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DOA estimation of
underwater acoustic co-
frequency sources for the
coprime vector sensor array

Xiao Chen?, Hao Zhang>*, Yong Gao' and Zhen Wang*

‘Department of Electronic Engineering, Ocean University of China, Qingdao, China, 2Department of
Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada

A coprime array with fewer sensors can achieve the same resolution as a uniform
linear array. However, when detecting co-frequency targets, there can be
prominent false alarms due to overlaps between the main and grating lobes of
subarrays. This study proposes a direction-of-arrival (DOA) estimation method to
obtain the co-frequency target directions from high grating lobes. The method
utilizes joint processing of sound pressure and vibration velocity data from vector
hydrophones of a coprime vector hydrophone array and designs joint-cross
terms (JCTs) using channel combinations. Based on JCTs, we establish a
characteristic data point identification algorithm. The method in this paper can
stably and accurately acquire co-frequency target directions from high grating
lobes without decoherence operation. Simulation results demonstrate that the
proposed algorithm achieves accurate DOA estimation even with reduced
signal-to-noise ratio (SNR) and fewer data points. Additionally, a sea
experiment confirms the rationality and efficiency of the proposed algorithm,
providing new ideas for co-frequency source detection using coprime vector
sensor arrays.

KEYWORDS

direction-of-arrival (DOA) estimation, co-frequency sources, coprime vector sensor
array, sound pressure and vibration velocity joint processing, vector hydrophone

1 Introduction

Direction-of-arrival (DOA) estimation is an essential aspect of array signal processing
that holds immense significance in multiple fields, including acoustics, radar, and wireless
communications (Zhang et al., 2022; Xie et al., 2023; Zhang et al., 2023). Classic techniques
for DOA estimation involve subspace theory and typically utilize methods such as multiple
signal classification (MUSIC) (Schmidt, 1986) and estimating signal parameters via
rotational invariance techniques (ESPRIT) (Roy and Kailath, 1989). In these algorithms,
uncorrelated incident signals are assumed, and coherent signals will fail due to the
covariance matrix’s rank deficit. To handle coherent signal situations, several techniques
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have been suggested, such as spatial smoothing (SS) (Pillai and
Kwon, 1989) and forward/backward SS (FBSS) (Shan et al., 1985).
The SS method achieves DOA estimation of coherent signals but at
the cost of decreasing array aperture. The FBSS method can
enhance estimation accuracy but does not fully address signal
decoherence. Furthermore, these techniques typically consider
ULAs, with sparse linear arrays being less commonly employed.

Coprime line arrays (CLAs) offer a systematic array setup beyond
Nyquist sampling while minimizing mutual coupling between array
elements (Vaidyanathan and Pal, 2010; Vaidyanathan and Pal, 2011;
Adhikari et al,, 2013; Zhang et al., 2013; Tan et al., 2014; Adhikari and
Buck, 2015; Di Martino and Iodice, 2017; Qin et al.,, 2017; Zhou et al.,
2017; Alawsh and Mugqaibel, 2018; Mei et al,, 2018; Adhikari, 2019;
Moghadam and Shirazi, 2019; Alawsh and Mugqaibel, 2020; Alawsh and
Mugqaibel, 2021; Moghadam and Shirazi, 2022). The research on DOA
estimation of the coprime array is mainly carried out from two aspects.
On the one hand, it is implemented from the physical array domain. On
the other hand, it is achieved in the virtual array domain. For processing
the physical array elements, a DOA estimation method utilizes a
decomposed CLA and solves a joint covariance matrix optimization
problem. The method enables the reconstruction of the interference-
plus-noise covariance matrix and weight vector computation for the
minimum variance distortionless response (MVDR) beamformer that
minimizes variance distortion (Zhou et al., 2016; Zhou et al., 2017). The
DOA estimation in the physical array domain suffers from high grating
lobes caused by the intersensor spacing, which is greater than £ (where A
is the wavelength of the signal), and many methods have been
investigated in order to reduce the effect of grating lobes. For scalar
CLAs, Product and Min algorithms were proposed to calculate the signal
spatial power spectral density (PSD) and resolve the grating lobe
problems (Adhikari and Buck, 2017). The array factors can be
established based on a uniform linear array for single-target direction
estimation. The array factors should satisfy that the beam response of the
uniform linear array has the opposite amplitude with one subarray of the
CLA (Liu and Buck, 2015). Extending the coprime array is also a way to
settle the grating lobe matters. Some methods have been suggested to
extend CLAs by changing the positions of grating lobes and sidelobes of
the beam output for two coprime subarrays (Adhikari et al, 2013;
Adhikari et al, 2014; Chen et al, 2023). The methods above for
suppressing grating lobes are developed when the signals are
incoherent. In the virtual array domain, the investigation of the
coprime vector sensor array has received more attention. Nowadays,
DOA estimation for coprime vector sensor arrays has already been
developed in the radar field. A six-sensor coprime electromagnetic
vector-sensor (EMVS) array (Fu et al, 2021) was used in a new
method. The method involved a nuclear norm minimization (NNM)
problem to create an extended covariance matrix for DOA information.
Then, the issue of DOA estimating in a two-dimensional space was
examined for a multiple-input multiple-output (MIMO) radar with
coprime EMVS arrays operating in a bistatic configuration (Yang
et al, 2021). However, these methods are used to process uncorrelated
signals for the coprime vector sensor array, while coherent signals are less
considered in the application. Moreover, the main advantage of these
algorithms in the radar field is the high degree of freedom for DOA
estimation. For underwater array target detection, such a high degree of
freedom is not an urgent need to be achieved.
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In underwater signal detection, vector hydrophone linear arrays
are often used. Each vector hydrophone can be composed of
hydrophone and velocity sensors. Owing to the frequency-
independent dipole directivity of the vector hydrophone, a vector
hydrophone linear array has similar performance but with a smaller
array aperture compared with a sound pressure array. Moreover,
vector hydrophone arrays have attracted wide attention for their
left-right discrimination, which acoustic pressure arrays cannot
provide (Hawkes and Nehorai, 1998). Furthermore, when the
signals of vibration velocity and sound pressure are combined,
the combination holds strong anti-isotropic noise ability (Santos
et al.,, 2011; Felisberto et al., 2016; Felisberto et al., 2018). As for
practical applications, fulfilling coprime array configuration in
underwater vector sensor arrays is a recently new attempt (Chen
et al., 2023). Moreover, the issue about DOA estimation of co-
frequency signals for underwater coprime vector sensor array is still
expected to be addressed.

When the target is incoherent, the array will output high grating
sidelobes but not exceed the magnitude of the output in the direction
where the targets are located, and this issue has been studied. However,
when the targets are co-frequency, overlapping high grating sidelobes
can cause higher array output than the magnitudes of the target
directions. As a result, the actual targets may be obscured, and the
DOA estimation performance will deteriorate. In this paper, we
propose an algorithm that utilizes a coprime vector hydrophone
array to achieve DOA estimation of two co-frequency signals. We
aim to address the issue of concealed targets due to high grating lobes.
Thus, the target directions can be identified accurately from the high
grating lobes, thereby avoiding false alarms. To enhance robustness, we
employ the conventional beamformer (CBF) based on the entire
coprime array as the preprocessing method. Joint-cross terms (JCT's)
are constructed based on the vector hydrophone subarrays, and the
channel combinations of vector hydrophones are utilized in the
algorithm. Additionally, we design a characteristic data point
identification method based on JCTs. Unlike existing techniques, the
proposed method does not perform spatial smoothing, but it is highly
effective in processing coherent signals with the same frequency.
Simulation results and experimental data analysis validate the
effectiveness of the proposed algorithm. The paper’s contributions
can be summarized as follows.

1. Firstly, the paper analyzes the cause of the high grating lobes
in coprime vector sensor arrays when two co-frequency
signals are present. JCTs are constructed using the
characteristics of coprime arrays and vector hydrophones,
which imply the DOA information.

2. Secondly, a DOA estimation method based on
characteristic data point identification algorithm using
JCTs is designed, which achieves stable extraction of co-
frequency targets’ directions.

This paper is organized as follows. In Section 2, we establish the
mathematical signal model of the coprime vector sensor array and
attain the array beam output. Next, we advance the situation in
which strong grating lobes appear and present an example. In
Section 3, we present the DOA estimation method. The DOA
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estimation method based on characteristic data point identification
is introduced based on JCTs to achieve the direction extraction. We
validate the method through simulation in Section 4 and
experimental data processing in Section 5. Finally, we summarize
the article in Section 6.

Notations: The uppercase bold characters denote matrices,
while their lowercase counterparts denote vectors. (-)*, (-)¥, and
()T represent the complex conjugate, conjugate transpose, and
transpose, respectively. bmI stands for the unit matrix. ®
represents the Kronecker product.

2 Co-frequency signals model

An underwater acoustic vector sensor linear array consists of
two sparse uniform vector sensor linear subarrays with M and N
physical sensors, respectively. The values of M and N are coprime.
The first subarray containing M sensors is spaced apart by Nd,
whereas Md spaces apart the second subarray containing N sensors.
Here, d = /2 represents the intersensor unit spacing, where A
indicates the wavelength of the narrowband signal received by the
array. With two subarrays sharing the first sensor, the other sensors
of each subarray are arranged according to the original structure,
and the array configuration is represented in Figure 1 and Equation

D.
S={Mnd,0<n<N-1}U{Nmd,0<m<M-1} (1)

Assuming that the far-field narrowband co-frequency coherent
signal impinges on the coprime vector hydrophone from the
direction 6, the received signal can be modeled as:

X() =[x, (8), %, (1), -+ X300p5n-1) (D] T
= a(6y) @ u(6,)z(t) + N(t)

2

where. denotes the signal waveform vector and N(t) = [n] (£),
n3 (1), -+ myprn-n(D]T ~ CN'(0,071) denotes statistically
independent Gaussian noise component with 67, where o7 is the
noise power. Here, n;(t) = [n,(t), nvx(t),n,,y(t)]T,i= 1,2,-M+N

10.3389/fmars.2023.1211234

—1and n,(t), n,(t), and n,,(t) denote the pressure component and
the horizontal velocity x and y direction components of the noise
vector at the ith element, and they are mutually independent. a(6) is
the steering vector connected with DOA 6, given by:

“(90) — [1) e‘}'%dﬁi”(en)’ s e_jZTndMH\LI sin(OD)}T (3)

where [d,d,, ..., dy,n-1] € S. Here, d; = 0 by taking the first
array element as a reference, which can be shown in Figure 1. The
velocity components of three-dimensional vector hydrophones are
displayed in Figure 2. For two-dimensional vector hydrophones in
practical application, the 3 x 1 steering vector can be obtained as:

u(6y) = [1,cos(8y),sin(6,)]" (4)

Without regard to the noise component, the CBF is given by the
following equation (Yang and Ye, 2019):

1

2
Bycra = MIN-1) |W£ICLAZVCLA| (5)
Wycra = Wera @ u(0) (6)
Wepa = ¢4 dauasin® 7)

where wcp,4 denotes the weight of the array beamformer and
dcra € S. When there is only one source, the beam output of the
array can achieve the maximum output in the source direction.
However, when two sources have the same frequency, the large
cross-term appears in Eq. (5). The large cross-term will result in
large beam outputs in other non-target directions, ultimately
leading to false alarms or incorrect bearing estimation results.
Figure 3 also explains the situation. The positions indicated by
the arrows in the figure represent the grating lobe locations for a
coprime vector sensor array. When two subarrays’ grating lobes
caused by co-frequency signals overlap, a high output will be
generated for the whole array. The directions with grating lobes
relation can be explained by the following formula (Adhikari et al.,
2014):

M sensors E

1 2
Md Md

Md
>

N sensors f
1 2

M+N-1 sensors @

L

20 0o 00

d,(0)

FIGURE 1
Coprime array configuration.
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Z
Y
Vx
X
FIGURE 2
The view of a vector hydrophone geometry.
+ 2 k B+ 2 k (8)
cos + — Ky = cosp = —
M N

where k; =0,1,2,...,k; =0,1,2,..., and azand f3 are two angles
satisfying the overlapping relationship of grating lobes. For
instance, as shown in Figure 4, the directions of 6, = 57° and 6, =
87° marked by the black dotted lines are the true co-frequency
sources’ directions, whereas the directions of 8, = 32° and 6, = 105°
marked by the red dotted boxes are the false-alarm directions. In
Figure 4A, the main lobe of one subarray and the grating lobe of the

-——

10.3389/fmars.2023.1211234

other subarray coincide, or the grating lobe of one subarray and the
grating lobe of the other subarray coincide (as shown in red dotted
boxes). Consequently, ambiguity emerges in comparable amplitude
beam output to true sources, as shown in Figure 4B.

3 DOA estimation for two co-
frequency sources

3.1 Constructing joint-cross terms for
coprime vector hydrophone array

The correlation coefficient between sound pressure and
vibration velocity in the isotropic noise field is 0, which means
that the joint processing of sound pressure and vibration velocity
for the acoustic vector signal suppresses the noise. Therefore,
without regard to the noise component, the data channel of the
acoustic vector hydrophone is transformed by rotation and
combination, and Eq. (9) is obtained

V() = v, (H)cos(p) + v, (1)sin(¢)
= s(t)cos(6 — @)

)

V(1) = =y, (1)sin(@) + v,(t)cos(@)
= s(t)sin(0 — @)

(10)

where v,(t) and v,(t) represent the velocity components of
a vector hydrophone, and they are mutually orthogonal. v (¢) and

|B(6)]

sin(6)

FIGURE 3

2 /N (for subarray with M sensors)

2/ M(for subarray with N sensors)

The distribution characteristics of zero point, grating lobes, and sidelobes of a coprime vector sensor array output.
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The situation of the blurred orientation output caused by the overlapping of subarray grating lobes. (A) Beam output for two subarrays of the
coprime vector sensor array. (B) Beam output of the whole coprime vector sensor array.

v,(t) stand for the combined transformation of the velocity channel
of vector hydrophone, where ¢ is the electron rotation angle and
s(t) is the sound pressure signal received by the hydrophone. In this
paper, the combination of sound pressure and vibration velocity is
used as

[p() + ve(B)]v,(t) = 5*(1)B,(6) (11)

where

B,(6) = (1 + cos(0 — ¢))sin(6 — @)

p(t) indicates the sound pressure of a vector hydrophone. We

(12)

can see that B{(0) = 0 when 0 = ¢ and the noise reduction process
is carried out by using the correlation characteristics between signal
and noise. Therefore, by rotating the acoustic vector hydrophone
data and selecting an appropriate rotation angle ¢, the noise can be
reduced, thereby reducing the SNR threshold and making it possible
to explore weak targets.

For a single uniform sparse vector hydrophone array, when
there is a target from a certain orientation (take the target with an
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orientation of 40° as an example), the spatial spectrum output of the
sparse vector array using conventional beamforming obtained
based on Eq. (12) can be shown as Figure 5. It can be seen that
the spatial spectrum output based on vector hydrophone combined
channels shows a concave point at target orientation. However,
there is an unreliability in using concave points to determine target
orientations when the noise is considered. Moreover, for a single
sparse array, this unreliability will become more acute as the spacing
of array elements increases.

The CBF for a coprime vector hydrophone array produces two
spatial spectra but contains ambiguous orientation concave points
due to the spatial undersampling of the subarrays. Inspired by the
Product theorem (Adhikari et al., 2014; Adhikari and Buck, 2017),
which resolves the spatial frequency ambiguities by performing
complex conjugate multiplication between two coprime subarrays
(Vaidyanathan and Pal, 2010), we proposed a DOA estimation
method based on JCTs for coprime vector hydrophone array. Let
Pur(D) v, (1), and v
y-axis velocity data of acoustic particles received by the vector

. () be the acoustic pressure and the x-axis and

hydrophones from the subarray with M sensors, respectively.
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Comparison of treating each channel as normal and combining channels for a vector hydrophone. (A) Spatial spectrum output of a vector uniform
line array without considering noise. (B) Spatial spectrum output of a vector sparse line array without considering noise.
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Meanwhile, let py (1), v, (t), and v, () be the acoustic pressure and
the x-axis and y-axis velocity data of acoustic particles received by
the vector hydrophones from the subarray with N sensors. The JCTs
for coprime vector hydrophone array can be constructed as

{ J1(0) = (pa () + v (D) vey (1) 03
J(8) = (pn(®) + ven () vipe (t)
where for the subarray with M sensors
Verr(£) = V() 08 (@) + v, (3) si () o
Vau(£) = v (1) sin (@) + (1) cos (@)
and for the subarray with N sensors
ven(t) = vy (£) cos (@) + vy (y) sin (@) 15)
von(8) = —van(t) sin (@) + v,y (t) cos (@)

3.2 Estimating DOA based on JCTs for
coprime vector hydrophone array

Based on CBF, we define the spatial spectrum output concave
point discriminant algorithm

F(6) = By (6) - By (6) (16)

where By (6) and By(0) are the subarray beam output
obtained by beamforming after vector coprime array channel
combination based on Egs. (4) to (7), and Egs. (13) to (15).
Compared with one single sparse array, the relation between two
sparse subarrays of the coprime vector hydrophone array is
established, thus improving the reliability of the concave points
judgment. Let © be the search step and 6; be the suspected target’s
orientation. The discriminating process can be expressed as

Dy, = IF(F(6,) - F(6, - ©) < 0)
IF(F(6,) - F(6, + ©) < 0),
D, = IF(F(6, + ©) - F(6,) < 0)
-IF(F(6, + ©) — F(O, + 20) < 0),
D, = IF(F(6, - ©) - F(6, - 20) < 0)
IF(F(6, - ©) — F(6,) < 0).

(17)

where "IF()" indicates if conditional operation.

3.3 Major steps and practical application

The algorithm steps mainly focus on the data preprocessing, the
constructions of JCTs and characteristic data point identification
algorithm, and the source directions determination. The
preprocessing is conducted based on Eq. (5), and the result can
be robust because of the CBF, which can be validated in Section 4.
The suspected targets’ orientations are predetermined with the
beam output of the whole coprime vector sensor array. The JCTs
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are established by taking advantage of the channel data
combination of the vector sensor array on Eq. (13). Based on
JCTs, the discriminant algorithm for identifying the concave
points can be achieved by Eq. (16). In either case, one single
target or two detected with a specified detection threshold, the
source direction can be determined. Since there is no possibility of
false-alarm lobes of array output in either case, only the true output
is presented. Furthermore, for more suspected directions, whether
there are false targets will be determined according to Eq. (8), and
coherent sources can be identified efficiently based on Eq. (17). The
pseudo-code of the proposed method is exhibited in Algorithm 1.

Require:

Input data: Array beam data §;
2:
length Ty, Angle search range Os, Detection

Initialize parameters: Signal integral
threshold Dy, the flag for grating lobes exist
or not Flag=0, Concave point set ©Oc¢, Target
direction set Of.

Ensure:

while Length(S,) = T, do

4: forj=1:0,do
Beamforming B; with Eq. (5)
6: end for
Output Bg
8: Update Oy with Dy
Update Flag with Egq. (8)
10: if Flag =1 then
Update ©, with Eq (13) to Eq (17)
12: if ((6; N ©,) # @) then
Update Oy
14: else
Dy adjustment
16: end if
end if
18: end while
Output Oy
ALGORITHM 1

Pseudo code of the major steps for the overall algorithm.

4 Simulation analysis
4.1 Accuracy performance

Numerical simulations are conducted to assess the performance
of the proposed method. Furthermore, MUSIC based on the SS
(Pillai and Kwon, 1989) and FBSS methods (Shan et al., 1985) are
used as comparison methods. A coprime vector hydrophone array
with 10 sensors (M =5 and N = 6) is adopted in all examples.

The first part of the simulations investigates the situation in
Figure 4. Two coherent sources with the same frequency, 500 Hz,
come from the directions 6; = 57.8° and 6, = 86.2°, respectively,
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which are shown in red circles in Figure 4B. The grating lobe caused
by the same frequency and coherence of the signal leads to wrong
target directions of 6; = 32° and 6, = 105" , which are presented in
blue circles. The DOA estimation performance of different
algorithms is evaluated using the root-mean-square error

(RMSE), which is described as
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RMSE = ﬁzlezle(ek(i) - 6,)?

(18)

where 0,(i) denotes the estimated DOA of 6, for the i th
independent trial and I and K, respectively, denote the number of
Monte Carlo simulation experiments and the number of sources.

The suggested method, as shown in Figure 6, consistently produces
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Sensitivity of the algorithm to array element position errors. (A) Array setup with and without element position errors. (B) DOA results based on
different methods with element position errors, SNR = 0 dB, 61 = 47.9°C and 62 = 78.5°C. (C) The magnified details for DOA results.

reliable estimates of true DOAs. When the SNR varies from —15 dB
to 15 dB, the quantity of snapshots is set to a constant value of 1,000.
As shown in Figure 7, the RMSE is reduced with the increase of
SNR. Furthermore, when the SNR is fixed at 10 dB, it can be
observed that three estimation results become more stable, and the
proposed method demonstrates enhanced accuracy as the number
of snapshots increases.

Frontiers in Marine Science

The technique of spatial smoothing processing is a widely
employed method for decorrelation in practical applications,
serving as a foundation for numerous studies. Next, we implement
and compare the approaches based on signal covariance matrix
recovery (CMR) (Pan et al,, 2022) and sparse signal reconstruction
using compressive sensing (CS) (Das et al., 2016) with our method.
The directions of co-frequency signals are 47.9° and 78.5°, with an
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SNR of 10 dB and a signal snapshot of 1000. From Figure 8A, it can
be observed that the proposed and the CS methods can obtain the
target direction information. The CMR method also achieves high-
amplitude output in target directions but suffers from ambiguity. In
Figure 8B, when the SNR decreases, both the method in this paper
and the CMR method show ambiguous orientation, and the CS
method shows direction misjudgment.

4.2 Sensitivity to position errors

In array signal processing, the signal mismatch is a critical issue.
In this part, the element position errors are considered to assess the
impact of signal mismatch on the proposed method (Yang, 2017).
The spacings between array elements were assumed to hold the
random error with a mean of 15% of the unit spacing between two
sensors, which can be shown as Figure 9A. Receiver positions are
represented by symbols, with the desired locations denoted by " #"
and the actual locations denoted by "o". In Figure 9B, one can find
that in the presence of array element errors, the SS method has a
DOA estimation bias. In comparison, the FBSS method performs a
better DOA estimation accuracy. Compared with the two methods,
the method of this work can obtain more accurate DOA estimation
results. In addition, it can be seen from Figure 9C that the DOA
estimation results of the method depend on the beam output
obtained by the conventional beamforming (shown in the legend
of "Array output” in the figure). Therefore, the DOA estimation
error of the method will be affected by the array beamforming
output. However, the algorithm still inherits the robustness of CBFs.

4.3 Bearing time record performance

This part simulates the bearing time record (BTR) under low
SNR. As shown in Figure 10, the red ™" represents the detection
result of the algorithm. Figure 10A conducts the simulation for two
targets with directions changing. Furthermore, the simulation
design ensures high grating lobe interference in the direction
change interval (SNR = 0 dB). It can be seen from the figure that
many high grating lobe interferences have a severe impact on the
target detection results. However, this paper’s method can detect
targets’ actual orientations more stably and accurately. Figure 10B
depicts the scenario where two co-frequency targets generate the
high grating lobes, with the SNR of both targets being —5 dB, while
the targets move in a constant azimuth. It can be seen that there is
substantial interference in the direction of the end fire of the array,
which will seriously deteriorate the performance of DOA detection.
The red ™" shows that the proposed algorithm in this paper
demonstrates a stable estimation of true DOAs.

4.4 Attempts in the case of multiple targets

Multiple co-frequency target detection can be divided into
three main cases: (1) All targets fall into the relation of
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BTR for bearing-changing targets. (A) SNR = 0 dB. (B) SNR = -5 dB.

overlapping grating lobes. (2) None of the targets fall into the
relationship of overlapping grating lobes. (3) Some of the targets
hold overlapping grating lobe relation. We set M = 5, N = 6, SNR
= -7 dB, and f = 500 Hz. For the first case, there are targets from
the directions of 47.9°, 57.8°, 78.5°, and 86.2° respectively, and all
of them satisfy the grating lobe overlapping relation. In
Figure 11A, one can find that due to the grating lobes, the real
directions are submerged within the false alarms, affecting the
accurate detection of targets. For the second case, the source
directions are set as 30°, 38°, 50°, and 63°. These directions are
not in the relationship of grating lobes overlapping. In
Figure 11B, without the grating lobes overlapping, array grating
lobes will not mask the true direction, and the algorithm can
directly obtain the correct target directions’ information.
However, when some of the targets fall into the relation of
overlapping grating lobes, they are from the directions of 20°,
30°, 47.9°, and 78.5°, respectively. As shown in Figure 11C, the
method proposed in this article cannot accurately determine the
target’s true direction from the overlapped lobes of partial targets.
Because of the complex grating lobe relationships caused by
multiple targets, the feature relationships of the JCTs are
affected. Future research will focus on studying and attempting
array interference suppression techniques to address this issue.
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Simulation results of algorithm performance in multiple targets case. (A) All targets satisfy the grating lobes overlapping relation. (B) None of the
targets satisfy the grating lobes overlapping relation. (C) Some of the targets satisfy the grating lobes overlapping relation.

5 Experiment data analysis

The experiment data analysis has been presented in this part. As
shown in Figure 12, the experiment data were collected on an
extended coprime vector hydrophone array with 12 sensors on the
ocean bottom at a (water) depth of 35 m. The shipborne sound
source emits signals to simulate the sound source. The vector
hydrophone picks up the underwater sound signal, then transmits
the data to the base station through the hydrophone array’s data

Frontiers in Marine Science

acquisition and transmission system. The base station performs
signal processing and realizes the display and reporting of the target
detection results. M = 2 and N = 3 for the extended coprime vector
hydrophone and the array expansion factor e =3 (Chen et al., 2023).
A moving sound source transmitting at the frequency of 375 Hz
moves in a straight line along the direction of 57°. In order to
validate the proposed algorithm, the signal data from the direction
of 86° have been added to the received signals of the coprime array.
The added signal will produce grating lobes in the array output that
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FIGURE 12
The experimental layout.

overlap with the source array output. In Figure 13A, one can find
that many strong grating lobe interferences show up after the signal
was added, deteriorating the performance of source detection and
DOA estimation. The proposed method can obtain the DOA
information of targets more accurately. Because the signal data
from the direction of 86° are artificially added, the DOA estimation
method shows more stable results, which are shown in Figure 13B.
In the second experiment, the sound source transmits the signal at
the frequency of 315 Hz and moves in the direction of 43°, as shown

in Figure 14A. In order to increase the grating lobe interferences,
the signal from 67° has been included in the original received array
signal. Owing to the additional signal, the grating lobes from two
sources coincide, resulting in many grating lobe interferences in the
array output. The real targets have been buried in strong grating
lobe interferences and wide array beams. It can be observed that the
proposed method achieves the extraction of real targets from the
strong grating lobe interferences and then realizes the targets’ DOA
estimation, as shown in Figure 14B.
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FIGURE 13

BTR in experiment. (A) 61 = 57°C and 62 = 86°C. (B) Results of the proposed method.
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BTR in experiment. (A) 61 = 43°C and 62 = 67°C. (B) Results of the proposed method.

6 Conclusion

This paper investigates the problem of false alarms that can
deteriorate the performance of DOA estimation for two co-
frequency sources in a coprime vector hydrophone array. These
false alarms are caused by the overlap of main lobes and grating
lobes from subarrays. To address this issue, we propose a DOA
estimation method that involves JCTs connected with subarrays
from a coprime vector hydrophone array. Based on JCTs, we design
a method to identify characteristic data points. The proposed
method eliminates false-alarm directions without smoothing and
detects true DOAs without ambiguity. Simulation and BTR results
from the sea experiment data demonstrate that the algorithm
performs well and provides a new approach for DOA estimation
of coprime vector sensor arrays. Applying large aperture arrays will
be a major trend in ocean observation and maritime combat, like
marine life detection, UUV (unmanned underwater vehicle), and
USV (unmanned surface vehicle) operations. Coprime arrays and
their related signal-processing methods will play an important role
in the marine domain. The method proposed in this article can also
be applied to combined active and passive sonar detection and
multi-base sonar cooperative detection. Furthermore, with the
application of deep learning in ocean observation, combining
deep learning concepts with the method presented in this article
may achieve more efficient results in ocean observation, such as
target recognition and tracking.
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Investigating the reliable
acoustic path properties
in a global scale

Ying Liu, Cheng Chen* and Xiao Feng

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an,
Shaanxi, China

Leveraging the benefits of low transmission loss and high signal-to-noise ratio,
the reliable acoustic path (RAP) has been extensively employed in various
underwater applications. In this study, we investigate RAP properties on a
global scale. Acoustic simulations were conducted using global grids with a
0.25° x 0.25° spatial resolution, revealing that RAP range is positively correlated
with ocean depth. Contrary to the prevailing belief that RAP properties are
relatively unaffected by sound speed variations, our findings indicate that
sound speed profiles (SSPs) play a crucial role in determining RAP properties
by altering the RAP from 15 km to 50 km at a constant ocean depth of 4000 m.
Additionally, the receiver angle can vary by nearly 5 km at the same source
location due to SSP variations. Consequently, utilizing highly accurate SSPs can
enhance the performance of underwater localization or communication systems
that rely on RAP.

KEYWORDS

ocean acoustic propagation, properties of reliable acoustic path, sound speed profile
variation, bathymetry variation, transmission loss

Introduction

Ocean acoustic propagation has long been recognized as sensitive to various ocean
environmental parameters (Heitsenrether and Mohsen, 2004; Dosso et al., 2007a; Dosso
et al., 2007b; Lermusiaux et al., 2010; Pecknold and Osler, 2012; Ngodock et al., 2022;
Zhang et al., 2023a; Zhang et al., 2023b), such as bathymetry, geo-acoustic parameters,
sound speed fields, and sea surface roughness. This sensitivity renders underwater acoustic
activities, including localization and communication, highly dependent on the ocean
environment. In deep ocean acoustic propagation studies, sound energy is typically
categorized into distinct propagation patterns, including surface duct propagation,
convergence zone propagation, bottom bounce propagation, and reliable acoustic path
propagation. These propagation patterns exhibit varying levels of sensitivity to changes in
the ocean environment. For instance, surface duct energy propagation is sensitive to the
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thickness of the surface duct (Chen et al., 2016; Chen et al., 2019;
Duan et al., 2016), convergence zone propagation is sensitive to the
thermocline gradient (Worcester et al., 2013; Chen et al, 2017;
Khan et al,, 2021), and bottom bounce propagation is sensitive to
geo-acoustic parameters (Choi and Peter, 2004; Heaney et al., 2013;
Yang et al., 2017).

The Reliable Acoustic Path (RAP), which represents the direct
path between a source and receiver, is generally considered to be less
sensitive to ocean environment fluctuations. Moreover, RAP boasts
low transmission loss (TL) compared to boundary-reflected paths
(Duan et al., 2012) and lower ambient noise levels, with noise below
the critical depth being nearly 20 dB less than above it (Gaul et al.,
2007). Due to these advantages, such as low TL and high signal-to-
noise ratio (SNR), RAP has been widely employed in underwater
acoustic localization and communication. Duan et al. utilized RAP
multipath time de-lays recorded by a single hydrophone for
localizing a moving source (Duan et al, 2014), while the
interference structure of RAP was leveraged to estimate source
depth with robust performance (Duan et al., 2019). Recently, Qu
et al. conducted a comprehensive spatial gain analysis for vertical
line arrays in RAP regions (Qiu et al, 2018), and Tompson
incorporated RAP as a crucial sound propagation factor in deep
ocean acoustic networks, achieving impressive performance in high
SNR scenarios (Thompson, 2009).

Besides localization and communication, RAP sound energy
has also been applied in geo-acoustic inversion and ocean
tomography. Geo-acoustic parameters in the Philippine Sea were
obtained using RAP sound energy (Xu et al., 2019), and Varamo
et al. examined the feasibility of RAP tomography by employing a
mobile ship with an acoustic source transmitting to a fixed bottom
hydrophone at the ALOHA Cabled Observatory (Varamo and
Howe, 2016).

Despite the growing interest in RAP over the past half-century,
the effects of sound speed profiles (SSPs) on RAP properties remain
underexplored. Xiao et al. demonstrated that RAP TL is relatively
insensitive to seasonal SSP variations (Xiao et al., 2016); however, in
some cases, seasonal SSP variations may be minimal compared to
global spatial variations.

The properties of the Reliable Acoustic Path (RAP) are highly
significant, and prior to our study, there had been no global research
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conducted on this topic. The prevailing impression was that RAP
was insensitive to sound speed profiles; however, our findings have
proven otherwise. Through extensive analysis and research, we have
demonstrated the sensitivity of RAP to sound speed profiles.

In our study, we conducted a global investigation of Reliable
Acoustic Path (RAP) properties and their variations, identifying
ocean depth and sound speed profile (SSP) structure as the primary
influencing factors. The findings of this paper offer valuable insights
for leveraging RAP in underwater acoustic localization and
communication. The impact of SSP structure on RAP is found to
be significant, with RAP range varying up to 35 kilometers for a
depth of 4000 meters. Dynamically complex regions, like the
Kuroshio Extension, exhibit substantial variations in SSP even at
the same location, resulting in notable changes in
RAP characteristics.

Deep-sea positioning methods heavily rely on underwater
acoustic propagation characteristics and rely on angle information
from measurements for precise underwater localization.
Inaccuracies in the sound speed profile can lead to significant
reductions in positioning accuracy. For effective underwater
acoustic communication, acquiring sufficient environmental
information is crucial to obtain more precise underwater acoustic
channel characteristics.

In conclusion, this comprehensive study enhances our
understanding of RAP properties across different regions
worldwide, providing essential guidance for utilizing RAP in
underwater applications such as localization and communication.

Properties of reliable acoustic path

Figure 1 presents a typical case of 2D transmission loss of the
reliable acoustic propagation. The SSP was the Munk profile as
shown in Figure 1A. The source frequency was 200 Hz, the ocean
depth was 5000 m, and the source depth was 4800 m. Figure 1B
shows that when the source was deployed near the ocean bottom,
the coverage of the RAP was bowl shaped. The radiance of the RAP
could reach nearly 40 km near the surface, suggesting that the
receiver deployed in this case could detect targets within this range
with a high SNR ratio.
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2D transmission loss of the RAP. (A) Sound speed profile (B) 2D transmission loss.
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In order to validate the model and simulation method employed
in this study, we utilized acoustic experiment data collected from a
specific region in the Western Pacific Ocean in 2021 and compared
it to the simulated results. For the comparison with the
experimental data, we used a ray model and the acoustic
reciprocity method, setting the source depth at 5470m and the
receiving depth at 300m. In the Figure 2, Figure 2A displays the
two-dimensional propagation loss acquired through simulation
using real topography, sediment characteristics, and sound speed
profiles, while Figure 2B presents a comparison between the
propagation loss at 200Hz and the experimental data at a
receiving depth of 300m. As evident in the figure, both the
simulated results and the experimental data exhibit a rapid
decline trend at the edge of the reliable acoustic paths, with
similar magnitudes, implying that the model and modeling
methods used in this study are relatively trustworthy. Moreover,
the ray model has mature applications in acoustic field simulation.
The results of the model are reliable in deep-sea areas, and are
effective for the analysis of reliable acoustic paths in this study.

Here, we focused on two RAP properties, namely, the RAP
radiance near the sea surface and the receiver direction that varies
with the source range. In the previous studies of Duan et al (Heaney
et al., 2013), they showed that the receiver direction is sensitive to
the source locations. Figure 3 presents the receiver directions and
the source locations. The source/receiver set is the same as that in
Figure 1. At a water depth of 5000 meters and a source depth of
4800 meters, the sound speed profile follows the Munk curve as
shown in Figure 1A. The seafloor has a minor impact on the arrival
structure and is set with a sound speed of 1600 m/s, density of 1.8 g/
cm’®, and an attenuation coefficient of 0.8 dB/wavelength. In
Figure 3, the receiver directions of the direct path (also named
RAP), the bottom reflected path with no surface reflection, the
surface reflected path with no bottom reflection and the surface and
bottom reflected path are denoted as BOT0, B1T0, BOT1 and B1T1,
respectively. We notice that the receiver directions of the RAP
arrival and the other paths are sensitive to the source ranges. Thus,
determining the source range with the RAP arrivals has practical
significance. However, when we use the physics-based RAP arrival
to estimate the source location, we should be aware that the RAP

Depth (m)

50

100
Range (km)

150

FIGURE 2

10.3389/fmars.2023.1213002

properties could be affected by the ocean acoustic environment. For
the RAP case, the SSP structure and the ocean depth should be
considered. Detailed analyses were carried out on a global scale to
study the variation pattern.

Characterization of the reliable
acoustic path worldwide

The Etopol database was used as the bathymetry data (Hirt and
Rexer, 2015). The WOA18 annual database (Locarnini et al., 2018;
Zweng et al., 2018) was used in this paper to provide the
temperature and salinity profiles for the computation of the SSPs.
The empirical formula (Lovett, 1978) is shown in Equation (1),
where C (m/s) refers to the sound speed, T (°C) refers to the
temperature, and S (%o) refers to the salinity. P (kg/cm”) is the static
pressure of the immediate ocean water column.

C =1449.22 + ACT + ACS + ACP + ACSTP (1)
Here,

ACy = 4.6233T — 5.4585(10) 2T

+2.822(10)" *1° — 5.07(10)" " T*

ACp = 1.60518(10) " 'P + 1.0279(10) °P?

+3.451(10) " °P® — 3.503(10) ?p*

ACg = 1.391(S — 35) — 7.8(10) " %(S — 35)°

ACgrp = (S —35)[— 1.197(10)>T +2.61(10)*P — 1.96(10)" P* — 2.09(10) °PT]
+P[—2.796(10)* T + 1.3302(10) ° T2 — 6.644(10) 3 T?]
+P*[—2.391(10) ' T +9.286(10) 1°T2] — 1.745(10) ' P*T

To study the effects of the ocean depth and the SSPs on the RAP
properties, we conducted acoustic model simulation on each grid of
the WOAL18 database. The SSPs were obtained from the WOA18
data of the same grids, and the ocean depths were obtained by
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interpolating the ETOPO1 bathymetry over the grids. On each grid,
we set up a reasonable range-independent case model because the
RAP does not interact with the sea bottom. Thus, the combined
effects of the ocean depth and SSP variations on the RAP properties
could be obtained on the global scale.

Figure 4A presents the bathymetry from the ETOPO1 database.
In Figure 4B, the maximum range of the RAP at the surface has a
0.25° x 0.25° spatial resolution. On each grid point, we set up an
acoustic model to calculate the maximum range of the RAP near the
surface. The source 200 m above the ocean bottom, and the source
frequency was 200 Hz. The SSP was obtained from the WOA18
annual database. The grids with an ocean depth smaller than 2500
m were excluded. The reason for choosing a grid of less than 2500m
lies in the focus of our study, which is primarily concerned with
deep-sea areas. Given that the sound speed profile inflection points
in most sea areas are around 1000m, we wanted to take into account
more common situations, enabling us to observe and analyze a
more comprehensive structure of the sound speed profile. As a
compromise, we chose a depth of 2500m as a boundary point.

Figure 4B indicates that the maximum range of the RAP varies
from 20 km to 60 km. The comparison of Figures 4A, B shows that
the maximum range of the RAP is weakly related to the ocean
depth. Figure 4C presents the relation between the ocean depth and
the maximum range of the RAP with a scatter plot. The maximum
range of the RAP increases with the ocean depth. For example, at
the ocean depth of 4000 m, the maximum RAP range is 15-50 km.
Given that the two factors affecting the RAP range are the ocean
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depth and the SSP structure, the effect of the SSP structure on the
RAP range should be examined.

Figure 5A presents the latitudinal Sound Speed Profiles (SSPs)
at a longitude of 160.125°E, revealing significant variations in the
SSP structure. In Figure 5B, the bathymetry along the same line is
displayed, excluding depths smaller than 2500 meters. Figure 5C
shows the relationship between the maximum range of the Reliable
Acoustic Path (RAP) and ocean depth, indicating a linear trend
between the range and the ocean depth.

The structurally consistent sound speed profile was utilized to
examine the impact of ocean bathymetry on the reliable acoustic
path range under the same sound speed profile conditions. Figure 6
illustrates the variation in the RAP range. The left subplot depicts
the SSP used, while the right subplot exhibits the RAP variation as
we vary the water depth from 2600 to 5500 meters.

From analyzing Figures 5, 6, it is evident that there is a linear
trend between the RAP range and ocean depth. However, the range
can vary significantly even at the same ocean depth. This variation
can be attributed to the considerable differences in the SSP structure
for the same ocean depth, resulting in variations in the RAP range.

To determine the effects of the SSP structure on the RAP
properties on the global scale, we clustered the global SSPs
obtained from the WOAI18 data into 12 groups. There are
numerous approaches for classifying transonic airfoil shapes, each
resulting in different categorizations. The 12 categories used in this
study were chosen purely to facilitate analysis, and the results could
be presented even more concisely in a 4 x 3 matrix. The profiles with
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a maximum depth exceeding 4500 were used, and a total of 242934
profiles were available for use. The temperature and salinity profiles
were used to obtain the SSPs on each grid. Figure 7A shows the 12
types of SSPs, and Figure 7B presents their distributions around
the world.

The 12 types of SSPs were then used to study the effects of the
SSP structure on the RAP properties. Figure 8 presents the TL and
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the rays corresponding to the 12 types of SSPs. In Figure 8A, the 2D
TLs for the 12 cases with a maximum depth of 4500 m are
presented. The source depth was 4300 m, and the source
frequency was 200 Hz. Figure 8B presents the 2D TLs for the
upper 500 m for the 12 cases. The major difference could be
observed near the edge of the RAP, and the SSPs could result in a
significant variation pattern of the TL on the upper 500-m deep
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layers. In Figure 8C, the ray’s geometry is illustrated with green
lines, indicating the case with surface and non-bottom reflections,
and the red lines represent the case with no surface or bottom
reflection. Figure 8C clearly indicates that the variation of the SSP
structure could result in a significant change in RAP properties.

Table 1 lists the maximum range of the RAP for the 12 types of
SSPs with an ocean depth 4500 m and a source depth of 200 m
above the ocean bottom. The maximum range varies from 25 km to
42 km, which could be significant in many cases when the RAP is
used for underwater localization or communication.

Then, we investigated the possible effect of SSP variation on
underwater localization. Figure 9 shows the effects of SSP variation
on the receiver angle. Figure 9 reveals that the effects of the SSP
variation on the receiver angles increase with the source range. For
example, at the receiver angle of -10°, the source range could vary by

Frontiers in Marine Science

approximately 1 km when the source range is lower than 15 km. At
the receiver angle of -5° the source range could vary by nearly 5 km
when the source range reaches or exceeds 20 km. The variation of
the source range at the same receiver angle is large, even in the case
of 1-km variation because the 1 km variation could be a significant
localization error when we attempt to detect underwater sources
with the RAP rays.

Specifically, we selected the Kuroshio Extension region to study
the effect of the Kuroshio Extension front on the RAP properties. In
Figure 10, the left subplot is of the SSPs on the two sides of the
Kuroshio Extension front. The right subplot is of the effects of the
two SSPs on the receiver angles of the RAP. Figure 10 suggests that
the SSPs could induce great variation in the receiver angle. At the
25-km range, the variation of the source range could vary by
approximately 1 km in the upper 500-m deep layers at the same
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TABLE 1 Maximum range of the RAP for the 12 types of SSPs.
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receiver angle. Even in some specific regions, the dynamics of the
ocean front could result in a significant change in RAP properties.
Thus, if we want to make full use of the RAP for underwater
activities, then SSPs with high accuracy should be used to avoid a

large error.

Conclusions

In this study, we examined the RAP properties on a global scale
using SSPs calculated from temperature and salinity profiles within
the WOA18 annual database, and ocean depth data from the
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FIGURE 10

ETOPOI1 dataset. Acoustic modeling was conducted on each grid
of the WOA18 data at a 0.25° x 0.25° spatial resolution, and the
maximum RAP range across the global ocean was calculated.
Results indicate that the RAP range increases with ocean depth,
albeit with a weak correlation. At a consistent ocean depth of 4000
meters, the RAP range can vary between 15 and 50 kilometers, with
the SSP structure being the main variable.

We also investigated the effect of SSPs on RAP properties by
clustering global SSPs into 12 groups, yielding 12 distinct SSP types.
Acoustic simulations revealed that the RAP range could vary
between 25 and 42 kilometers when using these 12 SSPs.
Additionally, the impact of SSP variation on receiver angles was
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SSPs in the Kuroshio Extension region (left) and the effect of SSPs on the receiver angles of the RAP (right).
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studied. Results demonstrated that receiver angle variation
increases with source range, reaching up to 5 kilometers at a 20-
kilometer distance. This variation can introduce significant
localization errors when using the RAP for underwater source
localization with inappropriate SSPs. Therefore, careful
consideration of SSP structure is essential when leveraging the
RAP for underwater activities.
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multipath and Doppler effect
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In order to achieve accurate modeling and simulation of sonar reverberation
signals, four types of multi-path underwater reverberation models are
established considering Doppler effect under the condition of separating the
sound source and hydrophone. The simulation of underwater reverberation
signals under static or uniform linear motion conditions is carried out for single
point for the separating the sound source and hydrophone transceiver, as well as
horizontal linear array. The non-stop-and-hop model of reverberation signals is
presented. And the underwater reverberation signals in the array element domain
and beam domain are obtained. From the simulation results of the improved
model, it can be seen that the spatiotemporal two-dimensional characteristics
and Doppler expansion are consistent with theoretical analysis. The frequency
shift of the horizontal linear array reverberation signal is approximately sinusoidal
with the directionality angle of the linear array. Comparing the simulation results
of the improved model with traditional models, the improved model can more
accurately simulate sonar reverberation signals.

KEYWORDS

reverberation, ray acoustics, ocean multipath, bottom scattering, Doppler, accurate
modeling, signal simulation, towed linear array

1 Introduction

Ocean reverberation refers to the acoustic signal generated at the receiving point caused
by the scattering of a large number of random inhomogeneous bodies in the undulating sea
surface, uneven seabed, and seawater medium during the propagation of sound waves
(Yangang et al,, 2020). Consequently, a sonar reverberation signal will have a negative
impact on the precise reception and identification of the target underwater acoustic signal
(Bing et al,, 2016). In addition, the movement of the signal transceiver will inevitably
introduce a frequency shift in the ocean reverberation signal caused by the Doppler effect
(Yuliang, 2020). Therefore, it is important to introduce a more accurate model of ocean
reverberation signals. The present study establishes four types of multipath sound rays,
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which are then modeled and simulated under the consideration of
the Doppler effect (Yulu et al., 2017).

2 Models and methods

When it comes to simulating the ocean reverberation signal,
reference (Danping, 2020) followed four distinct steps to obtain the
simulated reverberation: a) start from the shallow sea environment,
b) adopt the normal mode propagation model, c) introduce the
probability density function of Rayleigh distribution, and d)
accumulate the reverberation generated by each scatterer at
different distances. In contrast, Zhou et al. (2020) based their
method on the ray-normal mode analogy, using the normal mode
to simulate the reverberation field in shallow water (Zhou et al.,
2020). In both studies, the reverberation is simulated under the
condition that both the sound source and the hydrophone are
placed close to each other (Liya, 2018). established the attenuation
model of deep seabed reverberation intensity with time and the
model of seabed reverberation signal based on the principles of
statistical physics. In reference (Yangang et al., 2020), the
reverberation sequence signal was obtained by convoluting the
equivalent reverberation scattering sequence with the transmitted
signal. Lijun et al. (2021) used the small slope approximation and
the ray theory sound field algorithm to evaluate the scattering effect
of the rough interface in the full grazing angle range, and the
multipath factor was then employed to establish the reverberation
intensity model of the sea surface and seabed. Based on the ray
acoustic model, reference (Teng et al, 2021) used the channel
convolution method and the echo signal to derive the echo signal
in the ideal environment and the shallow water environment,
respectively, with reverberation interference. In reference (Runze
et al,, 2021), the interface reverberation was described as the
incoherent superposition result of different multipath
reverberation fading processes, and a reverberation intensity
model was established, using the physical parameters of the sea
surface and seabed as variables. However, a limiting factor of these
studies was that they did not consider the influence of the
Doppler effect.

