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Editorial on the Research Topic

Spotlighting the interaction network of hub genes, molecules, and cells
in the tumor immune microenvironment (TIME) and their contribution to
malignant progression

The tumor immune microenvironment (TIME) is a complex and dynamic network that
comprises diverse elements, including various cell types, extracellular matrix components, and
secreted molecules. These components interact with each other and deeply influence malignant
phenotypes and therapeutic responses (1). For example, cancer cells can evade each step of the
cancer immunity cycle by interacting with various immune cells (2). They can induce the
recruitment of immunosuppressive cells, such as regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs), which could inhibit the activation and function of cytotoxic cells like
T cells and natural killer (NK) cells (3). Furthermore, some tumor-associated macrophages
(TAMs) can develop into a pro-tumor and immunosuppressive phenotype in response to
tumor-derived signals (4). Besides, TIME has an impact on genomic instability and
angiogenesis, and these alterations can jointly attenuate the therapeutic efficacy, especially
immunotherapy for cancer (5). Therefore, we established the Research Topic to encourage
researchers to focus on and further investigate the complex interactions within the TIME and
their implications for cancer progression and treatments.

The Research Topic includes seven original articles and three reviews with a wide range
of diverse cancer types. Three original articles focused on the tumor microenvironment
(TME) and relevant molecules in hepatocellular carcinoma (HCC) from different
perspectives. Gong et al. identified distinct molecular subtypes associated with
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Li et al.

neutrophils in HCC, exhibiting significant differences in prognosis,
clinical pathological characteristics, inflammation-related
pathways, and immune-related features. Furthermore, the authors
constructed a neutrophil-derived signature (NDS) to predict overall
survival and efficacy of immunotherapy and chemotherapy for
HCC patients using machine learning approaches. Additionally,
Xu et al. reported two distinct m®A modification patterns based on
the 23 m°A regulators, and the two m°A subtypes correlate with
different clinical outcomes and biological features. Subsequently,
they developed an m°A risk score model to improve survival
prediction and estimation of drug responses for HCC patients.
Moreover, Ouyang et al. conducted a comprehensive bioinformatics
analysis to evaluate both the expression and mutation patterns of
PANoptosis-related genes (PRGs) in HCC, and a PANoptosis risk
model was constructed to offer a precise prediction of clinical
outcomes and therapeutic sensitivity for HCC patients. The
authors then performed experiments to validate the expression
profiles and biological functions of their identified hub genes
involved in the PANoptosis-related gene signature.

Despite different malignancies (osteosarcoma and chronic
myeloid leukemia), the studies of Wu et al. and Zhong et al.
shared similar ideas in investigating TME and implications for
cancer treatment. They focused on differentially expressed genes
(DEGs) and then identified different clusters with distinct
immunological properties based on their expression profiles. They
also commonly performed LASSO regression analysis to screen for
key biomarkers of diagnosis or prognosis. Furthermore, sensitive
drugs for specific subtypes or high-risk populations were
investigated for precise treatment.

As regards immunosuppression, Bi et al. found that high
expression of CDKL3 in esophageal cancer (ESCA) was not only
associated with poor prognosis but also negatively correlated with
the abundance of tumor-infiltrating immune cells and anti-tumor
immune response. These findings suggest CDKL3 as an
immunosuppressive molecule in the TME of ESCA. The authors
also reported that the knockdown of CDKL3 in ESCA cells could
inhibit autophagy induction and M2 macrophage polarization.
Hypoxic TME is also a critical factor in the progression and
outcome of solid cancers (6). To explore its influence on tumor
progression and therapy outcome, Zhang et al. utilized Lasso
regression to analyze transcriptomic data of patients with
colorectal cancer (CRC) and identified seven robust hypoxia-
associated genes. Based on these genes, the authors further
established a novel prognostic score for CRC called the hypoxia-
related prognosis score (HPS), and they found that HPS is
significantly related to different extracellular matrix compositions,
various immune cell infiltration, and suppressive immune response.
The two articles suggest that some immunosuppressive factors
involved in TME play important roles in shaping tumor
progression, therapeutic resistance, and patient outcomes in solid
cancers. These findings highlight the complexity of the TME in
modulating immune responses and reveal the potential of targeting
these factors to improve the therapy efficacy.

Overall, all the above-mentioned seven original articles regarding
the identification of distinct molecular subtypes, immune-regulatory
genes or molecules, and prognostic biomarkers in diverse cancer
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types or subtypes offer valuable insights into tumor progression and
therapeutic sensitivity, which shows a promising way for personalized
treatment strategies for cancer patients.

Li et al. focused on plasmablastic lymphoma (PBL), a rare but
aggressive non-Hodgkin lymphoma. They comprehensively
summarized the current knowledge on the epidemiology,
molecular profiles, clinical and pathological features, differential
diagnosis, treatment strategies, prognostic factors, and potential
novel therapeutic approaches in PBL patients. This review
highlights the fact that, despite developments in treatment
strategies such as intensive chemotherapy, targeted therapies, and
immunotherapy, the prognosis of PBL remains poor. Therefore,
there is an urgent need for further exploration of PBL’s biological
characteristics and the development of more effective targeted
therapeutic approaches. Another review from Guo et al.
summarized five cellular composition modules by integrating the
cellular (sub)types, phenotypes, and functions in the TME of
pancreatic ductal adenocarcinoma (PDAC). Furthermore, the
authors pointed out that cross-module regulations are
determinants of the immunosuppressive TME in PDAC, and
highlighted TME-targeted strategies that potentially improve
PDAC therapy. In addition, Gunes et al. reviewed the current
knowledge of the expression of signaling lymphocytic activation
molecule family (SLAMF) receptors in solid tumors and tumor-
infiltrating immune cells and summarized their associations with
patient outcomes. The authors also discussed the therapeutic
potential of targeting SLAMF receptors to improve outcomes of
cancer therapy in solid tumors. Thus, a better understanding of the
interactions between SLAMF receptors and TME components may
contribute to the development of interventions that can reprogram
the TME into a more favorable environment to enhance the efficacy
of cancer therapy such as immunotherapy.

In summary, these studies contributed by diverse authors in this
Research Topic highlight the important roles of TIME in cancer
progression and therapeutic resistance. We believe these findings
could show a promising way for personalized strategy to reprogram
the TIME for improving cancer management.
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integration develops a
neutrophil-derived signature for
iImproving outcomes in
hepatocellular carcinoma
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Introduction: The heterogeneity of tumor immune microenvironments is a
major factor in poor prognosis among hepatocellular carcinoma (HCC)
patients. Neutrophils have been identified as playing a critical role in the
immune microenvironment of HCC based on recent single-cell studies.
However, there is still a need to stratify HCC patients based on neutrophil
heterogeneity. Therefore, developing an approach that efficiently describes
"neutrophil characteristics” in HCC patients is crucial to guide clinical decision-
making.

Methods: We stratified two cohorts of HCC patients into molecular subtypes
associated with neutrophils using bulk-sequencing and single-cell sequencing
data. Additionally, we constructed a new risk model by integrating machine
learning analysis from 101 prediction models. We compared the biological and
molecular features among patient subgroups to assess the model's effectiveness.
Furthermore, an essential gene identified in this study was validated through
molecular biology experiments.

Results: We stratified patients with HCC into subtypes that exhibited significant
differences in prognosis, clinical pathological characteristics, inflammation-
related pathways, levels of immune infiltration, and expression levels of
immune genes. Furthermore, A risk model called the "neutrophil-derived
signature” (NDS) was constructed using machine learning, consisting of 10
essential genes. The NDS's RiskScore demonstrated superior accuracy to
clinical variables and correlated with higher malignancy degrees. RiskScore
was an independent prognostic factor for overall survival and showed
predictive value for HCC patient prognosis. Additionally, we observed
associations between RiskScore and the efficacy of immune therapy and
chemotherapy drugs.
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Discussion: Our study highlights the critical role of neutrophils in the tumor
microenvironment of HCC. The developed NDS is a powerful tool for assessing
the risk and clinical treatment of HCC. Furthermore, we identified and analyzed
the feasibility of the critical gene RTN3 in NDS as a molecular marker for HCC.

KEYWORDS

neutrophils, HCC, RTN3, prognosis, machine learning

Background

Hepatocellular carcinoma (HCC), also known as liver cancer, is
a common malignancy with a high incidence rate. Drugs such as
sorafenib and lenvatinib (1), are widely used in the treatment of
HCC, and new drugs like atezolizumab combined with
bevacizumab and sintilimab combined with bevacizumab are
being developed (2, 3). These drugs target specific populations,
with some suitable for patients with unresectable HCC who have
not undergone systemic treatment, like doxorubicin and lenvatinib
(4, 5), while others are appropriate for patients with HCC who have
received specific treatments, like regorafenib and cabozantinib (6).
Despite promising results in clinical trials, these treatment methods
only benefit a small proportion of patients, highlighting critical
clinical challenges. Therefore, selecting the most appropriate
treatment plan based on the specific conditions of the patients
and the target population of the drug is crucial in the treatment of
HCC. Advancements in biotechnology, particularly high-
throughput sequencing technologies, have deepened our
understanding of tumor molecular subtyping, enabling tumor
treatment based on molecular subtypes. Gene-based molecular
subtyping has emerged as a new approach to the treatment of
tumors. Scientists have successfully developed personalized
treatment plans based on molecular subtyping for various cancer
types. For example, the PAM50 gene subtyping technology has been
successfully applied in chemotherapy decision-making for the
treatment of breast cancer (7). EGFR gene mutation subtyping
has also been widely adopted in the treatment of lung cancer for
selecting targeted drugs against EGFR (8). Similarly, BRAF gene
mutation subtyping has found extensive application in personalized
treatment plans for colon cancer and melanoma (9, 10). These
accomplishments indicate that gene-based molecular subtyping
technologies will be crucial in future treatments of tumors,
offering patients more accurate and effective treatment options.

The latest research has unveiled the immune microenvironment
subtypes of HCC through large-scale single-cell sequencing and
provided an in-depth analysis of the functional heterogeneity of
tumor-associated neutrophils. This study demonstrates that
targeting tumor-associated neutrophils may emerge as a new
immunotherapy strategy for HCC (11). Neutrophils play a crucial
role in the immune system by regulating immune responses,
combating infections, and maintaining tissue homeostasis. Recent
studies have indicated that neutrophil-mediated immune processes,
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known as neutrophil extracellular traps (NETs), have a significant
impact on the development of tumors as they serve as a vital step in
innate and adaptive immune responses triggered by infectious and
sterile stimuli (12). Previous studies suggested that cancer-induced
NETs primarily function in the circulation, promoting cancer-related
thrombosis (13). Subsequent studies have revealed that NETSs
influence every stage of the metastatic cascade, including the
progression, invasion, and migration of primary tumors, survival in
circulation, chemoattraction to secondary sites, extravasation,
colonization, and growth of metastatic tumor cells (14). These
findings highlight the fact that the functional transformation of
neutrophil subtypes in the tumor microenvironment is influenced
by the specific characteristics of the tumor microenvironment,
though the precise mechanisms remain unclear (15). In summary,
neutrophils play pivotal roles in the development, metastasis,
treatment, and immune evasion of HCC.

The advancement of single-cell research technology has
brought about the ability to accurately analyze the heterogeneity
of the tumor microenvironment in different clinical types of HCC
and discern distinct subtypes of neutrophils with unique
characteristics during the development of the tumor. These
findings have been instrumental in uncovering the dynamic
changes in levels of gene expression within these neutrophil
subtypes, shedding light on the molecular mechanisms underlying
the development of tumors, and identifying potential targets for
diagnosis and treatment. However, it is important to note that
neutrophils are fragile cell types that can easily be lost during tissue
dissociation. Moreover, neutrophils have a limited number of
expressed genes and tend to exhibit low expression levels of
characteristic genes, further complicating the analysis of their cell
subtypes and gene expression profiles. Additionally, the high cost
associated with single-cell sequencing technology poses a significant
barrier to its widespread clinical application for studying
neutrophils. Nonetheless, it is feasible to differentiate patients
with HCC based on neutrophils, thereby identifying subtypes and
evaluating patient prognosis for clinical treatment and medication
guidance. It is crucial to find a simple and effective method to
describe the “neutrophil characteristics” of patients with HCC.
With the advancements in bioinformatics technology, several
prognostic gene characteristics have been developed (16, 17). In
the case of HCC, numerous multi-gene signature characteristics,
such as the well-known ferroptosis signature (18), m6A signature
(19), and others (20), have been discovered to assess patient risk.

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1216585
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gong et al.

However, the efficacy of these multi-gene expression signatures can
be challenging to validate and apply effectively due to single-
machine learning and inappropriate statistical methods.

In this study, we used machine learning to develop and validate
risk stratification characteristics for patients with HCC using
neutrophil-related characteristic markers. We assessed the value
of different risk stratifications in terms of biological and clinical
pathological characteristics, prognosis, and their application in
immunotherapy and targeted chemotherapy treatments across
four independent public datasets. Furthermore, based on the
analysis results, this study verified a new molecular marker for
HCC. Overall, this study aims to optimize precision treatment and
enhance the clinical outcomes of patients with HCC.

Materials and methods
Data resources

High-throughput sequencing data in TPM format for HCC
were obtained from The Cancer Genome Atlas (TCGA) database,
along with corresponding clinical phenotype data. We excluded
samples that lacked survival time or status and retained only those
with a survival time greater than 0 days. This resulted in 365 tumor
samples. Similarly, we obtained another HCC high-throughput
sequencing dataset, HCCDBI18, from http://lifeome.net/database/
hcedb/download.html. We removed normal samples to retain only
tumor tissue and obtained survival data for all patients with a
survival time greater than 0 days. This yielded a final set of 212
tumor tissues. For the datasets GSE14520 and GSE116174, we
obtained expression profile data and survival times from the Gene
Expression Omnibus (GEO) database of the National Center for
Biotechnological Information (NCBI) database. We excluded
samples lacking survival time or status and included all patients
with a survival time greater than 0 days in the analysis. We
downloaded platform files and converted probes to gene names.
We removed data with one probe corresponding to multiple gene
names and averaged data with multiple probes corresponding to a
single gene. Ultimately, we identified 242 tumor tissues from the
GSE14520 dataset and 64 tumor tissues from the GSE116174
dataset. Additionally, we obtained single-cell sequencing data for
HCC (Accession number: GSE215428) from the GEO database.

Dimensionality reduction and cell
annotation of single-cell clusters

First, we filtered the single-cell data that required each gene to be
expressed in a minimum of three cells, while each cell had to express at
least 250 genes. Additionally, we used the PercentageCharacteristicset
function to calculate the proportions of mitochondrial and rRNA
genes, ensuring that each cell expressed fewer than 2000 genes.
Subsequently, we performed log-normalization on the data from six
samples to standardize them. To identify highly variable genes, we
utilized the FindVariableCharacteristics function, employing variance
stabilization transformation (“vst”). All genes were then scaled using
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the ScaleData function, followed by dimensionality reduction using
RunPCA to identify anchor points. The clustering of cells was
achieved through the utilization of the FindNeighbors and
FindClusters functions, and classical marker genes were used for cell
annotation. The clusterProfiler package was used for the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of the marker genes across different subgroups.

Construction of molecular subtypes and
risk model

Using single-cell analysis, 208 marker genes specific to
neutrophils were identified. The ConsensusClusterPlus package in
R was used to cluster patients based on the expression of these
neutrophil marker genes in tumor tissues from the TCGA dataset.
The partition around medoids (PAM) algorithm was used, with
“pearson” serving as the distance metric. We performed 500
bootstraps, each including 80% of the patients from the training
set. Clustering numbers ranging from 2 to 10 were set, and the
optimal classification was determined by evaluating the consensus
matrix and cumulative distribution function.

Based on the neutrophil marker genes, univariate Cox analysis
was conducted to select prognostic-related genes with a P-value of
<0.001. These genes were further integrated into a high-precision
and stable model using our machine learning-based integration
program. For the TCGA dataset, we fitted 101 prediction models
using the LOOCYV framework and calculated the concordance index
(C-index) of each model on all validation datasets. The model with
the highest average C-index was considered the best.

Analysis and comparison of
biological features

We compared different cell scores among the three subtypes
using the ESTIMATE algorithm, the MCPcounter package, and the
CIBERSORT algorithm. To calculate the scores of 28 immune cells,
we used single-sample gene set enrichment analysis (ssGSEA) with
28 characteristic genes of immune cells obtained from previous
research (21). Additionally, the tumor immune dysfunction and
exclusion (TIDE) software was used to evaluate the potential clinical
effects of immunotherapy and risk models. To assess the scores of
relevant pathways, we obtained the inflammatory pathway gene set
from the KEGG website and calculated pathway scores using the
ssGSEA method. Furthermore, the patient scores for KEGG
database-related pathways were determined using the gene set
variation analysis (GSVA) package in R, with gene sets
downloaded from the GSEA website. The maftools package
showed the top 20 mutated genes and generated a waterfall chart.
The copy number variation (CNV) dataset was also obtained and
analyzed to determine the proportion of deleted or amplified genes.
To explore potential therapeutic targets for high- and low-risk
groups, we used the Cancer Cell Line Encyclopedia (CCLE)
database of drug-sensitive cell lines as the training set. Using the
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Cancer Therapeutics Response Portal (CTRP) and Profiling
Relative Inhibition Simultaneously in Mixture (PRISM) methods,
we predicted the drug sensitivity of each patient in the TCGA
dataset. Potential regulatory drugs were screened based on |log2
(Fold Change [FC])| >0.2.

Cell culture and transfection

The human HCC cell line HepG2 (KCB200507Y]) was obtained
from the Chinese Academy of Sciences. The cells were cultured in
Dulbecco’s Modified Eagle’s Medium (Gibco, Carlsbad, CA, USA)
supplemented with 8.0% fetal bovine serum. To silence the expression
of RTN3, HepG2 cells were transfected with small interfering RNA
(siRNA) using hU6-MCS-CBh-gcGFP-IRES-puromycin (Shanghai
Gene Chem Co., Ltd.). The HepG2 cells were divided into two
groups: the control group and the si-RTN3 group.

Western blot assay

To obtain total cellular proteins from HepG2 cells,
radioimmunoprecipitation assay buffer (RIPA) lysate (Beyotime,
Shanghai, China) was used, and protein quantification was
performed using the bicinchoninic acid (BCA) assay kit
(Servicebio, Wuhan, China). Cell samples containing 30 ug of
total protein were loaded onto sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently
transferred to polyvinylidene fluoride (PVDF) membranes. The
membranes were then incubated overnight at 4°C with anti-RTN3
(Abcam, Cat# Ab68328) and anti-B-tubulin (Affinity Biosciences,
Cat# T0023). Subsequently, the membranes were incubated with
goat anti-rabbit immunoglobulin G (IgG; S0001, 1:5000, Affinity
Biosciences) and goat anti-mouse IgG (S0002, 1:5000, Affinity
Biosciences) for 50 minutes and visualized using Tanon-5200
(Tanon, Shanghai, China). Further details regarding these
experimental procedures have been described previously (22).

Colony formation and Transwell assay

For colony formation, cells were directly seeded into 6-well
plates at a density of 3 x 10 cells per well. After 14 days, the wells
were rinsed three times with phosphate-buffered saline (PBS) at
room temperature. Subsequently, cells were stained with
paraformaldehyde (1 ml/well) and incubated with crystal violet
solution (1 ml/well) for 30 minutes. In the Transwell assay, 8-um
Transwell chambers (Corning, USA) were used. The upper
chamber, pre-coated with Matrigel (Corning, USA), was used for
cell plating, while the lower chamber was filled with a complete
medium. After fixing the cells with paraformaldehyde, they were
stained with a 0.1% crystal violet solution for five minutes and left to
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dry overnight. The specific steps of the Transwell assay were
conducted as described previously (23).

Statistical analysis

Statistical analysis was conducted using R software (version
4.0.5). Spearman’s correlation coefficient was used to evaluate the
correlation between two continuous variables. The chi-square test
was used to compare categorical variables, while the Wilcoxon rank
sum test, or t-test, was used for comparing continuous variables. A
significance level of P <0.05 was used to determine statistical
significance for all tests.

Results

Dimensionality reduction and clustering
of single cells

After applying quality control measures and filtering, a total of
17,277 cells were obtained. The statistical analysis of cell numbers
before and after filtering is shown in Figure S1A. To reduce
dimensionality and identify anchor points, we performed
Principal Component Analysis (PCA) using the RunPCA method
(Figure S1B). Additionally, t-distributed Stochastic Neighbor
Embedding (t-SNE) analysis was conducted on the 17,277 cells
using the Runt-SNE function, and Figure S1C shows the t-SNE cell
distribution maps for the six samples. For clustering analysis, we
used the FindNeighbors and FindClusters functions with a
resolution set at 0.2 and a dimensionality of 20. As a result, we
identified 10 distinct subpopulations. Cell annotation was carried
out using established marker genes, wherein subpopulations 0, 1, 2,
and 4 exhibited expression of T-cell markers CD2, CD3D, CD3E,
and CD3G, respectively. Subpopulation 6 showed expression of the
B-cell markers CD19, CD79A, and MS4A1l. The dendritic cell
marker CLEC4C was expressed in subpopulation 9, while
neutrophil markers CSF3R, S100A8, and S100A9 were found in
subpopulations 3, 7, and 8, respectively (Figure S1D).

Figure 1A shows a t-SNE distribution map depicting different
sample populations. Figure 1B shows a t-SNE distribution map
specifically focusing on the 10 subpopulations. Furthermore,
Figure 1C shows an annotated t-SNE distribution map
highlighting the subpopulations. To identify marker genes within
these subpopulations, the FindAllMarkers function was employed
with specific parameters, including a logFC of 0.5 and a minimum
percentage of differentially expressed genes (Minpct) of 0.35. This
analysis yielded four subpopulations with a corrected P-value of
<0.05. Figure 1D shows the expression of the top five significant
marker genes in each of these subpopulations. Detailed information
about the marker genes is provided in scRNA_marker_gene.txt
(Table). Furthermore, KEGG annotation was conducted on the
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FIGURE 1
Single-cell landscape of patients with HCC. (A): Distribution of each sample shown on a t-SNE plot; (B): Distribution of 10 subtypes shown on a
t-SNE plot; (C): Subtypes after cell annotation shown on a t-SNE plot; (D): Expression of the top five marker genes of annotated subtypes illustrated
on a dot plot; (E): KEGG enrichment analysis of annotated subtypes visualized on a dot plot.

marker genes from the four subpopulations. The results revealed  optimal number of clusters, we used cumulative distribution

their involvement in various functions and disease pathologies,  function (CDF) analysis. The CDF Delta area curve indicated that

highlighting the vital role of immune cells in maintaining overall  a cluster selection of 3 yielded relatively stable clustering results

health (Figure 1E).

Construction of molecular subtypes

(Figures 2A, B). Consequently, we chose a “k” value of 3 to define
three distinct molecular subtypes (Figure 2C). Notably, these three
subtypes showed significant differences in prognosis (Figure 2D, P =
0.011), with patients in cluster 3 exhibiting the poorest prognosis.
Similarly, when applying the same methodology to the HCCDB18

Following the utilization of 208 markers specific to neutrophils, ~ dataset, we obtained three subtypes with comparable prognostic
we proceeded to construct molecular subtypes. To determine the  implications (Figure 2E; P <0.0001). Detailed information about the
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FIGURE 2

Identification and analysis of subtypes with neutrophil characteristics in patients with HCC. (A): CDF curve of samples from the TCGA dataset.

(B): Delta area curve of consensus clustering for samples from the TCGA dataset, showing the relative change in the area under the CDF curve for
each category number "k" compared to "k-1." The horizontal axis represents the category number “k,” while the vertical axis represents the relative
change in the area under the CDF curve. (C): Heatmap showing the sample clustering at consensus "k = 3.” (D): KM curves demonstrating the
prognosis of three subtypes in the TCGA dataset. (E): KM curves demonstrating the prognosis of three subtypes in the HCCDB18 dataset. (F): PCA
showing the distribution of three subtypes in the TCGA and HCCDB18 datasets.

molecular subtypes for both datasets can be found in tables
tcga.subtype.cli.txt and HCCDB18.subtype.cli.txt. Furthermore, we
conducted PCA analysis based on the marker genes specific to
neutrophils, generating a scatter plot that illustrates the distribution
of the three subtypes as shown in Figure 2F. Our analysis suggests
that the significant heterogeneity observed among patients with
HCC may be attributed to distinct “neutrophil characteristics.”

Clinical features of molecular subtypes
Furthermore, we conducted a comprehensive analysis of the

clinical and pathological characteristics of different molecular
subtypes in the TCGA dataset. Specifically, we compared the
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distribution of various clinical characteristics among the three
molecular subtypes to identify potential differences. In our analysis,
while applying a chi-square test, we found that cluster 3 samples
exhibited a higher proportion of patients with G3 plus G4 stages
compared to the other subtypes. This finding suggests a potential
association between molecular subtypes and tumor grade (Figure 3).

Functional analysis of immune-related
pathways among molecular subtypes
First, we used the ESTIMATE algorithm to calculate the immune

scores of patients. The comparison showed that clusters 2 and 3,
which were associated with a poor prognosis, exhibited higher
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information within the corresponding group samples. Different colors represent different molecular subtypes. (B): Sankey Diagram showing the
association between different subtypes and clinicopathological characteristics in patients with HCC.
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immune cell scores (Figure 4A). Subsequently, we used the
MCPcounter package to calculate scores for 10 different types of
immune cells. These results also indicated that clusters 2 and 3
showed higher immune cell scores (Figure 4B). Furthermore, we used
the Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) method to calculate scores for 22 different
types of immune cells. This analysis demonstrated significant
differences in the majority of immune cell types among the three
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subtypes (Figure 4C). Moreover, we conducted a comparison of the
expression levels of immune checkpoint genes. With the exception of
TNFSF4 and ICOSLG, the majority of the immune checkpoint genes
showed varying expression levels among the three subtypes. Notably,
clusters 2 and 3 showed higher levels of immune checkpoint gene
expression (Figure 4D). In summary, our comprehensive analyses
indicated that clusters 2 and 3, which were associated with a poor
prognosis, showed higher levels of immune infiltration.
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Comparative analysis of immune characteristics among different subtypes. (A): Comparative analysis of immune characteristics among different subtypes
in the TCGA dataset, focusing on the predicted immune scores by ESTIMATE. (B): Comparative analysis among different subtypes in the TCGA dataset,
examining the scores of 10 predicted immune cell types using the MCPcounter method. (C): Comparative analysis of immune characteristics among
different subtypes in the TCGA dataset of scores of 22 predicted immune cell types using the CIBERSORT algorithm. (D): Comparative analysis of
immune characteristics among different subtypes in the TCGA dataset, highlighting the expression of immune checkpoints across the three subtypes.
ns, p > 0.05; * p < 0.05; **, p < 0.01; ***, p < 0.001; **** p < 0.0001.

Ana[ysis of inf[ammatory pathways among clusters 2 and 3, which were associated with poor prognoses, showed
molecular su btypes higher TIDE scores compared to cluster 1, suggesting a greater
tendency for immune evasion. Since the molecular subtypes

We employed the TIDE online tool to predict the likelihood of  constructed were closely associated with the immune system, we
immune evasion in patients, where a higher TIDE score indicates a  acquired inflammation-related pathway gene sets from the KEGG
more significant potential for immune evasion. As shown in Figure 5A,  website and calculated the pathway scores using the ssGSEA method.
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Comparison of TIDE score and inflammation-related pathway score among different subtypes. ns, p > 0.05; **, p < 0.01; **** p < 0.0001.

As shown in Figure 5B, we observed that cluster 1 had significantly
lower inflammatory pathway scores compared to the other subtypes.

KEGG pathway analysis of
molecular subtypes

To explore the heterogeneity of patients with HCC, we obtained
KEGG pathway-related gene sets from the GSEA website and
calculated pathway scores for each patient using the R package
GSVA. By analyzing these scores, we identified multiple pathways
that showed significant differences among the three subtypes of
HCC, as shown in Figure 6A. Further details and the results of our
analysis are summarized in pathwy_p_fit.txt. Additionally, we
conducted a comparison of differential gene expression among
the different subtypes and performed GSEA analysis using the R
package clusterProfiler. Figures 6B-D show the patterns of pathway
activation and suppression observed across the distinct subtypes of
HCC. In summary, our findings demonstrated that marker genes
associated with neutrophils effectively distinguished the
heterogeneity of patients with HCC. Intriguingly, these marker
genes suggested the presence of “neutrophil characteristics”
among patients with different subtypes of HCC.

Construction of a neutrophil-derived
signature and investigation of the role of
RTN3 in HCC

Based on the identified “neutrophil characteristics” among
patients with HCC, we conducted an analysis to identify
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prognosis-related genes. Using univariate Cox regression analysis
with a significance level of P <0.001, we identified 20 genes, as
shown in Figure 7A. These genes were derived from marker genes
based on neutrophils and obtained from the TCGA database. To
develop a consistent prognostic model, we used a machine learning-
based integration program, using the 20 identified genes as input
characteristics. Specifically, we fitted 101 prediction models using
the Leave One Out Cross-Validation (LOOCV) framework. We
calculated the C-index of each model across all validation datasets,
as shown in Figure 7B. The optimal model, which combined
CoxBoost and RSF, yielded the highest average C-index of 0.671.

Further analysis focused on 10 critical genes, such as ANXA5,
ATP6V0B, GAPDH, GRB2, PRKCD, RACI, RTN3, S100A9,
TALDOI, and TKT. We examined the expression levels of these
genes in both the TCGA dataset and other validation sets. By
employing the rfsrc function, we predicted the risk score for each
patient based on the expression levels of these 10 genes.
Subsequently, we standardized the risk scores into z-scores. Using
a cutoff of 0, we divided patients into high- and low-risk groups
within different datasets, including GSE14520, GSE116174,
HCCDBI18, and TCGA-LIHC, as shown in Figure 7C. In
summary, our findings suggest that this 10-gene signature could
serve as a robust prognostic tool for patients with HCC.

The significant expression differences of RTN3 in multiple HCC
cohorts indicate an association between its expression level and HCC
patient prognosis(Figure S2). We conducted an experiment using
siRNA to manipulate the levels of RTN3 in HepG2 cells. In
comparison to the control group, the si-RTN3 group showed a
significant decrease in the expression of the RNT3 protein, as
shown in Figure 7D. The colony formation assay showed that the
proliferation ability of HepG2 cells was significantly inhibited in the
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dataset. ***, p < 0.001.

B cluster1 vs no_clustert

actvated suppressed
ALLOGRAFT_REJECTION

INTERFERON_GAMMA_RESPONSE [ ]
BILE_ACID_METABOLISM o
EPITHELIAL_MESENCHYMAL_TRANSITION i Count

IL2_STATS_SIGNALING
TNFA_SIGNALING_VIA_NFKB
IL6_JAK_STAT3_SIGNALING L]
FATTY_ACID_METABOLISM [ ]
INTERFERON_ALPHA_RESPONSE [
INFLAMMATORY_RESPONSE [ 3
APOPTOSIS [ )
PEROXISOME [ ]
XENOBIOTIC_METABOLISM [ ]
KRAS_SIGNALING_UP [ )
ADIPOGENESIS [ ]
OXIDATIVE_PHOSPHORYLATION )
PANCREAS_BETA_CELLS{®

02 03 04 05 06 07 02 03 04 05 06 07
GeneRatio
C cluster2 vs no_cluster2
activated suppressed. |
MYC_TARGETS v2 O
6_JAK_STAT3_SIGNALING
INTERFERGN GAMMA RESPONSE
ITERFERON_ALPHA_RESPONSE
EPITHELIAL_MESENCHYMAL_TRANSITION
INFLAMMATORY_RESPONSE
ALLOGRAFT_F “REJECTION

‘M.
e

Mvc TARGETS Vi [ ]
ING_UP o002
oxmmve PHGSPHORYLATION
DNA_REPAIR
E2F_TARGETS [ )
APOPTOSIS Count
IL2_STATS_SIGNALIG ®
(YPOXIA @
CHOLESTEROL | HOMEOSTASIS o
C1_SIGNALING [ ) @
2M CHECKPOINT [ ]
BILE_ACID_METABOLISM °
SPERMATOGENESIS L
03 04 05 06 0703 04 05 06 07
GeneRatio
D cluster3 vs no_cluster3
acivated suppressed
MYC_TARGETS_V2 @
MYC_TARGETS_V1 [ ]
DNA_REPAIR [ )
UV_RESPONSE_DN o p.adjust
REACTIVE_OXYGEN_SPECIES_PATHWAY .
ILE_ACID_METABOLISM (]
G2M_CHECKPOINT [ ] 001
XENOBIOTIC METABOLISM [ ]
MTORC1_SIGNALING 002
UNFOLDED_PROTEIN_RESPONSE
E2F_TARGETS
ALLOGRAFT_REJECTION
FATTY_ACID_| METABOLISM [ ) Count
LYCOLYSIS- [ ] @ »
ANDROGEN,_f SRESPONSE ° @
COAGULATION
HEME_METABOLISM @
ADIPOGENESIS.
TNFA_SIGNALING_VIA_NFKB [
PEROXISOME o
04 05 05 06

056
GeneRatio

si-RTN3 group compared with the control group (Figure 7E).
Additionally, the Transwell assay demonstrated that there was a
decrease in the number of migrated and invaded cells in the si-RTN3
group compared to the control group (Figures 7F, G). Overall, our
findings indicate that the knockdown of RTN3 suppressed the
proliferation, migration, and invasion of HepG2 cells.

Comparison of RiskScore based on
different clinical characteristics

To examine the association between RiskScore and the clinical
characteristics of tumors, we conducted an analysis using the TCGA
dataset. Our findings revealed a positive correlation between clinical
grade and risk score (Figures 8A, B). Additionally, we compared the
high and low-risk scores across different clinical grades and
observed that patients with higher clinical grades showed higher
risk scores (Figure 8C). Subsequently, we performed both univariate
and multivariate Cox regression analyses to investigate the
prognostic significance of these clinical characteristics, as shown
in Figures 8D, E. The results indicated that T-stage (P <0.001), Stage
(P <0.001), and RiskScore (P <0.001) were all associated with
prognosis and served as independent risk factors. However, the
multivariable Cox regression analysis revealed that only RiskScore
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(P <0.001) remained significantly associated with prognosis.
Additionally, we constructed a nomogram incorporating
RiskScore, T-stage, and Stage. We assessed its performance by
calculating the area under the curve (AUC) value and found that
its predictive accuracy was similar to that of RiskScore alone
(Figure 8F). These findings indicate that our RiskScore-based
model holds significant prognostic value for patients.

Mutation features of the prognostic model

Using the R language maftools package, we generated a waterfall
plot showing the top 20 genes with mutations. The data showed
higher mutation frequencies in the high-risk group compared to the
low-risk group (Figure 9A). Furthermore, we conducted a
comparison between the high-risk and low-risk groups,
examining the distribution of homologous recombination defects
(P <0.001), fraction altered (P <0.001), number of segments
(P <0.001), and tumor mutation burden (P <0.001). As shown in
Figure 9B, there were significant differences in fraction altered,
number of segments, and tumor mutation burden between the
high- and low-risk groups. We also obtained CNV data and showed
the proportions of deletions and amplifications for the 10 genes
used in constructing the risk model (Figure 9C).
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(C): Kaplan-Meier curves demonstrating the high- and low-risk groups in the training and validation sets. (D): Western blot analysis showing the
expression of RTN3 protein in HepG2 cells after transfection of si-DUSPL. (E): Assessment of the proliferation activity of HepG2 cells using a colony
formation assay. (F, G): Evaluation of migration and invasion abilities of HepG2 cells using a Transwell assay. *, p < 0.05.
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Immune features of the prognostic model

We conducted an analysis to examine the correlation between
RiskScore and 28 immune cells using the ssGSEA method
(Figure 10A). Notably, several immune cells showed a significant
correlation with the RiskScore. To provide a visual representation of
these correlations, scatter plots were generated to depict the
correlation between 12 immune cells and RiskScore (Figure 10B).
Furthermore, we used the TIDE software (available at http://
tide.dfci.harvard.edu/) to assess the potential clinical effects of
immune therapy in conjunction with our risk model. Higher
TIDE prediction scores indicate a greater likelihood of immune
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evasion and a reduced possibility of benefiting from immune
therapy. As shown in Figure 10C, patients with a high RiskScore
tended to have higher TIDE prediction scores, suggesting a
diminished likelihood of benefiting from immune therapy.
Furthermore, our analysis revealed a higher proportion of high-
risk patients in the non-responsive group compared to the
responsive group (Figure 10D). Notably, the non-responsive
group exhibited higher TIDE prediction scores (Figure 10E).
These findings collectively indicate that our RiskScore-based
model has the ability to predict the response to immune therapy
and identify patients who may not derive substantial benefits
from it.
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response and non-response groups. **** p < 0.0001.

Identification of potential therapeutic
drugs for HCC

To identify candidate drugs with higher drug sensitivity, we
employed two distinct approaches using drug response data from
the Cancer Therapeutics Response Portal (CTRP) and Profiling
Relative Inhibition Simultaneously in Mixture (PRISM) datasets.
First, we conducted a differential drug response analysis by
comparing the top 10% and bottom 10% groups based on the
pharmacological profiling score (PPS). This analysis allowed us to
identify compounds with log2FC >0.10 that exhibited lower AUC
estimates in the high RiskScore group. Second, we conducted a
Spearman correlation analysis between the AUC values and the
RiskScore. We selected compounds that showed negative
correlation coefficients (Spearman’s r for CTRP and PRISM,
<-0.10 and <-0.1, respectively). The results from both approaches
consistently demonstrated that all identified compounds had lower
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AUC estimates in the high RiskScore group and were negatively
correlated with RiskScore (Figures 11A, B).

Discussion

Over the past few decades, the tumor, node, and metastasis
(TNM) staging system has played a critical role in the clinical
evaluation and treatment of cancer. It provides a framework for
describing the clinical course of cancer and categorizing patients
into different stages based on factors such as tumor size, lymph
node involvement, and distant metastases. Recently, new staging
systems have emerged, such as the eighth edition staging system by
the American Joint Committee on Cancer. The choice of a staging
system is important as it guides treatment selection and prognostic
evaluation based on the individual circumstances of the patients.
With advancements in molecular biology and immunology, the

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1216585
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gong et al.

pevonedistat= = = = = = = = = m e e cc e e c e — e =
bleomycin A2=+ = = = = === == === ======———=====
GSKA461364- === === =m - m-meemmmmemma——aa
paclitaxel= = == == == = = = = = mm e m e e mmmmm - -
SB-743921- == = = = = s e e e e e e e e e e e m - —
gemcitabing== === === e e e e e e e cc e m -
dasatinib=' === == === == = = == — - —— ==
vincristing= = = = = = = = s c c cm e e e e -
bifinapant= = = = = == = s s e e e e e e e e
leptomyCin B== = = = = = = = = = = = = = = —m o ———
triazolothiadiazine = = = = = = = = = = = = = = = = = = = = —
narciclasing== === === === = = === ===«
BI-2536 -
tanespimycin- = = == == = = = = = = = = = = —
CAY10618-= === === == = === = = =

-0.3
Correlation coefficient

P-value . <0.001

iMnoteCan === == = = c e e e e e e e e cc e e cc e e e m -
LY2183240- = = = = = = = = = = = m e e e e e e e e e e e m e m e m— - - -
navitoClax == = = = = = = = = = - . - - e e e e e m - - - -
PUIOMYGIN== = = = = = = = = = e e e e e e e e e e mmmm oo
harringtoning= = = = = = = = = = = = = = = mm — e m e e m e mm— - -
NVP-BEZ235- = = = = = = = === === mmm - - oo o o
everolimus -
ispinesib
LY2606368
topotecan
rubitecan

Correlation coefficient

P-value . <0.001 @ <005

FIGURE 11

CD-437+ === === === e e e e e e mmmm e oo
clofarabing== === === e e e e e e e c e e c e e - e . il

Estimated AUC value

Estimated AUC value

10.3389/fimmu.2023.1216585

KAE AR KRR KRR KRR KKK KKK RRK KK KR KRR KRR KRR KRR KRR Rk Rk

= -
- . - L
o I | g
i A |l
] 2 ks
0.3 ‘ ‘, ‘,
L = T | -
—‘f | | 0 ‘
02 LT
e |
i T
0.1
v L N
o @ o @ IRIVCEEN NS S e
S E B S E F P T
U P G G g R I R P\
O o) ) 2 & N SN @ ¢ &
VT F O FTFF RS Y & S
<
B High BN Low
020] #% r e e wn v n an v n an n ar w n

0.1

u.
——
|
1}
—m—
—a—
e

0.05 =

& LS L © @ .f @ b
Lo P N e
N £ NN P

S EE FE @ E

(A): Results of Spearman’s correlation analysis and differential drug response analysis of CTRP-derived compounds. (B): Results of Spearman'’s
correlation analysis and differential drug response analysis of PRISM-derived compounds. Note that lower values on the y-axis of boxplots indicate

greater drug sensitivity. *, p < 0.05; ***, p < 0.001.

treatment for HCC has become more diverse, including the use of
anti-angiogenic drugs like sorafenib and combination targeted
therapy with immune checkpoint inhibitors (24). This diversity
highlights the need for better-personalized assessment methods to
guide clinical decisions for patients. However, the identification of
reliable biomarkers that can accurately identify “personalized”
patients with HCC still requires further exploration. We deem it
unfeasible to extrapolate this genetic feature to other tumor types
due to the variability of biomarkers in different types and subtypes
of tumors. Unique biological and genetic features in each tumor
type may affect the expression of tumor biomarkers. Consequently,
a more comprehensive analysis and assessment are necessary before
exploring the suitability of biomarkers in specific tumors. Future
research aims to identify more generalized and broadly applicable
neutrophil characteristics, which will offer precise and convenient
guidance for studying tumor subtypes.

Currently, gene signature models have gained widespread
utilization in predicting and diagnosing various diseases,
including cancer, cardiovascular disease, and diabetes. These
models offer the advantage of simultaneously assessing the
expression levels of multiple genes using high-throughput
technology, allowing for comprehensive information gathering
and a deeper understanding of the underlying biological
mechanisms of diseases. By considering multiple genes, gene
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signature models can mitigate the impact of changes in the
expression level of a single gene on the prediction outcomes,
thereby improving the accuracy and reliability of the predictions.
Recent studies have emphasized the significance of neutrophils as
both a prognostic indicator and a target for immune therapy in
HCC. However, there is a paucity of studies that accurately predict
patient prognosis and determine the efficacy of drug treatment
using large-scale machine-learning models specific to HCC. To
address this gap, our study aimed to investigate the association
between the expression characteristics of neutrophil markers and
their potential for benefiting from specific drug therapies in HCC.

Recent advancements in high-dimensional single-cell analyses
have provided insights into the heterogeneity of neutrophils present
in both the circulation and tumor microenvironments. These
studies have revealed variations in transcriptomics and surface
protein expression among neutrophils, which can impact the
efficacy of immune therapies in patients with cancer (11). The
pivotal role of neutrophils in unraveling the heterogeneity of tumors
through the identification of molecular markers on their surface has
been elucidated. Based on these findings and the potential of
neutrophils as effective biomarkers for distinguishing the
heterogeneity of tumors, our study aimed to classify patients with
HCC based on the expression of neutrophil marker genes at the
transcriptome level. The results of the analysis showed significant
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differences among patients belonging to different subtypes after
stratification. Notably, these subtype differences correlated with
variations in patient survival, which were further validated across
multiple datasets. These findings highlight the feasibility of subtype
differentiation based on neutrophil characteristics.

Furthermore, this study further explored the biological
differences among the different subtypes of HCC and identified
significant differences in signaling pathways by comparing the
activity levels of key signal pathways. These findings imply that
neutrophils may have a crucial role in the dysregulation of signaling
pathways within tumors. However, intriguingly, when examining
clinical pathological characteristics, we observed significant
differences only in tissue grade among patients classified into
different subtypes. On one hand, this observation suggests a
potential correlation between subtype classification and the
grading of tumors, indicating that neutrophils may serve as a key
factor influencing the grading of patients with HCC—a relationship
that has not been previously reported. It is important to note that
these results may also be influenced by sample size or other factors,
warranting further investigation to elucidate the specific underlying
mechanisms. Nonetheless, the analysis outcomes of this study
vividly demonstrate the presence of distinct “neutrophil
characteristics” among patients with different subtypes of HCC.

Based on the feasibility of using “neutrophil characteristics” for
the classification of HCC, this study employed univariate Cox
regression analysis and a machine learning-based integration
program to screen 20 prognosis-related genes derived from
characteristic neutrophil genes. Subsequently, a prognostic model
was constructed using 10 essential genes. By predicting the
expression values of these 10 genes in the TCGA dataset and
validation gene set, patients from different datasets were
successfully classified into high-risk and low-risk groups. The
validation across multiple datasets consistently demonstrated that
the high-risk group exhibited a poorer prognosis, while the low-risk
group showed a better prognosis.

Furthermore, significant variations were observed in immune
cell infiltration levels and immune therapy responses among
different cells. Similar research methodologies have been adopted
in previous studies to investigate the long noncoding RNA
(IncRNA) characteristics of patients with colorectal cancer
(CRQC), enabling effective evaluation of recurrence, prognosis,
chemotherapy response, and immune therapy. These findings are
consistent with the results obtained in our study (20). However,
IncRNA has inherent challenges such as a low expression level, long
and highly variable sequences, and complex detection and
measurement processes. In contrast, mRNA-based gene models
offer greater clinical translatability and the potential for in-depth
research in the future. Additionally, while this study employed
multiple datasets for verification, it primarily focused on liver
cancer research. In future studies, it is important to validate the
generalizability of the model across a broader range of cancer types
using additional datasets. Moreover, it is worth noting that this
study solely relied on RNA expression data and did not consider
other genetic and environmental factors that contribute to the
development of liver cancer. Therefore, further refinement of the
model is necessary to improve its accuracy by incorporating
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additional relevant factors. Nevertheless, the existing research
results presented in this study confirm and emphasize the
feasibility and promising clinical application prospects of the
methodology used.

In addition to identifying the “neutrophil characteristics” of
HCC, this study also conducted a comprehensive investigation of
the gene RTN3, which has a significant impact on prognosis. RTN3
is a membrane protein that plays a crucial role in the formation of
the endoplasmic reticulum and the regulation of membrane protein
acyltransferase activity in normal cells. Extensive research has
focused on the role of RTN3 in Alzheimer’s disease, where
transgenic mice overexpressing RTN3 show neuroinflammatory
abnormalities. Additionally, studies have highlighted the
interaction between RTN3 and the oncogene Ras within the
endoplasmic reticulum. Despite some studies reporting on RTN3
in research on HCC, there remain controversies surrounding its
role. For example, certain studies have reported significant
upregulation of the levels of RTN3 mRNA and proteins in tumor
tissues as a risk factor in risk models (25). Conversely, another study
showed that low expression of RTN3 in patients with HCC was
significantly associated with poor prognosis, suggesting a potential
tumor suppressor role for RTN3 (26). Based on previous studies, it
is hypothesized that the role of RTN3 in HCC is likely influenced by
the viral infection status of patients with HCC. On the one hand,
studies have reported that the hepatitis B virus (HBV) can induce
non-mutational inactivation of the p53 signaling pathway by
interacting with RTN3, which is a crucial mechanism promoting
the occurrence and development of HCC. Additionally, a study has
demonstrated that RTN3 can directly interact with the non-
structural protein of the hepatitis C virus (HCV), leading to the
limitation of HCV replication. Therefore, viral infection status may
serve as a key determinant of the role of RTN3 in HCC, although the
exact underlying mechanisms still require further investigation. In
summary, the research on the role of RTN3 in tumors remains
relatively limited, and the associated mechanisms and biological
significance necessitate further investigation. The results of this
study indicate that the knockdown of RTN3 effectively inhibits the
proliferation, invasion, and metastasis of tumor cells, thereby
confirming the importance of the genes identified in the risk
model and providing initial insights into the role of RTN3 in HCC.

The primary objective of this study is to demonstrate the
effective stratification of patients with HCC using neutrophil
characteristics of the genes. The application of NDS is
theoretically more efficient in clinical decision-making as it
primarily involves commonly expressed transcriptome genes. This
approach offers cost-effective and personalized molecular feature
descriptions to aid in formulating effective treatment strategies and
assessing disease progression. However, the study has certain
limitations that need to be considered. Firstly, differences in
sample sources, data preprocessing, and analysis methods may
lead to variations in gene signatures, affecting the stability and
reproducibility of predictions. Secondly, gene signature models rely
on differences in gene expression levels and may overlook other
types of genetic variation, post-transcriptional modifications, and
other factors that can influence predictions. Therefore, when
applying gene signature models, it is important to acknowledge

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1216585
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gong et al.

their limitations and complement them with other biological
knowledge and experimental results for a comprehensive analysis.
Thirdly, although HepG2 cells have been widely used in the
research of HCG, it is essential to recognize that this model may
not fully replicate all aspects of human conditions. Future studies
will explore the pathogenesis and progression of HCC by using an
RTN3 knockout mouse model. Nonetheless, based on extensive
bioinformatics analysis and machine learning algorithms, a stable
and powerful feature has been developed to effectively describe the
“neutrophil characteristics” of patients with HCC. The NDS model
shows promise as a tool for optimizing decision-making and
monitoring plans for individual patients with HCC. This study
provides a new perspective on understanding the role of neutrophils
in HCC and establishes a prognostic model based on NDS, which
can serve as a valuable tool for evaluating treatment efficacy and
prognosis, offering new ideas and strategies for the treatment and
prognosis assessment of patients with HCC.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies.
Itis characterized by a complex and immunosuppressive tumor microenvironment
(TME), which is primarily composed of tumor cells, stromal cells, immune cells,
and acellular components. The cross-interactions and -regulations among
various cell types in the TME have been recognized to profoundly shape the
immunosuppression features that meaningfully affect PDAC biology and treatment
outcomes. In this review, we first summarize five cellular composition modules by
integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then
we discuss an integrated overview of the cross-module regulations as a
determinant of the immunosuppressive TME in PDAC. We also briefly highlight
TME-targeted strategies that potentially improve PDAC therapy.

KEYWORDS

pancreatic cancer, complex tumor microenvironment, diverse cellular cross-
regulations, immunosuppression features, targeting strategy

1 Introduction

Pancreatic cancer is the third leading cause of cancer-related death in Western
countries (1). Concerningly, it has been estimated there would be 64,050 people
diagnosed with pancreatic cancer and 50,550 people would die from it in 2023 in the
United States (1). This disease is mostly diagnosed at advanced stages, making current
therapeutic regimens rather ineffective (2, 3). Pancreatic cancer is rapidly lethal, with an
overall 5-year survival rate of only 11% (2, 3). Surgical resection and adjuvant
chemoradiotherapy are viable options for only 10-20% of newly diagnosed patients,
resulting in a 5-year survival rate of 15-25% among this subgroup (2, 3). Currently,
most patients with advanced pancreatic cancer are mainly treated with chemotherapy
regimens such as FOLFIRINOX (i.e., combination of drugs leucovorin calcium (folinic
acid), fluorouracil, irinotecan hydrochloride, and oxaliplatin) and gemcitabine/nab-
paclitaxel, however, their overall efficacy remains significantly limited, with the median
overall survival < 1 year (2, 3). The factors causing the lethality of pancreatic cancer are
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multifaceted, including multiple germline mutations, poor
diagnosis, resistance to conventional therapies, and highly
immunosuppressive tumor microenvironment (TME) (2-5).

Pancreatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic malignancy (greater than 90%) (2). It
features a complex TME that is composed of diverse acellular and
cellular components, mostly including dense extracellular matrix
(ECM), tumor cells, stromal cells, and immune cells (4, 5).
Interactions between these various cellular elements occur
through direct cell-cell contact and indirect communication
mediated by secreted molecules, culminating in the establishment
of an immunosuppressive milieu (4, 5). The immunosuppression
feature has been recognized as a general hallmark of PDAC TME,
characterized by heightened infiltration of tumor-promoting
myeloid cells including tumor-associated macrophages (TAMs),
tumor-associated neutrophils (TANs), myeloid-derived
suppressor cells (MDSCs), and mast cells, along with impaired
number and function of anti-tumor immune cells such as CD8 T
cells, Dendritic cells (DCs), and natural killer cells (NKs) (4, 5).
Concomitantly, this immunosuppressive milieu substantially
influences the development, prognosis, and treatment outcomes
of PDAC (4, 5).

Immunotherapies, such as immune checkpoint inhibitors (ICI)
that disrupt the inhibitory pathways of T cells and thereby unleash
their power against cancer, have revolutionized treatment
paradigms for a range of human cancers over the past decade (2,
3, 6). However, PDAC has been reported to extremely resist
monotherapy with ICIs (2, 3, 6), which likely attributes to the
highly immunosuppressive nature of the PDAC TME (4, 5, 7). In
this regard, we argue that an integrated understanding of the
immunosuppressive TME will open new targeted opportunities to
improve PDAC therapy more effectively. In this review, we integrate
cellular sub(types), phenotypes, and functions of the diverse cellular
components in PDAC TME to summarize five cellular composition
modules. Then we discuss a comprehensive overview of the cross-
module interactions and regulations as a potent determinant of the
immunosuppressive TME in PDAC. Lastly, we briefly highlight
novel TME-targeted approaches that potentiate the improvement of
PDAC therapy.

2 Overview of five cellular
composition modules in PDAC TME

PDAC exhibits high genetic heterogeneity and is characterized by
an overarching TME, where diverse cellular compositions and acellular
mediators contribute to a remarkable desmoplastic reaction (4, 5).
Recent evidence has established the notion that the TME of PDAC is
dominated by immunosuppression features, which significantly
influence PDAC phenotypes and treatment outcomes including both
conventional chemotherapies and revolutionary immunotherapies (4,
5). A comprehensive understating of the diversity and interactions
within PDAC TME that unravels the mechanistic determinant of its
immunosuppression feature will shed light on the development of new

Frontiers in Immunology

10.3389/fimmu.2023.1258538

therapeutic interventions (4, 5). To this end, we integrate the
cellular (sub)types, phenotypes, and functions of the diverse
cellular components within PDAC TME and summarize five cellular
composition modules (Figure 1). First, PDAC-intrinsic aspects are
concluded as (I) the Tumor cell module since PDAC genetic mutations
and related signal pathways have been recognized as a critical factor
driving the formation of the immunosuppressive TME (8-11). (II) The
Immunosuppression module is mostly composed of TAMs, TANs,
MDSCs, Treg cells, and mast cells, given that they constitute an
abundant component in PDAC TME and play notorious
immunoregulatory and immunosuppressive roles (12-14).
Particularly, its immunosuppressive capacity is significantly
overwhelming compared with the anti-tumor immunity including
CD8 T cells, DCs, and NKs, which are impaired in number and
function in PDAC TME and therefore drive us to define (III) the Anti-
tumor immunity impaired module (15-18). Besides, immune cells
including CD4 helper T cell subsets (Th1, Th2, and Th17) and B cells
have been shown to display features of a double-edged sword in PDAC
TME and play either tumor-suppressing or tumor-supporting roles in
context-dependent manners. Thus, emerging roles for them in PDAC
TME and cancer immunity are discussed accordingly in the IV
Module (19-23). Lastly, we describe the heterogeneity and functions
of cancer-associated fibroblasts (CAFs) in the context of
immunosuppressive TME of PDAC in (V) the Stromal module (24).
By the summary and explicit discussion (in the following paragraphs)
of above five cellular composition modules in PDAC TME, we argue
that there are cross-interactions and -regulations among cellular
modules that represent a resultant force essentially dictating the
immunosuppression features, PDAC oncological hallmarks, and
treatment efficacy. It is worth noting that each cell population in
PDAC TME may exhibit a high degree of plasticity, and their behavior
may not strictly align with the originally defined modules, particularly
in the context of therapeutic interventions. Therefore, understanding
and accounting for this plasticity is vital for developing effective PDAC
treatment strategies.

