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Editorial on the Research Topic

Spotlighting the interaction network of hub genes, molecules, and cells
in the tumor immunemicroenvironment (TIME) and their contribution to
malignant progression
The tumor immune microenvironment (TIME) is a complex and dynamic network that

comprises diverse elements, including various cell types, extracellular matrix components, and

secreted molecules. These components interact with each other and deeply influence malignant

phenotypes and therapeutic responses (1). For example, cancer cells can evade each step of the

cancer immunity cycle by interacting with various immune cells (2). They can induce the

recruitment of immunosuppressive cells, such as regulatory T cells (Tregs) and myeloid-derived

suppressor cells (MDSCs), which could inhibit the activation and function of cytotoxic cells like

T cells and natural killer (NK) cells (3). Furthermore, some tumor-associated macrophages

(TAMs) can develop into a pro-tumor and immunosuppressive phenotype in response to

tumor-derived signals (4). Besides, TIME has an impact on genomic instability and

angiogenesis, and these alterations can jointly attenuate the therapeutic efficacy, especially

immunotherapy for cancer (5). Therefore, we established the Research Topic to encourage

researchers to focus on and further investigate the complex interactions within the TIME and

their implications for cancer progression and treatments.

The Research Topic includes seven original articles and three reviews with a wide range

of diverse cancer types. Three original articles focused on the tumor microenvironment

(TME) and relevant molecules in hepatocellular carcinoma (HCC) from different

perspectives. Gong et al. identified distinct molecular subtypes associated with
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neutrophils in HCC, exhibiting significant differences in prognosis,

clinical pathological characteristics, inflammation-related

pathways, and immune-related features. Furthermore, the authors

constructed a neutrophil-derived signature (NDS) to predict overall

survival and efficacy of immunotherapy and chemotherapy for

HCC patients using machine learning approaches. Additionally,

Xu et al. reported two distinct m6A modification patterns based on

the 23 m6A regulators, and the two m6A subtypes correlate with

different clinical outcomes and biological features. Subsequently,

they developed an m6A risk score model to improve survival

prediction and estimation of drug responses for HCC patients.

Moreover, Ouyang et al. conducted a comprehensive bioinformatics

analysis to evaluate both the expression and mutation patterns of

PANoptosis-related genes (PRGs) in HCC, and a PANoptosis risk

model was constructed to offer a precise prediction of clinical

outcomes and therapeutic sensitivity for HCC patients. The

authors then performed experiments to validate the expression

profiles and biological functions of their identified hub genes

involved in the PANoptosis-related gene signature.

Despite different malignancies (osteosarcoma and chronic

myeloid leukemia), the studies of Wu et al. and Zhong et al.

shared similar ideas in investigating TME and implications for

cancer treatment. They focused on differentially expressed genes

(DEGs) and then identified different clusters with distinct

immunological properties based on their expression profiles. They

also commonly performed LASSO regression analysis to screen for

key biomarkers of diagnosis or prognosis. Furthermore, sensitive

drugs for specific subtypes or high-risk populations were

investigated for precise treatment.

As regards immunosuppression, Bi et al. found that high

expression of CDKL3 in esophageal cancer (ESCA) was not only

associated with poor prognosis but also negatively correlated with

the abundance of tumor-infiltrating immune cells and anti-tumor

immune response. These findings suggest CDKL3 as an

immunosuppressive molecule in the TME of ESCA. The authors

also reported that the knockdown of CDKL3 in ESCA cells could

inhibit autophagy induction and M2 macrophage polarization.

Hypoxic TME is also a critical factor in the progression and

outcome of solid cancers (6). To explore its influence on tumor

progression and therapy outcome, Zhang et al. utilized Lasso

regression to analyze transcriptomic data of patients with

colorectal cancer (CRC) and identified seven robust hypoxia-

associated genes. Based on these genes, the authors further

established a novel prognostic score for CRC called the hypoxia-

related prognosis score (HPS), and they found that HPS is

significantly related to different extracellular matrix compositions,

various immune cell infiltration, and suppressive immune response.

The two articles suggest that some immunosuppressive factors

involved in TME play important roles in shaping tumor

progression, therapeutic resistance, and patient outcomes in solid

cancers. These findings highlight the complexity of the TME in

modulating immune responses and reveal the potential of targeting

these factors to improve the therapy efficacy.

Overall, all the above-mentioned seven original articles regarding

the identification of distinct molecular subtypes, immune-regulatory

genes or molecules, and prognostic biomarkers in diverse cancer
Frontiers in Immunology 025
types or subtypes offer valuable insights into tumor progression and

therapeutic sensitivity, which shows a promising way for personalized

treatment strategies for cancer patients.

Li et al. focused on plasmablastic lymphoma (PBL), a rare but

aggressive non-Hodgkin lymphoma. They comprehensively

summarized the current knowledge on the epidemiology,

molecular profiles, clinical and pathological features, differential

diagnosis, treatment strategies, prognostic factors, and potential

novel therapeutic approaches in PBL patients. This review

highlights the fact that, despite developments in treatment

strategies such as intensive chemotherapy, targeted therapies, and

immunotherapy, the prognosis of PBL remains poor. Therefore,

there is an urgent need for further exploration of PBL’s biological

characteristics and the development of more effective targeted

therapeutic approaches. Another review from Guo et al.

summarized five cellular composition modules by integrating the

cellular (sub)types, phenotypes, and functions in the TME of

pancreatic ductal adenocarcinoma (PDAC). Furthermore, the

authors pointed out that cross-module regulations are

determinants of the immunosuppressive TME in PDAC, and

highlighted TME-targeted strategies that potentially improve

PDAC therapy. In addition, Gunes et al. reviewed the current

knowledge of the expression of signaling lymphocytic activation

molecule family (SLAMF) receptors in solid tumors and tumor-

infiltrating immune cells and summarized their associations with

patient outcomes. The authors also discussed the therapeutic

potential of targeting SLAMF receptors to improve outcomes of

cancer therapy in solid tumors. Thus, a better understanding of the

interactions between SLAMF receptors and TME components may

contribute to the development of interventions that can reprogram

the TME into a more favorable environment to enhance the efficacy

of cancer therapy such as immunotherapy.

In summary, these studies contributed by diverse authors in this

Research Topic highlight the important roles of TIME in cancer

progression and therapeutic resistance. We believe these findings

could show a promising way for personalized strategy to reprogram

the TIME for improving cancer management.
Author contributions

JL: Writing – original draft. XW:Writing – review & editing. RS:

Writing – review & editing.
Acknowledgments

We sincerely thank all the authors who contributed to this

Research Topic.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374465
https://doi.org/10.3389/fimmu.2024.1323199
https://doi.org/10.3389/fimmu.2024.1423194
https://doi.org/10.3389/fimmu.2023.1297886
https://doi.org/10.3389/fimmu.2024.1295011
https://doi.org/10.3389/fimmu.2024.1425687
https://doi.org/10.3389/fimmu.2024.1354604
https://doi.org/10.3389/fimmu.2023.1258538
https://doi.org/10.3389/fimmu.2024.1297473
https://doi.org/10.3389/fimmu.2024.1533290
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1533290
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 036
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A,
Jaymand M, et al. Tumor microenvironment complexity and therapeutic
implications at a glance. Cell Commun Signal. (2020) 18:59. doi: 10.1186/s12964-
020-0530-4

2. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle.
Immunity. (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012

3. Lindau D, Gielen P, Kroesen M,Wesseling P, Adema GJ. The immunosuppressive
tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer
T cells. Immunology. (2013) 138:105–15. doi: 10.1111/imm.2013.138.issue-2
4. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated
macrophages (TAMs) in tumor progression and relevant advance in targeted therapy.
Acta Pharm Sin B. (2020) 10:2156–70. doi: 10.1016/j.apsb.2020.04.004

5. Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer:
Tumor treatment strategies. Signal Transduct Target Ther. (2024) 9:175. doi: 10.1038/
s41392-024-01856-7

6. Shi R, Sun J, ZhouH,HuT,GaoZ,WangX, et al.Hypoxiawithin tumormicroenvironment
characterizes distinct genomic patterns and aids molecular subtyping for guiding individualized
immunotherapy. J Big Data. (2024) 11:81. doi: 10.1186/s40537-024-00945-2
frontiersin.org

https://doi.org/10.1186/s12964-020-0530-4
https://doi.org/10.1186/s12964-020-0530-4
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1111/imm.2013.138.issue-2
https://doi.org/10.1016/j.apsb.2020.04.004
https://doi.org/10.1038/s41392-024-01856-7
https://doi.org/10.1038/s41392-024-01856-7
https://doi.org/10.1186/s40537-024-00945-2
https://doi.org/10.3389/fimmu.2024.1533290
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xuanbin Wang,
Hubei University of Medicine, China

REVIEWED BY

Jiao Hu,
Central South University, China
Chen Yang,
German Cancer Research Center
(DKFZ), Germany
Mario Perez-Medina,
National Polytechnic Institute (IPN), Mexico
Yi Liao,
Affiliated Hospital of Southwest Medical
University, China

*CORRESPONDENCE

Fahui Liu

liufahui005@163.com

Yuhua Cao

caoyuhua78@163.com

†These authors have contributed equally to
this work

‡These authors have contributed equally to
this work

RECEIVED 04 May 2023

ACCEPTED 17 July 2023

PUBLISHED 28 July 2023

CITATION

Gong Q, Chen X, Liu F and Cao Y (2023)
Machine learning-based integration
develops a neutrophil-derived signature for
improving outcomes in hepatocellular
carcinoma.
Front. Immunol. 14:1216585.
doi: 10.3389/fimmu.2023.1216585

COPYRIGHT

© 2023 Gong, Chen, Liu and Cao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 28 July 2023

DOI 10.3389/fimmu.2023.1216585
Machine learning-based
integration develops a
neutrophil-derived signature for
improving outcomes in
hepatocellular carcinoma

Qiming Gong1,2†, Xiaodan Chen3†, Fahui Liu4*‡ and Yuhua Cao1*‡

1Department of Medical Oncology 2, The People’s Hospital of Guangxi Zhuang Autonomous &
Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China, 2Department of
Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China,
3Department of Medical Oncology 1, The People’s Hospital of Guangxi Zhuang Autonomous &
Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China, 4Xiamen Cell Therapy
Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen
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Introduction: The heterogeneity of tumor immune microenvironments is a

major factor in poor prognosis among hepatocellular carcinoma (HCC)

patients. Neutrophils have been identified as playing a critical role in the

immune microenvironment of HCC based on recent single-cell studies.

However, there is still a need to stratify HCC patients based on neutrophil

heterogeneity. Therefore, developing an approach that efficiently describes

"neutrophil characteristics" in HCC patients is crucial to guide clinical decision-

making.

Methods: We stratified two cohorts of HCC patients into molecular subtypes

associated with neutrophils using bulk-sequencing and single-cell sequencing

data. Additionally, we constructed a new risk model by integrating machine

learning analysis from 101 prediction models. We compared the biological and

molecular features among patient subgroups to assess the model's effectiveness.

Furthermore, an essential gene identified in this study was validated through

molecular biology experiments.

Results: We stratified patients with HCC into subtypes that exhibited significant

differences in prognosis, clinical pathological characteristics, inflammation-

related pathways, levels of immune infiltration, and expression levels of

immune genes. Furthermore, A risk model called the "neutrophil-derived

signature" (NDS) was constructed using machine learning, consisting of 10

essential genes. The NDS's RiskScore demonstrated superior accuracy to

clinical variables and correlated with higher malignancy degrees. RiskScore

was an independent prognostic factor for overall survival and showed

predictive value for HCC patient prognosis. Additionally, we observed

associations between RiskScore and the efficacy of immune therapy and

chemotherapy drugs.
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Discussion: Our study highlights the critical role of neutrophils in the tumor

microenvironment of HCC. The developed NDS is a powerful tool for assessing

the risk and clinical treatment of HCC. Furthermore, we identified and analyzed

the feasibility of the critical gene RTN3 in NDS as a molecular marker for HCC.
KEYWORDS

neutrophils, HCC, RTN3, prognosis, machine learning
Background

Hepatocellular carcinoma (HCC), also known as liver cancer, is

a common malignancy with a high incidence rate. Drugs such as

sorafenib and lenvatinib (1), are widely used in the treatment of

HCC, and new drugs like atezolizumab combined with

bevacizumab and sintilimab combined with bevacizumab are

being developed (2, 3). These drugs target specific populations,

with some suitable for patients with unresectable HCC who have

not undergone systemic treatment, like doxorubicin and lenvatinib

(4, 5), while others are appropriate for patients with HCC who have

received specific treatments, like regorafenib and cabozantinib (6).

Despite promising results in clinical trials, these treatment methods

only benefit a small proportion of patients, highlighting critical

clinical challenges. Therefore, selecting the most appropriate

treatment plan based on the specific conditions of the patients

and the target population of the drug is crucial in the treatment of

HCC. Advancements in biotechnology, particularly high-

throughput sequencing technologies, have deepened our

understanding of tumor molecular subtyping, enabling tumor

treatment based on molecular subtypes. Gene-based molecular

subtyping has emerged as a new approach to the treatment of

tumors. Scientists have successfully developed personalized

treatment plans based on molecular subtyping for various cancer

types. For example, the PAM50 gene subtyping technology has been

successfully applied in chemotherapy decision-making for the

treatment of breast cancer (7). EGFR gene mutation subtyping

has also been widely adopted in the treatment of lung cancer for

selecting targeted drugs against EGFR (8). Similarly, BRAF gene

mutation subtyping has found extensive application in personalized

treatment plans for colon cancer and melanoma (9, 10). These

accomplishments indicate that gene-based molecular subtyping

technologies will be crucial in future treatments of tumors,

offering patients more accurate and effective treatment options.

The latest research has unveiled the immune microenvironment

subtypes of HCC through large-scale single-cell sequencing and

provided an in-depth analysis of the functional heterogeneity of

tumor-associated neutrophils. This study demonstrates that

targeting tumor-associated neutrophils may emerge as a new

immunotherapy strategy for HCC (11). Neutrophils play a crucial

role in the immune system by regulating immune responses,

combating infections, and maintaining tissue homeostasis. Recent

studies have indicated that neutrophil-mediated immune processes,
028
known as neutrophil extracellular traps (NETs), have a significant

impact on the development of tumors as they serve as a vital step in

innate and adaptive immune responses triggered by infectious and

sterile stimuli (12). Previous studies suggested that cancer-induced

NETs primarily function in the circulation, promoting cancer-related

thrombosis (13). Subsequent studies have revealed that NETs

influence every stage of the metastatic cascade, including the

progression, invasion, and migration of primary tumors, survival in

circulation, chemoattraction to secondary sites, extravasation,

colonization, and growth of metastatic tumor cells (14). These

findings highlight the fact that the functional transformation of

neutrophil subtypes in the tumor microenvironment is influenced

by the specific characteristics of the tumor microenvironment,

though the precise mechanisms remain unclear (15). In summary,

neutrophils play pivotal roles in the development, metastasis,

treatment, and immune evasion of HCC.

The advancement of single-cell research technology has

brought about the ability to accurately analyze the heterogeneity

of the tumor microenvironment in different clinical types of HCC

and discern distinct subtypes of neutrophils with unique

characteristics during the development of the tumor. These

findings have been instrumental in uncovering the dynamic

changes in levels of gene expression within these neutrophil

subtypes, shedding light on the molecular mechanisms underlying

the development of tumors, and identifying potential targets for

diagnosis and treatment. However, it is important to note that

neutrophils are fragile cell types that can easily be lost during tissue

dissociation. Moreover, neutrophils have a limited number of

expressed genes and tend to exhibit low expression levels of

characteristic genes, further complicating the analysis of their cell

subtypes and gene expression profiles. Additionally, the high cost

associated with single-cell sequencing technology poses a significant

barrier to its widespread clinical application for studying

neutrophils. Nonetheless, it is feasible to differentiate patients

with HCC based on neutrophils, thereby identifying subtypes and

evaluating patient prognosis for clinical treatment and medication

guidance. It is crucial to find a simple and effective method to

describe the “neutrophil characteristics” of patients with HCC.

With the advancements in bioinformatics technology, several

prognostic gene characteristics have been developed (16, 17). In

the case of HCC, numerous multi-gene signature characteristics,

such as the well-known ferroptosis signature (18), m6A signature

(19), and others (20), have been discovered to assess patient risk.
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However, the efficacy of these multi-gene expression signatures can

be challenging to validate and apply effectively due to single-

machine learning and inappropriate statistical methods.

In this study, we used machine learning to develop and validate

risk stratification characteristics for patients with HCC using

neutrophil-related characteristic markers. We assessed the value

of different risk stratifications in terms of biological and clinical

pathological characteristics, prognosis, and their application in

immunotherapy and targeted chemotherapy treatments across

four independent public datasets. Furthermore, based on the

analysis results, this study verified a new molecular marker for

HCC. Overall, this study aims to optimize precision treatment and

enhance the clinical outcomes of patients with HCC.
Materials and methods

Data resources

High-throughput sequencing data in TPM format for HCC

were obtained from The Cancer Genome Atlas (TCGA) database,

along with corresponding clinical phenotype data. We excluded

samples that lacked survival time or status and retained only those

with a survival time greater than 0 days. This resulted in 365 tumor

samples. Similarly, we obtained another HCC high-throughput

sequencing dataset, HCCDB18, from http://lifeome.net/database/

hccdb/download.html. We removed normal samples to retain only

tumor tissue and obtained survival data for all patients with a

survival time greater than 0 days. This yielded a final set of 212

tumor tissues. For the datasets GSE14520 and GSE116174, we

obtained expression profile data and survival times from the Gene

Expression Omnibus (GEO) database of the National Center for

Biotechnological Information (NCBI) database. We excluded

samples lacking survival time or status and included all patients

with a survival time greater than 0 days in the analysis. We

downloaded platform files and converted probes to gene names.

We removed data with one probe corresponding to multiple gene

names and averaged data with multiple probes corresponding to a

single gene. Ultimately, we identified 242 tumor tissues from the

GSE14520 dataset and 64 tumor tissues from the GSE116174

dataset. Additionally, we obtained single-cell sequencing data for

HCC (Accession number: GSE215428) from the GEO database.
Dimensionality reduction and cell
annotation of single-cell clusters

First, we filtered the single-cell data that required each gene to be

expressed in aminimum of three cells, while each cell had to express at

least 250 genes. Additionally, we used the PercentageCharacteristicset

function to calculate the proportions of mitochondrial and rRNA

genes, ensuring that each cell expressed fewer than 2000 genes.

Subsequently, we performed log-normalization on the data from six

samples to standardize them. To identify highly variable genes, we

utilized the FindVariableCharacteristics function, employing variance

stabilization transformation (“vst”). All genes were then scaled using
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the ScaleData function, followed by dimensionality reduction using

RunPCA to identify anchor points. The clustering of cells was

achieved through the utilization of the FindNeighbors and

FindClusters functions, and classical marker genes were used for cell

annotation. The clusterProfiler package was used for the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis of the marker genes across different subgroups.
Construction of molecular subtypes and
risk model

Using single-cell analysis, 208 marker genes specific to

neutrophils were identified. The ConsensusClusterPlus package in

R was used to cluster patients based on the expression of these

neutrophil marker genes in tumor tissues from the TCGA dataset.

The partition around medoids (PAM) algorithm was used, with

“pearson” serving as the distance metric. We performed 500

bootstraps, each including 80% of the patients from the training

set. Clustering numbers ranging from 2 to 10 were set, and the

optimal classification was determined by evaluating the consensus

matrix and cumulative distribution function.

Based on the neutrophil marker genes, univariate Cox analysis

was conducted to select prognostic-related genes with a P-value of

<0.001. These genes were further integrated into a high-precision

and stable model using our machine learning-based integration

program. For the TCGA dataset, we fitted 101 prediction models

using the LOOCV framework and calculated the concordance index

(C-index) of each model on all validation datasets. The model with

the highest average C-index was considered the best.
Analysis and comparison of
biological features

We compared different cell scores among the three subtypes

using the ESTIMATE algorithm, the MCPcounter package, and the

CIBERSORT algorithm. To calculate the scores of 28 immune cells,

we used single-sample gene set enrichment analysis (ssGSEA) with

28 characteristic genes of immune cells obtained from previous

research (21). Additionally, the tumor immune dysfunction and

exclusion (TIDE) software was used to evaluate the potential clinical

effects of immunotherapy and risk models. To assess the scores of

relevant pathways, we obtained the inflammatory pathway gene set

from the KEGG website and calculated pathway scores using the

ssGSEA method. Furthermore, the patient scores for KEGG

database-related pathways were determined using the gene set

variation analysis (GSVA) package in R, with gene sets

downloaded from the GSEA website. The maftools package

showed the top 20 mutated genes and generated a waterfall chart.

The copy number variation (CNV) dataset was also obtained and

analyzed to determine the proportion of deleted or amplified genes.

To explore potential therapeutic targets for high- and low-risk

groups, we used the Cancer Cell Line Encyclopedia (CCLE)

database of drug-sensitive cell lines as the training set. Using the
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Cancer Therapeutics Response Portal (CTRP) and Profiling

Relative Inhibition Simultaneously in Mixture (PRISM) methods,

we predicted the drug sensitivity of each patient in the TCGA

dataset. Potential regulatory drugs were screened based on |log2

(Fold Change [FC])| >0.2.
Cell culture and transfection

The human HCC cell line HepG2 (KCB200507YJ) was obtained

from the Chinese Academy of Sciences. The cells were cultured in

Dulbecco’s Modified Eagle’s Medium (Gibco, Carlsbad, CA, USA)

supplemented with 8.0% fetal bovine serum. To silence the expression

of RTN3, HepG2 cells were transfected with small interfering RNA

(siRNA) using hU6-MCS-CBh-gcGFP-IRES-puromycin (Shanghai

Gene Chem Co., Ltd.). The HepG2 cells were divided into two

groups: the control group and the si-RTN3 group.
Western blot assay

To obtain total cellular proteins from HepG2 cells,

radioimmunoprecipitation assay buffer (RIPA) lysate (Beyotime,

Shanghai, China) was used, and protein quantification was

performed using the bicinchoninic acid (BCA) assay kit

(Servicebio, Wuhan, China). Cell samples containing 30 mg of

total protein were loaded onto sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently

transferred to polyvinylidene fluoride (PVDF) membranes. The

membranes were then incubated overnight at 4°C with anti-RTN3

(Abcam, Cat# Ab68328) and anti-b-tubulin (Affinity Biosciences,

Cat# T0023). Subsequently, the membranes were incubated with

goat anti-rabbit immunoglobulin G (IgG; S0001, 1:5000, Affinity

Biosciences) and goat anti-mouse IgG (S0002, 1:5000, Affinity

Biosciences) for 50 minutes and visualized using Tanon-5200

(Tanon, Shanghai, China). Further details regarding these

experimental procedures have been described previously (22).
Colony formation and Transwell assay

For colony formation, cells were directly seeded into 6-well

plates at a density of 3 × 102 cells per well. After 14 days, the wells

were rinsed three times with phosphate-buffered saline (PBS) at

room temperature. Subsequently, cells were stained with

paraformaldehyde (1 ml/well) and incubated with crystal violet

solution (1 ml/well) for 30 minutes. In the Transwell assay, 8-mm
Transwell chambers (Corning, USA) were used. The upper

chamber, pre-coated with Matrigel (Corning, USA), was used for

cell plating, while the lower chamber was filled with a complete

medium. After fixing the cells with paraformaldehyde, they were

stained with a 0.1% crystal violet solution for five minutes and left to
Frontiers in Immunology 0410
dry overnight. The specific steps of the Transwell assay were

conducted as described previously (23).
Statistical analysis

Statistical analysis was conducted using R software (version

4.0.5). Spearman’s correlation coefficient was used to evaluate the

correlation between two continuous variables. The chi-square test

was used to compare categorical variables, while the Wilcoxon rank

sum test, or t-test, was used for comparing continuous variables. A

significance level of P <0.05 was used to determine statistical

significance for all tests.
Results

Dimensionality reduction and clustering
of single cells

After applying quality control measures and filtering, a total of

17,277 cells were obtained. The statistical analysis of cell numbers

before and after filtering is shown in Figure S1A. To reduce

dimensionality and identify anchor points, we performed

Principal Component Analysis (PCA) using the RunPCA method

(Figure S1B). Additionally, t-distributed Stochastic Neighbor

Embedding (t-SNE) analysis was conducted on the 17,277 cells

using the Runt-SNE function, and Figure S1C shows the t-SNE cell

distribution maps for the six samples. For clustering analysis, we

used the FindNeighbors and FindClusters functions with a

resolution set at 0.2 and a dimensionality of 20. As a result, we

identified 10 distinct subpopulations. Cell annotation was carried

out using established marker genes, wherein subpopulations 0, 1, 2,

and 4 exhibited expression of T-cell markers CD2, CD3D, CD3E,

and CD3G, respectively. Subpopulation 6 showed expression of the

B-cell markers CD19, CD79A, and MS4A1. The dendritic cell

marker CLEC4C was expressed in subpopulation 9, while

neutrophil markers CSF3R, S100A8, and S100A9 were found in

subpopulations 3, 7, and 8, respectively (Figure S1D).

Figure 1A shows a t-SNE distribution map depicting different

sample populations. Figure 1B shows a t-SNE distribution map

specifically focusing on the 10 subpopulations. Furthermore,

Figure 1C shows an annotated t-SNE distribution map

highlighting the subpopulations. To identify marker genes within

these subpopulations, the FindAllMarkers function was employed

with specific parameters, including a logFC of 0.5 and a minimum

percentage of differentially expressed genes (Minpct) of 0.35. This

analysis yielded four subpopulations with a corrected P-value of

<0.05. Figure 1D shows the expression of the top five significant

marker genes in each of these subpopulations. Detailed information

about the marker genes is provided in scRNA_marker_gene.txt

(Table). Furthermore, KEGG annotation was conducted on the
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marker genes from the four subpopulations. The results revealed

their involvement in various functions and disease pathologies,

highlighting the vital role of immune cells in maintaining overall

health (Figure 1E).
Construction of molecular subtypes

Following the utilization of 208 markers specific to neutrophils,

we proceeded to construct molecular subtypes. To determine the
Frontiers in Immunology 0511
optimal number of clusters, we used cumulative distribution

function (CDF) analysis. The CDF Delta area curve indicated that

a cluster selection of 3 yielded relatively stable clustering results

(Figures 2A, B). Consequently, we chose a “k” value of 3 to define

three distinct molecular subtypes (Figure 2C). Notably, these three

subtypes showed significant differences in prognosis (Figure 2D, P =

0.011), with patients in cluster 3 exhibiting the poorest prognosis.

Similarly, when applying the same methodology to the HCCDB18

dataset, we obtained three subtypes with comparable prognostic

implications (Figure 2E; P <0.0001). Detailed information about the
B
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A

FIGURE 1

Single-cell landscape of patients with HCC. (A): Distribution of each sample shown on a t-SNE plot; (B): Distribution of 10 subtypes shown on a
t-SNE plot; (C): Subtypes after cell annotation shown on a t-SNE plot; (D): Expression of the top five marker genes of annotated subtypes illustrated
on a dot plot; (E): KEGG enrichment analysis of annotated subtypes visualized on a dot plot.
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molecular subtypes for both datasets can be found in tables

tcga.subtype.cli.txt and HCCDB18.subtype.cli.txt. Furthermore, we

conducted PCA analysis based on the marker genes specific to

neutrophils, generating a scatter plot that illustrates the distribution

of the three subtypes as shown in Figure 2F. Our analysis suggests

that the significant heterogeneity observed among patients with

HCC may be attributed to distinct “neutrophil characteristics.”
Clinical features of molecular subtypes

Furthermore, we conducted a comprehensive analysis of the

clinical and pathological characteristics of different molecular

subtypes in the TCGA dataset. Specifically, we compared the
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distribution of various clinical characteristics among the three

molecular subtypes to identify potential differences. In our analysis,

while applying a chi-square test, we found that cluster 3 samples

exhibited a higher proportion of patients with G3 plus G4 stages

compared to the other subtypes. This finding suggests a potential

association between molecular subtypes and tumor grade (Figure 3).
Functional analysis of immune-related
pathways among molecular subtypes

First, we used the ESTIMATE algorithm to calculate the immune

scores of patients. The comparison showed that clusters 2 and 3,

which were associated with a poor prognosis, exhibited higher
B C
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A

FIGURE 2

Identification and analysis of subtypes with neutrophil characteristics in patients with HCC. (A): CDF curve of samples from the TCGA dataset.
(B): Delta area curve of consensus clustering for samples from the TCGA dataset, showing the relative change in the area under the CDF curve for
each category number “k” compared to “k-1.” The horizontal axis represents the category number “k,” while the vertical axis represents the relative
change in the area under the CDF curve. (C): Heatmap showing the sample clustering at consensus “k = 3.” (D): KM curves demonstrating the
prognosis of three subtypes in the TCGA dataset. (E): KM curves demonstrating the prognosis of three subtypes in the HCCDB18 dataset. (F): PCA
showing the distribution of three subtypes in the TCGA and HCCDB18 datasets.
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immune cell scores (Figure 4A). Subsequently, we used the

MCPcounter package to calculate scores for 10 different types of

immune cells. These results also indicated that clusters 2 and 3

showed higher immune cell scores (Figure 4B). Furthermore, we used

the Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) method to calculate scores for 22 different

types of immune cells. This analysis demonstrated significant

differences in the majority of immune cell types among the three
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subtypes (Figure 4C). Moreover, we conducted a comparison of the

expression levels of immune checkpoint genes. With the exception of

TNFSF4 and ICOSLG, the majority of the immune checkpoint genes

showed varying expression levels among the three subtypes. Notably,

clusters 2 and 3 showed higher levels of immune checkpoint gene

expression (Figure 4D). In summary, our comprehensive analyses

indicated that clusters 2 and 3, which were associated with a poor

prognosis, showed higher levels of immune infiltration.
B

A

FIGURE 3

Distribution of clinical characteristics across different subtypes. (A): Sample distribution of clinical characteristics across different subtypes in the
TCGA-LIHC cohort. The horizontal axis represents the different sample groups, while the vertical axis represents the percentage of clinical
information within the corresponding group samples. Different colors represent different molecular subtypes. (B): Sankey Diagram showing the
association between different subtypes and clinicopathological characteristics in patients with HCC.
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Analysis of inflammatory pathways among
molecular subtypes

We employed the TIDE online tool to predict the likelihood of

immune evasion in patients, where a higher TIDE score indicates a

more significant potential for immune evasion. As shown in Figure 5A,
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clusters 2 and 3, which were associated with poor prognoses, showed

higher TIDE scores compared to cluster 1, suggesting a greater

tendency for immune evasion. Since the molecular subtypes

constructed were closely associated with the immune system, we

acquired inflammation-related pathway gene sets from the KEGG

website and calculated the pathway scores using the ssGSEA method.
B
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FIGURE 4

Comparative analysis of immune characteristics among different subtypes. (A): Comparative analysis of immune characteristics among different subtypes
in the TCGA dataset, focusing on the predicted immune scores by ESTIMATE. (B): Comparative analysis among different subtypes in the TCGA dataset,
examining the scores of 10 predicted immune cell types using the MCPcounter method. (C): Comparative analysis of immune characteristics among
different subtypes in the TCGA dataset of scores of 22 predicted immune cell types using the CIBERSORT algorithm. (D): Comparative analysis of
immune characteristics among different subtypes in the TCGA dataset, highlighting the expression of immune checkpoints across the three subtypes.
ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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As shown in Figure 5B, we observed that cluster 1 had significantly

lower inflammatory pathway scores compared to the other subtypes.
KEGG pathway analysis of
molecular subtypes

To explore the heterogeneity of patients with HCC, we obtained

KEGG pathway-related gene sets from the GSEA website and

calculated pathway scores for each patient using the R package

GSVA. By analyzing these scores, we identified multiple pathways

that showed significant differences among the three subtypes of

HCC, as shown in Figure 6A. Further details and the results of our

analysis are summarized in pathwy_p_fit.txt. Additionally, we

conducted a comparison of differential gene expression among

the different subtypes and performed GSEA analysis using the R

package clusterProfiler. Figures 6B–D show the patterns of pathway

activation and suppression observed across the distinct subtypes of

HCC. In summary, our findings demonstrated that marker genes

associated with neutrophils effectively distinguished the

heterogeneity of patients with HCC. Intriguingly, these marker

genes suggested the presence of “neutrophil characteristics”

among patients with different subtypes of HCC.
Construction of a neutrophil-derived
signature and investigation of the role of
RTN3 in HCC

Based on the identified “neutrophil characteristics” among

patients with HCC, we conducted an analysis to identify
Frontiers in Immunology 0915
prognosis-related genes. Using univariate Cox regression analysis

with a significance level of P <0.001, we identified 20 genes, as

shown in Figure 7A. These genes were derived from marker genes

based on neutrophils and obtained from the TCGA database. To

develop a consistent prognostic model, we used a machine learning-

based integration program, using the 20 identified genes as input

characteristics. Specifically, we fitted 101 prediction models using

the Leave One Out Cross-Validation (LOOCV) framework. We

calculated the C-index of each model across all validation datasets,

as shown in Figure 7B. The optimal model, which combined

CoxBoost and RSF, yielded the highest average C-index of 0.671.

Further analysis focused on 10 critical genes, such as ANXA5,

ATP6V0B, GAPDH, GRB2, PRKCD, RAC1, RTN3, S100A9,

TALDO1, and TKT. We examined the expression levels of these

genes in both the TCGA dataset and other validation sets. By

employing the rfsrc function, we predicted the risk score for each

patient based on the expression levels of these 10 genes.

Subsequently, we standardized the risk scores into z-scores. Using

a cutoff of 0, we divided patients into high- and low-risk groups

within different datasets, including GSE14520, GSE116174,

HCCDB18, and TCGA-LIHC, as shown in Figure 7C. In

summary, our findings suggest that this 10-gene signature could

serve as a robust prognostic tool for patients with HCC.

The significant expression differences of RTN3 in multiple HCC

cohorts indicate an association between its expression level and HCC

patient prognosis(Figure S2). We conducted an experiment using

siRNA to manipulate the levels of RTN3 in HepG2 cells. In

comparison to the control group, the si-RTN3 group showed a

significant decrease in the expression of the RNT3 protein, as

shown in Figure 7D. The colony formation assay showed that the

proliferation ability of HepG2 cells was significantly inhibited in the
BA

FIGURE 5

Comparison of TIDE score and inflammation-related pathway score among different subtypes. ns, p ≥ 0.05; **, p < 0.01; ****, p < 0.0001.
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si-RTN3 group compared with the control group (Figure 7E).

Additionally, the Transwell assay demonstrated that there was a

decrease in the number of migrated and invaded cells in the si-RTN3

group compared to the control group (Figures 7F, G). Overall, our

findings indicate that the knockdown of RTN3 suppressed the

proliferation, migration, and invasion of HepG2 cells.
Comparison of RiskScore based on
different clinical characteristics

To examine the association between RiskScore and the clinical

characteristics of tumors, we conducted an analysis using the TCGA

dataset. Our findings revealed a positive correlation between clinical

grade and risk score (Figures 8A, B). Additionally, we compared the

high and low-risk scores across different clinical grades and

observed that patients with higher clinical grades showed higher

risk scores (Figure 8C). Subsequently, we performed both univariate

and multivariate Cox regression analyses to investigate the

prognostic significance of these clinical characteristics, as shown

in Figures 8D, E. The results indicated that T-stage (P <0.001), Stage

(P <0.001), and RiskScore (P <0.001) were all associated with

prognosis and served as independent risk factors. However, the

multivariable Cox regression analysis revealed that only RiskScore
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(P <0.001) remained significantly associated with prognosis.

Additionally, we constructed a nomogram incorporating

RiskScore, T-stage, and Stage. We assessed its performance by

calculating the area under the curve (AUC) value and found that

its predictive accuracy was similar to that of RiskScore alone

(Figure 8F). These findings indicate that our RiskScore-based

model holds significant prognostic value for patients.
Mutation features of the prognostic model

Using the R language maftools package, we generated a waterfall

plot showing the top 20 genes with mutations. The data showed

higher mutation frequencies in the high-risk group compared to the

low-risk group (Figure 9A). Furthermore, we conducted a

comparison between the high-risk and low-risk groups,

examining the distribution of homologous recombination defects

(P <0.001), fraction altered (P <0.001), number of segments

(P <0.001), and tumor mutation burden (P <0.001). As shown in

Figure 9B, there were significant differences in fraction altered,

number of segments, and tumor mutation burden between the

high- and low-risk groups. We also obtained CNV data and showed

the proportions of deletions and amplifications for the 10 genes

used in constructing the risk model (Figure 9C).
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FIGURE 6

Comparison of pathway characteristics among different subtypes in the TCGA dataset. (A): A heatmap showing the enrichment scores for enriched
pathways in three subtypes of the TCGA dataset. (B): A bubble plot showing the enriched pathways in cluster 1 of the TCGA dataset. (C): A bubble
plot showing the enriched pathways in cluster 2 of the TCGA dataset. (D): A bubble plot showing the enriched pathways in cluster 3 of the TCGA
dataset. ***, p < 0.001.
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FIGURE 8

Clinical applications of the prognostic model. (A): Comparison of different clinical characteristics between high-risk and low-risk groups. (B): Distribution
of different clinical characteristics with increasing risk scores. (C): Comparison of risk scores among different clinical characteristics. (D): Forest plot of
univariate Cox analysis for clinical characteristics. (E): Forest plot of multivariate Cox analysis for clinical characteristics. (F): Trend of changes in AUC for
T-stage, Stage, and Risk Score for one to five years. ns, p≥ 0.05; ***, p < 0.001; ****, p < 0.0001.
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FIGURE 7

Construction of the prognostic model based on machine learning and biological functional analysis of RTN3. (A): A forest plot showing prognostic-
related genes identified in the analysis. (B): Optimal combination of machine learning-based feature selection for constructing the risk model.
(C): Kaplan-Meier curves demonstrating the high- and low-risk groups in the training and validation sets. (D): Western blot analysis showing the
expression of RTN3 protein in HepG2 cells after transfection of si-DUSP1. (E): Assessment of the proliferation activity of HepG2 cells using a colony
formation assay. (F, G): Evaluation of migration and invasion abilities of HepG2 cells using a Transwell assay. *, p < 0.05.
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Immune features of the prognostic model

We conducted an analysis to examine the correlation between

RiskScore and 28 immune cells using the ssGSEA method

(Figure 10A). Notably, several immune cells showed a significant

correlation with the RiskScore. To provide a visual representation of

these correlations, scatter plots were generated to depict the

correlation between 12 immune cells and RiskScore (Figure 10B).

Furthermore, we used the TIDE software (available at http://

tide.dfci.harvard.edu/) to assess the potential clinical effects of

immune therapy in conjunction with our risk model. Higher

TIDE prediction scores indicate a greater likelihood of immune
Frontiers in Immunology 1218
evasion and a reduced possibility of benefiting from immune

therapy. As shown in Figure 10C, patients with a high RiskScore

tended to have higher TIDE prediction scores, suggesting a

diminished likelihood of benefiting from immune therapy.

Furthermore, our analysis revealed a higher proportion of high-

risk patients in the non-responsive group compared to the

responsive group (Figure 10D). Notably, the non-responsive

group exhibited higher TIDE prediction scores (Figure 10E).

These findings collectively indicate that our RiskScore-based

model has the ability to predict the response to immune therapy

and identify patients who may not derive substantial benefits

from it.
B

C

A

FIGURE 9

Mutation characteristics of the prognostic model. (A): A waterfall plot of the top 20 gene mutations in high-risk and low-risk groups. (B): Comparison of
differences in homologous recombination defects, fraction altered, number of segments, and tumor mutation burden between high- and low-risk
groups in the TCGA dataset. (C): Distribution of the proportion of patients with gene CNV mutations in the TCGA dataset module. *, p < 0.05;
**, p < 0.01; ****, p < 0.0001.
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Identification of potential therapeutic
drugs for HCC

To identify candidate drugs with higher drug sensitivity, we

employed two distinct approaches using drug response data from

the Cancer Therapeutics Response Portal (CTRP) and Profiling

Relative Inhibition Simultaneously in Mixture (PRISM) datasets.

First, we conducted a differential drug response analysis by

comparing the top 10% and bottom 10% groups based on the

pharmacological profiling score (PPS). This analysis allowed us to

identify compounds with log2FC >0.10 that exhibited lower AUC

estimates in the high RiskScore group. Second, we conducted a

Spearman correlation analysis between the AUC values and the

RiskScore. We selected compounds that showed negative

correlation coefficients (Spearman’s r for CTRP and PRISM,

<-0.10 and <-0.1, respectively). The results from both approaches

consistently demonstrated that all identified compounds had lower
Frontiers in Immunology 1319
AUC estimates in the high RiskScore group and were negatively

correlated with RiskScore (Figures 11A, B).
Discussion

Over the past few decades, the tumor, node, and metastasis

(TNM) staging system has played a critical role in the clinical

evaluation and treatment of cancer. It provides a framework for

describing the clinical course of cancer and categorizing patients

into different stages based on factors such as tumor size, lymph

node involvement, and distant metastases. Recently, new staging

systems have emerged, such as the eighth edition staging system by

the American Joint Committee on Cancer. The choice of a staging

system is important as it guides treatment selection and prognostic

evaluation based on the individual circumstances of the patients.

With advancements in molecular biology and immunology, the
B

C D EA

FIGURE 10

Immune characteristics of the prognostic model. (A): Correlation analysis between the scores of 28 immune cells and risk scores. (B): A scatter plot
analysis of the correlation between risk scores and immune cells. (C): Comparison of risk scores with TIDE scores. (D): Comparison of the
distribution of immune therapy response, non-response, and high- or low-risk groups. (E): Comparison of TIDE scores between the immune therapy
response and non-response groups. ****, p < 0.0001.
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treatment for HCC has become more diverse, including the use of

anti-angiogenic drugs like sorafenib and combination targeted

therapy with immune checkpoint inhibitors (24). This diversity

highlights the need for better-personalized assessment methods to

guide clinical decisions for patients. However, the identification of

reliable biomarkers that can accurately identify “personalized”

patients with HCC still requires further exploration. We deem it

unfeasible to extrapolate this genetic feature to other tumor types

due to the variability of biomarkers in different types and subtypes

of tumors. Unique biological and genetic features in each tumor

type may affect the expression of tumor biomarkers. Consequently,

a more comprehensive analysis and assessment are necessary before

exploring the suitability of biomarkers in specific tumors. Future

research aims to identify more generalized and broadly applicable

neutrophil characteristics, which will offer precise and convenient

guidance for studying tumor subtypes.

Currently, gene signature models have gained widespread

utilization in predicting and diagnosing various diseases,

including cancer, cardiovascular disease, and diabetes. These

models offer the advantage of simultaneously assessing the

expression levels of multiple genes using high-throughput

technology, allowing for comprehensive information gathering

and a deeper understanding of the underlying biological

mechanisms of diseases. By considering multiple genes, gene
Frontiers in Immunology 1420
signature models can mitigate the impact of changes in the

expression level of a single gene on the prediction outcomes,

thereby improving the accuracy and reliability of the predictions.

Recent studies have emphasized the significance of neutrophils as

both a prognostic indicator and a target for immune therapy in

HCC. However, there is a paucity of studies that accurately predict

patient prognosis and determine the efficacy of drug treatment

using large-scale machine-learning models specific to HCC. To

address this gap, our study aimed to investigate the association

between the expression characteristics of neutrophil markers and

their potential for benefiting from specific drug therapies in HCC.

Recent advancements in high-dimensional single-cell analyses

have provided insights into the heterogeneity of neutrophils present

in both the circulation and tumor microenvironments. These

studies have revealed variations in transcriptomics and surface

protein expression among neutrophils, which can impact the

efficacy of immune therapies in patients with cancer (11). The

pivotal role of neutrophils in unraveling the heterogeneity of tumors

through the identification of molecular markers on their surface has

been elucidated. Based on these findings and the potential of

neutrophils as effective biomarkers for distinguishing the

heterogeneity of tumors, our study aimed to classify patients with

HCC based on the expression of neutrophil marker genes at the

transcriptome level. The results of the analysis showed significant
B

A

FIGURE 11

(A): Results of Spearman’s correlation analysis and differential drug response analysis of CTRP-derived compounds. (B): Results of Spearman’s
correlation analysis and differential drug response analysis of PRISM-derived compounds. Note that lower values on the y-axis of boxplots indicate
greater drug sensitivity. *, p < 0.05; ***, p < 0.001.
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differences among patients belonging to different subtypes after

stratification. Notably, these subtype differences correlated with

variations in patient survival, which were further validated across

multiple datasets. These findings highlight the feasibility of subtype

differentiation based on neutrophil characteristics.

Furthermore, this study further explored the biological

differences among the different subtypes of HCC and identified

significant differences in signaling pathways by comparing the

activity levels of key signal pathways. These findings imply that

neutrophils may have a crucial role in the dysregulation of signaling

pathways within tumors. However, intriguingly, when examining

clinical pathological characteristics, we observed significant

differences only in tissue grade among patients classified into

different subtypes. On one hand, this observation suggests a

potential correlation between subtype classification and the

grading of tumors, indicating that neutrophils may serve as a key

factor influencing the grading of patients with HCC—a relationship

that has not been previously reported. It is important to note that

these results may also be influenced by sample size or other factors,

warranting further investigation to elucidate the specific underlying

mechanisms. Nonetheless, the analysis outcomes of this study

vividly demonstrate the presence of distinct “neutrophil

characteristics” among patients with different subtypes of HCC.

Based on the feasibility of using “neutrophil characteristics” for

the classification of HCC, this study employed univariate Cox

regression analysis and a machine learning-based integration

program to screen 20 prognosis-related genes derived from

characteristic neutrophil genes. Subsequently, a prognostic model

was constructed using 10 essential genes. By predicting the

expression values of these 10 genes in the TCGA dataset and

validation gene set, patients from different datasets were

successfully classified into high-risk and low-risk groups. The

validation across multiple datasets consistently demonstrated that

the high-risk group exhibited a poorer prognosis, while the low-risk

group showed a better prognosis.

Furthermore, significant variations were observed in immune

cell infiltration levels and immune therapy responses among

different cells. Similar research methodologies have been adopted

in previous studies to investigate the long noncoding RNA

(lncRNA) characteristics of patients with colorectal cancer

(CRC), enabling effective evaluation of recurrence, prognosis,

chemotherapy response, and immune therapy. These findings are

consistent with the results obtained in our study (20). However,

lncRNA has inherent challenges such as a low expression level, long

and highly variable sequences, and complex detection and

measurement processes. In contrast, mRNA-based gene models

offer greater clinical translatability and the potential for in-depth

research in the future. Additionally, while this study employed

multiple datasets for verification, it primarily focused on liver

cancer research. In future studies, it is important to validate the

generalizability of the model across a broader range of cancer types

using additional datasets. Moreover, it is worth noting that this

study solely relied on RNA expression data and did not consider

other genetic and environmental factors that contribute to the

development of liver cancer. Therefore, further refinement of the

model is necessary to improve its accuracy by incorporating
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additional relevant factors. Nevertheless, the existing research

results presented in this study confirm and emphasize the

feasibility and promising clinical application prospects of the

methodology used.

In addition to identifying the “neutrophil characteristics” of

HCC, this study also conducted a comprehensive investigation of

the gene RTN3, which has a significant impact on prognosis. RTN3

is a membrane protein that plays a crucial role in the formation of

the endoplasmic reticulum and the regulation of membrane protein

acyltransferase activity in normal cells. Extensive research has

focused on the role of RTN3 in Alzheimer’s disease, where

transgenic mice overexpressing RTN3 show neuroinflammatory

abnormalities. Additionally, studies have highlighted the

interaction between RTN3 and the oncogene Ras within the

endoplasmic reticulum. Despite some studies reporting on RTN3

in research on HCC, there remain controversies surrounding its

role. For example, certain studies have reported significant

upregulation of the levels of RTN3 mRNA and proteins in tumor

tissues as a risk factor in risk models (25). Conversely, another study

showed that low expression of RTN3 in patients with HCC was

significantly associated with poor prognosis, suggesting a potential

tumor suppressor role for RTN3 (26). Based on previous studies, it

is hypothesized that the role of RTN3 in HCC is likely influenced by

the viral infection status of patients with HCC. On the one hand,

studies have reported that the hepatitis B virus (HBV) can induce

non-mutational inactivation of the p53 signaling pathway by

interacting with RTN3, which is a crucial mechanism promoting

the occurrence and development of HCC. Additionally, a study has

demonstrated that RTN3 can directly interact with the non-

structural protein of the hepatitis C virus (HCV), leading to the

limitation of HCV replication. Therefore, viral infection status may

serve as a key determinant of the role of RTN3 in HCC, although the

exact underlying mechanisms still require further investigation. In

summary, the research on the role of RTN3 in tumors remains

relatively limited, and the associated mechanisms and biological

significance necessitate further investigation. The results of this

study indicate that the knockdown of RTN3 effectively inhibits the

proliferation, invasion, and metastasis of tumor cells, thereby

confirming the importance of the genes identified in the risk

model and providing initial insights into the role of RTN3 in HCC.

The primary objective of this study is to demonstrate the

effective stratification of patients with HCC using neutrophil

characteristics of the genes. The application of NDS is

theoretically more efficient in clinical decision-making as it

primarily involves commonly expressed transcriptome genes. This

approach offers cost-effective and personalized molecular feature

descriptions to aid in formulating effective treatment strategies and

assessing disease progression. However, the study has certain

limitations that need to be considered. Firstly, differences in

sample sources, data preprocessing, and analysis methods may

lead to variations in gene signatures, affecting the stability and

reproducibility of predictions. Secondly, gene signature models rely

on differences in gene expression levels and may overlook other

types of genetic variation, post-transcriptional modifications, and

other factors that can influence predictions. Therefore, when

applying gene signature models, it is important to acknowledge
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their limitations and complement them with other biological

knowledge and experimental results for a comprehensive analysis.

Thirdly, although HepG2 cells have been widely used in the

research of HCC, it is essential to recognize that this model may

not fully replicate all aspects of human conditions. Future studies

will explore the pathogenesis and progression of HCC by using an

RTN3 knockout mouse model. Nonetheless, based on extensive

bioinformatics analysis and machine learning algorithms, a stable

and powerful feature has been developed to effectively describe the

“neutrophil characteristics” of patients with HCC. The NDS model

shows promise as a tool for optimizing decision-making and

monitoring plans for individual patients with HCC. This study

provides a new perspective on understanding the role of neutrophils

in HCC and establishes a prognostic model based on NDS, which

can serve as a valuable tool for evaluating treatment efficacy and

prognosis, offering new ideas and strategies for the treatment and

prognosis assessment of patients with HCC.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies.

It is characterized by a complex and immunosuppressive tumormicroenvironment

(TME), which is primarily composed of tumor cells, stromal cells, immune cells,

and acellular components. The cross-interactions and -regulations among

various cell types in the TME have been recognized to profoundly shape the

immunosuppression features thatmeaningfully affect PDAC biology and treatment

outcomes. In this review, we first summarize five cellular composition modules by

integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then

we discuss an integrated overview of the cross-module regulations as a

determinant of the immunosuppressive TME in PDAC. We also briefly highlight

TME-targeted strategies that potentially improve PDAC therapy.

KEYWORDS

pancreatic cancer, complex tumor microenvironment, diverse cellular cross-
regulations, immunosuppression features, targeting strategy
1 Introduction

Pancreatic cancer is the third leading cause of cancer-related death in Western

countries (1). Concerningly, it has been estimated there would be 64,050 people

diagnosed with pancreatic cancer and 50,550 people would die from it in 2023 in the

United States (1). This disease is mostly diagnosed at advanced stages, making current

therapeutic regimens rather ineffective (2, 3). Pancreatic cancer is rapidly lethal, with an

overall 5-year survival rate of only 11% (2, 3). Surgical resection and adjuvant

chemoradiotherapy are viable options for only 10-20% of newly diagnosed patients,

resulting in a 5-year survival rate of 15-25% among this subgroup (2, 3). Currently,

most patients with advanced pancreatic cancer are mainly treated with chemotherapy

regimens such as FOLFIRINOX (i.e., combination of drugs leucovorin calcium (folinic

acid), fluorouracil, irinotecan hydrochloride, and oxaliplatin) and gemcitabine/nab-

paclitaxel, however, their overall efficacy remains significantly limited, with the median

overall survival < 1 year (2, 3). The factors causing the lethality of pancreatic cancer are
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multifaceted, including multiple germline mutations, poor

diagnosis, resistance to conventional therapies, and highly

immunosuppressive tumor microenvironment (TME) (2–5).

Pancreatic ductal adenocarcinoma (PDAC) is the most

common type of pancreatic malignancy (greater than 90%) (2). It

features a complex TME that is composed of diverse acellular and

cellular components, mostly including dense extracellular matrix

(ECM), tumor cells, stromal cells, and immune cells (4, 5).

Interactions between these various cellular elements occur

through direct cell-cell contact and indirect communication

mediated by secreted molecules, culminating in the establishment

of an immunosuppressive milieu (4, 5). The immunosuppression

feature has been recognized as a general hallmark of PDAC TME,

characterized by heightened infiltration of tumor-promoting

myeloid cells including tumor-associated macrophages (TAMs),

tumor-associated neutrophils (TANs), myeloid-derived

suppressor cells (MDSCs), and mast cells, along with impaired

number and function of anti-tumor immune cells such as CD8 T

cells, Dendritic cells (DCs), and natural killer cells (NKs) (4, 5).

Concomitantly, this immunosuppressive milieu substantially

influences the development, prognosis, and treatment outcomes

of PDAC (4, 5).

Immunotherapies, such as immune checkpoint inhibitors (ICI)

that disrupt the inhibitory pathways of T cells and thereby unleash

their power against cancer, have revolutionized treatment

paradigms for a range of human cancers over the past decade (2,

3, 6). However, PDAC has been reported to extremely resist

monotherapy with ICIs (2, 3, 6), which likely attributes to the

highly immunosuppressive nature of the PDAC TME (4, 5, 7). In

this regard, we argue that an integrated understanding of the

immunosuppressive TME will open new targeted opportunities to

improve PDAC therapy more effectively. In this review, we integrate

cellular sub(types), phenotypes, and functions of the diverse cellular

components in PDAC TME to summarize five cellular composition

modules. Then we discuss a comprehensive overview of the cross-

module interactions and regulations as a potent determinant of the

immunosuppressive TME in PDAC. Lastly, we briefly highlight

novel TME-targeted approaches that potentiate the improvement of

PDAC therapy.
2 Overview of five cellular
composition modules in PDAC TME

PDAC exhibits high genetic heterogeneity and is characterized by

an overarching TME, where diverse cellular compositions and acellular

mediators contribute to a remarkable desmoplastic reaction (4, 5).

Recent evidence has established the notion that the TME of PDAC is

dominated by immunosuppression features, which significantly

influence PDAC phenotypes and treatment outcomes including both

conventional chemotherapies and revolutionary immunotherapies (4,

5). A comprehensive understating of the diversity and interactions

within PDAC TME that unravels the mechanistic determinant of its

immunosuppression feature will shed light on the development of new
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therapeutic interventions (4, 5). To this end, we integrate the

cellular (sub)types, phenotypes, and functions of the diverse

cellular components within PDAC TME and summarize five cellular

composition modules (Figure 1). First, PDAC-intrinsic aspects are

concluded as (I) the Tumor cell module since PDAC genetic mutations

and related signal pathways have been recognized as a critical factor

driving the formation of the immunosuppressive TME (8–11). (II) The

Immunosuppression module is mostly composed of TAMs, TANs,

MDSCs, Treg cells, and mast cells, given that they constitute an

abundant component in PDAC TME and play notorious

immunoregulatory and immunosuppressive roles (12–14).

Particularly, its immunosuppressive capacity is significantly

overwhelming compared with the anti-tumor immunity including

CD8 T cells, DCs, and NKs, which are impaired in number and

function in PDAC TME and therefore drive us to define (III) the Anti-

tumor immunity impaired module (15–18). Besides, immune cells

including CD4 helper T cell subsets (Th1, Th2, and Th17) and B cells

have been shown to display features of a double-edged sword in PDAC

TME and play either tumor-suppressing or tumor-supporting roles in

context-dependent manners. Thus, emerging roles for them in PDAC

TME and cancer immunity are discussed accordingly in the IV

Module (19–23). Lastly, we describe the heterogeneity and functions

of cancer-associated fibroblasts (CAFs) in the context of

immunosuppressive TME of PDAC in (V) the Stromal module (24).