Siwei et al (Kou et al,, 2021). proposed that when the sonar
platform moves, the reverberation and echo entering the sonar
array from different incidence cone angles have different Doppler
frequency shifts; however, this study only examined the case of
direct incidence of the receiver through the first scattering on the
seabed. In addition, the ocean multipath factor was not taken into
consideration. In reference (Sibo, 2018), three-dimensional bistatic
multipath reverberation signals were modeled and simulated,
while at the same time, the authors analyzed the space-time
characteristics of bistatic reverberation, including Doppler
frequency shift and reverberation directivity. In addition, that
study investigated the suppression of reverberation signals using
the space-time optimal processing method. However, the influence
of the Doppler stretching effect on the pulse width of the
reverberation signal was still not regarded.

Therefore, it becomes evident that current research on
simulating ocean reverberation signals tends to ignore the
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Doppler stretching effect on the pulse width of the reverberation
signal. Furthermore, several research studies have not considered
the influence of the Doppler frequency shift on the reverberation
signal, while others have not considered the multipath factor of the
ocean. Consequently, to realize the accurate modeling and
simulation of sonar reverberation signals, based on the ray
acoustics theory and the principle of sound field superposition
(Jun et al., 2012; Tao, 2007), the influence of the Doppler stretching
effect on the signal pulse width has been analyzed under the
condition that the sound source and the hydrophone are
separated. As a result, four types of ocean reverberation models
considering the Doppler effect have been established. On this basis,
the reverberation model of the sonar signal is simulated, the single-
point transceiver is extended to the horizontal towed linear array,
and the seafloor reverberation signals in the array element space
and beam space are obtained (Jincheng, 2019). The space-time two-
dimensional characteristics and Doppler spread in the simulation
results are consistent with the theoretical analysis. Comparing the
simulation results of the improved model and the traditional model,
the improved model can simulate the sonar reverberation signal
more accurately.

2.1 Ocean multipath model for
reverberation signal simulation

In the present study, the marine environment refers to the
environment in which the depth of the seawater is much lower
than the length of the sound propagation path in the seawater. In this
environment, reverberation in the seawater stems largely from the
scattering of sound waves on the seafloor, and the intensity of seafloor
reverberation is mainly contributed by four types of multipath sound
rays (Minghui, 2011). Hence, the simulation of seafloor reverberation
signals mainly considers four types of multipath sound rays, as shown
in Figure 1 (Sibo and Song, 2016).

In this figure, H represents the depth of the sea. The paths of
these four types of sound rays involve the following: a) sound
source, scattering at the bottom surface, and hydrophone; b) sound
source, scattering at the bottom surface, sea surface reflection, and
hydrophone; ¢) sound source, sea surface reflection, scattering at the
bottom surface, and hydrophone; d) sound source, sea surface
reflection, scattering at the bottom surface, second sea surface
reflection, and hydrophone.

In general, the combined transmitter and receiver can be regarded
as a special case of a separated transmitter and receiver. Therefore,
considering that the towed linear array sonar to be analyzed is a
separated transmitter and receiver, the present study investigated the
establishment of a sonar reverberation simulation model under the
condition of a separated sound source and hydrophone.

2.2 Reverberation signal model considering
the Doppler effect

The model in this paper is based on the following
three hypotheses:

frontiersin.org
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FIGURE 1

The four types of multipath sound rays contributing to the intensity of seafloor reverberation

Hypothesis 1: Sound waves propagate in the form of spherical
waves.

Hypothesis 2: The absorption of sound waves is neglected, and
thus scattering is calculated at the sea bottom, and
reflection is calculated at the sea surface.

Hypothesis 3: Scattering of the sea bottom is uniform.

The influence of the Doppler effect on sonar reverberation
signal mainly affects signal frequency and signal pulse width.

2.2.1 Doppler effect on signal frequency

Let us consider a sinusoidal signal where the signal (Jian, 2019)
source moves at a radial rate v relative to the hydrophone. Let the
velocity of the sound source close to the hydrophone be positive and
the velocity of the sound source far away from the hydrophone
negative. If the frequency of the signal is f, the wavelength is A, and
the propagation speed of the signal in the medium is ¢, the
frequency of the signal after the Doppler effect becomes f’, and
the wavelength becomes A'. Consequently (Xianwen et al., 2022),
the Doppler shift is given by Af = f-f or

v

Af =

f M

c-v

In the rectangular coordinate system, a sound source is assumed
to be moving with a velocity v, the hydrophone moves with a
velocity v,, and the bottom scatterer dA is static, whereas all other
environmental conditions remain unchanged. The Doppler shift
models of four types of multipath sound rays are discussed
respectively in the following.

Frontiers in Marine Science

2.2.1.1 Doppler shift model of the first type of sound ray

As shown in Figure 2-1, SS represents the sound source, RE is
the receiving element, r; is the propagation vector of the first
segment of the sound ray, and r, is the propagation vector of the
second segment of the sound ray. Furthermore, ¢ is the scattering
azimuth angle, 6/ is the grazing angle of the incident sound ray, 6" is
the grazing angle of the scattered sound ray, and n is a scattering
element serial number (Sheng and Xucheng, 2010).

First, we investigate the section of the first type of sound ray
from the sound source SS to the bottom scatterer dA. Let the
frequency shift of the signal received by the seafloor scatterer be
Afy;. In accordance with the physical meaning of the vector dot
product, the radial velocity v, on r; can be expressed as

V,-rl

|r1]

V1 (2)

If we substitute the relevant parameters of the first type of sound
ray into Equation (1), the variation of the signal frequency Af;; of
the first type of sound ray transmitted from the sound source to the
scattering element dA can be obtained as follows (Zhongchen et al.,
2013):

V1

Aflt = f (3)

c—V
If we substitute Equation (2) into Equation (3), we can obtain
the frequency shift of the sound source as it hits the seafloor
scattering element via r;:

_ Vi-n
c-|nl=Vi-n

Afyy (4)
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Four types of sound line.

Similarly, considering the propagation of the first type of sound
ray from the scattering element dA through r, to the hydrophone
RE, we can assume that the frequency of the signal scattered by the
first type of sound ray on the seabed is fi,,.

Consequently, the relationship between fi, and the original
frequency f of the signal is:

S =1+ My (5)

Assuming that the velocity of the hydrophone is v,, the
frequency shift Af;, of the received signal for the first type of
sound ray from the seafloor scatterer dA to the hydrophone is

V,'T'Q
C'|T2|—V,-1’2

Aflr = flh (6)
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and the total Doppler shift of the first type of sound ray is:

(Yao, 2013)
( )]s

(7)

According to formulas (5 - 5) and (5 — 13) in (Minghui, 2011),
the first type of sound ray reverberation signal model p, () can be
obtained as (Yali, 2018):

V-
c-lnl=Vin

Vr'rZ
C'er‘_Vr'rZ

Vi-n
+
c-n[=Vion

Ay = Afi + Ay =

N 1 ’
JAGHEDS 4“1' T -s(t = t;) - y/sin 6! sin 65 dA .ﬂpnl.exP(j¢n1 ),
n=1

where s(t — ;) is the signal emitted by the sound source, and s(f)
passes through ;.
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Considering the Doppler shift, after replacing s(t — t;) with a
complex signal exp [iZTC(f + Afl)(t - tlk)] (Zhang et al, 2021a;
Zhang et al., 2022a), we can get the first type of sound line
reverberation signal model p, (f;;) as:

Ny

Pt =,

n=1

Tl -exp[i2n(f + Af)(t — ty,)] (8)
-

\/sin 611 sin 6'dA - " - exp (jo™)

where the first term (|r;| - |r5|) ™" reflects the signal propagation
loss; rq is the vector of sound sources to seafloor scattering elements;
the second term exp [j2n(f + Afl)(t - tlk)] is the complex signal
arriving at the hydrophone after the frequency shift and time delay;
f is the frequency of the transmitted signal; Af; is the total Doppler
shift of the first type of sound; t; = (|r;| + |r2])/c is the signal
sin 1! sin G3'dA -

,u;,”l -exp (jo™) is the scattering coefficient of the seabed sound

propagation time delay; and the third term

pressure; dA is the scattering element area; ,u;,”l is a proportional
constant, which is subject to the Gaussian distribution (Xiaohui
et al., 2017); go”l is the transient phase, which is subject to the (0 ~
2m) uniform distribution; # is the serial number of seabed scattering
elements; 62! is the incidence grazing angle; 65" is the scattering
grazing angle; N; is the total number of scattering elements.

Similarly, the three remaining types of sound ray Doppler
shift models and reverberation signal models can be
deduced accordingly.

2.2.1.2 The Doppler shift model of the second
type of sound ray

As shown in Figure 2-2, the frequency change of the second type
sound ray signal is given by the following equations:

Vt"rl
Afyy=——t 1 . 9
S c-|r|=Vi-m f ©)
V, - (r +r:)
Ay, e S (10)

= r ! !
c|r2 + r3| =V, (ry+13)

where V, is the velocity of the virtual source RE’ of the
hydrophone RE which is symmetrical to the sea surface, r; is the
vector from the intersection of the scattered sound ray and the sea
surface to the virtual source RE’, and r; is the propagation vector of
the third segment of the sound ray, f,, = f + Afy;.

The total Doppler shift of the second type of sound ray is

(- )].f

and the model of the second type of sound ray reverberation
signal p,(ty) is

Afy = Ay + My

Vi-n

' ’
+ V,-(1’2+1’3)
c:|nl=Vi-n

; ; 7
c|r2 + r3| =V, (ry+13)

V,-n
c-n|=Vi-n

N

Pa(ty) =

n=1

~expli2n(f + Af)(t — tyy)] (12)

7

ry] - "’2 t 713

\/sin 012 sin 62dA - 1 - exp (j¢'™)
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Here, the first term m - (|r1\ . |r2 + r;)|) represents the signal
propagation loss, the second term exp [j21t(f + Afz)(t - fzk)] is
the complex signal arriving at the hydrophone after the frequency
shift and time delay, and the third term +/sin 6% sin 652dA - ,u;,"z .
exp (jo") is the sea bottom sound pressure scattering coefficient, m
is the sea surface reflectivity, /,t;,”2 obeys a Gaussian distribution, ¢
obeys a (0~ 2m) uniform distribution, and t,, = (|ry| + 5] + |r3]) /¢
is the signal propagation delay.

2.2.1.3 The Doppler shift model of the third type
of sound ray

As shown in Figure 2-3, the amount of change in the frequency
of the third type of sound ray signal:

V/. !
My = I

7 7 13
c|r1+r2|—V,-(r1+r2) (13)

Vr g

— (14)
Tl Vin

Af37 = 'f3b

where Vt, is the velocity of the virtual source SS', whose sound
source SS is symmetrical to the sea surface, and ré is the vector from
the intersection point of the incident sound ray and the sea surface

to SS', f3p = f + Afs,.
The total Doppler shift of the third type of sound ray is:

<1

and the model of the third type of sound ray reverberation
signal p;(ts;) is

Afs = Afy + Afy,
V; . (r’l + r2)

Vt' . (rl +r2)
i 7 .
clry+ra| =V (rp 1) f

(15)

— . : / N V.13 .
5‘71 +72‘ -V (71 +72) clrs| =V, -1y

N

pity) =

n=1

~expj2n(f + Afs)( - t50)] (16)

Ity + 7o - [r3

\/sin 68 sin 65dA - 1" - exp(jo'”)

The first term m - (‘r§¢+r2| ~|r3|)_1 represents the signal
propagation loss, the second term exp[i2m(f + Af;)(f — t3;)] is the
complex signal arriving at the hydrophone after the frequency shift
and time delay, and the third term +/sin 6% sin 63°dA - ,u;,”3~
exp (j(p’“) is the scattering coefficient of the seabed sound
pressure, /"> obeys a Gaussian distribution, ¢" obeys a (0 ~ 2m)
uniform distribution, and 3 = (|| + |r2| + |r3])/c is the signal
propagation delay.

2.2.1.4 Doppler shift model of the fourth type
of sound ray

As shown in Figure 2-4, the amount of change in the frequency
of the fourth type of sound ray signal is

Vi (r +15)

c{r’1 +r2| -V (r] +13)

Afy = (17)
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V- (rs + 1)

V_c|r3+ri|—V£-(r3+rjl)

Afy S (18),

where r is the vector from the intersection point of the incident
sound ray and the sea surface to SS’, r, is the propagation vector of
the fourth segment of the sound ray, and r; is the vector from the
intersection point of the scattered sound ray and the sea surface to
the virtual source RE', fy, = f + Afy,.

Consequently, the total Doppler frequency shift of the fourth
type of sound ray is (Zhang et al., 2021b):

Aﬁl = Af4t + Af41

Vt’ . (r/l + rz) V; . (r3 + r;)
= (19)

7 7

c’r’1 +r2’ -V, (r’l +r2) " c}rg +r;} - \/, (r3 +r4)

V; . (T’l + 1'2)

1
* c|r'1 +r2| - Vt’ . (”,1 +72)

and the model of the fourth type of sound ray reverberation
signal p,(ty) is:

N, m?

Palty) =,

el SN RS

\/sin 611 sin 631dA - ™ - exp (jo™)

The first term of Equation 20 m2(|r,1 + o] - |13 +r,4|>71

-exp[i2n(f + Afy)(t - ty)]  (20)

represents the signal propagation loss, the second term exp[j2n(f +
Afy)(t — ty)] is the complex signal arriving at the hydrophone after
the frequency shift and time delay, and the third term
\/sin 6 sin 65*dA - (1" - exp (jo™) is the scattering coefficient of
the seabed sound pressure, 1,"* obeys a Gaussian distribution, ¢
obeys a (0 ~ 2m) uniform distribution, and ty. = (|r(| + |rs| + |r3] +
|r4])/c is the signal propagation delay.

2.2.2 Influence of the Doppler effect on the
signal pulse width

As shown in Figure 3, ¢ is the signal speed, A is the wavelength, 7
is the pulse width, and k is the number of cycles, ie., the signal
contains k wavelengths. The signal will be affected by the Doppler
stretching effect, and will thus have a new wavelength A’ and a new
pulse width 7' (Xiye et al., 2009). According to the relationship
between distance, speed, and time, we can easily obtain that:

T =u (21)

(22)

If we substitute f- A = ¢ and f' - 1’ = ¢ into Equation (21) and
Equation (22), respectively, then we can obtain the relationship
between the signal pulse width before and after the Doppler
stretching effect:
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FIGURE 3
Influence of the Doppler stretching effect on the signal pulse width

Simulation and results.

2.3 Underwater reverberation simulation

The geometric model of seabed reverberation simulation is
shown in Figure 4 (Zhang and Yang, 2022). The towed linear
array is horizontally arranged along the negative direction of the Y
axis, where SS is the transmission source of the towed linear array
located on the Z axis (Xiaohui et al., 2017). Furthermore, RE is the
receiving element of the towed linear array, i is the serial number of
the receiving element, N is the total number of receiving elements, d
is the distance between the receiving elements, H is the depth of the
sea water, and & is the distance of the towed linear array from the
sea floor. The distance between the transmitting source SS and RE;
is 2d (Jinhua et al.,, 2020; Yonghong, 2011). The motion states of the

4
sea surface
RERE L RE o, RE, RERERELSL 55
Fd+=2d—
H
h
1
4 =34
eabe -
X
FIGURE 4

Geometric modeling of seabed reverberation simulation.
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transmitting source and the receiving element are the same. The sea
floor scattering area is an annular area, which assumes the origin as
the center of a circle with an inner diameter R,;, and an outer
diameter Ry, and dA is a sea floor scattering element (Meina et al.,
2017; Zhao et al, 2011). The transmitting source sends out a
complex signal described by s(t) = exp (j2nft) (Zhiguang and
Zhiqiang, 2016), with a pulse width of 7, sea surface reflectivity of
m, and speed ¢ (Zhang et al., 2022b).

2.3.1 Reverberation signal simulation of a single
scattering unit by a single sound source and a
single hydrophone

In this section, we simulate the reverberation signal received by
RE,, which is emitted by the sound source SS and is incident to REj,
via a single scattering element dA (Yugiang et al., 2018). The
simulation parameters are shown in the following Table 1:

In this paper, the reverberation model, represented by
Equations (24), (25), (26), and (27), takes into consideration both
the ocean multipath and Doppler effect. Depending on whether the
transmitting source and the single receiving element RE, are
stationary or moving, the simulation results are shown in
Figures 5, 6, respectively.

Figure 5 demonstrates a time domain diagram of a single
bottom scatterer’s reverberation signal. A single source emits a
sinusoidal pulse signal with a fixed frequency pulse width of 0.5(s).
After passing through the single scattering element dA, the single
hydrophone RE,, receives the time domain map of the signal. The
blue part of the figure is the time domain plot of the signal received
by RE; while the trailing linear array is stationary. Conversely, the
red part of the figure is the time domain plot of the signal received
by RE; when the linear array is dragged. Thus, when the transceiver
device is stationary, the signal frequency of the four types of voice

TABLE 1 Parameters used to simulate the single seafloor scattering
element reverberation.

Title Symbol Value
Type of sea Homogeneous
Type of seabed Flat seabed
Reflection coefficient of the seafloor Obeys a (0-1)
distribution
Sea depth (m) H 60.0
Distance between the line array and the h 45.0
seabed (m)
Line array speed (m/s) \' 10.0 or 0
Line array element spacing d 0.25
Complex signal frequency (Hz) f 3000
Complex signal pulse width (s) T 0.50
Sea surface reflectivity m 0.80
Velocity (m/s) c 1500
Seafloor scattering element coordinates (Xb> Y Z1) (0,101,0)
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lines remains unchanged because there is no Doppler shift. Hence,
the superimposed signal of the four types of voice lines still basically
maintains the shape of sinusoidal pulses (blue part). When the
transceiver device moves, the signals of the four types of voice lines
undergo different degrees of Doppler shift. The superposition of
four types of sound lines with different frequencies forms a signal
(red part), in which the envelope amplitude changes following the
law of sine and cosine. Moreover, under the same motion state, the
Doppler frequency shift of the four types of voice lines is calculated
by the Doppler shift model of the four types of voice lines, and the
accurate modeling and simulation of sonar reverberation signals are
realized. Additionally, owing to the influence of the Doppler effect
on the signal pulse width, the signal pulse width of the light-colored
part of the figure is shortened, and the analysis graph shows the
pulse width change AT = 7 -1 =-0.005 (s).

In addition, Figure 6 exhibits a spectrum diagram of the
reverberation signal generated by a single bottom scatterer (Yanzi
et al.,, 2018). It can be seen that the peak center of the spectrum
increases following the movement of the transceiver, as opposed to
when the transceiver remains stationary, and the analysis graph
demonstrates that the frequency shift is Af = 35 Hz (Huang and
Gao, 2014). When in motion, the spectrum is extended due to the
different Doppler frequency shifts of the four types of sound rays
moving at the same speed.

Although (Minghui, 2011) provides the models of four types of
multipath sound ray reverberation signals, the authors do not
investigate the influence of the Doppler effect on the four types of
sound ray reverberation signals in detail. To compare the traditional
model, which does not consider the multipath and the Doppler
effect, with the improved model presented in this paper, we
employed the first type of bistatic sound ray model equations (5 —
12) stated in Chapter 5 of (Minghui, 2011) to compare the
simulation results with the present model.

In the case of motion, Figure 7 shows a comparison of the
simulation time domain of a single seafloor scatterer:

The blue graph in Figure 7 is a time domain plot of the received
signal simulated based on a traditional model. Conversely, the red
graph is a time domain plot of the received signal simulated using
the improved model. Figure 7 reveals that the time domain of the
reverberation signals of the improved and traditional models is as
follows: 1. The pulse width of the improved model signal is longer
than that of the traditional model signal, which is due to the
influence of the multipath, and part of the sound ray propagation
path is longer. Since the Doppler frequency shift is not considered
by the traditional model, the reverberation amplitude will remain
constant. Compared with the traditional model, the reverberation
envelope of the improved model changes according to the sine and
cosine law, which is due to the superposition of reverberation
signals formed by the different Doppler shifts of the four types of
sound rays. The reverberation time domain amplitude of the
traditional model is smaller than the signal amplitude under static
conditions in Figure 5 because the traditional first type of sound ray
model does not consider multipath superposition. It can be seen
that the improved model can reflect the space-time characteristics
of reverberation signals more accurately in the case of a single
source, single hydrophone, and single scatterer.
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Time domain map of a single seafloor scattering element reverberation signal.

The frequency domain comparison between the improved
model and the traditional model is shown in Figure 8:

From Figure 8, we can see that the peak frequency of the
improved model increases due to the influence of the Doppler shift,
and the spectrum of the improved model is extended compared
with the traditional model because of the different Doppler
frequency shifts of different sound rays caused by the ocean
multipath. Therefore, the improved model can reflect the
spectrum characteristics of the reverberation signal more
accurately. In addition, the improved model presented in this
study can simulate the reverberation signal more accurately under

the condition of a single source, single hydrophone, and single
scattering unit by analyzing the respective space-time and
spectrum characteristics.

2.3.2 Reverberation signal simulation of a towed
linear array

In this section, we simulate the reverberation signal of a towed
linear array using the parameters shown in Table 2 and the
simulation results are shown in Figures 9-12.

The “angle” in Figures 9-12 describes the directivity angle of the
dragged line array (Zhe et al, 2017; Zelin, 2019; Junchao, 2021).
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FIGURE 6

Spectrogram of a single seafloor scattering element reverberation signal.

Frontiers in Marine Science

frontiersin.org


https://doi.org/10.3389/fmars.2023.1279693
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zhang et al. 10.3389/fmars.2023.1279693
Time domain plot of
-5 Lo
5 X 10 reverberation signals
I I I Tradition
— — — - Improvement
1 4
(]
=
=
= 0
=
<
-1 _
_2 1 I 1 I
0 0.2 0.4 0.6 0.8 1
Time(s)
FIGURE 7

Comparison of the time domain diagram of a single seafloor scattering element reverberation signal.

Furthermore, different angles correspond to scattering elements at
different positions. A comparison between Figures 11, 12
demonstrates that the reverberation signal frequency decreases
when the directivity angle is negative, and increases when the
directivity angle is positive. Figure 12 also shows that the frequency
shift of the reverberation signal is approximately sinusoidal with the
directivity angle of the linear array, a finding which is consistent with
the theoretical analysis (Xiaodong et al., 2011; Yangiu, 2015; Zhu
et al,, 2023; Zhang et al., 2023a; Zhang et al,, 2023b).

Figures 13, 14 show the reverberation signal simulation of the
traditional model under the condition of towed linear array motion

A comparison between Figures 13 and 10 reveals that the
maximum amplitude of the reverberation signal of the traditional
model is 0.12, which is smaller than the maximum amplitude of the
reverberation signal of the improved model (0.22). This improvement
can be explained by the fact that the improved model considers the
superposition of multipath sound rays. Furthermore, a comparison
between Figures 14 and 12 demonstrates that potential changes in the
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FIGURE 8

Frequency domain comparison diagram of a single seafloor scattering element reverberation signal.
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TABLE 2 Dragging line array reverberation simulation parameters.

10.3389/fmars.2023.1279693

Title Symbol Value
Type of sea Homogeneous
Type of seabed Flat seabed
Reflection coefficient of the seafloor Obeys a (0-1) distribution
Sea depth (m) H 1200
Distance between the line array and the seabed (m) h 900
Line array speed (m/s) \4 10 or 0
Number of line array receiving elements N 64
Element spacing d 0.25
Complex signal frequency (Hz) f 3000
Complex signal pulse width (s) T 0.50
Sea surface reflectivity m 0.80
Velocity (m/s) c 1500
Inner radius (m) Amin 1200
Outer radius (m) Amax 12500

directivity angle of the linear array do not induce any frequency shift
in the reverberation signal of the traditional model. This is because
the traditional model does not consider the Doppler frequency
shift factor.

Overall, our findings clearly show that the improved model
presented in this study can simulate the reverberation signal
significantly more accurately compared to the traditional models

by analyzing space-time and spectral characteristics under the
condition of a towed linear array.

3 Conclusion and discussion

Under the condition of a single sound source, single
hydrophone, and single scattering unit, our simulation data

Space-time distribution plot (stationary)
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FIGURE 9

Space-time distribution of a stationary dragging line array reverberation signal.
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FIGURE 10

Space-time distribution of a panned dragging line array reverberation signal.

showed that the envelope amplitude of the reverberation signal
changes according to the sine and cosine law, while changes in the
pulse width and spectrum of the signal will occur when the
transceiver moves in response to the Doppler effect. A
comparison between the simulation results of the improved and

the traditional models clearly demonstrates that the reverberation
pulse width of the improved model is longer than that of the
traditional model due to the ocean multipath. In addition, the
reverberation envelope of the improvement model changes
according to the sine and cosine law, caused by the superposition
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FIGURE 11

Space-frequency distribution of a stationary dragging line array reverberation signal.
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Space-frequency distribution of a panned dragging line array reverberation signal.

of reverberation signals formed by the different Doppler frequency
shifts of the four types of sound rays considered, as opposed to the
reverberation signal amplitude of the traditional model which
remains unchanged. When assessing the space-frequency

characteristics of the two models, the peak frequency of the
improved model was increased and the spectrum width was
extended due to the different Doppler frequency shift of the
multipath sound ray. It can also be seen that the reverberation
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Space-frequency distribution of a panned dragging line array traditional model reverberation signal.

signal model that considers both the ocean multipath and the
Doppler effect can reflect the variation in the frequency and pulse
width of the reverberation signal far more accurately.

Under the condition of a towed linear array, the relationship
between the frequency shift of the reverberation signal and the
directivity angle of the linear array is approximately sinusoidal
when the linear array is in uniform linear motion, and the space-
time two-dimensional characteristics and Doppler spread in the
simulation results are consistent with the theoretical analysis. Our
findings confirm that the model established on the premise of
single-point transceiver separation can be well-extended to the case
of multi-point separation. Consequently, the proposed model has
broad universal applicability and can be used to simulate more
diverse combinations of sonar array elements.

When it comes to space-time characteristics, our data showed
that the reverberation amplitude of the improved model is larger
than that of the traditional model due to the superposition of
multipath sound rays in the ocean. Finally, pertaining to the spatial
frequency characteristics, the improved model can reflect the
frequency domain characteristics of reverberation signals more
accurately than the traditional model.

Conclusively, the reverberation signal model considering both
the ocean multipath and the Doppler effect can simulate the sonar
reverberation signal more accurately than the traditional models
presented in current literature.
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Reverberation is the primary background interference of active sonar systems in
shallow water environments, affecting target position detection accuracy.
Reverberation suppression is a signal processing technique used to improve
the clarity and accuracy of received signals by eliminating the echoes,
reverberations, and noise that occur during underwater propagation. Existing
reverberation suppression methods include algorithms based on Time-
Frequency domain processing, noise reduction, adaptive filtering, and spectral
subtraction, but their performance in high-reverberation environments (echo of
small targets) still does not meet the requirements of target detection. To
address the impact of high reverberation environments, we propose a
structural suppression method based on the Wasserstein gradient penalty
generative adversarial network (RSWGAN-GP). The reverberation suppression
generation network uses a one-dimensional convolutional network structure to
process normalized time-domain signals and achieves the reconstruction of the
reverberation signal through Encoder-Decoder. The proposed method is verified
through accurate and effective data collection during sea trials. Comparative
results show that RSWGAN-GP effectively suppresses reverberation in
observation signals with multiple bright spots, improving the signal-to-
reverberation ratio by approximately 10 dB compared to other excellent
algorithms and enhancing the information analysis and feature extraction
capabilities of active sonar signals.

KEYWORDS

active sonar signal, reverberation suppression, generative adversarial network (GAN),
high reverberation environment, one-dimensional convolution Frontiers
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1 Introduction

Sonar can accurately detect fixed targets and determine target
distance, it has poor concealment and limited range and is
susceptible to reverberation interference. The detection signal
emitted by active sonar encounters obstacles or targets in the
propagation path of water, and is then affected by reflection,
refraction, and scattering, resulting in signal delay and overlap.
The signals are subsequently received at the receivers, forming echo
signals with reverberation (Huang and Wang, 2019). The influence
of reverberation on active sonar like synthetic aperture sonar
(Zhang et al,, 2023a; Zhang et al., 2023b), communication sonar
(Yu et al., 2018), multibeam sonar (Neasham et al., 2007) and other
active sonars should be completely reviewed. Underwater interface
reverberation is an important factor limiting the detection
performance of active sonar in shallow water environments.
Unlike noise interference, reverberation has non-smooth
statistical characteristics and is usually mixed with the target
echo, which is challenging to distinguish (Faure, 1964).

Previous works on reverberation in signal processing mainly
focus on the study of detectors under specific reverberation
conditions (Bharathi and Mohanty, 2019) and the spatiotemporal
distribution characteristics of reverberation; researchers have
studied robust detection performance under various reverberation
distribution conditions. Some researchers have attempted to reduce
the effect of reverberation on target echo by designing a
transmission waveform, such as frequency-hopping signals
encoded with particular frequencies (Costas, 1984), Q-function
sonar signals (Cox and Lai, 1994), and SFM signals (Ward, 2001).
However, enough high frequency is needed to achieve a
reverberation suppression effect, which leads to a low utilization
rate of the low-frequency band and affects the range accuracy.

Some researchers study anti-reverberation processing on signals
received by sonar. Marine reverberation has a strong temporal
correlation with target echo signals.Target echo signals cannot be
effectively found by regularly matched filtering methods as the two
spectra overlap in the frequency domain. In order to improve the
performance of coherent processing in reverberation, Kay et al. used
the AR pre-whitening processing method to filter out reverberation
as white noise under certain conditions (Kay and Salisbury, 1990).
Higher gain and more effectively detected target echoes can be
obtained through matched filter by Wu et al. (Wu et al., 2018), but
local stationarity of the reverberation is required as a premise
(Widrow et al, 1967), which is widely used in ALE (Adaptive
Line Enhancement) algorithm (Ma et al., 2021). However, it has
strict requirements for the channel environment. H.M. Ozaktas and
L.B. Almeida filtered the signal based on the time-frequency focus
difference between the echo and reverberation in the Fourier
transform domain to achieve reverberation suppression (Ozaktas
et al,, 1996; Zhang et al., 2019; Mejjaoli and Omri, 2020). However,
The LMS algorithm performs adaptive filtering based on the error
between input and output of the channel, which has strict
requirements on the channel environment. Freburger et al. used
the principal component inversion algorithm to project the received
signal into two subspaces based on the power difference between
different backgrounds, thereby achieving reverberation separation
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(Freburger and Tufts, 1997). When the power of the target echo
signal is similar to that of the reverberation signal, distinguishing
between the two becomes difficult.

With the development of artificial intelligence (AI) technology,
deep neural networks have brought new research ideas to solve the
shallow sea sonar reverberation problem. As a hot research direction
in the field of machine learning, GAN (Ashraf et al, 2021) has
become a popular model in the field of deep learning due to its
advantages of generating high-quality samples, learning unlabeled
data, supporting multi-modal data and innovation (Zhan et al., 2019)
(Dong and Yang, 2018). Recently, Gans have evolved from image
generation to reverberation data generation Hu et al. (2023). Gans are
also used to generate spatial impulse responses, with the aim of
enhancing high-quality RIRs with existing real RIRs (Ratnarajah
et al,, 2023). In the field of underwater acoustic engineering, it is
theoretically feasible to use GAN for active sonar reverberation
suppression to solve the problem of reverberation suppression
under high reverberation environment.

This paper proposes a Wasserstein generative adversarial
network model with a gradient penalty (RSWGAN-GP) to solve
reverberation suppression of sonar signals. Sonar signals are
different from the picture, and a one-dimensional convolutional
approach is built in this paper to process the signal data. The
generation side of the adversarial network is made according to the
U-net network (Ronneberger et al., 2015) to encode the original
reverberation signal data, and the decoder generates the anti-
reverberant signal data. The discriminator uses the design idea of
SkipNet (Abrahamyan et al., 2021) that the discriminator to achieve
a balance of speed and accuracy. In order to realize the fast and
accurate training of the countermeasure network, the structure
design referred to WGAN-GP comprehensively. In the
experiment, simulation is used to supplement the data set to solve
the difficulty of Marine experiment data sampling and insufficient
data set. Our main contributions are concluded as follows:

1) In order to solve the difficulty of feature extraction in a
reverberation environment, we propose a Wasserstein
generative adversarial network model with a gradient
penalty method

2) Underwater active sonar reverberation simulation with echo
targets is proposed to obtain many marine reverberation
signals, solving the problem of insufficient training sets.

The rest of the article is organized as follows. Section 2 starts with
a brief review of some related works. In Section 3, some data
preliminary work is presented, which includes RSWGAN-GP
reverberation data generation, signal time gain control, and
automatic gain control. In Section 4, the reverberation suppression
method based on RSWGAN-GP is proposed, and the generation
network, discrimination network, and error loss are explained
respectively. In Section 5, experiments are given to verify the
effectiveness of the method, and in Section 6, conclusions are given.
In active sonar, the commonly used detection signals include single
continuous wave (CW), LEM, NLEM, BPSK and other signals. In this
paper, the research object of active sonar signal feature enhancement
is selected as the typical CW signal for research.
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2 Related works
2.1 Reverberation suppression methods

Traditional methods for reverberation suppression typically
focus on mapping the feature subspace. The differences between
reverberation and target echoes have been investigated in the
domains of Doppler space, discrete wavelet, and fractional
Fourier. Previous research provides essential features for reducing
reverberation and aiding target detection. For moving targets, in
particular, target tracking can achieve reverberation suppression.
However, these methods could be limited in low signal-to-
reverberation ratio (SRR) and high reverberation scenes. When
the echo of a tiny target is received, the target’s echo is weak and
covered by reverberation, and its feature subspace is weak and
difficult to find.

Low-rank and sparsity theories developed a decade ago have
found wide applications in image processing for tasks such as
background modeling, camera calibration, and optical character
recognition (Chandrasekaran et al, 2011). They have also been
introduced to underwater acoustic engineering for reverberation
suppression and target detection (Qian and Cao, 2019). In the case
of fixed-position active sonar, the received signal from multiple
pings exhibits significant stationarity. Considering the echo data
from a single ping as a frame, multiple frames can be constructed
over time and decomposed into dynamic and steady components.
The steady components display similar strength distributions over
time and can be viewed as a low-rank matrix. On the other hand,
the dynamic components, consisting of reverberation fluctuations
and target echoes, can be treated as a sparse matrix.

Consequently, reverberation suppression methods based on
low-rank and sparse matrix decomposition have been proposed.
These include techniques such as non-negative matrix factorization,
principal component analysis, and robust principal component
analysis (RPCA) (Chalapathy et al., 2017). For the
implementation of processing large matrix factorization,
alternative methods have been developed to expedite the process,
such as accelerated proximal gradient, augmented Lagrange
multiplier, and alternate direction multiplier methods (ADMM)
(LiXiukun et al, 2015). Zhu et al. applied low-rank and sparse
matrix estimation to decompose received data, enhancing
reverberation suppression techniques’ robustness (Zhu et al., 2022).

These reverberation suppression methods can achieve the
purpose of reverb suppression to a certain extent. However, they
still perform limited at a low signal-to-reverberation ratio.

2.2 Application of artificial intelligence in
reverberation suppression

With the development and rise of artificial intelligence in recent
years, algorithms combining artificial intelligence with anti-
reverberation technology continue to surge, such as support
vector machines, CNN (Song et al, 2019), RNN (Chen et al,
2022), and GAN In the beginning, it was simply a simple
addition to machine learning. For example, Zhu et al. designed a
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feature kernel function SVM based on the non-Gaussian difference
between reverberation and target echo to detect the signal in the
reverberation background. This method improves the recognition
quality of reverberant background, and its effect is better than the
adaptive filtering algorithm (Wu et al,, 2008). Jiang Keyu et al.
processed the lake test data (Jiang et al., 2007) and used RBF neural
network to detect the target echo in reverberation to be better.
Xiang et al. proposed a reverberation suppression method for
underwater moving target detection based on a robust
autoencoder (Zhu and Sun, 2008). Xiao et al. proposed an ABNN
focusing on the frequency domain characteristics of the target,
which suppresses environmental noise and ship interference and
makes the accuracy of target detection and recognition higher (Xiao
et al,, 2021).

The deep learning technology’s continuous development and
innovation, many neural network architectures with good
performance and robust stability have emerged. For instance,
multilayer perceptrons (MLP) and long short-term memory
(LSTM) networks have been developed to learn mappings from a
window of reverberated frames (or “context” windows) to a source
frame, thus learning to deliberate by inverse transformations Han
et al. (2015); Wang et al. (2017); Wuth et al. (2020). Additionally,
Zhao et al. Zhao et al. (2018) proposed an LSTM-based late
reverberation suppression strategy that learned the difference
between the source and reverberated signals; therefore,
dereverberation is performed by subtracting the late reverberation
estimation from the observed reverberated signal.

The application of deep learning provides another effective
method for reverberation suppression. Artificial intelligence has
relatively excellent performance and effect. It can achieve many
effects that cannot be achieved by traditional methods, which makes
the development of anti-reverberation technology in recent years
mainly biased to- wards the direction of artificial intelligence.

The above studies show that the combination of deep learning
has specific feasibility for sonar signal reverberation suppression.
However, reverberation suppression still needs to be improved
under high reverberation environments and different underwater
signal environments. At the same time, the extraction ability of
effective information in the signal still cannot meet the needs of the
complex environment.

2.3 The relationship between artificial
intelligence methods and
traditional methods

In terms of underwater reverberation suppression, the initial
reference of artificial intelligence (AI) and machine learning
methods is to make up for the shortcomings of traditional
methods and complement and combine them. In a new study, it
was found that artificial intelligence could complete the task better
to replace it entirely (Koh et al., 2020).

Traditional methods are mainly based on signal processing and
digital filtering techniques, which involve preprocessing, filtering,
and noise reduction operations to suppress reverberation in
underwater sound signals (Singer et al., 2009). These methods
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often rely on domain knowledge and expertise to analyze and model
the reverberation characteristics, followed by the design of
corresponding algorithms for processing. While traditional
methods can reduce the impact of underwater reverberation, their
effectiveness is limited when dealing with complex reverberation
environments and signals.

AT methods, on the other hand, utilize machine learning and
deep learning techniques to learn and recognize reverberation
features and perform suppression automatically (Hao et al., 2023).
By training models with large amounts of data, AT methods can
possess more substantial generalization and adaptability, making
them capable of handling more complex underwater reverberation
environments and signals. Compared to traditional methods, Al
methods exhibit higher levels of automation and intelligence in
underwater reverberation suppression.

Traditional methods and AI methods can be combined in the
context of underwater reverberation suppression. Traditional
methods can provide basic processing techniques and approaches
for preprocessing and initial reverberation suppression, which AI
methods can further optimize and enhance (Yin et al., 2023). For
instance, traditional methods can be used for filtering and noise
reduction of underwater sound signals, and the processed signals
can be used as training data for training AI models to achieve better
reverberation suppression.

In the current research, some scholars have found that traditional
methods and artificial intelligence methods are complementary in
terms of underwater reverberation suppression and can be combined.
Other scholars have used Al alone to replace traditional methods and
improve reverberation suppression (Weiss et al., 2023).

3 Preliminary

After the signal is received, the received signal will be processed
by the active sonar system. In this part, the hardware implementation
of the processing will be reproduced by the following algorithm. At
the same time, the signals that generate the training set data will be
processed in the same way.

The active sonar device processes the received signal in the
following way. After the hardware receives the sonar signal, the
sonar signal will go through time-varying gain and automatic signal
gain control processing so that the long-distance echo signal power
is stronger and more convenient for subsequent processing. After
processing, the generated training set is closer to the actual data.
Figure 1 shows the signal state of each process.

The processing of the signal in the hardware device after
receiving is shown in Figures 1B-D, and the signal processing
process will be explained below.

The echo received by the active sonar system, and the generated
echo signal with target information in Section 4.1 are shown in
Figure 1A, and the circled position is the target echo.Time-Variable
Gain (TVG) Innami and Kasai (2012). According to the sonar
equation, it can be obtained that the echo margin of the sonar is
determined by the difference between the echo signal level and the
background interference level.
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DT = (SL - 2TL + TS) — (NL - DI) (1)

In Eq. (1), DT represents the detection threshold and is the
strength of the echo signal received by the sonar, TL represents the
propagation loss because the active sonar is bidirectional, so 2TL
defines its complete propagation loss; SL represents the sound
source level; NL represents the noise level; DI represents the
directivity index; TS represents the target strength. For most
sonar systems, including multibeam sonar, the propagation loss
(TL) is compensated by the TVG device inside the receiver. The
ideal TVG curve should follow the expectation of sonar propagation
loss, i.e.

TL = 10logyor + ar (2)

In Eq. (2), r represents the action distance, and a is the loss
factor, a function of frequency. Figure 1B shows that the signal
passes through the TVG and that the distant signal is no longer
attenuated as the distance increases.

Signal Automatic Gain Control (AGC) (Zhang et al,, 2017). In
practice, automatic gain control is typically implemented through
circuit design. However, AGC needs to be implemented for the
experimental simulation of the sonar data set. The signal
adjustment must be automatically adjusted based on the input
and output data size, which initially requires numerous
logarithmic operations. In order to implement these operations
are avoided, a simple comparison operation is used with a gain
lookup table instead. The algorithm can be described as follows.

R

20lg(G(n + 1)) — 20ig(G(n)) = —lolg((ﬁ)ﬂl) (3)

The left side is transformed into the adjusted value between two
adjacent gain coefficients G(n + 1) and G(n) in dB format for better
clarity. Following the estimation of the average power of the output
signal, a comparison is made with the reference power to determine
the appropriate method for adjusting the gain coefficient based on the
outcome of this comparison. In Figure 1C, the AGC equalizes the
signal strength and partially suppresses reverberation through
processing. There are hardware limitations to consider in practical
usage. The hardware restricts the received signal and simulates how
the part of the signal that exceeds the limit would appear. Figure 1D
illustrates this simulation. Figure 1E displays the desired output result
of the network, which will be utilized to calculate the Jensen-Shannon
Divergence (JSD), aiming to bring the output result closer to it.

In both experimental and simulation data, some signals exhibit
peak clipping phenomena and cannot be restored to complete sine
waves, making traditional methods ineffective. After undergoing the
above (B), (C), and (D) processing and normalization, the simulated
signal has inputs with the same dynamic range.

4 Reverberation suppression in
RSWGAN-GP

In order to solve the problem of limited suppression effect in a
high reverberation environment, a reverberation suppression
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D

Signal processing. (A) The echo received by the active sonar system. (B) The echo signal is processed by TVG. (C) The echo signal is processed by
AGC. (D) The echo signal received and processed by sonar. (E) Target echo signal hidden in sonar signal.

framework based on the Generative adversarial network is
proposed. A nonlinear mapping from the sonar detection signal
with reverberation to the sonar signal with reverberation
suppression is established, where the input data is the signal
propagation time series. The output is the corresponding time
series after reverberation suppression. Due to the scarcity of
actual data with reverberation signals, the training of RSWGAN-
GP will face the problem of overfitting, reducing its generalization
performance. To this end, the generation of virtual reverberation
data is implemented in this section by combining statistical
modeling and a multi-highlight model. The training data set is
expanded by mixing real and virtual reverberation data while
ensuring the consistency of its distribution pattern. Then, the
theoretical signal gain control was calculated by signal
propagation theory to form a time series signal for artificial
intelligence model learning. The implementation of this part is
shown in Figure 2.

The data generated in Part 4.1 is mixed with real data for Part
4.3, 4.4, and the gradient penalty part is invoked for training.

4.1 Underwater active sonar
reverberation simulation

Underwater reverberation consists of volume reverberation,
surface reverberation, and submarine reverberation. Sea surface
reverberation and submarine reverberation are collectively referred
to as interface reverberation.

To model the network, a significant amount of experimental
data is necessary. Therefore, in this paper, we will simulate sonar
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reverberation data. The reverberation simulation comprises three
parts: the generation of reverberation, the simulation of echoes, and
environmental noise simulation.

As shown in Figure 3, at Point M, a non-directional signal is
emitted to activate the ring energizer.. The reverberation model is
illustrated in the figure. Point M represents the transducer, the
distance from M to the interface xoy is h, and the signal is emitted
without any specific direction. At time t, the ring of scatterers
contributing to the reverberation is inside the ring. (Sun
et al., 2010).

It is assumed that the number of scatterers generating
reverberation on the i-th ring is Q. The emitted signal is denoted
as s(t), and its strength is A. The length of the MA is represented by
r, and the wave number is k, where k = 27f /c. The speed of sound
in the ocean is represented as ¢, and the scattering coefficient of the
g-th scatterer is R;; = aiqej""‘i. Where r = ct/2, MB = ¢(t — T) /2, the
ring area S = 7r(r* — MB?). If the unit area is /\ S, so the number
of scatterers contributing to the reverberation in the ith ring is N,
N =[S/ /AS], and [] denotes the integer command, 1 < g < Q.
Therefore, the scattering characteristic function at time ¢ can be
expressed as:

QA . 1 .
Pt) =X =Ry~ ™ (4)
g=1 r r
AQ . )
=3 Ee‘ﬂk’aiqe"”‘q (5)
q=1

where a represents the amplitude and y represents the
phaseain, a and y in are both random numbers following the
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Gaussian distribution with the constraint of, 0 < g < L0 <y, <
27. The process of generating reverberation involves convolving the
emission signal with the scattering characteristic function.
Therefore, the reverberation at time ¢ can be expressed as the

following formula:

(6)

Active sonar is utilized for detecting underwater targets, which
involves reverberation and capturing the target echo signal. When
the sonar signal hits the object, it generates a new echo through the
multi-point superposition of the target body, enabling the active

R(t) = s(t) @ P,(1)

sonar to receive it (Hodges, 2011).

In addition to reverberation noise, target echo is an essential
component of active sonar signals. The sonar is assumed to have an
array of [1 -+ m --- Z] elements for reception. The target echo signal
received by the m-th array element can be expressed as:

z 1
E(t) = ElzlbiS(t = Tyui)exp[W,i(£) + 27fy(t) - (t = T,0i) — W3] (7)

In Eq. (7) the coordinate of the m-th array element (x,,, > Z,,)
is represented by a vector 7,,. I represents the number of highlights
of the target, b; represents the reflection coefficient of the i-th
highlight, S(¢) represents the envelope of the transmitted signal, 7,,,;
represents the time delay experienced by the sound wave incident
on the i-th highlight and then reflected the m-th array element,
W,.i(t) represents the angular frequency change of the sound wave
irradiated to the i-th highlight and then reflected the m-th array
element, f; represents the Doppler shift, and y; represents the
random phase shift of the i-th highlight echo, uniformly distributed
between (0 ~ 27). Different objects can be simulated by adjusting
the number of highlights.

For environmental noise simulation, the spatial and physical
characteristics of the Marine environment are complex, and the
noise level depends on mixing multiple noise sources. This paper
adopts an AR modeling method to simulate and synthesize Marine
environmental noise (Chen et al., 2018). Firstly, an uncorrelated
Gaussian white noise sequence v(n) is generated, and the Marine
environmental noise can be obtained by passing v(n) through an AR
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filter with a specific temporal correlation. Mark the Marine
environmental noise as W(n), then the generation process of
Marine environmental noise is shown in Eq. (8):

(8)

W(n) = ~Sa,(WWn - k) + 0,be(n)

k=1

p represents the order of the AR filter, v(n) Gaussian white
noise, and 62b} represents variance of Marine ambient noise.AR
filter coefficients a,(k) and b, can be solved by Levinson-Durbin
(Diniz et al., 2010) method.

The data generated by the above three equations are normalized
respectively, and the corresponding weight is assigned. The
obtained signal is denoted as S(t), and the obtained signal is
shown in Figure 1A, where the signal marked in the yellow box
represents the echo position of the target.

)

Here, o represents the trade-off between E(f) and R(¢). A is an
adjustable parameter that controls the degree of the strength
fluctuation. Through the adjustment of parameters o and 4,
enable diversity in the data set, the desired SIR (Signal to
interference ratio, 10log(o* P(E(t))/P(R(t)))) and SINR (Signal to
interference plus noise ratio, 10log(c*P(E(t))/[P(R(t)) + A*P(W)])
) are achieved, where P represents power.

S(t) = R(t) + aE(t) + AW, o, A< [0,1]

4.2 Implementation mechanism of the
generative adversarial network

GAN is an effective data generation network, including
Generator (G) and Discriminator (D). The G-analysis process is a
minimal game process, and the discriminator and generator finally
reach Nash equilibrium.