3 PDAC-intrinsic aspects: the
primary driver of immunosuppressive
TME formation

An expanding body of evidence from preclinical mouse model
studies and clinical observations underscores the crucial role of
genetic mutations in oncogenes and/or tumor-suppressor genes in
shaping important PDAC features, including tumor cell
differentiation and heterogeneity, histopathological subtypes, and
clinical outcomes (8-11, 25, 26). Besides, defined oncogenic
mutations are also associated with changes in the composition of
immune cells and immunotherapy efficacy in PDAC (8-11, 25, 26).
A comprehensive understanding of how genetic oncogenes and
related signaling pathways affect PDAC phenotypes and immune
cell composition and function will provide valuable insights for the
development of precise targeted therapies and immunotherapies
aimed at combating this aggressive malignancy.
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FIGURE 1

Summary of modular cell compositions and molecule mediators in PDAC TME. Pancreatic ductal adenocarcinoma (PDAC)-intrinsic features such as
genetic mutations and related signal pathways are concluded as Cellular Module |, as they have been reported to profoundly shape the formation of
the immunosuppressive tumor microenvironment (TME). Immunoregulatory and immunosuppressive Module Il is primarily composed of tumor-
associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mast cells, and regulatory T cells
(Tregs), which play significant roles in fostering PDAC progression and in suppressing anti-tumor immunity. In PDAC TME, anti-tumor immune cells
including CD8 T cells, Dendritic cells (DCs), and natural killer cells (NKs) are profoundly impaired in terms of both number and function, which can
be dramatically regulated by the cells from other cellular modules, especially Module II. Besides, CD4 helper T cell subsets (Thl, Th2, and Th17) and

B cells in PDAC TME have been shown to play either tumor-suppressing or tumor-supporting roles in context-dependent manners, of which
emerging roles are discussed in Module IV. Lastly, the heterogeneity and functions of cancer-associated fibroblasts (CAFs) in the context of
immunosuppressive TME of PDAC is summarized as Stromal module V, which includes myofibroblast-like CAFs (myoCAFs), inflammatory CAFs
(iCAFs), and antigen-presenting CAFs (apCAFs). In addition, the primary molecular mediators used by the cells in terms of their functions discussed in
the review are shown accordingly. Remarkable cross-interactions and -regulations among cellular modules occur through the molecular mediators,
culminating in the formation of an immunosuppressive TME that essentially influences PDAC oncological hallmarks and treatment efficacy. (The

figure was created in Biorender with the publication license)

3.1 Genetic mutations drive PDAC initiation
and progression

PDAC progresses from noninvasive precursor lesions,
including pancreatic intraepithelial neoplasia (PanIN),
intraductal papillary mucinous neoplasm (IPMN), intraductal
tubulopapillary neoplasm (ITPN), and mucinous cystic
neoplasm (MCN) (26). Among them, PanINs are the most well-
characterized preneoplasia lesions so far (26). PanINs originate
within intralobular ducts and can be further classified into four
grades, PanIN 1A, PanIN 1B, PanIN 2, and PanIN 3 (26). Of note,
all preneoplastic lesions are likely to reflect the PDAC progression.
Genetic mutations are the primary driver of PDAC initiation and
progression (11, 25). It has been reported that a PDAC patient
usually harbors 32 genetic mutations on average (11, 25). Among
the mutations, activating mutations in KRAS are present in over
90% of tumors (11, 25). The mutations of cell cycle checkpoint
genes, like CDKN2A, TP53, and SMAD4 account for 50-80% of
cases (11, 25). In addition to these common mutations, there are
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less frequent mutated genes (-10% of tumors), including ARID1A,
MLL3, and TGFBR2, which can contribute to a more aggressive
phenotype of PDAC (11, 25). Despite enduring research
endeavors, targeted therapies have not yet demonstrated
significant benefits for PDAC patients (27).

3.2 Genetic mutations in PDAC cells shape
immunosuppressive TME formation

Emerging evidence has shown that oncogenic mutations in
cancer cells primarily dictate the immune contexture in the TME
(9). Deciphering the underlying relationship between cancer cell-
intrinsic genetic events and the immune cell contexture in the TME
may enable the improvement of both chemotherapies and
immunotherapies for cancer patients. We highlight a few
examples of the studies to discuss how indicated oncogenic
mutations in cancer cells modulate the immune cell composition
and function in the TME of PDAC.
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Oncogenic K-RAS represents one of the most abundant and
common mutations during PDAC initiation and progression (11,
25). K-RAS mutations are involved in several signaling pathways
such as RAF/MEK/ERK and PI3K/AKT/mTOR (28, 29). They
not only determine PDAC phenotypes but also significantly
regulate the immunosuppressive TME (28, 29). For example,
studies from Pylayeva-Gupta et al. and Bayne et al. independently
reported that oncogenic K-RASG12D in mouse pancreatic ductal
epithelial cells drove elevated GM-CSF secretion, thereby recruiting
Gr1+CD11b+ MDSCs into PDAC TME (30, 31). Further studies
showed that neutralizing GM-CSF genetically or pharmacologically
in mice was sufficient to reduce these cells, along with elevated
tumoral infiltration of CD8 T cells and slowed PDAC growth (30,
31). It thus suggests GM-CSF and/or MDSCs to be potential
targets for PDAC therapy. Additionally, K-RAS mutations are
also involved in the suppression of innate and adaptive anti-tumor
immunity through modulating PDAC expressions of immune
checkpoints such as PD-L1 and CD47 (32, 33), as well as
through autophagy-mediated MHC-I downregulation in PDAC
(34, 35).

As one of the molecule events downstream of RAS signaling
pathways, MYC activation and overexpression are commonly found
in PDAC (36, 37). Beyond regulating PDAC phenotypes, MYC has
also been linked to the immunosuppressive TME (38, 39). Using
mouse models of PDAC that carry K-RASG12D and inducible
MYC-ERT2, Sodir et al. showed that acute activation of MYC
triggered rapid changes in stromal and immune cells (38). This
included a marked influx of F4/80+CD206+ TAMs and Ly-6B.2+
neutrophils, significant loss of B220+ B lymphocytes and CD3+ T
cells, and induction of 0.-SMA in proximal stellate and fibroblastic
cells (38). As a result, it established a TME reminiscent of human
PDAC (38). Interestingly, subsequent MYC deactivation or
inhibition immediately reversed the advanced PDAC phenotypes
back to PanIN, suggesting the requirement of sufficient levels of
MYC for instructing the PDAC phenotypes and TME features (38).
In this regard, elevated levels of MYC in tumor cells have been
shown to promote PDAC metastasis through CXCL13- and
macrophage migration inhibitory factor (MIF)-mediated
recruitment of TAMs in a recent study (39). Additionally,
concomitant MYC and K-RASGI12D expression caused
suppression of Type I IENs, thereby resulting in decreased NK
and B cell infiltration and advanced PDAC phenotypes (40).
Together, these studies suggest an important role for MYC in
dictating the immunosuppressive TME of PDAC and provide
compelling insights for therapeutically targeting MYC.

The tumor suppressor TP53 mutations occur in 50-70% of
human PDAC, which have been shown to affect immune cell
composition in PDAC TME (8, 41). By analyzing human PDAC
patient data from The Cancer Genome Atlas (TCGA), Maddalena
et al. reported the significant association of TP53 missense mutations
with reduced frequency of CD8 T cells in human PDAC (41). In
addition, using mouse models of PDAC carrying p53R172H
mutation, Siolas et al. reported an elevated secretion of CXCL2 and
CXCLS5, thereby leading to the accumulation of CD11b+Ly6G+
neutrophils in TME (42). On the other hand, p53 loss in mouse
PDAC cells caused decrease of CD4 and CD8 T cells whereas increase
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in immunosuppressive CD11b+ myeloid cells and Treg cells in
PDAC TME (42, 43). Thus, these data demonstrate a contribution
of TP53 mutations to the immunosuppressive TME of PDAC.

4 Immunoregulatory and
immunosuppressive cells: the main
executor of immunosuppression in
PDAC TME

4.1 Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are abundant in the
TME of PDAC. These cells appear to play important but potentially
various roles in fostering tumorigenesis, shaping the TME, and
suppressing anti-tumor immunity (44, 45). TAMs promote PDAC
initiation and progression by secreting a variety of proinflammatory
cytokines including TNFo, RANTES (CCL5), and IL-6 (46, 47). For
instance, it has been reported that TAMs-secreted TNFo and
RANTES activated NF-xB in acinar cells to drive their
proliferation and survival. In turn, acinar cells expressed
intercellular adhesion molecule-1 (ICAM-1) to mediate their
cellular adhesion with TAMs. Thus, TAMs and acinar cells
formed a paracrine loop, sustaining local inflammation and
inducing acinar-to-ductal metaplasia (ADM) transformation in
the early stage of carcinogenesis (46, 47). IL-6 can contribute to
the development of the early premalignant pancreatic lesions ADM
and PanIN through JAK-Stat3 or Stat3/Socs3 pathways (48, 49).
Moreover, TAMs can regulate tumoral neoangiogenesis, epithelial-
mesenchymal transition (EMT), and PDAC metastasis (44, 45). In
response to TME hypoxia, TAMs upregulate the expression of HIF-
1o, a master transcriptional factor that regulates cellular and tissue
adaptive responses to hypoxia (44, 50). HIF-1o. further regulates the
expression of numerous angiogenesis-related genes such as VEGF,
PDGF, BFGF, IL-1B, IL-8, TNF-0, thymidine phosphorylase,
MMPs, CXCL1, and CXCL8 (44, 50). For example, by depleting
TAM:s pharmacologically or genetically in mouse models of PDAC,
Griesmann H demonstrated a significant reduction in liver
metastasis of tumor cells and impairment of neoangiogenesis. In
addition, the study showed the presence of VEGF-expressing TAMs
in pre-metastatic niches and their depletion caused the decrease in
circulating VEGF levels. Based on these data, the authors claimed
that VEGF-expressing TAMs promoted tumor cell extravasation
and vascular permeability (51). Of note, the studies have not
provided a clear answer regarding whether the observed effects
were directly mediated by VEGF or influenced by other factors.
Furthermore, functioning as immunosuppressive cells, TAMs
produce a variety of immunoregulatory cytokines such as TGEp,
IL-10, and prostaglandin E2 (PGE2) and express inhibitory
molecules PD-L1 and PD-L2, which promote Treg cell infiltration
and inhibit anti-tumor CD8 T cell activity (44, 45). Besides, TAMs
also suppress NK cell function by upregulating the expression of
HLA-G, an inhibitory molecule for NK cells (44, 52). In summary,
TAMs promote PDAC initiation and progression, regulate TME
immunosuppression, and inhibit anti-tumor immunity.
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Nonetheless, TAMs are heterogenous and high of plasticity,
therefore possessing significant potential to mediate anti-tumor
responses when purposely modulated.

Historically, TAMs have been recognized to exclusively
originate from the differentiation of recruited monocytes
(MoM®) (44, 45). However, recent studies demonstrated that
they also derived from the expansion of pancreatic tissue-resident
macrophages (TRM) in PDAC, which were phenotypically and
functionally distinct from MoM® (53). In mouse models, CCR2
genetic knockout mediated-MoM® selective depletion didn’t affect
PDAC growth, indicating a dispensable role for them in tumor
progression (53). Interestingly, PDAC growth was remarkably
reduced in mouse models with specific depletion of pancreatic
TRMs (53). These data suggested that TRM expansion-derived
TAMs were more robust drivers of PDAC progression than
MoM® (53). It is worth mentioning that macrophage
heterogeneity has long been defined as M1 and M2 macrophages
based on in vitro polarization studies (44, 45). Briefly, M1
macrophages are classically induced by bacterial products
(lipopolysaccharide) and/or pro-inflammatory cytokines (IFNy
and TNFa), produce proinflammatory cytokines (such as IL-12,
CXCL10), and mediate protective immune responses. By contrast,
M2 macrophages are alternatively activated by immunoregulatory
cytokines (such as IL-4, IL-10, or IL-13), producing factors (such as
VEGEF) associated with wound healing and tissue repair (44, 45). Of
Note, more and more evidence has argued that TAMs rarely
express bona-fide M1 or M2 phenotypes, implying that the
diversity of these cells cannot simply be addressed with this
binary categorization.

Recently, one of the striking research advancements in the field
has been the characterization of the TAMs that are positive for
triggering receptor expressed on myeloid cells 2 (TREM2) (54-56).
TREM2 is overexpressed on TAMs in 75% of human tumors and its
expression highly correlates with poor tumor prognosis in patients
(54). Studies conducted on mice reveal that TREM2+ macrophages
dampen the anti-tumor activities of CD8+ T cells and NK cells,
signifying bona-fide immunosuppressive functions for these cells
(54-56). Moreover, TREM2 modulation by genetic ablation or
monoclonal antibodies can remodel the myeloid cell
immunosuppression within the TME, restrict tumor growth, and
further improve immunotherapies such as anti-PD-1 therapy and
NK cell-based therapy in mouse models with different tumor types
(54-56). Notably, fundamental questions regarding how TREM2
expression is induced in TAMs and how TREM2 regulates the
immunosuppressive phenotypes of TAMs remain largely elusive
(57). Potential explanations could involve in the TAM metabolism,
given that TREM2 is a receptor for a wide array of ligands, including
anionic molecules, DNA, lipoproteins, and phospholipids. These
ligands are intimately associated with cellular metabolism and are
abundantly present in the TME (57).

4.2 Tumor-associated neutrophils

Neutrophils represent one of the most abundant leukocytes in
the blood of humans (up to 50-70%) in physiological settings, which
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have drawn a lot of attention to investigate their relationship with
cancer (58). There were studies to report that PDAC cells, even
tumor cells from the lesions of early stages such as PanIN, can
significantly promote the expansion of neutrophil progenitors in
bone marrow by secreting growth factors (GM-CSF, G-CSF, and M-
CSF) (59, 60). Accordingly, the Neutrophils-Lymphocyte Ratio
(NLR) of periphery blood has been identified as a faithful
prognostic value of the outcomes of PDAC patients after
treatment (61, 62). Specifically, a high NLR value (NLR>2.5) was
remarkably associated with a decreased frequency of CD8 T cells
within the tumor and predicted worse overall survival in PDAC
patients after surgical resection and chemotherapy (57, 58). More
recently, by analyzing PDAC mouse models and PDAC samples of
patients, Jiang et al. found that neutrophil infiltration displayed a
body-wide effect, including liver, lung, colon, stomach, kidney,
heart, and brain (63). Thus, systemic neutrophil infiltration and
associated inflammation can be a cautious marker of pancreatic
cancer prognosis.

In addition to promoting neutrophil progenitor expansion in
bone marrow, PDAC is involved in recruiting neutrophils to the
TME and pre-metastatic niches through secretion of a variety of
chemokines such as CXCL1, CXCL2, CXCL5, and CXCLS8 (64-67).
Using mouse models, Steele et al. reported the liver recruitment of
CXCR2+ neutrophils contributing to PDAC metastasis (67). In the
context of CXCR2+ neutrophil depletion genetically or
pharmacologically, PDAC liver metastasis was remarkably
reduced, along with significantly prolonged tumor-free survival of
PDAC mouse models (67). Although not directly investigated in the
study, it is reasonable to propose a link between the mechanistic
action of CXCR2+ neutrophils in PDAC and CXCR?2 ligands, given
that CXCR2 is a receptor for a series of chemokines CXCLI,
CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 (66, 67).
Furthermore, CXCR2+ neutrophil depletion improved tumoral
infiltration and function of CD8 T cells, which sensitized anti-
PD1 therapy in mouse models of PDAC (67). Together with reports
showing that TANs expressed PD-L1 to suppress anti-tumor T cell
functions, TANs therefore have been considered as significant
immunosuppressive cells in PDAC TME (66-68). Besides, like
TAMs, TANs in PDAC TME are also a substantial source of
ECM degradation mediators such as MMPs and Elastase, which
can promote PanIN progression, PDAC invasiveness, and
metastasis (58, 69). In recent years, the role of neutrophil
extracellular traps (NETs) has gained attention in neutrophil
biology and related diseases (70). NETs are network structures
composed of DNA-histone complexes and proteins released
by activated neutrophils (70). Studies showed that NETs activated
IL-1B/EGFR/ERK pathway, and subsequently promoted PDAC
EMT and metastasis (71, 72). Collectively, these studies
support the notation that TANs represent one of the major
immunosuppressive populations in the TME, inhibiting anti-
tumor immunity and contributing to PDAC progression.

Like the definition of M1 and M2 for macrophages, TANs have
been classified as N1 (anti-tumor) and N2 (pro-tumor) based on the
activation and functional status in the TME (73). Fridlender et al.
showed that TGFf-induced differentiation of N2 TANs led to a pro-
tumor phenotype in TME, whereas anti-tumor N1 TANs were
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polarized when TGFP was ablated. The study highlighted the
phenotypic and functional heterogeneity of TANs in PDAC TME
(73). Another important question is what are the functions of TANs
in the context of cancer immunotherapy? Recent studies have
shown that immunotherapy-activated T cells can recruit and
induce the maturation of neutrophils, leading to an improved
capacity of neutrophils to directly kill tumor cells (74, 75). This
demonstrates an important role for neutrophils in the context of
cancer immunotherapy.

4.3 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous
population originating from myeloid progenitor cells of bone
marrow. They are primarily classified into two populations,
mononuclear (M-MDSC) and polymorphonuclear cells (PMN-
MDSC), which accounts for 20-30% and 70-80% of the total
MDSC population, respectively, in most tumors (76-78). Both M-
MDSCs and PMN-MDSCs were reported to remarkably
accumulate and expand in PDAC TME, and importantly, their
frequency was negatively correlated with patient survival and
response rates of immunotherapies (76, 77). M-MDSCs express
higher levels of signal transducer and activator of transcription 1
(STAT1), inducible nitric oxide synthase (iNOS), and nitric oxide
(NO, which is produced by iNOS-mediated L-arginine metabolism)
(78). On the other hand, PMN-MDSCs have increased levels of
STATS3, reactive oxygen species (ROS), but less NO (78). ROS is a
detrimental agent for T cells, while simultaneously maintaining the
survival of MDSCs themselves (78). These cellular events result in
the suppression of anti-tumor T cell responses (78). Importantly,
both M-MDSCs and PMN-MDSCs are an important source of
arginase 1, which deprives L-arginine required for T cell
metabolism, thus impairing their functions (76, 78). In PDAC
TME, MDSCs (including both M-MDSCs and PMN-MDSCs)
also directly maintain other immunosuppressive cells including
TAMs and Tregs (76, 79). For example, by using light sheet
fluorescent microscopy, Siret et al. observed the close associations
of MDSCs and Tregs in tumor samples from PDAC mouse models
and patients. Further studies demonstrated that MDSCs secreted
TGFp and IL-10, fostering Treg frequency and functions locally in
PDAC TME (79). Besides, like TAMs and TANs, MDSCs can also
promote neoangiogenesis, EMT, and metastasis of PDAC through
secretion of a variety of mediators such as G-CSF, GM-CSF, stem
cell factor (SCF), cyclooxygenase 2 (COX-2), PGE2, MPPs, VEGF,
and HGF (78, 80). Lastly, it is especially worth mentioning that
PMN-MDSCs are distinct from neutrophils, given that they have
increased levels of arginase 1 and peroxynitrite, fewer granules, and
reduced CD16 and CD62L expression (78, 80).

4.4 Regulatory T cells
Regulatory T cells (Tregs) are a subset of immunosuppressive

cells, which have been largely reported to play tumor-promoting
roles (81). Tregs are highly infiltrated into PDAC, and their
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abundance is often correlated with a poor prognosis and reduced
survival in patients (82). Tregs exert their immunosuppressive
effects through various mechanisms. One of the main
mechanisms employed by Tregs is the expression of immune
inhibitory molecules, such as CTLA-4, which can dampen the
activation and function of CD8 T cells (81). Additionally, Tregs
produce immune regulatory cytokines, including TGFf and IL-10,
which further contribute to the suppression of anti-tumor immune
responses. Moreover, they also compete with other T cells for IL-2
via higher expression of the IL-2 receptor, and therefore
suppressing T cell function (81). Interestingly, a recent study
showed that depletion of Tregs accelerated PDAC growth due to
compensatory infiltration of tumor-promoting myeloid cells,
specifically, TAMs (83). The specific mechanisms underlying this
phenomenon were not explored in the study, highlighting the need
for further research. Nevertheless, these findings suggest that
caution should be exercised when considering Treg depletion as a
therapeutic strategy for PDAC.

4.5 Mast cells

Mast cells are also one of the immune cell subsets that have been
shown increased infiltration in PDAC. There were studies to report
the inverse correlations between the frequency of mast cells with
pathological grades of tumors and the overall survival of patients
with PDAC (84, 85). Chang et al. observed the increased infiltration
of mast cells into the tumors in a mouse model of PDAC, compared
to that in the pancreas of healthy mice (85). Furthermore, they
orthotopically transplanted the PDAC cells, that were isolated from

Kitw-sh/w-sh)

the mouse model, into mast cell-deficient mice ( and

found that the tumor growth was significantly slower than that in
WT recipient mice. Reconstitution with mast cells in Kit"""h
mice remarkably restored PDAC growth. These studies thus
demonstrated a tumor-promoting role for mast cells in PDAC
growth (85). In fact, mast cells have been shown to secrete a variety
of tumor-supporting and/or immunoregulatory factors in PDAC
TME, including IL-13, Tryptase, MMPs (84, 86). Despite the
evidence pointing towards a tumor-promoting role for mast cells
in PDAGC, the specific targeting strategies for mast cells in PDAC
therapies have received limited investigation so far.

5 Impaired anti-tumor immunity
in PDAC TME: CD8 T cells, DCs,
and NK cells

5.1 CDS8T cells

Cytotoxic CD8 T cells play a central role in anti-tumor
immunity. Upon recognition of T cell receptor (TCR) of tumor
cells, of which tumor-specific antigen is presented by major
histocompatibility complex class I (MHC-I), CD8 T cells can kill
tumor cells through producing cytotoxic molecules, such as
granzymes and perforin (15). Generally, high tumoral infiltration
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of CD8 T cells and/or their improved functional status are positively
associated with responses to therapies and the outcomes in patients
across many cancer indications (15, 87). In most patients with
PDAC, however, CD8 T cells are either scarce or excluded from the
tumor cores. Even though CD8 T cells are present intratumorally in
some PDAC patients, they are usually dysfunctional or exhausted,
evidenced by elevated expression of a set of checkpoint molecules
including PD-1, Tim-3, and LAG-3, and reduced production of
effector cytokines such as IFNy, TNFq, and granzyme B. Many
mechanisms that mediate PDAC immune escape have been
reported (15, 87). For example, Yamamoto et al. showed that
autophagy-mediated degradation in PDAC contributed to
significantly downregulated MHC-I molecules, consequently
preventing CD8 T cells from being fully activated (34). In general,
it appears that nearly all cell types from the defined
Immunosuppression module, including TAMs, TANs, MDSCs,
and Treg cells, can suppress CD8 T cells (Figure 1) (13, 14).
CAFs also contribute to CD8 T cell suppression through the
secretion of immunoregulatory molecules such as TGF( and
CXCL12 (88, 89), as well as through forming a physical barrier to
directly prevent their infiltration (90). In summary, CD8 T cells in
the tumors of most PDAC patients are rare, dysfunctional, and
excluded from the tumor cores.

5.2 Dendritic cells

Dendritic cells (DCs) are professional antigen-presenting cells
and initiate immune responses when fully activated. Numerous
studies have reported that DC numbers and functions are
significantly low in PDAC samples of patients, compared with
other tumor types (91, 92). Accordingly, most PDAC patients
were found the remarkable lack of circulating DCs in peripheral
blood, who were usually associated with worse survival outcomes. It
suggested the significance of DCs in PDAC patients (91, 92). In this
regard, immense efforts have been put into the development of DC-
based therapies for PDAC (16, 93). For example, using tumor
antigen-expressing mouse models of PDAC and lung cancer,
Hegde et al. reported a remarked impairment of conventional
DCs in numbers and functions in PDAC, but not in lung tumors,
which resulted in different tumor controls (16). It was further
demonstrated that treatment with Flt3L and CD40 agonism, a
regimen to improve DCs, led to PDAC control. Importantly, this
treatment rendered PDAC responses to radiotherapy and its control
was further improved (16, 93). These studies suggest a significant
potential of DC-based therapies for PDAC. However, the reasons
causing the impairment of DCs in PDAC remain to be
further characterized.

5.3 Natural killer cells

Natural killer cells (NK cells), a population of innate lymphoid
cells, are important players in the immune surveillance of cancer.
NK cell activation is controlled by integrating signals from
activation and inhibitory receptors. Normal cells express MHC-I
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molecules, the ligands for the inhibitory receptors of NK cells, to
keep them under check. On the other hand, tumor cells usually
downregulate MHC-I to escape from CD8 T cell killing, making
them susceptible to NK cell-mediated killing. Hence, NK cells and
CD8 T cells coordinate to keep effective immune surveillance of
tumor cells. However, both NK cells and CD8 T cells
(abovementioned) are impaired in PDAC TME (18, 94). Lim
et al. provided evidence showing a lower frequency of NK cells in
tumor samples of PDAC patients, which was due to downregulated
expression of CXCR2, a receptor of several chemokines important
for NK cell recruiting (94). Furthermore, NK cell functional
impairment was also evidenced, mechanistically attributed to
decreased expression of NK cell activation receptors NKG2D and
DNAM-1 (94). The molecular insights leading to the NK cell
impairment in PDAC TME, such as what causes downregulated
CXCR2, NKG2D, and DNAM-1 in NK cells, remain largely
unknown. More recently, Muthalagu et al. provided a novel
mechanistic study to explain the NK cell evasion in PDAC (40).
Using mouse models of PDAC expressing oncogenes MYC and K-
RAS, they showed that type I IFNs were suppressed due to the
binding of repressive MYC-MIZ1 complexes directly to the gene
promoters of type I IFN regulators IRF5, IRF7, STAT1, and STAT2.
Consequently, it contributed to the ineffectiveness of NK cell
infiltration and PDAC control. Further study showed that genetic
or pharmacological removal of repressors of type I IFN regulator
genes increased NK cell infiltration and mouse survival. This study
not only shed light on the mechanisms underlying NK cell
impairment but also highlighted the possibility of targeting IFN
signaling to improve PDAC therapy (40). In addition, NK cell
cytotoxicity and INFy production can be impaired by TGFf, an
abundant cytokine of immunoregulatory in PDAC TME (18, 95).
Therefore, strategies to restore NK cell infiltration and function in
PDAC TME hold great value for improving therapeutic outcomes.

6 Emerging roles for CD4 T and B
cells in PDAC TME

6.1 CD4 helper T cells: Thl, Th2, and Thl7

CD4 T cells are major players and coordinators of innate and
adaptive immune responses and have been increasingly implicated
in cancer immunity. Upon functional polarization, they show a
broad spectrum of differentiation into defined subsets, including T
helper 1 (Thl), Th2, Th17, and Treg (discussed above), implying
their functions in tumor immunity are multifaceted and highly
dependent on contexts (19-22). Thl cells have been well-
recognized to mediate anti-tumor effects, as they produce effector
cytokines IL-2 and IFNy (19, 20). However, a lower abundance of
Thl cells in PDAC was also implicated in the prolonged survival of
patients, although the underlying reasons remain undetermined
(20). Th2 cells secrete type 2 cytokines IL-4, IL-5, and IL-13, which
mediate macrophage immunosuppressive polarization, fibrotic
responses, and angiogenesis in tumors (19, 21). In PDAC
patients, Th2 cell frequency has been shown an inverse
correlation with overall survival, highly suggesting a tumor-
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supporting role for these cells (19, 21). Nonetheless, Jacenik et al.
reported that Th2 cells suppressed colon and pancreatic tumor
growth in mice. Mechanistically, it was associated with Th2 cell-
secreted IL-5, which promoted anti-tumorigenic responses of
macrophages and eosinophils (96). As the main producer of IL-17
family cytokines, Th17 cells have been shown divergent effects in
tumor immunity. He et al. provided data showing that elevated
Th17 cells and their cytokines IL-17 and IL-22 were associated with
tumor invasiveness, metastasis, and poor survival of PDAC patients
(97). In line with the study in humans, McAllister et al. reported a
remarked reduction in tumor progression in a mouse model of
PDAC, of which Thl7 cells were depleted (98). In the study,
overexpression of IL-17A cytokine in the pancreas significantly
accelerated PanIN initiation and progression in mouse models,
suggesting a tumor-promoting role for IL-17 signaling albeit the
molecular mechanisms required further investigation (98).
Interestingly, there were also studies to report the potential anti-
tumor effects of Th17 cells, as increased Th17 cell infiltration was
positively correlated with tumor control and survival of PDAC
mouse models (22). Therefore, the paradoxical effects among Thl,
Th2, and Th17 cells in tumor immunity may highly rely on contexts
including PDAC TME status, which requires further
characterization in order to use their anti-tumor immunity
whereas reverse the tumor-promoting role for PDAC therapy.

6.2 B cells

B cells are highly infiltrated in PDAC, and their roles in cancer
immunity have been the subject of increasing research (23, 99). By
determining PanIN and PDAC lesions from both humans and
mouse models, Pylayeva-Gupta et al. observed the prominent
presence of B cells and that orthotopic PDAC growth was
significantly slowed in B cell-deficient mice. Further analysis
identified the contribution of IL-35-producing CD1dhiCD5+ B
cells to PDAC progression in mice and that these cells were
recruited through CXCL13 (100). A regulatory B cell population
has been well-documented in PDAC, which, except for IL-35, was
also characterized by the expression of IL-10 and PD-L1 (99). It
thus explained the capabilities of the B cells to suppress anti-tumor
immunity and promote PDAC. Besides, B cells have been
implicated in other mechanisms contributing to PDAC
progression. They have been found to play a role in programming
tumor-supporting FCYR+ TAMs and to be functionally associated
with hypoxia in PDAC (101, 102). Collectively, these studies
highlighted a tumor-promoting role for B cells in PDAC albeit
through various mechanisms. More recently, ectopic lymphoid
aggregates, namely tertiary lymph structures (TLS), have been
observed in many solid cancers including PDAC. Composed of
organized B cells and T cells, TLS presence has been positively
associated with immunotherapy efficacy and favorable survival of
PDAC patients (103, 104). Underlying mechanisms most likely
attributed to TLS functioning as tumor immunity hub readily
available in TME (103, 104). In addition, it is postulated that the
presence of sparse or organized B cells within tumors may play
divergent roles in tumor immunity.
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7 Cancer-associated fibroblasts in the
immunosuppressive TME of PDAC

Cancer-associated fibroblasts (CAFs) represent the most
abundant cell type in the TME of PDAC, in which they constitute
up to 80% of all cells. CAFs behave with remarkable desmoplastic
reaction, a typical feature of the PDAC TME that is largely involved
in ECM deposition and vessel remodeling. CAFs are very
heterogeneous populations in terms of cellular origin and
function (24). Studies have shown that CAFs can derive from
pancreatic stellate cells (PSCs), tissue-resident fibroblasts,
adipocytes, pericytes, bone marrow-derived progenitors, and
endothelial cells (24). PSCs have long been considered as the
primary source of CAFs in PDAC, however, cell lineage tracing
study targeting Fabp4+ PSCs showed them contributing to a
numerically minor CAF subpopulation (24, 105). This suggests
that multiple cellular origins contribute to the heterogeneity of
CAFs in PDAC (24, 105). The extent to which each potential
cellular origin contributes to the diverse population of CAFs in
PDAC is still largely unknown. Additionally, the relationship
between the different cellular origins and the phenotypic, spatial,
and functional heterogeneity of CAFs in PDAC remains unclear.

In the context of PDAC, three subsets of CAFs have been widely
appreciated from early efforts by scRNA sequencing analysis of
tumors from mouse models and human patients. A myofibroblast-
like subset of CAFs (myoCAF) was evidenced by upregulating
expression of aSMA and ECM, meanwhile inflammatory CAFs
(iCAF) expressed cytokines and chemokines such as IL-6 and
CXCLI12. Spatially, myoCAFs were located close to the neoplastic
cells whereas iCAFs distributed distantly from the tumor cells, likely
indicating the distinct modes of CAF-tumor interactions (106-108).
In addition to myoCAFs and iCAFs, a distinct CAF population
expressing high levels of antigen presentation molecules such as
MHC-II molecule and CD74 has been characterized (termed
antigen-presenting CAFs, or apCAF). Interestingly, these cells
lacked costimulatory molecules, suggesting their inability of
mounting a functional immune response (107, 109). Recently, a
subset of CAFs expressing leucine-rich-repeat-containing protein
15 (LRRC15) was identified in PDAC, but not in the healthy
pancreas, in both mice and humans. LRRC15 marked a
myofibroblast population of CAFs that were dependent on TGF],
although its function in CAFs were unknown. These cells were
shown to promote tumor growth and limit anti-tumor immunity
and responsiveness to immune checkpoint blockade (110, 111).

CAFs contribute to the immunosuppressive TME in PDAC in
various manners. CAFs have been reported to promote the
differentiation and/or recruitment of MDSCs in the TME by
secreting IL-6, GM-CSF, and CCL2 (24, 106). A more recent
study has shown that CAFs secreted CSF-1 to drive p21-mediated
TAM proliferation and immunosuppressive phenotypes, which
promoted PDAC progression (112). Moreover, CAFs impaired
anti-tumor T cell immunity, through CXCL12-mediated T cell
exclusion and/or TGFB-mediated T cell functional suppression
(24, 88, 89). Finally, costimulatory-deficient apCAFs presented
antigens to T cells but were unable to activate them. ApCAFs
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thus prevented T cells from being activated by professional antigen-
presenting cells. More recently, apCAFs were shown to have an
immunoregulatory function since they directly induced Treg
differentiation from naive CD4 T cells in an antigen-specific
manner (107, 109). In summary, the fundamental investigation of
CAF origin, phenotypic and functional heterogeneity, and how they
contribute to the immunosuppressive TME in PDAC will generate
instrumental knowledge for targeting them.

8 Targeting the immunosuppressive
TME to improve PDAC therapy

Immunotherapies with immune checkpoint inhibitors (ICI)
have revolutionized the treatment of several cancers. However,
this new treatment, particularly monotherapy, seems not to be
entirely effective for PDAC, except for the 1% of patients harboring
high microsatellite instability in tumors. Reasons that contribute to
the low efficacy of ICI therapy for PDAC are multiple, with the
overarching TME representing the most notorious one (2-5). In
this regard, TME-targeted strategies have long been investigated to
improve PDAC therapy, among which novel examples will be
highlighted in the section (Table 1).

8.1 Targeting the immunosuppression

CSF1/CSF1R pathway plays a crucial role in TAM recruitment,
maintenance, and proliferation, which can be prevented either with
monoclonal antibodies to block CSF1R dimerization or with small
molecule inhibitors to impair CSF1R-mediated signal transduction
(44, 45, 113, 114). CSFIR inhibition has been shown to reduce
CD206hi TAMs in PDAC, thereby leading to M1-like macrophage
polarization, increased T cell infiltration, and reduced tumor
growth (113, 114). Importantly, CSFIR inhibition improved
radiotherapy, anti-PD1 and anti-CTLA4 immunotherapies, and
gemcitabine chemotherapy in preclinical mouse models of PDAC
(113, 114). However, a cautious approach must be taken for future
clinical applications due to the potential compensatory effect of
TAM depletion, which may lead to the emergence of
immunosuppressive G-MDSCs (66, 115).

CCL2/CCR2 axis is highly used for PDAC to mobilize and
recruit inflammatory monocytes, which further differentiate into
TAMs in TME (44, 45, 116, 117). In mice, pharmacologically
blocking CCL2/CCR2 axis through an anti-CCL2 neutralizing
antibody or CCR2 inhibitor resulted in reduced CCR2+
monocytes and TAMs in primary PDAC and pre-metastatic liver,
which consequently contributed to improved anti-tumor immunity,
reduced tumor growth, and decreased metastasis (116, 117).
Notably, discrepancies have been observed in murine models
when comparing the effects of pharmacological blockade of
CCL2/CCR2 axis to those of germline genetic ablation of CCR2
in attenuating PDAC progression (53). Such findings underscore
the necessity for more meticulous and comprehensive consideration
when utilizing preclinical animal models in future research. In
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addition, CCL2-mediated recruitment of monocytes has been a
critical mechanism for PDAC to resist radiotherapy, given that
blocking CCL2/CCR2 axis improved ablative radiotherapy in
mouse models of PDAC (116). Clinically, phase I trials
NCT01413022 (CCR2 antagonist PF-04136309 + FOLFIRINOX)
and NCT02345408 (CCR2 antagonist CCX872 + FOLFIRINOX)
have seen objective responses for the PDAC patients treated with
the combinations (118, 119).

Another strategy to target TAMs in PDAC involves the
application of CD40 agonists to activate their anti-tumor
responses (14, 87, 93, 120). CD40, a member of TNF superfamily,
is broadly expressed by immune cells, including monocytes,
macrophages, and DCs, and is crucial for their activation, antigen
presentation, and other immune responses (93, 120). In mouse
models of PDAC, treatment with agonistic CD40 antibodies
reprogramed TAMs toward anti-tumor phenotypes. It was
evidenced by the upregulation of MHC-II and CD86, and
elevated production of pro-inflammatory cytokines IL-12, TNFa,
and IFNYy (93, 120). Further, combined treatment with CD40
agonists and gemcitabine/nab-paclitaxel improved TAM
responses and anti-tumor T-cell clonal expansion, consequently
facilitating PDAC control in mouse models (87, 93, 120). Moreover,
triple therapy with T-cell inducting vaccine, PD-1 blockade, and
CD40 agonist significantly promoted anti-tumor T cell immunity,
marked by elevated infiltration of IFNY-, TNFa-, and granzyme B-
secreting effector T cells (121). As a result, triple therapy further
improved tumor control and prolonged mouse survival. Of note,
macrophage depletion markedly compromised the anti-tumor effect
of CDA40 agonist, suggesting the significance of macrophages in the
application of this therapy (121). In patients with PDAC, combined
treatment with CD40 agonist (CP-870,893) and gemcitabine led to a
reduction in tumor burden in phase I study (NCT00711191) (120).
However, the phase IT clinical trial (NCT03214250) for metastatic
PDAC patients treated with the combination of CD40 agonist
(Sotigalimab), gemcitabine/nab-paclitaxel, and PD-1 blockade
(Nivolumab) did not show improvements in 1-year overall
survival rates (122). Therefore, future studies to identify
predictive biomarkers of response will be required to achieve
higher efficiency.

TANSs are abundant in PDAC and targeting them has been a
subject of extensive research. TAN depletion with a small molecule
inhibitor of CXCR2 led to a remarked reduction in PDAC
progression and metastasis in mice, which was associated with
improved T cell infiltration. In line with this, CXCR2 inhibition
further synergized with anti-PD1 and/or FOLFIRINOX therapies
(66, 67). However, PDAC patients treated with combined CXCR2
inhibitor (AZD5069) and anti-PD-L1 (Durvalumab) in a phase Ib/
II clinical trial (NCT02583477) demonstrated limited efficacy,
which warranted future studies. It has been shown that CXCR2
inhibition resulted in compensatory emergence of CCR2+ myeloid
cells in mouse PDAC, which in turn remarkably compromised the
effect of CXCR2 inhibition (66). Further, combined inhibition of
CXCR2 and CCR2 successfully disrupted the recruitment of
immunosuppressive myeloid cells in mouse PDAC and
consequently improved chemotherapy responses (66). It suggests
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TABLE 1 Selected clinical trials targeting TME for pancreatic cancer therapy.

Target Class Agent Combination Enrolled Response of Reported biological responses Population Clinical
partners patients combined trial
(n) treatment
arm
CSFIR CSFIR Cabiralizumab | FOLFIRINOX, 206 NR NR Advanced I Complete: NCT03336216
inhibitor Gemcitabine/Nab- PDAC 06/01/2023
(mADb) Paclitaxel, anti-PD-1
(nivolumab)
CD40 CD40 CP-870,893 Gemcitabine 21 ORR 40%; Inflammation cytokines (up); Advanced 1 Complete: NCT00711191
agonist SDR 53% B cells (down) PDAC 01/2011
(mAD)
CD40 APX005M Gemcitabine/Nab- 129 ORR 31%; Intratumoral CD4T cells (up); circulating differentiated Metastatic /1L Complete: NCT03214250
agonist Paclitaxel, anti-PD-1 SDR 69% CDA4T cells and antigen-presenting cells (up) PDAC 02/25/2022
(mADb) (Nivolumab)
CCR2 CCR2 PF-04136309 FOLFIRINOX 44 ORR 49%; Peripheral CCR2+ monocytes (down), TAMs (down); PDAC 1b Complete: NCTO01413022
antagonist SDR 14% Tumoral Tregs (down), CD4T and CD8T cells (up); tumoral 09/2016
(small IL12a and TNFa mRNA (up); IL10, TGF, IL13 mRNA
molecule) (down)
CCR2 PF-04136309 Gemcitabine/Nab- 21 NR Peripheral CD14+CCR2+ inflammatory monocytes (down) Metastatic Ib/11 Complete: NCT02732938
antagonist Paclitaxel PDAC 10/10/2017
(small
molecule)
CCR2 CCX872-B FOLFIRINOX 54 ORR 30-37%; Peripheral CCR2+ monocytes (down); tumoral MDSC PDAC 1b Complete: NCT02345408
antagonist DCR 78% (down), TAMs (down), Tregs (down); CD4T and CD8T 05/06/2020
(small cells (up)
molecule)
CCR2/5 Dual BMS-813160 Gemcitabine/Nab- 40 NR NR Advanced /11 Estimated: NCT03496662
antagonist Paclitaxel, anti-PD-1 PDAC 10/14/2024
(small (Nivolumab)
molecule)
Dual BMS-813160 FOLFIRINOX, anti- 332 NR NR including Ib/I1 Complete: NCT03184870
antagonist PD-1 (Nivolumab) advanced 06/14/2023
(small PDAC
molecule)
CXCR2 CXCR2 AZD5069 anti-PD-L1 23 ORR 5.6%; SDR NR Metastatic Ib/1I Complete: NCT02583477
antagonist (Durvalumab) 11% at 6mos; 5.6% PDAC 07/09/2018
(small at 12mos
molecule)
CXCR1/ CXCR1/2 SX-682 anti-PD-1 (nivolumab) 20 NR NR PDAC I Estimated: NCT04477343
2 inhibitor 12/31/2024
(Continued)
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TABLE 1 Continued

Target Class Combination Enrolled Response of Reported biological responses Population Phase Trial Clinical
partners patients combined status trial
(n) treatment
arm
(small
molecule)
CXCR4 AMD3100 Plerixafor anti-PD-1 25 NR Intratumor effector T cells (up); macrophages and Metastatic 11 Complete: NCT04177810
(small (Cemiplimab) neutrophils (up) pnacreatic 0519/2023
molecule) cancer
BL-8040 Motixafortide anti-PD-1 80 ORR 32%; Tumoral CD8+ effector T cells (up); MDSCs (down); Metastatic 11 Complete: NCT02826486
(small (Pembrolizumab), DCR 77% circulating Tregs (down) pnacreatic 09/06/2022
molecule) fluorouracil (5-FU) and cancer
leucovorin (LV)
TGFB Anti-TGFB NIS793 Gemcitabine/Nab- 151 NR NR Metastatic 1I Estimated: NCT04390763
(mAb) Paclitaxel, anti-PD-1 PDAC 11/30/2023
(Spartalizumab)
TGFPBRI Galunisertib anti-PD-L1 37 ORR 3.1%; NR Metastatic I Complete: NCT02734160
inhibitor (Durvalumab) DCR 25% pnacreatic 04/17/2019
(small cancer
molecule)
IL-10 Pegylated Pegilodecakin Folinic acid, 567 ORR 4.6% IL-18, IFN-y, and granzyme B (up); TGFP (down) Pancreatic 111 Complete: NCT02923921
IL-10 fluorouracil and cancer 03/05/2020
oxaliplatin (FOLFOX)
Vaccine Allogeneic GVAX CRS-207, Cy, anti-PD- 61 ORR 4% CD8T cell (up); CD68+ myeloid cells (down) PDAC 11 Estimated: NCT03190265
GM-CSF- 1 (Nivolumab), anti- 08/01/2023
secreting CTLA4 (Ipilimumab)
cells

mAb, monoclonal antibody; CSFIR, colony-stimulating factor-1 receptor; FOLFIRINOX, leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride, and oxaliplatin; NR, not reported; PDAC, pancreatic ductal adenocarcinoma; ORR, objective response rate;
SDR, stable disease rate; up, increase in analysis; down, decrease in analysis; TAM, tumor-associated macrophage; Treg, regulatory T cell; DCR, disease control rate; MDSC, myeloid-derived suppressor cell; PD1, programmed death protein 1; PD-L1, programmed cell death
ligand 1; mos, months; Estimated, estimated complete date; TGFBRI, TGFP type I receptor; GVAX, GM-CSF-secreting pancreatic cancer cell lines; CRS-207, live-attenuated listeria-encoding human mesothelin vaccine; Cy, cyclophosphamide; CTLA4, cytotoxic T-
lymphocyte-associated protein 4.
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an important point to be considered in future clinical trials
regarding therapies through myeloid cell depletion.

Different strategies to directly target Tregs have been
investigated. One of the earliest studies was the incorporation of
low-dose cyclophosphamide in different treatment regimens to
target Tregs (123, 124). Studies showed that Tregs had higher
susceptibility to the toxic effects of cyclophosphamide due to their
low levels of intracellular ATP (Adenosine triphosphate) and
glutathione, thus were selectively eliminated (123, 124). In
combination with the allogeneic PDAC vaccine (GVAX,
granulocyte macrophage colony-stimulating factor-secreting
pancreatic cancer cell lines), cyclophosphamide has been shown
to augment immune responses in PDAC patients (125, 126).
Additionally, CTLA-4, neuropilin-1, and CCL5/CCR5 have been
explored as targets for intratumoral Tregs (2, 4, 5). However, it is
especially worth noting that a recent study has shown an
acceleration of tumorigenesis in the context of Foxp3+ Treg cell-
genetic depletion in a mouse model of PDAC, which
mechanistically attributed to compensatory infiltration of myeloid
cells, in particular TAMs (83). In this regard, chemotherapies that
can delete Tregs, such as low-dose gemcitabine (127), could
unintendedly contribute to pro-tumor consequences in PDAC
patients. Thus, these studies imply that therapeutic strategies
aimed at immunosuppressive cell modulation rather than
depletion could hold more potential to benefit PDAC outcomes.

8.2 Targeting cancer-associated fibroblasts

Targeting cancer-associated fibroblasts (CAFs) to treat cancer
was initially evaluated with inhibitors of fibroblast-activation
protein (FAP), a type-II transmembrane serine protease highly
expressed by fibroblasts. In mice with subcutaneous PDAC, FAP
inhibitor (UAMC-1110) did not show any meaningful efficacy as a
single agent (128). Similarly, in patients with metastatic PDAC,
combined treatment with FAP inhibitor (Talabostat) and
gemcitabine demonstrated very limited efficacy over historical
gemcitabine monotherapy in a phase II clinical trial (129). Given
the lack of success in targeting FAP, subsequent studies have been
investigated to deplete active CAFs. Studies have shown that genetic
depletion of aSMA-expressing CAFs (myoCAF) in mouse models of
PDAC promoted tumor progression, suggesting a tumor-
suppressing function of these cells (130). Interestingly, a recent
study by Krishnamurty et al. reported that depletion of LRRCI15+
myoCAFs slowed tumor growth in mouse models of subcutaneous
PDAC (111). Moreover, LRRC15+ myoCAF depletion in
combination with anti-PDLI led to a significantly improved anti-
tumor effect (111). According to these findings, the study instead
noted a tumor-supporting role for LRRC15+ myoCAFs in PDAC
(111). Notably, the paradoxical results of targeting myoCAFs from
the abovementioned studies warranted a comprehensive
understanding of CAF heterogeneity in PDAC therapy. In PDAC,
ECM is primarily secreted by CAFs and highly deposited in the
TME (24). Targeting ECM, such as modulating sonic hedgehog
signaling, MMP activity, or hyaluronan deposition, has also been
studied. Unfortunately, early clinical trials in PDAC patients did not
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yield satisfactory therapeutic efficacy with these strategies (24).
Another strategy for targeting CAFs is to block CAF-mediated
immunosuppression. For example, disrupting CXCL12-CXCR4
signaling by AMD3100, a small molecule inhibitor of CXCR4,
demonstrated a synergistic anti-tumor activity in combination
with anti-PD-1/PD-L1 therapy in mouse models of PDAC (84,
89). The combination therapy of CXCR4 inhibition (ADM3100)
and anti-PD1 (Cemiplimab) is now being studied in a phase II
clinical trial (NCT04177810) for patients with metastatic pancreatic
cancer (131). CXCR4 inhibition has also been shown to result in the
infiltration of additional myeloid cells into tumors, suggesting a
potential mechanism of resistance against CXCR4-targeted
therapies (131). Together, these findings generally raise a
perspective that future strategies should aim at modulating the
TME instead of targeted depletion.

9 Concluding remarks

Over the past years, increasing knowledge has been made in
understanding the complex TME of PDAC and its significance on
disease biology and treatment outcomes. Despite its heterogeneity
and complex interplay among various cellular components, the
PDAC TME consistently exhibits immunosuppressive
characteristics, which strongly influence tumor progression,
metastasis, as well as responses to therapies. Other research topics
that were not covered due to the scope of this review, such as cancer
metabolism, vessel remodeling, and cancer vaccines, can also be
promisingly targeted for therapeutics. Overall, it can be expected
that conceptual advances that understand the overarching TME of
PDAC toward a comprehensive overview could help to develop new
therapeutic strategies aimed at targeting multiple mechanisms with
synergistic effects.
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Background: Chronic myeloid leukemia (CML) is a kind of malignant blood
tumor, which is prone to drug resistance and relapse. This study aimed to identify
novel diagnostic and therapeutic targets for CML.

Methods: Differentially expressed genes (DEGs) were obtained by differential
analysis of the CML cohort in the GEO database. Weighted gene co-expression
network analysis (WGCNA) was used to identify CML-related co-expressed
genes. Least absolute shrinkage and selection operator (LASSO) regression
analysis was used to screen hub genes and construct a risk score model based
on hub genes. Consensus clustering algorithm was used for the identification of
molecular subtypes. Clinical samples and in vitro experiments were used to verify
the expression and biological function of hub genes.

Results: A total of 378 DEGs were identified by differential analysis. 369 CML-
related genes were identified by WGCNA analysis, which were mainly enriched in
metabolism-related signaling pathways. In addition, CML-related genes are
mainly involved in immune regulation and anti-tumor immunity, suggesting
that CML has some immunodeficiency. Immune infiltration analysis confirmed
the reduced infiltration of immune killer cells such as CD8+ T cells in CML
samples. 6 hub genes (LINC01268, NME8, DMXL2, CXXC5, SCD and FBN1) were
identified by LASSO regression analysis. The receiver operating characteristic
(ROC) curve confirmed the high diagnostic value of the hub genes in the analysis
and validation cohorts, and the risk score model further improved the diagnostic
accuracy. hub genes were also associated with cell proliferation, cycle, and
metabolic pathway activity. Two molecular subtypes, Cluster A and Cluster B,
were identified based on hub gene expression. Cluster B has a lower risk score,
higher levels of CD8+ T cell and activated dendritic cell infiltration, and immune
checkpoint expression, and is more sensitive to commonly used tyrosine kinase
inhibitors. Finally, our clinical samples validated the expression and diagnostic
efficacy of hub genes, and the knockdown of LINC01268 inhibited the
proliferation of CML cells, and promoted apoptosis.

39 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2023.1297886/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1297886/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1297886/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1297886/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1297886&domain=pdf&date_stamp=2024-01-12
mailto:lj8679@163.com
mailto:wangxiaozhong@ncu.edu.cn
https://doi.org/10.3389/fimmu.2023.1297886
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1297886
https://www.frontiersin.org/journals/immunology

Zhong et al.

10.3389/fimmu.2023.1297886

Conclusion: Through WGCNA analysis and LASSO regression analysis, our
study provides a new target for CML diagnosis and treatment, and provides a
basis for further CML research.

KEYWORDS

chronic myeloid leukemia, WGCNA, hub gene, diagnosis, biomarker

Introduction

Chronic myeloid leukemia is a malignant tumor that affects the
blood and bone marrow (1). It is mainly induced by the BCR-ABL1
fusion gene, which encodes a protein with strong tyrosine kinase
activity and activates various signaling pathways (2). At present, the
main therapeutic drugs for CML are tyrosine kinase inhibitors (TKIs)
targeting BCR-ABL1 (2). The development of the first-generation
TKI imatinib (IM) has changed the treatment status of CML, and the
prognosis of patients has been significantly improved (3). It is widely
used and has a good therapeutic effect. However, due to the existence
of escape mechanisms, tumor cells often develop resistance to kinase
drugs, leading to the malignant progression of the disease, which
seriously affects the health of patients (4). In addition, the long-term
use of TKI will also produce many complications, affecting the quality
of life of patients (5). Therefore, there is an urgent need to identify
novel molecular targets for the diagnosis and treatment of CML.

With the progress and development of sequencing technology,
bioinformatics has been widely used to explore the genetic changes of
tumors, and to find new targets for early diagnosis and therapeutic
intervention of tumors. The Gene Expression Omnibus (GEO) database
contains gene expression profiles of various diseases and tumor samples
and corresponding clinical information, which can be used for in-depth
analysis (6). Weighted gene co-expression network analysis (WGCNA)
is a bioinformatics tool to screen genes with similar expression patterns
related to disease phenotypes by constructing free-scale gene co-
expression networks (7). The reliability of this method has been widely
verified (8-10), and to a large extent, it overcomes the limitations caused
by only focusing on differentially expressed genes (DEGs). Therefore,
hub genes that are highly correlated with clinical phenotypes can be
defined as potential biomarkers and therapeutic targets.

