
Edited by

Ivano Malavolta, Federico Ciccozzi,

Christopher Timperley and Alwin Hoffmann

Published in

Frontiers in Robotics and AI

Robotics software
engineering

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/research-topics/55665/robotics-software-engineering
https://www.frontiersin.org/research-topics/55665/robotics-software-engineering

October 2025

Frontiers in Robotics and AI 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is

a pioneering approach to the world of academia, radically improving the way

scholarly research is managed. The grand vision of Frontiers is a world where

all people have an equal opportunity to seek, share and generate knowledge.

Frontiers provides immediate and permanent online open access to all its

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review,

selection and dissemination processes in academic publishing. All Frontiers

journals are driven by researchers for researchers; therefore, they constitute

a service to the scholarly community. At the same time, the Frontiers journal

series operates on a revolutionary invention, the tiered publishing system,

initially addressing specific communities of scholars, and gradually climbing

up to broader public understanding, thus serving the interests of the lay

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include

some of the world’s best academicians. Research must be certified by peers

before entering a stream of knowledge that may eventually reach the public -

and shape society; therefore, Frontiers only applies the most rigorous and

unbiased reviews. Frontiers revolutionizes research publishing by freely

delivering the most outstanding research, evaluated with no bias from both

the academic and social point of view. By applying the most advanced

information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers

journals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from

Original Research to Review Articles, Frontiers Research Topics unify the

most influential researchers, the latest key findings and historical advances

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or

contribute to one as an author by contacting the Frontiers editorial office:

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject
to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under
the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements
in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-6975-7
DOI 10.3389/978-2-8325-6975-7

Generative AI statement
Any alternative text (Alt text) provided
alongside figures in the articles in
this ebook has been generated by
Frontiers with the support of artificial
intelligence and reasonable efforts
have been made to ensure accuracy,
including review by the authors
wherever possible. If you identify any
issues, please contact us.

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

October 2025

Frontiers in Robotics and AI 2 frontiersin.org

Robotics software engineering

Topic editors

Ivano Malavolta — VU Amsterdam, Netherlands

Federico Ciccozzi — Mälardalen University, Sweden

Christopher Timperley — Carnegie Mellon University, United States

Alwin Hoffmann — XITASO GmbH, Germany

Citation

Malavolta, I., Ciccozzi, F., Timperley, C., Hoffmann, A., eds. (2025). Robotics software

engineering. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-6975-7

Dr Hoffmann is affiliated with XITASO GmbH IT & Software Solutions. All

other Topic Editors declare no competing interests with regard to the

Research Topic subject.

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-6975-7

October 2025

Frontiers in Robotics and AI 3 frontiersin.org

04	 Editorial: Robotics software engineering
Federico Ciccozzi, Ivano Malavolta, Christopher Timperley,
Andreas Angerer and Alwin Hoffmann

07	 Architectural modelling for robotics: RoboArch and the
CorteX example
Will Barnett, Ana Cavalcanti and Alvaro Miyazawa

27	 A containerised approach for multiform robotic applications
Giuseppe Cotugno, Rafael Afonso Rodrigues, Graham Deacon and
Jelizaveta Konstantinova

38	 A survey of ontology-enabled processes for dependable
robot autonomy
Esther Aguado, Virgilio Gomez, Miguel Hernando, Claudio Rossi and
Ricardo Sanz

68	 Composable and executable scenarios for simulation-based
testing of mobile robots
Argentina Ortega, Samuel Parra, Sven Schneider and
Nico Hochgeschwender

86	 Software patterns and data structures for the runtime
coordination of robots, with a focus on real-time execution
performance
Maria I. Artigas, Rômulo T. Rodrigues, Lars Vanderseypen and
Herman Bruyninckx

102	 AAT4IRS: automated acceptance testing for industrial robotic
systems
Marcela G. dos Santos, Sylvain Hallé, Fabio Petrillo and
Yann-Gaël Guéhéneuc

115	 EzSkiROS: enhancing robot skill composition with embedded
DSL for early error detection
Momina Rizwan, Christoph Reichenbach, Ricardo Caldas,
Matthias Mayr and Volker Krueger

133	 Semantic composition of robotic solver algorithms on graph
structures
Sven Schneider, Nico Hochgeschwender and Herman Bruyninckx

151	 Energy efficiency in ROS communication: a comparison
across programming languages and workloads
Michel Albonico, Manuela Bechara Cannizza and Andreas Wortmann

179	 ROSA: a knowledge-based solution for robot self-adaptation
Gustavo Rezende Silva, Juliane Päßler, S. Lizeth Tapia Tarifa,
Einar Broch Johnsen and Carlos Hernández Corbato

201	 A model-based approach to automation of formal
verification of ROS 2-based systems
Lukas Dust, Rong Gu, Saad Mubeen, Mikael Ekström and
Cristina Seceleanu

Table of
contents

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/

TYPE Editorial
PUBLISHED 29 September 2025
DOI 10.3389/frobt.2025.1686496

OPEN ACCESS

EDITED AND REVIEWED BY

Junaid Qadir,
Qatar University, Qatar

*CORRESPONDENCE

Federico Ciccozzi,
federico.ciccozzi@mdu.se

Ivano Malavolta,
i.malavolta@vu.nl

RECEIVED 15 August 2025
ACCEPTED 04 September 2025
PUBLISHED 29 September 2025

CITATION

Ciccozzi F, Malavolta I, Timperley C, Angerer A
and Hoffmann A (2025) Editorial: Robotics
software engineering.
Front. Robot. AI 12:1686496.
doi: 10.3389/frobt.2025.1686496

COPYRIGHT

© 2025 Ciccozzi, Malavolta, Timperley,
Angerer and Hoffmann. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Editorial: Robotics software
engineering

Federico Ciccozzi1*, Ivano Malavolta2*, Christopher Timperley3,
Andreas Angerer4 and Alwin Hoffmann4

1Mälardalen University, Västerås, Sweden, 2Vrije Universiteit Amsterdam, Amsterdam, Netherlands,
3Carnegie Mellon University, Pittsburgh, United States, 4XITASO Holding GmbH, Augsburg, Germany

KEYWORDS

robotic software, robotic software architecture, robotic software development, robotic
software framework, software testing, software engineering

Editorial on the Research Topic

Robotics software engineering
s

Introduction

Robotics software engineering stands at the intersection of multiple disciplines, where
physical interaction with dynamic and uncertain environments amplifies the complexity
of traditional software challenges. As robots become indispensable in domains such as
manufacturing, healthcare, transportation, and exploration, they must exhibit high levels of
autonomy, adaptability, robustness, and safety. Achieving these qualities requires not only
technical breakthroughs in algorithms and hardware but also a strong foundation in software
engineering principles tailored to the unique demands of robotics.

Robotics inherently involves multidisciplinary integration: navigation, motion
planning, manipulation, perception, control, and human-robot interaction must all coalesce
within a coherent software framework. Engineering these systems requires the careful
coordination of experts from each domain, whose contributions must reliably interoperate,
often in real time. Further challenges arise from operating in environments that are partially
observable, dynamic, and sometimes adversarial, which raises the stakes for ensuring
correctness, security, and resilience.

This Research Topic, Robotics Software Engineering, brings together a diverse Research
Topic of contributions aimed at addressing foundational and emerging challenges in this
space. Rather than presenting a simple catalog of articles, this editorial aims to situate these
works within the broader themes that are shaping the future of robotics software.

Bringing rigor to robotics: model-based
engineering and formal methods

As robotic applications become increasingly safety-critical, ensuring correctness
through formal verification becomes not just desirable but necessary. However formal
methods remain difficult to apply due to the manual effort required to create models and
extract system parameters. Dust et al. at Mälardalen University (Sweden) addressed this

Frontiers in Robotics and AI 01 frontiersin.org4

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1686496
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1686496&domain=pdf&date_stamp=2025-09-26
mailto:federico.ciccozzi@mdu.se
mailto:federico.ciccozzi@mdu.se
mailto:i.malavolta@vu.nl
mailto:i.malavolta@vu.nl
https://doi.org/10.3389/frobt.2025.1686496
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1686496/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1686496/full
https://www.frontiersin.org/research-topics/55665
https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ciccozzi et al. 10.3389/frobt.2025.1686496

issue head-on with a model-driven methodology for the automated
formal verification of ROS 2 systems. By integrating model
transformation pipelines with real execution traces, this work
demonstrates how verification can become more modular, reusable,
and accessible to non-experts. This toolchain lowers the barrier to
rigorous analysis, allowing developers to iteratively assess critical
system properties such as timing and scheduling without being
formal methods specialists.

Similarly, Barnett et al. (University of York, UK) proposed
RoboArch, an architectural modeling language layered atop the
formal DSL RoboChart, which advances the discipline by providing
verifiable architectural abstractions. When applied in industrial
contexts such as nuclear robotics, RoboArch emphasizes the value of
model-driven design in bridging the gap between informal software
practices and formal correctness in real-world systems.

Architectures for adaptivity and
reusability

Adaptation is a recurring theme in robotic systems, where
conditions often change unpredictably. Several contributions
explored adaptive software architectures as key enablers of
robustness and long-term autonomy. ROSA, a knowledge-
driven framework for robot self-adaptation proposed by Silva
et al. (TU Delft, Netherlands), exemplifies this direction. It
captures application-specific knowledge in structured models
and reasons over them at runtime to guide both task execution
and architectural configuration—a co-adaptation capability rarely
addressed in robotics.

Complementing this, the survey on ontology-enabled autonomy
by Aguado et al. (Universidad Politécnica de Madrid, Spain)
examined how semantic knowledge and reasoning improve robot
behavior in open-ended environments. By analyzing trends in
the use of ontologies for fault recovery, mission planning, and
behavior selection, the article highlights how structured, declarative
knowledge can foster more explainable and dependable autonomy.

The contribution by Schneider et al. (Hochschule Bonn-Rhein-
Sieg, Germany and KU Leuven, Belgium), Semantic Composition
of Robotic Solver Algorithms, introduced a composable, graph-
based methodology for algorithm synthesis. By leveraging standards
from the Semantic Web, the authors enabled the reuse and
symbolic generation of solver code across application domains, from
kinematics to probabilistic inference. These developments advance
the field toward software that not only adapts itself but also explains
its logic, a key step for collaborative and trustworthy robots.

Improving software quality through
early validation and testing

Traditional debugging and validation approaches are inadequate
for robotics, where errors discovered at runtime can lead
to costly damage or unsafe behavior. Therefore, early and
automated validation is crucial.

With EzSkiROS, Rizwan et al. (Lund University) and colleagues
addressed this issue by using embedded domain-specific languages
(DSLs) which enable the early detection of errors in robotic skill
composition. By embedding checks in the design and deployment
phases, this approach detected both high-level contract violations
and low-level implementation bugs before they manifested during
execution. This shift left in the validation pipeline shortens the
debugging loop and improves overall safety.

At the other end of the deployment pipeline, with AAT4IRS,
Dos Santos et al. (Université du Québec à Chicoutimi, Canada)
introduced a novel framework for automated acceptance testing in
industrial robotic systems. Built on behavior-driven development
principles, this approach uses natural language to specify test
scenarios, enabling cross-functional collaboration between
engineers and stakeholders. Mutation testing results showed strong
fault detection capability, indicating the practical utility of the
framework in high-stakes industrial environments.

Simulation-based testing also receives attention. Despite
its potential, it remains underused due to the complexity of
scenario definition. To address this issue, the article by Ortega
et al. (University of Bremen and Ruhr University Bochum,
Germany) presented a composable scenario framework for testing
mobile robots in virtual environments. By enabling developers to
incrementally build and reuse complex scenarios, the approach
reduces overhead while improving test coverage and configuration
error detection.

Foundations and infrastructure:
languages, patterns, and performance

The infrastructure underlying robotic software must be efficient,
reliable, and extensible. Several contributions examine foundational
aspects, including runtime patterns, data structures, and energy
consumption.

The study by Artigas et al. (KU Leuven and Flanders Make,
Belgium) introduced software coordination patterns such as
acquire-release and cache-awareness, alongside data structures
such as Petri nets and finite state machines, to support real-
time task execution. The proposed runtime infrastructure separates
event firing from handling, facilitating distributed deployment and
enabling consistent coordination across multiple robots.

The contribution by Albonico et al. (Federal University of
Technology of Paraná, Brazil) and colleagues addressed an
increasingly important concern—energy efficiency—by comparing
the resource usage of ROS 2 nodes written in C++ and Python.
Empirical results confirmed that C++ outperforms Python in energy
consumption, particularly in high-frequency communication tasks,
offering valuable guidance to developers who are optimizing for
battery-powered or resource-constrained platforms.

Containerization also emerges as a promising strategy for
scalable integration Cotugno et al. (Ocado Technology, UK) and
colleagues proposed a containerized approach for multiform robotic
architectures, demonstrating how virtualization can simplify the
integration of third-party components without compromising

Frontiers in Robotics and AI 02 frontiersin.org5

https://doi.org/10.3389/frobt.2025.1686496
https://doi.org/10.3389/frobt.2022.991637
https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.3389/frobt.2024.1377897
https://doi.org/10.3389/frobt.2024.1363150
https://doi.org/10.3389/frobt.2024.1363443
https://doi.org/10.3389/frobt.2024.1346580
https://doi.org/10.3389/frobt.2024.1363281
https://doi.org/10.3389/frobt.2024.1363281
https://doi.org/10.3389/frobt.2024.1363041
https://doi.org/10.3389/frobt.2025.1548250
https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ciccozzi et al. 10.3389/frobt.2025.1686496

performance. Evaluated in a real-world industrial robot, this
method showed that modern software engineering practices such as
containerization can be successfully adapted to robotics, reducing
setup complexity while maintaining real-time guarantees.

Toward a mature discipline of robotic
software engineering

Taken together, the articles in this Research Topic reflect
a field that is rapidly maturing—seeking not only functional
solutions to robotic problems but principled, reusable, and verifiable
engineering practices. From architectural modeling to energy-
aware programming, from scenario-based testing to self-adaptive
reasoning, each contribution addresses a facet of the broader
challenge: how to engineer robotic systems that are not only
intelligent, but also trustworthy, maintainable, and ready for real-
world deployment.

This Research Topic fosters synergy between academia and
industry, theoretical rigor and practical deployment. It invites
the community to further explore the foundational questions of
variability, modularity, reusability, validation, and automation in
robotic software development. As robots increasingly share our
spaces and tasks, the importance of sound engineering for their
software only grows.

We hope these contributions inspire continued innovation and
cross-disciplinary collaboration in the journey toward robust and
dependable robotic systems.

Author contributions

FC: Writing – original draft. IM: Writing – review and editing.
CT: Writing – review and editing. AA: Writing – review and editing.
AH: Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

Authors AA and AH were employed by XITASO
Holding GmbH.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Robotics and AI 03 frontiersin.org6

https://doi.org/10.3389/frobt.2025.1686496
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Architectural modelling for
robotics: RoboArch and the
CorteX example

Will Barnett, Ana Cavalcanti* and Alvaro Miyazawa

Department of Computer Science, University of York, York, United Kingdom

The need for robotic systems to be verified grows as robots are increasingly

used in complex applications with safety implications. Model-driven

engineering and domain-specific languages (DSLs) have proven useful in the

development of complex systems. RoboChart is a DSL for modelling robot

software controllers using state machines and a simple component model. It is

distinctive in that it has a formal semantics and support for automated

verification. Our work enriches RoboChart with support for modelling

architectures and architectural patterns used in the robotics domain.

Support is in the shape of an additional DSL, RoboArch, whose primitive

concepts encapsulate the notion of a layered architecture and architectural

patterns for use in the design of the layers that are only informally described in

the literature. A RoboArch model can be used to generate automatically a

sketch of a RoboChart model, and the rules for automatic generation define a

semantics for RoboArch. Additional patterns can be formalised by extending

RoboArch. In this paper, we present RoboArch, and give a perspective of how it

can be used in conjunction with CorteX, a software framework developed for

the nuclear industry.

KEYWORDS

software engineering, patterns, RoboStar framework, nuclear industry, verification,
simulation, test, proof

1 Introduction

Robotic systems are being used in an increasingly diverse range of applications, and in

more dynamic and unstructured environments. With autonomy and the ability to operate

in close proximity to humans, safety becomes an issue. Furthermore, robotic systems and

their software are becoming more complex. In previous work, we have contributed to the

verification of robotic systems using a domain-specific language with a formal semantics,

namely, RoboChart (Miyazawa et al., 2017, 2019).

In this paper, we present an approach to defining RoboChart models for software that

use architectures of wide interest in robotics. It is based on a novel domain-specific

notation, RoboArch, presented here for the first time. It embeds robotics software

architectural concepts and enables automatic generation, via model transformation, of

partial RoboChart models, that is, sketches of RoboChart models that can be completed by

designers with application-specific descriptions (of actions and state machines).

OPEN ACCESS

EDITED BY

Rob Skilton,
United Kingdom Atomic Energy
Authority, United Kingdom

REVIEWED BY

Domenico Redavid,
University of Bari Aldo Moro, Italy
Enrico Mingo Hoffman,
Pal Robotics S.L., Spain

*CORRESPONDENCE

Ana Cavalcanti,
Ana.Cavalcanti@york.ac.uk

SPECIALTY SECTION

This article was submitted to Field
Robotics,
a section of the journal
Frontiers in Robotics and AI

RECEIVED 11 July 2022
ACCEPTED 23 September 2022
PUBLISHED 28 October 2022

CITATION

Barnett W, Cavalcanti A and Miyazawa A
(2022), Architectural modelling for
robotics: RoboArch and the
CorteX example.
Front. Robot. AI 9:991637.
doi: 10.3389/frobt.2022.991637

COPYRIGHT

© 2022 Barnett, Cavalcanti and
Miyazawa. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Robotics and AI frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2022
DOI 10.3389/frobt.2022.991637

7

https://www.frontiersin.org/articles/10.3389/frobt.2022.991637/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.991637/full
https://www.frontiersin.org/articles/10.3389/frobt.2022.991637/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2022.991637&domain=pdf&date_stamp=2022-10-28
mailto:Ana.Cavalcanti@york.ac.uk
https://doi.org/10.3389/frobt.2022.991637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2022.991637

The definition of a system’s architecture during its design has

been considered a beneficial technique as the scale of software

systems has grown. The architecture provides a structural

representation that enables the evaluation of system attributes

and of alternative system designs and modifications (Bass et al.,

2012). From experience, practitioners have identified structures

and relationships within system architectures that solve recurring

problems. These solutions have been generalised as architectural

patterns that are reusable in the design of new systems (Gamma

et al., 1995). For the robotics domain, some common patterns

have emerged: notably, the use of layers for robot control

(Siciliano and Khatib, 2016, pp. 286–289).

In many other complex multidisciplinary domains, Model-

Driven Engineering (MDE) is being used successfully to mitigate

complexity (Franz et al., 2018). The core principle of MDE is to

use abstract models of a system as the primary artefact(s) of its

development process. This promotes identification of the

underlying concepts free from specific implementation

dependencies. The use of abstract models also facilitates the

automation of the software development process. In this way

developers can devote their time to understanding and solving

the domain-specific problems.

Domain-specific languages (DSL) facilitate the development

of models by embedding core concepts of a target domain, and

enabling the definition of concise representations understood by

practitioners. This avoids the need for each development team to

identify these concepts, resulting in duplication of work and

hindering reusability. Over the last 25 years, there have been

considerable developments in MDE for robotics, with the

creation of many DSL for its different sub-domains

(Nordmann et al., 2016).

Some examples of DSL for robotics include: RobotML

(Dhouib et al., 2012), SmartSoft (Stamper et al., 2016), and

BCM (Bruyninckx et al., 2013). These DSLs, like the majority

available, do not have formally defined semantics (Cavalcanti

et al., 2021b). Therefore, the support for formal verification of

robotic systems is limited. A recent literature survey (Luckcuck

et al., 2019) found sixty-three examples of the application of

formal methods within the robotics domain. Formal methods

enable the early verification (proof, simulation, and testing) of a

system through the use of rigorous automated techniques with

mathematical foundations. Early use of verification techniques

and high levels of automation enable the development of systems

that are more reliable and cheaper.

RoboChart is a DSL for modelling robotics software

controllers using state machines and a simple component

model; RoboChart makes innovative use of formal methods

for automated verification. The associated tool, RoboTool1,

provides features of MDE, which include a graphical interface

for creating models, and automatic generation of source code and

mathematical descriptions. Additionally, RoboChart supports

automatic verification of properties such as deadlock and

livelock freedom using model checking, along with semi-

automatic verification techniques using theorem proving

(Cavalcanti A. L. C. et al., 2021).

To date, RoboChart has been used to model more than

twenty proof-of-concept case studies. They have facilitated the

development and demonstration of RoboChart and its

verification technology. None of them, however, adopt an

elaborate software architecture. For larger robotic systems,

support for modelling taking advantage of commonly used

architectural patterns can enable explicit modelling of the

structure of systems with potential to assist in reuse and

compositional design and reasoning.

RoboArch allows the description of layered designs for

robotic control software, and of design patterns for each layer.

In this paper, we not only give an overview of RoboArch via a

motivating example, but also present its complete metamodel

and set of well-formedness conditions that specify the valid

RoboArch models. We also describe our model-

transformation approach, based on 50 rules, mechanised to

generate automatically a sketch of a RoboChart model from a

RoboArch architectural design of a system.

Besides supporting the description of architectural designs,

RoboArch formalises a notion of a layered architecture and other

patterns. Most of these patterns are described in the literature

only informally, sometimes with different variations described by

different authors. At best, patterns are realised in an

implementation or programming language. Such descriptions

necessarily mix the core concepts of the architectural patterns

with those of the application or programming language. In

contrast, the RoboArch formalisation identifies the core

concepts of a pattern and their relationship.

The CorteX framework (Caliskanelli et al., 2021) has been

designed for use in nuclear robotics to address the challenges of

developing their complex robotic systems that need to be

maintained over long periods of time, often to deal with

changing requirements due to the unknown operational

conditions. CorteX favours the development of maintainable

and extensible systems through specialised data and

communications designs. Designs for the CorteX middleware

are inherently concurrent.

Our vision is the alliance of RoboArch and CorteX to support

1) the identification and formalisation of the architectural

designs that rely on CorteX and 2) the elicitation of assurance

evidence to increase confidence in CorteX-based software and

support the construction of assurance arguments. By integrating

CorteX with RoboArch, and, via RoboArch, to RoboChart, we

connect CorteX to the RoboStar approach to Software

Engineering for Robotics (Cavalcanti A. L. C. et al., 2021).

With that, we enable, automatic generation of mathematical

models that specify the meaning of the RoboArch designs,1 robostar.cs.york.ac.uk/robotool/

Frontiers in Robotics and AI frontiersin.org02

Barnett et al. 10.3389/frobt.2022.991637

8

http://robostar.cs.york.ac.uk/robotool/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

and automatic and semi-automatic verification of properties via

model-checking and theorem proving. Further specialisation of

the approach can lead to automatic generation of CorteX code for

simulation and deployment.

Our novel contributions in this paper are as follows.

1) Design of RoboArch for description of layered architectures

for robotic control software.

2) Definition of the metamodel and well-formedness conditions

of RoboArch.

3) Description of a technique for model-to-model

transformation from RoboArch to RoboChart.

4) Formalisation of the reactive-skills architectural pattern for

design of control layers, illustrating a general approach to

formalise patterns using RoboArch and RoboChart.

5) Discussion of perspectives for allying the use of RoboArch

and CorteX, and, in particular, of the formalisation of CorteX

in RoboArch and RoboChart.

These results enable use of MDE in the development of

control software for robotic systems in a way that focusses on use

of well-known patterns allied with the advantages of modern

verification techniques. RoboChart, and, therefore, RoboArch,

are part of a design and verification framework, called RoboStar,

that supports automated generation of simulations, tests, and

proof.

In the next section, we describe related work on architectures

for robotics. Section 3 presents RoboArch: metamodel, well-

formedness conditions, and translation to RoboChart. Section

4 shows how a design pattern can be formalised in RoboArch

using the example of reactive skills. In Section 5 we conclude,

discussing our approach for the integration of RoboArch and

CorteX as future work.

2 Related work

In this section, we discuss the literature on architectural

patterns for robotics. Crucially, this justifies our choice of layer as

a core concept in RoboArch, but also indicates other patterns of

interest, including reactive skills, which we also formalise in this

paper.

RoboArch is not related to the homonym in (Bonato and

Marques, 2009), which is a tool to support the development of

mobile robots. The focus in (Bonato and Marques, 2009) is on

implementation, not modelling, of hardware-software co-designs

based on hardware and software components, and code

generation for FPGA, not software architectures. Moreover,

there is no semantics or support for verification beyond

simulation for the notation adopted by RoboArch to define

the compositions.

Other works that share our aim to reduce effort in the

development of control software in robotics focus on the

programming, rather than the modelling, level. The result is a

variety of middleware, encouraging code reuse and component-

based development (Bruyninckx, 2001; Metta et al., 2006; Ando

et al., 2008; Chitta et al., 2017; Muratore et al., 2017). These works

provide useful resources for programming, but do not address

the issues arising from a code, rather than model-based,

approach to development. Work on RoboArch and

RoboChart is complementary. In particular, we consider here

how we can provide direct support for use of the modern CorteX

middleware that has a track record in the nuclear industry.

Historical architectural patterns include Sense Plan Act

(SPA) (Siciliano and Khatib, 2016, p. 285) and subsumption

(Brooks, 1986). SPA is an example of a pattern that is

deliberative: time is taken to plan what to do next, and then

the plan is acted out with no sensing or feedback during acting. A

robot using SPA in a dynamically changing world can be slow

and error prone in response to environmental change.

Conversely, subsumption is an example of an architectural

pattern that is reactive, where the environment is constantly

sensed and used to directly shape the robot’s actions. A robot

using subsumption responds rapidly to a changing world;

however, complex actions are difficult to achieve.

More recent hybrid architectural patterns combine the

principles from SPA and subsumption to benefit from both

the deliberative and reactive properties. In total, twenty-two

architectural patterns used by robotics systems have been

identified from the literature; these are listed in Table 1. Five

have been selected for discussion based upon evidence of

application, reuse, and activity of development. The collective

publications that focus on an architectural pattern have been

used to find evidence of application, with the scale of any

documented application used to give preference to patterns

that have been used in large deployments in the real world.

The number of publications where an architectural pattern was

used in a new application has been used to asses reuse. Finally,

preference has been given to patterns with recent activity,

determined by the date and frequency of publications where

the pattern has been used.

LAAS was developed at LAAS2 in 1998 for autonomous

robots. A fundamental goal of LAAS is to provide both

deliberative and reactive capabilities required for autonomy.

The LAAS pattern is made up of the following three layers.

The Functional Layer provides basic robot actions that are

organised into modules consisting of processing functions,

task loops, and monitoring functions for reactive behaviour.

An Execution Control Layer selects functions from the

functional layer to carry out sequences of actions determined

by the decision layer. Finally, the Decision Layer plans the

2 Laboratory for Analysis and Architecture of Systems CNRS.

Frontiers in Robotics and AI frontiersin.org03

Barnett et al. 10.3389/frobt.2022.991637

9

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

sequence of actions necessary to achieve mission goals and

supervises the execution of the plans.

The functional layer consists of a network of modules that

provide services related to a particular sensor, actuator, or data

resource of the robot. All modules have a fixed generic structure

made up of a controller and execution engine. A tool can be used

to generate module source code. The services provided by the

modules are accessed by the executive layer above and other

modules from the functional layer through the use of a non-

blocking client-server communication model.

The execution control layer bridges the slow, high-level,

processing of the decision layer, and the fast, low-level,

control of the functional layer. It has an executive module

that takes sequences of actions from the decision layer, and

selects and triggers the functions that the functional layer must

carry out. In addition, the executive receives replies from the

functional layer and reports activity progress to the decision

layer.

The decision layer has one or more pairs of a supervisor and a

planner. The supervisor takes a sequence of actions from the

planner and manages their execution by communicating them to

the execution layer, and responding to reports received from it.

The planner creates a sequence of actions to achieve a goal. The

supervisor also passes down situations to monitor and associated

responses within the constraints of the plan. These responses

enable the lower layers to react without the need for involvement

of the decision layer, improving response time and reducing

unnecessary replanning.

LAAS has been used in the implementation of the ADAM

rough terrain planetary exploration rover (Chatila et al., 1995),

and of three Hilare autonomous environment exploration robots

as part of the MARTHA European project. More recently,

Behaviour Interaction Priority (BIP) models have been used to

verify the functional layer of the LAAS pattern (Silva et al., 2015).

CLARAty (Coupled Layer Architecture for Robotic Autonomy)

was developed at NASA in 2001 for planetary surface-exploration

rovers. CLARAty is designed to be reusable and to support multiple

robot platforms; it consists of two-layers: a functional layer, and a

decision layer formed by combining the planning and executive

layers from a three-layer architecture. A key concept defined in

CLARAty is granularity, which reflects the varying levels of

deliberativeness available to the robotic system.

The functional layer provides a software interface to the

hardware capabilities of the robot, and it is structured using an

object-oriented hierarchy. At the top of the hierarchy is the Robot

superclass from which everything inherits. At subsequent levels

down the hierarchy, classes are less abstract and each provide

functionality for a piece of the robot’s hardware. At the bottom of

TABLE 1 The patterns identified from the literature.

Pattern Focus Year

CoSiMA Wigand et al. (2018) Safe real-time robots 2018

aIRSA Backes et al. (2018) Autonomous robots 2018

aSERA García et al. (2018) Decentralised teams 2018

Aerostack Sanchez-Lopez et al. (2017) Autonomous unmanned aerial systems 2017

aCARACaS Huntsberger and Woodward, (2011) Autonomous robots 2011

EFTCoR Álvarez et al. (2006) Service robot control 2006

Syndicate Sellner et al. (2006) Autonomous teams 2006

DDX (Corke et al., 2004) Distributed robot controllers 2004

aCLARAty (Volpe et al., 2001) Autonomous robots 2001

HARPIC (Luzeaux and Dalgalarrondo, 2001) Autonomous robots 2001

aLAAS (Alami et al., 1998) Autonomous robots 1998

Remote Agent (Muscettola et al., 1998) Autonomous robots 1998

ORCCAD (Borrelly et al., 1998) Robot control 1998

Planner Reactor (Lyons and Hendriks, 1995) Autonomous robots 1995

Reactive Skills (Yu et al., 1994) Autonomous robots 1994

CIRCA (Musliner et al., 1993) Real-time intelligent robots 1993

ATLANTIS (Gat, 1992) Autonomous robots 1992

Layered Competencies (Bonasso, 1991) Autonomous robots 1991

Motor Schema (Arkin, 1989) Robot control 1989

NASREM (Albus et al., 1989) Autonomous robots 1989

AuRA (Arkin, 1987) Autonomous robots 1987

Subsumption (Brooks, 1986) Autonomous robots 1986

aSelected for further discussion.

Frontiers in Robotics and AI frontiersin.org04

Barnett et al. 10.3389/frobt.2022.991637

10

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

the hierarchy, each class provides access to a specific piece of

hardware functionality and its current state.

Classes can provide functionality that requires minimal input

from the decision layer, therefore, this type of class can be

considered more reactive. For example, the class for a rover

may offer a method for obstacle avoidance. Alternatively classes

can provide functionality that requires regular input from the

decision layer, therefore, the class can be considered more

deliberative. For example, the class for a robotic arm may

offer a method for setting the position for one of its five motors.

The single decision layer enables state information between

planner and executive to be shared, whichmeans that the planner

becomes tightly integrated with the executive. Consequently,

discrepancy between the planner and the functional layer’s

state is minimised.

The CLARAty pattern has been used for a variety of robot

platforms: Rocky 8, FIDO, ROCKY 7, K9 Rovers, and ATRV Jr

COTS platform (Nesnas et al., 2006). The different platforms

have a variety of deployment architectures, from a single

processor requiring hard real-time scheduling, to distributed

microprocessors using soft real-time scheduling.

CARACaS (Control Architecture for Robotic Agent

Command and Sensing) is an architectural pattern developed

at NASA in 2011 for control of autonomous underwater vehicles

(AUV), and autonomous surface vehicles (ASV). CARACaS-

based software supports operation in uncontrolled environments

ensuring the vehicles obey maritime regulations. A CARACaS

design supports cooperation between different vehicles and

makes use of dynamic planning to adapt to the current

environmental conditions and mission goals.

The five main elements of CARACaS are as follows.

Actuators interface the actuators of the vehicle. A Behaviour

Engine coordinates and enables the composition of behaviours

acting on the actuators. The arbitration mechanisms controlling

the enabling and disabling of behaviours are subsumption,

voting, and interval programming. A Perception Engine creates

maps for safe navigation and hazard perception from the sensors.

A Dynamic Planning Engine chooses activities to accomplish

mission goals while observing resource constraints. For that, it

uses Continuous Activity Scheduling Planning Execution and

Replanning (CASPER) (Chien et al., 2000), and issues commands

to the Behaviour Engine. Finally, a World Model contains state

information including plans, maps, and other agents.

Layers are not defined in Huntsberger and Woodward (2011),

but a CARACaS design can be partitioned into two layers. At the

lowest level, a behavioural layer includes the Actuators, and the

Behaviour and Perception Engine elements. The higher layer consists

of the Dynamic Planning and the World Model.

Although CARACaS is targeted at autonomous water-based

vehicles, it contains all of the required elements to be applied

more generally as a pattern for the control of robots.

IRSA (Intelligent Robotics System Architecture) was developed

at NASA in 2018 to streamline the transition of robotic algorithms

from development onto flight systems by improving compatibility

with existing flight software architectures. IRSA uses concepts from

other patterns: CARACaS and CLARAty.

The main elements of IRSA are as follows. A Primitive provides

low-level behaviours that can have control loops. Behaviour provides

autonomy, transitioning between multiple states during execution.

The Executive receives and executes a sequence of instruction

commands from the planner. The Planner uses the system state

from the world model to produce the sequence of command

instructions. A Sequence contains the instructions that the robot

must perform. A Verifier verifies whether the sequence is valid.

Finally, the Robot World Modelmaintains a model of the robot with

local and global state information.

An IRSA design can bemapped onto a three-layer pattern with a

common world model accessible to all layers. The behavior and the

primitive elements provide control over the robot; so, these two

elements can be placed in the bottom layer. The executive receives

sequences of commands and manages their execution using the

behaviours. Therefore, the executive is the middle layer. The planner

uses the state of the system from theworldmodel to create a sequence

of commands checked by the verifier. Therefore, the planner,

sequence, and verifier elements are in the layer above the executive.

The IRSA architectural pattern has been deployed on a variety of

test beds: comet surface sample return, Europa lander, Mars

2020Controls andAutonomy, and theRoboSimianDARPAchallenge.

SERA (The Self-adaptive dEcentralised Robotic

Architecture) has been developed at the Chalmers University

of Technology in 2018. SERA’s primary goal is to support

decentralised self-adaptive collaboration between robots or

humans, and it is based on the three-layer self-management

architectural pattern. SERA has been evaluated in collaboration

with industrial partners in the Co4Robots H2020 EU project.

The layers of the SERA pattern are as follows. The Component

Control Layer provides software interfaces to the robot’s sensors and

actuators, grouped into control action components responsible for

particular areas of functionality. The Change Management Layer

receives the local mission and creates a plan in order satisfy its goals.

It executes the plan by calling appropriate control actions from the

component control layer. Finally, the Mission Management Layer

manages the local mission for each robot and communicates with

other robots in order to synchronise and achieve the global mission.

The mission management layer receives a mission specification

from a central station as a temporal logic formulae. The mission

manager checks its feasibility and, if it is feasible, passes themission to

the adaptationmanager in the layer below. If themission is infeasible,

a communication and collaboration manager communicates and

synchronises with the other robots involved in the mission. During

the synchronisation, an updated achievable mission that meets the

original mission specification is computed.

This pattern places more functionality in the lowest

component control layer. A key feature of SERA is

communication among robots, which provides greater

flexibility in achieving the mission goals.

Frontiers in Robotics and AI frontiersin.org05

Barnett et al. 10.3389/frobt.2022.991637

11

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

2.1 Discussion

Generally no particular pattern or selection of patterns are widely

used. There is a tendency for each project to establish its own pattern.

Between research groups, however, there is some reuse of patterns.

Layers are a common theme among many of the recent

architectural patterns. Even when layers have not been explicitly

specified, the elements of a pattern are structured such that they

can be mapped onto a layered architectural pattern. All patterns

have a functional layer that interacts with the robots sensors and

actuators. The upper layers following the functional layer vary in

number and purpose.

The functional layer is required by all architectural patterns

because every robot requires a means to sense and interact with its

environment. From the patterns surveyed, this layer can be

categorised as either service or behavioural. CLARAty, LAAS and

SERA are all examples of patterns that have a service-based

functional layer, whereas, CARACaS and IRSA have behavioural-

based functional layers.

Examples of behavioural control patterns that can be used for

functional layer include subsumption (Brooks, 1986) and reactive skills

as used by the control layer of 3T (Bonasso et al., 1997). It is common

for the decision layer to be placed directly above the functional layer.

Patterns that do not use an executive layer take different

approaches to managing the system’s state. For instance, SERA

and CLARAty use information in the decision layer to hold

system state.Whereas, CARACaS uses a worldmodel layer that is

accessible by all other layers to hold system state.

Some patterns such as SERA have an additional social layer

for collaboration between teams of robots. Similarly LAAS

supports this through adding supervisor-planner pairs, but

considers this to be an extension of the decision layer rather

than a new layer. Generally the layered pattern lends itself to the

addition of new layers for extending the level of system capability.

RoboArch directly supports the definition of layered

architectures, with an arbitrary number of layers. A

degenerate layered architecture with just one layer can be

used to define a design that does not actually uses layers. As

indicated above, however, the use of more elaborate layers, some

using specific patterns themselves, is common. In what follows,

we present the RoboArch notation.

3 Materials and methods: RoboArch

In this section, we show how a layered design can be described

using RoboArch.We give an overview using the example of an office

delivery robot from (Siciliano and Khatib, 2016, pp. 291–295)

(Section 3.1). In Section 3.2 we present the complete metamodel

and well-formedness conditions of RoboArch. Finally, in Section 3.3,

we describe the RoboChart model defined by a RoboArch design. In

the next Section 4, we show an example of how a pattern for the

control layer can be characterised and used.

3.1 Overview

RoboArch is a self-contained notation that can be used

independently. As mentioned, however, its semantics is given by

translation rules that define a (sketch of a) RoboChartmodel. This not

only gives RoboArch a precise and formal semantics, but also paves

the way for the use of the RoboStar framework to design and verify

the control software. Figure 1 gives an overview of the possibilities.

As indicated in Figure 1, a key concept in RoboArch is that of

a robotic platform. RoboArch designs are platform independent,

so the robotic platform here describes the services the robot

provides that can be used in the development of the control

software. The services are abstractions of the robot’s sensors and

actuators defined via the declaration of input and output events

and operations that can be realised via actual sensors and

actuators. The same approach is taken in RoboChart.

To give an overview of the RoboArch notation, we consider the

example of a robot whose goal is to deliver items of post within a

typical office building, transporting them from a central mailroom

to each of the offices within the building. To achieve its goal the

robot must safely navigate along the corridors of the building while

avoiding any obstacles such as people and furniture.

Listing 1. A system and its type declarations.

A RoboArchmodel for the mail delivery system is sketched in

Listing 1. A system clause gives a name to a model and

introduces the outer scope to define the layers and the robotic

platform. The robotic platform must be used by a single layer,

Frontiers in Robotics and AI frontiersin.org06

Barnett et al. 10.3389/frobt.2022.991637

12

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

usually the control layer. In addition to the architectural

elements, a RoboArch model also contains definitions for

types, functions, interfaces, and connections. For our example,

Line 1 of Listing 1 declares the system with the name

MailDelivery.

RoboArch adopts the type constructors and typing rules of

the well-established data modelling notation Z (Woodcock and

Davies, 1996), allowing the definition of primitive types, records,

sets, and so on. RoboChart and all RoboStar notations adopt the

same typing approach. By adopting the Z type system, we benefit

from a well-known powerful type system, which has the expected

facilities to define a rich, possibly abstract, data model, and that is

supported by verification tools. In our example, the next few lines

define types. Most type definitions are omitted here, but the

complete example is available3.

Robotic platforms are normally defined in terms of

interfaces. For our example, the robotic platform is named

DeliveryRobot, and its definition references interfaces

Base, Audio, PointCloud, and EnvColourPoints,

some omitted in Listing 1. Interfaces group events or operations,

and are referenced using provides and uses clauses in a

platform definition. The Base interface models the interactions

that control movement. There is one operation Move and two

constants. Move is an abstraction for motor functionality that

can be accessed by the software via a call to this operation. It is a

service provided by the platform, since Base is declared in a

provides clause. The interfaces declared in uses clauses

contain events that represent points of interaction (inputs and

outputs), corresponding to inputs from sensors, or outputs to

actuators. They are used by connecting the platform events to

those of a layer.

The design in Listing 1 is a typical three-layer architecture.

Every layer has a unique name, and optionally can have a type, a

pattern, inputs and outputs. The three specific layer types are

ControlLayer, ExecutiveLayer, and PlanningLayer.

We can also not provide a type so that a customised architectural

structure can be defined. The services of a layer are accessed

through its inputs and outputs.

The layer clause is used to define the layer name and type.

In Listing 1, we show a layer with name Pln and type

PlanningLayer. It has one output deliverMail of type

Office that requests the number of the office to which mail is

currently being delivered. There are two inputs

deliveryComplete and pickupFailed that have no

associated value type; their occurrence indicates an outcome

of the currently requested delivery. The inputs and outputs

are used to communicate with another layer or the robotic

platform; in our example communication is with an executive

layer, omitted in Listing 1.

A layer of control type can directly communicate with a robotic

platform, and so reference platform interfaces. The control layer for

our example is Ctl. Its inputs and outputs communicate with the

executive layer and DeliveryRobot. The requires and uses

clauses reference the interfaces with the operations of the platform

that it requires and, the events that it uses. While an

ExecutiveLayer and a PlanningLayer cannot require or

use services of a platform, a generic layer also can.

The connections among the layers and the robotic platform

are defined under a system’s connections clause. Each

connection is unidirectional and connects an input or output

FIGURE 1
RoboArch in the context of RoboStar. With a RoboArch architectural design, we can generate automatically a sketch of a RoboChart
behavioural model. Using the RoboChart model, we can take advantage of a plethora of modern verification techniques supported by automated
generation of artefacts.

3 https://robostar.cs.york.ac.uk/case_studies/

Frontiers in Robotics and AI frontiersin.org07

Barnett et al. 10.3389/frobt.2022.991637

13

https://robostar.cs.york.ac.uk/case_studies/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

on a layer or event of the platform to another. Listing 1 shows

some of the connections for our mail delivery example. For

example, the first declares a connection from the Pln layer’s

deliverMail output event to an Exe layer’s deliverMail

input event. The second connection is between the robotic

platform (DeliveryRobot) and the control layer (Ctl).

Several other connections are omitted.

In the next section, we give a complete description of the

structure of RoboArch designs.

3.2 Metamodel and well-formedness

Figure 2 presents the RoboArch metamodel: the classes,

and their attributes and associations, that represent a

RoboArch design. The main class is System, whose

objects have definitions of layers, robotic platform,

connections, definitions, functions, and interfaces.

The classes TypeDecl, Function, and Interface defining

types for attributes of System come from the RoboChart

metamodel (Miyazawa et al., 2020).

The RoboticPlatform class also comes from the

RoboChart metamodel. RoboticPlatforms have a name

and can declare events and variables as well as reference

interfaces.

Layers can optionally have a pattern that defines their

behaviour. (An example is presented in the next section.)

Layers can also have inputs and outputs, which are Events, a

concept also from RoboChart. An Event can have a type, which,

if present, defines the values that can be communicated.

Systems, RoboticPlatforms and Layers are

NamedElements: they have a name attribute.

RoboticPlatforms and Layers are also ConnectionNodes:

elements that can be connected via their events. Connections

are between a source efrom and a target eto event that belong to

the to and from ConnectionNodes.

Layer is further defined in Figure 3; it has four subclasses.

A GenericLayer represents the most general kind of layer,

without a declared type, offering flexibility to model systems

with minimal restrictions. The three other kinds of layers,

ControlLayer, ExecutiveLayer, and PlanningLayer, have

specific well-formedness conditions (discussed later) that

characterise the connections and patterns of a valid

architectural design.

GenericLayers and ControlLayers can communicate with

the RoboticPlatform. They are, therefore, represented by

subclasses of an abstract class PlatformCommunicator. The

objects of this class have required and defined attributes that

record the interface declarations.

As mentioned, Layers can have a pattern. Figure 3

includes examples of patterns represented by subclasses of

Pattern, namely, ReactiveSkills, Subsumption, Htn, and

PlannerScheduler. To formalise a pattern for use in

RoboArch designs, we need to add a subclass of Pattern to

represent it. In the next section, we detail ReactiveSkills as

an example of how a pattern can be formalised. Section 5

describes a RoboArch pattern for CorteX designs. Current

work is considering the formalisation of Subsumption

and Htn.

Not all models that can be created obeying themetamodel are

valid. For instance, considering just the restrictions defined by

the metamodel, we can create an architecture that connects

events of different types. No typing rules are captured in the

metamodel. As another example, the metamodel allows the

specification of an architecture without connections with the

robotic platform. Such design is for a software that does not carry

out any visible task, and we regard it as invalid. Although we

could translate such designs to RoboChart, there is little point in

FIGURE 2
System metamodel.

Frontiers in Robotics and AI frontiersin.org08

Barnett et al. 10.3389/frobt.2022.991637

14

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

delaying the identification of problems by working with invalid

designs.

Instead, we define well-formedness conditions, presented

here in Table 2, which characterise the valid designs. These

conditions provide modellers with additional guidance and

support for validation when defining an architecture.The

conditions can be checked by the RoboArch tool.

S1 ensures that it is possible to interact with the platform.

Because a Layer must provide a service, S2 ensures that it

provides a means for external interaction. S3 ensures that, if

used, the ExecutiveLayer is the middle intermediate layer

between the planning and control layers with no direct

communication between them. S4, S5, and S6 are

concerned with the proper use of layers, without bypassing

communications, and creating inappropriate dependencies.

S7 prevents type errors, and S8 ensures correct data flow.

In the next section we describe how a RoboArch design can

be formalised in RoboChart, and how transformation rules can

be used to generate RoboChart models.

3.3 RoboArch in RoboChart

Table 3 presents an informal account of how RoboArch

elements can be mapped to a RoboChart model.

Transformation rules formalise this mapping, defining the

(formal) semantics of RoboArch; their implementation allows

the automatic generation of RoboChart models. RoboChart’s

formal semantics underpins RoboArch and allows properties of a

RoboArch design to be verified (see Figure 1). Figure 4 presents

parts of the RoboChart model for the design in Listing 1.

The top-level transformation rule, shown in Figure 5, maps a

RoboArch System to the RoboChart type definitions,

functions, interfaces, and robotic platform that it declares.

Importantly, the top rule defines a valid RoboChart module for

the system. The mapping provides a graphical representation

as well as a semantics for these elements, since RoboChart is a

diagrammatic language. Due to space restrictions, we cannot

present all the transformation rules, but they are available4.

A module is the RoboChart element representing a (parallel)

robotic control software. In Figure 4, the module

OfficeDelivery defines the RoboArch system of the

same name.

A RoboChart module has its platform-independent

behaviour characterised by a RoboticPlatform and one or

more parallel Controllers whose behaviours are defined by

one or more state machines running in parallel. The module

FIGURE 3
Layers metamodel.

TABLE 2 The well-formedness conditions of RoboArch.

Condition Description

S1 A System must have one or more connections that relate a
single Layer to a RoboticPlatform or there must be a Layer that
has at least one or more required interfaces (elements in
rinterfaces)

S2 For Systems with more than one Layer, each Layermust have at
least one input or output

S3 For Systems with more than two Layers, their ordering given by
Connections must be: ControlLayers < ExecutiveLayers <
PlanningLayers

S4 Connections must associate a Layer with at most two other
Layers

S5 Connections involving theControlLayermust associate it with
at most one other Layer

S6 The connections of a System must associate events defined by
interfaces ofGenericLayers and ControlLayers with events of
the RoboticPlatform

S7 Connections efrom and eto event types must match

S8 Connections must connect Layer inputs to outputs or vice
versa

4 https://robostar.cs.york.ac.uk/publications/reports/roboarch_
rules.pdf

Frontiers in Robotics and AI frontiersin.org09

Barnett et al. 10.3389/frobt.2022.991637

15

https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

defined by a RoboArch system includes a reference to its

RoboticPlatform, and one Controller for each Layer. In

Figure 4, the module has references to the platform

DeliveryRobot, and to three controllers Pln, Exe, and Ctl

named after the layers of the RoboArch system.

The inputs and outputs of a Layer become events of the

corresponding RoboChart controller. Connections between

layers and the robot become connections between controllers

and the robotic platform.

Figure 4 shows the RoboChart controller for the planning layer

Pln. The events appear along the border of the controller. Inside,

there is a reference to a singleminimalmachine stm0 because in this

example no pattern is specified by the RoboArch design. The

minimal machine, also shown in Figure 4, is a placeholder to be

changed by the designer to specify their required behaviour. The

minimal machine consists of a single initial junction, a state s0, and a

transition that leads from the initial junction to s0.

For illustration, we show the top rule SystemToRCModule in

Figure 5; it uses further rules (omitted here) to specify the

RoboChart resulting elements rcdefs, rcfuns, rcifs, and rcmod

that give the semantics of the system amsys given as input. The

other rules are specified in the same style.

The resulting RoboChart type definitions rcdefs are the union

of RoboArch system type definitions amsys. definitions and the

generalised union (⋃) of the definitions resulting from applying a

rule LayerToTypes to each RoboArch layer (amsys.layers). The

types used in the rule definitions (TypeDecl, Interface, RCModule,

and all others) are part of the RoboArch and RoboChart

metamodels. They define the valid attributes (amsys.definitions,

amssys layers, and so on). The definitions of the results rcfuns and

rcifcs are similar to that of rcdefs, but use the rules

LayerToFunctions and LayersToInterfaces.

The resulting RoboChart module rcmod is given by an

object (specified by the construct 9 _ 8RCModule) whose

attributes define the name, nodes (controllers and robotic

platform), and connections. The name of the module is the

system name amsys. name. The nodes are the controllers

defined by applying the rule LayersToControllers to the

system’s layers and a roboticPlatform as defined in the

where clause. The connections of the module are those

defined directly by amsys. connections.

FIGURE 4
Delivery robot in RoboChart.

TABLE 3 Mapping RoboArch to RoboChart.

RoboArch RoboChart

System Module, TypeDecl, Function, Interface,
RoboticPlatform

Layer Controller

inputs and
outputs

Events

Connection Connection

Frontiers in Robotics and AI frontiersin.org10

Barnett et al. 10.3389/frobt.2022.991637

16

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

The where clause defines the roboticPlatform to be the union

of the RoboArch platform amsys. robot with the result of

applying a rule ControlLayerToRoboticPlatform to the control

layer cLayer. The platform amsys. robot is directly mapped to the

RoboChart model. The layer cLayer is defined (via a set

comprehension) as the layer lyr of amssys layers whose type is

ControlLayer. The well-formedness conditions ensure that there

is at most one such layer. With the use of

ControlLayerToRoboticPlatform, we cater for the possibility

that a pattern in the control layer extends the definition of the

platform.

Although the translation of a layered design from RoboArch

to RoboChart is reasonably direct, use of RoboArch, instead of

constructing a RoboChart model from the start, has several

advantages. RoboArch provides clear guidance on how to

define and connect a robotic platform and the controllers;

validation ensures definition of proper layers. On the other

hand, translation to RoboChart provides support for

verification. For example, we can prove that the RoboArch

design is deadlock free.

In the next section, we show how we can enrich the definition

of a layer.

4 Results: Reactive skills in RoboArch

With the RoboArch framework defined in the previous

section, we can now formalise and use specific architectural

patterns. In this section, we explain how to achieve that using

the reactive-skill pattern for illustration. We first provide an

overview of the pattern (Section 4.1), and then formalise it via a

metamodel and well-formedness conditions (Section 4.2), and

via transformation to RoboChart (Section 4.3).

4.1 Overview

The reactive-skills pattern can be used in the control

layer, typically of a three-layer architecture (Bonasso et al.,

1997). It combines deliberation and reactivity to improve

robustness. The pattern has been used in a variety of

applications: a robot to identify people and approach them

(Wong et al., 1995), a trash collecting robot (Firby et al.,

1995b), a robot that navigates a building (Firby et al., 1995a),

and in the automation of remote-manipulation system

procedures for the space shuttle (Bonasso et al., 1998). A

framework that allows skills to be implemented using C, C++,

Pascal, LISP and REX is available (Yu et al., 1994).

We characterise the reactive skills pattern by two concepts:

skills and a skills manager. A skill performs an operation using

input values, which can be from sensors or outputs of other skills.

The skill’s output values can establish associations to and from

the robotic platform, or be the result of applying a computational

transform to the skill’s inputs. A set of skills is used together to

accomplish a task identified in the dependant (typically

executive) layer. A skills manager is a cyclic mechanism that

coordinates communication between skills and provides an

interface for the dependant layer to: run the skills required for

FIGURE 5
Example transformation rule.

Frontiers in Robotics and AI frontiersin.org11

Barnett et al. 10.3389/frobt.2022.991637

17

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

a task, receive notifications from monitored events, and set and

get parameter values of skills.

Skills can be of one of two types: D-Skill or C-Skill (Yu et al.,

1994). D-Skills interface physical devices such as sensors and

actuators with the other skills of the control layer; their input

values are actuation commands and their output values are

sensor data. C-Skills execute a computational transform using

the skill’s inputs to determine its outputs. By the monitoring of

skills, the manager triggers events on desired conditions

becoming true. Table 4 describes elements used by skills and

skills managers.

In Listing 2, we sketch the design of the control layer of

MailDelivery using reactive skills to specify the behaviours

regarding moving the delivery robot to a given target location.

The type of pattern specified by the pattern clause determines

the subsequent clauses that can be used. For reactive skills, the

subsequent clauses are skills, connections, and

monitors.

Every skill has a unique name, and optionally parameters,

a priority, inputs, and outputs. The skills clause declares the

skills. There are separate clauses for defining each type of skill:

dskill for D-Skills and cskill for C-Skills. In Listing 2, we

show three D-Skills named Move, ColourVision, and

Proximity, and one C-Skill DetermineLocation.

RoboArch dskills and cskills declare inputs and

outputs using the inputs and outputs clauses. A skill

communicating a value to a dskill’s input results in the

physical state of the device that the dskill represents being

potentially affected. In our example, a value communicated to the

Move D-Skill velocity input results in the velocities of the

motors in the robot’s base being set.

A value from a dskill’s output represents the state of

the environment, as sensed by the device the dskill represents.

In our example, a value received from the Proximity skill’s

envPoints output determines a range of distances to surfaces

in the delivery robot’s field of view.

A C-Skill uses its inputs to compute its outputs resulting in

behavior that can be used to accomplish parts of a task. In our

example, the DetermineLocation skill takes a colour image

of the environment and using an image-based localisation

technique calculates the coordinates of the delivery robot. To

perform this function, DetermineLocation has one input

image of type PointImage, and one output location of

type Coordinate. The computational transform that specifies

the behaviour of C-Skills can be defined by customising the

generated RoboChart model.

Listing 2. Reactive skills movement.

Skills can communicate with each other via the skills manager.

The source and destination of the communication (skills’ inputs

and outputs) are determined in a connections clause. Each

connection is unidirectional and relates an input of one skill to the

output of another. Our example declares a connection from the

ColourVision output envColourPoints to the

DetermineLocation’s image input.

Layers that depend on a reactive-skills control layer

may need to monitor for particular conditions becoming

true. To minimise the frequency at which the

dependant layer needs to check the conditions, the

reactive-skills pattern provides events that are

independently triggered to notify the dependant layer of

the occurrence of any monitored conditions. The

monitors clause declares the monitors for the layer.

They have a name and specify the logical condition to be

monitored in terms of skill outputs and parameters. For our

example, a condition that is monitored is the arrival of the

delivery robot at the target location. A monitor

DestinationReached has a condition that evaluates

to true when the location output of the

DetermineLocation skill is equal to the target

parameter of a MoveToLocation skill.

TABLE 4 The elements of reactive skills.

Element Description

Initialisation routine When the system starts, the skill initialises itself

Startup A skill performs required startup procedures each time it
is activated

Reply Response from the control layer to the dependant
(executive) layer

Cleanup When a skill is disabled, cleanup actions are performed

Parameter A variable that allows a skill’s behaviour to be adjusted by
the dependant layer

Input Receives the value of a data type

Output A resulting value that contributes to the robot’s behaviour

Computational
transform

Once activated the skill continually computes its outputs
from its inputs

Activate function Allows a skill to be activated

Deactivate function Allows a skill to be deactivated when it is no longer
required

Frontiers in Robotics and AI frontiersin.org12

Barnett et al. 10.3389/frobt.2022.991637

18

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

Next we describe the RoboArch metamodel and well-

formedness conditions for reactive-skills designs.

4.2 Metamodel and well-formedness
conditions

The classReactiveSkills representing a reactive-skills design

is a subclass of Pattern (see Figure 3). Figure 6 details its

definition, giving a precise characterisation of the pattern.

In a ReactiveSkills design there must be at least two skills

and exactly one skillsManager. Skills can have parameters,

inputs, and outputs all represented by Variables. Skills can be

asynchronous and have a priority.

Skill is an abstract class (it has no objects). Its subclasses

CSkill and DSkill are the concrete classes, whose objects are

subject to different well-formedness conditions presented below.

The SkillsManager establishes one or more

interskillconnections and may have stateMonitors.

Monitors have a name and a condition defined by a

RoboChart expression. SkillConnections associate Skills

defining the start and end of the connections, the output

startOutput of start, and the input endInput of end.

The well-formedness conditions that apply to reactive-skills

designs are presented in Table 5. RS1 and RS2 ensure the use of

reactive skills as intended to provide the essential behaviours that

use the sensors and actuators (via the services of robotic

platform), which other layers depend on to carry out the

robot’s tasks. RS3 records that the inputs of the D-Skills

correspond to events of the robotic platform. RS4 is needed

because a C-Skill or D-Skill in isolation can perform no

meaningful function that alters the state of the robot or its

environment. A C-Skill requires a D-Skill in order to interact

with a sensor or actuator via the services of the robotic platform.

With RS5 and RS6, we ensure that every skill contributes to the

behaviour of the system. RS7 to RS10 ensure that connections are

between inputs and outputs of different skills of the right type.

Finally, RS11 ensures that monitors are concerned with skill data.

Valid reactive-skill designs, that is, those that satisfy the

above well-formedness conditions, can be transformed to (and

so formally described as) a RoboChart model, as described in the

next section.

4.3 Reactive skills in RoboChart

Rules that can be used to transform a reactive-skill design to

RoboChart are available5. Here we give an overview of our

approach formalised by the rules in modelling reactive-skill

designs in RoboChart.

A RoboChart controller representing a layer that uses the

reactive-skills pattern has one state machine for the skills

manager, and one machine for each skill. The skills-manager

machine has events to manage the activation and deactivation of

skills, receive parameter values, and communicate monitor-event

and information replies. A skill machine has events for each of its

inputs, outputs, and parameters.

As an example, Figure 7 shows the machine for Proximity in

Listing 2. That machine reflects the description of the design

pattern summarised in Table 4, and is representative of the state

machines that are automatically generated for D-Skills. The

declaration at the top in Figure 7 introduces variables

priorityParam, to record an input priority value, envPoints,

to record the output of the skill, and booleans

priorityParaminitialised and envPointsSenseReceived,

recording information about inputs. An interface IProximity

declares the events used to exchange information with the skills-

manager machine.

A D-Skill state machine starts at the state Initialise, where

it accepts a priority for the skill via an event: in our example,

proximityPriorityParam. When that input is taken, the

variable priorityParaminitialised is updated to record

that. Once that variable has value true, a transition to the

state Deactivated becomes enabled, and is taken. In

Deactivated, the priority can still be updated, until the

skills manager raises an activate event (activateProximity

in the example), when the machine moves to the state

Startup.

Typically, the designer needs to enrich the state Startup to

add the actions that the skill carries out at start up, perhaps via an

entry action, or via a state machine making Startup a composite

state. When those actions complete their execution, a D-Skill

state machine moves to the state Ready.

In Ready, a new priority and inputs from the platform may

be received. In the example, the value envPoints may be

received from the platform via an event platformEnvPoints.

When that happens, the value of a corresponding Boolean

variable, here envPointsSenseReceived, is updated. This

can go on until the skills manager raises an execute event

(executeProximity, in the example) when the machine

moves to the state HandleActuationCommands. Actions

there, defined by the designer, might deal with buffering, for

example. If, however, no input has been received (just not

envPointsSenseReceived in Proximity), the machine flags

that the skill has completed its task (completeProximity) and

goes back to Ready.

If an input has been received, the machine moves to

HandleSensorData. In general, HandleSensorData may

deal with several pieces of data coming from the platform. All

those that have been received may be communicated to another

skill, together with its priority. In our example, we have just
5 https://robostar.cs.york.ac.uk/publications/reports/roboarch_

rules.pdf

Frontiers in Robotics and AI frontiersin.org13

Barnett et al. 10.3389/frobt.2022.991637

19

https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

envPoints, which is output via proximityEnvPoints. When

that happens, the value of envPointsSenseReceived is

updated back to false. When all data has been communicated,

a D-Skill machine moves back to Ready.

Variations of the D-Skill state-machine definition take into

account D-Skills that can output to the platform, and also

D-Skills that have several inputs or several outputs.

A machine for a C-skill is shown in Figure 8. It is very similar to

that of a D-Skill; the difference is that, instead of states

HandleActuationCommands and HandleSensorData to deal

with inputs and outputs of the platform, we have a single state

ComputeOutputs. When the skills manager raises the execute

event (executeDetermineLocation in the example), the machine

moves to ComputeOutputs.

The designer must complete the definition of this state to

reflect the calculations to be carried out by the skill. Once they

finish executing, the machine returns to the state Ready, having

signalled completion to the skills manager via a complete event:

completeDetermineLocation in the example.

Finally, Figure 9 sketches the machine for the skills manager.

The complete machine for our example that can be automatically

generated is too large to include here. In the sketch, we show that

a skills-manager machine starts in the state Initialise, in which it

sets local variables, such as cycleSkills, recording the skills to

execute in the next cycle. Afterwards, the skills-manager machine

moves to HandleRequests.

In the state HandleRequests, for each request, there is a

transition triggered by an event that represents a request from the

dependant layer, whose transition action provides the required

information, or updates variables to record the request: activate

or deactivate skills, initiate event monitor, stop event monitor, or

set skill parameters. Once the amount of time defined by the cycle

of the skill manager is past, the machine moves to DoNextSkill.

The cycle time is defined by a constant, whose value can be

defined by the designer or left unspecified (until simulation or

code generation).

DoNextSkill is a composite state that uses the cycleSkills

variable to start all skills that are to execute in the current cycle. In

theDoNextSkillmachine, there is a state for each skill that sends

its input values, raises the event that starts its execution (such as

executeDetermineLocation) and updates a variable

executingSkills. When all skills are set, cycleSkills gets

empty, and the transition to ExecutingSkills is taken.

The state ExecutingSkills accepts the outputs of skills while

they are executing. When an output is received, the machine

moves to the state UpdateRecord, where the inputs to which

the received output is connected are updated. This is done using

FIGURE 6
Reactive skills metamodel.

TABLE 5 The well-formedness conditions of reactive-skills designs.

Condition Description

RS1 A Layer that has a pattern of type ReactiveSkills must be a
GenericLayer or ControlLayer

RS2 For a Layer with pattern type ReactiveSkills, at least one of the
System’s connections is from that layer to a RoboticPlatform
or that layer has at least one rinterface

RS3 For each event of ReactiveSkills Layer’s interfaces, there must be
a DSkill input with a matching name

RS4 ReactiveSkills must contain a CSkill and a DSkill

RS5 A CSkill must have at least one output

RS6 A DSkill must have at least one output or input

RS7 The start and end Skill of a SkillConnection must be distinct

RS8 The startOutput of a SkillConnection must be an output of its
start Skill

RS9 The endInput of a SkillConnectionmust be an input of its end
Skill

RS10 The types of the startOutput and endInput of a
SkillConnection must match

RS11 A Monitor’s condition must only refer to parameters, inputs,
and outputs of the Skills

Frontiers in Robotics and AI frontiersin.org14

Barnett et al. 10.3389/frobt.2022.991637

20

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

an UpdateValue function (omitted here) that only updates the

input if it is the first update of the cycle or if the new value comes

from a skill with higher priority. After each update, the machine

moves back to ExecutingSkills.

The state ExecutingSkills also accepts completion events

from the skills (such as completeDetermineLocation),

updating the executingSkills variable after each such event.

When all skills have completed execution, executingSkills is

empty and the transition to CheckMonitors is taken.

InCheckMonitors, there is a transition for each monitor. If

a monitor condition occurs, a corresponding event notifies the

depending layer. When all monitors are checked, the machine

moves back to the state HandleRequests, after reinitialising

variables such as cycleSkills.

Using the semantics of RoboChart that is automatically

generated, we can prove properties of the design. We have,

for example, proved deadlock and livelock freedom, and some

other trace-based properties of some of the machines that are

FIGURE 7
RoboChart state machine for Proximity D-Skill.

FIGURE 8
RoboChart state machine for DetermineLocation C-Skill.

Frontiers in Robotics and AI frontiersin.org15

Barnett et al. 10.3389/frobt.2022.991637

21

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

automatically generated. In these proofs, we can cater for general

properties of any design, and for application-specific properties.

In the next section, we discuss how we can define and

formalise a CorteX-based design pattern in RoboArch, opening

the same possibilities for CorteX andCorteX designs (see Figure 1).

5 Discussion: CorteX and RoboArch

As already said, CorteX is a framework tailored to the

development of complex nuclear robotic systems. It primarily

focuses on data representation and communication to solve

issues of maintainability and extensibility. In this section, we

discuss the integration of CorteX and RoboArch.

We envisage two main approaches for integrating RoboArch

and CorteX. The first supports the generation of CorteX

implementations of RoboArch models (Section 5.1). The

second approach extends RoboArch to support modelling

CorteX architectures (Section 5.2).

5.1 From RoboArch to CorteX

As discussed in Sections 3, 4, the semantics of RoboArch is

specified in terms of RoboChart, which opens the possibility for the

generation of several artefacts (see Figure 1). We can obtain

automatically mathematical models for verification, such as CSP

(Miyazawa et al., 2019) scripts, for verification of reactive and timed

properties, and PRISM (Ye et al., 2021) reactive modules, for

verification of probabilistic properties. We can also obtain code

(Li et al., 2018) and RoboSim models describing simulations

(Cavalcanti et al., 2019). RoboSim is a sister notation of

RoboChart tailored to the design and verification of simulations

with a similar component model and artefact-generation facilities.

A code generator that produces CorteX-compatible

implementations of a RoboArch model can take advantage of

some of the abovementioned functionalities. The first step

requires the generation of the semantics of the RoboArch

model in RoboChart as described in this paper. Since CorteX

is a cyclic architecture, it is useful to transform (automatically)

the resulting RoboChart model into a simulation model, written

in RoboSim, via the RoboStar correctness-preserving model-to-

model transformation. Next, we can use one of the RoboSim

model-to-model transformations to generate an intermediate

representation of imperative code and a model-to-text

transformation tailored for CorteX. Currently, two

transformations targeting the programming languages C and

Rust are under development.

With the use of the intermediate representation, we

guarantee that the semantics of RoboChart and RoboSim is

preserved by the code. This follows from the fact that the

generation of the intermediate representation is a

mechanisation of the RoboSim semantics, and the model-to-

text transformation is direct. For CorteX, each state machine can

be implemented as a simplex, the basic unit of data and behaviour

in CorteX code. This approach matches well the parallel

paradigms of RoboChart and CorteX.

On the other hand, the translations fromRoboChart to RoboSim

and from RoboSim to the intermediary representation give rise to

additional parallel components for orchestration of operation calls

and during actions inside statemachines. This can create an overhead

in the target code. If this overhead becomes an issue, we can

alternatively, directly convert the RoboSim model into code via a

generator specifically tailored for CorteX. While this alternative

involves significantly more work (as it does not reuse the existing

intermediate representation generator), it allows for more control

over the structure of the CorteX implementation, and a one-to-one

match between state machines and simplexes.

FIGURE 9
RoboChart skills-manager machine for the example.

Frontiers in Robotics and AI frontiersin.org16

Barnett et al. 10.3389/frobt.2022.991637

22

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

In the approaches above, CorteX is used as a target

middleware. An alternative explored in the next section is the

use of CorteX concepts already at the design level, giving rise to

an architectural pattern for CorteX. This enables design and

verification for CorteX.

5.2 CorteX in RoboArch

ACorteX implementation does not explicitly have the notion of

layers. In fact, one might even argue that a layered architecture is

incompatible with CorteX due to its distributed nature. This,

however, is not the case, since layers are not necessarily

centralised or co-located, and a layer or set of layers can be

deployed as a distributed system. Moreover, well-designed code

separates planning and control functionality. It is, therefore,

beneficial to use separate sets of CorteX simplexes to deal with

planning and control.

For this reason, the use of layers does not prevent the

adoption of CorteX, and, moreover, embedding CorteX

designs in RoboArch as a pattern for any layer provides extra

support to address the interoperability issue with non-CorteX

applications such as ROS (Caliskanelli et al., 2021, p. 320). The

use of a layered RoboArch design can help to ensure not only that

code for planning and control is kept separate, but that a strict

layered discipline is enforced, even if the code, as it is often the

case, does not have a notion of layer.

Figure 10 depicts a metamodel for integrating CorteX into

RoboArch; it is based on the description of CorteX in

(Caliskanelli et al., 2021). As for reactive skills, we model the

CorteX architecture as a RoboArch Pattern. Listing 3 and

Listing 4 present the sketch of a layer CorTeXl that uses the

CorteX pattern in the design of a simple application based on

mobile robots inspired by an example in (Caliskanelli et al.,

2021).

Listing 3. Mobile robots ontology.

Listing 4. Example of layer using the CorteX pattern with

MobileRobots ontology.

As discussed in Caliskanelli et al. (2021, pp. 317–319), a

CorteX application is parameterised by an ontology, represented

here by the attribute ontology. An object of classOntology has a

single attribute root of type CorteXType, which is an abstract

class that can be realised as either a DescriptiveModule or an

ActiveModule. The distinction is similar to that between

passive and active classes.

A CorteXType may contain any number of CortexType

children and sets of rules applicable to commands, data, and

relationships. An ontology is, therefore, structured as a tree, a

hierarchy of concepts akin to an object-oriented model. The rules

establish constraints over CorteXTypes. A CommandRule has

an identifier (for instance, move) and some parameters. Each

ParameterRule defining a parameter has itself an identifier and

a dataType (limited to integer, float, Boolean, or string), possibly

an array, as defined by the attributesminCount andmaxCount.

We omit here the simple enumeration CortexDataType.

A DataRule is similar to a ParameterRule. Finally, a

RelationshipRule describes a relationship with a

CorteXType, defined by relatedType. It specifies a

direction, using a value of an enumeration type

CorteXRelationshipDirection including INPUT and

OUTPUT, and a multiplicity.

Listing 3 shows an excerpt of the ontology for the example. It

includes descriptive modules, such as MobileBase, and active

modules, such as MovementController. MobileBase

represents a two-wheeled robot and contains two concepts of

type RotaryAxisConcept, which represent the data

associated with the left and right wheels. The module

MovementController specifies an input concept of type

ObstacleConcept and two output concepts of type

RotaryAxisConcept (both of these concepts are specified

in the ontology as descriptive modules, but omitted in Listing 3).

A CorteX pattern also contains a set of simplexes. A

Simplex has an identifier, a type from the ontology, and sets

Frontiers in Robotics and AI frontiersin.org17

Barnett et al. 10.3389/frobt.2022.991637

23

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

of data, relationships, and commands. A SimplexData

models a piece of primitive data containing an identifier and

a dataType (limited to integer, float, Boolean, string, and

possibly an array). The attribute satisfiesRule identifies a

DataRule of the ontology that is implemented (satisfied) by

the simplex.

A SimplexCommand has an identifier, availability, and a

set of parameters. Like for SimplexData and DataRule, a

SimplexCommandParameter satisfies a ParameterRule.

A SimplexRelationship describes a connection between

two simplexes, namely, the simplex that contains it and the

simplex identified by relatedType. In addition, a

SimplexRelationship satisfies a RelationshipRule.

Listing 4 depicts the RoboArch control layer CorTeXl that

uses the CorteX pattern and refers to the MobileRobots

ontology in Listing 3. It requires interfaces IMove and

ISensor; the first declares operations

setLeftMotorSpeed and setRightMotorSpeed, and

the second the event obstacle. Next, CorTeXl specifies its

pattern (CorteX) and the pattern’s components. These are the

ontology (MobileRobots) and the set of simplexes.

Each simplex has a name and a type from the ontology, and

information about how the ontology relationship rules are

satisfied. For instance, MovementController has name m

and specifies three relationships; the first specifies that the

relationship rule left (of the module

MovementController in Listing 3) is satisfied by the

simplex lc (declared in the pattern but omitted in Listing 4)

of type RotaryAxisConcept.

A SimplexCS is a Simplex with a notion of task, which

defines behaviours to be executed in particular points of its

lifecycle. This is similar to D-Skills in the reactive-skills

pattern, where the top-level execution protocol of the D-Skill

is fixed and user-defined behaviours are run in particular stages

of this protocol.

In our CorteXmetamodel, we omit the concept of a ClusterCS,

which is related to allocation of simplexes to computational units.

This is an issue not covered in RoboStar technology. Automatic

generation of CorteX code may, for example, define a simple

default allocation of simplexes to a single computational unit for

further elaboration by the CorteX designer later.

Additionally, we omit the notion of Simplex Trees. These are

sets of simplexes, which are represented in our metamodel by the

attribute simplexes of CorteX. So, each layer that uses a CorteX

pattern has a single set of simplexes. With this metamodel, different

sets can, and need to be, allocated in different layers. Further

experience may indicate that we need several sets of simplexes in

a layer, if the layer discipline turns out to be too restrictive in some

cases. This simple extension is left as future work.

There are three well-formedness conditions that apply to a

CorteX design as defined below. They are all related to the data,

commands, and relationships of a Simplex and the rules that

they indicate that are satisfied by them. Together the conditions

ensure that the rules used in a Simplex are well defined.

C1 The DataRule of a SimplexData is in the CorteXType

of its Simplex.

C2TheParameterRule of a SimplexCommandParameter

is in the CorteXType of its Simplex.

C3 The RelationshipRule of a SimplexRelationship is in

the CorteXType of its Simplex. In addition, the Simplex

defined by its relatedType has the type defined by the

relatedType of the RelationshipRule.

For designs that satisfy these restrictions, we can define a

RoboChart sketch via transformation rules. The semantics of the

CorteX pattern would be specified in RoboChart in line with the

semantics of RoboArch. Each descriptive Simplex, that is, a

FIGURE 10
Metamodel of CorteX for integration with RoboArch.

Frontiers in Robotics and AI frontiersin.org18

Barnett et al. 10.3389/frobt.2022.991637

24

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

simplex whose type is a DescriptiveModule, is specified by a

RoboChart data type, and each active Simplex (ActiveModule

type) is defined by a state machine, where the

SimplexCommands are modelled as events, the

SimplexData as variables, and the SimplexRelationships as

connections. The semantics of a SimplexCS is specified by a state

machine that enforces the specific execution protocol in a similar

manner as done for D-Skills, which is illustrated in Figure 7.

As indicated in Figure 3, a layer contains input and output

events for inter-layer communication. CorteX, on the other hand,

does not use the same communication mechanism and requires a

component to transform and route data between the layer and the

CorteX application. This component can also be automatically

generated similarly to how the semantics of RoboArch specifies the

SkillsManager (Figure 9) for the reactive-skills architecture. Such

a component partially solves the interoperability between different

architectures; for instance, it allows the control layer in Figure 4,

which uses the reactive-skills pattern, to communicate with an

executive layer that uses a CorteX pattern.

To conclude, by allying RoboArch and CorteX, we can

support the use of CorteX principles from an early stage of

design. We can also support verification and automatic code

generation. In this way, we further the CorteX agenda by

supporting the development of traceable evidence of core

properties of applications. Future work will consider

significant case studies and automation.

Data availability statement

Publicly available additional rules were used in this study.

They can be found at: https://robostar.cs.york.ac.uk/

publications/reports/roboarch_rules.pdf.

Author contributions

WB, AC, and AM contributed to conception and design of

the work. WB took a lead in its execution: definition of

metamodel, well-formedness conditions, and transformations.

WB wrote the first draft of Sections 1–4; we all contributed to the

draft and its revision, and read and approved the submitted

version.

Funding

The work is funded by the United Kingdom EPSRC Grants

EP/M025756/1, EP/R025479/1, and EP/V026801/2, and by the

United Kingdom Royal Academy of Engineering Grant No

CiET1718/45.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An
architecture for autonomy. Int. J. Rob. Res. 17, 315–337. doi:10.1177/
027836499801700402

Albus, J. S., Lumia, R., Fiala, J., andWavering, A. J. (1989). “Nasrem – The NASA/
NBS standard reference model for telerobot control system architecture,” in
Industrial robots.

Álvarez, B., Sánchez-Palma, P., Pastor, J. A., and Ortiz, F. (2006). An architectural
framework for modeling teleoperated service robots. Robotica 24, 411–418. doi:10.
1017/s0263574705002407

Ando, N., Suehiro, T., and Kotoku, T. (2008). “A software platform for
component based rt-system development: Openrtm-aist,” in Simulation,
modeling, and programming for autonomous robots. Editors S. Carpin, I. Noda,
E. Pagello, M. Reggiani, and O. von Stryk (Springer), 87–98.

Arkin, R. C. (1989). Motor schema — Based mobile robot navigation. Int. J. Rob.
Res. 8, 92–112. doi:10.1177/027836498900800406

Arkin, R. C. (1987). Towards cosmopolitan robots: Intelligent navigation in extended
man-made environments. Ph.D. thesis. Amherst: University of Massachusetts.

Backes, P., Edelberg, K., Vieira, P., Kim, W., Brinkman, A., Brooks, S., et al.
(2018). “The intelligent robotics system architecture applied to robotics testbeds
and research platforms,” in IEEE aerospace conference (IEEE Computer Society).

Bass, L., Clements, P., and Kazman, R. (2012). Software architecture in practice.
Upper Saddle River, NJ: Pearson Education.

Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., and Slack, M. G.
(1997). Experiences with an architecture for intelligent, reactive agents.
J. Exp. Theor. Artif. Intell. 9, 237–256. doi:10.1080/095281397147103

Bonasso, R. P. (1991). “Integrating reaction plans and layered competences
through synchronous control,” in 12th international joint conference on
artificial intelligence (San Francisco, CA: Morgan Kaufmann Publishers
Inc.), 1225–1231.

Bonasso, R. P., Kerri, R., Jenks, K., and Johnson, G. (1998). “Using the 3T
architecture for tracking shuttle RMS procedures,” in IEEE international joint
symposia on intelligence and systems.

Bonato, V., and Marques, E. (2009). Roboarch: A component-based tool proposal
for developing hardware architecture for mobile robots. IEEE Int. Symposium
Industrial Embed. Syst., 249–252.

Borrelly, J.-J., Coste-Manière, E., Espiau, B., Kapellos, K., Pissard-Gibollet, R.,
Simon, D., et al. (1998). The ORCCAD architecture. Int. J. Rob. Res. 17, 338–359.
doi:10.1177/027836499801700403

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
J. Robot. Autom. 2, 14–23. doi:10.1109/jra.1986.1087032

Frontiers in Robotics and AI frontiersin.org19

Barnett et al. 10.3389/frobt.2022.991637

25

https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf
https://doi.org/10.1177/027836499801700402
https://doi.org/10.1177/027836499801700402
https://doi.org/10.1017/s0263574705002407
https://doi.org/10.1017/s0263574705002407
https://doi.org/10.1177/027836498900800406
https://doi.org/10.1080/095281397147103
https://doi.org/10.1177/027836499801700403
https://doi.org/10.1109/jra.1986.1087032
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G.,
Gherardi, L., and Brugali, D. (2013). “The BRICS component model: A model-
based development paradigm for complex robotics software systems,” in 28th
annual ACM symposium on applied computing (New York, NY: ACM), 1758–1764.

Bruyninckx, H. (2001). Open robot control software: The orocos project. IEEE
Int. Conf. Robotics Automation 3, 2523–2528.

Caliskanelli, I., Goodliffe, M., Whiffin, C., Xymitoulias, M., Whittaker, E., Verma,
S., et al. (2021). CorteX: A software framework for interoperable, plug-and-play,
distributed, robotic systems of systems. Springer, 295–344.

Cavalcanti, A. L. C., Barnett,W., Baxter, J., Carvalho,G., Filho,M.C.,Miyazawa,A., et al.
(2021a). RoboStar Technology: A roboticist’s toolbox for combined proof, simulation, and
testing. Springer International Publishing, 249–293. doi:10.1007/978-3-030-66494-7_9

Cavalcanti, A. L. C., Dongol, B., Hierons, R., Timmis, J., and Woodcock, J. C. P.
(Editors) (2021b). Software engineering for robotics (Springer International
Publishing). doi:10.1007/978-3-030-66494-7

Cavalcanti, A. L. C., Sampaio, A. C. A., Miyazawa, A., Ribeiro, P., Filho, M. C.,
Didier, A., et al. (2019). Verified simulation for robotics. Sci. Comput. Program. 174,
1–37. doi:10.1016/j.scico.2019.01.004

Chatila, R., Lacroix, S., Simeon, T., and Herrb, M. (1995). Planetary exploration
by a mobile robot: Mission teleprogramming and autonomous navigation. Auton.
Robots 2, 333–344. doi:10.1007/bf00710798

Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G. (2000). “Using
iterative repair to improve the responsiveness of planning and scheduling,” in 5th
international conference on artificial intelligence planning systems (Menlo Park, CA:
AAAI Press), 300–307.

Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V., Tsouroukdissian, A.
R., Bohren, J., et al. (2017). ros_control: A generic and simple control framework for
ROS. J. Open Source Softw. 2, 456. doi:10.21105/joss.00456

Corke, P., Sikka, P., Roberts, J. M., and Duff, E. (2004). “Ddx : A distributed
software architecture for robotic systems,” in Australasian conference on robotics &
automation. Editors N. Barnes, and D. Austin (Sydney, NSW: Australian Robotics
& Automation Association).

Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and Ziane, M. (2012). Simulation,
modeling, and programming for autonomous robots. SpringerSimulate andDeploy Robotic
Applications, 149–160. chap. RobotML, a Domain-Specific Language to Design.

Firby, R. J., Kahn, R. E., Prokopowicz, P. N., and Swain, M. J. (1995a). “An
architecture for vision and action,” in 14th Int. Jt. Conf. Artif. Intell. San Francisco,
CA: Morgan Kaufmann Publishers Inc., 1, 72–79.

Firby, R. J., Slack, M. G., and Drive, C. (1995b). “Task execution: Interfacing to
reactive skill networks,” in Lessons learned from implemented software architectures
for physical agents: Papers from the 1995 spring symposium. Editor K. D. H. Henry,
97–111. Technical Report SS-95-02.

Franz, T., Lüdtke, D., Maibaum, O., and Gerndt, A. (2018). Model-based software
engineering for an optical navigation system for spacecraft. CEAS Space J. 10,
147–156. doi:10.1007/s12567-017-0173-5

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns -
elements of reusable object-oriented software. Addison-Wesley.

García, S., Menghi, C., Pelliccione, P., Berger, T., and Wohlrab, R. (2018). An
architecture for decentralized, collaborative, and autonomous robots. IEEE Int.
Conf. Softw. Archit., 75–7509.

Gat, E. (1992). “Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots,” in 10th national conference on
artificial intelligence (Menlo Park, CA: AAAI Press), 809–815.

Huntsberger, T., and Woodward, G. (2011). OCEANS’11 MTS/IEEE KONA,
1–10. Intelligent autonomy for unmanned surface and underwater vehicles.

Li, W., Ribeiro, A. M. P., Cavalcanti, A. L. C., Woodcock, J. C. P., and Timmis, J.
(2018). From formalised state machines to implementations of robotic controllers.
Springer International Publishing, 517–529. doi:10.1007/978-3-319-73008-0_36

Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., and Fisher, M. (2019). Formal
specification and verification of autonomous robotic systems: A survey. ACM
Comput. Surv. 52, 1–41. doi:10.1145/3342355

Luzeaux, D., and Dalgalarrondo, A. (2001). “HARPIC, an hybrid architecture
based on representations, perceptions, and intelligent control: A way to provide
autonomy to robots,” in Computational science (Springer), 327–336.

Lyons, D. M., and Hendriks, A. J. (1995). Planning as incremental adaptation of a
reactive system. Robotics Aut. Syst. 14, 255–288. doi:10.1016/0921-8890(94)00033-x

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: Yet another robot platform.
Int. J. Adv. Robotic Syst. 3, 8. doi:10.5772/5761

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A. L. C., and Timmis, J. (2017).
Automatic property checking of robotic applications. IEEE/RSJ Int. Conf. Intelligent
Robots Syst., 3869–3876. doi:10.1109/IROS.2017.8206238

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A. L. C., Timmis, J., and Woodcock,
J. C. P. (2019). RoboChart: Modelling and verification of the functional behaviour of
robotic applications. Softw. Syst. Model. 18, 3097–3149. doi:10.1007/s10270-018-
00710-z

Miyazawa, A., Ribeiro, P., Ye, K., Cavalcanti, A. L. C., Li, W., Timmis, J., et al.
(2020). RoboChart: Modelling, verification and simulation for robotics. York, UK:
Tech. rep., University of York, Department of Computer Science. Available at www.
cs.york.ac.uk/robostar/notations/.

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and
Tsagarakis, N. G. (2017). Xbotcore: A real-time cross-robot software platform. IEEE
Int. Conf. Robotic Comput., 77–80.

Muscettola, N., Nayak, P. P., Pell, B., andWilliams, B. C. (1998). Remote agent: To
boldly go where no AI system has gone before. Artif. Intell. 103, 5–47. doi:10.1016/
s0004-3702(98)00068-x

Musliner, D. J., Durfee, E. H., and Shin, K. G. (1993). Circa: A cooperative
intelligent real-time control architecture. IEEE Trans. Syst. Man. Cybern. 23,
1561–1574. doi:10.1109/21.257754

Nesnas, I. A. D., Simmons, R., Gaines, D., Kunz, C., Diazcalderon, A., Estlin, T.,
et al. (2006). CLARAty: Challenges and steps toward reusable robotic software. Int.
J. Adv. Robotic Syst. 3, 5–030. doi:10.5772/5766

Nordmann, A., Hochgeschwender, N., Wigand, D., and Wrede, S. (2016). A
survey on domain-specific modeling and languages in robotics. J. Softw. Eng.
Robotics 7, 75–99.

Sanchez-Lopez, J. L., Molina, M., Bavle, H., Sampedro, C., Fernández, R. A. S., and
Campoy, P. (2017). A Multi-Layered Component-Based approach for the
development of aerial robotic systems: The aerostack framework. J. Intell. Robot.
Syst. 88, 683–709. doi:10.1007/s10846-017-0551-4

Sellner, B., Heger, F. W., Hiatt, L. M., Simmons, R., and Singh, S. (2006).
Coordinated multiagent teams and sliding autonomy for large-scale assembly.
Proc. IEEE 94, 1425–1444. doi:10.1109/jproc.2006.876966

Siciliano, B., and Khatib, O. (Editors) (2016). Springer handbook of robotics
(Springer Handbooks Springer).

Silva, L., Yan, R., Ingrand, F., Alami, R., and Bensalem, S. (2015). “A verifiable and
correct-by-construction controller for robots in human environments,” in 10th
annual ACM/IEEE international Conference on human-robot interaction extended
abstracts (ACM), HRI’15 extended abstracts, 281.

Stamper, D., Lotz, A., Lutz, M., and Schlegel, C. (2016). The SmartMDSD
toolchain: An integrated MDSD workflow and integrated development
environment (IDE) for robotics software. J. Softw. Eng. Robotics 7, 3–19.

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. (2001). The
CLARAty architecture for robotic autonomy. IEEE Aerosp. Conf. 1.

Wigand, D. L., Mohammadi, P., Hoffman, E. M., Tsagarakis, N. G., Steil,
J. J., and Wrede, S. (2018). “An open-source architecture for simulation,
execution and analysis of real-time robotics systems,” in IEEE international
conference on simulation, modeling, and programming for autonomous robots,
93–100.

Wong, C., Kortenkamp, D., and Speich, M. (1995). “A mobile robot that
recognizes people,” in 7th IEEE international conference on tools with artificial
intelligence, 346–353.

Woodcock, J. C. P., and Davies, J. (1996). Using Z - specification, refinement, and
proof. Prentice-Hall.

Ye, K., Cavalcanti, A. L. C., Foster, S., Miyazawa, A., and Woodcock, J. C. P.
(2021). Probabilistic modelling and verification using RoboChart and PRISM.
Softw. Syst. Model. 21, 667–716. doi:10.1007/s10270-021-00916-8

Yu, S. T., Slack, M. G., and Miller, D. P. (1994). “A streamlined software
environment for situated skills,” in AIAA/NASA conference on intelligent
robotics in field (Houston, TX: Factory, Service, and Space NASA), 233–239.

Frontiers in Robotics and AI frontiersin.org20

Barnett et al. 10.3389/frobt.2022.991637

26

https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1016/j.scico.2019.01.004
https://doi.org/10.1007/bf00710798
https://doi.org/10.21105/joss.00456
https://doi.org/10.1007/s12567-017-0173-5
https://doi.org/10.1007/978-3-319-73008-0_36
https://doi.org/10.1145/3342355
https://doi.org/10.1016/0921-8890(94)00033-x
https://doi.org/10.5772/5761
https://doi.org/10.1109/IROS.2017.8206238
https://doi.org/10.1007/s10270-018-00710-z
https://doi.org/10.1007/s10270-018-00710-z
http://www.cs.york.ac.uk/robostar/notations/
http://www.cs.york.ac.uk/robostar/notations/
https://doi.org/10.1016/s0004-3702(98)00068-x
https://doi.org/10.1016/s0004-3702(98)00068-x
https://doi.org/10.1109/21.257754
https://doi.org/10.5772/5766
https://doi.org/10.1007/s10846-017-0551-4
https://doi.org/10.1109/jproc.2006.876966
https://doi.org/10.1007/s10270-021-00916-8
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.991637

TYPE Original Research
PUBLISHED 24 April 2024
DOI 10.3389/frobt.2024.1358978

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Nico Hochgeschwender,
University of Bremen, Germany
Elvin Alberts,
VU Amsterdam, Netherlands

*CORRESPONDENCE

Giuseppe Cotugno,
g.cotugno@ocado.com

RECEIVED 20 December 2023
ACCEPTED 08 April 2024
PUBLISHED 24 April 2024

CITATION

Cotugno G, Rodrigues RA, Deacon G and
Konstantinova J (2024), A containerised
approach for multiform robotic applications.
Front. Robot. AI 11:1358978.
doi: 10.3389/frobt.2024.1358978

COPYRIGHT

© 2024 Cotugno, Rodrigues, Deacon and
Konstantinova. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A containerised approach for
multiform robotic applications

Giuseppe Cotugno*, Rafael Afonso Rodrigues, Graham Deacon
and Jelizaveta Konstantinova

Ocado Technology, Welwyn Garden City, United Kingdom

As the area of robotics achieves promising results, there is an increasing need to
scale robotic software architectures towards real-world domains. Traditionally,
robotic architectures are integrated using common frameworks, such as ROS.
Therefore, systems with a uniform structure are produced, making it difficult
to integrate third party contributions. Virtualisation technologies can simplify
the problem, but their use is uncommon in robotics and general integration
procedures are still missing. This paper proposes and evaluates a containerised
approach for designing and integrating multiform robotic architectures.
Our approach aims at augmenting preexisting architectures by including
third party contributions. The integration complexity and computational
performance of our approach is benchmarked on the EU H2020 SecondHands
robotic architecture. Results demonstrate that our approach grants simplicity
and flexibility of setup when compared to a non-virtualised version. The
computational overhead of using our approach is negligible as resources were
optimally exploited.