By the summary and explicit discussion (in the following paragraphs)

of above five cellular composition modules in PDAC TME, we argue

that there are cross-interactions and -regulations among cellular

modules that represent a resultant force essentially dictating the

immunosuppression features, PDAC oncological hallmarks, and

treatment efficacy. It is worth noting that each cell population in

PDAC TMEmay exhibit a high degree of plasticity, and their behavior

may not strictly align with the originally defined modules, particularly

in the context of therapeutic interventions. Therefore, understanding

and accounting for this plasticity is vital for developing effective PDAC

treatment strategies.
3 PDAC-intrinsic aspects: the
primary driver of immunosuppressive
TME formation

An expanding body of evidence from preclinical mouse model

studies and clinical observations underscores the crucial role of

genetic mutations in oncogenes and/or tumor-suppressor genes in

shaping important PDAC features, including tumor cell

differentiation and heterogeneity, histopathological subtypes, and

clinical outcomes (8–11, 25, 26). Besides, defined oncogenic

mutations are also associated with changes in the composition of

immune cells and immunotherapy efficacy in PDAC (8–11, 25, 26).

A comprehensive understanding of how genetic oncogenes and

related signaling pathways affect PDAC phenotypes and immune

cell composition and function will provide valuable insights for the

development of precise targeted therapies and immunotherapies

aimed at combating this aggressive malignancy.
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3.1 Genetic mutations drive PDAC initiation
and progression

PDAC progresses from noninvasive precursor lesions,

including pancreatic intraepithelial neoplasia (PanIN),

intraductal papillary mucinous neoplasm (IPMN), intraductal

tubulopapillary neoplasm (ITPN), and mucinous cystic

neoplasm (MCN) (26). Among them, PanINs are the most well-

characterized preneoplasia lesions so far (26). PanINs originate

within intralobular ducts and can be further classified into four

grades, PanIN 1A, PanIN 1B, PanIN 2, and PanIN 3 (26). Of note,

all preneoplastic lesions are likely to reflect the PDAC progression.

Genetic mutations are the primary driver of PDAC initiation and

progression (11, 25). It has been reported that a PDAC patient

usually harbors 32 genetic mutations on average (11, 25). Among

the mutations, activating mutations in KRAS are present in over

90% of tumors (11, 25). The mutations of cell cycle checkpoint

genes, like CDKN2A, TP53, and SMAD4 account for 50-80% of

cases (11, 25). In addition to these common mutations, there are
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less frequent mutated genes (-10% of tumors), including ARID1A,

MLL3, and TGFBR2, which can contribute to a more aggressive

phenotype of PDAC (11, 25). Despite enduring research

endeavors, targeted therapies have not yet demonstrated

significant benefits for PDAC patients (27).
3.2 Genetic mutations in PDAC cells shape
immunosuppressive TME formation

Emerging evidence has shown that oncogenic mutations in

cancer cells primarily dictate the immune contexture in the TME

(9). Deciphering the underlying relationship between cancer cell-

intrinsic genetic events and the immune cell contexture in the TME

may enable the improvement of both chemotherapies and

immunotherapies for cancer patients. We highlight a few

examples of the studies to discuss how indicated oncogenic

mutations in cancer cells modulate the immune cell composition

and function in the TME of PDAC.
FIGURE 1

Summary of modular cell compositions and molecule mediators in PDAC TME. Pancreatic ductal adenocarcinoma (PDAC)-intrinsic features such as
genetic mutations and related signal pathways are concluded as Cellular Module I, as they have been reported to profoundly shape the formation of
the immunosuppressive tumor microenvironment (TME). Immunoregulatory and immunosuppressive Module II is primarily composed of tumor-
associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mast cells, and regulatory T cells
(Tregs), which play significant roles in fostering PDAC progression and in suppressing anti-tumor immunity. In PDAC TME, anti-tumor immune cells
including CD8 T cells, Dendritic cells (DCs), and natural killer cells (NKs) are profoundly impaired in terms of both number and function, which can
be dramatically regulated by the cells from other cellular modules, especially Module II. Besides, CD4 helper T cell subsets (Th1, Th2, and Th17) and
B cells in PDAC TME have been shown to play either tumor-suppressing or tumor-supporting roles in context-dependent manners, of which
emerging roles are discussed in Module IV. Lastly, the heterogeneity and functions of cancer-associated fibroblasts (CAFs) in the context of
immunosuppressive TME of PDAC is summarized as Stromal module V, which includes myofibroblast-like CAFs (myoCAFs), inflammatory CAFs
(iCAFs), and antigen-presenting CAFs (apCAFs). In addition, the primary molecular mediators used by the cells in terms of their functions discussed in
the review are shown accordingly. Remarkable cross-interactions and -regulations among cellular modules occur through the molecular mediators,
culminating in the formation of an immunosuppressive TME that essentially influences PDAC oncological hallmarks and treatment efficacy. (The
figure was created in Biorender with the publication license).
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Oncogenic K-RAS represents one of the most abundant and

common mutations during PDAC initiation and progression (11,

25). K-RAS mutations are involved in several signaling pathways

such as RAF/MEK/ERK and PI3K/AKT/mTOR (28, 29). They

not only determine PDAC phenotypes but also significantly

regulate the immunosuppressive TME (28, 29). For example,

studies from Pylayeva-Gupta et al. and Bayne et al. independently

reported that oncogenic K-RASG12D in mouse pancreatic ductal

epithelial cells drove elevated GM-CSF secretion, thereby recruiting

Gr1+CD11b+ MDSCs into PDAC TME (30, 31). Further studies

showed that neutralizing GM-CSF genetically or pharmacologically

in mice was sufficient to reduce these cells, along with elevated

tumoral infiltration of CD8 T cells and slowed PDAC growth (30,

31). It thus suggests GM-CSF and/or MDSCs to be potential

targets for PDAC therapy. Additionally, K-RAS mutations are

also involved in the suppression of innate and adaptive anti-tumor

immunity through modulating PDAC expressions of immune

checkpoints such as PD-L1 and CD47 (32, 33), as well as

through autophagy-mediated MHC-I downregulation in PDAC

(34, 35).

As one of the molecule events downstream of RAS signaling

pathways, MYC activation and overexpression are commonly found

in PDAC (36, 37). Beyond regulating PDAC phenotypes, MYC has

also been linked to the immunosuppressive TME (38, 39). Using

mouse models of PDAC that carry K-RASG12D and inducible

MYC-ERT2, Sodir et al. showed that acute activation of MYC

triggered rapid changes in stromal and immune cells (38). This

included a marked influx of F4/80+CD206+ TAMs and Ly-6B.2+

neutrophils, significant loss of B220+ B lymphocytes and CD3+ T

cells, and induction of a-SMA in proximal stellate and fibroblastic

cells (38). As a result, it established a TME reminiscent of human

PDAC (38). Interestingly, subsequent MYC deactivation or

inhibition immediately reversed the advanced PDAC phenotypes

back to PanIN, suggesting the requirement of sufficient levels of

MYC for instructing the PDAC phenotypes and TME features (38).

In this regard, elevated levels of MYC in tumor cells have been

shown to promote PDAC metastasis through CXCL13- and

macrophage migration inhibitory factor (MIF)-mediated

recruitment of TAMs in a recent study (39). Additionally,

concomitant MYC and K-RASG12D expression caused

suppression of Type I IFNs, thereby resulting in decreased NK

and B cell infiltration and advanced PDAC phenotypes (40).

Together, these studies suggest an important role for MYC in

dictating the immunosuppressive TME of PDAC and provide

compelling insights for therapeutically targeting MYC.

The tumor suppressor TP53 mutations occur in 50-70% of

human PDAC, which have been shown to affect immune cell

composition in PDAC TME (8, 41). By analyzing human PDAC

patient data from The Cancer Genome Atlas (TCGA), Maddalena

et al. reported the significant association of TP53 missense mutations

with reduced frequency of CD8 T cells in human PDAC (41). In

addition, using mouse models of PDAC carrying p53R172H

mutation, Siolas et al. reported an elevated secretion of CXCL2 and

CXCL5, thereby leading to the accumulation of CD11b+Ly6G+

neutrophils in TME (42). On the other hand, p53 loss in mouse

PDAC cells caused decrease of CD4 and CD8 T cells whereas increase
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in immunosuppressive CD11b+ myeloid cells and Treg cells in

PDAC TME (42, 43). Thus, these data demonstrate a contribution

of TP53 mutations to the immunosuppressive TME of PDAC.
4 Immunoregulatory and
immunosuppressive cells: the main
executor of immunosuppression in
PDAC TME

4.1 Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are abundant in the

TME of PDAC. These cells appear to play important but potentially

various roles in fostering tumorigenesis, shaping the TME, and

suppressing anti-tumor immunity (44, 45). TAMs promote PDAC

initiation and progression by secreting a variety of proinflammatory

cytokines including TNFa, RANTES (CCL5), and IL-6 (46, 47). For
instance, it has been reported that TAMs-secreted TNFa and

RANTES activated NF-kB in acinar cells to drive their

proliferation and survival. In turn, acinar cells expressed

intercellular adhesion molecule-1 (ICAM-1) to mediate their

cellular adhesion with TAMs. Thus, TAMs and acinar cells

formed a paracrine loop, sustaining local inflammation and

inducing acinar-to-ductal metaplasia (ADM) transformation in

the early stage of carcinogenesis (46, 47). IL-6 can contribute to

the development of the early premalignant pancreatic lesions ADM

and PanIN through JAK-Stat3 or Stat3/Socs3 pathways (48, 49).

Moreover, TAMs can regulate tumoral neoangiogenesis, epithelial-

mesenchymal transition (EMT), and PDAC metastasis (44, 45). In

response to TME hypoxia, TAMs upregulate the expression of HIF-

1a, a master transcriptional factor that regulates cellular and tissue

adaptive responses to hypoxia (44, 50). HIF-1a further regulates the

expression of numerous angiogenesis-related genes such as VEGF,

PDGF, bFGF, IL-1b, IL-8, TNF-a, thymidine phosphorylase,

MMPs, CXCL1, and CXCL8 (44, 50). For example, by depleting

TAMs pharmacologically or genetically in mouse models of PDAC,

Griesmann H demonstrated a significant reduction in liver

metastasis of tumor cells and impairment of neoangiogenesis. In

addition, the study showed the presence of VEGF-expressing TAMs

in pre-metastatic niches and their depletion caused the decrease in

circulating VEGF levels. Based on these data, the authors claimed

that VEGF-expressing TAMs promoted tumor cell extravasation

and vascular permeability (51). Of note, the studies have not

provided a clear answer regarding whether the observed effects

were directly mediated by VEGF or influenced by other factors.

Furthermore, functioning as immunosuppressive cells, TAMs

produce a variety of immunoregulatory cytokines such as TGFb,
IL-10, and prostaglandin E2 (PGE2) and express inhibitory

molecules PD-L1 and PD-L2, which promote Treg cell infiltration

and inhibit anti-tumor CD8 T cell activity (44, 45). Besides, TAMs

also suppress NK cell function by upregulating the expression of

HLA-G, an inhibitory molecule for NK cells (44, 52). In summary,

TAMs promote PDAC initiation and progression, regulate TME

immunosuppression, and inhibit anti-tumor immunity.
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Nonetheless, TAMs are heterogenous and high of plasticity,

therefore possessing significant potential to mediate anti-tumor

responses when purposely modulated.

Historically, TAMs have been recognized to exclusively

originate from the differentiation of recruited monocytes

(MoMF) (44, 45). However, recent studies demonstrated that

they also derived from the expansion of pancreatic tissue-resident

macrophages (TRM) in PDAC, which were phenotypically and

functionally distinct from MoMF (53). In mouse models, CCR2

genetic knockout mediated-MoMF selective depletion didn’t affect

PDAC growth, indicating a dispensable role for them in tumor

progression (53). Interestingly, PDAC growth was remarkably

reduced in mouse models with specific depletion of pancreatic

TRMs (53). These data suggested that TRM expansion-derived

TAMs were more robust drivers of PDAC progression than

MoMF (53). It is worth mentioning that macrophage

heterogeneity has long been defined as M1 and M2 macrophages

based on in vitro polarization studies (44, 45). Briefly, M1

macrophages are classically induced by bacterial products

(lipopolysaccharide) and/or pro-inflammatory cytokines (IFNg
and TNFa), produce proinflammatory cytokines (such as IL-12,

CXCL10), and mediate protective immune responses. By contrast,

M2 macrophages are alternatively activated by immunoregulatory

cytokines (such as IL-4, IL-10, or IL-13), producing factors (such as

VEGF) associated with wound healing and tissue repair (44, 45). Of

Note, more and more evidence has argued that TAMs rarely

express bona-fide M1 or M2 phenotypes, implying that the

diversity of these cells cannot simply be addressed with this

binary categorization.

Recently, one of the striking research advancements in the field

has been the characterization of the TAMs that are positive for

triggering receptor expressed on myeloid cells 2 (TREM2) (54–56).

TREM2 is overexpressed on TAMs in 75% of human tumors and its

expression highly correlates with poor tumor prognosis in patients

(54). Studies conducted on mice reveal that TREM2+ macrophages

dampen the anti-tumor activities of CD8+ T cells and NK cells,

signifying bona-fide immunosuppressive functions for these cells

(54–56). Moreover, TREM2 modulation by genetic ablation or

monoclonal antibodies can remodel the myeloid cel l

immunosuppression within the TME, restrict tumor growth, and

further improve immunotherapies such as anti-PD-1 therapy and

NK cell-based therapy in mouse models with different tumor types

(54–56). Notably, fundamental questions regarding how TREM2

expression is induced in TAMs and how TREM2 regulates the

immunosuppressive phenotypes of TAMs remain largely elusive

(57). Potential explanations could involve in the TAM metabolism,

given that TREM2 is a receptor for a wide array of ligands, including

anionic molecules, DNA, lipoproteins, and phospholipids. These

ligands are intimately associated with cellular metabolism and are

abundantly present in the TME (57).
4.2 Tumor-associated neutrophils

Neutrophils represent one of the most abundant leukocytes in

the blood of humans (up to 50-70%) in physiological settings, which
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have drawn a lot of attention to investigate their relationship with

cancer (58). There were studies to report that PDAC cells, even

tumor cells from the lesions of early stages such as PanIN, can

significantly promote the expansion of neutrophil progenitors in

bone marrow by secreting growth factors (GM-CSF, G-CSF, andM-

CSF) (59, 60). Accordingly, the Neutrophils-Lymphocyte Ratio

(NLR) of periphery blood has been identified as a faithful

prognostic value of the outcomes of PDAC patients after

treatment (61, 62). Specifically, a high NLR value (NLR>2.5) was

remarkably associated with a decreased frequency of CD8 T cells

within the tumor and predicted worse overall survival in PDAC

patients after surgical resection and chemotherapy (57, 58). More

recently, by analyzing PDAC mouse models and PDAC samples of

patients, Jiang et al. found that neutrophil infiltration displayed a

body-wide effect, including liver, lung, colon, stomach, kidney,

heart, and brain (63). Thus, systemic neutrophil infiltration and

associated inflammation can be a cautious marker of pancreatic

cancer prognosis.

In addition to promoting neutrophil progenitor expansion in

bone marrow, PDAC is involved in recruiting neutrophils to the

TME and pre-metastatic niches through secretion of a variety of

chemokines such as CXCL1, CXCL2, CXCL5, and CXCL8 (64–67).

Using mouse models, Steele et al. reported the liver recruitment of

CXCR2+ neutrophils contributing to PDAC metastasis (67). In the

context of CXCR2+ neutrophil depletion genetically or

pharmacologically, PDAC liver metastasis was remarkably

reduced, along with significantly prolonged tumor-free survival of

PDACmouse models (67). Although not directly investigated in the

study, it is reasonable to propose a link between the mechanistic

action of CXCR2+ neutrophils in PDAC and CXCR2 ligands, given

that CXCR2 is a receptor for a series of chemokines CXCL1,

CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 (66, 67).

Furthermore, CXCR2+ neutrophil depletion improved tumoral

infiltration and function of CD8 T cells, which sensitized anti-

PD1 therapy in mouse models of PDAC (67). Together with reports

showing that TANs expressed PD-L1 to suppress anti-tumor T cell

functions, TANs therefore have been considered as significant

immunosuppressive cells in PDAC TME (66–68). Besides, like

TAMs, TANs in PDAC TME are also a substantial source of

ECM degradation mediators such as MMPs and Elastase, which

can promote PanIN progression, PDAC invasiveness, and

metastasis (58, 69). In recent years, the role of neutrophil

extracellular traps (NETs) has gained attention in neutrophil

biology and related diseases (70). NETs are network structures

composed of DNA-histone complexes and proteins released

by activated neutrophils (70). Studies showed that NETs activated

IL-1b/EGFR/ERK pathway, and subsequently promoted PDAC

EMT and metastasis (71, 72). Collectively, these studies

support the notation that TANs represent one of the major

immunosuppressive populations in the TME, inhibiting anti-

tumor immunity and contributing to PDAC progression.

Like the definition of M1 and M2 for macrophages, TANs have

been classified as N1 (anti-tumor) and N2 (pro-tumor) based on the

activation and functional status in the TME (73). Fridlender et al.

showed that TGFb-induced differentiation of N2 TANs led to a pro-
tumor phenotype in TME, whereas anti-tumor N1 TANs were
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polarized when TGFb was ablated. The study highlighted the

phenotypic and functional heterogeneity of TANs in PDAC TME

(73). Another important question is what are the functions of TANs

in the context of cancer immunotherapy? Recent studies have

shown that immunotherapy-activated T cells can recruit and

induce the maturation of neutrophils, leading to an improved

capacity of neutrophils to directly kill tumor cells (74, 75). This

demonstrates an important role for neutrophils in the context of

cancer immunotherapy.
4.3 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population originating from myeloid progenitor cells of bone

marrow. They are primarily classified into two populations,

mononuclear (M-MDSC) and polymorphonuclear cells (PMN-

MDSC), which accounts for 20-30% and 70-80% of the total

MDSC population, respectively, in most tumors (76–78). Both M-

MDSCs and PMN-MDSCs were reported to remarkably

accumulate and expand in PDAC TME, and importantly, their

frequency was negatively correlated with patient survival and

response rates of immunotherapies (76, 77). M-MDSCs express

higher levels of signal transducer and activator of transcription 1

(STAT1), inducible nitric oxide synthase (iNOS), and nitric oxide

(NO, which is produced by iNOS-mediated L-arginine metabolism)

(78). On the other hand, PMN-MDSCs have increased levels of

STAT3, reactive oxygen species (ROS), but less NO (78). ROS is a

detrimental agent for T cells, while simultaneously maintaining the

survival of MDSCs themselves (78). These cellular events result in

the suppression of anti-tumor T cell responses (78). Importantly,

both M-MDSCs and PMN-MDSCs are an important source of

arginase 1, which deprives L-arginine required for T cell

metabolism, thus impairing their functions (76, 78). In PDAC

TME, MDSCs (including both M-MDSCs and PMN-MDSCs)

also directly maintain other immunosuppressive cells including

TAMs and Tregs (76, 79). For example, by using light sheet

fluorescent microscopy, Siret et al. observed the close associations

of MDSCs and Tregs in tumor samples from PDAC mouse models

and patients. Further studies demonstrated that MDSCs secreted

TGFb and IL-10, fostering Treg frequency and functions locally in

PDAC TME (79). Besides, like TAMs and TANs, MDSCs can also

promote neoangiogenesis, EMT, and metastasis of PDAC through

secretion of a variety of mediators such as G-CSF, GM-CSF, stem

cell factor (SCF), cyclooxygenase 2 (COX-2), PGE2, MPPs, VEGF,

and HGF (78, 80). Lastly, it is especially worth mentioning that

PMN-MDSCs are distinct from neutrophils, given that they have

increased levels of arginase 1 and peroxynitrite, fewer granules, and

reduced CD16 and CD62L expression (78, 80).
4.4 Regulatory T cells

Regulatory T cells (Tregs) are a subset of immunosuppressive

cells, which have been largely reported to play tumor-promoting

roles (81). Tregs are highly infiltrated into PDAC, and their
Frontiers in Immunology 0629
abundance is often correlated with a poor prognosis and reduced

survival in patients (82). Tregs exert their immunosuppressive

effects through various mechanisms. One of the main

mechanisms employed by Tregs is the expression of immune

inhibitory molecules, such as CTLA-4, which can dampen the

activation and function of CD8 T cells (81). Additionally, Tregs

produce immune regulatory cytokines, including TGFb and IL-10,

which further contribute to the suppression of anti-tumor immune

responses. Moreover, they also compete with other T cells for IL-2

via higher expression of the IL-2 receptor, and therefore

suppressing T cell function (81). Interestingly, a recent study

showed that depletion of Tregs accelerated PDAC growth due to

compensatory infiltration of tumor-promoting myeloid cells,

specifically, TAMs (83). The specific mechanisms underlying this

phenomenon were not explored in the study, highlighting the need

for further research. Nevertheless, these findings suggest that

caution should be exercised when considering Treg depletion as a

therapeutic strategy for PDAC.
4.5 Mast cells

Mast cells are also one of the immune cell subsets that have been

shown increased infiltration in PDAC. There were studies to report

the inverse correlations between the frequency of mast cells with

pathological grades of tumors and the overall survival of patients

with PDAC (84, 85). Chang et al. observed the increased infiltration

of mast cells into the tumors in a mouse model of PDAC, compared

to that in the pancreas of healthy mice (85). Furthermore, they

orthotopically transplanted the PDAC cells, that were isolated from

the mouse model, into mast cell-deficient mice (Kitw-sh/w-sh) and

found that the tumor growth was significantly slower than that in

WT recipient mice. Reconstitution with mast cells in Kitw-sh/w-sh

mice remarkably restored PDAC growth. These studies thus

demonstrated a tumor-promoting role for mast cells in PDAC

growth (85). In fact, mast cells have been shown to secrete a variety

of tumor-supporting and/or immunoregulatory factors in PDAC

TME, including IL-13, Tryptase, MMPs (84, 86). Despite the

evidence pointing towards a tumor-promoting role for mast cells

in PDAC, the specific targeting strategies for mast cells in PDAC

therapies have received limited investigation so far.
5 Impaired anti-tumor immunity
in PDAC TME: CD8 T cells, DCs,
and NK cells

5.1 CD8 T cells

Cytotoxic CD8 T cells play a central role in anti-tumor

immunity. Upon recognition of T cell receptor (TCR) of tumor

cells, of which tumor-specific antigen is presented by major

histocompatibility complex class I (MHC-I), CD8 T cells can kill

tumor cells through producing cytotoxic molecules, such as

granzymes and perforin (15). Generally, high tumoral infiltration
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of CD8 T cells and/or their improved functional status are positively

associated with responses to therapies and the outcomes in patients

across many cancer indications (15, 87). In most patients with

PDAC, however, CD8 T cells are either scarce or excluded from the

tumor cores. Even though CD8 T cells are present intratumorally in

some PDAC patients, they are usually dysfunctional or exhausted,

evidenced by elevated expression of a set of checkpoint molecules

including PD-1, Tim-3, and LAG-3, and reduced production of

effector cytokines such as IFNg, TNFa, and granzyme B. Many

mechanisms that mediate PDAC immune escape have been

reported (15, 87). For example, Yamamoto et al. showed that

autophagy-mediated degradation in PDAC contributed to

significantly downregulated MHC-I molecules, consequently

preventing CD8 T cells from being fully activated (34). In general,

it appears that nearly all cell types from the defined

Immunosuppression module, including TAMs, TANs, MDSCs,

and Treg cells, can suppress CD8 T cells (Figure 1) (13, 14).

CAFs also contribute to CD8 T cell suppression through the

secretion of immunoregulatory molecules such as TGFb and

CXCL12 (88, 89), as well as through forming a physical barrier to

directly prevent their infiltration (90). In summary, CD8 T cells in

the tumors of most PDAC patients are rare, dysfunctional, and

excluded from the tumor cores.
5.2 Dendritic cells

Dendritic cells (DCs) are professional antigen-presenting cells

and initiate immune responses when fully activated. Numerous

studies have reported that DC numbers and functions are

significantly low in PDAC samples of patients, compared with

other tumor types (91, 92). Accordingly, most PDAC patients

were found the remarkable lack of circulating DCs in peripheral

blood, who were usually associated with worse survival outcomes. It

suggested the significance of DCs in PDAC patients (91, 92). In this

regard, immense efforts have been put into the development of DC-

based therapies for PDAC (16, 93). For example, using tumor

antigen-expressing mouse models of PDAC and lung cancer,

Hegde et al. reported a remarked impairment of conventional

DCs in numbers and functions in PDAC, but not in lung tumors,

which resulted in different tumor controls (16). It was further

demonstrated that treatment with Flt3L and CD40 agonism, a

regimen to improve DCs, led to PDAC control. Importantly, this

treatment rendered PDAC responses to radiotherapy and its control

was further improved (16, 93). These studies suggest a significant

potential of DC-based therapies for PDAC. However, the reasons

causing the impairment of DCs in PDAC remain to be

further characterized.
5.3 Natural killer cells

Natural killer cells (NK cells), a population of innate lymphoid

cells, are important players in the immune surveillance of cancer.

NK cell activation is controlled by integrating signals from

activation and inhibitory receptors. Normal cells express MHC-I
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molecules, the ligands for the inhibitory receptors of NK cells, to

keep them under check. On the other hand, tumor cells usually

downregulate MHC-I to escape from CD8 T cell killing, making

them susceptible to NK cell-mediated killing. Hence, NK cells and

CD8 T cells coordinate to keep effective immune surveillance of

tumor cells. However, both NK cells and CD8 T cells

(abovementioned) are impaired in PDAC TME (18, 94). Lim

et al. provided evidence showing a lower frequency of NK cells in

tumor samples of PDAC patients, which was due to downregulated

expression of CXCR2, a receptor of several chemokines important

for NK cell recruiting (94). Furthermore, NK cell functional

impairment was also evidenced, mechanistically attributed to

decreased expression of NK cell activation receptors NKG2D and

DNAM-1 (94). The molecular insights leading to the NK cell

impairment in PDAC TME, such as what causes downregulated

CXCR2, NKG2D, and DNAM-1 in NK cells, remain largely

unknown. More recently, Muthalagu et al. provided a novel

mechanistic study to explain the NK cell evasion in PDAC (40).

Using mouse models of PDAC expressing oncogenes MYC and K-

RAS, they showed that type I IFNs were suppressed due to the

binding of repressive MYC-MIZ1 complexes directly to the gene

promoters of type I IFN regulators IRF5, IRF7, STAT1, and STAT2.

Consequently, it contributed to the ineffectiveness of NK cell

infiltration and PDAC control. Further study showed that genetic

or pharmacological removal of repressors of type I IFN regulator

genes increased NK cell infiltration and mouse survival. This study

not only shed light on the mechanisms underlying NK cell

impairment but also highlighted the possibility of targeting IFN

signaling to improve PDAC therapy (40). In addition, NK cell

cytotoxicity and INFg production can be impaired by TGFb, an
abundant cytokine of immunoregulatory in PDAC TME (18, 95).

Therefore, strategies to restore NK cell infiltration and function in

PDAC TME hold great value for improving therapeutic outcomes.
6 Emerging roles for CD4 T and B
cells in PDAC TME

6.1 CD4 helper T cells: Th1, Th2, and Th17

CD4 T cells are major players and coordinators of innate and

adaptive immune responses and have been increasingly implicated

in cancer immunity. Upon functional polarization, they show a

broad spectrum of differentiation into defined subsets, including T

helper 1 (Th1), Th2, Th17, and Treg (discussed above), implying

their functions in tumor immunity are multifaceted and highly

dependent on contexts (19–22). Th1 cells have been well-

recognized to mediate anti-tumor effects, as they produce effector

cytokines IL-2 and IFNg (19, 20). However, a lower abundance of

Th1 cells in PDAC was also implicated in the prolonged survival of

patients, although the underlying reasons remain undetermined

(20). Th2 cells secrete type 2 cytokines IL-4, IL-5, and IL-13, which

mediate macrophage immunosuppressive polarization, fibrotic

responses, and angiogenesis in tumors (19, 21). In PDAC

patients, Th2 cell frequency has been shown an inverse

correlation with overall survival, highly suggesting a tumor-
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supporting role for these cells (19, 21). Nonetheless, Jacenik et al.

reported that Th2 cells suppressed colon and pancreatic tumor

growth in mice. Mechanistically, it was associated with Th2 cell-

secreted IL-5, which promoted anti-tumorigenic responses of

macrophages and eosinophils (96). As the main producer of IL-17

family cytokines, Th17 cells have been shown divergent effects in

tumor immunity. He et al. provided data showing that elevated

Th17 cells and their cytokines IL-17 and IL-22 were associated with

tumor invasiveness, metastasis, and poor survival of PDAC patients

(97). In line with the study in humans, McAllister et al. reported a

remarked reduction in tumor progression in a mouse model of

PDAC, of which Th17 cells were depleted (98). In the study,

overexpression of IL-17A cytokine in the pancreas significantly

accelerated PanIN initiation and progression in mouse models,

suggesting a tumor-promoting role for IL-17 signaling albeit the

molecular mechanisms required further investigation (98).

Interestingly, there were also studies to report the potential anti-

tumor effects of Th17 cells, as increased Th17 cell infiltration was

positively correlated with tumor control and survival of PDAC

mouse models (22). Therefore, the paradoxical effects among Th1,

Th2, and Th17 cells in tumor immunity may highly rely on contexts

including PDAC TME status, which requires further

characterization in order to use their anti-tumor immunity

whereas reverse the tumor-promoting role for PDAC therapy.
6.2 B cells

B cells are highly infiltrated in PDAC, and their roles in cancer

immunity have been the subject of increasing research (23, 99). By

determining PanIN and PDAC lesions from both humans and

mouse models, Pylayeva-Gupta et al. observed the prominent

presence of B cells and that orthotopic PDAC growth was

significantly slowed in B cell-deficient mice. Further analysis

identified the contribution of IL-35-producing CD1dhiCD5+ B

cells to PDAC progression in mice and that these cells were

recruited through CXCL13 (100). A regulatory B cell population

has been well-documented in PDAC, which, except for IL-35, was

also characterized by the expression of IL-10 and PD-L1 (99). It

thus explained the capabilities of the B cells to suppress anti-tumor

immunity and promote PDAC. Besides, B cells have been

implicated in other mechanisms contributing to PDAC

progression. They have been found to play a role in programming

tumor-supporting FCgR+ TAMs and to be functionally associated

with hypoxia in PDAC (101, 102). Collectively, these studies

highlighted a tumor-promoting role for B cells in PDAC albeit

through various mechanisms. More recently, ectopic lymphoid

aggregates, namely tertiary lymph structures (TLS), have been

observed in many solid cancers including PDAC. Composed of

organized B cells and T cells, TLS presence has been positively

associated with immunotherapy efficacy and favorable survival of

PDAC patients (103, 104). Underlying mechanisms most likely

attributed to TLS functioning as tumor immunity hub readily

available in TME (103, 104). In addition, it is postulated that the

presence of sparse or organized B cells within tumors may play

divergent roles in tumor immunity.
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7 Cancer-associated fibroblasts in the
immunosuppressive TME of PDAC

Cancer-associated fibroblasts (CAFs) represent the most

abundant cell type in the TME of PDAC, in which they constitute

up to 80% of all cells. CAFs behave with remarkable desmoplastic

reaction, a typical feature of the PDAC TME that is largely involved

in ECM deposition and vessel remodeling. CAFs are very

heterogeneous populations in terms of cellular origin and

function (24). Studies have shown that CAFs can derive from

pancreatic stellate cells (PSCs), tissue-resident fibroblasts,

adipocytes, pericytes, bone marrow-derived progenitors, and

endothelial cells (24). PSCs have long been considered as the

primary source of CAFs in PDAC, however, cell lineage tracing

study targeting Fabp4+ PSCs showed them contributing to a

numerically minor CAF subpopulation (24, 105). This suggests

that multiple cellular origins contribute to the heterogeneity of

CAFs in PDAC (24, 105). The extent to which each potential

cellular origin contributes to the diverse population of CAFs in

PDAC is still largely unknown. Additionally, the relationship

between the different cellular origins and the phenotypic, spatial,

and functional heterogeneity of CAFs in PDAC remains unclear.

In the context of PDAC, three subsets of CAFs have been widely

appreciated from early efforts by scRNA sequencing analysis of

tumors from mouse models and human patients. A myofibroblast-

like subset of CAFs (myoCAF) was evidenced by upregulating

expression of aSMA and ECM, meanwhile inflammatory CAFs

(iCAF) expressed cytokines and chemokines such as IL-6 and

CXCL12. Spatially, myoCAFs were located close to the neoplastic

cells whereas iCAFs distributed distantly from the tumor cells, likely

indicating the distinct modes of CAF-tumor interactions (106–108).

In addition to myoCAFs and iCAFs, a distinct CAF population

expressing high levels of antigen presentation molecules such as

MHC-II molecule and CD74 has been characterized (termed

antigen-presenting CAFs, or apCAF). Interestingly, these cells

lacked costimulatory molecules, suggesting their inability of

mounting a functional immune response (107, 109). Recently, a

subset of CAFs expressing leucine-rich-repeat-containing protein

15 (LRRC15) was identified in PDAC, but not in the healthy

pancreas, in both mice and humans. LRRC15 marked a

myofibroblast population of CAFs that were dependent on TGFb,
although its function in CAFs were unknown. These cells were

shown to promote tumor growth and limit anti-tumor immunity

and responsiveness to immune checkpoint blockade (110, 111).

CAFs contribute to the immunosuppressive TME in PDAC in

various manners. CAFs have been reported to promote the

differentiation and/or recruitment of MDSCs in the TME by

secreting IL-6, GM-CSF, and CCL2 (24, 106). A more recent

study has shown that CAFs secreted CSF-1 to drive p21-mediated

TAM proliferation and immunosuppressive phenotypes, which

promoted PDAC progression (112). Moreover, CAFs impaired

anti-tumor T cell immunity, through CXCL12-mediated T cell

exclusion and/or TGFb-mediated T cell functional suppression

(24, 88, 89). Finally, costimulatory-deficient apCAFs presented

antigens to T cells but were unable to activate them. ApCAFs
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thus prevented T cells from being activated by professional antigen-

presenting cells. More recently, apCAFs were shown to have an

immunoregulatory function since they directly induced Treg

differentiation from naïve CD4 T cells in an antigen-specific

manner (107, 109). In summary, the fundamental investigation of

CAF origin, phenotypic and functional heterogeneity, and how they

contribute to the immunosuppressive TME in PDAC will generate

instrumental knowledge for targeting them.
8 Targeting the immunosuppressive
TME to improve PDAC therapy

Immunotherapies with immune checkpoint inhibitors (ICI)

have revolutionized the treatment of several cancers. However,

this new treatment, particularly monotherapy, seems not to be

entirely effective for PDAC, except for the 1% of patients harboring

high microsatellite instability in tumors. Reasons that contribute to

the low efficacy of ICI therapy for PDAC are multiple, with the

overarching TME representing the most notorious one (2–5). In

this regard, TME-targeted strategies have long been investigated to

improve PDAC therapy, among which novel examples will be

highlighted in the section (Table 1).
8.1 Targeting the immunosuppression

CSF1/CSF1R pathway plays a crucial role in TAM recruitment,

maintenance, and proliferation, which can be prevented either with

monoclonal antibodies to block CSF1R dimerization or with small

molecule inhibitors to impair CSF1R-mediated signal transduction

(44, 45, 113, 114). CSF1R inhibition has been shown to reduce

CD206hi TAMs in PDAC, thereby leading to M1-like macrophage

polarization, increased T cell infiltration, and reduced tumor

growth (113, 114). Importantly, CSF1R inhibition improved

radiotherapy, anti-PD1 and anti-CTLA4 immunotherapies, and

gemcitabine chemotherapy in preclinical mouse models of PDAC

(113, 114). However, a cautious approach must be taken for future

clinical applications due to the potential compensatory effect of

TAM depletion, which may lead to the emergence of

immunosuppressive G-MDSCs (66, 115).

CCL2/CCR2 axis is highly used for PDAC to mobilize and

recruit inflammatory monocytes, which further differentiate into

TAMs in TME (44, 45, 116, 117). In mice, pharmacologically

blocking CCL2/CCR2 axis through an anti-CCL2 neutralizing

antibody or CCR2 inhibitor resulted in reduced CCR2+

monocytes and TAMs in primary PDAC and pre-metastatic liver,

which consequently contributed to improved anti-tumor immunity,

reduced tumor growth, and decreased metastasis (116, 117).

Notably, discrepancies have been observed in murine models

when comparing the effects of pharmacological blockade of

CCL2/CCR2 axis to those of germline genetic ablation of CCR2

in attenuating PDAC progression (53). Such findings underscore

the necessity for more meticulous and comprehensive consideration

when utilizing preclinical animal models in future research. In
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addition, CCL2-mediated recruitment of monocytes has been a

critical mechanism for PDAC to resist radiotherapy, given that

blocking CCL2/CCR2 axis improved ablative radiotherapy in

mouse models of PDAC (116). Clinically, phase I trials

NCT01413022 (CCR2 antagonist PF-04136309 + FOLFIRINOX)

and NCT02345408 (CCR2 antagonist CCX872 + FOLFIRINOX)

have seen objective responses for the PDAC patients treated with

the combinations (118, 119).

Another strategy to target TAMs in PDAC involves the

application of CD40 agonists to activate their anti-tumor

responses (14, 87, 93, 120). CD40, a member of TNF superfamily,

is broadly expressed by immune cells, including monocytes,

macrophages, and DCs, and is crucial for their activation, antigen

presentation, and other immune responses (93, 120). In mouse

models of PDAC, treatment with agonistic CD40 antibodies

reprogramed TAMs toward anti-tumor phenotypes. It was

evidenced by the upregulation of MHC-II and CD86, and

elevated production of pro-inflammatory cytokines IL-12, TNFa,
and IFNg (93, 120). Further, combined treatment with CD40

agonists and gemcitabine/nab-paclitaxel improved TAM

responses and anti-tumor T-cell clonal expansion, consequently

facilitating PDAC control in mouse models (87, 93, 120). Moreover,

triple therapy with T-cell inducting vaccine, PD-1 blockade, and

CD40 agonist significantly promoted anti-tumor T cell immunity,

marked by elevated infiltration of IFNg-, TNFa-, and granzyme B-

secreting effector T cells (121). As a result, triple therapy further

improved tumor control and prolonged mouse survival. Of note,

macrophage depletion markedly compromised the anti-tumor effect

of CD40 agonist, suggesting the significance of macrophages in the

application of this therapy (121). In patients with PDAC, combined

treatment with CD40 agonist (CP-870,893) and gemcitabine led to a

reduction in tumor burden in phase I study (NCT00711191) (120).

However, the phase II clinical trial (NCT03214250) for metastatic

PDAC patients treated with the combination of CD40 agonist

(Sotigalimab), gemcitabine/nab-paclitaxel, and PD-1 blockade

(Nivolumab) did not show improvements in 1-year overall

survival rates (122). Therefore, future studies to identify

predictive biomarkers of response will be required to achieve

higher efficiency.

TANs are abundant in PDAC and targeting them has been a

subject of extensive research. TAN depletion with a small molecule

inhibitor of CXCR2 led to a remarked reduction in PDAC

progression and metastasis in mice, which was associated with

improved T cell infiltration. In line with this, CXCR2 inhibition

further synergized with anti-PD1 and/or FOLFIRINOX therapies

(66, 67). However, PDAC patients treated with combined CXCR2

inhibitor (AZD5069) and anti-PD-L1 (Durvalumab) in a phase Ib/

II clinical trial (NCT02583477) demonstrated limited efficacy,

which warranted future studies. It has been shown that CXCR2

inhibition resulted in compensatory emergence of CCR2+ myeloid

cells in mouse PDAC, which in turn remarkably compromised the

effect of CXCR2 inhibition (66). Further, combined inhibition of

CXCR2 and CCR2 successfully disrupted the recruitment of

immunosuppressive myeloid cells in mouse PDAC and

consequently improved chemotherapy responses (66). It suggests
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TABLE 1 Selected clinical trials targeting TME for pancreatic cancer therapy.
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TABLE 1 Continued
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an important point to be considered in future clinical trials

regarding therapies through myeloid cell depletion.

Different strategies to directly target Tregs have been

investigated. One of the earliest studies was the incorporation of

low-dose cyclophosphamide in different treatment regimens to

target Tregs (123, 124). Studies showed that Tregs had higher

susceptibility to the toxic effects of cyclophosphamide due to their

low levels of intracellular ATP (Adenosine triphosphate) and

glutathione, thus were selectively eliminated (123, 124). In

combination with the allogeneic PDAC vaccine (GVAX,

granulocyte macrophage colony-stimulating factor–secreting

pancreatic cancer cell lines), cyclophosphamide has been shown

to augment immune responses in PDAC patients (125, 126).

Additionally, CTLA-4, neuropilin-1, and CCL5/CCR5 have been

explored as targets for intratumoral Tregs (2, 4, 5). However, it is

especially worth noting that a recent study has shown an

acceleration of tumorigenesis in the context of Foxp3+ Treg cell-

genetic depletion in a mouse model of PDAC, which

mechanistically attributed to compensatory infiltration of myeloid

cells, in particular TAMs (83). In this regard, chemotherapies that

can delete Tregs, such as low-dose gemcitabine (127), could

unintendedly contribute to pro-tumor consequences in PDAC

patients. Thus, these studies imply that therapeutic strategies

aimed at immunosuppressive cell modulation rather than

depletion could hold more potential to benefit PDAC outcomes.
8.2 Targeting cancer-associated fibroblasts

Targeting cancer-associated fibroblasts (CAFs) to treat cancer

was initially evaluated with inhibitors of fibroblast-activation

protein (FAP), a type-II transmembrane serine protease highly

expressed by fibroblasts. In mice with subcutaneous PDAC, FAP

inhibitor (UAMC-1110) did not show any meaningful efficacy as a

single agent (128). Similarly, in patients with metastatic PDAC,

combined treatment with FAP inhibitor (Talabostat) and

gemcitabine demonstrated very limited efficacy over historical

gemcitabine monotherapy in a phase II clinical trial (129). Given

the lack of success in targeting FAP, subsequent studies have been

investigated to deplete active CAFs. Studies have shown that genetic

depletion of aSMA-expressing CAFs (myoCAF) in mouse models of

PDAC promoted tumor progression, suggesting a tumor-

suppressing function of these cells (130). Interestingly, a recent

study by Krishnamurty et al. reported that depletion of LRRC15+

myoCAFs slowed tumor growth in mouse models of subcutaneous

PDAC (111). Moreover, LRRC15+ myoCAF depletion in

combination with anti-PDL1 led to a significantly improved anti-

tumor effect (111). According to these findings, the study instead

noted a tumor-supporting role for LRRC15+ myoCAFs in PDAC

(111). Notably, the paradoxical results of targeting myoCAFs from

the abovementioned studies warranted a comprehensive

understanding of CAF heterogeneity in PDAC therapy. In PDAC,

ECM is primarily secreted by CAFs and highly deposited in the

TME (24). Targeting ECM, such as modulating sonic hedgehog

signaling, MMP activity, or hyaluronan deposition, has also been

studied. Unfortunately, early clinical trials in PDAC patients did not
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yield satisfactory therapeutic efficacy with these strategies (24).

Another strategy for targeting CAFs is to block CAF-mediated

immunosuppression. For example, disrupting CXCL12-CXCR4

signaling by AMD3100, a small molecule inhibitor of CXCR4,

demonstrated a synergistic anti-tumor activity in combination

with anti-PD-1/PD-L1 therapy in mouse models of PDAC (84,

89). The combination therapy of CXCR4 inhibition (ADM3100)

and anti-PD1 (Cemiplimab) is now being studied in a phase II

clinical trial (NCT04177810) for patients with metastatic pancreatic

cancer (131). CXCR4 inhibition has also been shown to result in the

infiltration of additional myeloid cells into tumors, suggesting a

potential mechanism of resistance against CXCR4-targeted

therapies (131). Together, these findings generally raise a

perspective that future strategies should aim at modulating the

TME instead of targeted depletion.
9 Concluding remarks

Over the past years, increasing knowledge has been made in

understanding the complex TME of PDAC and its significance on

disease biology and treatment outcomes. Despite its heterogeneity

and complex interplay among various cellular components, the

PDAC TME consistently exhibits immunosuppressive

characteristics, which strongly influence tumor progression,

metastasis, as well as responses to therapies. Other research topics

that were not covered due to the scope of this review, such as cancer

metabolism, vessel remodeling, and cancer vaccines, can also be

promisingly targeted for therapeutics. Overall, it can be expected

that conceptual advances that understand the overarching TME of

PDAC toward a comprehensive overview could help to develop new

therapeutic strategies aimed at targeting multiple mechanisms with

synergistic effects.
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Identification and validation of
hub genes and molecular
classifications associated with
chronic myeloid leukemia
Fangmin Zhong, Fangyi Yao, Shuai Xu, Jing Zhang,
Jing Liu* and Xiaozhong Wang*

Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center
for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Chronic myeloid leukemia (CML) is a kind of malignant blood

tumor, which is prone to drug resistance and relapse. This study aimed to identify

novel diagnostic and therapeutic targets for CML.

Methods: Differentially expressed genes (DEGs) were obtained by differential

analysis of the CML cohort in the GEO database. Weighted gene co-expression

network analysis (WGCNA) was used to identify CML-related co-expressed

genes. Least absolute shrinkage and selection operator (LASSO) regression

analysis was used to screen hub genes and construct a risk score model based

on hub genes. Consensus clustering algorithm was used for the identification of

molecular subtypes. Clinical samples and in vitro experiments were used to verify

the expression and biological function of hub genes.

Results: A total of 378 DEGs were identified by differential analysis. 369 CML-

related genes were identified by WGCNA analysis, which were mainly enriched in

metabolism-related signaling pathways. In addition, CML-related genes are

mainly involved in immune regulation and anti-tumor immunity, suggesting

that CML has some immunodeficiency. Immune infiltration analysis confirmed

the reduced infiltration of immune killer cells such as CD8+ T cells in CML

samples. 6 hub genes (LINC01268, NME8, DMXL2, CXXC5, SCD and FBN1) were

identified by LASSO regression analysis. The receiver operating characteristic

(ROC) curve confirmed the high diagnostic value of the hub genes in the analysis

and validation cohorts, and the risk score model further improved the diagnostic

accuracy. hub genes were also associated with cell proliferation, cycle, and

metabolic pathway activity. Two molecular subtypes, Cluster A and Cluster B,

were identified based on hub gene expression. Cluster B has a lower risk score,

higher levels of CD8+ T cell and activated dendritic cell infiltration, and immune

checkpoint expression, and is more sensitive to commonly used tyrosine kinase

inhibitors. Finally, our clinical samples validated the expression and diagnostic

efficacy of hub genes, and the knockdown of LINC01268 inhibited the

proliferation of CML cells, and promoted apoptosis.
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Conclusion: Through WGCNA analysis and LASSO regression analysis, our

study provides a new target for CML diagnosis and treatment, and provides a

basis for further CML research.
KEYWORDS

chronic myeloid leukemia, WGCNA, hub gene, diagnosis, biomarker
Introduction

Chronic myeloid leukemia is a malignant tumor that affects the

blood and bone marrow (1). It is mainly induced by the BCR-ABL1

fusion gene, which encodes a protein with strong tyrosine kinase

activity and activates various signaling pathways (2). At present, the

main therapeutic drugs for CML are tyrosine kinase inhibitors (TKIs)

targeting BCR-ABL1 (2). The development of the first-generation

TKI imatinib (IM) has changed the treatment status of CML, and the

prognosis of patients has been significantly improved (3). It is widely

used and has a good therapeutic effect. However, due to the existence

of escape mechanisms, tumor cells often develop resistance to kinase

drugs, leading to the malignant progression of the disease, which

seriously affects the health of patients (4). In addition, the long-term

use of TKI will also produce many complications, affecting the quality

of life of patients (5). Therefore, there is an urgent need to identify

novel molecular targets for the diagnosis and treatment of CML.

With the progress and development of sequencing technology,

bioinformatics has been widely used to explore the genetic changes of

tumors, and to find new targets for early diagnosis and therapeutic

intervention of tumors. The Gene ExpressionOmnibus (GEO) database

contains gene expression profiles of various diseases and tumor samples

and corresponding clinical information, which can be used for in-depth

analysis (6). Weighted gene co-expression network analysis (WGCNA)

is a bioinformatics tool to screen genes with similar expression patterns

related to disease phenotypes by constructing free-scale gene co-

expression networks (7). The reliability of this method has been widely

verified (8–10), and to a large extent, it overcomes the limitations caused

by only focusing on differentially expressed genes (DEGs). Therefore,

hub genes that are highly correlated with clinical phenotypes can be

defined as potential biomarkers and therapeutic targets.

In this study, we systematically analyzed the CML dataset

GSE13159 in the GEO database, combined with differential

expressed expression analysis and WGCNA analysis, identified a set

of co-expressed genes significantly associated with CML, and

determined the biological functions of these genes by enrichment

analysis. Subsequently, the least absolute shrinkage and selection

operator (LASSO) analysis was used to screen out signature genes

that had high diagnostic value for CML and could predict treatment

response in CML patients. We also identified two molecular subtypes

with distinct immune landscapes based on hub gene expression.

Finally, the diagnostic performance of the risk score model

constructed by hub genes was further improved. These signatures
0240
were validated using an additional public cohort and our clinical real-

world cohort. Therefore, these findings will help reveal more

underlying mechanisms of CML, as well as the potential value of

these targets in CML treatment.
Materials and methods

Data acquisition and processing

We downloaded the CML data sets (GSE13159, GSE144119)

from the GEO database. GSE13159 contains 76 CML samples and

74 normal samples, and we normalized the original “cel” files.

GSE144119 contained 48 newly diagnosed CML samples and 32

remission CML samples, as well as 17 normal samples, and the data

were converted to transcripts per kilobase million (TPM) values for

subsequent analyses. GSE13159 was used as the analysis cohort, and

GSE144119 was used for subsequent validation. The normalized

RNA-seq data (TPM values) of 173 TCGA-LAML (The Cancer

Genome Atlas-Acute Myeloid Leukemia) samples containing

clinical information were downloaded from the UCSC XENA

database (https://xenabrowser.net/datapages/).
Pathway activity assessment and function
enrichment analysis

The gene set variation analysis (GSVA) algorithm was used to

calculate the enrichment score of the gene set to quantify the

activity of the corresponding biological process or signaling

pathway. The GSVA score was calculated based on the overall

position of the gene set genes in the expression ranking of all genes,

and the higher the overall expression level of these genes, the higher

the GSVA score. KEGG enrichment analysis was used to analyze the

function of phenotypic-related genes identified by WGCNA. We

perform these analyses in the “clusterProfiler” package (11).
Analysis of immune cell infiltration

CIBERSORT algorithm based on support vector regression

analysis was used to analyze the infiltration proportion of 22

kinds of immune cells in CML samples (12).
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Weighted correlation network analysis

WGCNA is a tool for assessing gene expression correlations and

visualizing co-expression networks. The “WGCNA” software

package was used to identify CML-related genes in the GSE13159

cohort. Pearson correlation analysis was used to form an adjacency

matrix for all matched genes, and the scale-free topology of the

adjacency matrix was realized based on the optimal soft threshold

power. Then, we further transform the adjacency matrix into a

topological overlap matrix (TOM). Based on the TOM difference

measure, the minimum module size was set to 30, the cutting height

was set to 0.2, and the genes with similar expression patterns were

divided into the same modules through average linkage hierarchical

clustering. Then, the correlation between module characteristic genes

(MEs) and CML was assessed, and the modules that met the purpose

of the study were determined according to the degree of correlation.
Identification of DEGs between normal and
CML samples

The empirical Bayesian approach via the “limma” package was

used to determine DEGs between normal and CML samples (13).

Genes with adjusted P-values < 0.05 and |logFC| > 1 were

considered significantly different.
Construction of risk score model

Overlapping genes of CML-related genes and DEGs identified by

WGCNA were used for the identification of CML hub genes. Then,

the LASSO regression algorithm was used for dimensionality

reduction analysis to screen out the most related genes with CML

(14). In addition, based on the correlation of hub genes, LASSO

regression analysis assigned a coefficient to each gene, and the

expression of each gene was multiplied by its coefficient and added

to obtain a risk score, which was used to analyze the diagnostic value

of the combination of hub genes in CML. Risk score = NME8 × 1.160

+ DMXL2 × 0.853 + CXXC5 × -0.126 + SCD × 0.610 + FBN1 × 0.405,

where gene ID refers to the expression value of each gene.
Identification of molecular subtypes based
on hub genes

Consensus cluster analysis was performed to identify CML

molecular subtypes based on hub gene expression using the

“consensusclusterplus” package. Clustering was performed for 1000

iterations to ensure reliable and stable results. t-distributedstochastic

neighbor embedding (t-SNE) was used to validate the classification.
Construction of competing endogenous
RNA network

Target miRNAs of hub genes were found in the miRTarBase,

miRDB, and TargetScan databases. Perl programming language was
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used to perform the prediction analysis of the target lncRNAs of

these miRNAs in the miRcode database.
Prediction of treatment response for
different molecular subtypes

The half-maximal inhibitory concentrations (IC50) of different

CML samples to therapeutic drugs were predicted based on drug

response data of blood cell lines from the Cancer Genome Project

(CGP) database (https://cancer.sanger.ac.uk/cosmic) via the

“pRRophetic” package. Tumor Immune Dysfunction and Exclusion

(TIDE, http://tide.dfci.harvard.edu/) was considered a good predictor

of immunotherapeutic response for molecular subtypes.
Clinical sample collection

CML samples and normal samples were collected for sequencing

analysis in accordance with the Declaration of Helsinki and

institutional guidelines, and informed consent was obtained from

each patient and healthy volunteer who had undergone the

appropriate workup. Our study was approved by the Ethics

Committee of the Second Affiliated Hospital of Nanchang

University, and sample processing was performed according to the

norms. We collected samples from 5 untreated patients with newly

diagnosed CML and 5 normal samples from healthy volunteers. The

methods and details of sample collection, next-generation sequencing,

and processing procedures were described in our previous report (15).

Moreover, peripheral blood samples from 15 CML patients and 15

normal controls were collected for quantitative real-time polymerase

chain reaction (RT-qPCR) assay to detect hub gene expression. RT-

qPCR was performed using a Japanese TAKARA kit on an ABI7500

instrument. The primers are shown in Supplementary Table S1.
Cell culture and detection of cell
proliferation and apoptosis

The CML cell line K562 was cultured in RPMI1640 medium

supplemented with 10% fetal bovine serum and 1% penicillin-

streptomycin in a humidified atmosphere incubator at 37°C with 5%

CO2. Two different siRNAs targeting LINC01268 (si-LINC01268) and

control siRNA (si-NC) were procured from Ribobio (China) and

transfected into K562 cells using Lipofectamine 3000 (Thermofisher

Scientific) (Supplementary Table S1). RT-qPCR was employed to

assess the transfection efficiency. Cell proliferation was evaluated

using the Cell Counting Kit-8 (CCK-8). For the CCK8 assay, a total

of 2×104 cells from various treatment groups were seeded in individual

wells of a 96-well plate, with each group being repeated five times.

Subsequently, at time points of 0, 24, 48, and 72 hours, respectively, 10

ml of CCK8 solution was added to each well. After incubation at 37°C

for two hours, the optical density (OD) value at a wavelength of 450 nm

was measured using a microplate reader. Apoptosis assays were

performed by staining the cells with Annexin V-PE/7-AAD

Apoptosis Assay Kit followed by analysis on a flow cytometer.
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Statistical analysis

We performed the Wilcoxon rank sum test and the Kruskal-

Wallis test to determine differences between two or more groups,

respectively. The “survminer” package divides patients into high-

and low-gene expression groups based on the cut-off point at the

minimum p-value of the log-rank test, and the Kaplan-Meier

survival curve analysis was used to analyze survival differences

between the two groups. The receiver operating characteristic

(ROC) curve was used to analyze the diagnostic efficacy of genes.

A two-sided P value < 0.05 was considered statistically significant.
Results

CML-related genes were identified by
WGCNA analysis

We first performed differential expression analysis between CML

and normal samples and obtained a total of 378 DEGs. Heatmap

analysis showed that more DEGs were down-regulated in CML

(Figure 1A). We further performed WGCNA analysis to identify

more CML-related genes. The cluster tree diagram showed the

clustering characteristics of the samples, and the CML samples had

a high degree of discrimination from the normal samples (Figure 1B).

Figures 1C, D show the scale-free fit exponent and average

connectivity analysis for various soft threshold powers. We set cut

height = 0.25 to merge the blue and green module feature genes

(Figure 1E). According to the optimal soft threshold power b = 12

(unscaled R2 = 0.9), the 5000 genes with the highest standard
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deviation were divided into eight independent co-expression

modules (Figure 1F). The correlogram of module-trait relationships

showed that the brown module, which contains 369 genes, had the

highest correlation with CML (Figures 1G, H) (Supplementary Table

S1). We also found that the blue, green, yellow, black, and pink

modules were negatively correlated with CML, and these results were

associated with the downregulated expression of most genes in CML.
Functional analysis of CML-related genes

The brown module genes were mainly related to metabolic-

related signaling pathways such as Starch and sucrose metabolism,

Pantothenate and CoA biosynthesis, Amino sugar and nucleotide

sugar metabolism, Pentose phosphate pathway, and Galactose

metabolism (Figure 2A). While yellow and turquoise module

genes were negatively associated with CML, these genes were

mainly enriched in immune-related signaling pathways such as

Th17 cell differentiation, Th17 cell differentiation, Cytokine-

cytokine receptor interaction, and Hematopoietic cell lineage, T

cell receptor signaling pathway, NOD-like receptor signaling

pathway, Natural killer cell mediated cytotoxicity (Figure 2B).