In this study, we systematically analyzed the CML dataset
GSE13159 in the GEO database, combined with differential
expressed expression analysis and WGCNA analysis, identified a set
of co-expressed genes significantly associated with CML, and
determined the biological functions of these genes by enrichment
analysis. Subsequently, the least absolute shrinkage and selection
operator (LASSO) analysis was used to screen out signature genes
that had high diagnostic value for CML and could predict treatment
response in CML patients. We also identified two molecular subtypes
with distinct immune landscapes based on hub gene expression.
Finally, the diagnostic performance of the risk score model
constructed by hub genes was further improved. These signatures
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were validated using an additional public cohort and our clinical real-
world cohort. Therefore, these findings will help reveal more
underlying mechanisms of CML, as well as the potential value of
these targets in CML treatment.

Materials and methods
Data acquisition and processing

We downloaded the CML data sets (GSE13159, GSE144119)
from the GEO database. GSE13159 contains 76 CML samples and
74 normal samples, and we normalized the original “cel” files.
GSE144119 contained 48 newly diagnosed CML samples and 32
remission CML samples, as well as 17 normal samples, and the data
were converted to transcripts per kilobase million (TPM) values for
subsequent analyses. GSE13159 was used as the analysis cohort, and
GSE144119 was used for subsequent validation. The normalized
RNA-seq data (TPM values) of 173 TCGA-LAML (The Cancer
Genome Atlas-Acute Myeloid Leukemia) samples containing
clinical information were downloaded from the UCSC XENA
database (https://xenabrowser.net/datapages/).

Pathway activity assessment and function
enrichment analysis

The gene set variation analysis (GSVA) algorithm was used to
calculate the enrichment score of the gene set to quantify the
activity of the corresponding biological process or signaling
pathway. The GSVA score was calculated based on the overall
position of the gene set genes in the expression ranking of all genes,
and the higher the overall expression level of these genes, the higher
the GSVA score. KEGG enrichment analysis was used to analyze the
function of phenotypic-related genes identified by WGCNA. We
perform these analyses in the “clusterProfiler” package (11).

Analysis of immune cell infiltration
CIBERSORT algorithm based on support vector regression

analysis was used to analyze the infiltration proportion of 22
kinds of immune cells in CML samples (12).
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Weighted correlation network analysis

WGCNA is a tool for assessing gene expression correlations and
visualizing co-expression networks. The “WGCNA” software
package was used to identify CML-related genes in the GSE13159
cohort. Pearson correlation analysis was used to form an adjacency
matrix for all matched genes, and the scale-free topology of the
adjacency matrix was realized based on the optimal soft threshold
power. Then, we further transform the adjacency matrix into a
topological overlap matrix (TOM). Based on the TOM difference
measure, the minimum module size was set to 30, the cutting height
was set to 0.2, and the genes with similar expression patterns were
divided into the same modules through average linkage hierarchical
clustering. Then, the correlation between module characteristic genes
(MEs) and CML was assessed, and the modules that met the purpose
of the study were determined according to the degree of correlation.

Identification of DEGs between normal and
CML samples

The empirical Bayesian approach via the “limma” package was
used to determine DEGs between normal and CML samples (13).
Genes with adjusted P-values < 0.05 and |logFC| > 1 were
considered significantly different.

Construction of risk score model

Overlapping genes of CML-related genes and DEGs identified by
WGCNA were used for the identification of CML hub genes. Then,
the LASSO regression algorithm was used for dimensionality
reduction analysis to screen out the most related genes with CML
(14). In addition, based on the correlation of hub genes, LASSO
regression analysis assigned a coefficient to each gene, and the
expression of each gene was multiplied by its coefficient and added
to obtain a risk score, which was used to analyze the diagnostic value
of the combination of hub genes in CML. Risk score = NMES8 x 1.160
+ DMXIL2 x 0.853 + CXXC5 x -0.126 + SCD x 0.610 + FBN1 x 0.405,
where gene ID refers to the expression value of each gene.

Identification of molecular subtypes based
on hub genes

Consensus cluster analysis was performed to identify CML
molecular subtypes based on hub gene expression using the
“consensusclusterplus” package. Clustering was performed for 1000
iterations to ensure reliable and stable results. t-distributedstochastic
neighbor embedding (t-SNE) was used to validate the classification.

Construction of competing endogenous
RNA network

Target miRNAs of hub genes were found in the miRTarBase,
miRDB, and TargetScan databases. Perl programming language was
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used to perform the prediction analysis of the target IncRNAs of
these miRNAs in the miRcode database.

Prediction of treatment response for
different molecular subtypes

The half-maximal inhibitory concentrations (ICs) of different
CML samples to therapeutic drugs were predicted based on drug
response data of blood cell lines from the Cancer Genome Project
(CGP) database (https://cancer.sanger.ac.uk/cosmic) via the
“pRRophetic” package. Tumor Immune Dysfunction and Exclusion
(TIDE, http://tide.dfci.harvard.edu/) was considered a good predictor
of immunotherapeutic response for molecular subtypes.

Clinical sample collection

CML samples and normal samples were collected for sequencing
analysis in accordance with the Declaration of Helsinki and
institutional guidelines, and informed consent was obtained from
each patient and healthy volunteer who had undergone the
appropriate workup. Our study was approved by the Ethics
Committee of the Second Affiliated Hospital of Nanchang
University, and sample processing was performed according to the
norms. We collected samples from 5 untreated patients with newly
diagnosed CML and 5 normal samples from healthy volunteers. The
methods and details of sample collection, next-generation sequencing,
and processing procedures were described in our previous report (15).
Moreover, peripheral blood samples from 15 CML patients and 15
normal controls were collected for quantitative real-time polymerase
chain reaction (RT-qPCR) assay to detect hub gene expression. RT-
qPCR was performed using a Japanese TAKARA kit on an ABI7500
instrument. The primers are shown in Supplementary Table S1.

Cell culture and detection of cell
proliferation and apoptosis

The CML cell line K562 was cultured in RPMI1640 medium
supplemented with 10% fetal bovine serum and 1% penicillin-
streptomycin in a humidified atmosphere incubator at 37°C with 5%
CO,. Two different siRNAs targeting LINC01268 (si-LINC01268) and
control siRNA (si-NC) were procured from Ribobio (China) and
transfected into K562 cells using Lipofectamine 3000 (Thermofisher
Scientific) (Supplementary Table S1). RT-qPCR was employed to
assess the transfection efficiency. Cell proliferation was evaluated
using the Cell Counting Kit-8 (CCK-8). For the CCK8 assay, a total
of 2x10* cells from various treatment groups were seeded in individual
wells of a 96-well plate, with each group being repeated five times.
Subsequently, at time points of 0, 24, 48, and 72 hours, respectively, 10
l of CCK8 solution was added to each well. After incubation at 37°C
for two hours, the optical density (OD) value at a wavelength of 450 nm
was measured using a microplate reader. Apoptosis assays were
performed by staining the cells with Annexin V-PE/7-AAD
Apoptosis Assay Kit followed by analysis on a flow cytometer.
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Statistical analysis

We performed the Wilcoxon rank sum test and the Kruskal-
Wallis test to determine differences between two or more groups,
respectively. The “survminer” package divides patients into high-
and low-gene expression groups based on the cut-off point at the
minimum p-value of the log-rank test, and the Kaplan-Meier
survival curve analysis was used to analyze survival differences
between the two groups. The receiver operating characteristic
(ROC) curve was used to analyze the diagnostic efficacy of genes.
A two-sided P value < 0.05 was considered statistically significant.

Results

CML-related genes were identified by
WGCNA analysis

We first performed differential expression analysis between CML
and normal samples and obtained a total of 378 DEGs. Heatmap
analysis showed that more DEGs were down-regulated in CML
(Figure 1A). We further performed WGCNA analysis to identify
more CML-related genes. The cluster tree diagram showed the
clustering characteristics of the samples, and the CML samples had
a high degree of discrimination from the normal samples (Figure 1B).
Figures 1C, D show the scale-free fit exponent and average
connectivity analysis for various soft threshold powers. We set cut
height = 0.25 to merge the blue and green module feature genes
(Figure 1E). According to the optimal soft threshold power § = 12
(unscaled R2 = 0.9), the 5000 genes with the highest standard

10.3389/fimmu.2023.1297886

deviation were divided into eight independent co-expression
modules (Figure 1F). The correlogram of module-trait relationships
showed that the brown module, which contains 369 genes, had the
highest correlation with CML (Figures 1G, H) (Supplementary Table
S1). We also found that the blue, green, yellow, black, and pink
modules were negatively correlated with CML, and these results were
associated with the downregulated expression of most genes in CML.

Functional analysis of CML-related genes

The brown module genes were mainly related to metabolic-
related signaling pathways such as Starch and sucrose metabolism,
Pantothenate and CoA biosynthesis, Amino sugar and nucleotide
sugar metabolism, Pentose phosphate pathway, and Galactose
metabolism (Figure 2A). While yellow and turquoise module
genes were negatively associated with CML, these genes were
mainly enriched in immune-related signaling pathways such as
Th17 cell differentiation, Th17 cell differentiation, Cytokine-
cytokine receptor interaction, and Hematopoietic cell lineage, T
cell receptor signaling pathway, NOD-like receptor signaling
pathway, Natural killer cell mediated cytotoxicity (Figure 2B).
These results indicate that CML has stronger metabolic activity
and some immunodeficiency. Immune infiltration analysis showed
that CML samples had fewer naive and memory B cells, plasma
cells, CD8+ T cells, naive CD4+ T cells, activated memory CD4+ T
cells, resting NK cells, and activated dendritic cells, and contained
more regulatory T cells (Tregs) than normal samples (Figure 2C),
which confirm the immunosuppressive features evident in
CML samples.
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FIGURE 2

Functional analysis of CML-related genes and immune infiltration analysis. (A) KEGG enrichment analysis of brown module genes. (B) KEGG
enrichment analysis of genes in yellow and turquoise modules. (C) Differences in infiltration of 22 immune cells between CML and normal samples.

Identification of CML hub genes

We intersected DEGs and WGCNA brown module genes and
obtained 17 overlapping genes (Figure 3A), and the correlation
coefficients of these genes with the brown module in WGCNA and
with CML samples were greater than 0.4 (Supplementary Table S2),
indicating that they were significantly positively correlated with
both CML and brown module. LASSO regression analysis further
reduced the dimension and screened out 6 hub genes most related
to CML, which were LINC01268, NME8, DMXL2, CXXC5, SCD,
and FBN1 (Figures 3B, C). Boxplots showed that LINC01268,
NME8S, DMXL2, SCD, and FBN1 were significantly up-regulated
and CXXC5 was significantly down-regulated in CML samples
compared with normal samples (Figure 3D).

Diagnostic value and prognostic
correlation of CML hub genes

We further analyzed the predictive value of CML hub genes for
CML. ROC curve analysis showed that all 6 hub gens had high AUC
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values for the diagnosis of CML, among which LINC01268 was
0.864 (95%CI: 0.796-0.924), NMES8 was 0.869 (95%CI: 0.808-0.924),
DMXL2 was 0.866 (95%CI: 0.805-0.91), CXXC5 was 0.831 (95%CI:
0.761-0.895), SCD was 0.856 (95%CI: 0.790-0.919), and FBN1 was
0.836 (95%CI: 0.767-0.900) (Figure 4A). In addition, considering
that approximately 70% of CML cases in blast crisis progress to
AML, we analyzed the prognostic predictive value of 6 hub genes in
the TCGA-AML cohort. High expression groups of LINC01268,
SCD, FBNI1, and CXXC5 had significantly shorter overall survival
than their low expression groups, respectively, while high
expression groups of NME8 and DMXL2 showed better
prognosis, but there was no statistical difference (Figure 4B).

Validation of the diagnostic value of CML
hub genes

The GSE144119 cohort contains samples from newly diagnosed
and treatment-remission CML. Encourageously, the results of the
differential analysis were consistent with the GSE13159 cohort, in
which NME8, DMXL2, SCD, and FBNI1 expression was
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Identification of CML hub genes. (A) The intersection of DEGs and brown module genes in WGCNA. (B) The penalty coefficient of the minimum 10-
fold cross-validation error point was calculated to determine the hub genes. (C) determination of hub gene coefficients. (D) Differences in the

expression of hub genes between CML and normal samples. ***p < 0.001.

significantly increased and CXXC5 expression was significantly
decreased in newly diagnosed (chronic phase) CML patients (The
expression of LINC01268 was not detected). These hub genes also
had predictive value for CML treatment remission. The expression
levels of NME8, DMXL2, SCD, and FBN1 were significantly
decreased in CML treatment-remission patients, while the
CXXC5 expression level was significantly increased, and they all
returned to normal control levels. ROC curve analysis confirmed
the diagnostic value of these hub genes in CML (Figure 5A). The
AUC values of NME8, SCD, FBN1, DMXL2, and CXXC5 were
0.906 (95% CI: 0.836-0.960), 0.958 (95% CI: 0.908-0.995), 0.933
(95% CI: 0.870-0.980), 0.795 (95% CI: 0.695-0.878), and 0.932 (95%
CI: 0.868-0.982), respectively (Figure 5B). In our clinical cohort, we
confirmed that SCD and FBNI1 expression was significantly
upregulated CXXC5 was significantly downregulated in CML, and
NMES8 and DMXL2 expression were not significantly different due
to the small sample size (Figure 6A).

Potential biological mechanisms of CML
hub genes

To better explore the biological functions of CML hub genes, we
analyzed their correlation with tumor marker pathway activity and
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immune cell infiltration. CXXC5 expression was related to P53
PATHWAY, DNA REPAIR, MYC TARGETS, and APOPTOSIS,
and may be involved in the regulation of CML cell proliferation.
DMXL2 was positively correlated with cell cycle-related pathways
such as MITOTIC SPINDLE, and G2M CHECKPOINT. FBN1,
LINCO01268, and SCD were related to the metabolic pathway
activity of MTORC1 SIGNALING, GLYCOLYSIS, FATTY ACID
METABOLISM, ADIPOGENESIS (Figure 6B). The expression of
NMES was negatively correlated with the activity of most tumor
marker pathways. In addition, CXXC5 expression was positively
correlated with infiltration of CD8+ T cells, resting memory CD4+
T cells, resting NK cells, activated dendritic cells, and memory B
cells, suggesting that CXXC5 may be involved in CML anti-tumor
immunity (Figure 6C). Figure 6D shows the location of five hub
genes in chromosomes. In addition, we identified a group of
transcription factors with potential regulatory effects on hub
genes (Figure 6E). According to the construction of the CeRNA
network (Figure 6F), IncRNA FAMI13A-AS1 with upregulated
expression may promote the expression of FBN1 by competitively
binding hsa-miR-24-3p and hsa-miR-363-3p. IncRNA CRNDE
may promote the expression of FBNI by binding hsa-miR-363-
3p, hsa-miR-508-3p and hsa-miR-140-5p. The downregulation of
IncRNAs DLEU2 and HCP5 may reduce the binding of miR-363-
3p, thereby inhibiting the expression of CXXCS5.
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FIGURE 4

Analysis of the diagnostic and prognostic value of hub genes. (A) ROC curve analysis of hub genes. (B) K-M curve analysis of hub genes.
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Expression Validation of hub genes in clinical cohort and biological function analysis. (A) Differences in the expression of hub genes between CML
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The construction of a risk score model can
further improve the diagnostic value of
hub genes

To better improve the diagnostic value of hub genes, we used
LASSO regression analysis to construct a risk score model for 5
genes shared by the three cohorts. All three cohorts observed
significantly higher risk scores in CML samples than in normal
samples, and risk scores in patients in remission tended to be
normal (Figures 7A-C). ROC curve analysis showed that the
diagnostic AUC values in the GSE13159 cohort, GSE144119
cohort, and clinical cohort were 0.925 (95% CI: 0.877-0.964),
1.000 (95% CI: 1.000-1.000) and 0.840 (95% CI: 0.520-1.000),
respectively, confirming that the diagnostic value of risk score of
hub genes combination was further improved.
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Molecular subtypes identified based on
hub genes and prediction of
treatment response

We performed cluster analysis of CML samples based on hub
gene expression and identified two distinct molecular subtypes
(Cluster A and Cluster B) (Figure 8A). The t-SNE algorithm
verified the reliability of the clustering (Figure 8B). Compared with
Cluster B, LINC01268, DMXL2, SCD, and FBN1 were up-regulated
and CXXC5 was down-regulated in Cluster A (Figure 8C). Cluster A
also had a significantly higher risk score than Cluster B (Figure 8D).
Immune infiltration analysis showed that the infiltration levels of
CD8+ T cells and activated NK cells were significantly higher in
Cluster B than in Cluster A (Figure 8E). The expression of immune
checkpoints PD-L1, CTLA4, HAVCR2, and PD-1 was also
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Construction and validation of risk score model. (A—C) Expression characteristics and diagnostic value of risk scores in the three cohorts.

***p < 0.001; ns, no significance.

significantly up-regulated in Cluster B (Figure 8F). In addition, the
TIDE score of Cluster B was significantly higher than that of Cluster
A (Figure 8G), indicating significant immunosuppression in Cluster
B. We also compared the activity of tumor-marker gene sets in the
two molecular subtypes (Figure 8E). We found metabolic and cell
proliferation-related pathways such as MYC targets V1, oxidative
phosphorylation, G2M checkpoint, E2F targets, mTORCI signaling
and fatty acid metabolism were more active. In Cluster B, the
enrichment scores of cancer-promoting pathways such as
hedgehog, epithelial-mesenchymal transition, and TNFA signaling
via NFKB were higher (Figure 8H). We then predicted the response
of different molecular subtypes to TKIs commonly used for CML
treatment, and the results showed that Cluster B patients had higher
therapeutic sensitivity to imatinib, nilotinib, bosutinib, and dasatinib.
Moreover, there was a significant positive correlation between the risk
score and the ICs of the four drugs, that is, the higher the risk score,
the less sensitive the treatment to the four drugs (Figure 8I).

Expand clinical sample size to validate the
expression of hub genes and confirm the
oncogenic role of LINC01268

The expression of hub genes was validated by RT-qPCR in
expanded clinical samples. Encouragingly, the results also
confirmed that LINC01268, NMES, DMXL2, SCD, and FBN1
were up-regulated while CXXC5 was down-regulated in CML
samples (Figure 9A). Previous studies have shown that DMXL2,
NMES, and FBNI1 primarily exert oncogenic roles through
mutations and splice variants (16-18); moreover, the role of SCD
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in CML has also been reported previously (19). Therefore, we chose
to initially explore the biological function of LINC01268 in CML
cells. The expression of LINC01268 was significantly inhibited by
siRNA (Figure 9B). CCK8 assay showed that compared with the si-
NC group, the proliferation ability of CML cells in the si-
LINC01268 group was significantly reduced (Figure 9C).
Moreover, the apoptosis rate of the si-LINC01268 group was
higher than that of the si-NC group (Figures 9D-F). These results
reveal the oncogenic role of LINC01268 and its potential as a
therapeutic target for CML.

Discussion

The development and application of TKIs have significantly
improved the prognosis of CML patients, but these drugs can only
delay the progression of the disease, and cannot be used as a
curative treatment (2). Due to the existence of resistance
mechanisms, patients inevitably relapse (5). Therefore, it is
particularly important to explore more potential therapeutic
targets and markers for disease prediction and progression
assessment in CML. In this study, we focused on the diagnostic
markers of CML and their underlying biological mechanisms. Based
on the DEGs between CML and normal samples and the CML-
related genes identified by WGCNA analysis, we used LASSO
regression analysis to screen out 6 hub genes (LINCO01268,
NME8S, DMXL2, CXXC5, SCD, and FBN1).

We also focused on the co-expressed gene network identified by
WGCNA analysis. The results showed that the brown module was
significantly positively correlated with CML (Cor=0.39, P=7e-07). It
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Identification of molecular subtypes of CML and prediction of drug response in different subtypes. (A) The consensus clustering algorithm divided
CML patients into two different molecular subtypes based on the expression of hub genes. (B) t-SNE algorithm was used to verify the classification
reliability of the two molecular subtypes. (C—F) Differences in expression of DEGs (C), risk score (D), infiltration of 22 immune cells (E), expression of
immune checkpoints (F), TIDE scores (G), and activity of tumor hallmark gene sets (H) between the two molecular subtypes. (I) Differences in

therapeutic sensitivity of the two molecular subtypes to four TKils.

reflects the correlation of the module as a whole with the CML
phenotype. Although this correlation did not reach an exceptionally
high level, a coefficient close to 0.4 suggests its reliability to some
extent. Thus, it can be inferred that the brown module partially
reflects gene co-expression patterns in CML transcriptome while
uncovering underlying biological mechanisms. We found that the
brown module genes positively correlated with CML were enriched
in a variety of metabolic pathways, revealing the more active
metabolic characteristics of CML cells. Several studies confirmed
that targeting mitochondrial oxidative phosphorylation and glucose
uptake is a potential therapeutic target for CML (20, 21). Most of
the module genes negatively correlated with CML were involved in
immune regulation and immune cell activation. Subsequent
analysis showed that the infiltration of immune killer cells such as
CD8+ T cells was significantly reduced in CML samples, confirming
the immune deficiency characteristics. Cayssials et al. found that the
sustained treat-free remission of CML was associated with an
increased frequency of innate CD8+ T cells (22), and Harada
et al. revealed that the inhibition of differentiation of dendritic
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*p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.

cells in the hematopoietic microenvironment, as well as the up-
regulation of immune checkpoint expression such as PD-LI, were
responsible for the impairment of CML immune function (23).
Based on this, we believe that targeted inhibition of metabolism and
enhancement of immune response are important strategies for
CML treatment.

It is worth noting that Figure 1G illustrates the association
between module membership (MM) and gene significance (GS), it
reflects the association of individual genes in the module with the
module (x-axis, MM) and with the CML phenotype (y-axis, GS). If
the correlation between MM and GS is high, the higher the
correlation between the module gene and the module, the higher
the correlation between the module gene and the CML phenotype,
showing an overall distribution trend. We further calculated the
correlation coefficient between these two types of coefficients;
although Cor=0.2 with P=0.00011 indicates a weak positive
relationship, it still signifies statistical significance. In this
scatterplot analysis, we focused on points with strong correlations
with both MM and GS. The correlation coefficients for both GS and
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Expression characteristics of hub genes and its relationship with malignant phenotypes of CML cells. (A) Differences in mRNA expression of hub
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MM of the 17 overlapping genes shared by differentially expressed
genes and brown module genes were found to be greater than 0.4.
Additionally, the correlation coefficients for both GS and MM of
hub genes identified through LASSO regression analysis were
greater than 0.5. This indicates that hub genes were significantly
positively correlated with both the CML phenotype and the brown
module. In this study, we utilized WGCNA analysis and LASSO
regression analysis to identify hub genes of CML, and analyze their
diagnostic value and potential biological functions. Therefore,
WGCNA played a discriminating role to some extent. For the
phenomenon that the correlation coefficients between module and
phenotype and between MM and GS did not reach a high level, we
believe that it may be due to the small size of CML samples included
in the study. Since CML accounts for only about 15% of all
leukemias, this disease is much less studied than other acute
leukemias, and thus, the relevant sequencing data will be smaller.
However, the two CML cohorts included in our study are currently
the largest sample size cohorts with normal samples that can be
found in public databases and are also representative.

The hub genes we identified are likely to be important molecules
in CML metabolism and immune regulation. Stearoyl coenzyme A
desaturase (SCD), a lipase that converts saturated fatty acids to
monounsaturated fatty acids, is a key regulator of fatty acid
metabolism pathways, its expression is also associated with poor
prognosis in several cancer types (24), and elevated SCD levels also
protect cancer cells from ferroptosis (25-27). Its upregulation in
CML may also contribute to cancer cell growth and treatment
resistance by affecting fatty acid metabolism. The high expression of
LINC01268 promotes the progression of HCC by regulating
MAP3K7 (28). Exosomal IncRNA LINCO01268 is also a cancer-
promoting factor for pancreatic cancer (29). NME/NM23 family
member 8 (NME8) has been identified as a predisposition variant in
breast cancer and a prognostic marker in diffuse large B-cell
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lymphoma (30, 31). DMXL2 has also been proposed as a
potential therapeutic target for breast cancer and oral mucosal
melanoma (32, 33). CXXC5 is a member of the CXXC-type zinc
finger protein family. It can regulate various signal transduction
processes, including TGF-3, Wnt, and ATM-p53 pathways, thereby
regulating cell proliferation, differentiation, and apoptosis, and has
been implicated in cancer occurrence and progression in many
studies (34). Fibrillin-1 (FBN1) promotes gastric cancer progression
by activating TGF-P1 and PI3K/Akt pathways, and is targeted by
miR-486-5p to inhibit the growth of thyroid cancer cells (35, 36).
These studies have all revealed the promoting role of hub genes in a
variety of cancers, however, their relationship to CML has not been
elucidated, and more in-depth mechanistic exploration is expected
to reveal their role and potential value as therapeutic targets.
Moreover, we confirmed the diagnostic value of hub genes in
both the analysis and validation cohorts. The risk score model
constructed by LASSO regression analysis further improved the
diagnostic accuracy. The discovery of these markers provides new
targets for the diagnosis and treatment of CML. Finally, we
identified two distinct molecular subtypes based on hub gene
expression, with Cluster B having a lower risk score and
infiltrating a higher proportion of CD8+ T cells and activated
dendritic cells. However, the expression of immune checkpoints
such as PD-L1, CTLA4, HAVCR?2, and PD-1 was significantly up-
regulated in Cluster B, as well as the higher TIDE score, indicating
that this molecular subtype has a certain degree of
immunosuppression, which inhibits the tumor-killing function of
immune cells. Therefore, immunotherapy of patients in this subtype
may have a higher response. In addition, drug prediction analysis
showed that Cluster B was more sensitive to commonly used TKIs.
The identification of molecular subtypes provides a new strategy for
precise treatment of CML. Finally, we verified the expression of hub
genes in larger clinical sample sizes, and confirmed that inhibition
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of LINC01268 expression significantly reduced CML cell viability
and promoted apoptosis in vitro. These results reveal the oncogenic
role of LINC01268 and its potential as a therapeutic target for CML.
Another study showed that LINC01268, a IncRNA involved in the
epigenetic regulation of AML, exerts deacetylation by directly
activating HDAC2 and generating positive feedback with
HDAC2. In addition, HDAC2 stimulates the transcription of
LINCO01268, and the expression of LINC01268 is also associated
with poor prognosis and cell proliferation in AML (37). Therefore,
combined with our findings, LINC01268 is most likely a malignant
regulator of myeloid leukemia. However, our study also has some
limitations, such as the still small size of clinical samples for the
validation of diagnostic signatures and the lack of a more in-depth
experimental analysis of hub genes function in CML cells. In
addition, the correlation and biological mechanisms of hub genes
with CML progression and drug resistance deserve further
exploration, thus providing new targets for CML drug resistance
treatment, which we will further refine in future studies.

Conclusion

In summary, through WGCNA analysis and LASSO regression
analysis, this study provides a better understanding of the role of
biomarkers LINC01268, NMES8, DMXL2, CXXC5, SCD, and FBN1,
and provides a biological basis for further investigation of CML
diagnosis and treatment.
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Plasmablastic lymphoma (PBL) is an aggressive non-Hodgkin lymphoma
associated with HIV infection and immunodeficiency. However, PBL can also
be seen immunocompetent individuals in recent studies. PBL was characterized
by distinct clinical and pathological features, such as plasmablastic morphology
and universal expression of plasma cell markers. The clinicopathologic features
were different between HIV-negative and HIV-positive patients. Gene expression
analysis identified the unique molecular feature in PBL, including frequent c-MYC
rearrangement and downregulation of BCR signaling pathway. Despite the
recent advances in the treatment of PBL, the prognosis of PBL patients
remains dismal. The objectives of this review are to summarize the current
knowledge on the epidemiology, molecular profiles, clinical and pathological
features, differential diagnosis, treatment strategies, prognostic factors, and
potential novel therapeutic approaches in PBL patients.
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1 Introduction

Plasmablastic lymphoma (PBL) is a rare subtype of diffuse large B-cell lymphoma
(DLBCL), with high invasiveness and poor prognosis (1). Pathologically, the tumor cells
showed large cell similar to immunoblastic B cells but expressed plasma cell associated
antigens (1). In 1997, Delecluse et al. described 16 cases of primary oral DLBCL with special
immunophenotype, of which 15 cases were positive for human immunodeficiency virus
(HIV), and proposed the diagnosis of PBL for the first time (2). In 2001, PBL was classified
as HIV infection associated lymphoma in the classification of lymphoid and hematopoietic
system tumors by World Health Organization (WHO) (3). In 2008, the WHO classification
of lymphoid and hematopoietic system tumors separated PBL from DLBCL and classified it
as acquired immunodeficiency syndrome associated lymphoma (ARL) (4). In 2016, PBL
was classified by WHO as an independent subtype of large B-cell lymphoma (5), which was
associated with HIV and EB virus infections, or other immunodeficiency states, such as
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long-term use of immunosuppressants, solid organ transplantation,
or age-related immune decline.

The prognosis of PBL was significantly worse than DLBCL, with
a median OS of around 12 months (6-8). although multiple new
treatment regimens were developed and tried in PBL, the survival
outcome remain poor (9-12). In the past 10 years, due to the rarity
of this disease, most of the knowledge about it comes from clinical
case reports and the etiology, molecular features and prognostic
factors of this entity remain largely unknown (6). In this paper, the
etiology, pathological features, treatment and prognostic factors of
PBL are reviewed.

2 Epidemiology and clinical features

DLBCL and Burkitt’s lymphoma (BL) are the most common
subtypes of the AIDS-related lymphomas (ARLs), and PBL
represents around 11% of ARLs (13, 14). ARLs account for
approximately 3% of non-Hodgkin’s lymphoma (15, 16),
however, the exact incidence of HIV-positive PBL is still
unknown. In the recent years, an increasing number of PBL cases
with normal immune function have been reported (6, 17-19). The
clinicopathologic features of PBL were significantly different
between HIV positive and HIV negative individuals (18, 20). PBL
occurred more commonly in adult men, especially in HIV positive
patients (13, 21, 22), with a median age of 46 years old in HIV-
positive patients (male/female:8/1) and 57 years old in HIV-
negative patients (male/female: 1.7-1.9/1) (6, 20). Of the 135 cases
of PBL from the LYSA group (20), HIV positive and negative
patients accounted for 42% and 58%, respectively. Around one-
third of HIV-negative PBL are associated with immunodeficiency
such as solid organ transplantation and steroid hormone use (6, 20).
A meta-analysis summarized the reported cases of PBL between
1997 and 2015 in China and the results demonstrated that all the
patients were HIV negative (23). Recently, our group reported 56
cases of PBL from China and found that most patients were
immunocompetent, and HIV infection was not observed (17).
The above results showed that the immune status of PBL was
significantly different between the eastern and western population.
Similar to ARL such as Burkit lymphoma and primary exudative
lymphoma (PEL), PBL is also associated with Epstein-Barr virus
(EBV) infection, and Epstein-Barr virus-encoded RNA was positive
in over half of the PBL patients (6, 20). The association between PBL
and human herpes virus 8 (HHV-8) has yet to be elucidated, and
HHV-8-related protein expression has been found in only a few
cases (6, 19).

In HIV-negative PBL, the most common sites of extra-oral
lesions were gastrointestinal tract, lymph nodes and skin, and extra-
nodal lesions accounted for 82% (6, 17, 19). However, oral cavity is
involved more frequently in HIV positive PBL than that in HIV
negative PBL (6, 20). Only a few cases originate in the central
nervous system (CNS), paranasal sinus, mediastinum,
subcutaneous, lung and testis (6). The distribution of clinical
stage is bimodal, with more than 80% of patients present at stage
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I and stage IV (6). Approximately 33% of HIV-positive PBL patients
and 50% of HIV-negative PBL patients have B symptoms (6, 24). It
has been reported that the average time from the diagnosis of AIDS
to PBL was 5 years, while PBL was the first symptom in 5% of AIDS
case (7). In addition, PBL could also be secondary to plasmacytoma,
follicular lymphoma, and Richter’s transformation of chronic
lymphocytic leukemia (25-28).

3 Etiology and molecular features

The etiology and pathogenesis of PBL remain largely unclear. At
present, it is believed that PBL originates from activated B cells in
the terminal differentiation stage after the germinal center, and may
be in the stage of development and transformation of
immunoblastic cells into plasma cells (1). These cells have
undergone high frequency of somatic mutations and
immunoglobulin (lg) class switching. During this process,
intracellular molecular signaling pathways and chromosomal
abnormalities may lead to malignant transformation. MYC gene
rearrangement (at 8q24) was the first cytogenetic abnormality
identified in PBL patients [3]. MYC gene rearrangement was
detected in over half of PBL patients (18, 29-32) and Ig gene was
the main partner of MYC gene rearrangement (29). MYC gene
rearrangement was more common in EBER positive patients (74%)
than in EBER negative patients (43%) (29). In addition, the MYC
rearrangement rate was significantly higher in EBV-positive PBL
patients than that in EBV-negative patients (33). Targeted
sequencing showed that MYC translocations was observed in as
high as 87% PBL cases (34). The role of MYC gene rearrangement in
the pathogenesis of PBL is not clear. It is believed that the
plasmablastic morphology of tumor cells and the aggressiveness
of PBL are related to MYC gene rearrangement.

Notchl is an important regulatory signal for T - and B-lineage
selection during lymphoid progenitor cell development, and it can
inhibit the expression of some transcription factors in B-lineage
lymphocytes. Notch 1 is also involved in signaling pathways
associated with cell proliferation and survival, including
mammalian target of rapamycin (mTOR) (35). Notchl pathway
was demonstrated to be activated in PBL by whole exome
sequencing (WES) (36). Segmiller et al. found that Notchl was
detected by immunohistochemistry (IHC) in all 9 cases of PBL (37).
The positive rates of mTOR substrate phosphorylated ribosomal
protein S6 (mps6) and eukaryotic initiation factor 4E binding
protein 1 (4EBP1) in PBL were 100% and 86%, respectively (37),
which were similar to those in 5 PEL cases and 21 plasma cell
myeloma cases. Notch protein may inhibit the normal phenotypic
expression of B cells and activate mTOR signaling pathway.

Previous studies showed that the gene profiles and mutation
spectrum were significantly difterent between PBL and DLBCL
(17, 38). Gene expression analysis has identified the
downregulation of B-cell receptor signaling genes in PBL
compared to DLBCL (38). In contrast, mitochondrial genes such
as ATP5G1, CYC1, NDUFAF1, NDUFB6, NDUFB7 and UQCRQ,
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were higher in PBLs than DLBCL (38). Our previous study
performed RNA-sequencing to identify the molecular features of
PBL and the results showed that compared with DLBCL, some
biological pathways were significantly downregulated in PBL,
including BCR and TCR signaling pathways, whereas many
pathways, such as cell adhesion molecules, calcium, and Wnt
signaling pathways, were upregulated in PBL (17).

Matsuki et al. (39) first established PBL cell lines in vitro by
incubating immunodeficient mice subcutaneously with lymph node
biopsies from patients with PBL and culturing subcutaneous masses
of mice. Comparison of this cell line with the cell lines from the
patient’s lymph node in vitro by genetic hybridization (CGH) and
FISH revealed that t (9: The t (9:13) (p22; q22) and 1(4;7) (q35; q22)
chromosomal translocations were observed in the former cell line
could cause the loss of tumor suppressor gene pl6 and thus
upregulated the MDR-1 expression, which is related to the
drug resistance.

4 Pathological features

Histologically, the tumor cells showed a morphologic spectrum
ranging from immunoblastic to plasmacytoid (1). Monomorphic
plasmablastic cell morphology was more common in HIV infected
patients and was more likely to occur in the mouth, nose and
paranasal region. PBL with plasmacytic differentiation was more
likely to occur in the extraoral cavity. The “starry sky phenomenon”
can be seen, including scattered mature small lymphocytes with
frequent mitoses, occasional apoptosis cells and tingible body
macrophages (1). However, PBL needs to be distinguished from
other large B-cell lymphomas in morphology, Such as plasmablastic
plasma cell lymphoma, Burkitt lymphoma, anaplastic lymphoma
kinase (ALK) positive anaplastic DLBCL, primary exudative
lymphoma (PEL), multicentric Castleman large B-cell lymphoma
and HHV-8 positive DLBCL (1). It can be differentiated by clinical
history, site of disease, immunophenotype of tumor cells, and
EBER detection.

PBL had an immunophenotype of terminally differentiated B
cells (6, 17, 20). The markers of mature B cells, such as CD19, CD20,
PAX-5, and leukocyte common antigen CD45, and markers of
mature T cells, such as CD2, CD3, CD5, and CD7, generally did not
express or weakly expressed (6). However, the tumor cells
universally expressed markers of plasma cells, such as CD38,
Vs38c, CD138 and IRF4/MUMI (6). Most of the HIV-negative
patients had a Ki-67 index higher than 80% (6).
Immunohistochemistry showed differences between HIV positive
and negative patients, the former had significantly higher CD20 and
CD56 expression than the latter (6, 7, 19, 20). The overall positive
rate of CD56 was around 40% (6). Although EBER was positive in
over half of the PBL cases, latent membrane protein 1 (LMP1) was
rarely expressed (24). Positive regulatory proteins (PRDMI/
BLIMPI) and activated transcription factor (XBPI) associated
with the immunophenotypes of terminally differentiated B
lymphocytes are shown in PBL (40).
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5 Survival outcomes and
prognostic factors

Previous case reports and literature review demonstrated that
PBL is an aggressive lymphoma with poor prognosis, with a median
OS of 14-15 months (5-year survival 31%) in HIV-positive patients
and 9 months in HIV-negative patients (6, 7, 19, 24). However,
some large multicenter studies in the recent years showed that the
survival outcome of PBL seems to be better than previous literature
reviews (17, 20, 41-43). In 2018, a French group reported 135 PBL
patients from LYSA centers and found that the complete response
(CR) rate of 55% and the median overall survival (OS) was 32
months (20), which was much better than previous reports (7, 19).
Recently, our previous research retrospectively analyzed 56 cases of
PBL from three cancer centers in China and found that the 2-year
PFS and OS rates were 59.4% and 65.1%, respectively (17). A multi-
institutional retrospective study from America demonstrated the
outcomes of patients with limited-stage PBL, with a median follow
up of 34 months (1-196), the 3-year PES and OS of the whole
cohort were 72% and 79%, respectively. The above results indicated
that the prognosis of PBL was better than that reported in case
series, especially in limited stage and HIV negative patients.

According to the previous studies, Age>60 years, Ann Arbor stage
III or IV, Eastern Cooperative Oncology Group (ECOC) performance
status >2, extraoral primary lesions, immunosuppression, bone
marrow infiltration and EBER positive were adverse prognostic
factors for HIV negative PBL (6, 20). A recent multi-institutional
international retrospective study including 281 PBL patients showed
that EBV-negative lymphoma, poor performance status, advanced
tumor stage, and bone marrow involvement was associated with
inferior OS, while immunosuppression and HIV infection did not
influence OS (44).

6 Treatment
6.1 Chemotherapy

Chemotherapy is the first-line treatment for PBL. The median
survival (OS) of patients without chemotherapy was around 3
months (7, 19).
intensive chemotherapy regimens, such as CODOX-M/IVAC

The NCCN recommends the use of more

(cyclophosphamide, vincristine, doxorubicin, and high-dose
methotrexate alternated with ifosfamide, etoposide, and high-dose
cytarabine), dose-modified EPOCH (etoposide, prednisone,
vincristine, cyclocarbonamide, and doxorubicin), or Hyper-
CVAD (Cyclophosphamide, vincristine, doxorubicin, and
dexamethasone alternated with high-dose methotrexate and
cytarabine). However, several studies have demonstrated that no
survival benefit was obtained in patients who received intensive
chemotherapy (Table 1) (6, 8, 18, 20). In a group of 35 patients who
received CHOP/CHOP-like chemotherapy and 16 patients who
received more intensive chemotherapy, there was no statistically
significant difference in survival between the two groups (8). Our
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TABLE 1 The survival difference between CHOP and intensive chemotherapy.

CHOP or CHOP-like chemotherapy Intensive chemotherapy  Survival outcome P value
Tchernonog et al. (20) 70 16 Data not shown >0.05
Hess BT et al. (41) 11 14 3-year OS 84% vs. 73% >0.05
Li YJ et al. (6) 124 44 mOS: Not reached vs. 23.0m 0.981
Loghavi et al. (14) 8 16 Data not shown 0.078
Castillo et al. (8) 35 16 Data not shown >0.05

group summarized 394 reported HIV-negative PBL, including 124
patients treated with CHOP or CHOP-like chemotherapy and 44
treated with intensive chemotherapy, and no survival difference was
found between these two groups (6). Since the tumor cells in PBL
showed no expression or little expression of CD20, rituximab is
only used in a few patients with CD20 expression (17, 20). Although
intensive chemotherapy regimens were recommended by NCCN,
most of the reported cases received CHOP/CHOP-like
chemotherapy and the treatment efficacy remained controversial
and need further investigation. For young patients with good
performance status and high-risk factors, intensive chemotherapy
might be a better choice.

6.2 Proteasome inhibitor-bortezomib

Bortezomib induces apoptosis by blocking the nuclear factor kB
(NF-kB) signaling pathway, producing cytotoxic effects in activated

B cell type (ABC) DLBCL (Figure 1) (45). Bortezomib alone or in
combination with chemotherapy (dexamethasone, bortezomib,
gemcitabine, Oxaliplatin, cytarabine) may be effective in the
treatment of PBL, but the remission was temporary. Bortezomib
combined with chemotherapy achieved well results and was
tolerated in some PBL patients (Table 2). A retrospective study
analyzed 8 cases of PBL (5 HIV-positive and 3 HIV-negative)
treated with bortezomib combined with EPOCH, producing a CR
rate of 100% and 2-year OS rate of 50%, indicating that this regimen
was relatively safe and effective for PBL (46). Dittus et al. (47)
reported that the CR rate and 2-year OS rate of PBL patients treated
with the combination of bortezomib and EPOCH regimen were
100% and 50%, respectively. The 2-year OS rate also exceeded 50%
and the ORR was as high as 90% in PBL patients who received
bortezomib as a second-line therapy (48). Our previous study
reported that the overall response rate of HIV negative patients
treated with bortezomib-containing regimens was 71.4%, and the
mOS time was only 11 months (17). In summary, bortezomib
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The molecular features and main treatment targets in PBL.
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TABLE 2 Summary of the efficacy of Bortezomib-based treatment
in PBL.

Number LGEL I El Survival
response outcome
Castillo JJ 11 ORR: 100% Median OS:
et al. (46) 11 months
Li YJ et al. (6) 14 ORR: 71.4% Median OS:
11 months
Dittus C 8 CR:100% 2-year OS: 50%
et al. (47) 2-year PES: 50%

combined with or without chemotherapy may improve responses
and outcomes in PBL, although all studies to date are retrospective
and randomized study are still lacking.

6.3 Immune modulators

Thalidomide binds to CRBN targets on tumor cells, promotes
ubiquitination and degradation of the transcription factors Ikaros
and Aiolos, and activates an interferon-like response, thereby
inducing tumor cell apoptosis (49). A newly diagnosed PBL
patient achieved CR after fist-line treatment of thalidomide
combined with dexamethasone, followed by autologous stem cell
transplantation and the patients still maintained CR after 10 years
of follow up (50). Lenalidomide is a thalidomide analogue with
similar anti-tumor mechanisms. It has been reported that a patient
with PBL who progressed after multiple lines of treatment was
treated with lenalidomide orally due to severe peripheral
neurotoxicity caused by bortezomib, and maintained PR status
after 2 years of follow-up (51). Marrero et al. reported that a
patient with PBL who relapsed after CHOP regimen was treated
with lenalidomide combined with bortezomib as a second-line
treatment and still maintained CR status after 12 months of
follow-up (11). Although a large number of clinical studies are
lacking, lenalidomide alone or in combination with other treatment
regimens can help patients maintain long-term CR status for newly
diagnosed or relapsed/refractory PBL patients.

6.4 Immune checkpoint inhibitors

Programmed death receptor 1(PD-1) expressed by T cells binds
to programmed death receptor ligand 1(PD-L1) on the surface of
tumor cells, which can inhibit the activation of T cells and induce
their apoptosis, leading to the immune escape and tumor
progression (52). In PBL, high expression of PD-1 and PD-LI
was detected and the PD-1/PD-L1 pathway was abnormally
activated (33, 53-55). Only few reports have demonstrated the
efficacy of immune checkpoint inhibitors in PBL patients (10, 56).
This patient achieved PR with PD-1 inhibitor monoclonal antibody
nivolumab and underwent allogeneic hematopoietic stem cell
transplantation without signs of tumor progression as of the time
of this article (56). Given the potential activity of PD-1 pathway
blockade in PBL, further study of PD-1 blockade is warranted.
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6.5 CAR-T therapy

Chimeric antigen receptor T cell (CAR-T cell) therapy is a
newly developed immunotherapy where T lymphocytes are
engineered with synthetic receptors known as chimeric antigen
receptors (CAR) (57). The CAR-T cell could produce long-term
specific antitumor effects by recognizing and eliminating specific
cancer cells. CAR-T cell therapy was an effective anti-tumor for
relapsed/Refractory DLBCL (9, 57). Raghunandan et al. reported a
case of multiple refractory PBL emerging from B-cell acute
lymphoblastic leukemia and failed to allogeneic hematopoietic cell
transplant and sustained CR for one year after CAR-T cell therapy
(12). Raychaudhuri et al. reported that a patient with PBL who was
resistant to traditional chemotherapy, lenalidomide and bortezomib
achieved CR after 4 months of CAR-T therapy (Yescarta treatment)
(58). As the plasmablastic cells were frequently negative for B cell
markers (19, 20), the use of CAR-19 therapies in PBL patients was
limited. CAR-T provides a treatment option for patients with
relapsed and refractory PBL, but the efficacy needs to be
confirmed in the future.

6.6 Highly active antiretroviral therapy

HIV patients are often accompanied by CD4+Cell count
reduction and immunosuppression (7, 59). The impact of highly
active antiretroviral therapy (HAART)on survival outcome in patients
with HIV-related PBL remains controversial as the condition is rare
and the reported case series is small (7, 19, 60). A retrospective study
in the United States explored the effect of HIV on lymphoma and
found that HIV was associated with increased risk of death among
lymphoma patients in the HAART era (61). Case report showed that a
HIV-positive PBL patient achieved sustained remission after HAART
alone (60). For HIV-positive patients with PBL, meta-analysis has
shown that the combination of highly active antiretroviral therapy
(HAART) and chemotherapy and/or radiotherapy can improve the
prognosis (7). The possible explanation is that HAART can restore the
immune surveillance function of patients so as to play a more effective
role in tumor control. However, the prognosis of PBL in HIV-infected
individuals remains dismal in the highly active antiretroviral therapy
era and intensive chemotherapy regimens did not increase the survival
outcome (62).

6.7 Hematopoietic stem
cell transplantation

Some recent reports have demonstrated the application of
autologous hematopoietic stem cell transplantation (ASCT) in
PBL patients (Table 3) (20, 63, 64). Cattaneo et al. reported 24
PBL patients who received autologous hematopoietic stem cell
transplantation and the 2-year OS was 58% (63). A retrospective
study of 9 HIV-negative PBL patients from Moffitt Cancer Center
showed that four patients received ASCT as consolidation therapy
after first complete remission and the survival time was 36.5 months
(65). LYSA group retrospectively analyzed 135 cases of PBL,
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TABLE 3 A brief summary of autologous hematopoietic stem cell
transplantation (ASCT) in PBL.

n Survival outcome

Hess BT. et al. (41) 8 3-year PFS: 63%, 3-year OS: 63%
Tchernonog et al. (20) 6 PFS: 8, 13, 17,26, 29, 78
Cattaneo et al. (63) 24 2-year OS: 58%

Hubel K, et al. (64) 24 2-year PFES: 52%, 2-year OS: 70%

including 6 patients who received autologous HSCT after the first
CR, and the result showed that 3 patients remained remission at the
last follow-up (13, 17 and 29 months after HSCT), 2 patients
relapsed at 8 and 26 months, and 1 died after 78 months of
remission (20). Recently, a multi-institutional retrospective study
reported 8 cases who underwent Auto-SCT consolidation after
chemotherapy and the 3-year PFS and 3-year OS were both
63.0% (41). As the above results were achieved based on the small
case series, the clinical efficacy of ASCT in PBL need
further investigation.

6.8 Other

Some PBL cells express CD30 on their surface. So far, three
patients with relapsed/refractory PBL have been reported to have
been treated with CD30 monoclonal antibody brentuximab (66-68).
Two patients had significant tumor shrinkage after a few days of
treatment with brentuximab, but one of these patients developed
multiple mediastinal fistulas due to rapid tumor regression. As PBL
showed a plasma cell immunophenotype, CD38 is commonly
expressed in PBL (6, 20), and daratumumab can induce NK cells to
produce antigen-dependent cell-mediated cytotoxicity (69, 70),
suggesting that CD38 monoclonal antibody can be used for the
treatment of PBL. Fedele et al. (71) revealed that immunomodulators
can lead to Ikaros deletion and then upregulated CD38 expression on
the surface of tumor cells, providing a theoretical basis for the
combination of anti-CD38 monoclonal antibody and
immunomodulators in PBL. Shi et al. (72) found that SLAMF7
(CD319/CS1) was detected in PBL, suggesting that it may serve as
a potential diagnostic marker and therapeutic target for PBL. MYC
rearrangement was observed in around half of the patients and this
abnormality could inhibit transcription factor BLIMP-1 and thus
promote tumor cell proliferation (73). Han et al. developed a new
MYC protein inhibitor (myci361), which could inhibit tumor
proliferation and increased the infiltration of the lymphocytes (74),
but this drug was in the preclinical stage.

6.9 Radiation therapy in limited stage PBL

An increasing number of evidences have suggested that the
prognosis of limited-stage PBL was much better than advanced
stage patients (20, 41). However, the treatment recommendation of
limited-stage was similar to advanced stage patients and many
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patients with limited-stage disease are treated with aggressive
chemotherapy or auto-SCT (6, 7, 19). Previous studies have
shown that patients treated with aggressive chemotherapy or
consolidation with Auto-SCT had a trend toward better outcomes
(63, 75). A recent study demonstrated that limited-stage PBL did
not benefit from aggressive frontline treatment, including Hyper-
CVAD or auto-SCT consolidation (41). However, improved PFS
was observed in patients receiving EPOCH based frontline therapy
versus CHOP (HR: 0.23; p<0.05). Patients receiving frontline
chemotherapy followed by radiation consolidation had better OS
than chemotherapy alone (41).

7 Conclusion

PBL is a special type of DLBCL, which often occurs in HIV
positive patients, shows immunoblastic morphology but expresses
plasma cell markers. Compared with DLBCL, NOS, some important
biological pathways were abnormally activated or inactivated in PBL,
such as BCR signaling and CAM signaling. As we have mentioned
above, the prognosis of PBL was still dismal with current treatment
strategies. Although intensive chemotherapy strategy was
recommended by NCCN guideline, CHOP or CHOP-like
chemotherapy achieved similar efficacy. Chemotherapy followed by
radiation consolidation improved the survival outcome of limited-
stage PBL and may be potential standard treatment for this group of
patients in the future. Bortezomib combined with or without
chemotherapy may improve the survival outcomes in PBL, but all
studies to date are retrospective and large randomized study are
sparse. PD-1/PD-L1 pathway was abnormally activated in PBL,
although the efficacy of PD-1 inhibitor was only reported in case
report, it may be a promising treatment and need further
investigation. Other potential therapeutic approaches for patients
include EBV-targeted therapies, including antiviral agents or EBV-
targeted cellular immunotherapy, but the efficacy and tolerance of
these approaches have not yet been evaluated in PBL patients. New
treatment strategies such as thalidomide and anti-CD30 antibodies
were explored in case reports, but the exact efficacy of these treatment
remain to be validated in the future. It is urgent to further investigate
the biological characteristics and develop more effective targeted
therapeutic agents for PBL patients.
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Recently, cancer immunotherapy has revolutionized cancer treatment. Various
forms of immunotherapy have a manageable safety profile and result in
prolongation of overall survival in patients with solid tumors, but only in a
proportion of patients. Various factors in the tumor microenvironment play
critical roles and may be responsible for this lack of therapeutic response.
Signaling lymphocytic activation molecule family (SLAMF) members are
increasingly being studied as factors impacting the tumor immune
microenvironment. SLAMF members consist of nine receptors mainly
expressed in immune cells. However, SLAMF receptors have also been
detected in cancer cells, and they may be involved in a spectrum of anti-tumor
immune responses. Here, we review the current knowledge of the expression of
SLAMEF receptors in solid tumors and tumor-infiltrating immune cells and their
association with patient outcomes. Furthermore, we discuss the therapeutic
potential of targeting SLAMF receptors to improve outcomes of cancer therapy in
solid tumors. We believe the research on SLAMF receptor-targeted strategies
may enhance anti-cancer immunity in patients with solid tumors and improve
clinical outcomes.

KEYWORDS

signaling lymphocytic activation molecule family, SLAMF, cancer immunology,
immunotherapy, solid tumors, tumor microenvironment

1 Introduction

Cancer immunotherapy has revolutionized cancer treatment in the past decade,
becoming the fourth pillar of treatment next to surgery, chemotherapy, and
radiotherapy. Blocking immune checkpoints with monoclonal antibodies has improved
outcomes in solid tumor patients (1). Furthermore, cellular therapies, particularly chimeric
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antigen receptor (CAR)-T cell therapy, have shown high
effectiveness for various cancers (2). However, many patients with
solid tumors do not benefit from these strategies. This has
warranted research into resistance mechanisms and other
treatment options. Some factors in the tumor microenvironment
(TME) of solid tumors may contribute to resistance to
immunotherapy (3). First, infiltration of cytotoxic lymphocytes is
limited in many tumors (i.e., ‘cold’ tumors), which may be due to a
lack of antigen presentation and recognition as well as physical and
chemical barriers to infiltration. Furthermore, immunosuppressive
TMEs, with infiltrates of suppressive immune populations that
inhibit the anti-cancer immune response, may also limit the
efficacy of cancer immunotherapies.

Signaling lymphocytic activation molecule family (SLAMF)
receptors are increasingly being studied as potential factors that
affect the immune environment in cancers and as potential targets
for therapy. Numerous studies have overwhelmingly examined the
structure and function of SLAMF receptors, their role in regulating
the immune system, and possible strategies for targeting this
receptor family therapeutically. However, our comprehension of
the potential of SLAMF receptors in solid tumors is still incomplete.
Our review highlights the potential of SLAMF receptors as targets
for solid tumors and outlines their current targeting strategies.