The adversarial training optimization process for generators
and discriminators can be expressed as follows:

mGin rnlz)ixV(G, D) =E,p, [log(D(x))] + E,;Npg [log(1 - D(x))] (10)

In Eq. (9), x is the actual data, P, is the actual data distribution,

P, is the generated data X = G(z) distribution. The objective

g
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function expressed by ming maxp V (G,D) is to minimize the JSD
between the expectation data distribution P,and the generated data
distribution, provided that the D is optimal.

In that case, the JSD cannot measure the distance between the
generated and actual data distribution. Training the GAN by
optimizing the JSD will result in not finding the correct
optimization target, which is prone to the problem of unstable
training gradient and model collapse.

In order to solve the problems mentioned above, the
Wasserstein Generative Adversarial (Wasserstein GAN, WGAN)
network proposes to use Wasserstein distance as an optimization
method for training GANs. To satisfy the Lipschitz continuity,
WGAN limits the weights to a specific range to enforce the
Lipschitz continuity, but it is leads to poor generation results.
WGAN-GP is a gradient penalty-based WGAN. WGAN-GP
improves the Lipschitz continuity constraint by using gradient
penalty instead of weight clipping in WGAN.

The objective function of WGAN-GP is:

max V(G,D) = E,.p [D(x)] = Ez-p, [D(X)]

- AE; p [(Il VD) |l, -1)] (11)

mg;n L(G,D) = E,_p,[D(x)] - E;p, [D(x)] (12)

In the formula, A is the gradient penalty term coefficient, Py is
the sampling distribution of the gradient penalty term, the
discriminator maximization maxp V (G,D), and the generator
minimization ming L(G,D).WGAN-GP provides a stable training
method that requires little parameter tuning to solve training
gradient disappearance and gradient explosion.

4.3 Reverberation suppression
generator network

In the previous step, the shape of processed data is [B,N],
meaning that there are B test data of length N. B is divided into
multiple b. Our goal is to separate a mixture signal § € [-1,1]¥*®
into K source signals S ',...S X with $* € [-1,1]%* for all k €
{1,...,K}, Kis set to 1 by default in this paper, B as the batch size at
training time and N,, and Nas the respectivenumbers of signal
length. For model variants with no extra input context, we have
Nm = Ns and make predictions for the echo part of the input. Here
we input the data S into the neural network structure and perform
feature extraction on the data. It is divided into two parts to
introduce the G network. The first part is the realization of data
crop and concat, and the second part will introduce the whole
generator network.

4.3.1 Data concatenation

It is challenging work to extract sonar signal features using one-
dimensional convolution. A well-designed deep network structure
is crucial for obtaining more valuable dataset recognition features.
As the number of network layers increases, training deep networks

becomes labor-intensive due to the common insurmountable
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problem. To address this issue, optimizing data concatenation
when passing network parameters can be more effective. The
implementation of this approach in the paper is shown in Figure 4.

In Figure 4, the signal feature x is passed from the previous layer
and is processed by the conv; ... conv, layers to obtain the data x,,.
conv, processes x through another branch line to obtain the result
conv,(v). Then, the result z, ® conv,(x) is obtained, and
subsequent processing continues, done to prevent the loss of
original features after multiple convolutions. The convolution of
the branch is used to process the data and obtain the final data. In
Figure 4A, the data crop operation is equivalent to @, which is the
operation of skip connect in Figure 4B.

The network construction will be built with network blocks and
have the u-net network structure. The network has ¢ + n layers, and
each layer is labelled [1,...,¢ - 1,4, + 1,...,¢ + n|, where £ —n = 1.

For a stacked-layer structure (consisting of several stacked
layers), the learned feature is recorded as H(x;_,) when the input
is x. When ¢ is 0, the accumulation layer only performs identity
mapping, and the network performance will not be degraded. It
allows the accumulation layer to learn new features based on the
input features, resulting in better performance. A convolutional
block of length ¢ + n can be expressed as:

Xpen = Fa(XpsWepa ) n<Ln €N

Xpen = Fu(pn-t, Weeno1 ), n > 1L,n EN L (13)
xp = F,, (0, wp), n=1
Xpen = F(Xpim Ween) © H(xp) (14)

The convolution result can be obtained by iteratively
convolving the output x from y,_,, block to y,,,_, block, where ¢ +
n ranges from £ —n—1 to £+ n— 1. The input and output of the

ZA

\
S
v

A X

FIGURE 3

Reverberation model.
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formula are represented by x,, and each residual unit typically
contains a multi-layer structure. F; is the downsampling block
function, F, is the upsampling block function, representing the
learned residual, and H(x;) = x; represents the identity mapping.
The learned features from the shallow layer £ to the deep layer L are
expressed as:

L-1
xp, = x+ > Fx;, wy)
i=1

(15)

The determination of L depends on the shortest distance £
detected by the sonar, that is, the number of data points N processed
by the sonar equipment. The size of L can be solved by the formula
L =1log,(L x Fs/N x c), where Fs is the sampling rate of the active
sonar brother and ¢ represents the speed of sound propagation in
water (m/s).

4.3.2 The generator network structure of
RSWGAN-GP

The generator side of RSWGAN-GP is called G, which is
constructed by a U-shaped network. It utilizes a one-dimensional
convolution network that convolves specifically on signals while
adding skip connections based on their original basis to enhance
accuracy in signal feature extraction, as shown in Figure 5.

As shown in Figure 5, the signal data S is directly input into the
encoder layer X}, to start the one-dimensional convolution
operation. The network structure’s transmission process and
main characteristics are shown in the figure, where G isspecially
designed for processing sonar acoustic signals. The role of the
encoder is to transform the input sequence into a low-dimensional
representation that can capture the critical features of the input
sequence. The decoder transforms the encoding vector into the
target sequence and dynamically generates the content related to the
target, as shown at X3,. The decoder receives the feature map from
the same-scale encoder layer X3, directly. Its data scale will not
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change, still 96 x 25600. The convolution of multiple neural
networks may weaken data features with the increase of
convolutional layers, so the data crop structure is utilized to
reduce the loss of information, as shown in Figure 4.

In the generation part of the RSWGAN-gp network, we
formulate the network running result X}, as follows: let i indexes
the down-sampling layer along the encoder, N refers to the total
number of the encoder. The stack of feature maps represented by
Xb,, is computed as:

i .
XEn 1=

H [C(D(Xéy,));Z,C(XE”,C(U(XEE))Z:iﬂ =1

Scales: 1" ~it"

Xpe = L-1

Scales: (i+1)"~Nth

(16)

Where function C(-) denotes a convolution operation, H( -)
realizes the feature aggregation mechanism with a convolution
followed by a batch normalization and a Leaky-ReLU activation
function. D(-) and U(-) indicate up- and down-sampling
operation respectively, and [,] represents the concatenation.

The convolution operation C of the signal is shown in the
following formula:

Xt = (iiwﬁ*lxjﬁ) + bias (17)
k =0

Where X;,X;,; and ® are inputs, outputs and weight
parameters, respectively; 1 x F is the size of a single kernel; K is
the number of kernels. Here, the kernel size of 1 x F is shared for
the whole input feature maps, called weight sharing.

It is worth mentioning that our proposed generator network is more
efficient with fewer parameters. As for the decoder of the generator part,
the depth of the feature map in a generation is symmetric to the encoder,
and thus Xlije, also has 12 x 2!, channels. The number of parameters in
i" decoder stage of P4, can be computed as:
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Generator network.

Phe = Dg x Dy x [d(XE!) x d(Xb) +d(Xh) +d (X, + Xb) x d(Xp,)]
(18)

where Dy, is the convolution kernel size, d( - ) denotes the depth
of the nodes.

In G, the convolution with a stride of 1 maintains the output
length equal to the input length. A downsampling method D( -) is
employed to increase the receptive field of the original data by [1/2].
The signal data SNwxB — [sh, 5%, 8%, 5%, oe M3, 572 5L 5 s

"2, s"]. After convolving the data to

downsampled to [s!,s%, -+, s
obtain its minimum scale, corresponding upsampling [x2] is used
along with interpolation to restore the data to its original scale. The
signal is transformed from S, to S, after processing, while the signal
length remains unchanged.

The network is symmetric, with the first half using
downsampling and the second half using upsampling. The
network’s construction affects the length of data processing and
the shortest distance for processing sonar signals. When the
downsampling block has L layers, the number of input points is
at least 2°. An 11-layer symmetric network structure is used in the
experiments, so the minimum input signal points are 2!' = 2048.
However, if only the signal data with a length of 2048 is input, it will
output only one value after 11 downsamplings, leading to less
feature representation. For X%, to be greater than 1 in the middle
of the convolution, the data signal length for training should be at
least J =2 x 2048 = 4096. The shortest detection distance of
convolution is £, and its formula is as follows:

J
2 x Fs

X ¢ (19)

Where Fs stands for the sampling frequency, based on the
example calculation, we can determine that the shortest detection
range of the active sonar after processing is 12.3m in the network
constructed with an 11-layer downsampling block.

4.4 Reverberation suppression
discriminator network

This section describes the discriminator part of building the
adversarial network (D). The discriminator plays a crucial role in
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- Upsampling

the GAN. It helps the generator to generate more realistic signals
after the downsample (achieving unity in the frequency domain). It
improves the GAN’s ability to understand the training data, which
lays the foundation for generating higher-quality sonar signals. In
this will generate the signal S, and the required E(S,,) input. In order
to improve the accuracy of D, a one-dimensional convolutional
discriminator network of SkipNet suitable for underwater acoustic
signals is constructed by referring to the DenseNet Gao et al. (2020)
structure. The main structure and the overall structure are
introduced in the following.

When training the network, the complexity of the GAN network
will bring problems such as long training time and difficulty in
discovering signal features. The discriminator network uses
traditional convolution to process longer underwater acoustic
signals, which requires the design of a deeper network, which
wastes time and may lead to feature disappearance and network
degradation problems. Introducing SkipNet blocks can reduce the
construction of network depth and training time. The skip
connection makes it a flexible and efficient neural network
architecture with good accuracy and resource efficiency performance.

In the more compact convolution, where rich features are less
readily available due to the limited number of parameters, the
different features that emerge from activation map-pings derived
from data points during model inference may indicate the existence
of a set of unique descriptors that are necessary to distinguish
between different classes of objects. In contrast, data points with low
feature diversity may need to provide sufficient unique descriptors
to make valid predictions, called random predictions. Random
prediction can negatively affect the optimization process and
impair the final performance. This paper presents a series of
Skipnet block models structured to fuse the previously convolved
information using a skip net whenever a portion of the convolution
passes to show the importance of diversity.

As shown in Figure 6, After downsampling the signal, the signal
features will be put into the next layer and skipnet for multiple
convolution. Finally, the results of two parts will be added. The
feature signal obtained by addition is subjected to the same
processing after downsampling once. This can be expressed using
the following formula:

xp = hy(xp) + Hy(Hyy o Hy_ (X)) (20)
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In Eq. (20), X represents the feature data after the convolution
operation. h(-) stands for SkipBlock, which can be expressed as
h = (Downsampled |BN | Conv | BN | Activation| Downsampled ),
and H stands for the main convolution process. x, adds the results
above the main line and the sideline.

The RSWGAN-GP network uses convolution with a skip
network with skipBlock to implement the discriminative signal
network. Due to the difference between signal and image
processing, the feature extraction is carried out in the form of
one-dimensional convolution, and the subsequent dimension
reduction processing is transformed from pooling to down-
sampling processing, which is more suitable for the processing of
signal features Nakaoka et al. (2021). Figure 7 shows the
implementation of the discriminative signal network.

In the discriminator network, the generator G is initialized and
given a reverberation signal data vector as input. The generator
generates signals based on the mapping of the input vector, creating
generated data. The discriminator network then judges and
identifies the generated data, producing a classification probability
that results in a judgment (true or false). During discriminator
training, actual data is also inputted to train the discriminator. The
de-reverberation signal is labeled 1 (effective reverberation
suppression), while the signal without effective reverberation
suppression is labeled 0. The loss Lpis generated based on the
generated result. In this paper, a non-densely connected network is
designed to avoid redundancy and too many parameters in the
signal processing network. The Desenet is designed without dense

connections. Sparse connections are used instead, maintaining the
same effect.

When the signal generated by the generator network meets the
requirements of the signal-to-reverberation ratio, the generator
network will stop training, and the final signal generator is the
underwater reverberation suppression model.

4.5 Loss functions

This section presents the calculation of reverberation suppression
loss for RSWGAN-GP. Due to the sinusoidal signal characteristics and
the influence of phase difference, the original WGAN-GP calculation
method cannot converge the training results. Therefore, a new method
is used to preprocess the loss calculation before training.

This paper gives the main parameters of the generation network
and the discriminant network used in the paper. The main
parameters of the network will be described in Tables 1, 2.

In Table 1, the signal input is 102400x1, and the data mapped
into the same scale by the generation network is also 102400x1. In
Table 2, the signal input is 102400x1, and the Classification
probabilities are formed after the convolution and linear layer
processing. The output scale is 1x1, which is used as the output
of the discriminator in GAN.

This paper uses the signal-to-reverberation ratio(SRR) to
evaluate the signal after reverberation suppression. The SRR will
be used to indicate the degree of signal suppression.

FIGURE 7
Discriminator network.
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TABLE 1 Generation network.

10.3389/fmars.2023.1280305

Act./Norm.  Output shape Act./Norm. Output shape
0 Signal Latent vector - 102400x1 14 upsample Convld Datacrop12 LReLU/BN 50x576
50%x288
1 Convld downsample LReLU/BN 102400x24 15 upsample Convld Datacropl1 LReLU/BN 100x522
- 51200x24 100x264
2 Convld downsample LReLU/BN 51200x48 16 upsample Convld Datacropl0 LReLU/BN 200x504
» 26500x48 200x240
3 Convld downsample LReLU/BN 26500x96 17 upsample Convld Datacrop9 LReLU/BN 400x456
- 12800x96 400x216
4 Convld downsample LReLU/BN 12800x120 18 upsample Convld Datacrop8 LReLU/BN 800x408
- 6400x120 800x192
5 Convld downsample LReLU/BN 6400x144 19 upsample Convld Datacrop7 LReLU/BN 1600x360
- 3200x144 1600x168
6 Convld downsample LReLU/BN 3200x168 20 upsample Convld Datacrop6 LReLU/BN 3200x312
- 1600x168 3200x144
7 Convld downsample LReLU/BN 1600x192 21 upsample Convld Datacrop5 LReLU/BN 6400x576
- 800x192 6400x288
8 Convld downsample LReLU/BN 800x216 22 upsample Convld Datacrop4 LReLU/BN 6400x264
- 400x216 6400x120
9 Convld downsample LReLU/BN 400%240 23 upsample Convld Datacrop3 LReLU/BN 12800x216
- 200x240 12800x96
10 Convld downsample LReLU/BN 200x264 24 upsample Convld Datacrop2 LReLU/BN 25600x168
- 100x264 25600x72
11 Convld downsample LReLU/BN 100x288 25 upsample Convld Datacropl LReLU/BN 51200120
50x288 51200x48
12 Convld downsample LReLU/BN 50x288 26 upsample Convld Datacrop0 LReLU/BN 102400x72
- 25%288 102400x24
13 Convld LReLU/BN 25x288 27 Convld tanh 102400x1
Pignar — P In Eq. (22), the lower exact expectation bound is difficult to find

reverberation )

SRR = 10log,,( 1)

reverberation

In Eq. (21), Pgjgyar is the power of the activated sonar signal,
Preverberation 1S the power of the reverberation signal, and Pg;ge —
Peverberation 15 the power of the target echo signal. SRR can be used to
indicate the degree of reverberation suppression. Denote by R( - ) in
the following calculations.

The reverberation suppression network approach of RSWGAN-
GP introduces the Wasserstein distance on top of the reverberation
suppression model of GAN, and Eq. (22) shows the distance.

W(P,P) = inf Egpylll RG) =R

ANGED)

(22)

In Eq. (22), E(-) is the calculated expectation; § is the desired
sonar signal after actual reverberation suppression, and s’ is the sonar
signal after raw reverberation suppression; [ (P,, Py) is R(S) — R()
, the set of joint probability distributions of the corresponding
expected signal P,probability distribution and the generated signal
Py inf(-) is the exact bound taken down; E; ¢y, [ R(3) = R(s) |[]is
the expected value of the relative distance of the local discharge signal
under the set of joint probability distributions 7.
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so that the Wasserstein distance can be converted into the
Kantorovich-Rubinstein dual form. Eq. (23) shows the
Wasserstein distance’s dual structure.

W(Pr! Pf) = SUP E§,P, [D(§)] - Es’,Pf [D(S,)]

[IDlI<1

(23)

In Eq. (23). D(x) is the distance cost function of discriminator
D; ||D||; £1 indicates that the discriminator distance cost
function satisfies the 1-Lipschitz restriction. The GP in
RSWGAN-GP indicates the gradient penalty function to satisfy
the 1-Lipschitz restriction, and its loss function is shown in Eq. (19).

L =—Ez-p x [D(G(2))]
Lp = -Ez ~ P, x [D(G(Z))] - Ex—p, x [D(3)] + GP|y .
GP|y = ME¢_p, [(| Vi D(Z|C) ||, ~1)’]

(24)

Lgis the generator loss function; Lpis the discriminator loss
function; G(Z) is the suppressed sonar signal generated by the
generator; P,is the prior distribution of the input sonar signal Z;
GP|, is the gradient penalty term; A is the canonical term
coefficient; and || - ||p is the P-parameter.
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TABLE 2 Discrimination network.

Num Layer Act./Norm. Output shape

0 Signal Latent vector - 102400x1
Convld Downsample LReLU/BN 10240024

1 - 51200x24
Convld Downsample LReLU/BN 51200x48

2 - 26500x48

Convld LReLU/BN 26500x96

3 Downsamplee - 12800%x96
Convld Downsample LReLU/BN 12800x120

4 DataAdd 6400x120
Convld Downsample LReLU/BN 6400x144

5 DataAdd 3200x144
Convld Downsample LReLU/BN 3200x168

6 DataAdd 1600x168
Convld Downsample LReLU/BN 1600x192 800x192

7 Dataadd4
Convld Downsample LReLU/BN 800x216

8 DataAdd 400216
Convld Downsample LReLU/BN 400%240

9 DataAdd 200x240
Convld Downsample LReLU/BN 200x264

10 Dataadd7 100x264
Convld Downsample LReLU/BN 100x288 50x288

11 DataAdd

Convld LReLU/BN 50x288

12 Downsamplee DataAdd 25x288
Convld Downsample LReLU/BN 25x1

13 DataAdd 13x1

14 Linear sigmoid 1x1

Experimental verification

This section validates the advancedness of the proposed model
and method. For this purpose, we conducted marine experiments to
verify that RSWGAN-GP can effectively suppress the reverberation
of sonar signals and collect actual data in the field for verification.
RSWGAN-GP, with other excellent reverberation suppression
methods, compared to prove the effectiveness of the reverberation
suppression method proposed. The following sections explain the
detailed description and summary of the experiments.

In the experiment, the active sonar with 30-element with a self-
receiving function is used to transmit a continuous wave (CW) signal
with a fs = 250kHz sampling rate and a f = 30kHz frequency. The size
of the training data set is 6000 data samples in total, among which 2520
actual sonar data samples are obtained through experiments, and 3480
data samples are generated by the underwater active sonar
reverberation simulation method. The simulation data and actual
data are randomly arranged, and the training set and the verification
set are in a 5:1 ratio. The actual data are used to verify the reverberation
suppression effect of the model obtained at the end of training. The
experiments were conducted in one of the bays in Qingdao. Figure 8
shows the experimental scenario.
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Figure 8A is a schematic diagram of the relative position of the
active sonar and the target during the test. In the figure, x;,; = 200m
is the shortest distance from the relative position, and x;, = 300m is
the longest distance from the relative position, active sonar is at the
same position as the target at sea level d; =d, € [5,10]. In
Figure 8B, the experiment in the harbor can minimize the error
caused by the ship’s swing caused by wind and waves. The
narrowest point of the harbor exit is 200m, and the target ship
tows the target at a distance of 200-300m from the active sonar.
Figures 8A, B show the experimental active sonar equipment and
the detected target, respectively. The detected target is a cylindrical
object with an internal cavity with a diameter of 533mm and a
length of 3m. The essential experimental data of the validation
method are obtained in sea trials.

The data are collected and used as the validation set to validate
each epoch in the training process. The active sonar of the signal is
subjected to reverberation suppression, and the signal change
during training is shown in Figure 9.

In Figure 9, the time domain diagram shows that the model is
trained by mixing simulation data with actual acquisition data, and
the trained model is used to process the experimental results of the
active sonar signal data of the ocean experiment. The figure shows
the results of sonar signal processing of model pairs produced by
different iterations. In the Epoch 1-50 iteration training process, the
processed sonar signal still has the phenomenon of signal chipping.
Still, it shows the state of strong reverberation, and the target
position cannot be visually observed from the time domain.
Starting from Epoch 60-100, the chipping phenomenon of the
echo signal disappears, the correct sinusoidal signal can be
restored, and the neural network can already find the desired
target feature state. From Epoch 110 onwards, the target can be
precisely located, and in subsequent training iterations, the target
echo feature can be highlighted while suppressing the strong
reverberation state during sonar propagation. When the model
training iteration is above Epoch 210, the target echo signal can be
observed macroscopically from the time domain diagram.
Reverberation changes in the middle state of the network as
shown below:

The above-processed feature map, which results from the
processing of the network X%, = X, results in a 288x25 feature
array. Feature array is where the network will generate features,
which will then be upsampled to recover the signal. In Figure 10,
some features of the signal increase and decrease as the epoch
increases, representing anti-reverberation operations. From
Figure 10A, it can be seen that the convolution features of the
signal at the beginning are dispersed to each corner of the array.
After iteration, some features weaken, as shown in Figure 10B,
which is reflected in the signal that the reverberation part begins to
weaken, and then the features disappear, as shown in Figure 10C.
Finally, the target echo features are enhanced, as shown in
Figure 10D, and the corresponding display in the echo signal
explored by sonar is the enhancement of the echo signal.

During the training process, convergence is achieved by
continuously correcting errors. The loss curve changes during the
training process of RSWGAN-GP, including the generator loss
curve and the discriminator loss curve, as shown in Figure 11.
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Figure 10 shows the training loss curves of RSWGAN-GP under
various weight decay and learning rate(Ir) settings. Figure 10A is the
line chart of the generator loss variation, and Figure 10B is the curve
chart of the discriminator loss variation. By setting different
parameter values, rapid convergence of the network can be
achieved when weight decay and learning rate are set to 0.00001
and 0.0001, respectively. As shown in the figure, in the WGAN-GP
network, the generator loss continuously approaches 0, and the
discriminator loss continuously approaches 0. The loss of the
generator shows a rising trend, and the loss of the discriminator
shows a decreasing trend. During training, the generator and
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discriminator are in a state of mutual competition, and their loss
values should fluctuate up and down. The trend shown in the figure
represents the main direction.

For applications where target detection will be performed after
signal processing, the difference between before and after signal
processing is shown in Figure 12.

Figure 12 shows the target position detection map after
nonlinear processors in matching fields on CW signal processing
Sun and Li (2019), where the target indicates the target’Os location,
which is about 204 m—the comparison between the original data
and the data after RSWGAN-GP processing is shown. In the
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FIGURE 9
Active sonar reverberation suppression changing graph.
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original data, before the target position, there is the influence of
reverberation on its judgment. When making a prediction, the
highest correlation position changes and the highest point in front
is judged as the target position. When comparing the red line with
the blue line, it is evident that the signal processed by RSWGAN-GP
can reduce the influence of reverberation when making target
judgments, increasing the success rate of target judgments. Here,
four contrasting points are selected, as shown in Table 3.

Among the data points, the first three are reverberation points,
and the comparison shows that the reverberation is well suppressed,
and the fourth is the target point. The SRR is improved after echo
suppression. The data comparison can prove that the well-trained
model can suppress the reverberation well, making the correlation
increase by 0.022 and the reverberation part decrease by 0.3
on average.

There are many excellent algorithms in water acoustics
reverberation suppression, here will use collected data for various
methods to compare with the method proposed in this paper. The
comparison results after processing the sonar signal are shown
in Figure 13.

In Figure 13A, the Original signal is unprocessed, the
reverberation power is 0.398, the signal echo power is 0.432, and
its SRR is 0.361dB, the highlighted red part indicates the position of
the target echo, which cannot be effectively identified from the
figure. 2D-AR PreWhitener is used to eliminate correlation and
frequency correlation in the signal Li et al. (2008) so that the signal
is flatter in the frequency domain, and the processed echo sonar
signal shows the position of the target echo. The least mean square

Frontiers in Marine Science

filter (LMS) processes the echo signal Kim et al. (2000), and the
reverberation component is suppressed, decreasing amplitude.
Adaptive fractional Fourier transforms (FrFt) for suppressing
reverberation Yu et al. (2022), Although the reverberation is
partially suppressed, the actual impact is not apparent. The PCI-
SVM reverberation suppression method combines Principal
Component Inversion (PCI) and Support Vector Machine (SVM)
techniques Wang et al. (2021). This method selects suitable and
effective feature values through SVM to extract the main features for
reverberation suppression. The figure shows that this method
performs better than the previous ones. We present the impact of
the RSWGAN-GP method proposed in this paper. Compared to the
excellent methods, the reverberation component is effectively
suppressed, and the echo component is more visible and
prominent. The detailed data comparison is presented in Table 4.

Figure 13B compares SRR results processed by different
methods under different SINR environments. In actual use, the
reverberation signal processing SINR is between 0 dB and 10 dB. In
order to reflect the processing ability of a high reverberation
environment, the signal is mainly concentrated between -10 dB
and 10 dB (data comparison in the middle of the two blue colors in
the figure). As can be seen from the figure, RSWGAN-GP and PCI-
SVM methods are significantly superior to other methods. At the
same time, RSWGAN-GP is 3 dB higher than the PCI-SVM method
at SINR -10 dB, and the advantages become more evident as SINR
increases. The advantage of RSWGAN-GP is that it can learn many
high reverberation data to improve the processing ability of high-
reverberation data. In Figures 13A, B, we compare different
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Results for different parameters. (A) The discriminator loss varies with epoch. (B) The generator loss varies with epoch.

reverberation suppression methods to demonstrate the effectiveness
of RSWGAN-GP in suppressing reverberation.

Figure 14 shows the processing results and time-frequency
distribution of raw signal, AR pre-whitening, LMS, FrFt, PCI-
SVM and RSWGAN-GP, respectively. Experimental results show
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that the algorithm can effectively suppress reverberation and extract
target echo components under high SRR conditions. At the same
time, the time-frequency structure of the target highlight echo
remains unchanged. The processing results of the original signal
distribution are shown in Figure 14A. It can be seen that there is
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FIGURE 12
Matching field result.
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TABLE 3 Target detection correlation comparison.

Num Before treatment After treatment Difference
1 0417 0.205 ‘ -0.212
2 1 0.419 ‘ -0.581
3 0.553 0.32 ‘ -0.233
4 0.962 0.984 ‘ 0.022

some substantial reverberation interference near the target echo, but
its energy is weaker than the target echo. The signal processed by
2D-AR PreWhitener, LMS, FrFt and PCI-SVM is shown in Figures
14B-E, and the target echo energy is still not obvious. As shown in
Figure 14F, the RSWAGN-GP processing results show that the
overall reverberation background has been effectively removed, and
only a tiny part of weak background interference remains near the
target echo.

The superiority of the proposed method can be seen in
Figures 12, 13, and the detailed parameters are listed here for
comparison, including reverberation amplitude, echo amplitude,
reverberation power, echo power and SRR. The specific parameters
are shown in Table 4.

The findings in Table 4 demonstrate that the RSWGAN-GP
method proposed in this study is the most efficient technique for
attenuating reverberation compared to the other methods evaluated.

10.3389/fmars.2023.1280305

With a remarkable improvement in the reverberation ratio by 15dB,
RSWGAN-GP significantly enhances speech quality from 0.83dB to
16.79 dB. The PCI-SVM algorithm comes in a close second, mainly
when the optimal rank is 42, as determined by the SVM classification
experiment, resulting in a significant improvement in the SRR by
around 13dB. The 2D-AR PreWhitener, LMS, and FrFt techniques
also improve the reverberant environment by -0.024dB, -2.68dB, and
0.12dB, respectively. Nevertheless, their ultimate effects are less
substantial than those of RSWGAN-GP and PCI-SVM.

The effectiveness of the RSWGAN-GP method proposed in this
paper for suppressing reverberation in sonar signals is demonstrated
through experiments. Using experimental data from the ocean during
training shows that features are extracted and amplified during the
training iterations. By comparing the results of the algorithms, it is
evident that this method can significantly improve signal quality. The
improved SRR is 15.169 dB, demonstrating the method’s effectiveness
and superiority for reverberation suppression.

6 Conclusion

Reverberation suppression of echo signals is a crucial issue in
active sonar systems. This paper presents a novel RSWGAN-GP
method for suppressing reverberation in sonar signals using the
generative adversarial network. This reverberation suppression
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FIGURE 13

Sonar signal comparison of reverberation suppression methods. (A) Original signal diagram and signal diagram processed by 2D-AR Prewhitening,
LMS, Frft, PCI-SVM, RSWGAN-GP methods. (B) SRR changes with SINR after model reverberation suppression.
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TABLE 4 Experimental data comparison table.

10.3389/fmars.2023.1280305

Reverberation power Echo Power SRR(dB) Improve SRR(dB)
Original Data 0398 0432 0.361 0
2D-AR PreWhitener 0.096 0.087 035 -0.011
LMS 0.036 0.051 1.525 1.164
FrFt 0.086 0.094 0414 0.053
PCI-SVM 0.0105 0.0562 7.2925 6.932
RSWGAN-GP 0.01 0.1265 11.021 10.659

network employs a one-dimensional convolutional network to
process the signal content. RSWGAN-GP refers to U-net and
DenseNet, using skip network structure and dense connection

network to suppress sonar signal reverberation efficiently.
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Comparison using actual collected data demonstrates the
effectiveness of the proposed method, which can effectively
suppress the active sonar reverberation signal, improving SRR by
approximately 10 dB, better than other methods.
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Time-frequency distributions. (A) Signal original state .(B) After 2D-AR PreWhitener processing. (C) After LMS processing. (D) After FrFt processing. (E)

After PCI-SVM processing. (F) After RSWGAN-GP processing.
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Through several experiments, it was discovered that the
processing model trained by RSWGAN-GP has specific
requirements for the transmission pulse width. The transmission
pulse width of the signal needs to be adjusted for different detection
distances, but the model’s pulse width for echo signal processing is
not sensitive to the width. However, this relationship may be
specific to the dataset used. In future research, efforts will be
made to improve the model’s generalization capabilities to
process signals with different pulse widths efficiently.
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The existing multi-receiver synthetic aperture sonar (SAS) imaging algorithms are
suitable for narrow-beam width, which will lead to a decrease in imaging quality
under wide-beam condition and are not in line with the development needs of
SAS. We propose a non-linear chirp scaling algorithm (NCSA) for wide beam
multi-receiver SAS. Firstly, the point target reference spectrum (PTRS) of each
receiver is obtained by the Lagrange inversion theorem (LIT), and then the under-
sampled signal in the azimuth frequency domain is obtained through azimuth
spectrum extension; Then, considering the cubic term of range frequency in the
PTRS and the linear variation of equivalent frequency modulation slope with
range, each receiver is imaged using the NCSA, and coherent superposition is
performed in the azimuth frequency domain to eliminate spectrum aliasing
caused by azimuth spectrum extension; Finally, the azimuth inverse transform
is performed on the superimposed signal to obtain the focusing imaging.
Computer simulation experiments and field data verify that this method is
superior to the existing SAS imaging algorithm, improving the quality of wide-
beam imaging, avoiding the interpolation operation of the traditional range-
Doppler algorithm, and saving computation cost.

KEYWORDS

multi-receiver, synthetic aperture sonar, Lagrange inversion theorem, non-linear chirp
scaling, azimuth spectrum superposition

1 Introduction

Synthetic Aperture Sonar (SAS) has played a very important role in ocean exploration,
and its functions are constantly expanding, requiring high resolution, long detection
distance, and strong detection capabilities for buried objects(Zhang and Tan, 2018; Tan
et al,, 2019; Ma et al., 2020; Zhang et al,, 2021a; Tian et al., 2022; Zhang et al., 2023).
According to the characteristics of underwater sound wave propagation, the lower the
frequency of the transmitted signal, the stronger the detection distance and buried object
detection ability; According to the definition for azimuth resolution, higher azimuth
resolution can be achieved by using smaller transmitter (Marx et al., 2000; Zhang et al.,
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2023; Zhu et al., 2023), waveform diversity (Zhu et al., 2023), and
advanced synthetic aperture processing (Zhang and Ying, 2022;
Zhang et al,, 2022b; Zhang et al., 2023). Both low frequency and
high-resolution imaging will involve wide-beam imaging
algorithms. It is necessary to research wide-beam imaging
algorithms to improve imaging resolution, detection distance, and
the capability of buried objects.

Although SAS technology originated from synthetic aperture
radar (SAR)(Qian et al., 2021; Li et al., 2022), the low speed of sound
velocity underwater results in two main differences between wide-
beam SAS and wide-beam SAR: low sound velocity under water
causes azimuth moving distance during sending and receiving
(AMDSR) to be not negligible, making the commonly used stop-
and-hop assumption (Bonifant, 1999; Wilkinson, 2001; Callow,
2003) not applicable to SAS, A more complex non-stop-and-hop
assumption must be used (Zhang et al., 2022); In addition, low
sound velocity underwater can also cause a contradiction between
the farthest detection distance and pulse repetition frequency (PRF)
(Xu etal, 2003; Wang et al., 2015). To solve this contradiction, SAS
normally adopts a multi-receiver configuration. This type of SAS is
commonly referred to as multi-receiver SAS (Zhang et al., 2021a;
Yang and Liu, 2022; Zhang et al., 2022a).

At present, imaging algorithms for wide-beam multi-receiver
SAS can be divided into two categories: point by point imaging
algorithms and line by line imaging algorithms. The point by point
imaging algorithms is inefficient, which is a common problem of the
two-dimensional time-domain imaging algorithms. Although the
fast point by point imaging algorithms (Liu et al., 2009; Giardina,
2012; Duan et al., 2017; Synnes et al., 2017; Zhang and Yang, 2022)
avoid this problem to some extent, compared with the line by line
imaging algorithm, the computation efficiency is still too low. The
line by line imaging algorithms use interpolation or Chirp Scaling
(Raney et al.,, 1994; Wang et al., 2009; Liao and Liu, 2017; Zhang and
Yang, 2019; Li et al., 2021; Huang and Yang, 2022) operation in the
range Doppler domain or two-dimensional frequency domain to
realize the range cell migration correction (RCMC) of all targets in
the scene, so as to obtain higher efficiency than point by point
imaging algorithms. Although the algorithm efficiency has
improved, the imaging quality under wide beam conditions will
decrease, so there are few line by line wide beam imaging
algorithms. A commonly used method (Zhang et al., 2014) uses
the range-Doppler algorithm (RDA) (Jiang et al., 2004; Tian et al.,
20165 Zhang et al., 2019) to process the echo signal for each receiver
by using method of series reversion (MSR), and then carries out
coherent stacking for accurate wide-beam imaging, we called it the
RDA-MSR. However, the computation load of individual receiver
imaging is high, and the interpolation of RDA-MSR will increase
the computation load more significantly, which is not conducive to
real-time imaging. Moreover, the derivation of the point target
reference spectrum (PTRS) in the RDA-MSR is not accurate
enough, and as the beam width increases, the PTRS error will
also increase. Therefore, the actual applicable beam width is not
large; A research (Zhang, 2014) used the macro range cell migration
correction (MRCMC) between different receivers, thereby
transforming the multi-receiver SAS into the traditional
monostatic SAS model, we called it the RDA-MRCMC. Although
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this method improves processing efficiency, the phase error caused
by the increase in beamwidth and bandwidth may exceed 7/4,
thereby affecting imaging quality (Wu et al., 2016; Zhang et al,
2018; Zhang et al., 2018; Wu et al., 2019; Ma et al., 2023). The poor
performance of the above methods is a limitation of RDA itself.
(Zhang et al,, 2021b) used the NCSA to develop a wide beam
imaging algorithm, but the PTRS obtained by PCA (Bellettini and
Pinto, 2002; Gough et al., 2004; Zhang et al., 2023) is not
accurate enough.

This paper has three main contributions: firstly, this paper uses
LIT to obtain the most accurate PTRS, which has smaller errors
compared to the MSR in (Zhang et al., 2014) and is more suitable
for wide beam imaging; Secondly, this paper uses the NCSA to
preserve the range frequency to the cubic term of the PTRS obtained
by LIT, and the frequency modulation slope varies with range,
making it more suitable for wide band and wide swath model;
Thirdly, the NCSA avoids interpolation and has higher
computational efficiency compared to the RDA-MSR, while also
achieving better imaging results compared to the RDA-MRCMC,
balancing imaging quality and efficiency.

This paper is organized as follows: multi-receiver SAS model
establishment and approximation, imaging algorithm derivation,
and algorithm validation. In SAS model establishment and
approximation, we use Lagrange inversion theorem (LIT)(Xiong
et al, 2011; Vu et al, 2014; Zhang et al,, 2017) to avoid tedious
algebraic processing and the lengthy expression of stationary phase
point, thereby obtaining the more accurate PTRS of each receiver
compared to the RDA-MSR and the RDA-MRCMC, and then
extending the azimuth spectrum to obtain under-sampling
azimuth frequency domain signals. In imaging algorithm
derivation, firstly, to adapt to the wide-beam condition, the cubic
term of range frequency in the PTRS and the linear variation of
equivalent frequency modulation slope with range are considered;
Then, each receiver is imaged using the NCSA and then coherent
superposition is performed in the azimuth frequency domain to
eliminate the impact of spectrum aliasing caused by azimuth under-
sampling. Compared with the RDA-MSR, the proposed method
avoids interpolation and has high computational efficiency; Finally,
fusing superimposed signal to obtain the focusing result. In
algorithm validation, we use simulation data and field data to
verify the effectiveness of the proposed method. The results show
that this method saves computation costs, and the simulation
imaging results of point targets under wide-beam are better than
the existing methods, improving the imaging quality.

2 Establishment and approximation of
multiple receiver SAS model

2.1 Accurate range history of point targets

The relative position between receivers and transmitter is
shown in Figure 1, with the direction of the platform moving
forward as the positive direction, and the transmitter in the middle
of all the receivers. r is the range, x is the azimuth; the distance
between the ith receiver and the transmitter is d;; the time elapsed
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Geometric diagram of multi-receiver SAS

between the transmission of a pulse and its reception by the ith
receiver is T:. R/(t;r) is the propagation path of the transmitting
signal, and R, ;(t;7) is the propagation path of the ith receiver. To
illustrate the geometric relationship, the SAS at different times in
the Figure 1 are not on the same straight line, but in reality, they are
on the same straight line and move along the x-axis in the positive
direction at velocity v.

During the process of moving at v m/s, the transmitter
transmits linear frequency modulation (LFM) signal at a fixed
pulse repetition frequency (PRF) in orthogonal mode
simultaneously. At time ¢, for the point target P(r,0), according
to the geometric relationship, the path from the transmitter to the
ith receiver scattered by the point target P(r,0) can be expressed as
follows:

R (57) = R(;7) + R,i(t57)

=2+ () + \/rz +(t+d;+ V‘L':(t; r))? (1)

* . L . L.
where, 7; (t;7) is the time interval between signal transmission

and reception, so the propagation path of sound waves can be
written as:

R (1) =c-1 (57) @)

The exact expression of ‘L':(t; r) can be obtained by combining
(1) and (2), and T;(t; r) can be expressed as

T =

R 1 5 {v(vt vd)+ o/t \/[v(vt d)+ /() + rZ} ®4(@ - ) [2v0)d, + &2 }
(3)

2.2 Error analysis of AMDSR

Under the narrow-beam assumption, it is generally
approximated 1': as a range variance 2r/c, resulting in the error
of AMDSR is

Ax = (T; =2r/c)v (4)

Frontiers in Marine Science

10.3389/fmars.2023.1253105

According to the system parameters shown in Table 1, different
receivers have different baseline lengths relative to the transmitter.

We analyzed the receiver with the maximum baseline length
and calculated Ax across the whole swath under different beam
widths. The results are shown in Figure 2.

As shown in Figure 2, Ax is maximum at the edge of the beam
and increases with range and beam width. The maximum value of
narrow-beam SAS is shown in. Figure 2A is 0.0009m, far less than
half the length of a receiver (0.025m); the maximum value of wide-
beam SAS shown in Figure 2B is 0.007m, which can be compared
with the half-length of receiver, which may lead to the problem of
azimuth non-uniform sampling. Therefore, under the condition of
wide-beam, T: cannot be approximated to 2r/c, and the azimuth
variance must be considered, which means that the range history
R:(t; r) must adopt a more accurate form.

2.3 Point target echo response model

The accurate range history has a complex form and cannot
obtain an analytical expression for the PTRS. The current wide
beam algorithms generally use the MSR (Neo et al., 2007; Wu et al.,
2016; Zhang et al., 2021), which approximates the accurate range
history using Taylor expansion. For example, reference (Zhang
etal., 2014) preserves the fourth order term of Taylor expansion, as

follows
Ri(t;r) = ko + Ky it + oyt + kgt + kgt (5)
where,
1 d"R:(t;7)
kni =g o (1=0.1,2.3,4) (6)

The range history error obtained using the parameters shown in
Table 1 is shown in Figure 3, € is range error, A is the wavelength
of signal.

It can be seen that under the beam width shown in Table 1, the
four-order expansions of the range history can no longer meet the
requirement that the maximum range history error is less than (1/

TABLE 1 MADOM SAS simulation parameters.

Parameters Values Units

Beam width 25.18 °

Center frequency 20 kHz

Signal bandwidth 10 kHz
Transmitter size 0.15 m
Receiver size 0.075 m
Number of receivers 40 -

SAS platform velocity 5.0 m/s
Swath [7.5, 300] m
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Approximation Error of AMDSR (A) narrow-beam (B) wide-beam.

16)A, and the phase error caused cannot be ignored. Meanwhile,
preserving different expansion terms has different range history
error. In theory, the higher the expansion terms, the more accurate
the range history, and the smaller the range history error. We plot
the curve of the maximum range history error within the whole
beam as a function of the number of Taylor expansions, as shown in
Figure 4. It can be seen that the range history error does not
decrease indefinitely with the number of expansions. The reason
why the error cannot be infinitely reduced is that (Zhang et al,
2014) used narrow beam approximation. When the expansion
reaches 10, the range history error is 0.216A, which is still greater
than (1/16)A. Therefore, this research uses the LIT to derive the
PTRS using the original range history, which does not make any
approximation to the range history.

Let fy be the carrier frequency of the transmitting signal; K, is
the frequency modulation slope of the transmitted signal; w,(-) is
the envelope of the transmitted signal; w,(-) is the analytical
expression for the antenna pattern; A, is the signal’s amplitude, it
is independent with the imaging quality, so we ignore it in the next
context. After demodulation, the baseband form of the ith echo
signal can be expressed as

0.15
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0.05

0.2
100 0

300

100

Range(m)

-100 o
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FIGURE 3
Range history error after retaining 4 terms.
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ssi(T, 1) = Ay - w, (‘L’ - Ri(z; r)) - w,(t)

a(2)

LN 2
- exp (jﬂK, (T - @) )

To obtain each receiver’s PTRS, the Principle of Stationary
Phase (PSP) is performed to simplify range FFT on the baseband
signal, and the range spectrum signal is obtained:

;2o +FR(E r)) .

7)

Cc

3

where, W,(f,) = W,(I]%'), and W.(-) is the range frequency

Ssi(fro 1) = AgAL W (f,)w, (1) exp(
exp (—jir

envelope, then perform azimuth FFT on (8) to obtain

SSi(fosfas1) = /+st,«(ﬁ, t;r) exp (—j27f,t)dt 9)

25 4

(€/\) max

05 4

0 1 1 1 1 1 1 1 L 1

1 2 3 4 5 6 7 8 9

Number of terms in Taylor series expansion

FIGURE 4
Maximum range history error vs the number of terms.
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According to PSP, if the derivative of the phase in the integral
expression with respect to ¢ is 0 and the phase stationary time is
assumed to be , the following equation can be obtained

(fo + 1) . dRr,(t; 1)

c dt (10)

fa:_

From (10), it can be seen that f, is a function of . According to
the LIT (Zhang et al., 2017), if f, is close-form at a certain value £,
and f,(t,) # 0, which is different from the approximation of R;(t; r)
in MSR, we can directly obtain the close-form solution of t.

3o fu®-f0)]" at -0 1"
21 ! La(f) —fa(O)}

i n!
Take %, = 0 and # = 3, and bring (10) into (11), then there is

RY 1o o) (fﬂfo iCﬂf )

1 R0
6 (R?(0; 1)

(11)

RY(0;7) (fa - £,(0) )
2RP 01 \ fo+f

1 (RY(031)? <f ~f(0) )
2®PO07 )\ So+f,
The PTRS of the ith receiver is obtained by integrating (12) into
the phase of (9), and we can get

(12)

Kl
II

SSifrfast) = A- W, (f,) - Wo(fo) - exp GGoi(fo fus 7)) (13)
where,
ofofisr) = - O HIRGED G S5 s (g

c K,

In order to analyze the phase errors between the PTRS obtained
by different methods and the accurate PTRS, we selected the
receiver 40 as the analysis object according to the parameters of
the wide-beam SAS system shown in Table 1. We obtained the
PTRS’s phase errors of the MSR and LIT at 3 point targets at
different ranges, as shown in Figures 5, 6A-C. represent the phase
errors of point targets at ranges of 50m, 150m, and 250m,
respectively. Comparing Figures 5, 6, it can be seen that the phase
error increases with the range and the azimuth frequency. However,
the phase error of the LIT is always significantly smaller than MSR.
The maximum value of phase error of LIT in (0m,250m) is
0.019rad, which is much smaller than /4 (Ning et al., 2023).
Therefore, under the wide-beam SAS system parameter, the method
proposed in this paper can meet the requirements of high-
resolution imaging across the whole swath.
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FIGURE 5
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Expanding (14) to a series of f,. To apply the method in this
research to the wide beam condition, we reserve the cubic term to
obtain:

(pl(f;i’f.r’ (puzz(fa’ r) + (prcmm(fu’ f + (prﬂf + gDSrCl(f;l’ r)f

+ Qeubic,i (ﬁz; r)fra

where, @, ;(f,; ) is the azimuth modulation term; @, ;(f,;7) is
the range migration term; @, is the range frequency modulation
term; @ (fa;
is the third-order coupling term of range and azimuth. According to
the definitions of R,;;(f,; ) and Km;(f,; ), we can get

(15)

r) is the second range compression term; @, ;(f; 1)

(prcmcz(fu’
; —_—— 16
rdr(ﬁz 7') Y ( )
T
Km(fgs1) = ——————— (17)
(f (psrc,i(fa;r) + (prc

R,4(fa57) is the range migration curve of the ith receiver in the
range-Doppler domain; Km;(f,;7) is the equivalent frequency
modulation slope of the range compression filter for the ith
receiver. Bring (16) and (17) into (15), SSi(f.f,;r) can be
rewritten as

SSi(fisfus ) = W,(f,) W, (f,) exp (

271-Rr LiVa>
+J(puzt(ﬁvr) eXP( +(ffr) (18)

exp (

The different receiver has different coefficients such as R,;; and

+j #fu”‘)ﬁz) exp ( +j(pcuhic,i(ﬁz; r)ff3)

Kmy;, which means that for the same point target, the different
receiver has different point target echo responses. Therefore, it is
necessary to perform matching filtering processing separately for
each receiver.

3 Imaging algorithm derivation

The flowchart of the imaging algorithm is shown in Figure 7,
where FFT represents the Fast Fourier Transform; IFFT is Inverse
Fast Fourier Transform. The algorithm includes six-fold FFT/IFFT,
one-fold azimuth spectrum extension, six-fold phase multiplication,

hase error(rad)

‘

Range(kHz) Azimuth(Hz) Range(kHz)

Phase error of PTRS of MSR at different ranges (A) r=50m (B) r=150 m (C) r=250m.
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and one-fold azimuth spectrum superposition. The azimuth
spectrum extension is used to increase the length of one receiver’s
data to meet the requirements of signal processing, but the
processed signal is highly under-sampled in the azimuth
frequency, which can cause azimuth spectrum aliasing. The
azimuth spectrum coherent superposition is used to suppress the
azimuth spectrum aliasing caused by azimuth under-sampling.