These results indicate that CML has stronger metabolic activity

and some immunodeficiency. Immune infiltration analysis showed

that CML samples had fewer naive and memory B cells, plasma

cells, CD8+ T cells, naive CD4+ T cells, activated memory CD4+ T

cells, resting NK cells, and activated dendritic cells, and contained

more regulatory T cells (Tregs) than normal samples (Figure 2C),

which confirm the immunosuppressive features evident in

CML samples.
A B D

E F G H

C

FIGURE 1

Identification of CML-related genes. (A) The heatmap shows differentially expressed genes (DEGs) between CML and normal samples. (B) Clustering
dendrogram of CML and normal samples. (C, D) Scale-free fit index (C) and average connectivity (D) analysis of various soft threshold powers. (E) the
cluster of module feature genes. The red line indicates the cutting height (0.25). (F) Dendrogram of clustering based on different measures (1-TOM).
(G) Heatmap of correlation between module genes and phenotypes. Each cell contains a p-value and a correlation coefficient. (H) Scatter plot of
module characteristic genes associated with CML samples in brown module.
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Identification of CML hub genes

We intersected DEGs and WGCNA brown module genes and

obtained 17 overlapping genes (Figure 3A), and the correlation

coefficients of these genes with the brown module in WGCNA and

with CML samples were greater than 0.4 (Supplementary Table S2),

indicating that they were significantly positively correlated with

both CML and brown module. LASSO regression analysis further

reduced the dimension and screened out 6 hub genes most related

to CML, which were LINC01268, NME8, DMXL2, CXXC5, SCD,

and FBN1 (Figures 3B, C). Boxplots showed that LINC01268,

NME8, DMXL2, SCD, and FBN1 were significantly up-regulated

and CXXC5 was significantly down-regulated in CML samples

compared with normal samples (Figure 3D).
Diagnostic value and prognostic
correlation of CML hub genes

We further analyzed the predictive value of CML hub genes for

CML. ROC curve analysis showed that all 6 hub gens had high AUC
Frontiers in Immunology 0543
values for the diagnosis of CML, among which LINC01268 was

0.864 (95%CI: 0.796-0.924), NME8 was 0.869 (95%CI: 0.808-0.924),

DMXL2 was 0.866 (95%CI: 0.805-0.91), CXXC5 was 0.831 (95%CI:

0.761-0.895), SCD was 0.856 (95%CI: 0.790-0.919), and FBN1 was

0.836 (95%CI: 0.767-0.900) (Figure 4A). In addition, considering

that approximately 70% of CML cases in blast crisis progress to

AML, we analyzed the prognostic predictive value of 6 hub genes in

the TCGA-AML cohort. High expression groups of LINC01268,

SCD, FBN1, and CXXC5 had significantly shorter overall survival

than their low expression groups, respectively, while high

expression groups of NME8 and DMXL2 showed better

prognosis, but there was no statistical difference (Figure 4B).
Validation of the diagnostic value of CML
hub genes

The GSE144119 cohort contains samples from newly diagnosed

and treatment-remission CML. Encourageously, the results of the

differential analysis were consistent with the GSE13159 cohort, in

which NME8, DMXL2, SCD, and FBN1 expression was
A B

C

FIGURE 2

Functional analysis of CML-related genes and immune infiltration analysis. (A) KEGG enrichment analysis of brown module genes. (B) KEGG
enrichment analysis of genes in yellow and turquoise modules. (C) Differences in infiltration of 22 immune cells between CML and normal samples.
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significantly increased and CXXC5 expression was significantly

decreased in newly diagnosed (chronic phase) CML patients (The

expression of LINC01268 was not detected). These hub genes also

had predictive value for CML treatment remission. The expression

levels of NME8, DMXL2, SCD, and FBN1 were significantly

decreased in CML treatment-remission patients, while the

CXXC5 expression level was significantly increased, and they all

returned to normal control levels. ROC curve analysis confirmed

the diagnostic value of these hub genes in CML (Figure 5A). The

AUC values of NME8, SCD, FBN1, DMXL2, and CXXC5 were

0.906 (95% CI: 0.836-0.960), 0.958 (95% CI: 0.908-0.995), 0.933

(95% CI: 0.870-0.980), 0.795 (95% CI: 0.695-0.878), and 0.932 (95%

CI: 0.868-0.982), respectively (Figure 5B). In our clinical cohort, we

confirmed that SCD and FBN1 expression was significantly

upregulated CXXC5 was significantly downregulated in CML, and

NME8 and DMXL2 expression were not significantly different due

to the small sample size (Figure 6A).
Potential biological mechanisms of CML
hub genes

To better explore the biological functions of CML hub genes, we

analyzed their correlation with tumor marker pathway activity and
Frontiers in Immunology 0644
immune cell infiltration. CXXC5 expression was related to P53

PATHWAY, DNA REPAIR, MYC TARGETS, and APOPTOSIS,

and may be involved in the regulation of CML cell proliferation.

DMXL2 was positively correlated with cell cycle-related pathways

such as MITOTIC SPINDLE, and G2M CHECKPOINT. FBN1,

LINC01268, and SCD were related to the metabolic pathway

activity of MTORC1 SIGNALING, GLYCOLYSIS, FATTY ACID

METABOLISM, ADIPOGENESIS (Figure 6B). The expression of

NME8 was negatively correlated with the activity of most tumor

marker pathways. In addition, CXXC5 expression was positively

correlated with infiltration of CD8+ T cells, resting memory CD4+

T cells, resting NK cells, activated dendritic cells, and memory B

cells, suggesting that CXXC5 may be involved in CML anti-tumor

immunity (Figure 6C). Figure 6D shows the location of five hub

genes in chromosomes. In addition, we identified a group of

transcription factors with potential regulatory effects on hub

genes (Figure 6E). According to the construction of the CeRNA

network (Figure 6F), lncRNA FAM13A-AS1 with upregulated

expression may promote the expression of FBN1 by competitively

binding hsa-miR-24-3p and hsa-miR-363-3p. lncRNA CRNDE

may promote the expression of FBN1 by binding hsa-miR-363-

3p, hsa-miR-508-3p and hsa-miR-140-5p. The downregulation of

lncRNAs DLEU2 and HCP5 may reduce the binding of miR-363-

3p, thereby inhibiting the expression of CXXC5.
A B

D

C

FIGURE 3

Identification of CML hub genes. (A) The intersection of DEGs and brown module genes in WGCNA. (B) The penalty coefficient of the minimum 10-
fold cross-validation error point was calculated to determine the hub genes. (C) determination of hub gene coefficients. (D) Differences in the
expression of hub genes between CML and normal samples. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1297886
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2023.1297886
A B

FIGURE 4

Analysis of the diagnostic and prognostic value of hub genes. (A) ROC curve analysis of hub genes. (B) K-M curve analysis of hub genes.
A B

FIGURE 5

Validation of the expression and diagnostic value of hub genes in the validation cohort. (A) Differences in the expression of hub genes in normal samples,
newly diagnosed CML samples, and treatment-remission samples. (B) ROC curve analysis of hub genes. **p < 0.01; ***p < 0.001; ns, no significance.
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The construction of a risk score model can
further improve the diagnostic value of
hub genes

To better improve the diagnostic value of hub genes, we used

LASSO regression analysis to construct a risk score model for 5

genes shared by the three cohorts. All three cohorts observed

significantly higher risk scores in CML samples than in normal

samples, and risk scores in patients in remission tended to be

normal (Figures 7A–C). ROC curve analysis showed that the

diagnostic AUC values in the GSE13159 cohort, GSE144119

cohort, and clinical cohort were 0.925 (95% CI: 0.877-0.964),

1.000 (95% CI: 1.000-1.000) and 0.840 (95% CI: 0.520-1.000),

respectively, confirming that the diagnostic value of risk score of

hub genes combination was further improved.
Frontiers in Immunology 0846
Molecular subtypes identified based on
hub genes and prediction of
treatment response

We performed cluster analysis of CML samples based on hub

gene expression and identified two distinct molecular subtypes

(Cluster A and Cluster B) (Figure 8A). The t-SNE algorithm

verified the reliability of the clustering (Figure 8B). Compared with

Cluster B, LINC01268, DMXL2, SCD, and FBN1 were up-regulated

and CXXC5 was down-regulated in Cluster A (Figure 8C). Cluster A

also had a significantly higher risk score than Cluster B (Figure 8D).

Immune infiltration analysis showed that the infiltration levels of

CD8+ T cells and activated NK cells were significantly higher in

Cluster B than in Cluster A (Figure 8E). The expression of immune

checkpoints PD-L1, CTLA4, HAVCR2, and PD-1 was also
A

B

D E F

C

FIGURE 6

Expression Validation of hub genes in clinical cohort and biological function analysis. (A) Differences in the expression of hub genes between CML
and normal samples in a clinical cohort. (B) Correlation analysis of hub genes and tumor marker pathway activity. (C) Correlation analysis of hub
genes, and immune cell infiltration. (D) The location of hub genes on chromosomes. (E) Transcription factors with potential regulatory effects on
hub genes expression. (F) CeRNA networks with potential regulatory effects on hub genes expression. *p < 0.05; **p < 0.01; ns, no significance.
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significantly up-regulated in Cluster B (Figure 8F). In addition, the

TIDE score of Cluster B was significantly higher than that of Cluster

A (Figure 8G), indicating significant immunosuppression in Cluster

B. We also compared the activity of tumor-marker gene sets in the

two molecular subtypes (Figure 8E). We found metabolic and cell

proliferation-related pathways such as MYC targets V1, oxidative

phosphorylation, G2M checkpoint, E2F targets, mTORC1 signaling

and fatty acid metabolism were more active. In Cluster B, the

enrichment scores of cancer-promoting pathways such as

hedgehog, epithelial-mesenchymal transition, and TNFA signaling

via NFKB were higher (Figure 8H). We then predicted the response

of different molecular subtypes to TKIs commonly used for CML

treatment, and the results showed that Cluster B patients had higher

therapeutic sensitivity to imatinib, nilotinib, bosutinib, and dasatinib.

Moreover, there was a significant positive correlation between the risk

score and the IC50 of the four drugs, that is, the higher the risk score,

the less sensitive the treatment to the four drugs (Figure 8I).
Expand clinical sample size to validate the
expression of hub genes and confirm the
oncogenic role of LINC01268

The expression of hub genes was validated by RT-qPCR in

expanded clinical samples. Encouragingly, the results also

confirmed that LINC01268, NME8, DMXL2, SCD, and FBN1

were up-regulated while CXXC5 was down-regulated in CML

samples (Figure 9A). Previous studies have shown that DMXL2,

NME8, and FBN1 primarily exert oncogenic roles through

mutations and splice variants (16–18); moreover, the role of SCD
Frontiers in Immunology 0947
in CML has also been reported previously (19). Therefore, we chose

to initially explore the biological function of LINC01268 in CML

cells. The expression of LINC01268 was significantly inhibited by

siRNA (Figure 9B). CCK8 assay showed that compared with the si-

NC group, the proliferation ability of CML cells in the si-

LINC01268 group was significantly reduced (Figure 9C).

Moreover, the apoptosis rate of the si-LINC01268 group was

higher than that of the si-NC group (Figures 9D–F). These results

reveal the oncogenic role of LINC01268 and its potential as a

therapeutic target for CML.
Discussion

The development and application of TKIs have significantly

improved the prognosis of CML patients, but these drugs can only

delay the progression of the disease, and cannot be used as a

curative treatment (2). Due to the existence of resistance

mechanisms, patients inevitably relapse (5). Therefore, it is

particularly important to explore more potential therapeutic

targets and markers for disease prediction and progression

assessment in CML. In this study, we focused on the diagnostic

markers of CML and their underlying biological mechanisms. Based

on the DEGs between CML and normal samples and the CML-

related genes identified by WGCNA analysis, we used LASSO

regression analysis to screen out 6 hub genes (LINC01268,

NME8, DMXL2, CXXC5, SCD, and FBN1).

We also focused on the co-expressed gene network identified by

WGCNA analysis. The results showed that the brown module was

significantly positively correlated with CML (Cor=0.39, P=7e-07). It
A B C

FIGURE 7

Construction and validation of risk score model. (A–C) Expression characteristics and diagnostic value of risk scores in the three cohorts.
***p < 0.001; ns, no significance.
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reflects the correlation of the module as a whole with the CML

phenotype. Although this correlation did not reach an exceptionally

high level, a coefficient close to 0.4 suggests its reliability to some

extent. Thus, it can be inferred that the brown module partially

reflects gene co-expression patterns in CML transcriptome while

uncovering underlying biological mechanisms. We found that the

brown module genes positively correlated with CML were enriched

in a variety of metabolic pathways, revealing the more active

metabolic characteristics of CML cells. Several studies confirmed

that targeting mitochondrial oxidative phosphorylation and glucose

uptake is a potential therapeutic target for CML (20, 21). Most of

the module genes negatively correlated with CML were involved in

immune regulation and immune cell activation. Subsequent

analysis showed that the infiltration of immune killer cells such as

CD8+ T cells was significantly reduced in CML samples, confirming

the immune deficiency characteristics. Cayssials et al. found that the

sustained treat-free remission of CML was associated with an

increased frequency of innate CD8+ T cells (22), and Harada

et al. revealed that the inhibition of differentiation of dendritic
Frontiers in Immunology 1048
cells in the hematopoietic microenvironment, as well as the up-

regulation of immune checkpoint expression such as PD-L1, were

responsible for the impairment of CML immune function (23).

Based on this, we believe that targeted inhibition of metabolism and

enhancement of immune response are important strategies for

CML treatment.

It is worth noting that Figure 1G illustrates the association

between module membership (MM) and gene significance (GS), it

reflects the association of individual genes in the module with the

module (x-axis, MM) and with the CML phenotype (y-axis, GS). If

the correlation between MM and GS is high, the higher the

correlation between the module gene and the module, the higher

the correlation between the module gene and the CML phenotype,

showing an overall distribution trend. We further calculated the

correlation coefficient between these two types of coefficients;

although Cor=0.2 with P=0.00011 indicates a weak positive

relationship, it still signifies statistical significance. In this

scatterplot analysis, we focused on points with strong correlations

with both MM and GS. The correlation coefficients for both GS and
A B D
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FIGURE 8

Identification of molecular subtypes of CML and prediction of drug response in different subtypes. (A) The consensus clustering algorithm divided
CML patients into two different molecular subtypes based on the expression of hub genes. (B) t-SNE algorithm was used to verify the classification
reliability of the two molecular subtypes. (C–F) Differences in expression of DEGs (C), risk score (D), infiltration of 22 immune cells (E), expression of
immune checkpoints (F), TIDE scores (G), and activity of tumor hallmark gene sets (H) between the two molecular subtypes. (I) Differences in
therapeutic sensitivity of the two molecular subtypes to four TKIs. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.
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MM of the 17 overlapping genes shared by differentially expressed

genes and brown module genes were found to be greater than 0.4.

Additionally, the correlation coefficients for both GS and MM of

hub genes identified through LASSO regression analysis were

greater than 0.5. This indicates that hub genes were significantly

positively correlated with both the CML phenotype and the brown

module. In this study, we utilized WGCNA analysis and LASSO

regression analysis to identify hub genes of CML, and analyze their

diagnostic value and potential biological functions. Therefore,

WGCNA played a discriminating role to some extent. For the

phenomenon that the correlation coefficients between module and

phenotype and between MM and GS did not reach a high level, we

believe that it may be due to the small size of CML samples included

in the study. Since CML accounts for only about 15% of all

leukemias, this disease is much less studied than other acute

leukemias, and thus, the relevant sequencing data will be smaller.

However, the two CML cohorts included in our study are currently

the largest sample size cohorts with normal samples that can be

found in public databases and are also representative.

The hub genes we identified are likely to be important molecules

in CML metabolism and immune regulation. Stearoyl coenzyme A

desaturase (SCD), a lipase that converts saturated fatty acids to

monounsaturated fatty acids, is a key regulator of fatty acid

metabolism pathways, its expression is also associated with poor

prognosis in several cancer types (24), and elevated SCD levels also

protect cancer cells from ferroptosis (25–27). Its upregulation in

CML may also contribute to cancer cell growth and treatment

resistance by affecting fatty acid metabolism. The high expression of

LINC01268 promotes the progression of HCC by regulating

MAP3K7 (28). Exosomal lncRNA LINC01268 is also a cancer-

promoting factor for pancreatic cancer (29). NME/NM23 family

member 8 (NME8) has been identified as a predisposition variant in

breast cancer and a prognostic marker in diffuse large B-cell
Frontiers in Immunology 1149
lymphoma (30, 31). DMXL2 has also been proposed as a

potential therapeutic target for breast cancer and oral mucosal

melanoma (32, 33). CXXC5 is a member of the CXXC-type zinc

finger protein family. It can regulate various signal transduction

processes, including TGF-b, Wnt, and ATM-p53 pathways, thereby

regulating cell proliferation, differentiation, and apoptosis, and has

been implicated in cancer occurrence and progression in many

studies (34). Fibrillin-1 (FBN1) promotes gastric cancer progression

by activating TGF-b1 and PI3K/Akt pathways, and is targeted by

miR-486-5p to inhibit the growth of thyroid cancer cells (35, 36).

These studies have all revealed the promoting role of hub genes in a

variety of cancers, however, their relationship to CML has not been

elucidated, and more in-depth mechanistic exploration is expected

to reveal their role and potential value as therapeutic targets.

Moreover, we confirmed the diagnostic value of hub genes in

both the analysis and validation cohorts. The risk score model

constructed by LASSO regression analysis further improved the

diagnostic accuracy. The discovery of these markers provides new

targets for the diagnosis and treatment of CML. Finally, we

identified two distinct molecular subtypes based on hub gene

expression, with Cluster B having a lower risk score and

infiltrating a higher proportion of CD8+ T cells and activated

dendritic cells. However, the expression of immune checkpoints

such as PD-L1, CTLA4, HAVCR2, and PD-1 was significantly up-

regulated in Cluster B, as well as the higher TIDE score, indicating

that this molecular subtype has a certain degree of

immunosuppression, which inhibits the tumor-killing function of

immune cells. Therefore, immunotherapy of patients in this subtype

may have a higher response. In addition, drug prediction analysis

showed that Cluster B was more sensitive to commonly used TKIs.

The identification of molecular subtypes provides a new strategy for

precise treatment of CML. Finally, we verified the expression of hub

genes in larger clinical sample sizes, and confirmed that inhibition
A

B D E FC

FIGURE 9

Expression characteristics of hub genes and its relationship with malignant phenotypes of CML cells. (A) Differences in mRNA expression of hub
genes in peripheral blood samples from 15 CML patients and 15 normal controls. (B) mRNA expression level of LINC01268 in K562 cells in
LINC01268 knockdown group (si- LINC01268) and control group (si-NC). (C) Absorbance at 450nm wavelength after CCK8 treatment in different
LINC01268 treatment groups at different time nodes. (D–F) Apoptosis levels in different LINC01268 treatment groups. (*P < 0.05; *** P < 0.001;
**** P < 0.0001).
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of LINC01268 expression significantly reduced CML cell viability

and promoted apoptosis in vitro. These results reveal the oncogenic

role of LINC01268 and its potential as a therapeutic target for CML.

Another study showed that LINC01268, a lncRNA involved in the

epigenetic regulation of AML, exerts deacetylation by directly

activating HDAC2 and generating positive feedback with

HDAC2. In addition, HDAC2 stimulates the transcription of

LINC01268, and the expression of LINC01268 is also associated

with poor prognosis and cell proliferation in AML (37). Therefore,

combined with our findings, LINC01268 is most likely a malignant

regulator of myeloid leukemia. However, our study also has some

limitations, such as the still small size of clinical samples for the

validation of diagnostic signatures and the lack of a more in-depth

experimental analysis of hub genes function in CML cells. In

addition, the correlation and biological mechanisms of hub genes

with CML progression and drug resistance deserve further

exploration, thus providing new targets for CML drug resistance

treatment, which we will further refine in future studies.
Conclusion

In summary, through WGCNA analysis and LASSO regression

analysis, this study provides a better understanding of the role of

biomarkers LINC01268, NME8, DMXL2, CXXC5, SCD, and FBN1,

and provides a biological basis for further investigation of CML

diagnosis and treatment.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by ethics

committee of The Second Hospital of Nanchang University. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Frontiers in Immunology 1250
Author contributions

FZ: Data curation, Formal analysis, Funding acquisition,

Methodology, Software, Validation, Visualization, Writing –

original draft. FY: Validation, Visualization, Writing – original

draft. SX: Validation, Visualization, Writing – original draft. JZ:

Validation, Visualization, Writing – original draft. JL:

Conceptualization, Funding acquisition, Project administration,

Resources, Supervision, Writing – review & editing. XW:

Conceptualization, Funding acquisition, Project administration,

Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The study

was funded by the National Natural Science Foundation of China

(82260035, 82160405) and the Natural Science Foundation of

Jiangxi Province (20202BAB216022, 20232BAB216037).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1297886/

full#supplementary-material
References
1. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis,
therapy, and monitoring. Am J Hematol (2022) 97:1236–56. doi: 10.1002/ajh.26642

2. Osman AEG, Deininger MW. Chronic Myeloid Leukemia: Modern therapies, current
challenges and future directions. Blood Rev (2021) 49:100825. doi: 10.1016/j.blre.2021.100825

3. Rosti G, Castagnetti F, Gugliotta G, Baccarani M. Tyrosine kinase inhibitors in
chronic myeloid leukaemia: which, when, for whom? Nat Rev Clin Oncol (2017)
14:141–54. doi: 10.1038/nrclinonc.2016.139

4. Poudel G, Tolland MG, Hughes TP, Pagani IS. Mechanisms of resistance and
implications for treatment strategies in chronic myeloid leukaemia. Cancers (Basel)
(2022) 14(14). doi: 10.3390/cancers14143300
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Plasmablastic lymphoma (PBL) is an aggressive non-Hodgkin lymphoma

associated with HIV infection and immunodeficiency. However, PBL can also

be seen immunocompetent individuals in recent studies. PBL was characterized

by distinct clinical and pathological features, such as plasmablastic morphology

and universal expression of plasma cell markers. The clinicopathologic features

were different between HIV-negative and HIV-positive patients. Gene expression

analysis identified the uniquemolecular feature in PBL, including frequent c-MYC

rearrangement and downregulation of BCR signaling pathway. Despite the

recent advances in the treatment of PBL, the prognosis of PBL patients

remains dismal. The objectives of this review are to summarize the current

knowledge on the epidemiology, molecular profiles, clinical and pathological

features, differential diagnosis, treatment strategies, prognostic factors, and

potential novel therapeutic approaches in PBL patients.
KEYWORDS

plasmablastic lymphoma, HIV, molecular profiles, treatment, immunotherapy
1 Introduction

Plasmablastic lymphoma (PBL) is a rare subtype of diffuse large B-cell lymphoma

(DLBCL), with high invasiveness and poor prognosis (1). Pathologically, the tumor cells

showed large cell similar to immunoblastic B cells but expressed plasma cell associated

antigens (1). In 1997, Delecluse et al. described 16 cases of primary oral DLBCL with special

immunophenotype, of which 15 cases were positive for human immunodeficiency virus

(HIV), and proposed the diagnosis of PBL for the first time (2). In 2001, PBL was classified

as HIV infection associated lymphoma in the classification of lymphoid and hematopoietic

system tumors byWorld Health Organization (WHO) (3). In 2008, the WHO classification

of lymphoid and hematopoietic system tumors separated PBL from DLBCL and classified it

as acquired immunodeficiency syndrome associated lymphoma (ARL) (4). In 2016, PBL

was classified by WHO as an independent subtype of large B-cell lymphoma (5), which was

associated with HIV and EB virus infections, or other immunodeficiency states, such as
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long-term use of immunosuppressants, solid organ transplantation,

or age-related immune decline.

The prognosis of PBL was significantly worse than DLBCL, with

a median OS of around 12 months (6–8). although multiple new

treatment regimens were developed and tried in PBL, the survival

outcome remain poor (9–12). In the past 10 years, due to the rarity

of this disease, most of the knowledge about it comes from clinical

case reports and the etiology, molecular features and prognostic

factors of this entity remain largely unknown (6). In this paper, the

etiology, pathological features, treatment and prognostic factors of

PBL are reviewed.
2 Epidemiology and clinical features

DLBCL and Burkitt’s lymphoma (BL) are the most common

subtypes of the AIDS-related lymphomas (ARLs), and PBL

represents around 11% of ARLs (13, 14). ARLs account for

approximately 3% of non-Hodgkin’s lymphoma (15, 16),

however, the exact incidence of HIV-positive PBL is still

unknown. In the recent years, an increasing number of PBL cases

with normal immune function have been reported (6, 17–19). The

clinicopathologic features of PBL were significantly different

between HIV positive and HIV negative individuals (18, 20). PBL

occurred more commonly in adult men, especially in HIV positive

patients (13, 21, 22), with a median age of 46 years old in HIV-

positive patients (male/female:8/1) and 57 years old in HIV-

negative patients (male/female: 1.7-1.9/1) (6, 20). Of the 135 cases

of PBL from the LYSA group (20), HIV positive and negative

patients accounted for 42% and 58%, respectively. Around one-

third of HIV-negative PBL are associated with immunodeficiency

such as solid organ transplantation and steroid hormone use (6, 20).

A meta-analysis summarized the reported cases of PBL between

1997 and 2015 in China and the results demonstrated that all the

patients were HIV negative (23). Recently, our group reported 56

cases of PBL from China and found that most patients were

immunocompetent, and HIV infection was not observed (17).

The above results showed that the immune status of PBL was

significantly different between the eastern and western population.

Similar to ARL such as Burkit lymphoma and primary exudative

lymphoma (PEL), PBL is also associated with Epstein-Barr virus

(EBV) infection, and Epstein-Barr virus-encoded RNA was positive

in over half of the PBL patients (6, 20). The association between PBL

and human herpes virus 8 (HHV-8) has yet to be elucidated, and

HHV-8-related protein expression has been found in only a few

cases (6, 19).

In HIV-negative PBL, the most common sites of extra-oral

lesions were gastrointestinal tract, lymph nodes and skin, and extra-

nodal lesions accounted for 82% (6, 17, 19). However, oral cavity is

involved more frequently in HIV positive PBL than that in HIV

negative PBL (6, 20). Only a few cases originate in the central

nervous system (CNS), paranasal sinus, mediastinum,

subcutaneous, lung and testis (6). The distribution of clinical

stage is bimodal, with more than 80% of patients present at stage
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I and stage IV (6). Approximately 33% of HIV-positive PBL patients

and 50% of HIV-negative PBL patients have B symptoms (6, 24). It

has been reported that the average time from the diagnosis of AIDS

to PBL was 5 years, while PBL was the first symptom in 5% of AIDS

case (7). In addition, PBL could also be secondary to plasmacytoma,

follicular lymphoma, and Richter’s transformation of chronic

lymphocytic leukemia (25–28).
3 Etiology and molecular features

The etiology and pathogenesis of PBL remain largely unclear. At

present, it is believed that PBL originates from activated B cells in

the terminal differentiation stage after the germinal center, and may

be in the stage of development and transformation of

immunoblastic cells into plasma cells (1). These cells have

undergone high frequency of somatic mutations and

immunoglobulin (lg) class switching. During this process,

intracellular molecular signaling pathways and chromosomal

abnormalities may lead to malignant transformation. MYC gene

rearrangement (at 8q24) was the first cytogenetic abnormality

identified in PBL patients [3]. MYC gene rearrangement was

detected in over half of PBL patients (18, 29–32) and Ig gene was

the main partner of MYC gene rearrangement (29). MYC gene

rearrangement was more common in EBER positive patients (74%)

than in EBER negative patients (43%) (29). In addition, the MYC

rearrangement rate was significantly higher in EBV-positive PBL

patients than that in EBV-negative patients (33). Targeted

sequencing showed that MYC translocations was observed in as

high as 87% PBL cases (34). The role ofMYC gene rearrangement in

the pathogenesis of PBL is not clear. It is believed that the

plasmablastic morphology of tumor cells and the aggressiveness

of PBL are related to MYC gene rearrangement.

Notch1 is an important regulatory signal for T - and B-lineage

selection during lymphoid progenitor cell development, and it can

inhibit the expression of some transcription factors in B-lineage

lymphocytes. Notch l is also involved in signaling pathways

associated with cell proliferation and survival, including

mammalian target of rapamycin (mTOR) (35). Notch1 pathway

was demonstrated to be activated in PBL by whole exome

sequencing (WES) (36). Segmiller et al. found that Notch1 was

detected by immunohistochemistry (IHC) in all 9 cases of PBL (37).

The positive rates of mTOR substrate phosphorylated ribosomal

protein S6 (mps6) and eukaryotic initiation factor 4E binding

protein 1 (4EBP1) in PBL were 100% and 86%, respectively (37),

which were similar to those in 5 PEL cases and 21 plasma cell

myeloma cases. Notch protein may inhibit the normal phenotypic

expression of B cells and activate mTOR signaling pathway.

Previous studies showed that the gene profiles and mutation

spectrum were significantly different between PBL and DLBCL

(17, 38). Gene expression analysis has identified the

downregulation of B-cell receptor signaling genes in PBL

compared to DLBCL (38). In contrast, mitochondrial genes such

as ATP5G1, CYC1, NDUFAF1, NDUFB6, NDUFB7 and UQCRQ,
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were higher in PBLs than DLBCL (38). Our previous study

performed RNA-sequencing to identify the molecular features of

PBL and the results showed that compared with DLBCL, some

biological pathways were significantly downregulated in PBL,

including BCR and TCR signaling pathways, whereas many

pathways, such as cell adhesion molecules, calcium, and Wnt

signaling pathways, were upregulated in PBL (17).

Matsuki et al. (39) first established PBL cell lines in vitro by

incubating immunodeficient mice subcutaneously with lymph node

biopsies from patients with PBL and culturing subcutaneous masses

of mice. Comparison of this cell line with the cell lines from the

patient’s lymph node in vitro by genetic hybridization (CGH) and

FISH revealed that t (9: The t (9:13) (p22; q22) and 1(4;7) (q35; q22)

chromosomal translocations were observed in the former cell line

could cause the loss of tumor suppressor gene p16 and thus

upregulated the MDR-1 expression, which is related to the

drug resistance.
4 Pathological features

Histologically, the tumor cells showed a morphologic spectrum

ranging from immunoblastic to plasmacytoid (1). Monomorphic

plasmablastic cell morphology was more common in HIV infected

patients and was more likely to occur in the mouth, nose and

paranasal region. PBL with plasmacytic differentiation was more

likely to occur in the extraoral cavity. The “starry sky phenomenon”

can be seen, including scattered mature small lymphocytes with

frequent mitoses, occasional apoptosis cells and tingible body

macrophages (1). However, PBL needs to be distinguished from

other large B-cell lymphomas in morphology, Such as plasmablastic

plasma cell lymphoma, Burkitt lymphoma, anaplastic lymphoma

kinase (ALK) positive anaplastic DLBCL, primary exudative

lymphoma (PEL), multicentric Castleman large B-cell lymphoma

and HHV-8 positive DLBCL (1). It can be differentiated by clinical

history, site of disease, immunophenotype of tumor cells, and

EBER detection.

PBL had an immunophenotype of terminally differentiated B

cells (6, 17, 20). The markers of mature B cells, such as CD19, CD20,

PAX-5, and leukocyte common antigen CD45, and markers of

mature T cells, such as CD2, CD3, CD5, and CD7, generally did not

express or weakly expressed (6). However, the tumor cells

universally expressed markers of plasma cells, such as CD38,

Vs38c, CD138 and IRF4/MUM1 (6). Most of the HIV-negative

pa t i en t s had a K i -67 index h i ghe r than 80% (6 ) .

Immunohistochemistry showed differences between HIV positive

and negative patients, the former had significantly higher CD20 and

CD56 expression than the latter (6, 7, 19, 20). The overall positive

rate of CD56 was around 40% (6). Although EBER was positive in

over half of the PBL cases, latent membrane protein 1 (LMP1) was

rarely expressed (24). Positive regulatory proteins (PRDMI/

BLIMPI) and activated transcription factor (XBPI) associated

with the immunophenotypes of terminally differentiated B

lymphocytes are shown in PBL (40).
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5 Survival outcomes and
prognostic factors

Previous case reports and literature review demonstrated that

PBL is an aggressive lymphoma with poor prognosis, with a median

OS of 14-15 months (5-year survival 31%) in HIV-positive patients

and 9 months in HIV-negative patients (6, 7, 19, 24). However,

some large multicenter studies in the recent years showed that the

survival outcome of PBL seems to be better than previous literature

reviews (17, 20, 41–43). In 2018, a French group reported 135 PBL

patients from LYSA centers and found that the complete response

(CR) rate of 55% and the median overall survival (OS) was 32

months (20), which was much better than previous reports (7, 19).

Recently, our previous research retrospectively analyzed 56 cases of

PBL from three cancer centers in China and found that the 2-year

PFS and OS rates were 59.4% and 65.1%, respectively (17). A multi-

institutional retrospective study from America demonstrated the

outcomes of patients with limited-stage PBL, with a median follow

up of 34 months (1–196), the 3-year PFS and OS of the whole

cohort were 72% and 79%, respectively. The above results indicated

that the prognosis of PBL was better than that reported in case

series, especially in limited stage and HIV negative patients.

According to the previous studies, Age>60 years, Ann Arbor stage

III or IV, Eastern Cooperative Oncology Group (ECOC) performance

status >2, extraoral primary lesions, immunosuppression, bone

marrow infiltration and EBER positive were adverse prognostic

factors for HIV negative PBL (6, 20). A recent multi-institutional

international retrospective study including 281 PBL patients showed

that EBV-negative lymphoma, poor performance status, advanced

tumor stage, and bone marrow involvement was associated with

inferior OS, while immunosuppression and HIV infection did not

influence OS (44).
6 Treatment

6.1 Chemotherapy

Chemotherapy is the first-line treatment for PBL. The median

survival (OS) of patients without chemotherapy was around 3

months (7, 19). The NCCN recommends the use of more

intensive chemotherapy regimens, such as CODOX-M/IVAC

(cyclophosphamide, vincristine, doxorubicin, and high-dose

methotrexate alternated with ifosfamide, etoposide, and high-dose

cytarabine), dose-modified EPOCH (etoposide, prednisone,

vincristine, cyclocarbonamide, and doxorubicin), or Hyper-

CVAD (Cyclophosphamide, vincristine, doxorubicin, and

dexamethasone alternated with high-dose methotrexate and

cytarabine). However, several studies have demonstrated that no

survival benefit was obtained in patients who received intensive

chemotherapy (Table 1) (6, 8, 18, 20). In a group of 35 patients who

received CHOP/CHOP-like chemotherapy and 16 patients who

received more intensive chemotherapy, there was no statistically

significant difference in survival between the two groups (8). Our
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group summarized 394 reported HIV-negative PBL, including 124

patients treated with CHOP or CHOP-like chemotherapy and 44

treated with intensive chemotherapy, and no survival difference was

found between these two groups (6). Since the tumor cells in PBL

showed no expression or little expression of CD20, rituximab is

only used in a few patients with CD20 expression (17, 20). Although

intensive chemotherapy regimens were recommended by NCCN,

most of the reported cases received CHOP/CHOP-like

chemotherapy and the treatment efficacy remained controversial

and need further investigation. For young patients with good

performance status and high-risk factors, intensive chemotherapy

might be a better choice.
6.2 Proteasome inhibitor-bortezomib

Bortezomib induces apoptosis by blocking the nuclear factor kB

(NF-kB) signaling pathway, producing cytotoxic effects in activated
Frontiers in Immunology 0455
B cell type (ABC) DLBCL (Figure 1) (45). Bortezomib alone or in

combination with chemotherapy (dexamethasone, bortezomib,

gemcitabine, Oxaliplatin, cytarabine) may be effective in the

treatment of PBL, but the remission was temporary. Bortezomib

combined with chemotherapy achieved well results and was

tolerated in some PBL patients (Table 2). A retrospective study

analyzed 8 cases of PBL (5 HIV-positive and 3 HIV-negative)

treated with bortezomib combined with EPOCH, producing a CR

rate of 100% and 2-year OS rate of 50%, indicating that this regimen

was relatively safe and effective for PBL (46). Dittus et al. (47)

reported that the CR rate and 2-year OS rate of PBL patients treated

with the combination of bortezomib and EPOCH regimen were

100% and 50%, respectively. The 2-year OS rate also exceeded 50%

and the ORR was as high as 90% in PBL patients who received

bortezomib as a second-line therapy (48). Our previous study

reported that the overall response rate of HIV negative patients

treated with bortezomib-containing regimens was 71.4%, and the

mOS time was only 11 months (17). In summary, bortezomib
FIGURE 1

The molecular features and main treatment targets in PBL.
TABLE 1 The survival difference between CHOP and intensive chemotherapy.

CHOP or CHOP-like chemotherapy Intensive chemotherapy Survival outcome P value

Tchernonog et al. (20) 70 16 Data not shown >0.05

Hess BT et al. (41) 11 14 3-year OS 84% vs. 73% >0.05

Li YJ et al. (6) 124 44 mOS: Not reached vs. 23.0m 0.981

Loghavi et al. (14) 8 16 Data not shown 0.078

Castillo et al. (8) 35 16 Data not shown >0.05
fro
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combined with or without chemotherapy may improve responses

and outcomes in PBL, although all studies to date are retrospective

and randomized study are still lacking.
6.3 Immune modulators

Thalidomide binds to CRBN targets on tumor cells, promotes

ubiquitination and degradation of the transcription factors Ikaros

and Aiolos, and activates an interferon-like response, thereby

inducing tumor cell apoptosis (49). A newly diagnosed PBL

patient achieved CR after fist-line treatment of thalidomide

combined with dexamethasone, followed by autologous stem cell

transplantation and the patients still maintained CR after 10 years

of follow up (50). Lenalidomide is a thalidomide analogue with

similar anti-tumor mechanisms. It has been reported that a patient

with PBL who progressed after multiple lines of treatment was

treated with lenalidomide orally due to severe peripheral

neurotoxicity caused by bortezomib, and maintained PR status

after 2 years of follow-up (51). Marrero et al. reported that a

patient with PBL who relapsed after CHOP regimen was treated

with lenalidomide combined with bortezomib as a second-line

treatment and still maintained CR status after 12 months of

follow-up (11). Although a large number of clinical studies are

lacking, lenalidomide alone or in combination with other treatment

regimens can help patients maintain long-term CR status for newly

diagnosed or relapsed/refractory PBL patients.
6.4 Immune checkpoint inhibitors

Programmed death receptor 1(PD-1) expressed by T cells binds

to programmed death receptor ligand 1(PD-L1) on the surface of

tumor cells, which can inhibit the activation of T cells and induce

their apoptosis, leading to the immune escape and tumor

progression (52). In PBL, high expression of PD-1 and PD-L1

was detected and the PD-1/PD-L1 pathway was abnormally

activated (33, 53–55). Only few reports have demonstrated the

efficacy of immune checkpoint inhibitors in PBL patients (10, 56).

This patient achieved PR with PD-1 inhibitor monoclonal antibody

nivolumab and underwent allogeneic hematopoietic stem cell

transplantation without signs of tumor progression as of the time

of this article (56). Given the potential activity of PD-1 pathway

blockade in PBL, further study of PD-1 blockade is warranted.
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6.5 CAR-T therapy

Chimeric antigen receptor T cell (CAR-T cell) therapy is a

newly developed immunotherapy where T lymphocytes are

engineered with synthetic receptors known as chimeric antigen

receptors (CAR) (57). The CAR-T cell could produce long-term

specific antitumor effects by recognizing and eliminating specific

cancer cells. CAR-T cell therapy was an effective anti-tumor for

relapsed/Refractory DLBCL (9, 57). Raghunandan et al. reported a

case of multiple refractory PBL emerging from B-cell acute

lymphoblastic leukemia and failed to allogeneic hematopoietic cell

transplant and sustained CR for one year after CAR-T cell therapy

(12). Raychaudhuri et al. reported that a patient with PBL who was

resistant to traditional chemotherapy, lenalidomide and bortezomib

achieved CR after 4 months of CAR-T therapy (Yescarta treatment)

(58). As the plasmablastic cells were frequently negative for B cell

markers (19, 20), the use of CAR-19 therapies in PBL patients was

limited. CAR-T provides a treatment option for patients with

relapsed and refractory PBL, but the efficacy needs to be

confirmed in the future.
6.6 Highly active antiretroviral therapy

HIV patients are often accompanied by CD4+Cell count

reduction and immunosuppression (7, 59). The impact of highly

active antiretroviral therapy (HAART)on survival outcome in patients

with HIV-related PBL remains controversial as the condition is rare

and the reported case series is small (7, 19, 60). A retrospective study

in the United States explored the effect of HIV on lymphoma and

found that HIV was associated with increased risk of death among

lymphoma patients in the HAART era (61). Case report showed that a

HIV-positive PBL patient achieved sustained remission after HAART

alone (60). For HIV-positive patients with PBL, meta-analysis has

shown that the combination of highly active antiretroviral therapy

(HAART) and chemotherapy and/or radiotherapy can improve the

prognosis (7). The possible explanation is that HAART can restore the

immune surveillance function of patients so as to play a more effective

role in tumor control. However, the prognosis of PBL in HIV-infected

individuals remains dismal in the highly active antiretroviral therapy

era and intensive chemotherapy regimens did not increase the survival

outcome (62).
6.7 Hematopoietic stem
cell transplantation

Some recent reports have demonstrated the application of

autologous hematopoietic stem cell transplantation (ASCT) in

PBL patients (Table 3) (20, 63, 64). Cattaneo et al. reported 24

PBL patients who received autologous hematopoietic stem cell

transplantation and the 2-year OS was 58% (63). A retrospective

study of 9 HIV-negative PBL patients from Moffitt Cancer Center

showed that four patients received ASCT as consolidation therapy

after first complete remission and the survival time was 36.5 months

(65). LYSA group retrospectively analyzed 135 cases of PBL,
TABLE 2 Summary of the efficacy of Bortezomib-based treatment
in PBL.

Number Treatment
response

Survival
outcome

Castillo JJ
et al. (46)

11 ORR: 100% Median OS:
11 months

Li YJ et al. (6) 14 ORR: 71.4% Median OS:
11 months

Dittus C
et al. (47)

8 CR:100% 2-year OS: 50%
2-year PFS: 50%
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including 6 patients who received autologous HSCT after the first

CR, and the result showed that 3 patients remained remission at the

last follow-up (13, 17 and 29 months after HSCT), 2 patients

relapsed at 8 and 26 months, and 1 died after 78 months of

remission (20). Recently, a multi-institutional retrospective study

reported 8 cases who underwent Auto-SCT consolidation after

chemotherapy and the 3-year PFS and 3-year OS were both

63.0% (41). As the above results were achieved based on the small

case series, the clinical efficacy of ASCT in PBL need

further investigation.
6.8 Other

Some PBL cells express CD30 on their surface. So far, three

patients with relapsed/refractory PBL have been reported to have

been treated with CD30 monoclonal antibody brentuximab (66–68).

Two patients had significant tumor shrinkage after a few days of

treatment with brentuximab, but one of these patients developed

multiple mediastinal fistulas due to rapid tumor regression. As PBL

showed a plasma cell immunophenotype, CD38 is commonly

expressed in PBL (6, 20), and daratumumab can induce NK cells to

produce antigen-dependent cell-mediated cytotoxicity (69, 70),

suggesting that CD38 monoclonal antibody can be used for the

treatment of PBL. Fedele et al. (71) revealed that immunomodulators

can lead to Ikaros deletion and then upregulated CD38 expression on

the surface of tumor cells, providing a theoretical basis for the

combination of anti-CD38 monoclonal antibody and

immunomodulators in PBL. Shi et al. (72) found that SLAMF7

(CD319/CS1) was detected in PBL, suggesting that it may serve as

a potential diagnostic marker and therapeutic target for PBL. MYC

rearrangement was observed in around half of the patients and this

abnormality could inhibit transcription factor BLIMP-1 and thus

promote tumor cell proliferation (73). Han et al. developed a new

MYC protein inhibitor (myci361), which could inhibit tumor

proliferation and increased the infiltration of the lymphocytes (74),

but this drug was in the preclinical stage.
6.9 Radiation therapy in limited stage PBL

An increasing number of evidences have suggested that the

prognosis of limited-stage PBL was much better than advanced

stage patients (20, 41). However, the treatment recommendation of

limited-stage was similar to advanced stage patients and many
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patients with limited-stage disease are treated with aggressive

chemotherapy or auto-SCT (6, 7, 19). Previous studies have

shown that patients treated with aggressive chemotherapy or

consolidation with Auto-SCT had a trend toward better outcomes

(63, 75). A recent study demonstrated that limited-stage PBL did

not benefit from aggressive frontline treatment, including Hyper-

CVAD or auto-SCT consolidation (41). However, improved PFS

was observed in patients receiving EPOCH based frontline therapy

versus CHOP (HR: 0.23; p<0.05). Patients receiving frontline

chemotherapy followed by radiation consolidation had better OS

than chemotherapy alone (41).
7 Conclusion

PBL is a special type of DLBCL, which often occurs in HIV

positive patients, shows immunoblastic morphology but expresses

plasma cell markers. Compared with DLBCL, NOS, some important

biological pathways were abnormally activated or inactivated in PBL,

such as BCR signaling and CAM signaling. As we have mentioned

above, the prognosis of PBL was still dismal with current treatment

strategies. Although intensive chemotherapy strategy was

recommended by NCCN guideline, CHOP or CHOP-like

chemotherapy achieved similar efficacy. Chemotherapy followed by

radiation consolidation improved the survival outcome of limited-

stage PBL and may be potential standard treatment for this group of

patients in the future. Bortezomib combined with or without

chemotherapy may improve the survival outcomes in PBL, but all

studies to date are retrospective and large randomized study are

sparse. PD-1/PD-L1 pathway was abnormally activated in PBL,

although the efficacy of PD-1 inhibitor was only reported in case

report, it may be a promising treatment and need further

investigation. Other potential therapeutic approaches for patients

include EBV-targeted therapies, including antiviral agents or EBV-

targeted cellular immunotherapy, but the efficacy and tolerance of

these approaches have not yet been evaluated in PBL patients. New

treatment strategies such as thalidomide and anti-CD30 antibodies

were explored in case reports, but the exact efficacy of these treatment

remain to be validated in the future. It is urgent to further investigate

the biological characteristics and develop more effective targeted

therapeutic agents for PBL patients.
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Signaling lymphocytic activation
molecule family receptors as
potential immune therapeutic
targets in solid tumors
Metin Gunes1†, Steven T. Rosen1,2, Idit Shachar3

and E. Gulsen Gunes1,2,4*†

1Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute,
City of Hope, Los Angeles, CA, United States, 2Judy and Bernard Briskin Center for Multiple Myeloma
Research, City of Hope, Los Angeles, CA, United States, 3Department of System Immunology,
Weizmann Institute of Science, Rehovot, Israel, 4Toni Stephenson Lymphoma Center, City of Hope,
Los Angeles, CA, United States
Recently, cancer immunotherapy has revolutionized cancer treatment. Various

forms of immunotherapy have a manageable safety profile and result in

prolongation of overall survival in patients with solid tumors, but only in a

proportion of patients. Various factors in the tumor microenvironment play

critical roles and may be responsible for this lack of therapeutic response.

Signaling lymphocytic activation molecule family (SLAMF) members are

increasingly being studied as factors impacting the tumor immune

microenvironment. SLAMF members consist of nine receptors mainly

expressed in immune cells. However, SLAMF receptors have also been

detected in cancer cells, and they may be involved in a spectrum of anti-tumor

immune responses. Here, we review the current knowledge of the expression of

SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their

association with patient outcomes. Furthermore, we discuss the therapeutic

potential of targeting SLAMF receptors to improve outcomes of cancer therapy in

solid tumors. We believe the research on SLAMF receptor-targeted strategies

may enhance anti-cancer immunity in patients with solid tumors and improve

clinical outcomes.
KEYWORDS

signaling lymphocytic activation molecule family, SLAMF, cancer immunology,
immunotherapy, solid tumors, tumor microenvironment
1 Introduction

Cancer immunotherapy has revolutionized cancer treatment in the past decade,

becoming the fourth pillar of treatment next to surgery, chemotherapy, and

radiotherapy. Blocking immune checkpoints with monoclonal antibodies has improved

outcomes in solid tumor patients (1). Furthermore, cellular therapies, particularly chimeric
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antigen receptor (CAR)-T cell therapy, have shown high

effectiveness for various cancers (2). However, many patients with

solid tumors do not benefit from these strategies. This has

warranted research into resistance mechanisms and other

treatment options. Some factors in the tumor microenvironment

(TME) of solid tumors may contribute to resistance to

immunotherapy (3). First, infiltration of cytotoxic lymphocytes is

limited in many tumors (i.e., ‘cold’ tumors), which may be due to a

lack of antigen presentation and recognition as well as physical and

chemical barriers to infiltration. Furthermore, immunosuppressive

TMEs, with infiltrates of suppressive immune populations that

inhibit the anti-cancer immune response, may also limit the

efficacy of cancer immunotherapies.

Signaling lymphocytic activation molecule family (SLAMF)

receptors are increasingly being studied as potential factors that

affect the immune environment in cancers and as potential targets

for therapy. Numerous studies have overwhelmingly examined the

structure and function of SLAMF receptors, their role in regulating

the immune system, and possible strategies for targeting this

receptor family therapeutically. However, our comprehension of

the potential of SLAMF receptors in solid tumors is still incomplete.

Our review highlights the potential of SLAMF receptors as targets

for solid tumors and outlines their current targeting strategies.
2 SLAMF receptors

SLAMF receptors are a group of cell surface glycoproteins

belonging to the immunoglobulin (Ig) superfamily of proteins

involved in various immune functions. SLAMF consists of nine
Frontiers in Immunology 0261
family members mostly expressed in immune cells. Most of these

receptors are homophilic, except for SLAMF2 and SLAMF4, which

can bind to one another (4). Each SLAMF receptor consists of an

extracellular segment comprising two or four Ig-like domains, a

transmembrane region, and a cytoplasmic tail. The cytoplasmic

tails contain one or more copies of a tyrosine motif called

immunoreceptor tyrosine-based switch motif (ITSM). However,

SLAMF2, SLAMF8, and SLAMF9 lack most of the cytoplasmic tails

(4) (Figure 1). When the receptors are engaged with their ligands,

ITSMs get phosphorylated, which initiates interaction with

intracellular SLAM-associated proteins, including SLAM-

associated protein (SAP) and Ewing`s sarcoma-associated

transcript 2 (EAT-2). These proteins contain an SH2 domain and

serve as adaptor proteins to link SLAMF receptors to intracellular

signaling pathways. When the N-terminal Ig domains of SLAMF

receptors engage with their cognate ligands, these molecules are

recruited, resulting in signaling transduction events that ultimately

modulate various types of immune responses.

There is mounting evidence that SLAMF receptors and SAP-

related adaptor molecules play essential and intricate roles in

regulating the immune system. For instance, SAP adaptor

molecules recruit Fyn, a Src family tyrosine kinase, leading to

downstream phosphorylation and stimulation of activating signals

within immune cells. SAP molecules also prevent recruitment of the

SLAMF receptor to the inhibitory pathway mediated by SH2

domain-containing protein tyrosine phosphatase (SHP)-1, SHP-2,

and SH2 domain-containing inositol phosphatase (SHIP)-1. In the

absence of SAP adaptors, SLAMF receptors function as inhibitory

signals in cellular activation. Similarly, EAT-2 functions by

recruiting phospholipase C and preventing SLAMF receptors
FIGURE 1

Structural representation of the human SLAMF receptors. SLAMF receptors are cell-surface receptors and are composed of nine members. They are
type I glycoproteins that contain amino-terminal Ig-like variable domains (IgV) and membrane-proximal Ig-like constant two domains (IgC2) in their
extracellular regions. The cytoplasmic region of every family member, except for SLAMF2, SLAMF8, and SLAMF9, contains ITSMs that mediate
recruitment of SAP, as well as other SH2 domain-containing proteins such as EAT-2. Most of these receptors are homophilic, which can bind to one
another, except for SLAMF2 and SLAMF4.
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from coupling to inhibitory mediators. This enhances natural killer

(NK) cell activity.

The importance of SLAMF receptors in the immune response

became evident when the molecular defect responsible for X-Linked

lymphoproliferative (XLP) syndrome was detected (5). The gene

encodes SAP, and patients with this syndrome experience impaired

immune responses. SLAMF receptors are known to be involved in

NK- and T-cell development, expressed at various stages of B-cell

development, and involved in B-cell regulation, antibody

production, isotype switching, and NK-cell cytotoxicity. We have

summarized the function of each SLAMF member and their

expression on immune cells in Table 1 (6–10).

With recent research, the role of SLAMF receptors in solid

tumors and the immune response against these tumors has become
Frontiers in Immunology 0362
more evident. For instance, the upregulation of various dendritic

cell (DCs) markers, including CD80, CD274, and SLAMF1, was

associated with improved overall survival (OS) in a mixed cancer

analysis (11). Here, we will describe the current data on SLAMF

receptor expression in solid tumor types (Figure 2), potential

associations with prognosis and therapy response, and potential

targeted therapy strategies. Of note, the order of discussion will start

with the solid tumor types that have more data available in

the literature.
3 SLAMF receptors in solid tumors

3.1 Breast cancer

Several investigations have shown the variable expression of

multiple SLAMF members in breast cancer. SLAMF1/CD150 was

not found to be expressed on the cell surface of breast cancer cell

lines. However, it was detected in the cytoplasm of 45% of cell lines.

The highest expression levels were detected in cell lines representing

a luminal subtype (T47D), while basal-type cell lines, such as MDA-

MB-231, BCC/P, and BC/ML, expressed lower levels. Additionally,

cell lines expressed variable levels of mRNA encoding the

transmembrane mCD150 and the so-called novel CD150

(nCD150) isoforms. Assessment of public databases with patient

DNA microarray data also showed that breast tumors express

SLAMF1 (12). Furthermore, it was found that the SLAMF1 single

nucleotide polymorphism (SNP) rs1061217 was associated with a

decreased risk of breast cancer in overweight women, while it

increased the risk of breast cancer in those with normal weight (13).

SLAMF2/CD48 has not been studied extensively in breast

cancer. An analysis of the expression of NF-kappa B (NF-kB)
related genes using RT-PCR in inflammatory breast cancer

revealed that CD48 was upregulated in these samples compared

to invasive ductal carcinomas. When comparing biopsies of distant

metastases of non-inflammatory breast cancer, CD48 was one of six

downregulated genes compared to the primary invasive ductal

carcinomas (14).

In a large analysis of immune checkpoint genes in breast cancer,

SLAMF4/CD244 expression in tumors was found to be lower than

that in healthy breast tissue (15). In another study, a gene analysis in

triple-negative breast cancer (TNBC) showed that overexpression of

Prune-1, IL-10, COL4A1, ILR1, and PDGFB, as well as inactivating

mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B

genes, are associated with metastasis to the lungs, suggesting low

expression of CD244 may be associated with worse prognosis. This

was confirmed in a The Cancer Genome Atlas (TCGA) analysis,

which showed that low expression of the CD244 gene was

associated with decreased survival (16). Additionally, in a

BRCA2-deficient breast cancer mouse model, missense mutations

in the CD244 receptor domain were detected (17). These data

suggest that a loss of CD244 signaling may contribute to a worse

prognosis in breast cancer.

SLAMF5/CD84 was detected as an identifying marker for

myeloid-derived suppressor cells (MDSCs) in breast cancer in a

mouse model, and in vitro experiments showed that PBMC-
TABLE 1 SLAMF receptors and their function and location on immune
cells (6–10).

SLAMF
Receptor

Expression and Function

SLAMF1
(SLAM,
CD150)

Expressed on thymocytes, T cells, natural killer cells (NK),
B cells, dendritic cells (DCs), macrophages, and hematopoietic
stem cells (HSCs) and is involved in lymphocyte activation. In
Crohn’s disease, an upregulation of SLAMF1 has been detected
in monocytes and macrophages, and upregulation of SLAMF1
on T-cells was detected in rheumatoid arthritis. In contrast, in
Chronic Lymphocytic Leukemia, it was found to
be downregulated.