2 SLAMF receptors

SLAMEF receptors are a group of cell surface glycoproteins
belonging to the immunoglobulin (Ig) superfamily of proteins
involved in various immune functions. SLAMF consists of nine

SLAMF3
(CD229)

SLAMF1 SLAMF2

(cD150)  (CD48) (CD244)

Immunoreceptor tyrosine-based
switch motif (ITSM)

FIGURE 1

c

10.3389/fimmu.2024.1297473

family members mostly expressed in immune cells. Most of these
receptors are homophilic, except for SLAMF2 and SLAMF4, which
can bind to one another (4). Each SLAMF receptor consists of an
extracellular segment comprising two or four Ig-like domains, a
transmembrane region, and a cytoplasmic tail. The cytoplasmic
tails contain one or more copies of a tyrosine motif called
immunoreceptor tyrosine-based switch motif (ITSM). However,
SLAMF2, SLAMF8, and SLAMF?9 lack most of the cytoplasmic tails
(4) (Figure 1). When the receptors are engaged with their ligands,
ITSMs get phosphorylated, which initiates interaction with
intracellular SLAM-associated proteins, including SLAM-
associated protein (SAP) and Ewing's sarcoma-associated
transcript 2 (EAT-2). These proteins contain an SH2 domain and
serve as adaptor proteins to link SLAMF receptors to intracellular
signaling pathways. When the N-terminal Ig domains of SLAMF
receptors engage with their cognate ligands, these molecules are
recruited, resulting in signaling transduction events that ultimately
modulate various types of immune responses.

There is mounting evidence that SLAMF receptors and SAP-
related adaptor molecules play essential and intricate roles in
regulating the immune system. For instance, SAP adaptor
molecules recruit Fyn, a Src family tyrosine kinase, leading to
downstream phosphorylation and stimulation of activating signals
within immune cells. SAP molecules also prevent recruitment of the
SLAMF receptor to the inhibitory pathway mediated by SH2
domain-containing protein tyrosine phosphatase (SHP)-1, SHP-2,
and SH2 domain-containing inositol phosphatase (SHIP)-1. In the
absence of SAP adaptors, SLAMF receptors function as inhibitory
signals in cellular activation. Similarly, EAT-2 functions by
recruiting phospholipase C and preventing SLAMF receptors

SLAMF4 SLAMF5 SLAMF6 SLAMF7 SLAMF8 SLAMF9
(CD84)

(CD352) (CD319) (CD353) (CD84H1)

Extracellular
space

Cytoplasm

IgV domain c 1gC2 domain

Structural representation of the human SLAMF receptors. SLAMF receptors are cell-surface receptors and are composed of nine members. They are
type | glycoproteins that contain amino-terminal Ig-like variable domains (IgV) and membrane-proximal Ig-like constant two domains (IgC2) in their
extracellular regions. The cytoplasmic region of every family member, except for SLAMF2, SLAMF8, and SLAMF9, contains ITSMs that mediate

recruitment of SAP, as well as other SH2 domain-containing proteins such as EAT-2. Most of these receptors are homophilic, which can bind to one

another, except for SLAMF2 and SLAMF4.
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from coupling to inhibitory mediators. This enhances natural killer
(NK) cell activity.

The importance of SLAMF receptors in the immune response
became evident when the molecular defect responsible for X-Linked
lymphoproliferative (XLP) syndrome was detected (5). The gene
encodes SAP, and patients with this syndrome experience impaired
immune responses. SLAMF receptors are known to be involved in
NK- and T-cell development, expressed at various stages of B-cell
development, and involved in B-cell regulation, antibody
production, isotype switching, and NK-cell cytotoxicity. We have
summarized the function of each SLAMF member and their
expression on immune cells in Table 1 (6-10).

With recent research, the role of SLAMF receptors in solid
tumors and the immune response against these tumors has become

TABLE 1 SLAMF receptors and their function and location on immune
cells (6-10).

SLAMF
Receptor

Expression and Function

SLAMF1 Expressed on thymocytes, T cells, natural killer cells (NK),
(SLAM, B cells, dendritic cells (DCs), macrophages, and hematopoietic
CD150) stem cells (HSCs) and is involved in lymphocyte activation. In
Crohn’s disease, an upregulation of SLAMF1 has been detected
in monocytes and macrophages, and upregulation of SLAMF1
on T-cells was detected in rheumatoid arthritis. In contrast, in
Chronic Lymphocytic Leukemia, it was found to
be downregulated.

SLAMF2 Expressed by NK cells, CD8" T cells, B cells, y8 T cells, DCs,
(CD48, basophils, eosinophils, mast cells, and multipotent progenitor

BLAST1, cells. SLAMF2 can bind CD2 as well as SLAMF4 to
BCM1) initiate signaling.

SLAMF3 Expressed on thymocytes, T cells, follicular helper T cells,

(CD229, B cells, DCs, macrophages, and NK cells. During antigen

LY9) presentation by B cells, it is involved in creating the
immunological synapse at the contact site between the T- and
B cells.
SLAMF4 Expressed on CD8" T cells, y8 T cells, NK cells, DCs,
(CD244, macrophages, basophils, mast cells, and eosinophils. SLAMF4
2B4) binds SLAMEF2, and this process is involved in NK-
cell activation.

SLAMF5 Expressed on thymocytes, T cells, follicular helper T cells,
(CD84, B cells, NK cells, macrophages, DCs, basophils, mast cells,
LY9B) eosinophils, and platelets. Its signaling can stimulate platelets

and is involved in T-cell activation, resulting in
IFNY production.

SLAMF6 Expression can be found on thymocytes, T cells, B cells, NK

(CD352, cells, DCs, neutrophils, and eosinophils. It has been found to be
NTBA, involved in NK-cell cytotoxicity and cytokine production, T-cell
LY108) activation, and neutrophil functions.

SLAMF7 Expressed by T cells, B cells, NK cells, NKT cells, DCs, and
(CD319, macrophages and has been shown to regulate NK-cell cytolysis
CS1, and can partially rescue effector functions in NK- and CD8"

CRACC) T cells.

SLAMF8 Expression detected on macrophages and faintly expressed on

(CD353, B-cell subsets.

BLAME,

SBBI42)

SLAMF9 Expression was detected on T cells, B cells, NK cells, and DCs.

(CD2F10, It is the most recently described SLAMF member, and its ligand

CD84H1) has not yet been discovered.
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more evident. For instance, the upregulation of various dendritic
cell (DCs) markers, including CD80, CD274, and SLAMF1, was
associated with improved overall survival (OS) in a mixed cancer
analysis (11). Here, we will describe the current data on SLAMF
receptor expression in solid tumor types (Figure 2), potential
associations with prognosis and therapy response, and potential
targeted therapy strategies. Of note, the order of discussion will start
with the solid tumor types that have more data available in
the literature.

3 SLAMF receptors in solid tumors
3.1 Breast cancer

Several investigations have shown the variable expression of
multiple SLAMF members in breast cancer. SLAMF1/CD150 was
not found to be expressed on the cell surface of breast cancer cell
lines. However, it was detected in the cytoplasm of 45% of cell lines.
The highest expression levels were detected in cell lines representing
a luminal subtype (T47D), while basal-type cell lines, such as MDA-
MB-231, BCC/P, and BC/ML, expressed lower levels. Additionally,
cell lines expressed variable levels of mRNA encoding the
transmembrane mCD150 and the so-called novel CD150
(nCD150) isoforms. Assessment of public databases with patient
DNA microarray data also showed that breast tumors express
SLAMF1 (12). Furthermore, it was found that the SLAMF1 single
nucleotide polymorphism (SNP) rs1061217 was associated with a
decreased risk of breast cancer in overweight women, while it
increased the risk of breast cancer in those with normal weight (13).

SLAMF2/CD48 has not been studied extensively in breast
cancer. An analysis of the expression of NF-kappa B (NF-xB)
related genes using RT-PCR in inflammatory breast cancer
revealed that CD48 was upregulated in these samples compared
to invasive ductal carcinomas. When comparing biopsies of distant
metastases of non-inflammatory breast cancer, CD48 was one of six
downregulated genes compared to the primary invasive ductal
carcinomas (14).

In a large analysis of immune checkpoint genes in breast cancer,
SLAMF4/CD244 expression in tumors was found to be lower than
that in healthy breast tissue (15). In another study, a gene analysis in
triple-negative breast cancer (TNBC) showed that overexpression of
Prune-1, IL-10, COL4A1, ILR1, and PDGFB, as well as inactivating
mutations of PDE9A, CD244, Sirpblb, SV140, Iqcal, and PIP5K1B
genes, are associated with metastasis to the lungs, suggesting low
expression of CD244 may be associated with worse prognosis. This
was confirmed in a The Cancer Genome Atlas (TCGA) analysis,
which showed that low expression of the CD244 gene was
associated with decreased survival (16). Additionally, in a
BRCA2-deficient breast cancer mouse model, missense mutations
in the CD244 receptor domain were detected (17). These data
suggest that a loss of CD244 signaling may contribute to a worse
prognosis in breast cancer.

SLAMF5/CD84 was detected as an identifying marker for
myeloid-derived suppressor cells (MDSCs) in breast cancer in a
mouse model, and in vitro experiments showed that PBMC-
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FIGURE 2

Studied SLAMF receptors in solid tumors. BC, breast cancer; CNS, central nervous system; CRC, colorectal cancer; GC, gastric cancer; GyC,
gynecological cancer; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; LC, lung cancer; MSC, melanoma skin
cancer; PaC, pancreatic cancer; PrC, Prostate cancer; RCC, renal cell carcinoma; TME, tumor microenvironment.

derived human MDSCs upregulate SLAMF5. Co-culture
experiments with such CD84™ MDSC showed that they actively
inhibit T-cell proliferation (18). In TCGA, CD84 was found to be
an independent negative prognostic factor for both disease-
free survival (DFS) and OS. Furthermore, in circulating tumor
cells, CD84 expression was associated with a mesenchymal
phenotype (19).

Another TCGA analysis that assessed core genes associated
with breast cancer status revealed SLAMF6/CD352 as one of eight
core genes. However, SLAMF6 had only a weak association with
survival (P=0.042) and no significant association with tumor (T),
node (N), and metastases (M) (TNM) status and was not further
assessed (20).

SLAMF7/CD319 mRNA expression was found to be enriched
in breast cancer TCGA analysis, as compared to healthy breast
tissue (21, 22). A study in lymph node-positive breast cancer of
various subtypes showed moderate or strong protein expression of
SLAMF?7 in the cytoplasm in approximately 20% of cases, while
80% had no or weak expression. In samples with high expression,
up to 70% of tumor cells expressed high levels of SLAMF7. Higher
levels were associated with younger age, less evasive tumors,
and better prognosis. Patients with high expression had a lower
relapse rate and longer disease-specific survival (DSS). However,
multivariate analysis did not show SLAMF7 as an independent
prognostic factor. The researchers also detected a weak association
between highly vascular invasive cells and low expression levels
(P=0.05) (21).

In addition, one study found a correlation between a high
expression of SLAMF8/CD353, tumor necrosis factor (TNF), and
lymphocyte infiltration with a poor response to therapy in
postmenopausal estrogen receptor (ER)" breast cancer (23).

Frontiers in Immunology

3.2 Central nervous system tumors

While SLAMFI is not found in healthy brain tissue, 77.6% of
the human central nervous system (CNS) tumors were found to
express it. These tumors included glioblastoma, anaplastic
astrocytoma, diffuse astrocytoma, and ependymoma. SLAMF1
was detected only in the cytoplasm of tumor cells. The novel
CD150 (nCD150) transcript was also detected at high levels in
these tumors, and this isoform was the predominant form in glioma
cells (24).

In patients with glioblastoma, blood plasma was analyzed for
the expression of various proteins that may be associated with
prognosis. Low plasma levels of SLAMF4 were associated with short
progression-free survival (PES) (25).

In an assessment of TCGA glioma and the Chinese Glioma
Genomic Atlas (CGGA) data, overexpression of SLAMF8 was
associated with progression, higher grade glioma, and it was a
biomarker for the mesenchymal subtype. The highest levels of
SLAMF8 were found in glioblastoma, and in this cancer type, it
was associated with reduced OS and chemoresistance. The
overexpression of SLAMF8 was associated with higher infiltration
of monocytes, myeloid DCs, and fibroblasts and with genes related
to acute and chronic inflammation. Furthermore, it was strongly
correlated with the expression of checkpoint molecules CTLA-4,
PD-1, PD-L2, B7-H3, and TIM-3, but not PD-L1 (26). These data
suggest SLAMF8 may be implicated in an immunosuppressive
fumor microenvironment.

Besides CNS tumors, SLAMF proteins have also been
implicated in stroke. Mice lacking SLAMF5 on platelets or T cells
had reduced cerebral infiltration of CD4" T-cells and reduced
thrombolytic activity after experimental stroke, resulting in a
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reduction of neurological damage. Furthermore, human arterial
blood samples from the ischemic cerebral circulation showed local
shedding of SLAMF5, and high expression of CD84 on platelets was
associated with poor outcomes in patients with stroke (27).

3.3 Lung cancer

Non-small cell lung cancer (NSCLC) is relatively resistant to
NK-cell-mediated cytotoxicity. Park et al. assessed various cell lines
with variable sensitivity to NK-cell killing and found that SLAMF2
expression made the cells susceptible to killing. SLAMF?2 increased
the stability of the contact between the cancer cells and NK cells in
live imaging experiments, which might explain this killing
relationship (28).

In a lung cancer model with sepsis, PD-1 checkpoint inhibition
has no effect on sepsis survival. SLAMF4 was found to be a
checkpoint of interest in this condition, and the blockade of
SLAMF4 improved sepsis survival. It was associated with T-cell
costimulatory receptor expression and decreased coinhibitory
receptor expression (29). In patients with stage I NSCLC, blood
levels of SLAMF4 were found to be a prognostic factor, and those
with high levels of SLAMF4 had worse PFS. This study suggested
that the expression of SLAMF4 was mainly found on the immune
infiltrate (30). This was confirmed in a mouse model with
subcutaneous lung cancer. In these tumors, the frequencies of
PD1%, BTLAY, and SLAMF4" CD4" and CD8" T-cells were
increased, and CD8+ T-cells expressing SLAMF4 produced
reduced levels of IL-2 and IFNY (31). Therefore, the blockade of
SLAMF4 might be of interest for the therapy of lung tumors.

SLAMFS5 has been found to play a role in other lung diseases. In
a mouse model for mycobacterium tuberculosis infection, levels of
SLAMF5 increase on T- and B-cells in the lung tissue of infected
mice, which is also seen in peripheral blood mononuclear cells
(PBMCs) of patients with pulmonary tuberculosis. This expression
resulted in immunosuppression, inhibiting T- and B-cell activation
(32). SLAMF5 may, therefore, serve as a target for therapy in this
disease, as well as in lung cancers, due to its potential on the
immune cells of the lung tissue.

3.4 Pancreatic cancer

In a mouse model of pancreatic cancer infected with Listeria
monocytogenes, bacteria antigen-specific CD8" and total T cells
had increased expression of BTLA, PD-1, and SLAMF4. Expression
of these markers reduced IFNy and increased IL-2 production
of CD8" T-cells. These data suggest that suppressive effects in
the TME might also affect immune responses to bacterial
infections (33).

In a screening of genes associated with OS and DFS in
pancreatic ductal adenocarcinoma (PDAC), a 7-gene signature
containing SLAMF6 was found to be associated with survival.
This suggests SLAMF6 might play an interesting role in
pancreatic cancer, but further research would be required to study
the role it plays within this gene signature (34).
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3.5 Prostate cancer

SLAMF1 cell surface and cytoplasmic expression have been
detected in the prostate cancer cell lines LNCap, Du-145, and PC-3.
The highest expression levels were found in the less aggressive
androgen therapy-responsive non-metastatic LNCap cells. The cell
lines also expressed novel nCD150 isoforms, and soluble CD150
was detected at low levels for the LNCap and PC-3 cell lines (12).
Whether the expression of SLAMFI is associated with clinical
outcomes in prostate cancer remains to be determined.

3.6 Gastric cancer

SLAMF receptors have been implicated in some studies of
gastric cancer. An analysis comparing cancerous with non-
cancerous tissue found genes that could predict survival, and
SLAM was one of the genes (35).

Circular RNA is a form of non-coding RNA, and circSLAMF6
can be generated from back splicing of the SLAMF®6 first intron. In
hypoxic conditions, circular RNA SLAMF6 (circSLAMF6) is
increased in gastric cancer cells in vitro. This increase is
associated with glycolysis, migration, and invasion of these tumor
cells, and the knockdown of circSLAMEF6 reverses these effects. In a
mouse model for gastric cancer, circCSLAMF6 deficiency inhibited
tumor growth by regulating the miR-204-5p/MYH? axis (36).

High levels of SLAMF8 have been detected in the serum of
patients with gastric cancer (37). Furthermore, investigations in a
gastric cancer model with Epstein-Barr virus (EBV) infection,
which has been associated with improved responses to anti-PD-1
therapy, high SLAMF8 expression was found to be a factor that
might be involved in these responses. High expression of SLAMF8
was associated with T-cell activation gene enrichment, CD8
expression, and better response to anti-PD-1 checkpoint blockade
therapy. SLAMF8 in this setting was mostly expressed by
macrophages, and overexpression of SLAMF8 in macrophages
resulted in gene enrichment of multiple immune-related
pathways. Therefore, SLAMEFS is correlated with immune ‘hot’
gastric cancers that respond better to immune checkpoint
blockade (38).

3.7 Colorectal cancer

Research in CRC has suggested that SLAMF1 and SLAMF7 may
be of interest. Transfection of CD3-activated T-cells with SLAMF1
increased their cytotoxic activity and IFNYy production in vitro
against human colon cancer cells. In xenograft models, these T
cells reduced tumor growth, suggesting increased SLAMF1
expression on T cells in colon cancer may be beneficial (39). In
the human CRC TME, SLAMF1 was detected on tumor-specific
innate lymphoid cells, and these cells were observed at higher levels
in patient blood than in healthy controls. Patients with high levels of
SLAMF1 expression had a better survival rate than those with low
expression, suggesting SLAMF1 to be a marker for improved anti-
tumor activity (40). Additionally, SLAMF1 was detected as one of
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four core genes impacting prognosis in colon adenocarcinoma in an
investigation into immune-related subtypes from TCGA (41).

SLAMEF?7 has been found to be downregulated in CRC tissue as
compared to healthy tissue. In CRC cells overexpressing SLAME?7,
CD68, and CD73 were downregulated after co-culture with a
monocytic cell line, suggesting SLAMF7 might play a role in
suppressing these markers (42). In another study, SLAMF7
expression did not differ between paracancer and tumor tissue
or correlate with the TNM stage. In patients treated with
chemoimmunotherapy and adjuvant immunotherapy based on
cytokine-induced killer cells combined with chemotherapy, no
correlation was found between SLAMF7 expression and CD8" T-
cell or NK-cell infiltration. However, a higher expression of
SLAMF7 was associated with better OS (43). Therefore, the role
of SLAMF7 in CRC and its relationship to the immune response
requires further investigation.

3.8 Hepatocellular carcinoma

In HCC, the number of activated, functional NK cells is
associated with improved outcomes. In advanced HCC, fewer of
these NK cells are detected, and the cells present have impaired
TNFa and IFNYy production, suggesting limited functionality. This
was shown to be associated with high infiltration of peritumoral
stroma monocytes and macrophages. In vitro, NK cells exposed to
these monocytes could undergo a rapid transient activation,
resulting in exhaustion and, eventually, cell death, suggesting this
might be the reason for limited NK-cell function in advanced HCC.
The mechanisms behind this interaction might be associated with
SLAMF signaling. Monocytes in HCC express high levels of
SLAME2, and in vitro experiments showed that the effects of
monocytes on NK cells could be reduced by blocking SLAMF4 on
the NK cells, suggesting a direct role of SLAMF2-4 signaling in these
NK-cell exhaustion effects (44).

Healthy hepatocytes have been shown to express SLAMF3, but
no other SLAMF members. In primary HCC samples, resected
tumor samples, and HCC cell lines, the expression of SLAMF3 was
significantly lower than in healthy cells, suggesting downregulation
when hepatocytes undergo tumorigenesis. Restoration of high levels
of SLAMFS3 in cell lines was shown to inhibit cell proliferation and
migration and enhance apoptosis. Additionally, these cells
progressed less in nude mice than in their low SLAMEF3
counterparts. Mechanistically, SLAMF3 may be associated with
the signaling of various pathways, as expression resulted in
decreased phosphorylation of MAPK, ERK 1/2, JNK, and mTOR
(45). Follow-up studies showed that the inhibitory effect of SLAMF3
on HCC proliferation occurs through a retinoblastoma (RB) factor
and PLK1-dependent pathway. Expression of SLAMF3 retained RB
factor in its hypophosphorylated active form, which inactivates
the transcription factor E2F, and represses the expression and
activation of PLK1. PLK1 is a cell cycle protein that promotes cell
cycle progression. In human samples, this was confirmed with an
inverse correlation between SLAMF3 and PLK expression (46).
Additionally, induction of SLAMF3 was associated with loss of
MRP-1 expression, a drug resistance transporter. In patient
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samples, an inverse correlation between SLAMF3 and MRP-1
expression was also detected, suggesting that loss of SLAMF3
expression in tumor cells may be associated with drug
resistance (47).

SLAMF6 levels were found to be increased on CD14" cells
derived from blood from patients with HCC, which was associated
with positive Hep B virus DNA status and high levels of o-
fetoprotein. In vitro and in vivo experiments in mice showed that
tumor-associated macrophages (TAMs) had higher levels of
SLAMF6 (Ly108), and this was associated with the M2
phenotype. Small interfering RNA blocking Ly108 resulted in
suppression of M2 macrophage polarization. Macrophages with
suppressed SLAMF6 levels were able to reduce HCC cell migration
and invasion and could prevent tumor growth. This latter effect was
associated with the inhibition of the NF-xB pathway in
macrophages, which plays a role in macrophage polarization (48).

3.9 Melanoma skin cancer

Several SLAMF members have been implicated in melanoma. In
a murine model, inoculation with SLAMF2* and SLAME2"
metastatic B16 melanoma cells showed that WT mice had trouble
rejecting the SLAMF2" tumors compared to SLAMF2™ melanoma
cells. In mice lacking SLAMF4, there was a difference between the
rejection rates of these cells in male and female mice. Male mice
lacking SLAMF4 rejected SLAMF2" melanoma cells, while female
mice lacking SLAMF4 had trouble rejecting both SLAMF2" and
SLAME2’ cells. These gender-specific differences might be related to
differences in NK-cell function (49).

Eisenberg et al. created a 203-amino acid sequence of the
human SLAMF6 (seSLAMF6) ectodomain. This molecule reduced
activation-induced cell death in tumor-infiltrating lymphocytes
(TIL). When CD8" T-cells were costimulated with seSLAMF®6, the
cells secreted more IFNy and had improved cytolytic activity. When
these cells were injected into the BI6F10 melanoma mouse model, it
delayed tumor growth, which could be further enhanced by treating
the mice with seSLAMF6 (50). Another study showed that
inhibition of SLAMF6 with an anti-SLAMF6 antibody affected
tumor growth of the B16 melanoma model. Exhausted CD8" T-
cells had increased degranulation when anti-SLAMF6 was added to
the culture (51). Similar results were obtained when SLAMF6-
negative Pmel-1 cells specific for gp100 were created. Upon
activation, these cells acquired an effector memory phenotype and
showed improved polyfunctionality and strong tumor cytolysis.
Adoptive transfer of these cells into mice-bearing melanoma
tumors resulted in lasting tumor regression. Given that the CD8"
T-cells in this model expressed high levels of LAG3, adding anti-
LAG3 checkpoint blockade could further improve anti-tumor
responses (52).

TCGA analysis has revealed an enrichment of SLAMF7 in
melanoma and a correlation between SLAMF7 and favorable
prognosis. The expression of SLAMF7 was negatively correlated
with NK-cell markers, suggesting that the expression of SLAMF7 in
these tumors is unlikely NK-cell expression. In vitro studies
showed that agonistic engagement of SLAMF7 on tumor-specific
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CD4" T-cells enhanced their cytolytic activity, which, if expressed
by CD4" T-cells in these tumors, may explain the relationship with
favorable prognosis (22).

Finally, SLAMF9-expressing TAMs have been detected in
73.3% of human melanomas, 95.5% of naevi of melanoma
patients, and 50% of naevi of healthy controls. SLAMF9 was also
expressed in melanocytes in 20% of melanoma samples and 2.3% of
naevi from melanoma patients but not in healthy controls. In vitro
experiments showed that SLAMF9 gene expression was upregulated
in murine bone marrow-derived macrophages stimulated with
tumor-conditioned media of BI6F10 melanoma cells.
Furthermore, SLAMF9 expression enhanced TNFo secretion after
LPS stimulation, and it delayed wound closure of RAW 264.7 cells
in a scratch assay (53).

3.10 Renal cell carcinoma

A TCGA analysis into immune checkpoints in clear cell RCC
(ccRCC) revealed that although these receptor/ligands were not
found to be the most relevant in this study, genes encoding SLAMF2
and SLAMF4 were found to be more highly expressed in tumor
tissue as compared to adjacent non-tumor tissue (54).

An analysis in ccRCC focused on regulatory T cells (Tregs) in
tumor tissue and found that SLAMF6 is one of four hub genes
related to prognosis and Tregs and associated with a better
outcome (55).

Another TCGA analysis showed that SLAMF7 strongly
correlated with various inhibitory receptors and that high
expression was correlated with poor survival in ¢ccRCC. CyTOF
analysis of the TME of 73 c¢cRCC patients revealed that SLAMF7
was expressed by TAMs, with a unique subset of SLAMF7"CD38™
TAMs; these cells correlated with exhausted T-cells and were an
independent prognostic factor. In co-culture experiments, it was
shown that SLAMF7-SLAMF7 interactions between murine TAMs
and CD8" T-cells induced the expression of inhibitory receptors. In
mice lacking SLAMF7, B16F10 growth was restricted, and CD8" T-
cells in these tumors expressed lower levels of PD-1 and TOX,
suggesting a less exhausted phenotype (56).

3.11 Gynecological cancers

SLAMF1 was found to activate autophagy-related mechanisms
that promoted resistance to methotrexate in choriocarcinoma cells.
Depletion of SLAMF1 suppressed autophagy and induced apoptosis
of MTX-resistant cell lines, which overexpressed SLAMF1 (57, 58).

Choriocarcinoma cells can be resistant to NK-cell lysis. This was
associated with a lack of NK-cell activation, as choriocarcinoma
cells lacked expression of SLAMEF2, the ligand for SLAMF4 (59).

Limited research is available on SLAMF expression in ovarian
cancer. Assessment of TCGA and University of California, Santa
Cruz (UCSC) ovarian cancer datasets revealed that various SLAMF
members were part of a hub gene profile in immune infiltrates. This
hub gene profile included SLAMF1, SLAMF3, SLAMF6, and
SLAMF7. Two of these, SLAMF1 and SLAMF3, were recognized
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as the real hub genes in immune infiltrates in ovarian cancer. These
genes were associated with OS, which was related to their effect on
the infiltration of activated B-cells (60). Therefore, these SLAMF
members may be of interest for immunotherapy for ovarian cancer.

Attempting to construct a BRCAness signature for ovarian
cancer, Chen et al. found that upregulation of CXCL1 with
downregulation of SV2A and upregulation of SLAMF3 with
downregulation of CHRNB3 can be constructed as a two-gene
pair signature for BRCAness in ovarian cancer that predicts
improved OS, PFS, and increased multi-omics alterations in
homologous recombination genes. Furthermore, these could
predict enhanced sensitivity to immune checkpoint blockade and
poly ADP ribose polymerase (PARP) inhibitors, confirming
SLAMF3 as an attractive immunotherapeutic target in ovarian
cancer (61).

3.12 Head and neck squamous
cell carcinoma

CD8" TIL in HNSCC tumors has been found to express
increased levels of SLAMF4, and this expression was correlated
with PD-1 expression. Furthermore, SLAMF4 was increased on
intratumoral DC and MDSC, and high SLAMF4 correlated with
PD-LI expression and increased expression of immune-suppressive
mediators. In vitro studies showed that activation of SLAMF4
inhibited the production of pro-inflammatory cytokines by
human DCs. CD244"" mice showed impaired tumor growth of
HNSCC, and anti-SLAMF4 treatment also impaired the growth of
established HNSCC tumors while it increased CD8" TIL
infiltration, suggesting SLAMF4 plays an inhibitory role in the
immune response to HNSCC (62).

We have summarized the described expression and roles of
SLAMF members in the TME of solid tumors in Table 2.

4 Conclusion and future directions

Ample evidence suggests that SLAMF receptors are involved in
in various solid tumor types is coming to light, suggesting that these
receptors might be potential targets for therapy. SLAMFI has been
detected in various cancer types, but its role in prognosis remains to
be established. However, the expression of SLAMF1 on immune
cells in tumors might benefit the outcome. SLAMF2 and SLAMF4
have mainly been detected on T- and NK cells in tumors and may
affect the ability of the immune system to control solid tumors. On
the other hand, SLAM-family receptors, particularly SLAMF4, may
be inhibitory or activatory in cells with SAP adaptor molecules,
depending on the situation (63). Research on SLAMF3 remains
limited. In a recent study, it has been reported that SLAMF3
stimulates the differentiation of Th17 cells from CD4+ T cells,
leading to an increase in the secretion of IL-17A in a chronic (long-
lasting) autoimmune disorder (64). However, in solid tumors, the
expression loss on hepatic cancer cells is associated with poor
outcomes, and expression on immune cells in ovarian cancer

potentially results in better outcomes. SLAMF5 has also had
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TABLE 2 Described expression and roles of SLAMF members in the TME of solid tumors.

SLAMF Receptor

Expression
in Cancer

Role in Cancer

Tumor
Microenvironment

10.3389/fimmu.2024.1297473

References

SLAMF1
(CD150, SLAM)

« BC (incl. novel CD150)
« CNS tumors (incl. novel

« Expressed in breast cancer
cell lines, with high levels on

« Expression on immune cells
(T cells, B cells, and innate

(12, 24, 39-41, 56,
57, 59)

CD150) those of the luminal type lymphoid cells) in CRC -
« PrC « Highest expression detected associated with survival
« GyC in aggressive prostate cancer
« CRC cell lines
« Drives autophagy and
chemotherapy resistance
in choriocarcinoma
SLAMF2 (CD48, «BC « Upregulated in « Monocytes in HCC express (14, 28, 44, 49, 53, 58)
BLAST1, BCM1) «LC inflammatory breast cancer, high levels
*« MSC downregulated in breast « SLAMEF2 expression in
« ccRCC cancer metastases NSCLC cells increases
« HCC « Expression in lung cancer susceptibility to NK-cell
« GyC cell lines increases killing
susceptibility to NK-cell « Lack of SLAMF2 associated
killing with resistance to NK-cell
« Expression in mouse lysis in choriocarcinoma cells
melanoma tumors reduces
tumor rejection
« Upregulated in ccRCC
SLAMEF3 (CD229, LY9) « GyC « Loss of SLAMF3 in HCC « Expressed on immune (45, 47, 59, 60)
« HCC might be associated with infiltrate (B cells) in
drug resistance ovarian cancer
SLAMF4 (CD244, 2B4) « HNSCC « Reduced expression in « Expressed on immune cells (15, 16, 25, 30, 33, 61)
« NSCLC breast cancer associated with in NSCLC
« ccRCC worse prognosis « Expression on T cells in
« PaC « Low levels in blood plasma pancreatic cancer mouse
«BC in glioblastoma are associated model
« CNS with poor outcome « Expressed on CD8" TIL,
« In NSCLC, high blood DCs, and MDSCs in HNSCC
levels predict worse outcomes
« Upregulated in ccRCC
SLAMF5 (CD84, LY9B) « BC « Expression on circulating « Expressed by MDSC in (18, 19)
tumor cells of mesenchymal breast cancer - correlated
breast cancer with worse outcomes
SLAMF6 (CD352, « BC + Weak association with « Associated with Tregs in (20, 34, 36, 48, 54)
NTBA, LY108) « PDAC survival in breast cancer RCC - associated with

o GC (circular SLAMF6)
« RCC

« Potential role in PDAC
outcomes

improved outcomes
« Increased on CD14" cells in

« HCC « Gastric cancer mouse HCC (M2 TAMs)
models: circular SLAMF6 in
hypoxia associated with more
aggressive subtypes
SLAMF7 (CD319, « BC « Enriched in breast cancer — « Expression in melanoma (21, 22, 42, 55)
CS1, CRACC) CRC* associated with better might be associated with
« ccRCC prognosis CD4" T-cell expression
« MSC Downregulated in CRC* « Expressed by TAMs
« Enriched in melanoma — in ccRCC
associated with improved
outcome
« High expression in ccRCC
is associated with
worse outcome
SLAMF8 (CD353, « BC « High expression in breast « Expression in breast cancer (23, 26, 37, 38)
BLAME, SBBI42) « CNS cancer associated with poor associated with TNF and

« GC (serum)

therapy response

« Overexpression in glioma
associated with disease
progression, poor survival,
and chemoresistance

lymphocyte infiltration

« Associated with infiltration
of myeloid cells, correlated
with checkpoint expression in
glioma.
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TABLE 2 Continued

SLAMF Receptor

Tumor References

Microenvironment

Expression Role in Cancer

in Cancer

« Associated with better « Expressed by macrophages

response to checkpoint in gastric cancer
inhibitors when expressed in

serum gastric cancer

SLAMF9
(CD2F10, CD84H1)

« MSC « Expressed on TAMs (52)

in melanoma

BC, breast cancer; ccRCC, clear cell renal cell carcinoma; CNS, central nervous system; CRC, colorectal cancer; DC, dendritic cell; GC, gastric cancer; GyC, gynecological cancer; HCC,
hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; LC, lung cancer; MSC, melanoma skin cancer; NK, natural killer; NSCLC, non-small cell lung cancer; MDSC,
monocyte-derived suppressor cell; PaC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma; PrC, Prostate cancer; RCC, renal cell carcinoma; SLAMEF, signaling lymphocytic activation

molecule family; TAM, tumor-associated macrophages; TIL, tumor-infiltrating lymphocyte; TNF, tumor necrosis factor.

limited investigation in solid tumors, but its detection on MDSC in
breast cancer suggests it might be a therapeutic target of interest.
SLAMF6 appears to be associated with outcomes in various cancer
types and is expressed by various immune cells, with variable anti-
tumor effects.

SLAMEF?7 has been found enriched in various solid tumor types,
which may be associated with CD4" T-cells and TAMs expression.
According to the researchers, the process of differentiation from
monocytes to macrophages results in increased expression of
SLAMEF?7. This up-regulation of SLAMF7 promotes the induction
of cytokines by certain Toll-like receptor ligands, suggesting that the
differentiation of macrophages in solid tumors might involve a
pathway through SLAMF7 (65). SLAMF7 has also been shown to be
effective in improving survival when combined with lenalidomide
and dexamethasone with the monoclonal antibody elotuzumab in
patients with multiple myeloma (66). The use of this antibody in the
clinic paves the way for research into the effects of this treatment in
tumor types overexpressing SLAMF7. However, given that current
research shows potentially improved outcomes with high
expression, the mechanism of action will be important to explore.
SLAMEFS expression in tumors was associated with worse outcomes
in breast cancer and glioma, while serum expression in gastric
cancer was associated with a good response to immunotherapy.
SLAMF9 has not been assessed in great detail in the solid cancer
setting, but research showing expression on TAMs in melanoma
suggests it might be a target for further research.

In this review, we have specifically discussed increasing
evidence of the roles of SLAMF receptors in various solid tumors
that may improve patient outcomes. We have also suggested several
ways to target SLAMF receptors in solid tumors. Together, these
data suggest that SLAMF members play variable roles in solid
tumors. While research should be expanded to uncover their roles
in prognosis and expression patterns on various cells in the TME,
an argument can be made to investigate these molecules for
therapeutic purposes. However, targeting SLAMF receptors could
also impact the normal immune response and increase the risk
of infections due to their complex regulatory functions within
the immune system (67). Therefore, it is crucial to take into
consideration the potential risks associated with targeting SLAMF
receptors and to take appropriate safety measures to minimize the
potential toxicities, such as neutropenia, thrombocytopenia, and
hepatotoxicity (63).
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Background: CDKL3 has been associated with the prognosis of several tumors.
However, the potential role of CDKL3 in immunotherapy and the tumor
microenvironment (TME) in esophageal carcinoma (ESCA) remains unclear.

Methods: In this study, Cox regression analysis was used to assess the predictive
value of CDKL3 for ESCA outcomes. We systematically correlated CDKL3 with
immunological features in the TME. The role of CDKL3 in predicting the efficacy
of immunotherapy was also analyzed. Correlation analysis, Cox analysis and
LASSO Cox regression were used to construct the CDKL3-related autophagy
(CrA) risk score model. The relationship between CDKL3 expression and
postoperative pathological complete response (pCR) rate in esophageal
squamous cell carcinoma (ESCC) patients undergoing neoadjuvant
chemoradiotherapy (nCRT) was evaluated using Immunohistochemical staining
(IHC). The relationship between CDKL3 expression and autophagy induction was
confirmed by immunofluorescence staining and western blot, and the effect of
CDKL3 expression on macrophage polarization was verified by flow cytometry.

Results: High expression of CDKL3 was found in ESCA and was associated with
poor prognosis in ESCA. Moreover, CDKL3 expression was negatively correlated
with tumor-infiltrating immune cells (TIICs), the integrality of the cancer
immunity cycles, and anti-tumor signatures, while CDKL3 expression was
positively correlated with suppressive TME-related chemokines and receptors,
immune hyperprogressive genes, and suppressive immune checkpoint, resulting
in immunosuppressive TME formation in ESCA. An analysis of immunotherapy
cohorts of the ESCA and pan-cancer showed a better response to
immunotherapy in tumor patients with lower CDKL3 levels. The CrA risk score
model was constructed and validated to accurately predict the prognosis of
ESCA. Notably, the CrA risk score of ESCA patients was significantly positively
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correlated with M2 macrophages. Furthermore, knockdown CDKL3 in KYSE150
cells could inhibit autophagy induction and M2 macrophage polarization. And,
radiation could downregulate CDKL3 expression and autophagy induction, while
ESCC patients with high CDKL3 expression had a significantly lower response
rate after NCRT than those with low CDKL3 expression.

Conclusion: CDKL3 may play an important role in anti-tumor immunity by
requlating autophagy to promote the formation of immunosuppressive TME,

thus playing a critical role in the prognosis of ESCA.

KEYWORDS

esophageal carcinoma, prognosis, tumor microenvironment, autophagy,
macrophage polarization

Introduction

Esophageal carcinoma (ESCA) is a common malignancy
affecting the gastrointestinal tract, with high incidence and
mortality worldwide, of which 85% is esophageal squamous cell
carcinoma (ESCC) (1, 2). ESCA typically does not present with
early symptoms, resulting in the majority of patients being
diagnosed in locally advanced or advanced stages. The primary
treatment options for these locally advanced ESCA patients
are neoadjuvant or definitive chemoradiotherapy (CRT),
chemoradiation, or the combination of CRT and immunotherapy
(3). The therapeutic efficacy of immunotherapy has continued to
make breakthroughs in recent years, bringing light to the treatment
of ESCA patients (4-7). Unlike conventional chemotherapy,
immunotherapy can lead to unprecedented and durable
remissions in advanced cancer patients. Unfortunately, only a
subset of patients respond to immunotherapy, and clinical
outcomes in ESCA patients vary widely (8). Therefore, the search
for predictive biomarkers of immunotherapy benefits could help to
personalize the treatment regimen for each patient and improve
their prognosis.

The anti-tumor effects of immunotherapy require not only a
tumor microenvironment (TME) with rich infiltration of immune
cells but also active T cells by immune checkpoint inhibitors (ICIs)
blocking immunosuppression (9, 10). Chemoradiotherapy can not
only kill the fast-growing cancer cells, but it can also remodel the
TME (11, 12). Autophagy, a mechanism of cellular self-protection
and maintenance of homeostasis, removes senescent, damaged, or
abnormal proteins and organelles from the cell (13). Aberrant
activation of autophagy leads to tumor growth, endurance, and
resistance to chemoradiotherapy. Radiotherapy is accompanied by
abnormal expression of autophagy related-genes. Resistance to
chemotherapy drugs is at least partially mediated by increased
autophagy in tumor cells (14, 15). There is emerging evidence
that autophagy causes immune dysfunction by acting on the TME.
For example, TRAF2 promotes the polarization of M2 macrophages
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by inhibiting autophagy (16). Hence, exploring the features of the
TME, the molecular features of autophagy and the interaction with
chemoradiotherapy will help to understand the genesis and
development of ESCA and the potential mechanisms of action
of immunotherapy.

Members of the cyclin-dependent kinase (CDK) family
regulate cell cycle progression and are considered crucial targets
for cancer therapy (17). Cyclin-dependent kinase-like (CDKL)
proteins contain MAPK TXY phosphorylation motifs, and
putative cell cycle protein-binding domains and are
characterized by their high sequence similarity to CDK. Cyclin-
dependent kinase-like 3 (CDKL3) is both a protein-coding gene
and a member of the CDKL family (18). Existing research
demonstrates that tumor patients with CDKL3 up-regulation are
closely related to inferior survival status (19-22). Our previous
study identified CDKL3 as an important oncogene in esophageal
squamous cell carcinoma (ESCC) and autophagy-related gene
ATG5 was a potential target of CDKL3 in KYSE-150 cell line
(19, 22). However, the effect of CDKL3 on TME and its role in
autophagy are still unknown. Accordingly, our study aimed to
investigate the association of CDKL3 with the TME and
autophagy genes in ESCA based on public databases and
experimental validation.

Materials and methods

Study design

This study is performed according to the flow chart, which is
shown in Figure 1. Firstly, data on ESCA patients were collected
from public databases. Then, bioinformatics analysis was performed
to explore the relationship between CDKL3 and immune status and
the predictive role of CDKL3 in immunotherapy. Subsequently, the
CDKL3-related autophagy (CrA) risk score model was developed
and validated, and the correlation between the CrA risk score and
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FIGURE 1

Flowchart of the study design. (A) Source of data used in this study. (B) Differential expression of CDKL3, mutation analysis, and survival analysis.

(C) Correlation between CDKL3 and immune status in the TME. Immune status includes tumor-infiltrating immune cells (TIICs), immune-associated
gene sets, and immune checkpoints. (D) The predicted role of CDKL3 in the efficacy of immunotherapy. (E) Establishing and validating CrA risk score
model. (F) The association between the CrA risk score and M2 macrophages. (G) The correlation between CDKL3 expression and autophagy
induction was verified by immunofluorescence staining, and the effect of CDKL3 expression on M1 macrophage polarization was verified by

flow cytometry.

M2 macrophages was found. Finally, through in vitro experiments,
we confirmed the correlation between CDKL3 expression and
autophagy induction and investigated the effect of CDKL3 on
macrophage polarization.

Data collection

We downloaded RNA sequencing (RNA-seq) data (transcripts
per kilobase million, TPM values), mutation profiles, and clinical
data of ESCA from TCGA-GDC interface (https://
portal.gdc.cancer.gov/). Log2 was used to transform the RNA-seq
data. 198 samples were included in the TCGA-ESCA sequencing
data, of which 13 were normal tissues and 185 were tumor tissues.
Somatic mutation information of ESCA patients from TCGA was
plotted using the maftools R package. Copy number variation
(CNV) data were accessed from the UCSC Xena data portal
(http://xena.ucsc.edu/). Gene expression matrices for the
GSE161533, GSE23400 (GPL97 platform), and GSE47404 cohorts
were obtained from the Gene Expression Omnibus (GEO) database.
Gene expression matrices and clinical data for cohorts GSE53624,
GSE53625, and GSE19417 cohorts were downloaded. Autophagy
genes (ATGs) were derived from the Autophagy Database (http://
www.tanpaku.org/autophagy/) (Supplementary Table 1).

Download of immunotherapy cohorts

The data for the GSE165252, GSE91061, and GSE176307
cohorts were downloaded from GEO. Visit http://
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researchpub.gene.com/IMvigor210CoreBiologies/ for more
information on the IMvigor210 cohort (23). In addition, the data
from the Gide2019 and Nathanson2017 cohorts were obtained from
the TIDE (http://tide.dfci.harvard.edu/) database (24). The
Supplementary Table 2 presented these detailed data.

Survival analysis

Clinical information (age, gender, stage, pathology, etc.) was
collected for ESCA patients in the TCGA cohort. 185 samples were
considered eligible after screening for transcriptomic and
clinicopathological information. After excluding one duplicate
sample and one sample with 0 days of follow-up, Kaplan-Meier
analysis was performed on these 183 samples using the survival and
survminer R packages. Univariate Cox regression analysis was
conducted to screen out risk variables, of which p<0.2 were
further included in multivariate Cox regression analysis.

Construction of a nomogram

Variables with clinical significance and multivariate Cox
regression p<0.05 were screened to establish a predictive
nomogram. The regplot package was used to plot the nomogram.
Calibration curves were calculated with the use of the rms
package. Decision curve analysis (DCA) was conducted using
the “stdca.R” function. Receiver operating characteristic (ROC)
curve analysis was calculated using the timeROC R package
(version 0.4) (25).
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Immunological characterization
of the TME

We have obtained gene set labels including 28 types of immune
cells to accurately evaluate the atlas of immune cells infiltrating in
the TME. We calculated the enrichment fraction within each
immune cell subtype for each individual using the single sample
gene set enrichment analysis (ssGSEA) algorithm of the GSVA
package. The anticancer immune response also is recognized as a
stepwise multiplicity of processes called the cancer immunity cycles.
By analyzing the 23 gene sets associated with the seven-step cancer
immunity cycles, the researchers were able to explore the tumor
immune phenotype (26). We received a total of 92 immune-related
signatures from previous work (Supplementary Table 3) (10). The
ssGSEA algorithm of the GSVA package was used to calculate the
enrichment score (ES) of these immune-related signatures. We
collected 23 chemokines and receptors from previous literature
associated with the recruitment of myeloid-derived suppressor
cells (MDSCs), tumor-associated macrophages (TAMs), and
Treg cells (27). Some patients treated with immune checkpoint
inhibitors (ICIs) may experience the side effect of cancer hyper-
progression. We summarize several predictive genes for hyper-
progression (28, 29). In addition, we have identified 22 inhibitory
immune checkpoints that have therapeutic potential (30). The
researchers used CIBERSORT, TIMER, QUANTISEQ,
MCPCOUNTER, XCELL, EPIC, and other algorithms to quantify
immune cell infiltration (TIMER 2.0 database, http://
timer.cistrome.org/) (31).

Predicting immunotherapy response

The TIDE algorithm, and the IPS score were used to investigate
the value of CDKL3 in the prediction of response to
immunotherapy. TIDE scores were calculated from the official
TIDE website (http://tide.dfci.harvard.edu/). IPS scores were
calculated using the IOBR package (version 0.99.9) (32).

Construction and validation of the CrA risk
score model

Spearman correlation analysis was used to filter the CDKL3-
related ATGs (p-value<0.1). Further, Univariate Cox regression
(p-value<0.2) and LASSO Cox regression were used to construct
the appropriate signature. Using ‘lambda. min’ from the
R package ‘glmnet’ to obtain the optimal lambda value. Finally,
the model-derived CrA risk score could be calculated the
following equation.

CrA risk score = > fBi « Ei

9
i=1

Bi is the risk factor and Ei is the expression of each gene.
Kaplan-Meier analysis was used to examine the correlation between
the CrA risk score and overall survival (OS).
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Tissue collection and
Immunohistochemical staining (IHC)

Tissue samples were collected from 24 ESCC patients receiving
neoadjuvant chemoradiotherapy (nCRT) plus surgery at Taizhou
Hospital, Zhejiang Province, between November 2011 and
December 2020. The samples from every patient included cancer
tissues before neoadjuvant chemoradiotherapy and after surgery.
Analysis of postoperative pathological tumors (pT) and
postoperative pathological lymph nodes (pN) were based on
pathological assessment after surgical treatment. The definition of
postoperative pathological complete response (pCR) was negative
postoperative pathological tumor and postoperative pathological
lymph nodes (pT°'N"), and postoperative pathological complete
response (non-pCR) was defined as pT" and/or pN*. The
inclusion criteria were: (1) The pathologic diagnosis of the
primary tumor was confirmed as ESCC; (2) Tissue samples were
stored in the tissue bank of Taizhou Hospital; (3) Having a
completed postoperative report of pathological assessment; (4)
Having enough sample to perform immunohistochemical staining
(IHC); (5) Patients who completed nCRT and surgery. The
exclusion criteria were: (1) Non-ESCC patients; (2) Without a
completed postoperative report of pathological assessment;(3)
Without enough samples stored in the tissue bank of Taizhou
Hospital. The flow of immunohistochemical staining (IHC) was
carried out as we described in the previous study (22). Two
observers blinded to the purpose of the study independently
evaluated the stained sections. The score of CDKL3 expression
was evaluated and calculated by independent blinded observers.
The patients with scores > 8 were classified as a high CDKL3-
expression group, otherwise as a low CDKL3-expression group.

Cell cultures, macrophage induction

The human ESCC cell line KYSE-150 were obtained from the
Shanghai Institute of Cell Biology, Chinese Academy of Sciences
(Shanghai, China). Cells were maintained in RPMI 1640 with 10%
FBS (Sigma, St Louis, USA) 100ug mL-1 streptomycin and 100ug
mL-1 penicillin, 37°C, 5% CO2.THP-1 cells (ATCC, Manassas,
USA), as human peripheral blood monocytes, were incubated with
serum-free RPMI 1640 containing 200 nM PMA (Sigma, St Louis,
USA) for 48h to induce M0 macrophage.

Cells co-culture and macrophage
polarization analysis

The supernatant harvested from 48h incubation of KD and NC
groups of KYSE-150 was co-cultured with MO macrophage in 24-
well transwell plates (Millipore Co., Bedford, MA) for 72h.
Macrophages without co-culture were set as the control. After
polarization induction, macrophages were harvested and
incubated with specific primary anti-bodies against relative
surface markers (CD86 as an M1 marker, and CD206 as an M2
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marker) on ice for 30 minutes. Then, these stained cells were
resuspended in 400 puL of PBS after twice of cold PBS washing.
Finally, flow cytometry (BD LSRII system, BD Biosciences, Franklin
Lakes, USA) was applied to evaluate the specific surface markers.
Simultaneously, macrophages were harvested to extract total RNA
using Trizol reagent (Invitrogen, Carlsbad, CA) in accordance with
instructions. qRT-PCR (Mx3000Ps, Biosystems Inc., Foster City,
CA, USA) was performed after reverse transcription to cDNA
(PrimeScript RT reagent Kit, Takara, Shiga, Japan). The PCR
reaction condition was as follows: pre-denaturing at 95°C for 15s,
then 45 cycles at 95°C for 5s, ended after 60°C for 30s. The internal
reference used in this study was GAPDH. The primers of targeted
genes were shown as follows: CDKL3: 5'- AAAGTGGGCAAT
TTGTCACCT-3'(forward), 5 -TTGGGGTGTTGAACTTGAG
GA-3'(reverse); GAPDH: 5-AGAAGGCTGGGGCTCATTTG-3’
(forward), 5'-AGGGGCCATCCACAGTCTTC-3’ (reverse); IL-12:
5-CCTTGCACTTCTGAAGA GATTGA-3'(forward), 5'-ACA
GGGCCATCATAAAAGAGGT-3'(reverse); TNF-o: 5-CCTCT
CTC TAATCAGCCCTCTG-3'(forward), 5-GAGGACCTGG
GAGTAGATGAG-3'(reverse); IL-10: 5-GACTTTAAGGGTTAC
CTGGGTTG-3'(forward), 5'-TCACATGCGCCTTGATGTCTG-3’
(reverse); TGF-B: 5'-GGCCAGATCCTGTCCAAGC-3'(forward),
5- GTGGGTTTCCACCATTAGCAC-3'(reverse). Relative gene
AACT method. In other
ways, co-culture supernatants were collected and tested for
specific cytokines (TNF-o and IL-12 as M1 markers, TGF-} and
IL-10 as M2 marker) using ELISA kits (eBioscience, San Diego,
USA) according to the manufacturer’s protocols.

expression was determined using the 2~

Confocal imaging of autophagosomes
and autolysosomes

Cells were plated in 6-well chambers at 10000 cells/well
followed by transfection with tandem fluorescently tagged LC3B
(pLVX-Puro-RFP-GFP-hLC3B) lasting 24h. Then, indicated drugs
were added to co-incubate with the cells for another 24 h.
Subsequently, DAPI or Hochest was used to stain the cell nuclei
for 15 min after the fixation with 4% Paraformaldehyde (PFA).
Finally, autophagic flux was monitored and scanned by Pannoramic
Midi (3DHistech, Budapeste, Hungary).

Gene silencing

For transfection, cells were cultured in 6-well plates containing
5x10° cells. Transient transfection of small interfering RNA
(siRNA) was carried out using Lipofectamine 3000 Transfection
Reagent (L3000015, Thermo Fisher Scientific, California, USA).
siRNAs targeting human CDKL3 were obtained from GenePharma
(Shanghai, China) and transfected into cells using Lipofectamine
3000 (Invitrogen, California, USA). The detailed sequences of
siRNA were as follows: CDKL3 siRNA1 (KD), 5'-
UCAGGAAAGAUGAAAGAAATT-3’, 5'-UUUCUUUCAUC
UUUCCUGATT-3; CDKL3 siRNA2 (KD), 5-GCUGCAAAUC
UCAGUUCAAAU-3', 5-UUGAACUGAGAUUUGCAGCCA-3’;
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CDKL3 siRNA3 (KD), 5-AGUUCUUCCUCAAGUUCAACA-3/,
5-UUGAACUUGAGGAAGAACUAC-3'; CDKL3 siRNA4 (KD),
5'-GACUAUCUUCACAGUAAUAAU-3', 5'-UAUUACUG
UGAAGAUAG UCAA-3’; NC siRNA (NC), 5'-UUCU
CCGAACGUGUCACGUTT-3', 5'-ACGUGACACGUUCGGA
GAATT-3".

Western blot assay

Briefly, total proteins were extracted from ESCC cells and
protein quantification was performed using the BCA protein
assay kit (Beyotime, Shanghai, China). 10% SDS-PAGE was used
to separate protein samples, transferred to PVDF membranes, and
then the PVDF membranes were blocked with 5% skim milk for 1
hour. The membranes were then incubated overnight with mouse
anti-CDKL3 antibody (Sigma-Aldrich, St. Louis, MO, USA) or
rabbit anti-LC3B antibody (Cell Signaling Technology, Danvers,
MA, USA) at 1:1000 dilution. Mouse anti-GAPDH antibody
(Santacruz, Santa Cruz, CA, United States) (1:2000) was
incubated overnight at 4°C as a control for the top sample.
Finally, an HRP-coupled IgG antibody (Santacruz, Santa Cruz,
CA, United States) was used as a secondary antibody. Signal
bands were also quantified using Image] software.

Ingenuity pathway analysis (IPA)

Our previous study analyzed the profile of differential expressed
genes between KYSE-150-NC and KYSE-150-CDKL3-KD cells
using GeneChip® PrimeViewTM human gene expression arrays
(22). In this study, we used IPA to perform gene enrichment
analysis based on the results of CDKL3 expression-related
differential gene expression.