3.1 Approximation of equivalent frequency
modulation slope

Compared to traditional RDA and CSA, this paper considers
the linear relationship of Km; with r and approximates Km; at the
reference range

Kmj(fa3r) = Kmy,  +Ks;, - (r—r,

) (19)

where Ks; ;s the first derivative of Kim;,(f,; r) at .., expressed
as

(psrct(fa’ ref)
(gosrcz(fm rref + (prc)z

Si,rmf (20)
where, 7, generally takes the center position of the
whole swath.

3.2 Cubic phase filtering

In order to eliminate the influence of the cubic term of f,, a
cubic phase filter is performed on SS;(f,,f;r) in the 2D frequency

domain. The expression of the cubic phase filter is

Houpic ilfy fs7) = exp (27 Yi(£,)f7 /3) 1)

where, Y;(f,) is the coefficient of the cubic phase filter that varies
with the azimuth frequency f,, with the aim of filtering out the cubic
phase of the range frequency f, and the cubic phase error generated
by subsequent nonlinear Chirp Scaling. Since @, ;(f,; 1) is weakly
dependent on the range (Neo et al, 2008), @uupici(fasrer) can
substitute @.p;.i(fo;7), and Ym;(f,) is the error after the cubic

phase filtering
Yi(f)

= Ym;(f,) (22)

3
- E (pcubic,i(fa; rref)
The obtained PTRS after cubic phase filtering on (7) is

SSeilffas 1) = SSilfrsfus 1) - Hewvici(frsfus )
= W) Walfo)  exp (igucs(fs ) x exp(—2RE0L ) o exp( s ) x exp(j2255)
(23)

3.3 Non-linear chirp scaling

Using PSP for range IFFT, the signal obtained in the range-
Doppler domain is
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Kmi
K,

2r
Y

SSi(T)f‘a; 7') =, (

(v

+j(puz,i(fa; 7’)) exp ( _jnKmi(T

>>W (fa) exp (

2xYm;Km3 (1 - 1)
- Td)z)exlf’(—] 3 !

2

(24)

3>
fastref)”

Let the expréssion of the non-linear chirp scaling equation be

where ¥, =

H (7, f,) = exp (= jmgy (T - Tmf)z)

3
.exp(—j By) )

where, g,; and gq;; are undetermined coefficients, which will be

27qs,(T -

3 (25)

solved later in the text.
Perform non-linear Chirp Scaling on sS;(7, f,; r) to obtain

SScs,i(T’fa; 7’) = Ssi(f’fa; 1’) X HCS,i(T’f;Z)

To obtain the coefficients of the cubic phase filter and the

(26)

scaling equation, the range IFFT of sS;(7, f,;7) is performed to the
2D frequency domain, and then the series expansion of f, is
performed, retaining the cubic term. After the above operation,

we can obtain

21 (Kn Yn,+q I

SSaslhfi) = W) Wl expj ) exp (g f?) exe (i

k)fy> exp(;MK”" 7 rﬂ‘(l Yy} +5) f,) exp(j(p,,z,((ﬁz;r))exp<f]

27K (=T )* (Ymig},~qs,)
e

20K (T~ Ty K Ymigo,=s )fz
)

K, K+,

L 2m(TKm gy, Ty
EXP\J =~ Kmrgos

(27)

After bringing (19) and 7 = 2r/(c¥), Ty

Ty —
of f, into the series of A7, we can obtain the three undetermined

=21 /(c¥), and AT =
T, into (27), and then expanding the coefficients of each order

coefficients as follows

oy (20 = 1)
mi = Wfi (28)
o 2Km? Trr(0 = 1)
Qo = Kmj (04— 1) (29)
(05 = Ks;, -
e (30)

where o; = 7%’:‘ the phase expression of the scaled signal
obtained by bringing (28), (29) and (30) into (27) is

fPKs,

Sip T
TNy _Am 4 _ Anr (f -
¢csx(ffa>7) Km,, O + 30([(&’,1)1(,,,?"1 + (( i ma‘)rmf nyal)fr + (paz,z(fwr)
IEKm”m!((l,fl)ATz (-DKs;,,, TAT?

o; 30

(31)
3.4 Range processing
By compensating for the first, second, and bulk RCMC terms in

a phase multiplication, and simultaneously completing bulk RCMC,
range compression, and cubic coupling term compensation, the
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phase multiplication factor is

Ks“,efﬂ'

(i am o, : .
sl Tog) = 5P (’ (%c cy,a,)’”ff ) o (’ Ko ) o (] 3a(a - Dk, " )
(32)

Perform range IFFT, and the obtained the phase of signal in
range-Doppler domain is

— 1)ks; o AT Ki -1)A7?
) W e s esp 1 ep(— DA

cva; 3a;

$Sycilfas 1) = pr (r -

a;

(33)
where p,(-) is the Sinc function.

3.5 Azimuth processing

The azimuth compressing term H,;(f;;7) and the extra phase
compensation factor H,;(f,; ) are respectively

Hu,i(fa; 7') = exp(_j((puz,i(fu; 1'))) (34)

m(a; - 1)Km,-),mfAT2 7(a; - l)Ks,-,,mfA‘L'3

H,(f;7) = exp ]7 exp +]T
(35)

After compensation, coherent superposition in the azimuth
frequency domain is performed on each receiver, and then the
azimuth IFFT is performed to obtain the focused SAS image.

4 Algorithm validation
4.1 Simulation experiment
To verify the effectiveness of the algorithm proposed in this

research, simulations were conducted on ideal point targets at
different ranges. The positions of 10 ideal point targets are shown

x(m
or 2 r roor
5 % Kk >
0 1 * 1 /I, 1 .i. L
40~ 60 240 260 r(m)
Sk * * x
P P
qQoF BF P e
FIGURE 8

Simulation point targets setting
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in Figure 8, where P; ~ P are close-range targets and Py ~ Py, are
long-range targets. Computer CPU is Intel i7-10700@2.90G, RAM
is 32 GB, Matlab version R2020a.

In the simulation experiment, it is assumed that the distribution
of the transmitter and receiver is shown in Figure 1, and the
parameters are shown in Table 1. The wide-beam imaging
algorithms proposed in the RDA-MSR (Zhang et al., 2014), the
RDA-MRCMC (Zhang, 2014), and this research were used to image
point targets shown in Figure 8. The imaging results obtained are
shown in Figure 9, where Figures 9A, B are the results of the RDA-
MSR; Figures 9C, D are the results of the RDA-MRCMC;
Figures 9E, F are the results of the proposed method in this
research. It can be seen that the RDA-MRCMC has the worst
imaging performance. This is because transforming the multi-
receiver SAS into a mono-static SAS model, although the imaging
process was simplified, there were significant errors.

To quantitatively compare the effectiveness of different methods,
we take the range and azimuth slices of point targets P; and Pg as
shown in Figures 10, 11, respectively, with amplitude units in dB.

The blue dashed line represents the RDA-MSR, the green
dashed line represents the RDA-MRCMC, and the red solid line
represents the method in this research. The impulse response width
(IRW), peak side lobe ratio (PSLR), and integral side lobe ratio
(ISLR) of the range slice and azimuth slice were measured, and the
results are shown in Table 2.

From Table 2, it can be seen that the imaging effect of the
proposed method is similar to that of the RDA-MSR, but the
interpolation operation in this method is not efficient enough. We
calculated the time required for imaging the point target echo signal
in the scene shown in Figure 8, as shown in Table 3, our method
avoids interpolation and saves about half of the time of the RDA-
MSR and demonstrates the advantages of computation cost.

4.2 Field test

To further validate the effectiveness of our method, imaging was
performed on the data obtained from a sea trial of ChinSAS in 2017
(Zhang et al., 2012). The parameters of ChinSAS-150 are as follows:
carrier frequency is 75kHz, transmitter’s length is 0.16m, receiver’s
length is 0.08m, the signal bandwidth is 20kHz, the total number of
receivers participating in imaging is 37, SAS platform speed is 2.5m/
s, and size of imaging block is 40m(azimuth)x50m(range). Based on
the comprehensive analysis of the above parameters, the system
operates in a narrow-beam scenario. Comparing Figures 12A-C, it
is not difficult to find that the imaging results of all methods are
almost identical, but the proposed method is faster than the RDA-
MSR. This demonstrates the effectiveness of our method in practical
applications. Due to the lack of publicly available field data on wide-
beam multi-receiver SAS in China, the advantages of this method in
wide-beam imaging still need further verification. We will next
carry out the development of low-frequency wide-beam SAS and
verify its practicality with the method proposed in this research as
soon as possible.
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We recorded the operation time of the field data imaging
under different methods, as shown in Table 4. It can be
seen from the Table 4 that the proposed method takes two-
thirds of the time required for RDA-MSR. Although the
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FIGURE 10
Slices of P; (A) Range slice (B) Azimuth slice.
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proposed method takes longer than RDA-MRCMC, this
method will have better focusing result under wide beam
conditions, so it is a compromise between computation load
and imaging quality.
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TABLE 2 Quality parameters of different methods.

Methods Indicators =
Azimuth Range Azimuth
PSLR(dB) -13.11 -16.47 -12.82 -16.20
The accurate RDA ISLR(dB) -10.66 -14.80 -11.04 -14.85
IRW(cm) 7.79 8.32 7.60 9.06
PSLR(dB) -13.09 -16.66 -12.97 -12.69
The rough RDA ISLR(dB) -10.41 -16.99 -11.15 -13.69
IRW(cm) 7.76 7.89 7.61 9.80
PSLR(dB) -13.15 -17.76 -13.25 -16.58
The proposed method ISLR(dB) -10.51 -17.05 -10.94 -15.62
IRW(cm) 7.75 7.89 7.54 8.74
Bold values represent the optimal results.
TABLE 3 Time cost of different methods under simulation.
Methods The RDA-MSR The RDA-MRCMC The proposed method
Time(s) ‘ 302.16 109.75 167.78
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Comparison of results from different methods when processing field data (A) the RDA-MSR (B) the RDA-MRCMC (C) the proposed method.

Frontiers in Marine Science 71 frontiersin.org


https://doi.org/10.3389/fmars.2023.1253105
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Ning et al.

TABLE 4 Time cost of different methods under field data.

Methods The RDA-MSR

Time(s) ‘ 155.95

5 Conclusion

This research proposes a NCSA for multi-receiver SAS based on
azimuth spectrum superposition, which adopts the more accurate
PTRS based on LIT and the NCS algorithm to solve the problem of
poor imaging quality of existing wide-beam multi-receiver SAS. The
algorithm provided in this study provides theoretical support for
the future development of low-frequency wide-beam SAS.
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Ocean Acoustic Tomography (OAT) is an efficient and economical marine
acoustic observation technique. Targeted observation is an appealing
procedure to reduce the uncertainty of ocean environment prediction through
additional observation. This study aimed to assess the validity of OAT as an
observation method for targeted observation. OAT based on Niche Genetic
Algorithm was employed to extract sound speed and temperature profiles from
acoustic transmission time, utilizing data from the 2019 Yellow Sea experiment.
The inversion results were compared with measurement data, which are found
to be accurate and reliable. To further evaluate OAT as targeted observation
method, the vertical bias structure of OAT was added on synchronous
measurement data in the sensitive area of targeted observation to simulate
OAT observation in sensitive area. This simulated data was then incorporated into
a 3D-Var assimilation system to improve the short-term prediction of the target
region. Comparing the predictions derived with the measurement data at the
verification time, it shows that the simulated OAT observation improved the
quality of target region prediction, indicating that OAT can be an effective
observation method for targeted observation. An Observing System Simulation
Experiment was conducted to assess the impact of OAT characteristics on
prediction improvement. The results show that both adding observation nodes
and extending the observation duration have positive effects, while extending the
observation duration performs better.

KEYWORDS

ocean environment prediction, targeted observation, ocean acoustic tomography,
niche genetic algorithm, observation system simulation experiment
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1 Introduction

Ocean acoustic tomography (OAT) is a marine remote sensing
technique by utilizing the sound field generated from measured
properties (Worcester, 2019). This method extracts acoustic
characteristics, such as Sound Speed Profile (SSP), through the
analysis of travel time or other acoustic signals. Corresponding
marine environment characteristics is inverted through the ocean-
acoustic coupled relationship. The concept of OAT was initially
proposed by Munk and Wunsch (Munk and Wunsch, 1979; Munk
et al, 1995), aiming to investigate mesoscale phenomena such as
vortices, convection, and internal waves. An advantage of OAT over
other methods is its ability to facilitate long-term, large-area, and
cost-effective ocean monitoring, taking advantage of the
characteristics that acoustic signals transmit over long distances
and acoustic propagation is sensitive to the marine environment
(Dushaw et al, 2001).

Numerous OAT experiments have been conducted since the
1980s, showcasing the versatility and potential of this technique.
RTE83 experiment (DeFerrari and Nguyen, 1986; Howe, 1987)
validated the feasibility of flow velocity inversion using a single
source-receiver pair of acoustic nodes in a range-dependent
environment, achieving success at a distance of 300km in Atlantic
Ocean. In 1988-1989, Greenland Sea Tomography experiment (Jin
et al, 1993) became the first to employ mobile nodes to estimate the
effect of sea ice on acoustic pulses. SLICE89 experiment (Howe et al,
1991) combined acoustic tomography with ocean models to enable
ocean forecasting on a scale of 1000-2000km. AMODE experiment
(Dushaw et al, 2001) conducted in 1991 utilized mobile nodes to
measure eddy currents in Northwest Atlantic. Acoustic
Thermometry of Ocean Climate (ATOC) experiment, organized
by International Ocean Research Association (Dushaw and
Worester, 2001; Dushaw, 1999), stands out as a remarkable
achievement. This experiment incorporated vertical line arrays,
submarine receiving arrays, and US Army’s SOSUS system to
receive low-frequency acoustic signals propagating over basin
distances. Its purpose was to monitor long-term temperature
changes and global warming as indicators of climate trends. In
2001, ASTAEX experiment (Duda et al, 2004), conducted in
collaboration with various countries and organizations, focused
on the seas surrounding China. Its primary objective was to
investigate the interaction mechanism between the acoustic field
and the water bodies. It is shown that the mutual correlation
function and Green’s function of marine environmental noise
have the similarity of arrival time structure, based on which some
scholars proposed the idea of using marine environmental noise for
passive acoustic tomography, and the idea was realised by
experimental observation (Gasparini et al, 1997; Fried et al, 2013;
Li et al, 2019). The presence of mesoscale processes such as ocean
fronts/vortices in the oceans has led to the development of acoustic
tomography for horizontally varying environmental (Carriere and
Hermand, 2008; Yang et al, 2022);. In recent years, coastal acoustic
tomography technology has made significant progress, particularly
in monitoring semi-enclosed environments such as ports and bays
(Yamoaka et al, 2002; Zhu et al, 2010; Zhu et al, 2013). Additionally,
acoustic tomography has been applied to observe mesoscale
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phenomena such as internal waves (Lynch et al, 1996; Dahl et al,
2004; Li et al, 2014) and Kuroshio current (Yuan et al, 1999;
Lebedev et al, 2003; Huang et al, 2013; Taniguchi et al, 2023).
Currently, experimental research primarily emphasizes coastal
velocity inversion, with limited studies focusing on marine
environment inversion, especially in the context of oceanic
environment prediction.

The essence of acoustic tomography lies in the recognition of
acoustic signal propagation time and structure. Several mainstream
methods are commonly used in this field, including ray travel time
tomography (Munk et al, 1995), matched-peak tomography
(Skarsoulis et al, 1996), modal travel time tomography (Shang,
1989), modal-phase tomography, and modal-horizontal-refraction
tomography (Shang et al, 2000). Ray travel time tomography, being
the most classic and widely used method, employs matching filters to
measure the travel time. Matched-peak tomography locates the
maximum peak value in the arrival pattern and analyzes the peak
structure of the signal to determine the travel time accurately. Modal
travel time tomography, on the other hand, relies on the principles of
normal mode theory to identify the arrival time. Normal wave phase
tomography and horizontal refraction tomography, which are
similar, replace the normal wave travel time with the normal wave
phase or horizontal refraction angle. These substitutions are then
substituted into algorithms to obtain the desired travel time
information. Regarding the acquisition algorithms of travel time,
two common approaches are utilized: the perturbation method
(Munk et al, 1995) and the matching field method (Taroudakis and
Markaki, 1997). The perturbation method assumes that the difference
between the theoretical calculation and measured propagation delays
is proportional to the difference in sound velocity. However, this
method tends to be less accurate in complex and non-linear marine
environments. In contrast, the matching field method aims to obtain
the optimal solution that corresponds to the measured values through
acoustic and marine models. The effectiveness of this method relies
on the accuracy of the model and the efficiency of the optimization
algorithm employed.

Targeted observation, also known as adaptive observation, is a
strategy approach aimed at reducing numerical prediction
uncertainty through employing additional observations. In this
strategy, the goal is to improve the prediction quality of a specific
area, referred to as the target region, at a designated verification
time. To achieve this, additional observations are deployed within
sensitive areas to acquire additional information. This additional
information is subsequently assimilated into the ocean model to
refine Initial Conditions (ICs) and improve the prediction accuracy
(Rabier et al, 1996; Rabier et al, 1996; Snyder, 1996; Mu, 2013).
Originally introduced in atmospheric studies, targeted observation
has undergone validation through a series of field experiments such
as FASTEX (Joly et al, 1999), NOPREX (Langland et al, 1999), and
WSRP (Szunyogh et al, 2000). Recognizing its potential, World
Meteorological Organization (WMO) proposed The Observing
System Research and Predictability Experiment (THORPEX),
which integrated targeted observation concepts into a scientific
framework for improving global high-impact weather prediction
(Parsons et al, 2017). More recently, the concept of targeted
observation has been extended to oceanic prediction studies,
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although the focus has primarily been on large-scale ocean
phenomena, such as Indian Ocean Dipole (Feng et al, 2016) and
Kuroshio (Kramer et al, 2012; Wang et al, 2013; Zhang et al, 2017).
However, there remains a scarcity of researches related to the
acoustic field within targeted observation studies.

The identification of sensitive areas, a crucial aspect of targeted
observation, relies on two types of algorithms. The first type is based
on ensemble prediction techniques, such as Ensemble Kalman Filter
(EnKF) (Hamill and Snyder, 2002) and Ensemble Transform
Kalman Filter (ETKF) (Bishop et al, 2001). These algorithms
specifically focus on calculating the reduction in forecast error
covariance resulting from different observation configurations
(Wei et al, 2008; Zhang et al, 2015; Feng et al, 2019;
Thiruvengadam et al, 2021). The second type of algorithm is
based on adjoint mode techniques, which include approaches
such as Singular Vectors (SV) (Buizza and Montani, 1999),
adjoint sensitivity (Baker and Daley, 2000), and Conditional
Nonlinear Optimal Perturbation (CNOP) (Mu et al, 2003). CNOP
extends the concept of SV to nonlinear systems, focusing on
identifying the initial perturbation that exhibits most rapid
growth in the forecast. Targeted observation based on CNOP has
demonstrated its wide applicability in high-impact weather events
prediction and air-sea coupling events prediction (Dushaw et al,
2001; Duan and Hu, 2015; Duan and Mu, 2018; Chan et al., 2022;
Liu et al, 2023).

A field experiment was conducted at Yellow Sea of China in
August 2019, comprising two main components: an OAT
experiment and a targeted observation experiment. In this study,
OAT experiment data served as the foundation for validating the
effectiveness of OAT in accurately inverting the vertical speed and
temperature structure using Niche Genetic Algorithm (NGA). To
simulate the OAT observation for targeted observation, the bias
structure was extracted and incorporated into the measurements
within the sensitive area of targeted observation. Subsequently, the
simulated observations were integrated into a 3D-Var assimilation
model to improve the short term (7 days) prediction accuracy of the
target region. Thus, considering the large-area coverage and long-
term observation capabilities characteristics of OAT, an Observing
System Simulation Experiments (OSSE) was deployed to investigate
the impact of increasing the observation area and extending the
observation time on the prediction quality.

2 Materials and methods
2.1 Ocean model

Regional Ocean Modeling System (ROMS), specifically the
Rutgers version, is employed in this study to simulate the
thermocline distribution and circulation structure of Yellow Sea.
The ROMS model is an open-source ocean model based on 3D non-
linear oblique pressure equations employing techniques as split-
explicit, free-surface, topography following-coordinate

Frontiers in Marine Science

10.3389/fmars.2023.1259864

(Shchepetkin and McWilliams, 2005). The model domain covers
geographical extent from 23.7°N to 41.3°N and 117°E to 132.5°E,
with a horizontal resolution of 1/24° and 32 vertical levels. To
initiate the model, a cold start is performed, and the integration is
carried out for 25 model years. Topography data of the model
domain is from ETOPO2 dataset. The initial temperature and
salinity data are derived from HYCOM+NCODA multiyear
averaged (1998-2018) reanalysis data. Initial current velocities and
sea surface height are set to zero. Surface forcing factors, including
wind stress, heat flux, and water exchange, are obtained from
multiyear averaged (1998-2018) ECMWF Re-Analysis-interim
data. For the open boundaries, the forcing condition of the model
is driven from the multiyear averaged monthly HYCOM + NCODA
reanalysis data. Further details on the model setup and validation
can be found in references Hu et al. (2021) and Liu et al. (2021).

In addition to the climatology run, a hindcast run is conducted
based on the results obtained. For the analysis presented in this
study, daily-averaged temperature profile data from the hindcast
run are utilized.

2.2 Acoustic tomography algorithm

Due to the nonlinearities of ocean and acoustic models, the
parsing solution of SSP may not be feasible. Therefore, SSP solution
requires the implementation of a suitable searching algorithm. In
this study, NGA (Malfoud, 1995) is employed as an effective
approach to obtain optimal search speed and prevent
premature convergence.

NGA adopts a crossover algorithm that aims to reduce the
uncertainty of individual offspring while maintaining diverse
populations. Parents and offspring are preserved and compete
with each other, leading to increased selection pressure. The
fundamental concept is to calculate Hamming distance between
every two individuals. If Hamming distance is below a specific
threshold, individual with lower fitness level is penalized, making it
more likely to be eliminated during the evolutionary process.
Consequently, individuals are dispersed in the constrained space
at a certain distance, ensuring the diversity of the population is
maintained. NGA process can be summarized as follows (Figure 1):

1) Calculate Empirical Orthogonal Function (Shen et al, 1999)
and determine the coefficient range based on Ocean-
Acoustic Coupling Model (OACM) (Da et al, 2015) and
the measured sound velocity profiles, treating them as the
sample group;

2) Generate a population of M individuals randomly within the
range of EOF coefficients, considering the specified
operation precision;

3) Calculate the fitness of each individual as follows:

Fo__ 1 (1)
B Slte— Tl
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FIGURE 1
Schematic diagram of Niche Genetic Algorithm.

where f; is the calculated value of the travel time of the fastest
characteristic sound rays received by each hydrophone using Bellhop
model; 7, is the travel time measured during the experiment (k=1, 2,
3..., K), and K is the number of the hydrophones;

4) Sort the individuals in descending order according to their
fitness F; , and mark the first N (N<M) individuals;

5) Apply selection, crossover, and mutation operations to the
population of M individuals;

6) Execute a niche elimination operation by combine the M
individuals obtained in Step 5 with the first N individuals
from Step 4, resulting in a new population of M+N
individuals. Calculate Hamming distance between each
pair of individuals (X; and X;) in the new population
according to the following equation:

(1% = X5 =/ 2k (e — x50 ©)

i=12,..,.M+N-1
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j=i+1,...,.M+N

where x;; represents the k-th variable of the i-th individual.
When Hamming distance is less than L, the individuals with lower
fitness in X; and X; are subject to a penalty function to reduce their
fitness values;

7) From the population of M + N individuals, select the first M
individuals with higher fitness values to generate the new
population. If the termination condition has been met, the
result is considered as the final output of NGA. Otherwise,
repeat Step 3-6.

2.3 Assimilation method
The observation data from targeted observation is incorporated

into 3D-Var system to improve the ICs. Numerical simulations of
ocean circulation patterns are assimilated with data the ocean
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environment observed by a wide range of instruments, guided by
the statistical Bayesian conditional probability theory, to produce
new numerical results. Such assimilated numerical results for the
ocean environment contain both the extrapolation of the
thermodynamic equations of ocean dynamics and the observed
scenarios of the real state of the ocean environment. The numerical
ocean model compensates for the shortcomings of the observations,
which are always scattered and relatively sparse, and the
observations control the uncertainties brought about by the non-
linearities in the ocean dynamics and thermodynamic equations.
3D-Var aims to achieve an optimal state solution by minimizing
the cost function. The equation of the cost function is as follows:

Tlx) = 5 = 3) B = ) + 5 [LCHE) = y0) O™ [LCHG) - o)
®

where x is the analysis variable; x;, is the background field; y, is
the observation value; B is the background error covariance; O is the
observation error covariance; H is the observation operator; 0" is
the inverse matrix of the corresponding matrix; (x—2x,)7 is the
transpose of the corresponding matrix; and L is the filter operator.
In this study, “Analysis variable” refers to the vertical temperature
profile result from assimilation. “Background field” refers to the
prediction of temperature profile obtained from the ROMS model.
“Observation value” refers to the XBT measured temperature
profile. The observation update residuals are collected and
spatially filtered by the filtering operator L, and the results are fed
back to the grid point where the state x is located. L can be
calculated as follows:

P CL @
TSR by)
SO O3 0sb<a
Qaby) =) L1 3OO 5 +4-3(0)" a<bsa
0 b>2a

where a is the characteristic distance of the observation
response; b is the distance between the observation point and the
model grid point; and K is the total number of observations.
Parameter a determines the scale of the multiscale method, and
also the reduction ratio of each level of the scale grid to the original
pattern grid when the grid varies.

The process of assimilation can be summarized as follows,

1) Observation: quality control of acquired data and
production of observation data sets;

2) Assimilation: the observation dataset and model results are
fed into the assimilation system module, which performs
scale-by-scale 3D variational assimilation after grid
transformation.

3) Forecasting: the assimilation results are substituted into the
ocean model as initial values to obtain new numerical
forecasts.
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In this study, the process of ‘Observation - Assimilation -
Forecasting’ is repeated with the number of observation cycles.

3 Experiment

An experiment was conducted in August 2019 on the northwest
continental slope of the Yellow Sea with the objective of improving
short-term (7-day) thermal structure predictions during the
summer season. The experiment consisted of two main
components: OAT and targeted observation sections.

3.1 Targeted observation experiment

The targeted observation experiment was conducted from 18th
to 25th August with the aim of improving short-term (7-day)
thermal structure predictions. The experiment focused on a
selected target region, denoted by a red box in Figure 2, which is
located near the margin of Yellow Sea Cold Water Mass (YSCWM).
In this region, Vertical Thermal Structure (VTS) is influenced by
various dynamic processes, as well as complex topography.
Consequently, the prediction of VTS in this region is associated
with significant uncertainties (Hu et al, 2021). To determine the
sensitive areas within the target region, an adjoint-free CNOP
algorithm was employed. The identified sensitive areas were
found to be oriented northeast to southwest, extending from the
northeast towards the target region. These sensitive areas are likely
influenced by the southwestward background currents.

In the target region, a total of 5 buoys were deployed to gather
data for the experiment. These buoys were composed of
temperature loggers and pressure-temperature—conductivity
loggers, enabling the collection of temperature profile at a vertical
interval of 2m. The sampling interval of loggers is 10 minutes. The
collected data from the buoys in the target region were utilized for
validation purposes. Furthermore, shipboard temperature,
conductivity, and depth measurements were conducted, resulting
in 21 temperature profiles measured within the targeted region. In
the sensitive region identified through CNOP (green area in
Figure 2), eXpendable Bathy Thermographs (XBT) were
employed to collect temperature profiles 4 times a day (4:30-7:30,
10:30- 13:30, 16:30-19:30, 22:30-01:30) along predesigned routes
(i.e., triangles in Figure 2). The data acquired from XBT in the time-
varying sensitive area were then substituted into cycle data
assimilation process to refine the prediction of the target region at
the 7-th day following XBT deployment (verification time). The
refined prediction obtained from this assimilation, as well as the
basic prediction, were both compared against the data measured by
the buoys in the target region. These comparisons served to verify
the effectiveness of the targeted observation approach. The
experimental results demonstrated that observations within the
identified sensitive area, which aimed at reducing initial errors,
led to a more significant improvement in VTS prediction of the
target region at the verification time compared to similar actions
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0.75

Schematic diagram of the experiment. The red open rectangle indicates the location of the target region of targeted observation experiment. The
green area is the sensitive area in which the data were obtained on 20 August during CNOP, and which is extended from northeast to southwest
towards the target region. The red closed stars indicate five temperature profile buoy stations, carried out during Aug 18-25. The yellow, grey and
blue closed triangles locate thirty-six XBT locations, obtained on Aug 18, 19 and 20, respectively, and the yellow, grey and blue closed circles locate
twenty-one shipboard CTD stations, obtained at the same date allocation. The violet closed squares, accompanied by a vertical array of S1, S2, S3,
S4, S5 and S6, indicates 6 fixed-depth explosive acoustic source locations for OAT experiment on Aug 20. The lower right figure shows the position
of the ocean model domain, in which the white open rectangle indicates the position of the experiment.

conducted solely within the target region itself (Hu et al, 2021; Liu
et al, 2021). This study focuses on the application of acoustic
tomography in targeted observation, and as such, the conclusions
of the targeted observation experiment will not be repeated.

3.2 OAT experiment

OAT experiment was designed to validate the feasibility of
acoustic tomography for the inversion of the marine environment.
The experiment was carried out on August 25 in the southern
region of the targeted observation experiment, as denoted by the
blue box in Figure 2. NGA algorithm was employed to invert SSP
using acoustic travel time data. Subsequently, based on OACM, the
corresponding temperature profile was calculated through the
inversion of SSP obtained from NGA algorithm.

A launching ship was employed during the experiment to deploy
fixed-depth explosive as the acoustic source. The launching ship
moved away from the receiving ship and followed a predetermined
trajectory from point S1 (approximately 10 nautical miles away from
the receiving ship) to point S6 (approximately 22.5 nautical miles). At
intervals of 2.5 nautical miles along this trajectory, the launching ship
came to a halt and dropped 3 kinds of bombs at controlled depths: 7,
25, and 35m. The depths of explosions and distances between
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launching and receiving ships are shown in Table 1. To capture the
acoustic signals generated by the explosions, a standard hydrophone
was fixed at a depth of 10m on the stern of the launching ship. This
hydrophone was utilized to record the explosion time and the
corresponding source level.

On the receiving ship, a vertical array comprising 15-element
hydrophones was deployed on the port aft deck. The hydrophone
array spanned depths ranging from 5 to 33m, with a uniform
interval of 2m. The receiving ship remained anchored at a fixed
position throughout the experiment, enabling the recording of the
acoustic signals. The schematic diagram of OAT experiment is
shown in Figure 3. Examples of signals received by hydrophones are
shown in Figure 4.

Both the launching and receiving vessels were equipped with a
multi-channel hydroacoustic signal synchronization acquisition
system. This system facilitated the acquisition of the explosion
sound source signals from the launching ship and the hydroacoustic
signals recorded by the hydrophone array on the receiving ship.
Importantly, the embedded a GPS module, enabling the acquisition
of precise GPS clock information and position data for real-time
synchronization of the explosion sound source signals. This
synchronization ensured accurate temporal alignment between
the recorded acoustic signals and facilitated reliable analysis of
the acoustic data obtained during the experiment.
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TABLE 1 Depths of explosions and distances between launching and receiving ships.

Explosion serial number Depth of explosion (m) Location Range (km) Average travel time (s)
1 7 18.65 123457
2 35 18.68 123389

s1
3 25 18.72 123983
4 35 18.72 12,4057
5 7 23.95 15.8577
6 25 $2 23.95 15.8925
7 35 23.96 15.8875
8 25 29.14 193528
$3
9 35 29.13 193142
10 7 34.20 22.7262
S4
11 35 34.20 227157
12 7 39.27 27.1309
13 25 S5 39.27 26.0844
14 35 39.27 26,1230
4445 29,5747
15 7
S6 4442
16 25 29.5574
17 35 4445 29.5425
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FIGURE 3
Schematic diagram of OAT experiment. Launching ships dropped fixed-depth explosive at specific ranges, while the explosion time were recorded
using a hydrophone fixed at the stern. Receiving ship recorded acoustic signals with a 15-element vertical hydrophones array at a fixed location.
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FIGURE 4

Examples of signals received by hydrophones on the launching and receiving ships. The figure on the left is the signal example received by the
hydrophone on the launching ship. The figures on the right are the signal examples received by the receiving ship at point S1, 33m, 27m, 15m, and
7m depth hydrophones from top to bottom. The horizontal axis is the time axis, 1308 means 13:08 p.m., and the values under the horizontal axis

represent the corresponding seconds.

4 Result

4.1 Ocean environment inversion based
on OAT

The steps of inverting the ocean environment in section 2.2

were executed as follows:

1) A total of 29 SSPs were measured by the launching and
receiving ships during the OAT experiment. The covariance
matrix eigenvectors and eigenvalues of these SSPs were
computed. As the largest three eigenvalues accounted for
more than 95% of the sum of all the eigenvalues, so the 3-
order EOFs was used. The eigenfunctions corresponding to
top 3 eigenvalues are the EOF functions. The EOF
coefficients of every SSP were calculated;

2) The EOF coefficients obtained above were augmented with a
normal perturbation to generate an initial population with a
population size of 500. The population size of 500 was
found in the simulations to cover the variable space of the
EOF coefficients well and achieve as large a diversity of
populations as possible;

3) The positioning and timing information is obtained through
synchronous GPS data collected by the standard
hydrophone on the launching ship and the hydrophone
array on the receiving ship. The travel time of the acoustic
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signal is calculated using the first wave peak of the signal
received by the receiving ship and the signal pulse received
by the launching ship. A matched filter algorithm was used
to determine the travel times of different eigenrays and the
eigenray with the min travel time is consider as the fastest
eigenray. The time obtained above is considered as the
travel time of the fastest eigenray (Table 1). It's worth
mentioning that there is a distance (30m) between the
bomb launching point and the hydrophone on the
launching ship. So, an extra delay is added on travel time.
Considering that the depth of 0-15m is a homogeneous
layer and the speed of sound is 1535m/s, it is necessary to
add another 0.0195s to the travel time. In this way, the 7; in
equation (1) is calculated. Subsequently, the BELLHOP
acoustic model is employed to calculate the intrinsic
acoustic propagation delay from the sound source to each
hydrophone i.e., f; in equation (1). Thus, the fitness F; of
the individuals of each population was calculated according
to equation (1);

The 500 individuals were sorted by F; and the top 100
individuals were labelled, i.e., the crowding factor was set to
1/5 (De Jong, 1975; Zhang, 2013; Cui et al, 2021);
Selection, crossover and mutation operations of genetic
algorithm were performed on all 500 individuals to
produce the next generation. The maximum number of
genetic generations was set to be 40, the mating probability
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to be 0.5, the mutation probability to be 0.2. The parameters
are the result of a comprehensive consideration after
simulation, which takes into account both the need to
traverse the entire search space and also the computational
efficiency;

The Hemming distances between the 500 individuals
generated in the step 5 and the 100 individuals labeled in
the step 4 were calculated according to equation (2). The
less adapted of the two individuals within specific distance
was penalized. Thus, 500 individuals (out of 500 + 100
individuals above) with higher fitness F; are the next
generation.

The above steps were repeated until the fitness function of the
optimal individual satisfied the termination condition, then the
corresponding SSP of the optimal individual was output as the
inversion result.

The SSP obtained from the experiments of 35m bombs at 6
release points (S1-S6) and measured data are selected as samples
and shown in Figure 5. The measured data are XBT measurement
from launching and receiving vessels during the experiment. Due to
the limited availability of salinity data (only 2 CTD measurements
per buoy), the salinity profile is assimilated with measured data
based on ROMS dataset, shown in Figure 6A. The average SSP of
OAT is shown in Figure 6B. Consequently, the temperature profile
is extracted using OACM and illustrated in Figure 6C. Figure 6
reveals that the biases primarily originate in the thermocline depth,

10.3389/fmars.2023.1259864

while the biases in the sea surface mixed layer and deeper layers are
relatively smaller. Root Mean Square Error (RMSE) for SSP and
temperature profile is calculated to be 1.07m/s and 0.40°C,
respectively. Specifically, RMSE in thermocline depth (15-40m) is
1.21m/s and 0.47°C. These results are considered accurate, taking
into account the limited number of blast sources and the duration of
the experiment. The findings suggest that NGA algorithm-based
OAT can reliably invert the marine environment in Yellow Sea.

4.2 Application of OAT in
targeted observation

As OAT experiment was not conducted within the sensitive
area of targeted observation, a simulation experiment was employed
to verify the impact of OAT on ocean environment prediction.

Considering the variation characteristics of temperature in the
OAT experiment area and the sensitive area are quite different, it’s
irrational to assimilate OAT inversion result as targeted observation
data directly. In this study, the temperature bias obtained from the
acoustic tomography inversion and the temperature measurement
data from XBT in the sensitive area were combined to simulate the
acoustic tomography inversion data within the sensitive area. The
vertical bias structure is related only to the OAT inversion method,
but not the region. Thus, the simulated observations of “truth +
bias” avoid the influence of the bias in different regions on the
results. These simulated OAT observation data were then brought
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Results of OAT inversion. (A) Salinity profile after assimilation with measured data based on ROMS dataset, (B) Comparison of average SSP obtained
from OAT and measured data, (C) Comparison of average temperature profiles obtained from OAT and measured data.

0(‘ omparsion of SSPs at W1

OCom arsion of SSPs at W2

0Comparsion of SSPs at W3

10 10 10
E E E
g | g
= 20 = 20 = 20
[5] [5] ]
A a A

30 30 30

40 40 40

1500 1520 1540 1500 1520 1540 1500 1520 1540
Sound speed(m/s) Sound speed(m/s) Sound speed(m/s)

OComparsion of SSPs at W4

O(‘omparsion of SSPs at W5

1 1 Measured data
g " 2 . — Basic prediction
g § —— XBT result
30 30 —— OAT result
40 40
1500 1520 1540 1500 1520 1540
Sound speed(m/s) Sound speed(m/s)

FIGURE 7

Frontiers in Marine Science

Comparisons of sound speed profile at different buoy station at verification time (day 7), including measured data (black line), basic prediction (blue
line), assimilation results from XBT measured data (green line) and assimilation results from OAT inversion simulation data (red line).
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TABLE 2 RMSEs of basic prediction, experimental data, and OAT data compared with measured data in the target region at 7-th day.

Position W1 W2 W3 W4 W5
Basic prediction (m/s) 7.31 6.43 5.59 6.88 ‘ 5.3
Exp result (m/s) 244 2.06 1.51 1.85 ‘ 22
OAT result (m/s) 3.82 3.90 ‘ 1.93 2.96 ‘ 32

into the assimilation system to obtain updated ICs, leading to  at W3 buoy as an example, the RMSEs of these predictions along
improved predictions through the use of 3D-Var and ROMS  with a Ctrl Run, which is the result of assimilation based on
methods. The prediction results at the verification time were  observation in the target region, are shown in Figure 8. From
compared between the basic prediction, the measured data from  Figure 8, the bias of XBT and OAT results change on a similar
buoys in the target region (noted by red stars in Figure 2), the  trajectory. At the verification time, the RMSE in the target region
assimilation of XBT measured data, and the assimilation of the  was greatly reduced by experiment with deploying XBT observation
simulated OAT assimilation. The comparison results are shown  and simulated OAT observation in the identified sensitive area
in Figure 7. (XBT result and OAT result) than that of experiment with
The results demonstrate that both the simulated OAT  observations being deployed in the verification area itself (Ctrl
observation and Exp observation(XBT result) significantly =~ Run). These findings demonstrate that OAT can serve as a reliable
improve the accuracy of temperature profile forecasts compared  observation method for targeted observation.
to the basic prediction at the verification time. These results are The simulation experiment described above provides validation
closer to the measured data, particularly in surface and thermocline  regarding the influence of OAT data from XBT locations. However,
layers. It should be noted that the comparison does not include the ~ the unique characteristics of acoustic tomography, including its
deeper layers since the buoy depths do not reach the seafloor.  large-area coverage and long-term observation capabilities under
RMSEs of the basic prediction, Exp, and OAT simulation data  low-cost conditions, necessitate further verification of OAT’s
compared to the measured data at 5 buoys are calculated and  influence on prediction using OSSE. For the OSSE, two sets of
presented in Table 2. Overall, Exp yields more accurate results than  predictions with different ICs and same driving conditions are
OAT simulation data, primarily due to the introduced bias of OAT  selected: “True Run” and “Ctrl Run”. “True Run” and “Ctr] Run”
inversion. On average, RMSE of XBT prediction is reduced by  are predictions from same boundary and driving conditions, but
68.1%, while RMSE of OAT prediction is decreased by 49.9% different initial conditions. “True Run” is regarded as the real ocean
comparing with basic prediction. On the other hand, setting VIS  measured data. “Ctrl Run” is regarded as the basic prediction

8 I ' I Basic prediction
71 ——— XBT result
——— OAT result
ol \—C/tﬂ}{un i
—_|

[6)]
T
I

RMSE of SSP (m/s)
w B

N

Forecast time (d)

FIGURE 8

Temporal evolution of vertical integration RMSEs of SSP at W3 station, including basic prediction (blue line), assimilation results from XBT measured
data in sensitive area (green line), OAT inversion simulation data in sensitive area (red line) and measured data in the target region (Ctrl Run-black
line).
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FIGURE 9

Schematic diagram of Observing System Simulation Experiments (OSSE). Targeted observation data from the sensitive area at the targeting time is
extracted from “True Run”. This data is then combined with OAT inversion bias and assimilated with data from “Ctrl Run” to generate "Exp Run”.

without additional observation. Targeted observation data from the
sensitive area, extracted from “True Run”, is combined with OAT
inversion bias to simulate OAT targeted observation data. This
OAT targeted observation data is then assimilated with data from
“Ctrl Run” using 3D-Var system, resulting in the generation of “Exp
Run”. By comparing the predictions of “Ctrl Run” and “Exp Run”
with “True Run” at the verification time, the impact of OAT as a
targeted observation method on prediction can be analyzed

(Figure 9). To further investigate the effect of OAT observations
on prediction quality under different conditions, various
experiment setups were employed. EXP1 replicates the same OAT
observation condition as XBT measurement. Observations were
carried out at the locations of the triangular markers of the three Z-
lines in the sensitive area of Figure 2 from day 1 to day 3. EXP2
simulates observation on all ocean model nodes in the sensitive
area, meaning the observation area is 4 times the area of EXP1,
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FIGURE 10

Results of OSSE. Vertical sound speed bias structures of different experiment conditions are configured, including Ctrl Run (black line), EXP1 for basic

OAT observation (blue
observation (cyan line) area and an extended observation time (red line)
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line), EXP2 for larger observation area (green line), EXP3 for extended observation time (black line), and EXP4 for both a larger
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TABLE 3 Setup and results of OSSE.

RMSE  Improvement
Experiments Description of SSP  percentage
(m/s)  on ‘Ctrl Run’
Ctrl Run Control Run 2.48 -—
Basic OAT
EXP1 asic OA 1.07 53.6%
observation
4 times observation
EXP2 area-(Fover the whole L0z 58.6%
sensitive area of day
0)
Extended observation
EXP3 time from 3 days to 5 0.86 65.2%
days
4 times observation
area and extended
EXP4 . A 0.78 68.5%
observation time
from 3 days to 5 days

while the observation keeps the same(day 1-3). EXP3 takes
observation in the same area as EXP1 while the observations time
is extended, which indicates that observations are located on the
triangular locations from day 1 to day 5. EXP4 is the combination of
EXP2 and EXP3, i.e., observations are carried out on all ocean
model nodes in the sensitive area from day 1 to day 5. The results of
these experiments are depicted in Figure 10 and Table 3.

The results of EXP1 reinforce the finding that OAT can improve
prediction quality, thereby validating its utility as a targeted
observation method. EXP2 and EXP3 demonstrate that increasing
the observation area and extending the observation time further
improve the prediction quality. However, it is observed that the
enhancement in prediction quality is more pronounced with an
extended observation time. This phenomenon can be attributed to
the fact that both the horizontal resolution of the ocean model
employed and the assimilation radius of the 3D-Var system exceed
the observation spacing. Consequently, expanding the observation
area may not yield enough additional valuable environmental
information. Conversely, extending the observation time not only
provides more observations but also reduces the time interval
between the final observations and the verification time. EXP4
results reveal that the combination of increasing the observation
area and extending the observation time improves the prediction
quality for maximum. However, improvement achieved through
this approach is not notably different from that achieved solely by
extending the observation time. Furthermore, extending the
observation time is more cost-effective and logistically feasible
compared to deploying additional observation nodes during sea
trials. Consequently, prolonged observations duration emerges as
an efficient and economical approach to observation, thereby
offering reference for the implementation of acoustic tomography
targeted observation projects.
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5 Summary

OAT is a cost-effective, long-term, and wide-area ocean
monitoring method that obtains acoustic signals to invert marine
environment characteristics. In this study, the validity of OAT for
the marine environment inversion was verified using data collected
during the 2019 Yellow Sea experiment. The OAT inversion biases
were incorporated into measurements obtained from the sensitive
area, identified by CNOP method, to simulate OAT observations
from the sensitive area. These simulated OAT observations were
substituted into a 3D-Var assimilation system to improve the
quality of ICs and subsequently enhance the short term (7-day)
prediction of the target region. These findings confirm the
effectiveness of OAT as a targeted observation method.
Considering the large-scale and long-duration nature of OAT,
OSSE method was employed to further test the impact of OAT
on prediction quality. Specifically, the effects of adding observation
nodes and extending the observation duration were examined. The
results show that both approaches and their combination have
positive effects in reducing prediction uncertainty. However, it was
found that extending the observation duration is a more
efficient strategy.

This study aims to verify the feasibility of acoustic tomography
as a targeted observation method in a simulated environment using
actual measurement data. It is important to note that the findings of
this study are yet to be validated in sea trials. Additionally, most
existing acoustic tomography observation methods utilize fixed or
submerged buoys, while the sensitive area for targeted observation
changes with time. Therefore, it is crucial to investigate optimal
selection strategies for observation nodes that can yield the highest
improvement in prediction quality. Additionally, it is necessary to
examine the effect of parameter variations in the ocean model and
assimilation model on acoustic tomography and its corresponding
targeted observations. Understanding the interrelationships and
contribution of these parameters to the prediction quality requires
further investigation.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

CB: Formal Analysis, Methodology, Writing - original draft,
Writing - review & editing. LJ: Data curation, Formal Analysis,
Writing - review & editing. GW: Funding acquisition,
Investigation, Resources, Writing — review & editing. DL: Funding
acquisition, Resources, Writing — review & editing.

frontiersin.org


https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Baolong et al.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research
received support by National Basic Research Program of China (Grant
Number 2019-JCJQ-ZD-149-00) and Taishan Scholars Program.

Acknowledgments

We are grateful to Liu Kun for his help in ocean model building,
Hu Huiqin for her assistance in assimilation system, the captains
Bing Liu, Xiufeng Chen and all the crews of the R/V KeXue No. 3
and R/V ChuangXin No. 2 for their cooperation in collecting the
observation data.