SLAMF2
(CD48,
BLAST1,
BCM1)

Expressed by NK cells, CD8+ T cells, B cells, ɣd T cells, DCs,
basophils, eosinophils, mast cells, and multipotent progenitor
cells. SLAMF2 can bind CD2 as well as SLAMF4 to
initiate signaling.

SLAMF3
(CD229,
LY9)

Expressed on thymocytes, T cells, follicular helper T cells,
B cells, DCs, macrophages, and NK cells. During antigen
presentation by B cells, it is involved in creating the
immunological synapse at the contact site between the T- and
B cells.

SLAMF4
(CD244,
2B4)

Expressed on CD8+ T cells, ɣd T cells, NK cells, DCs,
macrophages, basophils, mast cells, and eosinophils. SLAMF4
binds SLAMF2, and this process is involved in NK-
cell activation.

SLAMF5
(CD84,
LY9B)

Expressed on thymocytes, T cells, follicular helper T cells,
B cells, NK cells, macrophages, DCs, basophils, mast cells,
eosinophils, and platelets. Its signaling can stimulate platelets
and is involved in T-cell activation, resulting in
IFNg production.

SLAMF6
(CD352,
NTBA,
LY108)

Expression can be found on thymocytes, T cells, B cells, NK
cells, DCs, neutrophils, and eosinophils. It has been found to be
involved in NK-cell cytotoxicity and cytokine production, T-cell
activation, and neutrophil functions.

SLAMF7
(CD319,
CS1,

CRACC)

Expressed by T cells, B cells, NK cells, NKT cells, DCs, and
macrophages and has been shown to regulate NK-cell cytolysis
and can partially rescue effector functions in NK- and CD8+

T cells.

SLAMF8
(CD353,
BLAME,
SBBI42)

Expression detected on macrophages and faintly expressed on
B-cell subsets.

SLAMF9
(CD2F10,
CD84H1)

Expression was detected on T cells, B cells, NK cells, and DCs.
It is the most recently described SLAMF member, and its ligand
has not yet been discovered.
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derived human MDSCs upregulate SLAMF5. Co-culture

experiments with such CD84hi MDSC showed that they actively

inhibit T-cell proliferation (18). In TCGA, CD84 was found to be

an independent negative prognostic factor for both disease-

free survival (DFS) and OS. Furthermore, in circulating tumor

cells, CD84 expression was associated with a mesenchymal

phenotype (19).

Another TCGA analysis that assessed core genes associated

with breast cancer status revealed SLAMF6/CD352 as one of eight

core genes. However, SLAMF6 had only a weak association with

survival (P=0.042) and no significant association with tumor (T),

node (N), and metastases (M) (TNM) status and was not further

assessed (20).

SLAMF7/CD319 mRNA expression was found to be enriched

in breast cancer TCGA analysis, as compared to healthy breast

tissue (21, 22). A study in lymph node-positive breast cancer of

various subtypes showed moderate or strong protein expression of

SLAMF7 in the cytoplasm in approximately 20% of cases, while

80% had no or weak expression. In samples with high expression,

up to 70% of tumor cells expressed high levels of SLAMF7. Higher

levels were associated with younger age, less evasive tumors,

and better prognosis. Patients with high expression had a lower

relapse rate and longer disease-specific survival (DSS). However,

multivariate analysis did not show SLAMF7 as an independent

prognostic factor. The researchers also detected a weak association

between highly vascular invasive cells and low expression levels

(P=0.05) (21).

In addition, one study found a correlation between a high

expression of SLAMF8/CD353, tumor necrosis factor (TNF), and

lymphocyte infiltration with a poor response to therapy in

postmenopausal estrogen receptor (ER)+ breast cancer (23).
Frontiers in Immunology 0463
3.2 Central nervous system tumors

While SLAMF1 is not found in healthy brain tissue, 77.6% of

the human central nervous system (CNS) tumors were found to

express it. These tumors included glioblastoma, anaplastic

astrocytoma, diffuse astrocytoma, and ependymoma. SLAMF1

was detected only in the cytoplasm of tumor cells. The novel

CD150 (nCD150) transcript was also detected at high levels in

these tumors, and this isoform was the predominant form in glioma

cells (24).

In patients with glioblastoma, blood plasma was analyzed for

the expression of various proteins that may be associated with

prognosis. Low plasma levels of SLAMF4 were associated with short

progression-free survival (PFS) (25).

In an assessment of TCGA glioma and the Chinese Glioma

Genomic Atlas (CGGA) data, overexpression of SLAMF8 was

associated with progression, higher grade glioma, and it was a

biomarker for the mesenchymal subtype. The highest levels of

SLAMF8 were found in glioblastoma, and in this cancer type, it

was associated with reduced OS and chemoresistance. The

overexpression of SLAMF8 was associated with higher infiltration

of monocytes, myeloid DCs, and fibroblasts and with genes related

to acute and chronic inflammation. Furthermore, it was strongly

correlated with the expression of checkpoint molecules CTLA-4,

PD-1, PD-L2, B7-H3, and TIM-3, but not PD-L1 (26). These data

suggest SLAMF8 may be implicated in an immunosuppressive

tumor microenvironment.

Besides CNS tumors, SLAMF proteins have also been

implicated in stroke. Mice lacking SLAMF5 on platelets or T cells

had reduced cerebral infiltration of CD4+ T-cells and reduced

thrombolytic activity after experimental stroke, resulting in a
FIGURE 2

Studied SLAMF receptors in solid tumors. BC, breast cancer; CNS, central nervous system; CRC, colorectal cancer; GC, gastric cancer; GyC,
gynecological cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; LC, lung cancer; MSC, melanoma skin
cancer; PaC, pancreatic cancer; PrC, Prostate cancer; RCC, renal cell carcinoma; TME, tumor microenvironment.
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reduction of neurological damage. Furthermore, human arterial

blood samples from the ischemic cerebral circulation showed local

shedding of SLAMF5, and high expression of CD84 on platelets was

associated with poor outcomes in patients with stroke (27).
3.3 Lung cancer

Non-small cell lung cancer (NSCLC) is relatively resistant to

NK-cell-mediated cytotoxicity. Park et al. assessed various cell lines

with variable sensitivity to NK-cell killing and found that SLAMF2

expression made the cells susceptible to killing. SLAMF2 increased

the stability of the contact between the cancer cells and NK cells in

live imaging experiments, which might explain this killing

relationship (28).

In a lung cancer model with sepsis, PD-1 checkpoint inhibition

has no effect on sepsis survival. SLAMF4 was found to be a

checkpoint of interest in this condition, and the blockade of

SLAMF4 improved sepsis survival. It was associated with T-cell

costimulatory receptor expression and decreased coinhibitory

receptor expression (29). In patients with stage I NSCLC, blood

levels of SLAMF4 were found to be a prognostic factor, and those

with high levels of SLAMF4 had worse PFS. This study suggested

that the expression of SLAMF4 was mainly found on the immune

infiltrate (30). This was confirmed in a mouse model with

subcutaneous lung cancer. In these tumors, the frequencies of

PD1+, BTLA+, and SLAMF4+ CD4+ and CD8+ T-cells were

increased, and CD8+ T-cells expressing SLAMF4 produced

reduced levels of IL-2 and IFNg (31). Therefore, the blockade of

SLAMF4 might be of interest for the therapy of lung tumors.

SLAMF5 has been found to play a role in other lung diseases. In

a mouse model for mycobacterium tuberculosis infection, levels of

SLAMF5 increase on T- and B-cells in the lung tissue of infected

mice, which is also seen in peripheral blood mononuclear cells

(PBMCs) of patients with pulmonary tuberculosis. This expression

resulted in immunosuppression, inhibiting T- and B-cell activation

(32). SLAMF5 may, therefore, serve as a target for therapy in this

disease, as well as in lung cancers, due to its potential on the

immune cells of the lung tissue.
3.4 Pancreatic cancer

In a mouse model of pancreatic cancer infected with Listeria

monocytogenes, bacteria antigen-specific CD8+ and total T cells

had increased expression of BTLA, PD-1, and SLAMF4. Expression

of these markers reduced IFNg and increased IL-2 production

of CD8+ T-cells. These data suggest that suppressive effects in

the TME might also affect immune responses to bacterial

infections (33).

In a screening of genes associated with OS and DFS in

pancreatic ductal adenocarcinoma (PDAC), a 7-gene signature

containing SLAMF6 was found to be associated with survival.

This suggests SLAMF6 might play an interesting role in

pancreatic cancer, but further research would be required to study

the role it plays within this gene signature (34).
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3.5 Prostate cancer

SLAMF1 cell surface and cytoplasmic expression have been

detected in the prostate cancer cell lines LNCap, Du-145, and PC-3.

The highest expression levels were found in the less aggressive

androgen therapy-responsive non-metastatic LNCap cells. The cell

lines also expressed novel nCD150 isoforms, and soluble CD150

was detected at low levels for the LNCap and PC-3 cell lines (12).

Whether the expression of SLAMF1 is associated with clinical

outcomes in prostate cancer remains to be determined.
3.6 Gastric cancer

SLAMF receptors have been implicated in some studies of

gastric cancer. An analysis comparing cancerous with non-

cancerous tissue found genes that could predict survival, and

SLAM was one of the genes (35).

Circular RNA is a form of non-coding RNA, and circSLAMF6

can be generated from back splicing of the SLAMF6 first intron. In

hypoxic conditions, circular RNA SLAMF6 (circSLAMF6) is

increased in gastric cancer cells in vitro. This increase is

associated with glycolysis, migration, and invasion of these tumor

cells, and the knockdown of circSLAMF6 reverses these effects. In a

mouse model for gastric cancer, circSLAMF6 deficiency inhibited

tumor growth by regulating the miR-204-5p/MYH9 axis (36).

High levels of SLAMF8 have been detected in the serum of

patients with gastric cancer (37). Furthermore, investigations in a

gastric cancer model with Epstein-Barr virus (EBV) infection,

which has been associated with improved responses to anti-PD-1

therapy, high SLAMF8 expression was found to be a factor that

might be involved in these responses. High expression of SLAMF8

was associated with T-cell activation gene enrichment, CD8

expression, and better response to anti-PD-1 checkpoint blockade

therapy. SLAMF8 in this setting was mostly expressed by

macrophages, and overexpression of SLAMF8 in macrophages

resulted in gene enrichment of multiple immune-related

pathways. Therefore, SLAMF8 is correlated with immune ‘hot’

gastric cancers that respond better to immune checkpoint

blockade (38).
3.7 Colorectal cancer

Research in CRC has suggested that SLAMF1 and SLAMF7 may

be of interest. Transfection of CD3-activated T-cells with SLAMF1

increased their cytotoxic activity and IFNg production in vitro

against human colon cancer cells. In xenograft models, these T

cells reduced tumor growth, suggesting increased SLAMF1

expression on T cells in colon cancer may be beneficial (39). In

the human CRC TME, SLAMF1 was detected on tumor-specific

innate lymphoid cells, and these cells were observed at higher levels

in patient blood than in healthy controls. Patients with high levels of

SLAMF1 expression had a better survival rate than those with low

expression, suggesting SLAMF1 to be a marker for improved anti-

tumor activity (40). Additionally, SLAMF1 was detected as one of
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four core genes impacting prognosis in colon adenocarcinoma in an

investigation into immune-related subtypes from TCGA (41).

SLAMF7 has been found to be downregulated in CRC tissue as

compared to healthy tissue. In CRC cells overexpressing SLAMF7,

CD68, and CD73 were downregulated after co-culture with a

monocytic cell line, suggesting SLAMF7 might play a role in

suppressing these markers (42). In another study, SLAMF7

expression did not differ between paracancer and tumor tissue

or correlate with the TNM stage. In patients treated with

chemoimmunotherapy and adjuvant immunotherapy based on

cytokine-induced killer cells combined with chemotherapy, no

correlation was found between SLAMF7 expression and CD8+ T-

cell or NK-cell infiltration. However, a higher expression of

SLAMF7 was associated with better OS (43). Therefore, the role

of SLAMF7 in CRC and its relationship to the immune response

requires further investigation.
3.8 Hepatocellular carcinoma

In HCC, the number of activated, functional NK cells is

associated with improved outcomes. In advanced HCC, fewer of

these NK cells are detected, and the cells present have impaired

TNFa and IFNg production, suggesting limited functionality. This

was shown to be associated with high infiltration of peritumoral

stroma monocytes and macrophages. In vitro, NK cells exposed to

these monocytes could undergo a rapid transient activation,

resulting in exhaustion and, eventually, cell death, suggesting this

might be the reason for limited NK-cell function in advanced HCC.

The mechanisms behind this interaction might be associated with

SLAMF signaling. Monocytes in HCC express high levels of

SLAMF2, and in vitro experiments showed that the effects of

monocytes on NK cells could be reduced by blocking SLAMF4 on

the NK cells, suggesting a direct role of SLAMF2-4 signaling in these

NK-cell exhaustion effects (44).

Healthy hepatocytes have been shown to express SLAMF3, but

no other SLAMF members. In primary HCC samples, resected

tumor samples, and HCC cell lines, the expression of SLAMF3 was

significantly lower than in healthy cells, suggesting downregulation

when hepatocytes undergo tumorigenesis. Restoration of high levels

of SLAMF3 in cell lines was shown to inhibit cell proliferation and

migration and enhance apoptosis. Additionally, these cells

progressed less in nude mice than in their low SLAMF3

counterparts. Mechanistically, SLAMF3 may be associated with

the signaling of various pathways, as expression resulted in

decreased phosphorylation of MAPK, ERK 1/2, JNK, and mTOR

(45). Follow-up studies showed that the inhibitory effect of SLAMF3

on HCC proliferation occurs through a retinoblastoma (RB) factor

and PLK1-dependent pathway. Expression of SLAMF3 retained RB

factor in its hypophosphorylated active form, which inactivates

the transcription factor E2F, and represses the expression and

activation of PLK1. PLK1 is a cell cycle protein that promotes cell

cycle progression. In human samples, this was confirmed with an

inverse correlation between SLAMF3 and PLK expression (46).

Additionally, induction of SLAMF3 was associated with loss of

MRP-1 expression, a drug resistance transporter. In patient
Frontiers in Immunology 0665
samples, an inverse correlation between SLAMF3 and MRP-1

expression was also detected, suggesting that loss of SLAMF3

expression in tumor cells may be associated with drug

resistance (47).

SLAMF6 levels were found to be increased on CD14+ cells

derived from blood from patients with HCC, which was associated

with positive Hep B virus DNA status and high levels of a-
fetoprotein. In vitro and in vivo experiments in mice showed that

tumor-associated macrophages (TAMs) had higher levels of

SLAMF6 (Ly108), and this was associated with the M2

phenotype. Small interfering RNA blocking Ly108 resulted in

suppression of M2 macrophage polarization. Macrophages with

suppressed SLAMF6 levels were able to reduce HCC cell migration

and invasion and could prevent tumor growth. This latter effect was

associated with the inhibition of the NF-kB pathway in

macrophages, which plays a role in macrophage polarization (48).
3.9 Melanoma skin cancer

Several SLAMFmembers have been implicated in melanoma. In

a murine model, inoculation with SLAMF2+ and SLAMF2-

metastatic B16 melanoma cells showed that WT mice had trouble

rejecting the SLAMF2+ tumors compared to SLAMF2- melanoma

cells. In mice lacking SLAMF4, there was a difference between the

rejection rates of these cells in male and female mice. Male mice

lacking SLAMF4 rejected SLAMF2+ melanoma cells, while female

mice lacking SLAMF4 had trouble rejecting both SLAMF2+ and

SLAMF2- cells. These gender-specific differences might be related to

differences in NK-cell function (49).

Eisenberg et al. created a 203-amino acid sequence of the

human SLAMF6 (seSLAMF6) ectodomain. This molecule reduced

activation-induced cell death in tumor-infiltrating lymphocytes

(TIL). When CD8+ T-cells were costimulated with seSLAMF6, the

cells secreted more IFNg and had improved cytolytic activity. When

these cells were injected into the B16F10 melanoma mouse model, it

delayed tumor growth, which could be further enhanced by treating

the mice with seSLAMF6 (50). Another study showed that

inhibition of SLAMF6 with an anti-SLAMF6 antibody affected

tumor growth of the B16 melanoma model. Exhausted CD8+ T-

cells had increased degranulation when anti-SLAMF6 was added to

the culture (51). Similar results were obtained when SLAMF6-

negative Pmel-1 cells specific for gp100 were created. Upon

activation, these cells acquired an effector memory phenotype and

showed improved polyfunctionality and strong tumor cytolysis.

Adoptive transfer of these cells into mice-bearing melanoma

tumors resulted in lasting tumor regression. Given that the CD8+

T-cells in this model expressed high levels of LAG3, adding anti-

LAG3 checkpoint blockade could further improve anti-tumor

responses (52).

TCGA analysis has revealed an enrichment of SLAMF7 in

melanoma and a correlation between SLAMF7 and favorable

prognosis. The expression of SLAMF7 was negatively correlated

with NK-cell markers, suggesting that the expression of SLAMF7 in

these tumors is unlikely NK-cell expression. In vitro studies

showed that agonistic engagement of SLAMF7 on tumor-specific
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CD4+ T-cells enhanced their cytolytic activity, which, if expressed

by CD4+ T-cells in these tumors, may explain the relationship with

favorable prognosis (22).

Finally, SLAMF9-expressing TAMs have been detected in

73.3% of human melanomas, 95.5% of naevi of melanoma

patients, and 50% of naevi of healthy controls. SLAMF9 was also

expressed in melanocytes in 20% of melanoma samples and 2.3% of

naevi from melanoma patients but not in healthy controls. In vitro

experiments showed that SLAMF9 gene expression was upregulated

in murine bone marrow-derived macrophages stimulated with

tumor-conditioned media of B16F10 melanoma cells .

Furthermore, SLAMF9 expression enhanced TNFa secretion after

LPS stimulation, and it delayed wound closure of RAW 264.7 cells

in a scratch assay (53).
3.10 Renal cell carcinoma

A TCGA analysis into immune checkpoints in clear cell RCC

(ccRCC) revealed that although these receptor/ligands were not

found to be the most relevant in this study, genes encoding SLAMF2

and SLAMF4 were found to be more highly expressed in tumor

tissue as compared to adjacent non-tumor tissue (54).

An analysis in ccRCC focused on regulatory T cells (Tregs) in

tumor tissue and found that SLAMF6 is one of four hub genes

related to prognosis and Tregs and associated with a better

outcome (55).

Another TCGA analysis showed that SLAMF7 strongly

correlated with various inhibitory receptors and that high

expression was correlated with poor survival in ccRCC. CyTOF

analysis of the TME of 73 ccRCC patients revealed that SLAMF7

was expressed by TAMs, with a unique subset of SLAMF7hiCD38hi

TAMs; these cells correlated with exhausted T-cells and were an

independent prognostic factor. In co-culture experiments, it was

shown that SLAMF7-SLAMF7 interactions between murine TAMs

and CD8+ T-cells induced the expression of inhibitory receptors. In

mice lacking SLAMF7, B16F10 growth was restricted, and CD8+ T-

cells in these tumors expressed lower levels of PD-1 and TOX,

suggesting a less exhausted phenotype (56).
3.11 Gynecological cancers

SLAMF1 was found to activate autophagy-related mechanisms

that promoted resistance to methotrexate in choriocarcinoma cells.

Depletion of SLAMF1 suppressed autophagy and induced apoptosis

of MTX-resistant cell lines, which overexpressed SLAMF1 (57, 58).

Choriocarcinoma cells can be resistant to NK-cell lysis. This was

associated with a lack of NK-cell activation, as choriocarcinoma

cells lacked expression of SLAMF2, the ligand for SLAMF4 (59).

Limited research is available on SLAMF expression in ovarian

cancer. Assessment of TCGA and University of California, Santa

Cruz (UCSC) ovarian cancer datasets revealed that various SLAMF

members were part of a hub gene profile in immune infiltrates. This

hub gene profile included SLAMF1, SLAMF3, SLAMF6, and

SLAMF7. Two of these, SLAMF1 and SLAMF3, were recognized
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as the real hub genes in immune infiltrates in ovarian cancer. These

genes were associated with OS, which was related to their effect on

the infiltration of activated B-cells (60). Therefore, these SLAMF

members may be of interest for immunotherapy for ovarian cancer.

Attempting to construct a BRCAness signature for ovarian

cancer, Chen et al. found that upregulation of CXCL1 with

downregulation of SV2A and upregulation of SLAMF3 with

downregulation of CHRNB3 can be constructed as a two-gene

pair signature for BRCAness in ovarian cancer that predicts

improved OS, PFS, and increased multi-omics alterations in

homologous recombination genes. Furthermore, these could

predict enhanced sensitivity to immune checkpoint blockade and

poly ADP ribose polymerase (PARP) inhibitors, confirming

SLAMF3 as an attractive immunotherapeutic target in ovarian

cancer (61).
3.12 Head and neck squamous
cell carcinoma

CD8+ TIL in HNSCC tumors has been found to express

increased levels of SLAMF4, and this expression was correlated

with PD-1 expression. Furthermore, SLAMF4 was increased on

intratumoral DC and MDSC, and high SLAMF4 correlated with

PD-L1 expression and increased expression of immune-suppressive

mediators. In vitro studies showed that activation of SLAMF4

inhibited the production of pro-inflammatory cytokines by

human DCs. CD244-/- mice showed impaired tumor growth of

HNSCC, and anti-SLAMF4 treatment also impaired the growth of

established HNSCC tumors while it increased CD8+ TIL

infiltration, suggesting SLAMF4 plays an inhibitory role in the

immune response to HNSCC (62).

We have summarized the described expression and roles of

SLAMF members in the TME of solid tumors in Table 2.
4 Conclusion and future directions

Ample evidence suggests that SLAMF receptors are involved in

in various solid tumor types is coming to light, suggesting that these

receptors might be potential targets for therapy. SLAMF1 has been

detected in various cancer types, but its role in prognosis remains to

be established. However, the expression of SLAMF1 on immune

cells in tumors might benefit the outcome. SLAMF2 and SLAMF4

have mainly been detected on T- and NK cells in tumors and may

affect the ability of the immune system to control solid tumors. On

the other hand, SLAM-family receptors, particularly SLAMF4, may

be inhibitory or activatory in cells with SAP adaptor molecules,

depending on the situation (63). Research on SLAMF3 remains

limited. In a recent study, it has been reported that SLAMF3

stimulates the differentiation of Th17 cells from CD4+ T cells,

leading to an increase in the secretion of IL-17A in a chronic (long-

lasting) autoimmune disorder (64). However, in solid tumors, the

expression loss on hepatic cancer cells is associated with poor

outcomes, and expression on immune cells in ovarian cancer

potentially results in better outcomes. SLAMF5 has also had
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TABLE 2 Described expression and roles of SLAMF members in the TME of solid tumors.

SLAMF Receptor Expression
in Cancer

Role in Cancer Tumor
Microenvironment

References

SLAMF1
(CD150, SLAM)

• BC (incl. novel CD150)
• CNS tumors (incl. novel
CD150)
• PrC
• GyC
• CRC

• Expressed in breast cancer
cell lines, with high levels on
those of the luminal type
• Highest expression detected
in aggressive prostate cancer
cell lines
• Drives autophagy and
chemotherapy resistance
in choriocarcinoma

• Expression on immune cells
(T cells, B cells, and innate
lymphoid cells) in CRC –

associated with survival

(12, 24, 39–41, 56,
57, 59)

SLAMF2 (CD48,
BLAST1, BCM1)

• BC
• LC
• MSC
• ccRCC
• HCC
• GyC

• Upregulated in
inflammatory breast cancer,
downregulated in breast
cancer metastases
• Expression in lung cancer
cell lines increases
susceptibility to NK-cell
killing
• Expression in mouse
melanoma tumors reduces
tumor rejection
• Upregulated in ccRCC

• Monocytes in HCC express
high levels
• SLAMF2 expression in
NSCLC cells increases
susceptibility to NK-cell
killing
• Lack of SLAMF2 associated
with resistance to NK-cell
lysis in choriocarcinoma cells

(14, 28, 44, 49, 53, 58)

SLAMF3 (CD229, LY9) • GyC
• HCC

• Loss of SLAMF3 in HCC
might be associated with
drug resistance

• Expressed on immune
infiltrate (B cells) in
ovarian cancer

(45, 47, 59, 60)

SLAMF4 (CD244, 2B4) • HNSCC
• NSCLC
• ccRCC
• PaC
• BC
• CNS

• Reduced expression in
breast cancer associated with
worse prognosis
• Low levels in blood plasma
in glioblastoma are associated
with poor outcome
• In NSCLC, high blood
levels predict worse outcomes
• Upregulated in ccRCC

• Expressed on immune cells
in NSCLC
• Expression on T cells in
pancreatic cancer mouse
model
• Expressed on CD8+ TIL,
DCs, and MDSCs in HNSCC

(15, 16, 25, 30, 33, 61)

SLAMF5 (CD84, LY9B) • BC • Expression on circulating
tumor cells of mesenchymal
breast cancer

• Expressed by MDSC in
breast cancer – correlated
with worse outcomes

(18, 19)

SLAMF6 (CD352,
NTBA, LY108)

• BC
• PDAC
• GC (circular SLAMF6)
• RCC
• HCC

• Weak association with
survival in breast cancer
• Potential role in PDAC
outcomes
• Gastric cancer mouse
models: circular SLAMF6 in
hypoxia associated with more
aggressive subtypes

• Associated with Tregs in
RCC – associated with
improved outcomes
• Increased on CD14+ cells in
HCC (M2 TAMs)

(20, 34, 36, 48, 54)

SLAMF7 (CD319,
CS1, CRACC)

• BC
CRC*
• ccRCC
• MSC

• Enriched in breast cancer –
associated with better
prognosis
Downregulated in CRC*
• Enriched in melanoma –
associated with improved
outcome
• High expression in ccRCC
is associated with
worse outcome

• Expression in melanoma
might be associated with
CD4+ T-cell expression
• Expressed by TAMs
in ccRCC

(21, 22, 42, 55)

SLAMF8 (CD353,
BLAME, SBBI42)

• BC
• CNS
• GC (serum)

• High expression in breast
cancer associated with poor
therapy response
• Overexpression in glioma
associated with disease
progression, poor survival,
and chemoresistance

• Expression in breast cancer
associated with TNF and
lymphocyte infiltration
• Associated with infiltration
of myeloid cells, correlated
with checkpoint expression in
glioma.

(23, 26, 37, 38)

(Continued)
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limited investigation in solid tumors, but its detection on MDSC in

breast cancer suggests it might be a therapeutic target of interest.

SLAMF6 appears to be associated with outcomes in various cancer

types and is expressed by various immune cells, with variable anti-

tumor effects.

SLAMF7 has been found enriched in various solid tumor types,

which may be associated with CD4+ T-cells and TAMs expression.

According to the researchers, the process of differentiation from

monocytes to macrophages results in increased expression of

SLAMF7. This up-regulation of SLAMF7 promotes the induction

of cytokines by certain Toll-like receptor ligands, suggesting that the

differentiation of macrophages in solid tumors might involve a

pathway through SLAMF7 (65). SLAMF7 has also been shown to be

effective in improving survival when combined with lenalidomide

and dexamethasone with the monoclonal antibody elotuzumab in

patients with multiple myeloma (66). The use of this antibody in the

clinic paves the way for research into the effects of this treatment in

tumor types overexpressing SLAMF7. However, given that current

research shows potentially improved outcomes with high

expression, the mechanism of action will be important to explore.

SLAMF8 expression in tumors was associated with worse outcomes

in breast cancer and glioma, while serum expression in gastric

cancer was associated with a good response to immunotherapy.

SLAMF9 has not been assessed in great detail in the solid cancer

setting, but research showing expression on TAMs in melanoma

suggests it might be a target for further research.

In this review, we have specifically discussed increasing

evidence of the roles of SLAMF receptors in various solid tumors

that may improve patient outcomes. We have also suggested several

ways to target SLAMF receptors in solid tumors. Together, these

data suggest that SLAMF members play variable roles in solid

tumors. While research should be expanded to uncover their roles

in prognosis and expression patterns on various cells in the TME,

an argument can be made to investigate these molecules for

therapeutic purposes. However, targeting SLAMF receptors could

also impact the normal immune response and increase the risk

of infections due to their complex regulatory functions within

the immune system (67). Therefore, it is crucial to take into

consideration the potential risks associated with targeting SLAMF

receptors and to take appropriate safety measures to minimize the

potential toxicities, such as neutropenia, thrombocytopenia, and

hepatotoxicity (63).
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TABLE 2 Continued

SLAMF Receptor Expression
in Cancer

Role in Cancer Tumor
Microenvironment

References

• Associated with better
response to checkpoint
inhibitors when expressed in
serum gastric cancer

• Expressed by macrophages
in gastric cancer

SLAMF9
(CD2F10, CD84H1)

• MSC • Expressed on TAMs
in melanoma

(52)
BC, breast cancer; ccRCC, clear cell renal cell carcinoma; CNS, central nervous system; CRC, colorectal cancer; DC, dendritic cell; GC, gastric cancer; GyC, gynecological cancer; HCC,
hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; LC, lung cancer; MSC, melanoma skin cancer; NK, natural killer; NSCLC, non-small cell lung cancer; MDSC,
monocyte-derived suppressor cell; PaC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; PrC, Prostate cancer; RCC, renal cell carcinoma; SLAMF, signaling lymphocytic activation
molecule family; TAM, tumor-associated macrophages; TIL, tumor-infiltrating lymphocyte; TNF, tumor necrosis factor.
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CDKL3 shapes
immunosuppressive tumor
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Yanping Bi1†, Jie Liu2†, Songbing Qin3, Fuqing Ji4, Chao Zhou5,
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Shaanxi, China, 5Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical
University, Taizhou, Zhejiang, China, 6Key Laboratory of Minimally Invasive Techniques & Rapid
Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou, Zhejiang, China
Background: CDKL3 has been associated with the prognosis of several tumors.

However, the potential role of CDKL3 in immunotherapy and the tumor

microenvironment (TME) in esophageal carcinoma (ESCA) remains unclear.

Methods: In this study, Cox regression analysis was used to assess the predictive

value of CDKL3 for ESCA outcomes. We systematically correlated CDKL3 with

immunological features in the TME. The role of CDKL3 in predicting the efficacy

of immunotherapy was also analyzed. Correlation analysis, Cox analysis and

LASSO Cox regression were used to construct the CDKL3-related autophagy

(CrA) risk score model. The relationship between CDKL3 expression and

postoperative pathological complete response (pCR) rate in esophageal

squamous cell carcinoma (ESCC) patients undergoing neoadjuvant

chemoradiotherapy (nCRT) was evaluated using Immunohistochemical staining

(IHC). The relationship between CDKL3 expression and autophagy induction was

confirmed by immunofluorescence staining and western blot, and the effect of

CDKL3 expression on macrophage polarization was verified by flow cytometry.

Results: High expression of CDKL3 was found in ESCA and was associated with

poor prognosis in ESCA. Moreover, CDKL3 expression was negatively correlated

with tumor-infiltrating immune cells (TIICs), the integrality of the cancer

immunity cycles, and anti-tumor signatures, while CDKL3 expression was

positively correlated with suppressive TME-related chemokines and receptors,

immune hyperprogressive genes, and suppressive immune checkpoint, resulting

in immunosuppressive TME formation in ESCA. An analysis of immunotherapy

cohorts of the ESCA and pan-cancer showed a better response to

immunotherapy in tumor patients with lower CDKL3 levels. The CrA risk score

model was constructed and validated to accurately predict the prognosis of

ESCA. Notably, the CrA risk score of ESCA patients was significantly positively
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correlated with M2 macrophages. Furthermore, knockdown CDKL3 in KYSE150

cells could inhibit autophagy induction and M2 macrophage polarization. And,

radiation could downregulate CDKL3 expression and autophagy induction, while

ESCC patients with high CDKL3 expression had a significantly lower response

rate after nCRT than those with low CDKL3 expression.

Conclusion: CDKL3 may play an important role in anti-tumor immunity by

regulating autophagy to promote the formation of immunosuppressive TME,

thus playing a critical role in the prognosis of ESCA.
KEYWORDS

esophageal carcinoma, prognosis, tumor microenvironment, autophagy,
macrophage polarization
Introduction

Esophageal carcinoma (ESCA) is a common malignancy

affecting the gastrointestinal tract, with high incidence and

mortality worldwide, of which 85% is esophageal squamous cell

carcinoma (ESCC) (1, 2). ESCA typically does not present with

early symptoms, resulting in the majority of patients being

diagnosed in locally advanced or advanced stages. The primary

treatment options for these locally advanced ESCA patients

are neoadjuvant or definitive chemoradiotherapy (CRT),

chemoradiation, or the combination of CRT and immunotherapy

(3). The therapeutic efficacy of immunotherapy has continued to

make breakthroughs in recent years, bringing light to the treatment

of ESCA patients (4–7). Unlike conventional chemotherapy,

immunotherapy can lead to unprecedented and durable

remissions in advanced cancer patients. Unfortunately, only a

subset of patients respond to immunotherapy, and clinical

outcomes in ESCA patients vary widely (8). Therefore, the search

for predictive biomarkers of immunotherapy benefits could help to

personalize the treatment regimen for each patient and improve

their prognosis.

The anti-tumor effects of immunotherapy require not only a

tumor microenvironment (TME) with rich infiltration of immune

cells but also active T cells by immune checkpoint inhibitors (ICIs)

blocking immunosuppression (9, 10). Chemoradiotherapy can not

only kill the fast-growing cancer cells, but it can also remodel the

TME (11, 12). Autophagy, a mechanism of cellular self-protection

and maintenance of homeostasis, removes senescent, damaged, or

abnormal proteins and organelles from the cell (13). Aberrant

activation of autophagy leads to tumor growth, endurance, and

resistance to chemoradiotherapy. Radiotherapy is accompanied by

abnormal expression of autophagy related-genes. Resistance to

chemotherapy drugs is at least partially mediated by increased

autophagy in tumor cells (14, 15). There is emerging evidence

that autophagy causes immune dysfunction by acting on the TME.

For example, TRAF2 promotes the polarization of M2 macrophages
0272
by inhibiting autophagy (16). Hence, exploring the features of the

TME, the molecular features of autophagy and the interaction with

chemoradiotherapy will help to understand the genesis and

development of ESCA and the potential mechanisms of action

of immunotherapy.

Members of the cyclin-dependent kinase (CDK) family

regulate cell cycle progression and are considered crucial targets

for cancer therapy (17). Cyclin-dependent kinase-like (CDKL)

proteins contain MAPK TXY phosphorylation motifs, and

putat ive cel l cycle protein-binding domains and are

characterized by their high sequence similarity to CDK. Cyclin-

dependent kinase-like 3 (CDKL3) is both a protein-coding gene

and a member of the CDKL family (18). Existing research

demonstrates that tumor patients with CDKL3 up-regulation are

closely related to inferior survival status (19–22). Our previous

study identified CDKL3 as an important oncogene in esophageal

squamous cell carcinoma (ESCC) and autophagy-related gene

ATG5 was a potential target of CDKL3 in KYSE-150 cell line

(19, 22). However, the effect of CDKL3 on TME and its role in

autophagy are still unknown. Accordingly, our study aimed to

investigate the association of CDKL3 with the TME and

autophagy genes in ESCA based on public databases and

experimental validation.
Materials and methods

Study design

This study is performed according to the flow chart, which is

shown in Figure 1. Firstly, data on ESCA patients were collected

from public databases. Then, bioinformatics analysis was performed

to explore the relationship between CDKL3 and immune status and

the predictive role of CDKL3 in immunotherapy. Subsequently, the

CDKL3-related autophagy (CrA) risk score model was developed

and validated, and the correlation between the CrA risk score and
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M2 macrophages was found. Finally, through in vitro experiments,

we confirmed the correlation between CDKL3 expression and

autophagy induction and investigated the effect of CDKL3 on

macrophage polarization.
Data collection

We downloaded RNA sequencing (RNA-seq) data (transcripts

per kilobase million, TPM values), mutation profiles, and clinical

da ta o f ESCA from TCGA-GDC inte r face (h t tps : / /

portal.gdc.cancer.gov/). Log2 was used to transform the RNA-seq

data. 198 samples were included in the TCGA-ESCA sequencing

data, of which 13 were normal tissues and 185 were tumor tissues.

Somatic mutation information of ESCA patients from TCGA was

plotted using the maftools R package. Copy number variation

(CNV) data were accessed from the UCSC Xena data portal

(http://xena.ucsc.edu/). Gene expression matrices for the

GSE161533, GSE23400 (GPL97 platform), and GSE47404 cohorts

were obtained from the Gene Expression Omnibus (GEO) database.

Gene expression matrices and clinical data for cohorts GSE53624,

GSE53625, and GSE19417 cohorts were downloaded. Autophagy

genes (ATGs) were derived from the Autophagy Database (http://

www.tanpaku.org/autophagy/) (Supplementary Table 1).
Download of immunotherapy cohorts

The data for the GSE165252, GSE91061, and GSE176307

cohor t s were downloaded f rom GEO. Vi s i t h t tp : / /
Frontiers in Immunology 0373
researchpub.gene.com/IMvigor210CoreBiologies/ for more

information on the IMvigor210 cohort (23). In addition, the data

from the Gide2019 and Nathanson2017 cohorts were obtained from

the TIDE (http://tide.dfci.harvard.edu/) database (24). The

Supplementary Table 2 presented these detailed data.
Survival analysis

Clinical information (age, gender, stage, pathology, etc.) was

collected for ESCA patients in the TCGA cohort. 185 samples were

considered eligible after screening for transcriptomic and

clinicopathological information. After excluding one duplicate

sample and one sample with 0 days of follow-up, Kaplan-Meier

analysis was performed on these 183 samples using the survival and

survminer R packages. Univariate Cox regression analysis was

conducted to screen out risk variables, of which p<0.2 were

further included in multivariate Cox regression analysis.
Construction of a nomogram

Variables with clinical significance and multivariate Cox

regression p<0.05 were screened to establish a predictive

nomogram. The regplot package was used to plot the nomogram.

Calibration curves were calculated with the use of the rms

package. Decision curve analysis (DCA) was conducted using

the “stdca.R” function. Receiver operating characteristic (ROC)

curve analysis was calculated using the timeROC R package

(version 0.4) (25).
A B
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FIGURE 1

Flowchart of the study design. (A) Source of data used in this study. (B) Differential expression of CDKL3, mutation analysis, and survival analysis.
(C) Correlation between CDKL3 and immune status in the TME. Immune status includes tumor-infiltrating immune cells (TIICs), immune-associated
gene sets, and immune checkpoints. (D) The predicted role of CDKL3 in the efficacy of immunotherapy. (E) Establishing and validating CrA risk score
model. (F) The association between the CrA risk score and M2 macrophages. (G) The correlation between CDKL3 expression and autophagy
induction was verified by immunofluorescence staining, and the effect of CDKL3 expression on M1 macrophage polarization was verified by
flow cytometry.
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Immunological characterization
of the TME

We have obtained gene set labels including 28 types of immune

cells to accurately evaluate the atlas of immune cells infiltrating in

the TME. We calculated the enrichment fraction within each

immune cell subtype for each individual using the single sample

gene set enrichment analysis (ssGSEA) algorithm of the GSVA

package. The anticancer immune response also is recognized as a

stepwise multiplicity of processes called the cancer immunity cycles.

By analyzing the 23 gene sets associated with the seven-step cancer

immunity cycles, the researchers were able to explore the tumor

immune phenotype (26). We received a total of 92 immune-related

signatures from previous work (Supplementary Table 3) (10). The

ssGSEA algorithm of the GSVA package was used to calculate the

enrichment score (ES) of these immune-related signatures. We

collected 23 chemokines and receptors from previous literature

associated with the recruitment of myeloid-derived suppressor

cells (MDSCs), tumor-associated macrophages (TAMs), and

Treg cells (27). Some patients treated with immune checkpoint

inhibitors (ICIs) may experience the side effect of cancer hyper-

progression. We summarize several predictive genes for hyper-

progression (28, 29). In addition, we have identified 22 inhibitory

immune checkpoints that have therapeutic potential (30). The

researchers used CIBERSORT, TIMER, QUANTISEQ,

MCPCOUNTER, XCELL, EPIC, and other algorithms to quantify

immune cell infi ltration (TIMER 2.0 database, http://

timer.cistrome.org/) (31).
Predicting immunotherapy response

The TIDE algorithm, and the IPS score were used to investigate

the value of CDKL3 in the prediction of response to

immunotherapy. TIDE scores were calculated from the official

TIDE website (http://tide.dfci.harvard.edu/). IPS scores were

calculated using the IOBR package (version 0.99.9) (32).
Construction and validation of the CrA risk
score model

Spearman correlation analysis was used to filter the CDKL3-

related ATGs (p-value<0.1). Further, Univariate Cox regression

(p-value<0.2) and LASSO Cox regression were used to construct

the appropriate signature. Using ‘lambda. min’ from the

R package ‘glmnet’ to obtain the optimal lambda value. Finally,

the model-derived CrA risk score could be calculated the

following equation.

CrA risk score =o
9

i=1
  bi   *   Ei

bi is the risk factor and Ei is the expression of each gene.

Kaplan-Meier analysis was used to examine the correlation between

the CrA risk score and overall survival (OS).
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Tissue collection and
Immunohistochemical staining (IHC)

Tissue samples were collected from 24 ESCC patients receiving

neoadjuvant chemoradiotherapy (nCRT) plus surgery at Taizhou

Hospital, Zhejiang Province, between November 2011 and

December 2020. The samples from every patient included cancer

tissues before neoadjuvant chemoradiotherapy and after surgery.

Analysis of postoperative pathological tumors (pT) and

postoperative pathological lymph nodes (pN) were based on

pathological assessment after surgical treatment. The definition of

postoperative pathological complete response (pCR) was negative

postoperative pathological tumor and postoperative pathological

lymph nodes (pT-N-), and postoperative pathological complete

response (non-pCR) was defined as pT+ and/or pN+. The

inclusion criteria were: (1) The pathologic diagnosis of the

primary tumor was confirmed as ESCC; (2) Tissue samples were

stored in the tissue bank of Taizhou Hospital; (3) Having a

completed postoperative report of pathological assessment; (4)

Having enough sample to perform immunohistochemical staining

(IHC); (5) Patients who completed nCRT and surgery. The

exclusion criteria were: (1) Non-ESCC patients; (2) Without a

completed postoperative report of pathological assessment;(3)

Without enough samples stored in the tissue bank of Taizhou

Hospital. The flow of immunohistochemical staining (IHC) was

carried out as we described in the previous study (22). Two

observers blinded to the purpose of the study independently

evaluated the stained sections. The score of CDKL3 expression

was evaluated and calculated by independent blinded observers.

The patients with scores > 8 were classified as a high CDKL3-

expression group, otherwise as a low CDKL3-expression group.
Cell cultures, macrophage induction

The human ESCC cell line KYSE-150 were obtained from the

Shanghai Institute of Cell Biology, Chinese Academy of Sciences

(Shanghai, China). Cells were maintained in RPMI 1640 with 10%

FBS (Sigma, St Louis, USA) 100μg mL-1 streptomycin and 100μg

mL-1 penicillin, 37°C, 5% CO2.THP-1 cells (ATCC, Manassas,

USA), as human peripheral blood monocytes, were incubated with

serum-free RPMI 1640 containing 200 nM PMA (Sigma, St Louis,

USA) for 48h to induce M0 macrophage.
Cells co-culture and macrophage
polarization analysis

The supernatant harvested from 48h incubation of KD and NC

groups of KYSE-150 was co-cultured with M0 macrophage in 24-

well transwell plates (Millipore Co., Bedford, MA) for 72h.

Macrophages without co-culture were set as the control. After

polarization induction, macrophages were harvested and

incubated with specific primary anti-bodies against relative

surface markers (CD86 as an M1 marker, and CD206 as an M2
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marker) on ice for 30 minutes. Then, these stained cells were

resuspended in 400 mL of PBS after twice of cold PBS washing.

Finally, flow cytometry (BD LSRII system, BD Biosciences, Franklin

Lakes, USA) was applied to evaluate the specific surface markers.

Simultaneously, macrophages were harvested to extract total RNA

using Trizol reagent (Invitrogen, Carlsbad, CA) in accordance with

instructions. qRT-PCR (Mx3000Ps, Biosystems Inc., Foster City,

CA, USA) was performed after reverse transcription to cDNA

(PrimeScript RT reagent Kit, Takara, Shiga, Japan). The PCR

reaction condition was as follows: pre-denaturing at 95°C for 15s,

then 45 cycles at 95°C for 5s, ended after 60°C for 30s. The internal

reference used in this study was GAPDH. The primers of targeted

genes were shown as follows: CDKL3: 5′- AAAGTGGGCAAT

TTGTCACCT-3′(forward), 5′-TTGGGGTGTTGAACTTGAG
GA-3′(reverse); GAPDH: 5′-AGAAGGCTGGGGCTCATTTG-3′
(forward), 5′-AGGGGCCATCCACAGTCTTC-3′ (reverse); IL-12:
5′-CCTTGCACTTCTGAAGA GATTGA-3′(forward), 5′-ACA
GGGCCATCATAAAAGAGGT-3′(reverse); TNF-a: 5′-CCTCT
CTC TAATCAGCCCTCTG-3′(forward), 5′-GAGGACCTGG
GAGTAGATGAG-3′(reverse); IL-10: 5′-GACTTTAAGGGTTAC
CTGGGTTG-3′(forward), 5′-TCACATGCGCCTTGATGTCTG-3′
(reverse); TGF-b: 5′-GGCCAGATCCTGTCCAAGC-3′(forward),
5′- GTGGGTTTCCACCATTAGCAC-3′(reverse). Relative gene

expression was determined using the 2-DDCT method. In other

ways, co-culture supernatants were collected and tested for

specific cytokines (TNF-a and IL-12 as M1 markers, TGF-b and

IL-10 as M2 marker) using ELISA kits (eBioscience, San Diego,

USA) according to the manufacturer’s protocols.
Confocal imaging of autophagosomes
and autolysosomes

Cells were plated in 6-well chambers at 10000 cells/well

followed by transfection with tandem fluorescently tagged LC3B

(pLVX-Puro-RFP-GFP-hLC3B) lasting 24h. Then, indicated drugs

were added to co-incubate with the cells for another 24 h.

Subsequently, DAPI or Hochest was used to stain the cell nuclei

for 15 min after the fixation with 4% Paraformaldehyde (PFA).

Finally, autophagic flux was monitored and scanned by Pannoramic

Midi (3DHistech, Budapeste, Hungary).
Gene silencing

For transfection, cells were cultured in 6-well plates containing

5x105 cells. Transient transfection of small interfering RNA

(siRNA) was carried out using Lipofectamine 3000 Transfection

Reagent (L3000015, Thermo Fisher Scientific, California, USA).

siRNAs targeting human CDKL3 were obtained from GenePharma

(Shanghai, China) and transfected into cells using Lipofectamine

3000 (Invitrogen, California, USA). The detailed sequences of

s iRNA were as fo l l ows : CDKL3 s iRNA1 (KD) , 5 ′ -
UCAGGAAAGAUGAAAGAAATT-3′, 5′-UUUCUUUCAUC

UUUCCUGATT-3′; CDKL3 siRNA2 (KD), 5′-GCUGCAAAUC
UCAGUUCAAAU-3′, 5′-UUGAACUGAGAUUUGCAGCCA-3′;
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CDKL3 siRNA3 (KD), 5′-AGUUCUUCCUCAAGUUCAACA-3′,
5′-UUGAACUUGAGGAAGAACUAC-3′; CDKL3 siRNA4 (KD),

5′-GACUAUCUUCACAGUAAUAAU-3′, 5′-UAUUACUG

UGAAGAUAG UCAA-3 ′ ; NC siRNA (NC), 5 ′-UUCU

CCGAACGUGUCACGUTT-3′, 5′-ACGUGACACGUUCGGA

GAATT-3′.
Western blot assay

Briefly, total proteins were extracted from ESCC cells and

protein quantification was performed using the BCA protein

assay kit (Beyotime, Shanghai, China). 10% SDS-PAGE was used

to separate protein samples, transferred to PVDF membranes, and

then the PVDF membranes were blocked with 5% skim milk for 1

hour. The membranes were then incubated overnight with mouse

anti-CDKL3 antibody (Sigma-Aldrich, St. Louis, MO, USA) or

rabbit anti-LC3B antibody (Cell Signaling Technology, Danvers,

MA, USA) at 1:1000 dilution. Mouse anti-GAPDH antibody

(Santacruz, Santa Cruz, CA, United States) (1:2000) was

incubated overnight at 4°C as a control for the top sample.

Finally, an HRP-coupled IgG antibody (Santacruz, Santa Cruz,

CA, United States) was used as a secondary antibody. Signal

bands were also quantified using ImageJ software.
Ingenuity pathway analysis (IPA)

Our previous study analyzed the profile of differential expressed

genes between KYSE-150-NC and KYSE-150-CDKL3-KD cells

using GeneChip® PrimeViewTM human gene expression arrays

(22). In this study, we used IPA to perform gene enrichment

analysis based on the results of CDKL3 expression-related

differential gene expression.
Statistical analysis

All statistical data analysis and graphs were performed using R

software (version 4.2.1) and GraphPad Prism (version 8.0.2) for

analysis. All experiments were replicated at least three times.

Differences between the two groups were analyzed using a t-test or

Wilcoxon test. Correlations between variables were examined using

Spearman’s coefficient. Survival curves were plotted using the Kaplan-

Meier method, and the log-rank test was used to compare between

groups. Two-tailed statistical tests were applied and p < 0.05 was used

to define as statistically significant (“NS” indicates no significant

difference, *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001).
Results

CDKL3 expression pattern and
mutation analysis

Expression data from the TCGA and GEO databases were

comprehensively analyzed. In the TCGA database, we found no
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1295011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bi et al. 10.3389/fimmu.2024.1295011
differences in CDKL3 expression between tumor and normal tissue

of ESCA. Compared to the paired normal tissue samples in GEO

databases, CDKL3 was highly overexpressed in the tumor tissues of

ESCA (GSE161533 and GSE23400, (Supplementary Figure 1A). We

obtained ESCA mutation data and divided patients into two groups

based on CDKL3 expression. Patients with higher CDKL3

expression typically had a higher TP53 mutation rate (87% vs.

82%) and lower TTN (38% vs. 42%) and MUC16 (18% vs. 26%)

mutation rates (Supplementary Figures 1B, C) than that of patients

with lower CDKL3 expression.
Elevated CDKL3 expression predicts poor
clinical outcomes in ESCA patients

To further determine the clinical significance of CDKL3 in

ESCA patients, our study of clinical data from the TCGA-ESCA

dataset revealed a significant association between high CDKL3
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expression and pathology (squamous cell carcinoma vs.

adenocarcinoma), race (Asian vs. White), T (T3 vs. T1) and

tumor stage (stage II&III vs. stage I) (Figure 2A). This suggests

that CDKL3 expression levels increase with increasing ESCA

malignancy. To further understand the significance of CDKL3 in

ESCA, we investigated the relationship of its expression with

prognosis in ESCA patients. According to the median value of

CDKL3 expression, patients were grouped into high- and low-

expression cohorts. Log-rank test analysis then indicated that those

with high CDKL3 expression had a worse outcome than patients

with low CDKL3 expression in the TCGA-ESCA (n=183),

GSE53624 (n=119), and GSE53625 (n=179) cohorts, while a

similar but non-significant trend was found in the GSE19417

cohort (n=70) (Figure 2B). Univariate analysis showed that

patients with high CDKL3 expression (HR:1.695, 95% confidence

interval (CI):1.010-2.844, p=0.046) had shorter overall survival

(Figure 2C). After adjustment for other confounders (gender and

stage), multivariate analysis indicated that CDKL3 remained an
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FIGURE 2

Increased expression of CDKL3 indicates poor prognosis. (A) The association between CDKL3 and pathology, race, T, and stage. (B) Prognosis of
high and low CDKL3 expression groups in the TCGA, GSE53624, GSE53625, and GSE19417 cohorts. (C) Univariate analysis and (D) Multivariate
analysis of CDKL3 expression and clinicopathological features in the TCGA cohort. (E) Nomogram for predicting the prognosis of ESCA patients.
(F) Calibration plots indicate the predicted overall survival at 1, 2, and 3 years. (G) Decision curve analysis (DCA) of the nomogram. (H) Receiver
operator characteristic (ROC) analysis of the nomogram in the TCGA, GSE53624, and GSE53625 cohorts. *p<0.05; ns, no significance.
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independent prognostic risk factor in ESCA patients (HR:1.735,

95% CI:1.034-2.911, p=0.037) (Figure 2D). A nomogram was

created to estimate the outcome of ESCA patients and the

variables considered in the nomogram were age, gender, CDKL3,

and stage (Figure 2E). The C-index value of the nomogram was

0.675 (95% CI: 0.635-0.715). The calibration curve showed the

accuracy of the nomogram in the prediction of survival at 1, 2, and 3

years (Figure 2F). A decision curve analysis (DCA) was performed

(Figure 2G), which suggested a good probability of diagnosis

between a probability threshold of 20% and 50%. In conclusion,

ROC analysis was performed to evaluate the sensitivity and

specificity of this nomogram in the prediction of OS at 1, 2, and

3 years. The AUC for 1-, 2-, and 3-year OS were 0.642, 0.777, and

0.819 in the TCGA cohort, respectively. The AUC for 1-, 2-, and 3-

year OS were 0.578, 0.687, and 0.683 in the GSE53624 cohort,

respectively. The AUC for 1-, 2-, and 3-year OS were 0.628, 0.694,

and 0.690 in the GSE53625 cohort, respectively (Figure 2H). These

findings suggest that the expression level of CDKL3 can be

considered a powerful prognostic predictor in ESCA patients.
Correlation between CDKL3 and
immune phenotype

Spearman analysis indicated that CDKL3 expression was

significantly and negatively related to the majority of tumor-

infiltrating immune cells (TIICs) (Figure 3A). Patients were

stratified into high and low CDKL3 expression groups according

to median CDKL3 expression. The relative abundance of

immunoreactive cells was markedly decreased lower in CDKL3

high-expressed group (Figure 3B). Using the GSE47404 cohort as a

validation set, the results were highly consistent with the above

findings (Figures 3C, D). In ESCA, CDKL3 expression was closely

associated with the remodeling of the TME. In the TCGA cohort,

CDKL3 expression was negatively correlated with the activity of

step 4 of the cancer immunity cycles, i.e. immune cell trafficking to

the tumor (Supplementary Figure 2A), which was further validated

in the GSE47404 cohort (Supplementary Figure 2B). This explains

why higher CDKL3 expression was associated with lower

infiltration of immunoreactive cells.

ES heatmaps were presented for the correlation among CDKL3

and 92 immune-related signatures in the TCGA and GSE47404

cohorts (Supplementary Figures 2C, D). CDKL3 was strongly

related to 25 immune-related signatures in the TCGA cohort, most

of which were anti-tumor signatures that were negatively associated

with CDKL3. Notably, CDKL3 had a significantly positive correlation

with the ES of the TAM-related signature (TAMsurr_score).

Furthermore, the ES for the anti-tumor signatures was considerably

lower in the CDKL3 high expression group with a higher ES for the

TAMsurr_score (Figures 3E, F). This finding was further validated in

the GSE47404 cohort (Figures 3G, H). In summary, raised CDKL3

expression promoted the tumor immune phenotype to become a

‘cold’ type. Subsequently, the analysis about the relation between

CDKL3 expression and suppressive TME-related chemokines and

receptors (Supplementary Table 4) revealed that high CDKL3

expression positively correlated to the expression of chemokines
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(CXCL2, CXCL3, CCL8) and chemokine receptors (CXCR4, CCR5,

CCR8) (Figure 3I).
CDKL3 expression levels predict response
to immunotherapy

We explored the correlation of CDKL3 expression with that of 14

suppressive immune checkpoint inhibitors to determine the potential

efficacy of CDKL3 in the prediction of response to ICIs in ESCA

patients (Figure 3J). The results indicated that CDKL3 had a positive

correlation with most of the inhibitory immune checkpoint inhibitors.

Therefore, we suggest that CDKL3 may be a candidate biomarker for

immunotherapy response prediction. It was discovered that the

expression of CDKL3 exhibited a significant positive correlation to

most of the hyper-progressive genes (Figure 3K), and CDKL3 may be

associated with hyper-progression in immunotherapy. We also

assessed the significance of CDKL3 as a predictor of

immunotherapy response in ESCA patients using TIDE and IPS

scores. Patients with low CDKL3 expression had significantly

decreased TIDE scores and increased IPS scores, indicating that low

CDKL3 patients have a reduced potentiality for immune escape and

may have better efficacy with immune checkpoint inhibition therapy

(Figures 4A–C). TIDE prediction showed that patients with lower

CDKL3 expression group response to immunotherapy more

significantly in the TCGA cohort (low group: 57.0%, 53/93 vs. high

group: 42.4%, 39/92) (Figure 4D). Similarly, TIDE predicted that the

low CDKL3 group in the GSE53625 cohort was more likely to respond

to immunotherapy (low group: 53.3%, 48/90 vs. high group: 22.5%,

20/89) (Figure 4E). Based on GSE165252 (an immunotherapy cohort

for ESCA), the group with CDKL3 low expression showed more

superior response to the immunotherapy (low group: 40%, 6/15 vs.

high group: 21.4%, 3/14) (Figure 4F). Thus, CDKL3 gene expression

levels may help predict response to immunotherapy in ESCA patients.