Statistical analysis

All statistical data analysis and graphs were performed using R
software (version 4.2.1) and GraphPad Prism (version 8.0.2) for
analysis. All experiments were replicated at least three times.
Differences between the two groups were analyzed using a t-test or
Wilcoxon test. Correlations between variables were examined using
Spearman’s coefficient. Survival curves were plotted using the Kaplan-
Meier method, and the log-rank test was used to compare between
groups. Two-tailed statistical tests were applied and p < 0.05 was used
to define as statistically significant (“NS” indicates no significant
difference, *p<0.05, *p<0.01, **p<0.001, and ****p<0.0001).

Results

CDKL3 expression pattern and
mutation analysis

Expression data from the TCGA and GEO databases were
comprehensively analyzed. In the TCGA database, we found no
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differences in CDKL3 expression between tumor and normal tissue
of ESCA. Compared to the paired normal tissue samples in GEO
databases, CDKL3 was highly overexpressed in the tumor tissues of
ESCA (GSE161533 and GSE23400, (Supplementary Figure 1A). We
obtained ESCA mutation data and divided patients into two groups
based on CDKL3 expression. Patients with higher CDKL3
expression typically had a higher TP53 mutation rate (87% vs.
82%) and lower TTN (38% vs. 42%) and MUCI16 (18% vs. 26%)
mutation rates (Supplementary Figures 1B, C) than that of patients
with lower CDKL3 expression.

Elevated CDKL3 expression predicts poor
clinical outcomes in ESCA patients

To further determine the clinical significance of CDKL3 in
ESCA patients, our study of clinical data from the TCGA-ESCA
dataset revealed a significant association between high CDKL3

10.3389/fimmu.2024.1295011

expression and pathology (squamous cell carcinoma vs.
adenocarcinoma), race (Asian vs. White), T (T3 vs. T1) and
tumor stage (stage II&III vs. stage I) (Figure 2A). This suggests
that CDKL3 expression levels increase with increasing ESCA
malignancy. To further understand the significance of CDKL3 in
ESCA, we investigated the relationship of its expression with
prognosis in ESCA patients. According to the median value of
CDKL3 expression, patients were grouped into high- and low-
expression cohorts. Log-rank test analysis then indicated that those
with high CDKL3 expression had a worse outcome than patients
with low CDKL3 expression in the TCGA-ESCA (n=183),
GSE53624 (n=119), and GSE53625 (n=179) cohorts, while a
similar but non-significant trend was found in the GSE19417
cohort (n=70) (Figure 2B). Univariate analysis showed that
patients with high CDKL3 expression (HR:1.695, 95% confidence
interval (CI):1.010-2.844, p=0.046) had shorter overall survival
(Figure 2C). After adjustment for other confounders (gender and
stage), multivariate analysis indicated that CDKL3 remained an
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Increased expression of CDKL3 indicates poor prognosis. (A) The association between CDKL3 and pathology, race, T, and stage. (B) Prognosis of
high and low CDKL3 expression groups in the TCGA, GSE53624, GSE53625, and GSE19417 cohorts. (C) Univariate analysis and (D) Multivariate
analysis of CDKL3 expression and clinicopathological features in the TCGA cohort. (E) Nomogram for predicting the prognosis of ESCA patients.
(F) Calibration plots indicate the predicted overall survival at 1, 2, and 3 years. (G) Decision curve analysis (DCA) of the nomogram. (H) Receiver
operator characteristic (ROC) analysis of the nomogram in the TCGA, GSE53624, and GSE53625 cohorts. *p<0.05; ns, no significance.
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independent prognostic risk factor in ESCA patients (HR:1.735,
95% CI:1.034-2.911, p=0.037) (Figure 2D). A nomogram was
created to estimate the outcome of ESCA patients and the
variables considered in the nomogram were age, gender, CDKL3,
and stage (Figure 2E). The C-index value of the nomogram was
0.675 (95% CI: 0.635-0.715). The calibration curve showed the
accuracy of the nomogram in the prediction of survival at 1, 2, and 3
years (Figure 2F). A decision curve analysis (DCA) was performed
(Figure 2G), which suggested a good probability of diagnosis
between a probability threshold of 20% and 50%. In conclusion,
ROC analysis was performed to evaluate the sensitivity and
specificity of this nomogram in the prediction of OS at 1, 2, and
3 years. The AUC for 1-, 2-, and 3-year OS were 0.642, 0.777, and
0.819 in the TCGA cohort, respectively. The AUC for 1-, 2-, and 3-
year OS were 0.578, 0.687, and 0.683 in the GSE53624 cohort,
respectively. The AUC for 1-, 2-, and 3-year OS were 0.628, 0.694,
and 0.690 in the GSE53625 cohort, respectively (Figure 2H). These
findings suggest that the expression level of CDKL3 can be
considered a powerful prognostic predictor in ESCA patients.

Correlation between CDKL3 and
immune phenotype

Spearman analysis indicated that CDKL3 expression was
significantly and negatively related to the majority of tumor-
infiltrating immune cells (TIICs) (Figure 3A). Patients were
stratified into high and low CDKL3 expression groups according
to median CDKL3 expression. The relative abundance of
immunoreactive cells was markedly decreased lower in CDKL3
high-expressed group (Figure 3B). Using the GSE47404 cohort as a
validation set, the results were highly consistent with the above
findings (Figures 3C, D). In ESCA, CDKL3 expression was closely
associated with the remodeling of the TME. In the TCGA cohort,
CDKL3 expression was negatively correlated with the activity of
step 4 of the cancer immunity cycles, i.e. immune cell trafficking to
the tumor (Supplementary Figure 2A), which was further validated
in the GSE47404 cohort (Supplementary Figure 2B). This explains
why higher CDKL3 expression was associated with lower
infiltration of immunoreactive cells.

ES heatmaps were presented for the correlation among CDKL3
and 92 immune-related signatures in the TCGA and GSE47404
cohorts (Supplementary Figures 2C, D). CDKL3 was strongly
related to 25 immune-related signatures in the TCGA cohort, most
of which were anti-tumor signatures that were negatively associated
with CDKL3. Notably, CDKL3 had a significantly positive correlation
with the ES of the TAM-related signature (TAMsurr_score).
Furthermore, the ES for the anti-tumor signatures was considerably
lower in the CDKL3 high expression group with a higher ES for the
TAMsurr_score (Figures 3E, F). This finding was further validated in
the GSE47404 cohort (Figures 3G, H). In summary, raised CDKL3
expression promoted the tumor immune phenotype to become a
‘cold” type. Subsequently, the analysis about the relation between
CDKL3 expression and suppressive TME-related chemokines and
receptors (Supplementary Table 4) revealed that high CDKL3
expression positively correlated to the expression of chemokines

Frontiers in Immunology

77

10.3389/fimmu.2024.1295011

(CXCL2, CXCL3, CCL8) and chemokine receptors (CXCR4, CCR5,
CCR8) (Figure 3I).

CDKL3 expression levels predict response
to immunotherapy

We explored the correlation of CDKL3 expression with that of 14
suppressive immune checkpoint inhibitors to determine the potential
efficacy of CDKL3 in the prediction of response to ICIs in ESCA
patients (Figure 3]). The results indicated that CDKL3 had a positive
correlation with most of the inhibitory immune checkpoint inhibitors.
Therefore, we suggest that CDKL3 may be a candidate biomarker for
immunotherapy response prediction. It was discovered that the
expression of CDKL3 exhibited a significant positive correlation to
most of the hyper-progressive genes (Figure 3K), and CDKL3 may be
associated with hyper-progression in immunotherapy. We also
assessed the significance of CDKL3 as a predictor of
immunotherapy response in ESCA patients using TIDE and IPS
scores. Patients with low CDKL3 expression had significantly
decreased TIDE scores and increased IPS scores, indicating that low
CDKL3 patients have a reduced potentiality for immune escape and
may have better efficacy with immune checkpoint inhibition therapy
(Figures 4A-C). TIDE prediction showed that patients with lower
CDKL3 expression group response to immunotherapy more
significantly in the TCGA cohort (low group: 57.0%, 53/93 vs. high
group: 42.4%, 39/92) (Figure 4D). Similarly, TIDE predicted that the
low CDKL3 group in the GSE53625 cohort was more likely to respond
to immunotherapy (low group: 53.3%, 48/90 vs. high group: 22.5%,
20/89) (Figure 4E). Based on GSE165252 (an immunotherapy cohort
for ESCA), the group with CDKL3 low expression showed more
superior response to the immunotherapy (low group: 40%, 6/15 vs.
high group: 21.4%, 3/14) (Figure 4F). Thus, CDKL3 gene expression
levels may help predict response to immunotherapy in ESCA patients.
As there are fewer immunotherapy cohorts for ESCA, we investigated
the role of CDKL3 in predicting the response to immunotherapy in
other cancers. We discovered that the prognosis, including OS and
progression-free survival (PFS), was worse for the high CDKL3 group
in the metastatic urothelial cancer and melanoma cohorts (p < 0.05)
(Figures 4G-I, M-0). Moreover, a trend toward a worse PES was
found in the high CDKL3 group of GSE176307 and Gide2019 PD-1
cohorts, while a trend toward a worse OS in the high CDKL3 group of
Gide2019 PD-1+CTLA4 cohorts, yet the p-value was not statistically
different (Supplementary Figures 3A-C). We also found that
immunotherapy response rates were considerably lower among the
high CDKL3 group than among the low CDKL3 group (Figures 4]-L,
P-R). These results confirm that CDKL3 expression is a powerful
indicator in pan-cancer immunotherapy cohorts.

Establishment and validation of CrA-risk
score model

Utilizing 1183 ATGs downloaded from the autophagy database,

we constructed and validated a CrA risk score model (Figure 5A).
Correlation analysis and univariate COX regression analysis
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FIGURE 3
Correlation between CDKL3 and immunological characteristics in the TME. (A) Correlation of CDKL3 with infiltration levels of TIICs in the TCGA cohort.
(B) Violin plots of infiltrating degrees of TIICs in the TCGA cohort. (C) Correlation of CDKL3 with infiltration levels of TIICs in the GSE47404 cohort.
(D) Violin plots of infiltration levels of TIICs in the GSE47404 cohort. (E) Correlation of CDKL3 with 25 immune-related signatures in the TCGA cohort.
(F) Violin plots of enrichment scores of immune-related signatures in the TCGA cohort. (G) Correlation of CDKL3 with 25 immune-related signatures in
the GSE47404 cohort. (H) Violin plots of enrichment scores of immune-related signatures in the GSE47404 cohort. (I) Correlation of CDKL3 with
chemokines and chemokine receptors. (J) Correlation of CDKL3 with inhibitory immune checkpoints. (K) Correlation of CDKL3 with hyperprogressive
genes for immunotherapy. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

identified 16 genes at the output intersection of the TCGA and
GSE19417 cohorts (MAP1LC3B, TSC2, PPP2CA, UBE2]2, ATM,
PIK3CB, KPNA6, KLHL12, CTSD, SPATA13, RAB9A. MARK?2,
ITPR3, LRBA, AP3D1, ATGI16L1). Univariate Cox regression
revealed 16 predictive ATGs in the TCGA and GSE19417 cohorts
(Figures 5B, C). The ESCA patients from the TCGA cohort were
grouped into a training set (n = 129) and a validation set (n = 54)
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according to 7:3. Subsequently, a CrA risk score model for ESCA
patients was developed via LASSO cox regression. Finally, 9 of the
16 ATGs were considered to be the best candidate genes
(Figures 5D, E). The model of the CrA risk score was shown as
the following.

CrA risk score = (0.380889116*MAPILC3B exp) + (-0.32148
4102*TSC2 exp) + (0.846337455*PPP2CA exp) + (-0.3515841
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CDKLS3 predicts response to immunotherapy. (A, B) TIDE scores in the TCGA and GSE53625 cohorts. (C) IPS scores in the TCGA cohort. (D, E) TIDE
predicted immunotherapy response rates in the TCGA and GSE53625 cohorts. (F) Immunotherapy response rates based on GSE165252 (an

immunotherapy cohort for ESCA). (G-I, M—0) Survival analysis of CDKL3 in the pan-cancer immunotherapy cohorts. (J—L, P—R) The proportion of
pan-cancer immunotherapy responders in the high and low CDKL3 groups. **p<0.01; ****p<0.0001.

02*UBE2J2 exp) + (-0.277601266*ATM exp) + (0.354855247*PIK3CB
exp) + (0.450974523*CTSD exp) + (-0.315185584*ITPR3 exp) +

(-0.327763971*ATGI16L1 exp).

Genes involved in the signature included MAPILC3B, TSC2,
PPP2CA, UBE2]J2, ATM, PIK3CB, CTSD, ITPR3, ATG16L1. The
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distribution of the above genes and CDKL3 on their respective

chromosomes in ESCA was depicted in Supplementary Figure 4A.

CNYV alterations were prevalent in these genes. ATG16L1 showed the
highest loss frequency, whereas PIK3CB showed the highest gain

frequency (Supplementary Figure 4B). The correlation and
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FIGURE 5

Construction and validation of the CrA risk score model. (A) Flowchart of the CrA risk score model. (B) Univariate analysis of 16 ATGs genes in the
TCGA cohort. (C) Univariate analysis of 16 ATGs genes in the GSE19417 cohort. (D) Choosing the 9 model genes by LASSO Cox regression.

(E) Cross-validation of the constructed signature. (F) Correlation and prognostic value of CDKL3 and model genes in TCGA. (G) Kaplan-Meier curves
in TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (H) Distribution of the CrA risk score adjusted for
survival status and time in the TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (I) Model gene expression
heatmap from TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts. (J) Receiver operator characteristic (ROC)
analysis of the CrA risk score in the TCGA internal training, TCGA internal validation and GSE19417 external validation cohorts.

prognostic impact of these genes in TCGA-ESCA were investigated
(Figure 5F). Patients in the TCGA-ESCA internal training set
(n=129), the TCGA-ESCA internal validation set (n=54) and the
GSE19417 external validation set (n=70) were separated into high-
and low-risk groups according to the median value of CrA-risk score
model. Those belonging to the high-risk group of both the training
and validation cohorts experienced shorter OS than those in the low-
risk group (Figures 5G-I). In the TCGA-ESCA internal training set,
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ROC curves indicated that AUC values for 1-year, 2-year, and 3-year
time points were 0.725, 0.773, and 0.876, respectively. The TCGA-
ESCA internal validation and the GSE19417 external validation set
also confirmed that the CrA risk score was highly reliable in
predicting ESCA patients (Figure 5]). According to the Sankey
plots, patients belonging to the high CDKL3 group were associated
with the high-risk group and showed a tendency to have a poorer
prognosis (Supplementary Figure 4C).
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Relationship between CrA risk score and
immune infiltrating cells

The association between the CrA risk score and the level of
TIICs was explored to further investigate the relevance of autophagy
to the immune system in ESCA. Notably, the CrA risk score of
ESCA patients had a positive correlation with M2 macrophage
infiltration in three algorithms (Figures 6A-C). Moreover, there
was a positive association between the CrA risk score and the level
of multiple infiltrating immunosuppressive cells, which promote
tumor progression, while negative with levels of anti-tumor
immune cells (Figure 6D). The CIBERSORT algorithm showed
that lower infiltration of immune-activating cells and higher
infiltration of M2 macrophages were found in the high-risk group
(Figure 6E). In other words, patients in the high-risk group had
enhanced immunosuppression, which accounted for their
Worse prognosis.

The relationship among CDKL3 expression,
radiotherapy, and autophagy predicts in
ESCC patients

The results of the western blot demonstrated that radiotherapy
caused a significant dose-dependent reduction in the expression
levels of both CDKL3 and the autophagy marker LC3B (Figure 7E).
To study the role of CDKL3 in autophagy and macrophage
polarization, KYSE-150 cells were transfected with CDKL3-
siRNAs. KYSE-150 transfected with CDKL3-siRNA1 showed
distinctly reduced CDKL3 expression, and KYSE-150-CDKL3-
siRNA1 (defined as KD group) was used for further study
(Figure 7F). Analysis of 24 samples from ESCC patients receiving
nCRT found that low pre-treatment CDKL3 expression was

10.3389/fimmu.2024.1295011

positively related to pCR (pT-N-) (Figure 7A), pT- (Figure 7B),
and pN- (Figure 7C) (p<0.01). The typical staining of CDKL3 in
ESCC patients with pCR or non-pCR was significantly different.
That is, ESCC subjects with higher CDKL3 levels had a poorer
response to nCRT than ESCC subjects with lower CDKL3
levels (Figure 7D).

CDKL3 expression affects autophagy
induction in ESCC

The addition of the autophagy inducer Rapa significantly
increased autophagosomes, autophagic flow toward autophagic
lysosomes and relative dots count red/green compared to CON
(p<0.05). Relative dots count red/green decreased in KD vs. NC
group (p<0.05), but the difference in values was within 20%,
suggesting that CDKL3 knockdown alone may not have a
significant effect on the flow of autophagosomes to autophagic
lysosomes in KYSE150 cells (Figure 8A). The red/green count per
cell was increased by the addition of the autophagy inducer Rapa in
comparison to the CON group (p<0.05), indicating autophagic flow
to autophagosomes. Compared to the NC+Rapa group, the KD
+Rapa group had less red/green (p<0.05), significantly more
autophagosomes (yellow dots) and significantly fewer
autophagolysosomes (free red dots), suggesting that CDKL3
knockdown can significantly inhibit the flow of autophagosomes
to autophagolysosomes in the autophagy-induced activated state of
KYSE150 cells, i.e. inhibit autophagy induction (Figure 8B). The
addition of the autophagy inducer Rapa significantly increased the
autophagy marker LC3B compared to CON (p<0.05). Compared to
the NC group, LC3B tended to decrease in the KD group, but was
not statistically different. This suggests that CDKL3 knockdown
alone may not have a significant effect on autophagy induction in

FIGURE 6

Relationship between the CrA risk score and tumor-infiltrating immune cells (TIICs). (A—C) Correlation between the CrA risk score and M2
macrophages based on XCELL, CIBERSORT-ABS and CIBERSORT algorithms. (D) Correlation between the CrA risk score and infiltrated TIICs. (E) The
differences in TIICs levels between high- and low-risk groups. *p<0.05; **p<0.01; ***p<0.001.
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KYSE150 cells (Figure 8C). LC3B was significantly higher in the
CON-+Rapa group than in the CON group. LC3B levels were also
significantly lower in the KD+Rapa group than in the NC+Rapa
group. It is suggested that CDKL3 knockdown can significantly
inhibit autophagy induction in KYSE150 cells in the activated state
of autophagy induction (Figure 8D). The above results suggested
that downregulation of CDKL3 could inhibit autophagy activation.

CDKL3 downregulation in ESCC promotes
M1-type macrophage polarization

THP-1 cells were induced into macrophages by PMA and then
co-cultured with cultures of harvested KYSE-150-siCDKLS3 cells for
72 h. Macrophage polarization (M1: CD86; M2: CD206) was
detected by flow cytometry (Figures 9A, B) as well as qRT-PCR
(Figure 9C), ELISA assay (Figure 9D) for cytokine secretion (M1:
IL-12, TNF-0; M2: IL-10, TGE-B). The findings clearly indicated
downregulation of CDKL3 expression in ESCC greatly promoted
MI1-type polarization and cytokine secretion in macrophages.

Activation of autophagy in ESCC inhibits
M1-type polarization of macrophage

KYSE-150 cells were induced with Rapa, an autophagy inducer,
for 12 hours and then substituted with Rapa-free medium for
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another 12 hours. The cell supernatant was obtained and co-
cultured with MO macrophages for 72hours, and then RNA was
extracted to detect macrophage polarization markers (M1: CD86)
and cytokine secretion (M1 type: IL-12, TNF-a) by qRT-PCR. The
results showed that ESCC cell supernatant after autophagy
activation could inhibit macrophage M1-type polarization and
cytokine secretion (Figure 9E).

Downregulation of CDKL3 expression in
ESCC activates the Interferon
(IFN) pathway

IPA bioinformatics pathway analysis of KYSE-150-NC versus
KYSE-150-CDKL3-KD cells revealed that the Interferon (IFN)
pathway was significantly activated (Figure 9F). Therefore, we
hypothesized that the high expression of CDKL3 in ESCC may
attenuate anti-tumor immunity by inhibiting the IFN pathway.

Discussion

We have previously published results showing that CDKLS3 is
highly overexpressed in ESCC and has a worse prognostic value (19,
22). Based on the public database of ESCA (mainly
adenocarcinoma), the results of this study also showed that
CDKL3 was highly expressed and associated with shorter survival.
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Recent studies suggested that upregulated CDKL3 expression is
critical for promoting tumor development and poor prognosis in
various solid tumors, including glioma and prostate cancer (20, 21).
For example, Cui et al. found that overexpression of CDKL3 in
glioma cells promotes cell proliferation and that RRM2 is a
potential target of CDKL3. Upregulation of CDKL3 expression in
glioma tissue independently predicts poor patient prognosis (20).
Jiang et al. found that reducing CDKL3 levels substantially hindered
cell proliferation and migration while promoting apoptosis and G2
cell cycle blockade in prostate cancer (21). Mutation analysis
identified that those with high CDKL3 expression had more TP53
mutations and fewer TTN and MUC16 mutations. TP53 is linked to
a poorer outcome in ESCA. Patients with TTN, MUC16 mutations
have a higher tumor mutation load and may benefit from
immunotherapy (33-35). As a result, patients with a high level of
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CDKL3 expression may benefit less from immunotherapy and
result in a worse prognosis.

It is necessary to explore the reasons why CDKL3 represents a
poor prognostic factor in ESCA. Building on previous research, our
study provided the first look at the relationship between CDKL3
and the TME, autophagy, and response to immunotherapy in
ESCA. We hypothesized that CDKL3 may alter tumor
immunogenicity and immune infiltrating cells within the TME by
influencing autophagy induction, thereby affecting immunotherapy
patient response and prognosis in ESCA.

The TME comprises a multitude of distinct immune cell
populations. TIICs may play a crucial effect on carcinogenesis
and influenced tumor response to immunotherapy (36). The
concept of the cancer immunity cycles was introduced by Chen
and Mellman (37). The eventual killing of tumor cells by anti-tumor
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immune cells is the result of a series of seven steps accompanied by
positive and negative regulation. Step 4 is the phase that activating T
cells transfers into the circulation and migrates to the tumor, which
is related to the infiltration level of TIICs (37). In this study, we
observed that higher CDKL3 expression was related to reduced
infiltration of a variety of immunoreactive cells. In the cancer
immunity cycles, CDKL3 expression showed a negative
correlation with the activity of step 4, and we speculated that
CDKL3 may reduce the infiltration level of TIICs by inhibiting
step 4. TAMs primarily promote the malignant transformation of
tumors through the release of various factors. Recent studies have
shown that TAM-derived CCL22 can activate the FAK signaling
axis in tumor cells, thereby promoting ESCC progression (38). In
our study, CDKL3 was significantly and positively associated with
the TAM related signature (TAMsurr_score). Recruitment of
different types of immune cell subpopulations in the TME is
associated with chemokines and chemokine receptors. We
collected chemokines and receptors associated with suppressive
TME from previous study (27). These chemokines and receptors
were associated with the recruitment of MDSCs (CXCL2, CXCL3),
TAMs (CXCR4), Treg cells (CCR5), Treg cells (CCL8, CCR8). This
suggested that CDKL3 may reshape the TME by regulating these
chemokines and chemokine receptors, leading to the infiltration of
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immunosuppressive cells, ultimately affecting the response to
immunotherapy and the promotion of tumor progression.

Research in tumor immunotherapy has progressed significantly
in the last few years, and the application of ICIs has become a
unique therapeutic approach for a variety of malignancies,
including ESCA (4-7). It is crucial to find predictive markers for
immunotherapy in ESCA. A recent meta-analysis included 5,257
patients with advanced ESCA who were treated with ICIs. The
benefit of ICIs in the reduction of the risk of death in patients with
ESCA was dependent on the PD-L1 CPS status. Further studies of
immunotherapy biomarkers in the CPS <10 subgroup are needed
(8). Our study also investigated CDKL3 as a candidate biomarker to
predict response to immunotherapy. The findings indicated that
CDKL3 showed a positive correlation with most of the inhibitory
ICIs. However, no statistically significant correlation was found
between CDKL3 and CD274 (PD-L1). The up-regulated inhibitory
immune checkpoint of TME is associated with decreased anti-
tumor immunity (30). This explains the poorer prognosis of ICIs in
those with higher CDKL3 expression. The TIDE and IPS scores
were used to assess how ESCA patients responded to
immunotherapy. Poor response to immunotherapy in patients
with high CDKL3 expression was also demonstrated in pan-
cancer immunotherapy cohorts.
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Both radical chemoradiotherapy and neoadjuvant
chemoradiotherapy are the main anti-tumor treatment modalities
for patients with locally advanced ESCA (39-41). There is emerging
evidence that chemoradiotherapy may remodel the TME and
thus interfere with the efficacy of immunotherapy (11, 12).
Patients with ESCA who have a high rate of pCR after
surgery have a favorable prognosis (39, 40). Considering that
neoadjuvant immunotherapy combined with chemotherapy (or
chemoradiotherapy) has only been used in a small number of
clinical trials (42, 43). Therefore, we collected tumor samples
from ESCA patients undergoing nCRT. The findings indicated
that those expressing high levels of CDKL3 had a poorer response
to chemoradiotherapy.

We have previously reported that CDKL3 has a regulatory
relationship with ATGS5, a gene that regulates autophagy, in
KYSE-150 cells (22). Autophagy is essential for tumor migration,
invasion, and tumor immunity, and it is regulated by
chemoradiotherapy (14, 15). Immune cell subpopulations whose
survival, activation, differentiation, and function in the TME are
linked to the autophagy pathway (44). Recent reports indicated that
inhibition of autophagy restores cell surface MHC-I levels, increases
antigen presentation, and enhances the anti-tumor response. The
anti-tumor effect of autophagy inhibition was dependent on CD8+
T cells and cell surface MHC-I expression. ICIs combined with
autophagy inhibitors enhanced anti-tumor immune responses (45).
Autophagy activation has also been associated with
chemoradiotherapy resistance in ESCC, leading to poor patient
prognosis. Xia et al. found that Nrf2 enhances radiation resistance
through the targeting of CaMKIIo and subsequent activation of
autophagy in ESCC (46). Our further studies also confirmed that
radiotherapy affects autophagy activation, and the expression of
CDKL3 affects autophagy induction. We developed a CrA risk score
based on public databases and validated it in internal and
external cohorts.

Macrophages are diverse and plastic and can polarize into
different phenotypes and thus perform different functions in
response to different stimuli. M1 macrophages have pro-
inflammatory and anti-tumor activity. M2 macrophages may be
involved in the immune escape of tumor cells due to their inhibition
of inflammation and concomitant promotion of tumor proliferation
(47). The researchers found that USP19 promoted autophagy and
thus downregulated NLRP3 inflammasome activation. And USP19
promoted M2 macrophage polarization (48). Tumor cells could also
induce M2 polarization by transferring genetic information via
exosomal non-coding RNAs (49). Our study found that patients
with a high CrA risk score had higher infiltration levels of M2
macrophages based on the XCELL, CIBERSORT-ABS, and
CIBERSORT algorithms. In another study, the Necroptosis-
Pyroptosis Genes (NPG) scores established for prognostic
prediction were found to be negatively correlated with infiltrating
M2 Macrophage in patients with clear cell renal cell carcinoma
(ccRCC) by the CIBERSOR algorithm (50). Moreover, this study
showed that CDKL3 knockdown in KYSE150 cells could
significantly inhibit autophagy induction in an autophagy-
induced activated state. ESCC cells with downregulated CDKL3
could secrete some soluble factors or proteins to promote MI
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macrophage polarization. Activation of autophagy in ESCC
inhibited macrophage M1 polarization. This suggests that high
CDKL3 expression in ESCC cells may be associated with the
activation of autophagy, which promotes macrophage M2
polarization. Lin et al. also found that silencing IL4I1 in ccRCC
cell lines (786-O, 769-P) could inhibit M2-like macrophage
polarization by indirectly co-culturing with MO macrophages
(51). These results suggest that tumor cells with specific altered
genes might influence immune cell infiltration and
functional polarization.

IFN-y exerts its biological effects mainly through the JAK/STAT
pathway by activating intracellular signaling networks (52). Grasso
et al. found that this conserved IFN-y transcriptome response
enhanced the anti-tumor immune response in melanoma (53).
Our study found that downregulation of CDKL3 expression in
ESCC activated the IFN pathway. This provided a different
perspective on the mechanism by which high CDKL3 expression
leads to attenuated anti-tumor immunity.

The ESCA samples in TCGA were from a Western population.
However, there are differences in the pathology of ESCA between
Eastern and Western populations, in particular, squamous cell
carcinoma is the main pathological subtype in Eastern patients
while the vast majority of Western patients are adenocarcinoma
(54). There are still some limitations and deficiencies in this study.
The sample size of patients with ESCA retrieved from the TCGA
and GEO databases was limited, especially for ESCC. Although
bioinformatics analysis was conducted in ESCA patients including
ESCC and esophageal adenocarcinoma, the vitro study evidence
only confirmed the role of CDKL3 in ESCC cell lines while lacking
data in esophageal adenocarcinoma. It is necessary to further
distinguish the role of CDKL3 in ESCC patients from esophageal
adenocarcinoma patients. The potential function of CDKL3 in the
modulation of tumor microenvironment and autophagy has been
initially identified in this study, but a further prospective
exploration needs to be designed to confirm. Moreover, it is
significant to investigate and compare the differences in the atlas
of immune infiltrating cells, such as specific T cells and
macrophages, of the ESCA population with different CDKL3
expression in the clinic. In summary, our next step is to collect
clinical samples from ESCA patients receiving immunotherapy and
conduct further research in multicenter cohorts in China.

Conclusions

Overall, CDKL3 may play an important role in anti-tumor
immunity by regulating autophagy to promote the formation of
immunosuppressive TME, thus playing a critical role in the
prognosis of ESCA.
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SUPPLEMENTARY FIGURE 2
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in TCGA and GSE47404 cohorts. (C, D) Heat maps of CDKL3 and 92 immune-
related signatures in TCGA and GSE47404 cohorts.

SUPPLEMENTARY FIGURE 3
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GSE176307 (B) Gide2019PD-1 (C) Gide2019PD-1+CTLA-4.

SUPPLEMENTARY FIGURE 4

The landscape in CDKL3 and the model genes in ESCA. (A) Circos plot of
chromosomal distribution of CDKL3 and model genes. (B) CNV frequency of
CDKL3 and model genes. The horizontal axis represents the change in
frequency. (C) Sankey diagram of the relationship between CDKL3 group,
risk group, and survival status.
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Background: Hepatocellular carcinoma (HCC) is one of the most lethal
malignancies worldwide. PANoptosis is a recently unveiled programmed cell
death pathway, Nonetheless, the precise implications of PANoptosis within the
context of HCC remain incompletely elucidated.

Methods: We conducted a comprehensive bioinformatics analysis to evaluate
both the expression and mutation patterns of PANoptosis-related genes (PRGs).
We categorized HCC into two clusters and identified differentially expressed
PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was
constructed using LASSO and multivariate Cox regression analyses. The
relationship between PRGs, risk genes, the risk model, and the immune
microenvironment was studies. In addition, drug sensitivity between high- and
low-risk groups was examined. The expression profiles of these four risk genes
were elucidate by gRT-PCR or immunohistochemical (IHC). Furthermore, the
effect of CTSC knock down on HCC cell behavior was verified using in
vitro experiments.

Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCAS,
G6PD, and CXCL9). Receiver operating characteristic curve analyses
underscored the superior prognostic capacity of this signature in assessing the
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outcomes of HCC patients. Subsequently, patients were stratified based on their
risk scores, which revealed that the low-risk group had better prognosis than
those in the high-risk group. High-risk group displayed a lower Stromal Score,
Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor
mutation burden (TMB) values. Furthermore, a correlation was noted between
the risk model and the sensitivity to 56 chemotherapeutic agents, as well as
immunotherapy efficacy, in patient with. These findings provide valuable
guidance for personalized clinical treatment strategies. The gRT-PCR analysis
revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas
downregulated expression of CXCL9 in HCC compared with adjacent tumor
tissue and normal liver cell lines. The knockdown of CTSC significantly reduced
both HCC cell proliferation and migration.

Conclusion: Our study underscores the promise of PANoptosis-based molecular
clustering and prognostic signatures in predicting patient survival and discerning
the intricacies of the tumor microenvironment within the context of HCC. These
insights hold the potential to advance our comprehension of the therapeutic
contribution of PANoptosis plays in HCC and pave the way for generating more
efficacious treatment strategies.

KEYWORDS

PANoptosis, hepatocellular carcinoma, tumor microenvironment, prognosis signature,
drugs susceptibility

Introduction

Liver cancer ranking as the seventh most commonly diagnosed
malignancy and the second leading cause of cancer-related
mortality, is a significant global health concern. In 2020, 906,677
new cases and 830,180 deaths attributed to liver cancer were
reported (1). The burden of liver cancer is steadily increasing,
with the number of estimated incident projected to exceed one
million by 2025 (2). The majority of liver cancer cases are
hepatocellular carcinoma (HCC), accounting for 90% of live
cancer (2). Current mainstay curative management options for
HCC include surgical resection, radiofrequency ablation, and liver
transplantation. However, a significant number of patients are
diagnosed at an advanced stage, limiting the curative treatment
options to transarterial chemoembolization (TACE), tyrosine
kinase inhibitors (TKI), and immune checkpoint inhibitors (3).
The prognosis for HCC remains poor, with an overall 5-year

Abbreviations: OS, overall survival; HCC, hepatocellular carcinoma; TME,
tumor microenvironment; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; MF, Molecular Function; BP, Biological process; CNV, copy
number variation; TIME, tumor immune microenvironment; DEPRGs,
differentially expressed PANoptosis-related genes; ssGSEA, single-sample gene
set enrichment analysis; PRGs, PANoptosis-related genes; CSC, cancer stem cell;

PCD, Programmed cell death; GSVA, gene set variation analysis.

Frontiers in Immunology

survival rate of only 18% (4). Therefore, it is essential to uncover
the genomic characteristics of HCC and develop reliable and
effective models for developing reliable and effective models to
predict HCC prognosis and assess therapeutic responses, thereby
enabling individualized and precise treatments.

Programmed cell death (PCD), including apoptosis, pyroptosis,
and necroptosis has been implicated in the pathophysiology of HCC
(5). Although these PCD pathways were traditionally considered
independent, mounting evidence suggests intricate crosstalk among
apoptosis, pyroptosis, and necroptosis (6). Thus an additional PCD
pathway known as PANoptosis has recently emerged (7). It is a
newly recognized form of inflammatory programmed cell death,
which underscores the coordination and crosstalk between
pyroptosis, apoptosis, and necroptosis (6, 7). During PANoptosis,
these three pathways are collectively activated, forming the
PANoptosome complex, which exhibits characteristics not
explained by any individual death pathway (6, 8, 9). Although
numerous studies have identified the roles of pyroptosis, apoptosis,
and necroptosis in HCC (10-12), the relationship between HCC
and PANoptosis, as well as its impact on anticancer immunity,
remains unclear. Therefore, understanding the characteristics of
PANoptosis may provide vital insight into the mechanisms
underlying HCC tumorigenesis and facilitate the development of
promising immunotherapy strategies for HCC.

In this study, we comprehensively integrated the expression
profiles of 486 HCC patients to assess the PANoptosis-related
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molecular patterns into mechanisms contributing to HCC
tumorigenesis and facilitate the development of promising
immunotherapy strategies for HCC. A novel PANoptosis risk
scoring system was developed to predict the prognosis of HCC
patients and characterize the TME phenotype. Finally, we validated
the expression levels of the four genes in our signature using
quantitative polymerase chain reaction (qQPCR) in both human
samples and cells.

Materials and methods
HCC dataset and preprocessing

The RAN-sequencing and corresponding clinical data of 371
HCC cases and 50 healthy cases were download from the TCGA
database (https://portal.gdc.cancer.gov/) (13). The HCC gene
expression profiles and clinical characteristics of GSE76427
(n=115) were enrolled from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) (14). Gene symbols were converted
from probes based on the GPL10558 platform annotation file. The
patients with HCC whose survival information was unavailable
excluded from the analysis. The data of TCGA and GEO databases
were merged using the “sva” R package (15) to remove the batch
effects. A total of 29 PANoptosis-related genes (PRGs) were
enrolled from previous studies (6, 8, 16). The data of copy
number variation (CNV) was downloaded from UCSC Xena
(https://xenabrowser.net). The flowchart of this study is shown
in Figure 1.
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FIGURE 1
Flowchart of the present study
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Differential expression gene and consensus
clustering analysis of CRGs

Wilcoxon rank-sum test was used to analysis the differential
PRGs expression level between HCC patients and healthy samples
using “limma” package (17). DEGs were selected with the threshold
of p-value<0.05. We applied consensus clustering algorithms to
categorize HCC patients into distinct molecular subtypes based on
the expression of PRGs. This analysis was performed using the
“ConsensusClusterPlus” (18) R package, and 1000 repetitions were
conducted to ensure robustness. We next determined determine the
optimal number of subtypes, we utilized a Cumulative Distribution
Function (CDF) and evaluated the CDF Delta area. Additionally,
Principal Component Analysis (PCA) was performed to confirm
the differentiation of transcriptome profiles among the identified
subgroups using the “ggplot2” R packages (19).

Gene set variation analysis and functional
enrichment analysis

We used the “GSVA” (20) R package to perform the GSVA analysis
to detect biological functions distinguishing different PANoptosis
subtypes. The gene sets of KEGG gene set “c2.cp.kegg.symbols.gmt”
download from the MSigDB database (https://www.gsea-msigdb.org/
gsea/index.jsp), was employed to conducted the GSVA analysis (21). The
“clusterProfiler” (22) R package was used to performed the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and gene ontology
(GO) analysis. The pathways exhibiting a p< 0.05, logFC > 0.5 were
deemed statistically significant.

Construction of PANoptosis risk model

A total of 485 HCC patients were randomly classified into
testing and training group with a ratio of 1:1. Afterward, we
identified 153 differentially expressed genes (DEGs) through
performed three pairwise comparisons between the three
PANoptosis subtypes, each time with a Log2 (fold change)> 0.585
and an adjusted P-value<0.05. The DEGs between three
PANoptosis subtypes was intersected with each other to create
PANoptosis gene signature.

Subsequently, we conducted univariate Cox regression analysis
and identify 93 DEGs which significant associations with HCC
prognosis to estimate significant genes. To mitigate overfitting, we
employed LASSO Cox regression analysis (23). The best-
performing gene was selected through multivariate Cox regression
analysis, and a PANoptosis risk model was established using the
formula: PANoptosis score = > exp(Xi) x coef(Xi), where exp
(Xi) represents the expression level and coef(Xi) represents the
coefficient. Patients were stratified into high- and low-risk groups
based on the median risk score. Time-dependent receiver operating
characteristic (ROC) analysis was conducted to assess the sensitivity
and specificity of the risk signature. A bootstrap method employing
1,000 resamplings was employed to generate the test set.
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Assessment of tumor microenvironment

The CIBERSORT algorithm (24) was utilized to estimate the
fractions of 22 immune cell phenotypes in each HCC patients, with
the sum of the proportion of all calculated immune cell phenotypes
in each sample being equal to 1. Samples with a p-value of< 0.05
were deemed statistically significant. Utilizing CIBERSORT results,
correlation analysis was conducted between risk genes and 22
phenotypes of immune cells using the “limma” and “ggplot2”
packages. The R “ESTIMATE” package (25) was used to
calculated the immune scores, stromal scores, and ESTIMATE
scores for each HCC sample (26). Subsequently, we conducted
Wilcoxon tests to analyze the differences in these scores between the
two risk groups. For a more detailed assessment of immune cell
infiltration, we applied the single-sample gene set enrichment
analysis (ssGSEA) based on “gsva” package (27).

Survival analysis of HCC

Afterward, we identified “survminer” and “survival” packages to
generate Kaplan-Meier survival plots and assess the significance of
differences using log-rank tests. The HCC patients were stratified
into different subtypes, including PANoptosisCluster subtype,
geneCluster subtype, PANoptosisScore subtype, and TMB subtype.

Development of nomograms

We developed nomograms to quantitatively predict of 1-, 3-,
and 5-year overall survival (OS) by incorporating both clinical
characteristics and risk score based on HCC patients’ survival.
Within the nomogram scoring system, individual variables such
as gender, age, stage, and PRG Risk score were paired with
corresponding scores. The cumulative score for each sample was
derived by summing the assigned scores across all variables. The
prognostic performance of the nomograms was assessed by
calibration plots, which evaluated the concordance between
predicted and actual values. The “rms” R package was used to
construct the nomograms and conducting the calibration
plot analysis.

Assessment of mutation, and cancer stem
cell index

We next analyzed the mutations in HCC patients from both
high- and low-risk groups, using the R package “maftools” (28) to
generate mutation annotations. Initially, the total count of
nonsynonymous mutations in each sample was computed.
Subsequently, genes with high mutation frequencies were
discerned utilizing a threshold of mutation frequency>5. The
discrepancies in mutation frequency between different groups
were then evaluated. Additionally, we examined the correlation
between the cancer stem cell index and risk scores using the
Spearman method (29).
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Drug sensitivity analysis

We next assessed the drug sensitivity of every patient utilizing
198 drugs obtained from the genomics of drug sensitivity in the
cancer v2 (GDSC) database (https://www.cancerrxgene.org/) and
calculated their sensitivity by the “oncoPredict” R package (30).
Statistical significance was determined at p< 0.05.

Cell culture and siRNA transfection

The HCCLM3, huh7, sun449, HepG2, HCCLM3, MHCC97-H of
HCC cell lines and THLE-3 of normal liver cells, were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
penicillin G (100 mg/mL), streptomycin (100 mg/mL), and 10% fetal
bovine serum (FBS; Gibco; USA). These cultures were incubated at
37°C in a 5% CO, atmosphere. Logarithmically growing cells were
selected to conduct experiments. SUN449 was employed for siRNA
transfection. For transfection, we employed Lipofectamine 3000
Transfection Reagent (Invitrogen, Waltham, Massachusetts, USA)
in conjunction with 5 nmol of the specified siRNA fragments and a
negative control si-NC (GenePharma, Shanghai, China) into
approximately 4x105 SUN449 cells following the manufacturer’s
instructions. Si-NC (GenePharma) was used as a negative control.
To assess transfection efficiency, quantitative reverse transcription-
polymerase chain reaction (qQRT-PCR) were employed. The
sequences listed in Supplementary Table 1.

RNA extraction and quantitative real-
time PCR

Total RNA was isolated from human samples of adjacent tumor
tissues, HCC, normal liver cells (THLE-3), and HCC cells (huh7,
sun449, HepG2, HCCLM3, MHCC97-H) using the Trizol reagent
(Thermo Fisher Scientific, United States) following the
manufacturer’s instructions. Reverse transcription was carried out
using the PrimeScriptTM RT reagent Kit (Takara, Japan). Next,
qRT-PCR was performed on an FX Connect system (Bio-Rad,
United States) using the SYBR ® Green Supermix (Bio-Rad,
United States) to measure the expression levels of hub genes. 3-
actin was used as an internal control for normalization. RT-qPCR
was measured 3 times, with 3 biological replicates each time. The
relative expression levels of the target genes were calculated using
the 24" method. 15 patient’s HCC tissue and adjacent tissue were
used for qRT-PCR and a Student’s t-test used to analyzed. Primer
sequences used in the qRT-PCR assays are provided in
Supplementary Table 1.

Human specimens and
immunohistochemical staining

Human specimens were collected from 15 patients diagnosed

with HCC at LiuZhou People’s Hospital affiliated to Guangxi
medical university. The study protocol was reviewed and
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approved by the Medical Ethics Committee of LiuZhou People’s
Hhospital affiliated to Guangxi medical university. All patients
provided written informed consent in accordance with the
Declaration of Helsinki. Human tissue specimens were fixed with
4% paraformaldehyde, embedded in paraffin, and sectioned into
5 mm slices by a slicer. The specimens were dewaxed with xylene,
following which the tissue sections were rehydrated using a graded
series of ethanol solutions for antigen retrieval. The tissue sections
were repaired with a sodium citrate repair solution (from Fuzhou
Maixin Biotechnology Development Co., Ltd.), followed by
allowing the sections to cool. Subsequently, an adequate amount
of endogenous peroxidase blocker (supplied by Beijing Zhongshan
Jingiao Biotechnology Co., Ltd.) was added, and the sections were
incubated at room temperature for 10 minutes. Afterward, the
sections were washed three times with PBS, with each wash lasting 3
minutes. The sections were then blocked with 10% goat serum and
incubated overnight at 4°C with anti-CTSC antibody (1:100) (Santa
Cruze, U.S.A, cat#:sc-74590). Following three washes with PBS, the
sections were incubated with a secondary antibody for 30 mins at
25°C, followed by development and then developed with DAB for
10 mins. Next, the sections were counterstained with hematoxylin
for 2 mins to visualize nuclei. 15 patient’s tumor and adjacent tumor
tissue were used to qQRT-PCR and immunohistochemical staining.
Student’s t-test or Wilcoxon test was used to compared the two
group and p< 0.05 was regarded as significance.

Wound-healing and Transwell assays

We next studied the invasion capability and cell migration
capacity by conducting Transwell assays and wound healing assays,
respectively. For the Transwell assays, Prior to the experiment, the
experimental cells underwent a period of serum starvation and were
cultured in serum-free medium for 24 hours. Following this, the
cells were digested, the digestion process was halted, and then
centrifuged at 1500 rpm for 3 minutes. After aspirating the
supernatant, the cells were washed with PBS and counted.
Subsequently, the cells were resuspended in serum-free medium.
The cell density was adjusted to 1 x 1074 cells/mL, and 500 uL of
culture medium containing 15% FBS was added to each well of a 24-
well plate. Next, 200 pL of cell suspension was added to the
chamber, which was carefully placed into the well of a 24-well
plate containing complete culture medium to prevent the formation
of air bubbles. The cells were then incubated in a cell culture
incubator for 48 hours. Following incubation, the cells on the
chamber were aspirated, and any remaining cells were gently
wiped off using a PBS-dried cotton swab. The cells were fixed
with a 10% methanol solution for 30 seconds, stained with 0.1%
crystal violet for 20 minutes, and washed with tap water until the
background was clear. Finally, 3-5 fields of view were randomly
selected under an upright microscope, and the number of cells
passing through the membrane was counted. Photomicrographs
were captured and counted using Image J software. For the wound-
healing assay, transfected SUN449 cells were seeded in a 6-well
plate. When the cells reached 90% confluence, a 200 UL pipette tip
was used to create a vertical scratch in the cell monolayer. Washed 3
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times with PBS, removed the scratched cells, and added serum-free
medium. The cells were then cultured for an additional 24 hours in
a 37°C 5% CO2 incubator. Images were acquired and documented
initially at the 0-hour time point, with additional imaging
performed at 24 hours. Kruskal-Wallis test was used to analysis
the Wound-healing and transwell assays results.

5-ethynyl-2'-deoxyuridine assays

SUN449 cells were seeded into a 12-well plate. After overnight
incubation and return to a normal state, the cells were transfected
with siRNA. Subsequently, an equal volume of 2X EdU working
solution (20 pM) (Beyotime, China), preheated to 37°C, was added
to the 12 wells plate, and the cells were incubated for 2 hours. Once
EdU labeling was completed, the culture medium was removed, and
the cells were fixed with 500 ul of fixative solution for 15 minutes.
Following fixation, the cells were washed three times with 500 pl
washing solution per well, with each wash lasting 3-5 minutes. After
washing, permeabilization solution (500 pl per well) was added and
incubated for 15 minutes, followed by 2 additional washes with 1 ml
washing solution per well. Subsequently, 200 ul of Click reaction
solution (Beyotime, China) was added, and the cells were incubated
in the dark for 30 minutes. After removing the Click reaction
solution, the cells were washed three times with washing solution
for 3-5 minutes each. Nuclear staining was performed using
Hoechst 33342, with protection from light, for 10 minutes.
Following staining, the cells were washed three times with
washing solution for 3-5 minutes each. Finally, fluorescence
detection could be carried out.

Immunohistochemistry

Paraffin sections of HCC tissue from 15 patients and adjacent
tumor tissue from the same group were subjected to
immunostaining using antibodies against CTSC. Prior to staining,
a dual endogenous enzyme blocker (MXB Biotechnologies, China)
was applied for 30 minutes. The primary antibodies were left to
incubate overnight at 4°C. Following thorough washing, the tissues
were treated with the appropriate secondary antibodies and
incubated at 37°C for 30 minutes. Next, an appropriate amount
of DAB solution was applied for staining, followed by
counterstaining with hematoxylin. To complete the process, a
layer of neutral gum was used to cover the slides and the slides
were sealed. The staining results was observed using an
inverted microscope.

Statistical analysis

All statistical analyses were performed using the R software
version 4.2.2 and GraphPad Prism 9. Continuous data are presented
as means + standard deviations. Student’s t-test was used for
normally distributed data in two-group comparisons, whereas the
Wilcoxon test was used for non-normally distributed data. For
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comparisons involving more than two groups, the Kruskal-Wallis
test was used. Statistical significance was defined as p< 0.05. ALL
experiment was repeated three times independently.

Results

Differential expression and genetic
variation of PRGs in HCC

We first collected a set of 29 PRGs from previously published
studies (6, 8, 16). As shown in Figure 2A, 33 (8.89%) of 371 samples
had somatic mutations. Among the 29 PRGs, NLRP3 and MEFV
exhibited the highest mutation frequency. Copy number variation
(CNV) analysis showed that AIM2, GSDMD, RIPK1, NLRP3,
RIPK3, PARP1, FADD, ZBP1, NLRC4, CASP8, IRF1, PYCARD,
and MEFV had the increased CNV, whereas, CASP6, TAB2,
TRADD, CASP7, CASP1, TNFAIP3, MLKL, TAB3, and PSTPIP2
displayed decreased an CNV decrease (Figure 2B). The locations of
the CNV alterations of PRGs on the chromosomes were shown in
Figure 2C. Furthermore, we conducted mRNA differential
expression analysis of these 29 PRGs between 374 HCC samples
and 50 healthy samples from TCGA. The result showed that gene,
including CASP8, FADD, CASP6, TAB3, PSTPIP2, TNFAIP3,
PARP1, GSDMD, MKLK, IRF1, RIPK1, TRADD, PYCARD, was
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upregulated in HCC, whereas only NLRP3, AIM2, and MEFV were
significantly downregulated in HCC samples (Figure 2D).

Identification of PRGs clusters in HCC

To explore the overall landscape of PRGs interaction,
relationships, and prognostic significances, a network map was
constructed (Figure 3A). The network map showed 14 of 29
genes showed significant correlation in interaction, relationship
and prognostic. The relationship between the prognosis of HCC
patients and 14 PRGs were assessed using the Kaplan-Meier curves
and shown in Supplementary Figure 1. The expression of 20 PRGs
in HCC were used to conduct an unsupervised clustering algorithm
and group the 486 HCC patients into three distinct patterns. The
most effective clustering result was achieved at K=3 among K =2 to
K =9 (Figures 3B, C). Thus, we categorized 128 HCC patients into
PRGcluster A, 226 into PRGcluster B, and the remaining 132 into
PRGcluster C. The principal component analysis (PCA) indicated a
satisfactory separation between the three clusters (Figure 3D).
PRGcluster C exhibited higher expression levels for most PRGs,
whereas PRGcluster A displayed lower expression levels for most
PRGs (Figure 3E). Next, we investigated the relationship between
these three PRGcluster and clinical characteristics. Kaplan-Meier
curves demonstrated significant differences in OS among the three

B
* GAIN ¢ LOSS
')
Lo
.
[ ]
1. ° e o
| foe, . . R
'o'. efosen,, |
L 00,0 ....
‘# Qp‘gﬁg @Z\&&v& @&0‘&(‘ ’\YQ? ) (g«‘?@@’ ’\‘Q«Q\Q

Type ES Normal £ Tumor

c D
s ‘\r(Lilii{ ¢ 1
® I .
N T .
o S R 6 : R .o :
70<§Q>0 3 & 5%6{ \ 5 R . : H [
1 /4 0\» > S o ® 2 . . 1 l%! .
815, ) : Y E gl so| I B g
16 [543 18! 54 ] s 3
S : ; : ;e lé {
= RD 4 c H °
15EU MEK& cAs%) 8 )‘ i H | l A ' :
“ %\}/R\P N N AR 5 2 ’ .x 'y . i 1.t ' !
NN sk, S te| 1] e & -
NI «;\\y . .
2
N @&:ﬁb@ : LELLIFLLEELSELTELELSEES
T FEFS CREEFEF TN EEFES

FIGURE 2

Expression and genetic alteration of PRG in HCC. (A) The maftool exhibited incidence of somatic mutations of PRG in 371 HCC patients from TCGA
database; (B) The CNV frequency of PRG in TCGA cohort. The height of the column showed the proportions of gain or loss variations; (C) The
location of CNV alteration of 22 PRG on 23 chromosomes. (D) The expression of 22 PRG in HCC and normal tissues;. PRGs, PANoptosis-related

genes; HCC, hepatocellular carcinoma; CNV, Copy number variation. The p-values were showed as:
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PRGclusters, with PRGcluster C showing the poorest
OS (Figure 3F).

Additionally, we conducted the GSVA analysis to identify distinct
pathways associated with PRGclusters A, B, and C (Figures 4A-C). The
ssGSEA were utilized to assess the immune cell infiltrations in three
PRGclusters. The boxplot showed that PRGcluster C was enriched in
activated CD4 T cells, activated dendritic cells, CD56 bright nature
killer cells, immature B cells, immature dendritic cells, MDSCs,
macrophages, natural killer cells, plasmacytoid dendritic cells,
regulatory T cells, T follicular helper cells, and type 2 T helper cells.
While, PRGcluster A was enrich in eosinophils (Figure 4D).

Generation of PRG signatures in HCC

We conducted a differential gene expression analysis of three
PRGclusters, comparing them in pairs three times among the three
subtypes. We used a Venn diagram to successfully identify 153
DEGs exhibiting intersection across these three clusters (Figure 5A).
The potential functions and pathways governed by these 153 DEGs
were unraveled using GO and KEGG enrichment analyses
performed using the “ClusterProfiler” packages. The GO results
unveiled that these DEGs were involved in chromosome
segregation, wound healing, and positive regulation of the cell
cycle process in the biological process (BP). Within the Cellular
Component (CC) category, they were prominently associated with
chromosomal regions, collagen-containing extracellular matrices,
and nuclear chromosomes. The Molecular Function (MF) exhibited
closely related to integrin binding, platelet—derived growth factor
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binding, and single-stranded DNA binding (Figure 5B).
Furthermore, the KEGG pathway analysis demonstrated their
participation in processes such as Phagosome, PI3K-Akt signaling
pathway, cell adhesion molecules, ECM-receptor interaction,
Proteoglycans in cancer, and Cell cycle (Figure 5C).

