temporal correlation between channels

to address the multi-measurement model. The SVD-LS-TMSBL

method (Hong et al., 2022) utilizes SVD to reduce noise, LS to

acquire a priori knowledge for the TMSBL algorithm, and TMSBL

to achieve joint channel estimation. The figure illustrates that the

SBL method exhibits the highest NMSE, which can be attributed to

its failure to leverage the correlation between the channels. In
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contrast, TMSBL demonstrates superior channel estimation

accuracy compared to the SBL algorithm due to its ability to

capitalize on the temporal correlation between the underwater

acoustic channels. The SVD-LS-TMSBL algorithm achieves lower

NMSE in channel estimation than the TMSBL algorithm because it

integrates singular value decomposition for noise reduction and

employs the LS method to acquire the priori knowledge for the

TMSBL algorithm. The KSVD-GOMP-TMSBL algorithm employs

K-SVD dictionary learning for noise reduction, with a priori

knowledge for the TMSBL algorithm obtained through the

GOMP algorithm. This approach effectively addresses the

limitations of the SVD-LS-TMSBL algorithm, where the LS

channel estimation method is more sensitive to noise, and the

noise reduction capability of SVD is suboptimal in low SNR

environments, leading to reduced channel estimation accuracy.
FIGURE 12

Channel estimation errors calculated with different noise variances.
FIGURE 13

NMSE for different channel estimation methods.
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These results demonstrate that the KSVD-GOMP-TMSBL method

achieves superior channel estimation performance compared to the

other algorithms. It can be observed that the proposed algorithm is

capable of effectively reducing the impact of noise on the TMSBL

algorithm, thereby enhancing the accuracy of channel estimation in

OFDM communication systems.

The subsequent analysis centers on the influence of the KSVD-

GOMP-TMSBL algorithm on the performance of the OFDM

communication system. Figure 14 illustrates the bit error rate

(BER) of various channel estimation methods, suggesting that the

performance of the OFDM communication system is improved by

the KSVD-GOMP-TMSBL algorithm. With an increase in SNR, all

five channel estimation methods represented in the figure

demonstra te a reduct ion in the BER of the OFDM

communication system. At an SNR of 15 dB, the BERs for the LS,

GOMP, TMSBL, LS-TMSBL, and KSVD-GOMP-TMSBL

algorithms are 6.2%, 5.7%, 5.8%, 5.3%, and 4.5%, respectively. In

comparison to the benchmark algorithms, the BER of the KSVD-

GOMP-TMSBL algorithm decreases by at least approximately

15.1%. Based on the aforementioned analysis, the KSVD-GOMP-

TMSBL algorithm contributes to the enhancement of the OFDM

communication system’s performance.

Table 2 presents the estimation errors of various channel

estimation methods under identical signal-to-noise ratio

conditions. The results clearly indicate that the estimation

accuracy of the KSVD-GOMP-TMSBL algorithm is markedly

improved compared to other methods. At a signal-to-noise ratio

of -10 dB, the channel estimation error of the KSVD-GOMP-

TMSBL algorithm decreases by around 96.6%, 95.4%, 92.2%, and

92.1% compared to the LS, GOMP, TMSBL, and LS-TMSBL

channel estimation methods, respectively. The estimation error of

the KSVD-GOMP-TMSBL algorithm similarly decreases across

other signal-to-noise ratio values. This confirms the significant

enhancement in channel estimation accuracy achieved by the

KSVD-GOMP-TMSBL algorithm.
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4.2 Algorithm complexity analysis

The following section will analyze the convergence and

convergence rate of the KSVD-GOMP-TMSBL algorithm.

Figure 15 illustrates the NMSE of the TMSBL and KSVD-GOMP-

TMSBL algorithms for varying numbers of iterations at a signal-to-

noise ratio (SNR) of -10 dB. It can be observed that both algorithms

demonstrate convergence as the number of iterations increases. The

KSVD-GOMP-TMSBL algorithm reaches convergence at 7

iterations, while the TMSBL algorithm reaches convergence at 26

iterations. The results demonstrate that the KSVD-GOMP-TMSBL

algorithm exhibits a faster convergence rate than the TMSBL

algorithm. It has been demonstrated that the integration of the

KSVD-GOMP-TMSBL algorithm for noise reduction based on a

KSVD dictionary and the utilization of GOMP to derive the prior

knowledge of the TMSBL algorithm can effectively reduce the

number of iterations of the TMSBL algorithm and accelerate the

convergence speed.