References

Baker, N. L., and Daley, R. (2000). Observation and background adjoint sensitivity in
the adaptive observation-targeting problem. Q.J.R. Meteorol. Soc 126 (565), 1431-1454.
doi: 10.1002/qj.49712656511

Bishop, C. H., Etherton, B. J., and Majumdar, S.J. (2001). Adaptive sampling with the
ensemble transform kalman filter. Part I: theoretical aspects. Monthly Weather Review.
129 (3), 420-436. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2

Buizza, R., and Montani, A. (1999). Targeting observations using singular vectors. J.
Atmospheric Sci. 56 (17), 2965-2985. doi: 10.1175/1520-0469(1999)056<2965:
TOUSV>2.0.CO;2

Carriére, O., and Hermand, J. P. (2008). A sequential Bayesian approach to vertical
slice tomography of a shallow water environment. J. Acoustical Soc. America. 123
(5_Supplement), 3339-3339. doi: 10.1121/1.2933874

Chan, P. W,, Han, W., Mak, B., Qin, X., Liu, Y., Yin, R,, et al. (2022). ). Ground-
space-sky observing system experiment during tropical cyclone mulan in August 2022.
Adv.Atmos. Sci. 40 (2), 194-200. doi: 10.1007/s00376-022-2267-z

Cui, B., Xu, G, Da, L., and Guo, W. (2021). Shallow sea sound speed profile inversion
based on niche genetic algorithm. J. Appl. Acoustics 40 (2), 1-8. doi: 10.11684/
j.issn.1000-310X.2021.02

Da, L., Guo, W., Zhao, J., and Fan, P. (2015). Capture uncertainty of underwater
environment by ocean-acoustic coupled model. Acta Acustica. 40 (3), 477-486.
doi: 10.15949/j.cnki.0371-0025.201

Dahl, P. H,, Zhang, R, Miller, J. H., Bartek, L. R,, Peng, Z., Ramp, S. R,, et al. (2004).
Overview of results from the asian seas international acoustics experiment in the east
China sea. IEEE J. Oceanic Engineering. 29 (4), 920-928. doi: 10.1109/JOE.2005.843159

DeFerrari, H. A., and Nguyen, H. B. (1986). ). Acoustic reciprocal transmission
experiments, Florida Straits. J. Acoust Soc. Am. 79 (2), 299-315. doi: 10.1121/1.393569

De Jong, K. A. (1975). An analysis of the bechavior of a class of genetic adaptive
systems (MI, United States: University of Michigan). Ph. D Dissertation.

Duan, W., and Hu, J. (2015). The initial errors that induce a significant “spring
predictability barrier” for El1 Nino ~ events and their implications for target observation:
results from an earth system model. Clim. Dynam. 46 (11-12), 3599-3615.
doi: 10.1007/s00382-015-2789-5

Duan, W. S., and Mu, M. (2018). Predictability of el nino-southern = Oscillation
events. OXFORD research encyclopedia, CLIMATE SCIENCE. (United States: Oxford
University). Available at: https://climatescience.oxfordre.com. doi: 10.1093/
acrefore/9780190228620.013.80

Duda, T. F,, Lynch, J. F,, Newhall, A. E., Wu, L., and Chiu, C. S. (2004). Fluctuation of
400-hz sound intensity in the 2001 ASIAEX south China sea experiment. IEEE J.
Oceanic Engineering. 29 (4), 1264-1279. doi: 10.1109/j0e.2004.836997

Dushaw, B. D. (1999). “The Acoustic Thermometry of Ocean Climate (ATOC)
Project: Towards depth-averaged temperature maps of the North Pacific Ocean,” in
Proceeding of the International Symposium on Acoustic Tomography and Thermometry,
Tokyo, Japan. doi: 10.1121/1.413035

Dushaw, B., Forbes, A., Gaillard, F., Gavrilov, A., Gould, J., Howe, B., et al. (2001).
“Observing the ocean in the 2000’s: A strategy for the role of acoustic tomography in
ocean climate observation,” in Observing the oceans in the 21st century (University of
Washington,United States: GODAE Project Office and Bureau of Meteorology).

Dushaw, B. D., and Worester, P. F. (2001). “Acoustic remote sensing of the North
Pacofic on gyre and regional scales,” in Pacific CLIVAR international Pacific

Frontiers in Marine Science

10.3389/fmars.2023.1259864

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Implementation Workshop, International Pacific Research Center at the University of
Hawaii, Honolulu, Hawaii.

Feng, R., Duan, W., and Mu, M. (2016). Estimating observing locations for advancing
beyond the winter predictability barrier of Indian Ocean dipole event predictions.
Climate Dynamics. 48 (3-4), 1173-1185. doi: 10.1007/500382-016-3134-3

Feng, Y., Min, J., Zhuang, X., and Wang, S. (2019). Ensemble sensitivity analysis-
based ensemble transform with 3D rescaling initialization method for storm-scale
ensemble forecast. Atmosphere. 10, 24. doi: 10.3390/atmos10010024

Fried, S., Walker, S., Hodgkiss, W., and Kuperman, W. (2013). Measuring the effect of
ambient noise directionality and split-beam processing on the convergence of the cross-
correlation function. J. Acoustical Soc. America 134 (3), 1824-1832. doi: 10.1121/
1.4816490

Gasparini, O., Camporeale, C., and Crise, A. (1997). Introducing passive matched field
acoustic tomography. Nuovo Cimento- Societa Italiana di Fisica Sezione C. 20 (4), 497-520.

Hamill, T. M., and Snyder, C. (2002). Using improved background-error covariances
from an ensemble kalman filter for adaptive observations. Monthly Weather Review.
130 (6), 1552-1572. doi: 10.1175/1520-0493(2002)130

Howe, B. M. (1987). Multiple receivers in single vertical slice ocean acoustic
tomography experiments. J. Geophysical Research: Oceans. 92 (C9), 81-86.
doi: 10.1029/JC092iC09p09479

Howe, B. M., Mercer, J. A., Spindel, R. C., Worcester, P. F., Hildebrand, J. A.,
Hodgkiss, W. S., et al. (1991). “Slice89: A single slice tomography experiment,” in
Ocean variability & Acoustic propagation. Eds. J. Potter and A. Warn-Varnas
(Dordrecht: Springer). doi: 10.1007/978-94-011-3312-8_6

Hu, H,, Liu, J., Da, L., Guo, W., Liu, K., and Cui, B. (2021). Identification of the
sensitive area for targeted observation to improve vertical thermal structure prediction
in summer in the Yellow Sea. Acta Oceanologica Sinica. 40 (7), 77-87. doi: 10.1007/
s13131-021-1738-x

Huang, C.-F,, Yang, T. C, Liu, J.-Y., and Schindall, J. (2013). Acoustic mapping of
ocean currents using networked distributed sensors. J. Acoustical Soc America 134,
2090-2105doi: 10.1121/1.4817835

Jin, G., Lynch, J., Pawlowicz, R., and Wadhams, P. (1993). Effects of sea ice cover on
acoustic ray travel times, with applications to the Greenland Sea Tomography
Experiment. J. Acoust Soc. Am. 94 (2), 1044-1057. doi: 10.1121/1.406951

Joly, A., Browning, K. A., Bessemoulin, P., Cammas, J., Caniaux, G., Chalon, J., et al.
(1999). Overview of the field phase of the fronts and Atlantic Storm-Track EXperiment
(FASTEX) project. Quarterly Journal of the Royal Meteorological Society. 125 (561),
3131-3163. doi: 10.1002/qj.49712556103

Kramer, W., Dijkstra, H. A., Pierini, S., and van Leeuwen, P. J. (2012). Measuring the
impact of observations on the predictability of the kuroshio extension in a shallow-
water model. J. Phys. Oceanography. 42 (1), 3-17. doi: 10.1175/JPO-D-11-014.1

Langland, R,, Toth, Z., Gelaro, R., Szunyogh, I, Shapiro, M., Majumdar, S., et al.
(1999). The north pacific experiment (NORPEX-98): targeted observations for
improved north american weather forecasts. Bull. Amer Meteorol Soc 80, 1363-1384.
doi: 10.1175/1520-0477(1999)080<1363: TNPENT>2.0.CO;2

Lebedev, K. V., Yaremchuk, M., Mitsudera, H., Nakano, 1., and Yuan, G. (2003).
Monitoring the kuroshio extension with dynamically constrained synthesis of the
acoustic tomography, satellite altimeter and in situ data. J. Oceanography. 59 (6), 751—
763. doi: 10.1023/B:JOCE.0000009568.06949.c5

frontiersin.org


https://doi.org/10.1002/qj.49712656511
https://doi.org/10.1175/1520-0493(2001)129%3C0420:ASWTET%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3C2965:TOUSV%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3C2965:TOUSV%3E2.0.CO;2
https://doi.org/10.1121/1.2933874
https://doi.org/10.1007/s00376-022-2267-z
https://doi.org/10.11684/j.issn.1000-310X.2021.02
https://doi.org/10.11684/j.issn.1000-310X.2021.02
https://doi.org/10.15949/j.cnki.0371-0025.201
https://doi.org/10.1109/JOE.2005.843159
https://doi.org/10.1121/1.393569
https://doi.org/10.1007/s00382-015-2789-5
https://climatescience.oxfordre.com
https://doi.org/10.1093/acrefore/9780190228620.013.80
https://doi.org/10.1093/acrefore/9780190228620.013.80
https://doi.org/10.1109/joe.2004.836997
https://doi.org/10.1121/1.413035
https://doi.org/10.1007/s00382-016-3134-3
https://doi.org/10.3390/atmos10010024
https://doi.org/10.1121/1.4816490
https://doi.org/10.1121/1.4816490
https://doi.org/10.1175/1520-0493(2002)130
https://doi.org/10.1029/JC092iC09p09479
https://doi.org/10.1007/978-94-011-3312-8_6
https://doi.org/10.1007/s13131-021-1738-x
https://doi.org/10.1007/s13131-021-1738-x
https://doi.org/10.1121/1.4817835
https://doi.org/10.1121/1.406951
https://doi.org/10.1002/qj.49712556103
https://doi.org/10.1175/JPO-D-11-014.1
https://doi.org/10.1175/1520-0477(1999)080%3C1363:TNPENT%3E2.0.CO;2
https://doi.org/10.1023/B:JOCE.0000009568.06949.c5
https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Baolong et al.

Li, F., Guo, X,, Hu, T., and Ma, L. (2014). Acoustic travel-time perturbations due to
shallow-water internal waves in the Yellow Sea. J. Comput. Acoustics. 22, 1-11.
doi: 10.1142/S0218396X14400037

Li, F,, Yang, X., Zhang, Y., Luo, W., and Gan, W. (2019). Passive ocean acoustic
tomography in shallow water. J. Acoustical Soc. America. 145 (5), 2823-2830.
doi: 10.1121/1.5099350

Liu, K., Guo, W,, Da, L, Liu, J., Hu, H., and Cui, B. (2021). Improving the thermal
structure predictions in the Yellow Sea by conducting targeted observations in the
CNOP-identified sensitive areas. Sci. Rep. 11 (1), 19518. doi: 10.1038/s41598-021-
98994-7

Liy, J. Y., Liu, K., Guo, W. H,, Liang, P., and Da, L. L. (2023). Optimal initial errors
related to the prediction of the vertical thermal structure and their application to
targeted observation: A 3-day hindcast case study in the northern South China Sea.
Deep Sea Res. Part I: Oceanographic Res. Papers. 200, 104146. doi: 10.1016/
j.dsr.2023.104146

Lynch, J. F,, Jin, G., Pawlowicz, R,, Ray, D., Plueddemann, A. J., Chiu, C. S,, et al.
(1996). Acoustic travel-time perturbations due to shallow-water internal waves and
internal tides in the Barents Sea Polar Front: Theory and experiment. J. Acoust Soc. Am.
99 (2), 803-821. doi: 10.1121/1.414657

Malfoud, S. W. (1995). Niche methods for genetic algorithms (Illinois: University of
Illinois, Urbana-Champain).

Mu, M. (2013). Methods, current status, and prospect of targeted observation. Sci.
China Earth Sci. 56 (12), 1997-2005. doi: 10.1007/s11430-013-4727-x

Mu, M., Duan, W. S., and Wang, B. (2003). Conditional nonlinear optimal
perturbation and its applications. Nonlin. Processes Geophys. 10 (6), 493-501.
doi: 10.5194/npg-10-493-2003

Munk, W., Worcester, P. F., and Wunsch, C. (1995). Ocean acoustic tomography
(Cambridge: Cambridge University Press).

Munk, W., and Wunsch, C. (1979). Ocean acoustic tomography: a scheme for large
scale monitoring. Deep Sea Res. Part A. Oceanographic Res. Papers. 26 (2), 123-161.
doi: 10.1016/0198-0149(79)90073-6

Parsons, D., Beland, M., Burridge, D., Bougeault, P., Brunet, G., Caughey, J., et al.
(2017). THORPEX research and the science of prediction. Bull. Amer Meteorol Soc 98
(4), 807-830. doi: 10.1175/bams-d-14-00025.1

Rabier, F., Klinker, E., Coutie, P. R,, and Hollingsworth, A. (1996). Sensitivity of
forecast errors to initial conditions. Q. J. R. Meteor. Soc 122, 121-150. doi: 10.1002/
qj.49712252906

Shang, E. C. (1989). Ocean acoustic tomography based on adiabatic mode theory. J.
Acoust Soc. Am. 85-4, 1531-1537. doi: 10.1121/1.397355

Shang, E., Voronovich, A., Wang, Y., Naugolnykh, K., and Ostrovsky, L. (2000). New
Schemes of ocean acoustic tomography. J. Comp. Acoust. 8 (3), 459-471. doi: 10.1016/
$0218-396X(00)00030-3

Shchepetkin, A. F., and McWilliams, J. C. (2005). The regional oceanic modeling
system (ROMS): A split-explicit, free-surface, topography following-coordinate oceanic
model. Ocean Model. 9 (4), 347-404. doi: 10.1016/j.0cemod.2004.08.002

Shen, Y., Ma, Y., Du, Q,, and Jiang, X. (1999). Feasibility of description of the sound
speed profile in shallow water via empirical orthogonal function (EOF). Acta Acustica.
18 (20), 21-25.

Skarsoulis, E. K., Athanassoulis, G. A., and Send, U. (1996). Ocean acoustic tomography
based on peak arrivals. J. Acoust Soc. Am. 100 (2), 797-813. doi: 10.1121/1.416212

Frontiers in Marine Science

88

10.3389/fmars.2023.1259864

Snyder, C. (1996). Summary of an informal workshop on adaptive observations and
FASTEX. Bull. Amer Meteorol Soc 77 (5), 953-961. doi: 10.1175/1520-0477-77.5.953

Szunyogh, L, Toth, Z., Morss, R. E., Majumdar, S. J., Etherton, B.J., and Bishop, C. H.
(2000). The effect of targeted dropsonde observations during the 1999 winter storm
reconnaissance program. Monthly Weather Review. 128 (10), 3520-3537. doi: 10.1175/
1520-0493(2000)128<3520:TEOTD0>2.0.CO;2

Taniguchi, N., Mutsuda, H., Arai, M., Sakuno, Y., Hamada, K., Takahashi, T., et al.
(2023). Reconstruction of horizontal tidal current fields in a shallow water with model-
oriented coastal acoustic tomography. Front. Mar. Sci. 10, 1-17. doi: 10.3389/
fmars.2023.1112592

Taroudakis, M. I, and Markaki, M. G. (1997). On the use of matched-field processing
and hybrid algorithms for vertical slice tomography. J. Acoust Soc. Am. 102 (2),
885~895. doi: 10.1121/1.419955

Thiruvengadam, P., Indu, J., and Ghosh, S. (2021). Radar reflectivity and radial
velocity assimilation in a Hybrid ETKF-3DVAR System for Prediction of a Heavy
Convective Rainfall. Q. J. R. Meteorological Society. 147, 1-17. doi: 10.1002/qj.4021

Wang, Q., Mu, M,, and Dijkstra, H. (2013). The similarity between optimal precursor
and optimally growing initial error in prediction of Kuroshio large meander and its
application to targeted observation. J. Geophysical Research: Oceans. 118, 869-884.
doi: 10.1002/jgrc.20084

Wei, M., Toth, Z., Wobus, R., and Zhu, Y. (2008). ). Initial perturbations based on the
Ensemble Transform (ET) technique in the NCEP global operational forecast system.
Tellus A 60, 62-79. doi: 10.1111/j.1600-0870.2007.00273.x

Worcester, P. F. (2019). Tomography. Ist edition of Encyclopedia of Ocean Sciences. 6,
2969-2986. doi: 10.1016/B978-0-12-409548-9.11591-X

Yamoaka, H., Kaneko, A., Jae-Hun, P., Hong, Z., Gohda, N., Takano, T., et al. (2002).
Coastal acoustic tomography system and its field application. IEEE J. Oceanic
Engineering. 27 (2), 283-295. doi: 10.1109/j0e.2002.1002483

Yang, S. S, Li, Z. L, and He, L. (2022). Range dependent sound speed profile
inversion in the northern area of the South China Sea. Acta ACUSTICA 47 (3), 339—
347. doi: 10.15949/j.cnki.0371-0025.2022.03.010

Yuan, G., Nakano, I, Fujimori, H., Nakamura, T., Kamoshida, T., and Kaya, A.
(1999). Tomographic measurements of the Kuroshio Extension Meander and its
associated eddies. Geophysical Res. Letters. 26 (1), 79-82. doi: 10.1029/1998GL900253

Zhang, W. (2013). Inversion of sound speed profile in three-dimensional shallow
water. PH.D dissertationHarbin Eng. University. 42-45.

Zhang, H., Chen, J., Zhi, X., and Wang, Y. (2015). A comparison of ETKF and
downscaling in a regional ensemble prediction system. Atmosphere 6, 341-360.
doi: 10.3390/atmos6030341

Zhang, K., Mu, M., and Wang, Q. (2017). Identifying the sensitive area in adaptive
observation for predicting the upstream Kuroshio transport variation in a 3-D ocean
model. Sci. China Earth Sci. 60 (5), 866-875. doi: 10.1007/s11430-016-9020-8

Zhu, X, Kaneko, A., Wu, Q., Zhang, C., Taniguchi, N., and Gohda, N. (2013).
Mapping tidal current structures in zhitouyang bay, China, using coastal acoustic
tomography. IEEE ]. Oceanic Engineering. 38 (2), 285296. doi: 10.1109/
JOE.2012.2223911

Zhu, X. H., Wu, Q,, Zheng, H., Liao, G., and Zhang, C. (2010). “The Chinese Coastal
Acoustic Tomography system and its application to the Luotou Channel, China,” in
2010 3rd International Congress on Image and Signal Processing Yantai, China, 3890—
3894. doi: 10.1109/CISP.2010.5647342

frontiersin.org


https://doi.org/10.1142/S0218396X14400037
https://doi.org/10.1121/1.5099350
https://doi.org/10.1038/s41598-021-98994-7
https://doi.org/10.1038/s41598-021-98994-7
https://doi.org/10.1016/j.dsr.2023.104146
https://doi.org/10.1016/j.dsr.2023.104146
https://doi.org/10.1121/1.414657
https://doi.org/10.1007/s11430-013-4727-x
https://doi.org/10.5194/npg-10-493-2003
https://doi.org/10.1016/0198-0149(79)90073-6
https://doi.org/10.1175/bams-d-14-00025.1
https://doi.org/10.1002/qj.49712252906
https://doi.org/10.1002/qj.49712252906
https://doi.org/10.1121/1.397355
https://doi.org/10.1016/S0218-396X(00)00030-3
https://doi.org/10.1016/S0218-396X(00)00030-3
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1121/1.416212
https://doi.org/10.1175/1520-0477-77.5.953
https://doi.org/10.1175/1520-0493(2000)128%3C3520:TEOTDO%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128%3C3520:TEOTDO%3E2.0.CO;2
https://doi.org/10.3389/fmars.2023.1112592
https://doi.org/10.3389/fmars.2023.1112592
https://doi.org/10.1121/1.419955
https://doi.org/10.1002/qj.4021
https://doi.org/10.1002/jgrc.20084
https://doi.org/10.1111/j.1600-0870.2007.00273.x
https://doi.org/10.1016/B978-0-12-409548-9.11591-X
https://doi.org/10.1109/joe.2002.1002483
https://doi.org/10.15949/j.cnki.0371-0025.2022.03.010
https://doi.org/10.1029/1998GL900253
https://doi.org/10.3390/atmos6030341
https://doi.org/10.1007/s11430-016-9020-8
https://doi.org/10.1109/JOE.2012.2223911
https://doi.org/10.1109/JOE.2012.2223911
https://doi.org/10.1109/CISP.2010.5647342
https://doi.org/10.3389/fmars.2023.1259864
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

? frontiers ‘ Frontiers in Marine Science

@ Check for updates

OPEN ACCESS

EDITED BY
Xuebo Zhang,
Northwest Normal University, China

REVIEWED BY
Jialun Chen,

University of Western Australia, Australia
Wouter Wittebol,

Eindhoven University of Technology,
Netherlands

Sartaj Khan,

Harbin University, China

Irfan Hussain,

Khalifa University, United Arab Emirates

*CORRESPONDENCE
Zhichao Lv
lvzhichao@hrbeu.edu.cn

RECEIVED 26 September 2023
ACCEPTED 25 October 2023
PUBLISHED 09 November 2023

CITATION
Du L, Wang Z, Lv Z, Wang L and Han D
(2023) Research on underwater acoustic
field prediction method based on physics-
informed neural network.

Front. Mar. Sci. 10:1302077.

doi: 10.3389/fmars.2023.1302077

COPYRIGHT

© 2023 Du, Wang, Lv, Wang and Han. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Marine Science

TvPE Original Research
PUBLISHED 09 November 2023
D01 10.3389/fmars.2023.1302077

Research on underwater
acoustic field prediction
method based on physics-
informed neural network

Libin Du, Zhengkai Wang, Zhichao Lv*, Lei Wang
and Dongyue Han

College of Ocean Science and Engineering, Shandong University of Science and Technology,
Qingdao, China

In the field of underwater acoustic field prediction, numerical simulation
methods and machine learning techniques are two commonly used methods.
However, the numerical simulation method requires grid division. The machine
learning method can only sometimes analyze the physical significance of the
model. To address these problems, this paper proposes an underwater acoustic
field prediction method based on a physics-informed neural network (UAFP-
PINN). Firstly, a loss function incorporating physical constraints is introduced,
incorporating the Helmholtz equation that describes the characteristics of the
underwater acoustic field. This loss function is a foundation for establishing the
underwater acoustic field prediction model using a physics-informed neural
network. The model takes the coordinate information of the acoustic field point
as input and employs a fully connected deep neural network to output the
predicted values of the coordinates. The predicted value is refined using the loss
function with physical information, ensuring the trained model possesses clear
physical significance. Finally, the proposed prediction model is analyzed and
validated in two dimensions: the two-dimensional acoustic field and the three-
dimensional acoustic field. The results show that the mean square error between
the prediction and simulation values of the two-dimensional model is only 0.01.
The proposed model can effectively predict the distribution of the two-
dimensional underwater sound field, and the model can also predict the sound
field in the three-dimensional space.

KEYWORDS

underwater acoustic field, prediction model, neural network, physical constraints,
physics-informed neural network
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1 Introduction

High-precision underwater acoustic field model is of great
significance for underwater acoustic communication, sonar
effectiveness evaluation, underwater target recognition and
location, etc. Establishing a high-precision underwater acoustic
field prediction model is one of the important research contents
in underwater acoustic field. For example, the establishment of
highly accurate underwater acoustic field can help synthetic
aperture sonar (SAS) to obtain higher resolution sonar images.
Zhang (2023) proposed a new method to simulate the original SAS
echo. The transmitted signal was Fourier transformed and
multiplied by the phase shift of the delay, and the spectrum of
the echo signal was accurately obtained. Yang et al. (2023) proposed
a multi-receiver SAS imaging algorithm based on Loffeld Bistatic
formula (LBF). Zhang et al. (2021) proposed a multi-receiver SAS
image processing method and proved that under certain conditions,
the bistable formula of Loffeld can be simplified to the same formula
as the spectrum based on phase center approximation. Zhang et al.
(2023) proposed a SAS imaging algorithm by rerepresenting the
Loffeld bistable formula (LBF), which includes quasi-monostable
(QM) and multi-receiver deformed (MD) phases, as range-variant
phase and range-invariant phase. In the process of SAS signal
transmission, there will be attenuation, and the establishment of
high-precision underwater acoustic fleld can compensate the
attenuation signal accordingly. At present,the numerical
simulation and the machine learning are common methods to
forecast the underwater acoustic field. The numerical simulation
method mainly uses ray method, normal mode method, parabola
method, beam integration method (Belibassakis et al., 2014) to
establish physical models and calculate underwater acoustic field.
Kiryanov et al. (2015) established a random non-uniform wave field
model for evaluating sound velocity field based on the results of
deep-sea acoustic long-range propagation test. Miller (1954)
introduced the coupled mode to extend the solution range of the
differential equation to the number of waveguides dependent on the
distance. For the normal mode method, the finite element method is
usually used to build the acoustic field model, and the KRAKEN
model is widely used to build the acoustic field by finite element as a
representative model. Zhou and Luo (2021) established a finite
element model for predicting underwater acoustic field based on
Cartesian coordinate system in a two-dimensional environment,
whose universality is better than that of KRAKEN model. Teng et al.
(2010) used the boundary element method to simulate the acoustic
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field around two kinds of underwater communication transducers,
and the prediction results are generally applicable. The spectral
method is a high precision method for solving differential
equations, and it also plays an important role in promoting the
calculation of underwater acoustic field. Tu et al. (2022) used
spectral method and coupled modes to solve the acoustic field of
underwater linear source. In this paper, Chebyshev-Tau spectral
method was used to solve the horizontal wave number of irrelevant
segments in the approximate range, and a global matrix was
constructed to solve the coupling coefficient of the acoustic field
and synthesize the complete acoustic field. Tu et al. (2021) used
Chebyshev-Tau spectral method to construct the normal mode
model of underwater acoustic field, and converted the relevant
differential equations into a complex matrix eigenvalue problem
formed by orthogonal basis with Chebyshev polynomials to solve
the horizontal beam. Tu et al. (2020) used Chebyshev-Tau spectral
method to solve the normal mode model and parabolic equation,
and the solution accuracy was higher than that of the finite element
method. Although the numerical simulation method can directly
forecast the underwater acoustic field by using the physical rules,
the numerical solution often needs to divide the regular grid to
simplify the model calculation, and it is difficult to predict the
acoustic field model with irregular boundaries. With the
development of computer hardware, the neural network, which is
one of the important methods in machine learning, has been used
more and more to predict underwater acoustic field. Ahmed et al.
(2021) established a machine learning model to predict the sound
velocity profile in deep water and shallow water. The accuracy of
this model reached 99.99% and the prediction effect was better than
the acoustic field model forecasted by the equation. Based on the
self-defined loss function, He et al. (2022) constructed a single
output joint neural network and a multi-output neural network
with physical constraints to accurately forecast the beam and
feature function of the underwater acoustic field.

Machine learning method has greatly improved the accuracy of
underwater acoustic field prediction, but there are some obvious
problems. First of all, the model trained by the neural network does
not have a clear physical meaning, and it has poor adaptability to
different environments. Secondly, the neural network needs a large
amount of historical data as support to ensure that the trained
model has a high accuracy. Figure 1 (Karniadakis et al., 2021) shows
the relationship between data volume and physical parameters in
the model prediction problem. In case 1, assuming clear physical
laws and boundary conditions are known, the corresponding

Low Data Some Data High Data
| | | | Data Driven
Physics Driven
Case 1 | ‘ Case 3 | ‘ Case 2
Complete Physics Some Physics No Physics

FIGURE 1
The relationship between data volume and physical rules.
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problem can be solved according to physical rules. In this case, the
numerical simulation method can be used to predict the underwater
acoustic field. In case 2, only a large amount of data is known but
the specific physical rules are not clear, and machine learning can be
used to predict the acoustic field problem. The real underwater
acoustic field prediction is a problem in case 3: there are sufficient
data but some parameters in the physical rules are not clear, which
cannot be solved directly by the physical rules.

Physics-informed neural network (PINN) is a new kind of
neural network, which is used to solve the problem of case 3 in
Figure 1. It essentially trains the neural network with physical
equations as constraints, so that the prediction model can meet
certain physical rules. The method has been applied to geophysics,
fluid mechanics, plasma dynamics, high dimensional system
problems, quantum chemistry, materials science and other fields
closely related to physics. Zhu et al. (2021) introduced a deep
learning framework for inversion of seismic data. This paper
combined DNN and numerical partial differential equation
solvers to solve problems such as seismic wave velocity
estimation, fault rupture imaging, seismic location and source
time function inversion. Raissi et al. (2019) combined Navier-
Stokes equations with deep learning to build a model based on
physics-informed neural network and predict pressure distributions
in incompressible fluids. Shukla et al. (2020) used physics-informed
neural network to detect cracks on the surface of materials, designed
a trained PINN to solve the problem of identification and
characterization of cracks on the surface of metal plates, and
solved the acoustic wave equation using measured ultrasonic
surface acoustic wave data with a frequency of 5 MHz. Wu et al.
(2022) introduced the Helmholtz equation and its corresponding
boundary conditions into neural networks to establish physics-
informed neural networks describing acoustic problems. These
neural network algorithms can not only reflect the distribution of
training data samples, but also follow the physical laws described by
partial differential equations. Pfau et al. (2020) combined the wave
function of Fermi-Dirac statistics with deep learning networks to
calculate the solution of the multi-electron Schrodinger equation.
Rotskoft et al. (2022) used PINN method to solve the high-
dimensional problem and gave the results of the probability
distribution in the 144-dimensional Allen-Cahn type system,
indicating that the method is effective for high-dimensional
systems, but its adaptability needs to be optimized for more
complex systems. Zhang et al. (2022) used deep neural network
to modify the displacement factor of surrounding rock of Verruijt-
Booker solution, and constructed the correlation between the
surface settlement and the spatial position of tunnel excavation
face. Then, the physics equations of the corrected solutions were
used to construct PINN, and the results were better than those of
DNN alone. Zou et al. (2023) designed a PINN model to solve the
seismic wave equation. Du et al. (2023) used the three-dimensional
function equation and other physical rules to form a loss function,
and trained the neural network by minimizing the loss function.
The final output satisfied the function equation and the result was
better than the traditional calculation result.

In the underwater acoustic field, wave theory is usually used to
describe underwater acoustic propagation. In this paper, the

Frontiers in Marine Science

10.3389/fmars.2023.1302077

underwater sound propagation equation is derived based the
framework of wave theory, which is used as constraint to train
the deep neural network, and finally the underwater acoustic field
prediction model with practical physical significance is obtained.
The specific arrangement of this paper is as follows:

1) Deriving the Helmholtz equation of underwater acoustic
propagation in homogeneous medium and establishing the
model of underwater acoustic propagation based on the
Helmbholtz equation.

2) Designing a fully connected deep neural network.
Introducing Helmholtz equation into the training process
of neural network. Establishing a physics-informed neural
network based on the Helmholtz equation.

3) Adjusting different training parameters of neural network,
analyzing model training efficiency and prediction
accuracy, and finding the best network design parameters.

The rest of the paper is organized as follows: in Chapter 2, the
Helmbholtz equation describing the distribution of sound pressure in
underwater acoustic field is derived. In Chapter 3, the structure of
underwater acoustic field prediction physics-informed neural
network (UAFP-PINN) is described in detail. In Chapter 4,
UAFP-PINN is used to forecast the 2D and 3D underwater
acoustic fields, and the prediction results are analyzed in detail.
Finally, the conclusion and summary is mentioned in Chapter 5.

2 Theory
2.1 Helmholtz equation

Wave theory is a strict mathematical method, which can be used
to derive the Helmholtz equation describing the law of underwater
sound propagation. For ideal fluids, the wave equation for sound
pressure can be written as follows (Jensen et al., 2011):

1 197
pV-(;Vp)—ganﬂ (1)

In the above formula, p is the sound pressure value of the
acoustic field, p is the density of the medium, c is the speed of sound
in the medium, and both density and speed of sound are functions
of space and time. V is a Hamiltonian operator. To simplify the
calculation, assuming that the density does not vary with space
(Jensen et al., 2011), Formula 1 can be simplified to the following
formula:

13%p
V- LoP
ot

Formula 2 is the wave equation in a homogeneous medium,

=0 )

which can be approximated to the ocean acoustic field in a
homogeneous medium for a smaller scale ocean acoustic field
model. V? stands for Laplace operator. For simple harmonic
wave, aa—tzz=—a)2, ® is radiant frequency, introducing the
potential function ¥ =%, Formula 2 can be written as the

following formula (Liu et al., 2019):
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V¥ + K (x,,2)¥ =0 3)

In Formula 3, W is the potential function, k is the wave number
in the medium, which is calculated by the formula k =. The
density in a uniform medium is a constant, and it can be seen from
the potential function formula that there is a linear relationship
between the sound pressure and the potential function, so the sound
pressure also satisfies Formula 3. The Helmholtz equation
describing the sound pressure can be written as follows:

V2p+ K (x,y,2)p=0 (4)

The Formula 4 describes the sound pressure relationship
between adjacent positions of sound waves in a uniform medium.
The beam k in the medium is a position function of space. The
equation belongs to the partial differential equation with variable
coefficient. In order to simplify the calculation, the density p and the
sound velocity ¢ of the medium are regarded as constant value. In
this paper, k is a fixed constant in the model presented.

2.2 Physics-informed neural network

Most physical laws can be expressed in the form of partial
differential equations, but it is difficult to find specific analytical
solutions of higher-order partial differential equations, which are
usually approximated by various methods. The superiority of neural
network is that it is a universal approximator. If the neural network
has at least one nonlinear hidden layer, as long as the network has a
sufficient number of neurons, it can fully approximate the
continuous function defined on any compact subset in theory.

10.3389/fmars.2023.1302077

Neural network is a data-driven approximation tool, and its
obvious disadvantage is that it needs a large amount of historical
data for training. The trained model reflects the characteristics of
the data dimension, and cannot clearly represent the physical
characteristics of the result. In order to solve these defects of
neural networks, the training process of neural networks can
incorporate partial differential equations describing physical laws
to constrain this model, so that the training results contain
corresponding physical characteristics. This kind of neural
network is called physics-informed neural network(PINN), and
its general structure is shown in Figure 2 (Karniadakis et al., 2021).

As shown in Figure 2, PINN consists of two parts: the deep
neural network prediction part and the partial differential equation
constraint part. Using the location (x, y,z) as input, the predicted
value P in the region ( is predicted after passing through the fully
connected layer. The mean square error is calculated as the loss
function 1, denoted as LOSS; in Figure 2. The predicted value is put
into the pre-set partial differential equation and its loss function
LOSS, is calculated. Finally, two kinds of loss functions are
combined to train the deep neural network as constraints.

An optimizer is an algorithm used to optimize the model
parameters in deep learning, which updates the model parameters
according to the gradient information of the loss function, so that the
model can gradually approximate the optimal results. The optimizers
commonly used in neural networks are stochastic gradient descent
(SGD), Adam, AdaGrad and RMSProp. Two optimizers, SGD and
Adam, are used to train the PINN in this paper. SGD is one of the most
basic optimizers in neural networks. Adam is an optimizer that
combines momentum method and adaptive learning rate
adjustment, which is a commonly used optimizer in neural networks.
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General structure of PINN.
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3 UAFP-PINN

This section introduces the underwater acoustic field prediction
model based on physics-informed neural network(UAFP-PINN),
builds a fully connected deep neural network with six hidden layers,
and uses Helmholtz equation to construct the loss function in the
neural network and add it to the training of the neural network.
This section introduces the specific content of UAFP-PINN model
from three parts: model structure, loss function based on Helmholtz
equation and model activation function.

3.1 Frame of prediction

The neural network takes the position coordinate of sound
pressure P as the input and the corresponding sound pressure value
as the output for training. The network consists of one input layer,
six hidden layers and one output layer. In order to verify
the difference between two-dimensional and three-dimensional
model, two-dimensional and three-dimensional physics-informed
neural network is established respectively, and the models are
trained using (x, z,p) and (x, y,z, p) as inputs respectively.

The input layer of the neural network is the coordinate information
of sound pressure, the output layer is the predicted sound pressure, and
there are six hidden layers in this neural network. The number of
neurons in the hidden layer was (8, 16, 32, 64, 128, 256) and each
neuron is connected by full connection. The 7 neuron in layer / — 1 and
the j neuron in layer / are connected by weighting parameters wjl-,-. Each
neuron trains the model through input weighting parameters w}i and
bias terms b in layer /- 1. Figure 3 shows the computational
relationship between the two related neurons. In the feedforward
model, Formula 5 shows the output of the k neuron in the next
layer I (Bishop and Nasrabadi, 2006). o is the activation function,
which is covered in the third part of this section.

N, =
= o (SN whu™ + 0} 5)

3.2 Loss function

The key of physics-informed neural network is to train the
neural network with physical partial differential equation which
describes the state of object. The traditional neural network usually
use the mean square error of predicted and simulated values to
evaluate the training results. In this study, a Helmholtz equation
describing underwater sound propagation is added as another loss
function. The loss function of the mean square error and the loss
function of the physical constraint are used as constraints to train
the model. The loss function of mean square error is denoted as
LOSS, and the loss function of physical constraint is denoted as
LOSS, (Borrel-Jensen et al., 2021).

The reference formula of loss function LOSS; is the formula for
calculating mean square error, and the specific content is shown in
Formula 6:
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1
MSE = ;E?:I‘Pi - T (6)

In the above formula, MSE represents the mean square error, n
is the total number of samples, P is the predicted value, and T is the
true value. Formula 6 is one of the important indicators to measure
the accuracy and precision of the prediction model.

For the prediction model in this paper, the sound pressure value
predicted by the neural network is denoted as p™, the
corresponding simulated sound pressure value is denoted as p"*,
and the number of samples is denoted as N, then the mean square
error loss function LOSS; of the neural network is shown as
Formula 7:

1 re ra
LOSS, = S (" - pi*)’ (7)

The mean square error loss function LOSS; represents the
degree of similarity between the predicted value and the
simulated value. Traditional neural networks use this loss
function to continuously approximate the predicted value to the
simulated value. In essence, the model trained by means of
the mean square error loss function represents the characteristics
of the data dimension.

The sound pressure value p?™ predicted by the neural network
is a function of spatial coordinates, and the Laplacian operator of
the sound pressure p in formula 4 can be expressed as:

?p 9*p p
vip,-2P, 0P 9P
ax? 3y 9z ®

According to Formula 4, k is the medium beam and the
calculation formula is k = %, ® is the radiation frequency, c is
the medium sound speed. Bringing Formula 8 into Formula 4 gives
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the Helmholtz equation with the predicted values.

aZ Ppre aZ ppre aZ Ppre o
L=+ 3y t o + k*pF 9)

Formula 9 describes the Helmholtz equation of the predicted
value of the neural network, which is a vector, and defines the
square of the 2-norm of this vector as the loss function LOSS; of the
physical constraint (Song et al., 2022), from which the expression of
the loss function of the physical constraint can be obtained as:

2 opre 2 opre 2 pre
aap.;; +aPP +a pP +k2ppre

2
9y? 022 |2 (10)

LOSS, = |

The physical constraint loss function LOSS2 represents the
physical characteristics of the predicted value and brings
the predicted value into the Helmholtz equation describing the
underwater sound field. The model trained with the loss function 2
represents the characteristics of the physical dimension.

In order to make the trained neural network have both data
characteristics and physical characteristics, the mean square error
loss function LOSS; and physical constraint loss function LOSS, will
be combined in this paper. In order to make the model better fitting
effect and have strong physical interpretability, the two loss
functions will be summed with the same weight. As a whole, the
LOSS function LOSS trains the model. The model trained by the
LOSS function has clear physical interpretability. The calculation
formula of the loss function is as follows:

aZ ppre s 82 Ppre . 82 ppre
9x* dy? 0722

1
LOSS = SN -y + |

2
2

+ I*pPe (11)

3.3 Activation function

As an important parameter in deep neural network training, the
activation function (o) has great influence on the training efficiency
and prediction accuracy of the neural network. The activation
functions are mainly used to introduce nonlinear properties that
enables neural networks to learn and represent complex nonlinear
relationships. The activation function is typically applied to each
neuron in a neural network, converts the input signal to nonlinear
and passes the transformed result to the next layer. In the training of
neural network, common activation functions mainly include tangent
activation function (Tanh(x)), sine activation function (sin(x)), Relu
function (Relu(x)), and arctangent activation function (Atan(x)). The
images of these four activation functions are shown in Figure 4.

The tangent function is more commonly used in cases where the
neuronal output has negative values, such as symmetric centralized
data. Using tangential activation functions can help neural network
introduce nonlinear transformations so that neural network can
learn and represent more complex patterns and relationships. The
tangent activation function outputs a negative value when the input
is negative and a positive value when the input is positive. This
makes the tangent activation function more suitable for processing
data with positive and negative symmetries.
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The sine function is a nonlinear activation function that maps
the input values to an output range between -1 and 1. Sine
activation functions have nonlinear properties, which can help
neural network model learn and represent nonlinear patterns
and relationships.

The Relu function is one of the widely used activation functions
in deep learning, especially in the hidden layer. Its main advantages
are computational efficiency and avoiding gradient saturation
problems. Relu function passes positive values and truncate
negative values to zero, which makes Relu sparsely active, that is,
only some neurons are activated while others are zero. Sparse
activation can provide higher model representation and help to
reduce the computational load and complexity of the model.

The arctangent function can help mitigate gradient vanishing or
gradient explosion problems in some cases because it has a gentler
gradient as the input approaches the boundary, and these problems
can affect the model’s learning ability and convergence.

In this study, the tangent function, the sine function, the Relu
function and the arctangent function (Al-Safwan et al., 2021; Song
et al., 2022) are used to predict the model. Different activation
functions are selected to observe the decline of the model’s loss
function, and the effect of different activation functions is evaluated
according to the model prediction effect. Finally, we select the
activation function that best fits PINN model.

4 Experiment

4.1 Data

In order to verify the feasibility of the physics-informed neural
network, an ocean environment model is established using
COMSOL software. A point sound source is placed at the edge of
the ocean environment to simulate the excitation conditions of the
underwater acoustic field, and the effectiveness of the physics-
information neural network is verified according to the acoustic
field data.

The test area is 30 meters long, 10 meters wide and 10 meters
high, and the test point sound source is located at coordinates
(0,5,5). The upper boundary of the area is the air-sea interface,
which can be approximated as an absolute soft boundary, and the
sound pressure values on the boundary are satisfied the condition
p(x,,2) = 0; the lower boundary of the area is a hard submarine
interface, which can be approximated as an absolute hard boundary,
and the sound pressure values on the boundary are satisfied the
formula % = 0. The surrounding boundary is a perfectly matched
layer (Chen et al., 2013). Due to the small scale of the area, the
density of seawater in the area can be approximately constant, the
average density of seawater is 1025 kg/m>, and the sound velocity in
the seawater medium is 1500 m/s. The structure of the area model is
shown in Figure 5.

In order to avoid the influence of reverberation on the acoustic
field, the point sound source with a frequency of 100 Hz is selected
in this paper, the sound wave is a sine wave, and the amplitude is
selected as one. Figure 6 shows the spatial acoustic field distribution
at 0.1s drawn by COMSOL according to the above conditions, and
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(A) is the tangent activation function, (B) is the sine activation function, (C) is the Relu activation function, and (D) is the arctangent activation function.

Figure 7 shows the sound pressure distribution at XZ-plane when
coordinate y is five meters.

In this paper, the sound pressure data in 2-dimensional plane and
3-dimensional space are predicted respectively. In this study, prediction
data and test data are separated. A total of 28,100 sets of simulated
values are collected in the 2-dimensional plane data training set and
112,400 sets of simulated values are collected in the test set. A set of 2-
dimensional plane training data is collected every 0.1 m. A total of
352,500 sets of simulated values are collected in the 3-dimensional
training set and 982,150 sets of simulated values are collected in the test
set. A set of 3-dimensional training data is collected every 0.2 m.

4.2 Introduction to experimental
environment

The experimental environment will affect the predicted rate, so
this section describes the hardware configuration for the
experiment. The GPU is NVIDIA GeForce GT370, the CPU is
Intel i7-9700, the operating system is Windows10, and the memory
is 64 GB. This paper establishes a prediction model based on Python
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language, and uses Pytorch framework to establish a neural
network. The compiler uses Pycharm2018.

4.3 Hyper parameter setting

In the experiment, the adaptive moment estimation (Adam)
optimizer and stochastic gradient Descent (SGD) are used to
analyze the influence of the optimizer on the prediction accuracy of
the model. For this optimization process, the first-order momentum
factor, second-order momentum factor and Fuzz factor in Adam are
configured as 0.9, 0.999 and 0.0000001, respectively. The initial
learning rate is set to 0.001, the weight attenuation factor is set to
0.0005, and 1/10 of the total training data is used for a batch. Before
the actual test, a small batch of test data was used for training, and it is
found that the model could converge within 100 times. Therefore, the
number of iterations of the 2-dimensional model is set to 500 epochs
and the number of iterations of the 3-dimensional model was set to
250 epochs. Finally, in order to ensure that the weight of data-driven
and physical constraints is the same, the two loss functions are
summed with the same proportional coefficient 1 and combined into

frontiersin.org


https://doi.org/10.3389/fmars.2023.1302077
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Du et al.

10.3389/fmars.2023.1302077

Upper Bound: Absolute Soft Boundary , p(x, y, z)=0

Sound Soufce

Surroun?ling g S S S [
Boundary:PML ’/" {
. / S
2 e 30m ’
X Lower Bound: Absolute Hard Boundary, (Zﬁ) =0
z z=0

FIGURE 5
Area model structure.

an overall loss function to train the model. For the specific loss
function, see Formula 11.

4.4 Results and analysis

In order to verify the effectiveness of the underwater acoustic
field prediction model, 2D underwater acoustic prediction model
based on physics-informed neural network (2D UAFP-PINN) and
3D underwater acoustic prediction model based on physics-
information neural network (3D UAFP-PINN) are established by
using 2D and 3D acoustic field data. The two models are used to
predict the acoustic field data of the test location, adjust different

FIGURE 6
Sound pressure distribution at t= 0.1s.
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optimizers and activation functions to analyze the optimal model
parameters, and finally evaluate the model by analyzing the
statistical characteristics between the predicted values and the
simulated values.

4.4.1 2D UAFP-PINN

In this section, a 2D underwater acoustic prediction model
based on physics-informed neural network (2D UAFP-PINN) is
established, and the effects of different activation functions and
optimizers on the prediction accuracy of the model are analyzed.
Model parameters are as follows: there are 28100 sets of training
data and 112,400 sets of test data;The training iteration epochs are
500 times, the data of each training is 1/10 of the total training data.

Pa
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-0.04
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FIGURE 7
Sound pressure distribution in the XZ-plane at y=5 m.
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It selects different activation functions and optimizers to train the
model and gets the curve of loss function with training times.
Figure 8 shows the change curves of the different loss functions
using the two optimizers. Since the loss function reached the
optimal trend after about 100 training times, only the results of
the first 100 training times are shown in the figure to make it clearer.

As can be seen from Figure 8, when the Relu activation function
is combined with the Adam optimizer, the loss function drops to the
lowest values, reaching 1.09, and the minimum trend is reached
when the training times are about 13 times. The model convergence
speed is faster than other activation functions. Therefore, using the
Adam optimizer, the loss function decreases faster than the SGD
optimizer, indicating that the Adam optimizer is more suitable for
the training of 2D UAFP-PINN model. In summary, it can be seen
that using the Adam optimizer and Relu activation function is the
best choice for the 2D UAFP-PINN model.

In order to verify the prediction effect of this model, 112,400 sets
of data simulated by COMSOL are selected as simulation values to

evaluate this model. In this paper, the validity of the forecast results
is analyzed from four perspectives: R-squared (R*), mean square
error (MSE), mean absolute error (MAE) and absolute error
distribution. R-squared is a common regression model evaluation
metric used to measure the model’s ability to explain the target
variable. The value range of R-squared is between zero and one,
when it is closer to one indicates that the model has a better ability
to explain the target variable, and when it is closer to zero indicates
that the model has a worse ability to explain the target variable. The
expression of R-squared is as follows:

SSE =1- E(yl _}//\i)z

RR=1-""=
ST 0=y

(12)

Where y; are the simulated values of the test set, y; are the
predicted values by PINN, y are the mean of the simulated values.
SSE represents the sum of squares of residuals, which is the sum of
squares of the difference between the predicted values and the
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FIGURE 8

(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer.

Frontiers in Marine Science

97

frontiersin.org


https://doi.org/10.3389/fmars.2023.1302077
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Du et al.

simulated values. SST represents the total sum of squares, which is
the sum of squares of the difference between the predicted values
and the mean of the simulated values.

The formula for calculating the mean square error can be
referred to formula 6 in Section 3.2 of the article. The formula for
calculating the mean absolute error is as follows:

1
MAE = ;2?:1“3;‘ - Ty (13)

In the above formula, MAE represents the mean absolute error,
n is the total number of samples, P is the predicted value, and T is
the true value.