To further analyze the important roles, univariate Cox regression
was performed to identify the relationship between the 153
PRGcluster-related DEGs and the prognosis in HCC. Subsequently,
patients were categorized into two major gene clusters, denoted as
genecluster A and genecluster B (Figures 5D, E). The Kaplan-Meier
analysis revealed that patient in genecluster B exhibited a more
favorable OS rate compared to those in genecluster A (Figure 5F). A
complex genecluster-based heatmap was developed by combining the
gender, age, HCC clinical stage, PRGcluster, genecluster in TCGA and
GSE 76427 (Figure 5G). Moreover, the analyzing the transcriptomic
profile from the heatmap was analyzed that revealed the upregulation
in most genes of genecluster A, whereas those in genecluster B
predominantly exhibited downregulation. The DGEs analysis
between genecluster A and B showed that CASP8, FADD, CASP6,
NLRP3, PSTPIP2, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, IRF1,
AIM2, ZBP1, CASP1, RIPK1, RIPK3, TRADD, MEFV, PYCARD,
NLRC4 were upregulated in genecluster A (Figure 5H).

Construction of prognostic PANoptosis risk
scoring model
The HCC patients were randomly divided into a training set

(243 samples) and a testing set (242 samples) to explore the
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*p<0.05, **p<0.01, ***p<0.001.

prognosis related PRG-related DEGs. A univariate Cox regression
analysis was performed using the 153 DEPRGs along with survival
data within the training datasets. Out of these, 93 DEPRGs were
exhibited significant associations with prognosis (p< 0.05). To
enhance the precision of gene selection for model construction,
we adopted a systematic approach. Specifically, we randomly
sampled 80% of the training set specimens for LASSO regression
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FIGURE 5

Functional enrichment analysis of PRGs, and identified two genecluster based on 153 DEGs. (A) The Venn diagram shows the intersection of three
PRGclusters; (B) Analysis of BP, CC, and MF terms of GO enrichment demonstrated the possible function of the 153 DEGs; (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis revealed the possible pathways; (D) Unsupervised cluster analysis of 153 DEGs

); (E) Consensus matrix heatmap defining two clusters and their correlation area; (F) Survival analysis of two
geneclusters. (G) A complex heat map illustrated the expression patterns; (H) Expression of PRGs between genecluster A and genecluster B. *p<0.05

developed two geneclusters (k = 2

***p<0.001. DEGs, differential expressed genes.

T

SASEE
fﬁ} f ’fﬁfﬁ@y

analysis, incorporating tenfold cross-validation and executing 1000
iterations. Subsequently, this rigorous methodology enabled the
identification of a refined subset comprising 4 significant genes
crucial for model refinement. (Figures 6A, B). Subsequently, we
performed a multivariate Cox regression analysis using these four
significant genes, and identifying the most pivotal genes for
prognosis—CTSC, CDCA8, G6PD, and CXCL9The PANoptosis

i 00eee:|

]

geneCluster 1 A B

| z% %%hé%%i

Frontiers in Immunology 95

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1323199
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2024.1323199

43 38 30 26 19 13 9 9 6 4 2 2 0

Quyang et al.
30 18 9 2
°
8 *7
g
§
H
3
a
5
2w
2 g 2
H s
g 2
ﬁ 3
© g
£
5 o
L
2
T T T T f
-40 -35 -30 -25 40 35
Log Lambda
PRGeluster 5 A 51 B (51 C geneCluster 51 A (51 B
o 560-07 s p<2220-16
4se-12 KZan
0.00089
4 ..
24 e ..
3 i s :
3 .3 ‘_\F:' S
@ @, kN s
2 ) A
1 YRy
TS s
B
geneCluster
FIGURE 6

PRGcluster geneCluster Risk Fustat

Risk 68 low &3 high

Identification of 4 genes for estimating the risk score and the relationship between molecular classifications, PRGs expression levels and the risk
score. (A, B) The Least absolute shrinkage and selection operator (LASSO) regression analysis and partial likelihood deviance on the prognostic
genes; (C) Sankey plot showed the correlation between PRGclusters, geneclusters, risk groups and survival status in HCC patients; (D) Boxplots
indicate the differences in risk scores in three PRGclusters and (E) two geneclusters. (F) The differential analysis of PRGs expression in high- and low-

risk groups. *p<0.05, **p<0.01, ***p<0.001

Risk scoring system was constructed based on the following formula
in the training sets: Risk score=Exp (CTSC)x (0.215) + Exp
(CDCAS) x (0.232) + Exp(G6PD) x (0.138) + Exp (CXCL9) x
(-0.196). All set files were combined by the training group and
testing group files. The HCC patients were subsequently categorized
into high- and low-risk groups based on the median Risk score for
each group. The Sankey diagram shows the distribution of PRGs
risk scores with three PRGcluster, two geneclusters, and HCC
patients survival status (Figure 6C). The boxplot showed that
PRGcluster C and genecluster A had higher risk scores
(Figures 6D, E). The differential expression analysis between
high- and low-risk group demonstrated that CASP8, FADD,
CASP6, TNFAIP3, CASP7, PARP1, GSDMD, MLKL, ZBP1,
TRADD, PYCARD, and NLRC4 were upregulated in high-risk
group (Figure 6F).

Validation of prognostic PANoptosis risk
scoring model

The KM analysis revealed that patients with low-risk had a
better survival rate than those with high-risk in both total, training,
and testing sets (P< 0.05) (Figures 7A-C). Additionally, we utilized
the ROC curves to assess the prediction efficiency of the risk score.
The AUCs for 1-, 3-, and 5-year survival rates in the training set
were 0.696, 0.706, and 0.603, respectively. In total sets, the AUCs for
1-, 3-, and 5-year survival rates was 0.735, 0.706, 0.638, respectively.
In testing sets, the AUCs of 1-, 3-, and 5-year survival rates were
0.771, 0.697, and 0.708, respectively (Figures 7D-F). These results
indicated a favorable predictive performance for the survival of
HCC patients. We next constructed a nomogram with using risk
score, clinical stage, gender, and age (Figure 7G). the calibration
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curves indicated a relative link between observed and nomogram-
predicted OS of HCC patients (Figure 7H), confirming the validity
of the nomogram model for predicting the survival of HCC patients.

The gene expression differences for CTSC, CDCAS8, G6PD, and
CXCL9 between high- and low-risk group in all set, training set, and
testing set are depicted in Figures 8A-C. The heatmap visually
represented that CTSC, CDCAS8, and G6PD exhibited higher
expression levels in the high-risk groups, whereas CXCL9 showed
lower expression levels. We observed an inverse correlation between
risk score and survival time, as well as a positive association between
risk score and the death rate across all sets—total, training, and
testing. These findings underscore that HCC patients with higher
risk scores had poorer survival outcomes (Figures 8D-I).

Relationship between signature and TME

The association analysis between immune cell abundance and
the risk score showed that neutrophils and macrophages M2 were
positively correlated with risk score, whereas CD8 T cells,
macrophages M1, and naive B cells were negatively related with
risk score (Supplementary Figure 2). Furthermore, Figure 9A
demonstrates the correlation between immune cells and the four
risk genes. The CTSC displayed significant associations with
neutrophils, macrophages M2, and CD4 memory resting T cells.
In the low-risk group, the Stromal Score, Immune Score, and
ESTIMATE score were significantly higher compared to the high-
risk group (Figure 9B).

Cancer stem cells (CSCs) were thought to play an important
role in the recurrence, metastasis, and identifying therapeutic target
due to their differentiation and self-renewal capacity 1 (31). A
correlation analysis between the risk score and stem cells unveiled
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Validation of the prognostic value of the signatures. (A—C) K-M survival curve of all sets, testing set, and training set. (D—F) The ROS for 1-year, 3-
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stage) for predicting the survival of HCC patients. (H) The calibration curves showed the accuracy of the nomogram in the 1st, 3rd, and 5th years.

The combination of TMB and risk score demonstrated that low risk
plus low TMB had the best OS (Figure 9G).

a positive linear correlation between the risk score and stem cell
content (R=0.3, p<.001) (Figure 9C).

Furthermore, we explored the disparity in tumor somatic
mutations between the high- and low-risk groups using
“maftools”. The top six mutated genes were TP53, CTNNBI,
TTN, MUCI16, PCLO, and ALB in both high- and low-risk
groups (Figures 9D, E). In addition, we observed that patients

with high TMB displayed a poorer overall survival rate (Figure 9F).

Drugs susceptibility analysis

We next investigated the predictive therapeutic effects in
patients with HCC by assessing the relationship between the two
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Evaluation of the tumor microenvironment, and tumor mutation burden (TMB) in low- and high-risk groups. (A) Correlation between the four risk
genes and the abundance of immune cells. (B) Comparison of ESTIMATE scores, stromal scores, and immune scores between the low- and high-
risk groups. (C) Correlation between the stem cell content and the PANoptosis risk score. (D, E) The frequency of somatic gene mutations in the
high- and low-risk groups, respectively. (F, G) The Kaplan-Meier curve of the tumor mutation burden and risk scores versus the overall survival.

*p<0.05, **p<0.01, ***p<0.001

risk groups and drug sensitivity. Our analysis revealed significant
differences in drug responses between the high- and low-
risk groups, with 56 drugs exhibiting noteworthy distinctions.
Among them 16 drugs had lower IC50 in high-risk groups, such
as Paclitaxel, Sepantronium, and Tozasertib. Low-risk
group were more sensitive to Oxaliplatin, sorafenib, irinotecan

(Supplementary Table 4).

Validation of the expression levels
signature genes

GSE14520 was used to validated the mRNA expression and
diagnosis probability. The results showed that CTSC, CDCAS, and
G6PD were upregulated in HCC tissues, whereas CXCL9 was
downregulated (Figures 10A-D). The AUC value of CTSC,
CDCA8, G6PD, and CXCL9genes were 0.656, 0.858, 0.882, 0.621,
respectively and the model AUC value reached to 0.92, suggesting
our signature had higher quality of prediction (Figures 10E, F). In
addition, we used RT-PCR to validated the mRNA expression of
signature genes between adjacent tumor tissue and HCC, and
normal liver cell THLE3 and liver cancer cell line of HCCLM3,
MHCC-97H, SUN449, HepG2, and Huh7. Compared with the
adjacent tumor tissue and most liver cancer cells lines, a
significant increase expression of G6PD, CDCAS8, and CTSC in
HCC tissues and liver cancer cells was observed, whereas CXCL9
was significant downregulated (Figures 10G-N). However, the
mRNA expression of G6PD and CDCA8 showed no significant
differences between THLE3 and HepG2 (Figures 10K, M). IHC and
western blotting further confirmed the higher expression of CTSC
in HCC tissues compared to the adjacent tumor tissues
(Figures 100-R).
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Effects of CTSC on the proliferation and
migration of SUN-449 cell

We designed three siRNA to study the impact of CTSC
downregulation in SUN449 cells due to the upregulated
expression of CTSC. qRT-PCR confirmed the CTSC effectiveness
of downregulation following siRNA interference (Figure 11A). The
results of Transwell and Wound-healing assays indicated the
inhibition CTSC attenuated the migratory capabilities of SUN449
cell (Figures 11B-E). The EdU assay revealed a reduced proportion
of EdU-positive cells upon the inhibition of CTSC in SUN449 cells,
indicating that CTSC fosters the proliferation of HCC cells
(Figure 11F). qRT-PCR result showed that inhibition of CTSC
could increase the mRNA expression of CASP3, CASP7, GSDMD,
CASP1, MLKL, RIPK3(Figures 11G-L).

Discussion

HCC is a common fatal malignancy of the digestive system
whose global burden has surged significantly from 1990 to 2019,
posing substantial threats to human life, health, and the global
economy (32). Despite previous efforts to diagnose and treat
patients with HCC, a majority of them are diagnosed at advanced
stages, rendering them ineligible for surgical resection and resulting
in unfavorable prognoses. Therefore, it is imperative to elucidate the
mechanism contributing to the pathogenesis of HCC to explore
innovative approaches for diagnosis and treatment. PANoptosis, a
component of the host’s innate immune response, has been
identified as a novel mechanism governing inflammatory
programmed cell death, encompassing pyroptosis, apoptosis, and
necroptosis (6). Previous studies have demonstrated the significant
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normal tissues in GSE14520; (E) The ROC results of 4 marker genes in GSE14520. The AUC value of CXCL9, CTSC, CDCAS8, G6PD was
0.656,0.858,0.882,0.621, respectively. (F) ROC results of the 4-gene-based model based on 3-fold cross-validation in GSE14520. The AUC value as
0.921. AUC, area under curve; ROC, receiver operating characteristic; DCA, Decision curve analysis. (G—J) gRT-PCR confirmed the 4 marker genes
expression between HCC tissues and adjacent tumor tissues; (K—N) gRT-PCR validated the 4 marker genes expression between HCC cells
(HCCLM3, MHCC-97H, SUN449, HepG2, Huh7) and normal liver cell (THLE3). (O, P) CTSC representative IHC stained images in adjacent tissues and
HCC tissue. (Q, R) Western blot analysis the protein expression in adjacent tumor tissues and HCC tissue. *p < 0.05; **p < 0.01; ****p < 0.0001

role of PANoptosis in tumorigenesis and anti-tumor therapies (16).
We identified a valid signature to assess the treatment and
prognosis of HCC and developed a signature based on the
concept of PANoptosis for HCC patients.

In our study, we used 29 PRGs to evaluate their somatic
mutations, CNVs, DEGs. Our findings indicated that the majority
of PRGs were significantly upregulated in HCC, with only NLRP3,
AIM2, and MEFV demonstrating downregulation in HCC. Notably,
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NLRP3 and AIM2 were significantly correlated with HCC
prognosis. Previous research has confirmed the downregulation of
AIM2 expression in human HCC tissues compared to adjacent
normal tissues. Furthermore, we revealed that patients with HCC
with higher AIM2 expression exhibited improved overall survival
rates (33), consistent with our analysis. Regarding NLRP3, it plays
dual roles in HCC. On one hand, the NLRP3 inflammasome
inhibits HCC development via pyroptosis, while on the other
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Cell model validation of CTSC in SUN-449 cell transfected with siCTSC and vector. (A) Relative CTSC mRNA level after being knocked down. (B, C)
Transwell assays were employed to assess the ability of SUN-449 cell to migrate after CTSC was knocked down for 24 h; (D, E) Representative
images and quantitative analysis of the results from the wound healing assay; (F) EdU assay was conducted between the si-NC and CTSC

knockdown SUN-449 cells; (G-L) The mRNA expression of CASP3, CASP7, GSDMD, CASP1, MLKL, RIPK3 after CTSC was knocked down

**p < 0.01; ***p < 0.001; ****p < 0.0001. ns, not significant

hand, it promotes HCC growth through the mediation of different
signaling pathways (34). Additionally, we identified that 14 PRGs
were significantly associated with the survival rate of HCC patients.
Collectively, these results suggest that PANoptosis may indeed play
a pivotal role in the context of HCC.

We initiated our study by conducting a comprehensive
clustering analysis to identify the molecular subtype of
PANoptosis. All HCC patients were categorized into three
distinct PRGclusters. Notably, although PRGcluster C exhibited
an overall high expression of most PRGs, it displayed experienced a
significantly worse prognosis. Thus, higher expression levels of
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*p < 0.05;

PRGs could be associated with a lower rate of survival.
Additionally, PRGcluster C exhibited heightened immune
infiltration, characterized by the presence of various immune cells
such as activated CD4 T cells, immature dendritic cells, MDSCs,
macrophages, natural killer cells, and regulatory T cells. Previous
studies has indicated that certain components within TME,
including dendritic cells, macrophages, and natural killer cells,
can promote tumor proliferation, invasion, metastasis, and hinder
anti-cancer immune responses (35-37). This finding implies that
the elevated expression of PRGs could lead to increased immune
cell infiltration and subsequently result in a poorer survival rates.
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Furthermore, we identified 153 DEGs related to PANoptosis among
the three PRGclusters, and subsequently categorized patients into
two geneclusters. Notably, geneCluster A exhibited higher PRG
expression levels and a worse survival prognosis. Altogether, these
findings provide valuable insights into the underlying biology of
these specific tumor types and offer potential avenues for subgroup
screening in HCC.

To improve the prognosis prediction and characterization
capabilities of each patient with HCC, LASSO and multivariate
Cox regression analyses were employed to construct a novel
prognostic signature to better predict HCC prognosis. High-risk
groups were characterized by elevated expression levels of most
PRGs and poorer prognoses. Furthermore, PRGcluster C and
geneCluster A, both associated with reduced survival rates,
displayed higher risk scores. This reinforcing the correlation
between higher risk scores in our established signature and
unfavorable prognostic outcomes. Our risk model has practical
applications in treatment personalization, increased surveillance
frequency, and patient prognosis prediction. Specifically, high-risk
patients may benefit from aggressive therapies, while more frequent
monitoring and surveillance can aid in early disease detection.
Moreover, our analysis encompassing ROC curves, nomograms,
and calibration plots underscored the superior predictive
performance and accuracy of the constructed signature. The 1-,3-
,5-year AUC was 0.735, 0.706, 0.638 in the present model, while
another study PANoptosis-related gene signature model showed 1-
,3-,5-year AUC was 0.707, 0.622, and 0.562, respectively. This
indicating that the efficiency of diagnosis of our model was
superior than previous prognostic model (38).

Four risk gene (G6PD, CTSC, CDCAS, and CXCL9) were
identified and utilized to calculate the risk score in our study.
These four risk genes have been previously associated with various
types of malignant tumors, including HCC. G6PD has been
recognized as a prognostic signature and a potential treatment
target for different tumors (39). Zeng et al. reported that the
expression of G6PD in HCC tissues was upregulated compared to
the corresponding adjacent normal tissues (39). In our qRT-PCR
analysis, we confirmed the elevated expression of G6PD in HCC
tissues and HCC cell lines. G6PD is known to promote HCC cell
proliferation, invasion, migration and inhibit ferroptosis.
Knockdown G6PD or inhibit it with smilax China root extract
could suppresses HCC cell growth, tumorigenesis and metastasis
(39-41). CDCAS, a crucial regulator of mitosis, is upregulated in
numerous cancer types. A high expression of CDCAS8 has been
associated with higher AFP, larger tumor size, pathological status, T
stage, and poor prognosis in HCC. Silencing CDCA8 could
suppresses tumor growth, proliferation, and stemness of HCC by
inactivating AKT/B-Catenin Signaling, and regulating the CDK1/
cyclin Bl signaling axis (42-45). CXCL9, a specific ligand for
CXCR3, facilitates tumor-suppressive lymphocytic infiltration in
certain solid tumors coupled with its two family members CXCL10
and CXCL11 (46). Increasing evidence has demonstrated that
CXCL9 is closely correlated with the prognosis of certain solid
tumor patients, such as colorectal cancer lung cancer, and HCC
(47). Ding et al. revealed that CXCL9 binding to CXCR3 promotes
metastasis and invasion of CD133+ liver cancer cells via the p-

Frontiers in Immunology

10.3389/fimmu.2024.1323199

ERK1/2-MMP2/MMP9 pathway (48). In addition, increasing the
expression of CXCL9 with rhCXCL9 has been reported to enhance
the HCC invasion ability by upregulating the PREX2 (49).
Cathepsin C(CTSC), a lysosomal cysteine protease abundantly
expressed in multiple tissues and belonging to the papain
superfamily, plays a pivotal role in numerous tumor biological
processes. Moreover, CTSC regulates breast cancer lung metastases
by modulating neutrophil infiltration and the formation of
neutrophil extracellular traps (50). Silencing CTSC has the
capacity to promote apoptosis, thereby restraining the growth of
colorectal cancer. Furthermore, it can enhance colorectal cancer
metastasis by modulating immune escape through the upregulation
of CSF1 (51, 52). An earlier study has documented the pivotal role
of cathepsin C in regulating pyroptosis and lysosome-mediated cell
death within cathepsin C-deficient mouse splenocytes (53). For
HCC, CTSC collaborates with the TNF-0/p38 MAPK Signaling
Pathway to enhance proliferation and metastasis (54). In addition,
our results also showed that inhibition CTSC could attenuated HCC
cells metastasis and proliferation, confirming the previous results.
This indicated that CTSC could be a target for HCC therapy.
Immunoreactivity plays a critical role in the development of
tumors and offers a promising target for potential cancer therapies
(55). Our risk score was negatively correlated with CD8 T cells,
macrophages M1, and naive B cells, and positively correlated with
neutrophils, macrophages M2. A higher number of CD8+ T cell,
macrophages M1, cases were positively associated with better OS
and DFS in HCC patients, whereas macrophages M2 were related to
a poor prognosis and outcome of HCC (56-59). This is consistent
with our finding that the low-risk group had a better prognosis, as
shown in our previous overall survival analysis. In the present study,
we also explore the correlation among risk genes, risk score, and
immune cells. The results showed that high-risk group associated
with a lower Stromal Score, Immnune Score, and ESTIMATE score,
and higher TMB. This suggests that our signature could predict the
TME composition. These result of our study was aligned with a
previous study based on cuproptosis-related genes (60). However,
another model based on the immune-related gene was on the
contrast, namely high-risk group have a higher Stromal Score,
Immnune Score, and ESTIMATE score (61). CSCs, as a driver of
tumor progression and growth, contribute to metastasis, recurrence,
and drug resistance (62). A previous study indicated that a high
immune score is indicative of improved chemotherapy and
immunotherapy efficacy (63). In our research, we found the low-
risk group displayed higher immune and lower stem cell content,
implying a more favorable anti-tumor treatment. We found that
TP53 and CTNNBI genes were the most frequently mutated genes
in both groups, which was consistent with previous study (64).
Mutations in TP53 gene is regarded as a major driver of HCC, and
higher mutation rate of TP53 was associated with poor overall
survival (65). In our study, we found that high-risk group have
higher mutation frequency of TP53 and poor prognosis, compared
to low-risk group. Our study showed that Oxaliplatin, irinotecan,
and sorafenib was more sensitivity in low-risk group, consistent
with previous studies (66-68) supporting our risk model possesses
the potential to predict the effectiveness of drugs treatment. In
addition, one person can be stratified into high- or low-risk group
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and matching the most suitable personalized medicine through
prediction based on based on the expression of risk gene of the
person, then increasing the treatment effectiveness.

Nonetheless, our study had certain limitations. Firstly, the
majority of our analyses relied on publicly available datasets and
all samples were obtained retrospectively, which could have
introduce cases selection bias and thus affected the accuracy of
our finding. Hence, it is imperative to conduct well-designed
prospective studies in order to validate the robustness and
applicability of our findings. Secondly, although we conducted
expression validation at both tissue and HCC cell levels, the
sample size was relatively limited. We plane to are committed to
expanding our sample collection efforts to assess this signature in
the context of immunotherapy in the future. Thirdly, some crucial
clinical variables such as surgical interventions, neoadjuvant
chemotherapy, and tumor markers were not included in our
study. Fourthly, although we have performed qRT-PCR to
validate the relationship between CTSC and PANoptosis marker
gene, more research, including Western blotting and THC need
conducted to confirm the result. Finally, although our prognostic
model has some benefits, it has some barrier to clinical
implementation. For example, the data availability and quality,
and cost-effectiveness due to additional tests, monitoring.
Consequently, our findings’ validity is relies on the inclusion of
clinical cases.

Conclusion

In conclusion, we have developed a pivotal PANoptosis-based
molecular clustering approach and prognostic signature with
multifaceted capabilities, including survival prediction, TMB
assessment, and clinical therapy guidance. Our study has the
potential to advance our understanding of PANoptosis in HCC
and contribute to the development of more effective personalized
immunotherapy or targeted therapy. Nonetheless, it is imperative to
acknowledge the inherent limitations of this study, and further
experiments and clinical case validations are warranted to
substantiate our findings.
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Background: Increasing evidence have highlighted the biological significance of
MRNA N6-methyladenosine (m®A) modification in requlating tumorigenicity and
progression. However, the potential roles of mC°A regulators in tumor
microenvironment (TME) formation and immune cell infiltration in liver
hepatocellular carcinoma (LIHC or HCC) requires further clarification.

Method: RNA sequencing data were obtained from TCGA-LIHC databases and
ICGC-LIRI-JP databases. Consensus clustering algorithm was used to identify
m°®A regulators cluster subtypes. Weighted gene co-expression network analysis
(WGCNA), LASSO regression, Random Forest (RF), and Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) were applied to identify candidate
biomarkers, and then a m®Arisk score model was constructed. The correlations
of m®Arisk score with immunological characteristics (immunomodulators,
cancer immunity cycles, tumor-infiltrating immune cells (TIICs), and immune
checkpoints) were systematically evaluated. The effective performance of
nomogram was evaluated using concordance index (C-index), calibration
plots, decision curve analysis (DCA), and receiver operating characteristic
curve (ROC).

Results: Two distinct m®A modification patterns were identified based on 23 m®A
regulators, which were correlated with different clinical outcomes and biological
functions. Based on the constructed m®Arisk score model, HCC patients can be
divided into two distinct risk score subgroups. Further analysis indicated that the
m°SArisk score showed excellent prognostic performance. Patients with a high
m°CArisk score was significantly associated with poorer clinical outcome, lower
drug sensitivity, and higher immune infiltration. Moreover, we developed a
nomogram model by incorporating the m®Arisk score and clinicopathological
features. The application of the m®Arisk score for the prognostic stratification of
HCC has good clinical applicability and clinical net benefit.
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Conclusion: Our findings reveal the crucial role of m®A modification patterns for
predicting HCC TME status and prognosis, and highlight the good clinical
applicability and net benefit of m®Arisk score in terms of prognosis,
immunophenotype, and drug therapy in HCC patients.

KEYWORDS

Ns-methyladenosine, WGCNA, SVM-RFE, LASSO, consensus clustering algorithm,

TICs, DCA

1 Introduction

Hepatocellular carcinomas (HCC, accounting for 90% of liver
cancer) is one of the most frequent fatal malignancies and ranks
fourth among cancer-related mortality worldwide (1). Despite
recent great advances in treatment interventions, 5-year overall
survival (OS) for HCC patients remains poor and unsatisfactory,
with only 5% to 15% of early-stage patients qualifying for surgical
excision (2). HCC is insidious and develops rapidly, and patients are
usually diagnosed at an advanced stage. The treatment strategies
that are currently available for more than 90% of liver cancer
patients mainly include chemotherapy, immunotherapy, natural
compounds, and nanotechnology (2). However, the clinical benefit
of these therapies remains unsatisfactory, mainly due to the lack of
effective pre-treatment predictive biomarkers. Besides, treatment of
regional resection and liver transplantation is still limited, and the
recurrence rate after regional resection is high. Therefore, it is
imperative to identify novel reliable biomarkers and therapeutic
targets that enable early diagnosis and treatment response
prediction for HCC patients.

Although the risk factors for liver carcinogenesis are well defined
(including hepatitis B and C viruses, fatty liver, alcoholic cirrhosis,
diabetes, obesity, etc), the underlying molecular mechanisms remain
ambiguous. Extensive evidence shows that epigenetic mechanisms is
implicated in multiple aspects of cancer biology, from driving
primary tumor growth and invasion to modulating the immune
response within the tumor microenvironment (TME). The complex
bidirectional dynamic cross-talk between cancer cells and their
microenvironment has been identified as a key factor that drives
tumor initiation, growth, progression, malignant conversion,
invasion, metastasis, drug resistance and patient prognosis (3-5).
TME is a complex and evolving multi-layered cellular environment
composed of stroma, vascular, and innate/adaptive immune cells, as
well as a community of malignant clones (6). N°-methyladenosine
(m°®A) methylation is one of the most common types of modifications
in eukaryotic messenger RNA (mRNA). Similar to modifications in
DNA or proteins, it is regulated by various types of regulators,
including methyltransferases (“ writers “), RNA-binding proteins (“
readers “), and demethylases (“ erasers ). Dysregulation of mCA
regulatory factors is associated with malignant tumor progression
and TME-specific immunomodulation abnormalities (7, 8).
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Nonetheless, the role of m6A regulators in TME heterogeneity and
immune cell infiltration in HCC remains to be further investigated.
Therefore, it is crucial to comprehensively understand the
relationship between RNA methylation modification patterns and
genetic alterations underlying cancer cell heterogeneity.

Cancer is both a genetic and epigenetic disease. Gene mutations
and epigenetic alterations have been identified as significant
contributors to human carcinogenesis. Unlike genetic mutations,
epigenetic modifications refer to heritable changes that mediate
gene expression without altering the genetic DNA sequence (9).
Extensive evidence shows that epigenetic mechanisms is implicated
in multiple aspects of cancer biology, from driving primary tumor
growth and invasion to modulating the immune response within the
TME. Epigenetics-based diagnostic and prognostic tools also greatly
contribute to the development of precision oncology. Recent studies
have reported that abnormal decreases or increases in the overall
abundance of m®A in some types of cancer may be associated with
cancer progression and clinical outcomes. It has been reported that
the overall abundance and expression level of m®A in mRNA or total
RNA in human gastric cancer and liver cancer tissues are significantly
increased, and are closely related to the expression level of m°A
methylation regulatory enzymes (10, 11). It has also been reported
that the overall abundance of m°A is significantly reduced in more
advanced human bladder cancer tissues and is associated with poor
prognosis in bladder cancer patients (12). Another study showed that
m°A abundance is associated with therapeutic drug response and
may be an epigenetic driver of chemotherapy resistance (13).
Together, these results suggest that m°A modification regulators
have different potential in prognosis stratification and the
development of new therapeutic strategies across various cancers.
Due to immune evasion and heterogeneity in the TME, only a
minority of patients respond favorably to immunotherapy. At this
point, better stratification is urgently needed for HCC patients to
enhance treatment efficacy. Therefore, comprehensive investigation
of m®A modification and its biological roles in HCC may contribute
to improving prognosis prediction and personalized precision
treatment approaches for HCC.

In this study, we first profiled the expression of 23 m°A
regulators and identified two distinct m°A regulator-mediated
modification patterns based on TCGA-LIHC cohort. We then
constructed a novel m°A-risk scoring system to quantify the m°A

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

modification patterns in individual tumors and to predict the
clinical response of HCC patients to common chemotherapy or
targeted drugs. Additionally, we comprehensively evaluated the
association between m®A modification patterns and TME cell-
infiltrating characteristics.

2 Materials and methods
2.1 Data source and preprocessing

RNA-sequencing data (counts value) with corresponding
complete clinical information of HCC were obtained from
TCGA-LIHC program (https://portal.gdc.cancer.gov/repository)
and ICGC-LIRI-JP database (https://dcc.icgc.org). The annotation
file of GRCh38 (version 36) was downloaded from GENCODE to
identify the length of each mRNA. Subsequently, RNA-sequencing
data in counts format was transformed into transcripts per kilobase
million (TPM) format and further subjected to log2 transformation
for normalization. In addition, somatic mutation data and CNV
files were retrieved from the TCGA-LIHC program. Samples
lacking clinicopathological information or survival outcomes were
excluded from further analysis. Ultimately, 23 acknowledged m°®A
regulator genes, including 8 writers, 13 readers, and 2 erasers, were
identified from previous studies (14-16).

2.2 Unsupervised clustering of m°A
regulator genes

Consensus unsupervised clustering analysis was employed for
identifying distinct m°A regulator modification patterns in the
TCGA-LIHC cohort by the k-means algorithms, which is available
in the “ConsensusClusterPlus” R package (17, 18). The
“ConsensusClusterPlus” package provides quantitative stability
evidence to determine a cluster count and cluster membership in
an unsupervised analysis. The quantity and stability of clusters were
determined by consensus clustering algorithm, and conducted for
1,000 iterations (18). The cumulative distribution function (CDF)
curves were used to determine the optimal number of clusters,
indexed by k-means algorithms value from 2 to 9. Ultimately,
based on the clustering effect, the clustering stability was higher
when k = 2.

2.3 Differentially expressed genes analysis

The expression profile data from TCGA-LIHC cohorts were
preprocessed by R software (V.4.0.5). The differential expression
analysis between two distinct m®A cluster subtypes were
performed using the “DESeq2” R package (19) (V.1.38.3). Genes
with [log2FoldChange| > 1 and P adj < 0.001 were regarded as
statistically significant. Furthermore, Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed for DEGs using the
“clusterProfiler” R package. GO categories comprised biological
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processes (BP), molecular functions (MF), and cellular
components (CC). The p-value was adjusted using the
Benjamini-Hochberg (BH) approach or False Discovery Rate
(FDR) for multiple testing corrections. The results satisfied FDR
< 0.05 were regarded as statistically significant.

2.4 Gene set enrichment analysis

This analysis aimed to discern potentially relevant gene
expression signatures between distinct m®A cluster subtypes
utilizing the ‘clusterProfiler’ package (V.4.6.0). The reference gene
set for GSEA analysis, ‘c2.cp.kegg.v7.4.symbols.gmt,” was obtained
from MSigDB database (http://software.broadinstitute.org/gsea/
msigdb/index.jsp). Differential expression analysis between the
two cluster subtypes was conducted using “DEseq2” package
(V.1.38.3). Subsequently, all genes were ranked from high to
bottom according to log2-fold change, and this sorted gene set
was used for GSEA analysis. For achieving a normalized enrichment
score (NES) for each analysis, a permutation test with 1,000
iterations were performed. The pathways meeting the criteria of
INES| > 1, p-value < 0.05, and g-value < 0.05 were regarded as
significant enrichment.

2.5 Gene set variation analysis

This analysis was performed to assess the variation of hallmark
pathway activity in distinct m°A cluster subtypes via ‘GSVA’
package (V.1.38.0) in an unsupervised manner (20). In this study,
the gene set ‘h.all.v7.4.symbols.gmt’ was selected as the background
gene set for GSVA analysis, which was downloaded from MSigDB
database (21). The limma’ R package was utilized to analyze the
differences in hallmark pathways between two m°A cluster
subtypes. The criteria for screening significant difference were as
follows: |t-value| >2 and p-values < 0.05. The pathway with a t-value
> 0 was thought to be activated in the mCA cluster B, and conversely,
the pathway with a t-value < 0 was considered to be activated in the
m°A cluster A.

2.6 Weighted gene co-expression
network analysis

WGCNA R package was utilized to construct an unsigned
weighted co-expression network to identify m®A cluster-related
gene modules. First of all, TCGA-LIHC expression data in TPM
format were evaluated for availability and genes were screened
using the lowest median absolute deviation (MAD) for further
analysis. The Pearson’s correlation matrices between all included
genes were calculated, and then transformed into an unsigned
weighted adjacency matrix using a power function. The power f
was estimated by soft-threshold of 0.85 to obtain a network with
scale-free topology. Furthermore, a topological overlap measure
(TOM) matrix was generated to estimate the connectivity property
of nodes in the network. The node in the networks represented a
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coding gene in the modules and an edge connecting two genes
indicated a strong correlation. Average linkage hierarchical
clustering was used to construct a clustering dendrogram of the
TOM matrix. Dynamic tree-cutting algorithm was used to obtain
appropriate modules of co-expressed genes with deep split = 2 and
the minimum gene module size of 40, and the height cutting
threshold of merging similar modules was set to 0.3. Genes
outside of each module were denoted with color “grey”. The
association between module Eigengenes (ME) values with
clinicopathological characteristics was assessed by Pearson’s
correlation, and the modules with the strongest association with
m°A cluster were selected for further analysis.

2.7 ldentification of optimal feature
gene biomarkers

To identify the optimal feature gene variables with the superior
discriminative power, three machine-learning algorithms were
implemented to predict disease status, including LASSO (least
absolute shrinkage and selection operator) regression, SVM-RFE
(support vector machine-recursive feature elimination), and RF
(random forest classifier). LASSO regression analysis was
performed using the ‘glmnet’” R package (22), and SVM-RFE
using the ‘€¢1071° R package (23). In the LASSO regression
analysis, the response type was configured as binomial, and the
alpha parameter was set to 1. Meanwhile, SVM-RFE model was
compared by the average mis-judgement rates of their 10-fold
cross-validations (24). The final importance of features was based
on the average importance of each feature variable in each iteration.
In the RF algorithm, the importance ranking of each gene, and the
error rate and accuracy rate of the combination in each iteration
were obtained using the RFE method. The feature genes were the
corresponding genes in the optimal combination with the lowest
error rate. The overlapping genes between the three machine-
learning algorithms were regarded as optimal diagnostic
biomarkers. The accuracy of the overlapping genes for diagnosis
was evaluated using the receiver operating characteristic curve
(ROC) in TCGA-LIHC dataset, and the expression levels of
candidate genes were further validated in the ICGC-LIRI-JP dataset.

2.8 Construction of m®Arisk score model
for HCC prognosis

The overlapping feature genes obtained above were first
subjected to univariate Cox regression to obtain the OS related
DEGs. Followed by least absolute shrinkage and selection operator
(LASSO) penalties regression, we identified the most powerful
prognostic DEGs and their correlative coefficients using “glmnet”
R package. Meanwhile, the “caret” R package was utilized to
randomly divide the TCGA-LIHC cohort (n = 371) with a ratio
of 1:1, with 50% of the data used for training and 50% for
validation. Next, the independent prognostic feature genes were
identified using multivariate Cox regression analysis to construct a
m°A related prognostic risk score model in the training set. Then,
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the m®Arisk scores were calculated using the formula:
mCArisk-score = (gene expression * risk coefficient). Based on
the median of risk score, the training set and testing set were
stratified into low- and high-risk groups, respectively. Finally,
survival analysis and receiver operating characteristic (ROC)
curve analysis were carried out for the two risk groups using the
“survminer” and “survivalROC” R packages, respectively.

2.9 The immunological characteristics of
the tumor microenvironment

To confirm the role of m®Arisk score in modulating cancer
immunity in HCC, we analyzed the correlation between m°®Arisk
and the immunological characteristics of TME. The immunological
characteristics included the activity of the cancer immunity cycle,
infiltration level of tumor-infiltrating immune cells (TIICs), and the
expression of immunomodulators and inhibitory immune
checkpoints. The cancer immunity cycle consists of seven steps
that reflect the anticancer immune response and determine the fate
of the tumor cells (25) (Supplementary Table S12). The
immunomodulators comprise major histocompatibility complex
(MHC), receptors, chemokines, and immune stimulators (26)
(Supplementary Table S17). In this study, the activities of the
cancer immunity cycle were also quantified using a single sample
gene set enrichment analysis (ssGSEA) as previously reported (27).
Moreover, to avoid the calculation error of different algorithms and
marker gene sets, six independent algorithms [including Cibersort
(28), MCP-counter (29), quanTIseq (30), TIMER (31), xCell (32),
and TISIDB (33)] were used to comprehensively calculate TIICs
infiltration level in TME (Supplementary Table S7). Thereafter, the
effector genes of TIICs and inhibitory immune checkpoints were
also identified and collected from previous studies (34)
(Supplementary Tables S18, S19).

2.10 Somatic mutation analysis

For genomic layer analysis, the mutation annotation format
(MAF) data of HCC patients was derived from the TCGA-LIHC
database (http://tcga-data.nci.nih.gov/tcga/) and analyzed using the
“maftools” R package (35). The mutation profile was visualized
using a waterfall plot, which displays the mutation types and
frequencies of the top driver genes. Fisher’s exact test was
conducted to compare the differential mutation patterns between
the two distinct m®Arisk score groups. Genes with a p-value less
than 0.05 were considered statistically significant and were
visualized in a forest plot. In addition, a lollipop diagram was
drawn to indicate the mutation types of the most frequently
mutated gene in order to provide insight into the molecular
alterations associated with hepatocellular carcinoma (HCC)
development. Furthermore, the exclusivity and co-occurrence of
mutations for the top 20 mutated genes were analyzed. The
prognostic value of TMB and the combination of TMB and
m°®Arisk scores were comprehensively evaluated. Additionally, the
relationship between the m®Arisk scores and the cancer stem cell
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(CSC) index was evaluated to investigate their potential association
in tumor progression and treatment resistance.

2.11 Prediction of therapeutic response by
mCArisk score

The T cell receptor (TCR) repertoire is a well-characterized
immune trait that plays a key role in the selective activation of the
adaptive immune system (36, 37), tightly linked to the immune
status and anti-tumor immune response. In this study, we
obtained the TCR Shannon diversity index and richness of the
TCGA-LIHC cohort from previous literature (36) and
investigated their differences between the two distinct m®Arisk
scores groups. The Tumor Inflammation Signature (TIS) is a
transcriptome-based algorithm consisting of 18 genes that
measures a pre-existing but suppressed adaptive immune
response within the tumor (38). We computed the TIS score of
each patient as previously reported (39) in TCGA-LIHC dataset to
speculate on the association between m°Arisk scores and the
adaptive immune response. Imunophenoscore (IPS), a machine
learning-based scoring scheme that represents the determinants of
immunogenicity, has been proven to be tightly linked to the
survival of multiple cancer and is a promising predictor of
response to immunotherapy (26). We obtained the IPS of HCC
from the Cancer Immunome Atlas (TCIA) (https://tcia.at/home)
and compared them between the two m®Arisk-score groups to
predict the immunotherapeutic sensitivities.

Moreover, to explore the potential clinical applications of the
mC®Arisk score in treatment decisions, we utilized the “oncoPredict”
R package (40) to infer the semi-inhibitory concentration (IC50)
values of commonly used targeted/chemotherapy drugs. We then
performed a correlation analysis between the IC50 values and the
m°®Arisk-score groups using the Wilcoxon test. The drugs and their
target information were derived from DrugBank (https://
go.Drugbank.com/). This analysis aimed to investigate the
relationship between m®Arisk score and the response to specific
drugs, providing insights into personalized treatment strategies.

2.12 Establishment and validation of a
nomogram scoring system

The m®Arisk scores and common clinical variables (including age,
gender, and TNM stages) were incorporated to establish a nomogram
scoring system using the “rms” R package (41). In this study, the time-
dependent ROC curves of nomogram and clinical prognostic variables
at 1-, 3-, and 5-year were generated, and the corresponding time-
dependent area under the curves (AUCs) was calculated to evaluate
the discrimination of nomogram. The calibration curves and the
decision curve analysis (DCA) of 1-, 3-, and 5-year were plotted to
assess the prediction accuracy and clinical net benefit of nomogram,
respectively (42, 43). In addition, concordance index (C-index) was
also performed to assess the prediction efficiency and accuracy of
nomogram. A C-index score around 0.70 indicates a good model,
whereas a score around 0.50 suggests random background.
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2.13 Clinical sample collection, RNA
isolation, and qPCR

Twenty-eight pairs of fresh-frozen tissues (HCC tissues and
adjacent tissues) were collected from the Zhongnan Hospital of
Wuhan University and approved by the ethics committee
(Approval Number 2017058). Written informed consent was
obtained from all the participants. Complementary DNA (cDNA)
was synthesized from total RNA using the Prime Script RT Reagent
Kit (Vazyme, R333-01, China). The SYBR Prime Script RT-PCR kit
(Vazyme, Q712-02, China) was used for qPCR on a CFX96
instrument (Bio-Rad, America). Gene expression levels were
calculated with the 2744

“housekeeping” gene P-actin. The primer sequences were

strategy and normalized to the

integrated into Supplementary Table S20.

2.14 Statistical analysis

All statistical analyses and graphical plotting were performed
using R software (version 4.0.5.) Unless stated otherwise, P <0.05
(two-sided) was considered statistically significant.

3 Results

3.1 Landscape of genetic variation of 23
m°®A regulators in LIHC

In this study, we identified 23 m°A RNA methylation regulatory
genes (including eight “writers,” thirteen “readers,” and two
“erasers”) from the published literature, and systematically
investigated the roles of them in LIHC. The workflow for this
study is shown in Figure 1A. Additionally, the significantly enriched
biological processes of the 23 m°A regulators were summarized
using the Metascape database, as depicted in Figure 1B. These
processes primarily revolve around mRNA stability, mRNA
transport, mRNA metabolic processes, mRNA modification, and
ncRNA processing. Figure 1C illustrates the dynamic reversible
process of the m°A regulators, showcasing their ability to recognize,
remove, and add m®A-modified sites. These analyses provided
insights into the regulatory complexity and functional
implications of m®A RNA methylation in gene expression and
RNA metabolism. The somatic mutations analysis of 23 m°A
regulators demonstrated that a total of 42 of the 371 (11.3%)
TCGA-LIHC samples experienced genetic alterations of m°A
regulators, primarily including missense mutations and splice site
(Figure 1D). Moreover, the CNA analysis revealed CNV alterations
were prevalent in the 23 m°A regulators, with most of the
alterations being focused on gene amplification (such as VIRMA,
METTL3, HNRNPC, IGF2BP2, and YTHDF3), whereas WTAP,
YTHDF2, and ZC3H13 showed the highest deletion frequency
(Figure 1E). Further investigation of the expression profiles of the
23 m°A regulators indicated that most of the m°®A writers
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FIGURE 1
The landscape of genetic and transcriptional alterations of m6A regulators in

HCC. (A) The schematic workflow of this study. K-M plot, Kaplan-Meier

plot; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; WGCNA, weighted gene co-expression network analysis; ROC, receiver
operating characteristic; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination;
UniCox, univariate Cox; MultiCox, multivariate Cox; DCA, decision curve analysis, TCR, T cell receptor; TIS, Tumor Inflammation Signature; IPS,
Imunophenoscore. (B) The enrichment network of 23 m®A regulators visualized by Metascape (https://metascape.org/), showed the similarity of
enrichment terms within and between clusters. (C) The regulation mechanism of m°®A “writer," “eraser,” and “reader” proteins on RNA metabolism.

(D) Mutation frequencies of 23 m°A regulators in 371 HCC patients from TCGA-

regulators. (F) The differential expression levels of 23 m°®A regulators between

(METTL3/14/16, WTAP, VIRMA, and RBM15/15B), readers
(YTHDC1/2, YTHDF1/2/3, HNRNPC, FMR1, LRPPRC,
HNRNPA2BI1, IGF2BP1/2/3, and RBMX), and erasers (FTO and
ALKBH5) were markedly upregulated in the tumor tissues
(Figure 1F). The survival analysis revealed that most of the mCA
regulators were significantly correlated with LIHC prognoses
(Supplementary Figure S1). Taken together, these results
demonstrate that m®A regulators may act as diagnostic
biomarkers and prognostic predictors for LIHC.
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LIHC cohort. (E) Frequencies of copy number variant (CNV) of the 23 m°®A
tumor and normal tissues. ** P < 0.01; *** P < 0.001; ns, No significance.

3.2 Identification of m®A modification
subtypes and function enrichment analysis

Figure 2A presented the interactions and interconnections
among the 23 m°A regulators and their prognostic value in
TCGA-LIHC patients. Most of these genes were risk factors and
were significantly positively correlated with each other (p<0.001).
The results suggested that the cross-talk between these m°A
regulators probably play important roles in the formation of
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FIGURE 2

Identification and functional enrichment analysis of m®A cluster subtypes. (A) The interaction analysis of expression on 23 m°A regulators in TCGA-
LIHC. Different colored circles represent different modification types of m6A regulators. The size of the circle represents the prognostic effect of
each mPA regulator and scaled by p value. Connecting lines represent interactions between each other. (B) The consensus score matrix of 371
samples (k = 2). (C) Kaplan-Meier curves for estimating the overall survival between subtypes of m®A cluster. (D) GO enrichment and (E) KEGG
enrichment analyses of the DEGs (|log2FoldChange| > 1, P-adj < 0.001) between m6A cluster B and A. The top 25 enriched terms are shown. The
color of the bars denotes the negative logarithm of the p-value of the hypergeometric test. (F) The bar charts showing KEGG pathway annotation.
The color indicates the category A of annotation terms. The horizontal coordinate presents the category B of annotation terms, and the ordinate
denotes the number of genes (hits) of category B. (G) Bar charts showing the top 10 KEGG pathway terms enriched by GSEA. Red and blue
represent the upregulated pathway terms in m°®A cluster B and A, respectively. (H) The GSVA score of hallmark pathway activities curated from
MSigDB in distinct m®A modification patterns. T values are from two-sided unpaired limma-moderated t test (linear models), corrected for effects

from the patient of origin.

different modification patterns and was implicated in the
pathogenesis and progression of tumor. To further explore the
modification patterns of m°A regulators, unsupervised clustering
algorithms based on the expression profiles of 23 m°®A regulators
were applied to construct m°A subtypes. As shown in Figure 2B and
Supplementary Figure S2, the consensus score matrix revealed that
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k = 2 appeared to be an optimal choice for ensuring the least
crossover between TCGA-LIHC samples. Next, Kaplan-Meier
survival curves showed that m°A cluster A presented significantly
better prognoses than cluster B (P = 0.006; Figure 2C).

Next, the representative DEGs (|log2FoldChange| > 1, P-adj <
0.001) between m°Acluster were identified to explore the
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underlying biological functions (Supplementary Table S1). GO
analysis revealed that the DEGs had a significant enrichment in a
number of cell cycle biological processes, including mitotic nuclear
division, mitotic sister chromatid segregation, nuclear chromosome
segregation, regulation of chromosome segregation, and nuclear
division (Figure 2D, Supplementary Table S2). KEGG analysis
indicated that cell cycle and metabolic pathways such as DNA
replication, cellular senescence, bile secretion, Glycolysis/
Gluconeogenesis, biosynthesis of amino acids were significantly
enriched, as well as cancer-related pathways such as ECM-receptor
interaction and p53 signaling pathway (Figure 2E, Supplementary
Table S3). KEGG pathway annotation results revealed that many
cancer-related pathways were identified, including those with
functions in the immune and endocrine system, signaling
transduction, DNA/RNA replication and repair, cell growth and
death, and metabolism (Figure 2F). To explore the underlying
biological mechanism of distinct m®Acluster subtypes, GSEA and
GSVA analyses were conducted. The GSEA analysis also prompted
that signaling transduction/cell cycle-related pathways were highly
activated in m®Acluster B while metabolism biological processes
were highly activated in m®Acluster A (Figure 2G, Supplementary
Table S4). In addition, a direct comparison of hallmark pathway
expression using GSVA revealed a strong enrichment of signaling
transduction and metabolism in m®Acluster B versus A, such as
fatty acid and bile acid metabolism, oxidative phosphorylation, IL2-
STATS5 signaling, MYC targets, PI3K-AKT-mTOR signaling, E2F
targets, and G2M checkpoint (Figure 2H, Supplementary Table S5).
All above results demonstrated that m°®Acluster subtypes was
correlated with dysregulation of signaling transduction and
metabolism, which may be implicated in the poor prognosis of
TCGA-LIHC patients.

3.3 Weighted gene co-expression network
construction and selection of
feature genes

To identify mCAcluster-related modules, WGCNA was
constructed based on the expression profiles of TCGA-LIHC and
clinical trait. Here, we selected the top 5000 genes with the lowest
median absolute deviation (MAD) to build a co-expression network.
A dendrogram of 344 samples with complete clinical information was
clustered using the average linkage method and Pearson’s correlation
method, and no discrete samples were found (Figure 3A). Next, the
power value of 8 = 7 (scale-free topology fitting index R* = 0.85) was
selected as the soft threshold to construct a scale-free network with
high average connectivity (Supplementary Figures S3A, S3B). After
merging the similar modules using two settings: clustering height = 0.3
and min module size = 40, six modules were identified for subsequent
analysis (Figure 3B, Supplementary Figure S3C). Through the
transcription correlation study within modules, there was no
substantial linkage between modules (Supplementary Figure S3D).
The relevance between ME (Module Eigengene) and clinical features
(m®Acluster, fu-time, fu-stat, age, gender, grade, and stage) was
evaluated based on module-trait relationships (MTRs). The module-
trait relationship results indicated that the MEblue (r = 0.73, P = e-
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59), the MEbrown (r = 0.42, P = 5e-16), the MEred (r = 0.35, P = 3e-
11), the MEgreen (r = -0.39, P = 8e-14) are significantly associated
with m®Acluster (Figure 3C). Moreover, the MEblue and MEgreen
were significantly related to other clinical features, and the two
modules showed an inverse correlation trend. Considering the high
correlation with m®Acluster, we selected the MEblue module as the
target module for the subsequent study. The scatterplot of GS versus
MM indicated that significant correlation existed in the module
membership (MM) and gene significance (GS) of the MEblue (cor
= 0.48, P = 1.6e-58) module (Supplementary Figure S3E).

Here, the differentially expressed genes (DEGs) (|
log2FoldChange| > 1, P-adj < 0.001) between different cohorts
were illustrated by the volcano plot. As shown in Figures 3D and
3E, a total of 3081 DEGs (2609 up-regulation and 472 down-
regulation) were identified between tumor and tumor-adjacent
tissues, and 910 DEGs (737 up-regulation and 173 down-
regulation) between m®Acluster A and cluster B. Then, 343
overlapping genes were obtained by intersecting the blue module
genes and the differential genes using a Venn diagram (Figure 3F).
To identify key feature genes, the 343 candidate genes were
submitted into LASSO regression algorithm, SVM-RFE algorithm,
and RF model. LASSO regression analyses with a 10-fold cross-
validation identified thirty-five gene signatures (Figure 3G). An
eleven-gene signature was identified by SVM-RFE algorithm with a
10-fold cross-validation accuracy of 0.962 (Figure 3H). The RF
model algorithm sorted sixteen gene signatures with
MeanDecreaseGini scores greater than 2.5 (Figure 3I). To obtain
a robust feature gene for m®Acluster, we intersected the genes
screened out by the above three algorithms and identified three key
feature genes: IGF2BP2, MAPREI, and ACTL6A, as shown in
Figure 3]. The ROC curves of IGF2BP2, MAPREI, and ACTL6A
revealed the probability of them as valuable biological markers with
AUCs higher then 0.7 (Figure 3K), indicating that the three
diagnostic markers had a higher diagnostic value. Furthermore,
our PCR results demonstrated that the expression levels of
ACTL6A, MAPREI, and IGF2BP2 were upregulated in HCC
tissues compared to adjacent tissues (p < 0.01, as shown in
Supplementary Figure S4).