KEYWORDS

robotic architectures, microservices, robot integration, virtualization, robot software
design

1 Introduction

1.1 Motivation

Recently, complete robotic solutions, such as collaborative robots (Asfour et al., 2018)
or robotic warehouse automation (Hamberg and Verriet, 2012) are frequently deployed in
real world scenarios (Cotugno et al., 2020). For example, the purpose of the EU H2020
SecondHands project1 is to develop a humanoid collaborative robot (the ARMAR-6
(Asfour et al., 2018)) to assist a maintenance technician in servicing conveyor belts in a real-
world warehouse (Figure 1). The software architecture that is powering such robots can be
very complex, with several components interrelated and dependent among each other.

Traditionally, robotic frameworks, like ROS, are used to simplify the development
and integration of robotic software architectures. However, relying on a singular robotic
framework makes the resulting system uniform as the set of software libraries and
development tools, used to develop and interconnect core components instrumental to the
robot’s autonomy, is predefined and could be embedded in the wider code base by design or
necessity. In addition, every component must be developed with a predefined structure. The

1 SecondHands: A Robot Assistant For Industrial Maintenance Task, Website: https://secondhands.eu/

Frontiers in Robotics and AI 01 frontiersin.org27

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1358978
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1358978&domain=pdf&date_stamp=2024-04-18
mailto:g.cotugno@ocado.com
mailto:g.cotugno@ocado.com
https://doi.org/10.3389/frobt.2024.1358978
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1358978/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1358978/full
https://secondhands.eu/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

expectation from using such robotic frameworks is that components
developed by a research group can be easily integrated to a different
architecture which runs the same framework.

Integrating third party software is becoming even more critical
today, as various contributions valuable for robotics are shared
online. For example, in SecondHands, image segmentation is
performed using MaskRCNN (He et al., 2017): a deep network
developed for segmenting common objects which has been re-
trained for detecting tools. Robotic household assistants, competing
in the Robot@Home competition, implement speech understanding
by integrating several language processing components developed
for general use (Matamoros et al., 2018). Such contributions are
often developed without following the integration rules imposed by
a robotic framework and it can be difficult to include them in a large
system. Such contributions are called multiform in this paper as they
do not conform to the development rules of a robotic framework and
are constituted by several heterogeneous components.

For these reasons, our paper proposes a general purpose
approach which facilitates the inclusion and interoperation of third
party software into an existing robotic architecture. Our approach
relies on the use of containers, which are lightweight virtual
machines. The contributions of this paper are as follows:

• A container-based methodology is proposed, which allows
systematic and minimally invasive integration with an existing
robotic framework;
• The use of the containerised approach is demonstrated on

a real world application of collaborative robot within the
SecondHands project;
• Theoverall system is evaluated against a non-virtualised version

in terms of integration complexity and run-time computational
performance.

This paper is asking the following research question: Is it
possible to systematically design or incrementally adapt a robotic
system to include and interoperate existing third party components?
In this work, a third party component is defined as a contribution

FIGURE 1
The robotic software architecture developed within the EU H2020
SecondHands project has to enable a humanoid robot to assist a
technician during maintenance in real-world conditions. Its several
parts constitute a multiform robotic system as they were not
developed having a specific robotic framework in mind.

developed by different developers not directly involved with the
integration of a specific robotic system. The component might not
follow any integration rule established for the system, for example
it could be written in a different unsupported language, use a
different robotic framework or run standalone, use incompatible
libraries or different build tools, etc. Such a component can be
a prototype proven to work standalone, whose integration in a
larger system might be not-trivial. This differs from the scenario
where a component has been developed using a robotic framework
as that framework imposes rules that must be respected for the
component to be useable. It is important to underline that our
methodology suggests a set of principles to facilitate the systematic
integration of components as opposed to an ad hoc approach
which integrates third party components differently and might
have different outcomes in terms of simplicity of integration and
performance cost for different components. In the Evaluation
section of the paper we will test two hypotheses: 1. Following all
the guidelines of our methodology simplifies the integration complexity
and 2. Following all the guidelines of our methodology has a noticeable
performance cost.

The structure of this paper is as follows: in Section 1.2 we
compare our work to the state of the art, while in Section 2 our
methodology is described and applied to the SecondHands robot
architecture. Section 3 quantifies the integration complexity and
runtime performance costs of using our methodology. Finally,
Section 4.1 discusses our results and Section 4.2 summarises the
key findings and limitations of the paper proposing avenues for
future work.

1.2 Related work

Over the decades, the number of proprietary and open
source robotic frameworks, used for software integration, has
increased greatly. The YARP framework (Metta et al., 2006), is
a cross-platform framework which mostly targets the humanoid
robot iCub (Metta et al., 2008). The well-known ROS framework
can interoperate with a large number of robots. Other less
known frameworks are also targeted to a specific robot (NaoQi
(Pot et al., 2009), Khepera III (Cotugno et al., 2011)), a family of
robots (ArmarX (Vahrenkamp et al., 2015)) or a limited predefined
selection of robots (OpenRDK (Calisi et al., 2008)). It is beyond the
scope of this paper to propose a survey of the features of state-of-
the-art robotic frameworks (Mohamed et al., 2008). However, we
identify three common features: 1) implementation of a smallest
entity able to provide some functionality (e.g. node, module), 2)
definition of a communication protocol for exchanging information
across those entities, 3) definition of a development methodology
and standardised set of development tools. As a result, robotic
architectures are deployed as distributed systems and are uniform:
components have the same structure.

The homogeneity imposed by a robotic framework becomes a
limitation when a robotic architecture includes third party software.
Third party contributions have to be adapted to fit the design and
tools imposed by the framework itself (Khandelwal et al., 2017).
Yet such integrations might prove to be non-trivial (Cervera, 2019)
and integrating components from two different frameworks adds
complexity (Randazzo et al., 2018) even when the same hardware

Frontiers in Robotics and AI 02 frontiersin.org28

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

is used. For example, the SecondHands system integrates off-the-
shelf deep networks and components developed differently by five
research groups, making it a multiform system. In such system,
it is impractical to re-implement every contribution to comply to
the rules of a robotic framework. Code re-use can be achieved
using virtualisation. In literature, two virtualisation approaches are
popular: virtualmachines (VMs) and containers. AVM is a software
which emulates a PC both in its hardware and operative system. A
container is a light-weight high performance (Seo et al., 2014) VM
which shares with its host (the PC) only the kernel.

Within robotics, virtualisation has been pioneered by several
authors. In Fres et al. (Fres and Alonso, 2010) a virtual machine
is used to encapsulate the controller for a mobile robot using a
novel programming language, while (Hinze et al., 2018) employs
containers to run multiform grasping simulations with real-time
control requirements. The limitation of these approaches is that the
proposed systems are not designed to support a complex robotic
architecture, as virtualisation is not used at its full power. In some
cases, virtualisation is used merely as a tool to bypass a certain
issue. For example, in (Rodrigues, 2017), containers are used for
dynamical deployment of control software on mobile robots via
the cloud, optimising the workload as needed. In (Liu et al., 2018),
containers are used as a base infrastructure to support the learning
and deployment of control strategies to insert pegs into holes. Those
works solve a well-defined problem, however they cannot be applied
to similar problems. Virtualisation here is used as a tool rather than
being a structural part of the architecture.

Other works, instead, use virtualisation as a structural
component of a larger framework. For example, Mohanarajah et al.
(Mohanarajah et al., 2014) proposes a full robotic framework which
relies on containers to execute different robot algorithms, while in
(Turnbull and Samanta, 2013), virtual machines are used to provide
different services for cloud robotics applications. The shortcoming
of such approaches is that it is not described how the proposed
frameworks can be integrated with preexisting robotic software
without rewriting the old code. Design principles must be provided
to guide the development of large multiform robotic architectures.
Distributed systems can be used as a source of inspiration.

Modern distributed systems (e.g. cloud video or audio streaming
platforms) implement a microservice architecture (Newman,
2015), where many heterogeneous components are deployed and
networked across several machines to contain faults and balance
high computational loads. A microservice-inspired framework has
been already pioneered in (Wang et al., 2019) for coordinating and
preparing robot software for deployment. In this work the use of
ROS is compulsory, in contrast with our approach which is robotic
framework-agnostic.

In order to develop reusable components, that can be deployed
on different robotic architectures, there is a need to shift designs
from monolithc architectures to more modular microservice-like
architecture. Our work establishes a proposed approach to encode
such modularity by design.

2 Methodology

The aim of the proposed containerised approach is to define
design principles to facilitate the construction of a roboticmultiform

modular architecture whose elements can be integrated in a
preexisting robotic system. The approach is based on three
fundamental principles derived from microservice architectures:
componentisation, virtualisation and automation (Newman, 2015).
Table 1 summarises its theoretical foundations. Our approach
favours the reuse of preexisting code, but the approach can be used
as guidelines for a new robotic framework as well. Developing a new
framework from the beginningmight sound ideal but it is not always
possible or feasible, especially in industrial applications. In industry
it might be more prudent to refactor existing code bases, proven
to work in a real world production setting, and to incrementally
evolve a robotic system to serve ever expanding requirements. With
this assumption, rewriting a framework is costly and has high risks
due to the fact that bugs can be introduced at any time and it takes
time and effort to bring a new framework to feature parity with
a previous code base. Additionally, an initial well thought design
might prove to be limited by the time it is deployed to production
as requirements might have changed in the meantime. As such, we
conceived our approach for adapting existing code as this is a more
frequent scenario than a full redesign.

Our approach relies on the creation of blueprints: virtual
environments adapted for the execution of components. To use a
virtualised component a container is generated from the blueprint,
which acts as a template.We chose docker2 for creating blueprints as
it is an industry standard and it has tools for automatically deploying
subsystems from the cloud (i.e. docker-compose). Additionally,
several operations of our methodology (Table 1. C) are automated
using a Continuous Integration (CI) tool, which is a tool designed
for automating software development tasks. We chose Travis
CI for this as it is a cloud-based CI, but others are also
suitable.

According to our methodology, for the integration of a
heterogeneous component it is required to follow the below
workflow, summarised in Figure 2:

1. Definewhich operations the componentwill perform. Evaluate
the opportunity of factoring out existing features integrated in
a pre-existing robotic framework, if it is appropriate to do so at
this stage (Table 1: A.1).

2.1. Define how the new component will communicate with the
existing code base and other components (Table 1: A.3).

2.2. Create a blueprint for the heterogeneous component using
docker, making sure that the component can be executed
correctly (Table 1: B.1).

2.3. Add the chosen communication interfaces to the blueprint
and test it in isolation. In our case, those were interface
definitions in the ArmarX native communication library, but
other approaches like e.g. ROS service handlers can be used
for different systems.Other components and input required for
testing can be included in the blueprint as a mock-up (Table 1:
A.2).

3. Configure a CI, in our case Travis CI, to automatically prepare
and test in isolation the blueprint at every commit (Table 1:C.1,
C.2).

2 Docker Community Edition - https://www.docker.com/products/

docker-desktop

Frontiers in Robotics and AI 03 frontiersin.org29

https://doi.org/10.3389/frobt.2024.1358978
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

TABLE 1 Founding principles of the proposed containerised approach for multiform robotic architectures.

Principle Explanation Properties Properties description

A. Componentisation
Dividing complex robot software into
well defined software units

1. Defined Functionalities Identification of operations that a
component provides to a client. The
definition of a component is specific for
the target application

2. Tested in Isolation Must always be possible to execute a
component in isolation, using mock-up
inputs/outputs if needed, to simplify
testing

3. Defined Interfaces Clear means to interact with a
component to execute its operations

B. Virtualisation
Creating a virtual environment where a
component can operate

1. Defined Working Environment Construction of a virtual environment
easy to execute where a component
operates, ideally fully isolated from the
host

2. Cloud Hosting Individual virtualised components,
tested to be executable, must be
accessible by users from the cloud

3. Subsystem Preparation Optionally, an ensemble of virtualised
components can be automatically
fetched from the cloud and assembled
in a subsystem working out of the box

C. Automation
Automatically preparing, testing and
sharing virtualised components on the
cloud

1. Automatic Build of Blueprints Blueprints (templates) of the
components and their virtual
environment must be automatically
prepared for every improvement

2. Automatic Testing of Blueprints New developments of a virtualised
component shall be automatically tested
to ensure that the component can at a
minimum be executed with no errors

3. Automatic Updates on the Cloud Updated and tested blueprints of
virtualised components should be
automatically shared on the cloud to be
retrieved by a third party

4. Automatic Versioning Blueprints and components’ code must
be automatically versioned and kept in
sync, so that specific versions can be
obtained predictably

4. Ensure components are versioned appropriately by Travis CI
(Table 1: C.4).

5. Once testing is completed, the blueprint is uploaded on the
cloud (e.g. Google cloud in our case) and new versions are
automatically uploaded by Travis CI (Table 1: B.2, C.3).

6. Optionally, a script can be prepared to automatically fetch
and interconnect all the components of a subsystem of the
robot (Table 1: B.3) using docker-compose. This facilitates the
deployment of components closely related to each other.

Ourmethodology is an industry perspective on how to integrate
multiform components to produce robotic systems ready for a
production scenario. It builds up from principles well assessed
in microservice development and applies them to robotics. Our
contribution suggests an approach to make integration systematic

and less error prone, which are key requirements in industry to
ensure that robotic systems are reliable and robust from their
first production release. We did find that poor integration can
negatively impact the performance of novel research contributions
to the point that they cannot be used in a production setting
(Triantafyllou et al., 2021). Our approach is demonstrated on the
real-world scenario of the SecondHands project3.The SecondHands
robot (the ARMAR-6 (Asfour et al., 2018)) has a mobile base,
multimodal sensory capabilities and the ability to physically and
verbally interact with humans. Using its sensors, the robot has

3 SecondHands: A Robot Assistant For Industrial Maintenance Task,

Website: https://secondhands.eu/

Frontiers in Robotics and AI 04 frontiersin.org30

https://doi.org/10.3389/frobt.2024.1358978
https://secondhands.eu/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

FIGURE 2
Proposed workflow of our methodology. Properties are grouped based on the expected outcome obtained by their application. Arrows indicate
dependencies, e.g. cloud hosting should not be implemented if versioned blueprints are not available. Properties that are at the same level can be
implemented concurrently. Please note that Principle B.3 is optional and its application is recommended if components are to be deployed together as
a subsystem. The workflow can be applied to a new contribution or a pre-existent codebase, in which case A.1 can be used to decide features to factor
out into an isolated component to be handled separately.

to predict and provide the help adequate to the situation. Our
methodology can be applied to other architectures as it is not
mandatory to refactor pre-existing code encapsulated into a robotic
framework, such as ROS, if this is undesirable. Such code can be
treated as a stand alone component, with well defined interfaces and
responsibilities. Those responsibilities can be as broad as practically
feasible to ensure the right balance between timely and incremental
deliveries of new functionalities and overall architectural cohesion.
Also, it is always possible to refactor any component, or to wrap
them up with necessary boilerplate code, in order to fulfil the
Properties of Principle A, if such a component does not adhere to
them already. The Properties of Principle B can be applied to any
working software as, to the best of the authors’ knowledge, it is
unlikely that a software cannot run in a virtual environment sharable
over the cloud. The Properties of Principle C are best practices
to follow to guarantee consistency, mostly enforced with robust
CI pipelines. Also in this case, to the best of authors’ knowledge,
there is no reason to assume that CI pipelines cannot be crafted
to fulfil the above Properties. Since our methodology does not
require a mandatory rewrite of previous software, even if integrated
in a robotic framework, and software can be reshaped to fulfil the
Properties of our methodology, we believe that our approach can be
generalised to other architectures.

The SecondHands architecture, shown in Figure 3, is
augmenting the ArmarX robotics framework (Vahrenkamp et al.,
2015) which provides several base functionalities and it is the
framework used to operate the robot. The uniform structure of
ArmarX cannot be altered as it is used for several other applications.
All the other components of SecondHands have been developed by
different research groups independently fromArmarX and represent
the multiform part of the system. Such components have been
integrated in a virtual environment and networked using ArmarX’s
native communication libraries. This was a design choice aimed at
maximising compatibility withArmarX. Components and their own
virtual environments weremade available fromGoogle Cloud in the
form of blueprints. Within SecondHands, two base blueprints were
developed: one providing GPU support (for, e.g. neural networks)
and another one more lightweight and without GPU support. For
every change, blueprints were automatically built and tested in
isolation by Travis CI, using mock-up components and inputs when
required. A successfully built and tested blueprint was automatically
uploaded on the cloud and versioned by Travis, following the
four Properties of Principle C. The multiform part of the system
communicates with ArmarX by requesting the execution of a state
machine (Vahrenkamp et al., 2015) to perform a particular task,
like handing over a tool. An ArmarX state machine relies on several

Frontiers in Robotics and AI 05 frontiersin.org31

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

FIGURE 3
Overview of the SecondHands architecture. Blueprints (templates) of components and subsystems are available on Google Cloud. In the original
architecture, a subsystem can be deployed on a dedicated PC. The multiform part of the system (cuboids and squares) only calls ArmarX’s state
machines using a dedicated interface. ArmarX can call the multiform components directly. All communication are handled using ArmarX native
communication libraries.

ArmarX components and can request output from an heterogeneous
component, such as the detection of the posture of the technician.
This design choice allows to handle ArmarX itself as a component
with Defined Interfaces and Functionalities (Table 1: A.1, A.3)
whose internal changes do not affect the rest of the architecture.
Similarly, internal changes to other heterogeneous components do
not affect the rest of the system as components are isolated in their
own containers. An exhaustive description of the functionalities
of the SecondHands architecture is beyond the scope of this
section, Section 3 describes its most important parts. As a result,
our methodology extended ArmarX with several new components
originally developed in different ways. The components are grouped
in three subsystems: Cognitive, Language and Vision, which can
be fetched and interconnected automatically using docker-compose
scripts. The SecondHands robot is equipped with four on-board
PCs with different hardware available. A detailed overview of the
available hardware is given in Section 3.1. Figure 3 shows how every
component is deployed on the robot for its usual operations, where
every subsystem, including ArmarX itself, is deployed on a PC.
Components are deployed on each machine leveraging Properties
B.3 and B.2 (Subsystem Preparation and Cloud Hosting), as every
machine has a docker-compose configuration used to bring up the
latest stable versions of every container, downloading them from
the cloud if required. By using an appropriate versioning system

(Principle C.4) it is possible to guarantee that only components
tested and confirmed to work together will be brought up.

3 Evaluation

In this section, the SecondHands architecture, presented in
Section 3.1 is used to evaluate the impact on resources overhead and
integration complexity when all the principles of our methodology
are followed and when they are not. The aim of the evaluation is to
verify hypotheses 1 and 2, assessing if our methodology simplifies
the complexity of integration and what is the added performance
cost of using it.The evaluation criteria for the integration complexity
are the number and type of modifications to a PC’s configuration
required to install a given component. The evaluation criterion
for the resource overhead is the additional load placed by docker
containers on the PC’s resources (RAM, CPU, GPU and network
traffic) when compared with the same system running natively.

3.1 Experimental setup

A scaled down version of the SecondHands architecture of
Section 2, integrated using our approach (Docker setup), is compared

Frontiers in Robotics and AI 06 frontiersin.org32

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

FIGURE 4
Experimental setup closely representing a real warehouse. A human
operator had to wear a high visibility vest and perform maintenance in
the working area using real tools.

to a Native setup of the same system which did not follow our
approach. Both systems are expected to recognise the actions and
speech of a technician working in a realistic environment and to
control robot’s hardware. The components of the evaluated system
are: 1) the Human Activity Recognition Component (Alati et al.,
2019) which uses a neural network running on a GPU to detect
the technician’s actions, 2) an Image Server which broadcasts images
from a camera, 3) a Dialogue System Component (Constantin et al.,
2018) which processes natural language, and 4) other components
which form the infrastructure of the system (e.g. interfaces with
ArmarX, communication among components, etc.).

The components were deployed on a replica of the
computational infrastructure of the ARMAR-6 in Ocado
Technology’s Robotics Research lab. The infrastructure consists
of four workstations, all Quad-core i7 Pentiums with 16 GB RAM,
running Ubuntu 14, networked over Ethernet via a switch and
connected to the ARMAR-6 hand, cameras and sound system.
The four workstations are identified with a name describing their
role: 1) The Vision PC has an Nvidia GeForce GTX 1080 GPU
to support vision processing and is directly connected to the
robot’s cameras (i.e. PrimenSense Carmine). 2) The Speech PC
is connected to microphones and a PreSonus AudioBox iTwo
sound system to support natural language processing. 3) The
Real-Time PC has interfaces to the robot’s hardware and controls
an ARMAR-6 humanoid hand (Asfour et al., 2018). The hand is
underactuated, has two degrees of freedom and can be operated only
via ArmarX. It is operated to demonstrate that the integration of all
the components is functional even for complex robotic hardware.
4) The Planning PC is used for any other remaining functionality.
In our setup, the communication was administrated by the Real-
Time PC to further increase bandwidth consumption and stress
the system.

3.2 Results: integration complexity

The integration complexity evaluation assesses how our
approach influences the ease of integration of a multiform system
in the worst case scenario. The complexity is measured in terms
of additional configurations of the PC required to integrate and
execute a component. To evaluate the integration complexity in
its worst case scenario, the hard constraint of not altering the
original component’s code or container’s blueprint was imposed.
The evaluation is performed on a fully integrated system, so that
interactions can be captured in a realistic setup. Additionally, for
the Native setup, components were deployed on the least possible
number of machines to maximise the interactions. Similarly, for
the Docker setup, components were as isolated as possible from
the host (the PC) as this setup is more complex. As such, it was
attempted to deploy both setups only on the Vision PC, accessing
the sound system on the Speech PC remotely, using Linux’s audio
server (Pulseaudio).

We classified sources of complexity in four main categories:
1) unset environment variables, 2) missing host configurations, 3)
library incompatibilities, 4) driver incompatibilities. The first two
categories are easy to address, requiring either to run a setup script
or a persistent modification of the PC’s configuration files (for, e.g.
driver loading). However, they still require prior knowledge, i.e. a
documented procedure. The last two categories are more complex
to handle. Library incompatibilities appear when two components
require conflicting versions of a library. If solvable, such issues
require an ad hoc workaround. Driver incompatibilities are when
the Linux kernel does not support a driver and a new Linux version
needs to be installed on the PC.

When integrating a Native setup, it was observed that most
components required a setup script to configure the working
environment, while the Dialogue component required a customised
host configuration. The most serious issue found was a GPU driver
incompatibility with the Activity Recognition component that can
only be solved by upgrading the operating system.As such theVision
PC was upgraded and the other components were deployed on the
Planning PC. The camera was also relocated to the Planning PC
since, to the best of our knowledge, it cannot be accessed remotely.
The audio system on the Speech PC was still remotely accessed
through Pulseaudio. The Real-Time PC was left unchanged. When
integrating the Docker setup, no issues were experienced besides
configuring the containers’ networking. As such, to allow for a
comparison with the Native setup, the Docker setup was deployed
on the same machines. It is still possible to deploy the full system
on a single machine if our methodology is fully followed. Hence, a
third containerised setup (All-in-one setup), where all components
co-exist on the Vision PC, was prepared. This setup was also
evaluated in Section 3.3. The purpose of this additional evaluation
is to give more comprehensive results for testing hypothesis 2,
considering also the case where a single machine is bearing the
load of the full system as there is no technical limitation preventing
this to happen.

It can be observed that the Docker setup was easier to prepare
as component’s blueprints were ready to be used. Using blueprints,
prepared as indicated in our approach, the setup is delegated to the
original developers, who know their components more thoroughly
than end-users and can pre-configure them easily.

Frontiers in Robotics and AI 07 frontiersin.org33

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

FIGURE 5
Overall histogram distribution of resource usage, discriminated by system setup, for CPU (A), GPU (B) and RAM (C). Plotting number of occurrences of
a given load % during the steady-state of the task. Histograms more shifted to the right indicate a more loaded system. Figure (D) shows the network
load in terms of mean bandwidth consumption over the % of completion of the steady-state of the task. Plotted as a time series.

3.3 Results: workload analysis

Workload analysis is performed to understand the
computational costs of employing our approach. The three setups
produced in Section 3.2, Docker, Native and All-in-one, processed
a live simplified maintenance sequence performed in a close
reproduction of a real warehouse, shown in Figure 4. The sequence
required a human operator to dismantle a conveyor belt’s protective
cover causing the ARMAR-6 hand to close. Afterwards he would
fetch and climb on a ladder to ask for a brush, clean the conveyor,
extend the arm to give away the brush and give a verbal “stop”
command, causing the ARMAR-6 hand to open. An example
sequence can be viewed in the Supplementary Material. The
sequence was performed 16 times by two people for a total of
48 experiments. Any trial which failed to operate the hand was
repeated. The three setups were all assessed in terms of network
bandwidth, memory, CPU and GPU workloads.

As described in Section 3.2, the Docker and Native setups were
deployed on two PCs, while the All-in-one setup was deployed on
the GPU-equipped Vision PC. For the Native setup, the CPU and
RAM usages were monitored using the python system profiling

library, psutil, while the Network bandwidth wasmonitored with the
Linux’s network traffic monitoring utility, nethogs. Only processes
related to each component of the system were monitored via psutil.
For the Docker and All-in-one setups, the same information was
accessible through docker stats4, docker’s native monitoring tools,
which profile CPU, RAM and network bandwidth and are the
industry standard tools used to evaluate containers’ key performance
metrics. docker stats require the docker daemon to run. The
daemon is also required to run containers. The computational
cost of running the daemon is fixed and does not vary over
time, as it is the case for the other components. As such, it was
tracked in our results. The daemon is highly optimised to run
with minimal footprint in production environments with several
containers and the cost of running docker was evaluated to be
an additional 0.25% load on the RAM and less than 0.001% load
on the CPU. GPU workload and memory were measured via
Nvidia logging tools for all setups. Only the steady-state part of

4 Docker stats documentation - https://docs.docker.com/engine/

reference/commandline/container_stats/

Frontiers in Robotics and AI 08 frontiersin.org34

https://doi.org/10.3389/frobt.2024.1358978
https://docs.docker.com/engine/reference/commandline/container_stats/
https://docs.docker.com/engine/reference/commandline/container_stats/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

TABLE 2 Quantitative characterisation of resource consumption. For
each resource and setup is shown the mean value and the InterQuartile
Range (IQR). Values are percentage of total resource used, for GPU and
RAM, and absolute % of CPU cores used.

Native Docker All-in-one

Resource Mean IQR Mean IQR Mean IQR

CPU 25.72 27.26 29.90 32.85 48.15 16.51

GPU 28.50 57.00 27.86 56.98 24.33 48.81

RAM 5.30 6.52 6.16 7.51 10.07 1.13

a trial was analysed. This corresponds to the moment when the
first image is broadcast until the hand opens fully. The start-up
phase was not considered as the resource consumption is not stable
initially and it is not representative of the true load of the system
experienced when it is actively used or put under stress during
normal operations. In a real world scenario, it is possible to define
a process that prevents the system from being used while booting.
Readings from individual components were collected at intervals
of 250 ms each, relative clock drift measured among computers
was negligible.

Figure 5 shows the distribution of resource consumption,
expressed in % of total resources used for RAM and GPU, and
absolute % of cores used for CPU. Each plot aggregates the data
of all trials and components for each setup. Figures 5A, B, C are
histograms showing the distribution of resource workload. The X
axis indicates different workloads while the Y axis indicates number
of occurrences. A distribution shifted to the right indicates an overall
more loaded system. A spike indicates a workload that occurred
more often than the others. Figure 5D is a time series, where on the
X axis is shown the percentage of completion of the maintenance
sequence, the steady state of the system, and on the Y axis the
amount of bandwidth consumed. A summary of the data is shown
in Table 2. The GPU memory usage is not reported as it is identical
across the three setups. The overall load for each resource was
calculated as usage difference relative to the Docker setup (UDd).
It was calculated for each resource as follows:

L[Rv] =
E[Rv]

C

UDd [R] =
L[Rn] − L[Rd]

L[Rd]

Where v stands for the setup type (Docker d, or Native n), E[Rv]
is the mean usage value of a resource R (CPU, RAM, GPU) for the
setup v, C is the maximum capacity of a resource, L[Rv] is the total
load percentage of a resource R for setup v, and UDd[R] is the usage
difference for resource R relative to the Docker setup (d).

The resource usage difference (UDd) is either small (0.002pp
- CPU), slightly more (+0.43pp - RAM) or slightly less (−0.60pp
- GPU clock). Additionally, as can be observed in Table 2, the
differences of the InterQuartile Ranges between Docker and Native
setups are 5.59pp (CPU), 0.99pp (RAM) and −0.02pp (GPU clock),
which is also small. It can be concluded that the overhead of
employing a containerised approach when the system is running at
run-time is negligible as the Docker setup does not sensibly affect
the overall system load.

The impact of deploying the whole system on one PC was also
analysed. The All-in-one setup takes more time to fully load the
GPU’s memory (13.20± 0.63s) when compared to the other two
setups (7.91± 0.13s Native, 10.09± 0.25s Docker). By observing the
histograms of Figure 5, it can be seen that the All-in-one setup has
a larger overhead since it is consistently using CPU and RAM more
than the other two setups. This can be observed as the distributions
on Figures 5A, C are shifted more to the right when compared
to the other setups. The reason for such overhead can be seen
in Figures 5D. The All-in-one setup produces a higher volume of
information at higher speed than the other two setups suggesting
that system is transferring more information and, as such, is loading
its resources more.

4 Discussion and summary

4.1 Discussion

The results of Section 3.3 are used to test hypothesis 2: Following
all the guidelines of our methodology has a noticeable performance
cost. The Docker and All-in-one setup follow both all the three
principles of the methodology, while the Native setup follows
only Principle A, since it does use the same components’ code
as the other setups. The results demonstrate that the All-in-one
setup have a higher workload, as shown by the histograms of
Figure 5A higher production of information at a higher speed
as seen in Figures 5D. docker stats monitors the information
at container level, as such a higher bandwidth consumption
indicates that the containers communicate more among each
other. Those two results combined suggest that, qualitatively, the
overall system is able to process more information at the cost
of loading the host machine more. A possible explanation of
this result is that data transits internally in the operative system
via the docker daemon and can be delivered at a faster pace to
the recipient.

Indeed, a similar, less pronounced, result can be observed on
the Docker setup. In this case, there were more instances when the
CPU was less loaded than in the All-in-one setup, as shown by the
spike in Figure 5A, although theCPUwas still active as its workload
was spread between 20% and 60% for the whole steady-state of the
trials. This likely happened because the data would have had to be
packaged in a format suitable to be transmitted over the physical
wire and then unpacked several times as individual packages were
sent up over the network until reaching the recipient. This is one of
the reasons why communication over a physical wire introduces a
lag, which can be exacerbated by network traffic further loading the
bandwidth forcing access points to limit the maximum amount of
information that can be transferred at the same time.We do believe
that in our case, packing and unpacking data over the network
stack limited the amount of information travelling and reduced the
overall load of every machine, which could process information at
a slower pace.

In the All-in-one setup the host machine had to increase its
workload to keep up with the information flow as it is able to
process more data as soon as this is readily available. In the Docker
setup, the host machines were not as loaded. This suggests that
the machines could have processed more information if that was

Frontiers in Robotics and AI 09 frontiersin.org35

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

available. As such, the Docker setup might be more limited in the
amount of information that could process at the same time as it
will have to wait for the network stack packing and unpacking
data packets before processing them. Another point to underline
is that the technical specifications of the host machine for the All-
in-one setup were sufficient to handle the full load of the system
and to process information at a faster rate. This might not have
been possible for a different robotic system, where the overall load
could have been excessive for a single machine causing lack of
responsiveness or even safety concerns.

This observation suggests there could be benefits in deploying
more components on the same host machine as this could save
time otherwise spent networking several hosts together. At the
same time, overloading a machine could have side effects in
the overall responsiveness of the system. Deciding how many
hosts to use in a robotic system is a design decision that can
be approached quantitatively by evaluating present and expected
resource consumption and can keep financial and engineering costs
lower. This decision has to be weighed by the fact that the control
part of a robot is a real-time system, where timely responsiveness
is one of the main factors to consider to ensure the overall safety of
the robots and its users.

The results observed for the Docker setup were different from
those observed for the Native setup, where the Network load was
much lower despite both setups running the same code. This is
confirmed by the fact that there weremore instances when the CPU
was lessused than theDocker setupas itsdistribution inFigure 5A is
more shifted to the left.Wedobelieve thatour resultsdonot take into
account issues with low level configurations of the network stack of
the operative system which had an impact on the obtained results.
This highlights the benefits of using a containerised approach such
as the one presented in our work as docker optimised the network
stack for efficient communicationwithout theneed to customise the
operative systemmanually. As such, we can conclude that following
all the principles of our methodology has a cost which can be offset
by a better integration overall, which seems to falsify hypothesis 2
in our scenario.

Our results in Section 3.2 are used to test hypothesis
1: Following all the guidelines of our methodology simplifies the
integration complexity.Theresults suggest that having components
prepackaged into well defined software units (Principle A of
our methodology) is a prerequisite but it is not the only
aspect to consider. For all three setups the components were
prepared according toPrinciple A and yet incompatibilities among
components required ad hoc adjustments to have an integrated
system. Principle B, having a virtual environment where the
component can operate, was a key factor in facilitating the
integration as this allowed to prepare the system in a systematic
and streamlined way, identical for every component. Principle
C, automatically preparing, testing and sharing virtualised
components in the cloud, in our case, ensured consistency within
components, further consolidating the integration approach in
predefined and known steps. It could be that following just
Principles A and Bmightbeenoughtoobtainapainless integration.
However it might be not sufficient to avoid ad hoc configurations
and a streamlined integration process due to lack of consistency
across components.

4.2 Summary

In this paper we proposed a containerised approach, inspired
by microservice architectures, and its main principles aimed at
augmenting existing robotic architectureswith thirdparty components.
The principles can also be used as design guidelines for novel robotic
frameworks. We applied our methodology to the SecondHands robot
architectureandweevaluatedourapproach,both in termsof integration
complexity and computational overhead, against the same architecture
deployed without following our approach.

This study demonstrates that our approach grants more
flexibility of integration as the same system can be deployed in
different ways, even on the same PC, without substantially altering
the configuration of the hosting PC. Additionally, we found that
containers do not substantially impact the runtime performance of
a system. Containerised setups are more reactive than native setups,
and systems deployed on a singlemachine offer the highest reactivity
at the cost of a larger workload. Our approach is relevant for robotics
as it demonstrates how it is possible to augment an existing system
with otherwise incompatible components, limiting the impact on
existing code.

Moreover applications designed to run natively come with some
form of configuration procedure. Although our approach aims at
eliminating the need of any configuration other than deployment,
it would be useful to test our approach on other architectures.
Additionally, a further analysis of the latency of communication
could provide information on the reactivity of native or containerised
systems. For the best of our knowledge, it is not possible to evaluate
the latency without modifying the original software and, as such, this
evaluation will be performed in future work.

Finally, it is worth to note that the key to reusability lies on
the quality of the original blueprints. This paper aims at providing
guidelines to encourage usability and facilitate integration, however
if the blueprints are not designed to be reusable, it is harder to
intergate fully modular multiform robotic architectures.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

Author contributions

GC: Conceptualization, Formal Analysis, Investigation,
Methodology, Supervision, Visualization, Writing–original
draft, Writing–review and editing. RR: Data curation, Formal
Analysis, Software, Validation, Writing–original draft. GD:
Funding acquisition, Project administration, Resources,
Supervision, Writing–review and editing. JK: Funding

Frontiers in Robotics and AI 10 frontiersin.org36

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Cotugno et al. 10.3389/frobt.2024.1358978

acquisition, Project administration, Resources, Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
is supported by the EU H2020 SecondHands project, research and
Innovation programme (call: H2020-ICT-2014-1, RIA) under grant
agreement No 643950.

Conflict of interest

Authors GC, RR, GD, and JK were employed by Ocado
Technology.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those
of their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1358978/full#supplementary-material

References

Alati, E.,Mauro, L., Ntouskos, V., andPirri, F. (2019). “Anticipating next goal for robot
plan prediction,” inProceedings of SAI intelligent systems conference (Springer), 792–809.

Asfour, T., Kaul, L., Wächter, M., Ottenhaus, S., Weiner, P., Rader, S., et al. (2018).
“Armar-6: a collaborative humanoid robot for industrial environments,” in 2018 IEEE-
RAS 18th international conference on humanoid robots (humanoids) (IEEE), 447–454.

Calisi, D., Censi, A., Iocchi, L., andNardi, D. (2008). “Openrdk: amodular framework
for robotic software development,” in 2008 IEEE/RSJ international conference on
intelligent robots and systems (IEEE), 1872–1877.

Cervera, E. (2019). Try to start it! the challenge of reusing code in robotics research.
IEEE Robotics Automation Lett. 4, 49–56. doi:10.1109/lra.2018.2878604

Constantin, S., Niehues, J., and Waibel, A. H. (2018). Multi-task learning to improve
natural language understanding. ArXiv abs/1812.06876.

Cotugno, G., D’Alfonso, L., Muraca, P., and Pugliese, P. (2011). “A new extended
kalman filter based on actual local information for mobile robots,” in 9th European
workshop on advanced control and diagnosis, ACD 2011.

Cotugno, G., Turchi, D., Russell, D., and Deacon, G. (2020). “Secondhands: a
collaborative maintenance robot for automated warehouses. implications for the
industry and the workforce,” in Inclusive robotics for a better society (Springer
International Publishing), 195–200.

Fres, O. A., andAlonso, I. G. (2010). “Rovim: a generic and extensible virtualmachine
for mobile robots,” in 2010 fifth international conference on systems (IEEE), 37–40.

Hamberg, R., and Verriet, J. (2012). Automation in warehouse development. Springer.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, 2961–2969.

Hinze, C., Tasci, T., Lechler, A., and Verl, A. (2018). “Towards real-time capable
simulations with a containerized simulation environment,” in 2018 25th international
conference on mechatronics and machine vision in practice (M2VIP), 1–6.

Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., et al.
(2017). Bwibots: a platform for bridging the gap between ai and human–robot
interaction research. Int. J. Robotics Res. 36, 635–659. doi:10.1177/0278364916688949

Liu, N., Liu, Z., Wei, Q., and Cui, L. (2018). “A containerized simulation platform for
robot learning peg-in-hole task,” in 2018 13th IEEE conference on industrial electronics
and applications (ICIEA), 1290–1295.

Matamoros,M.,Harbusch, K., andPaulus,D. (2018). “Fromcommands to goal-based
dialogs: a roadmap to achieve natural language interaction in robocup@home,” inRobot
world cup (Springer), 217–229.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform. Int.
J. Adv. Robotic Syst. 3, 8. doi:10.5772/5761

Metta, G., Sandini, G., Vernon,D.,Natale, L., andNori, F. (2008). “The icub humanoid
robot: an open platform for research in embodied cognition,” in Proceedings of the 8th
workshop on performance metrics for intelligent systems (ACM), 50–56.

Mohamed, N., Al-Jaroodi, J., and Jawhar, I. (2008). “Middleware for robotics: a
survey,” in Ram, 736–742.

Mohanarajah, G., Hunziker, D., D’Andrea, R., and Waibel, M. (2014). Rapyuta:
a cloud robotics platform. IEEE Trans. Automation Sci. Eng. 12, 481–493.
doi:10.1109/tase.2014.2329556

Newman, S. (2015).Buildingmicroservices: designing fine-grained systems. Sebastopol,
CA: O’Reilly Media, Inc.

Pot, E., Monceaux, J., Gelin, R., andMaisonnier, B. (2009). “Choregraphe: a graphical
tool for humanoid robot programming,” in RO-MAN 2009 - the 18th IEEE international
symposium on robot and human interactive communication, 46–51.

Randazzo, M., Ruzzenenti, A., and Natale, L. (2018). Yarp-ros inter-operation in a 2d
navigation task. Front. Robotics AI 5 (5), 5. doi:10.3389/frobt.2018.00005

Rodrigues, R. A. (2017). An adaptive robotics middleware for a cloud-based bridgeOS.
Master’s thesis, Istituto Tecnico Lisboa.

Seo, K.-T., Hwang, H.-S., Moon, I.-Y., Kwon, O.-Y., and Kim, B.-J. (2014).
Performance comparison analysis of linux container and virtual machine for building
cloud. Adv. Sci. Technol. Lett. 66, 2. doi:10.14257/astl.2014.66.25

Triantafyllou, P., Afonso Rodrigues, R., Chaikunsaeng, S., Almeida, D.,
Deacon, G., Konstantinova, J., et al. (2021). A methodology for approaching
the integration of complex robotics systems: illustration through a bimanual
manipulation case study. IEEE Robotics Automation Mag. 28, 88–100. doi:10.1109/
MRA.2021.3064759

Turnbull, L., and Samanta, B. (2013). “Cloud robotics: formation control of a multi
robot system utilizing cloud infrastructure,” in 2013 proceedings of IEEE southeastcon
(IEEE), 1–4.

Vahrenkamp, N., Wächter, M., Kröhnert, M., Welke, K., and Asfour, T. (2015). The
robot software framework armarx. it-Information Technol. 57, 99–111. doi:10.1515/itit-
2014-1066

Wang, S., Liu, X., Zhao, J., andChristensen, H. I. (2019). “Rorg: service robot software
management with linux containers,” in 2019 international conference on robotics and
automation (ICRA), 584–590. doi:10.1109/ICRA.2019.8793764

Frontiers in Robotics and AI 11 frontiersin.org37

https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/articles/10.3389/frobt.2024.1358978/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1358978/full#supplementary-material
https://doi.org/10.1109/lra.2018.2878604
https://doi.org/10.1177/0278364916688949
https://doi.org/10.5772/5761
https://doi.org/10.1109/tase.2014.2329556
https://doi.org/10.3389/frobt.2018.00005
https://doi.org/10.14257/astl.2014.66.25
https://doi.org/10.1109/MRA.2021.3064759
https://doi.org/10.1109/MRA.2021.3064759
https://doi.org/10.1515/itit-2014-1066
https://doi.org/10.1515/itit-2014-1066
https://doi.org/10.1109/ICRA.2019.8793764
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Systematic Review
PUBLISHED 10 July 2024
DOI 10.3389/frobt.2024.1377897

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Nico Hochgeschwender,
University of Bremen, Germany
Giovanni De Gasperis,
University of L’Aquila, Italy

*CORRESPONDENCE

Esther Aguado,
e.aguado@upm.es

RECEIVED 28 January 2024
ACCEPTED 29 May 2024
PUBLISHED 10 July 2024

CITATION

Aguado E, Gomez V, Hernando M, Rossi C and
Sanz R (2024), A survey of ontology-enabled
processes for dependable robot autonomy.
Front. Robot. AI 11:1377897.
doi: 10.3389/frobt.2024.1377897

COPYRIGHT

© 2024 Aguado, Gomez, Hernando, Rossi and
Sanz. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A survey of ontology-enabled
processes for dependable robot
autonomy

Esther Aguado1,2*, Virgilio Gomez1,2, Miguel Hernando2,
Claudio Rossi2 and Ricardo Sanz1,2

1Autonomous Systems Laboratory, Universidad Politécnica de Madrid, Madrid, Spain, 2Centre for
Automation and Robotics, Universidad Politécnica de Madrid-CSIC, Madrid, Spain

Autonomous robots are already present in a variety of domains performing
complex tasks. Their deployment in open-ended environments offers endless
possibilities. However, there are still risks due to unresolved issues in
dependability and trust. Knowledge representation and reasoning provide
tools for handling explicit information, endowing systems with a deeper
understanding of the situations they face. This article explores the use of
declarative knowledge for autonomous robots to represent and reason about
their environment, their designs, and the complex missions they accomplish.
This information can be exploited at runtime by the robots themselves to adapt
their structure or re-plan their actions to finish their mission goals, even in
the presence of unexpected events. The primary focus of this article is to
provide an overview of popular and recent research that uses knowledge-based
approaches to increase robot autonomy. Specifically, the ontologies surveyed
are related to the selection and arrangement of actions, representing concepts
such as autonomy, planning, or behavior. Additionally, they may be related to
overcoming contingencies with concepts such as fault or adapt. A systematic
exploration is carried out to analyze the use of ontologies in autonomous robots,
with the objective of facilitating the development of complex missions. Special
attention is dedicated to examining how ontologies are leveraged in real time
to ensure the successful completion of missions while aligning with user and
owner expectations. The motivation of this analysis is to examine the potential
of knowledge-driven approaches as ameans to improve flexibility, explainability,
and efficacy in autonomous robotic systems.

KEYWORDS

ontology, robot autonomy, adaptation, robustness, resilience

1 Introduction

Autonomous robots have endless possibilities; they are applied in a variety of
sectors such as transport, logistics, industry, agriculture, healthcare, education, energy,
etc. Robotics has shown enormous potential in diverse tasks and environments.
However, there are still open issues that compromise autonomous robot dependability.
To support their deployment in real-world scenarios, we need to provide robots
with tools to act and react properly in unstructured environments with high
uncertainty.

Various strategies support the pursuit of a better grasp of intelligence: neuroscience tries
to understand how the brain processes information; mathematics seeks computation and

Frontiers in Robotics and AI 01 frontiersin.org38

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1377897
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1377897&domain=pdf&date_stamp=2024-07-09
mailto:e.aguado@upm.es
mailto:e.aguado@upm.es
https://doi.org/10.3389/frobt.2024.1377897
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1377897/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1377897/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1377897/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

rules to draw valid conclusions using formal logic or handling
uncertainty with probability and statistics; control theory and
cybernetics aim to ensure that the system reaches desired goals, etc.
(Russell andNorvig, 2021). One way that we explore in this survey is
the use of symbolic explicit knowledge as ameans to enhance system
intelligence.

Knowledge representation and reasoning (KR&R) is a sub-
area of artificial intelligence that concerns analyzing, designing,
and implementing ways of representing information on computers
so that computational agents can use this information to derive
information implied by it (Shapiro, 2003). Reasoning is the
process of extracting new information from the implications
of existing knowledge. One of the challenges of getting robots
to perform tasks in open environments is that programmers
cannot fully predict the state of the world in advance. KR&R
provides some background to reason about the runtime situation
and act in consequence. In addition to adaptability, these
approaches can provide an explanation; knowledge can be
queried so humans or other agents can understand why a
robot acts in a certain way. Lastly, KR&R provides reusability.
The robot needs information about its capabilities and the
environment in which it is involved; this information can be
shared among different agents, applications, or tasks because
knowledge bases can be stored in broadly applicable modular
chunks.

To be useable by robots, knowledge bases must be machine-
understandable because the robot shall read, reason about,
and update its content. In the context of intelligent robots,
ontologies allow us to define the conceptualizations that the
robot requires to support autonomous decision making. These
ontologies are written in specific computer languages. In this
article, we present a review of the ontologies used by autonomous
robots to perform complex missions. In our analysis, we focus
on the critical aspects of robot autonomy, that is, how KR&R
can contribute to increasing the dependability of these types
of systems. We aim to draw a landscape on how ontologies
can support decision making to build more dependable robots
performing elaborated tasks. The main contributions of this
work are:

1. A classification of ontologies based on concepts for
autonomous robots,

2. An analysis of existing approaches that use ontologies to
facilitate action selection, and

3. A discussion of future research directions to increase
dependability in autonomous robots.

This article is structured as follows. Section 2 provides
background information on KR&R with a special focus
on ontologies for robot autonomy. Section 3 discusses the
classification criteria for ontologies that support robust
autonomy in robotic applications. In Section 4, we describe
the selection process for a systematic review in the field of
ontologies for autonomous robots and briefly discuss other
surveys in the field. In Section 5, we classify and compare the
selected approaches based on their main application domain.
Section 6 provides a general discussion and describes future
research directions. Lastly, Section 7 presents the article's
conclusions.

2 Knowledge representation and
reasoning for robot autonomy

In this section, we introduce the use of ontologies to increase
dependability in autonomous systems and the main languages for
knowledge-based agents. Finally, we also discuss the essential and
desirable capabilities of fully autonomous robots.

Dependability is the ability to provide the intended services of
the systemwith a certain level of assurance, including factors such as
availability, reliability, safety, and security (SEBoK Editorial Board,
2023). As an introductory exploration into this field, Guiochet et al.
(2017) provide an analysis of techniques used to increase
safety in robots and autonomous systems. Avižienis et al. (2004)
offer definitions and conceptualizations of aspects related to
dependability and create a taxonomy of dependable computing
and its associated faults as a framework.

Dependability ensures consistent performance that goes beyond
reliability, as it also considers factors such as fault tolerance, error
recovery, and maintaining service levels. Various models of tackling
these challenges include fault trees, failure modes and effect analysis
(FMEAs), and safety case modes. There are also model-based
approaches in which fault analysis can be used in runtime to
evaluate goals and develop and execute alternative plans (Abbott,
1990). Similarly, this survey focuses on using explicit models to
select the most suitable actions for the situation the robot faces
to provide the desired outcomes. This survey concentrates on
leveraging ontologies as a means to enhance dependability rather
than analyzing dependability aspects concerning robotics.

2.1 Languages for ontologies

The most extended approach to robot programming is
procedural: The intended robot behavior is explicitly encoded
in an imperative language. Knowledge-based agents depart from
this, using declarative approaches to abstract the control flow. A
knowledge base (KB) stores information that allows the robot to
deduce how to operate in the environment. This information can
be updated with new facts, and repeated queries are used to deduce
new facts relevant to the mission. A successful agent often combines
declarative knowledge with procedural programming to produce
more efficient code (Russell and Norvig, 2021). This declarative
knowledge is commonly encoded in logic systems to formally
capture conceptualizations.

Prolog (PROgramming in LOGic) is the most widely used
declarative programming language.Many knowledge-based systems
have been written in this language for legal, medical, financial,
and other domains (Russell and Norvig, 2021). Prolog defines a
formalism based on decidable fragments of first-order logic (FOL).
In addition to its notation, which is somewhat different from
standard FOL, the main difference is the closed-world assumption.
The closed-world assumption asserts that only the predicates
explicitly defined in the KB are true; there is no way to declare that
a sentence is false.

Another widely used language for writing ontologies is Ontology
Web Language (OWL). OWL is not a programming language
like Prolog but rather a family of languages that can be used to
represent knowledge. It is designed for applications that need to

Frontiers in Robotics and AI 02 frontiersin.org39

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

process information rather than simply presenting information to
humans. Therefore, OWL facilitates greater machine interpretability
with a panoply of different formats, such as extensible markup
language (XML), resource description framework (RDF), and
RDF Schema (RDF-S). The language has been specified by
the W3C OWL Working Group (2012) and is a cornerstone of the
semantic web.

The formal basis of OWL is description logic (DL): a family
of languages with a compromise between expressiveness and
scalability. DL uses decidable fragments of FOL to reason with more
expressiveness. The main difference between Prolog and OWL is
that the latter uses the open-world assumption. This means that
a statement can be true whether it is known or not; that is, only
explicitly false predicates are false, in contrast to the closed-world
assumption in which only explicitly true predicates are true.

Regarding accessibility, OWL can be encoded by hand or
by editors such as Protégé (Musen, 2015) for a user-friendly
environment. OWL can be integrated into robotic software through
application program interfaces (APIs) such as Jena Ontology API1

or OWLAPI2 implemented in Java or OWLREADY (Lamy, 2017)
implemented in Python. There are also reasoners such as FaCT++3,
Pellet4>, or HermiT5.

Prolog can also be used to reason about knowledge represented
by OWL or to directly encode a Prolog ontology. The main Prolog
APIs are GNU-PROLOG6 and SWI-PROLOG7. There is even a
package for the robot operating system (ROS) called rosprolog8 that
interfaces between SWI-Prolog and ROS.

2.2 Fundamental and domain ontologies

Ontological systems can be classified according to several
criteria.Wedistinguish three levels of abstraction based onGuarino’s
hierarchy (Guarino, 1998): upper level, domain, and application.
Upper-level or foundational ontologies conceptualize general terms
such as object, property, event, state, and relations such as parthood,
constitution, participation, etc. Domain ontologies provide a formal
representation of a specific field that defines contractual agreements
on the meaning of terms within a discipline (Hepp et al., 2006);
these ontologies specify the highly reusable vocabulary of an area
and the concepts, objects, activities, and theories that govern it.
Application ontologies contain the definitions required to model
knowledge for a particular application: information about a robot
in a specific environment, describing a particular task. Note that
the environment or task knowledge could be a subdomain ontology,
depending on the reusability it allows. In fact, the progress from
upper-level to application ontologies is a continuous spectrum of

1 https://jena.apache.org/documentation/ontology

2 https://github.com/owlcs/owlapi/wiki

3 http://owl.cs.manchester.ac.uk/tools/fact

4 https://github.com/stardog-union/pellet

5 http://www.hermit-reasoner.com/

6 http://www.gprolog.org/

7 https://www.swi-prolog.org/

8 https://github.com/KnowRob/rosprolog

concept subclassing, with somewhat arbitrary divisions into levels
of abstraction reified as ontologies.

Perhaps themost extended upper-level ontology is the Suggested
Upper Merged Ontology (SUMO) (Niles and Pease, 2001; Pease,
2011)9. SUMO is the largest open-source ontology that has
expressive formal definitions of its concepts. Domain ontologies
for medicine, economics, engineering, and many other topics are
part of SUMO. This formalism uses the Standard Upper Ontology
Knowledge Interchange Format (SUO-KIF), a logical language
to express concepts with higher-order logic (a logic with more
expressiveness than first-order logic) (Brown et al., 2023).

Another relevant foundational ontology for this research is
the Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE), described as an “ontology of universals” (Gangemi et al.,
2002), which means that it has classes but not relations. It aims
to capture the ontological categories that underlie natural language
and human common sense (Mascardi et al., 2006). The taxonomy
of the most basic categories of particulars assumed in DOLCE
includes, for example, abstract quality, abstract region, agentive
physical object, amount of matter, temporal quality, etc. Although
the original version of the few dozen terms in DOLCE was defined
in FOL, it has since been implemented in OWL; most extensions of
DOLCE are also in OWL.

The DOLCE + DnS Ultralite ontology10 (DUL) simplifies some
parts of the DOLCE library, such as the names of classes and
relations with simpler constructs. The most relevant aspect of DUL
is perhaps the design of the ontology architecture based on patterns.

Other important foundational ontologies are the Basic Formal
Ontology (BFO) (Arp et al., 2015), the Bunge–Wand–Weber
Ontology (BWW) (Bunge, 1977; Wand and Weber, 1993), and the
Cyc Ontology (Lenat, 1995). BFO focuses on continuant entities
involved in a three-dimensional reality and occurring entities, which
also include the time dimension. BWW is an ontology based on
Bunge’s philosophical system that is widely used for conceptual
modeling (Lukyanenko et al., 2021). Cyc is a long-term project in
artificial intelligence that aims to use an ontology to understand
how the world works by trying to represent implicit knowledge and
perform human-like reasoning.

2.2.1 Robotic domain ontologies
Ontologies have gained popularity in robotics with the growing

complexity of actions that systems are expected to perform. A well-
defined standard for knowledge representation is recognized as a
tool to facilitate human–robot collaboration in challenging tasks
(Fiorini et al., 2017).The IEEE StandardAssociation of Robotics and
Automation Society (RAS) created the Ontologies for Robotics and
Automation (ORA) working group to address this need.

They first published the Core Ontology for Robotics and
Automation (CORA) (Prestes et al., 2013). This standard specifies the
most general concepts, relations, and axioms for the robotics and
automation domain. CORA is based on SUMO and defines what a
robot is and how it relates to other concepts. For this, it defines four
main entities: robot part, robot, complex robot, and robotic system.

9 https://www.ontologyportal.org, https://github.com/ontologyportal

10 http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+

DnS_Ultralite

Frontiers in Robotics and AI 03 frontiersin.org40

https://doi.org/10.3389/frobt.2024.1377897
https://jena.apache.org/documentation/ontology
https://github.com/owlcs/owlapi/wiki
http://owl.cs.manchester.ac.uk/tools/fact
https://github.com/stardog-union/pellet
http://www.hermit-reasoner.com/
http://www.gprolog.org/
https://www.swi-prolog.org/
https://github.com/KnowRob/rosprolog
https://www.ontologyportal.org
https://github.com/ontologyportal
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

CORA is an upper-level ontology currently extended in the IEEE
Standard 1872-2015 (IEEE SA, 2015) with other subontologies, such
as CORAX, RPARTS, and POS.

CORAX is a subontology created to bridge the gap between
SUMO and CORA. It included high-level concepts that the authors
claimed to not be explicitly defined in SUMO and particularized in
CORA, in particular those associated with design, interaction, and
environment. RPARTS provides notions related to specific kinds of
robot parts and the roles they can perform, such as grippers, sensors,
or actuators. POS presents general concepts associated with spatial
knowledge, such as position and orientation, represented as points,
regions, and coordinate systems.

However, CORA and its extensions are intended to cover a broad
community, so their definitions of ambiguous terms are based solely
on necessary conditions and do not specify sufficient conditions
(Fiorini et al., 2017). For this reason, concepts in CORA must be
specialized according to the needs of specific subdomains or robotics
applications.

CORA, like most of the other application ontologies considered
here, is defined in a language of very limited expressiveness,
mostly expressible in OWL-Lite, and is therefore limited to simple
classification queries. Although it is based on upper-level terms from
SUMO, it recreated many terms that could have been used directly
from SUMO. Moreover, given its choice of representation language,
it did not use the first- and higher-order logic formulas from SUMO,
limiting its reuse to only the taxonomy.

The IEEE ORA group created the Robot Task Representation
subgroup to produce a middle-level ontology with a comprehensive
decomposition of tasks, from goal to subgoals, that enables humans
or robots to accomplish their expected outcomes at a specific instance
in time. It includes a definition of tasks and their properties and terms
related to the performance capabilities required to perform them.
Moreover, it covers a catalog of tasks demanded by the community,
especially in industrial processes (Balakirsky et al., 2017).

This working group also created three additional subgroups for
more specific domain knowledge: Autonomous Robots Ontology,
Industrial Ontology, and Medical Robot Ontology. Only the first
of these has been active. The Autonomous Robot subgroup (AUR)
extends CORA and its associated ontologies for the domain of
autonomous robots, including, but not limited to, aerial, ground,
surface, underwater, and space robots.

They developed the IEEE Standard for Autonomous Robotics
Ontology (IEEE SA, 2022) with an unambiguous identification
of the basic hardware and software components necessary to
provide a robot or a group of robots with autonomy. It was
conceived to serve different purposes, such as to describe the design
patterns of Autonomous Robotics (AuR) systems, to represent
AuR system architectures in a unified way, or as a guideline to
build autonomous systems consisting of robots operating in various
environments.

In addition to the developments of the IEEE ORA working
group, there are other relevant domain ontologies, such as OASys
and the Socio-physical Model of Activities (SOMA). The Ontology
for Autonomous Systems (OASys) (Bermejo-Alonso et al., 2010)
captures and exploits concepts to support the description of any
autonomous systemwith an emphasis on the associated engineering
processes. It provides two levels of abstraction systems in general and
autonomous systems in particular. This ontology connects concepts

such as architecture, components, goals, and functions with the
engineering processes required to achieve them.

The SOMA for Autonomous Robotic Agents represents the
physical and social context of everyday activities to facilitate
accomplishingtasksthataretrivial forhumans(Beßler et al.,2021). It is
based onDUL, extending their concept to different event types such as
action, process, and state, the objects that participated in the activities,
and the execution concept. It is worth mentioning that SOMA was
intendedtobeusedintheruntimealongwiththeconceptofnarratively
enabled episodic memories (NEEMs), which are comprehensive logs
of raw sensor data, actuator control histories, and perception events,
all semantically annotated with information about what the robot is
doing and why using the terminology provided by SOMA.

The relationship between upper-level ontologies and domain
ontologies is a relationship of progressive domain focalization
(Sanz et al., 1999). The frameworks described in the following
sections are mostly specializations of these general robotic
ontologies and other foundations.

2.3 Capabilities for robot autonomy

Etymologically, autonomy means being governed by the laws of
oneself rather than by the rules of others (Vernon, 2014). Beer et al.
(2014) provide a definitionmore closely related to robotics: autonomy
as the extent to which a robot can sense its environment, plan
based on that environment, and act on that environment with the
intention of reaching some task-specific goal (either given or created
by the robot) without external control. A related, systems-oriented
perspective pursued in our lab considers autonomy as a relationship
between system, task, and context (Sanz et al., 2000).

Rational agents use sense-decide-act loops to select the best
possible action. According to Vernon (2014), cognition allows one
to increase the repertoire of actions and extend the time horizon
of one’s ability to anticipate possible outcomes. He also reviews
several cognitive architectures to support artificial cognitive systems
and discusses the relationship between cognition and autonomy.
For him, cognition includes six attributes: perception, learning,
anticipation, action, adaptation, and, of course, autonomy.

Following the link between cognition and autonomy, Langley et al.
(2009) also review cognitive architectures and establish the main
functional capabilities that autonomous robots must demonstrate.
Knowledge is described as an internal property to achieve the
following capabilities: (i) recognition and categorization to generate
abstractions from perceptions and past actions, (ii) decision
making and choice to represent alternatives for selecting the most
prosperous action considering the situation, (iii) perception and
situation assessment to combine perceptual information from
different sources and provide an understanding of the current
circumstances, (iv) prediction and monitoring to evaluate the
situation and the possible effects of actions, (v) problem solving
and planning to specify desired intermediate states and the actions
required to reach them, (vi) reasoning and belief maintenance to
use and update the KB in dynamic environments, (vii) execution
and action to support deliberative and reactive behaviors, (viii)
interaction and communication to share knowledge with other
agents, and (ix) remembering, reflection, and learning to use
meta-reasoning to use past executions as experiences for the future.

Frontiers in Robotics and AI 04 frontiersin.org41

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

Brachman (2002) argues about the promising capabilities of
reflective agents. For him, real improvements in computational
agents come when systems know what they are doing, that is, when
the agent can understand the situation: what it is doing, where,
and why. Brachman establishes practically the same foundations
as Langley et al. (2009) but explicitly mentions the necessity of
coordinated teams and robust software and hardware infrastructure.

In conclusion, most authors recall the importance of the features
described above with different levels of granularity. In the next
section, we explain and conceptualize those functional capabilities
that enable robot operation autonomously. Note that the systems
under study use explicit knowledge—ontologies—as the backbone
to achieve autonomy.

3 Processes for knowledge-enabled
autonomous robots

In this section, we introduce the classification on which we will
base the review of ontologies for dependable robot autonomy in
Section 5. The classification criterion is based on the capabilities
introduced in Section 2.3. It establishes the fundamental processes
that an autonomous robot should perform.

3.1 Perception

Apercept is the belief produced as a result of a perceptor sensing
the environment in an instant. Perception involves five entities:
sensor, perceived quality, perceptive environment, perceptor, and
the percept itself.

A sensor is a device that detects, measures, or captures a property
in the environment. Sensors can measure one particular aspect
of the physical world, such as thermometers, or capture complex
characteristics, such as segmenting cameras.

A perceived quality is a feature that allows the perceptor to
recognize some part of the environment—or the robot itself. Note
that this quality is mapped into the percept as an instantiation,
a belief produced to translate physical information to the system
model. Examples of perceived qualities are the temperature, visual
images of the environment, and the rotation of a wheel measured by
a rotative encoder placed in a robot.

A perceptive environment is the part of the environment that the
sensor can detect. The perceptive region can be delimited by the
sensor’s resolution or to save memory or other resources.

An agent that perceives is a perceptor. It constitutes the link
between perception and categorization because it takes sensor
information and categorizes it. Usually, the perceptor embodies the
sensor, as is the case in autonomous robots, but the two could
be decoupled if the system processes information from external
sensors. Finally, the percept is the inner entity—a belief—that results
from the perceptual process.

3.2 Categorization

Percepts are instantaneous approximate representations of a
particular aspect of the physical world. To provide the autonomous

robot with an understanding of the situation in which it is deployed,
the perceptor must abstract the sensor information and recognize
objects, events, and experiences.

Categorization is the process of finding patterns and categories
to model the situation in the robot’s knowledge. It can be done at
different levels of granularity. Examples of categorizations appear
everywhere: at sensor fusion processes from different types of
sensors, with their corresponding uncertainty propagation; at the
classification of an entity as a mobile obstacle when it is an
uncontrolled object approaching the robot; or, in a more abstract
level, when a mobile miner robot recognizes the type of mine ore
depending on its geo-chemical properties.

In general, this step corresponds to a combination of
information about objects, events, action responses, physical
properties, etc., to create a picture of what is happening in the
environment and in the robot itself. For this purpose, the robot shall
incorporate other processes, such as reasoning and prediction.

3.3 Decision making

An autonomous robot must direct its actions towards a goal.
When an action cannot be performed, the robot shall implement
mechanisms to make decisions and select among the most suitable
alternatives for the runtime situation.

Note the difference between decision making and planning.
Decision making has a shorter time frame because it focuses on the
successful completion of the plan. An example of a decision at this
level could be to slightly change the trajectory of a robot to avoid an
obstacle and then return to the initial path. Planning, on the other
hand, is concernedwith achieving a goal; it has a longer time horizon
to establish the action sequences to complete amission. For example,
the miner robot presented above must examine the mine, detect the
mineral vein, and dig in that direction.

Decision making acts upon the different alternatives that the
robot can select, for example, in terms of directions and velocity,
but also in terms of what component with functional equivalence
can substitute for a defective one. The execution of the action—how
it is done—changes slightly, but the plan—the action sequence that
achieves the goal—remains the same.

3.4 Prediction and monitoring

Once the robot has an internal model, it can supervise the
situation. This model can be given a priori or created before
stating the task; it could also be learned. The model reflects
the understanding of the robot about its own characteristics, its
interactions with the environment, and the relationships between its
actions and its outcomes. At runtime, the robot can use the model
to predict the effect of an action. It can also anticipate future events
based on the way the situation is evolving.

This mechanism also allows the robot to monitor processes and
compare the result obtained with the expected response. In the
event of inconsistencies, it can inform an external operator or use
adaptation techniques to solve possible errors. For example, if a
robot is stuck, it may change its motion direction to get out, and if
this is not possible, it can alert the user.

Frontiers in Robotics and AI 05 frontiersin.org42

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

The prediction process can also benefit from a learning
procedure to improve the models from experience and refine them
over time. Furthermore, monitoring can be used during learning, as
it detects errors that can help improve the model.

3.5 Reasoning

Reasoning is the process of using existing knowledge to draw
logical conclusions and extend the scope of that knowledge. It
requires solid definitions and relationships between concepts. It uses
instances of such concepts to ground them to the robot’s operation
and to be used during the mission.

The reasoning process can be used to infer events based on
the current percepts, such as the dynamic object approaching
the robot, or to infer the best possible action to overcome it
based on its background knowledge, such as reducing speed
and slightly changing the direction. Lastly, as robots operate
in dynamic worlds—specifically, they operate by changing their
environment—the knowledge shall evolve over time.

Reasoning includes two processes: (i) infer and maintain beliefs
and (ii) discard beliefs that are no longer valid. Logical systems
support assertions and retractions for this purpose; however, they
must be handled carefully tomaintain ontological consistency. Truth
maintenance is a critical capability for cognitive agents situated in
dynamic environments.

3.6 Planning

Planning is the process of finding a sequence of actions to
achieve a goal. To reach a solution, the problem must be structured
and well defined, especially in terms of the starting state, which
the robot shall transform into a desired goal state. The system
also needs to know the constraints to execute an action and its
expected outcome, that is, preconditions and postconditions. These
conditions are also used to establish the order between actions and
the effect that they may have on subsequent actions.

The required information is usually stored in three types of
models: environment, robot, and goal models. Most authors only
mention the environmentalmodel, which includes themost relevant
information about the robot world and its actions, tasks, and goals;
however, we prefer to isolate the three models to make explicit
the importance of proprioceptive information and performance
indicators for a more dependable autonomous robot.

Plans can completely guide the behavior of the robot or suggest
a succession of abstract actions that can be expanded in different
ways. This can result in branches of possible actions, depending on
the result of previous states.

Planning is also closely related to monitoring; the supervision
output can conclude the effectiveness of the plan or detect some
unreachable planned actions. In this case, the plan may need
adjustments, such as changing parameters or replacing some actions.
Replanning can use part of the plan or draw a completely new
structure depending on the progress and status of the plan and the
available components.

Lastly, successful plans or sub-plans can be stored for reuse.
These stored plans can also benefit from learning, especially with

regard to the environmental response to changes and action
constraints and outputs.

3.7 Execution

A key process in robotic deployments is the execution of
actions that interact with the environment. The robot model
must represent the motor skills that produce such changes.
Execution can be purely deliberative or combinedwithmore reactive
approaches; for example, a patrolling robot may reduce its speed
or stop to ensure safety when close to a human—reactiveness—but
it also needs a defined set of waypoints to fully cover an
area—deliberation.

Hence, an autonomous robot must facilitate the integration
of both reactive and deliberative actions within a goal-oriented
hierarchy. A strictly reactive approach would limit the ability to
direct the robot’s actions toward a defined objective. Meanwhile,
an exclusively deliberative approach might be excessively
computationally intensive and lead to delayed responses to
instantaneous changes.

Another aspect of execution is control. Robots use controllers
to overcome small deviations from their state. These controllers can
operate in open-loop or closed-loop mode. Open-loop controllers
apply predetermined actions based on a set of inputs, assuming
that the system will respond predictably. Although they lack
the ability to correct runtime deviations, they are often simpler
and faster. Closed-loop controllers provide a more accurate and
precise action based on inputs and feedback received. Control
grounds the decision-making process by specifying the final target
value for the robot effectors. It constitutes the final phase of
action execution.

3.8 Communication and coordination

In many applications, robots operate with other
agents—humans or robots of a different nature. Communication is a
key feature to organize actions and coordinate them towards a shared
goal. Moreover, in knowledge-based systems, communication
provides an effective way to obtain knowledge from other agents’
perspectives.

Shared information provides a means to validate perceived
elements, fuse them with other sources, and provide access
to unperceivable regions of the world. However, this requires
a way to exchange information between agents in a neutral,
shared conceptualization that is understandable and useable
for both.

Once communication is established, we shall coordinate the
actions of the systems involved. Decision-making and planning
processes should take into account the capabilities and availability
of agents to direct and sequence their actions toward the most
promising solution. For example, in multirobot patrols, agents
shall share their pose and planned path to avoid collisions.
Another example could be exploring a difficult-to-access mine in
which a wheeled robot could be used for most of the inspection
activities, and a legged robot could be used to inspect the
unreachable areas.

Frontiers in Robotics and AI 06 frontiersin.org43

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

3.9 Interaction and design

Interaction and design are often omitted when analyzing
autonomous capabilities. Although they are part of the design phase,
this engineering knowledge holds considerable influence over the
robot’s performance and dependability.

Interaction between agents can be handled through
coordination; however, the embodiment of robots can produce
interactions between software and/or hardware components. Robots
should be aware of the interaction ports and the possible errors
that arise from them. This concern is presented by Brachman
(2002), as awareness of interaction allows the robot to step back
from action execution and understand the sources of failure. This
becomes particularly significant during the integration of diverse
components and subsystems, where the application of systems
engineering techniques proves to be highly beneficial.

Hernández et al. (2018) argue about the need to exploit
functional models to make explicit design decisions and alternatives
at runtime. These models can provide background knowledge about
requirements, constraints, and assumptions under which a design is
valid. With this knowledge, we can endow robots with more tools
for adaptability, providing the capability to overcome deviations or
contingencies that may occur. For example, a manipulator robot
with several tools may have one optimal tool for a task, but if this
component is damaged, it can use an alternative tool to solve the
problem in a less-than-optimal way.

3.10 Learning

Most of the processes described above can improve their efficacy
through learning: categorization, decision making, prediction
and monitoring, planning, execution, coordination, design, etc.
Learning can be divided into three steps: remember, reflect, and
generalize.

• Remember is the ability to store information from previous
executions.
• Reflect involves analyzing remembered information to detect

patterns and establish relationships.
• Generalize is the process of abstract conclusions derived from

reflection and subsequently extended to use them in future
experiences.

The classification of these competencies reveals their
incorporation into KBs, identifies potential underrepresented
elements, and explores the contributions of knowledge structures to
the decision-making process.

4 Review process

One of our main objectives in this article is to conduct a
systematic analysis of recent and relevant projects that use ontologies
for autonomous robots. The methodology followed is inspired by
relevant surveys discussed in the next section, such as those by
Olivares-Alarcos et al. (2019) and Cornejo-Lupa et al. (2020). To
avoid personal bias, the entire article selection process has been

cross-analyzed by two people, and the framework analysis has been
validated by the five authors.

The first step in our review process was to search for relevant
keywords in scientific databases. Specifically, we used the most
extended literature browsers, Scopus11 and Web of Science12. These
databases provide awide range of peer-reviewed literature, including
scientific journals, books, and conference proceedings. Scopus
includes more than 7,000 publishers, and WOS includes more than
34,000 journals, including important journals in the field, such as
those from IEEE, Springer, and ACM. It also has a user-friendly
interface to store, analyze, and display articles. Moreover, related
articles cited in the analyzed articles are included in the review
process to ensure that relevant articles were not missed. The search
was done in terms of title, abstract, or keywords containing the
terms robot, ontology, plan, behavior, adapt, autonomy, or fault. In
practice, we used the following search string. The search can be
replicated using the provided query. However, it is important to note
that the survey was conducted in 2022, and there may have been
developments or new publications since then. Additionally, a list of
the analyzed works and intermediate documents is available upon
request.

The required terms are “ontology” and “robot,” as they are the
foundation of our survey. Using this restrictionmay seem somewhat
limiting because there could be knowledge-based approaches to
cognitive robots that are not based on ontologies. However, in this
review, we are specifically interested in using explicit ontologies for
this purpose, hence the strong requirement regarding “ontology.”
We also target at least one keyword related to (i) selection and
arrangement of actions—autonomous, planning, behavior—or (ii)
overcoming contingencies—fault, adapt. Note that we use asterisks
to be flexible with the notation.

This search returned 695 articles after removing duplicates. To
mitigate potential biases, we implemented specific inclusion criteria
based on publication dates and citation counts. We only include
articles widely cited, with 20 or more citations, before 2010; articles
between 2010 and 2015 with five or more citations; and articles
between 2015 and 2018 with two or more citations. All articles from
2018 onward were included. With these criteria, we reduced the list
to 351 articles.The selection process applied these criteria to identify
articles that are not only recent but have also demonstrated impact
and influence within their respective publication periods.

Then, we analyzed the content of the articles.We included works
in which the main point of the article is the ontology. In particular,
the work (i) proposes or extends the ontology and (ii) uses the
ontology to select, adapt, or plan actions. We eliminated a number
of articles on how to use ontologies to encode simulations, on-line
generators of ontologies, or ontologies only used for conversation,
perception, or collaboration without impact on robot action. The
application of these criteria produced 26 relevant articles.

Finally, we complemented our search with articles from related
surveys described in Section 4.1. This ensured that we included all
relevant and historical articles in the field with a snowball process.
In this step, we obtained 22 more articles; some of them were
already included in the previous list, and others did not meet our

11 https://www.scopus.com

12 https://www.webofscience.com/wos/alldb/basic-search

Frontiers in Robotics and AI 07 frontiersin.org44

https://doi.org/10.3389/frobt.2024.1377897
https://www.scopus.com
https://www.webofscience.com/wos/alldb/basic-search
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

FIGURE 1
PRISMA flow diagram, adapted from Page et al. (2021).

inclusion criteria. After evaluating them, we included six more
articles, resulting in a total of 32 articles in deep review. The entire
process is depicted in Figure 1 with a Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) flow diagram.

4.1 Related surveys

This section evaluates a variety of comparative studies and
surveys on the application of KR&R to several robotic domains.
Theseworks address robot architecture, aswell as specific topics such
as path planning, task decomposition, and context comprehension.
However, our approach transcends these specific domains, aiming
to offer a more comprehensive view of the role of ontologies in
enhancing robot understanding and autonomy.

Gayathri and Uma (2018) compare languages and planners for
robotic path planning from the KR&R perspective. They discuss
ontologies for spatial, semantic, and temporal representations and
their corresponding reasoning. In Gayathri and Uma (2019), the
same authors expand their review by focusing on DL for robot task
planning.

Closer to our perspective are articles that compare and
analyze different approaches for ontology-based robotic systems,
specifically those articles that focus on what to model in
an ontology. Cornejo-Lupa et al. (2020) compare and classify
ontologies for simultaneous localization and mapping (SLAM) in
autonomous robots. The authors compare domain and application

ontologies in terms of (i) robot information such as kinematic,
sensor, pose, and trajectory information; (ii) environment mapping
such as geographical, landmark, and uncertainty information; (iii)
time-related information and mobile objects; and (iv) workspace
information such as domain and map dimensions. They focus on
one important but specific part of robot operation, autonomous
navigation, and, in a particular type of robot, mobile robots.

Manzoor et al. (2021) compare projects based on application,
ideas, tools, architecture, concepts, and limitations. However,
this article does not examine how architecture in the compared
frameworks supports autonomy. Their review focuses on objects,
environment maps, and task representations from an ontology
perspective. It does not compare the different approaches regarding
the robot’s self-model. It also does not tackle the mechanisms
and consequences of using such knowledge to enhance the robot’s
reliability.

Perhaps the most relevant review from our perspective is the
one by Olivares-Alarcos et al. (2019). They analyze five of the main
projects that use KBs to support robot autonomy. They ground their
analysis in (i) ontological terms, (ii) the capabilities that support
robot autonomy, and (iii) the application domain. Moreover, they
discuss robots and environment modeling. This work is closely
related to the development of the recent IEEE Standard 1872.2
(IEEE SA, 2022).

Our approach differentiates itself from previous reviews because
we focus onmodeling not only robot actions and their environments
but also engineering design knowledge. This type of knowledge

Frontiers in Robotics and AI 08 frontiersin.org45

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

is not often considered but provides a deeper understanding of
the robot’s components and its interaction, design requirements,
and possible alternatives to reach a mission. We also base our
comparison on explicit knowledge of the mission and how we
can ensure that it satisfies the user-expected performance. For this
reason, we focus on works that select, adapt, or plan actions. Our
search used more flexible inclusion criteria to analyze a variety
of articles, even if they address only some of the issues or their
ontologies are not publicly available. We have adopted this wide
perspective to draw a general picture of different approaches that
build the most important capabilities for dependable autonomous
robots.

4.2 Review scope

Our analysis focuses on exploring the role of ontologies in
advancing the autonomy of robotic systems. For this purpose,
we delve into research articles that address ontologies created
or extended to select, adapt, or plan actions autonomously. We
excluded studies that solely encode simulations or utilize ontologies
for non-action-related tasks, aiming to concentrate on contributions
directly impacting robot action. Furthermore, our scope excludes
non-ontology-based approaches, even if they are important for
dependability or autonomy, such as all the developments in safe-
critical systems.

An ontology is a shared conceptualization that structures
objects into classes, which can be seen as categories within the
domain of discourse. While interaction with the world involves
specific objects, referred to as individuals or instances, much
reasoning occurs at the class level. Classes can possess properties
that characterize the collection of objects they represent or are
related to other classes. Additionally, they are organized through
inheritance, expressed by the subclass relation. Figure 2 represents
a simple ontology with partial information about zones in a
manufacturing plant.

Consider the assertion of the class ProductionZone with
the property robot_accessible. According to this assertion,
every instance of ProductionZone, such as the specific area
production_01, is considered robot_accessible. In
this hierarchy, Assembly is a subclass of ProductionZone.
Given this hierarchy, we can deduce that every instance of
AssemblyZone inherits the properties of its superclass. Every
individual of it, such as assembly_01, inherits the robot_

accessible property. Zones without the property, such as
Office or Control Room, are considered restricted.

This kind of reasoning based on classification and consistency
can be used to derive new assertions about elements in the robot
environment and the robot itself. In this example, the robot can use
this information to traverse only the accessible areas when selecting
a route to traverse the plant. Therefore, the use of knowledge-
driven policies facilitates the fulfillment of safety regulations and
compliance standards and can enhance human understanding of the
decisions the robot is making.

If the ontology represented components, capabilities, and goals,
these conclusions could be used to adapt the system. Figure 3
represents a robotic ontology based on components, capabilities,
goals, and values to determinewhich design alternatives are available

FIGURE 2
Simple example of manufacturing zones ontology. Classes in light
blue, properties in dark blue, and individuals in gray.

for the robot. Following the approach of TOMASys Hernández et al.
(2018), we are working on a system that selects the most suitable
reconfiguration action for the robot. For example, if a component
fails, the ontology can find another component that provides an
equivalent capability so the robot can use it to complete the
mission. This KB is also useful for determining which interfaces
the system requires in that case, which metrics would be affected,
and which stakeholders should be advised of the change. More
information on the fundamental aspects of this ontology can be
found in Aguado et al. (2024).

The analysis developed here does not address different
approaches to solving a specific problem; rather, it focuses
on examining, for each framework, the capabilities explicitly
represented in ontologies or those that leverage the ontology at
runtime to enhance the operation of the robot.

The survey is centered on action-related conceptualizations,
with the objective of finding the theoretical foundations and relevant
applications of ontological frameworks within the field of robotics.
For this reason, and especially given that most of the articles do not
provide source files for the ontology, we focus on the concepts, and
discussions regarding scalability, computational cost, and efficiency
are not within the scope of our study.

4.3 Review audience

This survey is directed towards a specific audience that is
not seeking introductory knowledge about ontologies or their
basic usage. That content can be found in resources such as
Staab and Studer (2009). For an introduction from the robotics
perspective, refer to Chapter 10 in Russell and Norvig (2021).
Our target audience consists of people interested in understanding

Frontiers in Robotics and AI 09 frontiersin.org46

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

FIGURE 3
Example of an ontology to formalize robotics system models and their runtime deployment to select the most appropriate reconfiguration strategy in
response to unexpected circumstances. This ontology represents the robot components, capabilities, and mission goals. The objective of the ontology
is to find adaptation solutions that are not predefined or ad hoc; rather, they are computed during operation based on explicit engineering knowledge
from the design phase.

the practical application of concepts related to robot autonomy
during robot task execution. We aim to cater to researchers,
practitioners, and academics who already possess a foundational
understanding of ontologies and are now seeking to explore how
these concepts intersect with and enhance the execution of tasks in
robotic systems.

5 A survey of applications using
ontologies for robot autonomy

The following sections review and compare some projects to
find their specific contributions to the field of robotic ontologies.
We have organized the analysis of the projects under review based
on the application domain—manipulation, navigation, social, and
industrial—in which they have been deployed. However, most of the
workhas a broader perspective andmaybe applied to other domains.
Each analyzed work includes a brief description and a discussion
of the above elements. Finally, each domain provides a comparative
table with the most relevant aspects of each capability.

5.1 Manipulation domain

In the domain of robotics, manipulation refers to the
control and coordination of robotic arms, grippers, and other
mechanical systems to interact with objects in the physical
world. This includes a wide range of applications, from industrial
automation to tasks in unstructured environments, such as
household chores or healthcare assistance. In this section, most
of the work under analysis focuses on domestic applications
for manipulation.

5.1.1 KnowRob and KnowRob-based approaches
KnowRob13 is a framework that provides a KB and a processing

system to perform complex manipulation tasks (Tenorth and Beetz,
2009; Tenorth and Beetz, 2013). KnowRob214 (Beetz et al., 2018)
represents the second generation of the framework and serves as a
bridge between vague instructions and specific motion commands
required for task execution.

KnowRob2’s primary objective is to determine the appropriate
action parametrization based on the required motion and identify
the physical effects that must be achieved or avoided. For example, if
the robot is asked to pick up a cup and pour out its contents, the KB
retrieves the necessary action of pouring, which includes a sub-task
to grasp the source container. Subsequently, the framework queries
for pre-grasp and grasp poses, along with grasp force, to establish
the required motion parameters.

KnowRob ontology includes a spectrum of concepts related to
robots, including information about their body parts, connections,
sensing and action capabilities, tasks, actions, and behavior. Objects
are represented with their parts, functionalities, and configuration,
while context and environment are also taken into account.
Additionally, the ontology incorporates temporal predicates based
on event logic and time-dependent relations.

While KnowRob’s initial ontology was based on Cyc (Lenat,
1995), which was designed to understand how the world works
by representing implicit knowledge and performing human-like
reasoning, Cyc has remained proprietary. OpenCyc, a public
initiative related to Cyc, is no longer available. The KnowRob
framework later transitioned to DUL, which was chosen for its

13 http://KnowRob.org

14 https://github.com/KnowRob/KnowRob

Frontiers in Robotics and AI 10 frontiersin.org47

https://doi.org/10.3389/frobt.2024.1377897
http://KnowRob.org
https://github.com/KnowRob/KnowRob
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

compatibility with concepts for autonomous robots. KnowRob uses
Prolog as a query and assert interface, but all perception, navigation,
and manipulation actions are encoded in plans rather than Prolog
queries or rules.

One of the main expansions of KnowRob is RoboEarth, a
worldwide open-source platform that allows any robot with a
network connection to generate, share, and reuse data (Waibel et al.,
2011). It uses the principle of linked data connections through web
and cloud services to speed up robot learning and adaptation in
complex tasks.

RoboEarth uses an ontology to encode concepts and relations
in maps and objects and a SLAM map that provides the geometry
of the scene and the locations of objects with respect to the robot
(Riazuelo et al., 2015). Each robot has a self-model that describes its
kinematic structure and a semantic model to provide meaning to
robot parts, such as a set of joints that form a gripper. This model
also includes actions, their parameters, and software components,
such as object recognition systems (Tenorth et al., 2012).

Another example of a KnowRob-based application
is Crespo et al. (2018). In this case, the focus is on using
semantic concepts to annotate a SLAM map with additional
conceptualizations. This application diverges somewhat from
KnowRob’s initial emphasis on robot manipulators. The work
models the environment utilizing semantic concepts but specifically
captures the relationships between rooms, objects, object
interactions, and the utility of objects.

The detailed analysis of comparison criteria follows:

• Perception and categorization: KnowRob and RoboEarth
incorporate inference mechanisms to abstract sensing
information, particularly in the context of object recognition
(Beetz et al., 2018; Crespo et al., 2018). As highlighted in
Tenorth and Beetz (2013), inference processes information
perceived from the external environment and abstracts it to
the most appropriate level while retaining the connection
to the original percepts. These ontologies serve as shared
conceptualizations that accommodate various data types
and support various forms of reasoning: effectively handling
uncertainties arising from sensor noise, limited observability,
hallucinated object detection, incomplete knowledge, and
unreliable or inaccurate actions (Tenorth and Beetz, 2009).
• Decision making and planning: KnowRob places a strong

emphasis on determining action parametrizations for
successful manipulation, using hybrid reasoning with the goal
of reasoning with eyes and hands (Beetz et al., 2018).

This approach equips KnowRob with the ability to reason
about specific physical effects that can be achieved or avoided
through its motion capabilities. Although KnowRob’s KB might
exhibit redundancy or inconsistency, the reasoning engine computes
multiple hypotheses, subjecting them to plausibility and consistency
checks and ultimately selecting themost promising parametrization.
The planning component of KnowRob2 is tailored for motion
planning and solving inverse kinematics problems. Tasks are
dynamically assembled on the basis of the robot’s situation.

• Prediction and monitoring: KnowRob uses its ontology to
represent the evolution of the state, facilitating the retrieval

of semantic information and reasoning (Beetz et al., 2018).
Through these heterogeneous processes, the framework can
predict the most appropriate parameters for a given situation.
However, themonitoring capabilities within this framework are
limited to objects in the environment. Unsuccessful experiences
are labeled and stored in the robot’s memory, contributing to
the selection of action parameters in subsequent scenarios.
The framework introduces NEEMs, allowing queries about
the robot’s actions, their timing, execution details, success
outcomes, the robot’s observations, and beliefs during each
action. This knowledge is used primarily during the learning
process.
• Reasoning: KnowRob2 incorporates a hybrid reasoning kernel

comprising four KBs with their corresponding reasoning
engines (Beetz et al., 2018):
• Inner World KB: Contains CAD and mesh models of objects

positioned with accurate 6D poses, enhanced with a physics
simulation.
• Virtual KB: Computed on demand from the data structures of

the control system.
• Logic KB: Comprises abstracted symbolic sensor and action

data enriched with logical axioms and inference mechanisms.
This type of reasoning is the focus of our discussion in this
article.
• Episodic Memories KB: Stores experiences of the robotic agent.
• Execution: KnowRob execution is driven by competency

questions to bridge the gap between undetermined instructions
and action. The framework incorporates the Cognitive Robot
Abstract Machine (CRAM), where one of its key functionalities
is the execution of the plan. The framework provides a plan
language to articulate flexible, reliable, and sensor-guided robot
behavior. The executor then updates the KB with information
about perception and action results, facilitating the inference
of new data to make real-time control decisions (Beetz et al.,
2010).

RoboEarth and earlier versions of KnowRob rely on action
recipes for execution. Before executing an action recipe, the system
verifies the availability of the skills necessary for the task and orders
each action to satisfy the constraints. In cases where the robot
encounters difficulties in executing a recipe, it downloads additional
information to enhance its capabilities (Tenorth et al., 2012). Once
the plan is established, the system links robot perceptions with
the abstract task description given by the action recipe. RoboEarth
ensures the execution of reliable actions by actively monitoring the
link between robot perceptions and actions (Waibel et al., 2011).

• Communication and coordination: RoboEarth (Tenorth et al.,
2012) uses a communication module to facilitate the exchange
of information with the web.This involvesmaking web requests
to upload and download data, allowing the construction and
updating of the KB.
• Learning: KnowRob includes learning as part of its framework.