Table 1 shows the results of R-squared, mean square error and
absolute mean values error of predicted values and simulated values
of different activation functions under the Adam optimizer, and
Figure 9 shows the absolute error distribution of predicted
and simulated values of different activation functions. Table 1 and
Figure 9 show the statistical characteristics between the predicted
values and the simulated values.

The R-squared values represents the correlation between the
predicted values and the simulated values, and the larger the value,
the stronger the correlation between the predicted values and the
simulated values. It can be seen from Table 1 that the model using
Relu activation function for prediction has the strongest correlation
with the simulated values, that the R-squared value is 0.98953.The
mean square error between the predicted values and the simulated
values is only 0.01047 Pa when the model uses Relu activation
function, and the mean square error of other activation functions
are all around 0.75.The mean absolute error between the predicted
values and the simulated values is only 0.06759 Pa when the model
uses Relu activation function, and other activation functions’ mean
absolute error are all around 0.67 Pa. The data predicted by the Relu
activation function is very close to the simulated values. Figure 9
shows the distribution of absolute error between the predicted and
simulated values of several activation functions. It can be analyzed
from the figure that the absolute error of the data predicted by the
Relu activation function is distributed within 0.05 Pa, and the data
with an absolute error higher than 0.3 Pa is basically not distributed,
while the error distribution of the other three activation functions
are basically similar, and most of them are concentrated within
1.5 Pa. It can be analyzed that the prediction accuracy is much lower
than that of the Relu activation function. Therefore, the best
activation function and optimizer for this model are Relu
and Adam.

TABLE 1 Statistical results of different activation functions.

Activation R-squared
function
Tanh 0.24107 0.75893 0.68727
Sin 0.23773 0.76223 0.67919
Relu 0.98953 0.01047 0.06759
Atan 0.23879 0.76121 0.67166
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4.4.2 3D UAFP-PINN

In this section, a 3D underwater acoustic prediction model
based on physics-informed neural network (3D UAFP-PINN) is
established, and the effects of different activation functions and
optimizers on the prediction accuracy of the model are analyzed.
Model parameters are as follows: there are 352500 pieces of training
data and 982150 sets of test data; The training iteration epochs are
250 times, the data of each training is 1/10 of the total training data.
It selects different activation functions and optimizers to train the
model and gets the curve of loss function with training times.
Figure 10 shows the variation curves of the different loss functions
using the two optimizers. The optimal trend reached by the loss
function after about 20 training sessions. To make it clearer, Adam
only shows the results of the first 100 training sessions in the figure,
while SGD only shows the results of the first 20 training sessions.

It can be seen from Figure 10 that when Relu activation function
and Adam optimizer are used, the loss function decreases to the lowest
degree, reaching 6.94, and reaches the lowest trend when the training
times are about 10 times. The model convergent speed is faster than
other activation functions. The loss function has the best decreasing
effect when the optimizer chooses Adam. It can be concluded that the
loss function reduction effect using the Adam optimizer is slightly
better than that of the SGD optimizer. In summary, it can be seen that
using the Adam optimizer and the Relu activation function is the best
choice for the PINN framework. However, compared with the two-
dimensional training model, with the increase of data dimension, the
training complexity greatly increases, and the gap between the
optimization effect of the optimizer and the activation function on
the network is also significantly reduced, which indicates that with the
increase of data dimension, it is necessary to appropriately increase the
network complexity to represent the features of higher-dimensional
data. Simply changing the activation function and the optimizer does
not make the model convergence better.

In order to verify the prediction effect of the model, 982,152
pieces of data were selected to evaluate the model. Table 2 shows the
results of R-squared, mean square error and absolute values error of
the predicted values and the simulated values using different
activation functions under the Adam optimizer. Figure 11 shows
the absolute error distribution between the predicted values and the
simulated values of different activation functions, which is used to
visually display the error distribution of the predicted values.

As can be seen from Table 2, the largest R-squared value is the
result predicted by Relu activation function, which reaches 0.47823,
and the predicted values have a relatively high correlation with the
simulated values. The correlations of the other three functions are very
low. From the mean square error and the mean absolute error, it can be
seen that the prediction effect of Relu activation function is much better
than that of other activation functions. From the absolute error
distribution in Figure 11, the absolute error range of the four
activation functions is basically the same, but the absolute error of
Relu activation function is mostly concentrated within 0.5 Pa, and the
absolute error distribution is the largest around 0.25 Pa, and there is a
small peak around 1.0 Pa. However, compared with the prediction
results of other activation functions, the prediction effect of Relu
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FIGURE 9

(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.

activation function is obviously better than that of the other three
activation functions.

Comparing the 2D UAFP-PINN and 3D UAFP-PINN training
and forecasting results, under the condition of Adam optimizer and
Relu activation function, the 2D UAFP-PINN model is much better
than the 3D UAFP-PINN model, and the error difference between

the two models can reach tens of times. The reason for the big
difference between the two models is that the complexity of the
acoustic field will also increase with the increase of the dimension of
the forecast data. Therefore, if the number of hidden layers and
neurons of the 3D model remains the same as that of the 2D model,
the fitting effect of the 3D model will have the problem of
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(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer
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TABLE 2 Statistical results of different activation functions.

Activation

function EET e
Tanh 0.10428 0.89572 0.70253
Sin 0.09045 0.90955 0.70488
Relu 0.47823 052177 051988
Atan 0.09411 0.90589 0.70217

underfitting. If the dimension of the prediction model is increased,
the number of hidden layers and neurons of the model should be
increased to match the corresponding complexity and prevent the
problem of underfitting.

5 Conclusion

Compared with the numerical method to solve the underwater
acoustic field, PINN has the advantage that it can handle the
acoustic field of different media and irregular shape models.
PINN does not use a regular network to predict the acoustic field.
It can be predicted at any point in the input region if the position is
known, and there is no limit to the irregular shape of the model. For

10.3389/fmars.2023.1302077

the three-dimensional acoustic field, the calculation cost of the
numerical method will increase sharply due to the addition of one
dimension of the data, and PINN can quickly forecast the high-
dimensional acoustic field space.

In addition to PINN, there are machine learning-based methods
to predict acoustic fields. Onasami et al. (2021) used deep neural
networks and long and short time memory networks to model
underwater acoustic channels, and established a data-driven
underwater acoustic channel model. The acoustic field prediction
model based on machine learning is mainly a data-driven method,
which needs a lot of training data to support, and has certain
timeliness. The underwater acoustic field is time-varying, and it is
often difficult to predict the time-varying underwater acoustic field
when the model is trained using only historical data. The advantage
of PINN is that new constraint variables can be added via partial
differential equations, and it has good environmental adaptability.
According to the experimental data, the convergence rate of the
model loss function is fast.

The experimental results show that PINN using Relu activation
function and Adam optimizer can effectively predict the underwater
acoustic field. The model is constrained by the Helmholtz equation
describing the underwater acoustic field and combined with the
excellent model approximation characteristics of the neural
network. It can realize the acoustic field prediction in the case of
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(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.
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small samples. The Helmholtz equation, which describes the
underwater acoustic field, gives the parameters that affect the
acoustic field, such as medium density, medium sound velocity,
sound source position, vibration frequency, etc. These parameters
cannot be given directly in the loss function as constraints to be
trained. For the underwater acoustic field of large-scale medium, the
sound velocity and the density of medium change with space, so it is
difficult for the network to predict the underwater acoustic field of
large-scale medium. The main limitation of the underwater acoustic
field prediction model proposed in this paper is that the scale of
trained model is small. If the source frequency, medium density,
and medium sound velocity change, the new network model needs
to be retrained separately for these changing conditions. To solve
this problem, the source position, medium density, sound velocity
and different boundary conditions can be used as new inputs to
train the network model together with the coordinate information.
Song et al. (2022) and Alkhalifah et al. (2020) used the similar
method to generate wave field solutions of multiple seismic sources
with one network, and solved the problem of seismic field
adaptation of different seismic sources. In addition, time can also
be used as input to add time constraint term to Helmholtz equation,
and it can establish a kind of physics-informed neural network for
spatial-time cooperative prediction. Finally, the combination of
transfer learning and PINN is a research direction to solve the
problem of underwater sound field model prediction in
different scenes.

Using PINN to predict underwater acoustic field, it is necessary
to adjust the structure and training amount of prediction network
according to the complexity of acoustic field. By comparing the
prediction results of 2D UAFP-PINN and 3D UAFP-PINN models
in this paper, the following conclusions can be drawn: with the
increase of model dimensions, the complexity of model prediction
will increase accordingly, and simply changing the activation
function and optimizer cannot effectively improve the prediction
accuracy of the model. For acoustic fields with more complex
dimensions, it is necessary to increase the complexity of the
model with more neurons and hidden layers to adapt to more
complex physical environments, so as to achieve better
prediction results.

In this paper, it establishes physics-informed neural network to
forecast underwater acoustic field. By analyzing several activation
functions and the accuracy of the results predicted by the optimizer,
it is found that the Relu activation function and the Adam optimizer
can accurately predict the sound pressure value of the two-
dimensional acoustic field. For three-dimensional space, the
accuracy of PINN prediction is lower than the two-dimensional
acoustic field prediction model, because the complexity of the
problem increases with the increase of the dimension of acoustic
field. Therefore, it is also necessary to adjust the number of hidden
layers and the number of neurons in the network structure. The
two-dimensional and three-dimensional neural network structure
in this paper is the same as that of neurons, and subsequent work
can be verified in this direction. Compared with the numerical
method, this method can adapt to different media environments,
has certain physical characteristics, and the prediction accuracy can
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be improved by adjusting the network structure and parameters, so
it is an effective method for underwater acoustic field prediction.
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With the development of the marine economy, video surveillance has become an
important technical guarantee in the fields of marine engineering, marine public
safety, marine supervision, and maritime traffic safety. In video surveillance,
maritime object detection (MOD) is one of the most important core
technologies. Affected by the size of maritime objects, distance, day and night
weather, and changes in sea conditions, MOD faces challenges such as false
detection, missed detection, slow detection speed, and low accuracy. However,
the existing object detection algorithms usually adopt predefined anchor boxes
to search and locate for objects of interest, making it difficult to adapt to
maritime objects’ complex features, including the varying scale and large
aspect ratio difference. Therefore, this paper proposes a maritime object
detection algorithm based on the improved convolutional neural network
(CNN). Firstly, a differential-evolutionary-based K-means (DK-means) anchor
box clustering algorithm is proposed to obtain adaptive anchor boxes to satisfy
the maritime object characteristics. Secondly, an adaptive spatial feature fusion
(ASFF) module is added in the neck network to enhance multi-scale feature
fusion. Finally, focal loss and efficient intersection over union (loU) loss are
adopted to replace the original loss function to improve the network
convergence speed. The experimental results on the Singapore maritime
dataset show that our proposed algorithm improves the average precision by
7.1%, achieving 72.7%, with a detection speed of 113 frames per second,
compared with You Only Look Once v5 small (YOLOvV5s). Moreover, compared
to other counterparts, it can achieve a better speed—accuracy balance, which is
superior and feasible for the complex maritime environment.

KEYWORDS

maritime video surveillance, object detection, anchor box, You Only Look Once,
adaptive spatial feature fusion
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1 Introduction

With the rapid development of global economy and trade,
maritime traffic is becoming heavier and denser, bringing a
higher risk of maritime traffic accidents. Accurate and rapid
maritime object detection is largely beneficial for maritime
surveillance, thus effectively reducing the risk of maritime traffic
accidents. Affected by maritime objects’ distance, weather, and sea
conditions, traditional maritime video surveillance mainly relies on
manual methods. However, the monitors will inevitably experience
visual fatigue when the monitoring behavior continues, leading to
false or missed detection of maritime objects and even grave
consequences. To solve these problems, an intelligent processing
algorithm is adopted to detect object instance in maritime images,
and it plays an increasingly important role in maritime object
detection tasks.

Traditional maritime object detection algorithms generally follow
a three-phase detection framework, namely, horizon detection, static-
background subtraction, and foreground segmentation (Lyu et al,
2022). In the first phase, Fefilatyev et al. (2012) utilized Hough
transform to detect the horizon position and thus reduced the object
search space, and used threshold segmentation to obtain the maritime
ship object after image registration. In the second phase, Chen et al.
(2018) proposed a Gaussian mixture model to judge the pixels in the
foreground part of the image, and then utilized background
subtraction and adjacent frame continuity to segment the ship
object. In the last phase, Chan (2021) proposed a maritime noise
prior method to reduce the interference of noise on the sea surface,
and thus improved the accuracy of foreground detection in complex
maritime scenarios, and this method was based on a dark channel
prior and observation of sea surface characteristics. From these
works, it can be found that each phase of this traditional detection
framework needs to be designed carefully and manually to ensure the
detection performance. Furthermore, these algorithms (Fefilatyev
et al.,, 2012; Chen et al., 2018; Chan, 2021; Zhu et al., 2023) could
not efficiently extract high-dimensional semantic information; not
only do they need to consume more manpower and time resources,
but also the algorithms are easy to be disturbed by the complex
marine environment, and they find it difficult to achieve stable
maritime object detection.

Benefiting from deep learning (DL) technologies, the object
detection algorithms based on the convolutional neural network
(CNN) have aroused great interest of scholars. Based on the multi-
layer topology structure, CNN can realize the automatic extraction
of high-dimensional semantic information of images with stronger
anti-interference ability (Simonyan and Zisserman, 2014; Girshick,
2015). CNN-based object detection algorithms are divided into two
kinds: two-stage and one-stage algorithms. Generally, the former
represented by the R-CNN series has a higher accuracy with a lower
speed (Girshick, 2015; Ren et al., 2015; Sun et al., 2021). The latter
represented by You Only Look Once (YOLO) series runs faster with
a lower accuracy (Redmon and Farhadi, 2018; Bochkovskiy et al.,
20205 Ultralytics, 2021; Wang et al., 2023). These DL-based object
detection algorithms give a new direction for the research of
maritime object detection. Bousetouane and Morris (2016)
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proposed a Fast-R-CNN-based surveillance algorithm for ship
classification and detection in maritime scenarios to improve
accuracy with faster speed. To improve marine object detection
accuracy, Fu et al. (2021) fused a convolutional attention module in
the YOLOv4 framework to enhance valid features and suppress
invalid ones. Chang et al. (2022) proposed a modified YOLOV3
model with lower computation complexity through adjustment of
input image size, number of convolution kernel, and detection scale,
and then introduced the spatial pyramid pooling module to further
improve the maritime ship detection accuracy. Recently, many
useful technologies have emerged, such as multiple access (Chen
et al., 2023; Xie et al., 2023), joint/separated source and channel
coding (Xu et al,, 2019; Xu et al., 2021; Fang et al., 2023; Xu et al,,
2023), index modulation (Dai et al, 2023), and multi-receiver
synthetic aperture sonar (Zhang et al., 2021; Zhang. et al.,, 2022;
Yang, 2023; Zhang, 2023; Zhang et al., 2023a; Zhang et al., 2023b;
Zhang et al,, 2023c). The DL-based object detection algorithms
combined with different technologies can build a better maritime
object detection system to promote ocean observation.

In summary, DL-based maritime object detection algorithms are
simpler, more efficient, and more robust against sea surface noise
interference, compared with traditional algorithms. However, existing
DL-based maritime object detection algorithms mainly focus on the
improvement and optimization of CNN structures, neglecting the
characteristics of maritime object instances. To solve this problem,
an anchor box adaptive object detection algorithm based on the
characteristics of maritime object instances is proposed for maritime
video surveillance. The main contributions are as follows:

(1) A differential-evolutionary-based K-means (DK-means)
anchor box clustering algorithm is proposed to generate
adaptive anchor boxes to adapt for the characteristics of
maritime object instances, improving the detection
performance without extra computation.

(2) An adaptive spatial feature fusion (ASFF) module is added
in the neck network to enhance multi-scale feature fusion to
improve the detection performance.

(3) A new loss function that adopts focal loss and efficient
intersection over union (IoU) loss is defined for the
maritime object characteristics to improve network
convergence speed.

(4) On the Singapore maritime dataset, the proposed method
achieves 72.7% AP, outperforming the YOLOvV5 small
(YOLOV5s) by 7.1% with 113 FPS.

(5) The proposed method can perform better than the
YOLOvV5s in multi-scale maritime objection detection
with tighter predicted bounding boxes and fewer number
of redundant bounding boxes.

This paper is organized as follows: Section 2 describes the
overall research of the proposed methodology in detail. The
experimental results including ablation studies, performance
comparison, and detection results are shown in Section 3. The
paper is concluded in Section 4.
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2 Proposed model and optimization

In the maritime surveillance, both real-time and accuracy of
object detection need to be considered essentially. Thus, the one-
stage object algorithm is chosen as the detection algorithm, which
can realize speed-accuracy trade-off efficiently in the maritime
object detection. Moreover, compared with other one-stage object
algorithms, the YOLOv5s model is lightweight with a higher
detection accuracy; thus, we choose it as our baseline model. The
purpose of this study is to develop a maritime object detection
model considering the characteristics of maritime object instances,
and this optimized model can achieve higher accuracy while
remaining lightweight.

This section details the main method of the proposed anchor
boxes’ adaptive objection detection algorithm. Section 2.1 describes
the overall structure of our model. The details of the proposed
anchor boxes’ adaptive algorithm is described in Section 2.2.
Sections 2.3 and 2.4 introduce the adaptive spatial feature fusion
module and the loss function adopted, respectively.

2.1 Overall structure of our model

Figure 1 provides a detailed depiction of our model’s structure,
which is composed of three components: the backbone structure,
the enhanced neck, and the head. The backbone structure is tasked
with extracting features from input images using predefined anchor
boxes. Then, the enhanced neck is specifically designed to augment
the fusion of these features. Lastly, the head plays the role of
predicting maritime objects at three different scales. In the
context of object detection algorithms that employ the anchor
boxes’ mechanism, it is common practice to predefine nine
anchor boxes of varying sizes and scales for feature maps. This
strategy is implemented to ensure a high level of accuracy in object
detection. To adapt to the characteristics of maritime object

Input Labeled Images

DK
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instances, we adopt the optimized anchor boxes (OABs) as a
predefined substitute for the original ones, and the OABs are
generated by the proposed DK-means algorithm.

In the training process, the input labeled images are performed by
data augmentation operations to increase feature diversity at first.
Then, the processed images are performed by feature extraction and
subsampling operations in the backbone network part. After three
subsampling stages, the backbone generates three different scale
feature maps. These feature maps are fed into the enhanced neck
network part to reinforce semantic information in shallow feature
maps and spatial information in deep feature maps. In the enhanced
neck network, the ASFF modules (Liu et al., 2019) are utilized to
enhance the multi-scale feature fusion, thus improving the multi-
scale detection ability. Finally, the enhanced feature maps are fed into
the head network part to obtain the predicted results. The loss values
are calculated by comparing them with the label values, and the
network parameters are updated through gradient information.
Moreover, to make the trained network parameters more
consistent with the characteristics of maritime objects, the loss
function used in YOLOv5s are also optimized and improved. In
the model inference process, the final detection results are obtained
after non-maximum suppression (NMS) operation.

2.2 Anchor boxes adaptive algorithm

The predefined anchor boxes in the original detection model are
sensitive to object scale: Specifically, smaller anchor boxes are
ineffective at detecting larger objects, while larger anchor boxes
struggle to accurately capture smaller objects. The mismatch
between the aspect ratio of anchor boxes and the objects will
result in the decrease in detection accuracy. How to obtain
appropriate anchor boxes that can satisfy the characteristics of the
maritime object instances is the key to improving the detection
accuracy of the maritime object instances.

Loss

" J
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FIGURE 1
The overall structure of the detection model.

Frontiers in Marine Science

105

frontiersin.org


https://doi.org/10.3389/fmars.2023.1290931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zheng et al.

2.2.1 Characteristic analysis of maritime
object instances

In this part, the Singapore marine dataset (SMD) (Prasad et al.,
2017) is taken as an example to analyze the characteristics of the
maritime object instances. According to the standard of the
Common Objects in Context (COCO) dataset, the maritime
object instances in the SMD can be classified into three classes:
detection objects with an area less than 32x32 pixels are defined as
small objects, detection objects with an area greater than 32 x 32
pixels and less than 96 x 96 pixels are defined as medium objects,
and detection objects with an area greater than 96 x 96 pixels are
defined as large objects. With these definitions, the scale
distributions of the maritime object instances are shown in
Figure 2A. From this figure, it can be seen that different types of
maritime objects nearly have the different scales. Moreover, the
scales of the different types of maritime objects are mainly medium
and small. In Figure 2B, it can be found that maritime objects
generally have a relatively high aspect ratio. Furthermore, the aspect
ratio of the detection object can even reach 17.66 in extreme cases.

From the above analysis, it can be concluded that maritime
object detection usually faces the following problems:

(1) The detection object has varying scales.

(2) The detection object has large aspect ratio difference.

2.2.2 Details of the proposed algorithm

In the YOLO series frameworks, the K-means clustering
algorithm is usually adopted to generate adaptive anchor boxes,
which will be used for training the detection model (Redmon and
Farhadi, 2018; Bochkovskiy et al., 2020). However, influenced by the
initial clustering centers, the results of the K-means clustering
algorithm easily fall into the local optimal solution, making it
difficult to generate the optimal predefined anchor boxes. The

10.3389/fmars.2023.1290931

differential evolution (DE) algorithm (Storn and Price, 1997) is a
kind of global search optimization algorithm that achieves evolution
from the current population to the next generation through
operations such as mutation, crossover, and selection, thus
possessing the ability to search for global optimal solutions in the
solution space. To solve this problem, the DE algorithm is introduced
to reduce the dependence on the initial clustering centers and
enhance global search ability. Through this method, the
dependence of the K-means algorithm on initial values can be
reduced and more robust predefined anchors can be obtained. The
improved K-means clustering algorithm with the DE method is
named DK-means clustering algorithm, which is shown in
Algorithm 1. The parameters include the number of iteration N,
the number of anchor boxes K, the population size N, and N £{1,2,
... N p}. The sample dataset is denoted by D. The tth generation of the
population is denoted by yf = {X{,Xﬁ,'--,X}\,p}, and the i-th
candidate is denoted by X.
The algorithm mainly includes three parts:

1) Line 1: The first part generates the initial population y°
according to the sample dataset.

2) Lines 2-8: The second part finds N, candidates for group
anchor boxes by the DE process including mutation and
crossover operations at N, generations.

3) Lines 9-11: The third part chooses the final optimized

results for the output group anchor boxes as the

clustering centers. Then, divide real anchors boxes into

xi+1

clusters with corresponding clustering centers X;'

according to the closest distance principle.
4) Line 12: Return the optimized anchor boxes as the output of
this algorithm.

Remark 1: The best group anchors are chosen according to
maximizing the IoU values as follows:

10997 . Small Medi W Large
10000
8636
8000 {
©
4
=< 6000
°
]
d
o
4000
2000 16856
1321
849 [ 838
4 323
ol wl e WA s W ol sso
S 2 & = ¥ P e &
§ & § 484 5 § &8
« Y > < N & ¢
s $ s °
< & @ 3
&
>
&«

Class Name

FIGURE 2

17.5 3 e
15.0
x
3
2
2
12,5
»
2
®
£10.0]
o
8
£
315
=
.
5
o 5.0
N
5
&
3
0.0l aba s
N 2 & = x = PR
§&& 58884 88
« A < N K
o ~ o
g & R
< & <
&
>
&

Class name

Characteristics of maritime object instances in the SMD dataset. (a) area and number of large, medium and small objects of each class and (b) width

to height ratio distribution of class and bbox.

Frontiers in Marine Science

106

frontiersin.org


https://doi.org/10.3389/fmars.2023.1290931
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zheng et al.

(Eq- 1)

where the function f{-) returns the IoU values, and the Kj,y-th
candidate in the population is the optimized results.

Kbest = argminiEN (f(Xt))’

2.3 Adaptive spatial feature
fusion optimization

In the object detection, multi-scale features can be utilized to
improve the model detection performance. When an image is input
into CNN, different resolution feature maps can be obtained to detect
objects at different scales, according to the different downsampling
rates. Shallow feature maps with high resolution are suitable for
detecting small objects due to their rich detailed information and
small receptive fields, and deep feature maps with low resolution are
suitable for detecting large objects due to their strong semantic
information and large receptive fields. Therefore, fully utilizing the
semantic and detailed information of features at different scales is of
great significance for improving the object detection accuracy. To fully
utilize multi-scale features, an adaptive spatial feature fusion (ASFF)
module is introduced to the neck module to enhance multi-scale
feature fusion. Figure 3 shows details of the ASSF module. The
feature maps F4, F5, and F6 are fused adaptively and enhanced by
the ASFF module at different spatial scales, and then transferred to
head module. The feature fusion process can be represented by

! 1 11 ! 2—l I 3>l

where yfj represents the (i, j)-th feature vector of the output
—1
:.]“.

nth level feature map to the same size of the Ith level feature map.

feature y/, and x~' represents the (i, j) feature vector after adjusting
ailj,ﬂfj, yijl- € [0, 1] represent spatial importance weights of three
different scale feature maps at the I-th level feature map,
respectively, and chj + ﬂ,l] + Q/UZ- = 1. They can be defined by the
softmax function. For example, Ocilj can be calculated by

10.3389/fmars.2023.1290931

1
ei"‘v
T T

7 (Eq. 6)
o B %
e +eli e

Input: D, N¢, K, N,, real anchor boxes.

Output: Real anchor boxes cluster results.

1: Generate N, candidates X;° randomly fromD for i e NV,
and every candidate has K anchor boxes.

Here, X! = (Xi1,Xi0, - Xik) -

2:fort=1— N;do

3: fori=1-N,do

4: Mutation operations are performed with random rq, s,
rseN,andr, #r,=ry:

Vi = XF1+0.5(XF, = XFs), (Eq. 2)

where Vi=(i,vi, - vi;), and j = {1,2,..,d} is the
dimension number of the sample in the dataset.

5: Crossover operations are performed:

vijwith probability p.,
ul; = (Eq. 3)
Xi;,with probability 1-pes
where U = (uf,,ul, - ut;), and j = {1,2, ., d}.
6: Fitness function calculation:
UL, F(UY) = F(XE
X (1) = 7(65) (Eq. 4)
XEF(U2) > £(xE)

7: end for\x N, x\

8: end for\x Ny %\

9: Ipest = a/’gmaxi&N(Xltﬂ)

10: Choose the resultsof X{!! astheclusteringcenters.
11:

corresponding clustering centers Xlt;f:sI

Divide real anchors boxes into clusters with
according to
closest distance principle.
12: return cluster results.

Resize
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FIGURE 3
Adaptive spatial feature fusion module
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Algorithm 1. DK-means clustering algorithm.

where lfxy, ﬂ,l% and /l};) are the control parameters of the
softmax function, which can be trained and learned by 1 x 1
convolution operation.

2.4 Loss function optimization

The loss function £ used in our improved network is a
combination of three loss functions: the classification loss L, the
localization loss £, and the confidence loss L. It is represented by

L= /llﬁcls + ).Qﬁ,eg + 2’3£obj) (Eq 7)

where 4;, A5, and 23 represent balance factors, whose values are 1.0,
0.05, and 0.1, respectively. They are used to control the impact of
different loss functions on the network training process. In the YOLOv5
model, cross entropy (CE) loss function £, is adopted as classification
and confidence loss functions, and the complete IoU (CIoU) loss is
adopted as localization loss. The CE loss function is represented by

L.(py) = —ylog(p) — (1 —y)log(1 -p), (Eq. 8)

where y denotes the true value of the label category and y € { + 1},
and p denotes category prediction probability when y = 1 and p € [0,1].

In the task of bounding box regression, the localization loss
function is divided into two categories: n-norm-based and IoU-
based loss (Tian et al., 2022). To reduce the sensitivity of the model
to the scale changes of object and improve convergence speed of the
model, the complete IoU (CIoU) loss is adopted as localization loss
in the YOLOvV5 model and it is expressed by

p* (b, b)

Lciou(bpr’bgt) =1-IU+ 5 +Av, (Eq 9)
C

where IoU represents the intersection over union between the
predicted bounding box and the ground truth bounding box, & and
b¥" represent centers of the predicted bounding box and the ground
truth bounding box respectively, and c is the diagonal length of the
smallest covering box. p(-) = ||bP" — b¥'||, represents the Euclidean
distance between the center points of two bounding boxes, A
represents the balance factor, and v represents the consistency of the
aspect ratio between the predicted bounding box and the ground truth
bounding box. IoU can be described as Figure 4 and is expressed by

U< NE E
U= U (Fa 10
and v is expressed by
4 wgt wh"
y = P arctan T arctan wr ) (Eq. 11)

where W' and W represent the width of the ground truth and
the predicted bounding boxes respectively, and 4" and h*" represent
the height of the ground truth and the predicted bounding boxes
respectively. Thus, Equation 7 becomes

L=0LE 4,008 + 2,009

ciou

(Eq. 12)
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where £ and Yol represent the cross entropy loss adopted for
reg
ciou

represents the CloU loss adopted for the localization loss function.

the classification loss and the confidence loss functions, and £

2.4.1 Focal loss function

To improve detection accuracy, the anchor box detection
mechanism usually requires a dense set of the distribution of
anchor boxes in images, which can easily lead to an imbalanced
problem between positive and negative samples. To alleviate this
imbalanced problem, a focal loss (FL) function (Lin et al., 2017) is
introduced. Define p; as

pif y=1,
pr = { ) (Eq. 13)
1 — p, otherwise .
Thus, Equation 8 can be rewritten as
‘Cce(pt) = _log( R (Eq 14)
The FL function is expressed by
‘C'facal = _at(l _pt)ylog (pt)’ (Eq 15)

where (1 — p;)” represents an adjustment factor, yrepresents an
adjustable focusing parameter, and o, represents a balanced
parameter. Equation 7 can be modified as

L= 2 Lo + ML, + A L2, (Eq. 16)

ciou

where ﬁjﬁfml represents the FL function, which is adopted for the
classification loss.

2.4.2 Efficient loU loss function

From Equation 11, it can be found that v just considers the
aspect ratio difference between the predicted bounding box and the
ground truth bounding box, ignoring the difference between specific
values of width and height. In this way, the penalty term v is almost
no longer effective, as the width and height cannot be
simultaneously enlarged or reduced. To make the detection model
more suitable for the maritime objects with varying scales in the
marine environment, we adopt the idea of the efficient IoU (EIoU)
(Zhang Y.-F.et al., 2022), and the v is modified as

b pZ(Wpr)wgt) . pZ(hpr’hgt)
c c

, (Eq. 17)

where CZ and C} are the width and height of the smallest
enclosing box covering the ground truth and predicted bounding
boxes, and p*(w”", w€') and p?(h’", h$") are the width and height
difference between the ground truth bounding box and the
predicted bounding box, respectively. According to Equation 17,
Equation 16 can be further modified as

L= ML+ M LS, + AL,

eiou

(Eq. 18)

where £.% is the EIoU loss function, and the only difference between

the EloU used in this paper and the CIoU is the penalty term. The EIoU
loss will bring faster convergence speed and better localization effect.
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1 Tsmallest covering
L _"box

FIGURE 4
Description of loU.

3 Experimental result and analysis
3.1 Dataset construction

In this section, the experiments adopt SMD (Prasad et al., 2017),
which contains large video data with labeled bounding boxes.
Detection objects in SMD include nine categories, namely, ferry,
buoy, vessel/ship, speed boat, boat, kayak, sail boat, flying bird/
plane, and other. In the DL-based object detection algorithms, the
construction of a sizable and representative dataset is the first and
important step. By sampling images from the SMD at one time per
five frames, 6,350 maritime images are obtained, and each image
has a resolution of 1,920 x 1,080 pixels. They are split into train,
validation, and test sets at a ratio of 6:2:2 with COCO style. The
dataset construction process is shown in Figure 5.

3.2 Experimental environment

The experiments are all carried out using PyTorch 1.12.1 and
CUDA 11.3 on an NVIDIA RTX 3090 GPU and an Intel Core i9-
10920X CPU. The details of the experimental hardware and
software environment are shown in Table 1. A momentum
gradient descent algorithm with a momentum value of 0.937 is
adopted in the train model. In the train process, the input image is

Annotation Files
with XML Format

Generate

Annotation Files
with MAT Format

J)

Annotation Files

Video Frame
Extraction

SMD Video Clips

Video Images

FIGURE 5
The construction process of the dataset.
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fixed at 640 x 640, the batch size is set to 32, and the total number of
train epochs is set to 150. The initial learning rate is set to 0.0025
and the linear decline strategy is used as the learning rate
attenuation strategy. Moreover, to maintain the stability of the
model in the initial train stage, a warm-up training strategy is
adopted in the first three epochs to gradually increase the learning
rate from 0 to the initial learning rate. Moreover, for each stage in
Figure 1 (represented as S;,5,,53,54), we respectively configure the
number of bottlenecks as [3, 6, 9, 3], and perform downsampling
operation within the first convolution layer of each stage. In
addition, we adhere to the yolov5s configuration, setting the
scaling factors for width and depth to 0.5 and 0.33, respectively.

3.3 Evaluation metrics

Average precision (AP) (Padilla et al., 2021) is utilized as an
indicator to evaluate the accuracy of the maritime object detection
algorithm. AP can be expressed by

1N
AP =3 [SP(R)AR, (Eq. 19)
i=1
where N represents the number of object categories, and P and

R represent precision and recall rate respectively, which are
expressed by

0.6

Ccoco
Dataset
Format

Partition | 0.2

Validation Set

:

Image Dataset
with Annotation
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TABLE 1 Experimental hardware/software environment.

Configuration Project Model Parameter

Hardware CPU RAM Intel Core i9-10920X
Environment 64 GB
GPU NVIDIA RTX3090 (24GB)
System Pytorch Ubuntu 20.04
Software Environment V1.12.1
Python V3.8
CUDA VI11.3
P 1P (Eq. 20)
TP+ FP’ 4
R L (Eq. 21)
“TP+EN’ 4

where TP represents the number of correct predicted positive
samples, FP represents the number of negative samples predicted as
positive samples, and FN represents the number of positive samples
predicted as negative samples. From Equations 19-21, it can be
inferred that P and R measure the model’s ability to accurately
predict and locate objects respectively, and AP is the comprehensive
evaluation of these two indicators. Here, the AP value means that
the IoU threshold is set from 0.50 to 0.95 with a 0.05 step. APs, and
AP;5 mean that the IoU threshold is set to 0.5 and 0.75, respectively.
APg, APy, and AP denote small, medium, and large ground-truth
objects, respectively.

Moreover, frames per second (FPS) is used to measure model
detection speed. Model size and floating point operations (FLOPs)
are used for evaluating the occupied memory of the model and
calculation complexity, respectively, and they are as follows:

Params = Ky, - Ky - Cj,, - Cypp (Eq. 22)

FLOPs = KW . KH . Cin . Caut . FW . FH, (Eq 23)

Where Ky, and Ky represent the width and height of the
convolutional kernel, respectively, C;, and C,,, represent the
number of input and output channels, respectively, and Fy, and
Fy represent the width and height of the feature map.

3.4 Detection performance comparison
with different anchor box algorithms

In this part, the predefined anchor boxes, which are obtained
from different clustering algorithms, are shown in Table 2 and the
detection performance on the SMD dataset with different anchor
boxes is shown in Table 3. From Table 3, it can be seen that
YOLOV5s with predefined anchor boxes generated by the K-means
and DK-means algorithm improve AP value by 1.9% and 3.3%,
respectively, when compared with the original method, and the DK-
means algorithm can perform better than the K-means algorithm
by 1.4%. Moreover, when the threshold of IoU increases to 0.75, the
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DK-means algorithm can achieve 6.0% AP value improvement,
compared with the original method. Furthermore, in the DK-means
method, the small object detection performance APg is improved by
6.5% and the medium object detection performance AP, is
improved by 4.3% with a slight large object detection
performance loss, when compared with the original method.

3.5 Ablation studies

This section presents the ablation studies to illustrate the effects
of FL function, ASFF module, and the DK-means algorithm in the
detection model. The ablation studies are shown in Table 4, where
v and X denote the detection model with or without relevant
modules or algorithm, respectively. The first line in this table show
the YOLOv5s (baseline model) without any improvement. When
single EIoU, FL function, or the ASFF module is adopted, the AP
values are increased by approximately 0.4%, 2.2%, or 1.7% with
improvement of multi-scale detection ability, respectively. As
shown in the last line in this table, when the DK-mean algorithm
is further adopted, the AP value is increased by 3.3%. Compared to
the standard detection model, the optimized scheme can achieve
4.8% improvement and the small and medium object detection
performances are also increased by 10.9% and 4.8% respectively.

3.6 Detection performance comparison
with other object techniques

In this part, the proposed detection model performance
comparison with other object detection techniques is shown in
Table 5. The comparison models include YOLOX-s (Ge et al., 2021),
YOLOV8-s (Ultralytics, 2023), YOLOvV7-tiny (Wang et al., 2023),
YOLOv5s (Ultralytics, 2021), YOLOv5m (Ultralytics, 2021), and
YOLOVS5I (Ultralytics, 2021). From Table 5, it can be seen that the
proposed detection model can achieve best results between accuracy
and detection speed. The AP value of our model is 0.6%, 1.6%, 1.6%,
3.7%, 4.8%. and 5.7% higher than that of YOLOv5], YOLOv5m,
YOLOvV8s, YOLOX-s, YOLOvV5s, and YOLOv7-tiny, respectively,
which means that our proposed model has the best accuracy among

TABLE 2 The results of different anchor box algorithms.

Algorithm 80 x 80 40 x 40 20 x 20
(10,13) (30,61) (116,90)
Original method (16,30) (62,45) (156,198)
(33,23) (59,119) (373, 326)
(11,9 (54,15) (46,53)
K-means (22,8) (34,26) (149,52)
(20,15) (87,23) (263,94)
(11,9) (45,13) (47, 39)
DK-means (19,7) (31,22) (135,41)
(17,12) (69,18) (189,70)
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TABLE 3 The experimental results of different anchor box algorithms on the SMD test dataset.

Algorithms
Original method 67.9% 96.1% 73.3% ‘ 52.2% ‘ 61.8% 87.3%
K-means 69.8% 97.2% 78.1% ‘ 54.3% ‘ 64.4% 86.8%
DK-means 71.2% 97.5% 79.3% ‘ 58.7% ‘ 66.1% 86.6%
The bold values mean that the best values in the relevant columns of the table.
TABLE 4 Ablation experiments.
EloU FL function ASFF module DK-means AP A AP;5 A APpm AP_
X X X X 67.9% 96.1% 73.3% 52.2% 61.8% 87.3%
4 X X X 68.3% 96.2% 75.7% 54.8% 61.1% 87.4%
X v X X 70.1% 96.2% 76.9% 56.8% 64.1% 87.5%
X X v X 69.6% 97.0% 74.7% 55.0% 62.9% 87.8%
X X X v 71.2% 97.5% 79.3% 58.7% 66.1% 86.6%
v v X X 69.9% 96.6% 77.3% 60.0% 63.7% 87.7%
X v v X 71.1% 97.2% 77.4% 58.6% 64.5% 88.5%
v v v v 72.7% 97.7% 81.1% 63.1% 66.6% 87.0%

The bold values mean that the best values in the relevant columns of the table.

these counterparts. The proposed model’s FPS value is 113 and
detects faster than YOLOv51, YOLOX-s, and YOLOvV5s. Moreover,
the model size of the proposed model is smaller than YOLOv5m
and YOLOV5], and the FLOPs of the proposed model are fewer than
YOLOX-s, YOLOv5m, YOLOvV51, and YOLOvSs. All these show
that the proposed model can achieve satisfactory results among
accuracy, detection speed, model size, and calculation complexity.

The detection results on the SeaShips dataset (Shao et al., 2018) are
shown in Table 6. The SeaShips is a large dataset dedicated to maritime
shipping detection, and it includes 31,455 images with 7,000 open-source
images. We also divided the open-source part of the Seaships dataset in a

TABLE 5 The experilmental results with different object detection
algorithms on the SMD dataset.

Methods Model FLOPs FPS
Size
YOLOX-s (Ge 69.0% 8.97M 13.40G 86
et al., 2021)
YOLOvS8s 71.1% 11.14M 14.28G 182
(Ultralytics, 2023)
YOLOV7-tiny 67.0% 6.23M 6.89G 143
(Wang
et al., 2023)
YOLOvV5s 67.9% 7.24M 8.27G 131
(Ultralytics, 2021)
YOLOv5m 71.1% 21.19M 24.53G 104
(Ultralytics, 2021)
YOLOVvs51 72.1% 46.56M 54.65G 82
(Ultralytics, 2021)
Proposed model 72.7% 10.14M 10.81G 113

The bold values mean that the best values in the relevant columns of the table.

Frontiers in Marine Science

6:2:2 ratio with a COCO format, which is consistent with the processing
method of the SMD dataset. Here, the proposed method is compared
with the baseline YOLOvV5s. From this table, we can see that our
proposed model performs better than the YOLOv5s in many aspects.
These means that our model can perform well on other datasets.

3.7 Detection results on the SMD dataset

Figure 6 shows the detection results of the proposed model in
different weather and light intensity conditions on the SMD dataset.

Figure 7 shows the detection result comparisons between
YOLOv5s and the proposed model. The subfigures in the first
column are the detection results of YOLOv5s, and those in the
second column are the detection results of the proposed model. From
this figure, it can be seen that the proposed detection model can
achieve more accurate detection of maritime object instances with
tighter predicted bounding boxes and fewer number of redundant
bounding boxes.

4 Conclusions

In this paper, we propose a maritime object detection
algorithm for maritime video surveillance. At first, a DE-based

TABLE 6 The experimental results on the Seaships dataset.

Methods APs, APss APs APy AP,

YOLOV5s 68.2% 97.7% 81.7% - 51.2% 69.3%
(Ultralytics, 2021)

Proposed model 80.1% = 98.9% ‘ 92.7% ‘ - ‘ 61.5%  81.3%
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FIGURE 6

Detection results of the proposed model in various environment conditions.

10.3389/fmars.2023.1290931

K-means anchor box clustering algorithm, considering the
maritime object characteristics, is proposed to realize the
adaptive anchor boxes. Then, to enhance the multi-scale feature
fusion, the neck network adopts the ASFF module. Lastly, the loss
function integrates the focal loss and efficient IoU loss is defined to
alleviate the samples’ imbalanced problem and consider the
varying scales of the maritime objects. All consider the
complexity characteristic of maritime objects. The ablation
studies show that the proposed algorithm meets the multi-scale

FIGURE 7
Detection result comparisons of different object detection algorithms.

Frontiers in Marine Science
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maritime object detection performance. The experimental results
show that AP can reach 72.7%, which is 4.8% higher than
YOLOV5s, and better than YOLOv5m and YOLOVSL; this
algorithm does not occupy high additional computational
resources, and its inference speed can reach 113 FPS, which can
achieve better speed—accuracy balance.

How to make the proposed model lightweight for resource-
constrained devices with less detection accuracy loss will be a
meaningful topic for future research.
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The recognition of underwater acoustic targets plays a crucial role in marine
vessel monitoring. However, traditional underwater target recognition models
suffer from limitations, including low recognition accuracy and slow prediction
speed. To address these challenges, this article introduces a novel approach
called the Multi-Gradient Flow Global Feature Enhancement Network
(MGFGNet) for automatic recognition of underwater acoustic targets. Firstly, a
new spectrogram feature fusion scheme is presented, effectively capturing both
the physical and brain-inspired features of the acoustic signal. This fusion
technique enhances the representation of underwater acoustic data, resulting
in more accurate recognition results. Moreover, MGFGNet utilizes the multi-
gradient flow network and incorporates a multi-dimensional feature
enhancement technique to achieve fast and precise end-to-end recognition.
Finally, a loss function is introduced to mitigate the influence of unbalanced data
sets on model recognition performance using Taylor series. This further
enhances model recognition performance. Experimental evaluations were
conducted on the DeepShip dataset to assess the performance of our
proposed method. The results demonstrate the superiority of MGFGNet,
achieving a recognition rate of 99.1%, which significantly surpasses
conventional methods. Furthermore, MGFGNet exhibits improved efficiency
compared to the widely used ResNetl8 model, reducing the parameter count
by 51.28% and enhancing prediction speed by 33.9%. Additionally, we evaluated
the generalization capability of our model using the ShipsEar dataset, where
MGFGNet achieves a recognition rate of 99.5%, indicating its superior
performance when applied to unbalanced data. The promising results obtained
in this study highlight the potential of MGFGNet in practical applications.

KEYWORDS

underwater acoustic target recognition, underwater acoustic signal processing, feature
enhancement, deep learning, feature fusion
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1 Introduction

With the development of artificial intelligence, there is an
increasing focus on utilizing AI-based methods to address
research challenges in aquaculture. Fisheries and aquaculture
constitute a global industry valued at $200 billion (Gladju et al.,
2022). As this industry continues to expand, traditional processes
involving essential technologies such as aquaculture environment
monitoring, feeding, and fish behavior surveillance (Wu et al., 2022)
incur significant costs. Hence, the urgent need arises to employ
artificial intelligence technologies to enhance the economic, social,
and environmental sustainability of the fish supply chain (Lim,
2022). Al-based aquaculture technologies primarily encompass
environmental monitoring, intelligent feeding, biological behavior
monitoring, and fishing vessel motion tracking (Setiyowati
et al., 2022).

Environmental monitoring relies on water quality management
systems to control the health of aquaculture water, preventing
widespread diseases or issues such as slow growth in fish fry due
to water quality problems (Hu et al., 2022). Koparan et al. (2018)
developed an intelligent unmanned aerial vehicle to continuously
monitor the water quality of a 1.1-hectare pond through intelligent
sampling and analysis. Given that feed costs constitute over 60% of
aquaculture expenses (Boyd et al., 2022), effective control of feed
distribution is crucial. Lim and Whye, (2023) proposed a system
that monitors fish behavior by detecting water wave vibrations
caused by competitive feeding, thereby assessing fish hunger levels
and significantly reducing feed consumption.

Biological behavior monitoring encompasses various aspects.
Ahmed et al. (2022) and Darapaneni et al. (2022) employed
computer vision and underwater optical imaging techniques,
respectively, to obtain underwater images of fish activities for
disease detection and prevention before widespread mortality.
Fishing activities require strict control over timing and quantity
globally. Bradley et al. (2019) and Kritzer, (2020) integrated
automatic identification with artificial intelligence technology,
utilizing underwater acoustic target recognition systems to track
fishing vessel movements in real-time and predict their fishing
activities, ensuring legitimacy.

In summary, due to the rapid development of computer vision
technology effectively addressing the first three issues in aquaculture,
our research focus shifts towards utilizing underwater acoustic target
recognition technology for vessel motion monitoring.

Underwater acoustic target recognition involves collecting
target radiated noise using hydrophones, analyzing and
processing the data to discern target types (Ma et al, 2022). It
holds significant importance in maritime vessel monitoring and
underwater vehicle detection. Acoustic target recognition models
typically consist of two modules: feature extraction and feature
classification (Hong et al., 2021), and research in this field revolves
around these modules.

Traditional methods of underwater acoustic target feature
extraction can be categorized into signal physics-based and brain-
like computing methods (Zhu et al., 2023). Signal physics-based
methods rely on basic characteristics, temporal features, and non-
Gaussian characteristics of underwater acoustic signals (Yao X.
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et al,, 2023). This includes time-domain features like zero-crossing
distribution, frequency-domain features like cepstral analysis (Zhu
et al,, 2022), and joint time-frequency domain features such as
wavelet transforms (Han et al., 2022; Liu et al., 2022; Tian et al,,
2023). Brain-like computing features for underwater acoustic
signals include Mel-frequency cepstral coefficients (MFCC)
simulating nonlinear processing of the human ear (Di et al,
2023) and Gammatone filtering simulating peripheral auditory
processing (Zhou et al., 2022). Traditional classifier models
include case-based reasoning (Ali et al., 2018) and perceptron
neural networks (Linka and Kuhl, 2023). While traditional
methods provide explicit directional analysis based on the
physical meaning of underwater acoustic signals, they depend on
prior knowledge and exhibit poor model generalization (Xiao
et al,, 2021).