3.4 Construction and evaluation of m®Arisk
scoring model

To explore potentially valuable prognostic genes more broadly, we
included overlapping genes that appeared in any two algorithms for
subsequent analysis. Overall, 11 out of thirteen genes were found to
affect prognosis based on univariate Cox analysis (Figure 4A,
Supplementary Table S6). Next, we performed LASSO and
multivariate Cox regression analysis for eleven prognostic genes to
further select optimum prognostic signature. Followed by LASSO
analysis, seven best candidate DEGs (SRD5A2, IGF2BP2, ZSWIMS5,
PAKI, ACTL6A, PRKCD, LRRCI) were retained according to the
minimum partial likelihood deviance (Figures 4B, C). Subsequently,
the seven candidate DEGs underwent multivariate Cox analysis,
resulting in the retention of four genes (SRD5A2, IGF2BP2,
ZSWIMS5, PRKCD) according to the Akaike information criterion
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FIGURE 3
Construction of WGCNA and selection of feature genes. (A) Clustering dendrogram of 344 samples with clinical trait heatmap in TCGA-LIHC
database. (B) Gene clustering dendrograms showing the original and combined modules, various colors represent different modules. (C) The
relationship of seven traits (including méAcluster and clinicopathology) and six modules, red and blue represents positive and negative correlations,
respectively. Each cell contains the corresponding correlation value and p-value. (D) Volcano plot of DEGs between tumor and normal tissues.
(E) Volcano plot of DEGs between cluster B and cluster A. (F) Venn diagram demonstrating 343 overlapping genes between the WGCNA blue
module gene and the identified DEGs. (G) Cross-validation for selecting the optimal tuning parameter log (A) in LASSO regression algorithm.
(H) Eleven feature genes were identified by SVM-RFE algorithm with a 10-fold cross-validation accuracy of 0.962. (I) Gene importance scores in RF
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tumor from normal controls based on TCGA-LIHC database.
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FIGURE 4

Construction and evaluation of prognostic signature using m®A-related candidate genes. (A) Univariate Cox regression analysis. (B, C) LASSO
regression analysis and optimal parameter (lambda) selection of the eleven prognostic genes by using 10-fold cross-validation. Dotted vertical lines
represents the optimal values selected by the minimum criteria (right) and the 1- standard error (SE) of the minimum criteria (left). (D) Development
of m®Arisk model in TCGA-LIHC training set (E) Validation of the m®Arisk model in TCGA-LIHC internal validation set. (F) Validation of the m®Arisk
model in external independent validation sets: ICGC-LIRI-JP. (G—-1) The predictive accuracy of m®Arisk model for survival. (J) Differences in m®Arisk
score between two distinct m6Acluster subtypes. (K) Differences in m®Arisk score between HCC patients with AJCC stages Ill-IV and stages I-II.
AJCC, American Joint Committee on Cancer. (L) Differences in m®Arisk score between HCC patients who had deceased and HCC patients who

were alive.

(AIC) value. Consequently, the m°®Arisk score model was developed
according to RNA-expression profiles using the following formula:
Risk score = (—0.1430* expression of SRD5A2) + (0.2223*expression of
IGF2BP2) + (0.2784* expression of ZSWIMS5) + (0.4081* expression of
PRKCD). As shown in Supplementary Figure S4, HCC tissues
exhibited decreased SRD5A2 expression levels (p < 0.01), while
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ZSWIMS5, PRKCD, and IGF2BP2 expression levels (p < 0.01) were
upregulated compared to adjacent tissues.

After the construction of m®Arisk score model, we performed
evaluation and validation analysis of the risk model. In the TCGA-
LIHC training dataset, 185 patients were divided into high m°®Arisk
score group (n=92) and low m®Arisk score group (n=93) using the
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median mC®Arisk score as the risk cutoff. As shown in Figures 4D, G,
individuals with elevated m®Arisk scores experienced notably shorter
overall survival (OS) times compared to those with lower m®Arisk
scores. The area under the curve (AUC) values for the m®Arisk scoring
model were 0.707, 0.689, and 0.663 for the 1-year, 3-year, and 5-year
OS periods, respectively. The predictive accuracy of the m®Arisk
scoring model was well validated in TCGA-LIHC internal validation
cohort, with AUC values of 0.733, 0.623, and 0.632 for 1-, 3-, and 5-
year OS, respectively (Figures 4E, H). In addition, we further verified
the predictive capacity of the m®Arisk scoring model in external
ICGC-LIRI-JP cohort (Figures 4F, I). As shown in Figure 4], a
significant difference in the distribution of m®Arisk scores was
observed between m°Acluster A and B. The risk scores of the
patients in m°Acluster B were substantially higher than those of the
patients in m®Acluster A. We also determined the relationship
between m°Arisk score and clinicopathological features of HCC
patients. HCC patients diagnosed with AJCC stages III-IV had
significantly higher m®Arisk scores than those diagnosed with stage
I-I (Figure 4K). Similarly, the m®Arisk score of patients who died was
significantly higher than that of patients who survived (Figure 4L).
These results indicate that the m®Arisk scoring model may serve as a
powerful indicator for the prognosis of liver cancer patients.

3.5 The m°®Arisk score significantly
correlates with tumor immune phenotypes
of HCC

Here, we investigated the existence of immune heterogeneity in
different m®Arisk score groups, and the association between the
m®Arisk score and various immune characteristics (expression of
immunomodulator and TIIC effector genes, immunotherapy-
related characteristics, and immune checkpoints). As shown in
Figure 5A, Supplementary Table S7, we first investigated the
infiltration level of Tumor infiltrates immune cells (TIICs) using
six independent algorithms. The result indicated that the m®Arisk
score was positively correlated with the infiltration level of CD8+ T
cells, dendritic cells, and macrophages under different algorithms
(Figure 5B; Supplementary Table S8). As expected, m®Arisk score
was also found to be positively correlated with the effector genes of
these TIICs (Supplementary Figures S5A, S5B). We also analyzed
the correlations between m°Arisk score and the immunotherapy
predicted pathways signatures (Supplementary Tables S9-S11). As
shown in Figures 5C, E, the m®Arisk score was positively correlated
with a majority of the immunotherapy predicted-related pathways,
including IFN-Gamma signature, base-excision repair, cell cycle,
Fanconi anemia pathway, p53 signaling pathway, MicroRNAs in
cancer, proteasome, and pyrimidine metabolism.

In addition, the activities of a portion of the cancer immunity
cycle were also found to be upregulated in the high-m®Arisk score
group, including the release of cancer cell antigens (Step 1) and
trafficking of immune cells to tumors (Step 4, mainly those that
exert antitumor immunity), such as CD8 T cell recruiting, NK cell
recruiting, and MDSC recruiting (Figure 5D, Supplementary Table
S12). The activities of the cancer immunity cycle are a direct
comprehensive performance of the functions of the chemokine
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system and other immunomodulators (25, 27). The elevated activity
of these steps might increase the infiltration levels of effector TIICs
in the TME. Interestingly, the activity of infiltration of immune cells
to tumors (Step 5) and recognition of cancer cells by T cells (Step 6)
was upregulated in the low-mC®Arisk score group. Moreover, the
correlation analysis indicated that m®Arisk score demonstrated a
predominantly positive correlation with the critical steps of cancer-
immunity cycle (Step 1 and Step 4) and the enrichment scores of
immunotherapy-predicted pathways gene signatures, including the
interferon-y signature, base-excision repair, cell cycle, DNA
replication, homologous recombination, the p53 signaling
pathway, and others (Figure 5E, Supplementary Table S11).

In addition, the enrichment scores for several immunosuppressive
oncogenic pathways (such as radiotherapy-predicted pathways and
EGFR ligands) were significantly higher in the high-m6Arisk group
(Figure 5F; Supplementary Tables S13, S14). Previous studies have
found that inhibiting these oncogenic pathways promoted the
formation of an inflamed tumor microenvironment (TME), thereby
reactivating cancer immunity. We also examined the relationship
between known biological signatures and the m®Arisk score through
Spearman analysis. A heatmap of the correlation matrix demonstrated
that the m®Arisk score was markedly positively correlated with the
immune activation process and DNA repair signatures (Figure 5G,
Supplementary Tables S15, S16). Consistently, a significant proportion
of immune checkpoint genes were observed to be highly expressed in
the high-risk score group within this study, such as CD27, CD28,
CD40, CTLA4, CD44, CD48, NRP1, CD276, LAG3, TNFSF4, PDCD1
(PD-1), and TIGIT (Figure 5H). Similarly, another heatmap was
drawn to show the mRNA expression profiles of immunomodulator
genes including chemokine, immune inhibitor, immune stimulator,
MHC, and receptor in two m°Arisk score groups (Supplementary
Figure S5C). The m°Arisk score positively correlated with the mRNA
expression profiles of immunomodulator genes. Most MHC
molecules were upregulated in the high-m®Arisk group, suggesting
that antigen presentation and processing capacity were upregulated in
the high-m®Arisk group. The chemokines, including CCL4, CCL5,
CCL8, CCL20, CCL26, CXCL1, CXCL3, CXCL5, CXCL9, CXCL11,
CXCL16, and paired receptors including CCRI, CCR5, CXCR3,
CXCR4, and CXCR6, were positively correlated with mCArisk score.
These chemokines and receptors promote the recruitment of effector
TIICs such as CD8+ T cells and antigen-presenting cells. However,
given the complex and diverse functions of the chemokine system,
although the relationship between m6Arisk score and individual
chemokines is not sufficient to clarify the overall immune effect of
m6Arisk in TME, it also reflects that the high score of m6Arisk is
closely related to the development of inflammatory TME to

some extent.

3.6 Genomic alterations between different
m°CArisk score groups

To give a hint of m6Arisk-related mechanisms for OS
classification of HCC from genomic layer, available somatic
mutations of the TCGA-LIHC dataset were acquired, and the
distribution differences in the high- and low-m6Arisk groups
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were analyzed by the package “maftools”. Figures 6A, B showed the
top 20 genes with the highest mutation frequencies in the two
mCArisk-score groups. The summary of the mutation information,
along with statistical calculations, is presented in Supplementary
Figures S6A, S6B. TP53 (35%) and TNN (26%) were the most
frequently mutated genes in the high- and low-m°Arisk patients,
respectively, with TP53 having the highest frequency. The Forest
plot (Figure 6C) illustrates genes with significant differences in
mutation frequency between the two mC®Arisk score groups,
including TP53, RB1, PCDHBI, SMCHDI1, ZC3H6, SPEG,
DNAHI17, SPAG17, and DOCK2. As TP53 was the most
frequently mutated gene, a lollipop diagram (Figure 6D) was
created to illustrate the specific mutation sites of TP53, with a
higher number of missense mutations observed in the high-m®Arisk
group. Furthermore, the associations of exclusivity and co-
occurrence across mutated genes from the high- and low-m°®Arisk
score groups are shown in Figure 6E, with green representing co-
occurrence and brown representing mutual exclusion. Here, the
tumor mutation burden (TMB) quantification results demonstrated
an elevated level in the high-m6Arisk group, although in a non-
significant mode (Supplementary Figure S6C), and HCC patients
with a lower TMB score presented a better overall survival (OS)
(Figure 6F). This finding suggests the presence of heterogeneity and
complexity among cancer patients, which is consistent with existing
literature reports (44). To further investigate, we categorized all
HCC patients into four subgroups based on TMB and m®Arisk
score: high-TMB and high-msArisk, low-TMB and high-mGArisk,
high-TMB and low-m°Arisk, and low-TMB and low-mCArisk.
Survival curves were plotted for each subgroup, and it was
observed that the high-TMB and high-m°®Arisk score group
exhibited the worst prognosis among them (Figure 6G). We then
assessed the potential correlation between the m°®Arisk score and
the cancer stem cell (CSC) index in HCC. As shown in Figure 6H, a
positive linear correlation between the m®Arisk score and CSC
index was observed (R = 0.14, P < 0.01). The results suggest that
HCC cells with a higher m®Arisk score may have more pronounced
stem cell properties and a lower degree of cell differentiation.

3.7 The m®Arisk score predicts therapeutic
responses in HCC

Here, we firstly estimated the T cell receptor (TCR) repertoire
for HCC patients and HCC patients (TCGA-LIHC cohorts) in the
high-m®Arisk score group exhibited a significantly higher TCR
richness and diversity, indicating that they possessed greater
tumor immune potential (Figure 7A). Besides, the Tumor
Inflammation Signature (TIS), an 18-gene index that measures
adaptive immune resistance within tumors, was utilized to
evaluate the immune potential of the two risk groups. As shown
in Figure 7B, patients in the two m®Arisk score groups exhibited a
non-significant TIS score, indicating no significant difference in
anti-tumor immune potential. Imunophenoscore (IPS) is a
recognized indicator of patients’ response to immunotherapy, and
no significant differences were observed between the two m°®Arisk

Frontiers in Immunology

10.3389/fimmu.2024.1374465

score groups, suggesting no difference in response to immune
checkpoint blockade (ICB) between the two groups (Figure 7C).
These results suggest that the m6Arisk score may not help identify
effective anti-tumor immunotherapy precision medicine therapies.
We subsequently investigated whether the m®Arisk score could
accurately guide precision treatments by assessing the differences in
anticancer drug sensitivity between the two m°Arisk score
subgroups, aiming to identify potential individualized therapy
modalities for LIHC patients. The IC50 values demonstrated that
LIHC patients with a lower m®Arisk score exhibited a higher
sensitivity to common chemotherapeutic drugs, including
vincristine, vinblastine, pevonedistat, paclitaxel, osimertinib,
navitoclax, docetaxel, vinorelbine, and 5-fluorouracil (Figure 7D).
Additionally, LIHC patients with lower m®Arisk score also showed
higher sensitivity to several targeted drugs, such as alpelisib,
bortezomib, cediranib, ibrutinib, axitinib, crizotinib, buparlisib,
dasatinib, and ruxolitinib (Figure 7E). In contrast, patients with a
high m®Arisk score exhibited relatively high sensitivity to the
chemotherapy drug mitoxantrone (Figure 7D) and the targeted
drug selumetinib (Figure 7E). These results demonstrate that the
m°®Arisk score may contribute to identifying effective antitumor
agents and precision medicine therapies for LIHC treatment.

3.8 Construction and validation of
a nomogram

To assess whether the m®Arisk scores predicting model was an
independent predictor in HCC (TCGA-LIHC cohorts), univariate
and multivariate Cox regression analyses were conducted. As shown
in Figures 8A, B, the HR of mC®Arisk scores in univariate and
multivariate analysis was 1.573 (95%CI: 1.314-1.883; p<0.001) and
1.485 (95%CI: 1.223-1.803; p<0.001), suggesting that m®Arisk scores
could be used as an independent prognostic indicator compared with
the other clinical features (age, gender, AJCC stage, and TNM stage).
To facilitate the clinical feasibility of the m®Arisk score, a nomogram
was constructed by integrating the m®Arisk score and
clinicopathological features to predict overall survival (OS) at 1-, 3-,
and 5- years. As shown in Figure 8C, the predictors included the
m®Arisk score and TNM stage, which had the greatest influence on
OS. We subsequently validated the predictive capability and accuracy
of this nomogram by concordance index (C-index), calibration curve,
and decision curve analysis (DCA). The C-index of the nomogram
was 0.680 (95% CI: 0.562-0.779) in the TCGA-LIHC cohort
(Figure 8D) and 0.733 (95% CI: 0.553-0.859) in external validation
cohort (Supplementary Figure S7A), indicating that the nomogram
had a relatively good discriminatory power. Similarly, the calibration
plots show an ideal consistency between the actual observations and
the nomogram predictions of the 1-, 3-, and 5-year OS in both the
TCGA-LIHC cohort and external validation cohort (Figure 8E,
Supplementary Figure S7B). The ROC analysis revealed that the
AUC values of the constructed nomogram for predicting 1-, 3-, and
5-year OS were 0.742, 0.704, and 0.713, respectively, further
demonstrating the predictive capability of the nomogram
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(Figures 8F-H). As showed in Figures 8I-K, nomogram
incorporating the m®Arisk model yielded a relatively better net
benefits than other clinical traits in predicting 1-, 3-, and 5-year OS
for HCC patients in the TCGA-LIHC cohort, suggesting that the
nomogram had a relatively good prognostic accuracy and clinical
applicability. The ROC and decision curve (DCA) analysis indicated
that the proposed nomogram had a similar performance in the
ICGC-LIRI-JP cohort (Supplementary Figures S7C-S7H).

Frontiers in Immunology

118

4 Discussion

Hepatocellular carcinoma (HCC) remains a major health
challenge with a growing incidence worldwide today,
characterized by high recurrence rates and heterogeneity (45).
The existing prognostic staging system still has some limitations
in evaluating clinical prognosis and individual treatment for HCC
patients. How to control its progression and improve the survival
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FIGURE 7
m°®Arisk score based prediction of treatment response. (A) TCR repertoire

analysis illustrating significantly higher levels of TCR richness and diversity

in the high-m°®Arisk score group based on the TCGA-LIHC cohort. (B) Comparison of TIS between the two distinct m®Arisk score groups based on
the TCGA-LIHC cohort. (C) IPS comparison of the high- and low- m®Arisk score groups based on the TCGA-LIHC cohort. (D) Boxplots depicting
differential sensitivities of common chemotherapeutic drugs between the two distinct m®Arisk score groups. (E) Differential sensitivities of common

molecular-targeted therapeutic drugs between the distinct m©®Arisk score

groups. *, P <0.05; *** P <0.001; ns, No significance.

rate of patients remains an urgent issue to be solved in the current
treatment of liver cancer. Accumulating evidence demonstrates that
hepatocellular carcinogenesis is regulated by complex genetic and
epigenetic mechanisms, and influenced by immune cell infiltration
and the tumor microenvironment (46-49). A study using whole-
genome and -exome sequencing analysis has shown that epigenetic
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regulation is the most unusual differential modifier in HCC. As the
most predominant epigenetic modification, RNA methylation
modification plays an indispensable and pleiotropic biological role
in malignant transformation and cancer progression. N°-
methyladenosine modification affects gene expression by
regulating RNA processing, decay, and translation, and abnormal
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Construction and validation of nomogram based on TCGA-LIHC dataset. (A, B) Univariate and multivariate Cox regression analysis for m6Arisk score,
respectively. (C) The established nomogram for predicting the 1-, 3-, and 5-year OS of HCC patients. The red arrow signifies an example to visualize
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operating curve.

expression of the m°A methylase complexes is strongly associated
with various human cancers (8, 50-52), including HCC.

Recent studies have shown the impact of m°A RNA
modification on various inflammatory development of cancer.

Frontiers in Immunology

Inflammation predisposes patients to cancer, especially affecting
the composition of the tumor microenvironment and the plasticity
of tumor cells, including surrounding stromal and inflammatory
cells (53). m°A dysregulation may lead to aberrant expression of
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oncogenic or the tumor-suppressive genes, contributing to HCC
initiation and progression. m°A dysregulation may also contribute
to epigenetic alterations in HCC cancer cells, and may affect cancer
stem cell potential, thereby impacting tumor growth and therapy
resistance (54). Besides, another study indicated that the
construction of polygenic risk prediction model based on m°A
related genes has good clinical predictive ability and accuracy in
predicting the survival and prognosis of glioma patients, and is an
independent risk factor for glioma. These results suggest that the
construction of polygenic risk prediction models based on m°A
associated genes has different potential in the stratification of cancer
prognosis and the development of new treatment strategies. Thus,
comprehensively investigating m®A modification in HCC and its
biological roles may facilitate improved prognostic predictions and
individual precise treatment modalities for HCC. In this study, we
identified two distinct m®A modification patterns in HCC, each
being associated with immunological properties, therapeutic
response, and prognoses. Finally, we further developed an
m®Arisk score model to quantify the m®Arisk subtype in HCC
patients and independently validated this model using the ICGC-
LIRI-JP cohorts.

In this study, we found that these m°A regulatory genes present
a tight and highly interconnected molecular interaction network,
which are mainly involved in mRNA stability, mRNA transport,
and mRNA metabolism. Analysis of copy number alterations
(CNA) and expression profiles revealed a significant abnormal
imbalance in the expression levels of m°A writers, readers, and
erasers between tumor and normal tissues. In theory, these
imbalances could lead to aberrant m®A modification patterns,
ultimately contributing to HCC formation and progression.
Furthermore, based on the expression profiles of 23 m°A
regulators, we identified two independent m°A modification
patterns in the TCGA-LIHC cohort using the consensus
unsupervised clustering algorithm. Subsequent survival analysis
revealed significantly worse prognoses for HCC patients in
m®Acluster B compared to those in m®Acluster A. Additionally,
we observed that cluster-specific DEGs were also associated with
cell cycle and metabolic pathways, as well as cancer-related
pathways, such as ECM-receptor interaction and p53 signaling
pathway. These findings provide further insights into the
potential biological mechanisms underlying the distinct m®A
modification patterns and their implications in HCC development
and progression.

Moreover, we identified modules significantly correlated with
clinical features and m°®Acluster subtypes in the subsequent
WGCNA based on TCGA-LIHC cohort. To screen potential
prognostic biomarkers, we performed three different algorithms
(LASSO, SVM-RFE and RF) on the above overlapping 343 DEGs.
We also developed a robust m®Arisk score model based on the
expression of four m°A-related genes. Our results indicated that the
mCArisk score performed well in predicting the prognoses of HCC
patients. Particularly, a high m°risk score was significantly
associated with poorer clinical outcomes and lower drug
sensitivity. In clinical practice, the TNM stage is a conventional
reference for evaluating clinical outcomes and treatment decisions.
Surprisingly, multi-Cox regression analysis further validated the
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superiority of the established m®Arisk score model in predicting OS
in HCC patients, independent of other clinical features such as age,
gender, and TMN stage. Finally, by integrating the m®Arisk score
and clinical features, we developed a quantitative nomogram that
enhances the clinical operability of m®Arisk score. The prognostic
model can be used for stratifying the prognosis of HCC patients and
provides new ideas for targeted therapies. Moreover, the patients in
the high- and low-mC®Arisk score groups presented distinct
clinicopathological features, mutation patterns, immune cell
infiltration and immune checkpoint characteristics.

With in-depth research on tumor immunology,
immunotherapy has emerged as a promising strategy for tumor
treatment. Immune checkpoint blockade (ICB) is currently the
most successful and common immunotherapy strategy (55, 56).
Currently, PD-1/PD-L1 monoclonal antibodies have become
important targeted therapeutic drugs for a variety of tumor
immunotherapy. Thus, the therapy immunotherapy strategies
targeting m6A methylation provide direction for a direction for
improving the therapeutic efficacy of immune checkpoint inhibits.
Previous studies have shown that epigenetic-based targeted
therapies and immunotherapies work better in clinical tries (57).
A study on HCC stem cells found that knockdown AMDI1 leaded
decreased FTO to regulate m6A methylation levels, which reduced
the resistance of HCC cells to sorafenib. They also verified the
specific inhibitor of AMD1 may be an effective alternative agent for
the treatment of HCC in combination with sorafenib (58). In a
similar study of lung cancer, targeting the m6A methylation
regulatory enzyme could inhibit cancer cell growth or increase
the sensitivity of anti-cancer drugs (59). In glioblastoma, reversing
temozolomide resistance conferred by m6A methylation could aid
in the development of new therapeutic interventions (60). Another
study showed that targeted m6A therapy mediated by knockdown
of ALKBHS5 expression participated in and promoted angiogenesis,
which may also play a role in HCC, providing a new avenue for
combined immunotherapy (61). Although clinical immunotherapy
(such as anti-PD-1, anti-PD-L1, and anti-CTLA-4) for HCC has
been widely used for HCC worldwide (62, 63), only a minority of
patients benefited from immunotherapy. Therefore, there is an
urgent need for more effective biomarkers to assess whether
patients with HCC benefit from tumor immunotherapy. In this
study, our findings indicated that high-m®Arisk group appeared to
coexist with high expression levels of common immune checkpoint
molecules (such as CTLA-4, PDCD1(PD-1), and TIGIT), indirectly
suggesting that m®Arisk score may be a better predictor of
immunotherapy in HCC patients. The upregulation of immune
checkpoints such as PD-L1/PD-1 is a critical characteristic of an
inflamed TME, which is driven by pre-infiltrating tumor infiltrating
immune cells (TIICs) (64). These immune checkpoints suppress
pre-existing cancer immunity to avoid an excessive immune
response, but also lead to immune evasion. Here, the expression
of immune checkpoints (such as CTLA-4, PDCD1(PD-1), and
TIGIT) was significantly upregulated in the high-m®Arisk group,
which might be attributed to the upregulation of pre-existing TIICs.
These results suggested that the HCC patients with high-m°Arisk
score were more sensitive to immune checkpoint blockade (ICB).
However, in this study, immunophenotypic scores (IPS) showed no
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significant difference in response to ICB between the two m°®Arisk
score groups. This might be due to the complexity and multiple
functions of the TME system, the relationship between m®Arisk and
individual immune checkpoints was insufficient to clarify the
overall immunological effect of m®Arisk in TME.

Moreover, we also observed a positive correlation of m®Arisk
score with the infiltration level of CD8" T cells under different
algorithms. A growing number of studies have evaluated the
contribution of cytotoxic cells, especially CD8" T cells. The cancer
immunity cycle represents the immune response of our body to
cancer. The activities of the cancer immunity cycle are a direct
reflection of the final effect of complex immunomodulatory
interactions in tumor microenvironment (TME). In this study, we
noted that m°®Arisk score presented a positive correlation with the
activities of a portion of the cancer immunity cycle. For example, the
release of cancer cell antigens (Step 1) and trafficking of immune
cells to tumors (Step 4, mainly those that exert antitumor immunity),
such as CD8 T cell recruiting, NK cell recruiting, and MDSC
recruiting, was significantly upregulated in the high-m®Arisk
group. Consequently, the infiltration levels of several effector
TIICs, such as CD8+ T cells, dendritic cells, and macrophages,
were also significantly increased in the high-m®Arisk group, which
had been validated in six different algorithms. Therefore, the high
m®Arisk-score reflected an inflammatory phenotype in TME.
Meanwhile, m®Arisk score was positively correlated with the
enrichment scores of immunotherapy-predicted pathways.

Besides, our findings further indicated that HCC patients with a
high m®Arisk score were more sensitive to some common
chemotherapy and molecular-targeted drugs, suggesting that the
m®Arisk score might contribute to guiding personalized treatment
for patients. However, the drug mechanisms and their effects on
HCC progression need to be further studied. Additionally, we
developed a nomogram model by incorporating the m®Arisk
score and clinicopathological features, and further validated and
evaluated the predictive capability and accuracy of this model in
external verification cohort. These results suggested that the
application of the m®Arisk score for the prognostic stratification
of HCC has good clinical applicability and clinical net benefit.

Finally, it’s worth noting that despite its intriguing and
promising findings, this study has several limitations. First, this
study is a retrospective study based on public online databases
(TCGA-LIHC and ICGC-LIRI-JP), which may have inherent
selection bias. Second, although our results were generalized and
robust in validation cohorts, the batch effects from different cohorts
should be considered. Third, although we highlighted the predictive
power of m®Arisk scores for HCC TME status and prognosis, we
did not identify the molecular mechanisms involved.

5 Conclusion

In our study, our findings reveal the crucial role of m°A
modification patterns for predicting HCC TME status and
prognosis, and highlight the good clinical applicability and net
benefit of m®Arisk score in terms of prognosis, immunophenotype,
and drug therapy in HCC patients.

Frontiers in Immunology

10.3389/fimmu.2024.1374465

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author/s.

Ethics statement

Twenty-eight pairs of fresh-frozen tissues (HCC tissues and
adjacent tissues) were collected from the Zhongnan Hospital of
Wuhan University and approved by the ethics committee
(Approval Number 2017058). Written informed consent was
obtained from all the participants. The studies were conducted in
accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

SX: Data curation, Investigation, Methodology, Software,
Visualization, Writing — original draft, Writing - review & editing.
YZ: Methodology, Validation, Writing - review & editing. YY:
Methodology, Validation, Writing - review & editing. KD:
Methodology, Validation, Software, Writing - review & editing.
HZ: Methodology, Software, Validation, Writing - review & editing.
CL: Methodology, Writing - review & editing. S-ML:
Conceptualization, Funding acquisition, Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Natural Science Foundation of
China (81772276) and Hubei Provincial Natural Science Fund for
Creative Research Groups (2019CFA018).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.
1374465/full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1374465/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1374465/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

References

1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al.
Hepatocellular carcinoma. Nat Rev Dis Primers. (2021) 7:6. doi: 10.1038/s41572-020-
00240-3

2. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer
and possible treatment approaches. Biochim Biophys Acta Rev Cancer. (2020)
1873:188314. doi: 10.1016/j.bbcan.2019.188314

3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the
tumor microenvironment. Cancer Cell. (2012) 21:309-22. doi: 10.1016/j.ccr.2012.02.022

4. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment
heterogeneity on therapeutic response. Nature. (2013) 501:346-54. doi: 10.1038/
naturel2626

5. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a
critical regulator of cancer progression and metastasis. Nat Cell Biol. (2014) 16:717-27.
doi: 10.1038/ncb3015

6. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell.
(2010) 140:883-99. doi: 10.1016/j.cell.2010.01.025

7. Fu Y, Dominissini D, Rechavi G, He. C. Gene expression regulation mediated
through reversible m(6)A RNA methylation. Nat Rev Genet. (2014) 15:293-306.
doi: 10.1038/nrg3724

8. Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell
Biol. (2019) 21:552-9. doi: 10.1038/s41556-019-0319-0

9. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. (2002)
16:6-21. doi: 10.1101/gad.947102

10. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen. J, et al. METTL3-mediated m
(6)A modification of HDGF mRNA promotes gastric cancer progression and has
prognostic significance. Gut. (2020) 69:1193-205. doi: 10.1136/gutjnl-2019-319639

11. Hou J, Zhang H, Liu ], Zhao Z, Wang J, Lu. Z, et al. YTHDF2 reduction fuels
inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer.
(2019) 18:163. doi: 10.1186/s12943-019-1082-3

12. Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo. Y, et al. Mettl14 inhibits bladder TIC
self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Mol
Cancer. (2019) 18:168. doi: 10.1186/s12943-019-1084-1

13. Yan F, Al-Kali A, Zhang Z, Liu J, Pang ], Zhao. N, et al. A dynamic N(6)-
methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine
kinase inhibitors. Cell Res. (2018) 28:1062-76. doi: 10.1038/s41422-018-0097-4

14. Han SH, Choe J. Diverse molecular functions of m(6)A mRNA modification in
cancer. Exp Mol Med. (2020) 52:738-49. doi: 10.1038/s12276-020-0432-y

15. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in
Cancer progression. Mol Cancer. (2020) 19:88. doi: 10.1186/s12943-020-01204-7

16. Zhao Y, Shi Y, Shen H, Xie W. m(6)A-binding proteins: the emerging crucial
performers in epigenetics. ] Hematol Oncol. (2020) 13:35. doi: 10.1186/513045-020-00872-8

17. Seiler M, Huang CC, Szalma S, Bhanot G. ConsensusCluster: a software tool for
unsupervised cluster discovery in numerical data. OMICS. (2010) 14:109-13.
doi: 10.1089/0mi.2009.0083

18. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572-3.
doi: 10.1093/bioinformatics/btq170

19. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

20. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

21. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. (2015)
1:417-25. doi: 10.1016/j.cels.2015.12.004

22. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenet. (2019)
11:123. doi: 10.1186/s13148-019-0730-1

23. Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and
visualization of the most relevant features through non-linear kernels. BMC Bioinf.
(2018) 19:432. doi: 10.1186/s12859-018-2451-4

24. Qiu ], Peng B, Tang Y, Qian Y, Guo P, Li M, et al. CpG methylation signature
predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter
study. J Clin Oncol. (2017) 35:734-42. doi: 10.1200/JCO.2016.68.2153

25. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle.
Immunity. (2013) 39:1-10. doi: 10.1016/j.immuni.2013.07.012

26. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248-62. doi: 10.1016/j.celrep.2016.12.019

27. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575-80.
doi: 10.1158/0008-5472.CAN-18-0689

Frontiers in Immunology

10.3389/fimmu.2024.1374465

28. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453-7. doi: 10.1038/nmeth.3337

29. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

30. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34.
doi: 10.1186/513073-019-0638-6

31. LiT, FuJ, Zeng Z, Cohen D, Li ], Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res. (2020) 48:W509-W14. doi: 10.1093/nar/
gkaad07

32. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/5s13059-017-1349-1

33. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an
integrated repository portal for tumor-immune system interactions. Bioinformatics.
(2019) 35:4200-2. doi: 10.1093/bioinformatics/btz210

34. Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust
prediction of response to immune checkpoint blockade therapy in metastatic
melanoma. Nat Med. (2018) 24:1545-9. doi: 10.1038/s41591-018-0157-9

35. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747-56.
doi: 10.1101/gr.239244.118

36. Sayaman RW, Saad M, Thorsson V, Hu D, Hendrickx W, Roelands J, et al.
Germline genetic contribution to the immune landscape of cancer. Immunity. (2021)
54:367-86.€8. doi: 10.1016/j.immuni.2021.01.011

37. Han Y, Li H, Guan Y, Huang J. Immune repertoire: A potential biomarker and
therapeutic for hepatocellular carcinoma. Cancer Lett. (2016) 379:206-12. doi: 10.1016/
j.canlet.2015.06.022

38. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan-cancer
adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS):
results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. (2018) 6:63.
doi: 10.1186/s40425-018-0367-1

39. Tan L, Qin Y, Xie R, Xia T, Duan X, Peng L, et al. N6-methyladenosine-
associated prognostic pseudogenes contribute to predicting immunotherapy benefits
and therapeutic agents in head and neck squamous cell carcinoma. Theranostics. (2022)
12:7267-88. doi: 10.7150/thno.76689

40. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform. (2021) 22(6):bbab260. doi: 10.1093/bib/bbab260

41. Tasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a
nomogram for cancer prognosis. J Clin Oncol. (2008) 26:1364-70. doi: 10.1200/
JCO.2007.12.9791

42. Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA. (2015)
313:409-10. doi: 10.1001/jama.2015.37

43. Kerr KF, Brown MD, Zhu K, Janes H. Assessing the clinical impact of risk
prediction models with decision curves: guidance for correct interpretation and
appropriate use. J Clin Oncol. (2016) 34:2534-40. doi: 10.1200/JC0O.2015.65.5654

44. Zhang Y, Yang Z, Tang Y, Guo C, Lin D, Cheng L, et al. Hallmark guided
identification and characterization of a novel immune-relevant signature for
prognostication of recurrence in stage I-III lung adenocarcinoma. Genes Dis. (2022)
10(4):1657-74. doi: 10.1016/j.gendis.2022.07.005

45. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al.
Hepatocellular carcinoma. Nat Rev Dis Primers. (2016) 2:16018. doi: 10.1038/
nrdp.2016.18

46. Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S,
et al. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer
Res. (2022) 41:107. doi: 10.1186/s13046-022-02297-2

47. Ozen C, Yildiz G, Dagcan AT, Cevik D, Ors A, Keles U, et al. Genetics and
epigenetics of liver cancer. N Biotechnol. (2013) 30:381-4. doi: 10.1016/
j.nbt.2013.01.007

48. Pea A, Jamieson NB, Braconi C. Biology and clinical application of regulatory
RNAs in hepatocellular carcinoma. Hepatology. (2021) 73 Suppl 1:38-48. doi: 10.1002/
hep.31225

49. Han TS, Ban HS, Hur K, Cho HS. The epigenetic regulation of HCC metastasis.
Int ] Mol Sci. (2018) 19(12):3978. doi: 10.3390/ijms19123978

50. Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer
stem cell fate decisions. Mol Cancer. (2020) 19(1):38. doi: 10.1186/s12943-020-01166-w

51. YangS, WeiJ, Cui YH, Park G, Shah P, Deng Y, et al. m(6)A mRNA demethylase
FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat
Commun. (2019) 10:2782. doi: 10.1038/541467-019-10669-0

frontiersin.org


https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1016/j.bbcan.2019.188314
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1038/nature12626
https://doi.org/10.1038/nature12626
https://doi.org/10.1038/ncb3015
https://doi.org/10.1016/j.cell.2010.01.025
https://doi.org/10.1038/nrg3724
https://doi.org/10.1038/s41556-019-0319-0
https://doi.org/10.1101/gad.947102
https://doi.org/10.1136/gutjnl-2019-319639
https://doi.org/10.1186/s12943-019-1082-3
https://doi.org/10.1186/s12943-019-1084-1
https://doi.org/10.1038/s41422-018-0097-4
https://doi.org/10.1038/s12276-020-0432-y
https://doi.org/10.1186/s12943-020-01204-7
https://doi.org/10.1186/s13045-020-00872-8
https://doi.org/10.1089/omi.2009.0083
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1186/s12859-018-2451-4
https://doi.org/10.1200/JCO.2016.68.2153
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/bioinformatics/btz210
https://doi.org/10.1038/s41591-018-0157-9
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.immuni.2021.01.011
https://doi.org/10.1016/j.canlet.2015.06.022
https://doi.org/10.1016/j.canlet.2015.06.022
https://doi.org/10.1186/s40425-018-0367-1
https://doi.org/10.7150/thno.76689
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1001/jama.2015.37
https://doi.org/10.1200/JCO.2015.65.5654
https://doi.org/10.1016/j.gendis.2022.07.005
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1038/nrdp.2016.18
https://doi.org/10.1186/s13046-022-02297-2
https://doi.org/10.1016/j.nbt.2013.01.007
https://doi.org/10.1016/j.nbt.2013.01.007
https://doi.org/10.1002/hep.31225
https://doi.org/10.1002/hep.31225
https://doi.org/10.3390/ijms19123978
https://doi.org/10.1186/s12943-020-01166-w
https://doi.org/10.1038/s41467-019-10669-0
https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

52. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer.
(2020) 20:303-22. doi: 10.1038/s41568-020-0253-2

53. Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, et al. Targeting epigenetic
regulators for inflammation: Mechanisms and intervention therapy. MedComm (2020).
(2022) 3:173. doi: 10.1002/mc02.173

54. Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic
targets. Mol BioMed. (2023) 4:25. doi: 10.1186/s43556-023-00139-x

55. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for
cancer immunotherapy. Science. (2020) 367. doi: 10.1126/science.aax0182

56. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.
Science. (2018) 359:1350-5. doi: 10.1126/science.aar4060

57. Cheng Y, Zhang T, Xu Q. Therapeutic advances in non-small cell lung cancer:
Focus on clinical development of targeted therapy and immunotherapy. MedComm
(2020). (2021) 2:692-729. doi: 10.1002/mc02.105

58. Bian X, Shi D, Xing K, Zhou H, Lu L, Yu D, et al. AMDI1 upregulates
hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation.
Clin Transl Med. (2021) 11:e352. doi: 10.1002/ctm2.352

Frontiers in Immunology

124

10.3389/fimmu.2024.1374465

59. Khan RIN, Malla WA. m6A modification of RNA and its role in cancer, with a special
focus on lung cancer. Genomics. (2021) 113:2860-9. doi: 10.1016/j.ygeno.2021.06.013

60. Li F, Chen S, Yu J, Gao Z, Sun Z, Yi Y, et al. Interplay of mé A and histone
modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med.
(2021) 11:e553. doi: 10.1002/ctm?2.553

61. Zhao Y, Hu J, Sun X, Yang K, Yang L, Kong L, et al. Loss of m6A demethylase
ALKBH5 promotes post-ischemic angiogenesis via post-transcriptional stabilization of
WNT5A. Clin Transl Med. (2021) 11:e402. doi: 10.1002/ctm?2.402

62. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, et al. Application of PD-1
blockade in cancer immunotherapy. Comput Struct Biotechnol J. (2019) 17:661-74.
doi: 10.1016/j.csbj.2019.03.006

63. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy for
hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. (2021) 18:525-43.
doi: 10.1038/s41575-021-00438-0

64. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation
of PD-LI, IDO, and T(regs) in the melanoma tumor microenvironment is driven by
CD8(+) T cells. Sci Transl Med. (2013) 5:200ral16. doi: 10.1126/scitranslmed.3006504

frontiersin.org


https://doi.org/10.1038/s41568-020-0253-2
https://doi.org/10.1002/mco2.173
https://doi.org/10.1186/s43556-023-00139-x
https://doi.org/10.1126/science.aax0182
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1002/mco2.105
https://doi.org/10.1002/ctm2.352
https://doi.org/10.1016/j.ygeno.2021.06.013
https://doi.org/10.1002/ctm2.553
https://doi.org/10.1002/ctm2.402
https://doi.org/10.1016/j.csbj.2019.03.006
https://doi.org/10.1038/s41575-021-00438-0
https://doi.org/10.1126/scitranslmed.3006504
https://doi.org/10.3389/fimmu.2024.1374465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

8 frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Susan (krum) Miranda,

University of Tennessee Health Science
Center (UTHSC), United States

REVIEWED BY

Meng Jia,

University of Pennsylvania, United States
Jeong A Park,

Inha University Hospital, Republic of Korea

*CORRESPONDENCE
Si-shan Bian

sdszyybss@163.com

RECEIVED 25 April 2024
accepTeD 07 November 2024
PUBLISHED 25 November 2024

CITATION

Wu A, Yang Z-k, Kong P, Yu P, Li Y-t, Xu J-,
Bian S-s and Teng J-w (2024) Exploring
osteosarcoma based on the

tumor microenvironment.

Front. Immunol. 15:1423194.

doi: 10.3389/fimmu.2024.1423194

COPYRIGHT

© 2024 Wu, Yang, Kong, Yu, Li, Xu, Bian and
Teng. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 25 November 2024
po110.3389/fimmu.2024.1423194

Exploring osteosarcoma based
on the tumor microenvironment

1 H H 2 3 1 1

Ao Wu-, Zhi-kai Yang®, Peng Kong~”, Peng Yu-, You-tong Li-,

. 1 . - 4* . 4
Jia-le Xu", Si-shan Bian™ and Jia-wen Teng
The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan,
Shandong, China, ?Hand and Foot Orthopaedic Department, Changle County People’s Hospital,
Weifang, Shandong, China, *Department of Minimally Invasive Orthopedics, Affiliated Hospital of
Shandong Traditional Chinese Medicine University, Jinan, Shandong, China, “Department of

Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese
Medicine, Jinan, Shandong, China

Osteosarcoma is a cancerous bone tumor that develops from mesenchymal cells
and is characterized by early metastasis, easy drug resistance, high disability, and
mortality. Immunological characteristics of the tumor microenvironment (TME)
have attracted attention for the prognosis and treatment of osteosarcoma, and
there is a need to explore a signature with high sensitivity for prognosis. In the
present study, a total of 84 samples of osteosarcoma were acquired from the
UCSC Xena database, analyzed for immune infiltration and classified into two
categories depending on their immune properties, and then screened for DEGs
between the two groups and analyzed for enrichment, with the majority of DEGs
enriched in the immune domain. To further analyze theirimmune characteristics,
the immune-related genes were obtained from the TIMER database. We
performed an intersection analysis to identify immune-related differentially
expressed genes (IR-DEGs), which were analyzed using a univariate COX
regression, and LASSO analysis was used to obtain the ideal genes to construct
the risk model, and to uncover the prognostic distinctions between high-risk
scoring group and low-risk scoring group, a survival analysis was conducted. The
risk assessment model developed in this study revealed a notable variation in
survival analysis outcomes between the high-risk and low-risk scoring groups,
and the conclusions reached by the model are consistent with the findings of
previous scholars. They also yield meaningful results when analyzing immune
checkpoints. The risk assessment model developed in this study is precise and
dependable for forecasting outcomes and analyzing characteristics
of osteosarcoma.

KEYWORDS

osteosarcoma, tumor microenvironment, immune-related genes, immunotherapy,
immunization checkpoints
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1 Introduction

Osteosarcoma(OS) originates from bone tissue and is a
malignant tumor with local invasion and rapid infiltrative
metastasis, prevalent in children and adolescents (1, 2).
Osteosarcoma has a high disability rate. Currently, surgery
combined with chemotherapy is the universal treatment for
osteosarcoma, but the survival rate of patients after 5 years is still
relatively poor (3). Consequently, there is a pressing requirement to
develop novel evaluation methods to enhance the effectiveness of
treatment. Immunotherapy has emerged as the most promising
treatment in the past few decades.

The immune system plays a role in every phase of tumor
formation and advancement. Thus, dysfunction in the immune
system plays a significant role in the onset of tumors. When the
immune system interplays with the tumor microenvironment, the T
cells associated with the anti-tumor immune response will be
activated, and they will up-regulate the expression of various
inhibitory receptors on their cell surfaces and bind to the
corresponding ligands expressed on the exterior of the tumor
cells, resulting in the suppression of the immune response, i.e.,
the intensity of the anti-tumor immune response will be weakened,
and ultimately, the tumor cells will be able to achieve immune
escape. The goal of immune checkpoint blockade (ICB) therapy is
to enhance the functionality of T cells by disrupting the interaction
between these receptors and their ligands, thereby enabling more
efficient eradication of cancer cells through the immune system. An
increasing body of clinical research has shown the efficacy of
immune checkpoint blockade (ICB) therapy in the treatment of
many kinds of tumor types (4-6). These trials have facilitated the
study of the osteosarcoma tumor microenvironment(TME). TME
and tumor clinical presentation, prognosis, and response to
immunotherapy are closely related (7, 8), and TME is considered
a key factor in OS progression (9). Enhanced comprehension of the
immune system’s role in osteosarcoma and the tumor
microenvironment (TME) contributes to the advancement of
immunotherapy for this condition.

In this study, osteosarcoma samples were obtained from an
online database and the samples were immuno-scored, divided into
two groups, and analyzed for further analysis of immune-related
differential genes between the two groups. A comprehensive
immune profile was constructed based on the correlation between
the expression levels, prognostic value, and immune infiltration
levels of these genes. This study may assist in immunological
precision therapy.

2 Materials and methods
2.1 Data acquisition

TARGET-OS fragment per kilobase of transcript per million
mapped reads (FPKM) values (https://gdc-hub.s3.us-east-

1.amazonaws.com/download/TARGET-OS htseq_fpkm.tsv.gz) was
obtained from UCSC Xena web platform(https://xenabrowser.net/
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datapages/) for downstream analysis, and Counts values(https://
gdc-hub.s3.us-east-1.amazonaws.com/download/TARGET-
OS.htseq_counts.tsv.gz) were obtained for differential analysis.
Eighty-eight osteosarcoma samples were initially retrieved from
the UCSC Xena web platform; samples with no or incomplete
clinical information were excluded, for a total of 84 osteosarcoma
samples. The clinical characteristics of 84 patients with
osteosarcoma are shown in Supplementary Table S1. In addition,
we obtained the set of immune-related genes from the TIMER
database for subsequent analyses(Supplementary Table S2). The
somatic mutation data and the copy number variation (CNV)
profile were obtained from TCGA (https://portal.gdc.cancer.gov/).

2.2 Immune assessment, clustering, and
comparison of immune properties

The tumor samples were scored using the ESTIMATE algorithm
to obtain StromalScore, ImmuneScore, ESTIMATEScore, and
TumorPurity (10), and the samples were divided into two groups,
named high and low, based on the average of the above four data sets.
Survival analysis was conducted to investigate the correlation between
the four parameters and overall survival (OS).

Subsequently, the abundance of 30 immune cells in the tumor
samples was assessed using the ssGSEA algorithm (11), and the
tumor samples were consistently clustered to obtain immune
subtype groupings. An examination was conducted to explore
variations in various attributes among clinical phenotypes. Clinical
characteristics, including gender, age, survival time, survival status,
whether metastatic or not, and previously obtained immune subtype
groupings, were visualized using a heatmap, and a box plot was
created to assess the levels of immune infiltration among different
immune subtypes. In addition, box plots of the four scores obtained
from the previous ESTIMATE algorithm were compared according
to the immune subtype groupings. To assess the tumor mutational
burden (TMB), we examined the total count of unique genes without
synonymous somatic mutations per megabase (Mb) in each sample.
Truncating mutations comprised frame-shift deletions or insertions,
nonsense mutations, and splice-site mutations. In addition, non-
truncating mutations encompass in-frame deletions or insertions,
missense mutations, and nonstop mutations. We identified
mutational differences between the two groups based on
immunological grouping. Subsequently, differently expressed genes
(DEGs) were identified through comparative analysis of immune
subtype classifications utilizing the limma package in R software
version 4.3.2, with a significance threshold set at P<0.05 and |logFC]|
>1. Volcano plots were generated to visualize differentially expressed
genes (DEGs), which were further subjected to gene ontology (GO)
function annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. Pathway differences between immune
subtypes were analyzed using GSEA. GO and KEGG analyses were
obtained from the DAVID Database (https://david.ncifcrf.gov/) and
then visualized using the R software ggplot2 package, and GSEA
results were analyzed using the R software clusterProfiler package
and the GseaVis package.
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2.3 Assessment of immune-related DEGs

Immune-related differentially expressed genes (IR-DEGs) were
identified by intersecting differentially expressed genes (DEGs) with
immune-related genes. The IR-DEGs were imported into the
STRING platform for protein-protein interaction (PPI) analysis,
and the IR-DEGs were analyzed for their functions using GO
functional annotation and KEGG pathway analysis. The
intersecting genes were also analyzed for GSEA enrichment using
the above methods. Finally, the MCC algorithm in Cytoscape
software version 3.10.1 was used to obtain the top ten genes.
Next, we explored the overall survival and immune infiltration
among various immune subtypes based on the top ten genes.

2.4 Risk model construction

By setting the significance level at P < 0.05, the univariate Cox
regression analysis was conducted to explore the IR-DEGs and identify
genes related to survival outcomes. Next, the study utilized Least
Absolute Shrinkage and Selection Operator (LASSO) estimation for
survival modeling of genes showing significant correlations with
survival to identify potential candidate genes. Following this, the
sample’s risk score was computed based on the selected candidate
gene. The samples are divided into training sets and test sets on average.
The grouping is strictly randomly followed, and there is no statistical
difference between the two groups. Calculate the prognosis of the
training set, test set, and all groups, and present with the ROC curve.

2.5 Prognosis of features

We first assessed tumor immune escape and immune checkpoint
blockade responses using the Tumor Immune Dysfunction and
Exclusion (TIDE) online website (http://tide.dfci.harvard.edu/),
followed by risk scoring to divide the sample into a high-risk
scoring group and a low-risk scoring group, and then TIDE
values were calculated between the two groups, with higher TIDE
scores associated with poorer immune checkpoint blockade
therapy. The differences in immune checkpoint-related genes
between the two groups were subsequently calculated and
represented by a scatter plot. The samples were categorized based
on the high and low levels of candidate genes, and then the disparity
in immune checkpoint-related genes was computed between the
two sets. This dissimilarity was visually depicted through a scatter
plot to investigate the potential connection between the candidate
genes and immune checkpoint genes. The immune infiltration of all
samples was calculated using CIBERSORT to screen for differential
immune cells between the high-risk scoring group and the low-risk
scoring group, and the expression of candidate genes in the differential
immune cells was calculated. MicroenvironmentScore was calculated
for all samples using the xCell (https://xcell.ucsf.edu/) online site.
Differences in MicroenvironmentScore between the high-risk
scoring group and the low-risk scoring group were calculated and
visualized in a boxplot.
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3 Results

3.1 A holistic landscape of
immunological features

Based on the tumor stroma and immune characteristics of
osteosarcoma, the acquired osteosarcoma samples were analyzed
using the ESTIMATE algorithm to reveal the level of immune
infiltration of tumor samples in osteosarcoma. StromalScore,
ImmuneScore, ESTIMATEScore, and TumorPurity were calculated
and analyzed in the tumor samples (Supplementary Table S3). The
scores were grouped according to their median (median of
StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity
were 488.57, 424.86, 1095.16, and 0.72 in that order), and were
named as high and low groupings, respectively. These scores reflect
the different compositions of the tumor microenvironment, assessing
the degree of stromal and immune cell infiltration, and by grouping
them, it is possible to understand the biology of the tumor better and
to explore its relationship with tumor prognosis by performing a
Kaplan-Meier curve analysis based on survival time and status
(Figures 1A-D). In StromalScore, ImmuneScore, and
ESTIMATEScore, high grouping was significantly associated with
high survival, while low TumorPurity was associated with high
survival. Of these, ImmuneScore was most significantly associated
with survival. The data obtained from the above suggests that
osteosarcoma can be analyzed prognostically based on
ImmuneScore, followed by ssGSEA analysis.

The impact of immunity on osteosarcoma was explored using
ssGSEA (Supplementary Table S4). Subsequently, unsupervised
clustering was performed on the ssGSEA results, and the number
of clusters with the highest average within-group concordance was
2 (Figure 2B). Therefore, based on their immune characteristics, the
samples were categorized into two groups, and the 30 immune cells
were subsequently displayed along with clinical characteristics
including gender, age, survival time, survival status, and whether
the tumor has metastasized or not (Figure 2A). There are noticeable
variations in immunological features observed between the
clustered groups. Groups with rich immune profiles were named
high immune groups, therefore, groups with lower immune profiles
were named low immune groups (Supplementary Table S5).
Tumour metastasis was more frequent in the low-immunity
group than in the high-immunity group. To further investigate
the relationship between immune groupings and the levels of TME,
immune activation, and tumor cell infiltration, several analyses of
osteosarcoma TME were performed. As expected, StromalScore,
ImmuneScore, and ESTIMATEScore were higher and TumorPurity
was lower in the hyperimmune group (Figures 2C-F), suggesting
that the hyperimmune group was associated with higher survival.
Immune checkpoints and immune cell abundance were also
significantly higher in the hyperimmune group (Figure 2G).
Subsequent Principal Component Analysis (PCA) was performed
and the immune characteristics differed significantly between
the two groups (Figure 2H), therefore, we hypothesized that the
immune groupings found above could well distinguish the immune
and genetic characteristics of the samples.
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The ESTIMATE algorithm was utilized to conduct survival analysis on patient groups categorized based on high and low immune scores, and the
results were visually represented through Kaplan-Meier (K-M) curves. (A) ESTIMATE score, (B) Tumor purity score, (C) Stromal score, and

(D) Immune score.

3.2 Mutation analysis

The analysis of gene mutations revealed a notably elevated
mutation rate in the low immunity group, with TP53 being
identified as the gene exhibiting the highest frequency of
mutations (Figure 3A). Tumor Mutation Burden (TMB) analysis
was carried out (Supplementary Table S6) and visualized using
scatter plots (Figure 3B). Following this, an analysis of TMB in the
high and low-immunity cohorts demonstrated a variation in TMB
levels between the two groups, with TMB showing an elevation in
the low-immunity cohort (Figure 3C). We hypothesized that this
may be related to the poorer prognosis of the low-immunity group.

3.3 Screening and evaluation of
differentially expressed genes

The examination of gene expression variations between

immune subtypes identified a pool of 836 differentially expressed
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genes for subsequent scrutiny (Supplementary Table S7), with 697
genes showing up-regulation (83.37%) and 139 genes
demonstrating down-regulation (16.63%) (Figure 4A).
Enrichment analyses of DEGs by GO annotation and KEGG
pathway enrichment analyses identified 497 biological processes
(BPs), 94 cell components (CCs), 118 molecular functions (MFs),
and 69 KEGG pathways (Figures 4C, D). The DEGs were also
analyzed for GSEA enrichment (Figure 4B).