It focuses on acquiring generalized models that capture how
the physical effects of actions vary depending on the motion
parametrization (Beetz et al., 2018). The learning process
involves abstracting action models from the data, either by
identifying a class structure among a set of entities or by

Frontiers in Robotics and AI 11 frontiersin.org48

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

grouping the observed manipulation instances according to
a specific property (Tenorth and Beetz, 2009). KnowRob2
extends its capabilities with the Open-EASE knowledge service
(Beetz et al., 2015), offering a platform to upload, access, and
analyze NEEMs of robots involved in manipulation tasks.
NEEMs use descriptions of events, objects, time, and low-
level control data to establish correlations between various
executions, facilitating the learning-from-experience process.

5.1.2 Perception and Manipulation Knowledge
The Perception and Manipulation Knowledge (PMK)15

framework is designed for autonomous robots, with a specific focus
on complex manipulation tasks that provide semantic information
about objects, types, geometrical constraints, and functionalities. In
concrete terms, this framework uses knowledge to support task and
motion planning (TAMP) capabilities in the manipulation domain
(Diab et al., 2019).

PMK ontology is grounded in IEEE Standard 1872.2 (IEEE SA,
2022) for knowledge representation in the robotic domain,
extending it to the manipulation domain by incorporating sensor-
related knowledge. This extension facilitates the link between low-
level perception data and high-level knowledge for comprehensive
situation analysis in planning tasks. The ontological structure
of PMK comprises a meta-ontology for representing generic
information, an ontology schema for domain-specific knowledge,
and an ontology instance to store information about objects.
These layers are organized into seven classes: feature, workspace,
object, actor, sensor, context reasoning, and actions. This structure is
inspired by OUR-K (Lim et al., 2011), which is further described
in Section 5.3).

The detailed analysis of comparison criteria follows:

• Perception and categorization: The PMK ontology incorporates
RFID sensors and 2D cameras to facilitate object localization,
explicitly grouping sensors to define equivalent sensing
strategies. This design enables the system to dynamically select
the most appropriate sensor based on the current situation.
PMK establishes relationships between classes such as feature,
sensor, and action. For example, it stores poses, colors, and IDs
of objects obtained from images.
• Decision making and planning: PMK augments TAMP

parameters with data from its KB. The KB contains information
on action feasibility considering object features, robot
capabilities, and object states. The TAMP module utilizes
this information, combining a fast-forward task planner
with physics-based motion planning to determine a feasible
sequence of actions. This helps determine where the robot
should place an object and the associated constraints.
• Reasoning: PMK reasoning targets potential manipulation

actions employing description logic’s inference for real-
time information, such as object positions through spatial
reasoning and relationships between entities in different
classes. Inference mechanisms assess robot capabilities, action
constraints, feasibility, and manipulation behaviors, facilitating
the integration of TAMP with the perception module. This

15 https://github.com/MohammedDiab1/PMK

process yields information about constraints such as interaction
parameters (e.g., friction, slip, maximum force), spatial
relationships (e.g., inside, right, left), feasibility of actions (e.g.,
arm reachability, collisions), and action constraints related to
object interactions (e.g., graspable from the handle, pushable
from the body).
• Interaction and design: PMK represents interaction as

manipulation constraints, specifying, for example, which part
of an object is interactable, such as a handle. It also considers
interaction parameters such as friction coefficient, slip, or
maximum force.

5.1.3 Failure Interpretation and Recovery in
Planning and Execution

Failure Interpretation and Recovery in Planning and Execution
(FailRecOnt)16 is an ontology-based framework featuring
contingency-based task and motion planning. This innovative
system empowers robots to handle uncertainty, recover from
failures, and engage in effective human–robot interactions.
Grounded in the DUL ontology, it addresses failures and recovery
strategies, but it also takes some concepts from CORA and SUMO
for robotics and ontological foundations, respectively.

The framework identifies failures through the non-realized
situation concept and proposes corresponding recovery strategies
for actions. To improve the understanding of failure, the ontology
models terms such as causalmechanism, location, time, and functional
considerations, which facilitates a reasoning-based repair plan
(Diab et al., 2020; Diab et al., 2021).

Failure ontology requires a system knowledge model in terms
of tasks, roles, and object concepts. Lastly, FailRecOnt has some
similarities with KnowRob; both target manipulation tasks are
at least partially based on DUL and share some of the authors.
Moreover, they propose using PMK as a model of the system
(Diab et al., 2021).

The detailed analysis of comparison criteria follows:

• Perception and categorization: Perception in FailRecOnt is
limited to action detection to detect abnormal events. For
geometric information and environment categorization, the
framework leverages PMK to abstract perceptual information
related to the environment.
• Decision making and planning: FailRecOnt is structured into

three layers: planning and execution, knowledge, and an
assistant low-level layer. The planning and execution layer
provides task planning and a task manager module. The
assistant layer manages perception and action execution for the
specific robot, determining how to sense an action and checking
whether a configuration is collision-free. The framework has
been evaluated for a task that involves storing an object in
a given tray according to its color; it can handle situations
such as facing a closed or flipped box and continuing the plan
(Diab et al., 2021).
• Prediction and monitoring: Monitoring is a crucial aspect of

the FailRecOnt framework. It continuously monitors executed
actions and signals a failure to the recovery module if an error

16 https://github.com/ease-crc/failrecont

Frontiers in Robotics and AI 12 frontiersin.org49

https://doi.org/10.3389/frobt.2024.1377897
https://github.com/MohammedDiab1/PMK
https://github.com/ease-crc/failrecont
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

occurs. The reasoning component interprets potential failures
and, if possible, triggers a recovery action to repair the plan.
• Reasoning: FailRecOnt ontology describes how the perception

of actions should be formalized. Reasoning selects an
appropriate recovery strategy depending on the kind of failure,
why it happened, and if other activities are affected, etc.
• Execution: FailRecOnt relies on planning for execution. The

task planner generates a sequence of symbolic-level actions
without geometric considerations. Geometric reasoning comes
into play to establish a feasible path. During action execution,
the framework monitors each manipulation action for possible
failures by sensing. Reasoning is then applied to interpret
potential failures, identify causes, and determine recovery
strategies.
• Communication and coordination: FailRecOnt incorporates the

reasoning for communication failure from Diab et al. (2020) to
address failures in scenarios where multiple agents exchange
information.

5.1.4 Probabilistic Logic Module
Probabilistic Logic Module (PLM) offers a framework that

integrates semantic and geometric reasoning for robotic grasping
(Antanas et al., 2019). Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the framework.

The primary focus of this work is on an ontology that
generalizes similar object parts to semantically reason about the
most probable part of an object to grasp, considering object
properties and task constraints. This information is used to
reduce the search space for possible final gripper poses. This
acquired knowledge can also be transferred to objects within the
same category.

The object ontology comprises specific objects such as cup or
hammer, along with supercategories based on functionality, such as
kitchen container or tool. The task ontology encodes grasping tasks
with objects, such as pick and place right or pour in. Additionally, a
third ontology conceptualizes object-task affordances, considering
the manipulation capabilities of a two-finger gripper and the
associated probability of success.

In using the ontology, high-level knowledge is combined with
low-level learning based on visual shape features to enhance
object categorization. Subsequently, high-level knowledge utilizes
probabilistic logic to translate low-level visual perception into a
more promising grasp planning strategy.

The detailed analysis of comparison criteria follows:

• Perception and categorization: This approach is based on visual
perception, employing vision to identify the most suitable part
of an object for grasping. The framework utilizes a low-level
perception module to label visual data with semantic object
parts, such as detecting the top, middle, and bottom areas of
a cup and its handle. The probabilistic logic module combines
this information with the affordances model.
• Decision making and planning: PLM uses ontologies to support

grasp planning. It integrates ontological knowledge with
probabilistic logic to translate low-level visual perception
into an effective grasp planning strategy. Once an object is
categorized and its affordances are inferred, the task ontology

determines the most likely object part to be grasped, thereby
reducing the search space for possible final gripper poses.
Subsequently, a low-level shape-based planner generates a
trajectory for the end effector.
• Prediction and monitoring: Although this framework does not

specifically predict or monitor robot actions, it uses task
prediction to select among alternative tasks based on their
probability of success but does not actively monitor them.
• Reasoning: PLM uses semantic reasoning to grasp. It selects

the best grasping task based on object affordances, addressing
the uncertainty of visual perception through a probabilistic
approach.
• Learning: Learning techniques are used to identify the visual

characteristics of the shape, which are then categorized. The
robot utilizes the acquired knowledge for grasp planning.

Table 1 provides a concise comparison of the four frameworks
analyzed. Although all of them address perception and
categorization, decision making and planning, and reasoning, the
specific aspects involved depend on the perspective. Only half of
the frameworks explicitly utilize their KB for execution, prediction
and monitoring, communication and coordination, and learning. In
particular, integration and design are addressed exclusively by the
PMK framework.

5.2 Navigation domain

The navigation domain describes the challenges and
techniques involved in enabling robots to autonomously
move around their environment. This involves the processes
of guidance, navigation, and control (GNC), incorporating
elements such as computer vision and sensor fusion for
perception and localization, as well as control systems and
artificial intelligence for mapping, path planning, or obstacle
avoidance.

5.2.1 Teleological and Ontological Model for
Autonomous Systems

Teleological and Ontological Model for Autonomous Systems
(TOMASys)17 is a metamodel designed to consider the functional
knowledge of autonomous systems, incorporating both teleological
and ontological dimensions. The teleological aspect includes
engineering knowledge, which represents the intentions and
purposes of systemdesigners.Theontological dimension categorizes
the structure and behavior of the system.

TOMASys serves as a metamodel to ensure robust operation,
focusing on mission-level resilience (Hernández et al., 2018). This
metamodel relies on a functional ontology derived from the
Ontology forAutonomous Systems (OASys) (Bermejo-Alonso et al.,
2010), establishing connections between the robot’s architecture
and its mission. The core concepts in TOMASys include functions,
objectives, components, and configurations. However, it operates as
a metamodel and intentionally avoids representing specific features
of the operational environment, such as objects, maps, etc.

17 https://github.com/meta-control/mc_mdl_tomasys

Frontiers in Robotics and AI 13 frontiersin.org50

https://doi.org/10.3389/frobt.2024.1377897
https://github.com/meta-control/mc_mdl_tomasys
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 1 Use of ontologies in the manipulation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

KnowRob (Tenorth and
Beetz, 2009; Beetz et al.,
2018; Tenorth and Beetz,
2013; Waibel et al., 2011;

Tenorth et al., 2012;
Crespo et al., 2018;
Riazuelo et al., 2015)

PMK (Diab et al., 2019) FailRecOnt (Diab et al.,
2021; Diab et al., 2020)

PLM (Antanas et al.,
2019)

P/C Integrate data types and object
recognition

Dynamically select the most
appropriate sensor

Action sensing to detect abnormal
events

Identify the most suitable part of an
object for grasping

DM/P Action parametrization for
successful manipulation

Task and motion planning feasibility How to sense an action and check if a
configuration is collision-free

Translate low-level visual perception
into effective grasp planning

P/M Predict the most appropriate
parameters. Monitoring objects in

the environment

- Failure detection and identification
of failed recovery attempts

Task prediction to select among
alternatives

R Hybrid, symbolic reasoning for
sensor and action data

Integration of task and motion
planning with the perception module

How the perception of actions
should be formalized

Select the best grasping task based on
object affordances

E Match undetermined instructions
and actions

- Symbolic-level actions without
geometric considerations

-

C/C Web exchange of information - Communication failures between
multiple agents

-

I/D - Information about which part of an
object is interactable, constraints

- -

L Use previous descriptions of events,
objects, time, and low-level control

data

- - Categorize visual shape features

At the core of the TOMASys framework is the metacontroller.
While a conventional controller closes a loop to maintain a
system component’s output close to a set point, the metacontroller
closes a control loop on top of a system’s functionality. This
metacontroller triggers reconfiguration when the system deviates
from the functional reference, allowing the robot to adapt and
maintain desired behavior in the presence of failures. Explicit
knowledge of mission requirements is leveraged for reconfiguration
using the system’s functional specifications captured in the ontology.

In practice, TOMASys has been applied to various robots
and environments, particularly for navigation tasks. Examples
include its application to an underwater mine explorer robot
(Aguado et al., 2021) and a mobile robot patrolling a university
campus (Bozhinoski et al., 2022).

The detailed analysis of comparison criteria follows:

• Decision making and planning: In TOMASys, the metacontrol
system manages decision making by adjusting parameters
and configurations to address contingencies and mission
deviations. It assumes the presence of a nominal controller
responsible for standard decisions. In the case of failure
detection or unmet mission requirements, the metacontroller
selects an appropriate configuration. The planning process
is integrated into the metacontrol subsystem, where
reconfiguration decisions can impact the overall system plan,

potentially altering parameters, components, functionalities,
or even relaxing mission objectives to ensure task
accomplishment.
• Prediction and monitoring: Monitoring is a critical aspect of

TOMASys, providing failure models to detect contingencies
or faulty components. Reconfiguration is triggered not
only in the event of failure but also when mission
objectives are not satisfactorily achieved. Observer modules
are used to monitor reconfigurable components of
the system.
• Reasoning: TOMASys uses a DL reasoner for real-time system

diagnosis. It propagates component failures to the system level,
identifying affected functionalities and available alternatives.
This reasoning process helps to select the most promising
alternative to fulfill mission objectives.
• Execution: The execution in TOMASys follows the monitor-

analyze-plan-execute (MAPE-K) loop (IBM Corporation,
2005). It evaluates the mission and system state through
monitoring observers, uses ontological reasoners for assessing
mission objectives and propagating component failures, decides
reconfigurations based on engineering and runtime knowledge,
and executes the selected adaptations.
• Communication and coordination: TOMASys uses its

hierarchical structure to coordinate components working
toward a common goal. Components utilize roles that specify

Frontiers in Robotics and AI 14 frontiersin.org51

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

parameters for specific functions, and bindings facilitate
communication by connecting component roles with function
specifications during execution. Bindings are crucial for
detecting component failures or errors. In cases where the
metacontroller cannot handle errors, a function design
log informs the user.
• Interaction and design: TOMASys provides a metamodel that

leverages engineering models from design time to runtime.
This approach aims to bridge the gap between design and
operation, relying on functional and component modeling
to map mission requirements to the engineering structure.
The explicit dependencies between components, roles, and
functions, along with specifications of required component
types based on functionality, support the system’s adaptability
at runtime.

5.2.2 Ontology-based multi-layered robot
knowledge framework

The Ontology-based Multi-layered Robot Knowledge
Framework (OMRKF) aims to integrate high-level knowledge
with perception data to enhance the intelligence of a robot in its
environment (Suh et al., 2007). Specific details about the KB, such
as the source files, are not publicly available, so the information
provided here is derived from articles about the framework.

The framework is organized into knowledge boards, each
representing four knowledge classes: perception, activity, model,
and context. These classes are divided into three knowledge levels
(high, middle, and low). Perception knowledge involves visual
concepts, visual features, and numerical descriptions. Similarly,
activity knowledge is classified into service, task, and behavior, while
model knowledge includes space, objects, and their features. The
context class is organized into high-level context, temporal context,
and spatial context.

At each knowledge level, OMRKF employs three ontology layers:
(a) a meta-ontology for generic knowledge, (b) an ontology schema
for domain-specific knowledge, and (c) an ontology instance to
ground concepts with application-specific data. The framework uses
rules to define relationships between ontology layers, knowledge
levels, and knowledge classes.

OMRKF facilitates the execution of sequenced behaviors by
allowing the specification of high-level services and guiding the
robot in recognizing objects even with incomplete knowledge.
This capability enables robust object recognition, successful
navigation, and inference of localization-related knowledge.
Additionally, the framework provides a querying-asking
interface through Prolog, enhancing the robot’s interaction
capabilities.

The detailed analysis of comparison criteria follows:

• Perception and categorization: OMRKF includes perception
as one of its knowledge classes, specifically addressing the
numerical descriptor class in the lower-level layer. Examples
of these numerical descriptors are generated by robot sensors
and image processing algorithms such as Gabor filter or scale-
invariant feature transform (SIFT) (Suh et al., 2007).
• Decision making and planning: OMRKF uses an event calculus

planner to define the sequence to execute a requested service.
The framework relies on query-based reasoning to determine

how to achieve a goal. In cases of insufficient knowledge, the
goal is recursively subdivided into subgoals, breaking down the
task into atomic functions such as go to, turn, and extract feature.
Once the calculus planner generates an output, the robot follows
a sequence to complete a task, such as the steps involved in a
delivery mission.
• Reasoning: OMRKF employs axioms, such as the inverse

relation of left and right or on and under, to infer useful facts
using the ontology. The framework uses Horn rules to identify
concepts and relations, enhancing its reasoning capabilities.

5.2.3 Smart and Networked Underwater Robots
in Cooperation Meshes ontology

The Smart and Networked Underwater Robots in Cooperation
Meshes (SWARMs) ontology addresses information heterogeneity
and facilitates a shared understanding among robots in the context
of maritime or underwater missions (Li et al., 2017). Specific details
about the KB, such as the source files, are not publicly available,
so the information provided here is derived from articles about the
ontology.

SWARMs leverages the probabilistic ontology PR-OWL18 to
annotate the uncertainty of the context based on the multi-entity
Bayesian network (MEBN) theory (Laskey, 2008). This allows
SWARMs to perform hybrid reasoning on (i) the information
exchanged between robots and (ii) environmental uncertainty.

SWARMs establishes a core ontology to interrelate several
domain-specific ontologies. The core ontology manages entities,
objects, and infrastructures. These ontologies include:

– Mission and Planning Ontology: Provides a general
representation of the entire mission and the associated
planning procedures.

– Robotic Vehicle Ontology: Captures information on underwater
or surface vehicles and robots.

– EnvironmentOntology: Characterizes the environment through
recognition and sensing.

– Communication and Networking Ontology: Describes the
communication links available in SWARMs to interconnect
different agents involved in the mission, enabling
communication between the underwater segment and the
surface.

– Application Ontology: Provides information on scenarios and
their requirements. PR-OWL is included in this layer to handle
uncertainty.

Li et al. (2017) present an example using SWARMa to monitor
chemical pollution based on a probability distribution. SWARMs
incorporates thismodel into the ontology and usesMEBN to deduce
the emergency level of the polluted sea region.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The SWARMs ontology provides
a shared framework to represent the underwater environment.
For this reason, it contains classes on sensors and the main
concepts of the environment to understand it through its
properties, such as water salinity, conductivity, temperature,

18 https://www.pr-owl.org

Frontiers in Robotics and AI 15 frontiersin.org52

https://doi.org/10.3389/frobt.2024.1377897
https://www.pr-owl.org
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

and currents. Uncertainty reasoning is critical for the
categorization of sensor information, especially in harsh
maritime and underwater environments.
• Decision making and planning: SWARMs uses two levels of

abstraction. High-level planning allows the user to describe
different tasks related to operations without specifying the
exact actions that each robotic vehicle must perform. Low-level
planning is performed on each robot to generate waypoints,
actions, and other similar low-level tasks.
• Reasoning: SWARMs uses a hybrid context reasoner that

combines ontological rule-based reasoning with MEBN for
probabilistic annotations.
• Communication and coordination: A main concern in SWARMs

is cooperation; robots share tasks, operations, and actions.
The ontology provides transparent information sharing to
support the heterogeneity of the data. It also provides an
abstraction for communication and networking, describing the
communication links available from command control stations
to vehicles and from vehicles to command control stations.

5.2.4 Robot Task Planning Ontology
The Robot Task Planning Ontology (RTPO) Sun et al. (2019b)

is an effective knowledge representation framework for robot task
planning. Specific details about the KB, such as the source files, are
not publicly available, so the information provided here is derived
from articles about the ontology.

Designed to accommodate temporal, spatial, continuous,
and discrete information, RTPO prioritizes scalability and
responsiveness to ensure practicality in task planning. The ontology
comprises three main components: robot, environment, and task.

– Robot Ontology: Comprises hardware and software details,
location information, dynamic data, and more. Sensors are
explicitly modeled as a subclass of hardware, specifying the
measurable aspects of the environment. In an experimental
context, the robot’s perception is limited to obstacles.

– Environment Ontology: Focuses on location and recognition of
humans and objects, the environment map, and information
collected from other robots.

– Task Ontology: Aims to understand how to decompose high-
level tasks into atomic actions and adapt plans when the
environment changes.

This multi-ontology approach allows RTPO to capture the
details of robot task planning by representing both the robot’s
internal state and its interactions with the environment.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The robot ontology in RTPO
considerssensorsasasubclassofhardware, specifyingmeasurable
aspects of the environment. In the experiment discussed, the
robot’s perception is limited to detecting obstacles.
• Decision making and planning: Task planning is performed

using a domain and a problem file, as in the Planning
DomainDefinition Language (PDDL).The algorithmdescribed
by Sun et al. (2019b) generates and uses these files.

The task planning process is realized by matching the execution
preconditions of atomic actions and their effects on the environment

from the initial state to the goal state. With this approach, the
task planning module can also be executed by changing the input
tasks while considering the present action resources. The plans
generated by the task planning algorithm are added to the ontology
to improve the efficiency of task planning if the same task needs to be
planned again.

• Reasoning: The reasoning process in RTPO involves updating
and storing the knowledge within the ontology. The scalability
of robot knowledge aims to enhance the efficiency of
reasoning. Experimental scenarios involving the addition of
elements to the indoor environment and corresponding KB
instances demonstrate changes in consumed time, particularly
affecting knowledge query speed. The authors show real-time
performance in an application that involves 52,000 individuals,
although the impact on the planning process is not explicitly
detailed.
• Communication and coordination: This process is not explicitly

explained by (Sun et al. 2019b). However, a scenario with
three robots and two humans is described. Communication
among the three robots is highlighted, emphasizing knowledge
sharing. The relationships between these entities can be
defined by users or developers based on their requirements.
In situations with various robots mapping different rooms
and using various sensors, the ontology facilitates linking and
adding knowledge to constraints to maintain coherence.
• Learning: RTPO incorporates learning by updating and adding

the plans generated by the task planning algorithm into the
ontology. This iterative process aims to improve the efficiency
of future task planning, especially when the same task is
encountered again.

5.2.5 Guidance, navigation, and control for
planetary rovers

Burroughes and Gao (2016) present an architectural solution
to address limitations in autonomous software and GNC structures
designed for extraterrestrial planetary exploration rovers. Specific
details about the KB, such as the source files, are not publicly
available, so the information provided here is derived from articles
about the framework.

This framework uses an ontology to facilitate the autonomous
reconfiguration of mission goals, software architecture, software
components, and the control of hardware components during
runtime. To manage complexity, the self-reconfiguration ontology
is organized into modules. The base ontology serves as an upper
ontology, including modules that delineate logic, numeric aspects,
temporality, fuzziness, confidences, processes, and block diagrams.
Additional modules describe the functions of software, hardware,
and the environment.

The primary focus of this framework is reconfiguration. Once
the ontologymanager detects an undesired state change through the
monitoring process, it activates a safety mode. In this safety mode,
the system can execute either a reactive plan or create a new plan
based on inferences drawn from the new situation.

Following the replanning process, new mission goals are
established, allowing the robot to exit safety mode and resume
normal operation. The framework specifically aims to minimize
odometry errors and ensure safety during travel. To achieve

Frontiers in Robotics and AI 16 frontiersin.org53

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

this objective, the connective architecture and processes, such as
navigation, localization, control, mapping, as well as sensors and
the locomotion system, can be fine-tuned and optimized according
to the environment and faulty hardware conditions. For example,
certain methods may prioritize tolerance to sensor noise over
absolute accuracy in localization.

The detailed analysis of comparison criteria follows:

• Decision making and planning: Burroughes and Gao (2016)
integrate a reactive approach with a deliberative layer for
quick responses. Precalculated responses are prepared for likely
changes, but in the absence of options, the rational agent
resorts to deliberative techniques. Ontologies and the PDDL are
used for knowledge representation and planning, respectively.
Actions correspond to specific configurations of services, with
plans defined using the initial state of the world, the goal state,
the resources of the system, the safety criteria, and the rules.
The approach employs a pruning algorithm to reduce possible
actions and planning space.
• Prediction and monitoring: The focus is on replanning, requiring

monitoring to trigger the process. Generic inspectors perform
network, resource, and state checks, and specific inspectors
manage tasks like checking camera performance, monitoring,
and updating the ontology on the current state of the
world. The system can decide the depth of monitoring
for each subsystem, balancing computational resources and
self-protection.
• Reasoning:Reasoning is used to configure the software elements

of the rover, update the state of the world, and decide
whether the system should re-plan to adapt to changes or
use pre-established reactive responses. The ontology checks for
knowledge incoherence when adding new information.
• Execution: The MAPE-K loop is used for self-reconfiguration.

When the monitor detects a change, the ontology provides
the knowledge to select how the system should evolve.
The configuration of the components is established through
planning or reactivity. Navigation and operation components
are organized into modular services with self-contained
functionality to allow reconfiguration.
• Communication and coordination: Communication

requirements, such as publication rate, conditions, and effects,
are used to establish appropriate communication links between
modules, treating communication as a reconfigurable service
within the framework.
• Interaction and design: While not explicitly detailing the design

or requirements, the system reasons in terms of service
capacities, considering measures such as accuracy or suitability
for sensor noise in sensor processing algorithms. It also
incorporates safety criteria to select system changes, providing
design and engineering knowledge to select alternative designs
based on runtime situations.

5.2.6 Collaborative context awareness in search
and rescue missions

Chandra and Rocha (2016) present a framework for
collaborative context awareness using an ontology that comprises
high-level aspects of urban search and rescue (USAR) missions.
Specific details about the KB, such as the source files, are not publicly

available, so the information provided here is derived from articles
about the framework.

The framework serves as an efficient knowledge-sharing
platform to represent and correlate various mission concepts,
including those related to agents and their capabilities, scenarios,
and teams. The ontology facilitates the sharing of homogeneous
knowledge among all robots and supports human–robot
collaboration by reasoning based on rules provided by humans.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The system employs perceived
and pre-processed information gathered from its own sensors,
as well as from other agents, such as humans and robots,
to continually update its KB. Specifically, it focuses on
entities within context classes and their relationships, including
information about smoke levels, visibility, location, and
temperature.
• Decisionmaking and planning:Theframework offers an efficient

knowledge-sharing strategy that improves decision-making
processes. For example, it facilitates the management of a
global map with shared events and real-time tracking of agent
locations.
• Reasoning: In this framework, reasoning plays a crucial role

in storing and disseminating information between agents. The
KB retains essential details such as location, temperature,
visibility, battery status, tasks, and detection of victims or
fires. Furthermore, reasoning contributes to resilience against
communication failures by storing information for future
sharing. This process supports coordination, including the
incorporation of new teammembers or the temporary removal
and subsequent reintegration of teammates.
• Communication and coordination: Building on a foundation of

multirobot cooperation, Chandra and Rocha (2016) structure
the framework to represent the team and mission within an
ontology. This enables the creation of a global map and the
selection of suitable candidates for various tasks. Examples
of coordination include telepresence and compensating for a
teammate’s immobility. Furthermore, the framework ensures
resilience in the face of communication failures. For example,
all events detected by a robot are logged in the local KB
and shared across the team to synchronize knowledge. In
situations of communication loss or isolation from teammates,
a list of unattended events is maintained and shared after
communication is restored.

5.2.7 Autonomous vehicle situation assessment
and decision making

Huang et al. (2019) use ontologies for situation assessment and
decision making in the context of autonomous vehicles navigating
urban environments. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the ontologies.

The KB integrates vehicle information, storing details of the
permissible directions a vehicle can take. Furthermore, the KB
includes representations of both static and dynamic obstacles,
as well as relevant information on the characteristics of roads,
distinguishing between highways and urban roads. The ontology
incorporates specific scenarios that the autonomous vehicle could

Frontiers in Robotics and AI 17 frontiersin.org54

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

encounter on the road, such as proximity to an intersection,
traversing a bridge, or executing a U-turn. The autonomous driving
system leverages this KB to assess the current driving scenario,
facilitating well-informed decisions on whether to maintain its
current trajectory or initiate a lane change.

The detailed analysis of comparison criteria follows:

• Decision making and planning: The decision-making process is
tied to situation assessment, employing a methodology that
evaluates the safety of the surroundings of the vehicle. This
involves characterizing the regions around the car and assigning
a binary safety value based on the presence of obstacles.

If a region is considered safe, the vehicle continues in its current
lane; otherwise, a lane change is initiated. This decision-making
step incorporates statistical indicators that account for velocity.
Moreover, the model considers legitimacy by adhering to traffic
rules during lane changes and reasonableness by querying the global
planning path to identify the next road segment or lane, particularly
when approaching intersections. This strategic approach prevents
the system from optimizing locally at the expense of compromising
the overarching global plan.

• Reasoning: The reasoner is used to generate behavioral
decisions. It employs rules derived from traffic regulations and
driving experiences, taking into account various factors that
influence the road, such as speed limits, traffic lights, and the
presence of surrounding obstacles.
• Interaction and design: Although the framework does not

explicitly include concepts as design decisions, it addresses
requirements such as legality by incorporating traffic rules
and reasonableness. This ensures that the behavior of the lane
change aligns with the main goal of global planning, avoiding
changes to local optimization thatmay compromise the broader
strategic plan.

5.2.8 Search and rescue scenario
Sun et al. (2019a) introduce an ontology tailored for search

and rescue (SAR), enhancing the decision-making capabilities of
robots in complex and unpredictable scenarios. Specific details
about the KB, such as the source files, are not publicly available,
so the information provided here is derived from articles about
the ontology. The SAR ontology comprises three interlinked
subontologies: an entity ontology, an environment ontology, and a
task ontology.

– The entity ontology includes various types of robots, including
ground, underwater, and air robots. It delineates their
constituent parts and specifications in terms of hardware and
software aspects.

– The environment ontology extends the scope to store most
of the elements present in SAR scenarios, including the
environment map and objects that shall be recognized.
Updated knowledge from the environment can be shared
among other robots, although the specific mechanisms are not
detailed in the presented use case.

– The task ontology encapsulates the task-related knowledge
that is necessary for informed decision making. This involves

task decomposition and allocation facilitated by a hierarchical
structure. The ontology defines four typical tasks: charge,
search, rescue, and recognize. Additionally, atomic actions are
articulated by their effects on the state of the environment.
The framework proposes a task planning algorithm that
aligns the preconditions of execution with the effects on the
environment, utilizing the SAR ontology as a foundational
framework.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The SAR framework focuses
on SLAM and autonomous navigation. The authors use a
semanticmap, which facilitates the recognition and localization
of objects. The acquired information dynamically updates
the environment ontology, establishing connections between
the SLAM map and the semantic details. Bayesian reasoning
enhances the precision of victim positioning, while QR code
scanning streamlines the acquisition of semantic information,
such as vital signs (e.g., heart rate and blood pressure), in
disaster rescue scenarios.
• Decision making and planning: decision making in this

framework is based on structured queries. It begins by defining
tasks and identifying the requisite actions, followed by a
comprehensive examination of the action properties, including
time constraints, preconditions, and postconditions, to achieve
the desired state. The planner then specifies a sequenced set
of atomic actions. The program can adopt specific search
algorithms for planning or reusing previously established plans.
• Reasoning: Before planning, the robot conducts a preliminary

assessment to determine the suitability of the task for the
current state. If considered appropriate, the planning phase
starts, identifying the tasks the robot should execute under the
given circumstances.
• Execution: The robot systematically executes the sequence

of atomic actions. When faced with a previously planned
task, the robot can query the task definition, retrieving the
corresponding atomic action sequence.

Tables 2 and 3 summarize studies in the navigation domain.
All frameworks address decision making, planning, and reasoning,
mainly to organize tasks. Most of the works focus on perceiving
and categorizing measurable aspects of the environment, along
with communication and coordination among different elements
and systems. TOMASys, the planetary rover scenario, and the SAR
scenario explicitly handle prediction, monitoring, and execution.
The use of engineering knowledge—interaction and design—is
explicitly addressed in TOMASys, the planetary rover scenario, and
the autonomous vehicle scenario. Learning is applied only in RTPO
to improve the plan generation process.

5.3 Social domain

Social robots usually refer to the interaction between robots
and humans in a variety of contexts, such as homes, healthcare,
education, entertainment, and public spaces. The goal is to create
robots that are not only technically capable but also socially aware

Frontiers in Robotics and AI 18 frontiersin.org55

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 2 Part 1: Use of ontologies in the navigation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction
and monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

TOMASys (Hernández et
al., 2018;Bozhinoski et
al., 2022; Aguado et al.,

2021)

OMRKF (Suh et al., 2007) SWARMs (Li et al., 2017) RTPO (Sun et al., 2019b)

P/C - Lower-lever perception features such
as numerical descriptors

Represent underwater environment
properties and sensors

Specification of measurable aspects
of the environment

DM/P Adjust parameters and
configurations to address mission

contingencies

Calculus planner to accomplish goals
and subgoals

Task-level planning and low-level
planning to generate waypoints,

actions, etc.

Generate and use domains and
problem files to generate plans

P/M Failure models to detect faulty
components and goals not achieved

- - -

R Propagate failures to system level,
identify affected functionalities and

available alternatives

Geometrical relationships between
objects

Hybrid context reasoner: rule-based
reasoning and probabilistic

annotations

Evaluation of real-time performance
in reasoning with 52,000 elements of

indoor environments

E MAPE-K loop to evaluate mission
status

- - -

C/C Component coordination - Robots share tasks, operations, and
actions

Knowledge sharing between three
robots and two humans

I/D Use of metamodels to bridge the gap
between design and operation

- - -

L - - - Update and add plans generated by
the task planning algorithm back

into the ontology

and able to interact with humans in a manner that is natural,
intuitive, and socially acceptable.

5.3.1 Ontology-based unified robot knowledge
The Ontology-based Unified Robot Knowledge (OUR-K)

framework for service robots (Lim et al., 2011) consists of five
knowledge classes: features, objects, spaces, contexts, and actions. It
takes OMRKF, the concept of layer division, from its predecessor.
Although OMRKF was originally evaluated in navigation domains,
OUR-K extends its application to social robots operating within
domestic environments. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the framework.

A notable feature of OUR-K is its ability to perform
tasks even when provided with incomplete information. The
framework incorporates a knowledge description of both the
robot and its environment, employing algorithms for knowledge
association. This involves logic, Bayesian inference, and heuristics;
however, logical inference in OUR-K is specifically limited to
performing associations between classes and ontological levels,
with no indication of alternative inference mechanisms in
the literature.

OUR-K includes mechanisms for object recognition, context
modeling, task planning, space representation, and navigation.
Regarding action representation, its descriptions are simpler and do
not contemplate processes as did its predecessor, OMRKF.

Diab et al. (2018) extend OUR-K with a physics-based
manipulation ontology to address the challenges that a motion
planner might encounter. An actor class is introduced within the
knowledge classes to describe the working constraints of the robot,
enhancing the planner’s capability to handle interaction dynamics.
In addition, the authors propose a prediction mechanism for
the entire OUR-K framework. Instead of relying on inferences,
a semantic map is generated for categorizing and assigning
manipulation constraints, using reasoning based on logical axioms.
This approach is evaluated in the context of a specific manipulation
task, where a robot serves a liquid drink contained in a can.

The detailed analysis of comparison criteria follows:

• Perception and categorization: OUR-K follows the same
approach as OMRKF. Perception is abstracted and stored in the
feature, space, and object classes. The feature class defines the
same knowledge level as the OMRKF. The space class defines a
topological map in the middle level and a semantic map in the
higher one. The object class middle level includes the object
name and function, whereas the top layer defines generic
information and relationships among objects; for example, a
cup is a type of container.
• Decision making and planning: The OMRKF successor, OUR-

K (Lim et al., 2011), uses the same structure based on the
abductive event calculus planner to reach a hierarchical
abstraction of space elements and behaviors. High-level tasks,

Frontiers in Robotics and AI 19 frontiersin.org56

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 3 Part 2: Use of ontologies in the navigation domain for perception and categorization (P/C), decision making and planning (DM/P), prediction
and monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

Planetary rover scenario
(Burroughes and Gao,

2016)

USAR scenario (Chandra
and Rocha, 2016)

Autonomous vehicle
scenario (Huang et al.,

2019)

SAR scenario (Sun et al.,
2019a)

P/C - Pre-processed information from
sensors and other intelligent agents

- Semantic map for recognizing and
localizing objects

DM/P Precalculated solutions for likely
changes, combined with deliberative

techniques

Management of a global map with
shared events and real-time tracking

of agent locations

Evaluate the safety of the vehicle’s
surroundings with statistical

indicators

Definition of tasks and identification
of requisite actions and their

properties

P/M Monitor resources and state checks
to trigger replanning

- - -

R Configure SW elements, update
world state, and decide on replanning

Store and distribute information
among agents

Apply rules derived from traffic
regulations and driving experiences

Evaluate the suitability of the task for
the current state

E MAPE-K loop for reconfiguration - - Query task definition to retrieve the
corresponding atomic action

sequence

C/C Communication requirements
between modules

Multirobot cooperation, global map,
and selection of suitable candidates

for each task

- -

I/D Explicit service capacities - Addresses requirements such as
legality by incorporating traffic rules

and reasonableness

-

L - - - -

such as delivery, are decomposed into mid-level sub-tasks, such
as go to goal space, find object, or generate context. These sub-
tasks are further planned as sequences of primitive behaviors,
such as go to or recognize object.Theapproach used inDiab et al.
(2018) based on OUR-K also integrates the three levels of the
action class for planning. The planner consults the topological
map to determinewhich object (or robot) occupieswhich space,
and then the semantic map is used to extract object and robot
constraints concerning the action. This results in a sequence of
actions that may consider contextual information, particularly
at the temporal level.
• Prediction and monitoring: OUR-K includes rules for navigation

monitoring and missing object recognition tasks. However,
monitoring is not treated as a distinct process in this framework;
instead, it is represented as rules that use several knowledge
classes.
• Reasoning: Like OMRKF, OUR-K relies on logical inference

to associate classes and ontological levels. The bidirectional
links between low-level data and high-level knowledge enable
both frameworks to fill in missing information, contributing to
mission accomplishment.
• Execution: OUR-K execution is plan based, where the robot

follows the plan and executes a sequence of actions. However,
action knowledge is coupled with all other concepts to
represent world environments using features such as sensory-
motor coordination, object action complex, and affordances.
This approach allows robots to perform actions without

explicit planning, potentially enabling reactive behavior when
necessary (Lim et al., 2011).
• Interaction and design: The OUR-K extension presented

by Diab et al. (2018) introduces dynamic interaction, focusing
on how robotic controllers should adapt to runtime situations.
This extension provides information on how a motion planner
should handle dynamic forces when manipulating objects,
enhancing the framework’s capability to deal with real-time
interactions.

5.3.2 OpenRobots Common Sense Ontology
The OpenRobots Common Sense Ontology (ORO)

(Lemaignan et al., 2010) establishes a knowledge processing
framework and a common sense ontology tailored for facilitating
semantic-rich human–robot interaction environments19. This
approach focuses on conceptualization but offers flexibility for
implementing other cognitive functions simultaneously, such as
object recognition, task planning, or reasoning. Cooperation is a
crucial aspect in ORO, as it targets human–robot interactions.

ORO ontology is based on OpenCyc. The authors specify in
the project Wiki20 that it shares most of its concepts with the first
version of the KnowRob ontology. It includes categories, such as
spatial thing or action, and more concrete concepts, such as event or

19 http://kb.openrobots.org/

20 https://www.openrobots.org/wiki/oro-ontology

Frontiers in Robotics and AI 20 frontiersin.org57

https://doi.org/10.3389/frobt.2024.1377897
http://kb.openrobots.org/
https://www.openrobots.org/wiki/oro-ontology
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

book.The authors evaluated their approach by showing robot objects
and asking humans about their properties.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The authors use several
algorithms, such as common ancestors or calculating the best
discriminant to categorize perceptions. Discrimination is an
important element in human–robot collaboration. For example,
if a user asks the robot to bring the bottle and two bottles are
available, it can use its ability to discriminate to select the best
option.
• Reasoning: ORO provides ontological reasoning, as well as

external modules that trigger when an event occurs. External
modules are used to provide reactive responses. For example,
when a human asks the robot to bring an object, the robot
creates an instance of this desire. Statements are stored in
different memory profiles, such as long-term and short-term
memory. Each profile is characterized by a lifetime that is
assigned to the stored facts; when a lifetime ends, the ontology
removes the fact.
• Execution: The framework integrates CRAM (Beetz et al., 2010)

to automatically update the ORO server when an object enters
or exits the field of view. Execution is query-based, involving
combinations of patterns like is the bottle on the table? or filters
such as weight < 150.
• Communication and coordination: ORO is designed as an

intelligent blackboard that allows various modules to push
or pull knowledge to and from a central repository. This
facilitates knowledge sharing among agents. Examples
of heterogeneity with shared information include event
registration, categorization capabilities, and the existence of
different memory profiles.

Each agent has an alternative cognitive model for the other
agents with whom it has interacted. When ORO identifies a new
agent, it automatically creates a new separate model that can be
shared with others. This feature enables the storage and reasoning of
different and potentially globally inconsistent models of the world.

5.3.3 Ontology for Collaborative Robotics and
Adaptation

Ontology for Collaborative Robotics andAdaptation (OCRA)21,
as described by Olivares-Alarcos et al. (2022), is a specialized
ontology designed to represent relevant knowledge in collaborative
scenarios, facilitating plan adaptation. Based on KnowRob (Tenorth
and Beetz, 2009; Beetz et al., 2018) and its upper ontology, DUL,
OCRA shares the support of its predecessor for the temporal history
of the KB through episodic memories.

This work primarily employs FOL definitions to establish
a foundation for reliable, collaborative robots, with the aim of
enhancing the interoperability and reusability of terminology
within this domain. The ontology serves as a tool for the
robot to address competency questions, such as identifying
ongoing collaborations, understanding current plans and goals,

21 https://github.com/albertoOA/know_cra

determining the agents involved, and assessing plans before and
after adaptation.

This ontology has been qualitatively validated for human–robot
cooperation, sharing the task of filling the compartments of a
tray. The main asset of OCRA, from our perspective, is its
explicit representation of collaboration requirements, including
safety considerations and a measure of risks, with the objective of
effective plan adaptation.

The detailed analysis of comparison criteria follows:

• Decision making and planning: OCRA uses ontological
knowledge for dynamic plan adaptation during runtime. For
example, if the robot had a plan to fill a certain compartment
and it is not empty, it adapts to fill another empty compartment.
The ontology also stores the adaptation triggers.
• Reasoning: As stated above, this work focuses on answering

competency questions related to agents involved in
collaboration, their plans, goals, and the adaptation of plans
when required.
• Communication and coordination: OCRA focuses on

collaboration with humans, providing a mechanism to explain
its plan adaptation through the ontology. This collaboration is
enabled through coordination in terms of the plan to solve
the task. Specifically, the robot changes its plan according
to variations in the environment, such as an already-filled
compartment.
• Learning:While not explicitly implemented in the current work,

OCRAmentions future plans to incorporate episodicmemories
for learning tasks. Examples include modeling the preferences
of different users or learning the structure of tasks to generalize
to new ones.

5.3.4 Intelligent Service Robot Ontology
Intelligent Service Robot Ontology (ISRO) (Chang et al., 2020)

introduces an ontology-based model tailored for human–robot
interaction. The practical application of this approach is
demonstrated through the implementation of a social robot that
functions as a medical receptionist in a hospital setting. Specific
details about the KB, such as the source files, are not publicly
available, so the information provided here is derived from articles
about the ontology.

ISRO serves as an abstract knowledge management system
designed to comprehend information about agents, encompassing
both users and robots, as well as their environment. The ontology
establishes connections between user knowledge and the robot’s
actions and behaviors, incorporating considerations for the spatial
and temporal environment. This integration is facilitated through
the Artificial Robot Brain Intelligence (ARBI) framework, which
includes a task planner, a context reasoner, and a knowledge
manager.

ISRO is not limited to a specific domain because it provides
a high-level scheme for dynamic generation and management of
information. The ontology is divided into four sub-models:

– User ontology to store profile information.
– Robot ontology to define the robot type, components, and

capabilities.

Frontiers in Robotics and AI 21 frontiersin.org58

https://doi.org/10.3389/frobt.2024.1377897
https://github.com/albertoOA/know_cra
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

– Perception and environment to define objects and their
attributes, maps, places, temporal events, and relations such as
before, after, etc.

– Action ontology to define the actions required to perform a task
and the expected events in such situations.

The detailed analysis of comparison criteria follows:

• Perception and categorization: The framework uses sensor
information to recognize the user involved, their face, gender,
and age, and recognize their state, that is, the user’s expression,
in its application. It also senses the robot’s pose to guide the user
to the medical department. Additionally, the framework is also
prepared to handle information related to spaces and objects
that was not defined in the experiment.
• Decision making and planning: The ARBI framework uses path

planning to move the robot, specifically, to guide patients to the
correct medical department. It is based on JAM architecture
(Huber, 1999), which defines goals and plans using the belief,
desire, and intention (BDI) agent (Chang et al., 2020). The
path is produced using semantic spatial knowledge, defining
the spaces the robot shall traverse and relationships between
spaces such as connected to. The semantic path is translated
into topological waypoints using knowledge about objects and
a map. This path is stored in the KB and shared between robots.
• Reasoning: The knowledge manager infers spatial and

temporal information, such as the relationships of currently
recognized objects and the time intervals between events.
It also characterizes users. It uses Prolog to recognize
dynamically generated information.However, only information
considered important or critical is stored in the KB as static
information.

5.3.5 Service robot scenario
Ji et al. (2012) provide a flexible framework for service robots

using the automatic planner Stanford Research Institute Problem
Solver (STRIPS). Specific details about the KB, such as the source
files, are not publicly available, so the information provided here is
derived from articles about the framework.

The ontology represents two main types of information,
environmental description and primitive robot actions, which
handle spatial uncertainties of particular objects and the primitive
actions that the robot can perform. Actions include four main
attributes to comply with STRIPS: precondition, postcondition,
input, and result.Theplanning process is optimized using a recursive
back-trace search method and knowledge information to limit the
search space. The framework is applied to the Care-O-Bot agent in
a scenario in which it shall get a milk box.

The detailed analysis of comparison criteria follows:

• Perception and categorization: Symbol grounding is crucial
for Ji et al. (2012), as it bridges the gap between abstract planning
and actual robot sensing and actuation. For example, a task of
moving a table involves moving the robot near the table. The
symbol grounding specifies exactly where “near the table” is.
• Decision making and planning: This framework uses

recursive backtracing search for action planning in dynamic
environments. The use of semantic maps can improve the

search for an object by limiting the search space using semantic
inference.
• Reasoning: Ji et al. (2012) use reasoning to retrieve information

about spatial objects, such as the location of the table where
milk is stored. Specific actions, such as workspace of, are
defined to support reasoning and enable the retrieval of spatial
information about an object. For example, a milk box could
provide a result of above the table or in the refrigerator, as it is a
perishable product. This framework also provides a likelihood
estimation of possible locations of objects.
• Execution: Execution uses a central controller to propagate the

action to the task planner, the user interface, and the low-
level robot modules. Each action is represented as a state
machine that is executed in real time. After the action is
finished, it updates themodels based on the result and the action
postcondition.

Table 4 depicts the main aspects of each capability in the social
applications reviewed. All capabilities incorporate reasoning using
knowledge from the ontology, with the majority also utilizing it
for perception and categorization, decision making and planning,
and execution. Communication and coordination are only present
in two of the five analyzed works. Prediction and monitoring,
interaction and design, and learning are the least addressed
capabilities across these applications.

5.4 Industrial domain

Robots in industrial domains aim to increase efficiency
and precision in a variety of tasks. These are often
related to manufacturing, production, and other industrial
processes. Ontologies in this domain aim to increase
flexibility, reduce maintenance, or enhance control and
inspection processes.

5.4.1 Robot control for Skilled Execution of Tasks
Robot control for Skilled Execution of Tasks (ROSETTA)

constitutes an ontology for robots performing manufacturing
tasks22. Its origins can be traced to the European projects SIARAS,
RoSta, and ROSETTA (Stenmark and Malec, 2015). The core of
the ontology is mostly focused on robot devices and their skills. It
relies on a component called the knowledge integration framework
(KIF) to provide services for robotic ontologies and data repositories
(Stenmark and Malec, 2015). Note that this should not be confused
with the knowledge interchange format, which is a syntax for FOL.
KIF acts as an interface to users. They can specify the task by
partially ordering the subgoals in an assembly tree; the framework
then establishes the action planning and its schedule with limited
resources. KIF also provides an execution structure that generates
state machines from skill descriptions and their constraints.

Hoebert et al. (2021) use ROSETTA ontology to control
the assembly process of a variety of electronic devices. This
work focuses on a world model that represents robotic
devices and the skills of ROSETTA. It also relies on the

22 https://github.com/jacekmalec/Rosetta_ontology

Frontiers in Robotics and AI 22 frontiersin.org59

https://doi.org/10.3389/frobt.2024.1377897
https://github.com/jacekmalec/Rosetta_ontology
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 4 Use of ontologies in the social domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

OUR-K (Lim et al.,
2011, Diab et al.,

2018)

ORO
(Lemaignan et al.,

2010)

OCRA (Olivares-
Alarcos et al.,

2022)

ISRO (Chang et al.,
2020)

Service robot
scenario (Ji et al.,

2012)

P/C Same approach as OMRKF Use common ancestors or
the best discriminant to

categorize

- Sensor information to
recognize the user involved

Abstract planning
information

DM/P Abductive event calculus
planner for hierarchical

abstraction

- Dynamic plan adaptation
during runtime

Path planning, semantic
maps

Recursive back-trace
searching

P/M Navigation monitoring and
missing object recognition

tasks

- - - -

R Bidirectional links between
low and high levels to fill in

missing information

Ontological reasoning
combined with external

modules triggered when an
event occurs

Answering competency
questions for collaboration,
plans, goals, and adaptations

Infer spatial and temporal
information and user

characterization

Information about spatial
objects

E Action knowledge is coupled
with all other concepts of the
knowledge of models and

features

Query-based integrated
CRAM to automatically

update the ontology

- - Central controller to
propagate the action to

planner, user interface, and
lower levels

C/C - Intelligent blackboard for
knowledge sharing among

agents

Collaboration with humans,
explainability

- -

I/D Dynamic interaction,
runtime controller

adaptation

- - - -

L - - Envisioned as future work - -

boundary representation (BREP) ontology (Perzylo et al., 2015) to
semantically encode geometric entities. This work uses the ontology
to conceptualize objects and their properties in the environment.
It defines a product as a hierarchy of sub-assemblies and parts.
Requirements are also included to determine the correct automated
manufacturing.

Merdan et al. (2019) also employ the ROSETTA ontology to
control an industrial assembly process, in particular, a pallet
transport system and the control of an industrial robot. In this case,
it uses the ROSETTA and BREP ontologies to conceptualize the
robotic system (e.g., skills, properties, constraints, etc.), the product
model (e.g., parts, geometries, assembly orientation, etc.), and the
manufacturing infrastructure (e.g., product, storage, sensors, etc.).
Rosetta has been defined in OWL.

The detailed analysis of comparison criteria follows:
Perception and categorization: The ROSETTA application

by Hoebert et al. (2021) provides an object recognition module
that links perception data with geometric features represented in
the KB.

Decision making and planning: The KIF executor of the
ROSETTA ontology serves as the planning mechanism. It
transforms an assembly graph into a sequence of operations with
preconditions and postconditions, subsequently translated into a
task state machine. Both Merdan et al. (2019) and Hoebert et al.

(2021) approach decision making as a plan generator, utilizing
PDDL. Hoebert et al. (2021) provide a generator that extracts
information from the ontology to produce the required PDDL files
for planning.Merdan et al. (2019) also translate the semanticmodel,
that is, states and actions, into domain and problem files through
templates.

Reasoning: ROSETTA reasoning is enabled by the KIF server
(Stenmark and Malec, 2015). It allows the user to download and
upload libraries with object descriptions, task specifications, and
skills. The KIF reasoner assists robot programming by retrieving
information about tools, sensors, objects, object properties,
etc. Hoebert et al. (2021) take advantage of the ROSETTA ontology
to select the individual actions and the equipment required to
manufacture a product part.

Execution: KIF uses state machines to execute the skills defined
in the ROSETTA ontology (Stenmark and Malec, 2015). However,
Hoebert et al. (2021) and Merdan et al. (2019) use the execution
of atomic actions through PDDL commands. With this approach,
as discussed by Hoebert et al. (2021), the missing standardization
of the meta-level concepts can cause difficulties when integrating
existing ontologies and reduce the scalability of the approach.
A comparison of the performance using several PDDL planners
is discussed in this article. In terms of scalability, Merdan et al.
(2019) use a central database server to support a high-performance

Frontiers in Robotics and AI 23 frontiersin.org60

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

integration of multiple homogeneous data sources to integrate the
ontology with other knowledge sources.

Communication and coordination: The ROSETTA-based
framework by Merdan et al. (2019) aims to communicate between
robots and entities in the external production environment.
Additionally, being a component-based approach, it provides
infrastructure for intercomponent communication.

Interaction and design: ROSETTA provides an engineering
specification of workspace objects, skills, and tasks from
libraries (Stenmark and Malec, 2015). It acts as a database
for all the information present in the object and in
the environment. Hoebert et al. (2021) use these design
models to establish and verify the manufacturing process,
tailoring the requirements to parameters such as assembly
operation type, manufacturing constraints, material used, and
piece dimensions.

5.4.2 Industrial robotic scenario
Bernardo et al. (2018) define an ontology-based approach for an

industrial robotic application focused on inserting up to 56 small
pins (sealants) into a harness box terminal specifically tailored for
the automotive industry. Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the approach.

The KB is built upon CORA (Prestes et al., 2013) and provides
specifications for the robot, themachine vision system, and the tasks
required for seamless operation. Task sequences are used to execute
the plan, but the machine vision system also uses them to inspect
whether the sealants were correctly inserted into the connecting
boxes. If not, the system prioritizes applying the sealant in the faulty
position(s) in the connecting box.

The detailed analysis of comparison criteria follows:

• Perception and categorization: This approach uses vision to
inspect robot operations, specifically to verify the correct
insertion of sealants in connecting boxes. Image processing
is applied for this inspection, although the information is
not categorized in the ontology. The framework also utilizes
proximity, position, and fiber optic sensors to facilitate robot
operation.
• Decision making and planning: The framework incorporates

visual inspection to validate the precision of the insertion of
sealants into the connecting boxes. Additionally, it features a
re-planning process that modifies production orders when an
error calculus task detects errors. Ontological knowledge is
used to establish a sequence of tasks, and in the event of an error,
a priority task is immediately added to determine the position
of the sealant that requires attention. Once this high-priority
task is completed successfully, the robotic system resumes
the original production order. The authors define adding this
priority task as a re-plan, but we think it corresponds to a
planned repair as it returns to the original plan afterward.
• Reasoning: This framework uses DL reasoning to acquire

valuable data for production and maintenance at the factory
level. This reasoning includes information about sensors and
actuators and their purposes in various tasks. The knowledge
obtained is then utilized to plan and respond to queries,
improving the overall decision-making process.

5.4.3 Adaptive agents for manufacturing domains
Borgo et al. (2019) extend the DOLCE ontology from a broad

perspective. They validated their approach using a real pilot plant, a
reconfigurable manufacturing system designed for recycling printed
circuit boards (PCBs). Specific details about the KB, such as the
source files, are not publicly available, so the information provided
here is derived from articles about the ontology. The ontological
framework aims to store knowledge about fundamental assumptions
and identify the current scenario, including the presence and
location of objects, executed actions, responsible agents, changes
occurring, etc.

The KB created by this approach seeks to integrate various
perspectives within the enterprise, covering intelligent agents,
engineering activities, and management activities. The framework
is structured in a deliberative layer to synthesize the actions needed
to achieve a goal, an executive and monitoring layer to verify the
actions, and a mechatronic system that determines the capabilities
of the agent.

• Decision making and planning: The updated KB uses an
abstraction of the device to be controlled, the environment
parameters, and the execution constraints to generate a
timeline-based planning model. This model provides the
atomic operations that a transportation module can perform,
depending on its components and the available collaborators.
The timeline incorporates temporal flexibility, allowing for
relaxed start and end times. The resulting plan represents the
potential evolution of the relevant feature. The framework also
supports replanning in case of plan execution failure, generating
a newplan based on the current state of themechatronic system.
• Prediction and monitoring: Execution is monitored by

comparing action outcomeswith respect to the expected state of
the system and the environment. The monitor process receives
signals about the (either positive or negative) outcome of the
execution, for example, from the transportation module, and
checks whether the actual status of the mechatronic system
complies with the plan.
• Reasoning: Two types of reasoning are used in this approach.

Low-level reasoning infers information about the internal
and local contexts of transport modules, identifying system
components and available collaborating agents. High-level
reasoning utilizes low-level inferences to extract knowledge
about the transportation machine’s functional capabilities,
deducing specific internal and local contexts. This knowledge
is then used to generate the plan and its control model.
• Execution: The execution is based on a knowledge-based

control loop (KBCL) presented in Borgo et al. (2019). This loop
facilitates monitoring by dynamically representing the robot’s
capabilities, internal status, and environmental situation to
infer the available functionalities. A reconfiguration phase is
activated in case of failure or when new capabilities are added,
updating the KB and initiating a new iteration of the overall
loop. The executor receives sensor signals and feedback from
the transportation module, issuing action commands based on
the plan.
• Communication and coordination: The framework includes

the exchange of information through ontologies, employing
commands for sending and receiving interactions with other

Frontiers in Robotics and AI 24 frontiersin.org61

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 5 Use of ontologies in the industrial domain for perception and categorization (P/C), decision making and planning (DM/P), prediction and
monitoring (P/M), reasoning (R), execution (E), communication and coordination (C/C), interaction and design (I/D) and learning (L).

ROSETTA (Stenmark and Malec,
2015; Hoebert et al., 2021;

Merdan et al., 2019)

Industrial robotic scenario
(Bernardo et al., 2018)

Adaptive agent for manufacturing
domains (Borgo et al., 2019)

P/C Object recognition linking perception data with
geometric features

Vision to inspect robot operations and proximity,
position, and fiber optic sensors

-

DM/P Transform an assembly graph into a sequence of
operations with preconditions and postconditions

to create a task-state machine

Replanning process that modifies production
orders when an error calculus task detects them

Generate a timeline-based planning model with
atomic operations

P/M - - Compare action outcomes with respect to the
expected status of the system and the environment

R Retrieve information about tools, sensors, objects,
object properties, etc.

Reasoning to acquire valuable data for production
and maintenance at the factory level

Low-level reasoning for local context and
high-level reasoning for the transportation

machine’s functional capabilities

E State machines to execute skills - Reconfiguration phase is activated in case of failure
or when new capabilities are added

C/C Communication between robot and external
production environment entities and

infrastructure for intercomponent communication

- Commands for sending and receiving interactions
with other entities

I/D Design models to establish and verify the
manufacturing process, tailoring requirements to

parameters

- Model engineering and management activities

L - - -

entities. The concept of collaborators represents relationships
between the agent (transport module) and any connected
entities, such as other transport modules or machines.
• Interaction and design: The ontology also models engineering

and management activities. The authors use engineering
approaches to identify high-level functions to be executed
to reach a given goal, explore the difference between the
actual state and the desired state, and isolate the changes
to be made. They include information on operand integrity,
operand qualities, quality relationships, etc. These concepts
make explicit engineering facts that are usually not included
in robotic approaches that complement knowledge about robot
capacities and contexts.

Table 5 provides a summary of three frameworks applied
to industrial scenarios. ROSETTA encompasses all capabilities
except prediction, monitoring, and learning. Similarly, the adaptive
agent for manufacturing domains includes all capabilities except
perception, categorization, and learning. Lastly, the remaining
industrial scenario only covers decision making, planning, and
reasoning, which were required to be included in the review, and
perception and categorization.

5.5 Discussion

In this section, we summarize the most relevant results on the
reviewed projects as a whole, independent of the discipline in which

they were evaluated, as most aim to be generally applicable to any
domain. We also discuss other relevant information on the work
reviewed, such as the use of temporal information, the encoding
language, or the main application and domain.

As far as perception and categorization are concerned, most of
the projects focus on situation assessment, providing information
about the environment to handle the situation and make decisions
accordingly. This part is directly related to reasoning because
frameworks such asKnowRob (Tenorth andBeetz, 2009; Beetz et al.,
2018), SWARMs (Li et al., 2017), or PLM (Antanas et al., 2019) use
probability reasoning to generate knowledge about the environment
and its affordances.

All works except ORO (Lemaignan et al., 2010) and OCRA
(Olivares-Alarcos et al., 2022) use explicit knowledge for decision
making and planning. These two focus on answering competency
questions related to actions or planning for actions in future
developments. Geometric and grasp planning are widely used along
with task planners to establish a sequence of atomic actions. PDDL
is the most widely used task planner. Replanning is also important
for some of these articles: TOMASys (Hernández et al., 2018),
RTPO (Sun et al., 2019b), FailRecOnt (Diab et al., 2021), industrial
application (Bernardo et al., 2018), adaptive manufacturing
application (Borgo et al., 2019), and the planetary rover case
(Burroughes and Gao, 2016). In these projects, the objective is to
maintain the operation in the presence of faults. Lastly, some works
also use ontologies to plan in combination with reactive behaviors,
such as OUR-K (Lim et al., 2011), ORO (Lemaignan et al., 2010),
and the planetary rover application (Burroughes and Gao, 2016).

Frontiers in Robotics and AI 25 frontiersin.org62

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

Prediction and monitoring are less present in the reviewed
articles. This activity requires a fully operational KB used
during runtime and a deeper understanding of the situation
and the autonomous robot. Most of the works monitor only
the environment, such as KnowRob (Tenorth and Beetz, 2009;
Beetz et al., 2018) and OUR-K (Lim et al., 2011). Others only
assess the robot state, such as FailRecOnt (Diab et al., 2021), the
manipulation application (Borgo et al., 2019), and the planetary
rover application (Burroughes and Gao, 2016). Lastly, TOMASys
(Hernández et al., 2018) assesses the robot's state andmission status.

Reasoning is addressed in all the works. All use ontologies to at
least answer queries and verify ontological consistency, as this was
an inclusion requirement for the review. Ontological information
is used at runtime to recover from failure in some frameworks
such as FailRecOnt (Diab et al., 2021), TOMASys (Hernández et al.,
2018), and the planetary rover application (Burroughes and Gao,
2016). Reasoners can download additional required information,
such as RoboEarth (Tenorth et al., 2012), which uses web and cloud
services, or ROSETTA (Stenmark and Malec, 2015), which uses the
KIF server to download and upload libraries.

SWARMs (Li et al., 2017) uses a hybrid context reasoner,
combining ontological rule-based reasoning with MEBN theory
(Laskey, 2008) for probabilistic annotations. PLM (Antanas et al.,
2019) uses a probabilistic logicmodule for grasping,which combines
semantic reasoningwith object affordances. KnowRob2 (Beetz et al.,
2018) takes a further step and provides a hybrid reasoning
kernel that enables physics-based reasoning, flexible data structure
reasoning, and a detailed robotic agent experience.However, this use
comes at a higher cost, as its computation may yield inconsistencies
or inefficient reasoning. For this reason, RTPO (Sun et al., 2019b)
targets knowledge scalability and efficient reasoning by conducting
a study on the performance of real-time reasoning with 52,000
individuals. However, the authors do not describe how this approach
affects the planning process.

Not all frameworks use explicit knowledge during execution;
some of them only perform the action sequence defined in the plan.
Others drive its execution to answer competency questions, such
as OCRA (Olivares-Alarcos et al., 2022) and KnowRob (Tenorth
and Beetz, 2009; Beetz et al., 2018). KnowRob also uses the CRAM
(Beetz et al., 2010) executor to update the KB with information
about perception and action results, inferring new data to make
control decisions at runtime.ORO (Lemaignan et al., 2010) also uses
CRAM to update the server when new objects are detected.

Other approaches use state machines, such as ROSETTA
(Stenmark and Malec, 2015), or the MAPE-K loop
(IBM Corporation, 2005), such as TOMASys (Hernández et al.,
2018) and the planetary rover application (Burroughes and Gao,
2016). Similarly, the manufacturing application of Borgo et al.
(2019) presents a knowledge-based control loop to combine
execution with monitoring.

Other important processes for autonomous systems are
communication and coordination. All ontological systems can be
used easily to answer queries from a human operator. However, this
is not sufficient for reliable autonomy; the ontology can provide
transparent information to complete the knowledge. SWARMs
(Li et al., 2017) enables an abstraction for communication,
networking, and information sharing of heterogeneous data. For
this, ORO (Lemaignan et al., 2010) uses an intelligent blackboard

that allows other modules to push or pull knowledge to a central
repository. RoboEarth (Riazuelo et al., 2015) and ROSETTA
(Stenmark and Malec, 2015) obtain knowledge from other sources.
RoboEarth defines a communication module for uploading and
downloading information from the web, and ROSETTA uses the
KIF server to download and upload libraries.

Coordination between agents and components of the agent
is critical for autonomous operation. ROSETTA provides an
infrastructure for intercomponent communication. Component
coordination is explicitly addressed in TOMASys (Hernández et al.,
2018), the planetary rover from Burroughes and Gao (2016), and
the adaptive manufacturing from Borgo et al. (2019). The USAR
application from Chandra and Rocha (2016) targets multirobot
cooperation for both information sharing and task coordination
with other agents. OCRA (Olivares-Alarcos et al., 2022) also
handles task coordination and plan adaptation but only concerns
human–robot collaboration.

Interaction and designareoftennotexplicitlyhandledduringrobot
operation. However, awareness of interaction allows the robot to step
back from action execution and understand the sources of failure.
TOMASys(Hernández et al.,2018)providesametamodelthatbenefits
from the engineering models used during design time. ROSETTA
also uses the engineering specification of workspace objects, skills,
and tasks as part of the KB. The planetary rover (Burroughes and
Gao, 2016) does not explicitly include any information on design
or requirements; however, it reasons in terms of the capacity of the
services onboard, using some sort of operational requirement to select
among alternatives. Similarly, the autonomous vehicle framework
(Huang et al., 2019) handles requirements such as legality using traffic
rules or reasonableness to support decision making. The adaptive
manufacturing application from Borgo et al. (2019) takes a further
step in modeling engineering and management activities. Lastly,
with regard to dynamical interactions, the OUR-K extension from
Diab et al. (2018) includes this knowledge to support the adaptationof
robotic controllers. PMK (Diab et al., 2019) represents the interaction
as manipulation constraints.

Giventheavailabilityofgeneral learningmethods, all theprocesses
described above can improve their effectiveness through learning.
However, this process is less present in the review. Most articles
use a form of case-based learning when storing previous successful
plans or using episodic memories to recall past situations, such as
CORA (Olivares-Alarcos et al., 2022). Other frameworks, such as
PMK(Diab et al.,2019)andPLM(Antanas et al.,2019),use learningas
part of a situational assessment to categorize perceptual information.

KnowRob provides the most complete learning mechanics. It
learns class structures of entities and identifies manipulation places;
in addition, it generates generalized models of the physical effects of
actions.KnowRob2 (Beetz et al., 2018)makes the learned information
available through the Open-EASE knowledge service (Beetz et al.,
2015). This service enables any user to upload, access, and analyze
episodic memories of robots performing manipulation tasks.

5.5.1 Other aspects
Table 6 depicts other aspects of the frameworks studied, such as

the languages used, the use of temporal conceptualizations, and the
foundational ontologies.

Almost all works use OWL or a combination of OWL
and Prolog as the KB language. For planning, most of them

Frontiers in Robotics and AI 26 frontiersin.org63

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

TABLE 6 Summary of other aspects of the framework: concrete encoding languages used, incorporation of temporal conceptualizations, and whether
the framework is built upon other works or utilizes an upper-level ontology.

Framework Encoding Lang Temporal Upper-level Ont

KnowRob (Tenorth and Beetz, 2009; Beetz et al., 2018; Tenorth and Beetz, 2013; Waibel et al., 2011;
Tenorth et al., 2012; Crespo et al., 2018; Riazuelo et al., 2015)

OWL, Prolog Intervals DUL

PMK (Diab et al., 2019) OWL, Prolog - IEEE-1872.2 Std

FailRecOnt (Diab et al., 2021; Diab et al., 2020) OWL - DUL

PLM (Antanas et al., 2019) OWL - -

TOMASys (Hernández et al., 2018; Bozhinoski et al., 2022; Aguado et al., 2021) OWL - OASys

OMRKF (Suh et al., 2007) Prolog Context -

SWARMs (Li et al., 2017) OWL - PR-OWL

RTPO (Sun et al., 2019b) OWL, Prolog - -

Planetary Rovers Scenario (Burroughes and Gao, 2016) PDDL, OWL Time Concept -

USAR Scenario (Chandra and Rocha, 2016) OWL - -

Autonomous Vehicles Scenario (Huang et al., 2019) Prolog - -

SAR Scenario (Sun et al., 2019a) OWL - -

OUR-K (Lim et al., 2011; Diab et al., 2018) OWL Context OMRKF

ORO (Lemaignan et al., 2010) OWL - -

OCRA (Olivares-Alarcos et al., 2022) OWL Intervals DUL, KnowRob

ISRO (Chang et al., 2020) OWL, Prolog Time Concept OpenCyc

Service Robot Scenario (Ji et al., 2012) OWL, STRIPS - -

ROSETTA (Stenmark and Malec, 2015; Hoebert et al., 2021; Merdan et al., 2019) PDDL, OWL - -

Industrial Robotic Scenario (Bernardo et al., 2018) OWL - CORA

Adaptive Agents (Borgo et al., 2019) OWL Intervals DOLCE

use geometric planners, such as PLM (Antanas et al., 2019),
along with task planners. In some works, task planners are
custom made, such as the service robot from Ji et al. (2012).
However, in general, task planners are based on ontological
queries, such as the SAR scenario (Sun et al., 2019a), the
industrial application (Bernardo et al., 2018), and the adaptive
manufacturing of Borgo et al. (2019). The planetary rover
(Burroughes and Gao, 2016) and ROSETTA (Stenmark and
Malec, 2015) use PDDL directly, while RTPO (Sun et al.,
2019b) and SWARMs (Li et al., 2017) use a custom approach
similar to PDDL.

Some studies use temporal conceptualizations to address
planning dynamics. Most of them rely on an ordered sequence of
actions. However, KnowRob (Tenorth and Beetz, 2009; Beetz et al.,
2018), OCRA (Olivares-Alarcos et al., 2022), and the adaptive
manufacturing approach use time intervals to recall a time
frame in which the action is executed. OMRKF (Suh et al.,
2007) and OUR-K (Lim et al., 2011) include time as part of

the context ontology, and the planetary rover (Burroughes
and Gao, 2016) and ISRO (Chang et al., 2020) conceptualize
time in their KBs.

6 Research directions and conclusion

Considering the projects surveyed, we believe that ontologies
are a valuable asset that supports robot autonomy. The frameworks
discussed provide an advance towards mission-level dependability,
increasing robot reliability and availability. However, there are both
unsolved issues and valuable possibilities for further research in this
domain.

An unsolved issue is the limited dissemination and
convergence of the different ontological approaches. There is still
insufficient reuse of existing ontologies and interchangeability
or interoperability of the different realization frameworks. In
this direction, KnowRob (Tenorth and Beetz, 2009; Beetz et al.,

Frontiers in Robotics and AI 27 frontiersin.org64

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

2018) is the most documented and impactful project, as it proves
its influence on other projects such as ORO (Lemaignan et al.,
2010), FailRecOnt (Diab et al., 2021), and OCRA (Olivares-
Alarcos et al., 2022). Ontology convergence is always a challenge
that is exacerbated by the variety of ontologies, both vertical—the
levels of abstraction—and horizontal—the domains of application.
However, efforts must be made to ensure this harmonization,
given the fact that robots are not isolated entities but are always
part of systems-of-systems that share specific forms of knowledge
(Sanz et al., 2021).

We believe that future engineering-grade, knowledge-driven
autonomous robot software platforms should also be capable
of providing three characteristics: explainability, reusability, and
scalability. In the articles under review:

• Explainability is enabled in most cases—at least in a shallow
form—as most frameworks include query/answer interfaces
to provide information on robot operation. However, this
explainability is tightly bound to the capability of the human
user, who is often a robot operator, to fully grasp the
explanation. More broad-spectrum, human-aligned ontologies
are needed to support a wider spectrum of users.
• Reusability is intrinsically present, given the explicitness

of declarative knowledge and the sharing of common
backgrounds, some of which are built on previous works or
upper-layer ontologies. Efforts should made to harmonize
and integrate conceptualizations to effectively reuse
ontologies—especially in heterogeneous systems.
• Scalability and information handling are also partially

addressed in some of the realizations, such as reasoning in
RTPO (Sun et al., 2019b) and KnowRob (Tenorth and Beetz,
2009; Beetz et al., 2018). However, the problems of scalability
remain, such aswhendealingwith complex systems-of-systems,
when addressing geographical or temporal extensive missions,
or when knowledge-based collaboration is required, as is the
case of cognitive multirobot systems or human–robot teams.

Therefore, we propose a shared concern in future works in this
field to improve the capabilities of robots and contribute to the
community in these three aspects. There are already some initiatives,
such as CRAM from KnowRob authors, a software toolbox for the
design, implementation, and deployment of manipulation activities
(Beetz et al., 2010). This toolbox supports planning, beliefs, and
KnowRob reasoners and has been used in other frameworks such as
ORO (Lemaignan et al., 2010).The same authors provide the package
rosprolog, a bidirectional interface between SWI-Prolog and ROS, to
make this logic language accessible to the main robotics middleware.
However, these tools are tailored for KnowRob-based environments
and are sometimes not well documented or maintained.

The conclusions we extract from this survey are that most of the
work is focused on categorization, decision making, and planning.
However, monitoring and coordination are critical processes with
respect to robot control, especially for robust and reliable operation.
These kinds of processes are difficult to assess using reusable
implementations because of the enormous variability between
applications, context, and intervening agents. We propose the
use of explicit engineering models to facilitate these processes.
They are already partially included in TOMASys (Hernández et al.,

2018), ROSETTA (Stenmark and Malec, 2015), the planetary
rover scenario (Burroughes and Gao, 2016), and the adaptive
manufacturing application from Borgo et al. (2019). We believe that
the combination of runtime information with design knowledge can
be used during decision making and to drive adaptation to bridge
the differences between the expected results of robotic users and the
actual robot performance.

7 Conclusion

In this article, we have presented an overview of projects that
use ontologies to enable robot autonomy. We have systematically
searched for works that propose or extend an ontology and use that
knowledge to select, adapt, or plan robot actions.We have compared
approaches in terms of how the processes that support autonomous
operation use and update the supporting ontology. We also
briefly discussed applications, languages, and time representation in
those works.

Conceptualization provides robotswith a path to understanding,
which is a powerful tool for achieving robustness and resiliency.
We have found that most frameworks do not include explicit
engineering knowledge about the robot system itself. Information
about robot components and their interaction, design requirements,
and alternatives enables both explainability and self-adaptation.
Robots are far frommeeting user and owner expectations, especially
in terms of dependability, efficiency, and efficacy. We have found
that task and goal specifications usually lack explicit knowledge of
the user-expected performance. This is necessary information to
create robots that a user can trust because trust depends on the
reliable provision of some user-expected result. For example, this
information could include user phenomenological aspects, required
safety levels, or energy thresholds that make a task unprofitable.

In conclusion, we believe that explicit knowledge can support
autonomous robot operations in unstructured environments.
There are still open issues with respect to reliability, safety, and
explainability to meet the expectations of researchers and the
industry. However, the steps taken by these projects in a variety
of domains to enhance autonomy using ontologies have proven
how promising this approach is. A strong effort in convergence and
harmonization is needed, but this is maximally difficult because the
necessary concepts are situated in the realm of the always elusive
cognitive robot mind.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

EA: conceptualization, methodology, writing–original draft,
writing–review and editing. VG: conceptualization, writing–review
and editing. MH: methodology, writing–review and editing. CR:
conceptualization, formal analysis, writing–review and editing.

Frontiers in Robotics and AI 28 frontiersin.org65

https://doi.org/10.3389/frobt.2024.1377897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

RS: conceptualization, formal analysis, project administration,
writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was partially supported by the ROBOMINERS project with
funding from the European Union’s Horizon 2020 research and
innovation programme (Grant Agreement No. 820971), by the
CORESENSE project with funding from the European Union’s
Horizon Europe research and innovation programme (Grant
Agreement No. 101070254), and by a grant from the Programa
Propio supported by the Universidad Politécnica de Madrid.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abbott, R. J. (1990). Resourceful systems for fault tolerance, reliability, and safety.
ACM Comput. Surv. 22, 35–68. doi:10.1145/78949.78951

Aguado, E., Gómez, V., Hernando, M., Rossi, C., and Sanz, R. (2024). “Category
theory for autonomous robots: the marathon 2 use case,” in Robot 2023: sixth iberian
robotics conference. Editors L. Marques, C. Santos, J. L. Lima, D. Tardioli, and M. Ferre
(Cham: Springer Nature Switzerland), 39–52.

Aguado, E., Milosevic, Z., Hernández, C., Sanz, R., Garzon, M., Bozhinoski, D., et al.
(2021). Functional self-awareness and metacontrol for underwater robot autonomy.
Sensors 21, 1210–1228. doi:10.3390/s21041210

Antanas, L., Moreno, P., Neumann, M., de Figueiredo, R. P., Kersting, K., Santos-
Victor, J., et al. (2019). Semantic and geometric reasoning for robotic grasping:
a probabilistic logic approach. Aut. Robots 43, 1393–1418. doi:10.1007/s10514-
018-9784-8

Arp, R., Smith, B., and Spear, A. D. (2015) Building ontologies with basic formal
ontology. The MIT Press. doi:10.7551/mitpress/9780262527811.001.0001

Avižienis, A., Laprie, J.-C., and Randell, B. (2004). “Dependability and its threats: a
taxonomy,” inBuilding the information society. Editor R. Jacquart (Boston,MA: Springer
US), 91–120.

Balakirsky, S., Schlenoff, C., Fiorini, S., Redfield, S., Barreto, M., Nakawala, H., et al.
(2017). “Towards a robot task ontology standard,” in Proceedings of the manufacturing
science and engineering conference (MSEC) (Los Angeles, CA: US).

Beer, J. M., Fisk, A. D., and Rogers, W. A. (2014). Toward a framework for levels
of robot autonomy in human-robot interaction. J. Hum.-Robot Interact. 3, 74–99.
doi:10.5898/JHRI.3.2.Beer

Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoǧlu, A. K., and
Bartels, G. (2018). “Know rob 2.0 — a 2nd generation knowledge processing
framework for cognition-enabled robotic agents,” in 2018 IEEE international
conference on robotics and automation (ICRA), 512–519. doi:10.1109/ICRA.
2018.8460964

Beetz, M., Mösenlechner, L., and Tenorth, M. (2010). “CRAM — a Cognitive
Robot Abstract Machine for everyday manipulation in human environments,” in
2010 IEEE/RSJ international conference on intelligent robots and systems, 1012–1017.
doi:10.1109/IROS.2010.5650146

Beetz, M., Tenorth, M., and Winkler, J. (2015). “Open-EASE – a knowledge
processing service for robots and robotics/ai researchers,” in IEEE international
conference on robotics and automation (ICRA) (seattle, Washington, USA). Finalist for
the best cognitive robotics paper award.

Bermejo-Alonso, J., Sanz, R., Rodríguez, M., and Hernández, C. (2010). “An
ontology–based approach for autonomous systems’ description and engineering,”
in Knowledge-based and intelligent information and engineering systems. Editors R.
Setchi, I. Jordanov, R. J. Howlett, and L. C. Jain (Berlin, Heidelberg: Springer Berlin
Heidelberg), 522–531.

Bernardo, R., Farinha, R., and Gonçalves, P. J. S. (2018). “Knowledge and tasks
representation for an industrial robotic application,” inRobot 2017: third iberian robotics
conference. Editors A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira (Cham:
Springer International Publishing), 441–451.

Beßler, D., Porzel, R., Pomarlan, M., Vyas, A., Höffner, S., Beetz, M., et al.
(2021). “Foundations of the socio-physical model of activities (SOMA) for
autonomous robotic agents,” in Formal ontology in information systems (IOS Press),
159–174.

Borgo, S., Cesta, A., Orlandini, A., and Umbrico, A. (2019). Knowledge-
based adaptive agents for manufacturing domains. Eng. Comput. 35, 755–779.
doi:10.1007/s00366-018-0630-6

Bozhinoski, D., Oviedo, M. G., Garcia, N. H., Deshpande, H., van der Hoorn, G.,
Tjerngren, J., et al. (2022). MROS: runtime adaptation for robot control architectures.
Adv. Robot. 36, 502–518. doi:10.1080/01691864.2022.2039761

Brachman, R. (2002). Systems that know what they’re doing. IEEE Intell. Syst. 17,
67–71. doi:10.1109/MIS.2002.1134363

Brown, C. E., Pease, A., and Urban, J. (2023). “Translating SUMO-K to higher-order
set theory,” in Frontiers of combining systems (FroCoS), to appear.

Bunge, M. (1977) Treatise on basic philosophy: volume 3: ontology I: the furniture of
the world. Boston, MA: Reidel.

Burroughes, G., and Gao, Y. (2016). Ontology-based self-reconfiguring guidance,
navigation, and control for planetary rovers. J. Aerosp. Inf. Syst. 13, 316–328.
doi:10.2514/1.I010378

Chandra, R., and Rocha, R. P. (2016). “Knowledge-based framework for human-
robots collaborative context awareness in usar missions,” in 2016 international
conference on autonomous robot systems and competitions (ICARSC), 335–340.
doi:10.1109/ICARSC.2016.50

Chang, D. S., Cho, G. H., and Choi, Y. S. (2020). “Ontology-based knowledge
model for human-robot interactive services,” in Proceedings of the 35th annual ACM
symposium on applied computing (New York, NY, USA: Association for Computing
Machinery), 2029–2038. doi:10.1145/3341105.3373977

Cornejo-Lupa, M., Ticona-Herrera, R., Cardinale, Y., and Barrios-Aranibar, D.
(2020). A survey of ontologies for simultaneous localization and mapping in mobile
robots. ACM Comput. Surv. 53, 1–26. doi:10.1145/3408316

Crespo, J., Barber, R., Mozos, O. M., BeBler, D., and Beetz, M. (2018).
“Reasoning systems for semantic navigation in mobile robots,” in 2018
IEEE/RSJ international conference on intelligent robots and systems, 5654–5659.
doi:10.1109/IROS.2018.8594271

Diab,M., Akbari, A., and Rosell, J. (2018). “An ontology framework for physics-based
manipulation planning,” in Robot 2017: third iberian robotics conference. Editors A.
Ollero, A. Sanfeliu, L. Montano, N. Lau, and C. Cardeira (Cham: Springer International
Publishing), 452–464.

Diab, M., Akbari, A., Ud Din, M., and Rosell, J. (2019). PMK—a knowledge
processing framework for autonomous robotics perception and manipulation. Sensors
19, 1166. doi:10.3390/s19051166

Diab, M., Pomarlan, M., Beßler, D., Akbari, A., Rosell, J., Bateman, J., et al. (2020).
“An ontology for failure interpretation in automated planning and execution,” in Robot
2019: fourth iberian robotics conference. Editors M. F. Silva, J. Luís Lima, L. P. Reis, A.
Sanfeliu, and D. Tardioli (Cham: Springer International Publishing), 381–390.

Diab, M., Pomarlan, M., Borgo, S., Beßler, D., Rosell, J., Bateman, J., et al. (2021).
“FailRecOnt – An Ontology-Based Framework for Failure Interpretation and Recovery
in Planning and Execution,” in Proceedings of the Joint Ontology Workshops co-located
with the Bolzano Summer of Knowledge (BOSK 2021), Virtual & Bozen-Bolzano, Italy,
September 13–17, 2021, CEUR-WS.org, 2021.

Fiorini, S. R., Bermejo-Alonso, J., Gonçalves, P., Pignaton de Freitas, E., Olivares
Alarcos, A., Olszewska, J. I., et al. (2017). A suite of ontologies for robotics
and automation [industrial activities]. IEEE Robotics Automation Mag. 24, 8–11.
doi:10.1109/MRA.2016.2645444

Frontiers in Robotics and AI 29 frontiersin.org66

https://doi.org/10.3389/frobt.2024.1377897
https://doi.org/10.1145/78949.78951
https://doi.org/10.3390/s21041210
https://doi.org/10.1007/s10514-018-9784-8
https://doi.org/10.1007/s10514-018-9784-8
https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://doi.org/10.5898/JHRI.3.2.Beer
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1007/s00366-018-0630-6
https://doi.org/10.1080/01691864.2022.2039761
https://doi.org/10.1109/MIS.2002.1134363
https://doi.org/10.2514/1.I010378
https://doi.org/10.1109/ICARSC.2016.50
https://doi.org/10.1145/3341105.3373977
https://doi.org/10.1145/3408316
https://doi.org/10.1109/IROS.2018.8594271
https://doi.org/10.3390/s19051166
https://doi.org/10.1109/MRA.2016.2645444
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Aguado et al. 10.3389/frobt.2024.1377897

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Oltramari, R., and Schneider,
L. (2002). Sweetening ontologies with DOLCE. In Proceedings of the 13th European
conference on knowledge engineering and knowledge management (EKAW), 166–181.

Gayathri, R., and Uma, V. (2018). Ontology based knowledge representation
technique, domain modeling languages and planners for robotic path planning: a
survey. ICT Express 4, 69–74. doi:10.1016/j.icte.2018.04.008

Gayathri, R., and Uma, V. (2019). A review of description logic-based techniques for
robot task planning. Stud. Comput. Intell. 771, 101–107. doi:10.1007/978-981-10-8797-
4_11

Guarino, N. (1998) Formal ontology in information systems: proceedings of the 1st
international conference june 6-8, 1998, trento, Italy. Netherlands: IOS Press.

Guiochet, J., Machin,M., andWaeselynck, H. (2017). Safety-critical advanced robots:
a survey. Robotics Aut. Syst. 94, 43–52. doi:10.1016/j.robot.2017.04.004

Hepp, M., Bachlechner, D., and Siorpaes, K. (2006). “Ontowiki: community-driven
ontology engineering and ontology usage based on wikis,” in Proceedings of the 2006
international symposium on wikis (New York, NY, USA: Association for Computing
Machinery), 143–144. doi:10.1145/1149453.1149487

Hernández, C., Bermejo-Alonso, J., and Sanz, R. (2018). A self-adaptation framework
based on functional knowledge for augmented autonomy in robots. Integr. Computer-
Aided Eng. 25, 157–172. doi:10.3233/ICA-180565

Hoebert, T., Lepuschitz, W., Vincze, M., and Merdan, M. (2021). Knowledge-driven
framework for industrial robotic systems. J. Intelligent Manuf. doi:10.1007/s10845-021-
01826-8

Huang, L., Liang, H., Yu, B., Li, B., and Zhu, H. (2019). “Ontology-based driving
scene modeling, situation assessment and decision making for autonomous vehicles,”
in 2019 4th asia-pacific conference on intelligent robot systems (ACIRS), 57–62.
doi:10.1109/ACIRS.2019.8935984

Huber, M. J. (1999). “Jam: a bdi-theoretic mobile agent architecture,” in Proceedings
of the third annual conference on autonomous agents (New York, NY, USA: Association
for Computing Machinery), 236–243. doi:10.1145/301136.301202

IBMCorporation (2005). An architectural blueprint for autonomic computing. Tech.
Rep. White Paper. doi:10.1109/ICAC.2004.1301340

Ieee, S. A. (2015). IEEE standard ontologies for robotics and automation. IEEE Std
1872-2015, 1–60doi. doi:10.1109/IEEESTD.2015.7084073

Ieee, S. A. (2022). “IEEE standard for autonomous robotics (AuR) ontology,” in
Standard IEEE std 1872 (IEEE), 2–2021. doi:10.1109/IEEESTD.2022.9774339

Ji, Z., Qiu, R., Noyvirt, A., Soroka, A., Packianather, M., Setchi, R., et al. (2012).
“Towards automated task planning for service robots using semantic knowledge
representation,” in IEEE 10th international conference on industrial informatics,
1194–1201. doi:10.1109/INDIN.2012.6301131

Lamy, J.-B. (2017). Owlready: ontology-oriented programming in python with
automatic classification and high level constructs for biomedical ontologies.Artif. Intell.
Med. 80, 11–28. doi:10.1016/j.artmed.2017.07.002

Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: research issues
and challenges. Cognitive Syst. Res. 10, 141–160. doi:10.1016/j.cogsys.2006.07.004

Laskey, K. B. (2008). MEBN: a language for first-order Bayesian knowledge bases.
Artif. Intell. 172, 140–178. doi:10.1016/j.artint.2007.09.006

Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., and Beetz, M. (2010).
“Oro, a knowledge management platform for cognitive architectures in robotics,” in
2010 IEEE/RSJ international conference on intelligent robots and systems, 3548–3553.
doi:10.1109/IROS.2010.5649547

Lenat, D. B. (1995). Cyc: a large-scale investment in knowledge infrastructure.
Commun. ACM 38, 33–38. doi:10.1145/219717.219745

Li, X., Bilbao, S., Martín-Wanton, T., Bastos, J., and Rodriguez, J. (2017). SWARMs
ontology: a common information model for the cooperation of underwater robots.
Sensors 17, 569. doi:10.3390/s17030569

Lim, G. H., Suh, I. H., and Suh, H. (2011). Ontology-based unified robot knowledge
for service robots in indoor environments. IEEE Trans. Syst. Man, Cybern. - Part A Syst.
Humans 41, 492–509. doi:10.1109/TSMCA.2010.2076404

Lukyanenko, R., Storey, V. C., and Pastor, O. (2021). Foundations of information
technology based on bunge’s systemist philosophy of reality. Softw. Syst. Model. 20,
921–938. doi:10.1007/s10270-021-00862-5

Manzoor, S., Rocha, Y., Joo, S.-H., Bae, S.-H., Kim, E.-J., Joo, K.-J., et al. (2021).
Ontology-based knowledge representation in robotic systems: a survey oriented toward
applications. Appl. Sci. Switz. 11, 4324. doi:10.3390/app11104324

Mascardi, V., Cordì, V., and Rosso, P. (2006) A comparison of upper ontologies
(technical report DISI-TR-06-21). Tech. rep., Dipartimento di Informatica e Scienze
dell’Informazione (DISI) and Universidad Politécnica de Valencia.

Merdan, M., Hoebert, T., List, E., and Lepuschitz, W. (2019). Knowledge-based
cyber-physical systems for assembly automation. Prod. Manuf. Res. 7, 223–254.
doi:10.1080/21693277.2019.1618746

Musen,M. A. (2015).The protégé project: a look back and a look forward. AI Matters
1, 4–12. doi:10.1145/2757001.2757003

Niles, I., and Pease, A. (2001). “Toward a standard upper ontology,” in Proceedings of
the 2nd international conference on formal ontology in information systems (FOIS-2001).
Editors C. Welty, and B. Smith, 2–9.