The KSVD-GOMP-TMSBL algorithm is primarily composed of

three key components: KSVD dictionary learning for noise

reduction, a priori knowledge acquisition based on GOMP

channel estimation, and TMSBL algorithm channel estimation.

The KSVD dictionary learning technique for noise reduction

incorporates GOMP sparse coding and dictionary updating. The

computational complexity of GOMP sparse coding is O(kpJL), and

that of dictionary updating is O(pJL(L + 1)). Consequently, the

computational complexity of KSVD dictionary learning noise

reduction is O(pJL(k + L + 1)). The computational complexity of

acquiring a priori knowledge through GOMP channel estimation is

O(kpJL +ML). The computational complexity of TMSBL channel

estimation is O(N(M2p + L4 + L2M)), where N represents the

number of iterations. In conclusion, the principal computational

complexity of the KSVD-GOMP-TMSBL algorithm is O(pJL(k +

L + 1) +ML + N(M2p + L4 + L2M)). It can be observed that the

complexity of the proposed algorithm is predominantly dictated
FIGURE 14

BER for different channel estimation methods.
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by the TMSBL channel estimation component. The computational

complexity of the TMSBL algorithm is primarily driven by the value

of N, especially when the number of iterations is substantial, which

may result in a significant increase in the algorithm’s overall

complexity. The KSVD-GOMP-TMSBL algorithm employs

GOMP to derive the initial hyperparameter matrix and the

simplified dictionary matrix. This process is analogous to the

iterative updating in TMSBL during the intermediate phase,

leading to a reduction in the number of iterations and an

acceleration of the convergence process. This is corroborated by

the results shown in Figure 15. These findings demonstrate that the
Frontiers in Marine Science 14322
KSVD-GOMP-TMSBL algorithm effectively reduces the

computational complexity of the TMSBL algorithm.

The KSVD-GOMP-TMSBL algorithm utilizes the GOMP

channel estimation algorithm to derive the time-domain impulse

response hGOMP of the underwater acoustic channel. It incorporates

a priori knowledge from the TMSBL and leverages the

characteristics of the underwater acoustic channel to determine

the initial parameters of the EM algorithm. This approach can

effectively reduce the complexity of the algorithm. Utilizing the null

subcarrier in conjunction with (Equation 14) to calculate the noise

variance, instead of iteratively updating with (Equation 13), can
FIGURE 15

NMSE of TMSBL algorithm and KSVD-GOMP-TMSBL algorithm at different numbers of iterations.
TABLE 2 Estimation errors of different channel estimation methods.

Channel estimationmethods SNR (dB)
estimation

error
Channel estimationmethods

SNR
(dB)

estimation
error

LS

-10

17.2500 LS

5

0.5384

GOMP 12.7900 GOMP 0.4062

TMSBL 7.5060 TMSBL 0.2417

LS-TMSBL 7.4570 LS-TMSBL 0.2160

KSVD-GOMP-TMSBL 0.5873 KSVD-GOMP-TMSBL 0.0165

LS

-5

5.5200 LS

10

0.1687

GOMP 4.2530 GOMP 0.1292

TMSBL 2.4120 TMSBL 0.0779

LS-TMSBL 2.4120 LS-TMSBL 0.0623

KSVD-GOMP-TMSBL 0.1462 KSVD-GOMP-TMSBL 0.006

LS

0

1.7420 LS

15

0.054

GOMP 1.3590 GOMP 0.042

TMSBL 0.7897 TMSBL 0.0253

LS-TMSBL 0.7574 LS-TMSBL 0.0166

KSVD-GOMP-TMSBL 0.0556 KSVD-GOMP-TMSBL 0.0018
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theoretically decrease the number of iterations and thus simplify the

complexity of the system. The computational complexity of the

KSVD-GOMP-TMSBL algorithm will be subsequently analyzed by

examining the algorithm ’s running time. The hardware

configuration for the simulation comprises a Core i5 Intel

processor at 2.3GHz with 12GB of RAM.