As there are fewer immunotherapy cohorts for ESCA, we investigated

the role of CDKL3 in predicting the response to immunotherapy in

other cancers. We discovered that the prognosis, including OS and

progression-free survival (PFS), was worse for the high CDKL3 group

in the metastatic urothelial cancer and melanoma cohorts (p < 0.05)

(Figures 4G–I, M–O). Moreover, a trend toward a worse PFS was

found in the high CDKL3 group of GSE176307 and Gide2019 PD-1

cohorts, while a trend toward a worse OS in the high CDKL3 group of

Gide2019 PD-1+CTLA4 cohorts, yet the p-value was not statistically

different (Supplementary Figures 3A–C). We also found that

immunotherapy response rates were considerably lower among the

high CDKL3 group than among the low CDKL3 group (Figures 4J–L,

P–R). These results confirm that CDKL3 expression is a powerful

indicator in pan-cancer immunotherapy cohorts.
Establishment and validation of CrA-risk
score model

Utilizing 1183 ATGs downloaded from the autophagy database,

we constructed and validated a CrA risk score model (Figure 5A).

Correlation analysis and univariate COX regression analysis
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identified 16 genes at the output intersection of the TCGA and

GSE19417 cohorts (MAP1LC3B, TSC2, PPP2CA, UBE2J2, ATM,

PIK3CB, KPNA6, KLHL12, CTSD, SPATA13, RAB9A. MARK2,

ITPR3, LRBA, AP3D1, ATG16L1). Univariate Cox regression

revealed 16 predictive ATGs in the TCGA and GSE19417 cohorts

(Figures 5B, C). The ESCA patients from the TCGA cohort were

grouped into a training set (n = 129) and a validation set (n = 54)
Frontiers in Immunology 0878
according to 7:3. Subsequently, a CrA risk score model for ESCA

patients was developed via LASSO cox regression. Finally, 9 of the

16 ATGs were considered to be the best candidate genes

(Figures 5D, E). The model of the CrA risk score was shown as

the following.

CrA risk score = (0.380889116*MAP1LC3B exp) + (-0.32148

4102*TSC2 exp) + (0.846337455*PPP2CA exp) + (-0.3515841
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FIGURE 3

Correlation between CDKL3 and immunological characteristics in the TME. (A) Correlation of CDKL3 with infiltration levels of TIICs in the TCGA cohort.
(B) Violin plots of infiltrating degrees of TIICs in the TCGA cohort. (C) Correlation of CDKL3 with infiltration levels of TIICs in the GSE47404 cohort.
(D) Violin plots of infiltration levels of TIICs in the GSE47404 cohort. (E) Correlation of CDKL3 with 25 immune-related signatures in the TCGA cohort.
(F) Violin plots of enrichment scores of immune-related signatures in the TCGA cohort. (G) Correlation of CDKL3 with 25 immune-related signatures in
the GSE47404 cohort. (H) Violin plots of enrichment scores of immune-related signatures in the GSE47404 cohort. (I) Correlation of CDKL3 with
chemokines and chemokine receptors. (J) Correlation of CDKL3 with inhibitory immune checkpoints. (K) Correlation of CDKL3 with hyperprogressive
genes for immunotherapy. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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02*UBE2J2 exp) + (-0.277601266*ATM exp) + (0.354855247*PIK3CB

exp) + (0.450974523*CTSD exp) + (-0.315185584*ITPR3 exp) +

(-0.327763971*ATG16L1 exp).

Genes involved in the signature included MAP1LC3B, TSC2,

PPP2CA, UBE2J2, ATM, PIK3CB, CTSD, ITPR3, ATG16L1. The
Frontiers in Immunology 0979
distribution of the above genes and CDKL3 on their respective

chromosomes in ESCA was depicted in Supplementary Figure 4A.

CNV alterations were prevalent in these genes. ATG16L1 showed the

highest loss frequency, whereas PIK3CB showed the highest gain

frequency (Supplementary Figure 4B). The correlation and
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FIGURE 4

CDKL3 predicts response to immunotherapy. (A, B) TIDE scores in the TCGA and GSE53625 cohorts. (C) IPS scores in the TCGA cohort. (D, E) TIDE
predicted immunotherapy response rates in the TCGA and GSE53625 cohorts. (F) Immunotherapy response rates based on GSE165252 (an
immunotherapy cohort for ESCA). (G–I, M–O) Survival analysis of CDKL3 in the pan-cancer immunotherapy cohorts. (J–L, P–R) The proportion of
pan-cancer immunotherapy responders in the high and low CDKL3 groups. **p<0.01; ****p<0.0001.
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prognostic impact of these genes in TCGA-ESCA were investigated

(Figure 5F). Patients in the TCGA-ESCA internal training set

(n=129), the TCGA-ESCA internal validation set (n=54) and the

GSE19417 external validation set (n=70) were separated into high-

and low-risk groups according to the median value of CrA-risk score

model. Those belonging to the high-risk group of both the training

and validation cohorts experienced shorter OS than those in the low-

risk group (Figures 5G–I). In the TCGA-ESCA internal training set,
Frontiers in Immunology 1080
ROC curves indicated that AUC values for 1-year, 2-year, and 3-year

time points were 0.725, 0.773, and 0.876, respectively. The TCGA-

ESCA internal validation and the GSE19417 external validation set

also confirmed that the CrA risk score was highly reliable in

predicting ESCA patients (Figure 5J). According to the Sankey

plots, patients belonging to the high CDKL3 group were associated

with the high-risk group and showed a tendency to have a poorer

prognosis (Supplementary Figure 4C).
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FIGURE 5

Construction and validation of the CrA risk score model. (A) Flowchart of the CrA risk score model. (B) Univariate analysis of 16 ATGs genes in the
TCGA cohort. (C) Univariate analysis of 16 ATGs genes in the GSE19417 cohort. (D) Choosing the 9 model genes by LASSO Cox regression.
(E) Cross-validation of the constructed signature. (F) Correlation and prognostic value of CDKL3 and model genes in TCGA. (G) Kaplan-Meier curves
in TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (H) Distribution of the CrA risk score adjusted for
survival status and time in the TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (I) Model gene expression
heatmap from TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (J) Receiver operator characteristic (ROC)
analysis of the CrA risk score in the TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1295011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bi et al. 10.3389/fimmu.2024.1295011
Relationship between CrA risk score and
immune infiltrating cells

The association between the CrA risk score and the level of

TIICs was explored to further investigate the relevance of autophagy

to the immune system in ESCA. Notably, the CrA risk score of

ESCA patients had a positive correlation with M2 macrophage

infiltration in three algorithms (Figures 6A–C). Moreover, there

was a positive association between the CrA risk score and the level

of multiple infiltrating immunosuppressive cells, which promote

tumor progression, while negative with levels of anti-tumor

immune cells (Figure 6D). The CIBERSORT algorithm showed

that lower infiltration of immune-activating cells and higher

infiltration of M2 macrophages were found in the high-risk group

(Figure 6E). In other words, patients in the high-risk group had

enhanced immunosuppression, which accounted for their

worse prognosis.
The relationship among CDKL3 expression,
radiotherapy, and autophagy predicts in
ESCC patients

The results of the western blot demonstrated that radiotherapy

caused a significant dose-dependent reduction in the expression

levels of both CDKL3 and the autophagy marker LC3B (Figure 7E).

To study the role of CDKL3 in autophagy and macrophage

polarization, KYSE-150 cells were transfected with CDKL3-

siRNAs. KYSE-150 transfected with CDKL3-siRNA1 showed

distinctly reduced CDKL3 expression, and KYSE-150-CDKL3-

siRNA1 (defined as KD group) was used for further study

(Figure 7F). Analysis of 24 samples from ESCC patients receiving

nCRT found that low pre-treatment CDKL3 expression was
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positively related to pCR (pT-N-) (Figure 7A), pT- (Figure 7B),

and pN- (Figure 7C) (p<0.01). The typical staining of CDKL3 in

ESCC patients with pCR or non-pCR was significantly different.

That is, ESCC subjects with higher CDKL3 levels had a poorer

response to nCRT than ESCC subjects with lower CDKL3

levels (Figure 7D).
CDKL3 expression affects autophagy
induction in ESCC

The addition of the autophagy inducer Rapa significantly

increased autophagosomes, autophagic flow toward autophagic

lysosomes and relative dots count red/green compared to CON

(p<0.05). Relative dots count red/green decreased in KD vs. NC

group (p<0.05), but the difference in values was within 20%,

suggesting that CDKL3 knockdown alone may not have a

significant effect on the flow of autophagosomes to autophagic

lysosomes in KYSE150 cells (Figure 8A). The red/green count per

cell was increased by the addition of the autophagy inducer Rapa in

comparison to the CON group (p<0.05), indicating autophagic flow

to autophagosomes. Compared to the NC+Rapa group, the KD

+Rapa group had less red/green (p<0.05), significantly more

autophagosomes (yellow dots) and significantly fewer

autophagolysosomes (free red dots), suggesting that CDKL3

knockdown can significantly inhibit the flow of autophagosomes

to autophagolysosomes in the autophagy-induced activated state of

KYSE150 cells, i.e. inhibit autophagy induction (Figure 8B). The

addition of the autophagy inducer Rapa significantly increased the

autophagy marker LC3B compared to CON (p<0.05). Compared to

the NC group, LC3B tended to decrease in the KD group, but was

not statistically different. This suggests that CDKL3 knockdown

alone may not have a significant effect on autophagy induction in
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FIGURE 6

Relationship between the CrA risk score and tumor-infiltrating immune cells (TIICs). (A–C) Correlation between the CrA risk score and M2
macrophages based on XCELL, CIBERSORT-ABS and CIBERSORT algorithms. (D) Correlation between the CrA risk score and infiltrated TIICs. (E) The
differences in TIICs levels between high- and low-risk groups. *p<0.05; **p<0.01; ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1295011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bi et al. 10.3389/fimmu.2024.1295011
KYSE150 cells (Figure 8C). LC3B was significantly higher in the

CON+Rapa group than in the CON group. LC3B levels were also

significantly lower in the KD+Rapa group than in the NC+Rapa

group. It is suggested that CDKL3 knockdown can significantly

inhibit autophagy induction in KYSE150 cells in the activated state

of autophagy induction (Figure 8D). The above results suggested

that downregulation of CDKL3 could inhibit autophagy activation.
CDKL3 downregulation in ESCC promotes
M1-type macrophage polarization

THP-1 cells were induced into macrophages by PMA and then

co-cultured with cultures of harvested KYSE-150-siCDKL3 cells for

72 h. Macrophage polarization (M1: CD86; M2: CD206) was

detected by flow cytometry (Figures 9A, B) as well as qRT-PCR

(Figure 9C), ELISA assay (Figure 9D) for cytokine secretion (M1:

IL-12, TNF-a; M2: IL-10, TGF-b). The findings clearly indicated

downregulation of CDKL3 expression in ESCC greatly promoted

M1-type polarization and cytokine secretion in macrophages.
Activation of autophagy in ESCC inhibits
M1-type polarization of macrophage

KYSE-150 cells were induced with Rapa, an autophagy inducer,

for 12 hours and then substituted with Rapa-free medium for
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another 12 hours. The cell supernatant was obtained and co-

cultured with M0 macrophages for 72hours, and then RNA was

extracted to detect macrophage polarization markers (M1: CD86)

and cytokine secretion (M1 type: IL-12, TNF-a) by qRT-PCR. The
results showed that ESCC cell supernatant after autophagy

activation could inhibit macrophage M1-type polarization and

cytokine secretion (Figure 9E).
Downregulation of CDKL3 expression in
ESCC activates the Interferon
(IFN) pathway

IPA bioinformatics pathway analysis of KYSE-150-NC versus

KYSE-150-CDKL3-KD cells revealed that the Interferon (IFN)

pathway was significantly activated (Figure 9F). Therefore, we

hypothesized that the high expression of CDKL3 in ESCC may

attenuate anti-tumor immunity by inhibiting the IFN pathway.
Discussion

We have previously published results showing that CDKL3 is

highly overexpressed in ESCC and has a worse prognostic value (19,

22) . Based on the public database of ESCA (mainly

adenocarcinoma), the results of this study also showed that

CDKL3 was highly expressed and associated with shorter survival.
A B C

D

E

F

FIGURE 7

Relationship among CDKL3 expression, radiotherapy, and autophagy predicts in ESCC patients. (A–C) Correlation between high and low expression
of CDKL3 and pathological complete response (pCR), pathological lymph node (pN), and pathological tumor (pT). (D) Representative
immunohistochemical images of CDKL3 staining before and after nCRT in ESCC patients with pCR or non-pCR after surgery. The scale bars
correspond to 200 mm (magnification ×100) and 100 mm (magnification ×200). (E) Expression levels of CDKL3 and LC3B in KYSE-150 cells after 0, 2,
4, 6, and 8 Gy radiotherapy were evaluated by western blot. (F) The expression of CDKL3 was detected in the CON group, NC group, CDKL3-siRNA1
group, CDKL3-siRNA2 group, CDKL3-siRNA3 group, and CDKL3-siRNA4 group by western blot. *p<0.05; **p<0.01; ns, no significance.
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Recent studies suggested that upregulated CDKL3 expression is

critical for promoting tumor development and poor prognosis in

various solid tumors, including glioma and prostate cancer (20, 21).

For example, Cui et al. found that overexpression of CDKL3 in

glioma cells promotes cell proliferation and that RRM2 is a

potential target of CDKL3. Upregulation of CDKL3 expression in

glioma tissue independently predicts poor patient prognosis (20).

Jiang et al. found that reducing CDKL3 levels substantially hindered

cell proliferation and migration while promoting apoptosis and G2

cell cycle blockade in prostate cancer (21). Mutation analysis

identified that those with high CDKL3 expression had more TP53

mutations and fewer TTN andMUC16 mutations. TP53 is linked to

a poorer outcome in ESCA. Patients with TTN, MUC16 mutations

have a higher tumor mutation load and may benefit from

immunotherapy (33–35). As a result, patients with a high level of
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CDKL3 expression may benefit less from immunotherapy and

result in a worse prognosis.

It is necessary to explore the reasons why CDKL3 represents a

poor prognostic factor in ESCA. Building on previous research, our

study provided the first look at the relationship between CDKL3

and the TME, autophagy, and response to immunotherapy in

ESCA. We hypothesized that CDKL3 may alter tumor

immunogenicity and immune infiltrating cells within the TME by

influencing autophagy induction, thereby affecting immunotherapy

patient response and prognosis in ESCA.

The TME comprises a multitude of distinct immune cell

populations. TIICs may play a crucial effect on carcinogenesis

and influenced tumor response to immunotherapy (36). The

concept of the cancer immunity cycles was introduced by Chen

andMellman (37). The eventual killing of tumor cells by anti-tumor
A

B

C

D

FIGURE 8

Effect of CDKL3 expression on autophagy in ESCC. (A) Expression of GFP, RFP, GFP+RFP, and GFP+RFP+Highest was detected by
immunofluorescence. Representative co-staining images of the control group, Rapa group, NC group, and KD group. The scale bars correspond to
100 mm. (B) Expression of GFP, RFP, GFP+RFP, and GFP+RFP+DAPI was detected by immunofluorescence. Representative co-staining images of the
control group, Rapa group, NC+Rapa group, and KD+Rapa group. The scale bars correspond to 50 mm. (C) The expression of LC3B in the CON
group, CON+Rapa group, NC group, and KD group was assessed by western blot. (D) Expression of LC3B in the CON group, CON+Rapa group, NC
+Rapa group, and KD+Rapa group was assessed by western blot. *p<0.05; **p<0.01; ***p<0.001; ns, no significance.
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immune cells is the result of a series of seven steps accompanied by

positive and negative regulation. Step 4 is the phase that activating T

cells transfers into the circulation and migrates to the tumor, which

is related to the infiltration level of TIICs (37). In this study, we

observed that higher CDKL3 expression was related to reduced

infiltration of a variety of immunoreactive cells. In the cancer

immunity cycles, CDKL3 expression showed a negative

correlation with the activity of step 4, and we speculated that

CDKL3 may reduce the infiltration level of TIICs by inhibiting

step 4. TAMs primarily promote the malignant transformation of

tumors through the release of various factors. Recent studies have

shown that TAM-derived CCL22 can activate the FAK signaling

axis in tumor cells, thereby promoting ESCC progression (38). In

our study, CDKL3 was significantly and positively associated with

the TAM related signature (TAMsurr_score). Recruitment of

different types of immune cell subpopulations in the TME is

associated with chemokines and chemokine receptors. We

collected chemokines and receptors associated with suppressive

TME from previous study (27). These chemokines and receptors

were associated with the recruitment of MDSCs (CXCL2, CXCL3),

TAMs (CXCR4), Treg cells (CCR5), Treg cells (CCL8, CCR8). This

suggested that CDKL3 may reshape the TME by regulating these

chemokines and chemokine receptors, leading to the infiltration of
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immunosuppressive cells, ultimately affecting the response to

immunotherapy and the promotion of tumor progression.

Research in tumor immunotherapy has progressed significantly

in the last few years, and the application of ICIs has become a

unique therapeutic approach for a variety of malignancies,

including ESCA (4–7). It is crucial to find predictive markers for

immunotherapy in ESCA. A recent meta-analysis included 5,257

patients with advanced ESCA who were treated with ICIs. The

benefit of ICIs in the reduction of the risk of death in patients with

ESCA was dependent on the PD-L1 CPS status. Further studies of

immunotherapy biomarkers in the CPS <10 subgroup are needed

(8). Our study also investigated CDKL3 as a candidate biomarker to

predict response to immunotherapy. The findings indicated that

CDKL3 showed a positive correlation with most of the inhibitory

ICIs. However, no statistically significant correlation was found

between CDKL3 and CD274 (PD-L1). The up-regulated inhibitory

immune checkpoint of TME is associated with decreased anti-

tumor immunity (30). This explains the poorer prognosis of ICIs in

those with higher CDKL3 expression. The TIDE and IPS scores

were used to assess how ESCA patients responded to

immunotherapy. Poor response to immunotherapy in patients

with high CDKL3 expression was also demonstrated in pan-

cancer immunotherapy cohorts.
A B

C D

E F

FIGURE 9

Effect of CDKL3 expression and autophagy activation on macrophage polarization. (A) The differences of M1 macrophages in the THP-1+PMA group,
THP-1+PMA+NC-72h group, and THP-1+PMA+KD-72h group were evaluated by flow cytometry. (B) The differences of M2 macrophages in the
THP-1+PMA group, THP-1+PMA+NC-72h group, and THP-1+PMA+KD-72h group were analyzed by flow cytometry. (C, D) Cytokine secretion (type
M1: IL-12, TNF-a; type M2: IL-10, TGF-b) in THP-1+PMA+ NC-72h group and THP-1+PMA+KD-72h group were detected by qRT-PCR and ELISA,
respectively. (E) Macrophage polarization markers (M1: CD86) and cytokine secretion (M1: IL-12, TNF-a) in THP-1+PMA+ KYSE150-72h group and
THP-1+PMA+ KYSE150+RAPA-72h group were detected by qRT-PCR. (F) Downregulation of CDKL3 activates the Interferon (IFN) pathway,
according to Ingenuity Pathway Analysis (IPA). The vertical coordinate is the pathway name and the horizontal coordinate is z-score (|z-score| ≥ 2
and -log(p-value) > 1.3). *p<0.05; **p<0.01; ***p<0.001.
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Both radical chemoradiotherapy and neoadjuvant

chemoradiotherapy are the main anti-tumor treatment modalities

for patients with locally advanced ESCA (39–41). There is emerging

evidence that chemoradiotherapy may remodel the TME and

thus interfere with the efficacy of immunotherapy (11, 12).

Patients with ESCA who have a high rate of pCR after

surgery have a favorable prognosis (39, 40). Considering that

neoadjuvant immunotherapy combined with chemotherapy (or

chemoradiotherapy) has only been used in a small number of

clinical trials (42, 43). Therefore, we collected tumor samples

from ESCA patients undergoing nCRT. The findings indicated

that those expressing high levels of CDKL3 had a poorer response

to chemoradiotherapy.

We have previously reported that CDKL3 has a regulatory

relationship with ATG5, a gene that regulates autophagy, in

KYSE-150 cells (22). Autophagy is essential for tumor migration,

invasion, and tumor immunity, and it is regulated by

chemoradiotherapy (14, 15). Immune cell subpopulations whose

survival, activation, differentiation, and function in the TME are

linked to the autophagy pathway (44). Recent reports indicated that

inhibition of autophagy restores cell surface MHC-I levels, increases

antigen presentation, and enhances the anti-tumor response. The

anti-tumor effect of autophagy inhibition was dependent on CD8+

T cells and cell surface MHC-I expression. ICIs combined with

autophagy inhibitors enhanced anti-tumor immune responses (45).

Autophagy act ivat ion has also been associated with

chemoradiotherapy resistance in ESCC, leading to poor patient

prognosis. Xia et al. found that Nrf2 enhances radiation resistance

through the targeting of CaMKIIa and subsequent activation of

autophagy in ESCC (46). Our further studies also confirmed that

radiotherapy affects autophagy activation, and the expression of

CDKL3 affects autophagy induction. We developed a CrA risk score

based on public databases and validated it in internal and

external cohorts.

Macrophages are diverse and plastic and can polarize into

different phenotypes and thus perform different functions in

response to different stimuli. M1 macrophages have pro-

inflammatory and anti-tumor activity. M2 macrophages may be

involved in the immune escape of tumor cells due to their inhibition

of inflammation and concomitant promotion of tumor proliferation

(47). The researchers found that USP19 promoted autophagy and

thus downregulated NLRP3 inflammasome activation. And USP19

promoted M2 macrophage polarization (48). Tumor cells could also

induce M2 polarization by transferring genetic information via

exosomal non-coding RNAs (49). Our study found that patients

with a high CrA risk score had higher infiltration levels of M2

macrophages based on the XCELL, CIBERSORT-ABS, and

CIBERSORT algorithms. In another study, the Necroptosis-

Pyroptosis Genes (NPG) scores established for prognostic

prediction were found to be negatively correlated with infiltrating

M2 Macrophage in patients with clear cell renal cell carcinoma

(ccRCC) by the CIBERSOR algorithm (50). Moreover, this study

showed that CDKL3 knockdown in KYSE150 cells could

significantly inhibit autophagy induction in an autophagy-

induced activated state. ESCC cells with downregulated CDKL3

could secrete some soluble factors or proteins to promote M1
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macrophage polarization. Activation of autophagy in ESCC

inhibited macrophage M1 polarization. This suggests that high

CDKL3 expression in ESCC cells may be associated with the

activation of autophagy, which promotes macrophage M2

polarization. Lin et al. also found that silencing IL4I1 in ccRCC

cell lines (786-O, 769-P) could inhibit M2-like macrophage

polarization by indirectly co-culturing with M0 macrophages

(51). These results suggest that tumor cells with specific altered

genes might influence immune ce l l infi l t ra t ion and

functional polarization.

IFN-g exerts its biological effects mainly through the JAK/STAT

pathway by activating intracellular signaling networks (52). Grasso

et al. found that this conserved IFN-g transcriptome response

enhanced the anti-tumor immune response in melanoma (53).

Our study found that downregulation of CDKL3 expression in

ESCC activated the IFN pathway. This provided a different

perspective on the mechanism by which high CDKL3 expression

leads to attenuated anti-tumor immunity.

The ESCA samples in TCGA were from a Western population.

However, there are differences in the pathology of ESCA between

Eastern and Western populations, in particular, squamous cell

carcinoma is the main pathological subtype in Eastern patients

while the vast majority of Western patients are adenocarcinoma

(54). There are still some limitations and deficiencies in this study.

The sample size of patients with ESCA retrieved from the TCGA

and GEO databases was limited, especially for ESCC. Although

bioinformatics analysis was conducted in ESCA patients including

ESCC and esophageal adenocarcinoma, the vitro study evidence

only confirmed the role of CDKL3 in ESCC cell lines while lacking

data in esophageal adenocarcinoma. It is necessary to further

distinguish the role of CDKL3 in ESCC patients from esophageal

adenocarcinoma patients. The potential function of CDKL3 in the

modulation of tumor microenvironment and autophagy has been

initially identified in this study, but a further prospective

exploration needs to be designed to confirm. Moreover, it is

significant to investigate and compare the differences in the atlas

of immune infiltrating cells, such as specific T cells and

macrophages, of the ESCA population with different CDKL3

expression in the clinic. In summary, our next step is to collect

clinical samples from ESCA patients receiving immunotherapy and

conduct further research in multicenter cohorts in China.
Conclusions

Overall, CDKL3 may play an important role in anti-tumor

immunity by regulating autophagy to promote the formation of

immunosuppressive TME, thus playing a critical role in the

prognosis of ESCA.
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SUPPLEMENTARY FIGURE 1

Differential expression and mutational analysis of CDKL3. (A) CDKL3

expression differences between normal and tumor tissues in TCGA,
GSE161533, and GSE23400 datasets. (B, C) Oncoplot of the top 20 most

mutated genes between high and low CDKL3 groups.

SUPPLEMENTARY FIGURE 2

Association of CDKL3 with cancer immunity cycles and immune-related
signatures. (A, B) Correlation between CDKL3 and cancer immunity cycles

in TCGA and GSE47404 cohorts. (C, D)Heat maps of CDKL3 and 92 immune-
related signatures in TCGA and GSE47404 cohorts.

SUPPLEMENTARY FIGURE 3

Survival analysis of CDKL3 in the pan-cancer immunotherapy cohorts. (A)
GSE176307 (B) Gide2019PD-1 (C) Gide2019PD-1+CTLA-4.

SUPPLEMENTARY FIGURE 4

The landscape in CDKL3 and the model genes in ESCA. (A) Circos plot of

chromosomal distribution of CDKL3 and model genes. (B) CNV frequency of
CDKL3 and model genes. The horizontal axis represents the change in

frequency. (C) Sankey diagram of the relationship between CDKL3 group,

risk group, and survival status.
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18. Canning P, Park K, Gonçalves J, Li C, Howard CJ, Sharpe TD, et al. CDKL family
kinases have evolved distinct structural features and ciliary function. Cell Rep. (2018)
22:885–94. doi: 10.1016/j.celrep.2017.12.083

19. Ye W, Zhu J, He D, Yu D, Yang H, Wang W, et al. Increased CDKL3 expression
predicts poor prognosis and enhances Malignant phenotypes in esophageal squamous
cell carcinoma. J Cell Biochem. (2019) 120:7174–84. doi: 10.1002/jcb.27991

20. Cui Y, Yang Z,Wang H, Yan Y, Huang Q, Gong Z, et al. Identification of CDKL3
as a critical regulator in development of glioma through regulating RRM2 and the JNK
signaling pathway. Cancer Sci. (2021) 112:3150–62. doi: 10.1111/cas.15010

21. Jiang Q, Li J, Wang J, Zhang W. Inhibition of CDKL3 downregulates STAT1
thus suppressing prostate cancer development. Cell Death Dis. (2023) 14:189.
doi: 10.1038/s41419-023-05694-3

22. Zhou S, Zhang M, Zhou C, Wang W, Yang H, Ye W. CDKL3 targets ATG5 to
promote carcinogenesis of esophageal squamous cell carcinoma. Front Oncol. (2020)
10:1602. doi: 10.3389/fonc.2020.01602

23. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFb
attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.
Nature. (2018) 554:544–8. doi: 10.1038/nature25501

24. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse
to model immunotherapy response and resistance. Genome Med. (2020) 12:21.
doi: 10.1186/s13073-020-0721-z

25. Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-
dependent areas under receiver operating characteristic curves for censored event times
with competing risks. Stat Med. (2013) 32:5381–97. doi: 10.1002/sim.5958

26. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575–80.
doi: 10.1158/0008-5472.CAN-18-0689

27. Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to
cancer. Immunity. (2021) 54:859–74. doi: 10.1016/j.immuni.2021.01.012

28. Singavi AK, Menon S, Kilari D, Alqwasmi A, Ritch PS, Thomas JP, et al. 1140PD
- Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint
inhibitors (ICI) – analysis of somatic alterations (SAs). Ann Oncol. (2017) 28:v405.
doi: 10.1093/annonc/mdx376.006

29. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R.
Hyperprogressors after immunotherapy: analysis of genomic alterations associated
with accelerated growth rate. Clin Cancer Res. (2017) 23:4242–50. doi: 10.1158/1078-
0432.CCR-16-3133

30. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust
prediction of response to immune checkpoint blockade therapy in metastatic
melanoma. Nat Med. (2018) 24:1545–9. doi: 10.1038/s41591-018-0157-9

31. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res. (2020) 48:W509–w14. doi: 10.1093/nar/
gkaa407

32. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-
oncology biological research to decode tumor microenvironment and signatures. Front
Immunol. (2021) 12:687975. doi: 10.3389/fimmu.2021.687975

33. Ma Y, Li W, Chen S, Lin S, Ding S, Zhou X, et al. Characteristics and response to
next-generation sequencing-guided therapy in locally advanced or metastatic
esophageal cancer. Int J cancer. (2023) 152:436–46. doi: 10.1002/ijc.34315
Frontiers in Immunology 1787
34. Su C, Wang X, Zhou J, Zhao J, Zhou F, Zhao G, et al. Titin mutation in
circulatory tumor DNA is associated with efficacy to immune checkpoint blockade in
advanced non-small cell lung cancer. Trans Lung Cancer Res. (2021) 10:1256–65.
doi: 10.21037/tlcr

35. Li X, Pasche B, Zhang W, Chen K. Association of MUC16 mutation with tumor
mutation load and outcomes in patients with gastric cancer. JAMA Oncol. (2018)
4:1691–8. doi: 10.1001/jamaoncol.2018.2805

36. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer
initiation to metastatic outgrowth. Cancer Cell. (2023) 41:374–403. doi: 10.1016/
j.ccell.2023.02.016

37. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle.
Immunity. (2013) 39:1–10. doi: 10.1016/j.immuni.2013.07.012

38. Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, et al. Tumor-associated
macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell
carcinoma (ESCC). Cell Mol Immunol. (2022) 19:1054–66. doi: 10.1038/s41423-022-00903-z

39. Eyck BM, van Lanschot JJB, Hulshof M, van derWilk BJ, Shapiro J, van Hagen P,
et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal
cancer: the randomized controlled CROSS trial. J Clin Oncol. (2021) 39:1995–2004.
doi: 10.1200/JCO.20.03614

40. Yang H, Liu H, Chen Y, Zhu C, Fang W, Yu Z, et al. Long-term efficacy of
neoadjuvant chemoradiotherapy plus surgery for the treatment of locally advanced
esophageal squamous cell carcinoma: the NEOCRTEC5010 randomized clinical trial.
JAMA Surg. (2021) 156:721–9. doi: 10.1001/jamasurg.2021.2373

41. Hulshof M, Geijsen ED, Rozema T, Oppedijk V, Buijsen J, Neelis KJ, et al.
Randomized study on dose escalation in definitive chemoradiation for patients with
locally advanced esophageal cancer (ARTDECO study). J Clin Oncol. (2021) 39:2816–
24. doi: 10.1200/JCO.20.03697

42. Liu J, Yang Y, Liu Z, Fu X, Cai X, Li H, et al. Multicenter, single-arm, phase II
trial of camrelizumab and chemotherapy as neoadjuvant treatment for locally advanced
esophageal squamous cell carcinoma. J Immunother Cancer. (2022) 10(3):e004291.
doi: 10.1136/jitc-2021-004291

43. Li C, Zhao S, Zheng Y, Han Y, Chen X, Cheng Z, et al. Preoperative
pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell
carcinoma (PALACE-1). Eur J Cancer (Oxford Engl 1990). (2021) 144:232–41.
doi: 10.1016/j.ejca.2020.11.039

44. Xia H, Green DR, ZouW. Autophagy in tumour immunity and therapy. Nat Rev
Cancer. (2021) 21:281–97. doi: 10.1038/s41568-021-00344-2

45. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al.
Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I.
Nature. (2020) 581:100–5. doi: 10.1038/s41586-020-2229-5

46. Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R, Wang YY. Nrf2 promotes esophageal
squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIa-
associated activation of autophagy. Cell Biosci. (2020) 10:90. doi: 10.1186/s13578-020-
00456-6

47. Bosco MC. Macrophage polarization: Reaching across the aisle? J Allergy Clin
Immunol. (2019) 143:1348–50. doi: 10.1016/j.jaci.2018.12.995

48. Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, et al. USP19 suppresses
inflammation and promotes M2-like macrophage polarization by manipulating
NLRP3 function via autophagy. Cell Mol Immunol. (2021) 18:2431–42. doi: 10.1038/
s41423-020-00567-7

49. Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, et al. Role of exosomal non-coding
RNAs from tumor cells and tumor-associated macrophages in the tumor
microenvironment. Mol Ther. (2022) 30:3133–54. doi: 10.1016/j.ymthe.2022.01.046

50. Fu L, Bao J, Li J, Li Q, Lin H, Zhou Y, et al. Crosstalk of necroptosis and
pyroptosis defines tumor microenvironment characterization and predicts prognosis in
clear cell renal carcinoma. Front Immunol. (2022) 13:1021935. doi: 10.3389/
fimmu.2022.1021935

51. Lin H, Fu L, Li P, Zhu J, Xu Q, Wang Y, et al. Fatty acids metabolism affects
the therapeutic effect of anti-PD-1/PD-L1 in tumor immune microenvironment
in clear cell renal cell carcinoma. J Transl Med. (2023) 21:343. doi: 10.1186/s12967-
023-04161-z

52. Majoros A, Platanitis E, Kernbauer-Hölzl E, Rosebrock F, Müller M,
Decker T. Canonical and non-canonical aspects of JAK-STAT signaling: lessons
from interferons for cytokine responses. Front Immunol. (2017) 8:29. doi: 10.3389/
fimmu.2017.00029

53. Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P,
Wind-Rotolo M, et al. Conserved interferon-g Signaling drives clinical response to
immune checkpoint blockade therapy in melanoma. Cancer Cell. (2020) 38:500–15.e3.
doi: 10.1016/j.ccell.2020.08.005

54. He Y, Li D, Shan B, Liang D, Shi J, Chen W, et al. Incidence and mortality of
esophagus cancer in China, 2008-2012. Chin J Cancer Res. (2019) 31:426–34.
doi: 10.21147/j.issn.1000-9604.2019.03.04
frontiersin.org

https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.semcancer.2022.04.003
https://doi.org/10.1038/s41591-023-02369-6
https://doi.org/10.1016/j.cell.2011.10.026
https://doi.org/10.1186/s12943-020-1138-4
https://doi.org/10.1002/cncr.31335
https://doi.org/10.1186/s13046-023-02742-w
https://doi.org/10.1038/nrd4504
https://doi.org/10.1016/j.celrep.2017.12.083
https://doi.org/10.1002/jcb.27991
https://doi.org/10.1111/cas.15010
https://doi.org/10.1038/s41419-023-05694-3
https://doi.org/10.3389/fonc.2020.01602
https://doi.org/10.1038/nature25501
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1002/sim.5958
https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1016/j.immuni.2021.01.012
https://doi.org/10.1093/annonc/mdx376.006
https://doi.org/10.1158/1078-0432.CCR-16-3133
https://doi.org/10.1158/1078-0432.CCR-16-3133
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.3389/fimmu.2021.687975
https://doi.org/10.1002/ijc.34315
https://doi.org/10.21037/tlcr
https://doi.org/10.1001/jamaoncol.2018.2805
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1038/s41423-022-00903-z
https://doi.org/10.1200/JCO.20.03614
https://doi.org/10.1001/jamasurg.2021.2373
https://doi.org/10.1200/JCO.20.03697
https://doi.org/10.1136/jitc-2021-004291
https://doi.org/10.1016/j.ejca.2020.11.039
https://doi.org/10.1038/s41568-021-00344-2
https://doi.org/10.1038/s41586-020-2229-5
https://doi.org/10.1186/s13578-020-00456-6
https://doi.org/10.1186/s13578-020-00456-6
https://doi.org/10.1016/j.jaci.2018.12.995
https://doi.org/10.1038/s41423-020-00567-7
https://doi.org/10.1038/s41423-020-00567-7
https://doi.org/10.1016/j.ymthe.2022.01.046
https://doi.org/10.3389/fimmu.2022.1021935
https://doi.org/10.3389/fimmu.2022.1021935
https://doi.org/10.1186/s12967-023-04161-z
https://doi.org/10.1186/s12967-023-04161-z
https://doi.org/10.3389/fimmu.2017.00029
https://doi.org/10.3389/fimmu.2017.00029
https://doi.org/10.1016/j.ccell.2020.08.005
https://doi.org/10.21147/j.issn.1000-9604.2019.03.04
https://doi.org/10.3389/fimmu.2024.1295011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xuanbin Wang,
Hubei University of Medicine, China

REVIEWED BY

Shaohui Wang,
Chengdu University of Traditional Chinese
Medicine, China
Esperanza Bas Infante,
University of Miami, United States
Zhi Dai,
Fudan University, China
Hai-long Piao,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Guandong Pan

pgdhx@126.com

Jianqing Yang

yangjianqingxy@sina.com

Tao Gan

gantao11@sina.com

†These authors have contributed equally to
this work

‡These authors have contributed
equally to this work and share
first authorship

RECEIVED 17 October 2023

ACCEPTED 15 April 2024
PUBLISHED 29 April 2024

CITATION

Ouyang G, Li Q, Wei Y, Dai W, Deng H, Liu Y,
Li J, Li M, Luo S, Li S, Liang Y, Pan G, Yang J
and Gan T (2024) Identification of
PANoptosis-related subtypes, construction of
a prognosis signature, and tumor
microenvironment landscape of
hepatocellular carcinoma using bioinformatic
analysis and experimental verification.
Front. Immunol. 15:1323199.
doi: 10.3389/fimmu.2024.1323199

COPYRIGHT

© 2024 Ouyang, Li, Wei, Dai, Deng, Liu, Li, Li,
Luo, Li, Liang, Pan, Yang and Gan. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 29 April 2024

DOI 10.3389/fimmu.2024.1323199
Identification of PANoptosis-
related subtypes, construction of
a prognosis signature, and tumor
microenvironment landscape of
hepatocellular carcinoma using
bioinformatic analysis and
experimental verification
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Wenbin Dai6, Haojian Deng7, Youli Liu6, Jiaguang Li6,
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Guandong Pan1,4*†, Jianqing Yang1,4*† and Tao Gan1,7,8*†

1Department of General Surgery, Liuzhou People’s Hospital Affiliated to Guangxi Medical University,
Liuzhou, Guangxi, China, 2Guangxi Key Laboratory of Early Prevention and Treatment for Regional
High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China, 3Key Laboratory of
Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University,
Ministry of Education, Nanning, Guangxi, China, 4Liuzhou Hepatobiliary and Pancreatic Diseases
Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital Affiliated
to Guangxi Medical University, Liuzhou, Guangxi, China, 5Department of Hepatobiliary Surgery,
Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China, 6Department of
Pathology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou,
Guangxi, China, 7Department of Emergency Medical, Liuzhou People’s Hospital Affiliated to Guangxi
Medical University, Liuzhou, Guangxi, China, 8Key Specialty Department of Emergency Medicine in
Guangxi, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
Background: Hepatocellular carcinoma (HCC) is one of the most lethal

malignancies worldwide. PANoptosis is a recently unveiled programmed cell

death pathway, Nonetheless, the precise implications of PANoptosis within the

context of HCC remain incompletely elucidated.

Methods: We conducted a comprehensive bioinformatics analysis to evaluate

both the expression and mutation patterns of PANoptosis-related genes (PRGs).

We categorized HCC into two clusters and identified differentially expressed

PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was

constructed using LASSO and multivariate Cox regression analyses. The

relationship between PRGs, risk genes, the risk model, and the immune

microenvironment was studies. In addition, drug sensitivity between high- and

low-risk groups was examined. The expression profiles of these four risk genes

were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the

effect of CTSC knock down on HCC cell behavior was verified using in

vitro experiments.

Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8,

G6PD, and CXCL9). Receiver operating characteristic curve analyses

underscored the superior prognostic capacity of this signature in assessing the
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outcomes of HCC patients. Subsequently, patients were stratified based on their

risk scores, which revealed that the low-risk group had better prognosis than

those in the high-risk group. High-risk group displayed a lower Stromal Score,

Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor

mutation burden (TMB) values. Furthermore, a correlation was noted between

the risk model and the sensitivity to 56 chemotherapeutic agents, as well as

immunotherapy efficacy, in patient with. These findings provide valuable

guidance for personalized clinical treatment strategies. The qRT−PCR analysis

revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas

downregulated expression of CXCL9 in HCC compared with adjacent tumor

tissue and normal liver cell lines. The knockdown of CTSC significantly reduced

both HCC cell proliferation and migration.

Conclusion:Our study underscores the promise of PANoptosis-basedmolecular

clustering and prognostic signatures in predicting patient survival and discerning

the intricacies of the tumor microenvironment within the context of HCC. These

insights hold the potential to advance our comprehension of the therapeutic

contribution of PANoptosis plays in HCC and pave the way for generating more

efficacious treatment strategies.
KEYWORDS

PANoptosis, hepatocellular carcinoma, tumor microenvironment, prognosis signature,
drugs susceptibility
Introduction

Liver cancer ranking as the seventh most commonly diagnosed

malignancy and the second leading cause of cancer-related

mortality, is a significant global health concern. In 2020, 906,677

new cases and 830,180 deaths attributed to liver cancer were

reported (1). The burden of liver cancer is steadily increasing,

with the number of estimated incident projected to exceed one

million by 2025 (2). The majority of liver cancer cases are

hepatocellular carcinoma (HCC), accounting for 90% of live

cancer (2). Current mainstay curative management options for

HCC include surgical resection, radiofrequency ablation, and liver

transplantation. However, a significant number of patients are

diagnosed at an advanced stage, limiting the curative treatment

options to transarterial chemoembolization (TACE), tyrosine

kinase inhibitors (TKI), and immune checkpoint inhibitors (3).

The prognosis for HCC remains poor, with an overall 5-year
ular carcinoma; TME,

f Genes and Genomes;

ical process; CNV, copy

vironment; DEPRGs,

EA, single-sample gene

; CSC, cancer stem cell;

analysis.
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survival rate of only 18% (4). Therefore, it is essential to uncover

the genomic characteristics of HCC and develop reliable and

effective models for developing reliable and effective models to

predict HCC prognosis and assess therapeutic responses, thereby

enabling individualized and precise treatments.

Programmed cell death (PCD), including apoptosis, pyroptosis,

and necroptosis has been implicated in the pathophysiology of HCC

(5). Although these PCD pathways were traditionally considered

independent, mounting evidence suggests intricate crosstalk among

apoptosis, pyroptosis, and necroptosis (6). Thus an additional PCD

pathway known as PANoptosis has recently emerged (7). It is a

newly recognized form of inflammatory programmed cell death,

which underscores the coordination and crosstalk between

pyroptosis, apoptosis, and necroptosis (6, 7). During PANoptosis,

these three pathways are collectively activated, forming the

PANoptosome complex, which exhibits characteristics not

explained by any individual death pathway (6, 8, 9). Although

numerous studies have identified the roles of pyroptosis, apoptosis,

and necroptosis in HCC (10–12), the relationship between HCC

and PANoptosis, as well as its impact on anticancer immunity,

remains unclear. Therefore, understanding the characteristics of

PANoptosis may provide vital insight into the mechanisms

underlying HCC tumorigenesis and facilitate the development of

promising immunotherapy strategies for HCC.

In this study, we comprehensively integrated the expression

profiles of 486 HCC patients to assess the PANoptosis-related
frontiersin.org
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molecular patterns into mechanisms contributing to HCC

tumorigenesis and facilitate the development of promising

immunotherapy strategies for HCC. A novel PANoptosis risk

scoring system was developed to predict the prognosis of HCC

patients and characterize the TME phenotype. Finally, we validated

the expression levels of the four genes in our signature using

quantitative polymerase chain reaction (qPCR) in both human

samples and cells.
Materials and methods

HCC dataset and preprocessing

The RAN-sequencing and corresponding clinical data of 371

HCC cases and 50 healthy cases were download from the TCGA

database (https://portal.gdc.cancer.gov/) (13). The HCC gene

expression profiles and clinical characteristics of GSE76427

(n=115) were enrolled from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) (14). Gene symbols were converted

from probes based on the GPL10558 platform annotation file. The

patients with HCC whose survival information was unavailable

excluded from the analysis. The data of TCGA and GEO databases

were merged using the “sva” R package (15) to remove the batch

effects. A total of 29 PANoptosis-related genes (PRGs) were

enrolled from previous studies (6, 8, 16). The data of copy

number variation (CNV) was downloaded from UCSC Xena

(https://xenabrowser.net). The flowchart of this study is shown

in Figure 1.
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Differential expression gene and consensus
clustering analysis of CRGs

Wilcoxon rank-sum test was used to analysis the differential

PRGs expression level between HCC patients and healthy samples

using “limma” package (17). DEGs were selected with the threshold

of p-value<0.05. We applied consensus clustering algorithms to

categorize HCC patients into distinct molecular subtypes based on

the expression of PRGs. This analysis was performed using the

“ConsensusClusterPlus” (18) R package, and 1000 repetitions were

conducted to ensure robustness. We next determined determine the

optimal number of subtypes, we utilized a Cumulative Distribution

Function (CDF) and evaluated the CDF Delta area. Additionally,

Principal Component Analysis (PCA) was performed to confirm

the differentiation of transcriptome profiles among the identified

subgroups using the “ggplot2” R packages (19).
Gene set variation analysis and functional
enrichment analysis

We used the “GSVA” (20) R package to perform the GSVA analysis

to detect biological functions distinguishing different PANoptosis

subtypes. The gene sets of KEGG gene set “c2.cp.kegg.symbols.gmt”

download from the MSigDB database (https://www.gsea-msigdb.org/

gsea/index.jsp), was employed to conducted the GSVA analysis (21). The

“clusterProfiler” (22) R package was used to performed the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and gene ontology

(GO) analysis. The pathways exhibiting a p< 0.05, logFC > 0.5 were

deemed statistically significant.
Construction of PANoptosis risk model

A total of 485 HCC patients were randomly classified into

testing and training group with a ratio of 1:1. Afterward, we

identified 153 differentially expressed genes (DEGs) through

performed three pairwise comparisons between the three

PANoptosis subtypes, each time with a Log2 (fold change)> 0.585

and an adjusted P-value<0.05. The DEGs between three

PANoptosis subtypes was intersected with each other to create

PANoptosis gene signature.

Subsequently, we conducted univariate Cox regression analysis

and identify 93 DEGs which significant associations with HCC

prognosis to estimate significant genes. To mitigate overfitting, we

employed LASSO Cox regression analysis (23). The best-

performing gene was selected through multivariate Cox regression

analysis, and a PANoptosis risk model was established using the

formula: PANoptosis score =on
i=1exp(Xi)� coef(Xi), where exp

(Xi) represents the expression level and coef(Xi) represents the

coefficient. Patients were stratified into high- and low-risk groups

based on the median risk score. Time-dependent receiver operating

characteristic (ROC) analysis was conducted to assess the sensitivity

and specificity of the risk signature. A bootstrap method employing

1,000 resamplings was employed to generate the test set.
FIGURE 1

Flowchart of the present study.
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Assessment of tumor microenvironment

The CIBERSORT algorithm (24) was utilized to estimate the

fractions of 22 immune cell phenotypes in each HCC patients, with

the sum of the proportion of all calculated immune cell phenotypes

in each sample being equal to 1. Samples with a p-value of< 0.05

were deemed statistically significant. Utilizing CIBERSORT results,

correlation analysis was conducted between risk genes and 22

phenotypes of immune cells using the “limma” and “ggplot2”

packages. The R “ESTIMATE” package (25) was used to

calculated the immune scores, stromal scores, and ESTIMATE

scores for each HCC sample (26). Subsequently, we conducted

Wilcoxon tests to analyze the differences in these scores between the

two risk groups. For a more detailed assessment of immune cell

infiltration, we applied the single-sample gene set enrichment

analysis (ssGSEA) based on “gsva” package (27).
Survival analysis of HCC

Afterward, we identified “survminer” and “survival” packages to

generate Kaplan–Meier survival plots and assess the significance of

differences using log-rank tests. The HCC patients were stratified

into different subtypes, including PANoptosisCluster subtype,

geneCluster subtype, PANoptosisScore subtype, and TMB subtype.
Development of nomograms

We developed nomograms to quantitatively predict of 1-, 3-,

and 5-year overall survival (OS) by incorporating both clinical

characteristics and risk score based on HCC patients’ survival.

Within the nomogram scoring system, individual variables such

as gender, age, stage, and PRG Risk score were paired with

corresponding scores. The cumulative score for each sample was

derived by summing the assigned scores across all variables. The

prognostic performance of the nomograms was assessed by

calibration plots, which evaluated the concordance between

predicted and actual values. The “rms” R package was used to

construct the nomograms and conducting the calibration

plot analysis.
Assessment of mutation, and cancer stem
cell index

We next analyzed the mutations in HCC patients from both

high- and low-risk groups, using the R package “maftools” (28) to

generate mutation annotations. Initially, the total count of

nonsynonymous mutations in each sample was computed.

Subsequently, genes with high mutation frequencies were

discerned utilizing a threshold of mutation frequency>5. The

discrepancies in mutation frequency between different groups

were then evaluated. Additionally, we examined the correlation

between the cancer stem cell index and risk scores using the

Spearman method (29).
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Drug sensitivity analysis

We next assessed the drug sensitivity of every patient utilizing

198 drugs obtained from the genomics of drug sensitivity in the

cancer v2 (GDSC) database (https://www.cancerrxgene.org/) and

calculated their sensitivity by the “oncoPredict” R package (30).

Statistical significance was determined at p< 0.05.
Cell culture and siRNA transfection

The HCCLM3, huh7, sun449, HepG2, HCCLM3, MHCC97-H of

HCC cell lines and THLE-3 of normal liver cells, were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

penicillin G (100 mg/mL), streptomycin (100 mg/mL), and 10% fetal

bovine serum (FBS; Gibco; USA). These cultures were incubated at

37°C in a 5% CO2 atmosphere. Logarithmically growing cells were

selected to conduct experiments. SUN449 was employed for siRNA

transfection. For transfection, we employed Lipofectamine 3000

Transfection Reagent (Invitrogen, Waltham, Massachusetts, USA)

in conjunction with 5 nmol of the specified siRNA fragments and a

negative control si-NC (GenePharma, Shanghai, China) into

approximately 4×105 SUN449 cells following the manufacturer’s

instructions. Si-NC (GenePharma) was used as a negative control.

To assess transfection efficiency, quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) were employed. The

sequences listed in Supplementary Table 1.
RNA extraction and quantitative real-
time PCR

Total RNA was isolated from human samples of adjacent tumor

tissues, HCC, normal liver cells (THLE-3), and HCC cells (huh7,

sun449, HepG2, HCCLM3, MHCC97-H) using the Trizol reagent

(Thermo Fisher Scientific, United States) following the

manufacturer’s instructions. Reverse transcription was carried out

using the PrimeScriptTM RT reagent Kit (Takara, Japan). Next,

qRT-PCR was performed on an FX Connect system (Bio-Rad,

United States) using the SYBR ® Green Supermix (Bio-Rad,

United States) to measure the expression levels of hub genes. b-
actin was used as an internal control for normalization. RT-qPCR

was measured 3 times, with 3 biological replicates each time. The

relative expression levels of the target genes were calculated using

the 2-DDCT method. 15 patient’s HCC tissue and adjacent tissue were

used for qRT-PCR and a Student’s t-test used to analyzed. Primer

sequences used in the qRT-PCR assays are provided in

Supplementary Table 1.
Human specimens and
immunohistochemical staining

Human specimens were collected from 15 patients diagnosed

with HCC at LiuZhou People’s Hospital affiliated to Guangxi

medical university. The study protocol was reviewed and
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approved by the Medical Ethics Committee of LiuZhou People’s

Hhospital affiliated to Guangxi medical university. All patients

provided written informed consent in accordance with the

Declaration of Helsinki. Human tissue specimens were fixed with

4% paraformaldehyde, embedded in paraffin, and sectioned into

5 mm slices by a slicer. The specimens were dewaxed with xylene,

following which the tissue sections were rehydrated using a graded

series of ethanol solutions for antigen retrieval. The tissue sections

were repaired with a sodium citrate repair solution (from Fuzhou

Maixin Biotechnology Development Co., Ltd.), followed by

allowing the sections to cool. Subsequently, an adequate amount

of endogenous peroxidase blocker (supplied by Beijing Zhongshan

Jinqiao Biotechnology Co., Ltd.) was added, and the sections were

incubated at room temperature for 10 minutes. Afterward, the

sections were washed three times with PBS, with each wash lasting 3

minutes. The sections were then blocked with 10% goat serum and

incubated overnight at 4°C with anti-CTSC antibody (1:100) (Santa

Cruze, U.S.A, cat#:sc-74590). Following three washes with PBS, the

sections were incubated with a secondary antibody for 30 mins at

25°C, followed by development and then developed with DAB for

10 mins. Next, the sections were counterstained with hematoxylin

for 2 mins to visualize nuclei. 15 patient’s tumor and adjacent tumor

tissue were used to qRT-PCR and immunohistochemical staining.

Student’s t-test or Wilcoxon test was used to compared the two

group and p< 0.05 was regarded as significance.
Wound-healing and Transwell assays

We next studied the invasion capability and cell migration

capacity by conducting Transwell assays and wound healing assays,

respectively. For the Transwell assays, Prior to the experiment, the

experimental cells underwent a period of serum starvation and were

cultured in serum-free medium for 24 hours. Following this, the

cells were digested, the digestion process was halted, and then

centrifuged at 1500 rpm for 3 minutes. After aspirating the

supernatant, the cells were washed with PBS and counted.

Subsequently, the cells were resuspended in serum-free medium.

The cell density was adjusted to 1 × 10^4 cells/mL, and 500 mL of

culture medium containing 15% FBS was added to each well of a 24-

well plate. Next, 200 mL of cell suspension was added to the

chamber, which was carefully placed into the well of a 24-well

plate containing complete culture medium to prevent the formation

of air bubbles. The cells were then incubated in a cell culture

incubator for 48 hours. Following incubation, the cells on the

chamber were aspirated, and any remaining cells were gently

wiped off using a PBS-dried cotton swab. The cells were fixed

with a 10% methanol solution for 30 seconds, stained with 0.1%

crystal violet for 20 minutes, and washed with tap water until the

background was clear. Finally, 3-5 fields of view were randomly

selected under an upright microscope, and the number of cells

passing through the membrane was counted. Photomicrographs

were captured and counted using Image J software. For the wound-

healing assay, transfected SUN449 cells were seeded in a 6-well

plate. When the cells reached 90% confluence, a 200 mL pipette tip

was used to create a vertical scratch in the cell monolayer. Washed 3
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times with PBS, removed the scratched cells, and added serum-free

medium. The cells were then cultured for an additional 24 hours in

a 37°C 5% CO2 incubator. Images were acquired and documented

initially at the 0-hour time point, with additional imaging

performed at 24 hours. Kruskal-Wallis test was used to analysis

the Wound-healing and transwell assays results.
5-ethynyl-2′-deoxyuridine assays

SUN449 cells were seeded into a 12-well plate. After overnight

incubation and return to a normal state, the cells were transfected

with siRNA. Subsequently, an equal volume of 2X EdU working

solution (20 mM) (Beyotime, China), preheated to 37°C, was added

to the 12 wells plate, and the cells were incubated for 2 hours. Once

EdU labeling was completed, the culture medium was removed, and

the cells were fixed with 500 ml of fixative solution for 15 minutes.

Following fixation, the cells were washed three times with 500 ml
washing solution per well, with each wash lasting 3-5 minutes. After

washing, permeabilization solution (500 ml per well) was added and

incubated for 15 minutes, followed by 2 additional washes with 1 ml

washing solution per well. Subsequently, 200 ml of Click reaction

solution (Beyotime, China) was added, and the cells were incubated

in the dark for 30 minutes. After removing the Click reaction

solution, the cells were washed three times with washing solution

for 3-5 minutes each. Nuclear staining was performed using

Hoechst 33342, with protection from light, for 10 minutes.