Olivares-Alarcos, A., Beßler, D., Khamis, A., Goncalves, P., Habib, M., Bermejo-
Alonso, J., et al. (2019). A review and comparison of ontology-based approaches to robot
autonomy. Knowl. Eng. Rev. 34, e29. doi:10.1017/S0269888919000237

Olivares-Alarcos, A., Foix, S., Borgo, S., and Alenyà, G. (2022). OCRA – an
ontology for collaborative robotics and adaptation. Comput. Industry 138, 103627.
doi:10.1016/j.compind.2022.103627

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow,
C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews. BMJ 372, n71. doi:10.1136/bmj.n71

Pease, A. (2011) Ontology: a practical guide. Angwin, CA: Articulate Software Press.

Perzylo, A., Somani, N., Rickert, M., and Knoll, A. (2015). “An ontology
for cad data and geometric constraints as a link between product models and
semantic robot task descriptions,” in 2015 IEEE/RSJ international conference
on intelligent robots and systems (IROS), 4197–4203. doi:10.1109/IROS.
2015.7353971

Prestes, E., Carbonera, J. L., Rama FioriniJorge, S. M. V. A., Abel, M., Madhavan, R.,
et al. (2013). Towards a core ontology for robotics and automation. Robotics Aut. Syst.
61, 1193–1204. doi:10.1016/j.robot.2013.04.005

Riazuelo, L., Tenorth, M., Di Marco, D., Salas, M., Gálvez-López, D.,
Mösenlechner, L., et al. (2015). Roboearth semantic mapping: a cloud enabled
knowledge-based approach. IEEE Trans. Automation Sci. Eng. 12, 432–443.
doi:10.1109/TASE.2014.2377791

Russell, S. J., and Norvig, P. (2021) Artificial Intelligence: a modern approach. 4 edn.
England: Pearson.

Sanz, R., Alarcon, I., Segarra,M., Clavijo, J. A., and deAntonio, A. (1999). Progressive
domain focalization in intelligent control systems. Control Eng. Pract. 7, 665–671.
doi:10.1016/S0967-0661(99)00012-X

Sanz, R., Bermejo, J., Rodríguez, M., and Aguado, E. (2021). The role of knowledge
in cyber-physical systems of systems. TASK Q. 25, 355–373.

Sanz, R., Matia, F., and Galan, S. (2000). “Fridges, elephants, and the meaning of
autonomy and intelligence,” in IEEE international symposium on intelligent control -
proceedings (patras, Greece), 217–222. doi:10.1109/isic.2000.882926

SEBoK Editorial Board (2023). The guide to the systems engineering
body of knowledge (SEBoK), Available at: www.sebokwiki.org. (Accessed
August 2023).

Shapiro, S. C. (2003) Encyclopedia of cognitive science. Macmillan Publishers Ltd,
671–680. Knowledge Representation.

Staab, S., and Studer, R. (2009) Handbook on ontologies. 2nd edn. Incorporated:
Springer Publishing Company.

Stenmark, M., and Malec, J. (2015). Knowledge-based instruction of manipulation
tasks for industrial robotics. Robotics Computer-Integrated Manuf. Special Issue Knowl.
Driven Robotics Manuf. 33, 56–67. doi:10.1016/j.rcim.2014.07.004

Suh, I. H., Lim, G. H., Hwang, W., Suh, H., Choi, J.-H., and Park, Y.-T.
(2007). “Ontology-based multi-layered robot knowledge framework (omrkf) for robot
intelligence,” in 2007 IEEE/RSJ international conference on intelligent robots and systems,
429–436. doi:10.1109/IROS.2007.4399082

Sun, X., Zhang, Y., and Chen, J. (2019a). High-level smart decision making of a
robot based on ontology in a search and rescue scenario. Future Internet 11, 230.
doi:10.3390/fi11110230

Sun, X., Zhang, Y., and Chen, J. (2019b). RTPO: a domain knowledge base for robot
task planning. Electronics 8, 1105. doi:10.3390/electronics8101105

Tenorth, M., and Beetz, M. (2009). Knowrob — knowledge processing for
autonomous personal robots. in 2009 IEEE/RSJ international conference on intelligent
robots and systems, 4261–4266. doi:10.1109/IROS.2009.5354602

Tenorth, M., and Beetz, M. (2013). Knowrob: a knowledge processing
infrastructure for cognition-enabled robots. Int. J. Robotics Res. 32, 566–590.
doi:10.1177/0278364913481635

Tenorth, M., Clifford Perzylo, A., Lafrenz, R., and Beetz, M. (2012). “The
roboearth language: representing and exchanging knowledge about actions, objects,
and environments,” in 2012 IEEE international conference on robotics and automation,
1284–1289. doi:10.1109/ICRA.2012.6224812

Vernon, D. (2014) Artificial cognitive systems: a primer. The MIT Press.

W3COWLWorkingGroup (2012)OWL2web ontology language document overview.
World Wide Web Consortium. Tech. rep.

Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López,
D., et al. (2011). Roboearth. IEEE Robotics Automation Mag. 18, 69–82.
doi:10.1109/MRA.2011.941632

Wand, Y., and Weber, R. (1993). On the ontological expressiveness of information
systems analysis and design grammars. Inf. Syst. J. 3, 217–237. doi:10.1111/j.1365-
2575.1993.tb00127.x

Frontiers in Robotics and AI 30 frontiersin.org67

https://doi.org/10.3389/frobt.2024.1377897
https://doi.org/10.1016/j.icte.2018.04.008
https://doi.org/10.1007/978-981-10-8797-4_11
https://doi.org/10.1007/978-981-10-8797-4_11
https://doi.org/10.1016/j.robot.2017.04.004
https://doi.org/10.1145/1149453.1149487
https://doi.org/10.3233/ICA-180565
https://doi.org/10.1007/s10845-021-01826-8
https://doi.org/10.1007/s10845-021-01826-8
https://doi.org/10.1109/ACIRS.2019.8935984
https://doi.org/10.1145/301136.301202
https://doi.org/10.1109/ICAC.2004.1301340
https://doi.org/10.1109/IEEESTD.2015.7084073
https://doi.org/10.1109/IEEESTD.2022.9774339
https://doi.org/10.1109/INDIN.2012.6301131
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.cogsys.2006.07.004
https://doi.org/10.1016/j.artint.2007.09.006
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1145/219717.219745
https://doi.org/10.3390/s17030569
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1007/s10270-021-00862-5
https://doi.org/10.3390/app11104324
https://doi.org/10.1080/21693277.2019.1618746
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1017/S0269888919000237
https://doi.org/10.1016/j.compind.2022.103627
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1109/IROS.2015.7353971
https://doi.org/10.1109/IROS.2015.7353971
https://doi.org/10.1016/j.robot.2013.04.005
https://doi.org/10.1109/TASE.2014.2377791
https://doi.org/10.1016/S0967-0661(99)00012-X
https://doi.org/10.1109/isic.2000.882926
www.sebokwiki.org
https://doi.org/10.1016/j.rcim.2014.07.004
https://doi.org/10.1109/IROS.2007.4399082
https://doi.org/10.3390/fi11110230
https://doi.org/10.3390/electronics8101105
https://doi.org/10.1109/IROS.2009.5354602
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1109/ICRA.2012.6224812
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1111/j.1365-2575.1993.tb00127.x
https://doi.org/10.1111/j.1365-2575.1993.tb00127.x
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 02 August 2024
DOI 10.3389/frobt.2024.1363281

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Federico Ciccozzi,
Mälardalen University, Sweden
Michel Albonico,
Federal University of Technology, Brazil

*CORRESPONDENCE

Argentina Ortega ,
argentina.ortega@uni-bremen.de

†These authors have contributed equally to

this work and share first authorship

RECEIVED 30 December 2023
ACCEPTED 04 July 2024
PUBLISHED 02 August 2024

CITATION

Ortega A, Parra S, Schneider S and
Hochgeschwender N (2024), Composable
and executable scenarios for
simulation-based testing of mobile robots.
Front. Robot. AI 11:1363281.
doi: 10.3389/frobt.2024.1363281

COPYRIGHT

© 2024 Ortega, Parra, Schneider and
Hochgeschwender. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Composable and executable
scenarios for simulation-based
testing of mobile robots

Argentina Ortega1,2*†, Samuel Parra3†, Sven Schneider3 and
Nico Hochgeschwender1

1SECORO Group, Department of Computer Science, University of Bremen, Bremen, Germany,
2Intelligent Software Systems Engineering Lab (ISSELab), Department of Computer Science, Ruhr
University Bochum, Bochum, Germany, 3Institute for AI and Autonomous Systems, Department of
Computer Science, Hochschule Bonn-Rhein-Sieg, Sankt Augustin, Germany

Few mobile robot developers already test their software on simulated robots
in virtual environments or sceneries. However, the majority still shy away from
simulation-based test campaigns because it remains challenging to specify and
execute suitable testing scenarios, that is, models of the environment and the
robots’ tasks. Through developer interviews, we identified that managing the
enormous variability of testing scenarios is a major barrier to the application
of simulation-based testing in robotics. Furthermore, traditional CAD or 3D-
modelling tools such as SolidWorks, 3ds Max, or Blender are not suitable for
specifying sceneries that vary significantly and serve different testing objectives.
For some testing campaigns, it is required that the scenery replicates the
dynamic (e.g., opening doors) and static features of real-world environments,
whereas for others, simplified scenery is sufficient. Similarly, the task andmission
specifications used for simulation-based testing range from simple point-to-
point navigation tasks tomore elaborate tasks that require advanced deliberation
and decision-making. We propose the concept of composable and executable
scenarios and associated tooling to support developers in specifying, reusing,
and executing scenarios for the simulation-based testing of robotic systems.
Our approach differs from traditional approaches in that it offers a means of
creating scenarios that allow the addition of new semantics (e.g., dynamic
elements such as doors or varying task specifications) to existingmodels without
altering them. Thus, we can systematically construct richer scenarios that remain
manageable. We evaluated our approach in a small simulation-based testing
campaign, with scenarios defined around the navigation stack of a mobile
robot. The scenarios gradually increased in complexity, composing new features
into the scenery of previous scenarios. Our evaluation demonstrated how our
approach can facilitate the reuse of models and revealed the presence of errors
in the configuration of the publicly available navigation stack of our SUT, which
had gone unnoticed despite its frequent use.

KEYWORDS

verification and validation, software testing, simulation-based testing, scenario-
based testing, robot software engineering, model-based development, mobile robot,
navigation

Frontiers in Robotics and AI 01 frontiersin.org68

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363281
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363281&domain=pdf&date_stamp=2024-07-31
mailto:argentina.ortega@uni-bremen.de
mailto:argentina.ortega@uni-bremen.de
https://doi.org/10.3389/frobt.2024.1363281
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

1 Introduction

The responsible deployment of autonomous mobile robots in
everyday environments (e.g., warehouses, hospitals, and museums)
relies on extensive testing to ensure that robots achieve their
expected performance and can copewith failures to avoid safety risks
during their operational lifetime. The two major types of testing–in
simulations and the real world–have complementary properties.The
former allows robots to be exposed to a wide range of situations
early in the development cycle at a limited cost (Sotiropoulos et al.,
2017; Timperley et al., 2018), whereas the latter offers more realistic
situations and failure cases in later stages of the development cycle.
Often, developers forego simulation-based testing, even if they are
aware of its benefits, and expose their robots exclusively to the
real world (Ortega et al., 2022). This often requires more time to set
up than a simulator, and reduces coverage because it is difficult to
change the real world, for example, by deliberately injecting failure-
inducing situations. Both approaches can be employed for black-
and white-box testing at various levels of abstraction (e.g., system
vs. component tests).

In our previous study (Parra et al., 2023), we obtained a
better understanding of why robot software engineers opt out
of simulation-based testing by conducting in-depth interviews
with 14 domain experts in the field of mobile robot navigation
in indoor environments. One key insight we identified is that
creating scenery or virtual environments in which simulated robots
are deployed and tested remains challenging for developers. The
use of traditional Computer Aided Design (CAD) and three-
dimensional (3D) modelling tools is time-consuming because they
require an additional skill set. To make simulation-based testing
more attractive to developers, we designed and implemented
two domain-specific languages (DSLs), namely, the FloorPlan
DSL and the Variation DSL. We demonstrated how these DSLs
enable developers to specify and automatically generate varying yet
testable environments, and how testing robots in different simulated
worlds overcomes the false sense of confidence (Hauer et al., 2020).
Furthermore, our tooling helped discover real-world dormant bugs
in the well-known ROS navigation stack (Parra et al., 2023).

Even though providing tool support for specifying testing
scenery is a crucial element to make simulation-based testing
of robot software more attractive, it is not sufficient. Additional
models that express robot tasks and missions, robot capabilities,
interactions among agents, and temporal evolution of actions and
events are required to make simulation-based testing campaigns
more realistic. In the field of autonomous driving, these models
are known as scenarios (Tang et al., 2023). In the context of this
study, we broadly define scenarios entailing both mission-relevant
and mission-plausible information. On the one hand, by mission-
relevant information we refer to, among others, the environment
and its dynamics, time and events, objects (e.g., rooms) and subjects
(e.g., human operators), and their potential behaviour. On the
other hand, the mission-plausible information describes acceptance
criteria that enable the verification and validation of the robotic
requirements.

As we will show in this article, the interviews revealed that
testing scenarios are characterized by a large amount of variability
that results in varying, heterogeneousmodels expressing all too often
implicitly in an ad-hoc way the robots’ environment and task, as

well as the developers’ testing objectives, means to execute scenario
models in simulations, and hints on how to collect and interpret test
results. Therefore, simulation-based robot testing remains limited
to carefully designed testing campaigns in which developers have
control over a few scenario features and parameters, such as the
type of robot task and the characteristics of the environment.
Thus, reusing scenarios in the context of other testing campaigns
is limited and a major barrier to achieving a higher level of
test automation.

To improve this situation, we propose the concept of composable
and executable scenarios and developed associated tooling to
support robot software engineers in specifying, reusing, and
executing scenarios in (semi-)automated simulation-based testing
campaigns of robotic systems. To this end, we revisit and further
analyse the corpus obtained by in-depth interviews conducted
and briefly presented in our previous work (Parra et al., 2023),
with the objective of deriving a domain model of scenario-
based testing through simulation in robotics. As a result, we
identified the common and variable parts of simulation-based
testing and represented them in a feature model for scenarios
of mobile robots. These features are selected to design or reuse
the composable models needed for a particular scenario. Our
composable modelling approach enables the addition of new
semantics to existing scenarios, without altering them. This
approach allows the development of new extensions and tools
to support new use cases for the FloorPlan models previously
introduced. To summarize, our contributions are:

• a domain model with common and variable features for
simulation-based testing scenarios of mobile robots,
• a composable modelling approach to specify and execute

scenarios,
• a dynamic-objects extension to the FloorPlan DSL that allows

to model scenery objects and their locations using JSON-
LD and facilitates the reuse and exploitation of environment
models in simulation-based test design and semi-automated
model-based scenario generation,
• three gazebo plugins that exploit the scenery information and

integrate with the simulation to define the (initial) poses of
objects (initial pose plugin), and actuate their joints on a
time (dynamic joint plugin) or distance basis (distance-to-
trigger plugin),
• a proof-of-concept tool to exploit scenery information and

features from the FloorPlan DSL models to generate task
specifications,
• and we demonstrate how one can use our approach to

systematically run a simulation-based testing campaign with
scenarios of varying complexity.

2 Domain analysis

To develop our composable and modelling approach,
we perform a domain analysis using the corpus we
obtained in (Parra et al., 2023). In this section, we describe the
methodology we followed and the domain model we derived based
on our insights.

Frontiers in Robotics and AI 02 frontiersin.org69

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

2.1 Methodology

Semi-structured interviews were conducted (Hove and Anda,
2005), which involved interviews with specific questions to set the
theme for the discussion, but allowed for exploration of the topic
through open-ended questions. This allowed for a flexibly guided
discussion. We designed a questionnaire that covered experts’
experience with software for mobile wheeled robots (specifically
indoor navigation stacks for mapping, motion planning, and
obstacle avoidance), their real-world challenges, and the challenges
of simulation in the context of testing. An internal pre-study
was conducted to improve the questionnaire. We then recruited
participants for the study by reaching out to professionals in
academia and the industry. A list of potential candidates was
obtained from our professional network.

We conducted 14 interviews with a pool of experts with diverse
academic and professional backgrounds, as well as multiple years
of experience in the field. The table summarizing the interviewee’s
demographics can be found in the Supplementary Material of this
paper. The interviews were conducted through an online meeting,
recorded, and transcribed into protocols, which were later separated
into fragments. Interview participants signed a written informed
consent and their participation was voluntary. All the interview data
were anonymized by IDs, which only participants have and can use
to withdraw their participation.

To analyse the fragments, we used qualitative coding (Saldaña,
2021), which consists of assigning one or multiple “codes” to the
fragments1. For instance, the fragment “One metric to measure
map quality is to see how many tasks can be completed with it.
How useful it is to solve certain kind of tasks.” has the codes
Environment Representation and Performance. We selected a list of
codes before the start of the coding and allowed for expansion if
necessary. We performed two rounds of coding: an initial round
and a review in a second round. We used 37 themes to code the
interviews. The distribution of references per individual code is
available in the Supplementary Material of this paper. Once all the
fragments were coded, patterns were identified in the data.

2.2 Domain model

Based on the identified patterns, we derived a domain model for
scenario-based testing in robotics in the form of a feature model,
as illustrated in Figure 1. Here, we employed a standard feature
model notation (Kang et al., 1990) to express the mandatory and
optional features of the scenarios. Our scenario domain model
is composed of four main features: the System under Test (SUT),
which is tested, assessed, and evaluated in the context of varying
scenarios; the testing objective of the scenario; the scenery, which
is a description of the environment or virtual world in which the
SUT is embedded; and a specification of the mission that the SUT
is expected to execute. In the following paragraphs, we explain
the domain model by referencing some representative quotes from
the interviews shown in Table 1 as excerpts E1-E10. Note that the

1 The codes and interview fragments are available online at https://github.

com/secorolab/floorplan-dsl-interviews.

abstract feature model in Figure 1 is not exhaustive; its abstraction
levels were chosen to allow the addition of new features (e.g.,
planning and scheduling features under the mission feature) in
future extensions.

The interviews revealed that the roles and activities of the
developer influenced the type and scope of the tests they
performed during the development process. Most interviewees
considered themselves to be integrators and/or robot application
developers in various fields, such as logistics or healthcare, where
robots (cf. E4) perform missions characterized by navigation
tasks and where an action is associated with one or more
waypoints (e.g., the waypoints of racks to be visited in a logistic
mission) (cf. E5).

Stakeholders mentioned a number of testing goals that influence
their design decisions for their tests. Developers often build systems
by composing readily available components (cf. E2), some of
which are well-tested software packages developed and maintained
by a third party such as an open-source community. Often, the
components chosen for building the system are highly tailorable,
which requires tuning parameters for an optimized performance (cf.
E2). For integrators, interest in testing focuses on the capabilities
and performance of the integrated system. These tests verified
that all components were integrated correctly and validated the
parameter values, and often involve multiple components and
algorithms, instead of focusing on a single component. They are
also more likely to require execution in a robotic simulator, and
therefore, a scenery. However, other testing objectives such as safety
and robustness, functional correctness, etc., are also present (cf.
E1, E2, E3).

Generally, simulation is seen as a valuable tool, but it can be
challenging to fully utilize it. The setup process for simulation
execution can be a time-consuming task, meaning that smaller
developer teams often opt to perform tests exclusively in the
real world. One participant states, “[using a simulator] depends
on whether creating the simulation was going to add a long
term benefit. In most cases, the answer was not. It required too
much effort”.

Creating or specifying the scenery, or environment model, for
the simulation is often mentioned as one of the big challenges.
Although simulating a scenario requires several types of models,
such as robotic platform models, simulation capabilities for sensors
and actuators, and a model of the environment (the scenery), the
former two are often provided by their respective manufacturers,
but the latter must often be created by application developers.
We identified that scenery can be broadly divided into two main
features, namely, the environment dynamics and the environmental
features that are present. If the target environment contains
particular features such as double doors, rails, or columns, it is
useful to include them in the simulated environment to observe the
behaviour of the system when it is exposed. (cf. E7) The simulation
environment can also be application dependent. One participant
stated, “You need to describe the elements you want to be robust
against. You do not want to describe all aspects.” Modelling the 3D
scenery for simulation is often the reason developers refrained from
employing simulators. The experts see the modelling task as time-
consuming, as one participant asserts “The environment is very large
and modelling is time-consuming”. The effort necessary to model
the environment depends on the scale and level of granularity that

Frontiers in Robotics and AI 03 frontiersin.org70

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/secorolab/floorplan-dsl-interviews
https://github.com/secorolab/floorplan-dsl-interviews
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 1
Abstract scenario feature model derived from the codes in participant interviews.

TABLE 1 Representative interview excerpts and their relation to top-level features of our domain model.

Feature ID Excerpt

Testing Objective

E1 I would measure [robustness] by trying challenging scenarios, maybe introducing different test. Create a simple environment for a test, such as a
static environment, and make it more complex by adding dynamic obstacles

E2 Another of my projects was regarding robot collisions, so a lot of tests also focused on that. The test were performed to optimize parameters and try to
make the stack work

E3 There is an impact, if there is a discrepancy between what you see in the real world and the map this will degrade the performance

SUT E4 My goal was to integrate the platform and the navigation stack, so my tests had that objective

Mission E5 We also deployed robots in industrial spaces, and there the setting was an industrial warehouse with many racks

Scenery

E6 We try to replicate the real environment, but is very limited. We have only a static world with the walls and objects that make the environment

E7 Another challenge are dynamic obstacles, and understanding the environment. i.e., understanding that a piece of furniture is not fixed but also that
it does not move often

E8 Interacting with objects such as doors and chairs is also challenging

E9 Lighting is one of the main issues if you wanna use VSLAM map, model of human agents are difficult in our standard simulator. I also wanted to
model doors that open and close. It is interesting to simulate if the robot can get through certain doors

E10 When dynamic come into play, i.e., everything that makes the map to change significantly, this can lead to localization and navigation failures

the test requires. The same participant states: “Depending on the
application, I would also like to see the models have either a lot of
detail or be very simple”. This refers to the levels of granularity,
i.e., how much correspondence there is between the real world
entity and its model (Hauer et al., 2020). Because modelling using
traditional tools is time-consuming, and the 3D modelling tools
have a steep learning curve, when developers create scenery models
for simulation these tend to be low in granularity; i.e., they mostly
consist of a set of walls.

The experts are also interested in re-creating environments for
simulation. Two-thirds of the participants have tried to replicate the
real world in a simulation. When real-world environments are re-
created, most of the features of the environment were not modelled.
The result is a scenery that consist of a set of walls that replicates
the geometric shape of the original environment, with some cases
adding objects such as furniture.

In summary, developers usually test their robots in scenery
resembling static and primitive environmental features, such as
walls and rooms (cf. E6) of the known and unknown target
environment. These simple sceneries are incrementally enriched
through additional and not necessarily dynamic features such
as static obstacles (cf. E2) until the point of including dynamic
elements, such as other agents, obstacles, and lighting conditions
(cf. E9, E10), and actuated environmental features such as drawers,
windows, and doors (cf. E8) to gain confidence in the tests. One
can infer that developers of real-world robot applications would
like to further exploit simulation-based testing of robotic systems,
but that the current tools for specifying and executing actual test
scenarios are limited. They do not allow the creation of scenery
models in a flexible and incremental manner in which new concepts
and associated semantics (e.g., a door and how it moves) can be
added without altering the existing model.

Frontiers in Robotics and AI 04 frontiersin.org71

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 2
Composable and executable scenario pipeline showing the models, the tools discussed in this paper (purple) and the execution artefacts resulting from
their composition and transformation.

3 Composable and
executable scenarios

One of the goals of our composable and executable scenario
approach is to enable engineers in specifying, reusing and executing
scenarios in simulation. Before specifying a scenario, examining the
design space of the scenarios (cf. Figure 1) with the testing objective
and the application requirements inmind results in the choice of the
scenario features. Next, the corresponding models for those features
must be specified (or potentially reused from other scenarios).
Finally, these models are composed and transformed into software
artefacts that can be used in simulation. The remainder of this
section looks at these threemain steps inmore detail. Figure 2 shows
an overview of the scenario specification and execution activities
and tooling.

3.1 Scenario design

Let us start by examining the design dimensions of a scenario,
and how the design decisions have an impact in the effectiveness and
efficiency of the scenario.

The first design dimension to be determined should be the
testing objective, as all the other design decisions for the scenario
will depend on the objective and the scope of the test. There

are numerous objectives that engineers can have in mind when
designing a test, among others, examples include:

• Performance: Optimization of the configuration parameters
for a particular behaviour in an exploratory way, identification
of the effect of changes in the performance, or measurement of
the efficiency of a given configuration.
• Robustness: Determination of the reaction or handling

unexpected environmental changes, or calculating through
experimentation the failure rates of the hardware or software
components.
• Safety: Validation of conformance to internal or external

standards, or identification of hazards and failures in the robot
capabilities.
• Functional: Validation of the correctness of a component

by validating that its performance is within the required or
specified tolerances.

The task specification–what the SUT should do during a test–is
one of the inputs that must be defined or adapted to support the
test objective of the scenario and the scope of the SUT. Usually, the
task for a fully-integrated system is determined by the application,
but given the environmental complexity different variations of tasks,
e.g., in scale or choice of locations, can be chosen to fit the SUT,
and the scope and objective of the scenario. For instance, functional
tests require tasks that are designed to be successfully completed in

Frontiers in Robotics and AI 05 frontiersin.org72

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

nominal conditions. Note that in unstructured environments, even
for nominal conditions, larger scale ormore complex tasks can reveal
unexpected behaviours, due to the increasing amount of time the
robot interacts with its surroundings. For other types of tests like
safety, engineers can specify tasks informed by the test objective, e.g.,
choosing actions or constraints that could produce a failure. In short,
the task specification is a test input that describes the workload the
robot is expected to execute.

The scenery features include the features to be modelled in the
floor plan, including the types of objects the robot interacts with, and
the behaviour of those features, particularly if they are dynamic. The
choices depend on the objective of the test (e.g., narrow hallways,
moving obstacles), the SUT (e.g., minimum width of doorways for
it to pass through). Functional tests require scenery that represents
expected operating conditions, while sceneries that are used or
designed for robustness tests must include features that represent
invalid inputs or stressful conditions, such as dynamic obstacles. For
testing the conformance to safety features, the scenery design should
focus on including features that introduce hazards, increasing the
risk of a critical failure. Consider the following examples of sceneries
for different types of tests:

• Functional navigation tests: To assess if the robot is able to
complete navigation tasks of varying complexity, validate if the
robot is able to reach the target poses. A passing test means
the robot reaches all the waypoints in its task. The complexity
of the mission is determined by several factors: how many
waypoints must be visited, the distance between waypoints,
and the reachability from one waypoint to another. The
distance between waypoints can be chosen from an existing
scenery, or a new scenery can be created to test in larger
environments. The reachability is constrained by the geometry
of the space and by the pose of obstacles. The ideal simulation
scenery for testing localization components includes many
static features in the floor plan, but a reduction of these features
can also increase the complexity.
• Robustness testing for obstacle avoidance: To validate howwell

the local planner adapts to sudden changes in the scenery, the
robot can be tasked to perform navigation tasks of varying
complexity in scenery where there are dynamic changes. The
changes should be sufficient to trigger a re-planning of the
planned path by the local planner, but not enough to worsen
the localization performance. For this objective, it is sufficient
that the changes occur at random times, where the complexity
increases with the frequency and number of changes. This
type of simulation scenery could also be used to perform a
functional test of the trajectory planning component.
• Safety conformance by negative testing: One way to test the

conformance to safety and functional requirements is to design
a test case where the robot is expected to fail. Rather than
random changes to the scenery, the changes can be adversarial
to the robot, where especial conditions trigger changes in the
simulation scenery. For instance, when the robot is less than
1 m away from the door, the door closes.

The test oracle–themechanism to compare the expected result of
a test with the observed output–is directly related to all the scenario
features. Although they are usually derived from or influenced by
the application requirements, they must be defined taking into

account the objective of the test (e.g., what metrics to observe), the
task (e.g., waypoints, specified tolerances or constraints), SUT (e.g.,
configuration) and scenery (e.g., free space, objects, obstacles). For
example, the specified tolerance for the performance of a component
can be the difference between a passed and failed test.

3.2 Scenario specification

A scenario specification is a composition of multiple models,
with each individual model targeting a different dimension of the
scenario. To form a complete specification of the scenario, we
use composable models. A model is “composable” if the entities
of the model can refer to each other via identifiers. New entities
from a new model are composed by referencing the entities in
the existing models. A model can now be a domain-specific
artefact, that with composition can create a full specification. In
previous work (Schneider et al., 2023), the use of JSON-LD as
a representation for composable models was introduced, as well
as many metamodels that are used in the scenario specifications
presented in this work.

Composabiliy enables a modular approach for the re-use of
models in multiple specifications. This is used in our approach as
a way to systematically and gradually introduce complexity, and
allows the creation of scenarios that are more challenging based
on simpler scenarios without modifying the existing models. For
instance, a scenario can start with a static scenery that just contains
walls, and a new scenario reuses the floorplanmodel and composes a
new simulation scenery with obstacles in the environment. The next
scenario reuses these specifications and composes some dynamic
behaviour to the obstacles, and so forth.

The floor plan model is the starting point of the scenery
specification.Wemake a distinction between “user-facing” or “front-
end”models and “machine-readable” or “back-end”models.Models
written using DSLs are “front-end” models, as they are written
using syntax and semantics meant for human understanding. On
the other hand, the composable models are meant to be created
and understood by computers. While it is possible to create these
models by hand, it is complex and error-prone. A better approach is
to transform the “front-end” models into “back-end” models.

The FloorPlan DSL, introduced in our previous work
(Parra et al., 2023), is the base of the front-end environment
specification. It enables developers to describe concrete indoor
environments using a pseudo-code-like representation. The
language is implemented with TextX (Dejanović et al., 2017), a
Python-based language workbench for defining the metamodel
and language syntax. The language is declarative and designed to
be easy to understand. Using keywords such as Space, Column, or
Entryway followed by an identifier, common elements of an indoor
environment can be specified and referred to.

To compose objects, such as doors with hinges or elevator doors,
into the scenery, their models must be specified in a composable
way. We do so based on the kinematic chain metamodel described
in previous work (Schneider et al., 2023) and represent them also
in JSON-LD (as there is no front-end language currently available).
Two types of scenery models are needed to represent an object: An
object model describes their geometry and instance models that

Frontiers in Robotics and AI 06 frontiersin.org73

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

specifies the pose of its articulated joint using a selection of frames
of reference.

3.3 Scenario execution

Executing the scenario involves the composition and
transformation of the models into software artefacts for their
execution in simulation. The execution of an indoor scenario
requires multiple software artefacts: a simulation scenery (3Dmesh)
representing the walls of the environment for the simulator, an
occupancy grid map representative of the environment for the
navigation stack, and a task to complete in a format supported
by the system.

Although the majority of the artefacts generated by the tools are
simulator-independent, engineers will also need simulator-specific
artefacts to run the tests; our current version of the tooling supports
the generation of the artefacts required by the Robot Operating
System (ROS) and the Gazebo simulator2. Previously, when the
FloorPlan M2M Generator was executed, it used the manually-
specified FloorPlan model to generate the occupancy grid maps
and the 3D meshes that would be referred to by manually-specified
Gazebo models and worlds. These sceneries could only represent
static environments.

In this paper, we introduce an extension to the FloorPlan
M2M Generator that generates a Composable FloorPlan model
(represented in JSON-LD) to enable its composition with other
scenery models. Now, it also generates the Composable FloorPlan
models, where each entity has an identifier that other entities can
refer to. The transformation and composition process, illustrated in
Figure 3, links all the entities from the different models in a singular
graph though their identifiers.Using this graph,we canmake queries
about environmental concepts and features, and generate artefacts
or new models. The transformation and composition engine is
implemented by using rdflib3 to query the singular graph, and,
similar to textX generators, filling out a jinja template4 for the
corresponding artefact. In our case, it allows us to model and
compose objects into the scenery, and to define their dynamic
behaviour.

Scenery composition refers to the composition of the static
scenery models with the dynamic scenery objects to generate the
simulation scenery.We developed the SceneryComposer tool to add
articulated dynamic objects to the static simulation scenery from the
FloorPlan models. The composable models enable the specification
of the objects and their location in the environment, and the Scenery
Composer tool creates a single scenery model that refers to all the
different models together. The format of this model will depend
on the simulator. In the case of Gazebo, this format is known as
the Simulation Description Format (SDF)5, and referred to as the
“world” file. At the time of writing, the Scenery Composer targets
only Gazebo, and generates all the required models in SDF.

2 https://gazebosim.org/

3 https://rdflib.readthedocs.io/

4 https://jinja.palletsprojects.com/

5 http://sdformat.org/

At runtime, three Gazebo plugins are responsible for the
behaviour of the dynamic scenery objects. The three plugins require
that the scenery object is articulated, i.e., has at least a revolute or
prismatic joint. All plugins are able to set a joint pose, but differ
when andhow the changes occur.The Initial Joint Pose plugin is used
to assign to a joint a position at the start of the simulation, which
will fixed throughout the entire run. In contrast, the Time-Based
Dynamic Joint plugin can change the position of the joint at specified
time stamps; for example, closing a door after 30 s of simulation
time. The Trigger-Based Dynamic Joint plugin can change the joint
position from an initial state to an end state if the robot ever gets
closer than a specified distance.

Finally, a task specification can be generated using the
composable approach based on the scenery models. We opted for
generating the task specification in our approach to take advantage
of existing mission and task DSLs that meet application and
domain-specific requirements for the specification, which would
be hard to generalize. As a proof-of-concept, our tool generates
navigation tasks tailored to our SUT, but can be easily adapted to
generate specifications in other formats. We refer to the tool as
the Task Generator, which exploits the geometric information in
the FloorPlan model to generate a series of waypoints that form a
smaller contour based on the inset of each space in the environment.
The tool uses the FloorPlan composable models to extract the free
space information, and a configuration file to determine the distance
between the room contour and the inset contour. The current
prototype generates a list of waypoints using YAML syntax, which
is used by the navigation stack.

4 Evaluation

To evaluate our approach, we designed three scenarios that
demonstrate how to exploit different properties of the scenery for a
given test objective. For each scenario we describe the test objective,
i.e., the motivation for the test and chosen from the examples in
Section 3.1, and the features selected for the test based on the test
objective. Note that although testing is context-dependent and the
scenarios discussed here take into account a specific System Under
Test (SUT), our focus is on how to test robot software, not the
design or development of a particular navigation algorithm or robot
platform. In particular, the goal of the scenarios described in this
section is to exemplify how one would use composable scenarios
to execute tests to validate the software of a mobile robot. Thus,
we mainly focus on the models being used and/or designed as
described in Section 3.2.

Our SUT consists of the KELO Robile platform, a mobile robot
platform with four active wheels and a 2D laser for navigation. The
robot is 0.466 m wide and 0.699 m long. Its software is based on
the Robot Operating System (ROS), and uses its navigation stack6.
This includes the default map_server; move_base to send navigation
goals to the robot; the Navfn global planner, the Dynamic Window
Approach (DWA) local planner with global and local costmaps; and
the Adaptive Monte Carlo Localization (AMCL) algorithm for its
pose estimation.

6 http://wiki.ros.org/navigation

Frontiers in Robotics and AI 07 frontiersin.org74

https://doi.org/10.3389/frobt.2024.1363281
https://gazebosim.org/
https://rdflib.readthedocs.io/
https://jinja.palletsprojects.com/
http://sdformat.org/
http://wiki.ros.org/navigation
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 3
Scenery models are composed using their identifiers and then transformed into execution artefacts.

The scenery where the tests are performed is the ground floor of
a university building and was modelled using the FloorPlan DSL,
as detailed in (Parra et al., 2023). The recreation of the building’s
corridors and rooms was achieved by performing measurements
of occupancy grid maps captured in the real world. Then the
measurements were used to specify the FloorPlan DSL model, and
used to generate the occupancy grid and wall mesh.

The test scenarios also exploit the composable models presented
in this paper to generate the tasks to be performed and the variations
in scenery in which they are executed. First, using the Composable
FloorPlan Model, the Task Generator creates task specifications for
each room and hallway in the scenarios. Second, we specify an
Articulated Scenery Object model that describes the door geometry
and joints. Finally, in each scenario we compose this door model
with specific scenery instance models into a Gazebo world model
that supports the scenario’s testing objective, as will be detailed later.

4.1 Scenario 1: functional testing for
navigation

4.1.1 Testing objective
The objective of this functional test is to ensure that all

components of the navigation stack are correctly integrated and
configured7. The goal is for the robot to successfully navigate from

7 In the scope of this paper, this is a simplified version of an integration test

for the navigation stack. As such, we consider it an example of how to

validate the functionality of a subsystem within a system-of-systems.

the starting position to a series of waypoints. In addition, for this
paper, we chose to observe the localization component as it is one
of the components in the navigation stack that relies on the correct
integration with the other components. In this scenario, a successful
navigation test means that the robot meets the following functional
requirements: (a) reaches all the waypoints, (b) the localization
error does not exceed 0.35m, and (c) the confidence level of the
localization component is 95% at minimum.

4.1.2 Models
Given that this is a functional test, we select the features

shown in Figure 4 and treat this scenario as a way to obtain a
consistent and reproducible baseline. Therefore, the scenery we
chose is a static environment with realistic features. The corridor
illustrated in Figure 4 is 60 m long, and is part of the FloorPlan
model of the university building. It has several features to aid in
localization: doorways and doors, columns, and intersections.

The Gazebo world model with static doors was generated by
the Scenery Composer using the Composable FloorPlan Model, the
articulated scenery door model, and the scenery instance model for
the 17 doors. The instance models allow us to specify the initial pose
for each door joint, whichwas set as “closed” (0 rad) for this scenario.
Even though the door models are articulated, the doors will remain
static throughout the execution.

The navigation task the robot executes was generated by the Task
Generator using the Composable FloorPlan model. Its specification
consists of a list of waypoints which must be visited in strict order.
The generated task specification was manually updated to close the
circuit (i.e., five Go To actions in a sequence, including the return
to the first waypoint). In this scenario, the waypoints are the four

Frontiers in Robotics and AI 08 frontiersin.org75

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 4
Feature model for Scenario 1, with a static scenery and realistic environmental features (e.g., doors). The task consists of five Go To actions for the four
waypoints (red dots) for a mobile robot (SUT).

corners of a corridor as shown in Figure 4, and are located at a
constant distance of 70 cm from the walls.

4.1.3 Test oracle
A passing test must meet the functional requirements listed in

Section 4.1.1. For the experiment, we hold the hypothesis that the
robot will be able to localize itself successfully, as the environment
is static and has numerous features for correcting the estimation. To
measure the localization performance, we rely on two metrics: the
error e is computed as the difference between the pose estimation
and the ground truth pose pgt, and the standard deviation of
the particle cloud, which we use to validate the confidence level.
To compute the latter, we obtain the number of times when the
difference between the ground truth and the particle cloud is not
statistically significant (i.e., not larger than 2σ). The confidence level
is the proportion of those that fulfil Eq. 1,

Pc − 2σ ≤ pgt ≤ Pc + 2σ (1)

where σ is the standard deviation of the particle cloud, and Pc is the
mean of the particles.

4.2 Scenario 2: robustness testing for
obstacle avoidance

4.2.1 Test objective
The objective of this test is focused on the robustness of the

navigation stack, particularly on the ability of the robot to avoid
obstacles in a dynamic environment under stressful conditions. This
scenario uses a highly dynamic environment where there is a higher

risk of collision with moving doors. The task is now performed in a
dynamic version of the scenery, where the doors open and close at
random intervals. The challenge for the robot is twofold: first, it has
to adapt its plan depending on the status of the doors, which change
frequently and randomly. Second, theymust avoid colliding with the
doors, even if they change state when the robot is very close.

4.2.2 Models
Using Scenario 1 as a starting point, we increase the complexity

to test the robustness of the obstacle avoidance component by
making the scenery dynamic, as shown in Figure 5. The scenery
for this scenario is mostly the same as the one in Scenario 1, the
only difference being the addition of dynamic doors that will open
and close at random intervals using the Time-Based Dynamic Joint
plugin. Thus, the world file for Scenario 1 is almost identical to the
world file for Scenario 2 with the only difference being the use of the
plugin at runtime. All positions for all the doors remain the same.
Although the task specification is the same, its execution is more
complex due to a more challenging environment. When closed, the
doors are aligned with the walls of the corridor, keeping the way
clear for the robot. When open, the doors are perpendicular to the
corridor walls, and partially block the corridor as the doors open
towards the inside of the corridor.

The execution models remain mostly the same, the only
difference is observed in the world file of the simulation. Dynamic
models require a plugin (with its configuration) for them to have a
behaviour during the simulation run. For each door, we instantiate
a Time-Based Dynamic Joint plugin, which takes as a parameter a
JSON file with a sequence of key-frames. The key-frames contain
the simulation time at which the joint should move to a particular

Frontiers in Robotics and AI 09 frontiersin.org76

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 5
Feature model for Scenario 2: A robustness test in a dynamic environment and randomly actuated doors. The mission and SUT features are the same as
in Scenario 1. Door models are articulated.

pose. The doors are closed at 0 rad, and open at 1.7 rad. Each door
is independent and has a unique opening/closing sequence, with a
randomly assigned state change and simulation time. The sequence
for each door remains constant throughout the five runs.

4.2.3 Test oracle
A successful scenario test run is one where the robot successfully

avoids all collisions. Tomeasure the effectiveness of the robot to avoid
collisions, we look for the smallest distance to an objectwith respect to
the robot’s centre. Given its rectangular shape, a collision occurs when
the distance of an object do to the centre of the robot is do(x) ≤ 0.35
anddo(y) ≤ 0.2. For the simplicity,wediscussdo using the radius of the
robot from its corner, i.e.,√0.2332 + 0.352 = 0.42 althoughwevalidate
there are no crashes by checking do(x) and do(y).

4.3 Scenario 3: safety conformance in
adversarial environment with task
variability

4.3.1 Test objective
Motivated by the near crashes in Scenario 2 (discussed in Sect.

5.2), the objective in this scenario is to validate the conformance
of the SUT to one of its safety requirements, namely, that the
robot respects the minimum acceptable distance to obstacles and
maintains a safety buffer of ds = 0.2. More concretely, we validate the
ability of the navigation stack to complete a navigation task in an
adversarial environment where doors close as the robot approaches
them. This means the robot should respond to the environmental

changes and conform to its minimum safety distance of 0.2m, i.e.,
min(do(x)) ≥ 0.55 and min(do(y)) ≥ 0.433.

In this scenario, we also introduce four variations in the task
scale that gradually increase the scenario complexity, creating one
sub-scenario for each task. The sub-scenarios were executed 5 times
each, which amounts to 20 runs in the simulator for this scenario.

4.4 Models

To test the safety requirements of the SUT, we select the
adversarial behaviour for the dynamic elements of the scenery for
this scenario, as can be seen in Figure 6. Following the incremental
approach, this scenario will reuse most of the execution models of
Scenario 2, but specify an adversarial behaviour for a subset of the
doors in the environment. Although we use the same campus re-
creation from the previous two environments, our tests are now
performed in three rooms rather than one corridor.

Instead of random events as in Scenario 2, in this scenery the
two dynamic doors are now triggered when the robot is within a
distance threshold from the door using the trigger-based dynamic
joint plugin. All other doors in the scenery are set to open with the
initial joint pose plugin, and remain static throughout the execution.
The relevant doors and their behaviour are illustrated in Figure 7.
The trigger-based dynamic joint pluginis configured by describing
an initial position, a final position, and a minimum distance for
the transition trigger. The force and speed of the closing door is
not parameterized. When the robot comes to a distance of 1.3 m
or closer, an event to close the door triggers. This distance was

Frontiers in Robotics and AI 10 frontiersin.org77

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 6
Feature model of Scenario 3 where the scenery door models behave adversarially. Shares the same SUT as Scenario 1 and 2.

FIGURE 7
The scenery for Scenario 3, with two adversarial doors (door 17 in
C022 and door 12 in C069) and four tasks that vary in scale and
number of waypoints.

determined after experimenting with different values, and it ensures
that the robot can detect the sudden change in the environment
without the door hitting the robot. The order and position of the
waypoints was intentionally selected in order to force the robot to
plan to pass through the adversarial door.

Because we want the robot to attempt to go through the doorway
(as it does not expect the door to close), we chose two different rooms
to test this, as shown in Figure 7. In the figure, the four different tasks

we composed to gradually increase the complexity of the scenario
are also shown. On each task, the number of waypoints to visit and
the distances between them increases. The tasks vary in number of
waypoints to be visited and distance to the next waypoint. All the
tasks start in the same pose in room C025. Task 1 and 2 are relatively
short and only involve travelling to C022, while in Tasks 3 and 4 the
robot must travel first to C022 and then to C069. Tasks 1 and 3 have a
single GoTo action in each room for a total of one and twowaypoints,
respectively; while in Tasks 2 and 4 the robot must perform a total
of five and ten Go To actions in sequence, respectively. We name the
concrete scenarios to match each task, Scenario 3.1 to 3.4.

4.4.1 Test oracle
We expect the safety requirement of min(do(x)) ≥ 0.55 and

min(do(y)) ≥ 0.433 to be violated, since the doors will only close
when the robot is near the door. However, the expected behaviour is
that the robot will avoid collisions in all cases and attempt to move
away from the obstacles until it reaches a safe distance again. We
observe the changes in speed and angular velocity at the moment
the door is triggered, as well as the distance to objects do, to analyse
the robot’s behaviour in context, e.g., whether it is violating the safety
distance but moving slowly.

A passing test also requires the robot to complete the tasks
successfully. Our hypothesis for this scenario is that the robot will
be able to finish the task, but will take more time, as the adversarial
elements will just impede the robot to take the shortest possible
route. For this comparison, we create two additional sub-scenarios
where the doors remain static and which match the most complex

Frontiers in Robotics and AI 11 frontiersin.org78

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

tasks at two scales: Task 2 and Task 4, which we name S3.5 and S3.6,
respectively.

To measure how well the robot “recovers” once the door closes
on its path, we measure the amount of time the robot has obstacles
within its safety buffer tds

. We expect the distributions of the total
runtime and the total time the Minimum Safety Distance (MSD) tds

was violated for scenarios to behave similarly based on the task scale.
Finally, we expect that the behaviour of the robot in an adversarial
scenery vs. a static one should not differ substantially other than
to avoid the effects of the adversarial door being opened. While we
expect tds

to be larger in the adversarial scenery, we expect that the
total delay caused by the robot’s reaction to the closing door and the
detour caused by the closed door not add more than 30 s for door 17
and 60 s for door 12.

5 Results

We ran our experiments in an XMG laptop with 16 GB of RAM
and an AMDRyzen 9 5900HXCPU and running Ubuntu 18.04.The
SUT described in Section 4 uses ROS1 noetic. Using the generated
artefacts, we execute each scenario 5 times in Gazebo and analyse
their results.Themodels and launch files used to run these scenarios
can be found in https://github.com/secorolab/frontiers-replication-
package.

5.1 Scenario 1

In all runs, the robot was able to reach all waypoints and
complete the task. The time to complete the task was also consistent,
with an average of 696.08 s and a standard deviation of 2.58 s. The
behaviour of the robot was consistent across the five runs, with the
localization error of 0.1238 m on average, and a maximum value of
0.522 m from run 1. Similarly, the standard deviation of the particle
cloud was consistent, as can be seen in Figure 8. As expected, the
standard deviation of the particle cloud in y is larger than in x (the
direction of travel), and clearly increases whenever the uncertainty
about the robot’s orientation increases, i.e., when the robot makes
turns. The confidence level of the localization component across all
runs was 99.8%.

Despite the error being under the acceptable threshold
on average, we can see that the localization requirements are
violated briefly when the robot makes turns near the entrance to
the hallway. Figure 9 shows the run with the largest error in more
detail. On the zoomed in area, we see one of the moments at the
beginning of the task, where the localization error and the standard
deviation of the particle cloud both reached their maximum values
in all runs. This area in particular has a lower number of features for
the localization component, as no columns are in range for the laser
sensors and there is an intersection right before entering the area.

Although all the runs were completed successfully, only three
of the runs met the requirements of the localization component.
While the confidence level of the localization component was high,
meaning that 99.8% of the time the difference between the pose
estimate and the ground truth pose is not statistically significant,
the error is larger than the acceptable value for this scenario. This
threshold was chosen to guarantee that potential errors in the

FIGURE 8
Localization error and standard deviation of the particles along the x
and y axis in Scenario 1

FIGURE 9
Localization error for run 1 in Scenario 1. On the right the zoomed-in
version shows the first 130s of the run.

localizationwould allow the robot to reach its goals without crashing
against the walls.

The results reveal that there are areas in the environment
that may require further testing, because although the scenery
for this scenario is static and represents the nominal operating
conditions for the SUT, the localization component does not meet
the application requirements.

Frontiers in Robotics and AI 12 frontiersin.org79

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/secorolab/frontiers-replication-package
https://github.com/secorolab/frontiers-replication-package
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 10
Distance from obstacles in Scenario 2. Distances larger than 0.8 m are shown in yellow, and the darker the purple, the closest the robot was to one of
the doors in the hallway.

5.2 Scenario 2

All test runs for this scenario were successful, as no
collisions were detected. The minimum distance to obstacles
is shown in Figure 10. One can clearly see that do decreases near
the doorways, as expected. Although the average do is 1.2 m, run
4 was particularly challenging for the robot; and it is noticeable
that in a few locations the dynamic doors almost caused collisions.
In this run, on two occasions, do is less than 5 cm, meaning the
robot managed to avoid a collision by merely 3.77 cm and 4.1 cm,
respectively.

This scenario builds on top of the static scenery of Scenario 1,
and increases the load for the obstacle avoidance component. In a
general sense, the dynamic behaviour of the doors in the scenery
helps validate the ability of the robot to react to dynamic obstacles
in its environment. However, the near misses reveal risks of collision
that should be validated against the safety requirements.

5.3 Scenarios 3.1–3.6

As a first step to validate the conformance to the safety
requirements, we analysed whether there were any obstacles within
the 0.2 m safety buffer. To our surprise, we discovered that the
SUT struggled with the non-adversarial scenario S3.6, which had
one run fail after the robot could not exit C022. Given that
the non-adversarial scenery represents the static environment
and hence nominal operating conditions, we could immediately
conclude that the safety requirements were not being fulfilled.
After further inspection, we noticed that the publicly available
configuration of the navigation stack8 (a2s) had several errors. The
robot’s footprint was much smaller and not symmetric around its
centre (as can be seen in Figure 11); the laser scan topic used to
update the costs for the path planner was using a namespace, i.e.,

8 This configuration has been used for over a year as part of a robotics

course by several groups of students. Available at: https://github.

com/a2s-institute/robile_navigation/tree/noetic/config

robile_john/scan_front instead of /scan_front; and,
finally, although the platform is omnidirectional and the odometry
model used by AMCL was configured as such, the path planner was
configured to behave as a differential drive robot.

To validate the safety requirements while trying to deliberately
provoke a collision (in S3.1–S3.4), we corrected the configuration
errors for the differential configuration (fro-diff), and added an
omnidirectional configuration (fro-omni). Note that our goal is
not to find an optimal configuration, but rather we focus on testing
if the new configurations fix the problemwe observed.The results of
the laser measurements that violate the safety buffer for the five runs
for each task and configuration can be seen in Figure 11.9

Next, we focus on the behaviour of the robot around the two
adversarial doors: door 17 and door 12. We see the moment the
doors are triggered as vertical dotted lines in Figure 12. We can
see that the behaviour of the robot when door 17 is triggered is
consistent regardless of the task. For Scenarios S3.3 and S.6, despite
some variation on when door 12 is triggered, the behaviour is
similarly consistent. Furthermore, Figure 12 shows that violations
to the safety buffer do not only occur with the adversarial doors,
but any time the robot passes through or near doorways, and that
the combination of the task to execute and the state of the doors
contribute significantly to the safety violations.

In all the runs, the robotmomentarily violates the safety distance
onmultiple occasions, including themoments where it goes through
the non-adversarial doors. Figure 13 shows the distribution for
tdo≤MSD in all the tasks of Scenario 3. Except for the outlier with
the larger tds

of the a2s configuration, the difference in the mean
of tds

between fro-diff and a2s is not statistically significant.
However, both differential configurations had failures on scenario
S3.6, while fro-omni was the only configuration to successfully
finish all tasks; the trade-off seems to be related to the amount
of time the MSD is violated and suggests that there are possible
improvements to the latter configuration.

9 We also ran the tests for S1 and S2 with the new configurations, and

validated that they perform similar to the original a2s configuration.

Frontiers in Robotics and AI 13 frontiersin.org80

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/a2s-institute/robile_navigation/tree/noetic/config
https://github.com/a2s-institute/robile_navigation/tree/noetic/config
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 11
Laser measurements within the safety buffer ds. The robot size (gray), the safety buffer (red) and its configured footprint (yellow).

By comparing runs in sceneries with and without adversarial
doors, we can see the effects on the speedwhen the robot slows down
as it attempts to avoid a collision, and the angular velocity changes as
it turns to follow an alternate path. Figure 14 shows one run of S3.4
and the same task, but without the effects of the adversarial door
in S3.6. We have zoomed in to the two moments where the robot
reaches the trigger distance of 1.3 m to door 17 and then door 12.

The total tds
for the different configurations makes the effects

of the misconfiguration noticeable. Surprisingly, the original
configuration a2s requires more time to complete S3.6 than S3.4,
on average 8.9 s more (after excluding the outlier). Surprisingly, the
fixed configuration fro-diff also requires more time for S3.6
than S3.4, although it is about half of themisconfigured SUT at 4.8 s.
Finally, the fro-omni config behaves as expected, requiring only
1.3 s more for S3.6 than S3.4, which makes these the only successful
test runs of scenario 3 in terms of performance.

At a grand scale, these tests reveal that the robot is able to avoid
collisions to adversarial obstacles in its environment, attempting to
go back to a safe distance as soon as the environmental change is
detected. As expected, although the MSD was violated, the robot
reacted quickly and the total time MSD was violated did not differ
significantly between adversarial and non-adversarial sceneries.

However, upon closer inspection, the test results returnedmixed
results. Firstly, by using static and dynamic sceneries and a variety
of tasks we were able to detect a misconfiguration issue. However,
the proposed configurations to fix the issue still do not respect
the required safety buffer and need further testing and tuning.
Secondly, the tests also revealed that (new) nominal sceneries cause
safety violations that still need to be handled, and the effect of the
adversarial doors in the performance was overestimated with S3.6
taking longer despite the detour required by the adversarial door in

S3.4. Although the scenario tests have met the safety criteria of our
oracle regarding tds

, the performance trade-off for the differential
configurationwas unexpected. Finally, with these examples, we show
how the composition plays a key role in the testing process; the
interaction between the different features in the scenery and the
gradual increase in complexity allowed us to systematically test the
SUT and uncover issues that went unnoticed for over a year and in
our test runs for S1 and S2.

6 Discussion

The results demonstrate that the use of composable and
executable scenarios enables the design, specification and execution
of tests for a variety of testing objectives. By reusing and composing
different scenery models, our approach can gradually increase the
complexity of the test scenarios with minimal effort. Due to the
context-dependent nature of testing, the results above cannot be
generalized to all robots or applications. However, we believe this
does not necessarily limit its applicability to other systems due to
our focus on the scenery models (which are robot-independent).
Furthermore, our evaluation demonstrates how to design, specify
and execute test scenarios for systems using the ROS navigation
stack (a popular framework used in robotic applications). We now
discuss aspects to be considered when applying our approach to a
different robot or application.

The transformation and composition process presented in
Section 3.3 has a small learning curve. Developers that wish to
use our tools, must learn how to specify environments using the
FloorPlan DSL and understand the basics of composable models,
and making queries on RDF graphs. In its current iteration, because
the graph construction relies on the identifiers for each of the

Frontiers in Robotics and AI 14 frontiersin.org81

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 12
Distance to obstacles do for Scenario 3. The red area shows the limit at
which ds is violated. The dotted lines show when the doors were
triggered.

elements to be able to successfully compose and query the singular
graph, the lack of front-end models for the scenery objects makes
this process error-prone. The objects in this paper were limited
to doors with hinges, however the composable metamodels for
kinematic chains would also support the specification of sliding
doors (or objects) by using prismatic joints. The addition of other
types of objects is possible, but suffers the same limitations as the
current specifications. We hope to extend our DSLs to be able to
specify the scenery objects without having to worry about their
composable specification.

Although not the focus of this paper, the validation
of the scenery and scenario are another area of future
development. In (Parra et al., 2023), we presented experiments on
the real2sim gap, and shown how developers could validate that the
scenery specification reflects a real-world environment. However,
we have not yet implemented validation checks after models have
been composed into the graph.

The transformation itself is currently handled in two different
parts: The Composable FloorPlan model is generated using the
textX infrastructure, while other execution artefacts are defined

FIGURE 13
Distribution of the total time the Minimum Safety Distance tds

was
violated against the total runtime.

directly in the transformation engine. Ideally, we would like to
define these transformations by using transformation rules and
a model transformation language, however, target models (e.g.,
SDF) do not always have publicly available meta-models. Although
this could potentially limit the generalization of the approach, the
use of templating engines, such as jinja, provides some flexibility
and ease of use for extending the type of artefacts supported
and customizing the generated model itself. However, we plan to
investigate the possibility of using transformation rules for those
models with available meta-models to allow for a more systematic
transformation.

There are also opportunities for automating the generation
pipeline.The process currently is completely under the control of the
developers, and each tool is executed manually and independently.
On the one hand, this makes the tool modular and allows
customizing which aspects of the scenery are to be generated. On
the other, it requires additional effort to keep track of and maintain
consistency between the models generated by different tools. The
modularity of the tools also makes the integration of external or
manually-defined models in a scenario possible, at least to some
degree. Because composable models can reference other models by
their identifiers, those external models can be referenced in the
graph and on the templates of the artefacts that use those artefacts
(e.g., the 3D Wall mesh or Gazebo models can be referenced by
our generated Gazebo world). However, additional effort must be
taken to ensure that the IDs, references, and relevant environmental
features are valid and consistent with the FloorPlan models.

6.1 Related work

In contrast to the autonomous driving domain (Ren et al., 2022),
scenario- and simulation-based testing of autonomous mobile

Frontiers in Robotics and AI 15 frontiersin.org82

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

FIGURE 14
Min. safety dist. for a nominal scenario (Task 6) and a scenario with adversarial doors (Task 4) and configuration a2s.

robots is desirable; however, this has not been well established
(Afzal et al., 2020; Afzal et al., 2021b). In the autonomous driving
domain, scenario standards such as ASAM OpenSCENARIO
(ASAM, 2022) are emerging to describe common scenery elements,
such as roads, streets, traffic signs, and lanes. However, in robotics,
environment and scenery modelling is traditionally supported
by CAD tools published by multiple vendors. In the context
of indoor robotics, and therefore relevant to our work, is the
application of these approaches and tools from the architectural
domain, where Building Information Modelling (BIM) has been
an established technique to model the geometric information
of building structural components (e.g., walls, corridors, and
windows), as well as semantic hierarchical information (e.g.,
about the accessibility and connectivity of rooms) (Borrmann et al.,
2018). The composable scenario modelling approach introduced
in this work targets robotic experts, where BIM is not as
prevalent as in other engineering domains. For example, during
the interviews, only a single mention of BIM was made. Even
though there are numerous 3D software commercially available
that implements the BIM standard, modelling scenery is still
considered a time-consuming task by robot application developers,
as supported by our interviews. In addition, because BIM models
support the full building management lifecycle, they introduce
many irrelevant dependencies, such as the latest IFC 4.3. x
schema10 including concepts to define structural building elements
(IfcWall, IfcDoor, etc.), but simultaneously introduce concepts for
measurements of physical quantities (IfcAbsorbedDoseMeasure,
IfcMolecularWeightMeasure, etc.) or building lifecyclemanagement
(such as actor roles, including civil engineer or building owner, but
also orders, including purchase orders ormaintenance work orders).

10 https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.

xsd

Furthermore, as pointed out by Hendrikx et al. (Hendrikx et al.,
2021), BIM cannot be considered accurate or complete for robotic
applications.

Another domain related to our approach is the field of computer
graphics, specifically procedural content generation approaches,
which focus on synthesizing hundreds of environments separated
froma single environment description. In robotics, these approaches
are typically employed for machine learning applications, as they
require a substantial amount of training and testing data that is
arduous for manual production. Different approaches use diverse
abstractions as inputs, including constraint graphs (Para et al.,
2021), handmade drawings (Camozzato et al., 2015), building
contours (Lopes et al., 2010; Mirahmadi and Shami, 2012), and
natural language descriptions (Chen et al., 2020). A common
theme of these approaches is that the output of the generation
step is uncontrollable. Input abstractions deliberately exclude
spatial relations to keep the input simple because numerous
outputs must often conform to the input model. Thus, these spatial
relations are synthesized by algorithms and are not controlled by
the user. However, not all procedural generational approaches
follow this pattern. Some have rich descriptions that allow for
a more structured output, while still enabling the generation of
variations. For example, the language presented by Leblanc et al.
(2011) is an imperative specification language for building
indoor environments by performing space operations. These
operations involve complex logic to create variation. However,
these approaches are not employed in the context of scenario-
based testing of robotic systems, where additional models of other
agents, dynamic scenery elements, and task specifications need
to be composed.

A closely related approach is the Scenic language (Fremont et al.,
2019), a probabilistic programming language for generalized
environment specification that targets machine-learning
applications. Scenic enables the specification of spatial relationships

Frontiers in Robotics and AI 16 frontiersin.org83

https://doi.org/10.3389/frobt.2024.1363281
https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.xsd
https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.xsd
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

with concrete and logical values. However, Scenic is just a language,
and to consume its models, an extra tool is needed to violate our
design ambition of having composable scenario models. GzSCenic
Afzal et al. (2021a) is a third-party tool that leverages scenic models
to generate scenes using the robot simulator Gazebo (Koenig and
Howard, 2004). Although these approaches can generate models
that are consumable by simulators, they lack the generation of other
artefacts for the direct simulation of navigation tasks, such as the
occupancy grid map.

Another modelling approach to describe indoor environments
is supported by the indoor tagging schema of Open Street
Map, which supports modelling a floor plan with tags such as
room, area, wall, corridor, and level (floor). The schema was
devised for indoor navigation, but can be consumed by any
application.Naik et al., (2019) presented an extension to the schema,
whichwas exploited to generate occupancy gridmaps andwaypoints
for navigation. However, these models were not used to generate the
simulation models.

6.2 Conclusion and future work

In this study, we presented a domain model for features
in simulation-based testing scenarios, which we derived from
interviews to 14 domain experts. Based on the insights, we propose
a composable modelling approach to specify and execute scenarios.
Given that the environment representation is one of the challenges
mentioned frequently in the interviews, our focus was on facilitating
the specification and reuse of scenery models for testing.

The specification of these scenarios starts with a floor plan
model that represents the environment in which the robot operates.
This specification is done using the FloorPlan DSL from our
previous work (Parra et al., 2023). In this paper, we present an
extension to the FloorPlan M2M generator, which takes a floor plan
model as input and creates a graph representation of its spaces,
geometry and elements in JSON-LD, which we call the composable
floor plan model. This representation is key to the composability
and reusability of the models. Task specifications are generated
by our proof-of-concept tool that uses the composable floor plan
model to query the geometric information for a target area, and
generate waypoints in free space based on its contours. In addition,
objects can be composed into the static scenery of the floor plan
by specifying an articulated scenery object model (describing the
object geometry and its joints), and scenery instancemodels for each
object. These scenery models are also specified in JSON-LD, and are
an input for our scenery composer, which traverses the linked graph
to generate the required artefacts for the execution of the scenario in
simulation. Finally, at runtime, we introduced three Gazebo plugins
which set the joint position of the objects composed into the scenery
at the start of the simulation, or using time or event-based triggers.

We demonstrated our approach by performing a small
simulation-based testing campaign for amobile robot in a university
building. The scenarios gradually increased their complexity, first
focusing on validating the navigation stack with functional tests,
then performing robustness tests on a highly dynamic environment,
and finally, validating the conformance to the safety requirements.
The composable aspect allowed us to reuse the static floor plan
scenery specified in Parra et al. (2023), and compose static doors

for Scenario 1, randomly opening and closing doors in Scenario
2, and doors that would close as the robot approached them in
Scenario 3. Surprisingly, only when we ran the third scenario were
we able to find a misconfiguration issue in the publicly available
navigation stack of our SUT, which had been undetected for over a
year despite being in use by multiple groups of students. Normally,
this robot operates autonomously within a single room or hallway,
and is teleoperated out of the room for the latter, explaining why
this issue was not detected until now. This shows that the variation
in the scenario features is essential to expose the robot to situations
that may generate failures.

Future work includes creating DSLs to specify the scenery
objects and instances, and expanding our proof-of-concept task
generator to generate task specifications for existing mission and
taskDSLs.This is a key step to explore the ability of a fully-automated
scenario generation approach, which could exploit the Variation
DSL introduced in Parra et al. (2023).

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the studies involving
humans because the discussion in this paper only concerns the
aggregated data from interviews, which was only used to identify
common codes. Interview participants signed an informed consent,
and their participation was voluntary. All the data related to the
interviews is anonymized, and only the participants have their ID,
which they can use to withdraw their participation at any time. The
experiments are conducted on our own robot platform and software,
minimizing risks or harms to participants and organizations, while
enabling them to benefit from the results of our research. The
studies were conducted in accordance with the local legislation
and institutional requirements. The participants provided their
written informed consent to participate in this study. No potentially
identifiable images or data are presented in this study.

Author contributions

AO: Conceptualization, Data curation, Investigation,
Methodology, Software, Writing–original draft, Writing–review
and editing, Formal Analysis, Validation, Visualization. SP:
Conceptualization, Investigation, Methodology, Software,
Writing–review and editing, Data curation, Writing–original draft,
Formal Analysis, Visualization. NH: Conceptualization, Funding
acquisition, Project administration, Supervision, Writing–original
draft, Writing–review and editing, Methodology, Validation.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This wor has

Frontiers in Robotics and AI 17 frontiersin.org84

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ortega et al. 10.3389/frobt.2024.1363281

partly been supported by theEuropeanUnion’sHorizon 2020 project
SESAME (Grant No. 101017258).

Acknowledgments

We thank the Institute for AI and Autonomous Systems at the
Hochschule Bonn-Rhein-Sieg for their support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363281/full#supplementary-material

References

Afzal, A., Goues, C. L., Hilton, M., and Timperley, C. S. (2020). “A study on
challenges of testing robotic systems,” in IEEE Intl. Conf. on Software Testing,
Verification an Validation (ICST), Porto, Portugal, 24-28 October 2020, 90–107.
doi:10.1109/ICST46399.2020.00020

Afzal, A., Goues, C. L., and Timperley, C. S. (2021a). GzScenic:
automatic scene generation for gazebo simulator. arXiv:2104.08625 [Preprint].
doi:10.48550/arXiv.2104.08625

Afzal, A., Katz, D. S., Le Goues, C., and Timperley, C. S. (2021b). “Simulation for
robotics test automation: developer perspectives,” in IEEE Intl. Conf. on Software
Testing, Verification andValidation (ICST), Porto deGalinhas, Brazil, 12-16 April 2021,
263–274. doi:10.1109/ICST49551.2021.00036

ASAM (2022). ASAM OpenSCENARIO standard. Association for standardization
of automation and measuring systems. Online; [last accessed 2023-
December-28]

Borrmann, A., König, M., Koch, C., and Beetz, J. (2018). “Building information
modeling: why? What? How?,” in Building information modeling: Technology
foundations and industry practice (Springer International Publishing), 1–24.
doi:10.1007/978-3-319-92862-3_1

Camozzato, D., Dihl, L., Silveira, I., Marson, F., and Musse, S. R. (2015).
Procedural floor plan generation from building sketches. Vis. Comput. 31, 753–763.
doi:10.1007/s00371-015-1102-2

Chen, Q., Wu, Q., Tang, R., Wang, Y., Wang, S., and Tan, M. (2020). “Intelligent
home 3D: automatic 3D-house design from linguistic descriptions only,” in Proc. Of
the IEEE/CVF conf (on Computer Vision and Pattern Recognition), 12625–12634.
doi:10.1109/CVPR42600.2020.01264

Dejanović, I., Vaderna, R., Milosavljević, G., and Vuković, v. (2017). TextX: a Python
tool for domain-specific languages implementation. Knowledge-Based Syst. 115, 1–4.
doi:10.1016/j.knosys.2016.10.023

Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.
L., and Seshia, S. A. (2019). “Scenic: a Language for scenario specification and
scene generation,” in ACM SIGPLAN Conf. on Programming Language Design
and Implementation (ACM), Xi’an, China, 30 May 2021 - 05 June 2021, 63–78.
doi:10.1145/3314221.3314633

Hauer, F., Pretschner, A., and Holzmüller, B. (2020). Re-Using concrete
test scenarios generally is a bad idea. IEEE Intell. Veh. Symp. IV, 1305–1310.
doi:10.1109/IV47402.2020.9304678

Hendrikx, R. W. M., Pauwels, P., Torta, E., Bruyninckx, H. J., and van de
Molengraft, M. J. G. (2021). “Connecting semantic building information models
and robotics: an application to 2d lidar-based localization,” in IEEE Intl.
Conf. on Robot. and Autom. (ICRA), 11654–11660. doi:10.1109/ICRA48506.
2021.9561129

Hove, S., and Anda, B. (2005). “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in IEEE Intl. Software
Metrics Symp. (METRICS), Como, Italy, 19-22 September 2005, 10–23.
doi:10.1109/METRICS.2005.24

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-oriented
domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021.

Koenig, N., and Howard, A. (2004). Design and use paradigms for gazebo, an
open-source multi-robot simulator. IEEE/RSJ Intl. Conf. Intell. Robots Syst. (IROS) 3,
2149–2154. doi:10.1109/IROS.2004.1389727

Leblanc, L., Houle, J., and Poulin, P. (2011). Component-basedmodeling of complete
buildings. Graph. Interface 2011, 87–94.

Lopes, R., Tutenel, T., Smelik, R. M., De Kraker, K. J., and Bidarra, R. (2010). “A
constrained growth method for procedural floor plan generation,” in Proc. Of the int.
Conf. Intell. Games simul, 13–20.

Mirahmadi, M., and Shami, A. (2012). A novel algorithm for real-time
procedural generation of building floor plans. arXiv:1211.5842 [Preprint].
doi:10.48550/arXiv.1211.5842

Naik, L., Blumenthal, S., Huebel, N., Bruyninckx, H., and Prassler, E. (2019).
“Semantic mapping extension for OpenStreetMap applied to indoor robot navigation,”
in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20-24 May 2019, 3839–3845. doi:10.1109/ICRA.2019.8793641

Ortega, A.,Hochgeschwender,N., andBerger, T. (2022). “Testing service robots in the
field: an experience report,” in IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS),
Kyoto, Japan, 23-27 October 2022, 165–172. doi:10.1109/IROS47612.2022.9981789

Para, W., Guerrero, P., Kelly, T., Guibas, L. J., and Wonka, P. (2021). “Generative
layout modeling using constraint graphs,” in Proc. of the IEEE/CVF Intl. Conf.
on Computer Vision, Montreal, QC, Canada, 10-17 October 2021, 6690–6700.
doi:10.1109/ICCV48922.2021.00662

Parra, S., Ortega, A., Schneider, S., and Hochgeschwender, N. (2023). “A thousand
worlds: scenery specification and generation for simulation-based testing of mobile
robot navigation stacks,” in IEEE/RSJ Intl. Conf. On intell. Robots and syst. (IROS),
5537–5544. doi:10.1109/IROS55552.2023.10342315

Ren, H., Gao, H., Chen, H., and Liu, G. (2022). “A survey of autonomous
driving scenarios and scenario databases,” in Intl. Conf. on Dependable
Syst. and Their Applications (DSA), Wulumuqi, China, 04-05 August 2022,
754–762. doi:10.1109/DSA56465.2022.00107

Saldaña, J. (2021). The coding manual for qualitative researchers. Coding Man. Qual.
Res., 1–440.

Schneider, S., Hochgeschwender, N., and Bruyninckx, H. (2023). “Domain-
specific languages for kinematic chains and their solver algorithms: lessons learned
for composable models,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA), London, United Kingdom, 29 May 2023 - 02 June,
9104–9110. doi:10.1109/ICRA48891.2023.10160474

Sotiropoulos, T., Waeselynck, H., Guiochet, J., and Ingrand, F. (2017). “Can robot
navigation bugs Be found in simulation? An exploratory study,” in IEEE Intl. Conf. on
Software Quality, Reliability, and Security (QRS), Prague, Czech Republic, 25-29 July
2017, 150–159. doi:10.1109/QRS.2017.25

Tang, S., Zhang, Z., Zhang, Y., Zhou, J., Guo, Y., Liu, S., et al. (2023). A survey
on automated driving system testing: Landscapes and trends. ACM Trans. Softw. Eng.
Methodol. 32, 1–62. doi:10.1145/3579642

Timperley, C. S., Afzal, A., Katz, D. S., Hernandez, J. M., and Le Goues, C. (2018).
Crashing simulated planes is cheap: can simulation detect robotics bugs early? IEEE Intl.
Conf. Softw. Test. Verification Validation (ICST), 331–342. doi:10.1109/ICST.2018.00040

Frontiers in Robotics and AI 18 frontiersin.org85

https://doi.org/10.3389/frobt.2024.1363281
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363281/full#supplementary-material
https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.48550/arXiv.2104.08625
https://doi.org/10.1109/ICST49551.2021.00036
https://doi.org/10.1007/978-3-319-92862-3_1
https://doi.org/10.1007/s00371-015-1102-2
https://doi.org/10.1109/CVPR42600.2020.01264
https://doi.org/10.1016/j.knosys.2016.10.023
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1109/IV47402.2020.9304678
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/ICRA48506.2021.9561129
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.48550/arXiv.1211.5842
https://doi.org/10.1109/ICRA.2019.8793641
https://doi.org/10.1109/IROS47612.2022.9981789
https://doi.org/10.1109/ICCV48922.2021.00662
https://doi.org/10.1109/IROS55552.2023.10342315
https://doi.org/10.1109/DSA56465.2022.00107
https://doi.org/10.1109/ICRA48891.2023.10160474
https://doi.org/10.1109/QRS.2017.25
https://doi.org/10.1145/3579642
https://doi.org/10.1109/ICST.2018.00040
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Technology and Code
PUBLISHED 04 September 2024
DOI 10.3389/frobt.2024.1363041

OPEN ACCESS

EDITED BY

Federico Ciccozzi,
Mälardalen University, Sweden

REVIEWED BY

Cezary Zielinski,
Warsaw University of Technology, Poland
Antonio Cicchetti,
Mälardalen University, Sweden
Muhammad Waseem Anwar,
Mälardalen University, Sweden

*CORRESPONDENCE

Maria I. Artigas,
mariaisabel.artigasalfonso@kuleuven.be

RECEIVED 29 December 2023
ACCEPTED 12 August 2024
PUBLISHED 04 September 2024

CITATION

Artigas MI, Rodrigues RT, Vanderseypen L and
Bruyninckx H (2024) Software patterns and
data structures for the runtime coordination
of robots, with a focus on real-time execution
performance.
Front. Robot. AI 11:1363041.
doi: 10.3389/frobt.2024.1363041

COPYRIGHT

© 2024 Artigas, Rodrigues, Vanderseypen and
Bruyninckx. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Software patterns and data
structures for the runtime
coordination of robots, with a
focus on real-time execution
performance

Maria I. Artigas1,2*, Rômulo T. Rodrigues1,2, Lars Vanderseypen1

and Herman Bruyninckx1,2,3

1Department of Mechanical Engineering, KU Leuven, Leuven, Belgium, 2Flanders Make, Leuven,
Belgium, 3Department of Mechanical Engineering, TU Eindhoven, Eindhoven, Netherlands

This paper introduces software patterns (registration, acquire-release, and cache
awareness) and data structures (Petri net, finite state machine, and protocol flag
array) to support the coordinated execution of software activities (also called
“components” or “agents”). Moreover, it presents and tests an implementation for
Petri nets that supports real-time execution in shared memory for deployment
inside one individual robot and separates event firing and handling, enabling
distributed deployment between multiple robots. Experimental validation of the
introduced patterns and data structures is performed within the context of
activities for task execution, control and perception, and decision making for
an application on coordinated navigation.

KEYWORDS

multi-robot, coordination, Petri net, finite state machine, real-time, shared memory

1 Introduction

Society expects “smarter” robotics technology and “higher performance” of the
applications and systems that are built with it. A major contribution toward realizing
these expectations is improving the capabilities and the predictability of the composition
of robotic components into systems. Coordination plays a major role in achieving this
predictability: a system has several concurrently active components that require access
to “resources” that cannot be shared trivially, such as locations in space or tools and
sensors. Application developersmust translate user requirements into concrete coordination
specifications: when and why each of the components in the system must start or stop
a particular “behavior.” Coordination is triggered by “events” generated by the software
component in the system that has the authority to make such decisions, and it is provided
with the necessary information by all the components that rely on its coordination.
A good (but not necessarily unique) separation of concerns (Dijkstra, 1982) approach
to ensure coordinated resource sharing with predictable performance and acceptable
access policies is to introduce a dedicated coordination software component for each
shared resource. The contributions of this paper are focused on this coordination
design concern.

Frontiers in Robotics and AI 01 frontiersin.org86

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363041
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363041&domain=pdf&date_stamp=2024-08-31
mailto:mariaisabel.artigasalfonso@kuleuven.be
mailto:mariaisabel.artigasalfonso@kuleuven.be
https://doi.org/10.3389/frobt.2024.1363041
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 1
Coordination between concurrently active “agents” in traffic situations, particularly a T-junction. Left: only one “robot” coming from one of the three
roads shall be allowed to access the crossing Cr. Right: our design introduces a mediator software component to realize such coordination problems.
It relies on i) a Petri net as a declarative model of the coordination’s decision making and ii) a protocol between the mediator and each of the
coordinated robots, via which the latter’s own internal decision making is decoupled from that of all other robots.

The left-hand side of Figure 1 shows a simple example of the
role of coordination in multi-robot systems (Section 1.3 provides an
overview of more archetypical coordination-use cases).

• The sketch on the left-hand side represents a “T junction.”
• Robots can come from three different roads, each with the

timing unknown to the other robots.
• The “crossing area” Cr is the “shared resource” that should be

entered by only one robot at a time.

The figure’s right-hand side sketches our software design (which
is described in detail in the later sections of this paper).

• The crossing area gets its own mediator software
component (Gamma et al., 1995). The mediator allows robots
to navigate the crossing area in a coordinated way. The core
data structure of the mediator is a Petri net that represents a
declarative model of the coordination’s decision-making.
• The second software component is a map data structure that

all robots share with the mediator. On that map, they indicate
which area they are currently driving in. These areas are given
numbers 1, 2, and 3 for each of the three roads “R”; “i” and “o”
indicate the “incoming” and “outgoing” lanes.
• The third software component is a protocol data structure

that is accessed in sequence by the mediator and each of
the coordinated robots. The protocol decouples a robot’s own
internal decision making from that of all other robots.

The map is also a shared resource in itself, but its software
design presents a different set of coordination challenges,
which are beyond the scope of this paper; for further
details, refer to Van Baelen et al. (2022).

The following sub-sections introduce and define all the concepts
needed in this paper. Section 2 discusses the previous work on
which this paper is based and other related work. Section 3 describes
the coordination mechanisms introduced in this paper and the
complementary communication and configuration mechanisms

for its integration. Section 4 introduces the implementation and
evaluation of the Petri nets for runtime coordination. Section 5
explains the application of the previously described patterns in a
coordinated navigation case. A secondary demonstration is also
provided. Section 6 concludes the paper with a discussion of the
presented and future work. Supplementary Appendix SA explains
the connection between the coordinating and coordinated activities
via events.

1.1 Component

The terminology “(software) components” has been
interpreted several times over the past decades (Brugali and
Scandurra, 2009; Brugali and Shakhimardanov, 2010), referring
to the software primitive that provides “computational behavior”
to a system. The terminology used in this paper to represent
complementary types of computational behavior is as follows:

• (robot) Component: each piece of software-controlled
hardware that the application identifies as a “robot.” It is
not to be subdivided further hardware-wise and can be
connected to other robot components via mechanical, power,
and information connectors to form a larger “composite” robot
component.
• Computer: the set of CPUs, each with possibly several

computing cores and managed by one operating system. Many
robot components are built with more than one computer.
• Process and thread: the two well-known application-

independent computational primitives under the control of
an operating system.
• Activity: the smallest concurrently running piece of software

that components the need and is deployed in a thread.
Typically, each component requires application-centric
functionalities implemented in a multitude of activities, all

Frontiers in Robotics and AI 02 frontiersin.org87

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

running asynchronously on the same computer or different
computers.
• Algorithm: an activity can execute one or more algorithms

inside, for which it guarantees the synchronous execution
context needed to realize the functionalities (or “behavior”) of
a component. In other words, the activity is responsible for
asynchronous data exchange between activities, making sure
that their algorithms only have to access locally stored data
structures that are, hence, synchronously processed.

One could have given the name software component to what is
called activity above. Because activities are designed to be executed
concurrently, an appropriate set of asynchronous data exchange
mechanisms is needed; thesemechanisms should be shared between
the activities within the same process memory or use one or more
inter-process communication technologies. The challenges of data
consistency between concurrently running activities are to be solved
at the activity level but not at the thread or algorithm levels. The
thread level in a software component design is responsible for
scheduling by the operating system. The process level is responsible
for managing resources shared between all activities within all
process’s threads, such as file descriptors, signal handling, and thread
priorities.

1.2 Coordination

Coordination is all decision making shared between
concurrently executing activities about which of their algorithms
(“behaviors”) must become “(in)active” at each moment in time
in each of the robot components and about how to keep other
robot components informed about which behavior(s) are currently
“(in)active.” A key message of this paper is that all forms of inter-
activity coordination can be realized with the following primitives,
whose “separation of concerns” roles (Dijkstra, 1982) are illustrated
in Figure 1.

• Flag: this represents the “state” of a Boolean condition defined
over a set of parameters in the behavior(s) of an activity. For
example, for mobile robots navigating in the neighborhood
of the crossing in Figure 1, flags can indicate areas in which
each mobile robot finds itself. (The above-mentioned “map”
software component could act as the major source of flag
information and event information introduced below.)
• Event: this represents the change in the Boolean state of a

flag. Because Figure 1 is a static “snapshot” of the status of
the world, it does not show events. They only come in when
the time-varying dynamics of the coordination problem are
considered and they are to be communicated between activities.
• Finite state machine [FSM, Hrúz and Zhou (2007)]: each of the

activities needs to realize a particular behavior in a particular
order. Such an order is represented declaratively by a finite state
machine data structure and behavior:
• Each activity can be “in” one and only one state at a time.
• In each state of the finite state machine, the activity

executes a particular set of algorithms and communicates
a particular set of data structures, including events.
• Transitions between states are triggered by incoming events

or events generated internally in the activity.

• Some of these transitions can also give rise to the firing of
events that must be communicated to other activities.

This description of themechanism of an FSMcorresponds to that
of a Mealy machine (Mealy, 1955), which is formally represented as
a tuple (S, I,O,T ,O), with S representing the finite set of states; I
representing the finite set of input events (or “input symbols”); and
O representing the finite set of output events (or “output symbols”).

• T : the transition function T :S× I→ Smaps the combination of
a state and an input event to a state.
• O: the output function O:S× I→ O maps the combination of

a state and an input event to an output event.

In the actual execution of an FSM, the policy must be added to
select one of the states as the initial state S0.

• Petri net (PN): this is a data structure that keeps track of
the (externally exposed) state of a set of activities that need
to be coordinated in the coordination mediator software
component, as shown in Figure 1. Each of these states fills
a place in the Petri net with a token. (This paper uses
only the simplest form of Petri nets, sometimes called safe
Petri nets (Barylska et al., 2017), in which each place can hold
only zero or one token.) The role of the Petri net is to support
decisions about the coordination between activities and not
about the internal algorithm coordination of one single activity.
Semantically, a Petri net can have more than one of its places
marked at any given time, while a finite state machine can be
in only one of its states at any given time.

This mechanismof a Petri net is formally represented as a
tuple (P,T,M,F), with Prepresenting the finite set of places;
Trepresenting the finite set of transitions(PandTare always disjoint);
Mrepresenting the set of markingsof the Petri net, where each
marking is a mapping M:P× {0,1}, indicating whether a placeis
marked or not, that is, it contains a tokenor not; and Frepresenting
the firing functionsuch that F :P×M→Mremoves the tokensin the
input placesof a transitionwhenever all these placesare markedand
produces a tokenin each of the transition’s output places.

In the actual execution of a Petri net, the policy must be added
to define an initial marking M0.

• Protocol: this represents the order in which a particular subset
of flags is allowed to be set to “true” in the interaction
between the coordination mediator and one of the coordinated
activities. Such an order must be agreed upon in advance by
all activities participating in the coordination mediation to
be able to guarantee temporal constraints between behavior
state changes.

For example, the protocols in Figure 1 show that for each robot,
the sequence of execution is as follows: 1) the robot requests access,
2) the access is approved, and 3) the robot can enter the area.

Note that the “array” used in Figure 1 to represent a protocol is
always finite, and flag entries are entered always from the first entry
on the left. In other words, it is not an endlessly growing “stream” of
flag entries. When the protocol ends, for one reason or another, all
entries are removed so that the next execution of the protocol starts
with an empty array again.

Frontiers in Robotics and AI 03 frontiersin.org88

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

In the simple workspace sharing example in Figure 1, the labeled
circles (called “places”) represent conditions that can be true or false,
and the solid lines (called “transitions”) represent decision making:
if all the input conditions are true, the transition is “fired.” The result
is that the conditions in the input places are put to false again, and
those in the output places become true. The truth values of the
“source” places (i.e., those without input transition) are determined
by the flags in the protocol arrays. Similarly, the truth values of the
“sink” places (i.e., without output transition) determine the value of
the corresponding flags in the protocol.

The ideal lifetime of an event is “zero”: as soon as an event is
fired by an activity, all the activities that need to react to the event
(that is, “to handle” it) will consume the event during their reaction.
The software architecture of such coordinated components must
foresee the communication of events between the firing activity and
each of the handling activities, which is (one of the reasons) why
asynchronous data exchange is needed between these activities.

Figure 1 uses the simplest form of a protocol sequence, namely,
an array; in general, protocols consist of compositions of more
than one such array, representing different allowable “paths” in
the coordination. Note the important difference between the very
narrow and lean semantics of a “protocol” as needed in this paper
and the much wider semantics of “protocol stacks” as used in inter-
process communication (Delanote et al., 2008).

1.3 Archetypical use cases

The following example set of multi-robot applications, with
multi-tasking functionalities for each robot, is representative of the
scope of this paper’s coordination design contributions:

• Workspace sharing. This involves scenarios where multiple
mobile robots (flying, wheeled, and legged) from possibly
different vendors (and hence with independently developed
software capabilities) need to share the same space in
a warehouse or orchard. The same holds for multiple
manipulator arms on conveyor belts or at assembly and
fruit harvesting stations. In addition, both types of robotic
components should also physically interact with each other,
like an assembly robot arm that can take parts from a mobile
robot that brings the parts from storage.
• Execution protocols. For example, robots must register with

the “manager” of a shared resource (charging station, parking
space, inland waterway lock, and gripper on a fruit harvesting
robot) and then follow a protocol coordinated by that manager
every time they want to use that resource. Being able to
coordinate the execution of different robots in a predictable,
agreed-upon way is another necessary (but not sufficient)
condition for sharing physical workspace.
• Task sharing. A typical example is two mobile robots in a

manufacturing cell that coordinate how to share the same
areas during the execution of their tasks, such as driving
the routes through the depicted stations. Other applications
requiring robots to share task executions are include carrying
or pushing a shared load, covering a whole agriculture field or
a surveillance area, closing a control loop around other robots’
sensor capabilities, and platooning in traffic. Task sharing

is the driving end-user pull behind having to spend design
and implementation efforts on all the archetypical challenges
mentioned above.

1.4 Scope

This paper focuses on the software design of the coordination
of runtime decision making, including data structures, policies,
decision-making functionalities, software patterns, and best
practices. An implementation using Petri nets, with the purpose
of being used within these coordination patterns, is explained and
evaluated. As the final validation, the previous patterns are applied
to two coordinated navigation cases.

Subjects outside the scope of this study are the functional
algorithms that define the behavior inside activities, the creation
of maps and Petri nets, the policies behind the reasons why
the application takes these decisions, and the communication
functionalities via which activities exchange the data they need from
each other to realize their functional behavior.

1.5 Contributions

The contributions of the paper are

• The softwaremechanisms of coordination, which encompasses
everything needed to fire and handle events that allow
concurrent activities to coordinate their executions. In
particular, this includes the complementary roles of finite state
machines and Petri nets by introducing two non-traditional
primitives (the protocol array and the event circular buffer)
that help in the separation of concerns (Dijkstra, 1982) of
the mentioned complementary roles within the presented
software design.
• Explicit awareness of the implementation constraints, which

are introduced by the distributed, multi-core computer
infrastructure common in modern robotics applications.
In particular, this includes ensuring event data consistency
between concurrent activities via circular buffers and
optimizing execution efficiency by exploiting data locality and
cache awareness.

2 Related work

The coordination of components is only one of the
necessary “concerns” that large-scale “cyber–physical” systems
must deal with. It fits into the broader context of the “5Cs”
approach of making systems-of-systems software architecture
(Bruyninckx, 2023; Klotzbücher et al., 2012; Radestock and
Eisenbach, 1996; Vanthienen et al., 2014). The five parts of the 5Cs
meta model are

• Computation: the functional behavior inside each activity.
• Communication: the data exchange behavior between

activities.
• Coordination: the decision making behavior in and between

activities.

Frontiers in Robotics and AI 04 frontiersin.org89

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

• Configuration: adapting each activity’s behavior to the
actual context.
• Composition: the integration of the previous four parts at the

“levels” of activity, component, system, and system-of-systems
architecture.

Each of the first four “Cs” can, in itself, be a full or partial
sub-system of the “5Cs”. A very established pattern within the
coordination “C” is that of the life cycle state machine (LCSM),
responsible for the “top-level” coordination inside one single activity:
to create, to start up, to execute, to pause, to reconfigure, and to
shut down activities (and the resources they manage) in predictable
and composable ways. One single robot will have many activities
(sensing, control, worldmodeling, task execution, etc.), each with its
own LCSM, and the focus of this paper is to explain how tomaintain
the coordination between all these LCSMs, which is where the Petri
nets come into play.

Petri nets have been widely used for modeling concurrent
activities/processes (e.g., to analyze the concurrency behavior of
several activities with respect to deadlock analysis or reachability
analysis), and their implementations come in various forms
depending on the use case context in which they are deployed.
The implementation proposed by Davidrajuh (2010) has been
widely used with MATLAB integration for Petri net modeling,
simulation, and performance analysis. In the case of generalized
stochastic Petri nets, the implementation proposed by Dingle et al.
(2009) provides an open-source tool for design and analysis. The
TINA toolbox (Berthomieu et al., 2004) offers a broad set of tools
for the construction and analysis of Petri nets and timed Petri
nets, which has been extensively used in academia. IOPT-Tools
(Pereira et al., 2022; Gomes et al., 2010) provide a framework for
the automatic generation of controller code from a modeled Petri
net. Developments toward the implementation of Petri nets for
microcontrollers have been researched by Kučera et al. (2020),
providing a framework to model timed interpreted Petri nets to be
used in Arduino devices.