Figure 16 illustrates the comparison of the running time among

various channel estimation methods. It is evident that the TMSBL

algorithm exhibits the highest running time. The LS a priori TMSBL

method demonstrates a lower running time compared to the

TMSBL algorithm. This is attributed to the utilization of the LS

algorithm to acquire a priori knowledge for the TMSBL algorithm,

thereby reducing its overall complexity. The KSVD-GOMP-TMSBL

Algorithm, employing K-SVD Dictionary Learning, the

incorporation of a noise reduction algorithm, and utilizing the

GOMP algorithm for acquiring a priori knowledge of the TMSBL

algorithm, diminishes the number of iterations and decreases the

running time in comparison to the TMSBL algorithm and the LS-

TMSBL algorithm. At a signal-to-noise ratio of -10 dB, the running

time of TMSBL is 52.71s, the LS a priori TMSBL method records a

running time of 40.3s, and the KSVD-GOMP-TMSBL algorithm

demonstrates a running time of 28.66s. In comparison to the

preceding two methods, the running time diminishes by

approximately 45.63% and 28.89%, respectively. Although the

complexity of the KSVD-GOMP-TMSBL algorithm remains

relatively high compared to channel estimation methods such as

LS and GOMP, Figure 9 indicates that the KSVD-GOMP-TMSBL

algorithm exhibits superior channel estimation accuracy. Overall,

the computational complexity of the KSVD-GOMP-TMSBL

algorithm is diminished in comparison to both the TMSBL

algorithm and the LS-TMSBL algorithm.

Table 3 illustrates the running time of various channel

estimation methods under identical SNR conditions. As evident

from Table 3, the running time of the KSVD-GOMP-TMSBL

algorithm decreases in comparison to both the TMSBL and LS-
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TMSBL algorithms. At a signal-to-noise ratio of 0 dB, the running

time of the KSVD-GOMP-TMSBL algorithm decreases by

approximately 50.3% compared to TMSBL and 33.9% compared

to LS-TMSBL algorithms. The running time of the KSVD-GOMP-

TMSBL algorithm also decreases at different signal-to-noise ratio

values. This indicates a reduction in the computational complexity

of the KSVD-GOMP-TMSBL.
5 Sea trial data validation

To validate the feasibility of the proposed algorithm, we utilized

data obtained from sea trials in a specific maritime area for

verification. For the offshore experiment, the sound source

emission device UW350 was positioned at a depth of 5m. The

pilot signal utilized was a 200-600Hz broadband long pulse signal

with a sampling frequency of 10kHz, and the average in-band

signal-to-noise ratio was -0.02dB. Based on GPS data, the distance

between the transmitting ship and the receiving ship was calculated

as 4672m. The receiving ship positioned the hydrophone in the

seawater at a depth of 24m, and the depth of the experimental sea

was measured at 25.5m. The depths of the mentioned equipment

and seawater were measured by depth sensors.

Figure 17 depicts the channel estimation results obtained

through the application of the KSVD-GOMP-TMSBL algorithm.

The illustration reveals the relatively stable structure of the shallow-

sea underwater acoustic channel, characterized by concentrated

channel energy on a few paths, demonstrating sparse characteristics

that manifest as a sparse multipath structure.

Figure 18 illustrates the received BER for various channel

estimation methods. The sparsity of the GOMP algorithm is set

to 20, the energy coefficient of the LS-TMSBL algorithm is set to

0.05, and the sparsity of the KSVD-GOMP-TMSBL algorithm is set

to 20, with an energy coefficient of 0.05. As depicted in Figure 16,

the BER of the LS algorithm and GOMP algorithm is the highest
FIGURE 16

Running time of different channel estimation methods.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1362416
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xing et al. 10.3389/fmars.2024.1362416
among the considered algorithms. The LS algorithm is notably

influenced by noise, leading to a high BER. Meanwhile, GOMP is

extremely sensitive to sparsity, and the actual sparsity of the channel

in the real environment is unknown, contributing to a high BER for

the GOMP algorithm. The BER of both the TMSBL algorithm and

the LS-TMSBL algorithm is lower than that of the LS algorithm and

GOMP algorithm. In comparison to the aforementioned four

algorithms, the BER of the KSVD-GOMP-TMSBL algorithm is

lower, further validating its performance.

Figure 19 depicts the runtime of different channel estimation

methods. It is evident from the figure that the TMSBL algorithm

and the LS-TMSBL algorithm have the longest runtime,

approximately 15 seconds. The KSVD-GOMP-TMSBL algorithm

boasts a runtime of approximately 11 seconds, marking a reduction

of about 26.7% compared to the two preceding algorithms. The LS

algorithm and the GOMP algorithm demonstrate the shortest

running time; however, as shown in Figure 16, the KSVD-

GOMP-TMSBL algorithm outperforms both the LS algorithm
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and the GOMP algorithm in terms of BER. The superiority of the

KSVD-GOMP-TMSBL algorithm in running time is evident.