As shown in the figure, the top ten biological processes were
filtered according to P-value, most of which were related to immunity,
including immune response, inflammatory response, innate immune
response, neutrophil chemotaxis, and adaptive immune response. In
addition, KEGG pathways are also related to immunity, including
Phagosome, Antigen processing and presentation, B cell receptor
signaling pathway Th17 cell differentiation, etc. In summary, DEGs
and immunity are closely related, subsequently, GSEA enrichment
analysis of DEGs was performed to further investigate the pathway
differences between immune subtypes, based on P<0.05, a total of 47
enriched pathways were obtained, and the top ten were Tuberculosis
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(NES=3.11,p.value=6.73E-10) in order, Leishmaniasis (NES=3.01,
p.value=3.03E-09), Staphylococcus aureus infection
(NES=3.01,p.value=7.05E-09), Th17 cell differentiation (NES=2.90,
p-value=4.69E-08), Th1l and Th2 cell differentiation (NES=2.82,
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p.value=1.13E-07), Hematopoietic cell lineage (NES=2.72,
p-value=5.33E-07), Influenza A (NES=2.71,p.value=4.87E-07),
Systemic lupus erythematosus (NES=2.60,p.value=1.83E-06),
Phagosome (NES=2.66,p.value=2.21E-06) and Neutrophil
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FIGURE 2

Immune subtype identification and comparative analysis. The symbols * represent p-values less than 0.05, ** represent p-values less than 0.01,

*** represent p-values less than 0.001, **** represent p-values less than 0.0001. (A) ssGSEA analyses of 84 samples, divided into two groups based
on 30 ssGSEA scores per sample. (B) Unsupervised clustering of the samples based on their immunological characteristics, where the number of
clusters with the highest average within-group agreement is 2. (C—F) shows, in order, the differences in ESTIMATEScore, ImmuneScore,
StromalScore, and TumorPurity between the high and low immunity groups. (G) A box plot is utilized to display the levels of immune cell infiltration
in groups categorized as either having high or low immunity. In this visualization, the red boxes correspond to the high immunity group, while the
blue boxes correspond to the low immunity group. (H) PCA analysis of the two immune subtypes, with purple and yellow dots representing the
immunity—high and —low groups, respectively. "'ns" stands for no statistical difference.
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Enrichment analysis was conducted on the DEGs identified in the two immune subtypes. (A) Volcano diagram showing the regulation of DEG
expression, with green, grey, and red dots representing down-regulation, unregulation, and up-regulation, respectively. (B) Bubble diagram showing
the top ten pathways according to Gene Set Enrichment Analysis (GSEA). (C) Bubble plots showing the top 10 enriched GO BP, CC, and MF.

(D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing the number of enrichments.
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extracellular trap formation (NES=2.46,p.value=9.22E-06). These  online database to obtain the protein-protein interaction network
findings imply that the activation of the immune system in the  (Figure 5B). The IR-DEGs were subjected to GO annotation and
tumor microenvironment is implicated in the development KEGG pathway enrichment analyses (Figures 5C, D), resulting in
of osteosarcoma. 418 BP, 57 CC, 57 MF, and 69 KEGG pathways. These IR-DEGs
were mainly enriched in biological pathways such as immune

response, inflammatory response, and adaptive immune response.

3.4 Screening and Evaluation of IR-DEGs Among KEGG-enriched pathways, the top five were Cytokine-
cytokine receptor interaction, Viral protein interaction with

From the TIMER database, 1811 immune-related genes were  cytokine and cytokine receptor, Rheumatoid arthritis, Chemokine
obtained, and these genes intersected with DEGs to obtain 221 IR-  signaling pathway and Graft-versus-host disease. GSEA enrichment
DEGs (Figure 5A). The IR-DEGs were entered into the STRING  analyses were also performed for IR-DEGs (Figure 5E). Their top

IRGs
activated p.adjust
Th17 cell differentiation | 00
Th1 and Th2 cell differentiation [ ) 0.03
Staphylococcus aureus infection . 0.02
Leishmaniasis 1 [ ) 0.01 -
Tuberculosis .
Influenza A { ] Count
Hematopoietic cell lineage ® 16
Human T-cell leukemia virus 1 infection . ®
Epstein-Barr virus infection{ @ . 2
0=
Phagosome {@) ® =
18 20 22 24
NES @
C immune response [) D
inflammatory response [ ) - L . "
chemokine-mediated signaling pathway ° Oyt yiokine receptor [ J
neutrophil chemotaxis | [ J Viral protein interaction with cytokine and cytokine receptor [ ]
chemotaxis | { ] " .
signal transdluction | @ g Rheumatoid arthritis { ]
cell-cell signaling{ @ Chemokine signaling pathway{ @ ~logso(pvalue)
aton g s st of o prkie i . P ’
HC closs |- ~logso(pvalue) Graft-versus-host disease L] 50
innate immune response 80 F—
adaptive immune response 1 @ Allograft rejection { L ©
external side of plasma membrane: [ ] 80 Antigen processing and presentation - L ]
extracellular space @ 40 Type | diabetes mellitus ° 30
plasma membrane
extracellular region {0 20 Autoimmune thyroid disease L] 20
cell surface| @ Hematopoietic cell lineage o
MHC class Il protein complex ° O - "
lumenal side of endoplasmic reticulum membrane | ° count Intestinal immune network for IgA production - [ ] count
ER to Golgi transport vesicle membrane { ° ® 25 NF-kappa B signaling pathway @ ® 20
clathrin-coated endocytic vesicle membrane { ° ® 5 ) ) N
membrane raft| @ b4 Natural killer cell mediated cytotoxicity { @ ®
75
i 40
chemokine activity ° @ 10 Tuberculosis {& [ J
CCR chemokine receptor binding o ® s Viral myocarditis { ° @ s
peplide a"ug.e" hi"qir.‘g \d Leishmaniasis 4 [ ] . 60
cytokine activity{ @ . 70
MHC class Il protein complex binding ° =z Th17 cell differentiation{ @
receptor binding{ @ o N N . 1
CXCR chemokine receptor binding o Primary immunodeficiency r
MHC class Il receptor activity . Phagosome { @
C~C chemokine receplor activity ® Inflammatory bowel disease °
tumor necrosis factor receptor binding .
0 20 40 60 10 15 20 25
Fold.Enrichment Fold.Enrichment
FIGURE 5
Identification and enrichment analysis of differentially expressed genes (DEGs) associated with the immune system. (A) Venn diagram showing 221
immune-associated DEGs overlapping 836 DEGs and 1811 IRGs. (B) Protein interaction network diagram of DEGs (C) Bubble plots showing the top
10 enriched GO BP, CC, and MF. (D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing
the number of enrichments. (E) Bubble plots showing the top 20 enriched terms of the KEGG pathway, based on GSEA analyses of the top 10
pathways with the highest gene enrichment.
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five were Th17 cell differentiation (NES=2.56, p.value=1.35E-05),
Thl and Th2 cell differentiation (NES=2.46,p.value=3.33E-05),
Staphylococcus aureus infection (NES=2.30,p.value=0.0002),
Tuberculosis (NES=2.09,p.value=0.0005), Leishmaniasis
(NES=2.13,p.value=0.001). Similar to the above results. According
to the results, it is clear that immune activation, especially T cells, is
important for the development of osteosarcoma.

Following that, an examination of the connections and
relationships among these IR-DEGs was carried out through the
analysis of the protein-protein interaction network (Supplementary
Table S8), and associations were found for a variety of IR-DEGs,
with the most significant correlations between IL6, IL10, CD4,
CDS8A, IL1B, TNF, and CCL5 and the other immune IR-DEGs.

The interaction network is characterized by the presence of
Interleukin (IL) family genes (including IL10, IL1B and IL6), T-Cell
Surface Glycoprotein genes (including CD8A, CD86 and CD4), C-C
Motif Chemokine Receptor genes (including CCR7 and CCR5) and
C-C Motif Chemokine Ligand genes (including CCL2 and CCL5),
which are among the hub nodes. Subsequently, the MCC algorithm
was applied to obtain the top ten genes (Supplementary Table S9),
and prognostic survival analysis and immune infiltration analysis
were performed on these ten hub genes (Figures 6, 7).

The results showed that ten genes were closely associated with
immune cells, and among all hub genes, Tumor Infiltrating
Lymphocyte (TIL) infiltration levels were the highest, and mast

cells and dendritic cell infiltration levels were lower. In the K-M
survival analysis of the hub genes, CD4, CD8A, CCR5, and CCL5
were prognostically significant.

3.5 Risk modelling

Twenty-six genes were screened from 221 IR-DEGs using one-
way COX analysis based on p<0.05, and then the 26 genes were
further analyzed by applying the LASSO algorithm using ten-fold
cross-validation when lambda.lse= 0.1745826 (Figures 8A, B), a
risk model was developed using two candidate genes, namely PDK1
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Analysis of immune cell infiltration was conducted on the ten hub genes, visualized using lollipop charts.From left to right,

IL10, IL6, CD8A, CD4, IL1B, CCR7, CCL5, and CCL2.
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and PPARG. Utilizing the expression levels and coefficient values of
the candidate genes, a risk score model was created through the
application of the subsequent formula: risk score = (0.6839441 x
PDK1 expression) + (-0.6420120 x PPARG expression). The risk
score formula was utilized on all samples to calculate the risk score
for each sample (Supplementary Table S10). Subsequently, The
samples were divided into two cohorts at random, with no statistical
distinction observed between the pair. The median risk scores of the
original dataset, the training set, and the test set were used as
thresholds (-0.279689391, -0.2077641135, and -0.3399543645),
which were divided into a high-risk score group and a low-risk
score group, respectively. To assess the accuracy of the risk scoring
model constructed by PDK1 and PPARG on prognosis and to
provide effective biomarkers for the prediction of osteosarcoma. K-
M curve analysis and ROC curve analysis were then performed on
the two cohorts and the original combined cohort (Figures 8C-H).
ROC curves with area under the curve (AUC) values greater than
0.5 were considered statistically different. The results showed that
the p-value of the K-M curve was less than 0.05 for the training set,
the test set, and the merged set, so this feature was considered to
have prognostic value. Whereas, in all three cohorts, the ROC
curves indicated that the AUC values for 1-year, 3-year, and 5-year
were above 0.5, and the feature had a higher predictive sensitivity
for 3 and 5 years (AUC values were greater than 0.7 for both 3 and 5
years). In all three cohorts, a higher survival advantage was
demonstrated for low-risk scores, and low-risk scores were
strongly correlated with high survival PDK1 and PPARG were
analyzed according to the risk score grouping, and it was found
that the expression of PDK1 was positively correlated with the risk
score, while the expression of PPARG was inversely correlated with
the risk score (Figure 8I). Then, the differences in TMB between the
high and low-risk score groups were compared based on the
previously calculated TMB values, and as expected, there was a
difference between the two groups (P<0.05) (Figure 8]), with higher
TMB values in the high-risk score group, which may be related to
the poorer prognosis of the high-risk score group. Subsequently, we
calculated the TIDE scores of the tumor samples (Figure 8K), which
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FIGURE 7

Ten hub genes were subjected to survival analysis.

were higher in the high-risk scoring group, suggesting that immune
checkpoint blockade therapies were less effective in the high-risk
scoring group. In contrast, the opposite was true for the low-risk
scoring group. Finally, we used the third quartile of the TMB(0.62
muts/Mb) as a threshold to classify the TMB into two groups: high
and low scores. The top 25% of patients were defined as the high
TMB group, and the results, as shown in Figure 8L, showed that the
high TMB group had a worse prognosis.

3.6 Performance of risk models

The samples were categorized based on the median risk score
(-0.279689391), resulting in the formation of a high-risk group and
a low-risk group. Subsequently, the variations in immune
checkpoint-associated genes between these two groups were
analyzed (Figure 9A). The results showed that most of the
immune checkpoint-associated genes were differentially expressed,
and of the genes that were differentially expressed, all had higher
gene expression values in the low-risk score group. Differences in
the expression of immune checkpoint-related genes in the high-risk
scoring group and the low-risk scoring group are shown in
Supplementary Table S11. Subsequently, to assess the correlation
of immune checkpoint-associated genes with PDK1 and PPARG,
the two candidate genes were grouped according to the median log2
(FPKM+1) value (PDK1: 1.24; PPARG: 1.75) into high and low
expression groups, with differences in the expression of most of the
genes (Figures 9B, C). High expression of PDKI was positively
correlated with low expression of immune-related genes, while high
expression of PPARG was positively correlated with high expression
of immune-related genes. The two candidate genes were shown to
have opposite roles. Subsequently, CIBERSORT immune
infiltration analysis was performed (Figure 9D), which showed
differences in five immune cell subpopulations. Subsequently, the
two candidate genes were still grouped according to median
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expression, and differential analysis of the five immune cell
subpopulations obtained by CIBERSORT immune infiltration
showed that high expression of PDK1 was positively correlated
with high expression in Macrophages M0 and inversely correlated
with high expression in Macrophages M2, and the opposite was true
in PPARG (Figures 9E, F). Once again, the two candidate genes
were shown to have opposite roles. Finally, the samples were
analyzed using the xCell online website to obtain the
MicroenvironmentScore (Supplementary Table S12), which was
significantly different between the high-risk scoring and low-risk
scoring groups and was higher in the low-risk scoring
group (Figure 9G).

4 Discussion

Recent studies have shown that cancer development is
influenced by the activation of the immune response (12). To
delve deeper into the immune-related mechanisms of
osteosarcoma, we explored the DEGs across two groups of
immune characteristics. Furthermore, the majority of the IR-
DEGs were found to be up-regulated in our study, exhibiting
substantial enrichment in various immune-related biological
pathways. Macrophages play a significant role in the tumor
microenvironment, and in tumor development, tumor-associated
macrophages can interact with other immune cells in the tumor to
promote tumor development and progression. In addition, they can
suppress tumor growth by promoting the phagocytosis of the cells
(13). Furthermore, it has been shown that cytotoxicity of T cells can
lead to tumor cell death (14). Tumor-infiltrating macrophages are
plentiful within the tumor microenvironment and regulate the
activity of T cells (15), tumor-associated macrophages and T cells
play a key role in determining cancer prognosis and the efficacy of
immunotherapies (16). Whereas macrophages and T cells were
found to be statistically significant in the present study, therefore,
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the immunological profile of TME in osteosarcoma is considered to

have prognostic value.

The results showed that ImmuneScore had a significant
correlation with prognosis, with higher ImmuneScore
representing a higher level of immune infiltration, leading to
higher survival. TumorPurity was inversely correlated, with
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high TumorPurity associated with low survival. Subsequently,

we analyzed the correlation between the mutations and

134

immunological features of the genes. The correlation between
mutations in the TP53, ATRX, and RB1 genes and osteosarcoma
has been extensively studied. TP53 prevents the transformation of
bone marrow mesenchymal stem cells to osteosarcoma (17),
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and Lang et al. showed that (18), in mice, mutation of TP53
promotes the development of osteosarcoma. Furthermore.
Walkley et al. showed (19) that combined deletion of TP53 and
RB1 in mouse osteoblasts leads to a high frequency of metastatic
osteosarcoma, and that mutations in RB1 are a key driver of cancer
(including osteosarcoma) (20). A meta-analysis (21) that included
491 patients with osteosarcoma showed that RB1 mutations were
associated with a significantly reduced histological response to
chemotherapy and a high risk of metastasis in osteosarcoma.
ATRX plays an important tumor-suppressor role in OS, and
deletion of this gene leads to tumor cell growth, migration, and
invasion, and was one of the most commonly mutated genes in 288
osteosarcoma patients surveyed by the Genomics Evidence
Neoplasia Information Exchange consortium in the USA (22).
Taken together, mutations in the TP53, ATRX, and RB1 genes
promote the development, invasion, and metastasis of
osteosarcoma, and in Figure 3, the mutation frequency of these
three genes is significantly higher in the low-immunity group than
in the high-immunity group, indicating that the frequency of
metastasis of osteosarcoma is also higher in the low-immunity
group, which is in line with the results we obtained above.

Based on the findings from GO, KEGG, and GSEA enrichment
analyses, numerous differentially expressed genes (DEGs) showed
enrichment in pathways related to the immune system. Neutrophil
chemotaxis was associated with more DEGs during BP in all GOs.
Previous studies have shown that neutrophils are a major
component of TME (23), which can exert a tumour-killing effect
by affecting T cells (24, 25). In this study, two groups with high and
low levels of immune activation were also studied in depth, and
noticeable variances were observed in the extent of immune cell
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infiltration between the two groups, and the level of immune cell
infiltration in the high-immunity group was significantly higher
than that in the low-immunity group, which may be associated with
the high survival rate of the high-immunity group. Ten pivotal
genes were then identified, all of which are closely associated with
neutrophils, macrophages, and T cells.

Following that, a univariate COX regression analysis and
LASSO analysis were utilized to identify PDK1 and PPARG. A
risk model was then established using these two factors, revealing a
pronounced prognostic distinction between individuals in the high-
risk and low-risk categories. Notably, the low-risk group exhibited a
significantly superior prognostic survival rate. Pyruvate
dehydrogenase kinase-1 (PDKI1) is an enzyme involved in
glycolysis that facilitates the transition from glucose oxidative
metabolism to glycolytic metabolism in cancer cells by
phosphorylating substrates (26) and also reduces the damage
caused by reactive oxygen species (ROS) accumulation. In recent
years, more and more evidence suggests that PDKI is associated
with tumor progression and metastasis (27-29), which provides a
new idea for the development of targeting PDK1 for the treatment
of osteosarcoma, as evidenced by Liu et al. who constructed a novel
organoarsenic compound, Aa-Z2, which induces apoptosis of
osteosarcoma by reprogramming metabolism through targeting
PDK1 (30). Peroxisome proliferator-activated receptor-gamma
(PPARG), a member of the nuclear receptor family, is a major
regulator of adipocyte differentiation and function (31). PPARG has
been shown to play a role in several cancers, and its association with
cancer is primarily a result of the recording of PPARG in cancer
cells and the tumor cell microenvironmental role (32). The role of
PPARG is widely debated and it exerts inhibitory or promotional
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effects on cancer growth depending on the tumor cell conditions
and the pathways stimulated (33). In the literature, PPARG is an
oncogene, which exerts anti-tumour effects by inhibiting cell
proliferation, differentiation, cell growth, cell cycle, and inducing
apoptosis. It has been shown that in human osteosarcoma, the pro-
apoptotic effects exerted by Oridonin inhibition of the Nrf2
pathway require PPARG activation (34). PPARG can trigger cell
apoptosis and suppress the growth of osteosarcoma cells by
facilitating the terminal differentiation of osteoblasts (35).

When constructing the risk model, it was found that elevated
levels of PDK1 were linked to the high-risk score group, which in
turn was correlated with increased mortality rates. This implies that
PDK1 may act as an oncogene. In contrast, high expression of
PPARG was positively associated with the low-risk score group,
which played the role of oncogene, which was consistent with the
findings of previous scholars mentioned above, and further
proved the accuracy of the risk model. While the high expression
of PDKI1 is proportional to the high expression of Macrophages
MO and inversely proportional to the high expression of
Macrophages M2, the opposite is true in PPARG. Lin et al.
Showed (36) that Nuanxinkang (NXK) reduced the transcript and
protein levels of HIF-la and PDKI1 in vivo. NXK inhibited
macrophage M1 and significantly increased macrophage M2 via
the HIF-10/PDK1 axis, and PDK1 and macrophage M2 levels in
vivo were negatively correlated, which is in line with the findings
of this study. Consistent with the findings of this study.
Macrophage M1 is biased towards glycolytic metabolic processes,
whereas macrophage M2 is more biased towards oxidative
phosphorylation (OXPHOS) metabolic processes, and under the
stimulation of lipopolysaccharides, the macrophage shifts from
OXPHOS metabolism to glycolytic metabolism, PDKI is a
glycolytic enzyme, and when PDKI1 is inhibited, glycolytic
metabolism is inhibited, and the oxidative phosphorylation
metabolic process is also strengthened, thus promoting the
macrophage M2. PPARG agonists promote macrophage M2
polarisation (37). When PPARG signaling is inhibited, it
promotes the macrophage transition from M2 to M1 (38),
suggesting a positive correlation between PPARG levels and
macrophage M2 levels, validating the accuracy of the findings of
this study. Tumor-associated macrophages (TAM) are populations
of macrophages that infiltrate into tumor tissue, including the M1
and M2 cell populations. TAM is closely associated with tumors,
with M1 acting as an anti-tumor agent and M2 inhibiting T cell-
mediated anti-tumor effects and promoting tumor formation
(39, 40). TAMs are derived from monocytes in the bone marrow,
and a variety of cytokines and chemokines can direct the migration
of monocytes to the tumor site (41), the growth of tumors can also
result in the transformation of CCR2+ monocytes into TAMs (42).
TAM:s can modulate the cytotoxicity of T cells and NK cells towards
tumor cells. TAM can suppress the proliferation of CD8 T cells by
nitrogen species, iNOS, and oxygen radicals (43-45). In addition,
TAM can further inhibit the antitumor effects produced by T cells
by recruiting Treg cells via CCL22 (46). Chen et al.’s study (47)
showed that TAM promotes tumor growth by generating
inflammatory Th subpopulations to stimulate an inflammatory
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response in tumors. TAM is also regulated by other immune cells,
and Treg cells function to inhibit the release of IFN-y from CD8 T
cells (48), which is the main cytokine responsible for macrophage
M2 inhibition; thus, Treg indirectly and selectively maintains
metabolic fitness and survival of M2-like TAM. A study by
Kumar et al. (49) showed that myeloid-derived suppressor cells
(MDSC) could regulate TAM differentiation by down-regulating
STATS3, promoting tumor proliferation. In addition, B cells can also
induce macrophage M2 polarisation in tumors and inhibit T cells
and macrophage M1 from promoting tumor proliferation (50). The
role of Macrophages MO for osteosarcoma is currently unclear (51).
Therefore, immunotherapy targeting macrophage transformation
may become a promising therapeutic strategy for the treatment
of osteosarcoma.

In recent years, immunotherapy has been a widely researched
therapeutic approach that has achieved excellent results in the
treatment of many types of cancer. Immune checkpoint inhibitors
(ICIs) are a form of immunotherapy that works by stimulating the
body’s immune system to combat cancer. This is achieved through
the inhibition of immune checkpoint molecules like programmed
cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1),
which play crucial roles in regulating the immune response.
programmed cell death ligand-1 (PD-L1) to activate the body’s
immune response to fight cancer. The results have been satisfactory
in the treatment of many cancers. Nevertheless, targeted PD-1/PD-
L1 therapy yields unsatisfactory outcomes in osteosarcoma (52),
possibly attributed to the distinct PD-1/PD-L1 regulation in the
tumor, commonly known as a “cold tumor” (53). Numerous studies
have indicated a relationship between elevated levels of PD-L1 and
unfavorable outcomes in osteosarcoma patients, yet the precise role
of PD-LI in osteosarcoma pathogenesis remains ambiguous. It can
be seen from this study that most of the immune checkpoint-related
genes have higher gene expression in the low-risk scoring group and
lower gene expression in the high-risk scoring group, which
suggests that the risk model obtained in this study has
significance for the gene regulation of immune checkpoints. High
expression of these immune checkpoint-associated genes was
associated with better prognosis, whereas PDK1 was highly
expressed in the high-risk scores and was associated with poorer
prognosis, so PDK1 was negatively correlated with the expression of
immune checkpoint-associated genes, whereas PPARG was highly
expressed in the low-risk scores group, and, in contrast to PDK1,
PPARG was positively correlated with the expression of immune
checkpoint-associated genes. This may be because the tumor
microenvironment in the low-risk group was more amenable to
immune cell infiltration and activation, resulting in increased
expression of immune checkpoint molecules, reflecting good
immune surveillance of the tumor. High expression of immune
checkpoint genes is associated with a better clinical prognosis, and
we speculate that this may be because the immune system of
osteosarcoma patients can efficiently recognize the tumor and
develop an immune response, and because highly mutated genes
in osteosarcoma does not produce sufficient neoantigens that can
elicit an immune response so that targeted inhibition of PD-1/PD-
L1 therapy in osteosarcoma is unsatisfactory. Therefore, PDK1 and
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PPARG may become prognostic genes in osteosarcoma and may be
targets for subsequent regulation of ICI-related genes for
osteosarcoma treatment.

As we said above, mutations in TP53, RB1, and ATRX genes can
promote the growth, invasion, and metastasis of osteosarcoma,
which is a kind of ‘cold tumor’, and the microenvironment of
osteosarcoma can monitor the tumor well, and it is less responsive
to immune checkpoint blockade, which is confirmed by the
calculation of the TIDE score, so the effect of high TMB on
osteosarcoma is more inclined to promote the development of
osteosarcoma, resulting in a poorer prognosis of osteosarcoma
patients with high TMB.

In this study, the majority of IR-DEGs were found to be
overrepresented in T lymphocytes. It has been well-documented
in previous research that the infiltration and activation of T cells are
crucial in the therapeutic management of osteosarcoma, and that
adoptive T-cell therapy (ACT) has a promising future for the
treatment of osteosarcoma, whereas ICI activates the immune
system, ACT directly “tells” the T-cells the characteristics of the
tumor, and then attacks the tumor in a targeted manner. Based on
prior studies, it has been recognized that there are three primary
categories of penicillin combination treatments: chimeric antigen
receptor (CAR)-modified T cells, T cell receptor (TCR)-modified T
cells, and tumor-infiltrating lymphocytes (TILs) (54). Our research
findings indicate that there was a notable difference in the extent of
immune cell infiltration between the hyperimmune and
hyperimmune groups, with a marked increase in the
hyperimmune group. This heightened immune response was
correlated with a better survival outcome in the hyperimmune
group. Ten hub genes were obtained in this study, which were
significantly correlated with TILs and therefore they are highly
specific for targeting tumors. Combining ICI with TIL T-cells may
also be an effective option for individual therapy, and recent
findings by Wang et al. showed that TILs in combination with
anti-PD1 therapy demonstrated significant clinical efficacy in
patients with metastatic osteosarcoma compared to anti-PD1
therapy applied alone. The objective remission rate of this
combination regimen was almost five times higher than that of
single anti-PD1 therapy, while intermediate progression-free
survival and intermediate overall survival were also significantly
prolonged (55).

More and more studies are being conducted, and the present
study fully considers the effect of immune infiltration on
osteosarcoma and uses it for risk modeling, demonstrating
excellent prognostic specificity and providing a novel and
valuable tool for future research.

5 Strengths and limitations

The strength of this study is the use of bioinformatics to
investigate osteosarcoma from the perspective of immune
infiltration, which revealed that higher immune infiltration has a
better prognosis, and then concluded that two important genes,
PDK1 and PPARG, whose high or low expression is associated with
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the prognosis of osteosarcoma, and whose effect on Macrophages
MO and Macrophages M2 regulation also has a crucial impact and
can even regulate immune checkpoint-related genes. Subsequently,
a risk model was constructed using PDK1 and PPARG, and the risk
model provided a good prognosis prediction.

This study has some limitations. This study only used
computers and their related software to analyze the data, and it
still lacks relevant experimental validation. In our future work, we
will further expand the clinical samples and conduct animal or
human experiments to improve the study’s accuracy and lay a more
solid foundation for treating osteosarcoma.

6 Conclusions

From the above description of this study, it can be concluded
that a high Immune score is associated with a better prognosis in
osteosarcoma. Subsequently, several analyses were performed to
verify the effect of immune infiltration on osteosarcoma, firstly, the
samples were immuno-infiltrated using ssGSEA, and the samples
were divided into two groups based on the immune score, with the
group with high immune activation having a significant survival
advantage over the other group. Then, using a univariate COX
regression analysis and LASSO analyses, two genes, PDK1 and
PPARG, were obtained, and a risk model was constructed based on
the derived genes, in which PDKI was positively correlated with the
risk score, and PPARG was negatively correlated with the risk score,
and through further analyses, we found that PDK1 was negatively
correlated with macrophage M2, and the opposite was true for
PPARG, and that the group with a high-risk score had a more high
TMB and their prognosis was poorer. We also analyzed immune
checkpoint-related genes, which were negatively correlated with
risk scores, suggesting that the osteosarcoma microenvironment has
good tumor surveillance and responds poorly to ICB treatment.
Finally, we also analyzed the TMB of the samples. We found that
high TMB was associated with low immune infiltration and that an
increased mutation rate increased the risk of osteosarcoma.
Therefore, the prognostic model obtained in this study is suitable
for further optimization and eventual clinical application.
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Background: Hypoxia in the tumor microenvironment (TME) plays a pivotal role
in the progression and prognosis of colorectal cancer (CRC). However, effective
methods for assessing TME hypoxia remain lacking. This study aims to develop a
novel hypoxia-related prognostic score (HPS) based on hypoxia-associated
genes to improve CRC prognostication and inform treatment strategies.

Methods: Transcriptomic data from CRC patients were analyzed using Lasso
regression to identify hypoxia-associated genes with the strongest prognostic
significance. The identified genes were validated in vitro by assessing their
expression under normoxic and hypoxic conditions in normal intestinal
epithelial cells and CRC tumor cell lines. Functional relevance was explored
through differential gene expression analysis, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-
protein interaction (PPI) network construction. The association of HPS with
extracellular matrix (ECM) composition, immune cell infiltration, and immune
suppression was also investigated.

Results: Seven hypoxia-associated signature genes were identified, each
demonstrating a strong correlation with CRC prognosis. The hypoxia-
related prognostic score (HPS), derived from these genes, was significantly
linked to changes in the TME. Specifically, HPS values were associated with
alterations in ECM composition and distinct immune cell infiltration patterns.
Higher HPS values corresponded to increased infiltration of immune-
suppressive cells and reduced presence of anti-tumor immune cells. This
imbalance promoted an immune-suppressive TME, facilitating tumor
progression and immune evasion.
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Conclusions: The hypoxia-related prognostic score (HPS) captures the
regulatory influence of TME hypoxia on immune responses, offering valuable
insights into its role in tumor progression. HPS holds promise as a prognostic tool
and a guide for developing personalized treatment strategies in CRC.

hypoxia, colorectal cancer, tumor microenvironment immunity, extracellular

matrix, WGCNA

1 Introduction

Hypoxia, a critical component of the tumor microenvironment,
is a result of imbalance between increased oxygen usage and
insufficient oxygen supply drove by rapid and unlimited growth of
tumor cells and lack of blood supply (1). This reciprocal interplay
affects patient outcomes across various tumor types, significantly
influencing tumor prognosis (2). Microenvironmental hypoxia is a
factor that affects the prognosis of patients with various malignancies,
including colorectal cancer (CRC) (3-5).

Hypoxia plays a pivotal role in driving tumor progression,
orchestrating the growth and differentiation of tumor cells
through various molecular mechanisms. Proliferation, invasion,
and epithelial-mesenchymal transition of cancer cell are all
associated with hypoxia and are closely linked to local tumor
progression and distant metastasis (6-8). Moreover, hypoxia is
involved in regulating different forms of tumor cell death,
including apoptosis (9). Hypoxic cancer cells exhibit decreased
levels of apoptosis and ferroptosis while autophagy levels increase,
promoting their adaptation to the hypoxic TME (10-12).

Beyond its influence on cancer cells, hypoxia exerts significant
effects on various other cells within the TME, including interstitial
and immune cells. Hypoxia suppresses both the infiltration and
functionality of immune cells, thereby critically influencing the
tumor immune within the tumor microenvironment (13, 14).
Furthermore, hypoxia can alter the matrix composition within the
TME, leading to its remodeling (3).

Despite the critical role of TME hypoxia in tumor progression,
detection techniques remain relatively inadequate (4). Surgical
specimens are evaluated for hypoxia using immunohistochemistry or
immunofluorescence to detect HIFlo expression (15). Although
pimonidazole staining is utilized in animal experiments for hypoxia
assessment, its clinical application remains limited (16). In our study, to
enhance the assessment of hypoxia within the TME, obtain more
precise tumor molecular classifications, and subsequently optimize the
treatment of CRC patients, LASSO regression was employed. This
method allowed us to screen for prognosis-associated genes, integrating
clinicopathological characteristics to predict patient outcomes.
Furthermore, we explored the mechanistic underpinnings of these
genes through functional analysis.

Frontiers in Immunology

2 Materials and methods
2.1 Data collection and preprocessing

Expression profiles of the GSE17536 and GSE14333 datasets were
downloaded from the Gene Expression Omnibus database (GEO).
The GEO dataset GSE17536 included 177 CRC samples, and the
other GEO dataset GSE14333 included 290 CRC samples. TCGA-
COAD and GTEx transcriptome cohort data were downloaded from
the UCSC Xena website (https://xenabrowser.net/datapages/). The
TCGA dataset included 616 CRC samples, and the GTEx dataset
included 686 non-diseased colon tissue samples. All raw data were
normalized and standardized using the R software packages
including “limma” and “DESeq2”.

2.2 Single sample gene set
enrichment analysis

The R package “GSVA” facilitated single-sample gene set
enrichment analysis (ssGSEA) to investigate tumor-related
pathway enrichment and immune cell infiltration within the
GSE17536 dataset. We sourced tumor-related datasets from the
hallmark gene sets in the MSigDB database [https://www.gsea-
msigdb.org/gsea/msigdb].

2.3 Weighted gene co-expression
networks analysis

The weighted gene co-expression network analysis (WGCNA)
was constructed using the GSE17536 dataset. Among all the
soft threshold values, we selected the 3 value with the highest
mean connectivity (f = 13). The minimum number of genes was
set at 30 to ensure the high reliability of the results. All genes
were then divided into modules, each named by a different color.
For further quantification of hypoxia-related genes and modules,
only genes with a p-value of less than 0.001 were retained for
subsequent analysis.
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2.4 Establishment and validation of a
colorectal cancer prognostic
predictive signature

Univariate Cox regression analysis identified cancer hallmarks
related to disease-specific survival (DSS) and overall survival (OS).
We applied Lasso penalized Cox regression analysis to select hypoxia-
related genes associated with prognosis. Subsequently, we used the
LASSO Cox regression model to identify genes highly correlated with
hypoxia and to construct the hypoxia-related prognosis score (HPS).
We calculated the HPS score for each patient using the formula: HPS
score =Y (coefficient x mRNA expression).

2.5 Construction of nomogram for
colorectal cancer prognosis prediction

Hypoxia score and relevant clinical parameters were used to
construct a nomogram, using the “survival” and the “rms” package
of R. The nomogram was constructed to estimate 1-, 3-, and 5-year
survival probabilities. The model’s performance was evaluated by using
the calibration curve and C-index to assess the survival probabilities.

2.6 Gene set enrichment analysis

The function of hypoxia-related genes was explored using gene set
enrichment analysis (GSEA). Differential gene expression profiles in
the training and validation cohorts were analyzed using the R software
package “clusterProfiler” (17). P-values < 0.05 and FDR p-values <
0.25 were considered significant. Permission must be obtained for use
of copyrighted material from other sources (including the web). Please
note that it is compulsory to follow figure instructions.

2.7 Differential expression of genes and
protein-protein interaction analyses

We performed DEG analysis using the “limma” R package on
the GSE17536, GSE14333, TCGA-COAD, and GTEx cohorts.
Genes with an adjusted P-value < 0.05 and an absolute log2 fold
change (FC) > 0.5 were identified as DEGs.

Protein-coding genes in the DEG were used to construct a PPI
network using common transcripts, employing STRING with all
parameters set to their default values (https://cn.string-db.org/).
Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were also performed through
STRING using the DEGs.

2.8 Stromal and immune cells infiltration

The ESTIMATE algorithm was employed to identify the tumor
microenvironment, and the ESTIMATE, immune, and stroma
scores were calculated using the R software package “estimate”
(18). The cellular composition of stromal and immune cells in the
tumor within the GSE17536 dataset was estimated using the R
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software package “xCell” (19). Scores for immune and stromal cells
were calculated for each sample. Additionally, the CIBERSORTx
online platform (https://cibersortx.stanford.edu/) was utilized to
assess the infiltration of 22 immune cell types in each sample (20).

2.9 Cell lines, antibodies, and chemicals

All cell lines were obtained from the Cell Bank of Shanghai,
Institutes for Biological Sciences, China, and tested negative for
mycoplasma infection. These cells were cultured in DMEM medium
or RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA,
USA), supplemented with 10% fetal bovine serum (Thermo Fisher
Scientific, Waltham, MA, USA), at 37°C in a humidified atmosphere
containing 5% CO2. 5% O2 hypoxic cell culture was performed by
incubating cells in a sealed container with a Mitsubishi AnaeroPack
anaerobic gas generator (Mitsubishi Gas Chemical Co., Tokyo, Japan).
Hypoxic conditions were verified with the use of a Mitsubishi RT
Anaero-Indicator (Mitsubishi Gas Chemical Co., Tokyo, Japan).

Antibodies against HIF1a and B-actin were purchased from
Cell Signaling Technology (Danvers, MA, USA). Antibodies
against ACTA2, ACTNI, CAVIN3, CEP170, LTBP1 and
POSTN were purchased from Proteintech Group (Rosemont, IL,
USA), Antibody against PCSK5 was purchased from CUSABIO
(Wuhan, Hubei, China). Antibodies were diluted according to
manufacture instructions.

2.10 Protein extraction and
western blotting

The cells were washed with PBS and trypsinized, neutralization
with serum-supplemented media, washed with PBS, and resuspended
in RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA). A 1% protease
inhibitor cocktail (HaltTM Protease Inhibitor Cocktail, EDTA-Free,
Thermo Fisher Scientific) was added to the mixture. The lysate was
collected by centrifugation at 12,000 rpm at 4°C for 15 minutes. The
supernatant was transferred to a new tube, and its concentration was
determined using the BCA protein quantification assay. The
supernatant was mixed with loading buffer (Sigma-Aldrich, St.
Louis, MO, USA) and denatured by boiling at 95 °C.

Samples were subjected to SDS-PAGE gel electrophoresis, and
proteins were subsequently transferred to PVDF membranes. The
membranes were blocked with 5% non-fat milk in TBST and then
incubated with specific antibodies overnight at 4°C with gentle
agitation. Following washing, the membranes were incubated with
HRP-conjugated secondary antibodies. Protein bands were
visualized using chemiluminescent substrates.

2.11 Total RNA extraction and quantitative
real-time PCR

Total RNA was extracted from cells using TRIzol Reagent (Takara,

Kusatsu, Japan) following the manufacturer’s instructions. After
assessing quality and quantity, samples were then stored at —-80°C.
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The extracted RNA was reverse-transcribed into cDNA using
PrimeScriptTM RT Master Mix (Takara, Kusatsu, Japan). The
resulting cDNA was stored at -20°C for further analysis.

Gene expression levels were quantified using qRT-PCR with
gene-specific primers and the One Step SYBR PrimeScript RT-PCR
Kit II (Takara, Kusatsu, Japan). The qRT-PCR reaction conditions
followed the manufacturer’s instructions. Expression levels were
normalized to B-actin, and relative quantification was performed
using the 2/A-AACt method.

2.12 siRNA-mediated RNA interference

Two siRNAs for each targeting human PCSK5 and POSTN
(designated as si-PCSK5_1, si-PCSK5_2, si-POSTN_1, and si-
POSTN_2) and a nontargeting control siRNA were purchased
from RiboBio (Guangzhou, Guangdong, China). The siRNA
target sequences were as follows: si-PCSK5_1: GCAAGTACG
GATTCATCAA, si-PCSK5_2: CGGGACATTTGAACGCTAA, si-
POSTN_1: GCACTTGTAAGAACTGGTA, and si-POSTN_2:
GCTCAGAGTCTTCGTATAT. For transfection, Lipofectamine
3000 (Invitrogen, Carlsbad, CA, USA) was used according to the
manufacturer’s instructions. After 48 hours, some of the cells were
harvested for Western blot analysis to assess the effects of
siRNA inhibition.

2.13 In vitro migration assay

Cell migration was assessed using Transwell chambers (Corning,
NY, USA). Suspensions of 10 x 1074 cells in 200 pL of serum-free
medium were added to the upper chamber, while the lower chamber
contained medium with 10% FBS. After 16-24 hours, the cells were

10.3389/fimmu.2024.1425687

washed with PBS and fixed in 4% paraformaldehyde. The cells on the
upper polycarbonate membranes were gently wiped with cotton
swabs. The migrating cells were stained with crystal violet and then
counted in four random fields under a light microscope.

2.14 Statistical analysis

Statistical analysis was conducted using R software. Forest plots
were generated using univariate or multivariate Cox proportional
hazard regression to calculate the hazard ratio (HR). The Kaplan-
Meier method was employed for survival analysis. The Wilcoxon
test was used to assess differences between groups. Statistically
significant differences were indicated as follows: *p < 0.05; **p
<0.01; ***p < 0.001; NS indicates not significant.

3 Results

3.1 Hypoxia is an important prognostic
factor in patients with colorectal cancer

RNA-seq data from the GSE17536 dataset were utilized to calculate
the ssGSEA scores for cancer hallmark pathways. Significant
associations with prognosis were observed for hypoxia (HR: 6.14,
95% CI: 2.13-17.67, p = 0.001), TGE-B pathway (HR: 3.98, 95% CI:
1.32-12.01, p = 0.014), KRAS upregulation pathway (HR: 3.73, 95% CI:
1.26-11.03, p = 0.017), and PI3K-AKT mTOR pathway (HR: 0.25, 95%
CIL: 0.08-0.76, p = 0.014) (Figure 1A). Patients were categorized into
two groups based on their prognosis. Those with a worse prognosis
exhibited higher hypoxia scores (p < 0.001) (Figure 1B). Subsequently,
patients were stratified into high-risk and low-risk groups using the
median hypoxia score as the threshold. The high-risk group
demonstrated significantly poorer survival (p = 0.011) (Figure 1C).
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FIGURE 1

Hypoxia as a major prognostic factor in CRC patients. (A) Forest plot showing hazard ratios (HR) from univariate Cox regression for 20 cancer
hallmark pathways in CRC patients. HRs and 95% confidence intervals (Cls) were calculated, with statistical significance assessed by the Wald test (p-
value). Pathways with p > 0.05 are labeled “N.S." (not significant), HR > 1 as "Risky,” and HR < 1 as "Protective.” Error bars represent 95% Cls. (B) The
boxplot shows the distribution of risk scores across DSS groups in CRC patients, including median values and interquartile ranges (IQR). Statistical
significance was assessed using the Wilcoxon test (p < 0.01), with higher hypoxia scores associated with worse survival outcomes. (C) Kaplan-Meier
survival curves for high-risk and low-risk CRC patients, stratified by risk score. Statistical significance was assessed by the log-rank test (p < 0.05),

with higher hypoxia scores associated with poorer prognosis.
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expressed genes. The coefficient values for the selected genes were plotted against the penalty parameter (lambda). (D) Cross-validation curve for
the LASSO regression model, used to determine the optimal penalty parameter (lambda) for prognostic gene selection. (E, F) Distribution of the
Hypoxia-related Prognostic Score (HPS) which was calculated based on the expression of seven hypoxia-related signature genes across CRC
patients, along with their survival status and survival time showing worse prognosis following higher HPS. (G) Expression profiles of the seven
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3.2 Construction of a hypoxia-related
score using WGCNA clustering and LASSO
regression model to predict the prognosis
of colorectal cancer patients

Using WGCNA, genes were categorized into 16 modules based
on their correlation, with the blue module exhibiting the
strongest association with hypoxia (Figures 2A, B; Supplementary
Figures 1A, B). Univariate Cox analysis identified genes linked to
patient prognosis, and LASSO regression analysis subsequently
pinpointed 7 genes of interest (ACTA2, ACTNI, CAVIN3,

10.3389/fimmu.2024.1425687

CEP170, LTBP1, PCSK5, and POSTN). Based on the expression
levels of these genes, we developed a novel hypoxia-related
prognostic score (HPS) (Figures 2C, D). Patients were stratified
into two groups using the median HPS, revealing significant
differences in prognosis (p < 0.001), with the high-risk group
faring worse. The distribution of HPS also varied significantly
among patients with different prognoses (p < 0.001) (Figures 2E-
H; Supplementary Figure 1C). Analysis of the 7 HPS signature gene
expressions in colorectal cancer tumors versus normal tissues, using
TCGA and GTEx databases, showed a marked difference
(Supplementary Figure 1D). The ROC curves for 1-, 3-, and 5-
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FIGURE 3

Prediction of CRC prognosis by combining clinicopathological features with HPS. (A) Distribution of Hypoxia-related Prognostic Score (HPS) across
AJCC stages |-1V. Statistical analysis (Wilcoxon test, p < 0.05) revealed significantly higher HPS in advanced stages. (B) Distribution of HPS across
different differentiation grades (well-differentiated, moderately differentiated, and poorly differentiated) in CRC patients. Data are presented as dot
plots, with statistical significance assessed by the Wilcoxon test. (C) Alluvial diagram showing the relationships between AJCC stage, differentiation
grade, and HPS risk group. (D) Nomogram integrating clinicopathological features and HPS for predicting 1-, 3-, and 5-year overall survival (OS) in
CRC patients, based on a multivariate Cox regression model. (E) Time-dependent ROC curves of the nomogram at 1-, 3-, and 5-year time points in
the GSE17536 training dataset, with AUC values indicating prognostic performance. (F) Boxplot of HPS distribution in different prognosis groups in
the GSE14333 validation dataset. Wilcoxon test (p < 0.01) showed higher HPS in poor prognosis groups. (G) Time-dependent ROC curves of HPS at
1-, 3-, and 5-year time points in the GSE14333 dataset, with AUC values assessing HPS's prognostic accuracy. (H) Kaplan-Meier survival curves for
high-risk and low-risk groups based on HPS in GSE14333. Log-rank test (p < 0.01) showed significantly worse survival in the high-risk group.
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year overall survival (OS) based on HPS yielded areas under the
curve of 0.6768, 0.6697, and 0.6842, respectively (Figure 2I).

3.3 Combining clinicopathological features
with HPS to construct a nomogram
predicting the prognosis of CRC patients

The distribution of HPS in CRC patients varied across different
AJCC clinical stages, with later stages showing higher HPS
(Figures 3A, B). The distribution of HPS in CRC patients with
various clinicopathological characteristics is depicted in alluvium
plots (Figure 3C). The study created a nomogram that integrates
HPS with clinicopathological characteristics to predict prognosis
(Figure 3D). The areas under the ROC curves for 1-, 3-, and 5-year
OS of nomogram in CRC were 0.882, 0.860, and 0.855, respectively
(Figure 3E). The nomogram predicted outcomes were largely
consistent with the actual outcomes (Supplementary Figure 1E).
To confirm the predictive capability of this score, the study applied
HPS to forecast the prognosis of CRC patients in the validation set
GSE14333. The distribution of HPS among patients with different
prognoses was distinct (p < 0.001), and a statistically significant
difference in prognosis was noted between the high- and low-risk
HPS groups (p = 0.0015) (Figures 3F, H). The areas under the ROC
for 1-, 3-, and 5-year OS of HPS were 0.6037, 0.6841, and 0.6746,
respectively (Figure 3G).

3.4 Hypoxia changes HPS signature gene
expression in normal intestinal epithelial
cells and CRC cells in different patterns

To further investigate the molecular mechanisms of hypoxia
regulation in the CRC TME, we treated human normal intestinal
epithelial cells (FHC) and five human CRC epithelial cell lines
(HCT116, HT-29, LOVO, SW480, and SW620) with hypoxia in
vitro. We analyzed HIFlo. protein expression via western blot to
confirm the successful construction of the hypoxia model
(Supplementary Figure 2A). Subsequently, we conducted qRT-PCR
on the hypoxic cell lines to assess the expression of seven HPS signature
genes (ACTA2, ACTN1, CAVIN3, CEP170, LTBP1, PCSK5 and
POSTN). We observed that ACTN1 and CAVIN3 were slightly
upregulated in FHC cells post-hypoxia, while the CRC cell lines
exhibited varying degrees of upregulation, which was more
pronounced than in FHC cells (Figure 4A). The marked disparity in
gene expression changes between FHC and CRC cell lines following
hypoxia indicates that the responses of normal intestinal epithelial cells
and CRC cell lines to TME hypoxia are distinct (Supplementary
Figure 2B). Further analysis of gene expression in both normal
intestinal epithelial cell lines and tumor cell lines under normoxic
conditions revealed significant differences in signature gene expression
patterns between FHC and CRC cell lines (Figure 4B).

We conducted Western blot analysis to further explore the
differences in protein expression between FHC and CRC cell lines
under hypoxic conditions. The results indicated that the protein
levels of all signature genes were altered following hypoxia, showing
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a high degree of consistency with our qRT-PCR findings
(Figure 4C). Additionally, after knocking down POSTN and
PCSK5 in CRC cell lines (HCT116 and LOVO) using siRNAs,
our in vitro cell migration assays demonstrated that both genes are
involved in the migration of CRC cells (Supplementary
Figures 2C-E).

3.5 Functional enrichment analysis of
differentially expressed genes identified by
HPS risk model

After differential gene expression analysis between high- and
low-risk groups and a GSEA enrichment analysis revealed that, in
addition to the hypoxia pathway (p < 0.001), immune-related
pathways such as inflammatory response (p < 0.001), interferon-y
response (p < 0.001), complement pathway (p < 0.001), and NF-kB-
mediated TNF-o. pathway (p < 0.001) were significantly enriched in
the high-risk group (Figures 5A, B; Supplementary Figure 3A).
Significant differences were observed in the expression patterns of
genes related to immunotherapy among DEGs, although no
significant differences were detected in the expression of the
immune checkpoint inhibitor (ICI) genes CD274, PDCDI, and
CTLA-4 (Figure 5C; Supplementary Figure 3B).Furthermore, the
protein-protein interaction (PPI) analysis and GO enrichment
analysis of protein-coding genes with the most significant changes
in DEGs indicated that pathways were primarily enriched in the
migration and chemotaxis of immune cells and the composition
and structure of extracellular matrix (Figures 5D, E; Supplementary
Figure 3C), suggesting that hypoxia has an influence on immune
cell migration, thereby affecting the TME.

3.6 HPS risk is negatively related with
immune response in TME

To discover how HPS risk is correlated with tumor immune, we
performed xCell analysis to assess the infiltration of non-cancer
cells in the TME, and its correlation with HPS was examined. In the
analysis of different cell subsets, HPS showed a positive correlation
with myeloid-derived immune cells (Supplementary Figure 4A) and
a negative correlation with lymphoid-derived immune cells
(Figure 6A). HPS was also positively correlated with most stromal
cells and associated with other stem cells and some other cell types
(Supplementary Figures 4B, C, D). The distribution of myeloid-
derived immune cells, lymphoid-derived immune cells, and stromal
cells between the high- and low-risk groups were further analyzed,
revealing fewer myeloid-derived immune cells and stromal cells in
the low-risk group, while lymphoid-derived immune cells were
more abundant (Figure 6B, Supplementary Figures 4E, F).
Additional analysis of immune cell infiltration using CIBERSORT
indicated that macrophage infiltration predominated in the
microenvironment (Supplementary Figures 5A, B). Notably,
infiltration by undifferentiated macrophages and M2 macrophages
significantly decreased in the low-risk group (Figure 6C,
Supplementary Figure 5C). The linear correlation analysis
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lines (HCT116, HT29, LOVO, SW480, SW620). Total RNA was extracted from cells exposed to hypoxia. Data are presented as mean with error bars
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between HPS and immune cell infiltration demonstrated that the
hypoxia score was significantly positively correlated with
undifferentiated macrophages but negatively correlated with the
infiltration of cytotoxic CD8 + T cells and plasma cells (Figure 6D).

4 Discussion

Tumors require significant amounts of oxygen and nutrients to
support their rapid proliferation. However, due to insufficient
tumor blood vessel density and dysfunctional vascular structure,
tumor cells are often in a hypoxia state. To progress, tumor cells
evolve various mechanisms to adapt to hypoxic environments,
involving alterations in metabolic pathways, regulation of gene
expression, as well as interactions with other cells or tissues (2,
21-24). In this study, through a series of bioinformatics analyses, we
found seven hypoxia-associated signature genes with the most
significant prognostic impact on colorectal cancer patients and
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established a hypoxia-related prognosis score (HPS) for CRC
based on this signature gene set. In vitro, we observed significant
differences in the signature gene expression among normal and
cancer cell lines under hypoxia condition, which confirmed the
malignant predictive value of this HPS model.

TME hypoxia could mediate immune evasion of cancer cells via
multiple mechanisms. Hypoxia has been shown to modulate the
expression of cytokines and effector molecules of immune cells,
inhibiting their cytotoxic function (13, 14, 21, 25). In this study,
HPS was showed to be associated with immune cytokine pathways in
tumor microenvironment. However, the current study found no
significant difference in the expression of immunotherapy-related
molecules PD-1/PD-L1 or CTLA-4 between the low HPS and high
HPS group, which suggested that high HPS might not directly
promote immunosuppression by altering expression of ICI-related
molecules. Hypoxia may mediate the infiltration and distribution of
immune cells in the TME by aftecting their migration and chemotaxis
and there is an inverse relationship between the degree of hypoxia
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HPS is correlated with TME components. (A) Correlation between HPS and the infiltration of lymphoid-derived immune cells, assessed using the
xCell algorithm. The correlation coefficients are shown, with statistical significance indicated by asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001).
(B) Infiltration of lymphoid-derived immune cells in high- and low-risk groups, analyzed using the t-test. Statistical significance is indicated by
asterisks (*, p < 0.05, **, p < 0.01, ***, p < 0.001, ****, p < 0.0001). (C) Immune cell infiltration in high- and low-risk groups as determined by
CIBERSORT. Statistical significance was assessed using the Kruskal-Wallis test, with p-values indicated as: *p < 0.05; **p < 0.01; ***p < 0.001; ****p
< 0.0001; ns, not significant. Error bars represent the interquartile range (IQR). (D) Linear correlation between HPS and immune cell infiltration levels
in the tumor microenvironment as determined by CIBERSORT. Statistical significance was assessed using Pearson’s correlation test, with p-values

indicating the strength of the correlation.

and CD8+ T cell infiltration (16). In our study, HPS was found
positively correlated to MDSCs and negatively correlated to NK cells
and tumor killing T cells, suggesting that different HPS groups might
have different immune cell infiltration thereby leading to an immune
suppression environment. Further CIBERSORT infiltration analysis
showed that high HPS group exhibited higher overall immune cell
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infiltration and this increase was predominantly observed in
suppressive immune cell subsets such as Treg cells and MDSCs.
Meanwhile, the infiltration of tumor killing immune cells such as NK
cells and YOT cells was found decreased. All these findings emphase
our hypoxia-related prognosis score denoted an immunosuppressive
microenvironment for tumor.
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Hypoxia may also indirectly alter immune cell infiltration by
regulating the composition of the extracellular matrix (25, 26). Our
PPI data revealed significant differences in collagen gene expression
across different HPS groups, which supported the role of hypoxia in
matrix regulation. Previous studies have discovered that
macrophage infiltration contributes to the remodeling of the
extracellular matrix (27). Through CIBERSORT analysis, we
found increase macrophage infiltration in high HPS group
compared to low HPS group, suggesting the immunosuppressive
microenvironment in high HPS group might be related to
extracellular matrix modification. In addition, both our findings
and earlier researches support that alterations in the extracellular
matrix composition could affect T-cell entrapment and function
leading to immunosuppression (27).

Our study confirmed the significant impact of hypoxia on CRC
outcomes via transcriptomic analysis. Notably, it suggested that the
unique effects of hypoxia on the extracellular matrix and immune
cell infiltration might lead to varying patient prognoses. Revealing
the importance that hypoxia in the TME might contribute to a
potential targeted approach, such as hyperbaric oxygen, to reverse
tumor favoring TME. When combined with immunotherapy,
reversing hypoxia could enhance outcomes for CRC patients.
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