While these implementations provide frameworks to work
with Petri nets for different purposes, they are not focused
on optimization for low-latency execution. This focus is a
primary motivator for the research presented in this paper
because modern robotic applications must coordinate several
activities such as control, perception, world modeling, and
task monitoring, many of which expect real-time determinism
(Abdellatif et al., 2013). Piedrafita and Villarroel (2011) analyzed
the execution dynamics of four different Petri net software
implementation techniques, whose performance is evaluated with
the same Petri net models as in this paper.

For robotics applications, Ziparo et al. (2011) used Petri nets
as models for multi-body and multi-robot execution and planning.
Their modeling within a multi-robot context is analyzed by
Costelha and Lima (2007), investigating deadlocks and reachability.
Figat et al. (2017) and Figat and Zieliński (2022) focused on,
respectively, hierarchical finite state machines and Petri nets.
Zhou et al. (2017) used a hierarchical FSM for the control of a
navigation base with a manipulator, where one FSM is embedded
into a higher FSM. Lacerda and Lima (2019) generated Petri nets
for the coordination of a fleet of robots according to the time logic
constraints of the coordinated execution.

3 Methodology

The focus of this paper is on three of the “5Cs”
software concerns:

• Coordination : managing the interactions between a (possible
large) set of concurrently executing activities using flags,
events, finite state machines, and Petri nets as the sufficient
mechanisms.
• Configuration: allowing application developers to steer the

execution efficiency of their applications: 1) the pre-processing
of data structures used by the coordination primitives at
runtime and 2) the event firing and handling mechanisms
that each coordinated activity needs to interact with the
coordinating activity.
• Communication: facilitating the exchange of events between

the finite state machines in the coordinated activities on the
one hand and the coordinating mediator’s Petri net on the
other hand.

In addition to the separation of concerns (Dijkstra, 1982) that
already come with the “5Cs” approach, this paper adds other
separations of concerns pertaining to the design of the inside of
the relevant “5Cs” components. More concretely, the design of the
data structures and operators needed to implement the envisaged
coordination mechanisms.

3.1 Coordination mechanisms

The mechanisms needed for the coordination of activities
are conceptually very simple: flags, events, Petri nets, and finite
state machines (Section 1.2).

A finite state machine (Hrúz and Zhou, 2007; Mealy, 1955)
models the discrete behaviors of one single activity. Its four data
structures are the sets of 1) states that the activity can be in, 2)
transitions that are allowed between states, 3) events that can trigger
transitions, and 4) flags whose status is linked with (a subset of)
the events. The latter is added to the mathematical representation
of an FSM in Section 1.2 to allow the interaction between anFSMand
a Petri net. Its functions are 1) to process the list of available events, 2)
to compute which transition each of those events will trigger (when
processed in order of arrival), and 3) to adapt the above-mentioned
data structures accordingly.

From a software implementation point of view (but not from
a semantics point of view), finite state machines are just a
boundary case of Petri nets: the former has a constraint on
the number of “tokens,” namely, exactly one in the whole set of
“states.” Figure 2 shows an example of the mapping of an FSM to an
equivalent Petri net.

So, this paper focuses on the software design of Petri nets
because that of finite state machines differs only in the configuration
of the resulting library and the naming of the implementation
primitives. A Petri net model shares the four above-mentioned
building blocks with a finite state machine model, but it uses the
following specific terminology: a place that can contain zero or one
token as a marking, a transition, and a directed arc between them.
The constraint on an arc is that its start and end must be either
a place or a transition; in other words, places are only connected

Frontiers in Robotics and AI 05 frontiersin.org90

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 2
A finite state machine and the mapping to its equivalent Petri net. This mapping constrains the Petri net to have only one connector between any
internal place and the transitions connected to that place. All other places map to “sink” or “source” events; the “source” places are denoted with small
letters, and the “sink” places are denoted with capital letters. A similar typographical convention is used for input and output events in the finite
state machine.

to transitions and vice versa. The constraint of a maximum of one
token per place is what Murata (1989) referred to as “finite capacity
nets of capacity one for all places”; other works of literature call
it “safe Petri nets” (Barylska et al., 2017). A transition represents a
coordination point in the Petri net: its input places represent the
conditions to be fulfilled for that synchronization to take place;
and its output places represent the status changes triggered by the
coordination.

In addition to the above-described data structures, the Petri
net mechanism also has some operators (“behavior”) on these data
structures. If each input place of a particular transition has a token,
that transition is enabled, and firing a transition implies that the
tokens in its input places are removed and the tokens in its output
places are filled. The token in the source places is to be filled by
the processing of an event that comes from “somewhere.” Similarly,
removing a token from a sink place gives rise to sending an event
“somewhere.” The links with that “somewhere” are discussed in the
following section on “communication.”

Notably, in Figure 2, the FSM and Petri net represent the same
process; however, throughout the paper, this is not the case. FSMs
are used for the discrete behaviors of single activities, while the Petri
nets are used for the coordination across activities. This means there
is a match among the FSM states of the coordinated activities and
Petri net places of the coordinator; however, they do not present the
same process. The latest is illustrated in Figure 3.

3.2 Communication mechanisms

The finite state machine in each of the coordinated activities
exchanges events with the coordinating mediator’s Petri net
(Figure 3).This is reflected in the structure of the Petri net as follows:

• Some input places of transitions do not have any transitions for
which they are output places, e.g., p1, p3, and p4 in Figure 3;
these are called source places. Source places are filled in by
the arrival of events to the owner of the Petri net activity. In
Figure 3, a token is added to source place p1 when external
event 1 (E1) is processed.

• Similarly, sink places do not have any transitions for which
they are the input places, e.g., P2, P5, and P6 in Figure 3.
Sink places trigger the sending of events from the owner of
the Petri net activity to other connected activities. In Figure 3,
sink place P2 causes the triggering of the internally generated
event 4 (e4).

Source and sink places are the locations where the Petri net is
connected to events from and to the “outside world.” Internal places
are all other places.

The contribution of this paper with respect to communication
pertains to the introduction of the protocol data structure: it
decouples the internals of the finite state machines and Petri nets
from the communication of the information they need for their
coordination.

The protocol contains information regarding which of the
two activities involved in the coordination is expected to set
the next flag in the protocol. This document uses arrays as
protocol data structures since they are the simplest approach
needed to realize the following goal:

• Only those events that a coordinated activity or the
coordinating activity generates or reacts to “end up” in the
protocol data structure. These are the events that need to be
shared between them.
• Theprotocol introduces a hard constraint in the order in which

these events are allowed/expected to be generated; Figure 3
represents this order by the “snake-like” trajectory through
the protocol data structure. In order to guarantee the correct
execution of the coordination, both coordinated parties must
satisfy these hard constraints in the sequence in which the
relevant events are generated or reacted to by the finite state
machine and in which the sink and source places are marked
in the Petri net.

A flag can be set directly by an activity, or it is the result of
processing an event received from that activity. Because of the strict
order brought by the protocol, there is no risk that this asynchronous
access to the data introduces inconsistency.

Frontiers in Robotics and AI 06 frontiersin.org91

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 3
Examples of the three software mechanisms needed in interactivity coordination: A Petri net inside a coordinating activity, a finite state machine inside
each of the coordinated activities, and (an array of) flags for the bookkeeping of which coordination “events” have been communicated between both.
Capital letters are used for output events in the finite state machine and for sink places in the Petri net. The colored lines link events and places to
locations in the protocol array. The “snake-like” trajectory through the array represents the temporal order in which the “communication” takes place
between finite state machine events and the marking of places in the Petri net.

3.3 Configuration mechanisms

This section introduces three software patterns that provide
the mechanisms needed to configure the coordination between
activities. The patterns themselves are not explained in detail
because that part of the authors’ research is beyond the scope
of this document. However, they are in use in the experimental
demonstration in Section 5. Each of these patterns works at a
different time scale in the coordination interaction:

• Semantic registration (“long term”): an activity that needs to
be coordinated is registered (by itself or by a “third party”)
for a particular coordination using a semantic ID. This ID is a
symbolic unique identifier used in a model of the coordination
and, hence, can be retrieved from persistent storage or inter-
process communication.
• Symbol table data structure (“medium term”): it links the

semantic ID symbol to a (possibly variable) number of
“resources” or “components.”The table facilitates the discovery,
communication, execution, and introspection of the “resource”
at runtime, which can also be done by activities that have been
developed independently.
• Acquire–release (“short term”): this pattern structures access to

a shared resource by expecting the resource-using activities to
acquire access from the resource-owning activity and to release
their granted access explicitly.

The registration puts the semantic ID into a table (or a “map”)
with (at least) the following columns:

• The semantic ID.
• The name of the coordinated activity, as used in the source code

of the implementation.
• The binary pointer(s) to the memory where the coordination

data structure(s) are stored.

TABLE 1 Example of a table for registering the access of activities to
shared resources. This particular example uses amutex to coordinate the
access to data structures encoder_t and motor_t, shared by three
activities in a robot, control, proprioception, and drive.

Semantic ID

Datatype Model Pointer Mutex Activity

encoder_t Left 0x0a00 0x0a08 Drive and
proprioception

encoder_t Right 0x0a10 0x0a18 Drive and
proprioception

motor_t Left 0x0a20 0x0a28 Drive and control

motor_t Right 0x0a30 0x0a38 Drive and control

Table 1 shows an example of such a symbol table. The semantic
ID itself has two fields, datatype and model. There can be multiple
semantic IDs with the same model label, but the tuple (datatype,
model) must be unique. Multiple activities can access the same
variables, and coordination is done via mutexes.

The above-mentioned mechanisms are needed for the
following reasons:

• Unambiguous ownership: registration implies that there is a
“shared object” to register to and that the system developers
should make one, and only one, activity the responsible
“owner” of that object. (The “owning” object can be a fully
passive library and need not be an activity in itself.)
• Runtime reconfiguration: because registrations are objects with

a lifetime, they can have a life cycle state machine on their
own. This is important to coordinate the reconfiguration of

Frontiers in Robotics and AI 07 frontiersin.org92

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

the “object” at runtime and between a changing number of
registered activities.

This paper focuses on this short-term time scale, hence, on
a low-latency implementation of the acquire–release protocol. The
“objects” in this paper are coordination objects, specifically Petri
nets, and the scope of the presented research calls for Petri nets to
be created at runtime. For example, in manufacturing or logistics
cases, dozens of shared resources occur, to which, at any time, two,
three, or more robots want access, and those robots can be different
ones every time.

4 Implementation

The focus of the paper is on the software mechanisms that
are used to realize coordination between a (possibly large) set
of concurrently executing activities. The Petri net model plays a
central role within the coordination mechanisms presented in the
last section.Therefore, an implementation with the purpose of multi
activity coordination is presented.

This paper’s design drivers of the implementation of the design
discussed in Section 3 are typical for embedded systems: low-
latency and asynchronicity within a shared memory deployment.
The presented design is not claimed to be efficient for other use
cases, such as the offline analysis of Petri nets in search of deadlocks,
livelocks, starvation, etc.

One implementation decision is easy to make: while finite
state machines and Petri nets are two complementary coordination
mechanisms at the conceptual level, their implementations are
extremely similar; both need “states” and “transitions,” with
incoming “events” as triggers of the evaluation of the mechanism,
as well as the evaluation’s possible outcomes. Figure 2 explains the
direct mapping of a finite state machine into the equivalent Petri
net, so this section restricts itself to the implementation of Petri
nets only.

This summary from previous sections is behind the other
implementation decisions:

• Petri net models are expected to be generated at runtime from
symbolic models. This allows the use of data structures that can
exploit the knowledge of the number of places, transitions, and
events.
• Petri nets are expected to be executed in an event loop of

real-time activities (Samek and Ward, 2006). This allows
a “5Cs” design that pre-empts the execution when a
maximum number of transitions, places, and/or events have
been processed, with a known impact on the latency this
introduces.
• The coordinated activities typically run asynchronously with

the coordinating activity (that is, the one that executes the
Petri net). Hence, measures have to be taken to guarantee
data consistency. This implementation provides two of these
measures: memory barriers with acquire and release semantics
(Standardization committee C and C++, 2017) and circular
buffers for wait-free exchange of events (Desnoyers and
Dagenais, 2012; Varghese and Lauck, 1987).
• The target applications are expected to be always on, so all of

the above-mentioned features must be (re)configurable.

4.1 Data structures

Figure 4 shows the data structures to represent and execute Petri
nets.The data structures abovewill always be accessed synchronously
within only the Petri net executor activity. The efficiency is designed
for the following execution use case:

• Computation of the status changes: the Petri net’s status is
updated as soon as the activity reacts to incoming events.
The events are received asynchronously by the Petri net
executor activity (in the communication part of the activity’s
event loop, Supplementary Appendix SA), and our design uses
circular buffers for this purpose. Circular buffers are also
used inside the synchronous part to encode the “to-do lists”
of places and transitions that need processing based on the
incoming events. The buffers make use of memory barriers (of
the acquire-release type, as provided by the concurrency support
part of the C/C++ standard libraries) in the trade-off between
efficiency of execution and the consistency of data. The latter is
a concern to be dealt with by the application developers and is
introduced by out-of-order execution optimizations in modern
compilers and CPUs.
• Data locality: the data structures needed in nearby

moments in the computations are stored in nearby bytes in
physical memory. So, cache coherence is optimized in two
complementary ways:
• Minimally sized data structures to keep their status. For

example, when there are N places, one needs only M 8-
bit bytes, where 8×M is the smallest number larger than
N. For example, when there are less than 255 places in a
Petri net, one char is enough. Such low numbers are not
exceptional in the use cases of this paper because access
coordination is almost always very local and between a low
number of coordinated activities.
• All data structures are arrays of the same type.This reduces

the need for padding between non-homogeneous parts in
the data structures and, hence, indirectly their size as well.
• The individual data structures are all cache line aligned to

avoid cache trashing.
• Arrays instead of linked lists: the semantic IDs of the

representation of places, transitions, and events are
mapped to unsigned integers ranging from 0 to an a priori
known integer value N. These integers can then also serve
as indices in arrays so that the inefficient search through
lists is replaced by efficient direct access into the arrays.

This section uses teletype font, like this, to represent
data structures and operations that are used in the software
implementation of this paper’s concepts. The following data
structures represent the structure of a Petri net (Figure 4, left):

• place_to_transitions: this is a map (or symbol table or
associative array, Section 3.3) to quickly find the output
transitions of a place with a given ID. It contains i) pointers
bi in an array place_to_transitions_pointer to the binary
representation of the transition with a given ID and ii) an
array place_to_transitions_number containing the number of
transitions for the referenced place.

Frontiers in Robotics and AI 08 frontiersin.org93

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 4
Overview of the data structures used in this paper’s implementation of Petri nets. Left: to represent a Petri net. Right: to execute a Petri net. Both sets
can be (re)configured at compilation time or runtime.

• transition_input_place and transition_output_place: similar
to place_to_transition, these maps allow quick access to the
output and input places of a given transition.
• sink_places: an array of bits in which each bit represents

whether the place is a sink. There is no need to encode
whether a place is a source or an internal place as their
behavior does not impact the synchronous execution of the
Petri net.

The following data structures represent the synchronous
execution status of a Petri net (Figure 4, right):

• marking: similar to sink_places, this bit array encodes
which places are marked and are, hence, candidates to be
processed next.
• places_to_process: this circular buffer (fully inside the

synchronous context of the coordinating activity) represents
the to-do list of the IDs of places that must still be inspected
to detect enabled transitions. In addition, the size of this array
can be kept minimal, given the knowledge of the number of
places. It also does not make sense to put one particular place
more than once on this to-do list.
• places_to_skip: this circular buffer represents the list of

the IDs of places that still have to be processed, but
whose processing has been postponed until the next run
of the event loop. Because of the event loop context and
the deterministic low-latency driver, the system developers
can decide to limit the number of places on the to-do
list that will be processed in each run of the event loop
and the number of times such processing is done. This
approach provides a configurable trade-off between reactivity
and deterministic execution time via the configuration
variables below.
• is_place_already_in_buffer: these bit arrays remember

whether a place is already being checked to avoid the repetition
of processing within the same execution loop.

• marking_history: this array of L unsigned integers contains
counters indicating how many times each place in the Petri net
has been processed during this event loop execution.
• max_number_of_loops: this defines the maximum number of

times a place can be processed per event loop execution before
loop’s execution is preempted.
• transitions_to_fire and is_transition_already_in_buffer: these

serve similar functions to places_to_process and is_place_
already_in_buffer but are used for processing of transitions
instead of places.

In order to reduce the cache missing latency when accessing
all these data structures, they should be aligned on cache lines,
including padding the last needed cache line with empty bytes.

4.2 Discussion

The presented design aims to improve execution latency at the
cost of some extra memory in the data structures:

• The data structures place_to_transition and transition_input_
place both encode the connection of outgoing arcs from places
to transitions of the Petri net. This redundancy in memory
allows faster lookups in the Petri net execution loop.
• The IDs to process in the circular buffers transitions_to_

fire and places_to_fire correspond one-on-one to the flags
marked in the status buffers is_place_already_in_buffer and
is_transition_already_in_buffer. Every time a new entry is
added to the circular buffers, it is also added to the status
buffers. This is, strictly speaking, redundant information, but
this redundancy yields fast verification of what is already in the
to-do lists, hence avoiding repeated processing of the samedata.
• A similarmotivation is behind the design of the data structures

sink_to_events and sink_index, which also contain redundant
information about the mapping from place ID to sink ID.

Frontiers in Robotics and AI 09 frontiersin.org94

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

Installation instructions, examples, and the code for the
implementation of Petri nets explained in this paper are available
in1.

4.3 Results for generation and execution
performance

To evaluate the execution time of the previous Petri net
implementation, five Petri net models presented by Piedrafita and
Villarroel (2011) have been built in the library. The range for scaling
the size of the Petri nets is taken from the same reference. The Petri
net models built were as follows:

• SEQ: Petri nets of p sequential processes.
• PR1: Petri nets of p sequential processes with two states and

one shared resource.
• P1R: Petri nets of one sequential process with p resources.
• PH: Petri net of the philosophers’ problemwith p philosophers.
• SQUARE: Petri nets of p sequential processes with p-1

resources.

Within this context, two tests were performed: 1) performance
test with immediate firing of one transition; in this case, the
execution time of 2,000 triggered transitions is measured. 2) Test
with immediate firing of all transitions in the net; this type of test
is expected as it marks the maximum reaction time for the complete
evaluation of the Petri net. In the latest test, all the transitions of the
Petri net will be enabled and triggered in each loop as the Petri net
is saturated. The execution time is measured for 2,000 loops for each
Petri net. The tests have been run on an HP ZBook Firefly 14 G7
Mobile Workstation.

The X-axis in Figures 5, 6 marks the computation time, while
the Y-axis is the scaling parameter, which denotes the number of
sub nets in the Petri net [as described by Piedrafita and Villarroel
(2011)]. Figure 5 (left) presents the generation time for the Petri
nets.The generation time comprises bothmemory allocation for the
data structures in Figure 4 and its initialization. For the Petri net
models SEQ, PR1, PH, and P1R, the allocation time is dominant over
the initialization time, making the generation time stable within the
order of nets tested. In the case of SQUARE, as the size of the net
scales quadratically, the initialization time dominates.

Figure 5 (right) shows the performance of the execution of firing
one transition per Petri net evaluation. In the case of SEQ, PR1,
PH, and P1R, the execution time does not escalate with size, as
the number of filled outgoing places from transitions is constant.
In the case of SQUARE Petri nets, as the scale factor increases, the
number of places to be filled after triggering a transition increases
proportionally. Figure 6 shows the execution of saturated Petri nets.
The execution time grows linearly for the Petri netmodels SEQ, PR1,
PH, and P1R. This is expected because the number of evaluations is
proportional to the number of places in the net.With the same logic,
the time for the SQUARE Petri nets grows quadratically with respect
to the scale parameter.

As the Petri nets are saturated in the second
set of tests (Figure 6), the time in the graphs is taken as an upper

1 https://gitlab.kuleuven.be/u0141779/coordination_library.git

bound for the processing time of the Petri net. For instance,
a sequential Petri net with 20 processes can take up to 722 ns
(1.44 ms/2,000) in the case of all processes coordinated from
a mediator.

5 Experimental validation

The design and best practices proposed in this article
were applied in an experimental setup with two autonomous
mobile robots (AMRs) operating in an area with a pre-
defined traffic layout. The demonstration case is an artificial
scenario of an emergency AMR entering an area with an AMR
operating at a lower speed. According to the situation, the
slower robot has to reconfigure its execution at discrete and
continuous levels in order to let the emergency AMR overtake.
Moreover, for the coordination in the shared area, a mediator
is introduced to ensure the execution of the synchronization of
the AMRs.

5.1 Robot setup

Figure 7 shows one of the identical mobile platforms and
the 5C activity components running on the onboard computer.
Each platform is equipped with an active KELO drive 100,
a Hokuyo URG-04LX LiDAR Sensor, and an ODROID XU4
Embedded Computer. In each robot, the following activities
are running:

• Mobile platform drive: this receives sensor data and transmits
wheel setpoints via EtherCAT to the KELO wheel drive.
• Proprioception: this estimates the relative motion of the vehicle

using wheel encoders (dead-reckoning).
• LiDAR: this captures range data via a serial interface from the

Hokuyo URG-04LX.
• Navigation: this detects and tracks features in the environment

(perception) and computes the steering and forward speed
commands to perform a desired maneuver (control).
• Adaptive free-space motion tube: this evaluates and

adapts the control commands provided by the navigation
activity to ensure that the vehicle moves within the
free-space.
• Control: this transform control commands (steering and

speed) to KELO wheel setpoints.
• Communication: exchanges data with other processes.

These seven activities are registered in five threads (represented
in different colors in Figure 7) running at different frequencies.
The five threads run in a single multi-threaded process, which
allows for efficient in-memory data exchange among the different
components. Figure 7 shows some examples of data shared
between the activities in colored circles. For that, the variables
(objects) need to be first registered in the symbol table with
a semantic ID (name and datatype) by the activity owning
the resource, e.g., “LiDAR measurements,” range_scan_t is
registered by the LiDAR activity. For access to a shared variable,
first, an activity requests the data pointers corresponding to a
particular semantic ID (configuration) from the symbol table.

Frontiers in Robotics and AI 10 frontiersin.org95

https://doi.org/10.3389/frobt.2024.1363041
https://gitlab.kuleuven.be/u0141779/coordination_library.git
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 5
Generation (left) and execution (right) time results for different Petri net models. Execution time refers to transition triggering in the net 2,000 times.

FIGURE 6
Time results for different Petri net design executions. Execution of all transitions enabled in the net 2,000 times.

FIGURE 7
Mobile platform, hardware view (left), and thread and activities running on the onboard computer (right). Activities running in the same process
exchange data via shared memory. Some of the data chunks accessed via shared memory are illustrated in small colored circles.

Frontiers in Robotics and AI 11 frontiersin.org96

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 8
Illustration of the control and perception layers of the semantic map designed for the experimental validation. These layers encode the expected
control and perception behaviors of the robot within a particular area. Both layers have several monitors associated with them for triggering the
coordination mechanism and reconfiguring the schedule of the navigation activity of the platforms.

After that, it can read the values (using acquire/release) directly
from the memory without going through the symbol table
(communication).

The traffic layout consists of semantic areas that are anchored
in environmental features perceived by the robot (corridor and
dead-ends). Figure 8 shows the control and perception layers of
the semantic map. A solid black box around the map indicates
solid walls detected by the LiDAR, while dashed black lines limit
semantic areas in each of the layers. The control layer indicates
the maneuver that a robot is expected to perform: move forward,
make a U-turn, or stop. It also encodes constraints such as limits
for driving velocity and deviation from the lane. The perception
layer shows the feature that the robot has to track in different
colored rectangles labeled as “A,” “B,” and “C.” For example, in area
“A” (green), the robot resorts to a corridor detection and tracking
algorithm for estimating its relative orientation and lateral position
with respect to the corridor. In area “C” (yellow), the robot also
tracks its relative longitudinal position with respect to the end of
the solid wall at the end of the lane. The reason for the different
perception behaviors is due to the finite range of the sensor, which
is limited by rmax. The robot does not continuously search for the
solid wall at the end of the lane but only when it reaches area
“B” (blue).

The schedule of the navigation activity links together perception,
control, and monitoring algorithms in the form of a skill. The
schedule of the activity changes at runtime according to the
situation due to coordination and (re)configuration. For example,
the robot starts in a known location of area “A” and moves
around the circuit. A monitor that uses the information provided
by dead-reckoning detects that the robot has reached area “B.”
The schedule of the navigation activity changes: the algorithm
for detecting the end of the lane is added to the schedule,
along with a monitor that checks whether the quality of the
estimation is stable. When the estimation is stable, the schedule
of the navigation activity changes once again by adding (end-
of-lane controller) and removing (corridor controller) algorithms
accordingly.

5.2 Coordinator setup

For coordination purposes in the semantic area, an area
manager is introduced for registering robots in an area and sending
events to the robots when necessary. These events will trigger the
(re)configuration of the schedule of the robots. The area manager is
amulti-threaded process running on a different computer. It has two
activities composed according to the 5C paradigm:

• Area management: this keeps track of the coordination state of
the area and coordinates the robots if required.
• Communication: this binds and starts the communication with

the robots. It is connected through shared memory to the area
management activity. It shares a queue with the updates (task
progress monitoring) from the robot and sends commands
(tasks) from the area management activity in its event loop.

In this experiment, the execution of commands from both
robots is not coupled, meaning that the autonomous execution of
each robot does not implicitly change according to other robots in
the area. Instead, the area manager works as a mediator between the
two robots, coordinating them.

• The area manager makes the decisions on the interaction
behavior: the interaction of the baseswith their shared resource
(space) is set by the mediator, giving access to the areas it
manages through events.
• The area manager decouples execution: the area manager is

the only “agent” aware of the complete state of the coordinated
execution at the discrete level by keeping the execution state in
a Petri net.
• The area manager allows execution when the robots have

incomplete information of the environment: the robots do not
detect each other in the experimental setup proposed, which
means that the mediator is required to allow the execution in
shared spaces without disruption.

There are two acquire–release protocols between the area
manager and AMRs. One of which is from the robot to the area

Frontiers in Robotics and AI 12 frontiersin.org97

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 9
Finite state machine of AMRs and navigation map. The states in the finite state machine denote the traversal of the numbered areas according to
directional arrows in the map. For example, state 1 would be the navigation in area 1. The input events (light green, at the left-hand side of the slash)
among states come from either the navigation or communication activity (from the area manager). The output events (dark green, at the right-hand
side of the slash) are triggered by the navigation activity.

manager to access the area. When the robot is navigating toward a
local area, it has to request access to the area manager. When access
is granted, the semantic ID of the robot and its role (normal or
emergency robot) are registered in the list of robots coordinated by
the areamanager.This list contains the robots that “own” the area (as
a passive resource) at a given time.

The area management activity coordinates the interaction of the
robots in the area via the following components:

• Area state: the record of the robots that have requested entering
an area and releasing an area. In case two robots declare they
need to enter the same area, the area management activity
sends control requests to the robots.
• Petri net state: when coordination among the robots in the area

is required, a Petri net model with the coordination in the area
gets initialized. On top of the coordinated states in the Petri
net, configuration parameters can be added.

When coordination is needed among the robots in a given
area, a second acquire–release interaction is established. The area
management activity “acquires” the discrete control of the AMRs
and releases it when the coordination is over. This means that,
while the robot normally coordinates itself by executing the skills
in its FSM depicted in Figure 9, when coordination happens, this is
not the case anymore. When coordinated, the management activity
takes control of the AMR at the discrete level via the coordination
Petri net (Figure 10), with its connected protocols that trigger the
sending of events to the AMRs. While the FSM in the robot is
still tracking the execution of the robot, it does not trigger the
maneuvers. When the coordinated execution is finished, the area
management activity releases the AMR execution with a last shared
event and deletes the coordination.

The Petri net used in the demonstration is depicted in Figure 10.
The color legend of the image explains the ownership of the
places, meaning which activity has control over the events to set
the marking in the place. The white places are internal places
of the Petri net, which denote the state of the AMRs in the
execution. The dark places are source places, which are filled in
by the coordinating activity once the corresponding event arrives
from the AMRs. The light places are sink places to be filled
in by the Petri net execution, triggering the sending of events
to the AMRs.

For example, Figure 10 shows a case of the sink place “Rae1,”
to which only the area manager has writing access. Its marking is
filled in by the triggering of the Petri net. When the place “Rae1”
gets a token, the connected flag “e1” in the protocol with the
communication activity is raised. When the flag “e1” is raised, an
event is sent to the emergency AMR, which indicates it may enter
“Area 1.”

A case of the source place is “Radone1.” The communication
with the emergencyAMRhas writing access right to the flag “done1”
in the protocol, and the area manager activity reads this flag. When
the event arrives from the communication activity connected to the
emergency AMR, the flag “done1” is raised. Once the flag “done1” is
read by the area manager activity, the place “Radone1” gets a token,
and the outgoing transitions can be evaluated to continue with the
coordinated execution.

The processing of incoming and outgoing events according
to the sources and sinks in the coordination structure of the
Petri net in Figure 10 allows the execution of the coordinated
motions of the robots without disruption. Moreover, apart from the
sink and source places, the internal places are added to denote the
concurrent state of different activities in the coordination.

5.3 Execution of experimental
demonstration

The management activity remains idle after initialization until
two robots are passed to it (along with a communication channel
to them). The robots are passed according to their roles in the
coordination: normal robot or emergency robot. The emergency
robot has priority over the normal robot. The initial state of
each robot is informed to the Petri net, which translates to the
initial marking.

Once the coordination is properly configured, the event loop of
the management activity starts. In the event loop, the management
activity processes the messages coming from the AMRs, updating
them on the execution progress with respect to the skill they are
performing. The activity updates the marking of the coordination
Petri net when the events of finished skills are received. After the
marking of the Petri net is updated from all robots, the Petri net is
triggered. In the case that all the places of a transition have a token,

Frontiers in Robotics and AI 13 frontiersin.org98

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

FIGURE 10
Petri net and protocols used for coordinating the normal AMR and the emergency AMR in the demonstration. The color legend shows the reading and
writing “rights” for the flags in the protocols. The execution of the coordination at the discrete level according to the coordination in the Petri net: 1)
normal AMR crosses area 1. 2) Wait until normal AMR crosses. 3) Emergency AMR is allowed to start its execution in area 1, while normal AMR gets the
signal to go to the padding area with higher speed. 4) Wait for normal AMR to be out in area 5 and emergency AMR finishes in area 1. 5) Normal AMR is
in padding area while emergency AMR crosses area 2. 6) Wait for emergency to be done in area 2. 7) Emergency AMR can start crossing area 3, and it is
released from the coordination. 8) Wait for the normal AMR to go out of the padding area. 9) Normal AMR can start crossing area 3, and it is released
from the coordination.

themarking of the Petri net is updated.The updatedmarking is then
passed to the communication modules to send the events coming
from the Petri net to the robots.

The area manager is the only activity aware of the coordinated
execution but is not responsible for configuring the schedule being
executed in the coordinated robots. The change in configuration
(e.g., of the normal robot when the emergency AMR is behind) is
achieved via events that are sent from the areamanager to the robots
via the communication channel. These events lead to a change in
the configuration of the robots, e.g., emergency AMR needs to slow
down because the normal robot is still ahead or the normal robot
has to drive to area 5 and wait there.

Once the coordination has finished (the emergency has
overtaken the normal robot), the area manager gives back control
to the AMRs because there is no need for mediation. Both
robots continue their autonomous execution with their initial
configuration.

5.4 Secondary demonstration: area
manager for heterogeneous AMRs

The same area manager as in the previous experiment
was deployed in a setup with three heterogeneous AMRs. The
demonstration case is the access area to docking stations in a
warehouse. In this application, coordination is needed tomediate the
access to an area that can be used as two lanes by two small AMRs or
one lane for a big AMR.The execution of the coordinated robots and
the Petri net used can be seen in one of the videos in the multimedia
part of this paper.

6 Discussion

The paper’s focus is on the efficient implementation of runtime
coordination needs in multi-robot applications. Most of the
efficiency comes from knowing in advance (the sizes and types) of
all data structures because that knowledge allows making the most
cache-efficient and data locality-driven implementations: (almost)
linear-time indexing of data pointers, optimal cache alignment,
known maximum usage in both time and space, etc. These
efficiencies are typically only possible and useful in embedded and/or
real-time software systems. Single producer, single consumer event
queues, and to-do lists are common practices in this context because
it is normal “to know everything” about such systems.

This section discusses implementation decisions that system
developers have to be aware of to make the best use of the
presented design:

• Semantic registration of all primitives involved (activities, Petri
nets, etc.): while all data structures and operators presented
in this paper can be implemented manually from scratch,
they are also designed to allow an even partial and gradual
development path toward more code generation, from models
of the coordination mechanisms to executable code. It is
important to consider the most advanced version in the
applications, i.e., the version in which these models are
“downloaded” or “adapted” at runtime and updated code is
generated by a running system itself.
• Symbol tables for data sharing: they facilitate data sharing

among activities running concurrently. This not only helps
the above-mentioned code generation but is also useful

Frontiers in Robotics and AI 14 frontiersin.org99

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

in allowing “browsing” or “introspection” of a running
application: the symbolic names can then be used to navigate
from “component” to “component” and inspect and/or adapt
the local values in these components.
• Acquire–release pattern: this pattern is used for acquiring

access to write and read the variables kept in the symbol table.
At the deepest level of detail, the presented implementation
already uses this pattern via the acquire and release semantics
of memory barriers. However, a similar approach can be used
at all higher levels of detail, such as to connect two robots to
a third one at runtime, where the latter is responsible for the
coordination of the unique access to one of its resources by the
former two robots. For example, the third robot could let the
first robot use its pan-tilt camera.
• ThePetri net and finite statemachine data structures need only

to be known at the time of runtime software configuration (that
is, not necessarily at compile time or even deployment time)
because memory allocation can be postponed until just before
the data structures are used. A memory pool approach is also
a good fit.
• “Best” design of the monitors. Coordination is, by nature,

a reactive behavior triggered by events that represent
that “something has happened.” Hence, the efficiency and
correctness of the coordination tasks in an application are
not only realized by the efficiency and correctness of the
coordination mechanisms presented in this paper but also
by the “appropriate” design of the monitors that are needed to
generate the events by monitoring Boolean combinations of
status variables that can be spread over several components
of the application. Similarly, the events generated by the
coordination mechanisms must still be reacted to in an
“appropriate” way via decision-making functions in the
relevant system components.
• Simultaneous events. The application context of this paper

is that of concurrent activities, each of which can generate
multiple events and is expected to react to multiple events.
No software design is known to guarantee that the order in
which events end up in each activity’s event queue is the same
temporal order in which these events were generated. Hence,
the system architects have the responsibility to introduce
coordination logic (in FSMs, Petri nets, and protocols) that
is “appropriately” robust against such order “inversions.” To
the best of the authors’ knowledge, the scientific foundations
to generate such robust coordination logic are still to be
discovered.
• Errors in coordination logic. Even a perfect software

implementation of the mechanisms in this paper cannot
guarantee that there are no errors in the coordination logic
of the application, possibly leading to deadlocks or livelocks in
the overall system.

For example, a robot might attempt to enter an area to which it
has not yet been granted access to, or it might try to enter another
area. System designs can be made more robust by introducing
extra monitor activities to detect deadlocks or livelocks when the
coordinated activities have not foreseen thismonitoring themselves.

• Hierarchy in coordination. The coordination examples
presented in this paper are “flat”: there is one Petri net layer

added to the robots’ individual task controllers. This hides the
implicit assumption that the coordinated robots collaborate
only with the coordinating activity and that the actions that
Petri net decides about have no “competition” of decisions
made elsewhere. The authors believe that solutions to these
problems are not to be found in extra software primitives but
in using the presented ones in non-flat, application-specific
“coordination hierarchies.”

One reason for introducing such “non-flat” coordination is
to address the coordination logic errors of the previous item.
In addition to the deadlock/livelock monitors mentioned above,
system designs can be made more robust by introducing pre-
emption: the Petri net and/or finite state machines are extended
with places/states that represent a phase in the coordination where
that coordination can be pre-empted. In any case, such pre-
emption needs coordination itself because all coordinated activities
must somehow be brought back into a known and consistent
interaction state.

This “hierarchical coordination” topic is beyond the scope of
this paper.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

Author contributions

MA: conceptualization, investigation, methodology, software,
validation, writing–original draft, and writing–review and
editing. RR: conceptualization, methodology, software, validation,
writing–original draft, and writing–review and editing. LV:
software, writing–original draft, and writing–review and editing.
HB: conceptualization, methodology, writing–original draft, and
writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the Flanders Make projects AssemblyRecon
(“Decision Framework for Assembly System Reconfiguration”),
HySLAM (“A Hybrid SLAM approach for autonomous mobile
systems”), and CTO action on Cooperative motions and by the
European Horizon 2020 project RobMoSys (“Composable Models
and Software for Robotic Systems”) under grant agreement
No. 732410.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

Frontiers in Robotics and AI 15 frontiersin.org100

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Artigas et al. 10.3389/frobt.2024.1363041

that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors, and the reviewers. Any product that may

be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363041/full#supplementary-material

References

Abdellatif, T., Combaz, J., and Sifakis, J. (2013). Rigorous implementation of real-
time systems—from theory to application. Math. Struct. Comput. Sci. 23, 882–914.
doi:10.1017/s096012951200028x

Barylska, K., Best, E., Schlachter, U., and Spreckels, V. (2017). Properties of plain,
pure, and safe Petri nets. Trans. Petri Nets Other Models concurrecncy. Vol 10470 Lect.
notes Comput. Sci., 1–18. doi:10.1007/978-3-662-55862-1_1

Berthomieu, B., Ribet, P.-O., and Vernadat, F. (2004). The tool tina–construction of
abstract state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42, 2741–2756.
doi:10.1080/00207540412331312688

Brugali, D., and Scandurra, P. (2009). Component-based robotic engineering (Part I)
[Tutorial]. IEEE Robotics Automation Mag. 16, 84–96. doi:10.1109/MRA.2009.934837

Brugali, D., and Shakhimardanov, A. (2010). Component-based robotic engineering
(Part II). IEEE Robotics Automation Mag. 17, 100–112. doi:10.1109/MRA.2010.935798

Bruyninckx, H. (2023). Building blocks for complicated and situational aware robotic
and cyber-physical systems. KU Leuven: Department of Mechanical Engineering.

Costelha, H., and Lima, P. (2007). “Modelling, analysis and execution of robotic
tasks using petri nets,” in 2007 IEEE/RSJ international conference on intelligent
robots and systems, San Diego, CA, October 29–Novamber 02, 2007 (IEEE),
1449–1454.

Davidrajuh, R. (2010). Gpensim: a new Petri Net simulator (InTech).

Delanote, D., Van Baelen, S., Joosen, W., and Berbers, Y. (2008). “Using AADL to
model a protocol stack,” in IEEE international conference on engineering of complex
computer systems, 277–281.

Desnoyers, M., and Dagenais, M. R. (2012). Lockless multi-core high-throughput
buffering scheme for kernel tracing. ACM SIGOPS Oper. Syst. Rev. 46, 65–81.
doi:10.1145/2421648.2421659

Dijkstra, E. W. (1982). “On the role of scientific thought,” in Selected writings on
computing: a personal perspective (Springer-Verlag), 60–66.

Dingle, N. J., Knottenbelt, W. J., and Suto, T. (2009). Pipe2: a tool for the performance
evaluation of generalised stochastic Petri nets. SIGMETRICS Perform. Eval. Rev. 36,
34–39. doi:10.1145/1530873.1530881

Figat, M., and Zieliński, C. (2022). Parameterised robotic system meta-
model expressed by hierarchical Petri nets. Robotics Aut. Syst. 150, 103987.
doi:10.1016/j.robot.2021.103987

Figat, M., Zieliński, C., and Hexel, R. (2017). “FSM based specification of robot
control system activities,” in 2017 11th international workshop on robot motion and
control RoMoCo (IEEE), 193–198.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements
of reusable object-oriented software

Gomes, L., Rebelo, R., Barros, J. P., Costa, A., and Pais, R. (2010). “From Petri
net models to C implementation of digital controllers,” in 2010 IEEE international
Symposium on industrial electronics (IEEE), 3057–3062.

Hrúz, B., and Zhou, M. (2007). Modeling and control of discrete-event dynamic
systems: with Petri Nets and other tools. Springer.

Klotzbücher, M., Biggs, G., and Bruyninckx, H. (2012). “Pure coordination using the
Coordinator–Configurator pattern,” in Proceedings of the 3rd international workshop on
domain-specific languages and models for robotic systems, 1–4.

Kučera, E., Haffner, O., Drahoš, P., Leskovskỳ, R., and Cigánek, J. (2020).
PetriNet editor+ PetriNet engine: new software tool for modelling and control of
discrete event systems using Petri nets and code generation. Appl. Sci. 10, 7662.
doi:10.3390/app10217662

Lacerda, B., and Lima, P. U. (2019). Petri net based multi-robot task
coordination from temporal logic specifications. Robotics Aut. Syst. 122, 1–13.
doi:10.1016/j.robot.2019.103289

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34, 1045–1079. doi:10.1002/j.1538-7305.1955.tb03788.x

Murata, T. (1989). Petri nets: properties, analysis and applications. Proc. IEEE 77,
541–580. doi:10.1109/5.24143

Pereira, F., Moutinho, F., Costa, A., Barros, J.-P., Campos-Rebelo, R., and Gomes,
L. (2022). “Iopt-tools–from executable models to automatic code generation for
embedded controllers development,” in International conference on applications and
theory of Petri nets and concurrency (Springer), 127–138.

Piedrafita, R., and Villarroel, J. L. (2011). Performance evaluation of Petri nets
centralized implementation. the execution time controller. Discrete Event Dyn. Syst. 21,
139–169. doi:10.1007/s10626-010-0090-7

Radestock, M., and Eisenbach, S. (1996). “Coordination in evolving systems,” in
Trends in distributed systems. CORBA and beyond (Springer-Verlag), 162–176.

Samek, M., and Ward, R. (2006). Build a super simple tasker. Embed. Syst. Des. 19,
18–37.

Standardization committee C and C++ (2017). Memory barriers in the C standard.
CPP Reference.com.

Van Baelen, S., Peeters, G., Bruyninckx, H., Pilozzi, P., and Slaets, P. (2022).
Dynamic semantic world models and increased situational awareness for highly
automated inland waterway transport. Front. Robotics AI 8, 739062–739071.
doi:10.3389/frobt.2021.739062

Vanthienen, D., Klotzbücher, M., and Bruyninckx, H. (2014). The 5C-based
architectural Composition Pattern: lessons learned from re-developing the iTaSC
framework for constraint-based robot programming. J. Softw. Eng. Robotics 5, 17–35.
doi:10.6092/JOSER_2014_05_01_p17

Varghese, G., and Lauck, A. (1987). “Hashed and hierarchical timing wheels: data
structures for the efficient implementation of a timer facility,” in Proceedings of the
eleventh ACM symposium on operating systems principles, 25–38.

Zhou, H., Min, H., Lin, Y., and Zhang, S. (2017). “A robot architecture of hierarchical
finite state machine for autonomous mobile manipulator,” in Intelligent robotics and
applications: 10th international conference, ICIRA 2017, wuhan, China, august 16–18,
2017, proceedings, Part III 10 (Springer), 425–436.

Ziparo, V. A., Iocchi, L., Lima, P. U., Nardi, D., and Palamara, P. F. (2011). Petri net
plans: a framework for collaboration and coordination in multi-robot systems. Aut.
Agents Multi-Agent Syst. 23, 344–383. doi:10.1007/s10458-010-9146-1

Frontiers in Robotics and AI 16 frontiersin.org101

https://doi.org/10.3389/frobt.2024.1363041
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363041/full#supplementary-material
https://doi.org/10.1017/s096012951200028x
https://doi.org/10.1007/978-3-662-55862-1_1
https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1109/MRA.2009.934837
https://doi.org/10.1109/MRA.2010.935798
https://doi.org/10.1145/2421648.2421659
https://doi.org/10.1145/1530873.1530881
https://doi.org/10.1016/j.robot.2021.103987
https://doi.org/10.3390/app10217662
https://doi.org/10.1016/j.robot.2019.103289
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/s10626-010-0090-7
https://doi.org/10.3389/frobt.2021.739062
https://doi.org/10.6092/JOSER_2014_05_01_p17
https://doi.org/10.1007/s10458-010-9146-1
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 03 October 2024
DOI 10.3389/frobt.2024.1346580

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Jonathan M. Aitken,
The University of Sheffield, United Kingdom
Luciana Rebelo,
Gran Sasso Science Institute, Italy
Miguel Campusano,
University of Southern Denmark, Denmark

*CORRESPONDENCE

Marcela G. dos Santos,
marcela.santos1@uqac.ca

RECEIVED 29 November 2023
ACCEPTED 28 August 2024
PUBLISHED 03 October 2024

CITATION

dos Santos MG, Hallé S, Petrillo F and
Guéhéneuc Y-G (2024) AAT4IRS: automated
acceptance testing for industrial robotic
systems.
Front. Robot. AI 11:1346580.
doi: 10.3389/frobt.2024.1346580

COPYRIGHT

© 2024 dos Santos, Hallé, Petrillo and
Guéhéneuc. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

AAT4IRS: automated acceptance
testing for industrial robotic
systems

Marcela G. dos Santos1*, Sylvain Hallé1, Fabio Petrillo2 and
Yann-Gaël Guéhéneuc3

1Départment d’Informatique et Mathématique, Université du Québec à Chicoutimi, Chicoutimi, QC,
Canada, 2Département de génie logiciel et TI, École de Technologie Supérieure (ÉTS), Montréal, QC,
Canada, 3Department of Computer Science and Software Engineering, Concordia University,
Montréal, QC, Canada

Industrial robotic systems (IRS) consist of industrial robots that automate
industrial processes. They accurately perform repetitive tasks, replacing or
assisting with dangerous jobs like assembly in the automotive and chemical
industries. Failures in these systems can be catastrophic, so it is important to
ensure their quality and safety before using them. One way to do this is by
applying a software testing process to find faults before they become failures.
However, software testing in industrial robotic systems has some challenges.
These include differences in perspectives on software testing from people
with diverse backgrounds, coordinating and collaborating with diverse teams,
and performing software testing within the complex integration inherent in
industrial environments. In traditional systems, a well-known development
process uses simple, structured sentences in English to facilitate communication
between project team members and business stakeholders. This process is
called behavior-driven development (BDD), and one of its pillars is the use of
templates to write user stories, scenarios, and automated acceptance tests.
We propose a software testing (ST) approach called automated acceptance
testing for industrial robotic systems (AAT4IRS) that uses natural language to
write the features and scenarios to be tested. We evaluated our ST approach
through a proof-of-concept, performing a pick-and-place process and applying
mutation testing to measure its effectiveness. The results show that the test
suites implemented using AAT4IRS were highly effective, with 79% of the
generated mutants detected, thus instilling confidence in the robustness of
our approach.

KEYWORDS

robotics, industrial robots, software testing, automated testing, acceptance testing

1 Introduction

According to the International Federation of Robotics, the operational stock of
industrial robotic systems (IRS) is increasing. In 2022, the number of robot installations
hit a record high, reaching 553,052 units. This marked the second consecutive year with
over 500,000 units, reflecting a 5% increase from the previous year and a compound annual
growth rate (CAGR) of 7% from 2017 to 2022. The operational stock of industrial robots
also experienced significant growth, reaching 3,903,633 units—an increase of 12%—with
an average annual growth of 13% over the past 5 years. Despite a slowing global economy,
the forecast for 2023 predicts over 590,000 global robot installations (IFR, 2024). The

Frontiers in Robotics and AI 01 frontiersin.org102

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1346580
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1346580&domain=pdf&date_stamp=2024-09-30
mailto:marcela.santos1@uqac.ca
mailto:marcela.santos1@uqac.ca
https://doi.org/10.3389/frobt.2024.1346580
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1346580/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1346580/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1346580/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

increase in the number of industrial robotic systems
operating in the most diverse environments also increases
the necessity for these systems to handle failures and meet
quality aspects.

Conventional software systems can be defined as “failing”
when customers’ expectations have not been met and/or
when the software does not help the customer (Chillarege,
1996). To prevent this, developers and stakeholders must use
automated software testing to improve fault detection in the
system, which will be reflected in improved software quality
(Naik and Tripathy, 2018).

Our aim is to improve fault detection in IRS by applying a
specific software testing approach. Some research has applied
software testing in robotic systems (Bretl and Lall, 2008; Estivill-
Castro et al., 2018; Mossige et al., 2015; Chung and Hwang,
2007; Erich et al., 2019; Nguyen et al., 2023). In addition, there
are some systematic literature reviews and surveys on related
topics that we used to clarify the issues and challenge to
apply software testing to robotic systems (Afzal et al., 2020;
Afzal et al., 2021).

Afzal et al. (2020) conducted a qualitative study on the
challenges of testing robotics systems. They identified five
testing challenges to writing and designing for robotic systems:
unpredictable corner cases, engineering complexity, culture of
testing and coordination, collaboration, and documentation.
The coordination, collaboration, and documentation challenge
according to the authors is “…the lack of proper channels for
coordination and collaboration among multiple teams and a lack
of documentation.”

According to Afzal et al. (2020), one of the significant challenges
in coordination, collaboration, and documentation stems from
the need for adequate channels for coordination and collaboration
among multiple teams and for more documentation. Coordination
within many robotics companies often requires bridging gaps
between teams with diverse backgrounds, such as software and
hardware teams. Additionally, it is common to encounter the need
to integrate and write tests for third-party components without
any accompanying documentation. More standards and guidelines
for writing and designing tests for robotic systems must also be
developed.

Another challenge identified based on participants’ responses
concerns the culture of testing. One defining feature of the
robotics community is its ability to bring together individuals
from various disciplines, such as electrical and mechanical
engineering. This diversity not only drives significant advances
in robotics but also poses certain challenges. For example, a
representative quote from one of the respondents is, “The world
of robotics unites folks from different backgrounds. Folks from a
software background might observe testing differently from those
who are not.”

Behavior-driven development (BDD) is a software development
approach that promotes collaboration between technical and
non-technical stakeholders during the development process.
It introduces a common language made up of structured
sentences expressed in natural language. This language aims to
improve communication and understanding between project
team members and business stakeholders, resulting in more

effective software development and clearer alignment with business
objectives (Irshad et al., 2021).

Solis Pineda and Wang (2011) identified six key characteristics
of BDD: (i) the use of ubiquitous language based on business
terminology; (ii) an iterative decomposition process for high-
level specifications; (iii) templates to write user stories and
scenarios; (iv) automated acceptance tests; (v) readable specification
code; (vi) elaboration of behaviors based on the needs of the
development phase. The software testing applied in BDD is
automated acceptance testing that emphasizes the validation
of a system’s performance within the context for which
it is intended.

Our objective is to streamline the software testing
process for IRS through the introduction of a specialized
approach we have developed known as AAT4IRS (Automated
Acceptance Testing for Industrial Robotic Systems). This ST
approach entails customizing and implementing automated
acceptance templates derived from the principles of BDD.
By leveraging this approach, we aim to enhance IRS fault
detection.

To evaluate our methodology in an industrial setting, we
developed a test suite to apply our approach. The scenario
involved an industrial robot picking items and placing them into a
designated box based on color. Pick-and-place behavior is utilized
in almost all industrial environments that use industrial robotics
to automate processes. This scenario is similar to that (and the
requirements) used in robotics competitions and benchmarks.
Our decision to use as our inspiration the requirement used
in a robotics competition was because of the absence of public
repositories of more real requirements (used in industry) available
(Nguyen et al., 2023).

The effectiveness of our approach was evaluated through
mutation testing. The mutation score serves as a reliable metric for
assessing the efficacy of a test set in identifying faults. Research
indicates that achieving a higher mutation score markedly improves
the detection of faults (Jia and Harman, 2011; Papadakis et al.,
2018). As robotic systems interact with the real world, we created
“mutants” to simulate these interactions. Thus, we implemented
mutation testing to evaluate our test suite in the context of
robotic systems.

The initial results show that the test suite implemented
using AAT4IRS was able to kill 79% of the mutants. These
results show the effectiveness of a test suite implemented by
following AAT4IRS. Despite the benefits observed in the proposed
approach, it is still open to improvement. We detail such future
possibilities in Section 8.

The main contributions of this study are (i) a software testing
approach to apply automated acceptance testing in IRS (Section 3),
(ii) an empirical study to evaluate our approach (Section 4),
and (iii) an initial guideline to create mutants for industrial
robotic systems (Section 5).

The remainder of this paper is organized as follows:
Section 2 provides background on the core concepts for our
study (industrial robotics systems, acceptance and mutation
testing) and related work. Section 6 discusses our results
and highlights the observed benefits. Section 7 discusses the
threats to validity. Section 8 synthesizes final remarks and
future work.

Frontiers in Robotics and AI 02 frontiersin.org103

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

This paper is an extended version of a demo paper
(Santos et al., 2022), with the following changes: (i) expanded
explanations for the proposal approach; (ii) mutation
testing to evaluate it; (iii) initial guideline to create
mutants for IRS.

2 Background and related work

2.1 Industrial robotic systems

An “industrial robotic system” (IRS) is a system composed
of industrial robots, end-effectors (grippers, magnets, vacuum
heads), sensors (visual, torque, collision detection, 3D vision), and
equipment (belt conveyors). As with any robot in general, an
industrial robot is a complex system comprising both hardware
and software; as such, it can be subject to failure in any of
these components. The scope of our study is on the software
component, which is composed of two parts. First, the control
layer is responsible for translating commands so that the IRS can
understand and execute them; thus, it is essentially a collection
of drivers interacting with the hardware. Second, the application
layer is composed of a software script which defines the robot’s
desired behavior according to business requirements (Ahmad and
Babar, 2016; ISO/IEC 8373, 2012).

According to Heimann and Guhl (2020), the methods
of programming industrial robots can be classified based on
the interaction between the operator (who is responsible for
programming and operating the industrial robot) and the
robot. These methods can be online, offline, or hybrid. In
the first online method, the operator programs the robot on
the shop floor, using either the “lead through” method (the
operator takes the robot manually and guides it through a
trajectory) or the “teach-pendant” method (the operator guides
the manipulator to specific points, records these points to
compose a trajectory, and the manipulator executes the trajectory).
The shop floor must stop its production from having the IRS
programmed in both.

In contrast, in the off-line mode the operator uses an
environment composed of industrial robot programming
languages (IRPLs) and/or simulation software. IRPLs are purpose-
built, domain-specific programming languages that include
special instructions to move the robot’s arm(s), as well as
standard control-flow instructions and APIs to access low-level
resources (Pogliani et al., 2020).

Finally, in the hybrid method, the operator works offline to
create the flow and calibrate and validate the physical system
(online). The hybrid method thus utilizes the benefits of online and
offline methods.

Validation in IRS depends on themethod used.When the online
method is applied, the operator must stop the shop floor, program
the robot, and make it execute the program. The robot is then
evaluated to determine whether it had the expected behavior by
visual checking and/or with a reading sensor (if some are available
in the environment).

In the offline method, the validation process takes place
in a simulator; only if the robot behavior fits the business

requirement (BR) can the program (i.e., the application layer)
be sent to the robot on the shop floor. The validation process
uses the operator’s knowledge and experience with the expected
robot behavior.

In the hybrid method, the validation also used the
simulators, after the operator fine-tunes the program using
the online method to make real-time adjustments based
on the robot’s behavior interacting with the physical
environment.

In summary, although these are different methods of
programming IRS, they have the same aspect concerning validation,
which uses the operator’s knowledge and expertise about the
expected robot behavior. Furthermore, the validation process is
manual for each program written. Suppose that there are changes
to the BR (modification or addition of a feature). In that case, the
operator must change and validate the program again, even if they
validated part of the program before the modification. This manual
aspect of code validation in an industrial environment increases
project time and cost; automated software testing is thus needed for
industrial robots.

2.2 Automated acceptance testing (AAT)

There are various levels of software testing, one of which
is the acceptance test. This type of testing aims to check
if the system meets a set of acceptance criteria (AC) that
guarantee that its quality is suitable for the particular business
requirements.

As with other forms of testing, acceptance testing can be applied
manually or using automation tools. The benefits of test automation
are increased test productivity, better coverage of regression tests,
reduced duration of testing phases, reduced cost of software
maintenance, and increased effectiveness of test cases. With test
automation, an organization can create a rich library of reusable test
cases, facilitating the execution of a consistent set of test cases (Naik
and Tripathy, 2018).

However, introducing automation creates a gap between
the business requirements and technical aspects of software
testing. On the one hand, business teams write the BRs and
use them in the definition of AC; on the other hand, these
requirements must result in the generation and execution
of test cases.

To align the business and technical needs of software,
behavior-driven development (BDD) can be a good choice
(Irshad et al., 2021). In BDD, one typically uses a high-level
human-readable language, such as Gherkin (Wynne and Hellesoy,
2012), to bridge the gap between BRs and technical aspects.
On the one hand, the document describing the requirements
is easily readable by developers, QA teams and business
teams. On the other hand, the development team uses the
same document to automate the execution of acceptance tests
(Nicieja, 2017).

In BDD, the AC for each business requirement is described in
two parts: the feature and the scenario. The feature is a deliverable
piece of functionality to allow the business to achieve its goals.
It is described using the user story format: “As a [description of

Frontiers in Robotics and AI 03 frontiersin.org104

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

FIGURE 1
Proposed approach to applying automated acceptance testing for IRS.

FIGURE 2
Pick-and-place task performed using a Gazebo simulator.

the user], I want [functionality] so that [benefit].” The template
to describe scenarios in BDD is: “Given [pre condition for
the scenario and test environment], when [action under test],
then [expected outcomes]” (Smart, 2014). A scenario is itself
composed of step definitions responsible for interacting directly
with the system.

2.3 Mutation testing

Mutation testing is a software testing technique in which the
original code suffers some changes called “mutated versions” or
“mutants”. These mutants represent different potential defects
that are modifications in the source code. These modifications

Frontiers in Robotics and AI 04 frontiersin.org105

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

FIGURE 3
Simple robot program.

TABLE 1 Original X mutant command for robotic systems.

Original Mutant

rotateleftbyX rotaterightbyX

rotaterightbyX rotateleftbyX

translateforwardbyX translatebackwardsbyX

translatebackwardsbyX translateforwardbyX

translateforwardbyX translateforwardtoX

translatebackwardsbyX translatebackwardstoX

docommandX donothing

docommandX docommandXtwice

distancevalueisX distancevalueis−X(reversedirection)

distancevalueisX distancevalueisX+ noise

include changing a mathematical operator, swapping the
order of two statements, or replacing a conditional with
the opposite. The mutation score is the percentage of killed
mutants (detected by the test suite) with the total number
of mutants.

In order to apply mutation testing, we used the test suite against
each mutant. If the tests detect the changes made to create the
mutants, the mutants die. If the test suite does not detect the error,
the mutants survive. The number of mutants killed and that survive
is used as a metric to evaluate the effectiveness of the test suite (Jia
and Harman, 2011).

According to Jia and Harman (2011), mutation testing can
measure the effectiveness of a test suite in terms of its ability to detect
faults. ISO/IEC 25010 defines “effectiveness” as the “…accuracy and
completeness with which users achieve specified goals” (ISO/IEC
25010 2011).

Our decision to use a mutation-based approach for
evaluating the testing campaign is based on its ability
to replicate a wide range of scenarios, surpassing the
limitations of variations in environmental descriptions found

within scenario files from BDD alone. Our methodology
intentionally integrates non-deterministic mutants to emulate
unpredictable behaviors commonly encountered in simulation
and robotic systems, such as sensor noise and fluctuations in
simulation speed.

Additionally, we drew inspiration from previous studies where
mutation testing has been successfully applied to assess cyber-
physical systems. For instance, Leotta et al. (2018) conducted a
thorough investigation into automated acceptance testing for IoT
systems, including sensors/actuators, smartphones, and remote
cloud-based infrastructure. They evaluated their approach using
mutation testing and demonstrated its practical application.
Similarly, Afzal (2021) presented an innovative automated testing
framework using software-in-the-loop simulation for cyber-
physical systems. Their use of mutation testing showcased the
effectiveness of their approach in evaluating system performance
and robustness.

2.4 Related research

We consider related research for our study, a primary
study that performed software testing activity (design and
generate test cases) at different levels (unit, integration,
acceptance, system) for a type of robotic system (mobile,
industrial).

In this study, Nguyen et al. (2023) analyzed robotic application
requirements and acceptance criteria, explicitly focusing on
robotic competitions and benchmarks. They aimed to address
the challenges of representing and managing requirements in
the context of robotic applications’ increasing complexity and
diversity. We consider this research to be complementary to
ours. In both studies, the authors applied BDD to rewrite the
requirements for IRS. However, Nguyen et al. (2023) highlighted
the application of BDD to express and manage requirements for
robotic applications, emphasizing the potential for introducing
automation into verifying and validating these requirements in
robotics. Our study used BDD to rewrite the requirements for
industrial robotic systems and implement executable tests using
a simulator.

Ashraf et al. (2020) proposed coverage criteria for white-
box testing to test industrial robot tasks and a framework to
automatically generate the test cases to achieve the coverage
criteria defined by them. However, our research does not aim to
automatically generate test cases.

Breitenhuber (2020) proposed an application-level testing
framework for robot software applications that uses known robotic
software to describe the expected behavior of an application or
its components. They focus on evaluating the component behavior
in robotics systems that use the ROS framework in application-
level testing. They apply the testing tools available in the ROS
environment to test the components. In our study, we aimed to apply
automated acceptance for industrial robotic systems in general,
not just in ROS-based systems. Furthermore, in our approach,
acceptance testing is automated, and the BR is translated to the BDD
template for AC.

Erich et al. (2019) presented a framework for automatically
testing applications for collaborative robots and demonstrated the

Frontiers in Robotics and AI 05 frontiersin.org106

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

FIGURE 4
Localization and operation that we applied to the mutation.

proposal in a case study for automatically testing a pick-and-place
application. Their proposal was a framework applied in a physical
environment and at the level of integration testing. Ours focuses on
acceptance testing, leading us to consider their research and ours to
be complementary.

Estivill-Castro et al. (2018) proposed a robot simulator
following the model-view-controller software pattern. They
use simulators with the stripped GUI under a continuous
integration paradigm for robots to scale up the testing integration
with robot behavior. The simulator was an environment
to be applied in our approach and was not developed
in our study.

Mossige et al. (2015) presented cost-effective automated testing
techniques to validate complex industrial robot control systems
in an industrial context and employed their methodology in
continuous integration and constraint-based testing techniques.
Although our research was also focused on industrial robotic
systems, we focused on automated acceptance testing, so our studies
are complementary.

Alexander et al. (2015) proposed the concept of situation
coverage. They empirically evaluated situation coverage by testing
a simple simulated autonomous road vehicle and comparing its
effectiveness with random test generation. We highlight that the
challenges in testing autonomous robots, as summarized by them,
are similar to those for testing industrial robots, making our study
and theirs complementary. However, they proposed the concept of
situation coverage, which measures the proportion of all possible
situations tested by a given test set as a potential solution. For
them, situations are starting states and rules for projecting future
states; they do not commit to a linear sequence of events. Our
approach uses features and scenarios written in natural language
to guide the test generation. The scenario coverage approach aims

to cover a representative set of scenarios described by linear
sequences. Therefore, the goal of both approaches is the same
(improving software in robotics through software testing), but they
use different methods.

Chung and Hwang (2007) presented a testing process and
evaluation elements to test the software of intelligent robots.
They proposed a test case design methodology based on user
requirements and ISO standards for software testing. However,
they did not perform acceptance testing using the BRs as
input. Our study aims to apply AAT using acceptance criteria
defined by BRs.

To our knowledge, our work is the first to apply automated
acceptance testing for industrial robotic systems using the BDD
template to reduce the effort in discovering faults and to ensure that
the application meets specific BRs.

3 Proposed approach

Our approach is to apply automated acceptance testing (AAT) to
evaluate whether the system meets the business requirement (BR).
The system under test (SUT) is the IRS performing the expected
behavior defined by the BR. We concentrate on the off-line method,
which makes use of simulation.

When testing software for IRS, it is important to consider their
unique features and needs. To ensure that the software meets the
specific requirements and expectations of the IRS, it is crucial
to involve domain experts, stakeholders, and end-users in the
testing process.

According to Afzal et al. (2020), robotic systems differ from
conventional software in several critical dimensions. Robots
are complex systems composed of software and hardware. The

Frontiers in Robotics and AI 06 frontiersin.org107

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

TABLE 2 List of mutants.

Mutant number Number Description

#1 Translation Change the y-value in translation

#2 Rotation Change the angle orientation in rotation

#3 Translation Change the z-value in translation

#4 Gripper operation Do not change the gripper status

#5 Gripper operation Change the gripper status twice

#6 Gripper operation Do not change the gripper status with the opposite expected operation

#7 Rotation Change the angle orientation in rotation

#8 Translation Change the x-value in translation

#9 Robot initial position Sensor reading with the opposite expected value for the x-component

#10 Robot initial position Sensor reading with the opposite expected value for the y-component

#11 Robot initial position Sensor reading with the opposite expected value for the z-component

#12 Robot initial position Sensor reading with noise in the x-component

#13 Robot initial position Sensor reading with noise in the y-component

#14 Robot initial position Sensor reading with noise in the z-component

#15 Box initial position Sensor reading with the opposite expected value for the x-component

#16 Box initial position Sensor reading with the opposite expected value for the y-component

#17 Box initial position Sensor reading with the opposite expected value for the z-component

#18 Box initial position Sensor reading with noise in the x-component

#19 Box initial position Sensor reading with noise in the y-component

#20 Box initial position Sensor reading with noise in the z-component

#21 Box initial position Sensor reading with the opposite expected value for the x-component

#22 Box initial position Sensor reading with the opposite expected value for y-component

#23 Box initial position Sensor reading with the opposite expected value for the x-component

#24 Box initial position Sensor reading with noise in the x-component

#25 Box initial position Sensor reading with noise in the y-component

#26 Box initial position Sensor reading with noise in the z-component

latter interacts with the physical world through sensors and
actuators, which can lead to errors that are challenging to predict.
Furthermore, the notion of correctness is hard to specify.

Thus, we propose an approach that considers the differences
between conventional and robotic systems by validating whether the
software meets the needs defined in the BRs. Figure 1 shows our
approach, which outlines the necessary activities and corresponding
input/output. Starting the AAT4IRS process requires a decisive
definition of BRs and acceptance criteria (AC) to ensure that the

features developed provide actual business value. Collaboration
with stakeholders, including robot operators, engineers, and other
relevant parties, is crucial to clearly define the AC for the
robot software.

As for conventional IRS systems, the BRs need to describe
the business need or problem that requires a solution. These
requirements should be measurable and actionable and include AC
to ensure that all stakeholders agree on what the system should
accomplish.

Frontiers in Robotics and AI 07 frontiersin.org108

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

FIGURE 5
Noise added to the sensor reading.

TABLE 3 Mutant score for each round.

Round MutantScore

#1 81%

#2 77%

#3 81%

#4 81%

#5 77%

In our approach, we can take two paths with the BR defined. One
starts with the development teamwriting themission (the application
layer defined in Section 2) —essentially the system under test. The
other path starts with the test using theGherkin language towrite the
feature. The feature in our approach will adapt the template defined
in BDD and will follow the following format: “As an operator, I
want [process to be automated] so that I can automate the [process]
using an IRS.”

The next step in AAT4IRS is writing scenarios, and we follow
the BDD template (Given–When–Then). The Given step involves
outlining the initial conditions for industrial processing using
robots, including robot setup, environment preparation, and sensor
calibration. We connect these procedures with the And connector
in the BDD template. The When step outlines the system under test.
Lastly, in the Then step, we evaluate whether the system meets the
expected behavior using the AC defined in the first activity. For
example, we can use a sensor to evaluate the final position of a box.

Following the AAT4IRS approach, we implemented the test,
where we must implement a function for each sentence defined in
each scenario. For example, we will have a function linked with the
sentence Given defined in the scenario. When we implement the
tests, we create the link between the tests and the system under test.
For example, if we have the following sentence “Given that the robot
is in the initial position…”, we will need to implement a function to

put the robot in the initial position and also to assert whether the
robot achieves the expected position.

Finally, we need to execute the tests. Running them will trigger
the functions that access the application layer. If the test passes,
the process starts again with another BR. However, if the test fails,
the process refactors the mission (application layer) start until the
test passes.

The output of the activity execute tests is a test report. We aim
to improve some important aspects of the software development
process for IRS. By following our approach, the software in industrial
robots can undergo thorough acceptance testing to ensure that
it meets the requirements and expectations of end users. It is
important to involve domain experts and stakeholders throughout
the acceptance testing process to ensure that the software aligns with
the specific needs of the industrial robot application.

Our proposed process draws similarities with applying
automated acceptance testing (AAT) to conventional systems.
However, crafting features, scenarios, and test cases requires
nuanced adaptation that aligns with the demands and objectives
of industrial processes. To achieve this, we incorporate
industry-specific language when formulating scenarios using the
Given–When–Then structure. For example, the Given statement
sets the initial conditions, such as the starting position of a robot.
Furthermore, we utilize instrumentation tailored to industrial
settings to establish AC. By employing positional sensors across
three axes, we validate positions and define AC based on sensor
characteristics, ensuring alignment with business objectives.
Ultimately, our approach entails integrating domain-specific
language to customize automated acceptance testing within the
BDD standards framework.

4 Applying AAT4IRS to pick-and-place
task

The use of industrial robots in pick-and-place scenarios is
common in competitions and benchmarking exercises. Our decision
to draw inspiration from a robotic competition is rooted in
the limited accessibility of real-world industrial requirements,
as noted by Nguyen et al. (2023). As such, we looked to the
Robotic Grasping and Manipulation Competition’s Task Pool for
direction. In particular, we turned to a specific task outlined in
their competition framework: “Pick Up and Place Using Tongs”
(Sun et al., 2018).

The robotmodel used was the Gen3 fromKinova Robots (2022),
and the end-effector is a gripper, the Robotiq-2f-85 from Robotiq
(2022). This model has the follow sensors: torque, position, current,
voltage, temperature, accelerometer, and gyroscope. We use the
position sensor that gives us the arm position for the three
axes (x, y, z).

The experiment took place in the esteemed Robot Operating
System (ROS) environment, which is highly regarded in the
robotics community for its adaptability and reliability. ROS is
widely accepted as an ideal platform for developing robotic software
due to its extensive range of libraries, tools, and conventions.
Its seamless communication between various components
simplifies the development of complex robot software systems. As
mentioned by Quigley et al. (2015), a ROS-based system involves

Frontiers in Robotics and AI 08 frontiersin.org109

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

numerous concurrent programs that exchange messages, enabling
effective collaboration and coordination.

For our experiment, we have an industrial environment with an
IRS performing a pick-and-place process (an industrial process in
which an industrial robot picks up an object from one location and
places it in another).

We implement the experiment within simulated environments,
which can lower testing expenses and expand opportunities for
test automation. Timperley et al. (2018) argue that many real-world
robotics bugs could be replicated and addressed in simulation
environments. Moreover, simulations mitigate the risk of damaging
equipment (Bossecker et al., 2023), eliminate the necessity for
physical prototypes (Roth et al., 2003) and offering a cost-effective
means to implement changes (Robert et al., 2020).

Therefore, we integrated a suitable simulator within the ROS
environment. Among the available options, Gazebo emerged
as the leading choice for robotic simulation due to its ability
to replicate diverse robotic platforms equipped with standard
sensors like cameras, GPS units, and IMUs. Despite operating
independently, Gazebo seamlessly integrates with ROS via the
“gazebo_ros” package, enabling bidirectional communication
(Quigley et al., 2015; Farley et al., 2022).

The robot’s mission performed in our experiment was to
transfer a box from its initial position (point A) on the conveyor
to its destination at the delivery table (point B) (Figure 2). The
robotic arm needed to precisely navigate to the target location
and use its gripper to securely grasp the object while ensuring
proper alignment. Upon successful pickup, the robotic arm was
to carefully place the box on the delivery table before returning
to its original position. The instrumentation necessary to run our
experiments, besides the IR, is sensors to read the IR, box color, and
the box positions.

Following the approach defined at Section 3, we write the
mission for the IR to meet the follow BR.

BOX 1 Business requirement.
We must move the box from the conveyor to the delivery point,

respecting the box color. The robot needs to be positioned
correctly before the pick-and-place process can begin. The final
position of the box should not exceed 0.02 cm in any of the
three axes.

We would like to highlight that the AC defined by the BR was
related to the box’s final position. However, to perform the pick-and-
place process, we also needed the robot’s and box’s initial position.
Therefore, we rewrote the BR to add these AC with the acceptable
threshold.

BOX 2 Business requirement.
We must move the box from the conveyor to the delivery point,

respecting the box color. The robot needs to be positioned
correctly before the pick-and-place process can begin within a
threshold of 0.02 cm in all three axes. For the box, the threshold is
0.01 cm, and also for the three axes. The final position of the box
should not exceed 0.02 cm in any of the three axes.

After writing the mission, we created the test suite following
AAT4IRS. We used the pytest-bdd library (Pidsadnyi and Bubenkov,
2022), the most popular framework in Python that implements a
subset of the Gherkin language to enable the automating of project
requirements testing.

To achieve this, we use Gerkin language to write a feature. The
first step was to establish the initial environment for our experiment,
which involved initializing both the robot and conveyor, moving
the robot to the home position, and placing the box in a specific
location. Given that each position has three axes, we composed a
Given statement for each axis, as shown in the Listing 1. The When
statement involved the pick-and-place automation system we are
testing, while the Then statement determined whether the box was
in the expected position with the maximum error as defined by the
AC in the BR.

In order to proceed, we needed to perform a test that created a
function for each statement in the scenario.The criteria for accepting
are related to the robot and box within specified position limits. The
next step was to use the feature to construct the scenario. As the
AC were based on data from sensors that monitor the positions of
the robot and box, we incorporated sensor readings into the test
script to create assertions (Listing 2 and 3). Once the test suite
was developed, we ran it against the original code and successfully
passed all tests.

5 Evaluation

We evaluated AAT4IRS through mutation testing.
The mutants defined took into account the fact that
the code for a robotic system is not just any piece of
procedural code but a specific type of program that
manipulates robotic components that interact with the
physical world.

Figure 3 shows a pseudo-code for a possible program in
which the IR performs the pick-and-place task. The robot
picks the box, lifts it from the ground by some amount,
and does the reverse operations after turning to two possible
angles, depending on the box’s color determined by a visual
sensor. The code is mostly a linear sequence of send and read
commands, which, in the context of ROS, give commands to
the robot and probe the state of the environment, respectively.
The program has few control structures, variables, or arithmetical
operations, which are the typical points where mutation operators
are applied. There are very few locations where mutations can
be injected.

In this context, one could understand that the numbers 90 and
−270 mean “left” and “right”, and that confusing one for the other
is probably more likely for a developer than providing an angular
value that is incorrect by a single degree, such as 90 and −90.
We also introduced mutants that replicated errors in the sensor
reading. Our goal was to create a comprehensive set of mutants
that accurately represent the solution space under examination,
and to provide an informative value related to the effectiveness
of our approach. Thus, we identified the high-level write/read
operations and defined appropriate ways of mutating them. Table 1

Frontiers in Robotics and AI 09 frontiersin.org110

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

Listing 1. Feature and scenario.

shows the possible transitions between the original code and
the mutant.

Our approach for assessing our methodology involved
following the guidelines specified in Table 1. It is worth
mentioning that we customized these to align with the
language and instrumentation utilized in robotics and
simulation. Our evaluation entailed generating mutants
that pertained to rotation (orientation modifications) and
translation (position adjustments) operations for the robot,
as well as variations in the initial and final positions for
both the robot and the box. Furthermore, we created
mutants for the gripper operations, comprising opening and
closing actions (Figure 4).

Table 2 shows the 26 mutants created using our guideline
and the adaptation needs for the specific robot used in our
experiment.

For the noise added to sensor readings, we added the
noise shown in Figure 5. This noise is a simulation of a Gaussian
noise normally distributed, often used tomodelmeasurement errors
or communication noise. As we can see, the lowest value for this
sign is around 0.053 and the biggest is around 0.39.

In order to guarantee the randomness of the noise added and
diversity of the boxes, we conducted the test suite for each of
the 26 mutants five times. The mutant scores for each round are
presented in Table 3.

6 Discussion

During our experiment, the industrial robot (IR) was tasked
with picking boxes from a conveyor and delivering them to
designated points. To thoroughly evaluate the effectiveness of our
methodology, we conducted a test suite that included the original
code and 26 carefully selected mutants, representing a wide range
of potential solutions. This comprehensive evaluation provided
valuable insights into the efficacy of our approach.

We obtained an average score of 79% effectiveness. Analyzing
the survivingmutants in all 130 executions, those that survived were
#5, #10, #14, #20, and #24 in different rounds.

The fifth mutation affects the gripper’s operation, causing it to
close twice instead of once. This change persisted as it did not
interfere with the robot’s mission. However, if time is a crucial factor
in meeting our acceptance criteria, the additional operation may
affect the overall mission execution time.

A reversal in the error value for the y-component is the transition
for Mutant #10. Although the expected value stands at 0.002 cm,
the acceptance criteria (AC) specifies 0.02 cm. Despite this, the
sensor reading remained within the acceptable threshold due to the
introduced error. This highlights the importance of aligning the
definition of acceptance criteria in the business requirement (BR)
with themagnitude order of variables utilized in the process. Such
alignment directly influences the resulting outcomes.

Frontiers in Robotics and AI 10 frontiersin.org111

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

Listing2. All the statements created at feature are contemplated by a test in the test file.

Listing3. An example for the test using the AC.

We utilized a randomized sorting method to introduce
variability into the noise added to sensor readings. However, we
discovered that for surviving mutants #14, #20, and #24, the noise
added was within the established error threshold of the acceptance
criteria. Consequently, we determined that aligning the acceptance
criteria in the BR with the physical attributes of the instrumentation
is crucial.This alignment directly impacts the outcomes.Thus, when

defining the acceptance criteria in our experiment, it is imperative
to consider the accuracy of the sensors.

Our analysis also revealed that adopting a natural language
approach to define AC in our methodology can provide significant
benefits for business analysts, developers, and testers throughout
the system development lifecycle since they are also observed
when application acceptance testing from BDD is applied in

Frontiers in Robotics and AI 11 frontiersin.org112

https://doi.org/10.3389/frobt.2024.1346580
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

conventional systems. This approach generates a report through
the when application acceptance testing process that serves as
living documentation, accessible to the entire team. Importantly,
this living documentation is not just a snapshot but is consistently
updated to reflect the latest version of the application, making it
an invaluable resource for the team. As highlighted by Afzal et al.
(2020), the complexity of designing and crafting tests for software
systems requires effective channels for coordination, collaboration,
and documentation within robotic systems development teams.
Adopting AAT is an excellent strategy for addressing these
challenges. However, it needs qualitative studies with different
stakeholders.

7 Threats to validity

Validity threats usually occur in a mapping study, and it was no
different in our study. We highlight some of these threats and the
mechanism we applied to address them.

Mutant generation. We created mutants with just one transition
for each mutant. This was acceptable because of the nature of the
acceptance test for each scenario. The tests implementing each
sentence used in our approach (Given–Then–When) are executed
in sequence. Thus, when one test fails, the process is stopped—if the
test that implements the Given sentence fails, the process stops, and
the test report is generated. Furthermore, nomore tests are executed.
Therefore, the unique transition for each mutant was an acceptable
method for creating mutants to evaluate our approach.

Input data. As observed in the experiment, sensor characteristics
were the reason for the survived mutant. Our approach is not
concerned with the input data, but we strongly suggest that domain
experts must also choose the input data. Moreover, our experiment
performedawell-knownprocess in the roboticfield, andweusednear-
accurate data.Thus, further experimentswithmore realistic input data
will be necessary to confirm the effectiveness of our approach.

8 Conclusion

The present research outlines an approach to automated
acceptance testing (AAT) that aims to improve fault detection in
industrial robotic systems (IRS). However, one challenge to applying
software testing for robotic systems is related to communication and
collaboration: the culture of testing.

Our study utilized an approach based on behavior-driven
development (BDD); more specifically, AAT that uses natural
language. Our implementation used ROS, Gazebo, and pytest-bdd, a
Python library dedicated to BDD.To evaluate the effectiveness of our
software testing approach, we tested the generated test suites against
mutants created from the original code. The test suites produced
using AAT4IRS achieved an effectiveness score of 79%.

In our assessment, we utilized mutation testing to generate
mutants that accurately reflect the complexities of the robotic
landscape. Our thorough methodology entailed creating mutants
that focused on non-deterministic elements that are inherently
present in robotic systems, such as fluctuations in sensor readings, as
well asmutants that accounted for linguistic subtleties. By employing
this nuanced approach, we were able to gain valuable insights into

the robustness and flexibility of our proposed methodology within
the constantly evolving field of robotics.

When evaluating business requirements for industrial robotic
systems, it is crucial to consider both the robot’s physical attributes
and overall business objectives. Achieving alignment across all teams
involved in the project, which may include individuals from various
backgrounds, is essential when establishing acceptance criteria
(AC). Additionally, utilizing live documentation made possible
by AAT4IRS implementation can help foster collaboration among
teams, allowing for more effective problem-solving when facing the
complex challenges of these types of projects.

Our aim for future research is (i) to apply our approach by
performing controlled experimentswith a groupof roboticists, (ii) to
apply and evaluate AAT4IRS using physical IRS, (iii) and to perform
a qualitative evaluation with different stakeholders.

Data availability statement

The original contributions presented in the study are
publicly available. This data can be found here: https://github.
com/mgdossantos/aat4irs_v3.

Author contributions

MS: investigation, methodology, software, writing–original
draft, and writing–review and editing. SH: conceptualization,
funding acquisition, investigation, supervision, and writing–review
and editing. FP: conceptualization, funding acquisition,
supervision, and writing–review and editing. Y-GG: resources and
writing–review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This paper
is an extended version of our conference paper that was accepted
at IEEE Robotic Computing 2022 (Santos et al., 2022). The NSERC
Discovery Grant and Canada Research Chair programs partially
supported the authors.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Robotics and AI 12 frontiersin.org113

https://doi.org/10.3389/frobt.2024.1346580
https://github.com/mgdossantos/aat4irs_v3
https://github.com/mgdossantos/aat4irs_v3
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

dos Santos et al. 10.3389/frobt.2024.1346580

References

Afzal, A. (2021). Automated testing of robotic and cyberphysical systems.
doi:10.1184/R1/16645639.v1

Afzal, A., Goues, C. L., Hilton,M., and Timperley, C. S. (2020). “A study on challenges
of testing robotic systems,” in 2020 IEEE 13th international conference on software
testing, validation and verification (ICST), 96–107. doi:10.1109/ICST46399.2020.00020

Afzal, A., Katz, D. S., Le Goues, C., and Timperley, C. S. (2021). “Simulation
for robotics test automation: developer perspectives,” in 2021 14th IEEE
conference on software testing, verification and validation (ICST), 263–274.
doi:10.1109/ICST49551.2021.00036

Ahmad, A., and Babar, M. A. (2016). Software architectures for
robotic systems-a systematic mapping study. J. Syst. Softw. 122, 16–39.
doi:10.1016/j.jss.2016.08.0391016/j.jss.2016.08.039

Alexander, R., Hawkins, H., and Rae, A. (2015). Situation coverage – a coverage
criterion for testing autonomous robots

Ashraf, A. K., D’Souza, M., and Jetley, R. (2020). “Coverage criteria based
testing of industrial robots,” in 2020 IEEE 16th international Conference on
automation Science and engineering (CASE) (Hong Kong, China: IEEE), 16–21.
doi:10.1109/CASE48305.2020.9217031

Bossecker, E., Sousa Calepso, A., Kaiser, B., Verl, A., and Sedlmair, M. (2023). “A
virtual reality simulator for timber fabrication tasks using industrial robotic arms,”
in Proceedings of mensch und computer 2023 (New York, NY, USA: Association for
Computing Machinery), 23, 568–570. MuC. doi:10.1145/3603555.3609316

Breitenhuber, G. (2020). “Towards application level testing of ros networks,” in
2020 fourth IEEE international conference on robotic computing (IRC), 436–442.
doi:10.1109/IRC.2020.00081

Bretl, T., and Lall, S. (2008). Testing static equilibrium for legged robots. IEEE Trans.
Robotics 24, 794–807. doi:10.1109/TRO.2008.2001360

Chillarege, R. (1996). What is software failure? IEEE Trans. Reliab. 45, 354.
doi:10.1109/TR.1996.536980

Chung, Y. K., and Hwang, S.-M. (2007). “Software testing for intelligent robots,” in
2007 international conference on control, automation and systems (Seoul, Korea (South):
IEEE), 2344–2349. doi:10.1109/ICCAS.2007.4406752

Erich, F., Saksena, A., Biggs, G., and Ando, N. (2019). “Design and development of a
physical integration testing framework for robotic manipulators,” in 2019 IEEE/SICE
international Symposium on system integration (SII) (paris, France: IEEE), 602–607.
doi:10.1109/SII.2019.8700444

Estivill-Castro, V., Hexel, R., and Lusty, C. (2018). Continuous integration for testing
full robotic behaviours in a GUI-stripped simulation. CEUR Workshop Proc. 2245,
453–464.

Farley, A., Wang, J., and Marshall, J. A. (2022). How to pick a mobile robot
simulator: a quantitative comparison of coppeliasim, gazebo, morse and webots
with a focus on accuracy of motion. Simul. Model. Pract. Theory 120, 102629.
doi:10.1016/j.simpat.2022.102629

Heimann, O., and Guhl, J. (2020). Industrial robot programming methods: a scoping
review. 2020 25th IEEE Int. Conf. Emerg. Technol. Fact. Automation (ETFA) 1, 696–703.
doi:10.1109/ETFA46521.2020.9211997

IFR (2024). Executive summary world robotics 2023 industrial robots. Available at:
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2023.
pdf (Accessed April 06, 2024).

Irshad, M., Britto, R., and Petersen, K. (2021). Adapting behavior driven
development (bdd) for large-scale software systems. J. Syst. Softw. 177, 110944.
doi:10.1016/j.jss.2021.110944

ISO/IEC 25010 (2011). ISO/IEC 25010:2011, Systems and software engineering —
systems and software Quality Requirements and Evaluation (SQuaRE) — system and
software quality models. Tech. Rep. International Organization for Standardization.

ISO/IEC 8373 (2012). Robots and robotic devices — vocabulary. Tech. Rep.
International Organization for Standardization.

Jia, Y., and Harman, M. (2011). An analysis and survey of the development of
mutation testing. IEEE Trans. Softw. Eng. 37, 649–678. doi:10.1109/TSE.2010.62

Leotta, M., Clerissi, D., Olianas, D., Ricca, F., Ancona, D., Delzanno, G., et al. (2018).
An acceptance testing approach for internet of things systems. IET Softw. 12, 430–436.
doi:10.1049/iet-sen.2017.0344

Mossige, M., Gotlieb, A., and Meling, H. (2015). Testing robot controllers using
constraint programming and continuous integration. Inf. Softw. Technol. 57, 169–185.
doi:10.1016/j.infsof.2014.09.009

Naik, K., and Tripathy, P. (2018). Software testing and quality assurance: theory and
practice. Nova Jersey: EUA Wiley Publishing. 2nd edn.

Nguyen, M., Hochgeschwender, N., and Wrede, S. (2023). “An analysis of
behaviour-driven requirement specification for robotic competitions,” in 2023
IEEE/ACM 5th international workshop on robotics software engineering (RoSE), 17–24.
doi:10.1109/RoSE59155.2023.00008

Nicieja, K. (2017). Writing great specifications: using specification by example and
Gherkin. 1st edn. USA: Manning Publications Co.

Papadakis, M., Shin, D., Yoo, S., and Bae, D.-H. (2018). “Are mutation scores
correlated with real fault detection? a large scale empirical study on the relationship
between mutants and real faults,” in Proceedings of the 40th international conference on
software engineering (New York, NY, USA: Association for Computing Machinery), 18,
537–548. ICSE. doi:10.1145/3180155.3180183

Pidsadnyi, O., and Bubenkov, A. (2022). Welcome to pytest-bdd’s documentation.
Available at: https://pytest-bdd.readthedocs.io/en/stable/ (Accessed November 03,
2022).

Pogliani, M., Maggi, F., Balduzzi, M., Quarta, D., and Zanero, S. (2020).
“Detecting insecure code patterns in industrial robot programs,” in Proceedings
of the 15th ACM asia conference on computer and communications security (New
York, NY, USA: Association for Computing Machinery), 20, 759–771. ASIA CCS.
doi:10.1145/3320269.3384735

Quigley, M., Gerkey, B., and Smart, W. D. (2015). Programming robots with ros: a
practical introduction to the robot operating system. 1st edn. Sebastopol, California:
O’Reilly Media, Inc.

Robert, C., Sotiropoulos, T.,Waeselynck, H., Guiochet, J., andVernhes, S. (2020).The
virtual lands of oz: testing an agribot in simulation. Empir. Softw. Engg. 25, 2025–2054.
doi:10.1007/s10664-020-09800-3

Robotiq (2022). Start production faster—robotiq. Available at: https://robotiq.
com/products/2f85-140-adaptive-robot-gripper (Accessed August 19, 2022).

Robots, K. (2022). Discover our gen3 robots—kinova. Available at: https://www.
kinovarobotics.com/product/gen3-robots (Accessed August 19, 2022).

Roth, H., Ruehl, M., and Dueber, F. (2003). A robot simulation system for
small and medium-sized companies. IFAC Proc. Vol. 36, 91–96. doi:10.1016/S1474-
6670(17)33375-X

Santos, M. G. D., Petrillo, F., Hallé, S., and Guéhéneuc, Y.-G. (2022). “An
approach to apply automated acceptance testing for industrial robotic systems,”
in 2022 sixth IEEE international conference on robotic computing (IRC), 336–337.
doi:10.1109/IRC55401.2022.00066

Smart, J. (2014). BDD in Action: behavior-driven development for the
whole software lifecycle (Shelter Island). New York, United States: Manning
Publications.

Solis Pineda, C., and Wang, X. (2011). A study of the characteristics of behaviour
driven development, 383–387. doi:10.1109/SEAA.2011.76

Sun, Y., Falco, J., Cheng, N., Choi, H. R., Engeberg, E. D., Pollard,
N., et al. (2018). “Robotic grasping and manipulation competition: task
pool,” in Robotic grasping and manipulation (Cham: Springer International
Publishing), 1–18.