Table 4 provides the average BER and average runtime for

different channel estimation methods. The average BER of different

channel estimation methods is higher due to a lower average in-

band SNR, and no channel coding is applied. However, it is evident

that the KSVD-GOMP-TMSBL algorithm exhibits a lower average

BER compared to the comparison algorithms. The KSVD-GOMP-

TMSBL algorithm demonstrates the shortest runtime among the

three channel estimation methods with a closer BER. This indicates

that the KSVD-GOMP-TMSBL algorithm performs effectively in

reducing both system BER and system complexity.
6 Conclusion

The estimation of underwater acoustic channels using the

TMSBL algorithm in shallow sea environments is challenged by
FIGURE 17

Channel estimation results.
TABLE 3 Running time of different channel estimation methods.

Channel estimation
methods

SNR
(dB)

Running time (s)
Channel estima-
tion methods

SNR
(dB)

Running time (s)

TMSBL

-10

52.71 TMSBL

5

10.48

LS-TMSBL 40.42 LS-TMSBL 8.02

KSVD-GOMP-TMSBL 28.66 KSVD-GOMP-TMSBL 4.96

TMSBL

-5

28.45 TMSBL

10

6.54

LS-TMSBL 21.91 LS-TMSBL 4.58

KSVD-GOMP-TMSBL 15.6 KSVD-GOMP-TMSBL 2.98

TMSBL

0

17.37 TMSBL

15

3.69

LS-TMSBL 13.08 LS-TMSBL 2.65

KSVD-GOMP-TMSBL 8.64 KSVD-GOMP-TMSBL 1.83
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high computational complexity, and the algorithm’s performance is

significantly affected by the signal-to-noise ratio. The article

proposes an improved channel estimation method for the

temporal multiple sparse Bayesian learning OFDM underwater

acoustic communication system. The K-SVD dictionary learning

algorithm is employed to reduce noise in the received pilot matrix.

Simultaneously, the null subcarrier is utilized to obtain a more

accurate noise variance, thereby reducing the computational

complexity of the algorithm and enhancing its noise immunity.

The method employs the GOMP channel estimation algorithm to

obtain the time-domain impulse response of the underwater

acoustic channel. It acquires a priori knowledge of the TMSBL

and selects the initial parameters of the EM algorithm based on the
FIGURE 19

Running time of different channel estimation methods.
FIGURE 18

BER for different estimation methods.
TABLE 4 Comparison of average BER and average runtime of different
channel estimation methods.

Channel
estimation
methods

Average
BER

Average running
time (s)

LS 0.2109 0.0054

GOMP 0.2235 0.1672

TMSBL 0.1888 15.5599

LS-TMSBL 0.1889 15.3406

KSVD-GOMP-TMSBL 0.1820 11.5221
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characteristics of the underwater acoustic channel, thereby

enhancing the accuracy of channel estimation. Simulations

indicate that at a signal-to-noise ratio of -10 dB, the KSVD-

GOMP-TMSBL algorithm reduces the NMSE of channel

estimation by 92.2% compared to the TMSBL algorithm,

significantly improving estimation accuracy. Furthermore, the

running time is reduced by 45.6%, thereby accelerating the

convergence of the TMSBL algorithm and reducing its

computational complexity. The validation with experimental data

from the sea trials demonstrate that the proposed algorithm has a

lower impact on the signal-to-noise ratio compared to traditional

channel estimation algorithms, and exhibits strong robustness. It

achieves accurate estimates even in low signal-to-noise conditions

in shallow water and operates at high speed.

The KSVD-GOMP-TMSBL algorithm effectively addresses the

problems associated with low estimation accuracy and high

computational complexity in the estimation of acoustic channels

in shallow water under the conditions of low signal to noise ratio.

This algorithm serves as a reference for estimating the acoustic

channel in shallow water. Although the algorithm can effectively

improve the performance of channel estimation, the reliance on

pilot signals means that their quantity will influence the algorithm’s

performance. Therefore, the next step is to explore channel

estimation methods that require fewer pilot signals to further

enhance robustness.
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