Following staining, the cells were washed three times with

washing solution for 3-5 minutes each. Finally, fluorescence

detection could be carried out.
Immunohistochemistry

Paraffin sections of HCC tissue from 15 patients and adjacent

tumor tissue from the same group were subjected to

immunostaining using antibodies against CTSC. Prior to staining,

a dual endogenous enzyme blocker (MXB Biotechnologies, China)

was applied for 30 minutes. The primary antibodies were left to

incubate overnight at 4°C. Following thorough washing, the tissues

were treated with the appropriate secondary antibodies and

incubated at 37°C for 30 minutes. Next, an appropriate amount

of DAB solution was applied for staining, followed by

counterstaining with hematoxylin. To complete the process, a

layer of neutral gum was used to cover the slides and the slides

were sealed. The staining results was observed using an

inverted microscope.
Statistical analysis

All statistical analyses were performed using the R software

version 4.2.2 and GraphPad Prism 9. Continuous data are presented

as means ± standard deviations. Student’s t-test was used for

normally distributed data in two-group comparisons, whereas the

Wilcoxon test was used for non-normally distributed data. For
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comparisons involving more than two groups, the Kruskal-Wallis

test was used. Statistical significance was defined as p< 0.05. ALL

experiment was repeated three times independently.
Results

Differential expression and genetic
variation of PRGs in HCC

We first collected a set of 29 PRGs from previously published

studies (6, 8, 16). As shown in Figure 2A, 33 (8.89%) of 371 samples

had somatic mutations. Among the 29 PRGs, NLRP3 and MEFV

exhibited the highest mutation frequency. Copy number variation

(CNV) analysis showed that AIM2, GSDMD, RIPK1, NLRP3,

RIPK3, PARP1, FADD, ZBP1, NLRC4, CASP8, IRF1, PYCARD,

and MEFV had the increased CNV, whereas, CASP6, TAB2,

TRADD, CASP7, CASP1, TNFAIP3, MLKL, TAB3, and PSTPIP2

displayed decreased an CNV decrease (Figure 2B). The locations of

the CNV alterations of PRGs on the chromosomes were shown in

Figure 2C. Furthermore, we conducted mRNA differential

expression analysis of these 29 PRGs between 374 HCC samples

and 50 healthy samples from TCGA. The result showed that gene,

including CASP8, FADD, CASP6, TAB3, PSTPIP2, TNFAIP3,

PARP1, GSDMD, MKLK, IRF1, RIPK1, TRADD, PYCARD, was
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upregulated in HCC, whereas only NLRP3, AIM2, and MEFV were

significantly downregulated in HCC samples (Figure 2D).
Identification of PRGs clusters in HCC

To explore the overall landscape of PRGs interaction,

relationships, and prognostic significances, a network map was

constructed (Figure 3A). The network map showed 14 of 29

genes showed significant correlation in interaction, relationship

and prognostic. The relationship between the prognosis of HCC

patients and 14 PRGs were assessed using the Kaplan-Meier curves

and shown in Supplementary Figure 1. The expression of 20 PRGs

in HCC were used to conduct an unsupervised clustering algorithm

and group the 486 HCC patients into three distinct patterns. The

most effective clustering result was achieved at K=3 among K = 2 to

K = 9 (Figures 3B, C). Thus, we categorized 128 HCC patients into

PRGcluster A, 226 into PRGcluster B, and the remaining 132 into

PRGcluster C. The principal component analysis (PCA) indicated a

satisfactory separation between the three clusters (Figure 3D).

PRGcluster C exhibited higher expression levels for most PRGs,

whereas PRGcluster A displayed lower expression levels for most

PRGs (Figure 3E). Next, we investigated the relationship between

these three PRGcluster and clinical characteristics. Kaplan-Meier

curves demonstrated significant differences in OS among the three
B
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A

FIGURE 2

Expression and genetic alteration of PRG in HCC. (A) The maftool exhibited incidence of somatic mutations of PRG in 371 HCC patients from TCGA
database; (B) The CNV frequency of PRG in TCGA cohort. The height of the column showed the proportions of gain or loss variations; (C) The
location of CNV alteration of 22 PRG on 23 chromosomes. (D) The expression of 22 PRG in HCC and normal tissues;. PRGs, PANoptosis-related
genes; HCC, hepatocellular carcinoma; CNV, Copy number variation. The p-values were showed as: *p < 0.05; ***p < 0.001.
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PRGclusters, with PRGcluster C showing the poorest

OS (Figure 3F).

Additionally, we conducted the GSVA analysis to identify distinct

pathways associated with PRGclusters A, B, and C (Figures 4A–C). The

ssGSEA were utilized to assess the immune cell infiltrations in three

PRGclusters. The boxplot showed that PRGcluster C was enriched in

activated CD4 T cells, activated dendritic cells, CD56 bright nature

killer cells, immature B cells, immature dendritic cells, MDSCs,

macrophages, natural killer cells, plasmacytoid dendritic cells,

regulatory T cells, T follicular helper cells, and type 2 T helper cells.

While, PRGcluster A was enrich in eosinophils (Figure 4D).
Generation of PRG signatures in HCC

We conducted a differential gene expression analysis of three

PRGclusters, comparing them in pairs three times among the three

subtypes. We used a Venn diagram to successfully identify 153

DEGs exhibiting intersection across these three clusters (Figure 5A).

The potential functions and pathways governed by these 153 DEGs

were unraveled using GO and KEGG enrichment analyses

performed using the “ClusterProfiler” packages. The GO results

unveiled that these DEGs were involved in chromosome

segregation, wound healing, and positive regulation of the cell

cycle process in the biological process (BP). Within the Cellular

Component (CC) category, they were prominently associated with

chromosomal regions, collagen-containing extracellular matrices,

and nuclear chromosomes. The Molecular Function (MF) exhibited

closely related to integrin binding, platelet−derived growth factor
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binding, and single−stranded DNA binding (Figure 5B).

Furthermore, the KEGG pathway analysis demonstrated their

participation in processes such as Phagosome, PI3K-Akt signaling

pathway, cell adhesion molecules, ECM-receptor interaction,

Proteoglycans in cancer, and Cell cycle (Figure 5C).

To further analyze the important roles, univariate Cox regression

was performed to identify the relationship between the 153

PRGcluster-related DEGs and the prognosis in HCC. Subsequently,

patients were categorized into two major gene clusters, denoted as

genecluster A and genecluster B (Figures 5D, E). The Kaplan–Meier

analysis revealed that patient in genecluster B exhibited a more

favorable OS rate compared to those in genecluster A (Figure 5F). A

complex genecluster-based heatmap was developed by combining the

gender, age, HCC clinical stage, PRGcluster, genecluster in TCGA and

GSE 76427 (Figure 5G). Moreover, the analyzing the transcriptomic

profile from the heatmap was analyzed that revealed the upregulation

in most genes of genecluster A, whereas those in genecluster B

predominantly exhibited downregulation. The DGEs analysis

between genecluster A and B showed that CASP8, FADD, CASP6,

NLRP3, PSTPIP2, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, IRF1,

AIM2, ZBP1, CASP1, RIPK1, RIPK3, TRADD, MEFV, PYCARD,

NLRC4 were upregulated in genecluster A (Figure 5H).
Construction of prognostic PANoptosis risk
scoring model

The HCC patients were randomly divided into a training set

(243 samples) and a testing set (242 samples) to explore the
B C
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A

FIGURE 3

Identification of molecular subtypes of PRGs for HCC. (A) A network between PRGs in HCC; (B, C) Consensus matrix heatmap defining three
clusters (k = 3) and their correlation area; (D) PCA diagram of HCC samples in cluster A, B, and C. (E) Complex heat maps show clinical correlations
among the three clusters; (F) Survival analysis of three PRGclusters.
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prognosis related PRG-related DEGs. A univariate Cox regression

analysis was performed using the 153 DEPRGs along with survival

data within the training datasets. Out of these, 93 DEPRGs were

exhibited significant associations with prognosis (p< 0.05). To

enhance the precision of gene selection for model construction,

we adopted a systematic approach. Specifically, we randomly

sampled 80% of the training set specimens for LASSO regression
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analysis, incorporating tenfold cross-validation and executing 1000

iterations. Subsequently, this rigorous methodology enabled the

identification of a refined subset comprising 4 significant genes

crucial for model refinement. (Figures 6A, B). Subsequently, we

performed a multivariate Cox regression analysis using these four

significant genes, and identifying the most pivotal genes for

prognosis—CTSC, CDCA8, G6PD, and CXCL9The PANoptosis
B

C D

A

FIGURE 4

GSVA results between three PRGclusters and relationship of tumor microenvironment in three PRGclusters. (A–C) The GSVA heat map showed the
differences in pathways in the three clusters; (D) The differential analyses between immune cells and the scale of fraction for PRGcluster A, B and C.
*p<0.05, **p<0.01, ***p<0.001.
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FIGURE 5

Functional enrichment analysis of PRGs, and identified two genecluster based on 153 DEGs. (A) The Venn diagram shows the intersection of three
PRGclusters; (B) Analysis of BP, CC, and MF terms of GO enrichment demonstrated the possible function of the 153 DEGs; (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis revealed the possible pathways; (D) Unsupervised cluster analysis of 153 DEGs
developed two geneclusters (k = 2); (E) Consensus matrix heatmap defining two clusters and their correlation area; (F) Survival analysis of two
geneclusters. (G) A complex heat map illustrated the expression patterns; (H) Expression of PRGs between genecluster A and genecluster B. *p<0.05,
***p<0.001. DEGs, differential expressed genes.
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Risk scoring system was constructed based on the following formula

in the training sets: Risk score=Exp (CTSC)× (0.215) + Exp

(CDCA8) × (0.232) + Exp(G6PD) × (0.138) + Exp (CXCL9) ×

(-0.196). All set files were combined by the training group and

testing group files. The HCC patients were subsequently categorized

into high- and low-risk groups based on the median Risk score for

each group. The Sankey diagram shows the distribution of PRGs

risk scores with three PRGcluster, two geneclusters, and HCC

patients survival status (Figure 6C). The boxplot showed that

PRGcluster C and genecluster A had higher risk scores

(Figures 6D, E). The differential expression analysis between

high- and low-risk group demonstrated that CASP8, FADD,

CASP6, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, ZBP1,

TRADD, PYCARD, and NLRC4 were upregulated in high-risk

group (Figure 6F).
Validation of prognostic PANoptosis risk
scoring model

The KM analysis revealed that patients with low-risk had a

better survival rate than those with high-risk in both total, training,

and testing sets (P< 0.05) (Figures 7A–C). Additionally, we utilized

the ROC curves to assess the prediction efficiency of the risk score.

The AUCs for 1-, 3-, and 5-year survival rates in the training set

were 0.696, 0.706, and 0.603, respectively. In total sets, the AUCs for

1-, 3-, and 5-year survival rates was 0.735, 0.706, 0.638, respectively.

In testing sets, the AUCs of 1-, 3-, and 5-year survival rates were

0.771, 0.697, and 0.708, respectively (Figures 7D–F). These results

indicated a favorable predictive performance for the survival of

HCC patients. We next constructed a nomogram with using risk

score, clinical stage, gender, and age (Figure 7G). the calibration
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curves indicated a relative link between observed and nomogram-

predicted OS of HCC patients (Figure 7H), confirming the validity

of the nomogrammodel for predicting the survival of HCC patients.

The gene expression differences for CTSC, CDCA8, G6PD, and

CXCL9 between high- and low-risk group in all set, training set, and

testing set are depicted in Figures 8A–C. The heatmap visually

represented that CTSC, CDCA8, and G6PD exhibited higher

expression levels in the high-risk groups, whereas CXCL9 showed

lower expression levels. We observed an inverse correlation between

risk score and survival time, as well as a positive association between

risk score and the death rate across all sets—total, training, and

testing. These findings underscore that HCC patients with higher

risk scores had poorer survival outcomes (Figures 8D–I).
Relationship between signature and TME

The association analysis between immune cell abundance and

the risk score showed that neutrophils and macrophages M2 were

positively correlated with risk score, whereas CD8 T cells,

macrophages M1, and naïve B cells were negatively related with

risk score (Supplementary Figure 2). Furthermore, Figure 9A

demonstrates the correlation between immune cells and the four

risk genes. The CTSC displayed significant associations with

neutrophils, macrophages M2, and CD4 memory resting T cells.

In the low-risk group, the Stromal Score, Immune Score, and

ESTIMATE score were significantly higher compared to the high-

risk group (Figure 9B).

Cancer stem cells (CSCs) were thought to play an important

role in the recurrence, metastasis, and identifying therapeutic target

due to their differentiation and self-renewal capacity l (31). A

correlation analysis between the risk score and stem cells unveiled
B C
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FIGURE 6

Identification of 4 genes for estimating the risk score and the relationship between molecular classifications, PRGs expression levels and the risk
score. (A, B) The Least absolute shrinkage and selection operator (LASSO) regression analysis and partial likelihood deviance on the prognostic
genes; (C) Sankey plot showed the correlation between PRGclusters, geneclusters, risk groups and survival status in HCC patients; (D) Boxplots
indicate the differences in risk scores in three PRGclusters and (E) two geneclusters. (F) The differential analysis of PRGs expression in high- and low-
risk groups. *p<0.05, **p<0.01, ***p<0.001.
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a positive linear correlation between the risk score and stem cell

content (R=0.3, p<.001) (Figure 9C).

Furthermore, we explored the disparity in tumor somatic

mutations between the high- and low-risk groups using

“maftools”. The top six mutated genes were TP53, CTNNB1,

TTN, MUC16, PCLO, and ALB in both high- and low-risk

groups (Figures 9D, E). In addition, we observed that patients

with high TMB displayed a poorer overall survival rate (Figure 9F).
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The combination of TMB and risk score demonstrated that low risk

plus low TMB had the best OS (Figure 9G).
Drugs susceptibility analysis

We next investigated the predictive therapeutic effects in

patients with HCC by assessing the relationship between the two
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FIGURE 8

An analysis of risk gene expression and the distribution of risk scores, survival status of HCC patients. (A–C) Heatmap of four risk genes across
different risk scores in the All, training, and testing sets, respectively. (D–F) Exhibition of PRGs risk score model of the All, training, and testing sets,
respectively. (G–I) Survival status between low-and high-risk groups in the All, training, and testing sets, respectively.
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FIGURE 7

Validation of the prognostic value of the signatures. (A–C) K-M survival curve of all sets, testing set, and training set. (D–F) The ROS for 1-year, 3-
year, and 5-year OS prediction of all sets, testing set, and training set. (G) The nomogram of the risk score and clinical features (age, gender, and
stage) for predicting the survival of HCC patients. (H) The calibration curves showed the accuracy of the nomogram in the 1st, 3rd, and 5th years.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1323199
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ouyang et al. 10.3389/fimmu.2024.1323199
risk groups and drug sensitivity. Our analysis revealed significant

differences in drug responses between the high- and low-

risk groups, with 56 drugs exhibiting noteworthy distinctions.

Among them 16 drugs had lower IC50 in high-risk groups, such

as Paclitaxel, Sepantronium, and Tozasertib. Low-risk

group were more sensitive to Oxaliplatin, sorafenib, irinotecan

(Supplementary Table 4).
Validation of the expression levels
signature genes

GSE14520 was used to validated the mRNA expression and

diagnosis probability. The results showed that CTSC, CDCA8, and

G6PD were upregulated in HCC tissues, whereas CXCL9 was

downregulated (Figures 10A–D). The AUC value of CTSC,

CDCA8, G6PD, and CXCL9genes were 0.656, 0.858, 0.882, 0.621,

respectively and the model AUC value reached to 0.92, suggesting

our signature had higher quality of prediction (Figures 10E, F). In

addition, we used RT-PCR to validated the mRNA expression of

signature genes between adjacent tumor tissue and HCC, and

normal liver cell THLE3 and liver cancer cell line of HCCLM3,

MHCC-97H, SUN449, HepG2, and Huh7. Compared with the

adjacent tumor tissue and most liver cancer cells lines, a

significant increase expression of G6PD, CDCA8, and CTSC in

HCC tissues and liver cancer cells was observed, whereas CXCL9

was significant downregulated (Figures 10G–N). However, the

mRNA expression of G6PD and CDCA8 showed no significant

differences between THLE3 and HepG2 (Figures 10K, M). IHC and

western blotting further confirmed the higher expression of CTSC

in HCC tissues compared to the adjacent tumor tissues

(Figures 10O–R).
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Effects of CTSC on the proliferation and
migration of SUN-449 cell

We designed three siRNA to study the impact of CTSC

downregulation in SUN449 cells due to the upregulated

expression of CTSC. qRT-PCR confirmed the CTSC effectiveness

of downregulation following siRNA interference (Figure 11A). The

results of Transwell and Wound-healing assays indicated the

inhibition CTSC attenuated the migratory capabilities of SUN449

cell (Figures 11B–E). The EdU assay revealed a reduced proportion

of EdU-positive cells upon the inhibition of CTSC in SUN449 cells,

indicating that CTSC fosters the proliferation of HCC cells

(Figure 11F). qRT-PCR result showed that inhibition of CTSC

could increase the mRNA expression of CASP3, CASP7, GSDMD,

CASP1, MLKL, RIPK3(Figures 11G–L).
Discussion

HCC is a common fatal malignancy of the digestive system

whose global burden has surged significantly from 1990 to 2019,

posing substantial threats to human life, health, and the global

economy (32). Despite previous efforts to diagnose and treat

patients with HCC, a majority of them are diagnosed at advanced

stages, rendering them ineligible for surgical resection and resulting

in unfavorable prognoses. Therefore, it is imperative to elucidate the

mechanism contributing to the pathogenesis of HCC to explore

innovative approaches for diagnosis and treatment. PANoptosis, a

component of the host’s innate immune response, has been

identified as a novel mechanism governing inflammatory

programmed cell death, encompassing pyroptosis, apoptosis, and

necroptosis (6). Previous studies have demonstrated the significant
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FIGURE 9

Evaluation of the tumor microenvironment, and tumor mutation burden (TMB) in low- and high-risk groups. (A) Correlation between the four risk
genes and the abundance of immune cells. (B) Comparison of ESTIMATE scores, stromal scores, and immune scores between the low- and high-
risk groups. (C) Correlation between the stem cell content and the PANoptosis risk score. (D, E) The frequency of somatic gene mutations in the
high- and low-risk groups, respectively. (F, G) The Kaplan-Meier curve of the tumor mutation burden and risk scores versus the overall survival.
*p<0.05, **p<0.01, ***p<0.001
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role of PANoptosis in tumorigenesis and anti-tumor therapies (16).

We identified a valid signature to assess the treatment and

prognosis of HCC and developed a signature based on the

concept of PANoptosis for HCC patients.

In our study, we used 29 PRGs to evaluate their somatic

mutations, CNVs, DEGs. Our findings indicated that the majority

of PRGs were significantly upregulated in HCC, with only NLRP3,

AIM2, andMEFV demonstrating downregulation in HCC. Notably,
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NLRP3 and AIM2 were significantly correlated with HCC

prognosis. Previous research has confirmed the downregulation of

AIM2 expression in human HCC tissues compared to adjacent

normal tissues. Furthermore, we revealed that patients with HCC

with higher AIM2 expression exhibited improved overall survival

rates (33), consistent with our analysis. Regarding NLRP3, it plays

dual roles in HCC. On one hand, the NLRP3 inflammasome

inhibits HCC development via pyroptosis, while on the other
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FIGURE 10

Validation of the signature genes with GSE14520, qRT-PCR, and IHC. (A–D) The expression of CXCL9, CTSC, CDCA8, G6PD between HCC and
normal tissues in GSE14520; (E) The ROC results of 4 marker genes in GSE14520. The AUC value of CXCL9, CTSC, CDCA8, G6PD was
0.656,0.858,0.882,0.621, respectively. (F) ROC results of the 4-gene-based model based on 3-fold cross-validation in GSE14520. The AUC value as
0.921. AUC, area under curve; ROC, receiver operating characteristic; DCA, Decision curve analysis. (G–J) qRT-PCR confirmed the 4 marker genes
expression between HCC tissues and adjacent tumor tissues; (K–N) qRT-PCR validated the 4 marker genes expression between HCC cells
(HCCLM3, MHCC-97H, SUN449, HepG2, Huh7) and normal liver cell (THLE3). (O, P) CTSC representative IHC stained images in adjacent tissues and
HCC tissue. (Q, R) Western blot analysis the protein expression in adjacent tumor tissues and HCC tissue. *p < 0.05; **p < 0.01; ****p < 0.0001.
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hand, it promotes HCC growth through the mediation of different

signaling pathways (34). Additionally, we identified that 14 PRGs

were significantly associated with the survival rate of HCC patients.

Collectively, these results suggest that PANoptosis may indeed play

a pivotal role in the context of HCC.

We initiated our study by conducting a comprehensive

clustering analysis to identify the molecular subtype of

PANoptosis. All HCC patients were categorized into three

distinct PRGclusters. Notably, although PRGcluster C exhibited

an overall high expression of most PRGs, it displayed experienced a

significantly worse prognosis. Thus, higher expression levels of
Frontiers in Immunology 13100
PRGs could be associated with a lower rate of survival.

Additionally, PRGcluster C exhibited heightened immune

infiltration, characterized by the presence of various immune cells

such as activated CD4 T cells, immature dendritic cells, MDSCs,

macrophages, natural killer cells, and regulatory T cells. Previous

studies has indicated that certain components within TME,

including dendritic cells, macrophages, and natural killer cells,

can promote tumor proliferation, invasion, metastasis, and hinder

anti-cancer immune responses (35–37). This finding implies that

the elevated expression of PRGs could lead to increased immune

cell infiltration and subsequently result in a poorer survival rates.
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FIGURE 11

Cell model validation of CTSC in SUN-449 cell transfected with siCTSC and vector. (A) Relative CTSC mRNA level after being knocked down. (B, C)
Transwell assays were employed to assess the ability of SUN-449 cell to migrate after CTSC was knocked down for 24 h; (D, E) Representative
images and quantitative analysis of the results from the wound healing assay; (F) EdU assay was conducted between the si-NC and CTSC
knockdown SUN-449 cells; (G–L) The mRNA expression of CASP3, CASP7, GSDMD, CASP1, MLKL, RIPK3 after CTSC was knocked down. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001. ns, not significant.
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Furthermore, we identified 153 DEGs related to PANoptosis among

the three PRGclusters, and subsequently categorized patients into

two geneclusters. Notably, geneCluster A exhibited higher PRG

expression levels and a worse survival prognosis. Altogether, these

findings provide valuable insights into the underlying biology of

these specific tumor types and offer potential avenues for subgroup

screening in HCC.

To improve the prognosis prediction and characterization

capabilities of each patient with HCC, LASSO and multivariate

Cox regression analyses were employed to construct a novel

prognostic signature to better predict HCC prognosis. High-risk

groups were characterized by elevated expression levels of most

PRGs and poorer prognoses. Furthermore, PRGcluster C and

geneCluster A, both associated with reduced survival rates,

displayed higher risk scores. This reinforcing the correlation

between higher risk scores in our established signature and

unfavorable prognostic outcomes. Our risk model has practical

applications in treatment personalization, increased surveillance

frequency, and patient prognosis prediction. Specifically, high-risk

patients may benefit from aggressive therapies, while more frequent

monitoring and surveillance can aid in early disease detection.

Moreover, our analysis encompassing ROC curves, nomograms,

and calibration plots underscored the superior predictive

performance and accuracy of the constructed signature. The 1-,3-

,5-year AUC was 0.735, 0.706, 0.638 in the present model, while

another study PANoptosis-related gene signature model showed 1-

,3-,5-year AUC was 0.707, 0.622, and 0.562, respectively. This

indicating that the efficiency of diagnosis of our model was

superior than previous prognostic model (38).

Four risk gene (G6PD, CTSC, CDCA8, and CXCL9) were

identified and utilized to calculate the risk score in our study.

These four risk genes have been previously associated with various

types of malignant tumors, including HCC. G6PD has been

recognized as a prognostic signature and a potential treatment

target for different tumors (39). Zeng et al. reported that the

expression of G6PD in HCC tissues was upregulated compared to

the corresponding adjacent normal tissues (39). In our qRT-PCR

analysis, we confirmed the elevated expression of G6PD in HCC

tissues and HCC cell lines. G6PD is known to promote HCC cell

proliferation, invasion, migration and inhibit ferroptosis.

Knockdown G6PD or inhibit it with smilax China root extract

could suppresses HCC cell growth, tumorigenesis and metastasis

(39–41). CDCA8, a crucial regulator of mitosis, is upregulated in

numerous cancer types. A high expression of CDCA8 has been

associated with higher AFP, larger tumor size, pathological status, T

stage, and poor prognosis in HCC. Silencing CDCA8 could

suppresses tumor growth, proliferation, and stemness of HCC by

inactivating AKT/b–Catenin Signaling, and regulating the CDK1/

cyclin B1 signaling axis (42–45). CXCL9, a specific ligand for

CXCR3, facilitates tumor-suppressive lymphocytic infiltration in

certain solid tumors coupled with its two family members CXCL10

and CXCL11 (46). Increasing evidence has demonstrated that

CXCL9 is closely correlated with the prognosis of certain solid

tumor patients, such as colorectal cancer lung cancer, and HCC

(47). Ding et al. revealed that CXCL9 binding to CXCR3 promotes

metastasis and invasion of CD133+ liver cancer cells via the p-
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ERK1/2-MMP2/MMP9 pathway (48). In addition, increasing the

expression of CXCL9 with rhCXCL9 has been reported to enhance

the HCC invasion ability by upregulating the PREX2 (49).

Cathepsin C(CTSC), a lysosomal cysteine protease abundantly

expressed in multiple tissues and belonging to the papain

superfamily, plays a pivotal role in numerous tumor biological

processes. Moreover, CTSC regulates breast cancer lung metastases

by modulating neutrophil infiltration and the formation of

neutrophil extracellular traps (50). Silencing CTSC has the

capacity to promote apoptosis, thereby restraining the growth of

colorectal cancer. Furthermore, it can enhance colorectal cancer

metastasis by modulating immune escape through the upregulation

of CSF1 (51, 52). An earlier study has documented the pivotal role

of cathepsin C in regulating pyroptosis and lysosome-mediated cell

death within cathepsin C-deficient mouse splenocytes (53). For

HCC, CTSC collaborates with the TNF-a/p38 MAPK Signaling

Pathway to enhance proliferation and metastasis (54). In addition,

our results also showed that inhibition CTSC could attenuated HCC

cells metastasis and proliferation, confirming the previous results.

This indicated that CTSC could be a target for HCC therapy.

Immunoreactivity plays a critical role in the development of

tumors and offers a promising target for potential cancer therapies

(55). Our risk score was negatively correlated with CD8 T cells,

macrophages M1, and naïve B cells, and positively correlated with

neutrophils, macrophages M2. A higher number of CD8+ T cell,

macrophages M1, cases were positively associated with better OS

and DFS in HCC patients, whereas macrophages M2 were related to

a poor prognosis and outcome of HCC (56–59). This is consistent

with our finding that the low-risk group had a better prognosis, as

shown in our previous overall survival analysis. In the present study,

we also explore the correlation among risk genes, risk score, and

immune cells. The results showed that high-risk group associated

with a lower Stromal Score, Immnune Score, and ESTIMATE score,

and higher TMB. This suggests that our signature could predict the

TME composition. These result of our study was aligned with a

previous study based on cuproptosis-related genes (60). However,

another model based on the immune-related gene was on the

contrast, namely high-risk group have a higher Stromal Score,

Immnune Score, and ESTIMATE score (61). CSCs, as a driver of

tumor progression and growth, contribute to metastasis, recurrence,

and drug resistance (62). A previous study indicated that a high

immune score is indicative of improved chemotherapy and

immunotherapy efficacy (63). In our research, we found the low-

risk group displayed higher immune and lower stem cell content,

implying a more favorable anti-tumor treatment. We found that

TP53 and CTNNB1 genes were the most frequently mutated genes

in both groups, which was consistent with previous study (64).

Mutations in TP53 gene is regarded as a major driver of HCC, and

higher mutation rate of TP53 was associated with poor overall

survival (65). In our study, we found that high-risk group have

higher mutation frequency of TP53 and poor prognosis, compared

to low-risk group. Our study showed that Oxaliplatin, irinotecan,

and sorafenib was more sensitivity in low-risk group, consistent

with previous studies (66–68) supporting our risk model possesses

the potential to predict the effectiveness of drugs treatment. In

addition, one person can be stratified into high- or low-risk group
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and matching the most suitable personalized medicine through

prediction based on based on the expression of risk gene of the

person, then increasing the treatment effectiveness.

Nonetheless, our study had certain limitations. Firstly, the

majority of our analyses relied on publicly available datasets and

all samples were obtained retrospectively, which could have

introduce cases selection bias and thus affected the accuracy of

our finding. Hence, it is imperative to conduct well-designed

prospective studies in order to validate the robustness and

applicability of our findings. Secondly, although we conducted

expression validation at both tissue and HCC cell levels, the

sample size was relatively limited. We plane to are committed to

expanding our sample collection efforts to assess this signature in

the context of immunotherapy in the future. Thirdly, some crucial

clinical variables such as surgical interventions, neoadjuvant

chemotherapy, and tumor markers were not included in our

study. Fourthly, although we have performed qRT-PCR to

validate the relationship between CTSC and PANoptosis marker

gene, more research, including Western blotting and IHC need

conducted to confirm the result. Finally, although our prognostic

model has some benefits, it has some barrier to clinical

implementation. For example, the data availability and quality,

and cost-effectiveness due to additional tests, monitoring.

Consequently, our findings’ validity is relies on the inclusion of

clinical cases.
Conclusion

In conclusion, we have developed a pivotal PANoptosis-based

molecular clustering approach and prognostic signature with

multifaceted capabilities, including survival prediction, TMB

assessment, and clinical therapy guidance. Our study has the

potential to advance our understanding of PANoptosis in HCC

and contribute to the development of more effective personalized

immunotherapy or targeted therapy. Nonetheless, it is imperative to

acknowledge the inherent limitations of this study, and further

experiments and clinical case validations are warranted to

substantiate our findings.
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death in hepatocellular carcinoma: pathogenesis and therapeutic opportunities.
Cancers. (2021) 14:48. doi: 10.3390/cancers14010048

6. Wang Y, Kanneganti T-D. From pyroptosis, apoptosis and necroptosis to
PANoptosis: A mechanistic compendium of programmed cell death pathways.
Comput Struct Biotechnol J. (2021) 19:4641–57. doi: 10.1016/j.csbj.2021.07.038

7. Pandian N, Kanneganti T-D. PANoptosis: A unique innate immune
inflammatory cell death modality. J Immunol. (2022) 209:1625–33. doi: 10.4049/
jimmunol.2200508

8. Samir P, Malireddi RKS, Kanneganti T-D. The PANoptosome: A deadly protein
complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect
Microbiol. (2020) 10:238. doi: 10.3389/fcimb.2020.00238

9. Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, et al. PANoptosis: A cell
death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res. (2023)
16:1523–32. doi: 10.2147/JIR.S403819

10. Nicolè L, Sanavia T, Cappellesso R, Maffeis V, Akiba J, Kawahara A, et al.
Necroptosis-driving genes RIPK1, RIPK3 and MLKL-p are associated with
intratumoral CD3+ and CD8+ T cell density and predict prognosis in hepatocellular
carcinoma. J Immunother Cancer. (2022) 10:e004031. doi: 10.1136/jitc-2021-004031

11. Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, et al. The role of pyroptosis in
hepatocellular carcinoma. Cell Oncol (Dordrecht). (2023) 46(4):811–23. doi: 10.1007/
s13402-023-00787-9

12. Yang Y, Zhang Y, Cao J, Su Z, Li F, Zhang P, et al. FGFR4 and EZH2 inhibitors
synergistically induce hepatocellular carcinoma apoptosis via repressing YAP signaling.
J Exp Clin Cancer Res: CR. (2023) 42:96. doi: 10.1186/s13046-023-02659-4

13. Wheeler DA, Roberts LR. Comprehensive and integrative genomic
characterization of hepatocellular carcinoma. Cell. (2017) 169:1327–1341.e23.
doi: 10.1016/j.cell.2017.05.046

14. Grinchuk OV, Yenamandra SP, Iyer R, Singh M, Lee HK, Lim KH, et al. Tumor-
adjacent tissue co-expression profile analysis reveals pro-oncogenic ribosomal gene
signature for prognosis of resectable hepatocellular carcinoma. Mol Oncol. (2018)
12:89–113. doi: 10.1002/1878-0261.12153

15. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput experiments.
Bioinformatics. (2012) 28:882–3. doi: 10.1093/bioinformatics/bts034

16. Wang X, Sun R, Chan S, Meng L, Xu Y, Zuo X, et al. PANoptosis-based
molecular clustering and prognostic signature predicts patient survival and immune
landscape in colon cancer. Front Genet. (2022) 13:955355. doi: 10.3389/
fgene.2022.955355

17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007
18. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

19. Wickham H, Chang W, Wickham MH. Package ‘ggplot2.’ Create elegant data
visualisations using the grammar of graphics Version (2016). Available at: https://search.
r-project.org/CRAN/refmans/ggplot2/html/ggplot2-package.html.

20. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-Seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7
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Background: Increasing evidence have highlighted the biological significance of

mRNA N6-methyladenosine (m6A) modification in regulating tumorigenicity and

progression. However, the potential roles of m6A regulators in tumor

microenvironment (TME) formation and immune cell infiltration in liver

hepatocellular carcinoma (LIHC or HCC) requires further clarification.

Method: RNA sequencing data were obtained from TCGA-LIHC databases and

ICGC-LIRI-JP databases. Consensus clustering algorithm was used to identify

m6A regulators cluster subtypes. Weighted gene co-expression network analysis

(WGCNA), LASSO regression, Random Forest (RF), and Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) were applied to identify candidate

biomarkers, and then a m6Arisk score model was constructed. The correlations

of m6Arisk score with immunological characteristics (immunomodulators,

cancer immunity cycles, tumor-infiltrating immune cells (TIICs), and immune

checkpoints) were systematically evaluated. The effective performance of

nomogram was evaluated using concordance index (C‐index), calibration

plots, decision curve analysis (DCA), and receiver operating characteristic

curve (ROC).

Results: Two distinct m6Amodification patterns were identified based on 23m6A

regulators, which were correlated with different clinical outcomes and biological

functions. Based on the constructed m6Arisk score model, HCC patients can be

divided into two distinct risk score subgroups. Further analysis indicated that the

m6Arisk score showed excellent prognostic performance. Patients with a high

m6Arisk score was significantly associated with poorer clinical outcome, lower

drug sensitivity, and higher immune infiltration. Moreover, we developed a

nomogram model by incorporating the m6Arisk score and clinicopathological

features. The application of the m6Arisk score for the prognostic stratification of

HCC has good clinical applicability and clinical net benefit.
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Conclusion:Our findings reveal the crucial role of m6A modification patterns for

predicting HCC TME status and prognosis, and highlight the good clinical

applicability and net benefit of m6Arisk score in terms of prognosis,

immunophenotype, and drug therapy in HCC patients.
KEYWORDS

N6-methyladenosine, WGCNA, SVM-RFE, LASSO, consensus clustering algorithm,
TIICs, DCA
1 Introduction

Hepatocellular carcinomas (HCC, accounting for 90% of liver

cancer) is one of the most frequent fatal malignancies and ranks

fourth among cancer-related mortality worldwide (1). Despite

recent great advances in treatment interventions, 5-year overall

survival (OS) for HCC patients remains poor and unsatisfactory,

with only 5% to 15% of early-stage patients qualifying for surgical

excision (2). HCC is insidious and develops rapidly, and patients are

usually diagnosed at an advanced stage. The treatment strategies

that are currently available for more than 90% of liver cancer

patients mainly include chemotherapy, immunotherapy, natural

compounds, and nanotechnology (2). However, the clinical benefit

of these therapies remains unsatisfactory, mainly due to the lack of

effective pre-treatment predictive biomarkers. Besides, treatment of

regional resection and liver transplantation is still limited, and the

recurrence rate after regional resection is high. Therefore, it is

imperative to identify novel reliable biomarkers and therapeutic

targets that enable early diagnosis and treatment response

prediction for HCC patients.

Although the risk factors for liver carcinogenesis are well defined

(including hepatitis B and C viruses, fatty liver, alcoholic cirrhosis,

diabetes, obesity, etc), the underlying molecular mechanisms remain

ambiguous. Extensive evidence shows that epigenetic mechanisms is

implicated in multiple aspects of cancer biology, from driving

primary tumor growth and invasion to modulating the immune

response within the tumor microenvironment (TME). The complex

bidirectional dynamic cross-talk between cancer cells and their

microenvironment has been identified as a key factor that drives

tumor initiation, growth, progression, malignant conversion,

invasion, metastasis, drug resistance and patient prognosis (3–5).

TME is a complex and evolving multi-layered cellular environment

composed of stroma, vascular, and innate/adaptive immune cells, as

well as a community of malignant clones (6). N6-methyladenosine

(m6A)methylation is one of the most common types of modifications

in eukaryotic messenger RNA (mRNA). Similar to modifications in

DNA or proteins, it is regulated by various types of regulators,

including methyltransferases (“ writers “), RNA-binding proteins (“

readers “), and demethylases (“ erasers “). Dysregulation of m6A

regulatory factors is associated with malignant tumor progression

and TME-specific immunomodulation abnormalities (7, 8).
02106
Nonetheless, the role of m6A regulators in TME heterogeneity and

immune cell infiltration in HCC remains to be further investigated.

Therefore, it is crucial to comprehensively understand the

relationship between RNA methylation modification patterns and

genetic alterations underlying cancer cell heterogeneity.

Cancer is both a genetic and epigenetic disease. Gene mutations

and epigenetic alterations have been identified as significant

contributors to human carcinogenesis. Unlike genetic mutations,

epigenetic modifications refer to heritable changes that mediate

gene expression without altering the genetic DNA sequence (9).

Extensive evidence shows that epigenetic mechanisms is implicated

in multiple aspects of cancer biology, from driving primary tumor

growth and invasion to modulating the immune response within the

TME. Epigenetics-based diagnostic and prognostic tools also greatly

contribute to the development of precision oncology. Recent studies

have reported that abnormal decreases or increases in the overall

abundance of m6A in some types of cancer may be associated with

cancer progression and clinical outcomes. It has been reported that

the overall abundance and expression level of m6A in mRNA or total

RNA in human gastric cancer and liver cancer tissues are significantly

increased, and are closely related to the expression level of m6A

methylation regulatory enzymes (10, 11). It has also been reported

that the overall abundance of m6A is significantly reduced in more

advanced human bladder cancer tissues and is associated with poor

prognosis in bladder cancer patients (12). Another study showed that

m6A abundance is associated with therapeutic drug response and

may be an epigenetic driver of chemotherapy resistance (13).

Together, these results suggest that m6A modification regulators

have different potential in prognosis stratification and the

development of new therapeutic strategies across various cancers.

Due to immune evasion and heterogeneity in the TME, only a

minority of patients respond favorably to immunotherapy. At this

point, better stratification is urgently needed for HCC patients to

enhance treatment efficacy. Therefore, comprehensive investigation

of m6A modification and its biological roles in HCC may contribute

to improving prognosis prediction and personalized precision

treatment approaches for HCC.

In this study, we first profiled the expression of 23 m6A

regulators and identified two distinct m6A regulator-mediated

modification patterns based on TCGA-LIHC cohort. We then

constructed a novel m6A-risk scoring system to quantify the m6A
frontiersin.org
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modification patterns in individual tumors and to predict the

clinical response of HCC patients to common chemotherapy or

targeted drugs. Additionally, we comprehensively evaluated the

association between m6A modification patterns and TME cell-

infiltrating characteristics.
2 Materials and methods

2.1 Data source and preprocessing

RNA-sequencing data (counts value) with corresponding

complete clinical information of HCC were obtained from

TCGA-LIHC program (https://portal.gdc.cancer.gov/repository)

and ICGC-LIRI-JP database (https://dcc.icgc.org). The annotation

file of GRCh38 (version 36) was downloaded from GENCODE to

identify the length of each mRNA. Subsequently, RNA-sequencing

data in counts format was transformed into transcripts per kilobase

million (TPM) format and further subjected to log2 transformation

for normalization. In addition, somatic mutation data and CNV

files were retrieved from the TCGA-LIHC program. Samples

lacking clinicopathological information or survival outcomes were

excluded from further analysis. Ultimately, 23 acknowledged m6A

regulator genes, including 8 writers, 13 readers, and 2 erasers, were

identified from previous studies (14–16).
2.2 Unsupervised clustering of m6A
regulator genes

Consensus unsupervised clustering analysis was employed for

identifying distinct m6A regulator modification patterns in the

TCGA-LIHC cohort by the k-means algorithms, which is available

in the “ConsensusClusterPlus” R package (17, 18). The

“ConsensusClusterPlus” package provides quantitative stability

evidence to determine a cluster count and cluster membership in

an unsupervised analysis. The quantity and stability of clusters were

determined by consensus clustering algorithm, and conducted for

1,000 iterations (18). The cumulative distribution function (CDF)

curves were used to determine the optimal number of clusters,

indexed by k-means algorithms value from 2 to 9. Ultimately,

based on the clustering effect, the clustering stability was higher

when k = 2.
2.3 Differentially expressed genes analysis

The expression profile data from TCGA-LIHC cohorts were

preprocessed by R software (V.4.0.5). The differential expression

analysis between two distinct m6A cluster subtypes were

performed using the “DESeq2” R package (19) (V.1.38.3). Genes

with |log2FoldChange| > 1 and P adj < 0.001 were regarded as

statistically significant. Furthermore, Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed for DEGs using the

“clusterProfiler” R package. GO categories comprised biological
Frontiers in Immunology 03107
processes (BP), molecular functions (MF), and cellular

components (CC). The p-value was adjusted using the

Benjamini–Hochberg (BH) approach or False Discovery Rate

(FDR) for multiple testing corrections. The results satisfied FDR

< 0.05 were regarded as statistically significant.
2.4 Gene set enrichment analysis

This analysis aimed to discern potentially relevant gene

expression signatures between distinct m6A cluster subtypes

utilizing the ‘clusterProfiler’ package (V.4.6.0). The reference gene

set for GSEA analysis, ‘c2.cp.kegg.v7.4.symbols.gmt,’ was obtained

from MSigDB database (http://software.broadinstitute.org/gsea/

msigdb/index.jsp). Differential expression analysis between the

two cluster subtypes was conducted using “DEseq2” package

(V.1.38.3). Subsequently, all genes were ranked from high to

bottom according to log2-fold change, and this sorted gene set

was used for GSEA analysis. For achieving a normalized enrichment

score (NES) for each analysis, a permutation test with 1,000

iterations were performed. The pathways meeting the criteria of

|NES| > 1, p-value < 0.05, and q-value < 0.05 were regarded as

significant enrichment.
2.5 Gene set variation analysis

This analysis was performed to assess the variation of hallmark

pathway activity in distinct m6A cluster subtypes via ‘GSVA’

package (V.1.38.0) in an unsupervised manner (20). In this study,

the gene set ‘h.all.v7.4.symbols.gmt’ was selected as the background

gene set for GSVA analysis, which was downloaded from MSigDB

database (21). The ‘limma’ R package was utilized to analyze the

differences in hallmark pathways between two m6A cluster

subtypes. The criteria for screening significant difference were as

follows: |t-value| >2 and p-values < 0.05. The pathway with a t-value

> 0 was thought to be activated in the m6A cluster B, and conversely,

the pathway with a t-value < 0 was considered to be activated in the

m6A cluster A.
2.6 Weighted gene co-expression
network analysis

WGCNA R package was utilized to construct an unsigned

weighted co-expression network to identify m6A cluster-related

gene modules. First of all, TCGA-LIHC expression data in TPM

format were evaluated for availability and genes were screened

using the lowest median absolute deviation (MAD) for further

analysis. The Pearson’s correlation matrices between all included

genes were calculated, and then transformed into an unsigned

weighted adjacency matrix using a power function. The power b
was estimated by soft-threshold of 0.85 to obtain a network with

scale-free topology. Furthermore, a topological overlap measure

(TOM) matrix was generated to estimate the connectivity property

of nodes in the network. The node in the networks represented a
frontiersin.org
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coding gene in the modules and an edge connecting two genes

indicated a strong correlation. Average linkage hierarchical

clustering was used to construct a clustering dendrogram of the

TOM matrix. Dynamic tree-cutting algorithm was used to obtain

appropriate modules of co-expressed genes with deep split = 2 and

the minimum gene module size of 40, and the height cutting

threshold of merging similar modules was set to 0.3. Genes

outside of each module were denoted with color “grey”. The

association between module Eigengenes (ME) values with

clinicopathological characteristics was assessed by Pearson’s

correlation, and the modules with the strongest association with

m6A cluster were selected for further analysis.
2.7 Identification of optimal feature
gene biomarkers

To identify the optimal feature gene variables with the superior

discriminative power, three machine-learning algorithms were

implemented to predict disease status, including LASSO (least

absolute shrinkage and selection operator) regression, SVM-RFE

(support vector machine-recursive feature elimination), and RF

(random forest classifier). LASSO regression analysis was

performed using the ‘glmnet’ R package (22), and SVM-RFE

using the ‘e1071’ R package (23). In the LASSO regression

analysis, the response type was configured as binomial, and the

alpha parameter was set to 1. Meanwhile, SVM-RFE model was

compared by the average mis-judgement rates of their 10-fold

cross-validations (24). The final importance of features was based

on the average importance of each feature variable in each iteration.

In the RF algorithm, the importance ranking of each gene, and the

error rate and accuracy rate of the combination in each iteration

were obtained using the RFE method. The feature genes were the

corresponding genes in the optimal combination with the lowest

error rate. The overlapping genes between the three machine-

learning algorithms were regarded as optimal diagnostic

biomarkers. The accuracy of the overlapping genes for diagnosis

was evaluated using the receiver operating characteristic curve

(ROC) in TCGA-LIHC dataset, and the expression levels of

candidate genes were further validated in the ICGC-LIRI-JP dataset.
2.8 Construction of m6Arisk score model
for HCC prognosis

The overlapping feature genes obtained above were first

subjected to univariate Cox regression to obtain the OS related

DEGs. Followed by least absolute shrinkage and selection operator

(LASSO) penalties regression, we identified the most powerful

prognostic DEGs and their correlative coefficients using “glmnet”

R package. Meanwhile, the “caret” R package was utilized to

randomly divide the TCGA-LIHC cohort (n = 371) with a ratio

of 1:1, with 50% of the data used for training and 50% for

validation. Next, the independent prognostic feature genes were

identified using multivariate Cox regression analysis to construct a

m6A related prognostic risk score model in the training set. Then,
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the m6Arisk scores were calculated using the formula:

m6Arisk-score = S (gene expression * risk coefficient). Based on

the median of risk score, the training set and testing set were

stratified into low- and high-risk groups, respectively. Finally,

survival analysis and receiver operating characteristic (ROC)

curve analysis were carried out for the two risk groups using the

“survminer” and “survivalROC” R packages, respectively.
2.9 The immunological characteristics of
the tumor microenvironment

To confirm the role of m6Arisk score in modulating cancer

immunity in HCC, we analyzed the correlation between m6Arisk

and the immunological characteristics of TME. The immunological

characteristics included the activity of the cancer immunity cycle,

infiltration level of tumor‐infiltrating immune cells (TIICs), and the

expression of immunomodulators and inhibitory immune

checkpoints. The cancer immunity cycle consists of seven steps

that reflect the anticancer immune response and determine the fate

of the tumor cells (25) (Supplementary Table S12). The

immunomodulators comprise major histocompatibility complex

(MHC), receptors, chemokines, and immune stimulators (26)

(Supplementary Table S17). In this study, the activities of the

cancer immunity cycle were also quantified using a single sample

gene set enrichment analysis (ssGSEA) as previously reported (27).

Moreover, to avoid the calculation error of different algorithms and

marker gene sets, six independent algorithms [including Cibersort

(28), MCP-counter (29), quanTIseq (30), TIMER (31), xCell (32),

and TISIDB (33)] were used to comprehensively calculate TIICs

infiltration level in TME (Supplementary Table S7). Thereafter, the

effector genes of TIICs and inhibitory immune checkpoints were

also identified and collected from previous studies (34)

(Supplementary Tables S18, S19).
2.10 Somatic mutation analysis

For genomic layer analysis, the mutation annotation format

(MAF) data of HCC patients was derived from the TCGA-LIHC

database (http://tcga-data.nci.nih.gov/tcga/) and analyzed using the

“maftools” R package (35). The mutation profile was visualized

using a waterfall plot, which displays the mutation types and

frequencies of the top driver genes. Fisher’s exact test was

conducted to compare the differential mutation patterns between

the two distinct m6Arisk score groups. Genes with a p-value less

than 0.05 were considered statistically significant and were

visualized in a forest plot. In addition, a lollipop diagram was

drawn to indicate the mutation types of the most frequently

mutated gene in order to provide insight into the molecular

alterations associated with hepatocellular carcinoma (HCC)

development. Furthermore, the exclusivity and co-occurrence of

mutations for the top 20 mutated genes were analyzed. The

prognostic value of TMB and the combination of TMB and

m6Arisk scores were comprehensively evaluated. Additionally, the

relationship between the m6Arisk scores and the cancer stem cell
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(CSC) index was evaluated to investigate their potential association

in tumor progression and treatment resistance.
2.11 Prediction of therapeutic response by
m6Arisk score

The T cell receptor (TCR) repertoire is a well-characterized

immune trait that plays a key role in the selective activation of the

adaptive immune system (36, 37), tightly linked to the immune

status and anti-tumor immune response. In this study, we

obtained the TCR Shannon diversity index and richness of the

TCGA-LIHC cohort from previous literature (36) and

investigated their differences between the two distinct m6Arisk

scores groups. The Tumor Inflammation Signature (TIS) is a

transcriptome-based algorithm consisting of 18 genes that

measures a pre-existing but suppressed adaptive immune

response within the tumor (38). We computed the TIS score of

each patient as previously reported (39) in TCGA-LIHC dataset to

speculate on the association between m6Arisk scores and the

adaptive immune response. Imunophenoscore (IPS), a machine

learning-based scoring scheme that represents the determinants of

immunogenicity, has been proven to be tightly linked to the

survival of multiple cancer and is a promising predictor of

response to immunotherapy (26). We obtained the IPS of HCC

from the Cancer Immunome Atlas (TCIA) (https://tcia.at/home)

and compared them between the two m6Arisk-score groups to

predict the immunotherapeutic sensitivities.

Moreover, to explore the potential clinical applications of the

m6Arisk score in treatment decisions, we utilized the “oncoPredict”

R package (40) to infer the semi-inhibitory concentration (IC50)

values of commonly used targeted/chemotherapy drugs. We then

performed a correlation analysis between the IC50 values and the

m6Arisk-score groups using the Wilcoxon test. The drugs and their

target information were derived from DrugBank (https://

go.Drugbank.com/). This analysis aimed to investigate the

relationship between m6Arisk score and the response to specific

drugs, providing insights into personalized treatment strategies.
2.12 Establishment and validation of a
nomogram scoring system

Them6Arisk scores and common clinical variables (including age,

gender, and TNM stages) were incorporated to establish a nomogram

scoring system using the “rms” R package (41). In this study, the time-

dependent ROC curves of nomogram and clinical prognostic variables

at 1-, 3-, and 5-year were generated, and the corresponding time-

dependent area under the curves (AUCs) was calculated to evaluate

the discrimination of nomogram. The calibration curves and the

decision curve analysis (DCA) of 1-, 3-, and 5-year were plotted to

assess the prediction accuracy and clinical net benefit of nomogram,

respectively (42, 43). In addition, concordance index (C-index) was

also performed to assess the prediction efficiency and accuracy of

nomogram. A C-index score around 0.70 indicates a good model,

whereas a score around 0.50 suggests random background.
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2.13 Clinical sample collection, RNA
isolation, and qPCR

Twenty-eight pairs of fresh-frozen tissues (HCC tissues and

adjacent tissues) were collected from the Zhongnan Hospital of

Wuhan University and approved by the ethics committee

(Approval Number 2017058). Written informed consent was

obtained from all the participants. Complementary DNA (cDNA)

was synthesized from total RNA using the Prime Script RT Reagent

Kit (Vazyme, R333-01, China). The SYBR Prime Script RT-PCR kit

(Vazyme, Q712-02, China) was used for qPCR on a CFX96

instrument (Bio-Rad, America). Gene expression levels were

calculated with the 2-DDct strategy and normalized to the

“housekeeping” gene b-actin. The primer sequences were

integrated into Supplementary Table S20.
2.14 Statistical analysis

All statistical analyses and graphical plotting were performed

using R software (version 4.0.5.) Unless stated otherwise, P <0.05

(two-sided) was considered statistically significant.
3 Results

3.1 Landscape of genetic variation of 23
m6A regulators in LIHC

In this study, we identified 23 m6A RNAmethylation regulatory

genes (including eight “writers,” thirteen “readers,” and two

“erasers”) from the published literature, and systematically

investigated the roles of them in LIHC. The workflow for this

study is shown in Figure 1A. Additionally, the significantly enriched

biological processes of the 23 m6A regulators were summarized

using the Metascape database, as depicted in Figure 1B. These

processes primarily revolve around mRNA stability, mRNA

transport, mRNA metabolic processes, mRNA modification, and

ncRNA processing. Figure 1C illustrates the dynamic reversible

process of the m6A regulators, showcasing their ability to recognize,

remove, and add m6A-modified sites. These analyses provided

insights into the regulatory complexity and functional

implications of m6A RNA methylation in gene expression and

RNA metabolism. The somatic mutations analysis of 23 m6A

regulators demonstrated that a total of 42 of the 371 (11.3%)

TCGA-LIHC samples experienced genetic alterations of m6A

regulators, primarily including missense mutations and splice site

(Figure 1D). Moreover, the CNA analysis revealed CNV alterations

were prevalent in the 23 m6A regulators, with most of the

alterations being focused on gene amplification (such as VIRMA,

METTL3, HNRNPC, IGF2BP2, and YTHDF3), whereas WTAP,

YTHDF2, and ZC3H13 showed the highest deletion frequency

(Figure 1E). Further investigation of the expression profiles of the

23 m6A regulators indicated that most of the m6A writers
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(METTL3/14/16, WTAP, VIRMA, and RBM15/15B), readers

(YTHDC1/2 , YTHDF1/2/3 , HNRNPC , FMR1 , LRPPRC ,

HNRNPA2B1, IGF2BP1/2/3, and RBMX), and erasers (FTO and

ALKBH5) were markedly upregulated in the tumor tissues

(Figure 1F). The survival analysis revealed that most of the m6A

regulators were significantly correlated with LIHC prognoses

(Supplementary Figure S1). Taken together, these results

demonstrate that m6A regulators may act as diagnostic

biomarkers and prognostic predictors for LIHC.
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3.2 Identification of m6A modification
subtypes and function enrichment analysis

Figure 2A presented the interactions and interconnections

among the 23 m6A regulators and their prognostic value in

TCGA-LIHC patients. Most of these genes were risk factors and

were significantly positively correlated with each other (p<0.001).

The results suggested that the cross-talk between these m6A

regulators probably play important roles in the formation of
B

C

D

E

F

A

FIGURE 1

The landscape of genetic and transcriptional alterations of m6A regulators in HCC. (A) The schematic workflow of this study. K-M plot, Kaplan-Meier
plot; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; WGCNA, weighted gene co-expression network analysis; ROC, receiver
operating characteristic; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination;
UniCox, univariate Cox; MultiCox, multivariate Cox; DCA, decision curve analysis, TCR, T cell receptor; TIS, Tumor Inflammation Signature; IPS,
Imunophenoscore. (B) The enrichment network of 23 m6A regulators visualized by Metascape (https://metascape.org/), showed the similarity of
enrichment terms within and between clusters. (C) The regulation mechanism of m6A “writer,” “eraser,” and “reader” proteins on RNA metabolism.
(D)Mutation frequencies of 23m6A regulators in 371 HCC patients from TCGA-LIHC cohort. (E) Frequencies of copy number variant (CNV) of the 23m6A
regulators. (F) The differential expression levels of 23 m6A regulators between tumor and normal tissues. ** P < 0.01; *** P < 0.001; ns, No significance.
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different modification patterns and was implicated in the

pathogenesis and progression of tumor. To further explore the

modification patterns of m6A regulators, unsupervised clustering

algorithms based on the expression profiles of 23 m6A regulators

were applied to construct m6A subtypes. As shown in Figure 2B and

Supplementary Figure S2, the consensus score matrix revealed that
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k = 2 appeared to be an optimal choice for ensuring the least

crossover between TCGA-LIHC samples. Next, Kaplan-Meier

survival curves showed that m6A cluster A presented significantly

better prognoses than cluster B (P = 0.006; Figure 2C).