Timperley, C., Afzal, A., Katz, D. S., Hernandez, J., and Goues, C. L. (2018).
“Crashing simulated planes is cheap: can simulation detect robotics bugs early?,” in
2018 IEEE 11th international conference on software testing, verification and validation
(ICST) (Los Alamitos, CA, USA: IEEE Computer Society), 331–342. doi:10.1109/ICST.
2018.00040

Wynne, M., and Hellesoy, A. (2012). The cucumber book: behaviour-driven
Development for Testers and developers (pragmatic bookshelf)

Frontiers in Robotics and AI 13 frontiersin.org114

https://doi.org/10.3389/frobt.2024.1346580
https://doi.org/10.1184/R1/16645639.v1
https://doi.org/10.1109/ICST46399.2020.00020
https://doi.org/10.1109/ICST49551.2021.00036
https://doi.org/10.1016/j.jss.2016.08.0391016/j.jss.2016.08.039
https://doi.org/10.1109/CASE48305.2020.9217031
https://doi.org/10.1145/3603555.3609316
https://doi.org/10.1109/IRC.2020.00081
https://doi.org/10.1109/TRO.2008.2001360
https://doi.org/10.1109/TR.1996.536980
https://doi.org/10.1109/ICCAS.2007.4406752
https://doi.org/10.1109/SII.2019.8700444
https://doi.org/10.1016/j.simpat.2022.102629
https://doi.org/10.1109/ETFA46521.2020.9211997
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2023.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2023.pdf
https://doi.org/10.1016/j.jss.2021.110944
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1049/iet-sen.2017.0344
https://doi.org/10.1016/j.infsof.2014.09.009
https://doi.org/10.1109/RoSE59155.2023.00008
https://doi.org/10.1145/3180155.3180183
https://pytest-bdd.readthedocs.io/en/stable/
https://doi.org/10.1145/3320269.3384735
https://doi.org/10.1007/s10664-020-09800-3
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://www.kinovarobotics.com/product/gen3-robots
https://www.kinovarobotics.com/product/gen3-robots
https://doi.org/10.1016/S1474-6670(17)33375-X
https://doi.org/10.1016/S1474-6670(17)33375-X
https://doi.org/10.1109/IRC55401.2022.00066
https://doi.org/10.1109/SEAA.2011.76
https://doi.org/10.1109/ICST.2018.00040
https://doi.org/10.1109/ICST.2018.00040
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 03 January 2025
DOI 10.3389/frobt.2024.1363443

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Peng Wang,
Manchester Metropolitan University,
United Kingdom
Uwe Aßmann,
Technical University Dresden, Germany

*CORRESPONDENCE

Momina Rizwan,
momina.rizwan@cs.lth.se

Christoph Reichenbach,
christoph.reichenbach@cs.lth.se

RECEIVED 30 December 2023
ACCEPTED 20 September 2024
PUBLISHED 03 January 2025

CITATION

Rizwan M, Reichenbach C, Caldas R, Mayr M
and Krueger V (2025) EzSkiROS: enhancing
robot skill composition with embedded DSL
for early error detection.
Front. Robot. AI 11:1363443.
doi: 10.3389/frobt.2024.1363443

COPYRIGHT

© 2025 Rizwan, Reichenbach, Caldas, Mayr
and Krueger. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

EzSkiROS: enhancing robot skill
composition with embedded DSL
for early error detection

Momina Rizwan1*, Christoph Reichenbach1*, Ricardo Caldas2,
Matthias Mayr1 and Volker Krueger1

1Department of Computer Science, Faculty of Engineering (LTH), Lund University, Lund, Sweden,
2Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg,
Sweden

When developing general-purpose robot software components, we often lack
complete knowledge of the specific contexts in which they will be executed.
This limits our ability tomake predictions, including our ability to detect program
bugs statically. Since running a robot is an expensive task, finding errors at
runtime can prolong the debugging loop or even cause safety hazards. This
paper proposes an approach to help developers catch these errors as soon aswe
have some context (typically at pre-launch time) with minimal additional efforts.
We use embedded domain-specific language (DSL) techniques to enforce early
checks. We describe design patterns suitable for robot programming and show
how to use these design patterns for DSL embedding in Python, using two
case studies on an open-source robot skill platform SkiROS2, designed for the
composition of robot skills. These two case studies help us understand how to
use DSL embedding on two abstraction levels: the high-level skill description
that focuses on what the robot can do and under what circumstances and
the lower-level decision-making and execution flow of tasks. Using our DSL
EzSkiROS, we show how our design patterns enable robotics software platforms
to detect bugs in the high-level contracts between the robot’s capabilities and
the robot’s understanding of the world. We also apply the same techniques to
detect bugs in the lower-level implementation code, such as writing behavior
trees (BTs), to control the robot’s behavior based on its capabilities. We perform
consistency checks during the code deployment phase, significantly earlier
than the typical runtime checks. This enhances the overall safety by identifying
potential issues with the skill execution before they can impact robot behavior.
An initial study with SkiROS2 developers shows that our DSL-based approach is
useful for finding bugs early and thus improving the maintainability of the code.

KEYWORDS

embedded domain-specific languages, robot skills, skill-based control platforms,
behavior trees, domain-specific language design patterns

1 Introduction

The design and implementation of robotic systems to perform socio-technical
missions have never been more relevant or challenging. To ensure that robot
developers can meet market demands with confidence in the correctness of their
systems, a range of development tools and techniques is required. Specifically,
robot development tools should provide expressive programming languages and

Frontiers in Robotics and AI 01 frontiersin.org115

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363443
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363443&domain=pdf&date_stamp=2024-12-25
mailto:momina.rizwan@cs.lth.se
mailto:momina.rizwan@cs.lth.se
mailto:christoph.reichenbach@cs.lth.se
mailto:christoph.reichenbach@cs.lth.se
https://doi.org/10.3389/frobt.2024.1363443
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363443/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363443/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363443/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

FIGURE 1
Robot using a pick skill with a visualization of the necessary
parameters. To run this skill, we only need the Gripper and the Object
parameters. SkiROS2 can deduce all other necessary parameters
through a set of rules in the skill description shown in listings 4 and 6.

frameworks that allow human developers to describe correct
robot behavior (Brugali et al., 2007). One such robot development
platform is SkiROS21, a skill-based robot control platform with
knowledge integration. SkiROS2 (Mayr et al., 2023b) allows
developers to define modular skills for autonomous mission
execution.

These skills, ranging from “pick” to “drive,” are modularly
defined with pre- and post-conditions. In SkiROS2, the assessment
and validation of these conditions rely on the robot’s knowledge,
systematically organized into an ontology. These ontologies are
a rich, interlinked representation of concepts and relationships
within a specific domain. They serve as a foundation for verifying
that all necessary conditions for skill execution are satisfied. For
instance, in an automated assembly line or robotic healthcare
surgery, the ontology would encompass all relevant entities
and their relationships, providing a comprehensive context for
skill execution.

Consider a scenario where the robot has to pick an Object
with its Gripper as shown in Figure 1. The pre-conditions of a
“pick” skill might include ontology-based relationships such as
“the gripper is part of the robot arm.” This relationship assists
in deducing additional parameters such as “which arm to move”
by employing subtle semantic differences of entities and their
relationships in the ontology. For example, if we say that the
gripper is part of the arm, then we know which arm to move
if we want to pick an object with the gripper. The distinction
between relationships like “is part of ” and “is holding” is critical in
ensuring the correct application of parameters and actions during
skill execution.

The developermust be careful when declaring such relationships
as bugs introduced at this stage can lead to silent errors, disrupting
the skill’s behavior and potentially leading to incorrect or inefficient

1 https://github.com/RVMI/skiros2

task execution. The reason is that some of these errors in the skill
description are logical errors that would not manifest themselves
as explicit runtime errors. Certain errors may only become evident
when a particular skill is executed, which could be weeks later
when demonstrating the robot under specific circumstances that
are not immediately predictable. This delay in detection makes
troubleshooting and rectifying these errors more challenging.
Therefore, properly defining relationships and conditions within the
ontology and skill descriptions is crucial to ensure the technical
correctness and operational reliability of robotic skills in real-world
applications.

In SkiROS2, each high-level skill description acts as a
behavioral contract, setting parameters and conditions that the
corresponding implementations must satisfy. These descriptions
guide the development of concrete skill implementations. Many
implementations use extended behavior trees (BTs) that reuse
other existing skills, relying on their pre-conditions and post-
conditions for a structured execution. Extended BTs in SkiROS2
merge task-level planning and execution, allowing for modularity
and reactivity (Rovida et al., 2017b). The reactivity stems inherently
from BTs in the way with which tasks are organized, which
defines their priority order, with more important tasks interrupting
less important tasks (Iovino et al., 2022). However, constructing
consistent and correct BTs is crucial as inconsistencies can lead to
unexpected failures and outcomes.

To avoid such errors, we propose using a domain-specific
language (DSL) to allow the code to be analyzed for potential
errors before deploying it on the actual robot. Our proposed
approach ensures that the high-level abstract skill descriptions align
with the lower-level BTs, providing a comprehensive framework
for skill execution. DSLs offer specific constructs for defining
and connecting nodes, conditions, and actions, enforcing correct
patterns and practices, thus reducing the likelihood of logical or
structural errors. The benefits of using DSLs to aid in debugging,
visualization, and static checking are well recognized, making them
a valuable tool in robot software development. DSLs have been
used for mission specification (Dragule et al., 2021) and modeling
of robot knowledge (Ceh et al., 2011). Nordmann et al. (2016)
collected and categorized over 100 such DSLs for robotics in their
Robotics DSL Zoo2.

We aim to support robot developers, particularly those who write
control logic in Python, in catching bugs early by embedding DSLs
directly in Python. We support our case through the following ways:

• Four design patterns for embedding DSLs in general-purpose
programing languages that address common challenges
in robotics, with details on how to implement these
patterns in Python.

• A case study of a robotics software SkiROS2, in which we
introduce our DSL EzSkiROS for early detection of type errors
and other bugs, highlighting its effectiveness in identifying
errors in both high-level skill descriptions and lower-level
implementation details.

• Ademonstration of howEzSkiROSdetects various types of bugs
in robot capabilities, worldmodel contracts, and behavior trees,

2 https://corlab.github.io/dslzoo

Frontiers in Robotics and AI 02 frontiersin.org116

https://doi.org/10.3389/frobt.2024.1363443
https://github.com/RVMI/skiros2
https://corlab.github.io/dslzoo
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

showcasing the DSL’s comprehensive coverage and versatility in
early detection of bugs early.

Lastly, we discuss the advancements and distinctions
of our approach compared to the initial insights presented
in the paper Rizwan et al. (2023), providing an overview of the
evolution and impact of our design patterns.

2 Related work

Several studies have explored the use of model-driven
approaches for programming robots, focusing on the development
of DSLs to enhance the reliability of robotic systems. Buch et al.
(2014) described an internal DSL technique written in C++, which
incorporates structuring of complex actions, where actions are
modeled through sets of parameters, and each action contains a
pre-condition specifying the state of relevant parts. This structure
implies the use of pre- and post-conditions in sequencing robotic
skills. Unlike our DSL, their DSL uses a model-driven approach,
which instantiates the textual representation of the assembly
sequence, which is interpreted to execute the assembling behavior.
However, it is unclear if they use early checking techniques
to prevent erroneous sequences. Although it discusses error
handling and the probabilistic approach to tackle uncertainties,
specific methods like early checking techniques are not
clearly outlined.

Kunze et al. (2011) proposed the Semantic Robot Description
Language (SRDL), a model-based approach that utilizes the
Web Ontology Language (OWL) notation to match robot
descriptions and actions through the static analysis of robot
capability dependencies. SRDL models the knowledge about
robots, capabilities, and actions, contributing to the understanding
and specification of robotic behaviors. However, the extent to
which SRDL supports early dynamic checking in general-purpose
languages remains unclear, highlighting the need for further
exploration in this area.

Coste-Maniere and Turro (1997) proposed MAESTRO, an
external DSL for specifying the reactive behavior and checking
in the robotics domain. MAESTRO focuses on complex and
hierarchical missions, accommodating concurrency and portability
requirements. It allows the specification of user-defined typed events
and conditions, offering type-checking of user-defined types and
stop condition checks to ensure the correctness and safety of
specified behaviors.

Behavior trees have emerged as an effective method to model
and execute autonomous robotic behaviors, particularly in dynamic
environments. Unlike the traditional finite-state machines (FSMs),
BTs represent action selection decisions in a hierarchical tree
structure enhancing the flexibility in planning and replanning
robotic behavior. Dortmans and Punter (2022) highlighted that
BTs offer a more maintainable approach to decision-making than
FSMs, which is crucial in the rapidly evolving field of robotics.
Originally developed for the video game industry, BTs have
been widely adopted in robotics due to their modularity and
scalability. Iovino et al. (2022) presented a detailed survey of BTs in
robotics andAI, discussing their application, evolution, and benefits.
BTs are composed of various types of nodes, including control

nodes (e.g., sequences and selectors), leaf nodes (e.g., tasks and
conditions), and decorator nodes (modifying the behavior or output
of other nodes), organized in a tree structure from a root node and
branching out.

Integration of BTs with robotic systems often involves the
use of DSLs and frameworks such as the robot operating
system (ROS). Ghzouli et al. (2023) emphasized the growing use
of BTs in open-source robotic applications supported by ROS,
indicating their practicality in the real-world applications. However,
verifying the safety and correctness of BTs remains a challenge.

Henn et al. (2022) used SMTs to check safety properties specified
in the linear constraint Horn clause notation over behavior tree
specifications. Moreover, Tadiello and Troubitsyna (2022) used
Event-B for the formal specification and verification of BT instances,
ensuring the maintenance of invariant properties.

From a static semantics perspective, BhTSL is an example
where the compiler checks the source text for non-declared
variables and variable redeclaration (Oliveira et al., 2020). Despite
the advancements in BT DSLs, there is a lack of DSLs performing
static checks as rigorously as desired. According to the survey paper
(Ghzouli et al., 2020), the most used behavior tree DSLs, such as
BehaviorTree.CPP3, py_trees4, and the behavior tree from Unreal
Engine5, primarily focus on runtime type safety and flexibility.
For instance, in the MOOD2Be’s6 project from Horizon 2020, the
BehaviorTree.CPP tool offers a C++ implementation of BTs with
type safety (Faconti, 2019), but the type-checking capability is largely
left to the developer and is subject to runtime checks. This indicates
a gap in the domain of DSLs for BTs in ensuring correct execution
behavior and preventing inconsistencies in the implementation
between the skills or actions in a BT before runtime.

In conclusion, although there have been significant
advancements in DSLs for robotics and BTs, there is a continuous
need for the development of languages and tools that allow for
both static and early dynamic checks to ensure the safety, reliability,
and efficiency of robotic systems. Future research should focus on
enhancing the capabilities ofDSLs to perform comprehensive checks
and verification, both at design time and runtime, to address the
increasing complexity and demands ofmodern robotic applications.

3 Embedding robotics DSLs in Python

Domain-specific languages can help developers by simplifying
the notation, improving performance, or through early error
detection.However, development andmaintenance ofDSLs requires
effort. For external DSLs (e.g., MAESTRO and SRDL), much of
this effort comes from building a language frontend. Internal
or embedded DSLs [as shown in Buch et al. (2014)] avoid this
overhead and instead re-use an existing “host” language, possibly
adjusting the language’s behavior to accommodate the needs of the
problem domain.

3 https://github.com/BehaviorTree/BehaviorTree.CPP

4 https://github.com/splintered-reality/py_trees

5 https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/

BehaviorTrees

6 https://robmosys.eu/mood2be/

Frontiers in Robotics and AI 03 frontiersin.org117

https://doi.org/10.3389/frobt.2024.1363443
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/splintered-reality/py_trees
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees
https://robmosys.eu/mood2be/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

We consider Python as one of the three main languages
supported by the popular robotics platform ROS (Quigley et al.,
2009). The other two languages, C++ and LISP, also support internal
DSLs, but with different trade-offs.

3.1 Python language features for DSLs

Although Python’s syntax is fixed, it offers several language
constructs that DSL designers can repurpose to reflect their domain,
such as freely overloadable infix operators (excluding type-restricted
Boolean operators), type annotations (since Python 3.0), and
runtime reflection.

Listing 1 illustrates how the Python code can use these three
techniques. Here, class MagicDict inherits from Python’s built-
in dict class (representing mutable finite maps or associative
arrays) and defines two Python functions. An instance of this
MagicDict class behaves almost entirely like a regular dict,
meaning that we can, e.g., read from and write to its elements
(Listing 2, lines 2–5).

The first Python function we define in MagicDict is __
getattribute__ (Listing 1, lines 4–11), which is a special
operation that Python uses to resolve the names of attributes
(meaning fields and methods) in an object. If m is a MagicDict,
then whenever we read from a field of m (e.g., when we evaluate
m.f), Python calls m.__getattribute__(‘f’), which
defaults to an internal mechanism in Python that reads out the value
of the field of that name or raises an exception. Our implementation
overrides this behavior and extends it: whenever we are reading
or calling an attribute that is not defined or inherited in the
MagicDict class, our code instead interprets the attribute name
as a key of the underlying dictionary (lines 10–11). We see the effect
of this behavior in Listing 2, lines 5 and 6: our MagicDict allows
us to use m.foo as an alternative to m[’foo’] to look up the key
’foo’ in the MagicDict m.

Class MagicDict overloads the infix subtraction operator in
line 13 and defines an operation that allows “subtracting” a dict
from aMagicDict. Our implementation is quite simplistic: ifm1 is

Listing 1. An example of DSL-friendly Python features: Lines 4–11 show runtime reflection, and line 14 shows a custom infix operator definition
and a type annotation.

Listing 2. Interactive use of the MagicDict class from Listing 1.
Lines 1–4 demonstrate standard dict features.

a MagicDict and m2 is a dict or an object that behaves similarly,
then m1 - m2 returns a copy of m1, but without any keys that are
also present in m2, as shown in Listing 2; lines 9–10.

Line 13 also illustrates Python’s type annotations, annotating the
parameter other with type dict. By default, such annotations
have no runtime effect, but DSL designers can access and repurpose
them to collect DSL-specific information without interference from
Python. With Python 3.5 (with extensions in 3.9), these annotations
also allow type parameters (e.g., x: list [int]).

Python also permits the dynamic construction of classes (and
metaclasses), which we have found particularly valuable for the
robotics domain; since the system configuration and world model
used in robotics are often specified outside of Python (e.g., in
configuration files or ontologies) but are critical to program logic,
we can map them to suitable type hierarchies at robot pre-launch
time (just after build time).

3.2 Robotics DSL design patterns

In the following section, we list our DSL design patterns. A
brief summary that highlights each pattern's purpose and key
implementation concepts can be found in Table 1.

Frontiers in Robotics and AI 04 frontiersin.org118

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

TABLE 1 Patterns summary.

Pattern Purpose Implementation

Domain language mapping Make domain notation visible in host language and reduce
notational overhead

See the “Piggyback” DSL implementation pattern documented by
Spinellis (2001)

Staged verification Detect type and configuration errors in a critical piece of code early,
such as during robot pre-launch time, with no or minimal extra
effort for developers

Execute all critical pieces of code early, while redefining the
semantics of the predetermined set of operations (e.g., ontology
relations from our previous example) to immediately return or to
only perform checking

Symbolic tracing
Detect bugs in a critical piece of code early, if that code depends on
parameters or operation return values, with minimal extra effort for
developers

Execute the critical code while passing symbolic values as
parameters and/or returning symbolic values from operations of
relevance

Collect any constraints imposed by operations on the symbolic
values

After executing the critical code, verify the constraints against the
problem domain

Source provenance tracking Make early dynamic error reports more actionable by reporting
relevant source locations

Dynamic stack inspection

3.2.1 Domain language mapping
Domain language mapping identifies language concepts in the

host language that correspond to the domain language in some
sense and then uses the techniques described in Spinellis (2001)
to implement them. This mapping can be manual or the result of
reflection.

As an example, the Web Ontology Language (OWL) allows
us to express the relationships and attributes of the objects in the
world, the robot hardware, and the robot’s available capabilities
(skills and primitives). Existing libraries like owlready2 (Lamy, 2017)
already expose these specifications as Python objects, so if the
ontology contains a class pkg:Robot, we can create a new “robot”
object by writing

r = pkg.Robot ("MyRobotName")

and iterate over all known robots by writing
for robot in pkg.Robot.instances (): …

Although Moghadam et al. (2013) expressed concerns about
“syntactic noise” for DSL embedding in earlier versions of
Python, when compared to external DSLs, we found such
noise to be modest in modern Python and instead emphasize
the advantages of embedding in a language that is already
integrated into the ROS environment and developers are
familiar with.

3.2.1.1 Maintenance and integration considerations
When domain knowledge is available in the machine-

readable form, much or all of the mapping process may
be automatable. For example, the owlready2 library creates
these classes at runtime based on the contents of the
ontology specification files. Thus, changes in the ontology are
immediately reflected in Python; if we rename pkg:Robot

in the ontology, our earlier code example will trigger
an error when it encounters pkg.Robot in the Python
source code.

Another strategy for automating the mapping process
is to generate the code in the host language. In our
example, this code would take the form of Python
modules, such as pkg.py, which contain classes and
methods to reflect the mapping (e.g., a class Robot).
This strategy mirrors the DSL implementation strategies
for host languages that lack advanced reflection facilities,
such as C (Levine et al., 1992).

Code generation has two potential disadvantages over reflection.
First, code generation persists a snapshot of the domain language
mapping. The build and development process must thus ensure that
this snapshot is kept fresh and prevents developers from accidentally
modifying the generated code. Second, code generation requires the
domain language mapping to take place before build time. When
the domain knowledge is only available at pre-launch time, the
generated code will necessarily be stale, which may render this
implementation strategy useless.

In our discussions with practitioners, we did however observe
a key advantage that code generation offers. Since the mapping
becomes visible as the Python source code, it is also available to
language servers and integrated development environments and
may help developers find bugs in their code even earlier.

3.2.2 Staged verification
Staged Verification verifies certain kind of properties in

a critical piece of code at an early stage before execution.
The term “staged” refers to performing these verifications in
a controlled manner at a specific early point in the process.
This approach prevents runtime failures, simplifies debugging,
and enables safe validation in systems that integrate complex
elements. In tools like SkiROS2, combining Python code,
ontologies, and configuration files at runtime introduces
points of failure. To detect such failures early, we propose
the following second pattern:

Frontiers in Robotics and AI 05 frontiersin.org119

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

Listing 3. Constructing the behavior tree of a drive skill in SkiROS2:
It is a sequential execution of a compound skill (a skill with its own
BT of smaller, executable skills) “Navigate” and a primitive skill (an
atomic skill that cannot be broken down into smaller parts)
to update the world model “WmSetRelation.”

The conditions for this pattern are as follows:

• We can collect all critical pieces of code at a suitably early point
during execution.
• The critical code does not depend on return

values of operations that we cannot predict at the
pre-launch time.

In Python, configuration and type errors only trigger software
faults once we run the code that depends on faulty data. In robotics,
wemight find such code in operations that (a) run comparatively late
(e.g., several minutes after the start of the robot) and (b) are difficult
to unit-test (e.g., due to their coupling to specific ROS functionality
and/or robotics hardware). For robotics developers, both challenges
increase the cost of verification and validation (Reichenbach, 2021).
A fault might trigger only after a lengthy robot program and require
substantial manual effort to reproduce. For example, a software
module for controlling an armmight take a configuration parameter
that describes the target arm pose. If the arm controller is triggered
late (e.g., because the arm is part of a mobile platform that must first
reach its goal position), any typos in the arm pose will also trigger
the fault late. If the pose description comes from a configuration
file or ontology, traditional static checkers will also be ineffective.
We can only check for such bugs after we have loaded all relevant
configurations.

Through careful software design, developers can work around
this problem, e.g., by checking that code and configuration are
well-formed as soon as possible, before they run the control logic.
If the critical code itself is free of external side effects, the check
can be as simple as running the critical code twice. For example,
SkiROS2 composes BTs (Colledanchise and Ögren, 2018) within
such critical Python code (Listing 3); composing (as opposed to
running) these objects has no side effects, so we can safely construct
them early to detect simple errors (e.g., typos in parameter names).
This is a typical example that eludes static checking but is amenable
to early dynamic checking. Line 7 depends on self.params

[“Robot”].value, which is a configuration parameter that we
cannot access until the robot is ready to launch.

Not all of the robotics code is similarly declarative. Consider the
following example, in a hypothetical robotics framework inwhich all
operations are subclasses of RobotOp and must provide a method
run () that takes no extra parameters.

Here, developers introduced a separatemethodcheck () that
can perform an early check during robot initialization or pre-launch.
However, check () and run () both have to be maintained to
make the same assumptions.

The early dynamic checking pattern instead uses internal DSL
techniques to enable developers to use the same code in two different
ways: (a) for checking and (b) for logic.

In our example, calling run () “normally” captures case (b).
For case (a), we can also call run (), but instead of passing
an instance of MyRobotOp, we pass a mock instance of the
same class, in which operations like runA () immediately return.

If we execute MyRobotOpMock.run () with the
same configuration as MyRobotOp, run () will execute
almost as for MyRobotOp but immediately return from
any call to runA or runB. If the configuration is invalid,
for example, if config.mode == “C” or config.v ==

false, running MyRobotOpMock.run () will trigger the
error early.

Since Python can reflect on a class or an object to identify all
fields andmethods, we can construct classes likeMyRobotOpMock
at runtime; instead of writing them by hand, we can implement
a general-purpose mock class generator that constructs methods
like runA and accessors like config automatically. If the
configuration objects trigger side effects, we can apply the same
technique to them.

However, the above implementation strategy is only effective
if we know that the critical code will only call methods on self

and other Python objects that we know about ahead of time. We

Frontiers in Robotics and AI 06 frontiersin.org120

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

can relax this requirement by controlling how Python resolves
nonlocal names:7

FunctionType(MyRobotOp.run.__code__,
globals() | {‘print’: g})(obj)

This code will execute obj.run () via the equivalent
MyRobotOp.run (obj) but replace all calls to print

by calls to some function g. The same technique can
use a custom map-like object to detect at runtime which
operations the body of the method wants to call and handle
them suitably.

However, the more general-purpose we want the critical code
to be, the more challenging it becomes to apply this pattern. For
instance, if the critical code can get stuck in an infinite loop,
so may the check; if this is a concern, the check runner may
need to use a heuristic timeout mechanism. A more significant
limitation is that we may not, in general, know what our mocked
operations like runA () should return, if anything. If the critical
code depends on a return value (e.g., if it reads ROS messages),
the mocked code must be able to provide suitable answers. The
same limitation arises when the critical code is in a method
that takes parameters. If we know the type of the parameter
or return value, e.g., through a type annotation, we can exploit
this information to repeatedly check (i.e., fuzz-test) the critical
code with different values; however, without further cooperation
from developers, this method can quickly become computationally
prohibitive.

If we know that the code in question has a simple control
flow, we may be able to apply the next pattern, symbolic
tracing.

3.2.3 Symbolic tracing
Here, a symbolic value is a special kind of mock

value that we use to record information
(King, 1976).

The conditions for this pattern are as follows:

• We can access and execute the critical code.
• We have access to sufficient information (via type

annotations and properties) to simulate parameter
values and operation return values symbolically
(see below).
• The number of control flow paths through the critical code is

small (see below).

Consider the following RobotOp subclass:

This class only calls two operations, but its run operation
depends on a parameter speedup about which we know nothing

7 Python’s eval function offers similar capabilities, but as of Python 3.10, it

does not seem to allow passing parameters to code objects.

a priori—thus, we cannot directly apply the early dynamic
checking pattern.

In cases where we lack prior knowledge about an operation,
it may still be possible to obtain useful insights about it.
For example, if we are aware that setArmSpeed accepts
only numeric parameters and setArmSafety only accepts
Boolean parameters, we can flag this code as having a type
error. To avoid blindly testing various parameters, we can
pass a symbolic parameter to the run function and employ a
modified version of the mock-execution strategy used in early
dynamic checking. The mock objects can be adapted as follows:

We can now 1) create a fresh object obj and an
SetArmSpeedOpMock instance that we call mock, 2) call
SetArmSpeedOp.run (mock, obj), and 3) read out
all constraints that we collected during this call from TYPE_

CONSTRAINTS and check them for consistency, which makes
it easy to spot the bug. If the constraints come from accesses
to obj (e.g., method calls like obj.__add__(1) that result
from code like obj + 1), obj itself can collect the resultant
constraints.

Depending on the problem domain, constraint solving can be
arbitrarily complex, from simple type equality checks to automated
satisfiability checking (Balldin and Reichenbach, 2020). It can
involve dependencies across different pieces of the critical code
(e.g., to check if all components agree on the types of messages
sent across ROS channels or to ensure that every message that
is sent has at least one reader). However, this approach requires
information about specific operations like setArmSpeed and
setArmSafety, which can be provided to Python in a variety of
ways, e.g., via type annotations.

As an example, consider an operation that picks up a coffee
from the table with a gripper, where we annotate all parameters
to run with the Web Ontology Language (OWL) ontology types.

This example is derived from the SkiROS2 ontologies, with
minor simplifications. In the above SkiROS2 code, the developer
intended to write a pre-condition that to be able to pick a coffee
cup, the robot should be close to the table. Instead, the developer
mistakenly wrote that a robot should be a part of the coffee table.

The ontology requires thatrobotPartOf is a relation between
a technical Device and a Robot. However, Furniture is not a
subtype of Device, so the assertion in line 6 is unsatisfiable.

Frontiers in Robotics and AI 07 frontiersin.org121

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

We can again detect this bug through symbolic tracing. This
time, we must construct symbolic variables for robot, gripper,
and coffee_table that expose methods for all applicable
relations, as described by their types. For instance, gripper
will contain a method robotPartOf(gripper, obj) that
records on each call that gripper and obj should be in a
robotPartOf relation. Meanwhile, coffee_table will not
have such an operation. When we execute run (), we can then
defer to Python’s own type analysis, which will abort execution and
notify us that coffee_table lacks the requisite method.

Key to this symbolic tracing is our use of mock objects as
symbolic variables. Symbolic variables reify Python variables to
objects that can trace the operations that they interact with, in
execution order, and translate them into constraints.

The main limitation of this technique stems from its interaction
with Python’s Boolean values and control flow, e.g., conditionals
and loops. Python does not allow the Boolean operators to return
symbolic values but instead forces them (at the language level) to
be bool values; similarly, conditionals and loops rely on access to
Boolean outcomes. Thus, when we execute the code in the form if

x: …,wemust decide right there and then if we should collapse the
symbolic variable that x is bound to True or False. Although we
can re-run the critical code multiple times with different decisions
per branch, the number of runs will in general be exponential over
the number of times that a symbolic variable collapses to bool.

3.2.4 Source provenance tracking
The intent in early error detection in (embedded) DSLs is

generally to prevent undesirable behavior. When this undesirable
behavior is due to a problematic user specification, it is—in
our experience—valuable to point the user to the problematic
specification. In practice, “blaming” the right part of the program
can be non-trivial since the disagreement may be across multiple
user specifications (Ahmed et al. (2011) discussed this challenge in
more detail).

Handling multiple conflicting constraints can be particularly
challenging for embedded DSLs. Let us say that we are
using a technique like symbolic tracing in two user-defined
functions, namely, declaration () and implementation (), such that
implementation () must ensure the constraints that are required
declaration ().

In the above example, we might find a bug: implementation
allows x = 10, but this is not allowed according to declaration
(). A typical but naïve implementation of such a consistency
check might simply inform the user that declaration and
implementation disagree about what x is allowed to do and raise an
exception.

The programmer must now identify the line of code that
is the culprit by hand. In practical scenarios, such as our case
studies, there may be multiple declaration and implementation
functions in the same file (usually as methods), which further
complicates the task.

Reflection can help us here; for example, given a function object
in Python, we can use reflection to access implementation._
_code__.co_firstlineno and implementation.__code
__.co_filename to obtain the location at which the function
was defined in the form of the first line of the code and the source
file name. For larger definitions, even this information may be
insufficiently precise.

Some languages offer facilities that allow us to obtain even
the exact lines of code that were responsible for the error (lines
3 and 7, in our example). Although some languages support
this inspection through macro- or pre-processor facilities (e.g., _
_LINE__ and __FILE__ in C), Python 3.1 and later versions
offer direct read access to the call stack via inspect. stack

(). The symbolic tracing code for require () and ensure

() can then “walk” this stack down until it finds the first stack
frame that belongs to the code under analysis and extract file
name and line number from there. The symbolic tracer can
then attach this provenance information to the constraint and
expose it to the user if the constraint is contributing to some
error report.

3.3 Alternative techniques for checking

Internal DSLs are not the only way to implement the kind of
early checking that we describe. The mypy tool8 is a stand-alone
program for the type-checking Python code. mypy supports plugins
that can describe custom typing rules, which we could use, e.g., to
check for ontology types. Similarly, we could use the Python ast

module to implement our own analysis over the Python source
code. However, both approaches require separate passes and would
first have to be integrated into the ROS launch process. Moreover,
they are effectively static, in that they cannot communicate with
the program under analysis; thus, we cannot guarantee that the
checker tool will see the same configuration (e.g., ontology and
world model).

Another alternative would be to implement static analysis over
the bytecode returned by the Python disassembler dis, which can
operate on the running program. However, this API is not stable
across Python revisions9.

An external DSL such as MAESTRO Coste-Maniere and Turro
(1997) would similarly require a separate analysis pass. However, it
would be able to offer arbitrary, domain-specific syntax and avoid
any trade-offs induced by the embedding in Python (e.g., Boolean
coercions). The main downside of this technique is that it requires
a completely separate DSL implementation, including maintenance
and integration.

8 https://mypy-lang.org/

9 https://docs.python.org/3/library/dis.html

Frontiers in Robotics and AI 08 frontiersin.org122

https://doi.org/10.3389/frobt.2024.1363443
https://mypy-lang.org/
https://docs.python.org/3/library/dis.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

4 SkiROS2: an open-source software
for skill-based robot execution

As a case study, we implement our patterns on the open-source
software for skill-based robot execution SkiROS2 (Mayr et al.,
2023b). SkiROS2 is used by several research institutions in the
context of industrial robot tasks, as demonstrated in Mayr et al.
(2022a), Mayr et al. (2022b), Mayr et al. (2023c), Mayr et al.
(2023a), Ahmad et al. (2023), and Wuthier et al. (2021). It is a
re-implementation of the predecessor SkiROS1 by Rovida et al.
(2017a) and is implemented in Python on top of the robot
operating system (Quigley et al., 2009) middleware. SkiROS2 uses
behavior tree (Colledanchise and Ögren, 2018) formalism to
represent procedures.

SkiROS2 implements a layered, hybrid control architecture to
define and execute parametric skills for robots (Bøgh et al., 2012),
Krueger et al. (2016). The SkiROS2 system architecture is shown
in Figure 2, which illustrates how different components interact
with each other in various phases. It uses ontologies to represent
the comprehensive knowledge about the world. SkiROS2 represents
knowledge about the skills, the robot, and the environment
in a world model (WM) with the ontologies specified in the
OWL format. This explicit representation, built on the World
Wide Web Consortium’s Resource Description Framework (RDF)
(Hitzler et al., 2009) standard, allows the use of existing ontologies.
This approach to knowledge management is important for complex
decision-making and reasoning in autonomous systems (Cangelosi
and Asada, 2022). WM is central to SkiROS2’s architecture and
serves as a dynamic repository of the robot’s environment and state.
It continuously updates and maintains a semantic representation
of the surroundings, objects, and the robot’s own status. The
integration of the WM with the ontologies shown in Figure 2
ensures that the robot has a thorough understanding of its
operational context, enhancing its interaction capabilities with
the environment.

4.1 Skill model

Skills in SkiROS2 are parametric procedures that modify
the world state from an initial state to a final state according
to pre- and post-conditions (Pedersen et al., 2016). Every skill
has a Skill Description and one or more Skill Implementation
as shown in Figure 2. The Skill Description consists of the following
four elements:

1. Parameters define the input and output of a skill. The types of
these parameters can vary from certain primitive data types to
a world model element in the ontologies.

2. Pre-conditions must hold before the skill is executed.
3. Hold-conditions must be fulfilled during the execution.
4. Post-conditions indicate that a skill has been

successfully executed.

These conditions are checked by the Skill Manager
as shown in Figure 2. These conditions are important for
planning and also for dynamic sanity checks, when planning
is disabled. When a skill is invoked, the system first checks
the pre-conditions to decide if it is safe or viable to start

the skill. During execution, hold conditions are continuously
monitored to ensure ongoing criteria are met. Finally, once the
skill reports its completion, post-conditions are checked to confirm
successful execution. These checks are essential to maintain the
robustness, safety, and reliability of robotic operations, ensuring
that skills are only performed when appropriate and achieve the
intended results.

4.1.1 Skill description
Listing 4 shows how developers define a “pick” skill in

SkiROS2 by calling the Python method addParam to set the
parameters of the skill and similarly to define its pre- and
post-conditions. The parameters are typed, using basic datatypes
(e.g., str) or a WM element defined in ontology, and can be
required, optional, or inferred from the world model. Pre-conditions
allow SkiROS2 to check requirements for skill execution and to
automatically infer skill parameters from the world model. For
example, in the “pick” skill shown in Listing 4, the parameter
“Object” in line 10 is REQUIRED, i.e., it must be set before
the execution of the skill. At execution time, SkiROS2 infers the
parameter “ObjectLocation” (line 9) by reasoning about the
pre-condition rule“ObjectLocationContainObject” (line
13). If “Object” is semantically not at a location in the WM, the
pre-conditions are not satisfiable and the skill cannot be executed.

4.1.2 Skill Implementation
The Skill Implementation, on the other hand, acts as a class that

implements the interface Skill Description and refers to the actual
coding and logic that enables a robot to perform a task. Skills can be
either primitive or compound skills. Depending on the type of skill,
primitive skills implement atomic functions that change the real
world, such as moving a robot arm, whereas compound skills build
complex behaviors in a BT. An example of a pick Skill Implementation
is shown in Listing 5.

The createDescription method (line 2 in Listing 5) sets the
description(interface) toanimplementation.Theexpandmethod(line
5 in Listing 5) within the skill implementation uses behavior trees to
structure the execution of skills. Each node in the tree could represent
a specific skill (action node) or a decision-making process (commonly
known as a control flow node) that determines which skill to execute
next, as illustrated inFigure 3.Thecontrol flownode sets theprocessor
and specifies how the compound skill is decomposed into a behavior
tree (line 6). In SkiROS2, control flownodes or processors dictate how
a compound skill invokes its child skills. Before delving into specific
processors, it is essential to understand the common states in which a
node might return during execution.

• Success indicates that the skill or all skills (in case of compound
skills) have been completed successfully.
• Failure indicates that the skill has failed to complete

successfully or conditions for success are not met.
• Running indicates that the skill is still in progress and has not

yet reached a conclusion of success or failure.

These states are not only exclusive to compound skills but are
also applicable to leaf nodes/primitive skills. Following are the lists
of processors and how they operate in these states:

• Serial processes the children one by one in order until all
succeed. It will continuously loop through the children until

Frontiers in Robotics and AI 09 frontiersin.org123

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

FIGURE 2
Diagram with the different components of SkiROS2, their interaction during different time phases, and the advancements by EzSkiROS (shown as green
blocks). In SkiROS2, a bug that has been introduced in a skill description by a developer will often only trigger at runtime. EzSkiROS addresses these
costs and risks by adding checks to find a wide range of bugs by running a pre-launch file where the skills are loaded before runtime.

one returns RUNNING or FAILURE or until all children
succeed. SerialStar is a variation of the serial processor with
error handling.
• Selector runs its children one after the other until one succeeds

(returning SUCCESS) or all fail (returning FAILURE). If a
child is in progress (RUNNING), the processor will also return
RUNNING. SelectorStar is a variation of Selector analogous to
SerialStar.

Listing4. An excerpt of the parameters and pre- and post-conditions of a pick skill in SkiROS2without EzSkiROS. It depends heavily on the usage of strings
to refer to parameters or classes in the ontology.

• ParallelFf (parallel first fail) invokes all the children at the
same time. It returns SUCCESS only if all children succeed. If
any child fails, it immediately returns FAILURE and halts the
other children.
• ParallelFs (parallel first stop) also runs all the children

simultaneously. However, it stops all processes and returns
SUCCESS as soon as any child succeeds or FAILURE if any
child fails, regardless of the others’ states.

Frontiers in Robotics and AI 10 frontiersin.org124

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

When we say that a node “returns” something, we are referring
to the result of an operation or computation performed by
that node. This result dictates the next action in the behavior
tree, such as whether to continue, stop, or try a different
approach.

As shown in Listing 5, the skill() operator allows us
to set the children of the behavior tree of the skill being
implemented. To add several children at once, it is possible
to use the syntax shown in the Listing 5 (lines 9–22). Each
child can either be another processor (to make a nested control
structure) or an individual component skill. Individual skills
follow the template self.skill (skilltype, label =

“ ”, specify = {}, remap = {}), where skilltype
is a Skill Description, i.e., an abstract skill that may have multiple
implementations. At runtime, SkiROS2 selects and substitutes
one of the implementations of this skill description, unless users
manually select a specific implementation using the optional
label parameter. All skills share a parameter namespace so that
parameters with the same names are implicitly unified across
all component skills. For example, if we use a compound skill
with the parameter Robot set to some specific object, SkiROS2
implicitly sets this parameter in all component skills. Skill
developers can override this behavior with the optional specify
and remap parameters to self.skill.specify

takes a Python dictionary that maps parameter names to concrete
values (e.g., theDuration of aWait action, in line 19 of Listing 5).
Meanwhile, remap maps parameter names to the names of other
parameters. Considering line 15 shown in Listing 5, this line
specifies that the parameter Target of the ApproachMovement
skill should be the parameter GraspPose, whereas the same

Listing5. The skill implementation of the pick Skill Description is shown in Listing 4.

parameter for the same skill in line 23 should be the parameter
ApproachPose.

The relationship between Skill Descriptions and BTs is evident
in how the expand function uses the behavior tree structure to
implement the skill logic. The parameters, pre-conditions, hold-
conditions, and post-conditions defined in the Skill Description
guide the construction and execution of BTs. For instance, the
pre-conditions in a skill description determine when a particular
branch of the behavior tree is activated, and the post-conditions
signal when a skill or sequence of skills has been successfully
completed.

These skills are loaded by the Skill Manager at robot launch
time (shown in Figure 2).

5 Case study I: concise and verifiable
robot skill interface

We have validated our design patterns in an internal DSL
EzSkiROS, which adds early dynamic checking (Section 3.2) to
skill descriptions. Following a user-centered design methodology,
we developed EzSkiROS by first identifying needs for early bug
checking via semi-structured interviews with skilled roboticists
who use SkiROS2, reviewed documentation, and manual code
inspection. We found that even expert skill developers made
errors in writing Skill Descriptions and that Python’s dynamic
typing only identified bugs when they triggered faults during
robot execution.

We designed EzSkiROS to simplify how Skill Descriptions
are specified, with the intent to increase their readability,

Frontiers in Robotics and AI 11 frontiersin.org125

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

FIGURE 3
BT of the pick skill in the eBT format Rovida et al. (2017b). It has a SerialStar operator and will execute all children in sequence. The pre-conditions and
post-conditions are shown.

Listing 6. The skill description of the pick skill is shown in Listing 4
with EzSkiROS. We represent OWL classes in Python as
identifiers in type declarations.

maintainability, and writability. We map ontology objects and
relations into Python’s type system. Skill Descriptions can then
directly include ontology information in type annotations. This
approach streamlines the syntax by avoiding redundant syntactic
elements and specifying type information through annotations
rather than string encodings, as illustrated with the example
of the pick skill in Listing 6. The listing also illustrates the
EzSkiROS syntax for the example of the pick skill from Listing 4.
The Skill Description shown in Listing 6 is more concise and
intuitive, with type annotations providing a clear and direct
way to specify the types of parameters and their ontology
information.

In EzSkiROS, we employed owlready2’s approach to domain
language mapping in exposing the world model elements
in the ontology as Python types and objects. For instance,
as shown in Listing 6, line 3 describes a parameter Robot

with the type annotation INFERRED [cora.Robot]. Here,
cora.Robot is a Python class that we dynamically generate to
mirror an OWL class “Robot” in the OWL namespace “cora”.
INFERRED is a parametric type that tags inferred parameters.
We mark optional parameters analogously as OPTIONAL; all
other parameters are required. At robot pre-launch time, we use
Python’s reflection facilities to extract and check this parameter
information, both to link with SkiROS2′ skill manager and for
part of our early dynamic checking. In addition to our ontology
types, we also allowed basic data types (str, float, int,

bool) in EzSkiROS, enforcing that each must specify a default
value. Originally, SkiROS2 also allowed the parameters of data
types list and dict. However, in EzSkiROS, we restricted the use
of lists and dicts as it was not clear if we would need this in
practice. One of the developers claimed that dicts are considered
“hacks” in the system’s context. Although lists are valid for
representing, e.g., joint configurations, it might be better served
by a specialized joint-configuration type to encapsulate their
complexities and intended use more accurately. We allowed
enums to handle such parameters, acknowledging that enums
cannot encode lists or dicts, but it can provide a more controlled
and predictable set of values, enhancing the system’s integrity
and reliability.

In addition to skill parameters, we also want to make sure
that skill conditions satisfy the contracts in our ontology. These
pre-, post-, and hold-conditions can be expressed in different
ways depending on what aspects of the robot’s environment and
state we want to assess. According to SkiROS2 documentation,
one can define a skill with the help of four kinds of skill
conditions:

Frontiers in Robotics and AI 12 frontiersin.org126

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

1. ConditionHasProperty is a unary relation to check whether
a certain element or entity has a specific property. It is
useful when the skill needs to verify certain attributes or
characteristics of objects or elements before proceeding.When
a condition checks for a property, it is essentially querying the
ontology to see if the entity conforms to certain criteria or
states definedwithin it. For instance, if an ontology defines that
a “door” entity can have a state property with values “open” or
“closed,” ConditionHasProperty might check if the door’s state
is “open.”

2. ConditionProperty is a binary relation which relies on the
ontology to understand and evaluate properties or attributes
of entities. However, it might be used to assess the value or
state of a property rather than just its presence. For example,
it could check whether the temperature (property) is within a
certain range.

3. ConditionRelation is used to evaluate the relationships between
different elements or entities. It is crucial for tasks that require
understanding spatial or hierarchical relationships, such as “is
next to,” “is on top of,” or “is part of.”This condition utilizes the
relational information in the ontology to assess how entities are
related. Ontologies define not just entities but also the possible
relationships between them. For example, it might check if
“object A is on top of object B” by referring to the ontology’s
definitions of “object A,” “object B,” and “on top of ” relations.

4. AbstractConditionRelation is a more generalized or template
form of ConditionRelation, which can be specified or extended
for various specific relational conditions.

Since all types of skill conditions rely heavily on the ontology
for their evaluation, it is important to add Early Dynamic
checking to detect mistyped conditions. We utilize Symbolic
Tracing as described in Section 3.2. This step collects all pre-,
post-, and hold conditions via the overloaded Python operator
“+=” (lines 13–23). We then check for wrong ontology relations
and ontology type errors among these conditions. Since we use
Domain Language Mapping to expose the world model entities
as classes and relations as Python methods, Python’s own name
analysis will catch such mistyped ontology relation or entity names,
and the symbolic values that we pass into the description

method capture all types of information that we need for
type-checking.

We test our DSL implementation by integrating it with
SkiROS2 to see how it behaves with a real skill running on a
robot10. To demonstrate the effectiveness of our type check in
EzSkiROS, we use a “pick” skill written in EzSkiROS (Listing 6)
and load it while launching a simulation of a robot shown in
Figure 1.

Listing 7 shows that the ObjectProperty “hasA” is
a relation allowed only between a “product” and a
“TransformationPose”. If we introduce a nonsensical relation
like Object.hasA (Gripper), then the early dynamic check
in EzSkiROS over ontology types returns a type error:

TypeError: Gripper: <class ’ezskiros.param_

type_system.rparts.GripperEffector’> is not

a skiros.TransformationPose

10 Available online in https://github.com/lu-cs-sde/EzSkiROS

In addition to the error message, we also provide the source of
the error highlighting the line that contains the error.

5.1 Evaluation

To evaluate the effectiveness and usability of EzSkiROS in
detecting bugs at pre-launch time, we conducted a user study with
robotics experts. Seven robotic skill developers participated in our
user study, including one member of the SkiROS2 development
team. The user study consisted of three phases: an initial
demonstration, a follow-up discussion, and a feedback survey11.
Due to time limitations, we defer a detailed study, with exercises for
users to write new skills in EzSkiROS, to the future.

To showcase the embedded DSL and the early bug checking
capabilities of EzSkiROS, we presented a video showing 1) a contrast
between the old and new skill descriptions written in EzSkiROS and
2) demonstrating how errors in the skill description are detected
early at pre-launch time by intentionally introducing an error in the
skill conditions.

During the follow-up discussion, we encouraged participants
to ask any questions or clarify any confusion they had about the
EzSkiROS demonstration video.

After the discussion, we invited the participants to complete
a survey to evaluate the readability and effectiveness of the
early ontology type checks implemented in EzSkiROS. The survey
included Likert-scale questions about readability, modifiability, and
writability. Six participants answered “strongly agree” that EzSkiROS
improved readability, and one answered “somewhat disagree.” For
modifiability, four of them “strongly agree,” but three participants
answered “somewhat agree” and “neutral.” All the participants
answered “strongly agree” or “somewhat agree” that EzSkiROS
improved writability.

To gain more in-depth insights, the survey also included open-
ended questions, e.g., a) “Would EzSkiROS have been beneficial
to you, and why or why not?”; b) “What potential benefits or
concerns do you see in adopting EzSkiROS in your work?;” and
c) “What potential benefits or concerns do you see in beginners,
such as new employees or M. Sc. students doing project work,
adopting EzSkiROS?”

For question a), all participants agreed that EzSkiROS would
have helped them. Participants liked the syntax of EzSkiROS,
and they thought that it takes less time to read and understand
the ontology relations than before. One of them claimed that
“pre- and post-conditions are easy to make sense.” They also
found that mapping the ontology to Python types would have
helped reduce the number of lookups required in the ontology.
One of the participants said, “in my experience, SkiROS2 error
messages are terrible, and half the time they are not even the
correct error messages (i.e. they do not point me to the correct
cause), so I think the improved error reporting would have been
extremely useful.”

For question b), the majority of participants reported that
EzSkiROS’s concise syntax is a potential benefit, which they
believe would save coding time and effort. One participant found

11 A replication of the survey https://github.com/lu-cs-sde/EzSkiROS

Frontiers in Robotics and AI 13 frontiersin.org127

https://doi.org/10.3389/frobt.2024.1363443
https://github.com/lu-cs-sde/EzSkiROS
https://github.com/lu-cs-sde/EzSkiROS
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

EzSkiROS’s specific error messages useful, responding that “the
extra checks allow to know some errors before the robot is started,”
while one participant answered that EzSkiROS does not benefit
their current work, but it might be useful for writing a new skill
from scratch. None of the participants expressed any concerns about
adopting EzSkiROS in their work.

For question c), one developer acknowledges the benefits of
EzSkiROS by saying “In addition to the error reporting, it seems
much easier for a beginner to learn this syntax, particularly
because it looks more like “standard” object oriented programming
(OOP.)” One person claimed that EzSkiROS would help beginners,
describing SkiROS2 as “it is quite a learning curve and needs
some courage to start learning SkiROS2 from the beginning
autonomously.”

In summary, the results of the user evaluation survey indicate
a positive perception of EzSkiROS in terms of readability and
writability. Most respondents found EzSkiROS to be easy to
read and understand, with only one exception. In addition,
respondents found EzSkiROS’s early error checking to be
particularly useful in detecting and resolving errors in a timely
manner. This suggests that the users perceived EzSkiROS as an
effective tool.

6 Case study II: verifiable construction
of a behavior tree in skill
implementation

In the second case study, we examined the utility of our
design patterns by extending EzSkiROS to add Early Dynamic
Checking to the implementation of compound skills. Compound
Skill Implementation uses behavior trees to efficiently handle
decision-making processes, task execution, and error recovery.
Our design methodology involved identifying the requirements for
constructing BTs by examining their specifications. To understand
common challenges, we analyzed GitHub issues encountered by
developers when writing BTs in SkiROS2. This analysis included
a systematic search for specific keywords such as “Behavior
Tree,” “Remaps,” and “Skill Implementation,” informed by insights
from senior Ph.D. students. Subsequently, we engaged in a
verification process with the developers to ensure the validity of the
identified issues.

We found that past mistakes in BT construction
involved mistyped skill names and parameter names (cf.
Listing 5), especially in parameter remapping. We additionally
identified the concern that the pre-conditions and post-
conditions of skills might be mismatched, which we explore
in Section 6.1.

Listing7. The definition of the object property “has A” in the SkiROS2 ontology.

As shown in our previous case study, we usedDomainLanguage
Mapping to identify mistyped names in skill implementations early.
Since the parameters to each skill implementation are defined in the
skill description that is being implemented, this mapping required
us to link each implementation to its corresponding description.
Existing SkiROS2 code relied on calls to a setDescription

() method to dynamically establish this relationship, as shown
in line 2 of Listing 5. In practice, each skill implementation has
exactly one skill description that it implements, meaning that
there is no need to dynamically set this property. Instead, this
relationship is closely related to the concepts of subtyping and
interface implementation. We thus applied Domain Language
Mapping to use Python’s syntax for inheritance as a device for
specifying the link from skill implementation to skill description
(as shown in Listing 8; line 1). This approach both shortened the
specification and allowed us to reliably identify the parameters
and conditions (pre-conditions, post-conditions, etc.,) for each skill
implementation.

Recall from the discussion shown in Section 4.1.2 how
behavior trees are constructed in the Skill Implementation phase.
Behavior trees were specified in the expand method where a list
of skills is passed to a skill() wrapper after initializing a
processor (lines 7–24). Each skill is defined with self.skill

(skilltype, label = “ ”, remap = .., specify

= ..), allowing for parameter remapping. While composing
skills in a behavior tree, the skills, their implementations, and
the parameter remappings were passed as string parameters.
For example, the BT specification for a “pick” skill in Listing 5
consists of a skill ApproachMovement.go_to_linear

as self.skill (“ApproachMovement”, “go_to_

linear”, remap = ’Target’:’Grasp-Pose’). There
are two problems with this notation that could lead to a runtime
error: 1) if we pass a string that does not match any available skill
descriptions or its implementations, and 2) incorrect remapping,
such as referencing non-existent parameters, can lead to errors.
Remapping is critical as it redirects parameters from one skill to
another, ensuring proper data flow.

To prevent unexpected behavior at runtime, it is vital to
detect and report such errors early. To address these issues,
we use Domain Language Mapping to expose skill descriptions,
implementations, and their parameters as Python objects and passed
as identifiers (as shown in line 10 of Listing 8) that allow us to
use Python’s name analysis to locate skills with correct parameters
(to remap to) and to find typos in those identifiers. Listing 8
shows how “pick” skill parameters are passed to the expandBT
method and accessed directly as params.ApproachPose. This
approach simplifies parameter remapping, ensuring accuracy and
cohesiveness in skill execution.

Frontiers in Robotics and AI 14 frontiersin.org128

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

6.1 Need for static pre-/post-condition
matching in SkiROS2

As mentioned in Sections 4, 5, pre- and post-conditions in
a BT implementation of a compound skill ensure the correct
execution of skills to complete a robot’s task. These conditions
are checked in SkiROS2 by the Skill Manager before starting and
parameterizing the skill. Although these conditions might seem
less critical in controlled or smaller settings, their importance
escalates as the complexity and scale of tasks grow. Poor quality
or incorrectly defined conditions can significantly limit the ability
of SkiROS2 to scale and handle complex, dynamic tasks efficiently.
If we do not use a planner, manually creating compound skills or
adjusting existing compounds without thorough checks can lead
to mismatches between expected and actual skill behaviors. Static
checking of pre-/post-conditions becomes essential to identify and
correct these errors early in the development cycle, preventing
potential failures during execution. To verify this requirement, we
randomly selected five SkiROS2 skills written by developers to
understand the prevalence of errors. Among those five skills, four
of them failed the following basic checks:

• For skills in a serial or serialstar processors = serial (A,

B, C), the pre-condition of “s” must entail the pre-condition
of “A,” and the aggregate post-conditions of “A” must entail the
pre-condition of “B” and so on.
• For skills in a selector or selectorstar processor s =

selector (A, B, C), the pre-condition of “s” must
entail the conjunction of the pre-conditions of “A,” “B,” and “C.”
Post-conditions of “s” can be conservatively checked as any of
the children can lead to success without a predetermined order.
• For parallel skills, all children must succeed, with specific

differences in handling the completion and order. This requires
that no post-condition of one skill may invalidate the pre-
conditionofanotherduetothesimultaneousnatureofexecution.

This evidence points to a common oversight in defining these
conditions carefully and makes it important to have robust tooling
to ensure that pre- and post-conditions are correctly matched and
implemented. To address these challenges, we plan to create a
comprehensive mapping and verification system in the future. This

Listing8. The EzSkiROS representation of the skill implementation is shown in Listing 5. Here, the inheritance from Pick.SkillBaselinks the pick
skill description shown in Listing 6to its implementation.

systemwouldtrackallpre-andpost-conditions,managedependencies
and changes, handle remapping accurately, and ensure that all
conditions are consistent and verifiable at each step of the skill
execution. It would be beneficial to use the design pattern Source
Provenance Tracking to blame the exact skill whose post-condition
did not match the expected state, which will make the debugging of
behavior trees easier thanbefore. Itwould likely involve a combination
of static analysis tools, careful structuring of skill descriptions, and
possibly enhancements to the SkiROS2 framework to support more
robust condition checking and error reporting.

7 Overall evaluation of the extended
EzSkiROS

Our evaluation of the extension of EzSkiROS (as mentioned
in case study II) is primarily based on an in-depth review
provided by an experienced SkiROS2 developer and maintainer
who has used the tool for transforming the old SkiROS2 code into
EzSkiROS. We requested developer feedback on various aspects
of EzSkiROS, including its strengths and weaknesses, the impact
on code readability and writability, the ease of code translation,
the comprehensibility of errors encountered, and any general
observations or suggestions they may have. The user’s experience
offers valuable insights into the strengths, weaknesses, and overall
impact of EzSkiROS on skill description development in robotics.

Strengths and Weaknesses: The developer highlighted several
key strengths of EzSkiROS.

• Early detection of misuse: EzSkiROS enables the detection
of misuse in the world model before the skills are utilized,
enhancing the correctness of the code.

• Validation of naming in conditions: The tool validates naming
in pre-conditions and post-conditions, ensuring consistency
and correctness in element types and names.

• Improved error messaging: Compared to traditional SkiROS2,
EzSkiROS provides clearer and more concise error messages.

• Readability: There is a significant improvement in the
readability of skill descriptions and skill implementations of
both compound and primitive skills.

Frontiers in Robotics and AI 15 frontiersin.org129

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

However, the developer also noted a primary weakness.

• Developer productivity: Despite the aforementioned strengths,
the developer expects that EzSkiROS will not provide
substantial productivity benefits. The developer attributes this
to the dynamic nature of most checks and the fact that world
model errors abort Python execution, leading to one error being
reported at a time.

Impact on Code Quality: The developer review suggests that
EzSkiROS positively impacts the code quality in several ways:

• Correctness: By enforcing element types on parameters and
consistent naming, the correctness of the code is improved.

• Readability and intuitiveness: The conciseness and clarity in pre-
andpost-conditionsmake thecodeeasier to readandunderstand.

• Clarity in skill dependencies: The dependencies between Skill
Description and SkillBase (Skill Implementation) of a skill are
more apparent in the code.

• Conciseness in writing behavior trees: Writing behavior trees for
compound skills have become more concise and less cluttered.

Translation Process: The developer reported that the translation
of existing skill descriptions to EzSkiROS to be straightforward.
The time required for translation depends on the number of skill
descriptions to be converted, but it can be automated.

Error Reporting and Understanding: The user affirmed that the
errors identified by EzSkiROS were sensible and contributed to a
better understanding of the issues in the skill descriptions.

General Feedback: The developer acknowledged EzSkiROS as a
significant step forward, particularly in moving from string-based
descriptions tomore natural and correct Python code.The reduction
in common errors due to the validation of parameter names and
world element relations was especially noted. For future work, the
developer suggested the following:

• Static analysis integration: Implementing static analysis to run
checks onmodules and skills independently, possibly integrated
with a linter, to further reduce bugs at an early stage.

• Code generation for enhanced development experience:
Utilizing code generation to enable features like autocompletion
and static checks during coding, particularly for the world
model, to improve the development experience.

The user review provides an insightful evaluation of EzSkiROS,
highlighting its strengths in improving code readability, correctness,
and error messaging. The contribution of EzSkiROS to reducing
common errors and improving the overall quality of skill
descriptions is evident. According to the reviewer, it falls short
in significantly enhancing developer productivity due to the fact
that we do dynamic checks at pre-launch and the user suggests static
analysis. It is important to note here that static check requires certain
information (ontology and robot configuration) to be available at
development time, which is not guaranteed. Modulo this caveat,
we see no fundamental barrier toward using the techniques that
we describe here for both pre-launch and static checks in practice,
using language server or development environment plugins.

8 Threats to validity

8.1 Internal validity

EzSkiROS was evaluated on the skills implemented by Ph.D.
students using SkiROS2 for research purposes. Consequently, there
may be undetected errors or issues in other skills that utilize
different or more extensive features of SkiROS2. Furthermore, the
user study included only a small number of participants, which
may not provide a comprehensive representation of all potential
SkiROS2 users. This limitation could affect the reliability and
generalizability of user feedback and reviews. For the initial in-
depth reviewof EzSkiROS, only one experienced SkiROS2developer
was interviewed, and we have not yet evaluated it with more users
of SkiROS2.

8.2 External validity

Although we expect that our design patterns can aid other
Python-based robotic software, we have not validated this.
Moreover, we have only validated these patterns for Python; it is an
open question whether they would be effective in other languages
such as Ruby or LISP.

9 Conclusion

In this paper, we present two analyses of different abstraction
levels of robotic software and how we can use DSL design patterns
to detect bugs at a pre-launch stage before runtime. Case study I
demonstrated the value of our design patterns by showing how they
help detect bugs in the high-level contracts between a variety of
robot capabilities and the robot’s worldmodel. Case study II expands
EzSkiROS by adapting the same techniques to detecting bugs in
lower-level implementation code; in our case that implementation
uses a behavior tree to integrate different robot capabilities.

In exploring the relationship between the two analyses, it is
important to ask the following: do they work separately, depend on
each other, or are they independent yetwork better together, creating
a stronger combined effect than each would alone? The study shows
that analysis of behavior trees (case study II) requires information
about the skill parameters from the higher-level descriptions to
check correct information being passed on between skills. Behavior
trees also need to access the pre-, post-, and hold-conditions from
the skill descriptions of the skill being implemented. On the other
hand, the higher-level analysis (case study I) is stand-alone but
can benefit from the BT sequencing information to suggest pre-
and post-conditions to the developer. Our work demonstrates how
embeddedDSLs can help robotics developers detect bugs early, even
when the analysis depends on data which are not available until run-
time.Our evaluationwith EzSkiROS further suggests that embedded
DSLs can achieve this goal while simultaneously increasing code
maintainability.

In our future work, we plan to collect some objective results
to further substantiate our efforts. We plan to make EzSkiROS
publicly available to SkiROS2 users so that people can write skills
and transform their old skills into EzSkiROS, and we can get some

Frontiers in Robotics and AI 16 frontiersin.org130

https://doi.org/10.3389/frobt.2024.1363443
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

error reports and if people find the error reports helpful. We aim
to conduct an in-depth user study to explore how EzSkiROS assist
users in writing skill descriptions and detecting bugs in behavior
trees through pre- and post-condition matching. This study will
mainly focus on understanding the user experience with EzSkiROS,
particularly in terms of its usability and effectiveness in early bug
detection. A significant aspect of this study will be to extend
the possibility of the integration of the two analyses at different
abstraction levels and see how their combination influences the
bug detection process. We are particularly interested in whether
this integration simplifies the process of writing error-free skill
descriptions and how it impacts the overall development workflow.
By analyzing the data collected from this study, we expect to gain
valuable insights into the practical applications and limitations
of EzSkiROS. This will not only help us in refining the tool but
also contribute to the broader understanding of skill programming
in robotics.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial; further inquiries can be directed
to the corresponding authors.

Author contributions

MR: conceptualization, data curation, formal analysis,
investigation, methodology, project administration, resources,
software, validation, visualization, writing–original draft, and
writing–review and editing. CR: conceptualization, formal analysis,
funding acquisition, methodology, resources, software, supervision,

writing–original draft, and writing–review and editing. RC:
conceptualization, data curation, investigation, visualization,
writing–original draft, and writing–review and editing. MM:
resources, visualization, writing–original draft, and writing–review
and editing. VK: funding acquisition, supervision, writing–original
draft, and writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was partially funded by the Wallenberg AI, Autonomous
Systems, and Software Program (WASP) funded by Knut and Alice
Wallenberg Foundation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Ahmad, F., Mayr, M., and Krueger, V. (2023). “Learning to adapt
the parameters of behavior trees and motion generators (btmgs) to
task variations,” in 2023 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 10133–10140. doi:10.1109/IROS55552.2023.
10341636

Ahmed, A., Findler, R. B., Siek, J. G., and Wadler, P. (2011). “Blame for all,” in
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 201–214.

Balldin, H., and Reichenbach, C. (2020). “A domain-specific language for filtering in
application-level gateways,” in GPCE 2020, 111–123.

Bøgh, S., Nielsen, O. S., Pedersen, M. R., Krüger, V., and Madsen, O. (2012). “Does
your robot have skills?,” in Proceedings of the 43rd international symposium on robotics
(Denmark: VDE Verlag GMBH).

Brugali, D., Agah, A., MacDonald, B., Nesnas, I. A., and Smart, W. D. (2007). “Trends
in robot software domain engineering,” in Software engineering for experimental robotics
(Springer), 3–8.

Buch, J. P., Laursen, J. S., Sørensen, L. C., Ellekilde, L.-P., Kraft, D., Schultz, U. P.,
et al. (2014). “Applying simulation and a domain-specific language for an adaptive
action library,” in Simulation,modeling, and programming for autonomous robots, 86–97.
doi:10.1007/978-3-319-11900-7_8

Cangelosi, A., and Asada, M. (2022). Cognitive robotics. MIT Press.

Ceh, I., Crepinšek, M., Kosar, T., and Mernik, M. (2011). Ontology driven
development of domain-specific languages. Comput. Sci. Inf. Syst. 8, 317–342.
doi:10.2298/csis101231019c

Colledanchise, M., and Ögren, P. (2018). Behavior trees in robotics and AI: an
introduction. CRC Press. 1st edn. doi:10.1201/9780429489105

Coste-Maniere, E., and Turro, N. (1997). “Themaestro language and its environment:
specification, validation and control of robotic missions,” in RSJ International Conf. on
Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS
(IEEE), 836–841. doi:10.1109/iros.1997.655107

Dortmans, E., and Punter, T. (2022). Behavior trees for smart robots
practical guidelines for robot software development. J. Robotics 2022, 1–9.
doi:10.1155/2022/3314084

Dragule, S., Gonzalo, S. G., Berger, T., and Pelliccione, P. (2021). “Languages
for specifying missions of robotic applications,” in Software engineering for robotics
(Springer), 377–411.

Faconti, D. (2019). Mood2be: models and tools to design robotic behaviors. Barcelona,
Spain: Eurecat Centre Tecnologic. Tech. Rep 4.

Ghzouli, R., Berger, T., Johnsen, E. B., Dragule, S., and Wasowski, A. (2020).
“Behavior trees in action: a study of robotics applications,” in Proceedings of the 13th
ACM SIGPLAN international conference on software language engineering, 196–209.

Ghzouli, R., Berger, T., Johnsen, E. B.,Wasowski, A., andDragule, S. (2023). Behavior
trees and statemachines in robotics applications. IEEETrans. Softw. Eng. 49, 4243–4267.
doi:10.1109/tse.2023.3269081

Henn, T., Völker, M., Kowalewski, S., Trinh, M., Petrovic, O., and Brecher, C. (2022).
“Verification of behavior trees using linear constrained horn clauses,” in International
conference on formal methods for industrial critical systems (Springer), 211–225.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of semantic Web
technologies. Boca Raton, FL: Taylor & Francis.

Iovino, M., Scukins, E., Styrud, J., Ögren, P., and Smith, C. (2022). A
survey of behavior trees in robotics and ai. Robotics Aut. Syst. 154, 104096.
doi:10.1016/j.robot.2022.104096

Frontiers in Robotics and AI 17 frontiersin.org131

https://doi.org/10.3389/frobt.2024.1363443
https://doi.org/10.1109/IROS55552.2023.10341636
https://doi.org/10.1109/IROS55552.2023.10341636
https://doi.org/10.1007/978-3-319-11900-7_8
https://doi.org/10.2298/csis101231019c
https://doi.org/10.1201/9780429489105
https://doi.org/10.1109/iros.1997.655107
https://doi.org/10.1155/2022/3314084
https://doi.org/10.1109/tse.2023.3269081
https://doi.org/10.1016/j.robot.2022.104096
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rizwan et al. 10.3389/frobt.2024.1363443

King, J. C. (1976). Symbolic execution and program testing. Commun. ACM 19,
385–394. doi:10.1145/360248.360252

Krueger, V., Chazoule, A., Crosby, M., Lasnier, A., Pedersen, M. R.,
Rovida, F., et al. (2016). A vertical and cyberA vertical and cyber–physical
integration of cognitive robots in manufacturingphysical integration of cognitive
robots in manufacturing. Proc. IEEE 104, 1114–1127. doi:10.1109/jproc.2016.
2521731

Kunze, L., Roehm, T., and Beetz, M. (2011). “Towards semantic robot description
languages,” in 2011 IEEE International Conference on Robotics and Automation
(IEEE). doi:10.1109/icra.2011.5980170

Lamy, J.-B. (2017). Owlready: ontology-oriented programming in python with
automatic classification and high level constructs for biomedical ontologies.Artif. Intell.
Med. 80, 11–28. doi:10.1016/j.artmed.2017.07.002

Levine, J. R., Mason, T., and Brown, D. (1992). Lex and yacc. Sebastopol, CA: O’Reilly
Media, Inc.

Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L., and Krueger, V. (2022a).
Combining planning, reasoning and reinforcement learning to solve industrial robot
tasks. arXiv Prepr. arXiv:2212.03570.

Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L., and Krueger, V. (2022b). “Skill-
based multi-objective reinforcement learning of industrial robot tasks with planning
and knowledge integration,” in 2022 IEEE international conference on robotics and
biomimetics (ROBIO).

Mayr, M., Ahmad, F., Duerr, A., and Krueger, V. (2023a). “Using knowledge
representation and task planning for robot-agnostic skills on the example of contact-
rich wiping tasks,” in 2023 IEEE 19th international Conference on automation Science
and engineering (CASE) (IEEE), 1–7.

Mayr, M., Hvarfner, C., Chatzilygeroudis, K., Nardi, L., and Krueger, V. (2022c).
“Learning skill-based industrial robot tasks with user priors,” in 2022 IEEE 18th
international conference on automation science and engineering (CASE), 1485–1492.
doi:10.1109/CASE49997.2022.9926713

Mayr, M., Rovida, F., and Krueger, V. (2023b). “Skiros2: a skill-based robot control
platform for ros,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE), 6273–6280.

Moghadam, M., Christensen, D. J., Brandt, D., and Schultz, U. P. (2013). Towards
python-based domain-specific languages for self-reconfigurable modular robotics
research. arXiv Prepr. arXiv:1302.5521.

Nordmann, A., Hochgeschwender, N., Wigand, D. L., and Wrede, S. (2016). A survey
on domain-specific modeling and languages in robotics. J. Softw. Eng. Robotics (JOSER)
7, 75–99. doi:10.1007/978-3-319-11900-7_17

Oliveira, M., Silva, P. M., Moura, P., Almeida, J. J., and Henriques, P. R. (2020). Bhtsl,
behavior trees specification and processing.

Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bã¸gh, S., KrÃ¼ger, V.,
et al. (2016). Robot skills for manufacturing: from concept to industrial deployment.
Robotics Computer-Integrated Manuf. 37, 282–291. doi:10.1016/j.rcim.2015.04.002

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros: an
open-source robot operating system,” in ICRA workshop on open source software (Kobe,
Japan), 5.

Reichenbach, C. (2021). “Software ticks need no specifications,” in ICSE-NIER 2021
(IEEE), 61–65.

Rizwan,M., Caldas, R., Reichenbach, C., andMayr,M. (2023). “Ezskiros: a case study
on embedded robotics dsls to catch bugs early,” in 2023 IEEE/ACM 5th international
workshop on robotics software engineering (RoSE) (IEEE), 61–68.

Rovida, F., Crosby, M., Holz, D., Polydoros, A. S., Großmann, B., Petrick, R. P.,
et al. (2017a). “SkiROS— a skill-based robot control platform on top of ROS,” in Robot
operating system (ROS) (Springer), 121–160.

Rovida, F., Grossmann, B., and Krueger, V. (2017b). “Extended behavior trees for
quick definition of flexible robotic tasks,” in RSJ international conf. On intelligent robots
and systems (IROS) (IEEE), 6793–6800.

Spinellis, D. (2001). Notable design patterns for domain-specific languages. J. Syst.
Softw. 56, 91–99. doi:10.1016/s0164-1212(00)00089-3

Tadiello, M., and Troubitsyna, E. (2022). Verifying safety of behaviour trees in event-b.
arXiv preprint arXiv:2209.14045.

Wuthier, D., Rovida, F., Fumagalli, M., and Krueger, V. (2021). “Productive
multitasking for industrial robots,” in 2021 IEEE international conference on robotics
and automation (ICRA), 12654–12661. doi:10.1109/ICRA48506.2021.9561266

Frontiers in Robotics and AI 18 frontiersin.org132

https://doi.org/10.3389/frobt.2024.1363443
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/jproc.2016.2521731
https://doi.org/10.1109/jproc.2016.2521731
https://doi.org/10.1109/icra.2011.5980170
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1109/CASE49997.2022.9926713
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.1016/s0164-1212(00)00089-3
https://doi.org/10.1109/ICRA48506.2021.9561266
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 29 January 2025
DOI 10.3389/frobt.2024.1363150

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Ricardo Sanz,
Polytechnic University of Madrid, Spain
Christian Eymüller,
University of Augsburg, Germany

*CORRESPONDENCE

Herman Bruyninckx,
herman.bruyninckx@kuleuven.be

RECEIVED 29 December 2023
ACCEPTED 27 November 2024
PUBLISHED 29 January 2025

CITATION

Schneider S, Hochgeschwender N and
Bruyninckx H (2025) Semantic composition of
robotic solver algorithms on graph structures.
Front. Robot. AI 11:1363150.
doi: 10.3389/frobt.2024.1363150

COPYRIGHT

© 2025 Schneider, Hochgeschwender and
Bruyninckx. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Semantic composition of robotic
solver algorithms on graph
structures

Sven Schneider1,2, Nico Hochgeschwender3 and
Herman Bruyninckx2,4,5*
1Department of Computer Science, Institute for AI and Autonomous Systems, Hochschule
Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2Department of Mechanical Engineering, KU Leuven,
Leuven, Belgium, 3Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany, 4Department of Mechanical Engineering, TU/e Eindhoven, Eindhoven,
Netherlands, 5Flanders Make, Lommel, Belgium

This article introduces amodel-based design, implementation, deployment, and
execution methodology, with tools supporting the systematic composition of
algorithms from generic and domain-specific computational building blocks
that prevent code duplication and enable robots to adapt their software
themselves. The envisaged algorithms are numerical solvers based on graph
structures. In this article, we focus on kinematics and dynamics algorithms,
but examples such as message passing on probabilistic networks and factor
graphs or cascade control diagrams fall under the same pattern. The tools rely
on mature standards from the Semantic Web. They first synthesize algorithms
symbolically, from which they then generate efficient code. The use case is an
overactuated mobile robot with two redundant arms.

KEYWORDS

solvers based on graph traversal, model-based engineering, algorithm synthesis, code
generation, composability and compositionality, kinematics and dynamics

1 Introduction

Figure 1 shows a complicated, overactuated mobile robot with two redundant, torque-
controlled arms performing a dual-arm manipulation task. A typical implementation
of such an application relies on a wide range of algorithms, including (i) kinematics
and dynamics solvers for forward kinematics or inverse dynamics problems as available
in libraries like Pinocchio (Carpentier et al., 2019), the Rigid Body Dynamics Library
(RBDL) (Felis, 2016), or the Kinematics and Dynamics Library (KDL)1; (ii) probabilistic
filters and estimators, implemented by libraries such as the Georgia Tech Smoothing and
Mapping library (GTSAM) (Dellaert, 2012), or the Bayesian Filtering Library (BFL)2,
to determine the state of the robot and its environment, for example, by simultaneous

1 http://www.orocos.org/kdl

2 http://www.orocos.org/bfl

Frontiers in Robotics and AI 01 frontiersin.org133

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1363150
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1363150&domain=pdf&date_stamp=2025-01-28
mailto:herman.bruyninckx@kuleuven.be
mailto:herman.bruyninckx@kuleuven.be
https://doi.org/10.3389/frobt.2024.1363150
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full
http://www.orocos.org/kdl
http://www.orocos.org/bfl
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 1
Complicated robotic system solving a dual-arm manipulation task. In the first row, the robot approaches the table with its mobile base to then perform
a touch-based alignment. In the second row, the two manipulators grasp and lift the object. Finally, the robot leaves the table while carrying the object.

localization and mapping (SLAM); (iii) data-flow computations in
cascade control diagrams such as the MATLAB Control System
Toolbox3, in the Stack-of-Task’s (Mansard et al., 2009) dynamic-
graph4, or in video-processing pipelines like GStreamer5; and (iv)
task specifications, expressing the desired behavior of the robot’s
dynamics and its controllers as well as the desired sensor processing
outputs, realized via expression graphs (Aertbeliën and De Schutter,
2014). The overall integration of such functionalities and their
realization that the robot requires to solve its tasks is also known
as a robot control architecture.

Even if these algorithms and libraries originate from different
yet highly relevant robotics domains, they share two important
commonalities. First, they rely on an underlying structural model
of a graph that represents a kinematic chain, a probabilistic network
or factor graph, a data-flow network between operators, and an
expression graph, respectively. Second, they answer queries on
these graphs by (i) propagating data between the graph’s nodes
and (ii) dispatching6 computations on that data for each visited
node or edge while (iii) performing one or more graph traversals.
Here, a traversal represents a particular choice of serializing or
scheduling the computations to establish a computational control
flow.The good news is that for many of these queries, the knowledge
already exists about how to create efficient execution schedules.
This includes kinematics and dynamics problems (Popov et al.,
1978), inference in Bayesian networks (Pearl, 1982), or cutting
cascade control loops into a series of computations for each time
scale. The main differences between these solvers comprise the
data encoded in the graph and the specific policies or choices

3 https://www.mathworks.com/products/control.html

4 https://github.com/stack-of-tasks/dynamic-graph

5 https://gstreamer.freedesktop.org/

6 By “dispatching,” we mean to execute or trigger a computation.

It resembles dispatchers in operating systems [cf. (Tanenbaum and

Bos, 2014)].

imposed on the algorithms, that is, which data to propagate, which
computations to perform, and how to traverse the graph. The
solution to such a recurring problem in architectures is known as a
design pattern and has been popularized in software engineering by
the “Gang of Four” (Gamma et al., 1994) in object-oriented software
development. Hence, given these commonalities and differences, we
classify such graph-based solvers as a fundamental pattern that has
not yet been described in the existing literature.

On the one hand, software libraries that implement graph-
based solvers allow their users to customize the structural graphs
at compile time. On the other hand, they keep the solver algorithms
that act on these graphs inaccessible, which leads to the following
three problems. First, such designs prevent many customizations
and optimizations of the computational control flow as well as
the introspection and instrumentation of the executing algorithms.
The easy way to introduce a new algorithm or adapt an existing
one is for developers to implement it completely from scratch
or by copying and refactoring a previous implementation. For
instance, in KDL, we have counted twelve realizations of the
computations for the forward position kinematics (FPK) and seven
realizations for the forward velocity kinematics (FVK) across 22
solvers in total. This is a clear violation of the “Don’t Repeat
Yourself ” (DRY) (Hunt and Thomas, 2019) principle for good
software engineering and leads to technical debt. A second problem
comes from how the libraries support configuration. One approach
is to create an application programming interface (API) where the
configuration options are part of the input parameters. This leads
to very long function signatures, so the pragmatic choice is to
limit the configuration capabilities of the library. Another (better)
approach to configuration is to provide a setters and getters API
via which any desired set of parameters can be given new values at
runtime. However, this introduces the risk of data inconsistencies
because, in most cases, several parameters should be updated
together in an atomic way. A third problem is that, at runtime,
applications may require multiple solvers with partially overlapping
“computational states,” such as the position and motion of sensors

Frontiers in Robotics and AI 02 frontiersin.org134

https://doi.org/10.3389/frobt.2024.1363150
https://www.mathworks.com/products/control.html
https://github.com/stack-of-tasks/dynamic-graph
https://gstreamer.freedesktop.org/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

or tools on the robot’s kinematic chain. This leads to redundant
computations and challenges in keeping a consistent state between
these multiple solvers.

To address these problems, this article introduces the software
engineering aspects of a model-based design, implementation,
deployment, and execution methodology, with tools supporting the
systematic composition of algorithms from generic and domain-
specific computational building blocks. A first contribution is
that the granularity of these building blocks is designed for
composability: on the one hand, they are so small that each
of them is a pure function and, on the other hand, they need
not be smaller than what is contained in one node of the
graph that represents the computational control flow. That is,
where the if-then-elses and the for or while loops
are introduced to differentiate between different behaviors of the
executed algorithms. The algorithm’s building blocks are models of
the data structures, the pure functions that act on this data, and
the order in which these functions are called, that is, the schedule
or control flow. We present the mechanism to model, compose,
and execute complicated algorithms. Simultaneously, we ensure that
each mechanism is configurable so that a large variety of data-flow
policies can be composed on top. Examples include, among others,
incremental computations by processing sub-graphs on demand,
employing optimized computations for sub-graphs, or injecting
instrumentation and logging into the algorithm. In summary, our
main contributions are:

• We analyze kinematics and dynamics solvers as the main
representatives of algorithms that perform computations on
graph structures. Their commonalities and differences allow us
to identify and describe the graph-based solver pattern.

• We derive free and open-source licensed, vendor-neutral
models and metamodels7 to represent and compose graph-
based solvers for kinematics and dynamics solvers. The models
include the data structures, the operators or functions that
manipulate these data structures, and the ordering constraint
on the functions. We reify each of these elements so that they
can be symbolically referenced.

• We develop a toolchain that processes the above graph-
structured models using symbolic queries to synthesize
kinematics and dynamics solvers and generate code from
the resulting models. We complement the toolchain by an
implementation of a software library that implements the pure
functions to implement the solvers. Both are released under a
free and open-source license.

• We showcase the models, toolchain, and backend software
library in a case study for kinematics and dynamics solvers.

The remainder of this article is structured as follows. In
Section 2, we revisit the application to provide a detailed review
of kinematics and dynamics solvers to then derive requirements
for graph-based solvers in Section 3. Afterward, Section 4 provides

7 A metamodel is a model that represents the constraints that a concrete

model must satisfy, structurally and semantically, in order to be a “well-

formed model” in the context of the application domain the model is

designed for.

the background on composable models. We present the tooling
for solver synthesis and code generation in Section 5, followed by
a case study in Section 6. Section 7 discusses our approach and
tools, while Section 8 concludes the article.

2 Kinematics and dynamics solvers

This section describes the structural and computational policies
used in numerical solvers for kinematic chains via (i) the topology
of the underlying graphs; (ii) the types of traversals (that is,
the serialization of the computations) over these graphs; (iii) the
representation of data structures; (iv) the types of computations on
these data structures; (v) the handling of cycles in the graphs; (vi)
the handling of domain-specific, composite and hierarchical nodes;
and (vii) the support of incremental computations to only evaluate
output that depends on changed input and caching of intermediate
results. In the supplementary material, we provide an additional
analysis of graph-based solvers for probabilistic networks, data-flow
programming, and expression graphs.

The robot in Figure 1 exemplifies the most relevant types of
kinematic chains: each of the two manipulators by itself is a
serial chain, but when connecting both arms to the robot, a tree-
structured chain with the torso as its root emerges. Finally, the
mobile base is an example of a parallel chain where the ground
couples (or “constrains”) the motion of all wheels. The objective of
solvers that act on such kinematic chains is to answer queries that
compute the instantaneous forces and motions of all links when
a particular subset of them is given as inputs (or “drivers”) for
the motion. Figure 2A depicts an example where multiple motion
drivers are attached to a kinematic chain tomove or accelerate a body
in a certain direction while resisting external forces. Additionally,
the application specifies the expected solver outputs, such as the
pose (position and orientation) and velocity of an end-effector, or
the joint-level control torques to achieve the desired motions.

The following paragraphs provide some concrete examples of
queries and their solvers. Algorithm 1 shows an FPK solver that,
given a model of a kinematic chain with N bodies and the joint
positions q as inputs, computes the pose iX0 of each body i with
respect to the root body 0. To this end, in Line 2, it composes the
static pose over the body (or “link”) XL,i with the pose over the
joint XJ,i(qi) that depends on the current joint position. The result
is the relative pose of the current body i with respect to its parent
p(i). Then, in Line 4, the solver accumulates the parent’s pose with
that relative pose. Here, a single outward traversal (Line 1) of the
kinematic chain froma selected root to the leaves suffices to compute
the answer. In the context of kinematic chains, such a graph traversal
that serializes kinematic or dynamic computations is also called a
sweep.

The FVK solver in Algorithm 2 computes the Cartesian velocity
Ẋ i for each body in the kinematic chain given the joint velocities
q̇. A comparison of the FVK solver with the FPK solver reveals
that the former is an extension of the latter: only two lines have
been added, while the others remain the same. These two lines
are the initialization of the root body’s velocity (Line 1) and the
accumulation of velocities along the kinematic chain (Line 6). The
accumulation step consists of, from right to left, (i) mapping the
joint velocity q̇i to Cartesian space with the joint Jacobian Si; (ii)

Frontiers in Robotics and AI 03 frontiersin.org135

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 2
(A) Kinematic chain with three types of motion drivers attached to links and joints as solver input: desired Cartesian accelerations via constraint forces
Fcstr and acceleration energy Eacc; Cartesian external forces Fext; and joint torques τ f f . The solver’s output is the answer to the query that asks for the
fifth link’s pose 5X0 and the fourth link’s velocity Ẋ4. (B) Kinematic chain consisting of links and joint with positions X and velocities Ẋ propagated
outward (blue circle) during the first sweep; inertia M, force F, and acceleration energy Eacc propagated inward (green circle) during the second sweep;
as well as constraint forces Fcstr and acceleration Ẍ propagated outward during the third sweep.

Algorithm 1. Forward position kinematics.

Algorithm 2. Forward velocity kinematics.

transforming that Cartesian velocity to the root coordinate frame
using the inverse transformation matrix iX0; and (iii) adding the
Cartesian velocity Ẋp(i) that has already been accumulated in the
previous step, up to and including the parent body.

Another policy for the velocity accumulation step is to express
the velocities in the moving coordinate frame instead of the
stationary root frame: Ẋ i←

iXp(i)Ẋp(i) + Siq̇i. Many more such
policies exist, especially when considering complicated algorithms,
including forward and inverse dynamics solvers (cf. Featherstone,
2008; Vereshchagin, 1989) that map forces to accelerations and
vice versa, respectively. The variety in solver policies is due to

the large set of choices that are possible, for example, (i) the
choice of physical units that must be kept consistent across
all operations; (ii) the propagation of the motion drivers that
could either be accumulated as soon as possible (for the most
efficient computations) or only during the third, solver sweep
(for most flexibility); or (iii) the choice of matrix inversion and
the handling of singularities during such an inversion. The two
solver examples already demonstrate how a naïve implementation
of such algorithms leads to code duplication when each algorithm
resides in its own function or class, as is commonly the case
in software libraries. For example, a hypothetical solver library
may provide the functions fpk(chain, q) for Algorithm 1,
fvk_stationary(chain, q, qd) for Algorithm 2, and
fvk_moving(chain, q, qd) for the choice of the moving
coordinate frame, each containing computations of the FPK solver.
The number of policies increases even further when the chain’s
dynamics also enter into the solver.

The two algorithms above demonstrate a computation on a
graph. The graph represents the kinematic and dynamic properties
of the kinematic chain (including the topology of the connections
between links) but does not contain all data structures found
in the algorithms. Instead, all variables apart from the already
specified pose over the link, XL,i, must be added to the graph.
The computations are the various types of operators with physical
meaning that are represented mathematically by either matrix
multiplication or vector addition (composition of poses, maps
from joint space to Cartesian space, transformation of a velocity,
or addition of two velocities). The top-to-bottom order of the
lines is a physically imposed ordering constraint: here, the
transformation of velocities depends on (the presence of) poses.
Finally, more complicated solvers rely on up to three sweeps,
as depicted in Figure 2B: positions and velocities travel outward
from the root to the leaves in the first sweep; inertia, force,
and acceleration energy travel inward in the opposite direction
during the second sweep; the third sweep is outward again,
accumulating those computational results that are needed for the
actual query.

Frontiers in Robotics and AI 04 frontiersin.org136

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Some kinematic chains have cycles. Solvers deal with such
cycles in two complementary ways. The first option is to cut
an edge in each cycle, which results in a spanning tree of the
kinematic chain. For each cut, the solver adds Cartesian acceleration
constraints on either side of the cut, representing the physical
reality that both sides of the cut must move with the same
acceleration. That reality is a constraint that the solver algorithm
must take into account. The solver deals with the loop constraint
by computing the constraint forces that would make both sides
of the cut accelerate in exactly the same way. The second option
is to cluster the cycles into composite nodes that must then be
solved for numerically using an explicit matrix inversion (Jain, 2012;
Chignoli et al., 2023).

We have already introduced a hierarchy in the description of the
types of kinematic chains above. Here, the apex of that hierarchy
could be the whole robot, the base with two arms, to be treated as
one kinematic chain on which a single solver operates. However,
more commonly, roboticists decouple the arms from the base and
associate dedicated solvers with each; often, kinematics solvers that
run at lower control frequencies suffice for the base, whereas for the
arms dynamics solvers at higher control frequencies are required
to handle contact situations. Finally, the individual joints of the
arms are the “smallest” kinematic chains. Yet, even at this level,
joints could actually be composites. As an example, one model
of a spherical joint is a sequence of three revolute joints. Then,
solvers dispatch specialized computations depending on the joint
type. For example, one-dimensional joints such as revolute and
prismatic joints allow for computationally efficient solutions that
rely on scalars instead of full matrices.

We have presented an example of incremental computations
in dynamics solvers in Schneider and Bruyninckx (2019):
the propagation of the so-called articulated-body inertia
matrix (see Featherstone, 2008) is a computationally
expensive operation. Additionally, the inertia matrix does not
change significantly in neighboring configurations, while its
parameterization is prone to measurement noise. Consequently,
it is a good candidate for a computation that is performed at a
reduced frequency in comparison to the propagation of the other
quantities. The articulated-body inertia matrix is then cached and
reused across multiple solver invocations.