Deep learning models, including Convolutional Neural
Networks (CNN) (Yao Q. et al., 2023), provide new solutions for
underwater acoustic target recognition (Jin and Zeng, 2023). Wang
and Zeng (2015). demonstrated the feasibility of CNN models in
underwater acoustic target recognition by testing them on three
different measured acoustic targets. Studies have validated the
applicability of deep learning in feature extraction. Huang et al.
(2021) used autoassociative neural networks (AANN) to directly
process mixed time-domain information of raw acoustic data
without prior information, filtering ocean background noise, and
obtaining effective spectral features of underwater acoustic targets.
Additionally, research on deep learning-based classifiers is active. Li
J. et al. (2022) designed AResNet to enhance feature extraction
capability by increasing the width of the ResNet (He et al., 2016)
residual network and incorporating channel attention mechanisms.
Yang S. et al. (2023) developed LW-SEResNet10 to improve target
recognition accuracy by reducing the number of ResNet residual
structures and adding attention mechanisms. These classifiers
operate similarly, performing feature extraction first and then
inputting the features to obtain classification results.

Despite the advantages of existing deep learning-based
underwater acoustic target recognition models in addressing some
shortcomings of traditional methods, several challenges persist:

1. Existing models have independent feature extraction and
classifiers (Zhufeng et al., 2022), failing to meet end-to-end
underwater acoustic target recognition requirements.

2. Current feature extraction methods primarily use two-
dimensional feature methods based on signal physics or
brain-like computing features or their fusion methods (Li J.
et al., 2022; Yang S. et al.,, 2023), overlooking the high-
dimensional features of underwater acoustic data, resulting
in insufficient representation capabilities of fused features.

3. Current classifiers mainly enhance feature extraction
capabilities by stacking convolutional layers (Ji et al.,
2023). However, due to the mixture of ocean
environmental noise and partial information of
underwater acoustic target features (Xu et al, 2019),
standard convolutional operations tend to lose some
effective features of underwater acoustic targets and
erroneously retain ocean environmental noise (Li J. et al,,
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2022), reducing the capability to extract effective features in
underwater acoustic target recognition models. Thus, the
model’s parameter quantity and its recognition
performance cannot achieve an effective balance, failing
to meet the requirements of fast recognition speed and high
accuracy in underwater acoustic target recognition.

. As underwater acoustic data collection requires substantial
financial and labor support, most existing publicly available
underwater acoustic datasets exhibit imbalances in sample
quantities across categories (Zhou et al, 2021). When
training deep learning-based target recognition models,
this can lead to overfitting phenomena (Li B. et al., 2022),
suppressing model recognition performance.

To address these issues, we propose a novel underwater acoustic
target automatic recognition network model based on a multi-
gradient flow global feature enhancement network, referred to
as MGFGNet.

Contributions of this work include:

1. Introducing a high-dimensional feature fusion method
based on signal analysis and brain-like features.

. Proposing a multi-gradient network to reduce model
parameters and enhance feature extraction capabilities.

. Presenting an adaptive feature fusion and enhancement
module to enrich the physical, channel, and contextual
information of pre-existing features.

. Inventing a loss function, adding only three hyperparameters,
and transforming the multi-classification task into multiple
binary classification tasks, significantly improving the
model’s ability to suppress sample imbalances and
recognition accuracy.

The following outlines the general structural framework of the
remaining content in this article. Section 2 provides a detailed
exposition of the Ship Radiated Noise Classification Method,
known as MGFGNet. In Section 3, qualitative and quantitative
experiments are conducted to compare MGFGNet with existing
advanced underwater acoustic target recognition models, followed
by an analysis of the experimental findings. Finally, Section 4 serves
as the conclusion of this article.

1.Audio
Data

2.FEFM

Layer1  Layer2 Layer3

o
L

FIGURE 1
MGFGNet model architecture.
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2 Methods

This section primarily delineates MGFGNet. Section 2.1
provides an overview of its architectural framework. Sections 2.2
through 2.5 subsequently delve into its Feature Extraction and
Fusion Module (FEFM), the Multi-gradient Flow Block with
Attention (Multi-grad Block), the Context Augmentation and
Fusion Module (CAFM), and the dynamic classification loss
function known as Taylor-MCE Loss.

2.1 Proposed model

MGFGNet comprises two core modules: FEFM and the
MGFGNet classifier. Figure 1 illustrates its detailed architecture.

FEFM utilizes various feature extraction algorithms based on
signal analysis and brain-like features to extract multidimensional
features from vessel radiated noise signals. Subsequently, multiple
three-dimensional features are fused using the proposed feature
fusion method to form high-dimensional fused features, which
serve as inputs to the MGFGNet network.

The MGFGNet classifier primarily consists of the Multi-grad
Block module and the CAFM module. The Multi-grad Block utilizes
a multi-gradient flow network and residual modules to rapidly
extract deep abstract features with different receptive fields from
underwater acoustic target signals while reducing model
parameters. Simultaneously, it leverages the multi-head self-
attention mechanism (MHSA) (Han et al., 2021) to enhance the
model’s focus on foreground information, aiming to preserve the
spatiotemporal characteristics of target line spectra in the acoustic
energy spectrogram. This enhances the model’s ability to extract
effective information from sonar signals.

The CAFM module uses dilated convolutions with different
dilation rates to adaptively fuse and enhance contextual
information with a broad range of receptive fields, enriching the
feature representation of physical, channel, and contextual
information extracted by the preceding module. Finally, the
Taylor-MCE Loss is employed to calculate prediction loss,
addressing the issue of suppressing model recognition
performance on imbalanced datasets. The Taylor-MCE Loss
incorporates Taylor series (Gonzalez and Miikkulainen, 2021)

3.MGFGNet Classifier

Layer 4
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into binary cross-entropy loss (BCE) (Ruby and Yendapalli, 2020),
including two components: one suppresses imbalances in sample
components, and the other is a low-order term of the perturbation
factor aimed at enhancing model recognition accuracy.
Additionally, it transforms the multi-class classification task into
multiple independent binary classification tasks.

2.2 Feature extraction and fusion module

Although deep learning-based feature extraction methods can
capture more profound abstract features compared to traditional
signal processing methods, they also come with a substantial
increase in computational costs (Aggarwal et al., 2022). Vessel
radiated noise primarily consists of mechanical noise,
hydrodynamic noise, and propeller noise (Yang et al, 2019).
Additionally, different feature extraction methods express distinct
signal characteristics, and using multiple features for fusion can
yield improved recognition results (Li Y. et al., 2022). Therefore,
this paper, based on the generation mechanism of ship radiated
noise, employs a fusion feature extraction method grounded in
signal physical characteristics and brain-like features to represent
underwater acoustic signals in multiple dimensions.

The fusion features in this paper mainly comprise energy-
enhanced features from three types of features: CQT (Singh et al.,
2022), delta MFCC (Nouhaila et al., 2022), and double delta MFCC
(Noubhaila et al., 2022).

Firstly, since vessel radiated noise carries a significant amount
of valid information in the low-frequency subband (Zhang et al.,
2023), CQT provides better frequency resolution in the low-
frequency subband (Mateo and Talavera, 2020). Hence, CQT is
utilized as one of the feature extraction methods.

Secondly, MFCC, as a static feature, can not only eliminate ocean
background noise but also effectively represent the spectral
information of underwater acoustic targets. However, it lacks
dynamic temporal signal features (Yang S. et al., 2023). To
introduce temporal dynamic information, this paper performs local
estimation of the differential operation along the time axis for the
MFCC feature, obtaining delta MFCC and double-delta MFCC
features. Both of these feature extraction methods are incorporated
into the extraction of underwater acoustic target features.

Furthermore, as the single-channel feature information
(graphically represented as a grayscale image) formed by these
feature extraction methods can only express three-dimensional

CcQT
Transformer

Underwater
Acoustic Signal

Quadratic
Sum

FIGURE 2
Feature extraction process for fused features.

Frontiers in Marine Science

Spectrogram

118

10.3389/fmars.2023.1306229

information of underwater sound, such as time, frequency, and
energy domains, this paper expands the single-channel energy
domain digital features of the above feature extraction methods
into three-channel energy domain features using a color space
representation. The detailed expansion method is described
as follows.

Finally, this feature extraction and fusion module are embedded
in the front end of the target recognition network, significantly
reducing the computational burden of the classifier while achieving
end-to-end target recognition.

Figure 2 illustrates our raised feature extraction method. Its
process consists of four main parts:

1. In the first step, CQT features and MFCC features
are extracted.

2.2.1 CQT extraction process
In the feature extraction process, the frame length is 2048 and
the frame overlap is the portion between two frames of size 75% of
the frame length, then using a Hanning window with a window size
equal to the frame length for each frame signal.
The CQT transform of a finite length sequence x(n) is
1 N1 _ 2mQ
XU k) =— 3 x(n)wy, (me %" (1)
Nk n=0
where wy, (n) is a Hanning window of length Nj; Q is a constant

factor in the CQT; k is the CQT frequency number, and the value of
Ny is related to the value of k.

1
Q=T—7 2)
20 —1
where b is the number of frequency spectral lines, the
fk :fmin XZ%,kZO,I,,,,,K—L (3)
A )
Ne= | Q k=0,1,...,K—1, (4)
i

where CQT information are stored in a matrix X°?% (k,n),
Jmin = 1, fs = 22050. Since the sampling rate of the raw underwater
acoustic data is 22050Hz for 5s, the shape of the CQT is 128x216.

2.2.2 MFCC extraction process

In the feature extraction process, the frame length and frame
overlap are set to be the same as in the CQT extraction process. A
Hanning window with a window size equal to the frame length is

Fusion
Feature

Channel
Compression

Channel
Spectrogram Comyreson Concat
double-delta Channel

MFCC Spcoivegan Compression
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then used for each frame. The short-time Fourier transform is then
used to filter the noise and the sum of squares is used to obtain the
power spectrum. Then 128 Mel filter banks were used to filter the
information of each frame and logarithm was obtained to obtain
Mel spectrum. Finally, MFCC was obtained by logarithm fitting the
Mel spectrum to human hearing and discrete cosine transform
(DCT). Since the sampling rate of the raw underwater acoustic data
is a 5s signal at 22050Hz, the shape of the MFCC is 128x216.

2. The second step focuses on the extraction of delta MFCC and
double-delta MFCC features by adding delta features and double-
delta features to the MFCC features.

3. The third step focuses on transforming the above three
features into spectrograms based on the size of 512, 12 and 0 for
Hop length, bins per octave and tuning, respectively, with a preset
image size of 3 x 640 x 480 for per image. Figure 3 illustrates the
time-domain waveform diagram of radiated noise of a ship in the
Deepship (Irfan et al., 2021) dataset and the spectrum diagram of
CQT, delta MFCC and double-delta MFCC.

4. In the fourth step, the spectral graphs of CQT, delta MFCC
and double-delta MFCC are fused respectively in channel
dimension. The detailed fusion process is as follows.

2.2.3 Feature compression

as a result of the image pixel values reflected the important degree
of information, so each spectrum diagram of three channel dimension
values together to form a characteristic picture of 640 x 480.

10.3389/fmars.2023.1306229

2.2.4 Feature range mapping

Since the original pixel size range of each channel dimension is
0-255, the pixel value range of the feature map at this time is 0-765.
To facilitate input for subsequent model calculations, map it to the
range [0,255].

2.2.5 Feature fusion
Finally, the mapped features are in the order of CQT and two
MFCC-derived features from top to bottom in the channel
dimension to form a fusion feature with a shape of 3x640x480.
The formula of the fusion process above is expressed as:

! 2CT2dlMFCC2dbl deltaMFCC
T = Map(concat(3, T3, T MECC, 3 pfoutle = dellaicey) - (5)

j=0 j=0 j=0

Where TJ-CQT represents the feature map of the J-th layer in the
channel dimension of the CQT spectral graph feature matrix, T}
and Tj"*** have the same meaning. Concat represents connecting
matrices in the channel dimension. Map represents the range mapping
of matrix data, a matrix T with data range of (X;inXmay)> Mapping its
data to the range of (YininYmax)> and the mapped matrix is

Map = Ymax — Ymin (T-T, )+T,.,

Xmax — Xmin

(6)

Where T, ,and T, . both represent a constant matrix with the
same latitude as T, and its content is the value represented by the
Angle symbol.

|

| !

Spectrogram feature plots of radiated noise from a ship in the Deepship database: (A) Time-domain waveform; (B) CQT; (C) Delta MFCC; (D)
Double-delta MFCC.

FIGURE 3
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2.3 Multi-gradient flow with
attention block

Existing models primarily increase the depth of the network to
enhance feature extraction capabilities, but this leads to an increase
in parameters while also losing a substantial amount of valuable
information (Ji et al., 2023). In order to reduce the model’s
parameter count and enhance its ability to extract
multidimensional features, this paper, inspired by the Cross Stage
Partial Network (CSPNet) (Wang et al., 2020), which efficiently
extracts effective feature information to alleviate model complexity,
proposes the Multi-gradient flow bottleneck with attention Block
(Multi-grad Block).

The Multi-grad Block concatenates multiple residual modules
(Resblocks) to form a multi-gradient flow network. This structure
enables the rapid acquisition of target information and gradient
flow information from different receptive fields, accelerating the
model’s feature extraction speed while reducing the model’s
parameter count. Since traditional convolution operations lack
sufficient discrimination between the spectra of multiple target
lines and ocean background noise during feature extraction (Li J.
et al., 2022), MHSA is introduced in the Resblock to increase the
model’s focus on targets rather than background noise or other
irrelevant elements (Han et al., 2021). The detailed model structure
is illustrated in Figure 4.

The detailed calculation process for the MHSA is as follows.
MHSA is calculated as follows.

MH(A, B, C) = Concat(H,,Hy, ..., H,) W, (7)

where A, B, C denote the query vector, key vector and value
vector respectively, H; illustrates the output of the i-th head, h is the
number of headers, and W° is the output transformation matrix.
The output of each header head; can be expressed as

head; = Attention(QW?, KWE, VW) (8)

10.3389/fmars.2023.1306229

where W,A, W,-B, W,C are the A, B, and C transformation
matrices for the i-th header, respectively, and Attention is a self-
attentive calculation function with the following equation.

AuBF
Va

Where d is the dimension of the key vector, softmax function

Attention(Ay, By, Cp,) = soft max ( )Ch, 9)

mainly performs normalization, calculates the weight of each key
vector, then multiplies the weight by the value vector, and finally
performs weighted summation to get the attention output.

2.4 Context augmentation and
fusion module

Due to the complex distribution of targets in the hybrid
spectrogram generated by the feature extraction and fusion
module of the original underwater acoustic signal, there are
numerous small targets locally and larger, medium-sized targets
globally (Wang B. et al., 2023). Using a single receptive field cannot
fully capture the multidimensional features of the original signal,
which reduces target classification accuracy (Wang Z. et al.,, 2023).
To address these issues, this article introduces the Context
Augmentation and Fusion Module (CAFM).

CAFM, as depicted in Figure 5, employs dilated convolution
with varying rates to extract feature information from different
receptive flelds effectively (Gao et al., 2023). It enhances and fuses
the multidimensional feature information obtained from the
preceding gradient flow feature extraction module. Here’s a
breakdown of its structure:

1. The effective feature information obtained from the pre-
gradient flow feature extraction module is rapidly
processed using dilated convolution with three distinct
rate values.

Resblock

Resblock

Resblock

FIGURE 4
Model structure of Multi-grad Block.
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CAFM operation flows.

2. Target feature information is subsequently enhanced
separately by the adaptive feature enhancement module
and the cascade computing module.

3. The effective features derived from the adaptive feature
enhancement module and the cascade computing module
are then weighted and fused.

The former approach initially employs 1x1 convolution to
compress and decrease the dimension of the pre-feature maps to
single-channel feature maps. It then concatenates the feature maps
in increasing rate order and calculates the weights for each channel
using softmax. Finally, it enhances the channel dimension features
through softmax-weighted multiplication.

The latter approach concatenates the feature maps obtained via
expansion convolution at different rates to create a new feature map.

2.5 Taylor-MCE Loss

Existing mainstream classification loss functions primarily
encompass the Cross-entropy Loss (CE) (Ho and Wookey, 2019)
and its variations tailored for specific classification tasks. These
adaptations include log loss (LL) (Lin et al., 2022) and BCE (Ruby
and Yendapalli, 2020) for binary classification and focal loss (FL)
(Lin et al,, 2017) and categorical cross-entropy (CCE) (Ho and
Wookey, 2019) for multi-class classification. However, the presence
of a severe class imbalance among categories in underwater acoustic
datasets poses a significant challenge (Zhou et al., 2021). Utilizing
the aforementioned classification loss functions often leads to
model overfitting (Leng et al, 2022), subsequently impacting
recognition accuracy.

To tackle this challenge, this article introduces a novel loss
function termed the Taylor-MCE Loss (Multiple Cross-Entropy
Joint Loss Function based on Taylor Series). The Taylor-MCE Loss
combines the polynomial terms derived from Taylor series
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expansion with BCE, FL, and low-order perturbation factors. It
then transforms the multi-class classification task into a set of
independent binary classification tasks, effectively resolving the
issue of sample imbalance within the dataset and significantly
enhancing the model’s recognition performance.

The detailed design process is as follows:

1. Selection of the base loss function

Multi-class classification aims to calculate the likelihood of an
object belonging to multiple categories, while binary classification
seeks to identify whether an object is a specific category (e.g.,
discerning whether an object is a dog or not). Although these
tasks may seem to differ only in the number of predicted categories,
they have fundamental distinctions. In standard multi-class
classification, CCE serves as the loss function, primarily relying
on softmax to calculate the likelihood of an object belonging to
multiple categories and selecting the category with the highest
probability as the prediction. In contrast, binary classification
tasks primarily employ BCE as the loss function, using sigmoid
(output values between 0 and 1) to determine whether an object is
closer to category 0 or category 1.

To select a more suitable base loss function and assess whether
binary classification loss functions can be adapted for multi-class
tasks, we conducted experiments in multi-class target recognition.
The application of binary classification loss functions in multi-class
tasks involved treating each category as an independent binary
classification task. During our experiments, we made an intriguing
observation: when inter-class sample sizes were balanced, CCE
exhibited stable performance. However, in cases of sample
imbalance, the use of BCE for multi-class tasks resulted in a
significant improvement in accuracy compared to CCE (refer to
Table 1 for details).

Treating each category as an individual binary classification task
ensured that predictions for each category were mutually exclusive
and independent (Ruby and Yendapalli, 2020), thereby addressing
an issue. The problem when using CCE was that multiple categories
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were predicted simultaneously [mutually exclusive but not
independent (Ho and Wookey, 2019)]. Models employing CCE
often favored categories with larger sample sizes, potentially
overshadowing smaller categories during training (Leng et al,
2022). Additionally, BCE’s core function was to enhance
foreground weights while suppressing backgrounds (considering
all other categories as backgrounds when predicting a single
category) (Ruby and Yendapalli, 2020). This effectively balanced
feature acquisition for different categories.

2. Exploring the relationship between loss functions using
taylor series

The mutual constraints imposed by multiple categories can slow
down model convergence. While combining multiple loss functions
can enhance convergence speed and recognition accuracy (Li et al.,
2019), it can also increase computational complexity. To minimize
computational overhead while mitigating the impact of imbalanced
datasets on the model, we drew inspiration from the Taylor series
(Gonzalez and Miikkulainen, 2021) and explored the mathematical
properties of BCE’s polynomial form and loss functions designed to
address imbalanced datasets. Our goal was to introduce minimal
perturbation terms that retained the essential functionality of the
loss function.

Since BCE can be represented as:

Lpcg(a,b) = — bilog (a) — (1 — b)) log (1 — a), (10)

where b; € {0,1} represents labels, and a represents predicted
probabilities, and BCE is a special form of CCE, assuming

TABLE 1 Recognition accuracy, convergence time and number of
parameters of CAFM at different locations of MGFGNet.

Model Parameters

Model

convergence (M)
time (hours)

Accuracy

MGFGNet 0.766 5.576

0.968
)
MGFGNet 0.617 5.742
0.985
(+)
MGFGNet 0.635 5.742
0.985
(1)
MGFGNet 0.642 5.742
0.985
2
MGF 654 742
GFGNet 0.65 5.7 0987
3)
MGFGNet 0.661 5.742
0.986
(4)
MGFGNet 0.673 5.742
0.986
5)
MGFGNet 0.677 5.742
0.989
(6)
MGEGN 1692 742
GFGNet 0.69 5.7 0.991
7
MGFGNet 0.711 5.754
0.988

®)

Bold font indicates the best-performing values within their respective columns.
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1 — a, otherwise,

{a,b=1
ar = (11)

CCE can be expressed as:

Lccg(a, b) = —log (a,) (12)

Applying Taylor series to CCE, the expression becomes:

1

Lecy = —log(a) =3, S(1=a) (13)

i=1

By observing the relationship between the Taylor expansion of
CCE and FL, it is apparent that FL is equivalent to a horizontal shift
(modulation factor) ¢ of CCE. This is expressed as:

Ly = — (1 —a)log(a,) = (1 —a)Lece (14)

BCE is a special form of CCE; therefore, their physical
properties are fundamentally consistent, differing mainly in the
prediction process. To enhance the model’s ability to address
imbalanced datasets, we introduced an element to strengthen the
suppression of imbalanced samples within the original BCE. This
addition involved increasing the horizontal offset, resulting in the
loss function:

(4
Layior - mce' = % Lpce + 0, (1 —a) Lpcg

= [og + o,(1 — a,) ] Lpce (15)

where o + a, = 1 represents a scaling factor.

3. Analyzing the impact of gradient on loss functions

To enhance model recognition accuracy with minimal
computational overhead, we compared the gradients of various
loss functions and evaluated the influence of low-order and high-
order terms on model recognition accuracy. The gradients of the
aforementioned two loss functions (Eqs. 13 and 14) are expressed as

follows:
dL « ;
—— =S -a) =1+ —a)+1-a)+..  (16)
day i=1
dlp, & 4 irc—1
- = 1+-)(1—
da, E( +1.)( a,)

=1+ —a)+(1+ %)(1 —a) .. (1)

From the equations, it is evident that CCE possesses a fixed
gradient term of 1. As i surpasses 1 and a; approaches 1, the ith
gradient tends towards zero. FL exhibits similar characteristics but
introduces an additional perturbation factor (c). Consequently, the
coefficients of high-order, low-order, and high-order terms
collectively influence the outcomes of the loss function. The high-
order parts primarily serve to suppress model errors, while the low-
order components play a crucial role in fine-tuning the model to
reach correct conclusions (Zhang et al,, 2023). Therefore, we
introduce a perturbation factor into the low-order term coefficients
of CCE to enhance the model’s recognition performance.

In summary, to mitigate the impact of sample imbalance on the
model while minimizing the increase in parameter complexity, we
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propose the Taylor-MCE Loss. The expression is as follows:

Liayior - mce = O Lpcp + 05(1 —a,) Lgep + By (1 — ay) (18)

where f3; € [-1,00) represents the perturbation factor.

3 Experimentation and analysis

To evaluate the performance of MGFGNet in a real underwater
environment, we employ authentic underwater acoustic public
datasets for both qualitative and quantitative comparisons. These
comparisons involve MGFGNet and various versions with varying
network depth and width of mainstream existing underwater
acoustic target recognition models, including ResNet and
EfficientNet (Mateo and Talavera, 2020).

3.1 Experimental dataset

3.1.1 Deepship

To assess the model’s performance under ideal conditions, this
study employed the Deepship dataset (Irfan et al., 2021), comprised
of underwater acoustic data from vessels recorded by Northwestern
Polytechnical University in the marine environment beneath the sea
surface at depths ranging from 141 to 147 meters in the Georgia
Strait Delta from 2016 to 2018. The data and time labels for this
dataset were obtained by deploying sensors to locate vessel
positions. Only singular vessel signals within a 2-kilometer range
of the sonar device were considered, and recording ceased whenever
a vessel exceeded this range. The dataset encompasses data from
265 vessels, including Cargo ships, Passenger Ships, Oil Tankers,
and Tugs.

The data underwent preprocessing, with all WAV format audio
files standardized to a 22,050Hz sample rate. Additionally, the
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underwater acoustic data were segmented into 5-second units,
resulting in over 30,000 labeled sound samples. Recognizing that
the model’s recognition accuracy is proportional to the sample size
of the training set, a significant number of samples were allocated
for model training to mitigate the risk of overfitting. To prevent
substantial fluctuations in the model’s recognition accuracy due to a
small sample size, a portion of the data was reserved for validating
and testing the model’s performance. Consequently, for optimal
model parameter training, a large portion of the data was allocated
to model training, with only a small amount used for validation and
testing, following an 8:1:1 split ratio for the training, validation, and
test sets. Table 2 provides details of the dataset division.

3.1.2 ShipsEar

So as to assess the model’s capacity to adapt to diverse maritime
environments, emphasizing its generalization capability, this study
incorporated an additional authentic dataset of ship radiated noise
collected in a real-world marine setting. The data collection took place
along the Atlantic coast of Spain and encompasses recordings from 11
distinct ship types. These 11 ship categories were subsequently classified
into four classes based on ship categorization, with the actual ocean
background noise measurements, taken within these four categories,
amalgamated to construct a five-class underwater acoustic dataset.

The dataset encompasses a total of 90 audio recordings, with
individual recording durations varying from 15 seconds to 10
minutes. To ensure experimental precision, the “ShipsEar” dataset
(Santos-Dominguez et al., 2016) underwent preprocessing identical
to that applied to the “Deepship” dataset. A comprehensive class
distribution is outlined in Table 3.

It is conspicuous that in the “Deepship” dataset, class
proportions for classes 1-4 approximate ratios of 1:1.2:1.15:1.06.
Conversely, the “ShipsEar” dataset presents imbalanced class
proportions for classes 1-5, displaying a ratio of approximately
1.64:1.34:3.76:2.17:1. Consequently, when compared to the

TABLE 2 Details of the four categories in the Deepship dataset after pre-processing.

Class Number Training set Validation set Testing set

1 Cargo Ship 7621 6097 762 762

2 Passenger Ship 9211 7369 921 ‘ 921

3 Oil Tanker 8776 7022 877 ‘ 877

4 Tug 8085 6467 809 ‘ 809

TABLE 3 Details of the five categories of the ShipsEar dataset after pre-processing.

Class Number Target Total Training set Validation set  Testing set

1 Fishing boats, Trawlers, Mussel boats, Tugboats, Drafgers 369 296 37 36

2 Motoboats, Pilot boats, Sailboats 301 241 30 30

3 Passenger ferries 843 675 84 84

4 Ocean liner, Ro-Ro vessels 486 389 49 48

5 Background noise recordings 224 180 22 22
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“Deepship” dataset, the “ShipsEar” dataset not only illustrates class
imbalance but also contains significantly fewer samples,
representing approximately 1/15 of the “Deepship” dataset. Such
a dataset is highly susceptible to overfitting during the training
process due to its limited sample size. Additionally, class imbalance
can lead to notably reduced accuracy in recognizing classes with
fewer samples.

3.1.3SCTD
Synthetic Aperture Sonar (SAS) images (Huang and Yang,

2022; Wang and Huang, 2023; Yang, 2023; Zhang, 2023), known for
their high resolution, significantly aid in target recognition in
underwater acoustics. In order to assess the model’s performance
on a high-resolution underwater acoustic image dataset, this study
introduces the SCTD dataset (Zhou et al., 2021). Since the original
SCTD dataset is primarily designed for target detection tasks and its
structure is not conducive to underwater acoustic target recognition
models, certain modifications were implemented to adapt it to the
classification task. Specifically, for the aircraft, human, and
shipwreck categories within SCTD, the following steps were taken:

Firstly, multiple targets within a single image were individually
cropped to ensure that each final image contains only one target,
aligning it with the training sample format for target recognition.

Secondly, to augment the samples and balance the
representation of each category, random cropping and flipping
techniques were employed.

Finally, the dataset was partitioned into training, testing, and
validation sets in an 8:1:1 ratio, as detailed in Table 4.

3.2 Hyperparameter setting

During the experimental process, the underwater acoustic target
recognition model, MGFGNet, employed the Adaptive Moment
Estimation optimizer (Adam) (Irfan et al., 2021) to mitigate sample
noise interference. For this optimization process, the first-order
momentum factor, second-order momentum factor, and Fuzz
factor within Adam were configured at 0.9, 0.999, and 0.0000001,
respectively. The initial learning rate was set to 0.001, with a weight
decay coefficient of 0.0005, and a batch size of 32 was utilized.
Finally, a; = 0.5, a, = 0.5, c = 5 and f3; = 5 in Taylor-MCE Loss are
set. The model was trained for 120 epochs (iterations) using the
aforementioned parameters. Throughout the experimental process
described below, unless otherwise specified, the experiment
parameters mentioned above were consistently applied.

10.3389/fmars.2023.1306229

3.3 Experimental environment and
performance indicators

The experiments were conducted on the PyTorch platform,
running on the Windows 10. The hardware setup employed for
these experiments is detailed in Table 5. To mitigate the potential
influence of experimental variability, a systematic approach was
taken. It involved the training and testing of various models, both
qualitatively and quantitatively. Subsequently, a comparative
analysis of algorithmic performance was performed.

Given that Accuracy can reflect the model’s recognition
capability across multiple classes, while Precision and Recall can
indicate the overall classification performance of the model, these
three evaluation criteria are employed to assess different models.
Their formulas are as follows:

TP+ TN

A - 19
U = Py TN+ FP+ FN’ (19)
B TP 0

recision = ————,

precision = 5 rp
TP

l=———, 21
Tt = TP L PN 1)

where TP represents instances that were originally true positive
samples and were correctly predicted as positive samples by the
underwater acoustic target recognition model. TN corresponds to
instances that were originally true negative samples and were
accurately predicted as negative samples by the model. FP
signifies instances that were originally true negative samples but
were erroneously classified as positive samples by the underwater
acoustic target recognition model. FN stands for instances that were
originally true positive samples but were incorrectly predicted as
negative samples by the model.

3.4 Ablation experiments

3.4.1 Feature ablation experiments

To confirm the representational capabilities of the feature
extraction approach raised in this study for original underwater
acoustic signals, Table 6 presents an extensive comparison of
diverse characteristics abstraction approachs on the Deepship.
This comparison encompasses the original two-dimensional
features, their corresponding three-dimensional counterparts, and
the three-dimensional feature fusion approach introduced in
Section 2.2 within the MGFGNet model. Notably, the recognition

TABLE 4 Details of the three categories of the SCTD dataset after pre-processing.

Class Number

1 Alircraft 575
2 Human ‘ 546
3 Shipwreck ‘ 488
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Training set Validation set Testing set
459 58 58
436 55 55
390 49 49
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TABLE 5 Details of the hardware environment for the experiment.

Hardware name Parameters Number
CPU Intel Xeon Sliver 4310 2
GPU NVIDIA Tesla A100 80G 1
RAM SAMSUNG RECC DDR4 32GB 8

accuracy of spectral features for each feature extraction method
surpasses that of the original two-dimensional features. Delta
MFCC, owing to its ability to capture temporal correlations of
MEFCC, exhibits higher experimental accuracy than MFCC features,
albeit with a modest 0.2% increase. Similarly, double-delta MFCC
records a mere 0.4% improvement over delta MFCC since it
primarily focuses on local estimations along the time axis for the
differential operations of MFCC. CQT features, reflecting the
frequency distribution patterns of underwater acoustic targets,
outperform MFCC and its derivative features in terms of
classification accuracy, thereby validating the superiority of CQT
features over mel-spectrogram features (Domingos et al., 2022) in
underwater acoustic target recognition. The horizontal comparison
of spectral feature extraction methods among various feature
extraction techniques exhibits similar characteristics as
mentioned above.

It’s worth mentioning that the overall accuracy of the fusion
feature approach proposed in Section 2.2 surpasses that of other
feature extraction techniques, achieving 99.1%. This represents a
substantial increase of 3.9%, 3.7%, and 3.3% over the spectral
features of MFCC, delta MFCC, and double-delta MFCC,
respectively. Additionally, it outperforms CQT’s spectral features
by 1.6%. Moreover, there is a substantial increase in recognition
accuracy across all categories compared to the spectral feature
extraction methods of the remaining four features, thus validating
the superiority of the fusion approach based on signal processing
and brain-like features proposed in this study.

So as to provide a clearer illustration of the computational cost
and efficiency of the feature extraction and fusion method
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introduced in this paper, we conducted additional experiments to
assess the performance metrics of various feature extraction
techniques. The testing dataset comprised 10 sets, each containing
10 noise data samples, and the experimental results represent the
average of these 10 sets. Detailed experimental data is displayed
in Table 6.

It is evident that the execution time for each feature extraction
method’s feature mapping technique increased by only
approximately 0.0003 in comparison to the original method, with
a memory consumption increment of around 20 MiB.
Concurrently, the execution time of the feature extraction and
fusion method proposed in this paper, which integrates three
original feature components, remains within the same order of
magnitude as their individual runtimes, indicating minimal
additional time overhead.

Moreover, the memory consumption of the proposed method
in this paper remains approximately at 350 MiB, aligning with the
memory usage of all other feature extraction methods. This
reaffirms the superiority and efficiency of the proposed method.

3.4.2 CAFM ablation experiment

So as to comprehensively evaluate the computational cost,
convergence time, and performance of the feature extraction and
fusion method presented in this paper at various positions within
MGFGNet, a series of experiments were conducted. The
experimental results on the Deepship dataset are presented in
Table 1. In the model parameter nomenclature, the suffix
indicates the layer within the target recognition model as depicted
in Figure 1. For instance, “MGFGNet (1) signifies the placement of
the CAFM module after Layer 1 of MGFGNet, “-” indicates the
absence of the CAFM module, and “+” denotes its placement at the
beginning of MGFGNet, as illustrated in Figure 1.

Firstly, the integration of the CAFM module results in a modest
2.9% increase in model parameters compared to the original model.
However, it significantly expedites the model’s convergence speed.
Furthermore, the convergence speed varies when the CAFM
module is positioned at different locations within the model, and

TABLE 6 Recognition Accuracy of MGFG model on Deepship dataset using different features and the memory consumption and efficiency of each

feature extraction method.

E

Feature Cargo Passenger Ship = Tanker
MEFCC 0.542 0.671 0.670
MFCC Spec 0.930 0.950 0.951
delta MFCC 0.629 0.655 0.623
delta MFCC Spec 0.946 0.949 0.944
double-delta MFCC 0.606 0.681 0.681
double-delta MFCC Spec 0.946 0.957 0.957
CQT 0.765 0.767 0.771
CQT Spec 0.973 0.973 0.973
Fusion Feature 0.929 0.929 0.977
Fusion Feature of Spec 0.984 0.985 0.994

Bold font indicates the best-performing values within their respective columns.
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Time consumption (s)

Memory used (MiB)

0.843 0.683 0.00033257 348.960938
0.975 0.952 0.00060603 368.828125
0.849 0.687 0.00134368 352.488281
0.977 0.954 0.00166959 373.804688
0.794 0.691 0.00137352 351.417969
0.97 0.958 0.00169537 372.640625
0.865 0.791 0.00353861 352.429688
0.984 0.975 0.00356747 372.406250
0.993 0.957 0.00381105 357.812500

1 0.991 0.00384105 376.367188
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the speed is directly proportional to the sequence of the CAFM
within the model. This is primarily due to the enhanced
discriminability between background and target foreground in the
feature maps when this module is applied, resulting in accelerated
model convergence speed. Notably, after introducing the CAFM,
the convergence time consistently remains between 0.6 and 0.7
hours, confirming the model’s stability. In this experiment,
convergence is defined as the point at which the loss remains
unchanged in the thousandths place for three consecutive iterations.

Additionally, the incorporation of the CAFM module leads to a
minimum 1.7% enhancement in recognition accuracy within
MGEFGNet, validating the CAFM module’s capacity to boost
model recognition accuracy through feature fusion and
enhancement. However, the placement of the CAFM module also
exerts an impact on recognition accuracy. For example, when the
CAFM module is positioned at the head of MGFGNet and after
Layer 1-2, the model exhibits improved recognition accuracy due to
the fusion of multiscale acoustic target information and enhanced
channel features. However, when the CAFM is placed at Layer 1, it
leads to a rapid extraction of raw input features through a large
convolutional kernel (kernel size of 6), resulting in the loss of
significant valuable features and, consequently, inhibiting
recognition accuracy. Furthermore, there is no subsequent feature
enhancement in the feature extraction process, causing lower
recognition accuracy compared to when the CAFM is placed after
Layer 3-6.

Conversely, placing the CAFM module after Layer 3-6
introduces the Multi-gradient Block in front of the CAFM
module, enriching the fused and enhanced features with a
substantial amount of multi-gradient flow contextual
information compared to the original information. This, in turn,
enhances target feature information, leading to improved
recognition accuracy. The highest recognition accuracy is
achieved when the CAFM module is placed after Layer 7, as the
model has undergone all the Multi-gradient Blocks by this stage,
resulting in feature maps rich in multi-gradient flow, physical
features, and numerous feature details. When the CAFM module
is employed for feature fusion and enhancement at this stage, it
effectively increases the importance of target information, thereby
enhancing recognition accuracy.

However, due to the feature enhancement process preserving a
substantial amount of suppressed background features, direct
utilization of these feature maps for predictions can compromise
experimental accuracy (Hu et al., 2018; Hou et al.,, 2021). Therefore,
after employing the feature enhancement module, it is necessary to
conduct further feature extraction on the enhanced feature maps
using convolutional or feature extraction modules. This step helps
discard numerous non-target features. For instance, attention
mechanisms (AM) (Yang S. et al, 2023) and channel attention
modules (CAM) (Li J. et al., 2022) both serve as feature
enhancement modules. Ablation experiments have demonstrated
that utilizing feature extraction or convolutional modules after
feature enhancement enhances model recognition accuracy (Li J.
et al,, 2022; Yang S. et al,, 2023). This substantiates why placing
CAFM after Layer 7 results in higher recognition accuracy
compared to after Layer 8.
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3.4.3 Classification loss function
ablation experiments

To assess the impact of the Taylor-MCE Loss on MGFGNet,
this paper compared the recognition results of MGFGNet with
various loss versions, including BCE, CCE, FL, and Taylor-MCE
Loss, utilizing the Deepship dataset. The numbers 1, 2, and 3
following Taylor-MCE represent o Lpcg, 05(1 —a,)°Lpcg, and
Bi(1 - a,), respectively. Notably, o and ¢, have real values only
when coexisting; otherwise, both are set to 1. A comprehensive
summary of the experimental results is presented in Table 7.

Firstly, it is evident that Taylor-MCE Loss outperforms CCE,
FL, and BCE in terms of recognition accuracy, demonstrating
improvements of 2.4%, 2.2%, and 1.9%, respectively. The
recognition accuracy of CCE and FL is quite similar. FL is
derived from CCE through lateral shifting, aimed at mitigating
the issue of sample imbalance. However, within the context of the
Deepship dataset, where various classes exhibit a good balance, its
effectiveness in addressing sample imbalance is reduced, resulting in
a modest improvement of 0.2% compared to CCE. BCE, serving as a
special form of CCE for binary classification, achieves a recognition
accuracy improvement of 0.5%. This is primarily because BCE
transforms multi-class classification into multiple binary
classification tasks, where the predictions for each class are
mutually exclusive and independent. This approach addresses a
problem present in CCE where multiple classes are predicted
simultaneously, leading the model to favor classes with larger
sample sizes. This imbalance gradually drowns out smaller classes
during training, providing a key rationale for choosing BCE as the
base loss function for Taylor-MCE Loss. Taylor-MCE (1,3),
inclusive of low-order perturbation terms (f,(1 — 4;)), contributes
to the model’s improved recognition accuracy, resulting in a
significant advantage over Taylor-MCE (1,2), which only
encompasses the component for addressing imbalance
(0(1 = a,)°Lpcg). This finding reinforces the conclusion that low-
order terms enhance recognition accuracy (Zhang et al., 2023).
Taylor-MCE (2,3) achieves similar recognition accuracy to (1,3),
primarily due to the relatively balanced distribution of class samples
in the Deepship dataset, rendering the influence of (2,3) insufficient
to significantly alter recognition accuracy.

TABLE 7 Recognition accuracy of MGFGNet with different classification
loss functions on Deepship and ShipsEar.

Loss Accuracy Accuracy
Function (Deepship) (ShipsEar)
CCE 0.967 0937
FL 0.969 0.953
BCE 0.972 0.959
Taylor-MCE (1,2) 0977 0.982
Taylor-MCE (1,3) 0.985 0.972
Taylor-MCE (2,3) 0.983 0.976
Taylor-MCE 0.991 0.995

Bold font indicates the best-performing values within their respective columns.

frontiersin.org


https://doi.org/10.3389/fmars.2023.1306229
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Chen et al.

As the Deepship dataset comprises a substantial number of
samples with a relatively balanced class distribution, it does not
effectively validate the loss function’s ability to suppress small
samples and enhance recognition accuracy in unbalanced
datasets. To further confirm the adaptability of Taylor-MCE Loss
to imbalanced, small-sample underwater sound datasets, we
conducted experiments using different classification loss functions
on the ShipsEar dataset, characterized by class imbalance and
limited sample sizes. A detailed overview of the experimental
results is provided in Table 7. The unique sample characteristics
of ShipsEar, featuring fewer samples and imbalanced class
distributions, result in notable differences in model recognition
accuracy when employing various loss functions. CCE, due to its
lack of optimization for class imbalance, exhibits lower recognition
accuracy compared to other loss functions. Both FL and BCE, which
address class imbalance using different approaches (FL introduces
horizontal shifting on top of CCE, while BCE transforms multi-class
into multiple binary classification tasks to mitigate imbalance), yield
similar and significantly improved recognition accuracy compared
to CCE. In contrast, the results of the various versions of Taylor-
MCE Loss are entirely opposite to those observed in the Deepship
dataset. Given that the ShipsEar dataset has fewer samples and
imbalanced class distributions, it necessitates substantial
suppression of the imbalance component. When utilizing only the
low-order perturbation term to enhance recognition accuracy,
specifically Taylor-MCE (1,2), its recognition accuracy surpasses
BCE by 2.3%, compared to the mere 0.9% improvement. Taylor-
MCE eftectively balances recognition accuracy and mitigates model

10.3389/fmars.2023.1306229

overfitting attributed to class imbalance during training, ultimately
yielding a recognition accuracy of 99.5%. This figure is 5.8%, 4.2%,
and 3.6% higher than CCE, FL, and BCE, respectively.

These experiments affirm the adaptability of Taylor-MCE Loss
to small-sample, imbalanced datasets, significantly enhancing
model recognition accuracy.

3.5 Performance analysis

In this section, we compare the performance of MGFGNet with
existing state-of-the-art target recognition models [such as ResNet
(He et al., 2016), EfficientNet (Koonce, 2021), DenseNet (Iandola
et al., 2014), etc.] under the same experimental conditions,
examining various aspects.

3.5.1 Model identification accuracy and
parameter analysis

To validate whether MGFGNet outperforms existing mainstream
target recognition models, we trained and validated MGFGNet and
other mainstream models under the experimental conditions described
in Sections 3.2 and 3.3. The parameters of each model and their
experimental accuracy on the Deepship test set are presented in Table 8.
It is noteworthy that, to reduce the training time for various models, we
modified the training epochs for all models on the Deepship dataset to 90.
This decision is supported by the observation, as depicted in Figure 6, that
MGFGNet exhibits a tendency toward convergence in loss before 90
epochs, with the optimal model being formed around the 71st epoch.

TABLE 8 Details of the number of parameters and the recognition accuracy on the Deepship dataset for various models.

Model MFCC delta MFCC double-delta MFCC CQT @ Fusion Feature Parameters (M)
ResNet18 (He et al., 2016) 0.939 0.942 0.947 0.963 0.970 117
ResNet34 (He et al., 2016) 0.929 0.937 0.942 0.966 0971 21.8
ResNet50 (He et al., 2016) 0.921 0.933 0.937 0.952 0.965 256
ResNet101 (He et al., 2016) 0913 0.931 0.937 0.947 0.953 445
EfficientNet_b0 (Koonce, 2021) 0.931 0.941 0.949 0.964 0971 5.3
EfficientNet_b1 (Koonce, 2021) 0.930 0.938 0.945 0.967 0.968 7.8
EfficientNet_b2 (Koonce, 2021) 0.917 0.935 0.939 0.955 0.959 9.1
EfficientNet_b3 (Koonce, 2021) 0.915 0.931 0.934 0.945 0.951 12.2
DenseNet (landola et al,, 2014) 0.866 0.871 0.878 0913 0.931 11
CSPDenseNet (Wang et al., 2020) 0.889 0.896 0913 0.937 0.951 0.9
CSPResNet18 (Wang et al., 2020) 0.938 0.945 0.953 0.966 0.973 5.6
MobileNetV1 (Howard et al., 2017) 0.759 0.787 0.793 0.822 0.841 32
MobileNetV2 (Sandler et al., 2018) 0.876 0.888 0.893 0.907 0.921 22
MobileNetV3-S (Howard et al.,, 2019) 0.732 0.747 0.752 0.773 0.806 15
MobileNetV3-L (Howard et al., 2019) 0.820 0.822 0.829 0.877 0.894 42
ViT (Dosovitskiy et al., 2020) 0.871 0.875 0.879 0.882 0.889 86.6
MGFGNet 0.952 0.954 0.958 0.975 0.991 5.7

Bold font indicates the best-performing values within their respective columns.
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FIGURE 6
Variation of parameters during MGFGNet training: (A) Loss variation plot;

Clearly, MGFGNet demonstrates experiment accuracy superior
to existing mainstream target recognition models across various
feature input scenarios. This validates the robust feature extraction
capability of MGFGNet in diverse experimental environments.

Furthermore, CSPNet (Wang et al, 2020) not only reduces
model parameters but also effectively promotes the model’s feature
extraction capability. For instance, testing the original versions of
ResNetl18 (He et al., 2016) and DenseNet (Iandola et al., 2014),
along with their versions incorporating CSPNet, reveals a noticeable
reduction in parameters and an improvement in model
performance under various feature inputs. MGFGNet, based on
the CSPNet philosophy with the multi-gradient flow module as a
primary component, successfully achieves an effective balance
between recognition accuracy and parameter count.

The size of the model’s parameters also influences recognition
accuracy. Models with either too many or too few parameters yield
suboptimal experimental accuracy. For example, ViT (Dosovitskiy
et al., 2020) has significantly more parameters than other models,
yet its recognition rate is lower than most models. In contrast, the
MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al.,
2019) series, characterized by smaller parameter counts as
lightweight models, generally exhibits lower recognition accuracy
compared to other models. However, DenseNet and CSPDenseNet
(Wang et al., 2020), despite having fewer parameters, achieve high
recognition accuracy. This is mainly attributed to the dense
connectivity in DenseNet, ensuring low-dimensional feature
information and a stronger gradient flow (Iandola et al., 2014).

Within the same model, variations in recognition accuracy due to
changes in model depth show a negative correlation with the number
of parameters. As the number of parameters increases from ResNet18
to ResNet101 in the ResNet model, the recognition accuracy gradually
decreases. A similar trend is observed in the EfficientNet (Koonce,
2021) model. However, different network models do not exhibit this
phenomenon due to diverse feature extraction methods. For example,
ResNet18 and EfficientNet_b3 have similar parameter counts, but
ResNet18 outperforms EfficientNet_b2 in recognition accuracy across
various feature extraction methods. Different versions of MobileNet do
not show this phenomenon because new feature extraction or
enhancement modules are introduced in each version.
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3.5.2 Analysis of computational load, training
time, and prediction time

To assess the training and inference efficiency of MGFGNet,
this section analyzes the time consumption for training and
inference of MGFGNet and its comparative models. Detailed
comparative results are provided in Table 9. It is noteworthy that,
to reduce the training time of the models, we maintained
consistency with Section 3.5.1 and modified the training epochs
for all models on the Deepship dataset to 90. The convergence
definition for this experiment is when the value of the thousandth
loss percentile remains unchanged for three consecutive times
during the training process, indicating model convergence.

During the experiments, variations in the training and
prediction times of models were observed in different operating
environments. To ensure the accuracy of experimental data, each
model, during its runtime, had the host free of other GPU-intensive
deep learning tasks, preventing interference with the experimental
results. Additionally, to mitigate random factors, all experimental
data are the averages of results obtained from five repeated
experiments. Floating Point Operations per Second (FLOPs) are
used to measure the computational complexity of the model.
Training time refers to the total time for model training and
validation. Inference time denotes the total time required for
predicting 3369 individual samples from the validation set
of Deepship.