Next, the representative DEGs (|log2FoldChange| > 1, P-adj <

0.001) between m6Acluster were identified to explore the
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A

FIGURE 2

Identification and functional enrichment analysis of m6A cluster subtypes. (A) The interaction analysis of expression on 23 m6A regulators in TCGA-
LIHC. Different colored circles represent different modification types of m6A regulators. The size of the circle represents the prognostic effect of
each m6A regulator and scaled by p value. Connecting lines represent interactions between each other. (B) The consensus score matrix of 371
samples (k = 2). (C) Kaplan‐Meier curves for estimating the overall survival between subtypes of m6A cluster. (D) GO enrichment and (E) KEGG
enrichment analyses of the DEGs (|log2FoldChange| > 1, P-adj < 0.001) between m6A cluster B and A. The top 25 enriched terms are shown. The
color of the bars denotes the negative logarithm of the p-value of the hypergeometric test. (F) The bar charts showing KEGG pathway annotation.
The color indicates the category A of annotation terms. The horizontal coordinate presents the category B of annotation terms, and the ordinate
denotes the number of genes (hits) of category B. (G) Bar charts showing the top 10 KEGG pathway terms enriched by GSEA. Red and blue
represent the upregulated pathway terms in m6A cluster B and A, respectively. (H) The GSVA score of hallmark pathway activities curated from
MSigDB in distinct m6A modification patterns. T values are from two-sided unpaired limma-moderated t test (linear models), corrected for effects
from the patient of origin.
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underlying biological functions (Supplementary Table S1). GO

analysis revealed that the DEGs had a significant enrichment in a

number of cell cycle biological processes, including mitotic nuclear

division, mitotic sister chromatid segregation, nuclear chromosome

segregation, regulation of chromosome segregation, and nuclear

division (Figure 2D, Supplementary Table S2). KEGG analysis

indicated that cell cycle and metabolic pathways such as DNA

replication, cellular senescence, bile secretion, Glycolysis/

Gluconeogenesis, biosynthesis of amino acids were significantly

enriched, as well as cancer-related pathways such as ECM-receptor

interaction and p53 signaling pathway (Figure 2E, Supplementary

Table S3). KEGG pathway annotation results revealed that many

cancer-related pathways were identified, including those with

functions in the immune and endocrine system, signaling

transduction, DNA/RNA replication and repair, cell growth and

death, and metabolism (Figure 2F). To explore the underlying

biological mechanism of distinct m6Acluster subtypes, GSEA and

GSVA analyses were conducted. The GSEA analysis also prompted

that signaling transduction/cell cycle-related pathways were highly

activated in m6Acluster B while metabolism biological processes

were highly activated in m6Acluster A (Figure 2G, Supplementary

Table S4). In addition, a direct comparison of hallmark pathway

expression using GSVA revealed a strong enrichment of signaling

transduction and metabolism in m6Acluster B versus A, such as

fatty acid and bile acid metabolism, oxidative phosphorylation, IL2-

STAT5 signaling, MYC targets, PI3K-AKT-mTOR signaling, E2F

targets, and G2M checkpoint (Figure 2H, Supplementary Table S5).

All above results demonstrated that m6Acluster subtypes was

correlated with dysregulation of signaling transduction and

metabolism, which may be implicated in the poor prognosis of

TCGA-LIHC patients.
3.3 Weighted gene co-expression network
construction and selection of
feature genes

To identify m6Acluster-related modules, WGCNA was

constructed based on the expression profiles of TCGA-LIHC and

clinical trait. Here, we selected the top 5000 genes with the lowest

median absolute deviation (MAD) to build a co-expression network.

A dendrogram of 344 samples with complete clinical information was

clustered using the average linkage method and Pearson’s correlation

method, and no discrete samples were found (Figure 3A). Next, the

power value of b = 7 (scale-free topology fitting index R2 = 0.85) was

selected as the soft threshold to construct a scale-free network with

high average connectivity (Supplementary Figures S3A, S3B). After

merging the similar modules using two settings: clustering height = 0.3

and min module size = 40, six modules were identified for subsequent

analysis (Figure 3B, Supplementary Figure S3C). Through the

transcription correlation study within modules, there was no

substantial linkage between modules (Supplementary Figure S3D).

The relevance between ME (Module Eigengene) and clinical features

(m6Acluster, fu-time, fu-stat, age, gender, grade, and stage) was

evaluated based on module-trait relationships (MTRs). The module-

trait relationship results indicated that the MEblue (r = 0.73, P = 9e-
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59), the MEbrown (r = 0.42, P = 5e-16), the MEred (r = 0.35, P = 3e-

11), the MEgreen (r = -0.39, P = 8e-14) are significantly associated

with m6Acluster (Figure 3C). Moreover, the MEblue and MEgreen

were significantly related to other clinical features, and the two

modules showed an inverse correlation trend. Considering the high

correlation with m6Acluster, we selected the MEblue module as the

target module for the subsequent study. The scatterplot of GS versus

MM indicated that significant correlation existed in the module

membership (MM) and gene significance (GS) of the MEblue (cor

= 0.48, P = 1.6e-58) module (Supplementary Figure S3E).

Here, the differentially expressed genes (DEGs) (|

log2FoldChange| > 1, P-adj < 0.001) between different cohorts

were illustrated by the volcano plot. As shown in Figures 3D and

3E, a total of 3081 DEGs (2609 up-regulation and 472 down-

regulation) were identified between tumor and tumor-adjacent

tissues, and 910 DEGs (737 up-regulation and 173 down-

regulation) between m6Acluster A and cluster B. Then, 343

overlapping genes were obtained by intersecting the blue module

genes and the differential genes using a Venn diagram (Figure 3F).

To identify key feature genes, the 343 candidate genes were

submitted into LASSO regression algorithm, SVM-RFE algorithm,

and RF model. LASSO regression analyses with a 10-fold cross-

validation identified thirty-five gene signatures (Figure 3G). An

eleven-gene signature was identified by SVM-RFE algorithm with a

10-fold cross-validation accuracy of 0.962 (Figure 3H). The RF

model algorithm sorted sixteen gene signatures with

MeanDecreaseGini scores greater than 2.5 (Figure 3I). To obtain

a robust feature gene for m6Acluster, we intersected the genes

screened out by the above three algorithms and identified three key

feature genes: IGF2BP2, MAPRE1, and ACTL6A, as shown in

Figure 3J. The ROC curves of IGF2BP2, MAPRE1, and ACTL6A

revealed the probability of them as valuable biological markers with

AUCs higher then 0.7 (Figure 3K), indicating that the three

diagnostic markers had a higher diagnostic value. Furthermore,

our PCR results demonstrated that the expression levels of

ACTL6A, MAPRE1, and IGF2BP2 were upregulated in HCC

tissues compared to adjacent tissues (p < 0.01, as shown in

Supplementary Figure S4).
3.4 Construction and evaluation of m6Arisk
scoring model

To explore potentially valuable prognostic genes more broadly, we

included overlapping genes that appeared in any two algorithms for

subsequent analysis. Overall, 11 out of thirteen genes were found to

affect prognosis based on univariate Cox analysis (Figure 4A,

Supplementary Table S6). Next, we performed LASSO and

multivariate Cox regression analysis for eleven prognostic genes to

further select optimum prognostic signature. Followed by LASSO

analysis, seven best candidate DEGs (SRD5A2, IGF2BP2, ZSWIM5,

PAK1, ACTL6A, PRKCD, LRRC1) were retained according to the

minimum partial likelihood deviance (Figures 4B, C). Subsequently,

the seven candidate DEGs underwent multivariate Cox analysis,

resulting in the retention of four genes (SRD5A2, IGF2BP2,

ZSWIM5, PRKCD) according to the Akaike information criterion
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FIGURE 3

Construction of WGCNA and selection of feature genes. (A) Clustering dendrogram of 344 samples with clinical trait heatmap in TCGA-LIHC
database. (B) Gene clustering dendrograms showing the original and combined modules, various colors represent different modules. (C) The
relationship of seven traits (including m6Acluster and clinicopathology) and six modules, red and blue represents positive and negative correlations,
respectively. Each cell contains the corresponding correlation value and p-value. (D) Volcano plot of DEGs between tumor and normal tissues.
(E) Volcano plot of DEGs between cluster B and cluster A. (F) Venn diagram demonstrating 343 overlapping genes between the WGCNA blue
module gene and the identified DEGs. (G) Cross-validation for selecting the optimal tuning parameter log (l) in LASSO regression algorithm.
(H) Eleven feature genes were identified by SVM-RFE algorithm with a 10-fold cross-validation accuracy of 0.962. (I) Gene importance scores in RF
model. MeanDecreaseGini score greater than 2.5 was selected for the inclusion threshold of feature genes. (J) Venn diagram demonstrating three
diagnostic markers shared by three algorithms (LASSO, SVM-RFE, and Random Forest). (K) Performance of three biomarker genes in discriminating
tumor from normal controls based on TCGA-LIHC database.
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(AIC) value. Consequently, the m6Arisk score model was developed

according to RNA-expression profiles using the following formula:

Risk score = (−0.1430* expression of SRD5A2) + (0.2223*expression of

IGF2BP2) + (0.2784* expression of ZSWIM5) + (0.4081* expression of

PRKCD). As shown in Supplementary Figure S4, HCC tissues

exhibited decreased SRD5A2 expression levels (p < 0.01), while
Frontiers in Immunology 10114
ZSWIM5, PRKCD, and IGF2BP2 expression levels (p < 0.01) were

upregulated compared to adjacent tissues.

After the construction of m6Arisk score model, we performed

evaluation and validation analysis of the risk model. In the TCGA-

LIHC training dataset, 185 patients were divided into high m6Arisk

score group (n=92) and low m6Arisk score group (n=93) using the
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FIGURE 4

Construction and evaluation of prognostic signature using m6A-related candidate genes. (A) Univariate Cox regression analysis. (B, C) LASSO
regression analysis and optimal parameter (lambda) selection of the eleven prognostic genes by using 10-fold cross-validation. Dotted vertical lines
represents the optimal values selected by the minimum criteria (right) and the 1- standard error (SE) of the minimum criteria (left). (D) Development
of m6Arisk model in TCGA-LIHC training set (E) Validation of the m6Arisk model in TCGA-LIHC internal validation set. (F) Validation of the m6Arisk
model in external independent validation sets: ICGC-LIRI-JP. (G–I) The predictive accuracy of m6Arisk model for survival. (J) Differences in m6Arisk
score between two distinct m6Acluster subtypes. (K) Differences in m6Arisk score between HCC patients with AJCC stages III–IV and stages I-II.
AJCC, American Joint Committee on Cancer. (L) Differences in m6Arisk score between HCC patients who had deceased and HCC patients who
were alive.
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median m6Arisk score as the risk cutoff. As shown in Figures 4D, G,

individuals with elevated m6Arisk scores experienced notably shorter

overall survival (OS) times compared to those with lower m6Arisk

scores. The area under the curve (AUC) values for them6Arisk scoring

model were 0.707, 0.689, and 0.663 for the 1-year, 3-year, and 5-year

OS periods, respectively. The predictive accuracy of the m6Arisk

scoring model was well validated in TCGA-LIHC internal validation

cohort, with AUC values of 0.733, 0.623, and 0.632 for 1-, 3-, and 5-

year OS, respectively (Figures 4E, H). In addition, we further verified

the predictive capacity of the m6Arisk scoring model in external

ICGC-LIRI-JP cohort (Figures 4F, I). As shown in Figure 4J, a

significant difference in the distribution of m6Arisk scores was

observed between m6Acluster A and B. The risk scores of the

patients in m6Acluster B were substantially higher than those of the

patients in m6Acluster A. We also determined the relationship

between m6Arisk score and clinicopathological features of HCC

patients. HCC patients diagnosed with AJCC stages III–IV had

significantly higher m6Arisk scores than those diagnosed with stage

I-II (Figure 4K). Similarly, the m6Arisk score of patients who died was

significantly higher than that of patients who survived (Figure 4L).

These results indicate that the m6Arisk scoring model may serve as a

powerful indicator for the prognosis of liver cancer patients.
3.5 The m6Arisk score significantly
correlates with tumor immune phenotypes
of HCC

Here, we investigated the existence of immune heterogeneity in

different m6Arisk score groups, and the association between the

m6Arisk score and various immune characteristics (expression of

immunomodulator and TIIC effector genes, immunotherapy-

related characteristics, and immune checkpoints). As shown in

Figure 5A, Supplementary Table S7, we first investigated the

infiltration level of Tumor infiltrates immune cells (TIICs) using

six independent algorithms. The result indicated that the m6Arisk

score was positively correlated with the infiltration level of CD8+ T

cells, dendritic cells, and macrophages under different algorithms

(Figure 5B; Supplementary Table S8). As expected, m6Arisk score

was also found to be positively correlated with the effector genes of

these TIICs (Supplementary Figures S5A, S5B). We also analyzed

the correlations between m6Arisk score and the immunotherapy

predicted pathways signatures (Supplementary Tables S9–S11). As

shown in Figures 5C, E, the m6Arisk score was positively correlated

with a majority of the immunotherapy predicted-related pathways,

including IFN-Gamma signature, base-excision repair, cell cycle,

Fanconi anemia pathway, p53 signaling pathway, MicroRNAs in

cancer, proteasome, and pyrimidine metabolism.

In addition, the activities of a portion of the cancer immunity

cycle were also found to be upregulated in the high-m6Arisk score

group, including the release of cancer cell antigens (Step 1) and

trafficking of immune cells to tumors (Step 4, mainly those that

exert antitumor immunity), such as CD8 T cell recruiting, NK cell

recruiting, and MDSC recruiting (Figure 5D, Supplementary Table

S12). The activities of the cancer immunity cycle are a direct

comprehensive performance of the functions of the chemokine
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system and other immunomodulators (25, 27). The elevated activity

of these steps might increase the infiltration levels of effector TIICs

in the TME. Interestingly, the activity of infiltration of immune cells

to tumors (Step 5) and recognition of cancer cells by T cells (Step 6)

was upregulated in the low-m6Arisk score group. Moreover, the

correlation analysis indicated that m6Arisk score demonstrated a

predominantly positive correlation with the critical steps of cancer-

immunity cycle (Step 1 and Step 4) and the enrichment scores of

immunotherapy-predicted pathways gene signatures, including the

interferon-g signature, base-excision repair, cell cycle, DNA

replication, homologous recombination, the p53 signaling

pathway, and others (Figure 5E, Supplementary Table S11).

In addition, the enrichment scores for several immunosuppressive

oncogenic pathways (such as radiotherapy-predicted pathways and

EGFR ligands) were significantly higher in the high-m6Arisk group

(Figure 5F; Supplementary Tables S13, S14). Previous studies have

found that inhibiting these oncogenic pathways promoted the

formation of an inflamed tumor microenvironment (TME), thereby

reactivating cancer immunity. We also examined the relationship

between known biological signatures and the m6Arisk score through

Spearman analysis. A heatmap of the correlation matrix demonstrated

that the m6Arisk score was markedly positively correlated with the

immune activation process and DNA repair signatures (Figure 5G,

Supplementary Tables S15, S16). Consistently, a significant proportion

of immune checkpoint genes were observed to be highly expressed in

the high-risk score group within this study, such as CD27, CD28,

CD40, CTLA4, CD44, CD48, NRP1, CD276, LAG3, TNFSF4, PDCD1

(PD-1), and TIGIT (Figure 5H). Similarly, another heatmap was

drawn to show the mRNA expression profiles of immunomodulator

genes including chemokine, immune inhibitor, immune stimulator,

MHC, and receptor in two m6Arisk score groups (Supplementary

Figure S5C). The m6Arisk score positively correlated with the mRNA

expression profiles of immunomodulator genes. Most MHC

molecules were upregulated in the high-m6Arisk group, suggesting

that antigen presentation and processing capacity were upregulated in

the high-m6Arisk group. The chemokines, including CCL4, CCL5,

CCL8, CCL20, CCL26, CXCL1, CXCL3, CXCL5, CXCL9, CXCL11,

CXCL16, and paired receptors including CCR1, CCR5, CXCR3,

CXCR4, and CXCR6, were positively correlated with m6Arisk score.

These chemokines and receptors promote the recruitment of effector

TIICs such as CD8+ T cells and antigen-presenting cells. However,

given the complex and diverse functions of the chemokine system,

although the relationship between m6Arisk score and individual

chemokines is not sufficient to clarify the overall immune effect of

m6Arisk in TME, it also reflects that the high score of m6Arisk is

closely related to the development of inflammatory TME to

some extent.
3.6 Genomic alterations between different
m6Arisk score groups

To give a hint of m6Arisk-related mechanisms for OS

classification of HCC from genomic layer, available somatic

mutations of the TCGA-LIHC dataset were acquired, and the

distribution differences in the high- and low-m6Arisk groups
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FIGURE 5

Correlation between the m6Arisk score and immune phenotypes. (A) Six independent algorithms including CIBERSORT, MCP-counter, xCell, EPIC,
quantiseq, and TIMER, further verified the stability and robustness of the ssGSEA results. (B) Correlation between m6Arisk score and the infiltration
levels of five types of TIICs (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells). (C) Differences in the enrichment scores of
immunotherapy-predicted pathways between the two m6Arisk groups in TCGA-LIHC cohort. The enrichment scores were calculated using ssGSEA
algorithms. (D) Differences in the various steps of the cancer immunity cycle between the two m6Arisk groups in TCGA-LIHC cohort. (E) Pearson’s
correlation analysis of the m6Arisk score with cancer immunity cycle activity (top right) and immunotherapy-predicted pathways (bottom left) based
on TCGA-LIHC cohort. The color of the line represents the size of the P value, and the thickness of the line represents the size of the r value. The
solid and dotted lines represent positive and negative correlations, respectively. (F) Correlations between m6Arisk scores and the enrichment scores
of several therapeutic signatures such as targeted therapy and radiotherapy. (G) Correlations between m6Arisk scores and the known biological gene
signatures using Spearman analysis. The color presented the Spearman correlation coefficient. (H) Difference analysis of immune checkpoints effect
genes between high- and low-m6Arisk groups in TCGA-LIHC cohort. * P < 0.05; ** P < 0.01; *** P < 0.001. ns, No significance.
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were analyzed by the package “maftools”. Figures 6A, B showed the

top 20 genes with the highest mutation frequencies in the two

m6Arisk-score groups. The summary of the mutation information,

along with statistical calculations, is presented in Supplementary

Figures S6A, S6B. TP53 (35%) and TNN (26%) were the most

frequently mutated genes in the high- and low-m6Arisk patients,

respectively, with TP53 having the highest frequency. The Forest

plot (Figure 6C) illustrates genes with significant differences in

mutation frequency between the two m6Arisk score groups,

including TP53, RB1, PCDHB1, SMCHD1, ZC3H6, SPEG,

DNAH17, SPAG17, and DOCK2. As TP53 was the most

frequently mutated gene, a lollipop diagram (Figure 6D) was

created to illustrate the specific mutation sites of TP53, with a

higher number of missense mutations observed in the high-m6Arisk

group. Furthermore, the associations of exclusivity and co-

occurrence across mutated genes from the high- and low-m6Arisk

score groups are shown in Figure 6E, with green representing co-

occurrence and brown representing mutual exclusion. Here, the

tumor mutation burden (TMB) quantification results demonstrated

an elevated level in the high-m6Arisk group, although in a non-

significant mode (Supplementary Figure S6C), and HCC patients

with a lower TMB score presented a better overall survival (OS)

(Figure 6F). This finding suggests the presence of heterogeneity and

complexity among cancer patients, which is consistent with existing

literature reports (44). To further investigate, we categorized all

HCC patients into four subgroups based on TMB and m6Arisk

score: high-TMB and high-m6Arisk, low-TMB and high-m6Arisk,

high-TMB and low-m6Arisk, and low-TMB and low-m6Arisk.

Survival curves were plotted for each subgroup, and it was

observed that the high-TMB and high-m6Arisk score group

exhibited the worst prognosis among them (Figure 6G). We then

assessed the potential correlation between the m6Arisk score and

the cancer stem cell (CSC) index in HCC. As shown in Figure 6H, a

positive linear correlation between the m6Arisk score and CSC

index was observed (R = 0.14, P < 0.01). The results suggest that

HCC cells with a higher m6Arisk score may have more pronounced

stem cell properties and a lower degree of cell differentiation.
3.7 The m6Arisk score predicts therapeutic
responses in HCC

Here, we firstly estimated the T cell receptor (TCR) repertoire

for HCC patients and HCC patients (TCGA-LIHC cohorts) in the

high-m6Arisk score group exhibited a significantly higher TCR

richness and diversity, indicating that they possessed greater

tumor immune potential (Figure 7A). Besides, the Tumor

Inflammation Signature (TIS), an 18-gene index that measures

adaptive immune resistance within tumors, was utilized to

evaluate the immune potential of the two risk groups. As shown

in Figure 7B, patients in the two m6Arisk score groups exhibited a

non-significant TIS score, indicating no significant difference in

anti-tumor immune potential. Imunophenoscore (IPS) is a

recognized indicator of patients’ response to immunotherapy, and

no significant differences were observed between the two m6Arisk
Frontiers in Immunology 13117
score groups, suggesting no difference in response to immune

checkpoint blockade (ICB) between the two groups (Figure 7C).

These results suggest that the m6Arisk score may not help identify

effective anti-tumor immunotherapy precision medicine therapies.

We subsequently investigated whether the m6Arisk score could

accurately guide precision treatments by assessing the differences in

anticancer drug sensitivity between the two m6Arisk score

subgroups, aiming to identify potential individualized therapy

modalities for LIHC patients. The IC50 values demonstrated that

LIHC patients with a lower m6Arisk score exhibited a higher

sensitivity to common chemotherapeutic drugs, including

vincristine, vinblastine, pevonedistat, paclitaxel, osimertinib,

navitoclax, docetaxel, vinorelbine, and 5-fluorouracil (Figure 7D).

Additionally, LIHC patients with lower m6Arisk score also showed

higher sensitivity to several targeted drugs, such as alpelisib,

bortezomib, cediranib, ibrutinib, axitinib, crizotinib, buparlisib,

dasatinib, and ruxolitinib (Figure 7E). In contrast, patients with a

high m6Arisk score exhibited relatively high sensitivity to the

chemotherapy drug mitoxantrone (Figure 7D) and the targeted

drug selumetinib (Figure 7E). These results demonstrate that the

m6Arisk score may contribute to identifying effective antitumor

agents and precision medicine therapies for LIHC treatment.
3.8 Construction and validation of
a nomogram

To assess whether the m6Arisk scores predicting model was an

independent predictor in HCC (TCGA-LIHC cohorts), univariate

and multivariate Cox regression analyses were conducted. As shown

in Figures 8A, B, the HR of m6Arisk scores in univariate and

multivariate analysis was 1.573 (95%CI: 1.314-1.883; p<0.001) and

1.485 (95%CI: 1.223-1.803; p<0.001), suggesting that m6Arisk scores

could be used as an independent prognostic indicator compared with

the other clinical features (age, gender, AJCC stage, and TNM stage).

To facilitate the clinical feasibility of the m6Arisk score, a nomogram

was constructed by integrating the m6Arisk score and

clinicopathological features to predict overall survival (OS) at 1-, 3-,

and 5- years. As shown in Figure 8C, the predictors included the

m6Arisk score and TNM stage, which had the greatest influence on

OS. We subsequently validated the predictive capability and accuracy

of this nomogram by concordance index (C-index), calibration curve,

and decision curve analysis (DCA). The C-index of the nomogram

was 0.680 (95% CI: 0.562–0.779) in the TCGA-LIHC cohort

(Figure 8D) and 0.733 (95% CI: 0.553–0.859) in external validation

cohort (Supplementary Figure S7A), indicating that the nomogram

had a relatively good discriminatory power. Similarly, the calibration

plots show an ideal consistency between the actual observations and

the nomogram predictions of the 1-, 3-, and 5-year OS in both the

TCGA-LIHC cohort and external validation cohort (Figure 8E,

Supplementary Figure S7B). The ROC analysis revealed that the

AUC values of the constructed nomogram for predicting 1-, 3-, and

5-year OS were 0.742, 0.704, and 0.713, respectively, further

demonstrating the predictive capability of the nomogram
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1374465
(Figures 8F–H). As showed in Figures 8I–K, nomogram

incorporating the m6Arisk model yielded a relatively better net

benefits than other clinical traits in predicting 1-, 3-, and 5-year OS

for HCC patients in the TCGA-LIHC cohort, suggesting that the

nomogram had a relatively good prognostic accuracy and clinical

applicability. The ROC and decision curve (DCA) analysis indicated

that the proposed nomogram had a similar performance in the

ICGC-LIRI-JP cohort (Supplementary Figures S7C–S7H).
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4 Discussion

Hepatocellular carcinoma (HCC) remains a major health

challenge with a growing incidence worldwide today,

characterized by high recurrence rates and heterogeneity (45).

The existing prognostic staging system still has some limitations

in evaluating clinical prognosis and individual treatment for HCC

patients. How to control its progression and improve the survival
B
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FIGURE 6

Distinctive genomic mutation patterns between the m6Arisk score groups. (A, B) Waterfall plots depicting the somatic mutation landscapes of the
top 20 most frequently mutated genes in the high- and low-m6Arisk score groups. (C) Forest plot displaying the common driver genes mutating
significantly differentially in the high- and low- m6Arisk score groups. (D) Lollipop diagram visualizing the differential mutation site for TP53 between
the two distinct m6Arisk score groups. (E) The mutual exclusivity and co-occurrence of mutations in the most frequently mutated genes of the
high- and low-m6Arisk score groups. (F) Kaplan-Meier curves of TMB in the high- and low-m6Arisk score groups. (G) Kaplan-Meier curves for HCC
patients in the whole TCGA-LIHC cohort stratified by both TMB and m6Arisk score. TMB, tumor mutation burden. (H) Relationships between m6Arisk
score and cancer stem cell (CSC) index. ***P < 0.001, *P < 0.05.
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rate of patients remains an urgent issue to be solved in the current

treatment of liver cancer. Accumulating evidence demonstrates that

hepatocellular carcinogenesis is regulated by complex genetic and

epigenetic mechanisms, and influenced by immune cell infiltration

and the tumor microenvironment (46–49). A study using whole-

genome and -exome sequencing analysis has shown that epigenetic
Frontiers in Immunology 15119
regulation is the most unusual differential modifier in HCC. As the

most predominant epigenetic modification, RNA methylation

modification plays an indispensable and pleiotropic biological role

in malignant transformation and cancer progression. N6-

methyladenosine modification affects gene expression by

regulating RNA processing, decay, and translation, and abnormal
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A

FIGURE 7

m6Arisk score based prediction of treatment response. (A) TCR repertoire analysis illustrating significantly higher levels of TCR richness and diversity
in the high-m6Arisk score group based on the TCGA-LIHC cohort. (B) Comparison of TIS between the two distinct m6Arisk score groups based on
the TCGA-LIHC cohort. (C) IPS comparison of the high- and low- m6Arisk score groups based on the TCGA-LIHC cohort. (D) Boxplots depicting
differential sensitivities of common chemotherapeutic drugs between the two distinct m6Arisk score groups. (E) Differential sensitivities of common
molecular-targeted therapeutic drugs between the distinct m6Arisk score groups. *, P <0.05; ***, P <0.001; ns, No significance.
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expression of the m6A methylase complexes is strongly associated

with various human cancers (8, 50–52), including HCC.

Recent studies have shown the impact of m6A RNA

modification on various inflammatory development of cancer.
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Inflammation predisposes patients to cancer, especially affecting

the composition of the tumor microenvironment and the plasticity

of tumor cells, including surrounding stromal and inflammatory

cells (53). m6A dysregulation may lead to aberrant expression of
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FIGURE 8

Construction and validation of nomogram based on TCGA-LIHC dataset. (A, B) Univariate and multivariate Cox regression analysis for m6Arisk score,
respectively. (C) The established nomogram for predicting the 1-, 3-, and 5-year OS of HCC patients. The red arrow signifies an example to visualize
the assessment of risk for 1-, 3-, and 5-year OS. (D) C-indexes for the generated nomogram and single variables in predicting OS of HCC patients.
The C-index was estimated by truncating the follow-up time to 1 to 10 years and plotting it on the X-axis as the truncation year. (E) Calibration
curves of the nomogram in terms of the agreement between predicted and observed outcomes. (F–H) The ROC curves of the nomograms and
clinical characteristics for predicting 1-year, 3-year, and 5-year OS in HCC patients. (I–K) The DCA curves of the nomograms and clinical
characteristics for predicting 1-year, 3-year, and 5-year OS in HCC patients. OS, overall survival; DCA, decision curve analysis; ROC, receiver
operating curve.
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oncogenic or the tumor-suppressive genes, contributing to HCC

initiation and progression. m6A dysregulation may also contribute

to epigenetic alterations in HCC cancer cells, and may affect cancer

stem cell potential, thereby impacting tumor growth and therapy

resistance (54). Besides, another study indicated that the

construction of polygenic risk prediction model based on m6A

related genes has good clinical predictive ability and accuracy in

predicting the survival and prognosis of glioma patients, and is an

independent risk factor for glioma. These results suggest that the

construction of polygenic risk prediction models based on m6A

associated genes has different potential in the stratification of cancer

prognosis and the development of new treatment strategies. Thus,

comprehensively investigating m6A modification in HCC and its

biological roles may facilitate improved prognostic predictions and

individual precise treatment modalities for HCC. In this study, we

identified two distinct m6A modification patterns in HCC, each

being associated with immunological properties, therapeutic

response, and prognoses. Finally, we further developed an

m6Arisk score model to quantify the m6Arisk subtype in HCC

patients and independently validated this model using the ICGC-

LIRI-JP cohorts.

In this study, we found that these m6A regulatory genes present

a tight and highly interconnected molecular interaction network,

which are mainly involved in mRNA stability, mRNA transport,

and mRNA metabolism. Analysis of copy number alterations

(CNA) and expression profiles revealed a significant abnormal

imbalance in the expression levels of m6A writers, readers, and

erasers between tumor and normal tissues. In theory, these

imbalances could lead to aberrant m6A modification patterns,

ultimately contributing to HCC formation and progression.

Furthermore, based on the expression profiles of 23 m6A

regulators, we identified two independent m6A modification

patterns in the TCGA-LIHC cohort using the consensus

unsupervised clustering algorithm. Subsequent survival analysis

revealed significantly worse prognoses for HCC patients in

m6Acluster B compared to those in m6Acluster A. Additionally,

we observed that cluster-specific DEGs were also associated with

cell cycle and metabolic pathways, as well as cancer-related

pathways, such as ECM-receptor interaction and p53 signaling

pathway. These findings provide further insights into the

potential biological mechanisms underlying the distinct m6A

modification patterns and their implications in HCC development

and progression.

Moreover, we identified modules significantly correlated with

clinical features and m6Acluster subtypes in the subsequent

WGCNA based on TCGA-LIHC cohort. To screen potential

prognostic biomarkers, we performed three different algorithms

(LASSO, SVM-RFE and RF) on the above overlapping 343 DEGs.

We also developed a robust m6Arisk score model based on the

expression of four m6A-related genes. Our results indicated that the

m6Arisk score performed well in predicting the prognoses of HCC

patients. Particularly, a high m6risk score was significantly

associated with poorer clinical outcomes and lower drug

sensitivity. In clinical practice, the TNM stage is a conventional

reference for evaluating clinical outcomes and treatment decisions.

Surprisingly, multi-Cox regression analysis further validated the
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superiority of the established m6Arisk score model in predicting OS

in HCC patients, independent of other clinical features such as age,

gender, and TMN stage. Finally, by integrating the m6Arisk score

and clinical features, we developed a quantitative nomogram that

enhances the clinical operability of m6Arisk score. The prognostic

model can be used for stratifying the prognosis of HCC patients and

provides new ideas for targeted therapies. Moreover, the patients in

the high- and low-m6Arisk score groups presented distinct

clinicopathological features, mutation patterns, immune cell

infiltration and immune checkpoint characteristics.

Wi th in -dep th re sea rch on tumor immuno logy ,

immunotherapy has emerged as a promising strategy for tumor

treatment. Immune checkpoint blockade (ICB) is currently the

most successful and common immunotherapy strategy (55, 56).

Currently, PD-1/PD-L1 monoclonal antibodies have become

important targeted therapeutic drugs for a variety of tumor

immunotherapy. Thus, the therapy immunotherapy strategies

targeting m6A methylation provide direction for a direction for

improving the therapeutic efficacy of immune checkpoint inhibits.

Previous studies have shown that epigenetic-based targeted

therapies and immunotherapies work better in clinical tries (57).

A study on HCC stem cells found that knockdown AMD1 leaded

decreased FTO to regulate m6A methylation levels, which reduced

the resistance of HCC cells to sorafenib. They also verified the

specific inhibitor of AMD1 may be an effective alternative agent for

the treatment of HCC in combination with sorafenib (58). In a

similar study of lung cancer, targeting the m6A methylation

regulatory enzyme could inhibit cancer cell growth or increase

the sensitivity of anti-cancer drugs (59). In glioblastoma, reversing

temozolomide resistance conferred by m6A methylation could aid

in the development of new therapeutic interventions (60). Another

study showed that targeted m6A therapy mediated by knockdown

of ALKBH5 expression participated in and promoted angiogenesis,

which may also play a role in HCC, providing a new avenue for

combined immunotherapy (61). Although clinical immunotherapy

(such as anti-PD-1, anti-PD-L1, and anti-CTLA-4) for HCC has

been widely used for HCC worldwide (62, 63), only a minority of

patients benefited from immunotherapy. Therefore, there is an

urgent need for more effective biomarkers to assess whether

patients with HCC benefit from tumor immunotherapy. In this

study, our findings indicated that high-m6Arisk group appeared to

coexist with high expression levels of common immune checkpoint

molecules (such as CTLA-4, PDCD1(PD-1), and TIGIT), indirectly

suggesting that m6Arisk score may be a better predictor of

immunotherapy in HCC patients. The upregulation of immune

checkpoints such as PD-L1/PD-1 is a critical characteristic of an

inflamed TME, which is driven by pre-infiltrating tumor infiltrating

immune cells (TIICs) (64). These immune checkpoints suppress

pre-existing cancer immunity to avoid an excessive immune

response, but also lead to immune evasion. Here, the expression

of immune checkpoints (such as CTLA-4, PDCD1(PD-1), and

TIGIT) was significantly upregulated in the high-m6Arisk group,

which might be attributed to the upregulation of pre-existing TIICs.

These results suggested that the HCC patients with high-m6Arisk

score were more sensitive to immune checkpoint blockade (ICB).

However, in this study, immunophenotypic scores (IPS) showed no
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1374465
significant difference in response to ICB between the two m6Arisk

score groups. This might be due to the complexity and multiple

functions of the TME system, the relationship between m6Arisk and

individual immune checkpoints was insufficient to clarify the

overall immunological effect of m6Arisk in TME.

Moreover, we also observed a positive correlation of m6Arisk

score with the infiltration level of CD8+ T cells under different

algorithms. A growing number of studies have evaluated the

contribution of cytotoxic cells, especially CD8+ T cells. The cancer

immunity cycle represents the immune response of our body to

cancer. The activities of the cancer immunity cycle are a direct

reflection of the final effect of complex immunomodulatory

interactions in tumor microenvironment (TME). In this study, we

noted that m6Arisk score presented a positive correlation with the

activities of a portion of the cancer immunity cycle. For example, the

release of cancer cell antigens (Step 1) and trafficking of immune

cells to tumors (Step 4, mainly those that exert antitumor immunity),

such as CD8 T cell recruiting, NK cell recruiting, and MDSC

recruiting, was significantly upregulated in the high-m6Arisk

group. Consequently, the infiltration levels of several effector

TIICs, such as CD8+ T cells, dendritic cells, and macrophages,

were also significantly increased in the high-m6Arisk group, which

had been validated in six different algorithms. Therefore, the high

m6Arisk-score reflected an inflammatory phenotype in TME.

Meanwhile, m6Arisk score was positively correlated with the

enrichment scores of immunotherapy-predicted pathways.

Besides, our findings further indicated that HCC patients with a

high m6Arisk score were more sensitive to some common

chemotherapy and molecular-targeted drugs, suggesting that the

m6Arisk score might contribute to guiding personalized treatment

for patients. However, the drug mechanisms and their effects on

HCC progression need to be further studied. Additionally, we

developed a nomogram model by incorporating the m6Arisk

score and clinicopathological features, and further validated and

evaluated the predictive capability and accuracy of this model in

external verification cohort. These results suggested that the

application of the m6Arisk score for the prognostic stratification

of HCC has good clinical applicability and clinical net benefit.

Finally, it’s worth noting that despite its intriguing and

promising findings, this study has several limitations. First, this

study is a retrospective study based on public online databases

(TCGA-LIHC and ICGC-LIRI-JP), which may have inherent

selection bias. Second, although our results were generalized and

robust in validation cohorts, the batch effects from different cohorts

should be considered. Third, although we highlighted the predictive

power of m6Arisk scores for HCC TME status and prognosis, we

did not identify the molecular mechanisms involved.
5 Conclusion

In our study, our findings reveal the crucial role of m6A

modification patterns for predicting HCC TME status and

prognosis, and highlight the good clinical applicability and net

benefit of m6Arisk score in terms of prognosis, immunophenotype,

and drug therapy in HCC patients.
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on the tumor microenvironment
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Jia-le Xu1, Si-shan Bian4* and Jia-wen Teng4

1The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan,
Shandong, China, 2Hand and Foot Orthopaedic Department, Changle County People’s Hospital,
Weifang, Shandong, China, 3Department of Minimally Invasive Orthopedics, Affiliated Hospital of
Shandong Traditional Chinese Medicine University, Jinan, Shandong, China, 4Department of
Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese
Medicine, Jinan, Shandong, China
Osteosarcoma is a cancerous bone tumor that develops frommesenchymal cells

and is characterized by early metastasis, easy drug resistance, high disability, and

mortality. Immunological characteristics of the tumor microenvironment (TME)

have attracted attention for the prognosis and treatment of osteosarcoma, and

there is a need to explore a signature with high sensitivity for prognosis. In the

present study, a total of 84 samples of osteosarcoma were acquired from the

UCSC Xena database, analyzed for immune infiltration and classified into two

categories depending on their immune properties, and then screened for DEGs

between the two groups and analyzed for enrichment, with the majority of DEGs

enriched in the immune domain. To further analyze their immune characteristics,

the immune-related genes were obtained from the TIMER database. We

performed an intersection analysis to identify immune-related differentially

expressed genes (IR-DEGs), which were analyzed using a univariate COX

regression, and LASSO analysis was used to obtain the ideal genes to construct

the risk model, and to uncover the prognostic distinctions between high-risk

scoring group and low-risk scoring group, a survival analysis was conducted. The

risk assessment model developed in this study revealed a notable variation in

survival analysis outcomes between the high-risk and low-risk scoring groups,

and the conclusions reached by the model are consistent with the findings of

previous scholars. They also yield meaningful results when analyzing immune

checkpoints. The risk assessment model developed in this study is precise and

dependable for forecasting outcomes and analyzing characteristics

of osteosarcoma.
KEYWORDS

osteosarcoma, tumor microenvironment, immune-related genes, immunotherapy,
immunization checkpoints
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1 Introduction

Osteosarcoma(OS) originates from bone tissue and is a

malignant tumor with local invasion and rapid infiltrative

metastasis, prevalent in children and adolescents (1, 2).

Osteosarcoma has a high disability rate. Currently, surgery

combined with chemotherapy is the universal treatment for

osteosarcoma, but the survival rate of patients after 5 years is still

relatively poor (3). Consequently, there is a pressing requirement to

develop novel evaluation methods to enhance the effectiveness of

treatment. Immunotherapy has emerged as the most promising

treatment in the past few decades.

The immune system plays a role in every phase of tumor

formation and advancement. Thus, dysfunction in the immune

system plays a significant role in the onset of tumors. When the

immune system interplays with the tumor microenvironment, the T

cells associated with the anti-tumor immune response will be

activated, and they will up-regulate the expression of various

inhibitory receptors on their cell surfaces and bind to the

corresponding ligands expressed on the exterior of the tumor

cells, resulting in the suppression of the immune response, i.e.,

the intensity of the anti-tumor immune response will be weakened,

and ultimately, the tumor cells will be able to achieve immune

escape. The goal of immune checkpoint blockade (ICB) therapy is

to enhance the functionality of T cells by disrupting the interaction

between these receptors and their ligands, thereby enabling more

efficient eradication of cancer cells through the immune system. An

increasing body of clinical research has shown the efficacy of

immune checkpoint blockade (ICB) therapy in the treatment of

many kinds of tumor types (4–6). These trials have facilitated the

study of the osteosarcoma tumor microenvironment(TME). TME

and tumor clinical presentation, prognosis, and response to

immunotherapy are closely related (7, 8), and TME is considered

a key factor in OS progression (9). Enhanced comprehension of the

immune system ’s role in osteosarcoma and the tumor

microenvironment (TME) contributes to the advancement of

immunotherapy for this condition.

In this study, osteosarcoma samples were obtained from an

online database and the samples were immuno-scored, divided into

two groups, and analyzed for further analysis of immune-related

differential genes between the two groups. A comprehensive

immune profile was constructed based on the correlation between

the expression levels, prognostic value, and immune infiltration

levels of these genes. This study may assist in immunological

precision therapy.
2 Materials and methods

2.1 Data acquisition

TARGET-OS fragment per kilobase of transcript per million

mapped reads (FPKM) values (https://gdc-hub.s3.us-east-

1.amazonaws.com/download/TARGET-OS.htseq_fpkm.tsv.gz) was

obtained from UCSC Xena web platform(https://xenabrowser.net/
Frontiers in Immunology 02126
datapages/) for downstream analysis, and Counts values(https://

gdc-hub.s3.us-east-1.amazonaws.com/download/TARGET-

OS.htseq_counts.tsv.gz) were obtained for differential analysis.

Eighty-eight osteosarcoma samples were initially retrieved from

the UCSC Xena web platform; samples with no or incomplete

clinical information were excluded, for a total of 84 osteosarcoma

samples. The clinical characteristics of 84 patients with

osteosarcoma are shown in Supplementary Table S1. In addition,

we obtained the set of immune-related genes from the TIMER

database for subsequent analyses(Supplementary Table S2). The

somatic mutation data and the copy number variation (CNV)

profile were obtained from TCGA (https://portal.gdc.cancer.gov/).
2.2 Immune assessment, clustering, and
comparison of immune properties

The tumor samples were scored using the ESTIMATE algorithm

to obtain StromalScore, ImmuneScore, ESTIMATEScore, and

TumorPurity (10), and the samples were divided into two groups,

named high and low, based on the average of the above four data sets.

Survival analysis was conducted to investigate the correlation between

the four parameters and overall survival (OS).

Subsequently, the abundance of 30 immune cells in the tumor

samples was assessed using the ssGSEA algorithm (11), and the

tumor samples were consistently clustered to obtain immune

subtype groupings. An examination was conducted to explore

variations in various attributes among clinical phenotypes. Clinical

characteristics, including gender, age, survival time, survival status,

whether metastatic or not, and previously obtained immune subtype

groupings, were visualized using a heatmap, and a box plot was

created to assess the levels of immune infiltration among different

immune subtypes. In addition, box plots of the four scores obtained

from the previous ESTIMATE algorithm were compared according

to the immune subtype groupings. To assess the tumor mutational

burden (TMB), we examined the total count of unique genes without

synonymous somatic mutations per megabase (Mb) in each sample.

Truncating mutations comprised frame-shift deletions or insertions,

nonsense mutations, and splice-site mutations. In addition, non-

truncating mutations encompass in-frame deletions or insertions,

missense mutations, and nonstop mutations. We identified

mutational differences between the two groups based on

immunological grouping. Subsequently, differently expressed genes

(DEGs) were identified through comparative analysis of immune

subtype classifications utilizing the limma package in R software

version 4.3.2, with a significance threshold set at P<0.05 and |logFC|

>1. Volcano plots were generated to visualize differentially expressed

genes (DEGs), which were further subjected to gene ontology (GO)

function annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis. Pathway differences between immune

subtypes were analyzed using GSEA. GO and KEGG analyses were

obtained from the DAVID Database (https://david.ncifcrf.gov/) and

then visualized using the R software ggplot2 package, and GSEA

results were analyzed using the R software clusterProfiler package

and the GseaVis package.
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2.3 Assessment of immune-related DEGs

Immune-related differentially expressed genes (IR-DEGs) were

identified by intersecting differentially expressed genes (DEGs) with

immune-related genes. The IR-DEGs were imported into the

STRING platform for protein-protein interaction (PPI) analysis,

and the IR-DEGs were analyzed for their functions using GO

functional annotation and KEGG pathway analysis. The

intersecting genes were also analyzed for GSEA enrichment using

the above methods. Finally, the MCC algorithm in Cytoscape

software version 3.10.1 was used to obtain the top ten genes.

Next, we explored the overall survival and immune infiltration

among various immune subtypes based on the top ten genes.
2.4 Risk model construction

By setting the significance level at P < 0.05, the univariate Cox

regression analysis was conducted to explore the IR-DEGs and identify

genes related to survival outcomes. Next, the study utilized Least

Absolute Shrinkage and Selection Operator (LASSO) estimation for

survival modeling of genes showing significant correlations with

survival to identify potential candidate genes. Following this, the

sample’s risk score was computed based on the selected candidate

gene. The samples are divided into training sets and test sets on average.

The grouping is strictly randomly followed, and there is no statistical

difference between the two groups. Calculate the prognosis of the

training set, test set, and all groups, and present with the ROC curve.
2.5 Prognosis of features

We first assessed tumor immune escape and immune checkpoint

blockade responses using the Tumor Immune Dysfunction and

Exclusion (TIDE) online website (http://tide.dfci.harvard.edu/),

followed by risk scoring to divide the sample into a high-risk

scoring group and a low-risk scoring group, and then TIDE

values were calculated between the two groups, with higher TIDE

scores associated with poorer immune checkpoint blockade

therapy. The differences in immune checkpoint-related genes

between the two groups were subsequently calculated and

represented by a scatter plot. The samples were categorized based

on the high and low levels of candidate genes, and then the disparity

in immune checkpoint-related genes was computed between the

two sets. This dissimilarity was visually depicted through a scatter

plot to investigate the potential connection between the candidate

genes and immune checkpoint genes. The immune infiltration of all

samples was calculated using CIBERSORT to screen for differential

immune cells between the high-risk scoring group and the low-risk

scoring group, and the expression of candidate genes in the differential

immune cells was calculated. MicroenvironmentScore was calculated

for all samples using the xCell (https://xcell.ucsf.edu/) online site.

Differences in MicroenvironmentScore between the high-risk

scoring group and the low-risk scoring group were calculated and

visualized in a boxplot.
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3 Results

3.1 A holistic landscape of
immunological features

Based on the tumor stroma and immune characteristics of

osteosarcoma, the acquired osteosarcoma samples were analyzed

using the ESTIMATE algorithm to reveal the level of immune

infiltration of tumor samples in osteosarcoma. StromalScore,

ImmuneScore, ESTIMATEScore, and TumorPurity were calculated

and analyzed in the tumor samples (Supplementary Table S3). The

scores were grouped according to their median (median of

StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity

were 488.57, 424.86, 1095.16, and 0.72 in that order), and were

named as high and low groupings, respectively. These scores reflect

the different compositions of the tumor microenvironment, assessing

the degree of stromal and immune cell infiltration, and by grouping

them, it is possible to understand the biology of the tumor better and

to explore its relationship with tumor prognosis by performing a

Kaplan-Meier curve analysis based on survival time and status

(Figures 1A–D). In StromalScore, ImmuneScore, and

ESTIMATEScore, high grouping was significantly associated with

high survival, while low TumorPurity was associated with high

survival. Of these, ImmuneScore was most significantly associated

with survival. The data obtained from the above suggests that

osteosarcoma can be analyzed prognostically based on

ImmuneScore, followed by ssGSEA analysis.

The impact of immunity on osteosarcoma was explored using

ssGSEA (Supplementary Table S4). Subsequently, unsupervised

clustering was performed on the ssGSEA results, and the number

of clusters with the highest average within-group concordance was

2 (Figure 2B). Therefore, based on their immune characteristics, the

samples were categorized into two groups, and the 30 immune cells

were subsequently displayed along with clinical characteristics

including gender, age, survival time, survival status, and whether

the tumor has metastasized or not (Figure 2A). There are noticeable

variations in immunological features observed between the

clustered groups. Groups with rich immune profiles were named

high immune groups, therefore, groups with lower immune profiles

were named low immune groups (Supplementary Table S5).

Tumour metastasis was more frequent in the low-immunity

group than in the high-immunity group. To further investigate

the relationship between immune groupings and the levels of TME,

immune activation, and tumor cell infiltration, several analyses of

osteosarcoma TME were performed. As expected, StromalScore,

ImmuneScore, and ESTIMATEScore were higher and TumorPurity

was lower in the hyperimmune group (Figures 2C–F), suggesting

that the hyperimmune group was associated with higher survival.

Immune checkpoints and immune cell abundance were also

significantly higher in the hyperimmune group (Figure 2G).

Subsequent Principal Component Analysis (PCA) was performed

and the immune characteristics differed significantly between

the two groups (Figure 2H), therefore, we hypothesized that the

immune groupings found above could well distinguish the immune

and genetic characteristics of the samples.
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3.2 Mutation analysis

The analysis of gene mutations revealed a notably elevated

mutation rate in the low immunity group, with TP53 being

identified as the gene exhibiting the highest frequency of

mutations (Figure 3A). Tumor Mutation Burden (TMB) analysis

was carried out (Supplementary Table S6) and visualized using

scatter plots (Figure 3B). Following this, an analysis of TMB in the

high and low-immunity cohorts demonstrated a variation in TMB

levels between the two groups, with TMB showing an elevation in

the low-immunity cohort (Figure 3C). We hypothesized that this

may be related to the poorer prognosis of the low-immunity group.
3.3 Screening and evaluation of
differentially expressed genes

The examination of gene expression variations between

immune subtypes identified a pool of 836 differentially expressed
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genes for subsequent scrutiny (Supplementary Table S7), with 697

genes showing up-regulation (83.37%) and 139 genes

demonstrating down-regulation (16.63%) (Figure 4A).

Enrichment analyses of DEGs by GO annotation and KEGG

pathway enrichment analyses identified 497 biological processes

(BPs), 94 cell components (CCs), 118 molecular functions (MFs),

and 69 KEGG pathways (Figures 4C, D). The DEGs were also

analyzed for GSEA enrichment (Figure 4B).

As shown in the figure, the top ten biological processes were

filtered according to P-value, most of which were related to immunity,

including immune response, inflammatory response, innate immune

response, neutrophil chemotaxis, and adaptive immune response. In

addition, KEGG pathways are also related to immunity, including

Phagosome, Antigen processing and presentation, B cell receptor

signaling pathway Th17 cell differentiation, etc. In summary, DEGs

and immunity are closely related, subsequently, GSEA enrichment

analysis of DEGs was performed to further investigate the pathway

differences between immune subtypes, based on P<0.05, a total of 47

enriched pathways were obtained, and the top ten were Tuberculosis
FIGURE 1

The ESTIMATE algorithm was utilized to conduct survival analysis on patient groups categorized based on high and low immune scores, and the
results were visually represented through Kaplan-Meier (K-M) curves. (A) ESTIMATE score, (B) Tumor purity score, (C) Stromal score, and
(D) Immune score.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1423194
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1423194
(NES=3.11,p.value=6.73E-10) in order, Leishmaniasis (NES=3.01,

p .va lue=3 .03E-09) , S taphy lococcus aureus in fec t ion

(NES=3.01,p.value=7.05E-09), Th17 cell differentiation (NES=2.90,

p.value=4.69E-08), Th1 and Th2 cell differentiation (NES=2.82,
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p.value=1.13E-07), Hematopoietic cell lineage (NES=2.72,

p.value=5.33E-07), Influenza A (NES=2.71,p.value=4.87E-07),

Systemic lupus erythematosus (NES=2.60,p.value=1.83E-06),

Phagosome (NES=2.66,p.value=2.21E-06) and Neutrophil
FIGURE 2

Immune subtype identification and comparative analysis. The symbols * represent p-values less than 0.05, ** represent p-values less than 0.01,
*** represent p-values less than 0.001, **** represent p-values less than 0.0001. (A) ssGSEA analyses of 84 samples, divided into two groups based
on 30 ssGSEA scores per sample. (B) Unsupervised clustering of the samples based on their immunological characteristics, where the number of
clusters with the highest average within-group agreement is 2. (C–F) shows, in order, the differences in ESTIMATEScore, ImmuneScore,
StromalScore, and TumorPurity between the high and low immunity groups. (G) A box plot is utilized to display the levels of immune cell infiltration
in groups categorized as either having high or low immunity. In this visualization, the red boxes correspond to the high immunity group, while the
blue boxes correspond to the low immunity group. (H) PCA analysis of the two immune subtypes, with purple and yellow dots representing the
immunity–high and —low groups, respectively. "ns" stands for no statistical difference.
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FIGURE 4

Enrichment analysis was conducted on the DEGs identified in the two immune subtypes. (A) Volcano diagram showing the regulation of DEG
expression, with green, grey, and red dots representing down-regulation, unregulation, and up-regulation, respectively. (B) Bubble diagram showing
the top ten pathways according to Gene Set Enrichment Analysis (GSEA). (C) Bubble plots showing the top 10 enriched GO BP, CC, and MF.
(D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing the number of enrichments.
FIGURE 3

Mutations between high and low immunity groups. The symbols represent p-values less than 0.01. (A) Mutation status of genes in the high and low
immunity groups. (B) TMB distribution of all samples. (C) Bar graph showing the difference in TMB between the high and low immunity groups. **
represent p-values less than 0.01.
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extracellular trap formation (NES=2.46,p.value=9.22E-06). These

findings imply that the activation of the immune system in the

tumor microenvironment is implicated in the development

of osteosarcoma.
3.4 Screening and Evaluation of IR-DEGs

From the TIMER database, 1811 immune-related genes were

obtained, and these genes intersected with DEGs to obtain 221 IR-

DEGs (Figure 5A). The IR-DEGs were entered into the STRING
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online database to obtain the protein-protein interaction network

(Figure 5B). The IR-DEGs were subjected to GO annotation and

KEGG pathway enrichment analyses (Figures 5C, D), resulting in

418 BP, 57 CC, 57 MF, and 69 KEGG pathways. These IR-DEGs

were mainly enriched in biological pathways such as immune

response, inflammatory response, and adaptive immune response.

Among KEGG-enriched pathways, the top five were Cytokine-

cytokine receptor interaction, Viral protein interaction with

cytokine and cytokine receptor, Rheumatoid arthritis, Chemokine

signaling pathway and Graft-versus-host disease. GSEA enrichment

analyses were also performed for IR-DEGs (Figure 5E). Their top
FIGURE 5

Identification and enrichment analysis of differentially expressed genes (DEGs) associated with the immune system. (A) Venn diagram showing 221
immune-associated DEGs overlapping 836 DEGs and 1811 IRGs. (B) Protein interaction network diagram of DEGs (C) Bubble plots showing the top
10 enriched GO BP, CC, and MF. (D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing
the number of enrichments. (E) Bubble plots showing the top 20 enriched terms of the KEGG pathway, based on GSEA analyses of the top 10
pathways with the highest gene enrichment.
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five were Th17 cell differentiation (NES=2.56, p.value=1.35E-05),

Th1 and Th2 cell differentiation (NES=2.46,p.value=3.33E-05),

Staphylococcus aureus infection (NES=2.30,p.value=0.0002),

Tuberculosis (NES=2.09,p.value=0.0005), Leishmaniasis

(NES=2.13,p.value=0.001). Similar to the above results. According

to the results, it is clear that immune activation, especially T cells, is

important for the development of osteosarcoma.

Following that, an examination of the connections and

relationships among these IR-DEGs was carried out through the

analysis of the protein-protein interaction network (Supplementary

Table S8), and associations were found for a variety of IR-DEGs,

with the most significant correlations between IL6, IL10, CD4,

CD8A, IL1B, TNF, and CCL5 and the other immune IR-DEGs.

The interaction network is characterized by the presence of

Interleukin (IL) family genes (including IL10, IL1B and IL6), T-Cell

Surface Glycoprotein genes (including CD8A, CD86 and CD4), C-C

Motif Chemokine Receptor genes (including CCR7 and CCR5) and

C-C Motif Chemokine Ligand genes (including CCL2 and CCL5),

which are among the hub nodes. Subsequently, the MCC algorithm

was applied to obtain the top ten genes (Supplementary Table S9),

and prognostic survival analysis and immune infiltration analysis

were performed on these ten hub genes (Figures 6, 7).