3 Requirements for graph-based
solvers

Physical and scientific constraints exist that lead to efficient
solvers for kinematic chains and graphical models. It is the top-
level tree structure of the underlying graphs that enables the
application of dynamic programming. For graphs with cycles,
the graph must be pre-processed to establish a tree-structured
view on the graph, either as a spanning tree or a hierarchical
decomposition as in the junction tree algorithm. On the one hand,
dynamic programming dictates which data structures should be
cached at each node and which operations should be performed
on that data. On the other hand, it coordinates or schedules
the computations along the graph traversal. Two sweeps, one
inward and one outward, decompose the graph’s state that can
then be flexibly and efficiently recomposed in a final solver

sweep to answer queries. The scheduling can depend on various
types of state or runtime conditions, such as the availability
of data or conflicts in the motion specification. Hence, we can
encode such a solver algorithm as a computational graph on
top of the underlying structural graph. The latter is the basis
of the former’s bookkeeping (which data structures to use in
which operations), configuration (which values to fill into the
data structures), and coordination (in which order to execute the
operations). For data-flow networks and expression graphs, these
three points are completely at the developers’ disposal, who must
rely on their insights into the domain to design the algorithms.
Nevertheless, the same algorithmic building blocks exist in these
approaches.

We can derive various requirements for our approach from the
analysis. First, we need explicit models of the graphs’ structure
and of how behavior is attached to that structure. Here, behavior
refers to explicit models of algorithms that consist of data
structures, functions, and schedules. The various computational
policies, such as caching of intermediate results or varying
execution frequencies are then a higher-order composition to the
algorithms. A second necessity is flexible tooling that efficiently
synthesizes the domain-specific algorithms and attaches them
to the underlying graph models. Because the algorithms are
merely models, additional tools are required that can execute
these models by interpretation or compilation. Finally, all of
the above models should be unambiguously understandable by
a robot so that it can automatically adapt its software, also
at runtime.

4 Composable and compositional
models for kinematic chains

In this section, we summarize the main results of our prior
work from Schneider et al. (2023) to represent the above-mentioned
graphs (their structure and their “behavior”) as they are a
prerequisite for the remainder of this article. In that publication, we
have presented an in-depth analysis of existing modeling formats,
including the Unified Robot Description Format (URDF)8 and
the Semantic Robot Description Format (SRDF)9 that originate
from the Robot Operating System (ROS) ecosystem (Quigley et al.,
2009). Given the lessons learned, we have designed and realized
composable and compositional models in JSON-LD (Sporny et al.,
2020). Composability pertains to structure and is an application of
twomajor software design principles tomodels.The first is the open-
closed principle (Meyer, 1997), which implies that it should always be
possible to extend existing models without a need for modification.
The second is the single-responsibility principle (Martin, 2003), which
implies that each model should represent exactly one concern.
In relational databases, the latter principle is known as the third
normal form (Codd, 1971; Kent, 1983): each table has a single
“topic” and only contains direct dependencies on the table’s key;
that is, it only represents intrinsic properties instead of extrinsic
attributes (Bruyninckx, 2023, Section 1.5.3). Compositionality is

8 http://wiki.ros.org/urdf

9 http://wiki.ros.org/srdf

Frontiers in Robotics and AI 05 frontiersin.org137

https://doi.org/10.3389/frobt.2024.1363150
http://wiki.ros.org/urdf
http://wiki.ros.org/srdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 3
The joint joint1 constrains the relative motion of the two frames link0-joint1 and link1-root that are associated with the links link0 and
link1, respectively. For example, the pose joint1-pose of the latter frame with respect to the former frame is associated with the joint position
q1 and can change over time. Finally, pose link0-pose locates the joint frame on link link0 with respect to the root frame link0-root. For rigid
bodies, this pose remains static.

concerned with model semantics. It implies that each model must
have an unambiguous meaning10. For composite models, that
meaning must follow from the meaning of its constituents and
the composition rules (which are higher-order models, that is, a
set of relations with other models as arguments) so as to avoid
unpredictable “emergent” behavior of the composed system. Both
these design goals, composability and compositionality, are highly
relevant in complex modern robots that act in open environments
and open-ended missions where (i) designers usually cannot
foresee all possible applications of their models and, hence, should
avoid introducing artificial limitations; and (ii) robots must be
able to interpret and reason about the models by themselves
without having to rely on human developers to transform the
models to code.

JSON-LD models are both JavaScript Object Notation (JSON)
(Bray, 2017) documents and Resource Description Format (RDF)
(Cyganiak et al., 2014) documents11. They support composability
and compositionality because all model elements (i) have unique
identifiers so that they can be referenced from “external” sources
such as files on servers or even executing software binaries; (ii)
can refer to complete metamodels that unambiguously define the
models’ semantics, so that they are free from implicit assumptions;
and (iii) are loosely coupled due to the underlying, generic graph
structure as well as the support for “symbolic pointers” that
are represented by Internationalized Resource Identifiers (IRI)
as defined by Duerst and Suignard (2005). In the following
subsections, we introduce concrete JSON-LD models of kinematic
chains and their behavior as a running example. The proper

10 A counterexample is the rhetoric metaphor where the literal meaning

deviates from the implied, figurative meaning.

11 https://w3c.github.io/json-ld-syntax/#relationship-to-rdf

design of the underlying metamodels can only originate from a
detailed and exhaustive domain analysis as we have performed
for kinematic chains here and for the additional domains in
the supplementary material. As a typographic convention, we
indicate model elements in a monospaced font. In addition, we
designate models by concise and human-understandable identifiers,
yet their real meaning must only come from their properties and
metamodels.

Figure 3 depicts two links that are constrained in their relative
motion by a joint. We consider the most abstract representation
of a link or body, its “skeleton,” as simply a collection of
simplices, that is, geometric entities such as points, lines, or
frames. These simplices are attachment points for, among others,
shape geometry, inertia, motion specifications and also joints as
textually represented using JSON-LD in Listing 1. Syntactically,
JSON-LD can add one identifier (@id keyword), one or more
types (@type keyword), and one context (@context keyword)
to any JSON object. The referenced context, as a list of IRIs,
symbolically points to allmetamodels that define themeaning of this
model. Part of that metamodel is the structural constraint that the
Joint type demands the between-attachments property, as
indicated by the matching colors. One way to formally represent
such a constraint is via the Shape Constraint Language (SHACL)
defined in Knublauch and Kontokostas (2017). Another part of the
metamodel defines that the between-attachments property
symbolically refers to a list of all simplices that are, on the one
hand, attached to bodies and, on the other hand, are involved in
the joint-constraint relation. Similar to the body, this is the most
abstract representation of a joint that captures nothingmore than the
joint’s constituents. The type of joint (e.g., revolute or prismatic), its
geometric constraints (e.g., a revolute joint keeps two lines attached
to both bodies coincident), or its direction of motion must be
composed on top of this model as indicated by the ellipsis. More

Frontiers in Robotics and AI 06 frontiersin.org138

https://doi.org/10.3389/frobt.2024.1363150
https://w3c.github.io/json-ld-syntax/#relationship-to-rdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Listing 1. Textual model of joint rob:joint1. Colors that match with Figure 3 indicate identical entities.

Listing 2. Pose relation in JSON-LD.

complicated kinematic chains are represented by ordered collections
of joints. Thus, our models can represent kinematic chains of
arbitrary topology: serial, tree-structured, and parallel (that is, with
one or more cycles).

The pose in Listing 2 is a relation over the same frames as
those present in the joint relation to represent the coordinate-free
position and orientation of the joint’s constrained motion. In the
context of a Pose, these two frames play the role of an of frame
and a with-respect-to (or wrt) frame, respectively. Listing 3
then introduces concrete coordinates in 3D-Euclidean space (as
a unitless direction-cosine matrix and a position vector measured
in meters). This model shows an example of multi-conformance,
meaning that an entity can have more than one type to define
its semantics, a feature that is rarely encountered in modeling
approaches or general-purpose programming languages. Moreover,
JSON-LD helps in distinguishing properties by mapping them to
IRIs: theofproperty in Listing 2 Line 5 has a differentmeaning from
the one in Listing 3 Line 11. To this end, the embedded context maps
the latter to the IRIcoord:of-pose (Line 5), wherecoord is the
prefix (or “namespace”) defined in Line 3. Additionally, this context
defines the of property as a symbolic pointer (Line 6). We again
notice the recurrence of the same rob:link0-joint1 frame in
Line 12 that we have already encountered above.

The model of a function (or operator) follows the same pattern:
it features an identifier, a type, and its properties, as exemplified
in Listing 4. The semantics are defined in the metamodel that is
referenced by the type. In this example, the operator represents a
map from a joint-space position rob:q1 to a pose rob:joint1-
pose in Cartesian space. The metamodel also imposes structural
constraints, for example, that the joint position and the pose are
associated with the same joint. There are two noteworthy remarks.

First, the model represents an operator but does not “execute” it;
instead, that evaluation is the result of a model transformation via
some interpretation or compilation. Second, multiple instances of
the same operator, that is, operators with the same type, can exist.
In that sense, when compared with general-purpose programming
languages, the type defined in the metamodel resembles a function
declaration, whereas an instance establishes the connection or
binding of data structures, similar to a closure in functional
programming languages. The execution or invocation of such a
function is represented by an entity of type Schedulewith a single
property trigger-chain12, an ordered list of symbolic pointers
to operators.

Our approach generalizes the geometric relations
semantics (GRS) (De Laet et al., 2012) in two ways. Although the
GRS do separate the coordinates from their coordinate-free relation,
theydonot reify the latter.Here, instead,weassignunique identifiers to
both representations, which enables us to properly express the one-to-
many relations from the former to the latter. Furthermore, we extend
theGRS to themodels of kinematic chains and to thedynamics solvers
on top. This includes physical quantities such as acceleration, force,
and inertia together with their operators. Having symbolic models
of kinematic chains allows pre-processing or “normalization.” This
includes, for example, the extractionof a spanning tree, the conversion
of all quantities to matching physical units, the composition of static
chains of pose relations, or the transformation of inertia to frames
that are most suitable for the solvers.

12 This terminology originates from the microblx framework (Klotzbuecher

and Bruyninckx, 2013).

Frontiers in Robotics and AI 07 frontiersin.org139

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Listing 3. Pose coordinate representation.

Listing 4. Forward position kinematics operator of a joint.

5 Tooling implementation: synthesizer
and code generator

In this section, we describe our tooling to synthesize concrete
algorithm models for kinematics and dynamics solvers and to
generate correct-by-construction code from such models. Synthesis
entails deriving data structures, function instances, and a schedule.
The generated code can then be seen as a dispatcher of that
schedule. Figure 4 depicts the architecture of our toolchain, which
consists of three main tools. The synthesizer that consumes a
model of a kinematic chain, a query model composed on top of
that kinematic chain, and a dedicated solver configuration or a
“template” of the solver. It produces as output an algorithm model
that can be seen as an instantiation of the template along the
kinematic chain. This algorithm is fully linked to the kinematic
chain model, meaning it is a graph that symbolically points to
elements of the kinematic chain. The IR generator lowers the
algorithm model to an intermediate representation (IR) that the
template-based code generator then transforms to code in a general-
purpose programming language. It is a best practice to keep any
logic out of the code generator. Hence, the IR generator performs
any pre-processing required for the code generator. Thus, lowering
entails the preparation of the algorithm for the code generator
by serializing the graph to a tree and introducing any necessary
transformations. Finally, given software libraries that provide the
pure solver functions, this code is compiled into an executable

with a general-purpose compiler. We provide more details on the
implementation of all tools and models in the following discussion.

5.1 Synthesizer

The overall process of synthesis is a form of graph rewriting,
that is, matching patterns in the graph and replacing them with new
patterns. In general, due to the subgraph isomorphism problem, this
is an NP-complete problem (Cook, 1971). However, we can exploit
domain-specific knowledge that enables us to (i) guide the traversal
over the graph structure; and hence (ii) reduce graph matching on
the overall graph to a local neighborhood or even simply localized
graph traversals.

We have implemented the synthesizer using the established
RDFLib13 Python library, which also supports the standardized,
powerful, and mature graph query language SPARQL (Harris and
Seaborne, 2013). The step change in employing this setup is that (i)
SPARQL enables the declarative formulation of complicated graph
matching and even graph rewriting queries; (ii) in SPARQL the
directionality of edges does not constrain traversability so that a
query can follow edges in the “opposite” direction, (iii) RDFLib
allows “anchoring” these queries in the underlying graph to drastically

13 https://rdflib.dev/

Frontiers in Robotics and AI 08 frontiersin.org140

https://doi.org/10.3389/frobt.2024.1363150
https://rdflib.dev/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 4
High-level architecture of our toolchain showing the three developed tools (blue boxes without hatching), a general-purpose compiler (blue box with
hatching), and the artifacts (orange boxes) they consume or produce (arrows).

improve performance by restricting the graphmatching to the above-
mentioned neighborhood of these “anchor points,” and (iv) RDFLib
provides a tight interface of custom code with the queries.

The synthesizer features a modular architecture with a small
framework core that is complemented by modules to realize the
interaction with the graph, for example, by emitting the required
data structures and operators for performing the FPK computations.
Inspired by the terminology of Gremlin (Rodriguez, 2015), we call
eachmodule a step. A step declares to the framework (i) an expansion
query that, on the one hand, determines where the traversal through
the graph should continue and, on the other hand, is a first filter
criterion to determine when the step applies; and (ii) the functions
that implement the graph manipulations at the nodes (either the
parent and child or only the child) reached by the expansion. The
pure declaration has the benefit that the framework can pre-process
and optimize the query execution. Specifically, we have noticed that
query execution is a significant contributor to the overall runtime
of the synthesizer, but many of these queries tend to be the same.
Hence, the framework first clusters all steps with the same expansion
query, then executes that query once and afterward dispatches to
all steps. The framework also manages a blackboard that it passes
to each step. The blackboard is a shared data structure that allows
various steps to communicate with each other and incrementally
build up the algorithm model. Finally, the framework also realizes
the graph traversal as such, with the help of the expansion queries,
in a breadth-first manner.

A configuration must be provided to select the types of
queries that the synthesizer supports. It consists of a configuration
per sweep, an ordered list of steps to be applied during the
graph expansion and graph traversal, and the order and direction
of these sweeps. As an example, a synthesizer for the FPK
problem only requires a single sweep as dictated by physics and
evident by Algorithm 1, whereas a hybrid dynamics solver demands
three sweeps.

5.1.1 Graph expansion by example
We use the FPK solver to exemplify the synthesis in Figure 5.

This figure shows an excerpt of a kinematic chain model in
the lower box, which is a visual representation of the models
from Listings 1 and 2 with an additional joint position q1

composed on top.
As a first step, the synthesizer determines the traversal, that

is, which parts of the graph to visit and in which order. Most
computations in the kinematics and dynamics solvers propagate
quantities between “local” root frames on adjacent links. The
SPARQL query in Listing 5 identifies such frames by a transition
over a link and over a joint. Assume that the traversal starts at the
frame link0-root. This is then the ?node argument passed to
the expansion query. Hence, the query tries to follow the geom-
ent:simplices first in the “inverse” direction, as indicated by
the caret, which would bring it to the link0 node, and then in the
“forward” direction so that it arrives at both the link0-joint1
node and back at the link0-root node. Next, the FILTER

statement eliminates the link0-root node. With the same logic
applied to the kc-ent:between-attachments edges, the
traversal arrives at the link1-root, which is designated as
?child. Line 4 finally returns any found child (and also the original
input node as the parent) as a result of the query.

5.1.2 Graph manipulation by example
Next, we investigate how the position propagation step

(Algorithm 1 Line 2) manipulates the graph. At first, the step
registers a set of visitors, or callbacks, with the framework. During
this registration procedure, the step declares the conditions for
when these visitors should be executed. The conditions include
the mandatory expansion query and further optional queries,
for instance, to check if the traversal is currently visiting a leaf
node. Finally, the step can decide whether to visit the edge,
in which case it receives the parent and child as argument, or

Frontiers in Robotics and AI 09 frontiersin.org141

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

FIGURE 5
Given the kinematic chain model from Listing 1 (lower orange box), the synthesis step for the FPK algorithm emits a model (upper green box) of the
data structures indicated by blue circles (see Listings 2 and 3), the operators indicated by red circles (see Listing 4), and the schedules indicated by gray
circles. Edges are labeled by gray panels. The thick edges show how the query in Listing 5 traverses the graph from the start node link0-root (the
?parent) to the link1-root node (the ?child).

Listing 5. SPARQL query for frame-to-frame traversal expansion.

whether to only visit the child node. In addition to the expansion
query from Listing 5, the position propagation step does not
declare any further conditions. Furthermore, this step requires
access to the parent’s and child’s states, so it employs an “edge
visitor.” The step necessitates two passes: a configuration pass to
instantiate the algorithm’s data structures and a computation pass
to instantiate the operators and append them to the schedule.

Continuing with the example in Figure 5, we notice that
link0-joint1 is eligible for the position propagation step
because it has been reached by the expansion query. During
the configuration pass, the step obtains handles to the link0-
root-to-joint1 pose, the link0-joint1 frame, and the
joint position q1 to then emit the two poses link0-joint1-
to-link1-root and link0-root-to-link1-root.

Frontiers in Robotics and AI 10 frontiersin.org142

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Listing 6. IR of algorithm.

Additionally, the joint position and all three poses are added
to the blackboard. This enables the computation pass to access
them and emit two operators. The first maps the joint position
to Cartesian space (joint1-fpk). The second composes the
pose of the link and the pose over the joint (compose1). Finally,
the pass adds both operators to the schedule (sched1). For this
example, we have used human-readable identifiers for all created
models; however, in the implementation, we have instead opted
for randomly generated universally unique identifiers (UUIDs) as
defined by Leach et al. (2005).

5.1.3 Parallel kinematic chains
Handling parallel kinematic chains requires the interplay of the

graph traversal and the visitors. First, during the traversal, each
expanded node is assigned a depth, that is, its minimal distance
from the node where the traversal started. Then, the visitors feature
conditions to handle the different types of edges: cross edges connect
nodes with the same depth, forward edges connect from nodes with
lower depth to nodes with higher depth, and vice versa for back
edges. The concrete graph manipulation to be performed for each
type of edge is again part of the step. An example in the context
of the FPK is to insert a computation that checks, at runtime, if
the poses each way around the cycle are consistent. Alternatively, a
dynamics solver could insert acceleration constraints as described in
Section 2.

5.2 Code generation

We have implemented the code generator using the
StringTemplate14 library and its JSON frontend StringTemplate
Standalone Tool15. StringTemplate enforces the separation of logic
from rendering templates and is one of the few template engines
that has scientific justifications for its design and the included and
excluded primitives (Parr, 2004). A graphical user interface, the
“Inspector,” allows visually debugging the generated code by tracing
each rendered token back to a template fragment and its input data.
Furthermore, the StringTemplate library is extensively used in the
ANTLR parser generator (Parr, 2013).

To bridge the gap between the complete graph models and
the template engine, we have introduced the IR and its generator.
Its objectives are three-fold. First, because the templates are logic-
free, the IR generator performs any necessary processing (e.g.,
filtering strings so that they represent valid identifiers or embedding
information for the template into the IR) on the graph model.
Second, it transforms the graph into a tree structure by cutting loops
and replacing them with symbolic pointers. Finally, it serializes the
resulting graph to JSON, as exemplified in Listing 6. The excerpt of
an IR model contains (i) the variables, which is a dictionary
with all required data structures, their types, sizes, or initial values;

14 https://www.stringtemplate.org/

15 https://github.com/jsnyders/STSTv4

Frontiers in Robotics and AI 11 frontiersin.org143

https://doi.org/10.3389/frobt.2024.1363150
https://www.stringtemplate.org/
https://github.com/jsnyders/STSTv4
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Listing7. StringTemplate excerpt for generating the solver implementation. Colors align with the IR from Listing 6.

(ii) theclosures, a dictionary of operators with their connections
to data structures as symbolic pointers (joint-position and
pose) and additional properties (dimensions and joint); and
(iii) the schedule as an ordered list that contains the symbolic
pointers to the closures dictionary.

Listing 7 shows an excerpt of a template model for generating
C code. The snippet consists of three rules in Lines 1, 9, and 15.
As such, these templates align with our objective of composability
because (i) every rule is labeled by an identifier and, hence, can
be referenced, while (ii) higher-level rules dispatch to lower-level
rules. This structure mirrors that of parsers for formal languages,
but instead of constructing an abstract syntax tree (AST), it renders
text from anAST.The top-level application rule accepts several
parameters and then defines the to-be-rendered text between the
double angle brackets << and >> (single angle brackets < and >

contain StringTemplate processing directives). Here, only the two
arguments closure and schedule are shown that align with
the IR from Listing 6.The application consists of the program’s main
function, which first defines and initializes all required variables (not
shown) from the algorithm model’s data structures and then emits
the function calls. Line 4 iterates over the schedule and applies
the statement rule to each entry with an implicit argument of
the currently visited entry and the closures dictionary. Any two
generated lines will be separated by a line break. The statement
shows another StringTemplate pattern: the notation closures.

(closure-id) performs a lookup in the closures dictionary
with the value of closure-id as key. Here, another dictionary is
returned inwhich the().operator retrieves the value associated
with the operator. The directive ({rule-id}) (…) then dispatches
to the rule rule-id, which is the joint-position-to-

pose in this example. This last rule finally renders the function call
with the provided arguments.

The real implementation separates the top-level application
template from the reusable and domain-specific fragments. We also
see that fragments relate to different domains, such as the algorithm

model (statement rule) or the kinematics model (joint-
position-to-pose rule), and are, hence, located in separate
files. As a result, we can efficiently compose a variety of applications
by relying on StringTemplate’s import feature to include only the
necessary fragments in a top-level template.

5.3 dyn2b: support library for
computational building blocks

We have also implemented a C software library called dyn2b
that realizes the numerical computations for kinematics and
dynamics solvers at runtime. dyn2b is designed for composability
in that it only provides pure functions at the granularity required
by the synthesizer and code generator. First, pure functions are
free from side effects, which means that any state must be passed
into the functions as explicit arguments to allow for their arbitrary,
even reentrant, execution. Second, this design prevents the state
from remaining hidden behind a private interface. All too often,
algorithm or function developers cannot foresee the context in
which their artifacts will be used and, hence, should not introduce
preliminary decisions to hide the state. As an example, we have
noticed this limitation in the development of an online identification
procedure for dynamic parameters that relied on the KDL. Here, the
inertial parameters are hidden inside a class that prevents them from
being updated using an estimator. Most solver libraries, including
RBDL and Pinocchio, already follow such a design that avoids
encapsulation: the kinematic chain’s model and/or the solver’s state
live in separate yet pre-defined data structures that are publicly
accessible. Third, the separation of data from the computations
enables (i) the optimization of the data layout for the hardware at
hand, including the order of the data structures and their alignment
to memory boundaries or cache lines; (ii) state persistence, for
instance, by streaming part of the state to a database; or (iii)
instrumentation of that state at specific points in time.

Frontiers in Robotics and AI 12 frontiersin.org144

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

The provided functions mainly comprise 3D-Cartesian space
kinematics and dynamics to propagate and accumulate the compact
representation (cf. Featherstone (2008)) of screws and inertia and
functions that map between joint space and Cartesian space for
revolute and prismatic joints. In contrast to Featherstone (2008), we
do not distinguish between velocity vectors and force vectors but
only implement a generic set of functions for screws. The reason
is that the type checking, including the checking of additional
semantic constraints, is performed on the model level; the code
generator then only dispatches to the correct numerical functions.
The screw operators act on collections of screws instead of individual
screw vectors so that they can efficiently handle the multiple
instances of motion drivers. dyn2b explicitly excludes functions
for highly variable domains, such as operators associated with more
sophisticated joints, stiffness, and damping due to their non-linear
behavior, numerical integrators, or trajectory generators. All of these
warrant their custom set of models, tools, and software libraries.

dyn2b is compatible with and is built upon the Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) libraries. For now,we rely on the verymuch unoptimized
Netlib reference implementations of both libraries. Hence, a
significant performance improvement may be possible with a
(highly localized) change to a dedicated BLAS implementation
for small-scale linear algebra. Here, the role of a general-
purpose language compiler is to generate efficient numerical
code by program-level optimizations such as code inlining,
vectorization, constant propagation, or introducing platform-
level details, including calling conventions, instruction scheduling,
register allocation, and machine code generation.

5.4 Steps for dynamics solvers

Analogous to the synthesis and code generation example above,
we have also realized the building blocks for further kinematics
solvers up to the acceleration level as well as dynamics solvers. Here,
we outline the main challenges and policies that we address in our
implementation for such solvers.

The main difference for traversing the graph during the inward
sweep relates to the handling of leaves, loop-closures, and branching
points. We have already discussed the case of an unconditional edge
visitor in Section 5.1.2. In contrast, to handle leaves, a step registers
a conditional node visitor with the framework that will be called
with only the currently visited node as argument. The condition
resembles Listing 5, but (i) is a boolean-valued SPARQL ASK query
that (ii) checks whether no joint follows the link; that is, it is a
leaf. The concrete graph manipulation instructions depend on the
quantity or motion driver; for instance, inertial force vectors are
initialized to zero vectors, whereas the propagated inertia matrix is
initialized with the leaf link’s inertia matrix. As for branching points,
such as link 1 in Figure 2A, the synthesis step emits operations to
accumulate inertia and force over all children of the currently visited
segment. Because a serial connection is a special case of a branched
connection, we employ the same steps for both in our synthesis tool.
The only difference is that the synthesized algorithm contains more
data structures and operations for branching points.

Next, we turn to the propagation of motion drivers through the
kinematic chain. As an example, Figure 2A depicts two instances

of external force motion drivers (Fext,3 and Fext,4). Both instances
are propagated inward to arrive at link 1, which now “feels” the
propagated effect of both forces as F′ext,3 and F′ext,4. Traditional
solvers would accumulate their effect by adding both forces
to minimize the overall number of force variables and, hence,
maximize the computational efficiency of the solvers. In contrast,
following our recent work (Schneider and Bruyninckx, 2019), the
steps for the inward sweep decompose the kinematic chain’s state by
propagating all forces and their instances in separation. Then their
combined effect at link 1 can be represented as a list: (F′ext,3 F′ext,4).
In other words, accumulation here means to append. In this setting,
it is the role of the synthesis steps to perform the bookkeeping of
individual, propagated forces, which includes (i) tracking the sizes
of the lists per segment so that their memory can be pre-allocated;
(ii) computing the indices into the lists so that each force can be
found; and (iii) symbolically associating each propagated force with
its original motion driver. For a human consumer, similar names
establish the link to the original motion driver, but in the models,
a separate relation facilitates the traceability of propagated forces to
their original motion specification.

On the one hand, the decomposition during the inward sweep
is computationally more expensive than the inward sweep in
traditional solvers. On the other hand, it also enables the flexible
recomposition of the motion drivers during the final outward sweep
or solver sweep. Examples include (i) weighing or prioritizing
motion drivers with respect to each other; (ii) avoiding actuator
saturation by scaling down some motion drivers in accordance with
the motion specification; or (iii) using the decomposed state in
model-based controllers (MPC).

6 Case study

The objective of the case study is multi-fold. First, it
demonstrates the algorithm synthesis and code generation from
composable models. Second, it shows the iterative and incremental
modeling and development of a concrete application together with
its integration into a real robot. Third, it provides evidence of the
models’ composability because the application is composed of the
solvers’ algorithm models. Finally, it demonstrates compositionality
by performing semantic algorithm manipulation. The case study
follows the code-centric tutorial that is available together with
the toolchain. The objective is to compose a controller and a
robot interface onto a recursive Newton–Euler algorithm (RNEA).
Afterward, we systematically inject instrumentation operations
into the resulting algorithm. Our target platform is a Kinova
Gen316 manipulator for which we have created composable
models in JSON-LD17.

To synthesize the RNEA, we configure the toolchain with
two sweeps. The first sweep realizes the outward propagation
and accumulation of poses, twists, and acceleration twists. The
second sweep realizes the inward propagation of Cartesian-space
inertial forces that compensate for gravity and velocity-dependent
accelerations. The inward sweep also computes the joint-level

16 https://www.kinovarobotics.com/product/gen3-robots

17 https://github.com/comp-rob2b/robot-models

Frontiers in Robotics and AI 13 frontiersin.org145

https://doi.org/10.3389/frobt.2024.1363150
https://www.kinovarobotics.com/product/gen3-robots
https://github.com/comp-rob2b/robot-models
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

control torques associated with the inertial forces. Both sweeps are
built from the available steps and code generator fragments that we
have explained above. In practice, a robot will have to synthesize
(part of) an application whenever the graph changes structurally.
For traditional solutions that rely on manually implemented solvers,
this high variability leads to a combinatorial explosion for even
moderately sized applications, which makes it challenging to design
and verify the developed software in advance. Hence, we tackle such
problems with our toolchain to synthesize and generate correct-by-
construction solvers from verifiable specifications.

6.1 Damping controller and robot interface

The first extension is a Cartesian-space motion controller. Its
role is to realize the robot’s behavior over a longer time span as
contrasted with the solver, which only realizes the instantaneous
mappings of force and motion inputs to the control commands
of the kinematic chain’s actuators. For the case study, we have
opted to demonstrate the controller attachment using a simple
damping controller. The controller’s objective is to move the
robot’s end-effector while limiting the maximum velocity vmax and
maximum force fmax that it could exert on its environment. The
controller computes the commanded force as shown in the following
Equation 1.

fcmd = fmax −
fmax

vmax
vmsr (1)

In this equation, the damping is the intermediate term D = − fmax
vmax

that is scaled by the currentlymeasured velocity vmsr. Intuitively, this
means that the controller (i) at vmsr = 0 commands the maximum
force so that the robot can accelerate if it is not impeded; (ii) at
vmsr = vmax commands no force so that the robot does not accelerate
further; and (iii) otherwise linearly interpolates between both cases
with D as the proportionality factor. This behavior is depicted in
Figure 6. For this case study, we have connected the controller to the
robot’s linear upward motion (as seen by the world frame). Hence,
the robot always tries to move to a fully stretched-out configuration
(a workspace singularity) but can manually be displaced. When the
operator holds the robot in place, they feel the robot “pushing”
upward with the maximum configured force. If they move it upward
too fast (beyond the configured maximum velocity), they feel the
robot actively counteracting by braking. An alternative application
of this controller is to bring the robot into safely controlled contact
with its environment and then align it without relying on additional
exteroceptive sensors. As a second extension, we have modeled and
implemented a robot interface. The robot interface model attaches
to the various joint-level quantities to read joint positions and joint
velocities from the robot’s sensors and to command torques to
the actuators. The solver handles these attachments by a step to
read measurements in the first sweep and another step to write
commands in the last sweep.We support two backends:robif2b18

to operate the real robot and a simple simulation that provides fixed
measurements while printing joint-level commands to the terminal.

18 https://github.com/rosym-project/robif2b

FIGURE 6
Depiction of the damping controller’s behavior. The linear damping D
is computed from a given maximum velocity vmax and a maximum
force fmax, as indicated by the orange line. The force to command the
robot fcmd depends on the measured velocity vmsr. In free space, the
force accelerates the robot to maximum velocity, whereas in a rigid
contact, the robot does not move while still limiting the
commanded force.

6.2 Semantic algorithm manipulation

The algorithm model already enables simple queries to gather
statistics about an algorithm or even a complete application. A
simple example is to count the number of functions or data
structures of a particular type. This may provide insights into the
expected performance or memory requirements of the algorithm.
However, more interesting queries concern the instrumentation
of the running software. To this end, Listing 8 demonstrates a
complicated query that inserts a logger into an existing schedule.
Apart from the prefix definition at the top, the query consists of
three main parts: DELETE to remove elements from the RDF graph,
INSERT to extend that graph, and WHERE to localize the deletion
and insertion points. We start with the latter, which has the goal of
finding an operation ?op of type Damping (Line 19) with an input
property velocity-twist and an output property wrench.
This operation is part of the ?schedule’s trigger chain (Line 15),
the totally ordered collection of operations. RDF represents such a
collection as a singly linked list, a set of anonymous nodes that (i)
point to the concrete content (here, the operations) via the first
property; and (ii) are linked among each other by therest property
that points to the next node.The traversal of this list reads as follows:
(i) start at the ?schedule node; (ii) follow one step along the
trigger-chain property; (iii) follow an arbitrary number of
steps (indicated by the asterisk) along the rest property to visit any
list node; and (iv) for each of these nodes, follow to the content via
thefirst property to an operation?op that must satisfy the above
constraints. The query also creates a new UUID as an identifier for
the logger (Line 22). The statement in Line 9 instantiates the new
logger with a single property quantity that represents an ordered
list—indicated by the parentheses—of data structures to log. Notice
that apart from the twist and wrench, we also log the joint position
of the manipulator’s second joint q2 that experiences the greatest
displacement. Finally, Lines 7, 11, and 17 represent, respectively,
the cutting, splicing, and bookkeeping of inserting the logger at the
correct location into the linked list.

For demonstration purposes, we have implemented a simple
backend for this logger model that, at runtime, writes the data into

Frontiers in Robotics and AI 14 frontiersin.org146

https://doi.org/10.3389/frobt.2024.1363150
https://github.com/rosym-project/robif2b
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

Listing 8. SPARQL update query to insert a logger into a schedule.

FIGURE 7
Visualization of the logged data recorded on the real robot. The plot
shows the relationship between the end-effector's measured upward
velocity (top), the upward control force (middle), and the second
joint's position (bottom). The seven labeled phases comprise the robot
being fully stretched out (1 and 7), manually pushed downward (2) and
upward (6) or held in place (3 and 5) by a human operator, and
moving up without contact (4). The controller is configured with
vmax = 0.1 m s−1 and fmax = 10 N.

a comma-separated value file. The drawback of this approach is
that it potentially introduces high amounts of jitter into the real-
time control loop. Hence, a more sophisticated approach would
rely on a realtime-capable communication infrastructure, such as
ring buffers, to send the data to a dedicated log writer. Figure 7
depicts part of this logged data as recorded from the real robot

that is executing the above application while intermittently being
impeded by a human operator (indicated by colored segments).

The robot starts in a stretched-out configuration, a workspace
boundary, so that it points vertically upward. Because it cannotmove
further in that direction, the controller commands amaximum force
of fmax = 10 N. Next, the operator physically displaces the robot
until it is parallel to the ground. During this second phase, we see
that the robot moves faster than vmax = 0.1 m s−1 and, hence, the
controller counteracts with a control force greater than fmax. After
releasing the arm, in the fourth phase, its velocity gradually increases
so that the commanded force reduces.Then, the operator pushes the
robot upward so that it exceeds vmax. Here, the controller actively
brakes to counteract that upward motion. Not surprisingly, due to
the affine control law (scaling and translation), the control command
is similar to the measured velocity. Finally, the arm reaches the
initial, stretched-out configuration again.

7 Discussion

A major inspiration for the toolchain originates from the
strategic programming paradigm (Lämmel et al., 2003). Although
mostly targeted at tree structures, its objective is to separate the
traversal control from the logic that is applied at visited nodes.
Here, the traversal strategies are composed of atomic traversal steps
and higher-order functions that are called combinators. Especially
adaptive programming, as found in the DJ library (Orleans and
Lieberherr, 2001), employs a similar approach as our toolchain by
defining graph visitors and their declarative traversal specifications
that are then dispatched on a graph of Java objects. With those
insights, we refactored our synthesis tool by separating the graph
traversal, the synthesis steps, and the blackboard that contains the

Frontiers in Robotics and AI 15 frontiersin.org147

https://doi.org/10.3389/frobt.2024.1363150
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

shared state. Additionally, we realized the query declaration and
implemented the caching to reduce the amount of overall query
executions.

As shown in the high-level architecture diagram in Figure 4, the
individual tools rely on explicit models instead of language-specific
APIs. On the one hand, this design allows each tool to be realized
with themost suitable programming language and choice of software
libraries. On the other hand, also the model representation between
two tools can be changed if the producing and consuming tools
are adapted. In either case, such a change remains very localized.
Here, we will review further variation points and their associated
one-to-many mappings with respect to model representation, graph
querying languages, template engines, and the execution backend.

The same models can be serialized in various interchange
formats, with XML (Bray et al., 2006) and JSON as the most
common options. Two models can even be equivalent semantically
yet differ structurally. For instance, a RigidBody constraint could
be part of an entity’s type or, alternatively, tagged to that entity
by a relation. In any case, if the models represent the same
information, they can always be model-to-model transformed into
each other. In the Semantic Web, the Web Ontology Language
(OWL) defined by Bock et al. (2012) provides multiple concepts to
perform such transformations.

Thedecision to use SPARQLwasmainly driven by its support for
declarative graph matching and its vendor-independent and mature
standard, together with the availability of RDFLib. RDFLib eased
the integration with our Python toolchain, in particular, due to the
in-memory, in-process database that avoids a dedicated database
setup. However, in our prior work (Hochgeschwender et al., 2016),
we also employed the declarative graph query language Cypher
(Francis et al., 2018) that originates from theNeo4j database. Cypher
supports graph matching and, as of now, is in the process of being
standardized. The imperative language Gremlin (Rodriguez, 2015)
is another popular alternative for graph querying that supports
graph matching.

We prototyped the code generation with the more popular
template engine Jinja19 in Schneider et al. (2023). Although the
integration with the Python-based toolchain was easy, we quickly
noticed the problem of interleaving logic with the templates and
a tight coupling of the templates with the execution environment.
Examples include the injection of Python functions into the
templates as processors or filters and exposing the database
interface to the templates. Additionally, in Jinja, the entry point is
always an “anonymous” template (not a rule as in StringTemplate)
that terminates the composition hierarchy at the top. Developer
discipline andmacros (akin to rules in StringTemplate) can help, but
“clean” templates are not enforced.

Especially when the applications grow more complicated, it may
be worthwhile to explore different starting points for the algorithm
synthesis. Currently, every synthesis execution starts from scratch.
On a computer with an Intel Core i7-4790K CPU and 16 GB RAM,
the synthesis takes approximately 1.5 s, while the code generator
finishes in approximately 0.3 s. However, it is important to note
that this is a design-time cost and not part of the real-time path

19 https://palletsprojects.com/p/jinja/

during the running application; the generated code itself is real-
time capable, that is, it always performs a maximum amount of
operations, each with a deterministic runtime. Still, when only some
models change, it may be computationally more efficient to reuse
previously synthesized algorithms and specialize or modify them
in a post-processing step. Another variation point comprises the
types of generated artifacts. Because the case study is only an excerpt
of the overall application, it suffices to generate completely static
code. A simple extension to efficiently change the software’s behavior
is to expose and adapt some of the data structures at runtime.
Another extension is to generate runtime-composable functions,
such as the cascades in a controller, which can be hooked into an
application-level event loop to be executed at different cycle rates.

There exists an overlap of our approach and toolchain with
functionality in the ROS ecosystem. As mentioned above, the
structural models in ROS systems are represented in URDF
and SRDF. The robot_state_publisher20 and tf (Foote,
2013)21 packages provide the software to bring these models to
life by realizing the runtime behavior. However, only the FPK
computation from Algorithm 1 is realized by these packages:
the robot_state_publisher evaluates Line 2, whereas each
instance of a tf listener computes Line 4. These two types
of computation are tightly coupled to the ROS communication
infrastructure that serializes, sends, receives, and deserializes all
pose relations, even if the involved nodes run on the same
computer. Once all poses have been accumulated, the tf listener can
answer queries that require the transformation of points or vectors
between coordinate frames. tf effectively only supports position-
level kinematics: twists can only be approximated by discrete
differentiation of poses. Acceleration twists, dynamic quantities and
their operators, andmaps fromCartesian space to joint space remain
completely absent. Additionally, the transformation graph in tf must
always form a tree. This is caused by the stateless publish-subscribe
communication: any node can provide new transforms at any point
in time so that the tf listener must always construct and evaluate
the transform graph anew, which requires a tree as an efficient yet
limiting data structure. For similar reasons, tf does not support
ahead-of-time or just-in-time validation to answer questions such as
“Do the frames in a query exist?” or “Does the transform graph actually
form a tree?“

Our approach compares favorably to the currently hyped
large language models (Vaswani et al., 2017): it is an engineered
solution that is explicit in the represented knowledge, which
enables explainability. In other words, composable models represent
exactly what is necessary, nothing more and nothing less. These
properties are also required to certify such a toolchain for safety-
critical systems.

8 Conclusions and future work

In this article, we present the graph-based solver pattern
that recurs in various seemingly unrelated robotic domains and
is the foundation of various efficient algorithms that act on

20 http://wiki.ros.org/robot_state_publisher

21 We use tf and tf2 synonymously.

Frontiers in Robotics and AI 16 frontiersin.org148

https://doi.org/10.3389/frobt.2024.1363150
https://palletsprojects.com/p/jinja/
http://wiki.ros.org/robot_state_publisher
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

graph structures. We delve into the details of the pattern by
performing an in-depth analysis of solvers on kinematic chains.
The supplementary material extends the analysis for probabilistic
networks and factor graphs, data-flow models, and expression
graphs. We complement the composable models with a model-
based engineering toolchain to synthesize such algorithms from
the algorithmic building blocks: the data structures, pure functions
that act on these data structures, and schedules that describe
control flows as sequences of functions. A core element of this
toolchain is the synthesizer that accommodates various concerns,
including (i) multiple, structured traversals over potentially cyclic
graphs; (ii) dispatching computations at specialized node types,
both in terms of the graph structure (e.g., at branch nodes, leaf
nodes or cycle edges) but also the domain-specific semantics
(e.g., at geometric frames, rigid bodies, or kinematic joints);
(iii) the algorithm management such as performing memory
allocation or triggering computations; and (iv) the incremental
construction of the overall algorithm where the operations must
have access to a prior state from the same sweep or previous
sweeps. The synthesizer is an application of higher-order, graph-
based reasoning that relies on established standards and mature
software libraries. We generate correct-by-construction code from
the synthesized algorithm that is complemented by a low-
level numeric library to perform the computations required for
kinematics and dynamics solvers of rigid-body systems. In a case
study, we evaluate our approach on a real robot and demonstrate
how the explicit algorithm model facilitates semantic algorithm
manipulation.

The proposed approach paves the way to have models for the
robot’s complete life-cycle, including runtime aspects of the system.
Hence, as future work, we foresee the exploitation of all of the above
models so that robots can adapt their software themselves even at
runtime. To this end, we have already developed a proof-of-concept
tool using the llvmlite22 library, a Python interface to LLVM’s23

just-in-time (JIT) compiler. Additionally, we plan to apply and
extend the models and the tools to more complicated applications
involving multi-robot systems that must cooperate in challenging
manipulation tasks. It is in such systems that the models will
pay off the most, due to the complicated robot models and
world models that are connected by task or motion descriptions.
Here, the graph structure helps in coordinating and configuring
a wide range of algorithms, including monitors, controllers,
or estimators that are associated with the many relations in
the graph.

Data availability statement

The code and models for this article can be found in
the following repositories: Synthesis tool and code generator
templates: https://github.com/comp-rob2b/kindyngen.Metamodels
that define themodel semantics: https://github.com/comp-
rob2b/metamodels. Models for the Kinova Gen 3manipulator:

22 http://llvmlite.pydata.org/

23 https://www.llvm.org/

https://github.com/comp-rob2b/robot-models. Kinematics and
dynamics software library: https://github.com/comp-rob2b/dyn2b.

Author contributions

SS: conceptualization, data curation, formal analysis,
investigation, software,methodology, visualization,writing–original
draft, writing–review and editing. NH: conceptualization, funding
acquisition, methodology, project administration, supervision,
and writing–review and editing. HB: conceptualization, funding
acquisition, methodology, project administration, supervision, and
writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. Sven
Schneider and Nico Hochgeschwender gratefully acknowledge the
ongoing support of the Bonn-Aachen International Center for
Information Technology. This work was supported by the European
Union’s Horizon 2020 project SESAME (H2020-101017258, Secure
and Safe Multi-Robot Systems). Nico Hochgeschwender gratefully
acknowledges the support of the SOPRANO (Horizon Europe –
101120990) Project. Herman Bruyninckx gratefully acknowledges
the support of RobMoSys (H2020-732410, Composable Models
and Software for Robotics Systems-of-Systems) and Esrocos (H2020-
730080, European Space Robot Control Operating System).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2024.
1363150/full#supplementary-material

Frontiers in Robotics and AI 17 frontiersin.org149

https://doi.org/10.3389/frobt.2024.1363150
https://github.com/comp-rob2b/kindyngen
https://github.com/comp-rob2b/metamodels
https://github.com/comp-rob2b/metamodels
http://llvmlite.pydata.org/
https://www.llvm.org/
https://github.com/comp-rob2b/robot-models
https://github.com/comp-rob2b/dyn2b
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2024.1363150/full#supplementary-material
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schneider et al. 10.3389/frobt.2024.1363150

References

Aertbeliën, E., and De Schutter, J. (2014). “eTaSL/eTC: a constraint-based task
specification language and robot controller using expression graphs,” in Proc. IEEE/RSJ
international conference on intelligent robots and systems (IROS).

Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., et al.
(2012). “OWL 2 Web Ontology Language structural specification and functional-style
syntax,” inW3Crecommendation. SecondEdition (W3C standard). Available at: https://
www.w3.org/TR/owl2-syntax/.

Bray, T. (2017). The JavaScript object notation (JSON) data interchange format. RFC
8259, Internet Eng. Task Force (IETF) (IETF standard). Available at: https://datatracker.
ietf.org/doc/html/rfc8259.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., and
Cowan, J. (2006). Extensible markup language (XML) 1.1. Second Edition. W3C
Recommendation, World Wide Web Consortium W3C. Available at: https://www.w3.
org/TR/2006/REC-xml-names11-20060816/.

Bruyninckx,H. (2023). inBuilding blocks for complicated and situational aware robotic
and cyber-physical systems (KU Leuven: Department of Mechanical Engineering).

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., et al.
(2019). “The Pinocchio C++ library – a fast and flexible implementation of rigid
body dynamics algorithms and their analytical derivatives,” in IEEE/SICE international
symposium on system integration (SII).

Chignoli, M., Adrian, N., Kim, S. b., andWensing, P. (2023). “Improving contact-rich
robotic simulation with generalized rigid-body dynamics algorithms,” in Embracing
contacts – workshop at ICRA 2023.

Codd, E. F. (1971). Further normalization of the data base relational model. Tech.
Rep. IBM Research Laboratory.

Cook, S. A. (1971). “The complexity of theorem-proving procedures,” in Proc. ACM
symposium on theory of computing.

Cyganiak, R., Wood, D., and Lanthaler, M. (2014). RDF 1.1 Concepts and abstract
syntax. W3C recommendation. World Wide Web Consort. (W3C). Available at: https://
www.w3.org/TR/rdf11-concepts/.

De Laet, T., Bellens, S., Smits, R., Aertbelien, E., Bruyninckx, H., and
De Schutter, J. (2012). Geometric relations between rigid bodies (Part 1):
semantics for standardization. IEEE Robotics & Automation Mag. 20, 84–93.
doi:10.1109/mra.2012.2205652

Dellaert, F. (2012). “Factor graphs and GTSAM: a hands-on introduction,” in Tech.
rep. (Atlanta: Georgia Institute of Technology).

Duerst, M., and Suignard, M. (2005). Internationalized Resource identifiers (IRIs).
RFC 3987, Internet Eng. Task Force (IETF). Available at: https://datatracker.ietf.
org/doc/html/rfc3987.

Featherstone, R. (2008). Rigid body dynamics algorithms. Springer.

Felis, M. L. (2016). RBDL: an efficient rigid-body dynamics library using recursive
algorithms. Aut. Robots 41, 495–511. doi:10.1007/s10514-016-9574-0

Foote, T. (2013). “Tf: the transform library,” in Proc. IEEE international conference on
technologies for practical robot applications (TePRA).

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., et al.
(2018). “Cypher: an evolving query language for property graphs,” in Proc. International
conference on management of data (SIGMOD).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns: elements
of reusable object-oriented software. Addison-Wesley.

Harris, S., and Seaborne, A. (2013). SPARQL 1.1 query language. W3C
recommendation. World Wide Web Consort. (W3C). Available at: https://www.
w3.org/TR/sparql11-query/.

Hochgeschwender, N., Schneider, S., Voos, H., Bruyninckx, H., and Kraetzschmar, G.
K. (2016). “Graph-based software knowledge: storage and semantic querying of domain
models for run-time adaptation,” in Proc. International conference on simulation,
modeling, and programming for autonomous robots (SIMPAR).

Hunt, A., and Thomas, D. (2019). The pragmatic programmer. Reading: Addison
Wesley.

Jain, A. (2012). Multibody graph transformations and analysis Part II: closed-
chain constraint embedding. Nonlinear Dyn. 67, 2153–2170. doi:10.1007/s11071-011-
0136-x

Kent, W. (1983). A simple guide to five normal forms in relational database theory.
Commun. ACM 26, 120–125. doi:10.1145/358024.358054

Klotzbuecher, M., and Bruyninckx, H. (2013). “microblx: a reflective, real-time safe,
embedded function block framework,” in Proc. Real time linux workshop (RTLWS).

Knublauch, H., and Kontokostas, D. (2017). Shapes Constraint Language (SHACL).
W3C recommendation. World Wide Web Consort. (W3C). Available at: https://www.
w3.org/TR/shacl/.

Lämmel, R., Visser, E., and Visser, J. (2003). “Strategic programming meets
adaptive programming,” in Proc. International conference on aspect-oriented software
development (AOSD).

Leach, P. J., Salz, R., and Mealling, M. H. (2005). A universally unique IDentifier
(UUID) URN namespace. RFC 4122, Internet Eng. Task Force (IETF). Available at:
https://datatracker.ietf.org/doc/html/rfc4122.

Mansard, N., Khatib, O., and Kheddar, A. (2009). A unified approach to integrate
unilateral constraints in the Stack of tasks. IEEE Trans. Robotics 25, 670–685.
doi:10.1109/tro.2009.2020345

Martin, R. C. (2003). Agile software development principles, patterns, and practices.
Upper Saddle Hill: Prentice Hall.

Meyer, B. (1997). Object-oriented software construction

Orleans, D., and Lieberherr, K. (2001). “DJ: dynamic adaptive programming in Java,”
in Metalevel architectures and separation of crosscutting concerns.

Parr, T. (2013). The definitive ANTLR 4 reference (pragmatic bookshelf).

Parr, T. J. (2004). “Enforcing strict model-view separation in template engines,” in
Proc. International conference on world wide Web (WWW).

Pearl, J. (1982). “Reverend Bayes on inference engines: a distributed
hierarchical approach,” in Proc. International joint conference on artificial
intelligence.

Popov, E. P., Vereshchagin, A. F., and Zenkevich, S. L. (1978). Manipuljacionnyje
roboty: dinamika i algoritmy. Moscow Nauka.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). “ROS: an
open-source robot operating system,” in IEEE international conference on robotics and
automation (ICRA). Workshop on open source software.

Rodriguez, M. A. (2015). “The Gremlin graph traversal machine
and language,” in Proc. Of the ACM database programming languages
conference (DBPL).

Schneider, S., and Bruyninckx, H. (2019). “Exploiting linearity in dynamics solvers
for the design of composable robotic manipulation architectures,” in Proc. IEEE/RSJ
international conference on intelligent robots and systems (IROS).

Schneider, S., Hochgeschwender, N., and Bruyninckx, H. (2023). “Domain-specific
languages for kinematic chains and their solver algorithms: lessons learned for
composable models,” in Proc. IEEE international conference on robotics and automation
(ICRA).

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.-A., and Lindström,
N. (2020). JSON-LD 1.1. A JSON-based serialization for linked data. W3C
recommendation. World Wide Web Consort. (W3C). Available at: https://www.w3.
org/TR/json-ld/.

Tanenbaum,A. S., and Bos,H. (2014).Modern operating systems (peason PLC). fourth
edn.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
2017). “Attention is all you need,” in Proc. International conference on neural information
processing systems (NIPS).

Vereshchagin, A. F. (1989). Modelling and control of motion of manipulational
Robots. Soviet J. Comput. Syst. Sci., 125–134. Originally published in Izvestiia Akademii
nauk SSSR, Tekhnicheskaya Kibernetika, No. 1.

Frontiers in Robotics and AI 18 frontiersin.org150

https://doi.org/10.3389/frobt.2024.1363150
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
https://www.w3.org/TR/2006/REC-xml-names11-20060816/
https://www.w3.org/TR/2006/REC-xml-names11-20060816/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1109/mra.2012.2205652
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://doi.org/10.1007/s10514-016-9574-0
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1007/s11071-011-0136-x
https://doi.org/10.1007/s11071-011-0136-x
https://doi.org/10.1145/358024.358054
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://doi.org/10.1109/tro.2009.2020345
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 02 April 2025
DOI 10.3389/frobt.2025.1548250

OPEN ACCESS

EDITED BY

Lorenzo Carnevale,
University of Messina, Italy

REVIEWED BY

Jonathan M. Aitken,
The University of Sheffield, United Kingdom
Roberto Marino,
University of Messina, Italy

*CORRESPONDENCE

Michel Albonico,
michelalbonico@utfpr.edu.br

RECEIVED 19 December 2024
ACCEPTED 29 January 2025
PUBLISHED 02 April 2025

CITATION

Albonico M, Cannizza MB and Wortmann A
(2025) Energy efficiency in ROS
communication: a comparison across
programming languages and workloads.
Front. Robot. AI 12:1548250.
doi: 10.3389/frobt.2025.1548250

COPYRIGHT

© 2025 Albonico, Cannizza and Wortmann.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Energy efficiency in ROS
communication: a comparison
across programming languages
and workloads

Michel Albonico1*, Manuela Bechara Cannizza1 and
Andreas Wortmann2

1IntelAgir Research Group, Informatics Department, Federal University of Technology, Paraná (UTFPR),
Francisco Beltrão, Brazil, 2Institute for Control Engineering of Machine Tools and Manufacturing Units
(ISW), University of Stuttgart, Stuttgart, Germany

Introduction: The Robot Operating System (ROS) is a widely used framework
for robotic software development, providing robust client libraries for both C++
and Python. These languages, with their differing levels of abstraction, exhibit
distinct resource usage patterns, including power and energy consumption–an
increasingly critical quality metric in robotics.

Methods: In this study, we evaluate the energy efficiency of ROS two nodes
implemented in C++ and Python, focusing on the primary ROS communication
paradigms: topics, services, and actions. Through a series of empirical
experiments, with programming language, message interval, and number of
clients as independent variables, we analyze the impact on energy efficiency
across implementations of the three paradigms.

Results:Our data analysis demonstrates that Python consistently demandsmore
computational resources, leading to higher power consumption compared to
C++. Furthermore, we find that message frequency is a highly influential factor,
while the number of clients has a more variable and less significant effect
on resource usage, despite revealing unexpected architectural behaviors of
underlying programming and communication layers.

KEYWORDS

ROS, energy efficiency, programming language, ROS communication, robotic

1 Introduction

Robots play an important role in many areas of our society. They are commonly
used in manufacturing, medicine, transportation (including self-driving vehicles), and as
domestic allies (e.g., vacuum cleaners) (Ciccozzi et al., 2017). A great part of those robots
depends on increasingly complex software, for which the Robot Operating System (ROS)
(Stanford Artificial Intelligence Laboratory, 2024; Steve, 2011) is one of the most important
frameworks.

ROS is considered the de facto standard for robotic systems in both, research
and industry (Koubaa, 2015). It provides an abstraction layer that enables specialists
from different areas to integrate their software into one robotic system. In addition,
ROS comprises a comprehensive set of open-source libraries and packages. With over
half a billion ROS packages downloaded in 2020, it has also significantly encouraged

Frontiers in Robotics and AI 01 frontiersin.org151

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1548250
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1548250&domain=pdf&date_stamp=2025-03-28
mailto:michelalbonico@utfpr.edu.br
mailto:michelalbonico@utfpr.edu.br
https://doi.org/10.3389/frobt.2025.1548250
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1548250/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1548250/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1548250/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1548250/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

code reuse (Stanford Artificial Intelligence Laboratory et al., 2024).
ROS currently has twomain versions, ROS one andROS 2, with end-
of-life of ROS 1 being set to 2025. In this paper, we focus only onROS
2, the only supported distribution in the near future, using ROS as
nomenclature.

Software energy efficiency has been a recurrent concern
among software developers (Pinto and Castor, 2017). This is
stimulated by factors that include environmental impact, budget,
and battery-dependent devices (Steve, 2011; Swanborn and
Malavolta, 2020), which also applies to the robotic domain. Simple
software architectural decisions can make an impact on the energy
efficiency of robotic software (Chinnappan et al., 2021), where
the programming language is known to be a determinant factor
(Pereira et al., 2017; Albonico et al., 2024). In the case of ROS,
C++, and Python are the two main programming languages
thoroughly supported and documented by the community.
Therefore, practitioners tend to start by choosing one of them,
which currently must be done with a limited understanding of their
impact on ROS systems’ energy efficiency.

In this paper, we conduct a systematic analysis of the energy
consumption associated with message exchanges among ROS nodes
implemented in C++ and Python. This study builds upon our
previous work (Albonico et al., 2024), which presented initial
findings on the energy impact of implementing ROS nodes in
different programming languages, motivating further investigation.
In that study, we observed two key challenges: (i) Python nodes
exhibited higher resource usage, resulting in reduced energy
efficiency, and (ii) high message frequencies constrained scalability
across multiple nodes. However, the experiments were limited
in scope, with only a few independent variables, which were
randomly defined. To address these limitations, this paper extends
the investigation by exploring four independent variables: (i)
the programming language of the ROS nodes; (ii) the ROS
communication pattern1 (e.g., topic, service, or action); (iii)
the frequency of message exchange; and (iv) the number of
clients/subscribers per server/publisher. Each algorithm in the study
is adapted from concrete examples on the ROS tutorials Wiki page2,
carefully adapted for this study. The experimental results revealed
the programming language and message frequency as consistent
key factors influencing energy efficiency across different ROS
communication patterns. Additionally, the number of clients had
an impact on power consumption, particularly for server/publisher
nodes, although to a lesser degree. Interestingly, increasing the
number of clients/subscribers sometimes resulted in unexpected
behaviors, such as reduced power consumption in client nodes.
This observation raises important questions that foster further
investigation.

The target audience for this study includes researchers and
practitioners involved in developing ROS-based systems. This
work provides valuable insights to help optimize ROS systems,
make informed design decisions, and conduct experiments in
energy-efficient robotic systems. It encourages researchers to
focus their further studies, which may consider other ROS
architectural models, such as multi-node composition within single

1 https://wiki.ros.org/ROS/Patterns/Communication

2 https://docs.ros.org/en/galactic/Tutorials.html

processes. Additionally, it supports practitioners in selecting suitable
programming languages for their specific robotics projects, thereby
contributing to the development of greener robotic software.

This paper contributes with insights into the energy
consumption and power of ROS nodes communication across
different paradigms and programming languages. It can used as
a source of inspiration for developing greener robotic software,
promoting environmentally conscious practices in robotic software
development. It also provides a methodological framework
and practical guidance for conducting further experiments
in this field. Additionally, we provide a complete replication
package and experimental data to benefit both researchers and
practitioners. Finally, despite the relevant energy-related results,
some combination of independent variables resulted in unexpected
behaviors that must be shared with ROS community and can lead to
important improvements ROS 2 software layers.

2 Background

This section presents the fundamental concepts of ROS,
its communication and programming premises, and discusses
Running Average Power Limit (RAPL)3 for energy consumption
measurements.

2.1 Robot operating system (ROS)

ROS is a standard robotics framework in both, industry and
research, for the effective development and building of a robot
system (Santos et al., 2016). Currently, there are many distributions
of ROS available, grouped into two main versions (ROS 1 and ROS
2). ROS 2 completely changed the architecture compared to the
first version, which now massively relies on the decentralized Data
Distribution Service (DDS) (Pardo-Castellote, 2003).

A ROS software architecture consists of four main types: nodes,
topics, actions, and services. Nodes are executable processes, usually
implementing a well-defined functionality of a ROS system, which
can communicate asynchronously or synchronously. Asynchronous
communication relies on the publisher/subscriber pattern, while
asynchronous communication can be implemented over services
or actions. All three communication patterns are presented in
the sequence.

Figure 1 depicts a Unified Modeling Language (UML)
sequence diagram that represents publisher/subscriber-based ROS
communication. In this communication model, the Publisher sends
messages to a topic, and the ROS Middleware routes these messages
to subscribed nodes (represented by the Subscriber component).
This is a unidirectional flow commonly used for continuous data
streams, such as sensor data4.

Figure 2 depicts a Unified Modeling Language (UML) sequence
diagram that represents service-based ROS communication. The

3 https://greencompute.uk/Measurement/RAPL

4 https://answers.ros.org/question/295426/why-is-pubsub-the-ideal-

communication-pattern-for-ros-or-robots-in-general-instead-of-

requestresponse/

Frontiers in Robotics and AI 02 frontiersin.org152

https://doi.org/10.3389/frobt.2025.1548250
https://wiki.ros.org/ROS/Patterns/Communication
https://docs.ros.org/en/galactic/Tutorials.html
https://greencompute.uk/Measurement/RAPL
https://answers.ros.org/question/295426/why-is-pubsub-the-ideal-communication-pattern-for-ros-or-robots-in-general-instead-of-requestresponse/
https://answers.ros.org/question/295426/why-is-pubsub-the-ideal-communication-pattern-for-ros-or-robots-in-general-instead-of-requestresponse/
https://answers.ros.org/question/295426/why-is-pubsub-the-ideal-communication-pattern-for-ros-or-robots-in-general-instead-of-requestresponse/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 1
UML sequence diagram for publisher/subscriber communication.

diagram captures the synchronous nature of services, where a client
sends a one-time request to the server via the ROS Middleware. The
server processes the request and sends the result back to the client.
This direct kind of interactionmakes services suitable for operations
that trigger specific robotic actions, such as manipulating an object
with a gripper, which requires a synchronous response to identify
whether the operation was successful or not.

Figure 3 depicts a Unified Modeling Language (UML) sequence
diagram that represents action-based communication in ROS. The
diagram features two primary components: the action client and
the action server. The client sends a goal task to the server, which
optionally accepts it. Once the goal is accepted, the client requests the
result of the task. While the task is in progress, the server can send
periodic feedback to the client, providing updates on the task’s status.
When the task is completed, the server sends the final result to the
client. This interaction can be applied in navigation scenarios, where
a navigation goal is sent to the robot. During the navigation process,
the robot provides status updates, and once the task concludes, it
notifies whether the goal was reached or the task failed.

2.1.1 ROS programming
ROS is recognized for its flexibility in supporting multiple

programming languages, allowing developers to choose the
language that best suits their needs. As depicted in Figure 4,
all client libraries in ROS share the same underlying software
layers. From a bottom-up perspective, this architecture begins
with the communication middleware and rmw adapter (ROS
Middleware Adapter), which together enable the use of various
middleware solutions without requiring modifications to ROS 2
itself. Above the rmw adapter, the rmw layer serves as an interface
between the lower and upper layers. At the top of this stack,
the rcl layer provides a high-level API for programming ROS
applications. Finally, language-oriented libraries, such as rclcpp5 and

5 https://github.com/ros2/rclcpp

rclpy6, lie over the rcl layer, enabling developers to create ROS 2
algorithms in their chosen language.

2.2 Running average power limit

Modern processors provide a Running Average Power Limit
(RAPL) interface for power management, which reports the
processor’s accumulated energy consumption, and allows the
operating system to dynamically keep the processor within its limits
of thermal design power (TPD)8. RAPL is a recurrent profiling tool
in previous related work (Zhang and Hoffman, 2015; Hähnel et al.,
2012; Khan et al., 2018; von Kistowski et al., 2016). It keeps counters
that can provide power consumption data for both, processor
and primary memory. CPU is proven to be one of the most
energy-consuming parts of a computer system (Hirao et al., 2005;
von Kistowski et al., 2016; Pereira et al., 2017). Despite the primary
memory usage not being a usual determinant factor in other studies
(von Kistowski et al., 2016; Pereira et al., 2017), it is one of the main
RAPL metrics and in this work will be used to determine whether it
is still the case for ROS programming.

There are different RAPL-based energy profilers publicly
available, among which PowerJoular (Noureddine, 2022) stands out.
It has been recurrent in energy-efficiency studies in the literature
(Thangadurai et al., 2024; Noureddine, 2024; Yuan et al., 2024).
PowerJoular offers real-time insights into energy consumption
patterns across diverse hardware components, such as CPUs, GPUs,
and memory subsystems. Additionally, it facilitates granular energy
measurements of running processes, enabling precise analysis of the
energy consumption of individual ROS 2 components.

3 Experiment definition

The experiment of this paper is defined after the Goal Question
Metric (GQM)model (Basili et al., 1994). It starts with awell-defined
goal, which is then refined into research questions that are answered
by measuring the software system using objective and/or subjective
metrics.

3.1 Study goal

This study goal is to analyze ROS programming with C++
and python languages for the purpose of understanding the
extent with respect to energy efficiency from the point of view
robotics researchers and practitioners in the context of ROS nodes
communication patterns.

6 https://github.com/ros2/rclpy

7 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html

8 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html

Frontiers in Robotics and AI 03 frontiersin.org153

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/ros2/rclcpp
https://github.com/ros2/rclpy
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 2
UML sequence diagram for service communication.

FIGURE 3
UML sequence diagram for action communication.

3.2 Questions

From our goal, we derive the following research questions.

• RQ1: How is the energy efficiency of each ROS
communication pattern?

In ROS, the asynchronous pattern implemented through
topics is a common and straightforward method for
message exchange among nodes. However, the other two
synchronous patterns, service and action, provide essential
features enabling advanced synchronization and reliability.
Since synchronous communication patterns rely on session-
oriented connections, they are expected to consume more
computational resources. However, the impact of these design
choices on the energy efficiency of ROS systems remains
unexplored.

• RQ2: How do the C++ and Python implementations affect
resource usage and energy consumption when handling
different communication patterns among ROS nodes?

The motivation for this research question is that each language
depends on its canonical client library, i.e., rclcpp and rclpy.
Despite those libraries being developed following the same design
principles, both languages have distinct concepts, such as compiled
vs. interpreted, multi-threading management, abstraction level, etc.,
that may lead to particular implementations, and impact resource
usage and energy consumption.

• RQ3: How does language efficiency scale over different
frequencies of communication and number of clients?

Since communication is largely managed by lower-level layers,
such as the DDS (see Figure 4), the efficiency differences between

Frontiers in Robotics and AI 04 frontiersin.org154

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 4
Underlying layers of a ROS node programming7.

languages in simple examples may be minimal. However, message
packing and unpacking are processed locally, which can impact
both, resource usage and energy efficiency. Additionally, the
number of clients can trigger multi-threading, a feature worth
investigating, particularly given Python’s limitations. Python native
multi-threading is limited by its Global Interpreter Lock (GIL)9, so
achieving full parallelism often requires external libraries.

3.3 Metrics

Table 1 describes the metrics used for measurements during the
experiments. Energy consumption, power and execution time are the
keymetrics used to assess the energy efficiency of a ROS node, while
CPU and memory usage are metrics that help us to understand how
intensive is the ROS node in terms of computational processing, and
then reason about the measured energy efficiency.

All the measurements refer to the ROS node operating system
process. The energy consumption measurements take into account
the two main processing factors: CPU and memory. After the
energy consumption is measured, we calculate the power with
the following formula: P = EC

t
, where P is power, EC is energy

consumption, and t is the total ROS node execution time in seconds.
Power measurements help identify transient effects that energy
consumption (a cumulative metric) might mask. We give more
details of the measurement process and tools in Section 5.3.

4 Experiment planning

The experiment depends on six algorithms that cover the
three ROS nodes’ communication patterns (i.e., topics, services, and
actions), implemented in both languages, Python and C++. The

9 https://realpython.com/python-gil/

algorithms are based on ROS Tutorials Wiki pages10, which provide
concise examples. They are all independent from a physical robot,
seeking full controllability during the experiments.

4.1 ROS 2 algorithms

Table 2 depicts the six algorithms, with a short description,
details of their implementation, their dependencies, and their
complexities (i.e., logical lines of code–LLOC, and the algorithm
McCabe’s cyclomatic complexity–MCC), the last two, for a matter of
illustration of the compatibility between Python and C++ algorithm
implementations. For the implementation, we began with the
Python version of each algorithm, as it is the language we are most
familiar with. Subsequently, we used the ChatGPT tool11 (GPT-4o
version) to generate compatible C++ versions, which we manually
reviewed to ensure compatibility and correctness.

It is evident that the C++ implementations resulted in greater
LLOC, particularly for the action server and action client, where
the difference compared to Python nearly doubled, as highlighted
in red. It is important to note that exact equality is not possible
due to the inherent differences between the languages. Despite
variations in code size, all the algorithms exhibit similar complexity
(and exactly the same for service server, as highlighted in blue),
reflecting their overall similarity. The larger difference observed in
the size and complexity of action client implementation is due to
that node being folded into two services (one for sending the task and
another for retrieving the result) as well as topic communication (for
receiving task feedback). The size difference is compatible with the
other algorithms if we consider the sum of the difference between
the service client and subscriber, for example,. The complexity is
similar to the service client, and could not be reduced due to the
complexity of synchronizing the actions’ execution callbacks inC++.
Furthermore, all the algorithms lie in the complexity range 1–10
which classifies them as simple (Thomas, 2008).

The table presents the algorithms in pairs, as they execute in the
experiments (see Section 5.2). Algorithms 1 and 2 implement the
publisher and subscriber pair, which enable the publisher to exchange
different message types with the subscriber over a specific topic.
Algorithms 3 and 4 implement the service server and service client
pair, where the service client requests the service server to do a simple
calculation of adding two integer numbers and receives its response.
Algorithms 5 and 6 implement the action server and action client
pair, where the action client sends a task to the action server (i.e.,
to calculate a Fibonacci sequence) via a service goal, receives each
value of the sequence via a feedback topic, and at the end, receives
the notification of the task completeness via a result service.

4.2 Experiment variables

Table 3 summarizes the variables used in the experiments. It
categorizes the variables into three main groups: independent, static,
and dependent variables.

10 http://wiki.ros.org/ROS/Tutorials

11 https://chatgpt.com/

Frontiers in Robotics and AI 05 frontiersin.org155

https://doi.org/10.3389/frobt.2025.1548250
https://realpython.com/python-gil/
http://wiki.ros.org/ROS/Tutorials
https://chatgpt.com/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 1 Experiment metrics.

Metric Unit Description

Energy Consumption Joules (J) Amount of energy necessary to run the ROS node

Power Watts (W) Energy consumption rate when running the ROS node

Execution time Milliseconds (ms) Total time spent to run a ROS node

CPU usage Percentage (%) Average CPU percentage used during a ROS node execution

Memory usage Kilobytes (KB) Amount of memory used during a ROS node execution

TABLE 2 ROS2 algorithms subject of investigation with their dependencies and complexity measurements.

Node Description Main dependencies LLOC python LLOC C++ MCC python MCC C++

1.Publisher ROS node that continuously
sends messages to a topic

rclpy/rclcpp,

std_msgs

45 58 2.3 1.7

2.Subscriber ROS node that subscribes to
the topic and reads the
published messages

rclpy/rclcpp,

std_msgs

52 67 2.2 1.8

3.Service Server ROS node that provides a
service

rclpy/rclcpp,

example_interfaces

40 67 1.8 1.8

4.Service Client ROS node that consumes the
server service

rclpy/rclcpp,

example_interfaces

52 82 2.2 3.5

5.Action Server ROS node that receives a goal
and returns its lifetime state
feedback

rclpy/rclcpp,

action_tutorials_

interfaces

53 85 2 1.3

6.Action Client ROS node that sends the goal
to the server

rclpy/rclcpp,

action_tutorials_

interfaces

36 96 1.2 3.2

1. Independent variables: these are the variables that we control
during the experiment. They include the ROS algorithm pair,
which refers to the specific pairs of algorithms that implement
different communication patterns in ROS; themessage interval,
which defines the time gap between message exchanges; the
number of clients, which specifies how many subscribers
or clients are interacting with the server or publisher;
and the programming language used to implement the
ROS algorithms.

2. Static variables: these are the variables that do not
change during the experiments. They include the ROS
distribution in the Docker containers (where the ROS
algorithms run), and the environment setup, which
refers to the computer and Docker setup for the
experiments.

3. Dependent variables: these are the measurements during
experiment execution, which use the metrics previously
described in Table 1. They include CPU usage, memory usage,
and energy consumption. They reflect the system’s performance
in terms of resource utilization, providing insight into how
different algorithm pairs and configurations affect the overall
efficiency of the system.

Table 4 presents the values of the experimental variables. The
pairs of algorithms and the programming languages have been
discussed previously. The message interval ranges from 0.05 (20
messages per second) to 1.0 (1 message per second). These intervals
have been selected with real-world applications in mind, where
critical robotic tasks such as navigation and telemetry typically
require short intervals (e.g., the joystick package by default relies
on 20 messages per second12). In contrast, less time-sensitive
applications, such as monitoring systems, can tolerate moderate
rates (0.5–1.0 s). Longer intervals, which might be suitable for
logging applications, are not considered as extended message
intervals tend to lead to inexpressive resource usage. The number
of clients increases gradually from 1 to 3, a range that is realistic
for small to medium-sized robotic applications on GitHub13. This
range also allows us to get insights into how the algorithm’s
efficiency scales.

12 https://index.ros.org/p/joy/

13 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/blob/main/data-analysis/repos.csv

Frontiers in Robotics and AI 06 frontiersin.org156

https://doi.org/10.3389/frobt.2025.1548250
https://index.ros.org/p/joy/
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/blob/main/data-analysis/repos.csv
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/blob/main/data-analysis/repos.csv
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 3 Experiment variables.

Type Name Category Description

Independent variables

ROS Algorithm Pair Nominal The pairs of algorithms subject to this study, which implement the different ROS communication
patterns

Message Interval Ratio The interval between each message exchange

Number of Clients Ratio The number of clients/subscribers for each server/publisher

Programming Language Nominal The programming language used to implement the ROS algorithm pairs

Static variables
ROS distribution Nominal ROS distribution on the Docker containers used for running the experiments

Environment Setup Nominal The computer machine and Docker environment where the experiments are run

Dependent variables

CPU usage Ratio Average percentage of CPU usage during a experiment run

Memory usage Ratio Average percentage of memory usage during a experiment run

Energy consumption Ordinal Average energy consumption during a experiment run

TABLE 4 Independent variable values.

Variable name Values

ROS Algorithm Pair [publisher, subscriber], [service server, service client],
[action server, action client]

Message Interval (s) 0.05, 0.1, 0.2, 0.5, 1.0

Number of Clients 1, 2, 3

Programming Language Python, C++

The factors of this study are the four independent variables,
with two–three values each, where the number of treatments can be
calculated as following:

Number of Treatments =
k

∏
i=1

Li = L1 × L2 ×⋯× Lk

where:

L1 = 3 (ROSAlgorithmPair) , L2 = 5 (MessageInterval)

L3 = 3 (NumberofClients) , L4 = 2 (ProgrammingLanguage)

Thus, the total number of treatments is:

3× 5× 3× 2 = 90

The treatments are repeated multiple times (see Section 5.2)
to enable statistical inference from the measurements. We provide
additional details regarding the experiment execution in the
following section.

5 Experiment execution

In this section, we define hardware and software components
used in the experiments and detail how the algorithms are

orchestrated. For amatter of transparency and reuse, we also provide
a public replication package14.

5.1 Instrumentation

Figure 5 illustrates the deployment of the experimental artifacts
on a single desktop computer with the following specifications:
Linux Ubuntu 22.04 operating system, kernel version 6.2.0–33-
generic, 20 GB of RAM, and an Intel(R) Core(TM) i5-10210U CPU
at 1.60 GHz. Each algorithm was implemented as a ROS 2 node
using the ROS Humble distribution15, which has an end-of-life
(EOL) date in May 2027, and distributed as part of a single ROS 2
package with all the implementations. In the experiments, each ROS
node runs in a separate Docker (version 24.0.7) container. All the
procedures are inside the node’s callback functions, so ROS can spin
them, taking care of underlying threading16. Algorithm executions
are orchestrated by the ros2 run command, which speeds up
automation and guarantees the same underlying layers for every
execution.

To eliminate concurrency, all experiments were conducted on
a dedicated machine, ensuring no other end-user applications
were running. The operating system’s power-saving mode was
set to performance, ensuring unrestricted power usage. This
configuration was crucial to maintain a controlled environment,
providing consistent priority for each execution. Additionally, we
assigned a priority level of 0 (the highest as non-root) to the
processes corresponding to the algorithms under experimentation,
granting them priority access to the machine’s resources. Between
each experiment, a 30-s interval was observed to allow the

14 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg

15 https://docs.ros.org/en/humble/index.html

16 http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning

Frontiers in Robotics and AI 07 frontiersin.org157

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg
https://docs.ros.org/en/humble/index.html
http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 5
Adapted UML deployment diagram of experiment instrumentation.

machine to cool down, which by experimental observation is
enough waiting time for the CPU to return to its baseline
usage percentage.

5.2 Algorithms execution

The algorithms are implemented in pairs, as shown in Table 2,
consisting of a publisher/server and a subscriber/client. Each pair
executes repeatedly according to the defined message interval until
reaching a total run-time of 3 min. The total run-time has been
carefully chosen so the ROS nodes have time to capture transient
effects like initialization overhead, start-up energy spikes, and
system state changes, and to average out possible transitional
background processes that may insert noise to the measurements.
It also makes the experiment repetitions be completed in a couple
of days and enables enough data points for statistical analysis.
When multiple subscriber/clients are present, each performs the
same communication with the publisher/server in parallel. Each
round typically takes ≈4.5 minutes on average to complete, where
a complete round of the 90 treatments takes ≈405 minutes (or
6.75 h). To ensure statistical significance, each treatment is repeated
20 times, resulting in an overall execution time of ≈135 hours
(≈5.6 days).

• For nodes 1 and 2 (cf. Table 2), the publisher continuously sends
a preset message to the subscriber at the specified interval. To
avoid messages to be lost in high frequency, the subscriber is set
with a message querying of 10.

• For nodes 3 and 4, the service client establishes a connection
with the service server, uses its service (e.g., performing a
calculation with two integers), and receives the result. The
connection remains active throughout the experiment to focus
on evaluating communication exchanges.

• For nodes 5 and 6, the action client connects to the
action server once at the start of the experiment. It

continuously sends goals (e.g., calculating a Fibonacci
sequence), receives intermediary feedback, and obtains the final
sequence as the result.

5.3 Resource profiling

Weprofile energy consumption usingPowerJoular (Noureddine,
2022), which leverages Intel’s Running Average Power Limit Energy
Reporting (RAPL)17, measuring both, CPU utilization and energy
consumption. PowerJournal is an energy monitoring tool that
leverages the RAPL interface available in Intel processors tomeasure
power consumption. RAPL provides energy estimations at different
levels, such as the package (CPU socket) and the DRAM. These
estimations are derived from internal processor models rather than
direct physicalmeasurements but have been shown to be accurate for
comparative energy consumption analysis. PowerJournal interacts
with RAPL via the powercap framework in Linux, periodically
reading energy counters exposed through/sys/class/powercap. This
allows us to measure energy consumption at fine-grained intervals
with minimal overhead. For the experiments, PowerJoular is
configured to monitor the energy usage of each ROS node’s
processes individually, capturing data at a fixed rate of one
measurement per second (with no option to increase the frequency).
To gather more granular data on memory usage and CPU
utilization, we developed a customized Python script using the
psutil18 library. This script records measurements at a rate of 10
samples per second.

17 https://www.intel.com/content/www/us/en/developer/articles/

technical/software-security-guidance/advisory-guidance/running-

average-power-limit-energy-reporting.html

18 https://pypi.org/project/psutil/

Frontiers in Robotics and AI 08 frontiersin.org158

https://doi.org/10.3389/frobt.2025.1548250
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://pypi.org/project/psutil/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

5.4 Data analysis

We begin the data analysis by visually exploring the
distribution of power consumption across different combinations of
experimental factors: the programming languages Python and
C++, message exchange frequency, and the number of clients.
After examining the visual data representation, we proceed with a
rigorous statistical testing strategy to assess and validate the primary
interpretations. In the following section, we detail the statistical
testing approach applied to our data, which can be replicated via
replication package19.

5.4.1 Statistical tests
The process of statistical testing starts with an evaluation of key

assumptions necessary for parametric tests, such as the distribution
of the data and the equality of variances across groups. This
approach involves four phases, each dedicated to confirming these
assumptions and determining the most appropriate test.

5.4.1.1 Normality assessment
The first step is to verify whether the data follows a normal

distribution, as many parametric tests, including ANOVA (St and
Svante, 1989), rely on this assumption. To assess normality, we use
the Shapiro-Wilk test (Shapiro andWilk, 1965), which is particularly
effective for small sample sizes. If the data does not meet normality,
we apply Box-Cox transformations (George andCox, 1964) to adjust
it. Once normality is nearly achieved, we proceed with detecting and
removing outliers using the Interquartile Range (IQR) method. We
performed a post hoc analysis to assess the impact of outlier removal,
and observed that this step removes only extreme values (less than
5%), where a representative part of the core dataset is still available
for statistical tests.

5.4.1.2 Homogeneity of variance evaluation
Next, we examine the assumption of equal variances across

groups, another important condition for tests like ANOVA.
Ensuring that the variances within groups are similar allows for valid
comparisons. Levene’s test is applied here, as it is still consistent even
with violations of normality.

5.4.1.3 Parametric and non-parametric testing
When both normality and homogeneity of variance are satisfied,

we proceed with the one-way ANOVA to test for differences in
means across groups. If the analysis involves just two groups, the t-
test is applied instead. With the violation of any of the assumptions,
we rely on non-parametric alternatives, such as Welch’s ANOVA
(Bernard, 1951) and the Kruskal–Wallis test (Kruskal and Wallis,
1952), which do not require normality or equal variances.

5.4.1.4 Post-hoc analysis
If statistical test results suggest significant group differences,

post hoc analysis is conducted to pinpoint where the differences
occur. For parametric tests, we rely on Tukey’s Honestly Significant
Difference (HSD) test (Abdi and Williams, 2010), as it accounts

19 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/tree/main/

for multiple comparisons, reducing the risk of false positives.
In cases where non-parametric tests were used, we rely on
Dunn’s test (Olive Jean Dunn, 1961), which offers robustness in the
face of normality violations.

6 Results

In this section, we present the key results of the three studied
communication patterns and provide a concise discussion of the
observed data based on statistical tests. Finally, we compare the
measurements across the different communication patterns. All the
results presented in this section, have been carefully and manually
inspected, and the runs that result in unexpected measurements
have all been confirmed by re-execution.

6.1 Publisher and subscriber

We begin the analysis with the publisher and subscriber
data, first describing the mean/total values of each measurement
across different configurations. Next, we illustrate the primary
data distributions, followed by the presentation of the statistical
testing results.

6.1.1 Publisher
Table 5 summarizes the measurements of the publisher node

across the experiments. Across all metrics, C++ demonstrates
consistently superior efficiency than Python, particularly in
power/energy consumption and CPU utilization (both being
directly related). Python exhibits higher resource overhead,
especially at high message frequencies of 0.05 and 0.1 s. Memory
usage for both remains stable over different configurations, with
Python resulting at approximately 41,000 KB on average, nearly
double that of C++, which averages around 21,000 KB. The
little memory variation across different configurations for both
languages is comprehensible since the algorithms remain the same
and there is only message replication, with no special pre/post-
processing. Increasing the number of clients seems to raise resource
consumption for both implementations slightly, and the effect
appears to be less significant compared to variations caused by
message interval. Furthermore, at the highest frequency (0.05-
s message interval), the number of clients does not result in a
consistent increasing in power consumption for both languages,
despite the grow in CPU usage. However, it is not possible to
observer an important decrease either. We carefully investigated
the execution logs, and we could not identify any issues. Therefore,
we assume this is due to the overhead of such a high-frequency
message exchange.

Figure 6 illustrates the distribution of average power
consumption for the publisher across all repetitions. All figures
show C++ with consistently lower power consumption compared
to Python. It is also visually evident that shorter message intervals
are associated with higher power consumption. Additionally, in
most cases, power consumption tends to increase slightly with the
number of clients. An exception to this trend is observed at 0.05-s
message intervals (Figure 6A, where Python exhibits an anomalous
behavior previously highlighted in Table 5, with a slight reduction

Frontiers in Robotics and AI 09 frontiersin.org159

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/tree/main/
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/tree/main/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 5 Results of publisherwith different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.59 21,009 48.82 0.27

0.1 0.32 20,837 25.45 0.14

0.25 0.13 20,908 11.1 0.06

0.5 0.07 20,862 6.19 0.03

1.0 0.05 20,856 4.05 0.02

2

0.05 0.63 21,067 52.03 0.29

0.1 0.33 21,041 26.48 0.15

0.2 0.15 21,023 12.33 0.07

0.5 0.08 20,991 6.95 0.04

1.0 0.06 21,003 4.52 0.03

3

0.05 0.68 21,086 54.53 0.3

0.1 0.37 20,018 29.11 0.16

0.2 0.16 21,100 13.58 0.08

0.5 0.09 21,004 7.74 0.04

1.0 0.06 20,985 4.96 0.03

Python

1

0.05 2.1 41,033 127.83 0.71

0.1 1.02 41,093 61.20 0.34

0.2 0.45 41,026 37.5 0.21

0.5 0.24 40,993 19.64 0.11

1.0 0.13 40,987 11.17 0.06

2

0.05 2.25 41,174 118.80 0.66

0.1 1.15 41,139 70.21 0.39

0.2 0.49 41,090 39.09 0.22

0.5 0.26 41,080 21.19 0.12

1.0 0.15 41,083 11.79 0.07

3

0.05 2.31 41,278 122.42 0.68

0.1 1.28 37,131 79.23 0.44

0.2 0.53 41,139 41.5 0.23

0.5 0.28 41,158 22.64 0.13

1.0 0.16 41,164 12.66 0.07

Frontiers in Robotics and AI 10 frontiersin.org160

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 6
Power distribution for the publisher node across 20 executions, varying the number of clients and message interval. (A) Message interval: 0.05 s, (B)
Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

of power consumption with two clients, and then an increase with
three clients (which mean value is close to the one with one client).

6.1.1.1 Statistical tests
Shapiro-Wilk tests reveal a significant deviation from normality

in the data when grouped by a single independent variable.
For instance, in the case of the variable language, the test
statistic of 0.7147 with a p-value of 3.576× 10−11 falls far below
common significance thresholds (e.g., 0.05), strongly rejecting
the null hypothesis that the data follows a normal distribution.
This pattern is consistent across other independent variables. This
outcome aligns with the boxplots in Figure 6, which illustrate a
substantial difference between Python and C++ languages. For
instance, as shown in Figure 7A, when the data is grouped
by a specific message interval of 0.2 s, two distinct clusters
of measurements emerge. Figure 7B further reveals that these
clusters correspond to groups of measurements based on different
programming languages and the number of clients. This is a
pattern among groups of other independent variables (what can be
inspected in the replication package), where the clusters correspond
to the programming languages and, when isolated, appear to follow
a normal distribution. These observations strongly suggest that
programming language directly influences energy efficiency. This
is confirmed by Kruskal–Wallis test on groups by language (non-
parametric test since data is not normally distributed), which results
in an high H value (205.24) and a p-value (1.49× 10−46) very distant

from the significance threshold. Therefore, for comparative analysis
assuming normal distribution, it is essential to group other variables
with the programming language.

Considering the programming language as a determining factor,
we conduct statistical tests involving message intervals and the
number of clients, filtering the data by language (i.e., statistical
tests are run for each language separately). We start by testing
the effect of message intervals with Kruskal–Wallis test since not
every group is normally distributed. The test reveals a significant
difference among the groups for both Python (p = 6.53× 10−60)
and C++ (p = 1.9× 10−60). Table 6 summarizes the results of
Dunn’s post hoc tests for the C++ language across the different
message interval groups, with measurements for all numbers
of clients. A notable observation is that comparisons between
message intervals consistently display increasing differences
between groups as the message interval grows. This pattern is also
observed for the Python language and for both languages when
operating with only one client (which helps avoid bias due to the
number of clients). This confirms that the power consumption
of the publisher node tends to be heavily influenced by the
message interval.

Kruskal–Wallis tests on group by programming language and
number of clients revealed no significant differences between the
groups for Python (p = 0.36) and C++ (p = 0.13). However, when
additionally grouping the data by message intervals, most groups
exhibited statistically significant differences.The exceptionswere the

Frontiers in Robotics and AI 11 frontiersin.org161

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 7
Power distribution for the publisher node across 20 executions, varying the number of clients at 0.2-s message interval. (A) Overall distribution at 0.2 s
interval, (B) Distribution at 0.2 s interval by number of clients.

TABLE 6 Dunn’s post hoc test results for language C++ and different message intervals, with cells in gray representing no significant statistical
difference.

0.05 0.10 0.2 0.50 1.00

0.05 1.000000× 100 1.393× 10−3 3.484× 10−13 3.487× 10−29 2.570× 10−50

0.10 1.393× 10−3 1.000000× 100 1.636× 10−3 2.820× 10−13 2.067× 10−28

0.2 3.484× 10−13 1.636× 10−3 1.000000× 100 1.246× 10−3 6.858× 10−13

0.50 3.487× 10−29 2.820× 10−13 1.246× 10−3 1.000000× 100 2.585× 10−3

1.00 2.570× 10−50 2.067× 10−28 6.858× 10−13 2.585× 10−3 1.000000× 100

groups corresponding to the Python and C++ languages at a 0.05-s
message interval, suggesting an overhead of the publisher node.

6.1.2 Subscriber
Table 7 presents the performance results for a single ROS-based

subscriber node across the experiments. Similar to the findings
from the publisher node analysis, the Python implementation
demonstrates higher CPU and memory usage compared to C++,
along with greater energy and power consumption. For both
languages, resource usage generally decreases with increasing
message frequency, although not linearly. Exceptions are also
observed at frequencies of 0.05 and 0.1 s, which exhibit an unstable
trend consistent with the publisher results. Unlike the publisher,
increasing the number of clients does not significantly impact
resource consumption, which is comprehensible since there should
be no additional work to be processed as a subscriber. However,
especially for C++, we observe a slightly increasing pattern as
the number of clients increases, which may be the result of
extra synchronization work. Memory usage remains stable across
all scenarios and aligns closely with the measurements for the
publisher node.

Figure 8 depicts the distribution of power consumption means
for a single subscriber across 20 executions. The instability
highlighted in Table 7 is evident in Figures 8A, B. In Figures 8C, E,

we observe a pattern for C++ where power consumption increases
with the addition of a second client but stabilizes with a third
subscriber. However, the difference appears minor, supporting
the assumption that this is caused by overhead in the publisher
node managing multiple subscribers. Our analysis of the code,
including the rclcpp library, revealed no explicit synchronization
mechanisms in C++ publisher handling multiple subscribers. It
remains possible that this overhead originates from underlying
layers, such as the DDS middleware. For instance, DDS might
require additional internal structures and resources to manage the
second subscriber, resulting in a one-time setup cost with no further
increase when adding a third. However, further investigating this
potential behavior falls outside the scope of this paper.