Notably, MGFGNet exhibits superior inference time compared
to all comparative models, especially the lightweight MobileNet
series commonly used in embedded systems, demonstrating its
practical utility. This is primarily attributed to the inference time
reduction effect of CSPNet (Wang et al., 2020). For instance, the
inclusion of CSPNet in ResNet and DenseNet also significantly
reduces inference time. MGFGNet, incorporating the CSPNet
philosophy through the Multi-grad Block, outperforms
EfficientNet_b0 in prediction time, despite having similar
parameter counts and FLOPs values.

Furthermore, MGFGNet achieves convergence in the fewest
epochs, indicating a faster convergence rate. This is mainly due to
Taylor-Loss suppressing the rate of model variation under different
numbers of input categories, thereby accelerating model
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TABLE 9 Floating-point computation vs. training and predicting time.

10.3389/fmars.2023.1306229

FLOPs@224(B) Training Time (hours) Epochs at convergence Predicting Time(s)  Support

ResNet18 3.7 1.075 52 56 3369
ResNet34 7.4 1.391 68 59 3369
ResNet50 8.5 1.868 75 67 3369
ResNet101 159 4.975 98 104 3369
EfficientNet_bo 1.0 3423 83 91 3369
EfficientNet_bo L5 5.121 91 102 3369
EfficientNet_b0 17 5368 97 104 3369
EfficientNet_b0 24 5.753 102 107 3369
DenseNet 16 4792 62 135 3369
CSPDenseNet 14 4872 57 119 3369
CSPResNet18 05 1.397 48 42 3369
MobileNetV1 0.6 4693 96 66 3369
MobileNetV2 0.4 4.401 72 63 3369
MobileNetV3-S 0.1 2661 65 55 3369
MobileNetV3-L 02 3.100 78 75 3369
ViT 17.6 7.295 107 139 3369
MGFGNet 0.7 1.779 41 37 3369

Bold font indicates the best-performing values within their respective columns.

convergence. It is observed that within models of the same
architecture, parameters and convergence epochs exhibit a
positive correlation, as seen in ResNet and EfficientNet series.
While MobileNet has a smaller parameter count, its frequent
occurrence of gradient vanishing during training, mainly due to
the use of depthwise separable convolution, leads to extensive time
spent correcting and updating the model, resulting in an increased
number of convergence epochs.

Additionally, while MGFGNet’s training time is lower than that of
most target recognition models, it still exceeds that of ResNetl8,
ResNet34, and CSPResNet18. This is mainly because the Multi-grad
Block module, based on the CSPNet philosophy, invented in
MGFGNet, reduces the number of parameters but increases the
computational workload for backward gradient updates (Wang et al,,
2020), thus extending the model’s training time. The increased training
time for CSPDenseNet and ResNet18 with CSPNet also validates this
characteristic. However, since practical applications primarily require
low prediction times for rapid target recognition, this drawback has
minimal impact in real-world scenarios.

Finally, upon contrasting Tables 8 and 9, it becomes evident
that there is no inherent correlation between the training time,
model parameters, and FLOPs for the models. For instance, when
compared to ResNetl8, DenseNet, CSPDenseNet, and the
MobileNet series all exhibit smaller parameter counts and FLOPs.
However, these models demonstrate longer training times than
ResNet18. A similar experimental pattern is observed between the
EfficientNet and ResNet series.
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3.5.3 Model stability validation

Figure 6 presents the loss variation chart as well as the precision,
recall, and accuracy variation charts on the validation set during the
same 120-epoch training process on the Deepship dataset.

From the loss curve, it can be observed that the network gradually
stabilizes after the 60th epoch. By examining the changes in precision,
recall, and accuracy on the validation set during the training process,
with smooth variations and the absence of overfitting, it can be
concluded that the proposed underwater acoustic target recognition
model, MGFGNet, demonstrates stability.

3.5.4 Robustness analysis of models.

To assess the robustness of MGFGNet, i.e., the extent to which
the model is affected by small variations in the data, we utilized
spectrogram features of MFCC and its derived characteristics. Due
to the high similarity between spectrograms of MFCC and its
derived features (Yang S. et al, 2023), this study thoroughly
compared the dependency of various models on different input
conditions based on spectrogram features of MFCC and its
derivatives, as illustrated in Figure 7.

It is evident that MGFGNet exhibits a relatively small disparity
in experimental accuracy when considering spectrogram features of
MEFCC and its derived characteristics. However, there is still some
improvement, indicating that MGFGNet can capture minor
variations in the derived features of MFCC without causing
significant predictive differences due to slight changes. This
validates the robustness of the model.
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Recognition accuracy of multiple models under MFCC, delta MFCC and double-delta MFCC features

ResNet18, DenseNet, and ViT models demonstrate comparable
recognition accuracy across these three different feature extraction
methods. In contrast, other models exhibit significant variations in
model responses under these three feature extraction methods,
indicating their reliance on features with high separability.

3.5.5 Generalizability analysis of the model

Due to varying predictive capabilities of models across different
variable domains (distinct real underwater acoustic datasets), it is
essential to assess the generalization performance of MGFGNet on
additional datasets. This study conducts experiments placing each
model under the experimental conditions defined in Sections 3.2
and 3.3, utilizing the shipsEar dataset. Detailed experimental results
are presented in Table 10.

Evidently, MGFGNet exhibits a recognition accuracy
surpassing all comparative models, achieving 99.5%. Furthermore,
it is observed that MGFGNet achieves a 100% recognition rate for
all categories except Class 1. This fact indicates a robust
generalization capability of the model.

Additionally, on the shipsEar dataset, the ResNet series, Efficient
series, and DenseNet also demonstrate strong performance, with
recognition accuracies exceeding 93%. It is noteworthy that, with the
involvement of CSPNet, DenseNet and ResNet18 show improved
recognition accuracy, exceeding 96%, validating their enhancement
in model feature extraction capabilities (Wang et al., 2020).

Finally, the MobileNet series performs poorly, with MGFGNet
surpassing the highest recognition accuracy within its series,
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MobileNetV2, by 12.2%, and outperforming the lowest accuracy
in MobileNetV3Small by 35%.

3.5.6 Scalability analysis

In order to further validate the scalability of MGFGNet on high-
resolution sonar images, this study conducted experimental
analyses, comparing MGFGNet with 16 other underwater
acoustic target recognition models on the high-resolution sonar
dataset SCTD. The recognition accuracy of each model is depicted
in Figure 8.

Clearly, MGFGNet’s recognition rate continues to surpass that
of all other models, confirming the model’s scalability. Due to the
interference of underwater background noise, which results in poor
separability between targets and background in sonar images
(Huang and Yang, 2022), the multi-gradient flow model proposed
in MGFGNet, based on CSPNet and MHSA, enhances the model’s
attention to targets (Wang et al.,, 2020; Han et al., 2021), ensuring
the retention of a substantial amount of relevant target information
during the feature extraction process. Additionally, further feature
enhancement and fusion through CAFM contribute to an improved
distinction between target foreground and background, effectively
enhancing the model’s recognition accuracy.

It is noteworthy that, as indicated in the performance and
parameter analysis in Section 4.2, under the same model
architecture, depth and recognition rate exhibit a proportional
relationship in underwater sonar image target recognition. For
instance, the recognition rates of the ResNet series and EfficientNet
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TABLE 10 Details of the models’s recognition Accuracy on the shipsEar dataset.

Model
ResNet18
ResNet34
ResNet50
ResNet101
EfficientNet_b0
EfficientNet_b1
EfficientNet_b2
EfficientNet_b3
DenseNet
CSPDenseNet
CSPResNet18
MobileNetV1
MobileNetV2
MobileNetV3-S
MobileNetV3-L
ViT

MGFGNet

Class 1

0.944

0917

0917

0.889

0.889

0.889

0.861

0.833

0.944

0.972

0.972

0.861

0.889

0.667

0.917

0.944

0.972

Class 2 Class 3 Class 4 Class 5
0.933 0.952 0.979 0.955
0.933 0.952 0.979 0.955
0.933 0.952 0.979 0.955
0.900 0.952 0.979 0.955
0.933 0.988 0.958 0.909
0.933 0.976 0.979 0.909
0.933 0.988 0.958 0.909
0.867 0.964 0.979 0.935
0.933 0.976 0.958 0.864

0.9 0.988 0.958 0.955
1 0.964 0.979 0.909
0.8 0.905 0.792 0.818

0.867 0.917 0.854 0.727
0.6 0.655 0.625 0.682

0.867 0.786 0.854 0.909

0.933 0.929 0.938 0.909
1 1 1 1

Bold font indicates the best-performing values within their respective columns.
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Al
0.954
0.950
0.950
0.941
0.950
0.950
0.945
0.931
0.950
0.964

0.968

0.873
0.645
0.845
0.875

0.995
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series validate this conclusion. Conversely, lightweight models such as
MobileNet perform poorly, with recognition rates not exceeding 73%,
once again confirming that MobileNet is not well-suited for
underwater acoustic target recognition scenarios.

3.5.7 Computational bottleneck analysis

Due to the challenges associated with acquiring underwater
acoustic datasets, the currently available open datasets are primarily
limited to two ship radiated noise datasets: Deepship and ShipsEar.
Given that the ShipsEar dataset comprises multiple ship types within
each category and has a limited data volume, we conducted
experiments with a substantial sample dataset extracted from
Deepship to examine MGFGNet’s recognition accuracy in relation
to dataset size and to identify potential computational bottlenecks.
This dataset, which was subject to preprocessing, included a total of
33,693 samples. Figure 9 presents the model accuracy of MGFGNet
for various training set sizes sourced from Deepship.

The numerical values in the dataset version indicate the
quantity of samples randomly chosen from each category in the
Deepship dataset to form the training set for model training, while
the test set configuration remained consistent with that presented in
Table 2. The results clearly show that as the training set sizes for
each category range from 100 to 800, the network model’s
recognition accuracy experiences rapid growth. Beyond the 800
mark, recognition accuracy tends to plateau, although there is still
noticeable improvement as the dataset size increases. Importantly,
no indications of encountering computational bottlenecks
were observed.

10.3389/fmars.2023.1306229

4 Conclusion

An underwater acoustic object identification model MGFGNet
based on multi-gradient flow global feature enhancement network
is raised in this article. Firstly, by embedding feature extraction
module into the target recognition network, the whole target
recognition network forms an end-to-end model with underwater
acoustic signal as input and classification result as output. Secondly,
the invention of Muti-grad block uses multi-gradient flow network
to obtain underwater acoustic signal features quickly and effectively,
reducing the quantity of model parameters and feature extraction
time. Then the CAFM module is used for multi-dimensional feature
fusion and feature enhancement to improve the effective
characteristic weight of underwater sound. Finally, the Taylor-
MCE Loss function is introduced, which enhances model
recognition accuracy and mitigates sample imbalance issues
within the binary cross-entropy loss. This is achieved by
incorporating low-order perturbation terms into the binary cross-
entropy loss to suppress sample imbalance components.
Consequently, the multi-class classification task is transformed
into a set of independent binary classification tasks, effectively
addressing the problem of dataset sample imbalance and
improving model recognition performance.

The experimental results show that on the Deepship and
ShipsEar underwater acoustic data sets, the feature extraction and
fusion methods raised in this article have better ability to represent
the original underwater acoustic signals. Compared with
mainstream underwater acoustic target recognition models such
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FIGURE 9
Details of the recognition Accuracy of the model on different versions of the Deepship dataset
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as ResNet and EfficientNet, the recognition accuracy of MGFGNet
was greatly improved, and the inference time was greatly reduced.
MGFGNet network has simple structure and few parameters, which
can meet the requirements of end-to-end high precision and low
latency in underwater acoustic target identification.

The experimental results of the model proposed in this article
have the following potential implications for current underwater
target recognition models:

Firstly, our feature extraction and fusion methods have
demonstrated that traditional spectrogram-based feature extraction
methods are better suited for representing the raw underwater
acoustic features. This suggests that current methods for extracting
underwater target features, such as those based on signal analysis and
bio-inspired features, can be effectively combined with computer vision’s
feature enhancement techniques (e.g., channel and spatial feature
enhancement methods) to further enhance feature representation.

Secondly, the design and experimentation with the Multi-grad
block in our proposed classifier have shown that multi-gradient flow
networks can better extract deep abstract features of the model while
reducing the number of model parameters. This enables underwater
target recognition models to depart from the mainstream design
pattern of extracting effective features for underwater targets solely
through convolution and residual network stacking.

Furthermore, the design of the CAFM in our proposed classifier
has demonstrated that incorporating feature fusion and
enhancement modules before the classification module in the
classifier can significantly enhance the model’s recognition
accuracy. This enhancement may be related to feature loss during
the extraction of effective features before classification and the
numerical loss during the normalization process, as this process
lacks specific loss control. This can lead to similarities between
foreground and background values, making it difficult for the model
to effectively recognize the target foreground. Subsequent research
can focus on designing feature fusion and feature enhancement
modules to improve the distinguishability between target
foreground and background.

Lastly, the loss function designed in this paper was explored using
the Taylor series, revealing factors influencing the loss function’s
functionality, such as lateral shifting to address sample imbalance and
boosting model recognition accuracy through low-order terms in the
Taylor expansion of the function. This enables future research to
introduce fewer hyperparameters while gaining more benefits,
providing a reference for subsequent studies and better explaining
the underlying physical meaning of the loss function.

Additionally, the experimental results of the model proposed in
this paper open up potential avenues for future research:

1. Deep learning-based underwater target recognition models
have encountered certain bottlenecks, primarily due to
their reliance on convolution and residual network
stacking, which can lead to limitations in accuracy. The
model design approach presented in this paper transforms
traditional underwater target recognition into underwater
image target recognition, broadening the model
construction methods. In the future, lightweight module
design methods from computer vision and ideas for feature
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enhancement and fusion based on the characteristics of
underwater feature images can be introduced to enhance
the model’s efficiency and recognition accuracy, enabling
real-time applications.

2. Existing underwater target recognition models mainly employ
multi-class classification, but empirical evidence suggests that
converting traditional multi-class tasks into multiple binary
classification tasks is more suitable for underwater target
recognition. Therefore, future research can delve into
designing more effective underwater target recognition
models based on multiple binary classification tasks that
align with the physical characteristics of underwater sound.

3. Current research primarily focuses on building underwater
target recognition models, with limited attention to loss
function research. Traditional classification loss functions
are primarily designed for object image classification and
may not be highly adaptable to underwater target feature.
Future research can focus on designing loss functions that
better align with underwater target features based on the
physical characteristics of underwater targets.
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Traditional direction of arrival (DOA) estimation algorithms typically have poor
spatial resolution and robustness. In this paper, we propose a broadband high-
resolution DOA estimation method based on the generalized weighted Radon
transform (GWRT). The array signal can be converted into the frequency-
wavenumber (f-k) domain using the conditional wavenumber spectrum
function (CWSF). Then, a linear integral mathematical model for high-
resolution DOA estimation is derived by transforming the f-k domain into the
azimuth-energy domain using the GWRT. Computer simulation and sea trials
were conducted to validate the feasibility and performance of the proposed
method. The results obtained indicate that the proposed method yields a lower
sidelobe level and can more effectively suppress the output energy in the non-
target direction when compared to the conventional beamforming (CBF),
steered minimum variance (STMV), and deconvolution (DCV) methods. Further,
the proposed method provides improved spatial resolution and robustness in a
multi-target environment.

KEYWORDS

direction of arrival estimation, generalized weighted Radon transform, broadband
signal, high-resolution, low sidelobe levels

1 Introduction

Target azimuth is an important parameter for the identification, detection, positioning,
and tracking of underwater targets (Luo and Shen, 2021; Chen et al., 2023; Xie et al., 2023;
Zhao et al., 2023). Array signal processing has been shown to be effective for the direction of
arrival (DOA) estimation. The methods can be classified as traditional beamforming,
subspace-based, deconvolution (DCV), and transform domain.
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The most commonly employed traditional beamforming
method is the conventional beamforming (CBF). However, CBF
has the disadvantages of wide beamwidths and poor spatial
resolution due to the Rayleigh limit. Several high-resolution
methods have been proposed to overcome these such as the
maximum entropy algorithm (Burg, 1975) and the minimum
variance distortionless response (MVDR) algorithm (Capon,
1969). These methods improve the spatial resolution but suffer
from poor performance when used to detect broadband signals in
actual ocean environments. This is because they are sensitive to
signal mismatch and cannot estimate the DOA of coherent sound
sources (Somasundaram, 2012). The steered minimum variance
(STMV) algorithm was proposed to overcome these problems
(Krolik and Swingler, 1989). STMV has better spatial resolution
for coherent acoustic sources and fast convergence, but poor
robustness (Somasundaram et al., 2015). The Rayleigh limit was
overcome with the subspace-based algorithm multiple signal
classification (MUSIC) (Schmidt, 1986). Subsequent subspace-
based algorithms such as estimation of signal parameters via
rotational invariance techniques (ESPRIT) (Roy and Kailath,
1989), root-multiple signal classification (RMUSIC) (Rao and
Hari, 1989), maximum likelihood (ML) (Stoica and Nehorai,
1989), and weighted subspace fitting (WSF) (Bengtsson and
Ottersten, 2001) provide improved performance but have
sensitivity and snapshot deficiency problems when used in
practical applications (Baggeroer and Cox, 1999). Another issue is
that the number of acoustic sources is usually unknown and this
makes it difficult to estimate the signal and noise subspaces.
Further, existing algorithms can only be used to estimate DOA
for incoherent or weak-coherent acoustic sources, making detection
of coherent signals difficult in the actual ocean environments.

The above algorithms are either sensitive to array element
errors or limited to array aperture. Various studies on the
formation structure have been introduced to improve the
performance of the algorithms (Zhang et al., 2021; Zhou et al,
2022; Yang, 2023; Ye et al, 2023). Additionally, in recent years,
there has been a growing focus on researching robust high-
resolution beamforming algorithms. Deconvolution (DCV)
algorithms have attracted widespread attention for underwater
acoustic applications. DCV was initially considered with both
uniform linear arrays and circular arrays (Yang, 2017; Yang,
2018). It was shown that the performance is better than CBF. The
super-directivity performance of DCV with a small-sized array was
verified using the SwellEx96 horizontal array (Yang, 2019).
However, these DCV methods are only suitable for arrays with a
shift-invariant point spread function (PSF) beam pattern, such as a
horizontal line array or circular array. Therefore, new DCV
methods were developed for shift-variant PSF beam patterns. A
DCV method based on non-negative least squares (NNLS) and an
improved NNLS method called extended Richardson-Lucy (Ex-RL)
were presented which provide high resolution, robustness, and
excellent array gain (Sun et al,, 2019; Sun et al., 2020).

Transform domain methods were originally developed to
estimate seismic wave velocity and azimuth (Cheng et al., 2018).
More specifically, the frequency-wavenumber (f-k) power spectrum
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can be obtained using the space-time two-dimensional Fourier
transform of the seismic signal. Then, the f-k power spectrum can
be converted into the transform domain to extract the velocity and
azimuth of the waves. While transform domain methods have been
widely used in seismic exploration (Zywicki and Rix, 1999), there
have been few DOA estimation applications. The least squares line
fitting (LSLF) algorithm was employed to obtain the slope of the
local peak-energy line in the f-k domain and then the sum of the
points on this line was used as an estimate of the energy output of
the azimuth spectrum (Li et al., 2019). However, this method is
sensitive to outliers in the image since it minimizes the sum of the
squares of the distances from the points to the line. Thus, the
performance can be degraded significantly, particularly in low
signal-to-noise ratio (SNR) environments or when there are
multiple adjacent targets. In this paper, a broadband high-
resolution DOA estimation method based on the generalized
weighted Radon transform (GWRT) is proposed. The array signal
is converted into the f-k domain by solving the conditional
wavenumber spectrum function (CWSF) and then the
mathematical relationship between the spatial distribution of
broadband signal energy in the f~k domain and target azimuth is
obtained. To improve performance, image gradient information is
utilized as weights for the GWRT, and a linear integral
mathematical model is derived by the GWRT processing in the f-
k domain. The resulting model contains the complete image
information in the fk domain. This is then converted into the
azimuth-energy domain to realize high-resolution DOA estimation.
The proposed method does not require prior knowledge of the
number of sources or signal pre-estimation. In addition, it is not
sensitive to outliers in the image and the results in the f-k domain
provide higher transform gain and better robustness. Both
simulation and sea-trial experiments are conducted to validate the
proposed method. The results obtained indicate that the proposed
method has better performance and offers several advantages
compared with existing approaches as follows.

1. The proposed method produces a narrow mainlobe width
similar to, or better than, many commonly used high-
resolution methods such as STMV and DCV.

2. The proposed method produces lower sidelobe levels than
the CBF, STMV, and DCV methods.

3. The proposed method has better robustness to position
errors compared to the STMV and DCV methods.

4. The proposed method exhibits good performance when
there are multiple targets and when the target signal
is weak.

The remainder of this paper is organized as follows. Section 2
introduces the broadband signal model and DOA estimation using
the CWSF is presented. In Section 3, we derive the expression of the
mathematical model for DOA estimation using GWRT. The
performance of the proposed method is evaluated via simulation
and compared with other DOA methods in Section 4. The results of
the sea-trial experiments are given in Section 5. Finally, Section 6
provides a summary of the paper.
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2 Signal modeling

We consider a linear sensor array with M receivers uniformly
spaced at a distance d. The signal is assumed to be from a
broadband source located at the far field of the array. This signal
has alook direction 6 and arrives at the array as a plane wave. Then,
0 is the azimuth angle of the target, which is defined as the
anticlockwise angle between the horizontal array and the target as
shown in Figure 1. Therefore, the signal received by element m at
time f can be expressed as

X (£) = @y () + 1y, (2) 1

M, s(t) is the incident signal, n,,(t) is the
noise received by element m, which is uncorrelated with s(¢),

where m=1,2,---,

a,, is the array manifold factor of element m which is equal to
exp(j2nf(m—1)dcos 6/c), and f and ¢ are frequency and the
speed of sound, respectively.

As the actual data processing is based on a discrete-time model,
the received signal should be sampled at f;. Therefore, the signal
received by element m can be expressed as

(D) = %0 (Oiyyps 1= 1,4, L (2)

where L is the number of samples which is an integer. The discrete
Fourier transform (DFT) of x,(I) gives the corresponding
frequency spectrum

X (f) = L 3F x0T 3)

Then, the frequency-wavenumber spectrum of the received

signal can be obtained by applying the DFT to X,, (f) with Q points
in the spatial domain as

1(kf) = & SeaXin (Fe 772
]ZIIf(m 1)d cos 6
o) Em 1 {S (f)e ¢
where k is the wavenumber which is an integer in the range -
Q/2 < k < Q/2,Qisan integer with Q > M, S(f) is the frequency
spectrum of s(t), N, (f) is the frequency spectrum of n,,(t).

et e

1 2 3

Uniform linear array geometry.
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From Equation (4), the frequency-wavenumber power spectral
density can be expressed as

Wk f) = Jim E{I"(e )10/}
’sin[nM(fdcos 0/[:—6)} ’ o> (5
+

’Qsin[n’(fdcos@/c—%)} Q@

where E{-} denotes expectation, superscript H denotes conjugate

= IS¢

transpose, and 62 is the noise power. The frequency power spectra

¥ (f) can be expressed as

V() = 3, k). (6)

To mitigate the impact of high-frequency attenuation and
enhance the outcomes of high-frequency components within ¥
(k,f), the CWSF (Beall et al,
conditional wavenumber spectral density ¥(k|f) from Equations
(5) and Equations (6). ¥(k|f) can be expressed as

1982) is employed to derive the

¥ (k.f)
Y(klf) =
k) = e
o sHP w(fdcos 6 _£> 2+ o’
M(IS(HI + 6?) ¢ QJl (S + o)
(7)
where @(v) = | B‘fo(]\;") | is a periodic function with period 1. It is

symmetric about v = 0, and has its maximum value when v =0.
The first zero points of @w(v) are vy = £1/M, hence the mainlobe
width is 2/M.

In this paper, we only consider @w(v) for a single cycle. From
Equation (7), ¥(k[f) has its maximum value when v = fdcose k=0,
and mainlobe width 2Q/M. Figure 2 gives ¥(k|f) for a broadband
signal. This shows that the target energy is concentrated in the
mainlobe, and the peak-energy points in the mainlobe are on a
straight line r passing through the origin. The slope ¢ of the line

r can be expressed as € = % = M . Therefore, € is a linear function
of cos 6.

3 DOA estimation method based
on GWRT

As mentioned above, 8 can be accurately estimated using the
slope of the line r in ¥/(k|f), thus realizing high-resolution DOA
estimation. However, there will be sidelobels and perhaps outliers in
W(k[f) due to the windowing effect of the DFT and the random
fluctuation noise which makes determining r difficult. To solve
these issues, morphological grayscale reconstruction is used to
extract regional maxima in ¥(k|f) and obtain the reconstructed
matrix W, (k|f) (Vincent, 1992; Vincent, 1993). This method
utilizes erosion and dilation operations based on a structuring
element to reconstruct or eliminate specific regions in an image,
which removes most of the outliers and significantly reduces
the sidelobes.

The generalized Radon transform (GRT) is commonly used to
extract information from images (Radon, 1986; Hansen and Toft,
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FIGURE 2
¥ (k|f) for a broadband signal.

1996; Ramm and Katsevich, 2020; Sun et al., 2021). However, it only
considers amplitude information and ignores gradient information,
which is not ideal. Image gradients provide the rates and directions
of change for the pixels, which is useful information. Therefore, we
propose a method based on the GWRT to achieve the integration of
a multivariate function over a given path. Compared with the GRT,
the GWRT makes full use of the image gradient information as its
weights, thus providing better results. For a two-dimensional
Euclidean space, the GWRT can be defined for a continuous
image as (Alpatov et al., 2015)

Uweighted(P) = .[.[(x,y)Ec(p) <V(I)(x, )’), i >2 dxdy (8)

where p is a vector containing the parameters of the line,
and c(p), (x,y), and ¢(x,y) are, respectively, a known line,
space coordinates, and the intensity of points on a line in the
two-dimensional image ¢.V, ( ), and 7 in Equation (8) are,
respectively, the gradient operator, scalar product operation, and
the unit normal vector which is perpendicular to the line c(p). As
the transform will be obtained from discrete-time data, the
GWRT in discrete form is used rather than the integral form.
The GWRT of ¥, (k|f) in discrete form can be expressed as

‘min

Uneghea(©) = S S0 (V o (1 = of = 2429),5)"(9)

where f;, and f,.. are the lower and upper limits of frequency
employed, respectively, with f;... < ¢/2d. Equation (9) converts
W,ew(klf) into a one-dimensional matrix Uyeighted (6) Which reflects
the energy distribution related to the parameter 6. The position of
the maximum value of Uyigniea(6) is the DOA estimation.

As mentioned above, the slope of the peak-energy line in ¥ (k|f) is a
function of the signal direction 6. Therefore, the lines in ¥ (k|f) must be
discernible so targets from different directions can be distinguished. In
other words, the difference in coordinates on the k-axis for  f;., must be
equal to or greater than the mainlobe width of ¥ (k|f) which means

f““‘de(cos 6, —cos 6,) > % (10)
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where cos 6, and cosf, represent the directions of two targets.
Then, the difference in directions should satisfy

cos @, —cos B, > Mﬁfaxd. (11)

Equation (11) is a function of f;,,,, so this frequency should be
large to obtain high-resolution performance. Note that the
mainlobe of ¥, (k|f) will be much narrower than that of ¥(k|f)
due to the morphological grayscale reconstruction operation.
Therefore, the resolution of the GWRT will be less than m,
which confirms that the proposed method has high-
resolution performance.

The steps of the proposed method are as follows.

1) Obtain Y(k|f) using Equtaions (1-7).

2) Perform morphological grayscale reconstruction to obtain
the matrix ¥, (k[f).

3) Compute the GWRT of ¥, (k|f) to convert the image
information in the f-k domain into the azimuth-energy
domain to realize high-resolution DOA estimation.

4 Simulation analysis

The performance of the proposed method is evaluated for a
scalar towed array measurement system. Consider a line array of 32
receivers uniformly spaced at a distance d=0.25 m. The proposed
method is compared with three commonly used DOA estimation
methods, namely CBF, STMV, and DCV.

4.1 Single source

Consider a broadband target located in the direction of the
array with cos 6 = 0.5. The target signal is a broadband noise and is
assumed to have random amplitude and phase. The broadband
spectrum is between 1500 Hz and 3000 Hz, and f; = 20 kHz. The
direction scanning range is cos 6 € [-1, 1], the scanning interval is
1/1800 rad, and Q=256. The SNR is 10 dB, and the noise is assumed
to be isotropic and uncorrelated at the receivers. ¥(k|f)
and W, (k|f) obtained using Steps 1 and 2 in Section 3 are
shown in Figures 3A, B, respectively.

Comparing Figures 3A, B reveals that ¥,.,(k|f) is more
prominent and the mainlobe width is narrower. This confirms the
improvement due to morphological grayscale reconstruction. The
DOA estimation results obtained from the GWRT of ¥, (k|f) are
given in Figures 3C, D for SNRs 10 dB and -10 dB, respectively.
These results show that all methods can accurately estimate the
direction of the target for both SNR values. The sidelobe levels
increase as the SNR decreases, but the proposed method still
exhibits the lowest sidelobe levels. The GWRT method also has a
narrower mainlobe width than the CBF and STMV methods, and it
is similar to that of the DCV method. Therefore, the GWRT method
has the advantages of lower sidelobe levels and narrower mainlobe
which will result in better performance.
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4.2 Sensitivity to position errors

Sensitivity to signal mismatch is an important consideration for
DOA estimation methods. In this section, the performance
degradation due to signal mismatch is evaluated with random
position errors for the receivers. Figure 4A gives the actual
receiver positions in the line array (denoted by *) and the
erroneous positions (denoted by o). The position errors have a
mean of 0.04 m which can be considered worst case. It is assumed
that these errors are unknown and DOA estimation is conducted
assuming a straight line array. The other simulation conditions are
the same as above. The corresponding DOA estimation results are
given in Figure 4B for an SNR of 10 dB.

Compared to Figure 3C, these results show that the sidelobe
levels increase with position errors. The STMV method has the
greatest performance degradation, and the DCV method has false
peaks which may significantly affect the estimation accuracy. The
GWRT method still has the lowest sidelobe levels and so has good
robustness even with position errors.
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4.3 Multiple sources

To further evaluate the proposed method, the performance with
three targets is now obtained. The three broadband targets are
located at the far field of the array with directions cos 6 = —0.05,
cos 0 = 0.05, and cos 0 = 0.2. The SNRs of these targets are -5dB,
10dB and -5dB, respectively. The other simulation conditions are
the same as above. Figure 5A presents Y(k|f) and the DOA
estimation results are shown in Figure 5B.

These results indicate the CBF and STMV methods only
identify the second and third targets. This is because the
directions of the first and second targets are close and the energy
difference is large. The DCV and GWRT methods are able to
distinguish all three targets. Although these methods have similar
mainlobe widths, the former method produces false peaks and has
higher sidelobe levels, making it easy for weak targets to be missed.
The peak-energy lines in Figure 5A corresponding to the first and
third targets are barely distinguishable due to the strong
interference from the second target. However, the proposed
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method uses information in the azimuth-energy domain which
confirms the advantages of the GWRT. Therefore, the proposed
method herein has excellent anti-jamming capability and high-
resolution performance even with multiple targets having
different SNRs.

4.4 DOA estimation versus SNR and
array size

The performance of the proposed method is now evaluated for
different SNRs and numbers of array elements. The other
simulation conditions are the same as in Section 4.1.

4.4.1 Effect of SNR

An increase in noise and/or interference affects the sidelobe
levels and so can degrade performance as noise suppression and
interference discrimination are determined by these levels (Ma
etal., 2021). In this section, the highest sidelobe level in the azimuth
spectrum and the root mean square error (RMSE) of the estimated
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-128  -64 0 64 128
k

FIGURE 5

azimuth are considered as the SNR varies from -10 dB to 10 dB. The
RMSE of the estimated azimuth is calculated as

RMSE = /1 3V (6; - 6)

where J is the number of Monte Carlo trials, and 6 ; and 0 are the

(12)

estimated azimuth for the jth independent experiment and the true
orientation of the target, respectively. The scanning interval is 1/
18000 rad herein. The average results for 100 Monte Carlo trials are
given in Figure 6. Figure 6A shows that the highest sidelobe level
decreases with increasing SNR for all four methods. For SNR>5dB,
the highest sidelobe level with the CBF method is around -13 dB,
and the performance of the STMV method is slightly worse than
with the DCV method. The sidelobe levels with the GWRT method
are lower than the other methods for all SNR values, and at least 4
dB less than with the DCV method which is the second best. The
SNR in underwater acoustic applications is often low so the
proposed method is preferable. Additionally, the Cramér-Rao
bound (CRB) (Feng and Huang, 2007) is included as a reference
for DOA estimation performance, as shown in Figure 6B. The

—— GWRT
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e DCV

30 A dAnd At
;

A R T
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DOA estimation results for multiple sources. (A) ¥(k|f). (B) Azimuth spectrum.
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RMSE of the GWRT method is smaller in comparison to the DCV
and STMV methods, with only a slight increase relative to the
CBF method.

4.4.2 Effect of the number of array elements

Angle resolution is the smallest angle difference between the
directions of two targets and is an important criterion in evaluating
DOA estimation methods. The angle resolution A8 of the four
algorithms was evaluated for different numbers of array elements
and frequency bands. The number of elements varies from 12 to 36,
and the frequency bands are 2500 Hz to 3000 Hz and 1500 Hz to
3000 Hz, respectively. The average angle resolution for 100 Monte
Carlo trials for an SNR of 10 dB is given in Figure 7. This shows that
the angle resolution improves with an increase in the number of
elements with all four methods. The DCV method exhibits the
highest resolution, followed by the GWRT method and the STMV,
all of which outperform the CBF. Comparing Figures 7A, B
indicates that the performance of the STMV method is severely
degraded with a wider frequency band. The main reason is that the

—#*— GWRT

K
36

18 24 30
Number of array elements

FIGURE 7

covariance matrix is obtained by averaging the covariance matrices
for each frequency point, and increasing the number of frequency
points decreases the accuracy of this matrix and thus the angle
resolution. However, the GWRT method has better robustness with
broadband signals. Furthermore, as discussed in Section 3, the
resolution of the GWRT can be less than
consistent with these results.

2C . .
T which is

5 Sea-trial results

To evaluate the performance of the proposed method in
practical applications, DOA estimation results were obtained for a
towed line array with 32 elements uniformly spaced at 2 m. The
experiments were conducted in Huanghai Sea, China in the summer
of 2014. The water depth was approximately 40 m and the towed
array was about 20 m above the sea floor. The recorded data
suggests that the received signals include signals from passing
vessels, experimental vessels, and the broadband pulses

0.05
K

0
12 18 24 30 36

Number of array elements

The angle resolution versus the number of array elements for two frequency bands and four methods. (A) 2500~3000Hz. (B) 1500~3000Hz
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transmitted by the experimental vessels. The sampling frequency
was equal to 8 kHz, with a total of 120 data frames, each comprising
4096 samples. The data within the frequency range of 1500 to
3000 Hz was processed using the CBF, STMV, DCV, and GWRT
methods and the bearing time records (BTRs) are given in Figure 8.
Additionally, the low-frequency analysis and recording (LOFAR)
for the data from one element is shown in Figure 9.

The BTRs for the CBF method in Figure 8A show that due to
the Rayleigh limit and the ambient ocean noise, the mainlobe width
for each target is relatively wide so it is not possible to distinguish
the targets located in the directions around cosf =0.78 and
c0s0=0.88. Figure 8B indicates that the STMV method has a
narrower mainwidth but still fails to distinguish the two targets.
The BTRs for the DCV and GWRT methods in Figures 8C, D,
respectively, have much clearer backgrounds than with the CBF and
STMV methods. The target trajectories are clearly distinguishable
with a much narrower mainlobe width for each target. Figure 8 also
shows a set of broadband pulse signals in the direction of around
cos 0 = 0.30. There are two clear focused points in the red circle in
Figure 8D which are not as well distinguished by other methods.
This indicates that the GWRT method has a lower background

:
!
$
:
.
t

cosf

FIGURE 8
BTRs for four methods. (A) CBF. (B) STMV. (C) DCV. (D) GWRT.
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noise level and thus better weak target detection and anti-
interference capability.

Figure 10 gives the BTRs for the four methods at 60 s. These
results indicate that the target located in the direction of around
cos 8 = 0.78 cannot be distinguished by the CBF and STMV
methods due to the strong inference from the target located in
the direction of around cos 0 = 0.88. Conversely, both the DCV
and GWRT methods clearly distinguish these targets. The GWRT
method has a mainlobe width similar to that of the DCV method
but the sidelobe levels are lower. Thus, it is better able to suppress
the interference due to strong targets and noise which makes it
easier to detect weak targets. Therefore, the proposed method
provides better high-resolution performance in multiple
target environments.

6 Conclusion

A generalized weighted Radon transform to estimate the DOA
for broadband targets was proposed. The GWRT was used on the
conditional wavenumber spectrum density to convert image
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information in the f-k domain to the azimuth-energy domain for
high-resolution DOA estimation. Simulation and sea-trial results
were presented which show that the proposed method is simple and
effective and does not require a priori information. It is not sensitive
to the outliers and thus provides good robustness even with position
errors. Furthermore, it produces a narrow mainlobe with low
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Introduction: In shallow-water environments, the reliability of underwater
communication links is often compromised by significant multipath effects. Some
equalization techniques such as decision feedback equalizer, and deep neural
network equalizer suffer from slow convergence and high computational complexity.

Methods: To address this challenge, this paper proposes a simplified decision
feedback Chebyshev function link neural network equalizer (SDF-CFLNNE). The
structure of the SDF-CFLNNE employs Chebyshev polynomial function
expansion modules to directly and non-linearly transform the input signals into
the output layer, without the inclusion of hidden layers. Additionally, it feeds the
decision signal back to the input layer rather than the function expansion
module, which significantly reduces computational complexity. Considering
that, in the training phase of neural networks, the random initialization of
weights and biases can substantially impact the training process and the
ultimate performance of the network, this paper proposes a chaotic sparrow
search algorithm combining the osprey optimization algorithm and Cauchy
mutation (OCCSSA) to optimize the initial weights and thresholds of the
proposed equalizer. The OCCSSA utilizes the Piecewise chaotic population
initialization and combines the exploration strategy of the ospreywith the
Cauchy mutation strategy to enhance both global and local search capabilities.

Rseults: Simulations were conducted using underwater multipath signals
generated by the Bellhop Acoustic Toolbox. The results demonstrate that the
performance of the SDFCFLNNE initialized by OCCSSA surpasses that of CFLNN-
based and traditional nonlinear equalizers, with a notable improvement of 2-6 dB
in terms of signal-to-noise ratio at a bit error rate (BER) of 10—4 and a reduced
mean square error (MSE). Furthermore, the effectiveness of the proposed
equalizer was validated using the lake experimental data, demonstrating lower
BER and MSE with improved stability.
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Discussion: This underscores thepromise of employing the SDFCFLNNE
initialized by OCCSSA as a promising solution to enhance the robustness of
underwater communication in challenging environments.

KEYWORDS

decision feedback equalizer, Chebyshev function link artificial neural network, sparrow
search algorithm, osprey optimization algorithm, chaotic mapping, Cauchy mutation

1 Introduction

The shallow water acoustic environment is complex and
changeable, which often exhibits intricate signal multipath effects
and Doppler frequency shifts (Stojanovic and Preisig, 2009; Huang
et al., 2018). The multipath propagation of underwater acoustic
(UWA) signals originates from the effects of acoustic boundaries
(such as reflection from the water surface and seabed), refraction
caused by the non-uniformly distributed dissound speed in the
water, as well as scattering from particles. The complex multipath
results in significant signal time spreading, thereby causing severe
intersymbol interference. In typical shallow water acoustic
communications, intersymbol interference may span over
hundreds of symbols. Consequently, at the receiver end, it is
essential for the channel equalization to possess strong adaptive
channel tracking capabilities (Song et al., 2006; Wang et al., 2021).
This poses a significant challenge for reliable and efficient UWA
communication (Zhang et al., 2018).

To combat intersymbol interference caused by time-varying
multipath propagation, extensive research has been conducted on
various channel equalization techniques. Single-carrier schemes
and time-domain equalization techniques offer high spectral
efficiency and robustness, albeit at the cost of high receiver
complexity (Stojanovic and Preisig, 2009; Zhang et al., 2018). The
proposed adaptive step-size least mean square performs well for
many channel types, but for certain complex non-stationary UWA
channels, the rapid tracking capability of recursive least square is
essential (Freitag et al., 1997). To achieve reliable coherent
communication over UWA channels, a receiver was designed
which combines the recursive least square algorithm with a
second-order digital phase-locked loop for carrier synchronization
and performs fractionally spaced decision feedback equalization of
the received signals. The parameters of this receiver are adaptively
adjusted (Stojanovic et al, 1994). An adaptive nonlinearity
(piecewise linear) was introduced into the channel equalization
algorithm and its effectiveness was demonstrated through highly
realistic experiments conducted on real-field data as well as accurate
simulations of UWA channels (Kari et al., 2017). In recent years, in
order to alleviate propagation errors, expedite convergence speed,
and further enhance receiver performance, there has been growing
research on adaptive turbo equalization (He et al., 2019; Xi et al,,
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2019; Qin et al., 2020). Considering the sparsity inherent in UWA
channels, sparse matrices have been utilized to construct sparse
equalizers, aiming to achieve faster convergence and lower error
rates (Xi et al, 2020; Wang et al,, 2021; Wang et al, 2021).
Additionally, the equalization challenges in an impulsive
interference single-carrier modulation system based on a
parameterized model are addressed, and a two-step equalization
algorithm is proposed (Ge et al., 2022). The robust equalization for
single-carrier underwater acoustic communication in sparse
impulsive interference environment was proposed (Wei et al,
2023). This algorithm is based on the framework of variational
Bayesian inference and possesses the unique capability of
simultaneously accounting for the sparsity inherent in the
channel and impulse interference. At the same time, several
waveform design (Zhu et al., 2023) and enhanced receiver
schemes (Zhang et al., 2021; Liu et al., 2023) were proposed to
further address inter-symbol interference and multipath
propagation issues. However, the complex multipath effect of the
UWA channels contributes to the slow convergence rate and
extensive computational requirements of traditional equalization
algorithms. As a result, there is substantial room for improvement
in UWA communication systems.

In recent years, machine learning techniques have garnered
attention across various fields. Particularly, deep learning (DL)
technology holds tremendous potential for addressing non-
parametric problems such as object detection and recognition
(Tsai et al., 2013), speech recognition (Zhang and Wang, 2016),
target tracking (Milan et al., 2017), wireless communication (Wang
et al.,, 2017; Ma et al., 2018; van Heteren, 2022; Mishra et al., 2023).
In order to reduce the computational costs of traditional equalizers,
machine learning-based equalizers have been introduced to mitigate
intersymbol interference. Channel equalization can be viewed as a
classification problem, where the equalizer is designed as a decision
device with the motivation to classify the transmitted signals as
accurately as possible (Zhang and Yang, 2020). Gibson et al.
introduced an adaptive equalizer employing a neural network
architecture based on multilayer perceptrons (MLP) to counter
intersymbol interference on linear channels with Gaussian white
noise (Gibson et al., 1989). Chang et al. proposed a neural network-
based decision feedback equalizer (DFE) that obviates the need for
time-consuming complex-valued backpropagation training
algorithms (Chang and Wang, 1995). Gao et al. demonstrated
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that in underwater digital communication scenarios, their proposed
blind equalizer achieves faster convergence speed and smaller mean
square error (MSE) compared to original MLP-based equalizers
that require training data (Gao et al., 2009). Zhang et al. proposed
a DL-based time-varying UWA channel single-carrier
communication receiver to adapt to the dynamic characteristics
of UWA channels. The receiver operates in an alternating mode
between online training and testing (Zhang et al., 2019b). Zhang
et al. introduced a DL-based UWA communication orthogonal
frequency-division multiplexing receiver. A stack of convolutional
layers with skip connections effectively extracts meaningful features
from the received signal and reconstructs the original transmitted
symbols (Zhang et al., 2022). Radial basis function (RBF) neural
networks have garnered the attention of many researchers due to
their simple structure and high learning efficiency, and have been
utilized for addressing channel equalization issues (Lee and Sankar,
2007; Guha and Patra, 2009; Ning et al., 2009).

However, with a higher channel order, a greater number of RBF
centers are required, ultimately resulting in an excessive
computational burden. To overcome these drawbacks of MLP
and RBF, another novel single-layer neural network, known as
the Functional Link Neural Network (FLNN), was proposed by
Paul. Due to the non-linear processing of signals in the FLNN, it can
generate arbitrarily complex decision regions (Patra et al., 1999).
This network features a simple structure with only input and output
layers, and the hidden layer is entirely replaced by non-linear
mappings. These mappings are introduced through the expansion
of input patterns using trigonometric polynomials and other basis
functions like Gaussian polynomials, orthogonal polynomials,
Legendre polynomials, and Chebyshev polynomials (Burse et al.,
2010). The FLNN increases the dimensionality of the input signal
space by a set of linearly independent non-linear functions, thus
reducing computational load and allowing for straightforward
hardware implementation (Patra et al., 2008; Zhang and Yang,
2020). Moreover, research indicates that non-linear equalizers
based on FLNN outperform MLP, RBF, and PPN equalizers in
terms of MSE, convergence rate, bit error rate (BER), and
computational complexity (Patra et al, 1999). Lee et al.
introduced a Chebyshev Neural Network for static function
approximation, which is more computationally efficient than
trigonometric polynomials when expanding the input space for
extended static function approximation and non-linear dynamic
system identification (Lee and Jeng, 1998). Patra et al. have
employed Chebyshev Functional Link Neural Networks (CFLNN)
for channel equalization of four quadrature amplitude modulation
signals (Patra and Kot, 2002; Patra et al., 2005). Hussain combined
traditional DFE with FLNN, proposing a Decision Feedback
Functional Link Neural Network Equalizer (DFFLNN) (Hussain
et al., 1997). Building upon this, they introduced a Chebyshev
orthogonal polynomial cascaded FLNN for non-linear channel
equalization (Zhao and Zhang, 2008) and an adaptive DFE based
on the combination of the FIR and FLNN (Zhao et al., 2011).
Moreover, Convolutional Neural Network (He et al., 2023),
Recurrent Neural Networks (Kechriotis et al., 1994; Chagra et al.,
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2005; Xiao et al., 2008; Zhao et al., 2010; Li et al., 2021; Qiao et al.,
2022), Fuzzy Neural Networks (Heng et al., 2006; Chang and Ho,
2009; Chang and Ho, 2011), Extreme Learning Machines (Yang
et al.,, 2018; Liu et al., 2019), Wavelet Neural Networks (Xiao and
Dong, 2015), Support Vector Machines (Zhang et al., 2019a), other
neural network models and Deep Reinforcement Learning (He and
Tao, 2023) have been employed for channel equalization.

Swarm intelligence optimization algorithms are a class of bio-
inspired algorithms inspired by the behavioral patterns of certain
social organisms in the natural world. The central idea is to conduct
both global and local searches within a solution space to find
optimal solutions. These algorithms provide a new approach to
solving complex problems without centralized control or a global
model. In recent years, new swarm intelligence optimization
algorithms have continuously emerged. Scholars have drawn
inspiration from the behavior of various animals such as ants,
wolves, birds, moths, whales, sparrows, and more to propose a series
of swarm intelligence optimization algorithms, including the
Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart, 1995), the Grey Wolf Optimization (GWO) algorithm
(Mirjalili et al., 2014), the Whale Optimization Algorithm (WOA)
(Mirjalili and Lewis, 2016), the Bald Eagle Search (BES) algorithm
(Alsattar et al., 2020), the Sparrow Search Algorithm (SSA)
(Xue and Shen, 2020), the Cooperation Search Algorithm (CSA)
(Feng et al., 2021), artificial gorilla troops optimizer(GTO)
(Abdollahzadeh et al., 2021), white shark optimizer(WSO)(Braik
et al., 2022), dung beetle optimizer(DBO)(Xue and Shen, 2023) and
Osprey Optimization Algorithm(OOA)(Dehghani and Trojovsky,
2023). The Sparrow Search Algorithm (SSA) was first introduced by
Xue et al. in 2020 (Xue and Shen, 2020). In comparison to other
algorithms, SSA offers several advantages, including fast
convergence, strong optimization capabilities, and a wider range
of application scenarios. As a result, SSA has garnered the atten<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>