The results showed that ten genes were closely associated with

immune cells, and among all hub genes, Tumor Infiltrating

Lymphocyte (TIL) infiltration levels were the highest, and mast

cells and dendritic cell infiltration levels were lower. In the K-M

survival analysis of the hub genes, CD4, CD8A, CCR5, and CCL5

were prognostically significant.
3.5 Risk modelling

Twenty-six genes were screened from 221 IR-DEGs using one-

way COX analysis based on p<0.05, and then the 26 genes were

further analyzed by applying the LASSO algorithm using ten-fold

cross-validation when lambda.1se= 0.1745826 (Figures 8A, B), a

risk model was developed using two candidate genes, namely PDK1
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and PPARG. Utilizing the expression levels and coefficient values of

the candidate genes, a risk score model was created through the

application of the subsequent formula: risk score = (0.6839441 ×

PDK1 expression) + (-0.6420120 × PPARG expression). The risk

score formula was utilized on all samples to calculate the risk score

for each sample (Supplementary Table S10). Subsequently, The

samples were divided into two cohorts at random, with no statistical

distinction observed between the pair. The median risk scores of the

original dataset, the training set, and the test set were used as

thresholds (-0.279689391, -0.2077641135, and -0.3399543645),

which were divided into a high-risk score group and a low-risk

score group, respectively. To assess the accuracy of the risk scoring

model constructed by PDK1 and PPARG on prognosis and to

provide effective biomarkers for the prediction of osteosarcoma. K-

M curve analysis and ROC curve analysis were then performed on

the two cohorts and the original combined cohort (Figures 8C–H).

ROC curves with area under the curve (AUC) values greater than

0.5 were considered statistically different. The results showed that

the p-value of the K-M curve was less than 0.05 for the training set,

the test set, and the merged set, so this feature was considered to

have prognostic value. Whereas, in all three cohorts, the ROC

curves indicated that the AUC values for 1-year, 3-year, and 5-year

were above 0.5, and the feature had a higher predictive sensitivity

for 3 and 5 years (AUC values were greater than 0.7 for both 3 and 5

years). In all three cohorts, a higher survival advantage was

demonstrated for low-risk scores, and low-risk scores were

strongly correlated with high survival.PDK1 and PPARG were

analyzed according to the risk score grouping, and it was found

that the expression of PDK1 was positively correlated with the risk

score, while the expression of PPARG was inversely correlated with

the risk score (Figure 8I). Then, the differences in TMB between the

high and low-risk score groups were compared based on the

previously calculated TMB values, and as expected, there was a

difference between the two groups (P<0.05) (Figure 8J), with higher

TMB values in the high-risk score group, which may be related to

the poorer prognosis of the high-risk score group. Subsequently, we

calculated the TIDE scores of the tumor samples (Figure 8K), which
FIGURE 6

Analysis of immune cell infiltration was conducted on the ten hub genes, visualized using lollipop charts.From left to right, the order is CCR5, TNF,
IL10, IL6, CD8A, CD4, IL1B, CCR7, CCL5, and CCL2.
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were higher in the high-risk scoring group, suggesting that immune

checkpoint blockade therapies were less effective in the high-risk

scoring group. In contrast, the opposite was true for the low-risk

scoring group. Finally, we used the third quartile of the TMB(0.62

muts/Mb) as a threshold to classify the TMB into two groups: high

and low scores. The top 25% of patients were defined as the high

TMB group, and the results, as shown in Figure 8L, showed that the

high TMB group had a worse prognosis.
3.6 Performance of risk models

The samples were categorized based on the median risk score

(-0.279689391), resulting in the formation of a high-risk group and

a low-risk group. Subsequently, the variations in immune

checkpoint-associated genes between these two groups were

analyzed (Figure 9A). The results showed that most of the

immune checkpoint-associated genes were differentially expressed,

and of the genes that were differentially expressed, all had higher

gene expression values in the low-risk score group. Differences in

the expression of immune checkpoint-related genes in the high-risk

scoring group and the low-risk scoring group are shown in

Supplementary Table S11. Subsequently, to assess the correlation

of immune checkpoint-associated genes with PDK1 and PPARG,

the two candidate genes were grouped according to the median log2

(FPKM+1) value (PDK1: 1.24; PPARG: 1.75) into high and low

expression groups, with differences in the expression of most of the

genes (Figures 9B, C). High expression of PDK1 was positively

correlated with low expression of immune-related genes, while high

expression of PPARG was positively correlated with high expression

of immune-related genes. The two candidate genes were shown to

have opposite roles. Subsequently, CIBERSORT immune

infiltration analysis was performed (Figure 9D), which showed

differences in five immune cell subpopulations. Subsequently, the

two candidate genes were still grouped according to median
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expression, and differential analysis of the five immune cell

subpopulations obtained by CIBERSORT immune infiltration

showed that high expression of PDK1 was positively correlated

with high expression in Macrophages M0 and inversely correlated

with high expression in Macrophages M2, and the opposite was true

in PPARG (Figures 9E, F). Once again, the two candidate genes

were shown to have opposite roles. Finally, the samples were

analyzed using the xCell online website to obtain the

MicroenvironmentScore (Supplementary Table S12), which was

significantly different between the high-risk scoring and low-risk

scoring groups and was higher in the low-risk scoring

group (Figure 9G).
4 Discussion

Recent studies have shown that cancer development is

influenced by the activation of the immune response (12). To

delve deeper into the immune-related mechanisms of

osteosarcoma, we explored the DEGs across two groups of

immune characteristics. Furthermore, the majority of the IR-

DEGs were found to be up-regulated in our study, exhibiting

substantial enrichment in various immune-related biological

pathways. Macrophages play a significant role in the tumor

microenvironment, and in tumor development, tumor-associated

macrophages can interact with other immune cells in the tumor to

promote tumor development and progression. In addition, they can

suppress tumor growth by promoting the phagocytosis of the cells

(13). Furthermore, it has been shown that cytotoxicity of T cells can

lead to tumor cell death (14). Tumor-infiltrating macrophages are

plentiful within the tumor microenvironment and regulate the

activity of T cells (15), tumor-associated macrophages and T cells

play a key role in determining cancer prognosis and the efficacy of

immunotherapies (16). Whereas macrophages and T cells were

found to be statistically significant in the present study, therefore,
FIGURE 7

Ten hub genes were subjected to survival analysis.
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the immunological profile of TME in osteosarcoma is considered to

have prognostic value.

The results showed that ImmuneScore had a significant

correlation with prognosis, with higher ImmuneScore

representing a higher level of immune infiltration, leading to

higher survival. TumorPurity was inversely correlated, with
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high TumorPurity associated with low survival. Subsequently,

we analyzed the correlation between the mutations and

immunological features of the genes. The correlation between

mutations in the TP53, ATRX, and RB1 genes and osteosarcoma

has been extensively studied. TP53 prevents the transformation of

bone marrow mesenchymal stem cells to osteosarcoma (17),
FIGURE 8

Construction of the total risk profile. The symbols * represent p-values less than 0.05, *** represent p-values less than 0.001. (A, B) Employing the
LASSO method for the identification of key candidate genes. (C–E) Survival analysis K-M curves for the training cohort, validation cohort, and initial
combined cohort, respectively. (F–H) ROC curves were generated to assess the prognostic significance of risk features in the training, validation, and
original merged groups. (I) Differences in PDK1 and PPARG gene expression between high and low-risk score groups. (J) Differences in TMB
between high and low-risk score groups. (K) Differences in TIDEscore in high and low-risk score groups. (L) Difference in risk scores between high
and low TMB groups.
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and Lang et al. showed that (18), in mice, mutation of TP53

promotes the development of osteosarcoma. Furthermore.

Walkley et al. showed (19) that combined deletion of TP53 and

RB1 in mouse osteoblasts leads to a high frequency of metastatic

osteosarcoma, and that mutations in RB1 are a key driver of cancer

(including osteosarcoma) (20). A meta-analysis (21) that included

491 patients with osteosarcoma showed that RB1 mutations were

associated with a significantly reduced histological response to

chemotherapy and a high risk of metastasis in osteosarcoma.

ATRX plays an important tumor-suppressor role in OS, and

deletion of this gene leads to tumor cell growth, migration, and

invasion, and was one of the most commonly mutated genes in 288

osteosarcoma patients surveyed by the Genomics Evidence

Neoplasia Information Exchange consortium in the USA (22).

Taken together, mutations in the TP53, ATRX, and RB1 genes

promote the development, invasion, and metastasis of

osteosarcoma, and in Figure 3, the mutation frequency of these

three genes is significantly higher in the low-immunity group than

in the high-immunity group, indicating that the frequency of

metastasis of osteosarcoma is also higher in the low-immunity

group, which is in line with the results we obtained above.

Based on the findings from GO, KEGG, and GSEA enrichment

analyses, numerous differentially expressed genes (DEGs) showed

enrichment in pathways related to the immune system. Neutrophil

chemotaxis was associated with more DEGs during BP in all GOs.

Previous studies have shown that neutrophils are a major

component of TME (23), which can exert a tumour-killing effect

by affecting T cells (24, 25). In this study, two groups with high and

low levels of immune activation were also studied in depth, and

noticeable variances were observed in the extent of immune cell
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infiltration between the two groups, and the level of immune cell

infiltration in the high-immunity group was significantly higher

than that in the low-immunity group, which may be associated with

the high survival rate of the high-immunity group. Ten pivotal

genes were then identified, all of which are closely associated with

neutrophils, macrophages, and T cells.

Following that, a univariate COX regression analysis and

LASSO analysis were utilized to identify PDK1 and PPARG. A

risk model was then established using these two factors, revealing a

pronounced prognostic distinction between individuals in the high-

risk and low-risk categories. Notably, the low-risk group exhibited a

significantly superior prognostic survival rate. Pyruvate

dehydrogenase kinase-1 (PDK1) is an enzyme involved in

glycolysis that facilitates the transition from glucose oxidative

metabolism to glycolytic metabolism in cancer cells by

phosphorylating substrates (26) and also reduces the damage

caused by reactive oxygen species (ROS) accumulation. In recent

years, more and more evidence suggests that PDK1 is associated

with tumor progression and metastasis (27–29), which provides a

new idea for the development of targeting PDK1 for the treatment

of osteosarcoma, as evidenced by Liu et al. who constructed a novel

organoarsenic compound, Aa-Z2, which induces apoptosis of

osteosarcoma by reprogramming metabolism through targeting

PDK1 (30). Peroxisome proliferator-activated receptor-gamma

(PPARG), a member of the nuclear receptor family, is a major

regulator of adipocyte differentiation and function (31). PPARG has

been shown to play a role in several cancers, and its association with

cancer is primarily a result of the recording of PPARG in cancer

cells and the tumor cell microenvironmental role (32). The role of

PPARG is widely debated and it exerts inhibitory or promotional
FIGURE 9

Role of risk models for immune checkpoints. The symbols * represent p-values less than 0.05, ** represent p-values less than 0.01, and ***
represent p-values less than 0.001. (A) Comparison of the expression levels of immune checkpoint-related genes in the group with high-risk scores
and the group with low-risk scores. (B, C) The expression levels of immune checkpoint-related genes between the two groups by dividing the gene
expression of PDK1 and PPARG into high and low groups according to the median. (D) CIBERSORT immune infiltration analysis of all samples.
(E, F) Infiltration abundance levels of some immune cells by dividing gene expression of PDK1 and PPARG into high and low groups by median.
(G) MicroenvironmentScore in the high and low-risk scoring groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1423194
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1423194
effects on cancer growth depending on the tumor cell conditions

and the pathways stimulated (33). In the literature, PPARG is an

oncogene, which exerts anti-tumour effects by inhibiting cell

proliferation, differentiation, cell growth, cell cycle, and inducing

apoptosis. It has been shown that in human osteosarcoma, the pro-

apoptotic effects exerted by Oridonin inhibition of the Nrf2

pathway require PPARG activation (34). PPARG can trigger cell

apoptosis and suppress the growth of osteosarcoma cells by

facilitating the terminal differentiation of osteoblasts (35).

When constructing the risk model, it was found that elevated

levels of PDK1 were linked to the high-risk score group, which in

turn was correlated with increased mortality rates. This implies that

PDK1 may act as an oncogene. In contrast, high expression of

PPARG was positively associated with the low-risk score group,

which played the role of oncogene, which was consistent with the

findings of previous scholars mentioned above, and further

proved the accuracy of the risk model. While the high expression

of PDK1 is proportional to the high expression of Macrophages

M0 and inversely proportional to the high expression of

Macrophages M2, the opposite is true in PPARG. Lin et al.

Showed (36) that Nuanxinkang (NXK) reduced the transcript and

protein levels of HIF-1a and PDK1 in vivo. NXK inhibited

macrophage M1 and significantly increased macrophage M2 via

the HIF-1a/PDK1 axis, and PDK1 and macrophage M2 levels in

vivo were negatively correlated, which is in line with the findings

of this study. Consistent with the findings of this study.

Macrophage M1 is biased towards glycolytic metabolic processes,

whereas macrophage M2 is more biased towards oxidative

phosphorylation (OXPHOS) metabolic processes, and under the

stimulation of lipopolysaccharides, the macrophage shifts from

OXPHOS metabolism to glycolytic metabolism, PDK1 is a

glycolytic enzyme, and when PDK1 is inhibited, glycolytic

metabolism is inhibited, and the oxidative phosphorylation

metabolic process is also strengthened, thus promoting the

macrophage M2. PPARG agonists promote macrophage M2

polarisation (37). When PPARG signaling is inhibited, it

promotes the macrophage transition from M2 to M1 (38),

suggesting a positive correlation between PPARG levels and

macrophage M2 levels, validating the accuracy of the findings of

this study. Tumor-associated macrophages (TAM) are populations

of macrophages that infiltrate into tumor tissue, including the M1

and M2 cell populations. TAM is closely associated with tumors,

with M1 acting as an anti-tumor agent and M2 inhibiting T cell-

mediated anti-tumor effects and promoting tumor formation

(39, 40). TAMs are derived from monocytes in the bone marrow,

and a variety of cytokines and chemokines can direct the migration

of monocytes to the tumor site (41), the growth of tumors can also

result in the transformation of CCR2+ monocytes into TAMs (42).

TAMs can modulate the cytotoxicity of T cells and NK cells towards

tumor cells. TAM can suppress the proliferation of CD8 T cells by

nitrogen species, iNOS, and oxygen radicals (43–45). In addition,

TAM can further inhibit the antitumor effects produced by T cells

by recruiting Treg cells via CCL22 (46). Chen et al.’s study (47)

showed that TAM promotes tumor growth by generating

inflammatory Th subpopulations to stimulate an inflammatory
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response in tumors. TAM is also regulated by other immune cells,

and Treg cells function to inhibit the release of IFN-g from CD8 T

cells (48), which is the main cytokine responsible for macrophage

M2 inhibition; thus, Treg indirectly and selectively maintains

metabolic fitness and survival of M2-like TAM. A study by

Kumar et al. (49) showed that myeloid-derived suppressor cells

(MDSC) could regulate TAM differentiation by down-regulating

STAT3, promoting tumor proliferation. In addition, B cells can also

induce macrophage M2 polarisation in tumors and inhibit T cells

and macrophage M1 from promoting tumor proliferation (50). The

role of Macrophages M0 for osteosarcoma is currently unclear (51).

Therefore, immunotherapy targeting macrophage transformation

may become a promising therapeutic strategy for the treatment

of osteosarcoma.

In recent years, immunotherapy has been a widely researched

therapeutic approach that has achieved excellent results in the

treatment of many types of cancer. Immune checkpoint inhibitors

(ICIs) are a form of immunotherapy that works by stimulating the

body’s immune system to combat cancer. This is achieved through

the inhibition of immune checkpoint molecules like programmed

cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1),

which play crucial roles in regulating the immune response.

programmed cell death ligand-1 (PD-L1) to activate the body’s

immune response to fight cancer. The results have been satisfactory

in the treatment of many cancers. Nevertheless, targeted PD-1/PD-

L1 therapy yields unsatisfactory outcomes in osteosarcoma (52),

possibly attributed to the distinct PD-1/PD-L1 regulation in the

tumor, commonly known as a “cold tumor” (53). Numerous studies

have indicated a relationship between elevated levels of PD-L1 and

unfavorable outcomes in osteosarcoma patients, yet the precise role

of PD-L1 in osteosarcoma pathogenesis remains ambiguous. It can

be seen from this study that most of the immune checkpoint-related

genes have higher gene expression in the low-risk scoring group and

lower gene expression in the high-risk scoring group, which

suggests that the risk model obtained in this study has

significance for the gene regulation of immune checkpoints. High

expression of these immune checkpoint-associated genes was

associated with better prognosis, whereas PDK1 was highly

expressed in the high-risk scores and was associated with poorer

prognosis, so PDK1 was negatively correlated with the expression of

immune checkpoint-associated genes, whereas PPARG was highly

expressed in the low-risk scores group, and, in contrast to PDK1,

PPARG was positively correlated with the expression of immune

checkpoint-associated genes. This may be because the tumor

microenvironment in the low-risk group was more amenable to

immune cell infiltration and activation, resulting in increased

expression of immune checkpoint molecules, reflecting good

immune surveillance of the tumor. High expression of immune

checkpoint genes is associated with a better clinical prognosis, and

we speculate that this may be because the immune system of

osteosarcoma patients can efficiently recognize the tumor and

develop an immune response, and because highly mutated genes

in osteosarcoma does not produce sufficient neoantigens that can

elicit an immune response so that targeted inhibition of PD-1/PD-

L1 therapy in osteosarcoma is unsatisfactory. Therefore, PDK1 and
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PPARG may become prognostic genes in osteosarcoma and may be

targets for subsequent regulation of ICI-related genes for

osteosarcoma treatment.

As we said above, mutations in TP53, RB1, and ATRX genes can

promote the growth, invasion, and metastasis of osteosarcoma,

which is a kind of ‘cold tumor’, and the microenvironment of

osteosarcoma can monitor the tumor well, and it is less responsive

to immune checkpoint blockade, which is confirmed by the

calculation of the TIDE score, so the effect of high TMB on

osteosarcoma is more inclined to promote the development of

osteosarcoma, resulting in a poorer prognosis of osteosarcoma

patients with high TMB.

In this study, the majority of IR-DEGs were found to be

overrepresented in T lymphocytes. It has been well-documented

in previous research that the infiltration and activation of T cells are

crucial in the therapeutic management of osteosarcoma, and that

adoptive T-cell therapy (ACT) has a promising future for the

treatment of osteosarcoma, whereas ICI activates the immune

system, ACT directly “tells” the T-cells the characteristics of the

tumor, and then attacks the tumor in a targeted manner. Based on

prior studies, it has been recognized that there are three primary

categories of penicillin combination treatments: chimeric antigen

receptor (CAR)-modified T cells, T cell receptor (TCR)-modified T

cells, and tumor-infiltrating lymphocytes (TILs) (54). Our research

findings indicate that there was a notable difference in the extent of

immune cell infiltration between the hyperimmune and

hyperimmune groups, with a marked increase in the

hyperimmune group. This heightened immune response was

correlated with a better survival outcome in the hyperimmune

group. Ten hub genes were obtained in this study, which were

significantly correlated with TILs and therefore they are highly

specific for targeting tumors. Combining ICI with TIL T-cells may

also be an effective option for individual therapy, and recent

findings by Wang et al. showed that TILs in combination with

anti-PD1 therapy demonstrated significant clinical efficacy in

patients with metastatic osteosarcoma compared to anti-PD1

therapy applied alone. The objective remission rate of this

combination regimen was almost five times higher than that of

single anti-PD1 therapy, while intermediate progression-free

survival and intermediate overall survival were also significantly

prolonged (55).

More and more studies are being conducted, and the present

study fully considers the effect of immune infiltration on

osteosarcoma and uses it for risk modeling, demonstrating

excellent prognostic specificity and providing a novel and

valuable tool for future research.
5 Strengths and limitations

The strength of this study is the use of bioinformatics to

investigate osteosarcoma from the perspective of immune

infiltration, which revealed that higher immune infiltration has a

better prognosis, and then concluded that two important genes,

PDK1 and PPARG, whose high or low expression is associated with
Frontiers in Immunology 13137
the prognosis of osteosarcoma, and whose effect on Macrophages

M0 and Macrophages M2 regulation also has a crucial impact and

can even regulate immune checkpoint-related genes. Subsequently,

a risk model was constructed using PDK1 and PPARG, and the risk

model provided a good prognosis prediction.

This study has some limitations. This study only used

computers and their related software to analyze the data, and it

still lacks relevant experimental validation. In our future work, we

will further expand the clinical samples and conduct animal or

human experiments to improve the study’s accuracy and lay a more

solid foundation for treating osteosarcoma.
6 Conclusions

From the above description of this study, it can be concluded

that a high Immune score is associated with a better prognosis in

osteosarcoma. Subsequently, several analyses were performed to

verify the effect of immune infiltration on osteosarcoma, firstly, the

samples were immuno-infiltrated using ssGSEA, and the samples

were divided into two groups based on the immune score, with the

group with high immune activation having a significant survival

advantage over the other group. Then, using a univariate COX

regression analysis and LASSO analyses, two genes, PDK1 and

PPARG, were obtained, and a risk model was constructed based on

the derived genes, in which PDK1 was positively correlated with the

risk score, and PPARG was negatively correlated with the risk score,

and through further analyses, we found that PDK1 was negatively

correlated with macrophage M2, and the opposite was true for

PPARG, and that the group with a high-risk score had a more high

TMB and their prognosis was poorer. We also analyzed immune

checkpoint-related genes, which were negatively correlated with

risk scores, suggesting that the osteosarcoma microenvironment has

good tumor surveillance and responds poorly to ICB treatment.

Finally, we also analyzed the TMB of the samples. We found that

high TMB was associated with low immune infiltration and that an

increased mutation rate increased the risk of osteosarcoma.

Therefore, the prognostic model obtained in this study is suitable

for further optimization and eventual clinical application.
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et al. Different tumor microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer Res. (2010) 70:5728–39.
doi: 10.1158/0008-5472.CAN-09-4672

44. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine
nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med.
(2011) 208:1949–62. doi: 10.1084/jem.20101956

45. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al. Tumor-
infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin
Invest. (2011) 121:4015–29. doi: 10.1172/JCI45862

46. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al.
Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune
privilege and predicts reduced survival. Nat Med. (2004) 10:942–9. doi: 10.1038/
nm1093

47. Chen MM, Xiao X, Lao XM, Wei Y, Liu RX, Zeng QH, et al. Polarization of
tissue-resident TFH-like cells in human hepatoma bridges innate monocyte
inflammation and M2b macrophage polarization. Cancer Discovery. (2016) 6:1182–
95. doi: 10.1158/2159-8290.CD-16-0329

48. Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, et al. Treg cells
promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages
via repression of CD8+ T cell-derived interferon-g. Immunity. (2019) 51:381–397.e6.
doi: 10.1016/j.immuni.2019.06.017

49. Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, et al.
CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and
promotes tumor-associated macrophage differentiation. Immunity. (2016) 44:303–15.
doi: 10.1016/j.immuni.2016.01.014

50. Roghanian A, Fraser C, Kleyman M, Chen J. B cells promote pancreatic
tumorigenesis. Cancer Discovery. (2016) 6:230–2. doi: 10.1158/2159-8290.CD-16-0100

51. Gong L, Sun X, Jia M. New gene signature from the dominant infiltration
immune cell type in osteosarcoma predicts overall survival. Sci Rep. (2023) 13:18271.
doi: 10.1038/s41598-023-45566-6

52. Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy
era. Br J Pharmacol. (2021) 178:1955–72. doi: 10.1111/bph.14999

53. Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, et al. Managing the immune
microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res.
(2023) 11:11. doi: 10.1038/s41413-023-00246-z

54. Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection
technologies for next-generation therapeutic T cell engineering. Biotechnol Adv. (2021)
49:107760. doi: 10.1016/j.bioteChadv.2021.107760

55. Wang C, Li M, Wei R, Wu J. Adoptive transfer of TILs plus anti-PD1 therapy:
An alternative combination therapy for treating metastatic osteosarcoma. J Bone Oncol.
(2020) 25:100332. doi: 10.1016/j.jbo.2020.100332
frontiersin.org

https://doi.org/10.3390/cancers11050712
https://doi.org/10.1038/s41389-020-0209-0
https://doi.org/10.1007/s13277-015-4024-8
https://doi.org/10.1038/onc.2013.383
https://doi.org/10.1186/s12967-022-03862-1
https://doi.org/10.1186/s12967-022-03862-1
https://doi.org/10.1101/2024.03.04.583402
https://doi.org/10.3389/fendo.2021.624112
https://doi.org/10.1186/1475-2891-13-17
https://doi.org/10.1038/s41419-017-0031-6
https://doi.org/10.1158/1078-0432.CCR-09-2499
https://doi.org/10.1186/s13020-024-00933-x
https://doi.org/10.1096/fj.202400126R
https://doi.org/10.1016/j.bbadis.2024.167333
https://doi.org/10.3389/fimmu.2020.583084
https://doi.org/10.1038/s41401-019-0262-4
https://doi.org/10.1038/nature07205
https://doi.org/10.1126/science.1252510
https://doi.org/10.1158/0008-5472.CAN-09-4672
https://doi.org/10.1084/jem.20101956
https://doi.org/10.1172/JCI45862
https://doi.org/10.1038/nm1093
https://doi.org/10.1038/nm1093
https://doi.org/10.1158/2159-8290.CD-16-0329
https://doi.org/10.1016/j.immuni.2019.06.017
https://doi.org/10.1016/j.immuni.2016.01.014
https://doi.org/10.1158/2159-8290.CD-16-0100
https://doi.org/10.1038/s41598-023-45566-6
https://doi.org/10.1111/bph.14999
https://doi.org/10.1038/s41413-023-00246-z
https://doi.org/10.1016/j.bioteChadv.2021.107760
https://doi.org/10.1016/j.jbo.2020.100332
https://doi.org/10.3389/fimmu.2024.1423194
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chih-Hao Chang,
Jackson Laboratory, United States

REVIEWED BY

Shuheng Bai,
The First Affiliated Hospital of Xi’an Jiaotong
University, China
Rupa Kumari,
University at Buffalo, United States

*CORRESPONDENCE

Kaixiong Tao

kaixiongtao@hust.edu.cn

Wei Li

liwei7962@hust.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 30 April 2024
ACCEPTED 18 November 2024

PUBLISHED 06 December 2024

CITATION

Zhang R, Gao Y, Li C, Tao R, Mao G, Song T,
Nie W, Liu S, Tao K and Li W (2024)
Hypoxia reconstructed colorectal tumor
microenvironment weakening anti-tumor
immunity: construction of a new
prognosis predicting model through
transcriptome analysis.
Front. Immunol. 15:1425687.
doi: 10.3389/fimmu.2024.1425687

COPYRIGHT

© 2024 Zhang, Gao, Li, Tao, Mao, Song, Nie,
Liu, Tao and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 December 2024

DOI 10.3389/fimmu.2024.1425687
Hypoxia reconstructed
colorectal tumor
microenvironment weakening
anti-tumor immunity:
construction of a new prognosis
predicting model through
transcriptome analysis
Ruizhi Zhang1†, Yisong Gao1†, Chong Li1, Ruikang Tao2,
Gan Mao1, Tianyu Song1, Wenxiang Nie1, Suao Liu1,
Kaixiong Tao1* and Wei Li1*

1Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Center for Biomolecular Science and Engineering,
University of California Santa Cruz, Santa Cruz, CA, United States
Background: Hypoxia in the tumor microenvironment (TME) plays a pivotal role

in the progression and prognosis of colorectal cancer (CRC). However, effective

methods for assessing TME hypoxia remain lacking. This study aims to develop a

novel hypoxia-related prognostic score (HPS) based on hypoxia-associated

genes to improve CRC prognostication and inform treatment strategies.

Methods: Transcriptomic data from CRC patients were analyzed using Lasso

regression to identify hypoxia-associated genes with the strongest prognostic

significance. The identified genes were validated in vitro by assessing their

expression under normoxic and hypoxic conditions in normal intestinal

epithelial cells and CRC tumor cell lines. Functional relevance was explored

through differential gene expression analysis, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-

protein interaction (PPI) network construction. The association of HPS with

extracellular matrix (ECM) composition, immune cell infiltration, and immune

suppression was also investigated.

Results: Seven hypoxia-associated signature genes were identified, each

demonstrating a strong correlation with CRC prognosis. The hypoxia-

related prognostic score (HPS), derived from these genes, was significantly

linked to changes in the TME. Specifically, HPS values were associated with

alterations in ECM composition and distinct immune cell infiltration patterns.

Higher HPS values corresponded to increased infiltration of immune-

suppressive cells and reduced presence of anti-tumor immune cells. This

imbalance promoted an immune-suppressive TME, facilitating tumor

progression and immune evasion.
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Conclusions: The hypoxia-related prognostic score (HPS) captures the

regulatory influence of TME hypoxia on immune responses, offering valuable

insights into its role in tumor progression. HPS holds promise as a prognostic tool

and a guide for developing personalized treatment strategies in CRC.
KEYWORDS

hypoxia, colorectal cancer, tumor microenvironment immunity, extracellular
matrix, WGCNA
1 Introduction

Hypoxia, a critical component of the tumor microenvironment,

is a result of imbalance between increased oxygen usage and

insufficient oxygen supply drove by rapid and unlimited growth of

tumor cells and lack of blood supply (1). This reciprocal interplay

affects patient outcomes across various tumor types, significantly

influencing tumor prognosis (2). Microenvironmental hypoxia is a

factor that affects the prognosis of patients with various malignancies,

including colorectal cancer (CRC) (3–5).

Hypoxia plays a pivotal role in driving tumor progression,

orchestrating the growth and differentiation of tumor cells

through various molecular mechanisms. Proliferation, invasion,

and epithelial-mesenchymal transition of cancer cell are all

associated with hypoxia and are closely linked to local tumor

progression and distant metastasis (6–8). Moreover, hypoxia is

involved in regulating different forms of tumor cell death,

including apoptosis (9). Hypoxic cancer cells exhibit decreased

levels of apoptosis and ferroptosis while autophagy levels increase,

promoting their adaptation to the hypoxic TME (10–12).

Beyond its influence on cancer cells, hypoxia exerts significant

effects on various other cells within the TME, including interstitial

and immune cells. Hypoxia suppresses both the infiltration and

functionality of immune cells, thereby critically influencing the

tumor immune within the tumor microenvironment (13, 14).

Furthermore, hypoxia can alter the matrix composition within the

TME, leading to its remodeling (3).

Despite the critical role of TME hypoxia in tumor progression,

detection techniques remain relatively inadequate (4). Surgical

specimens are evaluated for hypoxia using immunohistochemistry or

immunofluorescence to detect HIF1a expression (15). Although

pimonidazole staining is utilized in animal experiments for hypoxia

assessment, its clinical application remains limited (16). In our study, to

enhance the assessment of hypoxia within the TME, obtain more

precise tumor molecular classifications, and subsequently optimize the

treatment of CRC patients, LASSO regression was employed. This

method allowed us to screen for prognosis-associated genes, integrating

clinicopathological characteristics to predict patient outcomes.

Furthermore, we explored the mechanistic underpinnings of these

genes through functional analysis.
02141
2 Materials and methods

2.1 Data collection and preprocessing

Expression profiles of the GSE17536 and GSE14333 datasets were

downloaded from the Gene Expression Omnibus database (GEO).

The GEO dataset GSE17536 included 177 CRC samples, and the

other GEO dataset GSE14333 included 290 CRC samples. TCGA-

COAD and GTEx transcriptome cohort data were downloaded from

the UCSC Xena website (https://xenabrowser.net/datapages/). The

TCGA dataset included 616 CRC samples, and the GTEx dataset

included 686 non-diseased colon tissue samples. All raw data were

normalized and standardized using the R software packages

including “limma” and “DESeq2”.
2.2 Single sample gene set
enrichment analysis

The R package “GSVA” facilitated single-sample gene set

enrichment analysis (ssGSEA) to investigate tumor-related

pathway enrichment and immune cell infiltration within the

GSE17536 dataset. We sourced tumor-related datasets from the

hallmark gene sets in the MSigDB database [https://www.gsea-

msigdb.org/gsea/msigdb].
2.3 Weighted gene co-expression
networks analysis

The weighted gene co-expression network analysis (WGCNA)

was constructed using the GSE17536 dataset. Among all the

soft threshold values, we selected the b value with the highest

mean connectivity (b = 13). The minimum number of genes was

set at 30 to ensure the high reliability of the results. All genes

were then divided into modules, each named by a different color.

For further quantification of hypoxia-related genes and modules,

only genes with a p-value of less than 0.001 were retained for

subsequent analysis.
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2.4 Establishment and validation of a
colorectal cancer prognostic
predictive signature

Univariate Cox regression analysis identified cancer hallmarks

related to disease-specific survival (DSS) and overall survival (OS).

We applied Lasso penalized Cox regression analysis to select hypoxia-

related genes associated with prognosis. Subsequently, we used the

LASSO Cox regression model to identify genes highly correlated with

hypoxia and to construct the hypoxia-related prognosis score (HPS).

We calculated the HPS score for each patient using the formula: HPS

score =∑(coefficient × mRNA expression).
2.5 Construction of nomogram for
colorectal cancer prognosis prediction

Hypoxia score and relevant clinical parameters were used to

construct a nomogram, using the “survival” and the “rms” package

of R. The nomogram was constructed to estimate 1-, 3-, and 5-year

survival probabilities. Themodel’s performance was evaluated by using

the calibration curve and C-index to assess the survival probabilities.
2.6 Gene set enrichment analysis

The function of hypoxia-related genes was explored using gene set

enrichment analysis (GSEA). Differential gene expression profiles in

the training and validation cohorts were analyzed using the R software

package “clusterProfiler” (17). P-values < 0.05 and FDR p-values <

0.25 were considered significant. Permission must be obtained for use

of copyrighted material from other sources (including the web). Please

note that it is compulsory to follow figure instructions.
2.7 Differential expression of genes and
protein-protein interaction analyses

We performed DEG analysis using the “limma” R package on

the GSE17536, GSE14333, TCGA-COAD, and GTEx cohorts.

Genes with an adjusted P-value < 0.05 and an absolute log2 fold

change (FC) > 0.5 were identified as DEGs.

Protein-coding genes in the DEG were used to construct a PPI

network using common transcripts, employing STRING with all

parameters set to their default values (https://cn.string-db.org/).

Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses were also performed through

STRING using the DEGs.
2.8 Stromal and immune cells infiltration

The ESTIMATE algorithm was employed to identify the tumor

microenvironment, and the ESTIMATE, immune, and stroma

scores were calculated using the R software package “estimate”

(18). The cellular composition of stromal and immune cells in the

tumor within the GSE17536 dataset was estimated using the R
Frontiers in Immunology 03142
software package “xCell” (19). Scores for immune and stromal cells

were calculated for each sample. Additionally, the CIBERSORTx

online platform (https://cibersortx.stanford.edu/) was utilized to

assess the infiltration of 22 immune cell types in each sample (20).
2.9 Cell lines, antibodies, and chemicals

All cell lines were obtained from the Cell Bank of Shanghai,

Institutes for Biological Sciences, China, and tested negative for

mycoplasma infection. These cells were cultured in DMEM medium

or RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA,

USA), supplemented with 10% fetal bovine serum (Thermo Fisher

Scientific, Waltham, MA, USA), at 37°C in a humidified atmosphere

containing 5% CO2. 5% O2 hypoxic cell culture was performed by

incubating cells in a sealed container with a Mitsubishi AnaeroPack™

anaerobic gas generator (Mitsubishi Gas Chemical Co., Tokyo, Japan).

Hypoxic conditions were verified with the use of a Mitsubishi RT

Anaero-Indicator (Mitsubishi Gas Chemical Co., Tokyo, Japan).

Antibodies against HIF1a and b-actin were purchased from

Cell Signaling Technology (Danvers, MA, USA). Antibodies

against ACTA2, ACTN1, CAVIN3, CEP170, LTBP1 and

POSTN were purchased from Proteintech Group (Rosemont, IL,

USA), Antibody against PCSK5 was purchased from CUSABIO

(Wuhan, Hubei, China). Antibodies were diluted according to

manufacture instructions.
2.10 Protein extraction and
western blotting

The cells were washed with PBS and trypsinized, neutralization

with serum-supplemented media, washed with PBS, and resuspended

in RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA). A 1% protease

inhibitor cocktail (Halt™ Protease Inhibitor Cocktail, EDTA-Free,

Thermo Fisher Scientific) was added to the mixture. The lysate was

collected by centrifugation at 12,000 rpm at 4°C for 15minutes. The

supernatant was transferred to a new tube, and its concentration was

determined using the BCA protein quantification assay. The

supernatant was mixed with loading buffer (Sigma-Aldrich, St.

Louis, MO, USA) and denatured by boiling at 95 °C.

Samples were subjected to SDS-PAGE gel electrophoresis, and

proteins were subsequently transferred to PVDF membranes. The

membranes were blocked with 5% non-fat milk in TBST and then

incubated with specific antibodies overnight at 4°C with gentle

agitation. Following washing, the membranes were incubated with

HRP-conjugated secondary antibodies. Protein bands were

visualized using chemiluminescent substrates.
2.11 Total RNA extraction and quantitative
real-time PCR

Total RNA was extracted from cells using TRIzol Reagent (Takara,

Kusatsu, Japan) following the manufacturer’s instructions. After

assessing quality and quantity, samples were then stored at –80°C.
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The extracted RNA was reverse-transcribed into cDNA using

PrimeScript™ RT Master Mix (Takara, Kusatsu, Japan). The

resulting cDNA was stored at –20°C for further analysis.

Gene expression levels were quantified using qRT-PCR with

gene-specific primers and the One Step SYBR PrimeScript RT-PCR

Kit II (Takara, Kusatsu, Japan). The qRT-PCR reaction conditions

followed the manufacturer’s instructions. Expression levels were

normalized to b-actin, and relative quantification was performed

using the 2^-DDCt method.
2.12 siRNA-mediated RNA interference

Two siRNAs for each targeting human PCSK5 and POSTN

(designated as si-PCSK5_1, si-PCSK5_2, si-POSTN_1, and si-

POSTN_2) and a nontargeting control siRNA were purchased

from RiboBio (Guangzhou, Guangdong, China). The siRNA

target sequences were as follows: si-PCSK5_1: GCAAGTACG

GATTCATCAA, si-PCSK5_2: CGGGACATTTGAACGCTAA, si-

POSTN_1: GCACTTGTAAGAACTGGTA, and si-POSTN_2:

GCTCAGAGTCTTCGTATAT. For transfection, Lipofectamine

3000 (Invitrogen, Carlsbad, CA, USA) was used according to the

manufacturer’s instructions. After 48 hours, some of the cells were

harvested for Western blot analysis to assess the effects of

siRNA inhibition.
2.13 In vitro migration assay

Cell migration was assessed using Transwell chambers (Corning,

NY, USA). Suspensions of 10 × 10^4 cells in 200 µL of serum-free

medium were added to the upper chamber, while the lower chamber

contained medium with 10% FBS. After 16–24 hours, the cells were
Frontiers in Immunology 04143
washed with PBS and fixed in 4% paraformaldehyde. The cells on the

upper polycarbonate membranes were gently wiped with cotton

swabs. The migrating cells were stained with crystal violet and then

counted in four random fields under a light microscope.
2.14 Statistical analysis

Statistical analysis was conducted using R software. Forest plots

were generated using univariate or multivariate Cox proportional

hazard regression to calculate the hazard ratio (HR). The Kaplan-

Meier method was employed for survival analysis. The Wilcoxon

test was used to assess differences between groups. Statistically

significant differences were indicated as follows: *p < 0.05; **p

<0.01; ***p < 0.001; NS indicates not significant.
3 Results

3.1 Hypoxia is an important prognostic
factor in patients with colorectal cancer

RNA-seq data from the GSE17536 dataset were utilized to calculate

the ssGSEA scores for cancer hallmark pathways. Significant

associations with prognosis were observed for hypoxia (HR: 6.14,

95% CI: 2.13–17.67, p = 0.001), TGF-b pathway (HR: 3.98, 95% CI:

1.32–12.01, p = 0.014), KRAS upregulation pathway (HR: 3.73, 95% CI:

1.26–11.03, p = 0.017), and PI3K-AKTmTOR pathway (HR: 0.25, 95%

CI: 0.08–0.76, p = 0.014) (Figure 1A). Patients were categorized into

two groups based on their prognosis. Those with a worse prognosis

exhibited higher hypoxia scores (p < 0.001) (Figure 1B). Subsequently,

patients were stratified into high-risk and low-risk groups using the

median hypoxia score as the threshold. The high-risk group

demonstrated significantly poorer survival (p = 0.011) (Figure 1C).
FIGURE 1

Hypoxia as a major prognostic factor in CRC patients. (A) Forest plot showing hazard ratios (HR) from univariate Cox regression for 20 cancer
hallmark pathways in CRC patients. HRs and 95% confidence intervals (CIs) were calculated, with statistical significance assessed by the Wald test (p-
value). Pathways with p > 0.05 are labeled “N.S.” (not significant), HR > 1 as “Risky,” and HR < 1 as “Protective.” Error bars represent 95% CIs. (B) The
boxplot shows the distribution of risk scores across DSS groups in CRC patients, including median values and interquartile ranges (IQR). Statistical
significance was assessed using the Wilcoxon test (p < 0.01), with higher hypoxia scores associated with worse survival outcomes. (C) Kaplan-Meier
survival curves for high-risk and low-risk CRC patients, stratified by risk score. Statistical significance was assessed by the log-rank test (p < 0.05),
with higher hypoxia scores associated with poorer prognosis.
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FIGURE 2

Construction of CRC prognosis prediction model using LASSO regression. (A) Determination of the correlation between modules and prognostic
cancer hallmarks, including hypoxia, using module-trait correlation analysis. Correlations between module eigengenes (MEs) and cancer hallmarks
were visualized using a heatmap. Pearson correlation coefficients were calculated between MEs and cancer hallmarks, and the corresponding p-
values were obtained using the Student’s t-test. (B) Correlations between genes in the blue module and hypoxia, with gene module membership
(GMM) and gene trait significance (GTS) calculated for hypoxia-related traits. (C) LASSO coefficient profiles for hypoxia-related prognostic differential
expressed genes. The coefficient values for the selected genes were plotted against the penalty parameter (lambda). (D) Cross-validation curve for
the LASSO regression model, used to determine the optimal penalty parameter (lambda) for prognostic gene selection. (E, F) Distribution of the
Hypoxia-related Prognostic Score (HPS) which was calculated based on the expression of seven hypoxia-related signature genes across CRC
patients, along with their survival status and survival time showing worse prognosis following higher HPS. (G) Expression profiles of the seven
signature genes in high- and low-risk patient groups, stratified by their HPS and visualized using a heatmap. (H) Kaplan-Meier survival curve for CRC
patients stratified into high-risk and low-risk groups based on their HPS. Statistical significance was assessed by the log-rank test (p < 0.01). (I) Time-
dependent ROC curves for the HPS at 1-, 3-, and 5-year time points in the training dataset (GSE17536). The area under the curve (AUC) values
indicated the prognostic performance of the HPS.
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3.2 Construction of a hypoxia-related
score using WGCNA clustering and LASSO
regression model to predict the prognosis
of colorectal cancer patients

Using WGCNA, genes were categorized into 16 modules based

on their correlation, with the blue module exhibiting the

strongest association with hypoxia (Figures 2A, B; Supplementary

Figures 1A, B). Univariate Cox analysis identified genes linked to

patient prognosis, and LASSO regression analysis subsequently

pinpointed 7 genes of interest (ACTA2, ACTN1, CAVIN3,
Frontiers in Immunology 06145
CEP170, LTBP1, PCSK5, and POSTN). Based on the expression

levels of these genes, we developed a novel hypoxia-related

prognostic score (HPS) (Figures 2C, D). Patients were stratified

into two groups using the median HPS, revealing significant

differences in prognosis (p < 0.001), with the high-risk group

faring worse. The distribution of HPS also varied significantly

among patients with different prognoses (p < 0.001) (Figures 2E–

H; Supplementary Figure 1C). Analysis of the 7 HPS signature gene

expressions in colorectal cancer tumors versus normal tissues, using

TCGA and GTEx databases, showed a marked difference

(Supplementary Figure 1D). The ROC curves for 1-, 3-, and 5-
FIGURE 3

Prediction of CRC prognosis by combining clinicopathological features with HPS. (A) Distribution of Hypoxia-related Prognostic Score (HPS) across
AJCC stages I-IV. Statistical analysis (Wilcoxon test, p < 0.05) revealed significantly higher HPS in advanced stages. (B) Distribution of HPS across
different differentiation grades (well-differentiated, moderately differentiated, and poorly differentiated) in CRC patients. Data are presented as dot
plots, with statistical significance assessed by the Wilcoxon test. (C) Alluvial diagram showing the relationships between AJCC stage, differentiation
grade, and HPS risk group. (D) Nomogram integrating clinicopathological features and HPS for predicting 1-, 3-, and 5-year overall survival (OS) in
CRC patients, based on a multivariate Cox regression model. (E) Time-dependent ROC curves of the nomogram at 1-, 3-, and 5-year time points in
the GSE17536 training dataset, with AUC values indicating prognostic performance. (F) Boxplot of HPS distribution in different prognosis groups in
the GSE14333 validation dataset. Wilcoxon test (p < 0.01) showed higher HPS in poor prognosis groups. (G) Time-dependent ROC curves of HPS at
1-, 3-, and 5-year time points in the GSE14333 dataset, with AUC values assessing HPS’s prognostic accuracy. (H) Kaplan-Meier survival curves for
high-risk and low-risk groups based on HPS in GSE14333. Log-rank test (p < 0.01) showed significantly worse survival in the high-risk group.
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year overall survival (OS) based on HPS yielded areas under the

curve of 0.6768, 0.6697, and 0.6842, respectively (Figure 2I).
3.3 Combining clinicopathological features
with HPS to construct a nomogram
predicting the prognosis of CRC patients

The distribution of HPS in CRC patients varied across different

AJCC clinical stages, with later stages showing higher HPS

(Figures 3A, B). The distribution of HPS in CRC patients with

various clinicopathological characteristics is depicted in alluvium

plots (Figure 3C). The study created a nomogram that integrates

HPS with clinicopathological characteristics to predict prognosis

(Figure 3D). The areas under the ROC curves for 1-, 3-, and 5-year

OS of nomogram in CRC were 0.882, 0.860, and 0.855, respectively

(Figure 3E). The nomogram predicted outcomes were largely

consistent with the actual outcomes (Supplementary Figure 1E).

To confirm the predictive capability of this score, the study applied

HPS to forecast the prognosis of CRC patients in the validation set

GSE14333. The distribution of HPS among patients with different

prognoses was distinct (p < 0.001), and a statistically significant

difference in prognosis was noted between the high- and low-risk

HPS groups (p = 0.0015) (Figures 3F, H). The areas under the ROC

for 1-, 3-, and 5-year OS of HPS were 0.6037, 0.6841, and 0.6746,

respectively (Figure 3G).
3.4 Hypoxia changes HPS signature gene
expression in normal intestinal epithelial
cells and CRC cells in different patterns

To further investigate the molecular mechanisms of hypoxia

regulation in the CRC TME, we treated human normal intestinal

epithelial cells (FHC) and five human CRC epithelial cell lines

(HCT116, HT-29, LOVO, SW480, and SW620) with hypoxia in

vitro. We analyzed HIF1a protein expression via western blot to

confirm the successful construction of the hypoxia model

(Supplementary Figure 2A). Subsequently, we conducted qRT-PCR

on the hypoxic cell lines to assess the expression of sevenHPS signature

genes (ACTA2, ACTN1, CAVIN3, CEP170, LTBP1, PCSK5 and

POSTN). We observed that ACTN1 and CAVIN3 were slightly

upregulated in FHC cells post-hypoxia, while the CRC cell lines

exhibited varying degrees of upregulation, which was more

pronounced than in FHC cells (Figure 4A). The marked disparity in

gene expression changes between FHC and CRC cell lines following

hypoxia indicates that the responses of normal intestinal epithelial cells

and CRC cell lines to TME hypoxia are distinct (Supplementary

Figure 2B). Further analysis of gene expression in both normal

intestinal epithelial cell lines and tumor cell lines under normoxic

conditions revealed significant differences in signature gene expression

patterns between FHC and CRC cell lines (Figure 4B).

We conducted Western blot analysis to further explore the

differences in protein expression between FHC and CRC cell lines

under hypoxic conditions. The results indicated that the protein

levels of all signature genes were altered following hypoxia, showing
Frontiers in Immunology 07146
a high degree of consistency with our qRT-PCR findings

(Figure 4C). Additionally, after knocking down POSTN and

PCSK5 in CRC cell lines (HCT116 and LOVO) using siRNAs,

our in vitro cell migration assays demonstrated that both genes are

involved in the migration of CRC cells (Supplementary

Figures 2C–E).
3.5 Functional enrichment analysis of
differentially expressed genes identified by
HPS risk model

After differential gene expression analysis between high- and

low-risk groups and a GSEA enrichment analysis revealed that, in

addition to the hypoxia pathway (p < 0.001), immune-related

pathways such as inflammatory response (p < 0.001), interferon-g
response (p < 0.001), complement pathway (p < 0.001), and NF-kB-
mediated TNF-a pathway (p < 0.001) were significantly enriched in

the high-risk group (Figures 5A, B; Supplementary Figure 3A).

Significant differences were observed in the expression patterns of

genes related to immunotherapy among DEGs, although no

significant differences were detected in the expression of the

immune checkpoint inhibitor (ICI) genes CD274, PDCD1, and

CTLA-4 (Figure 5C; Supplementary Figure 3B).Furthermore, the

protein-protein interaction (PPI) analysis and GO enrichment

analysis of protein-coding genes with the most significant changes

in DEGs indicated that pathways were primarily enriched in the

migration and chemotaxis of immune cells and the composition

and structure of extracellular matrix (Figures 5D, E; Supplementary

Figure 3C), suggesting that hypoxia has an influence on immune

cell migration, thereby affecting the TME.
3.6 HPS risk is negatively related with
immune response in TME

To discover how HPS risk is correlated with tumor immune, we

performed xCell analysis to assess the infiltration of non-cancer

cells in the TME, and its correlation with HPS was examined. In the

analysis of different cell subsets, HPS showed a positive correlation

with myeloid-derived immune cells (Supplementary Figure 4A) and

a negative correlation with lymphoid-derived immune cells

(Figure 6A). HPS was also positively correlated with most stromal

cells and associated with other stem cells and some other cell types

(Supplementary Figures 4B, C, D). The distribution of myeloid-

derived immune cells, lymphoid-derived immune cells, and stromal

cells between the high- and low-risk groups were further analyzed,

revealing fewer myeloid-derived immune cells and stromal cells in

the low-risk group, while lymphoid-derived immune cells were

more abundant (Figure 6B, Supplementary Figures 4E, F).

Additional analysis of immune cell infiltration using CIBERSORT

indicated that macrophage infiltration predominated in the

microenvironment (Supplementary Figures 5A, B). Notably,

infiltration by undifferentiated macrophages and M2 macrophages

significantly decreased in the low-risk group (Figure 6C,

Supplementary Figure 5C). The linear correlation analysis
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FIGURE 4

Different impacts of hypoxia on the expression of HPS signature genes in normal intestinal epithelial and CRC cells. (A) RT-PCR analysis of mRNA
expression changes in HPS signature genes under hypoxic conditions in FHC normal intestinal epithelial cells and five colorectal cancer (CRC) cell
lines (HCT116, HT29, LOVO, SW480, SW620). Total RNA was extracted from cells exposed to hypoxia. Data are presented as mean with error bars
representing standard deviation (SD) from three biological replicates. Statistical significance was assessed using ANOVA, with *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns, not significant. (B) Expression profiles of HPS signature genes in FHC and CRC cell lines (HCT116, HT29, LOVO,
SW480, SW620) following hypoxia. Data are presented as mean with error bars representing SD from three biological replicates. Statistical
significance was assessed using ANOVA, with *p < 0.05; **p < 0.01; ***p < 0.001 indicating significant differences between groups. (C) Western blot
analysis of protein expression changes in HPS signature genes following hypoxia in FHC and CRC cell lines. Cells were exposed to hypoxia, and
protein lysates were analyzed by western blotting.
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between HPS and immune cell infiltration demonstrated that the

hypoxia score was significantly positively correlated with

undifferentiated macrophages but negatively correlated with the

infiltration of cytotoxic CD8 + T cells and plasma cells (Figure 6D).
4 Discussion

Tumors require significant amounts of oxygen and nutrients to

support their rapid proliferation. However, due to insufficient

tumor blood vessel density and dysfunctional vascular structure,

tumor cells are often in a hypoxia state. To progress, tumor cells

evolve various mechanisms to adapt to hypoxic environments,

involving alterations in metabolic pathways, regulation of gene

expression, as well as interactions with other cells or tissues (2,

21–24). In this study, through a series of bioinformatics analyses, we

found seven hypoxia-associated signature genes with the most

significant prognostic impact on colorectal cancer patients and
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established a hypoxia-related prognosis score (HPS) for CRC

based on this signature gene set. In vitro, we observed significant

differences in the signature gene expression among normal and

cancer cell lines under hypoxia condition, which confirmed the

malignant predictive value of this HPS model.

TME hypoxia could mediate immune evasion of cancer cells via

multiple mechanisms. Hypoxia has been shown to modulate the

expression of cytokines and effector molecules of immune cells,

inhibiting their cytotoxic function (13, 14, 21, 25). In this study,

HPS was showed to be associated with immune cytokine pathways in

tumor microenvironment. However, the current study found no

significant difference in the expression of immunotherapy-related

molecules PD-1/PD-L1 or CTLA-4 between the low HPS and high

HPS group, which suggested that high HPS might not directly

promote immunosuppression by altering expression of ICI-related

molecules. Hypoxia may mediate the infiltration and distribution of

immune cells in the TME by affecting their migration and chemotaxis

and there is an inverse relationship between the degree of hypoxia
FIGURE 5

Effect of hypoxia on the expression of genes is related to tumor immune response and extracellular matrix construction. (A) Heatmap of differentially
expressed genes between high- and low-risk groups based on HPS. Genes were selected based on fold change and statistical significance. (B) Gene
Set Enrichment Analysis (GSEA) of immune-related pathways in high- and low-risk groups, showing significantly enriched pathways. (C) Differential
expression of immunotherapy-related genes between high- and low-risk groups. Statistical significance was assessed using the t-test with FDR
adjustment (**p < 0.01, ***, p < 0.001, ****, p < 0.0001). (D) The four most significantly altered protein-protein interaction (PPI) networks, identified
using STRING database (https://cn.string-db.org/), highlighting key interactions between differentially expressed genes. (E) Gene Ontology (GO)
functional enrichment analysis of the PPI network, showing the most enriched biological processes, molecular functions, and cellular components.
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and CD8+ T cell infiltration (16). In our study, HPS was found

positively correlated to MDSCs and negatively correlated to NK cells

and tumor killing T cells, suggesting that different HPS groups might

have different immune cell infiltration thereby leading to an immune

suppression environment. Further CIBERSORT infiltration analysis

showed that high HPS group exhibited higher overall immune cell
Frontiers in Immunology 10149
infiltration and this increase was predominantly observed in

suppressive immune cell subsets such as Treg cells and MDSCs.

Meanwhile, the infiltration of tumor killing immune cells such as NK

cells and gdT cells was found decreased. All these findings emphase

our hypoxia-related prognosis score denoted an immunosuppressive

microenvironment for tumor.
FIGURE 6

HPS is correlated with TME components. (A) Correlation between HPS and the infiltration of lymphoid-derived immune cells, assessed using the
xCell algorithm. The correlation coefficients are shown, with statistical significance indicated by asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001).
(B) Infiltration of lymphoid-derived immune cells in high- and low-risk groups, analyzed using the t-test. Statistical significance is indicated by
asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001). (C) Immune cell infiltration in high- and low-risk groups as determined by
CIBERSORT. Statistical significance was assessed using the Kruskal-Wallis test, with p-values indicated as: *p < 0.05; **p < 0.01; ***p < 0.001; ****p
< 0.0001; ns, not significant. Error bars represent the interquartile range (IQR). (D) Linear correlation between HPS and immune cell infiltration levels
in the tumor microenvironment as determined by CIBERSORT. Statistical significance was assessed using Pearson’s correlation test, with p-values
indicating the strength of the correlation.
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Hypoxia may also indirectly alter immune cell infiltration by

regulating the composition of the extracellular matrix (25, 26). Our

PPI data revealed significant differences in collagen gene expression

across different HPS groups, which supported the role of hypoxia in

matrix regulation. Previous studies have discovered that

macrophage infiltration contributes to the remodeling of the

extracellular matrix (27). Through CIBERSORT analysis, we

found increase macrophage infiltration in high HPS group

compared to low HPS group, suggesting the immunosuppressive

microenvironment in high HPS group might be related to

extracellular matrix modification. In addition, both our findings

and earlier researches support that alterations in the extracellular

matrix composition could affect T-cell entrapment and function

leading to immunosuppression (27).

Our study confirmed the significant impact of hypoxia on CRC

outcomes via transcriptomic analysis. Notably, it suggested that the

unique effects of hypoxia on the extracellular matrix and immune

cell infiltration might lead to varying patient prognoses. Revealing

the importance that hypoxia in the TME might contribute to a

potential targeted approach, such as hyperbaric oxygen, to reverse

tumor favoring TME. When combined with immunotherapy,

reversing hypoxia could enhance outcomes for CRC patients.
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