6.1.2.1 Statistical tests
The statistical tests reveal that the data distributions closely

follow the ones of the publisher; however, it tends to be less normally
distributed which leads to some different statistical tests across
groups of independent variables, as discussed in Section 5.4.1.

For programming languages, the Kruskal–Wallis test results
in an H statistic of 205.42 and a p-value of 1.37× 10−46,
indicating a significant difference between Python and C++
measurements. This finding aligns with the observations presented
in Table 7 and Figure 8. A similar pattern is evident across

Frontiers in Robotics and AI 12 frontiersin.org162

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 7 Comparative results of one subscriber node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.57 21,291 47.4 0.26

0.1 0.31 21,202 24.89 0.14

0.2 0.13 21,234 10.96 0.06

0.5 0.07 21,183 6.16 0.03

1.0 0.05 21,144 3.9 0.02

2

0.05 0.6 21,380 49.65 0.28

0.1 0.33 21,355 26.09 0.15

0.2 0.14 21,349 11.87 0.07

0.5 0.08 21,356 6.59 0.04

1.0 0.05 21,432 4.45 0.02

3

0.05 0.66 21,475 53.28 0.3

0.1 0.36 21,438 28.28 0.16

0.2 0.15 21,388 12.81 0.07

0.5 0.09 21,401 7.25 0.04

1.0 0.06 21,349 4.71 0.03

Python

1

0.05 2.79 41,063 160.21 0.89

0.1 1.43 41,053 90.35 0.5

0.2 0.6 41,023 50.08 0.28

0.5 0.31 40,889 25.39 0.14

1.0 0.17 40,975 14.51 0.08

2

0.05 3.08 41,120 147.60 0.82

0.1 1.53 41,107 92.66 0.5

0.2 0.61 40,977 48.55 0.27

0.5 0.32 41,014 26.25 0.15

1.0 0.18 41,127 14.51 0.08

3

0.05 3.06 41,126 154.82 0.86

0.1 1.7 39,193 93.21 0.52

0.2 0.64 41,134 49.97 0.28

0.5 0.34 41,148 27.19 0.15

1.0 0.19 41,080 14.78 0.08

Frontiers in Robotics and AI 13 frontiersin.org163

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 8
Power consumption distribution for one subscriber node across 20 executions, while varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

groups of programming language and message intervals, where
Kruskal–Wallis test results in anH statistic of 286.68 and a p-value of
8.09× 10−61 for Python, and in an H statistic of 284.88 and a p-value
of 1.97× 10−60 for C++. The statistical difference is also observed
when grouping programming language and different number of
clients. For Python language, one-way ANOVA test results in a p =
2.52× 10−8, while for C++ language it results in p = 0.005.

Upon further analysis of message intervals, the one-way
ANOVA reveals a statistically significant difference only for the
Python language at the 0.05-s message interval (p = 2.62× 10−8).
However, this finding may be inconclusive, given the anomalies
previously observed in the results table and Figure 8A. For the
other intervals, Kruskal–Wallis tests show no significant differences
among groups, with p = 0.54 for the 0.1-s message interval and p =
0.38 for the 1.0-s interval. Similarly, one-way ANOVA test across
0.2-s and 1.0-s message intervals indicates no statistical difference
among groups, with p = 0.21 for both message intervals.

Distinctly from Python, C++ subscriber nodes exhibit statistical
differences among groups for all message intervals except the 0.1-
s interval. Interestingly, the 0.1-s interval also shows the highest
variation with two clients, as seen in Figure 8B. We have repeated
this experiment to guarantee that this was not added by any noise,
and the result is consistent among both executions. Post-hoc tests
revealed that, in most cases where there is a statistical difference, it
occurs between groups with one and three clients, where gradual
increases in the number of clients do not result in significant

statistical differences (i.e., from one to 2, and from two to three
clients). The only message interval showing statistical differences
across all groups is 0.2 s. Analyzing Figure 8C, this interval visually
demonstrates the least variation in measurements, which likely
influences the statistical outcomes.

The results and statistical tests confirm that programming
language and message interval significantly impact the energy
efficiency of subscriber nodes. In contrast, the number of clients
shows only a slight impact on energy consumption, which is
expected since the measurements refer to a single subscriber node,
and the amount of messages received by that node should be
independent of the number of clients.

6.2 Service

In this section, we present the results for service server and
service client across the experiments with different independent
variable combinations.

6.2.1 Service server
Table 8 presents the mean values of service server measurements

across the different combinations of independent variables. Unlike
the publisher node in the previous results, for all the combinations,
CPU usage and energy measurements increase as the number of
clients grows. This behavior can be attributed to the nature of the

Frontiers in Robotics and AI 14 frontiersin.org164

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

nodes: the publisher node relies heavily on underlying layers, such
as rmw, for message replication, with minimal computation in the
node itself. In contrast, the service server node involves additional
calculations, which may contribute to increased processing and,
consequently, higher power consumption. Additionally, as observed
in the previous communication pattern, memory usage remains
stable and is approximately doubled for the Python implementation
compared to the C++ implementation. At highmessage frequencies,
the mean power consumption for C++ is less than one-third of
that of Python, a difference that is also reflected in the CPU usage
measurements.

Figure 8 depicts the distribution of subscriber power
measurements. The graphs show that the programming language
and message interval are key factors influencing the results. The
number of clients seems to affect the two languages differently.
For Python, the measurements are less predictable at high message
frequencies (0.05-s and 0.1-s intervals) while we observe a clear
trend for other message intervals, with power consumption
increasing as the number of clients grows. In contrast, for C++,
power consumption rises between one and two clients but remains
relatively stable between two and three clients, suggesting a one-time
effect once multiple clients are involved.

6.2.1.1 Statistical tests
The statistical tests confirm the main findings observed in

the results table and graphs. The Kruskal–Wallis test for different
message intervals shows a highly significant difference for the C++
node, with p = 3.49× 10−55, and for the Python node, with p =
1.98× 10−58. These results indicate a significant difference between
groups. For both languages, all pairwise comparisons in the post
hoc Dunn’s test reveal significant statistical differences, with each
group differing from the others. On the one hand, when grouping
by the number of clients for Python, the one-way ANOVA fails
to reject the null hypothesis (p = 0.19), suggesting no statistical
difference between the groups. On the other hand, for C++, the
Kruskal–Wallis test shows a statistically significant difference when
grouping by the number of clients (p = 2.32). For C++ groups,
however, post hoc Dunn’s test indicates no statistically significant
difference between group 2 and group 3, only between group
1 and the others. The observation about C++ groups is also
evident in Figure 9, confirming the one-time effect when adding
multiple clients. That figure also supports the assumption that
Python’s statistical unpredictability may be directly linked to its
high variation in measurements. However, as a future work, it
is important to further investigate the effect of a higher number
of clients.

6.2.2 Service client
Table 9 presents the mean values of service client measurements

across various combinations of independent variables. An
unexpected trend is observed for both languages, where power
consumption and CPU usage decrease as the number of clients
increases. This effect is more pronounced at higher message
frequencies, with both measurements becoming more stable or
showing no significant differences between the 0.2-s and 1.0-s
message intervals. Notably, Python likely for publisher/subscriber
pattern exhibits a larger variation at higher frequencies, suggesting

that it tends to be less stable when handling demanding robotic
communication.

Figure 10 shows the distribution of mean power consumption
across the 20 executions for each combination of independent
factors. This confirms the observation from Table 9, where Python
exhibits a noticeable reduction in power consumption as the number
of clients increases. In contrast, for C++ service clients, it is only
visually evident that there is an increase in the power consumption
from one to two clients, while is observed a reduction when
increasing the number of clients from two to three. Additionally,
Python measurements display a significant number of outlier data
points, whereas C++ measurements do not show this issue. We
conducted a careful investigation into the causes of the Python
node’s unstable behavior but found no issues in the execution
logs. We repeated the experiment without the Experiment-Runner
orchestrator to avoid any possible noise, which did not change
the results. Additionally, we experimented with an alternative
Quality of Service (QoS) strategy, inspired by a recently reported
issue on GitHub20. However, this adjustment did not affect the
distribution of themeasurements either. Based on these findings, we
assume that the nodes functioned correctly and that the instability
originates from a Python-related issue, which must motivate further
investigation as part of future work.

6.2.2.1 Statistical tests
Kruskal–Wallis test reveals a significant statistical difference

between groups of message intervals for both languages (p =
2.89× 10−53 for Python and p = 1.44× 10−57 for C++). Post-hoc
Dunn’s test confirms that all groups are statistically different for
both languages. For Python, when grouped by the number of
clients, the Kruskal–Wallis test indicates a significant difference
among groups (p = 0.015). However, the post hoc Dunn’s test shows
that the statistical difference is only evident between group 1
and the others, with no significant difference between groups
2 and 3. Similarly, for C++, groups based on the number of
clients also exhibit significant differences (Kruskal–Wallis test, p =
0.00024). However, the pairwise post hoc test (Tukey HSD) suggests
that the difference between groups 1 and 3 is not statistically
significant. This observation aligns with the trends depicted in
Figure 10.

6.3 Actions

In this section, we present the results for the action server and
action client. As for the other communication pattern pairs, we
provide related plots and perform statistical tests to validate our
visual observations from the data representations.

6.3.1 Action server
Table 10 summarizes the mean measurements of the action

server node across various message frequencies and numbers of
clients over 20 executions. The key observations are as follows: CPU
usage, and consequently CPU power, are consistently influenced
by message frequency, with notable increases at high frequencies

20 https://github.com/ros2/rmw/issues/372

Frontiers in Robotics and AI 15 frontiersin.org165

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/ros2/rmw/issues/372
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 8 Comparative results on service server node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.52 19,768 41.5 0.23

0.1 0.29 20,696 23.11 0.13

0.2 0.13 19,722 11.13 0.06

0.5 0.09 20,856 7.16 0.04

1.0 0.06 19,698 4.4 0.02

2

0.05 0.94 19,915 70.8 0.4

0.1 0.5 20,939 38.1 0.21

0.2 0.22 20,825 17.52 0.1

0.5 0.12 20,793 10.04 0.06

1.0 0.08 20,810 6.25 0.03

3

0.05 1.0 19,657 72.83 0.41

0.1 0.53 20,965 40.61 0.23

0.2 0.24 21,016 18.84 0.11

0.5 0.14 20,959 10.95 0.06

1.0 0.09 20,914 6.5 0.04

Python

1

0.05 2.43 41,041 156.92 0.88

0.1 1.26 39,008 90.76 0.51

0.2 0.55 41,063 40.73 0.23

0.5 0.29 40,984 22.78 0.13

1.0 0.17 41,053 13.41 0.08

2

0.05 2.61 39,111 159.29 0.89

0.1 1.39 41,049 97.23 0.54

0.2 0.6 39,117 44.68 0.25

0.5 0.32 41,156 25.04 0.14

1.0 0.19 41,117 13.99 0.08

3

0.05 2.91 39,245 171.27 0.96

0.1 1.52 41,215 100.04 0.56

0.2 0.66 41,137 49.11 0.27

0.5 0.36 41,176 27.58 0.15

1.0 0.21 41,201 15.9 0.09

Frontiers in Robotics and AI 16 frontiersin.org166

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 9
Power consumption distribution for the service server node across 20 executions, varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

corresponding to 0.05-s and 0.1-s intervals. Additionally, memory
usage follows a pattern similar to that observed in previous
server nodes. Interestingly, at a 0.05-s interval, power consumption
decreases when the number of clients increases from two to three,
despite CPU usage not exhibiting a corresponding decrease. Given
the very low CPU power measurements, this anomaly could be
attributed to external noise.

Figure 11 depicts the power consumption distribution for the
action server node across 20 executions, varying the number
of clients and message interval. At higher frequencies, it is
visually evident that both the programming language and message
frequency remain key determinants of power consumption. This
trend is still noticeable at a 1.0-s message interval, although the
difference between the two languages becomes less pronounced,
varying by less than 0.1 W in executions with three clients.
Unlike other communication server nodes, theC++ implementation
appears to be more affected. However, this is inconclusive since
it may be a visual misinterpretation, as the overall power
consumption for each execution is lower compared to other
communication patterns. The most plausible explanation is that,
in other communication patterns, the client disconnects and
reconnects to the server for every message exchange, whereas
in action communication, only a new goal is sent, and feedback
is received. It is important to note that this behavior is not an
implementation issue but rather an inherent characteristic of this
communication pattern.

6.3.1.1 Statistical tests
The statistical tests indicate that, as for other communication

patterns, both programming languages and message frequencies
result in statistically significant differences in power consumption.
The Kruskal–Wallis test results in p = 1.70× 10−44 for Python and
p = 1.35× 10−54 for C++. However, varying the number of clients
shows a slight statistical difference among Python groups, which
is explained by Dunn’s test results, where groups 1 and 2 do not
indicate a statistical difference, and the difference for group 3 is
less expressive than for the communication patterns. In contrast,
for C++, there is a statistically significant difference among all
the groups, except at 0.2-s message interval. Further analysis,
additionally grouping the data by message frequency reveals that
all frequency measurements are statistically different among C++
groups, whereas none of the Python frequency measurements
show statistical significance. This indicates that Python either is
not holding the concurrent communication properly or it does it
precisely well that measurements are not impacted with multi-client
executions. The analysis of action client figures (Figure 12) gives
details of the possible reasons for such behavior, which better aligns
with the previous hypothesis.

6.3.2 Action client
Table 11 presents the results of a single action client node

operating at various frequencies and with different numbers
of clients across 20 executions. A visual inspection reveals no
observable influence of the number of clients on power consumption

Frontiers in Robotics and AI 17 frontiersin.org167

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 9 Comparative results of one service client node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.47 19,724 37.68 0.21

0.1 0.26 20,638 20.63 0.12

0.2 0.12 19,660 9.81 0.05

0.5 0.07 20,767 5.96 0.03

1.0 0.05 19,685 4.85 0.02

2

0.05 0.61 19,781 45.96 0.26

0.1 0.33 20,933 25.26 0.14

0.2 0.15 20,888 12.19 0.07

0.5 0.09 20,805 7.04 0.04

1.0 0.06 20,805 4.64 0.03

3

0.05 0.53 20,698 39.28 0.22

0.1 0.28 20,934 22.05 0.12

0.2 0.14 20,882 11.21 0.06

0.5 0.08 20,883 7.26 0.04

1.0 0.05 20,902 5.13 0.03

Python

1

0.05 3.07 40,005 221.04 1.13

0.1 1.74 39,038 124.8 0.7

0.2 0.67 39,003 51.4 0.29

0.5 0.37 40,033 28.9 0.16

1.0 0.2 40,063 15.73 0.09

2

0.05 2.86 39,397 175.16 0.98

0.1 1.56 41,154 108.82 0.61

0.2 0.65 39,129 55.62 0.28

0.5 0.34 41,088 26.24 0.15

1.0 0.18 40,168 13.9 0.08

3

0.05 2.67 39,734 157.21 0.88

0.1 1.32 41,424 87.01 0.49

0.2 0.54 41,238 39.41 0.22

0.5 0.3 41,208 22.67 0.13

1.0 0.16 40,188 12.72 0.07

Frontiers in Robotics and AI 18 frontiersin.org168

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 10
Power consumption distribution for one service client node across 20 executions, while varying the number of clients and message interval. (A)
Message interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

for C++. However, in Python, a consistent decrease in power
consumption is observed as the number of clients increases, which
differs from action server, and even the CPU usage consistently
decreases with more clients. Another interesting and related
observation is at 1.0-s message interval, when Python language
seems to consume less energy than C++, except with runs
with a single client. This consistent reduction in Python’s power
consumption suggests that all measurements with one client require
more power compared to those with two or three clients. This
behavior is likely linked to multi-client architectural triggering,
such as synchronization or multi-threading mechanisms, which are
potentially activated in such scenarios.

Figure 12 illustrates the distribution of mean power
consumption for a single action client node over 20 executions,
varying the number of clients and the message interval. The
observations from Table 11 are corroborated by the sub-figures.
Notably, disruptive measurements are evident for Python nodes
when operating with two or three clients, as compared to a single
client. Additionally, the power consumption gap between Python
and C++ narrows as the message interval increases. At a 1.0-s
message interval, Python measurements seem to be compatible
with C++ ones.

In a practical context, where an action client might send
navigation or manipulation tasks to a robot, having more than one
client is generally unnecessary, except for the need for feedback
messages by secondary nodes. Therefore, this configuration might

be neglected, which could cause the unexpected behavior observed.
Since the results focus on a single client (with monitoring limited to
the last client), we re-executed the Python experiments to monitor
all clients simultaneously.This approach aimed to verify whether any
client exhibited anomalous behavior, which was not identified over
a thorough log analysis.

6.3.2.1 Statistical tests
The statistical tests confirm that programming language and

message frequency are determinant factors, except for C++, where
0.05- and 0.1-s message intervals do not result in statistically
significant differences in power measurements. For C++, different
numbers of clients result in statistical differences on the measured
power consumption, except between groups 2 and 3. For Python,
the number of clients also leads to statistically different power
measurements among all the groups. An additional Kruskal–Wallis
between the two languages at 1.0-s interval indicates no statistical
difference (p = 0.92) between groups, confirming the visual
assumption when analyzing Figure 12E, that both languages result
in closely the same power consumption at low message frequency.

6.4 Comparison of communication pattern
measurements

Since we experiment all the studied communication patterns
with a controlled and homogeneous scenario, in this section,

Frontiers in Robotics and AI 19 frontiersin.org169

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 10 Comparative results on action server node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.32 21,680 14.85 0.08

0.1 0.33 21,102 15.52 0.09

0.2 0.13 21,152 7.41 0.04

0.5 0.09 21,058 5.31 0.03

1.0 0.07 20,084 3.79 0.02

2

0.05 0.37 21,884 16.93 0.09

0.1 0.36 21,590 17.16 0.1

0.2 0.19 20,694 8.84 0.05

0.5 0.12 20,582 5.26 0.03

1.0 0.08 19,610 3.68 0.02

3

0.05 0.43 21,696 19.59 0.11

0.1 0.41 21,408 19.14 0.11

0.2 0.31 18,826 10.03 0.06

0.5 0.17 19,620 5.23 0.03

1.0 0.11 18,630 3.49 0.02

Python

1

0.05 2.03 42,888 85.47 0.48

0.1 1.0 40,891 45.9 0.26

0.2 0.44 42,060 22.76 0.13

0.5 0.25 39,720 13.96 0.08

1.0 0.16 39,654 8.14 0.05

2

0.05 2.15 42,872 86.08 0.48

0.1 1.1 42,907 47.56 0.26

0.2 0.47 42,104 23.84 0.13

0.5 0.26 42,060 14.05 0.08

1.0 0.16 41,865 8.43 0.05

3

0.05 2.21 40,737 83.3 0.46

0.1 1.13 42,915 48.09 0.27

0.2 0.48 42,006 23.86 0.13

0.5 0.27 42,030 13.97 0.08

1.0 0.18 41,694 8.47 0.05

Frontiers in Robotics and AI 20 frontiersin.org170

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 11
Power consumption distribution for the action server node across 20 executions, varying the number of clients and message interval. (A) Message
interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

we compare their overall measurements, dividing them into
publisher/server and subscriber/client.

6.4.1 Publisher/server measurements
Figure 13 illustrates the distribution of power consumption across

all combinations of independent variables (configurations) for the
publisher/server nodesover 20 executions.Theplot reveals a consistent
mean CPU power consumption across the different nodes, although
there is an observable distinction across distribution variations. The
action server presents the least variation in measurements, while the
service server shows the greatest fluctuation.

6.4.1.1 Statistical tests
The Shapiro-Wilk test of three groups (publisher, service server,

and action server) indicates that their data are significantly non-
normally distributed. Following this, the Kruskal–Wallis test was
performed to compare the groups, which resulted in a highly
significant result (H statistic = 227.22, p = 4.56× 10−50), indicating
substantial differences between the groups. Further analysis with
Dunn’s post hoc test revealed that all pairwise group comparisons
were statistically significant, with very small p-values. This confirms
that despite the consistent mean values observed in Figure 13, the
power consumption among the three nodes is significantly different.

6.4.2 Subscriber/client measurements
Figure 14 illustrates the distribution of power consumption

across all combinations of independent variables (configurations)
for subscriber/client nodes over the 20 executions. The graphs
show a tighter distribution of values than those for publisher/server
nodes, which also seem to result in closer mean values. Among
the plots, the service client and action client show the most
similar distributions, while the subscriber displays a slightly
different pattern.

6.4.2.1 Statisitcal tests
The Shapiro-Wilk test results indicate that the data for

all three groups is likely not normally distributed. Therefore,
the Kruskal–Wallis test was performed to assess differences
among the groups. The test reveals a significant result (H
statistic = 80.48, p = 3.34× 10−18), indicating differences
between the groups. Post-hoc analysis using Dunn’s test
reveals significant pairwise differences among all the groups,
with action client showing the most significant differences
compared to the others. This confirms our observation
about the action client distribution, although rejecting
the hypothesis of power distributions being close, despite
their consistent measurement means.

Frontiers in Robotics and AI 21 frontiersin.org171

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 12
Power consumption distribution for one action client node across 20 executions, while varying the number of clients and message interval. (A)
Message interval: 0.05 s, (B) Message interval: 0.1 s, (C) Message interval: 0.2 s, (D) Message interval: 0.5 s, (E) Message interval: 1.0 s.

7 Discussion

In this section, we summarize and discuss further details of the
experiment results, answer the research questions, and ponder about
the impact of the findings of our investigation.

7.1 Summary of main findings

Here, we summarize the findings discussed as topics, which
makes it easier for the reader to navigate through them.

• C++ is the most efficient programming language: C++
consistently outperformed Python in terms of energy efficiency
and resource usage across all ROS two communication patterns.
This was already expected since a previous study that bases
this research (Pereira et al., 2021) has already revealed C
and C++ superiority regarding energy efficiency. However,
in the case of ROS, we expected a shrank difference since both
language libraries (rclpy and rclcpp) share the same underlying
programming and communication layers.

• Message interval is a determinant factor: Higher message
frequencies led to increased power consumption in both C++
andPython, highlighting the importance of optimizingmessage
intervals. The highest message rates experimented, i.e., 0.05-
s and 0.1-s message intervals, recurrently led to overhead,

indicating the it is important to limit the message exchange
to higher rates, starting from four messages per second (0.2-s
message interval).

• Thenumber of clients triggers unexpected behaviors: Despite being
less impactful, the number of clients is still a determining factor
that must be considered in the design phase of ROS software
systems. It also revealed potential architectural issues, such as
for Python action client nodes, that result in unexpected low
power measurements when scaling from one to two or three
clients, which foster further investigation.

• Python’s scalability is unpredictable: Python exhibited less
predictable and often unstable behavior as the number of
clients increased, particularly at high frequencies. This suggests
potential limitations in Python’s ability to handle demanding
robotic communication scenarios efficiently.

• Servers are directly impacted by different independent variables:
The number of clients significantly impacted power
consumption on the server-side nodes, but the specific effects
varied depending on the communication pattern.

• Clients are less susceptible to the number of clients: It is expected
that the number of clients do not affect clients directly since
it do not result in extra workload. However, some task from
the underlying architecture or the server, possibly related to
synchronization, seems to affect such nodes as well.

• Experiments revealed potential issues: The research suggests that
the dependency of programming language (C++ or Python) on

Frontiers in Robotics and AI 22 frontiersin.org172

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

TABLE 11 Comparative results of one action client node with different frequencies and number of clients over 20 executions.

Language # Clients Msg. Interval (s) Avg. CPU
utilization (%)

Avg. Memory
utilization (KB)

Total CPU
energy (J)

CPU power (W)

C++

1

0.05 0.59 2073 21.28 0.15

0.1 0.45 2,117 21.97 0.12

0.2 0.25 1984 14.22 0.07

0.5 0.19 1946 10.52 0.05

1.0 0.16 1864 9.01 0.05

2

0.05 0.35 2,175 16.32 0.09

0.1 0.36 2,192 17.72 0.1

0.2 0.26 1983 14.53 0.08

0.5 4.06 1932 9.00 0.05

1.0 0.15 1965 8.34 0.04

3

0.05 0.35 2,214 16.23 0.09

0.1 0.33 2,152 15.83 0.09

0.2 2.76 2073 12.60 0.07

0.5 0.22 1975 11.37 0.06

1.0 0.16 1837 8.56 0.04

Python

1

0.05 6.36 4,129 273.79 1.48

0.1 2.08 3,817 94.33 0.55

0.2 0.71 4,140 38.59 0.2

0.5 0.34 3,519 19.3 0.1

1.0 0.19 3,496 10.46 0.06

2

0.05 5.59 4,140 225.14 1.22

0.1 1.99 4,138 87.09 0.47

0.2 0.58 4,142 31.23 0.17

0.5 0.28 3,870 15.56 0.08

1.0 0.15 3,693 7.96 0.04

3

0.05 5.15 4,138 174.65 1.03

0.1 1.59 4,138 63.47 0.36

0.2 0.56 3,925 29.19 0.15

0.5 0.29 3,688 15.77 0.08

1.0 0.2 3,668 9.06 0.04

Frontiers in Robotics and AI 23 frontiersin.org173

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

FIGURE 13
Power consumption distribution over all the combinations of independent variables for publisher/server nodes across the 20 executions.

FIGURE 14
Power consumption distribution over all the combinations of independent variables for subscriber/client nodes across the 20 executions.

the underlying ROS two architecture (DDS middleware, client
libraries) plays a crucial role in energy efficiency. For instance,
unexpectedly, power consumption decreased as the number of
clients increased on the client-side for services and actions. We
could not identify any anomaly in the experiment executions
after a careful investigation of logs and measurement data. A
quick investigation on rclpy and rclcpp libraries does not reveal
substantial evidence of such a behavior either.

7.2 Research question answers

The research questions are repeated here, avoid seeking fro them
back in the document while reading their answers.

RQ1: How is the energy efficiency of each ROS
communication pattern?

The statistical tests described in Section 6.4 demonstrate that
the measurement data for the three communication patterns differ
significantly, highlighting that each pattern has a distinct impact on
energy efficiency. However, the mean values of the measurement
distributions for the publisher/server and subscriber/clients patterns
(Figures 13, 14, respectively) are closely aligned. Additionally,

the violin plots in these figures reveal that most measurements,
particularly for the subscriber/clients, are concentrated within a
similar range. Given these findings, we recommend a careful design
study when selecting a communication pattern. Nonetheless, we
acknowledge that the patterns can likely be interchanged without
significant consequences for energy efficiency, especially in the case
of publisher/subscriber and service patterns.

RQ2: How do the C++ and Python implementations affect
resource usage and energy consumption when handling
different communication patterns among ROS nodes?

The programming language is a determinant factor, where
Python leads to higher power consumption through all the
experiment results. This is an expected behavior based on
recent research with programming languages for data structure
algorithms (Pereira et al., 2021); however, the difference in
power consumption among the two studied languages is
surprising given the amount of underlying architectural layers
shared by both language libraries. After the experiments,
we strongly recommend the use of C++ for ROS two
implementations, which can benefit scalability, reliability
(due to a more predictable behavior), and energy/resource
usage efficiency.

Frontiers in Robotics and AI 24 frontiersin.org174

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

RQ3: How does language efficiency scale over different
frequencies of communication and number of clients?

We observe that message frequency is a strong determinant
factor of energy efficiency that should be carefully considered when
designing ROS systems. High message frequencies demonstrate
to lead to resource overhead, triggering unstable behaviors,
particularly in Python nodes when more than one client connects
with the servers, which significantly compromises scalability.
While the number of clients is a less critical factor compared to
the programming language and message interval, it remains an
important consideration. It impacts not only energy efficiency but
also introduces unexpected behaviors, such as those observed with
actions.These behaviorsmay indicate poor design choices, especially
since multi-client setups are often impractical in most scenarios
where such patterns are applied. Therefore, we recommend a careful
design when considering a multi-client ROS system.

7.3 Impact of the findings

The findings of this research have significant implications for
the development and operation of real-world robotic systems using
ROS. In the sequence, we discuss some of the key implications.
As an excerpt of real-world robotic projects, we analyzed a list of
946 carefully curated ROS two repositories on GitHub21, obtained
from a separate ongoing research project by the authors. Those
projects were selected considering quantitative criteria thatmake the
projects to be representative (such as number of forks, number of
followers and contributors, and size), which numbers are included
in the dataset.

Due to its high level of abstraction, Python is a particularly
attractive language for newcomers to programming, which can also
be the case of those starting with robotics and ROS. However,
as these results suggest, the widespread use of Python can lead
to significant energy inefficiencies, impacting projects that rely
on battery-powered robots, besides the environmental side-effects.
Among the real-world repositories in the referenced dataset, 291
(30%) utilize Python as their primary language. This represents
a substantial number of projects, which can be directly used,
reused as packages, or serve as models for future implementations.
Disseminating this paper’s findings to both, academic and industry
communities, can lead to more informed decisions regarding
programming language selection in robotics projects, which will
potentially benefit resource and energy efficiency.

The direct correlation between message frequency and power
consumption highlights the critical need for optimization of
message intervals within ROS two systems. Robotics developers
should attempt tominimizemessage frequencies while ensuring that
essential system functionality remains unimpaired. To understand
this impact, we manually queried the first repositories in the real-
world dataset. A superficial analysis reveals that service calls tend to
be less affected by high frequencies since they are usually triggered
by events, such as in the main_camera_node.cpp file of cyberdog_ros2

21 https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-

rep-pkg/blob/main/data-analysis/repos.csv

project22, which triggers camera-related services on configure event
and resets it on clean up event. However, for publisher/subscriber
cases, the impact tends to be more critical. A critical example
of this is the webots_ros2 project23, where the epuck_node.py file
implements a node with multiple subscriptions to different topics,
and do not pace the communication with any delay or sleep. In such
cases, message frequency is primarily dictated by factors such as
the execution time of the whole algorithm. For simple algorithms,
these execution times can result in fractions of seconds, leading to
excessively high message frequencies, a significant concern in our
experiment results, particularly for Python-based projects.

The final factor, and the least impactful, is the number of
clients. This scenario is more commonly associated with the
publisher/subscriber communication model, given its sensor-based
nature. In a manual analysis of the first 20 projects in the dataset,
we identified only one project, ros2_canopen24, with more than one
subscriber. In this project, the node_name + rpdo topic is subscribed
to by two different test nodes (test_node and simple_rpdo_tpdo_
tester), while the low_level/joint_states topic is subscribed to by
the noarm_squat and wiggle_arm nodes. Despite multiple clients
seeming to be less common, the repositories’ manual inspection
supports the legitimacy of our concerns regarding multiple clients
and suggests that our observations can also contribute to thoughtful
designs that take the number of clients into account.

7.4 Open issues

Unfortunately, the results reveal a few issues whose sources we
were unable to identify. We outline these issues below to encourage
further investigations, as their resolution and deep investigation lie
outside the scope of this paper. We confirm that they are not related
to issues in our algorithms or their executions, which have already
been discussed in the previous sections.

1. The Python publisher and subscriber mechanisms exhibit high
variability at elevated frequencies, suggesting some form of
overhead that leads to unpredictable power consumption.

2. The C++ service server demonstrates an initial power increase
when the number of clients rises from one to two. However,
the power consumption stabilizes as the number of clients
increases from two to three. This behavior, distinct from
that observed in Python, suggests a one-time synchronization
method for handling multiple clients.

3. While the Python service server shows an increase in power
consumption as the number of clients grows, the Python service
clients exhibit a consistent decrease in power consumption.
This may indicate challenges faced by the server in addressing
all client requests, although this hypothesis is not supported by
manual log analysis.

4. At lowmessage frequencies, the action pattern results in similar
power consumption for both languages.This consistency is not
observed for other communication patterns.

22 https://github.com/MiRoboticsLab/cyberdog_ros2/

23 https://github.com/cyberbotics/webots_ros2

24 https://github.com/ros-industrial/ros2_canopen

Frontiers in Robotics and AI 25 frontiersin.org175

https://doi.org/10.3389/frobt.2025.1548250
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/blob/main/data-analysis/repos.csv
https://github.com/IntelAgir-Research-Group/frontiers-robotics-ai-rep-pkg/blob/main/data-analysis/repos.csv
https://github.com/MiRoboticsLab/cyberdog_ros2/
https://github.com/cyberbotics/webots_ros2
https://github.com/ros-industrial/ros2_canopen
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

8 Threats to validity

In this section, we discuss potential threats to the validity of our
experiments, outline considerations, and describe how we address
each of them.

8.1 External validity

One limitation lies in the simplicity of the messages exchanged
between ROS two nodes in our experiments. We focused
on plain text messages in the publisher/subscriber pattern,
which are less complex compared to sensor messages like
PointCloud25 or geometry-based messages26. However, our
results show consistent behavior across various configurations
and communication patterns, with significant differences between
configurations, suggesting that the experimental variables
likely impact systems using more complex message types.
Additionally, prior work (Albonico et al., 2024) involving more
diverse message types indicates that at least the number of
clients plays a critical role, reinforcing the applicability of
our findings. To facilitate further exploration, our replication
package supports extensions to other communication patterns and
message types.

To mitigate potential biases due to the representativity of the
implemented ROS two nodes, we based our implementation on
official ROS two tutorials. This ensures relevance and applicability
to a wide range of general-purpose applications since they may
work as a template for different types of applications worldwide.
Moreover, our study uses ROS 2 Humble, an active distribution
supported until 2027, enhancing the relevance and timeliness of
our findings.

8.2 Internal validity

We ensured internal validity by maintaining a strictly controlled
experimental environment, minimizing the influence of variations
in system load, background processes, or hardware inconsistencies.
All experiments were conducted using the same tools and
environment and repeated twenty times to account for variability.
For CPU and memory usage measurements, we relied on widely
used Python libraries. Energy consumption measurements were
conducted using a tool extensively validated in prior studies
(Kamatar et al., 2024; Nahrstedt et al., 2024;Makris et al., 2024).This
rigorous approach minimizes confounding factors and strengthens
the reliability of our conclusions.

The use of Docker in our experimental setup introduces
a potential internal threat, as it may slightly influence energy
measurements due to its resource isolation and runtime overhead.
These effects could introduce systematic measurement biases,
affecting the accuracy and reproducibility of our results. This is
mitigated by a controlled execution, where we compare the energy

25 https://docs.ros.org/en/noetic/api/sensor_

msgs/html/msg/PointCloud.html

26 https://docs.ros2.org/foxy/api/geometry_msgs/index-msg.html

usage of different ROS two communication methodologies within a
comparable environment.This approach helpsmitigate the potential
impact of Docker-induced variations, as any overhead introduced
by containerization would be present across all experimental
conditions. Since we are primarily interested in how different
communication patterns compare to each other in terms of energy
consumption, rather than the exact power drawn by each, minor
variations introduced by Docker do not compromise the validity of
our conclusions.

8.3 Construct validity

Our experiments were designed with well-established
metrics that align with the goals of this research
(Pereira et al., 2017; Hähnel et al., 2012). Power consumption,
a primary metric, directly measures the rate of energy usage
while running ROS nodes, capturing nuanced differences in
energy efficiency attributable to language-specific and architectural
factors. This metric is independent of confounding variables
such as execution time, ensuring that observed effects are solely
related to energy efficiency. Furthermore, all findings were
validated using a robust statistical testing strategy, ensuring
the reliability of our conclusions and alignment with the
study’s objectives.

9 Related work

The energy efficiency of software has received significant
attention in recent years, particularly concerning the deployment
infrastructures and programming languages utilized in various
applications. This aligns closely with the objectives of our research,
which aims to investigate the energy efficiency of programming
languages within the Robot Operating System (ROS) ecosystem.
Notably, a comprehensive search across major research databases
revealed a gap in the literature, as no previous studies have
specifically addressed the energy efficiency of programming
languages in the context of ROS.

The work by Pereira et al. (2017) stands out as the most
related to our investigation. Their extensive study evaluated energy
consumption across a variety of algorithms implemented in
different programming languages, producing a ranking based on
energy efficiency. While their findings provide valuable insights,
the algorithms they examined were executed natively, without
the influence of middleware or frameworks, contrasting with
our focus on ROS-specific algorithms that operate within an
active ROS stack. This distinction is crucial, as the architecture
and operational context of ROS can significantly impact energy
consumption metrics.

Other studies have explored the energy efficiency of
programming languages in different contexts. For instance,
Kholmatova (2020) examined the impact of programming
languages on energy consumption for mobile devices,
highlighting how language choice can influence energy efficiency.
Similarly, Abdulsalam et al. (2014) investigated the effects of
language, compiler optimizations, and implementation choices
on program energy efficiency, emphasizing the importance

Frontiers in Robotics and AI 26 frontiersin.org176

https://doi.org/10.3389/frobt.2025.1548250
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/PointCloud.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/PointCloud.html
https://docs.ros2.org/foxy/api/geometry_msgs/index-msg.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

of these factors in software development. Furthermore,
research by Holm et al. (2020) focused on GPU computing
with Python, analyzing performance and energy efficiency,
which underscores the relevance of programming paradigms in
energy consumption.

In our previous work (Albonico et al., 2024), we investigated the
energy efficiency of ROS nodes implemented in C++ and Python.
Their study focused on the publisher-subscriber communication
pattern and assessed the power consumption of ROS nodes in
both languages. The results demonstrated that C++ nodes exhibit
superior energy efficiency compared to Python nodes, particularly
in scenarios withmultiple subscribers.This differencewas attributed
to the architecture of the client libraries and the native multi-
threading capabilities of C++. However, compared to this paper,
their study considered fewer independent variables, followed a less
systematicmethodology, and provided only preliminary results with
limited discussion.

10 Conclusion

Our study provides a comprehensive analysis of the energy
efficiency of ROS two communication patterns, revealing that C++
implementations consistently outperformPython in terms of energy
efficiency and resource usage. Message frequency significantly
influences power consumption, while the number of clients has
a less predictable impact, particularly for Python. These findings
have significant implications for real-world robotic systems,
guiding programming language choices, message frequency
optimization, and system architecture considerations. Therefore,
our research contributes to a better understanding of energy
efficiency in ROS 2, promoting the development of greener
robotic software.

Despite the consistency of our findings across various
configurations and communication patterns, there are still a few
open issues that can be further investigated. For example, further
research can explore the impact of message type complexity,
particularly with other types of messages. We also plan to examine
the specific synchronization or multi-threading mechanisms in
both C++ and Python service servers and clients to understand
the observed power consumption trends as the number of clients
increases. Finally, another possible extension of this research, is to
analyze the action pattern to determine why it results in similar
power consumption for both C++ and Python at low message
frequencies.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/supplementary material.

Author contributions

MA: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Supervision, Validation, Visualization, Writing–original draft,
Writing–review and editing. MC: Software, Writing–original draft.
AW: Funding acquisition, Project administration, Supervision,
Writing–review and editing, Conceptualization.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. This
research was made possible through the support and funding
of the following grants: the National Council for Scientific and
Technological Development (CNPq), Grant Process 200006/2024-0;
InnovationsCampus Mobilität der Zukunft, Mid-term Fellowships
for Experts; and UTPFR/PROPPG 12/04 call for research groups in
the computer science field.

Acknowledgments

We would like to express our gratitude to Paulo Júnior Varela
and Adair José Rohling for their contributions to the previous paper,
which served as the foundation for this research. Additionally, we
acknowledge the use of a generative artificial intelligence tool to
assist with English language corrections, with no content generated
by the tool.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of this manuscript. Only to correct the English language writing.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Robotics and AI 27 frontiersin.org177

https://doi.org/10.3389/frobt.2025.1548250
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Albonico et al. 10.3389/frobt.2025.1548250

References

Abdi, H., and Williams, L. J. (2010). Tukey’s honestly significant difference (HSD)
test. Encycl. Res. Des. 3 (1), 1–5.

Abdulsalam, S., Lakomski, D., Gu, Q., Jin, T., and Zong, Z. (2014). “Program
energy efficiency: the impact of language, compiler and implementation choices,” in
International green computing conference (IEEE), 1–6.

Albonico, M., Junior Varela, P., Jose Rohling, A., and Wortmann, A. (2024).
Energy efficiency of ROS nodes in different languages: publisher/subscriber case studies
(RoSE ’24). New York, NY, USA: Association for Computing Machinery, 1–8.
doi:10.1145/3643663.3643963

Basili, V., Caldiera, G., and Rombach, H. D. (1994). The goal question metric
approach. Encycl. Softw. Eng., 528–532.

Bernard, L. W. (1951). On the comparison of several mean values: an alternative
approach. Biometrika 38 (3/4), 330–336. doi:10.2307/2332579

Chinnappan, K., Malavolta, I., Lewis, G. A., Albonico, M., and Lago, P. (2021).
“Architectural tactics for energy-aware robotics software: a preliminary study,” in
European conference on software architecture (Springer), 164–171.

Ciccozzi, F., Di Ruscio, D., Malavolta, I., Pelliccione, P., and Tumova, J. (2017).
“Engineering the software of robotic systems,” in 2017 IEEE/ACM 39th international
conference on software engineering companion (ICSE-C) (IEEE), 507–508.

George, E. P. B., and Cox, D. R. (1964). An analysis of transformations. J.
R. Stat. Soc. Ser. B Stat. Methodol. 26 (2), 211–243. doi:10.1111/j.2517-6161.1964.
tb00553.x

Hähnel, M., Döbel, B., Völp, M., and Härtig, H. (2012). Measuring energy
consumption for short code paths using RAPL. ACM SIGMETRICS Perform. Eval. Rev.
40 (3), 13–17. doi:10.1145/2425248.2425252

Hirao, E., Miyamoto, S., Hasegawa, M., and Harada, H. (2005). “Power consumption
monitoring system for personal computers by analyzing their operating states,” in
2005 4th international symposium on environmentally conscious design and inverse
manufacturing, 268–272. doi:10.1109/ECODIM.2005.1619220

Holm, H. H., Brodtkorb, A. R., and Sætra, M. L. (2020). GPU computing
with Python: performance, energy efficiency and usability. Computation 8 (1), 4.
doi:10.3390/computation8010004

Kamatar, A., Hayot-Sasson, V., Babuji, Y., Bauer, A., Rattihalli, G., Hogade, N., et al.
(2024). GreenFaaS: maximizing energy efficiency of HPC workloads with FaaS. arXiv
Prepr. arXiv:2406.17710. doi:10.48550/arXiv.2406.17710

Kholmatova, Z. (2020). Impact of programming languages on energy consumption
for mobile devices. 1693–1695. doi:10.1145/3368089.3418777

Koubaa, A. (2015). ROS as a service: web services for robot operating system. J. Softw.
Eng. Robotics 6 (1), 1–14.

Kruskal, W. H., and Wallis, W. A. (1952). Use of ranks in one-criterion variance
analysis. J. Am. Stat. Assoc. 47 (260), 583–621. doi:10.1080/01621459.1952.10483441

Makris, A., Korontanis, I., Psomakelis, E., and Tserpes, K. (2024). “An efficient
storage solution for cloud/edge computing infrastructures,” in 2024 IEEE
international conference on service-oriented system engineering (SOSE) (IEEE),
92–101.

Nahrstedt, F., Karmouche, M., Bargieł, K., Banijamali, P., Kumar, A. N. P., and
Malavolta, I. (2024). “An empirical study on the energy usage and performance
of pandas and polars data analysis Python libraries,” in Proceedings of the 28th
international conference on evaluation and assessment in software engineering,
58–68.

Nizam Khan, K., Hirki, M., Niemi, T., Nurminen, J. K., and Ou, Z. (2018). RAPL
in action: experiences in using RAPL for power measurements. ACM Trans. Model.
Perform. Eval. Comput. Syst. 3 (2), 1–26. doi:10.1145/3177754

Noureddine, A. (2022). “Powerjoular and joularjx: multi-platform software power
monitoring tools,” in 2022 18th international conference on intelligent environments (IE)
(IEEE), 1–4.

Noureddine, A. (2024). “Analyzing software energy consumption,” in Proceedings of
the 2024 IEEE/ACM 46th international Conference on software engineering: companion
proceedings (lisbon, Portugal) (ICSE-Companion ’24) (New York, NY, USA: Association
for Computing Machinery), 424–425. doi:10.1145/3639478.3643058

Olive Jean Dunn (1961). Multiple comparisons among means. J. Am. Stat. Assoc. 56
(293), 52–64. doi:10.2307/2282330

Pardo-Castellote, G. (2003). “Omg data-distribution service: architectural overview,”
in 23rd international conference on distributed computing systems workshops, 2003.
Proceedings (IEEE), 200–206.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., et al. (2017).
“Energy efficiency across programming languages: how do energy, time, and memory
relate?,” in Proceedings of the 10th ACM SIGPLAN international conference on software
language engineering, 256–267.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J. P., et al. (2021).
Ranking programming languages by energy efficiency. Sci. Comput. Program. 205
(2021), 102609. doi:10.1016/j.scico.2021.102609

Pinto, G., and Castor, F. (2017). Energy efficiency: a new concern for application
software developers. Commun. ACM 60 (12), 68–75. doi:10.1145/3154384

Sanford Shapiro, S., andWilk, M. B. (1965). An analysis of variance test for normality
(complete samples). Biometrika 52 (3-4), 591–611. doi:10.1093/biomet/52.3-4.591

Santos, A., Cunha, A.,Macedo, N., and Lourenço, C. (2016). “A framework for quality
assessment of ROS repositories,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS) (IEEE), 4491–4496.

St, L., and Svante, W. (1989). Analysis of variance (ANOVA). Chemom. intelligent
laboratory Syst. 6 (4), 259–272. doi:10.1016/0169-7439(89)80095-4

Stanford Artificial Intelligence Laboratory (2024). Robotic operating system.
Available at: https://www.ros.org.

Steve, C. (2011). Exponential growth of ros [ros topics]. IEEE Robotics and
Automation Mag. 1 (18), 19–20. doi:10.1109/MRA.2010.940147

Swanborn, S., and Malavolta, I. (2020). “Energy efficiency in robotics software:
a systematic literature review,” in Proceedings of the 35th IEEE/ACM international
conference on automated software engineering workshops, 144–151.

Thangadurai, J., Saha, P., Rupanya, K., Naeem, R., Enriquez, A., Scoccia, G. L.,
et al. (2024). “Electron vs. Web: a comparative analysis of energy and performance
in communication apps,” in International conference on the quality of information and
communications technology (Springer), 177–193.

Thomas, M. C. (2008). “Software quality metrics to identify risk,” in Department of
homel and security software assurance working group.

von Kistowski, J., Block, H., Beckett, J., Spradling, C., Lange, K.-D., and Kounev, S.
(2016). “Variations in CPU power consumption,” in Proceedings of the 7th ACM/SPEC
on international Conference on performance engineering (delft, The Netherlands)
(ICPE ’16) (New York, NY, USA: Association for Computing Machinery), 147–158.
doi:10.1145/2851553.2851567

Yuan, Ye, Shi, J., Zhang, Z., Chen, K., Zhang, J., Stoico, V., et al. (2024). “The
impact of knowledge distillation on the energy consumption and runtime efficiency
of NLP models,” in Proceedings of the IEEE/ACM 3rd international Conference on AI
engineering - software Engineering for AI (lisbon, Portugal) (CAIN ’24) (New York, NY,
USA: Association for Computing Machinery), 129–133. doi:10.1145/3644815.3644966

Zhang, H., and Hoffman, H. (2015). A quantitative evaluation of the RAPL power
control system. Feedback Comput. 6.

Frontiers in Robotics and AI 28 frontiersin.org178

https://doi.org/10.3389/frobt.2025.1548250
https://doi.org/10.1145/3643663.3643963
https://doi.org/10.2307/2332579
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1109/ECODIM.2005.1619220
https://doi.org/10.3390/computation8010004
https://doi.org/10.48550/arXiv.2406.17710
https://doi.org/10.1145/3368089.3418777
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3639478.3643058
https://doi.org/10.2307/2282330
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1145/3154384
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1016/0169-7439(89)80095-4
https://www.ros.org
https://doi.org/10.1109/MRA.2010.940147
https://doi.org/10.1145/2851553.2851567
https://doi.org/10.1145/3644815.3644966
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 20 May 2025
DOI 10.3389/frobt.2025.1531743

OPEN ACCESS

EDITED BY

Federico Ciccozzi,
Mälardalen University, Sweden

REVIEWED BY

Nico Hochgeschwender,
University of Bremen, Germany
Davide Di Ruscio,
University of L’Aquila, Italy

*CORRESPONDENCE

Gustavo Rezende Silva ,
g.rezendesilva@tudelft.nl

RECEIVED 20 November 2024
ACCEPTED 04 April 2025
PUBLISHED 20 May 2025

CITATION

Rezende Silva G, Päßler J, Tapia Tarifa SL,
Johnsen EB and Hernández Corbato C (2025)
ROSA: a knowledge-based solution for robot
self-adaptation.
Front. Robot. AI 12:1531743.
doi: 10.3389/frobt.2025.1531743

COPYRIGHT

© 2025 Rezende Silva, Päßler, Tapia Tarifa,
Johnsen and Hernández Corbato. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

ROSA: a knowledge-based
solution for robot self-adaptation

Gustavo Rezende Silva1*, Juliane Päßler2, S. Lizeth Tapia Tarifa2,
Einar Broch Johnsen2 and Carlos Hernández Corbato1

1Cognitive Robotics Department, Mechanical Engineering Faculty, TU Delft, Delft, Netherlands,
2Department of Informatics, University of Oslo, Oslo, Norway

Autonomous robots must operate in diverse environments and handle multiple
tasks despite uncertainties. This creates challenges in designing software
architectures and task decision-making algorithms, as different contexts may
require distinct task logic and architectural configurations. To address this,
robotic systems can be designed as self-adaptive systems capable of adapting
their task execution and software architecture at runtime based on their
context. This paper introduces ROSA, a novel knowledge-based framework
for RObot Self-Adaptation, which enables task-and-architecture co-adaptation
(TACA) in robotic systems. ROSA achieves this by providing a knowledge model
that captures all application-specific knowledge required for adaptation and
by reasoning over this knowledge at runtime to determine when and how
adaptation should occur. In addition to a conceptual framework, this work
provides an open-source ROS 2-based reference implementation of ROSA and
evaluates its feasibility and performance in an underwater robotics application.
Experimental results highlight ROSA’s advantages in reusability and development
effort for designing self-adaptive robotic systems.

KEYWORDS

self-adaptation, knowledge representation, underwater vehicle, robotics, self-adaptive
robotic system

1 Introduction

A current challenge in robotics is designing software architectures and task decision-
making algorithms that enable robots to autonomously perform multiple tasks in diverse
environments while handling internal and environmental uncertainties. This challenge
arises because different contexts may demand distinct task logic and architectural
configurations. At runtime, certain actions may become unfeasible, requiring the robot to
adapt its task execution to ensure mission completion. For example, a robot navigating
through an environment might run out of battery during its operation, requiring it to
adapt its task execution to include a recharge action. Additionally, actions may require
different architectural configurations depending on the context. For example, a navigation
action that relies on vision-based localization cannot be executed in environments without
lights but could potentially be executed with an alternative architectural configuration that
employs a localization strategy based on lidar. This becomes even more challenging when
both the robot’s task execution and its architectural configuration need to be adapted. For
instance, when a robot runs out of battery while navigating, it must simultaneously adapt its
architecture to a configuration that consumes less energy and its task execution to include a
recharge action and to navigate along paths that are better suited to the new configuration.

Frontiers in Robotics and AI 01 frontiersin.org179

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1531743
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1531743&domain=pdf&date_stamp=2025-05-17
mailto:g.rezendesilva@tudelft.nl
mailto:g.rezendesilva@tudelft.nl
https://doi.org/10.3389/frobt.2025.1531743
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1531743/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1531743/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

To address this challenge, robots can be designed as self-adaptive
systems (SASs) with the ability to perform task-and-architecture co-
adaptation (TACA) (Cámara et al., 2020), i.e., simultaneously adapt
their task execution and software architecture dependently during
runtime. This work focuses on proposing a systematic solution for
enabling TACA that can be reused with different robotic systems.

A common approach to enable self-adaptation in software
systems is to design them as two-layered systems containing a
managing and managed subsystem (Weyns, 2020), where the
managing subsystem monitors and reconfigures the managed
subsystem, and the managed subsystem is responsible for the
domain logic. This design facilitates the development and
maintenance of the systemby creating a clear separation between the
adaptation and the domain logic. While several solutions have been
proposed for solving either architectural (Alberts et al., 2025) or task
adaptation in robotic systems (Carreno et al., 2021; Hamilton et al.,
2022), there are some works that partially address TACA (Park et al.,
2012; Lotz et al., 2013; Gherardi and Hochgeschwender, 2015;
Valner et al., 2022), and there are few works that fully address
TACA (Braberman et al., 2017; Cámara et al., 2020). More
critically, to the best of our knowledge, the existing solutions for
TACA require a significant and complex re-programming of the
adaptation logic for each different use case, including the creation
of multiple modelsbased on different domain-specific languages
(DSLs) (Cámara et al., 2020) or implementing the managing
subsystem itself (Braberman et al., 2017), hindering the adoption of
SAS methods in robotics.

To address the limitations of SAS methods for TACA, this paper
proposes to extend traditional robotics architectures with a novel
knowledge-based managing subsystem for RObot Self-Adaptation
(ROSA) that promotes reusability, composability, and extensibility.
Themainnovelty of ROSA is its knowledge base (KB)which captures
knowledge about the actions the robot can perform, the robot’s
architecture, the relationship between both, and their requirements
to answer questions such as “What actions can the robot perform
in situation X?” and “What is the best configuration available for
each action in situation Y?”, for example, “Can the robot perform
an inspection action when the battery level is lower than 50%?” or
“What is the best software configuration for the inspection action
when the visibility is low?” This results in a reusable solution for
TACA in which all application-specific aspects of the adaptation
logic are captured in its KB.

In addition to a conceptual framework, this work provides a
reference implementation of ROSA as an open-source framework
that can be reused for research on self-adaptive robotic systems.
ROSA is implemented as a ROS 2-based system (Macenski et al.,
2022), leveraging TypeDB (Dorn and Pribadi, 2023; 2024)
for knowledge representation and reasoning, and behavior
trees (BT) (Colledanchise and Ögren, 2018) as well as PDDL-
based planners (Ghallab et al., 1998) for task decision-making.

The feasibility of using ROSA for runtime self-adaptation in
robotic systems is demonstrated by applying it to the SUAVE
exemplar (Silva et al., 2023), and its adaptation performance
is evaluated in comparison to other approaches available in
the exemplar. ROSA’s reusability is demonstrated by using it
to model the TACA scenarios described by Braberman et al.
(2017) and Cámara et al. (2020). The development effort for using
ROSA is evaluated by analyzing the number of elements contained

in the knowledge models created to solve the aforementioned use
cases and comparing it with the size of a BT-based approach used to
solve SUAVE. ROSA’s development effort scalability is demonstrated
by showing how ROSA’s knowledge model grows with the addition
of extra adaptations in a hypothetical scenario.

In summary, the main contributions of this paper are:

1. a modular architecture for self-adaptive robotic systems that
extends robotics architectures with a managing subsystem and
supports reusability, composability, and extensibility;

2. a reusable knowledge model to capture all application-specific
aspects of the adaptation logic required for TACA in self-
adaptive robotic systems;

3. a reference open-source implementation of the framework that
can be reused for self-adaptive systems research; and

4. an experimental evaluation of ROSA based on simulated
robotic self-adaptation scenarios.

The remainder of this paper is organized as follows. Section 2
describes the TACA use case used to exemplify and evaluate this
work. Section 3 presents related works. Section 4 describes how
this work proposes to extend robotics architectures with ROSA.
Section 5 details ROSA’s KB. Section 6 describes the proposed
reference implementation of ROSA. Section 7 showcases ROSA’s
evaluation. Section 8 concludes this work and presents future
research directions.

2 Running example

Throughout this paper, the SUAVE exemplar (Silva et al., 2023)
is used as an example to ease the understanding of the proposed
solution, and later, it is used to evaluate ROSA.

SUAVE consists of an Autonomous Underwater Vehicle (AUV)
used for underwater pipeline inspection.TheAUV’smission consists
of performing the following actions in sequence: (A1) searching
for the pipeline and (A2) simultaneously following and inspecting
the pipeline. When performing its mission, the AUV is subject
to two uncertainties: (U1) thruster failures, and (U2) changes in
water visibility. These uncertainties are triggers for parameter and
structural adaptation. When U1 occurs while performing A1 or A2,
the AUV activates a functionality to recover its thrusters. When U2
happens while performing A1, the AUV adapts its search altitude.

To demonstrate TACA, this work extends SUAVE with an (A3)
recharge battery action and a (U3) battery level uncertainty. With
these extensions, the AUV’s battery level can suddenly drop to a
critical level, requiring the AUV to abort the action it is performing
(A1 or A2) and perform A3. In this situation, the AUV needs to
perform TACA by adapting its task execution and architecture to
perform A3. To better evaluate ROSA by serving as a baseline
for comparison, this work extends the SUAVE exemplar with a
managing subsystem where the adaptation logic is implemented
with BTs, and the AUV’s architectural variants as well as the
architectural adaptation execution are realized with System Modes
(Nordmann et al., 2021)1. Furthermore, this work introduces a new

1 The SUAVE exemplar is already configured to use System Modes.

Frontiers in Robotics and AI 02 frontiersin.org180

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

reaction time metric that represents the time a managing system
takes to react to uncertainties and adapt the managed subsystem.

3 Related work

This work combines principles from self-adaptive systems
and knowledge representation and reasoning to design a reusable
framework for developing adaptive robotics architectures.
Section 3.1 analyzes existing robotics architectures and describes
the architectural patterns from robotics architectures adopted in
this work. Section 3.2 reviews related research on self-adaptive
robotic systems that leverage knowledge representation techniques
to promote reusability, as well as studies that consider the
relationship between task execution and architectural adaptation.
Additionally, it discusses how these works influenced the design
of the proposed framework and highlights its distinctions from
existing approaches.

3.1 Robotics architectures

Numerous approaches have been proposed for programming
and designing autonomous robot architectures (Kortenkamp et al.,
2016). In recent years, two main trends have emerged:
component-based frameworks and middlewares–among which
ROS (Macenski et al., 2022) stands out due to its widespread
adoption in academia and industry–and layered architectures
(Barnett et al., 2022). Barnett et al. (2022) reviewed 21 robotics
architectures and concluded that most architectures follow a layered
pattern, and even those that do not can still have their elements
mapped onto a layered architectural structure. Furthermore, they
found that all architectures include a bottom functional layer
responsible for interacting with the robot’s hardware, an upper task
decision layer–whose responsibilities vary across architectures–and
an arbitrary number of intermediate layers. This work aims to
design a reusable solution for TACA that can be integrated into
robotics architectures adhering to these architectural patterns. To
achieve this, the proposed solution establishes a clear separation
between architectural management and task logic, organizing them
into distinct layers, or subsystems, as commonly referred to in the
self-adaptive systems community.

The LAAS architecture (Alami et al., 1998) is an example
of a three-layered architecture consisting of a functional layer,
an executive, and a decision layer. The functional layer contains
the robot’s control and perception algorithms. The executive layer
receives a task plan from the decision layer and selects functions
from the functional layer to realize each action in the task plan.
The decision layer includes a planner that generates task plans and a
supervisor responsible formonitoring plan execution and triggering
replanning when necessary. More recent examples of layered robot
architectures include AEROSTACK (Sanchez-Lopez et al., 2016),
designed for aerial drone swarms, and SERA (Garcia et al., 2018),
which is tailored for decentralized and collaborative robots. These
architectures build on the layered model but focus on providing
domain-specific solutions.

Cognitive architectures (Kotseruba and Tsotsos, 2018), such
as CRAM (Beetz et al., 2010; Kazhoyan et al., 2021), focus on

generating intelligent and flexible behavior by integrating cognitive
capabilities such as planning, perception, or reasoning. However,
being integral solutions, these works provide a blueprint for the
complete robot control system and are not intended for reuse and
integration with othermethods, thusmaking it difficult to adapt and
customize for specific applications.

3.2 Self-adaptive robotic systems

Despite advances in self-adaptive robotic systems, fully
addressing task and architectural co-adaptation (TACA) with
reusable and scalable solutions remains an open challenge (see Table
1). While some studies explore the relationship between task
execution and architectural adaptation, only a few explicitly address
TACA—and those that do face limitations in reusability and
practical applicability in robotics. This work aims to bridge this
gap by introducing a knowledge-based framework that can capture
the necessary knowledge to solve TACA across different use cases,
can be directly applied to robotic systems, and supports modular
modifications for incorporating different adaptation strategies.

Alberts et al. (2025) recently conducted a systematic mapping
study2 on “robotics software architecture-based self-adaptive
systems” (RSASSs), identifying 37 primary studies on RSASSs
published since 2011. Among these, Alberts et al. (2025) identified
that four studies (Park et al., 2012; Lotz et al., 2013; Gherardi and
Hochgeschwender, 2015; Cámara et al., 2020) consider, to varying
degrees, the relationship between the tasks a robot performs and
architectural adaptation. A non-systematic snowballing of the
primary studies identified by Alberts et al. (2025) revealed two
additional studies (Braberman et al., 2017; Valner et al., 2022) that
also explore this relationship.

In the context of knowledge-based methods, Alberts et al.
(2025) identified six studies (Park et al., 2012; Niemczyk and
Geihs, 2015; Hochgeschwender et al., 2016; Niemczyk et al.,
2017; Bozhinoski and Wijkhuizen, 2021; Silva et al., 2023) that
use knowledge representation techniques to capture knowledge
required for the adaptation logic. Among these (Bozhinoski and
Wijkhuizen, 2021; Silva et al., 2023), do not propose solutions for
RSASSs but instead demonstrate the application of Metacontrol
(Hernández et al., 2018; Bozhinoski et al., 2022) in different robotics
use cases. While these methods do not address TACA, they provide
valuable insights for designing knowledge-based approaches to self-
adaptation.

Park et al. (2012) introduced the SHAGE framework for
task-based and resource-aware architecture adaptation in robotic
systems. SHAGE partially solves TACA, as it can adapt the robot’s
architecture at runtime to specifically realize each action in its task
plan when it needs to be performed. However, SHAGE does not
support task execution adaptation based on the robot’s architectural
state. SHAGE promotes reusability by leveraging architectural
models and knowledge captured with an ontology to reason about
adaptation at runtime. However, to the best of our knowledge, there
is no implementation of the SHAGE framework that works with

2 Alberts et al. (2025) do not claim that the mapping study is a complete

overview of the literature but rather a characterization of the field.

Frontiers in Robotics and AI 03 frontiersin.org181

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 1 Related frameworks for robot self-adaptation.

Approach Architectural
adaptation

TACA Reusability Robotics
Middleware

Applied to
robot

Parameter Structural A-t-T T-t-A Conceptual Software
Available

ICE (Niemczyk et al.
2017)

No Yes No No No No None No

Hochgeschwender
et al. (2016)

No Yes No No No No None Real robot

Metacontrol
(Bozhinoski et al., 2022)

Yes Yes No No Yes Yes ROS 1 and 2 Real robot

SHAGE (Park et al.,
2012)

No Yes No Yes Partially No None No

Lotz et al. (2013) No Yes No Yes No No None No

RRA (Gherardi and
Hochgeschwender, 2015)

Yes Yes No Partially Yes Yes ROS 1 Simulated

TeMoto (Valner et al.,
2022)

Yes Yes No Yes Partially Yes ROS 1 Real robot

MORPH
(Braberman et al., 2017)

Yes Yes Yes Yes No No None No

Cámara et al. (2020) Yes Yes Yes Yes Partially No ROS 1 Simulated

ROSA Yes Yes Yes Yes Yes Yes ROS 2 Simulated

Where A-t-T means “Architectural state triggers task adaptation”, and T-t-A means “Task triggers architectural adaptation”.

common robotic frameworks. Thus, it is not possible to directly
reuse SHAGE.

Lotz et al. (2013) proposed a method to model operational
and quality variability using two distinct (DSLs) models. Their
work provides a high-level discussion on how these models could
be used at runtime to enable architectural adaptation based on
the actions executed by the robot. An interesting aspect of their
approach is the clear separation between functional and non-
functional requirements: one model captures the task deliberation
logic, functional requirements, and their variation points, while the
other focuses on non-functional requirements and their possible
variations.While this separation of concerns simplifies themodeling
process, combining task deliberation with functional requirements
reduces reusability. Any change in the task deliberation logic directly
impacts the modeling of functional requirements, making the
approach less flexible. Additionally, they do not provide sufficient
details on how thesemodels are used at runtime, nor do they present
an evaluation to demonstrate the feasibility of their approach.

Gherardi and Hochgeschwender (2015) proposed RRA as a
model-based approach for structural, parameter, and connection
adaptation in robotic systems. Their method employs six distinct
models to capture all the knowledge required for adaptation. These
models represent the robot’s architecture and its variability, its
functionalities and their variability, the mapping between functions
and architecture, the required interfaces (i.e., inputs, outputs, and
data types) for the adaptation logic, and the adaptation logic itself.

RRA models the dependencies between the tasks a robot can
perform and the architectural configurations needed to accomplish
them. This is achieved by decomposing each task into multiple
functionalities and capturing the available architectural variants for
realizing each function. At deployment time, the robot’s operator
selects a task, and RRA manages only the functionalities required
for that task. Although RRA considers the relationship between
tasks and architecture to some extent, it cannot be classified as
TACA, as this dependence is only accounted for at deployment time.
Architectural adaptation occurs based on the selected task rather
than dynamically at runtime in response to the individual actions
the robot needs to perform. Moreover, RRA does not adapt the task
execution based on the robot’s architectural state.

Valner et al. (2022) proposed the TeMoto as a general solution
for robotic systems’ dynamic task and resource management.
TeMoto partially solves TACA, as it can adapt the robot’s architecture
to realize the actions being performed by the robot. TeMoto does
not completely fulfill TACA as it cannot adapt the task execution
given the robot’s architectural state. TeMoto provides reusable
mechanisms for resource management, but reusability is limited
since the adaptation logic must be implemented for all managed
resources, and the knowledge about the dependencies between
actions and architecture are programmatically included in the
actions’ code.

Braberman et al. (2017) proposed MORPH as a reference
architecture to enable TACA. They showcased on a conceptual level

Frontiers in Robotics and AI 04 frontiersin.org182

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

how MORPH can be applied to enable TACA in an unmanned
aerial vehicle (UAV) use case. However, since MORPH is only
demonstrated at a conceptual level, it is hard to evaluate the
feasibility of applying MORPH to robotic systems at runtime. To
the best of our knowledge, there is no framework implementing
the complete MORPH architecture. Therefore, it is not possible to
directly reuse MORPH.

In the context of TACA, Cámara et al. (2020) developed a
method for finding optimal task and reconfiguration plans for
an autonomous ground vehicle (AGV) navigating in a graph-like
environment. To enable optimal planning within reasonable time
limits, their method first reduces the search space by finding all
possible reconfiguration plans and then computing the shortest
N paths the robot can take to reach its goal. Then, it uses this
information along with task-specific models that capture mission
quality attributes (e.g., energy consumption, collision probabilities)
and a preferred utility to apply model checking and determine an
optimal reconfiguration plan for each path. Finally, an optimization
function selects the best plan based on a predefined utility
function (e.g., minimizing energy consumption, time, or collision
probability). Although their approach reduces the planning search
space to improve planning time, their experiments show that
solving the navigation use case still takes an average of 15.1 s, an
impractical duration for robots that frequently need to replan at
runtime to handle uncertainties. Additionally, while the approach is
model-based, it relies on task-specific model transformations (e.g.,
converting the map or battery model into PRISM model snippets),
which require dedicated implementations for different tasks. This
limits the reusability of their approach for different types of tasks,
as it requires a considerable amount of development effort.

Hochgeschwender et al. (2016) argue that robots should have
access to and exploit software-related knowledge about how they
were engineered to support runtime adaptation. They demonstrate
how labeled property graphs (LPGs) can be used to persistently
store and compose different domain models specified with (DSL) to
enable runtime architectural adaptation. Although their approach is
interesting, its reusability is limited as it does not define a knowledge
model that can be reused for other applications: for each different use
case and DSL the roboticist is responsible for creating a translation
from the DSL to the corresponding LPG.

Niemczyk and Geihs (2015); Niemczyk et al. (2017) propose
ICE as a method for adapting the information processing subsystem
in multi-robot systems, specifically by adapting the connections
between system components. Their approach uses an ontology
to define each component’s required inputs and outputs, along
with quality-of-service information for each connection. This
ontology is then translated into answer set programming (ASP),
and an ASP solver determines an optimal configuration. While
they conceptually demonstrate how their method could be
applied to robots, they do not demonstrate it with a robotic
system. Moreover, their approach focuses solely on structural
and connection adaptation to maintain the functionality of the
information processing subsystem, without considering other
subsystems of the robotic system.

Hernández et al. (2018); Bozhinoski et al. (2022)
proposed Metacontrol as a knowledge-based solution for
parameter and structural adaptation. Metacontrol leverages
the TOMASys (Hernández et al., 2018) ontology to capture the

knowledge required for the adaptation logic and to reason at
runtime to decide when and how the system should adapt. Similar
to RRA, Metacontrol decomposes the system into functionalities,
using TOMASys to represent the robot’s functionalities, the
architectural variants that implement each functionality, and
the non-functional requirements associated with these variants.
However, Metacontrol cannot perform TACA as TOMASys does
not capture the relationship between the system functionalities and
the robot’s actions.

In conclusion, existing works that fully address TACA
(Braberman et al., 2017; Cámara et al., 2020) face limitations
in reusability and practical applicability in robotics. The authors
of MORPH (Braberman et al., 2017) note that no complete
system has been developed, and they have not demonstrated its
feasibility. While the approach proposed by Cámara et al. (2020)
provides the most complete solution to TACA in the literature,
it also faces reusability limitations by relying on multiple distinct
(DSL) models and requiring task-specific implementations for
model transformations. To address these limitations, this work
proposes capturing all the knowledge required for adaptation
logic in a single knowledge model. This approach requires only
one model–conforming to the proposed knowledge model–to
be designed for each application. Additionally, an open-source
reference implementation of ROSA is provided, enabling researchers
to reuse, extend, and build upon the proposed solution.

On the other hand, previous knowledge-based methods for
RSASS (Park et al., 2012;Niemczyk andGeihs, 2015;Niemczyk et al.,
2017; Hochgeschwender et al., 2016; Hernández et al., 2018;
Bozhinoski et al., 2022) do not capture all knowledge required
to enable TACA. They either lack the ability to capture
the relationship between the robot’s actions and architecture
(Hochgeschwender et al., 2016; Hernández et al., 2018;
Bozhinoski et al., 2022), or the knowledge required to decide
when and how the robotic system should adapt (Park et al., 2012).
Although these works do not capture all the knowledge required for
TACA, they are able to capture, to varying degrees, knowledge that
supports RSASSs. Thus, this work takes inspiration from them to
design ROSA’s knowledge model while addressing their limitations.
More concretely, ROSA’s knowledge model is designed to capture
the relationship between the robot’s actions and architecture and
the knowledge required to decide when and how TACA should be
performed.

4 Architecture

To enable TACA, this paper proposes to extend traditional
robotics architectures with ROSA, using it as a managing subsystem
for the robotic subsystem (see Figure 1). This section first describes
the assumptions made about the robotics architecture and the
requirements to use it alongside ROSA, and then it details ROSA’s
architecture.

4.1 Robotics architecture

This work assumes that the robotics architecture is layered,
containing a bottom functional layer, an upper task decision

Frontiers in Robotics and AI 05 frontiersin.org183

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 1
The upper layer depicts ROSA’s architecture and the bottom layer depicts the robotic system.

layer, and an arbitrary number of layers in between, as common
in robotics architectures (Barnett et al., 2022). The functional
layer is responsible for interacting with the robots’ sensors and
actuators, and the task decision layer is responsible for task planning
and execution3. To enable TACA with ROSA, the task decision
layer shall use the knowledge contained in ROSA’s KB to decide
which actions to perform, and it must update the KB with the
actions selected to be performed to enable ROSA to configure the
robot’s architecture accordingly. To enable architectural adaptation,
the robotic architecture must be component-based, its components
must be able to be activated and deactivated at runtime, and its
components’ parameters must be able to be adapted at runtime.

4.2 ROSA architecture

ROSA’s architecture adheres to the MAPE-K loop (Kephart
and Chess, 2003). It monitors the managed subsystem, analyzes
whether adaptation is required, when needed, plans how the
managed subsystem should be reconfigured, and executes the
selected reconfigurations. All these steps interact with a central KB.

To promote reusability, composability, and extensibility, the
architecture is designed with the following premises: (1) all
knowledge required for the adaptation logic is captured in the central
KB, (2) there is no inter-component communication between the
MAPE components (Weyns et al., 2013), (3) the MAPE components
insert and read data from or to the KB via standardized interfaces,

3 Some architecture have distinct layers for handling task planning and

execution, in the context of this work, they can be considered as sub-

layers of the task decision layer.

and (4) there is no explicit coordination between the MAPE-
K components. Premise 1 promotes reusability by only requiring
the modeling of the relevant knowledge for applying ROSA to
different applications in a single model. Premises 1 to 4 promote
composability and extensibility by allowing the MAPE components
to be stateless and self-contained.

5 Knowledge base

To fulfill the architectural premise that all knowledge required
for the adaption logic should be captured in a central KB, this
work proposes a KB component composed of the knowledge model
depicted in Figure 2 and the set of rules depicted in Figure 3,
described in Section 5.1 and Section 5.2 respectively.

The knowledge model is presented as a conceptual data
model (CDM) conforming to a particular case of the enhanced
entity-relationship (EER) (Thalheim, 1993; Thalheim, 2000) model,
an extension of the entity-relationship model (Chen, 1976)
that accounts for subclassing and higher-order relationships,
i.e., relations between relationships. The EER model captures
information as entities, relationships, and attributes. An entity
is a “thing’ which can be distinctly identified” (Chen, 1976), a
relationship is an association among entities or relationships, and an
attribute represents a property of an entity or relationship (Thalheim,
1993; Thalheim, 2000). In addition, entities and relationships play
a role in the relationships they are part of, which is identified by
the label on the arrows in Figure 2. This CDM was selected since
it supports n-ary relationships,many-to-many relationships, higher-
order relationships, and attributes for both entities and relationships.
Section 6.1 details why these representation capabilities are relevant
to the proposed model. The rules are also described at a conceptual
level as decision diagrams. Section 6.2 presents the details on how

Frontiers in Robotics and AI 06 frontiersin.org184

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 2
ROSA’s knowledge model. Architectural knowledge is on the left. Adaptation heuristic knowledge in the center. Reconfiguration Plan knowledge on
the right. The labels on the arrows represent which role an entity or relationship plays in a relationship. Instances of the entities, relationships, and
attributes with purple font are created at runtime. Instances of the other entities, relationships, and attributes are defined at design time. (a)
Architectural. (b) Adaptation heuristic. (c) Reconfiguration plan.

the knowledge model and rules can be implemented and executed
and runtime.

5.1 Knowledge model

To enable adaptation, the knowledge model captures what
can be adapted with the architectural knowledge depicted in
Figure 2a; why to adapt and how to select an adaptation with
the adaptation heuristics knowledge depicted in Figure 2b; and
how to execute an adaptation with the reconfiguration plan
knowledge depicted in Figure 2c. Tables 2–4 define each element
in the model alongside examples based on SUAVE to ease
its understanding.

5.1.1 Architectural knowledge
The architectural knowledge (see Table 2) captures what

actions the robot can accomplish, the set of functionalities
the robot needs to realize an action, the set of components
required to realize a functionality, and the possible parameters
for a component.

The architectural knowledge enables parameter adaptation by
capturing each parameter configuration of a component with
a distinct component configuration relationship, relating
one Component to a set of Component Parameters. It
enables structural adaptation by capturing the different possibilities
for solving a system functionality as distinct function design

relationships which relate a Function to a set of Components.

It enables TACA by indirectly capturing the dependencies between
the robot’s actions and architecture with the functional

requirement relationship which relates an Action to the
Functions it requires.

At runtime, ROSA performs parameter adaptation by switching
the selected component configurations. It performs
structural adaptation by changing the selected function

designs and consequently the active Components. The
task decision layer in combination with ROSA performs TACA
by selecting suitable function designs and component

configurations for each Action the robot needs to perform,
and with the task decision layer selecting different Actions to
perform according to the feasible configurations.

5.1.2 Adaptation heuristic knowledge
This work considers that the robotic system might need to adapt

due to changes in the environment, changes in the system’s quality
attributes (QAs) (Board, 2023), component failures, and changes in
the robot’s selected actions.

The adaptation heuristic knowledge enables adaptation due
to changes in the environment or the system’s QAs with the
constraint relationship by capturing constraints on the
selection of Actions, Components, function designs,
or component configurations in terms of measured
values of Measures. It enables adaptation due to component
failures by capturing a Component’s status as an attribute and
adaptation due to changes in the robot’s task execution by capturing
what Actions need to be performed with the required

Frontiers in Robotics and AI 07 frontiersin.org185

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 3
Rules used to infer the status of the elements in the knowledge model, presented as decision diagrams. (a) Constraint status. (b) Component
configuration status. (c) Component status. (d) Function design status. (e) Function status. (f) Action status.

action relationship. At runtime, adaptation is triggered when a
measurement violates a constraint, when a component has a failure
status, or when required actions change.

To capture the decision criteria on how to select an adaptation,
the priority attribute can be used to express the order of
priority for selecting each function design or component
configuration. For more complex criteria, the estimation
relationship can be used to capture the estimated impact of
selecting a function design, Component, or component
configuration on the measured values of Measures.
Furthermore, a required action can relate to a Measure

to indicate the preferred estimation when selecting a
configuration for that action. At runtime, the configuration planner
component exploits this knowledge to decide which configuration
to select.

5.1.3 Reconfiguration plan knowledge
The reconfiguration plan knowledge represents which

component parameters must be updated (i.e., how to execute
parameter adaptation) and which components must be activated
and deactivated (i.e., how to execute structural adaptation).
The execute component exploits this knowledge at runtime to
reconfigure the managed subsystem.

5.2 Rules

To enable ROSA to reason about when the managed subsystem
should be adapted and what type of adaptation is needed, the
KB contains a set of generic rules that define how the status of
the system can be inferred based on monitored information, e.g.,
how to infer if a constraint is violated and how to propagate
a constraint violation. A change in status only occurs when
measurements are updated or when a component fails. The
complete status inference rules are depicted as decision diagrams in
Figure 3.

The status of the required Components, Functions,
and Actions indicate when and what type of adaptation is
needed. When a Component is “unsolved” or in “configuration
error” (see Figure 3c), parameter adaptation is required,
i.e., a new component configuration needs to be
selected. When a required Function is “unsolved” or in
“configuration error” (see Figure 3e), structural adaptation is
required, i.e., a new function design needs to be selected.
When a required Action is “unfeasible” (see Figure 3f),
TACA is needed, i.e., the task decision layer must choose a
new action to perform, consequently triggering architectural
adaptation.

Frontiers in Robotics and AI 08 frontiersin.org186

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 2 The elements of the architectural knowledge.

Name Definition Example Attributes

E

Action “Action is defined as an operation applied
by an agent or team to affect a change in or
maintain either an agent’s state(s), the
environment, or both” (IEEE Approved
 Draft Standard for Robot Task
 Representation, 2024). Where in the
context of this paper the agent is the robot

An AUV can perform the Action search
pipeline, and inspect pipeline

name:String @key

status:String

is-required:Bool

Function “A function is defined by the
transformation of input flows to output
flows” (Board, 2023), i.e., a function
represents what the system can do

An AUV can have several Functions,
like generate search path and generate path
to follow pipeline. The generate search path
function can be considered a
transformation of the AUV’s current
position (input) to a goal waypoint
(output)

name:String @key

always-improve:Bool

status:String

is-required:Bool

Component Hardware and software parts that compose
the system

A thruster is a hardware component, and a
generate spiral search path node is a
software component

name:String @key

always-improve:Bool

status:String

is-required:Bool

is-active:Bool

pid:Integer

Component Parameter A specific parameter configuration of a
Component

The generate spiral search path node
component can be configured with
different search altitudes. Each search
altitude is represented as a distinct
Component Parameter

key:String

value:String

R

funcional requirement Represents which Functions a certain
Action requires to be performed

The search pipeline action requires the
control motion, maintain motion,
localization, detect pipeline, generate search
path, and coordinate mission functions

N/A

function design Represents a solution for a Function as
a set of Components (Hernández et al.,
2018)

The generate search path function can have
multiple function designs, e.g., one
using the generate spiral search path node
component, and another one using the
generate lawnmower search path node
component

name:String @key

priority:Integer

status:String

is-selected:Bool

component configuration Represents a possible configuration of a
Component as a set of Component
Parameters

The generate spiral search path node
component can be configured in different
ways by combining different values of its
search altitude and speed parameters. Each
combination is represented as an instance
of a component configuration

name:String @key

priority:Integer

status:String

Instances of the elements with purple font are created at runtime. Instances of the other elements are defined at design time. The “@key” expression after an attribute indicates that the attribute
is used as a unique identifier. E stands for entity and R stands for relationship.

6 Architecture realization

This section details the proposed reference implementation
for ROSA. First, the representation requirements imposed by
the proposed knowledge model are analyzed to select a suitable
knowledge representation technique. Afterward, the proposed
implementation is explained.

6.1 Representation requirements

The proposed knowledge model was presented as a conceptual
data model (CDM) in a non-machine-readable format. To

transform the knowledge model into a machine-readable format
while maintaining its semantics and structure, its representation
requirements must be identified and used to select a suitable
technology to implement it. The representation requirements
imposed by the proposed knowledge model are:

1. n-ary relationships: the knowledge model contains
relationships with different arity4, e.g., the constraint

relationship has arity 5, and the measurement relationship
has arity 1;

4 The number of distinct elements that can be part of a relationship.

Frontiers in Robotics and AI 09 frontiersin.org187

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 3 The elements of the adaptation heuristic knowledge.

Name Definition Example Attributes

E

Measure “Measure is defined as a function over
observations, state variables, and
parameters”. (IEEE Approved Draft
Standard for Robot Task Representation,
2024)

An AUV can have the Measures battery
level or water visibility

name:String @key

Quality Attribute Quality Attribute is defined as a function
over the system’s state variables. Which,
according to the Software Engineering
Body of Knowledge (Board, 2023), can be
considered as “System functional and
non-functional requirements used to
evaluate the system performance”

An AUV can have the Quality
Attributes battery level, battery
consumption, and safety level

name:String @key

Environmental Attribute Environmental Attribute is defined as a
function over observations of the
environment. That is, it represents a metric
of the environment with respect to a
certain attribute

An underwater environment can have
water visibility as an Environmental
Attribute

name:String @key

R

required action Represents the Actions required at runtime The inspect pipeline Action can be
required to be performed at runtime,
leading ROSA to configure the AUV
appropriately to carry out the inspection
action

start-time:Datetime

end-time:Datetime

result:String

measurement “Measurement is defined as the act of
evaluating the measures” (IEEE Approved
 Draft Standard for Robot Task
 Representation, 2024)

The battery level Quality
Attributes can have a measurement of
0.5

value:Double

time:Datetime

constraint Represents Measure constraints for
performing a Action or for selecting a
function design, Component,

or component configuration

If the water visibility environmental
attribute is low, the high altitude
configuration for the generate spiral search
path node cannot be selected

operator:String

value:Double

status:String

estimation Represents the estimated impact of a
function design, Component,

or component configuration on a
Measure

A lamp Component is expected to
positively impact the water visibility when
turned on

value:Double

type:String

Instances of the elements with purple font are created at runtime. Instances of the other elements are defined at design time. The “@key” expression after an attribute indicates that the attribute
is used as a unique identifier. E stands for entity and R stands for relationship.

2. many-to-many relationships: the knowledge model contains
relationships with different cardinalities5, e.g., function
design is a 1 Function-to-many Components

relationship;
3. higher-order relationships: some relationships relate

relationships to relationships, e.g., the constraint

relationship;
4. attributes for entities and relationships: both entities and

relationships have attributes, e.g., the Action entity and the
constraint relationship.

These requirements limit which technology can be used. For
example, technologies using graph-based or descriptive logic-
based knowledge representation techniques (e.g., OWL (Antoniou
and van Harmelen, 2004)) do not satisfy the representation
requirements above apart from allowing attributes for entities

5 The number of element instances that can be part of a relationship.

(part of Requirement 4). Although it is possible to transform
the proposed knowledge model into one that can be represented
with graph-based or description logic-based approaches by reifying
the model (Olivé, 2007), each reification applied to the original
model can be considered as an introduction of a semantic disparity
between the CDM and the machine-readable model, making it
harder to understand and reuse it. Thus, this work does not consider
applying reification.

A technology that satisfies all representation requirements is
TypeDB (Dorn and Pribadi, 2023; 2024). TypeDB is a polymorphic
database based on type theory that implements the polymorphic
entity-relation-attribute (PERA) (Dorn and Pribadi, 2024) data
model. The PERA model subsumes the CDM used as the
meta-model for the proposed ROSA model, allowing it to be
implemented without modifications. Furthermore, TypeDB has a
reasoning system that is able to reason over rules of the form
antecedent ⇒ consequent to infer new facts at query time.
Where antecedent represents a precondition for inferring the

Frontiers in Robotics and AI 10 frontiersin.org188

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 4 The elements of the reconfiguration plan knowledge.

Name Definition Example Attributes

R

reconfiguration plan Represents the reconfiguration
plan generated in the plan step

When the AUV completes the
search pipeline action and starts
the inspect pipeline action, the
reconfiguration plan

consists of deactivating the
generate spiral search path node
and activating the follow
pipeline node

start-time:Datetime

end-time:Datetime

result:String

component activation Represents the components
that should be activated

When the AUV starts the
inspect pipeline action, the
component activation

relates to the follow pipeline
node

N/A

component deactivation Represents the components
that should be deactivated

When the AUV completes the
search pipeline action, the
component

deactivation relates to the
generate spiral search path node

N/A

parameter adaptation Represents the component
parameters that should be
updated

When the water visibility
changes, the parameter
adaptation consists of a
parameter adaptation of the
component configuration of
the generate spiral search path
node

N/A

Instances of the elements with purple font are created at runtime. Instances of the other elements are defined at design time. R stands for relationship.

consequent and is expressed as a first-order logic expression
combining elements from the model (i.e., entities, relationships,
and individuals), and the consequent is a single new fact
inferred when the antecedent holds true. The ROSA model
rules presented in Figure 3 can be implemented with TypeDB
without modifications. For these reasons, this work uses TypeDB to
implement the proposed knowledge model and rules.

6.2 Implementation

ROSA is implemented as a ROS 2-based system, where the
MAPE-K components (depicted in Figure 1) are realized as ROS
nodes, and interfaces are implemented using ROS services or topics.
The proposed ROSA implementation uses ROS (Robot Operating
System) as its robotics framework since ROS is the current de facto
standard robotics framework, and it has been designed, among other
things, to promote software reusability in the robotics ecosystem
(Macenski et al., 2022). In this implementation, ROS handles the
communication between system components, schedules callbacks
for incomingmessages and events, andmanages the lifecycle of ROS
nodes. The full ROSA implementation is available at https://github.
com/kas-lab/rosa6.

6 In addition to ROSA, this work provides a generic ROS package to

integrate ROS 2 with TypeDB: https://github.com/kas-lab/ros_typedb.

6.2.1 Knowledge base and analyze
The KB component consists of the TypeDB implementation

of the proposed knowledge model and inference rules, the ROS
interfaces for communicating with the MAPE components, and
the logic to manage ROSA’s knowledge which is stored in
a TypeDB database. In this reference ROSA implementation,
TypeDB’s reasoner fulfills the role of the analyze component,
executing ROSA’s inference rules (Figure 3) to infer new data when
the KB is queried. Thus, since TypeDB’s reasoner is part of TypeDB,
there is no separate analyze component.

6.2.1.1 Knowledge model and rules
To exemplify how the knowledgemodel is implemented, Listing 1

depicts how the functional-requirement relationship and
the Action entity are defined with TypeQL (TypeDB’s query
language). Line 1 defines the functional-requirement

relationship, and lines 2-3 define that it can relate elements that
play the role of actions and required-functions. Lines 4-6 define
the Action entity and that it has the attributes “action-name” (its
unique identifier) and “action-status”. Lines 7-8 define that it can play
the action role in a functional-requirement relationship
and the constrained role in a constraint relationship.

Listing 2 exemplifies how the inference rules are implemented
with TypeQL. The component-status-configuration-error rule
defines that a Component has a “configuration error” status when it
is required, it does not have an “unfeasible” or “failure” status, and

Frontiers in Robotics and AI 11 frontiersin.org189

https://doi.org/10.3389/frobt.2025.1531743
https://github.com/kas-lab/rosa
https://github.com/kas-lab/rosa
https://github.com/kas-lab/ros_typedb
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

functional−requirement sub relation,

 relates action,

 relates required−function;

Action sub entity,

 owns action−name @key,

 owns action−status,

 plays functional−requirement:action,

 plays constraint:constrained;

Listing 1. TypeQL query to define functional-requirement and Action.

it is in a component-configuration relationship that is selected and
has an “unfeasible” status (see Figure 3c).

rule component−status−configuration−error:

 when {

  $c isa  Component, has  is−required true;

  not {

  $c has status $c_status;

  $c_status like "unfeasible|failure";

  } ;

  (component: $c) isa component−configuration,

  has is−selected true,

  has status "unfeasible";

 }then {

  $c has status "configuration error";

 };

Listing 2. TypeQL rule to infer whether a component is in
“configuration error”.

6.2.1.2 Interfaces
The KB component abstracts the details of interacting with

TypeDB with the ROS interfaces it implements, enabling the
MAPE components to read and write knowledge via the interfaces
described in Table 5. When the MAPE components request or send
data to the KB component via these interfaces, the KB component
queries the TypeDB database to retrieve or write knowledge. For
example, when the task decision layer calls the selectable service
/action/selectable to retrieve the name of the selectable Actions
(i.e., actions that do not have an “unfeasible” status), the KB
component performs the TypeQL query depicted in Listing 3 to
retrieve the name (unique identifiers) of the selectable Actions.
When data is written in the KB, the KB component publishes a
message in the /events topic specifying which type of data was
written, i.e., “monitoring data”, “action update”, “reconfiguration
plan”. Additionally, the KB component provides the /query service,
which can be used to perform any TypeDB query to the database.
It is not used in ROSA’s runtime workflow, but it enables users to
perform custom queries, for example, to retrieve all reconfiguration
plans that were executed.

TABLE 5 ROS interfaces.

Topics

Publisher Subscriber Name

KB

Configuration planner

∼/eventsExecute

Task decision layer

Monitor nodes KB /diagnostics

Services

Server Client Name

KB

Configuration planner

∼/function/adaptable

∼/function_
designs/selectable

∼/function_designs/priority

∼/component/adaptable

∼/component_
configuration/selectable

∼/component_
configuration/priority

∼/select_configuration

Execute

∼/reconfiguration_
plan/get_latest

∼/reconfiguration_
plan/result/set

∼/component/active/set

∼/component_
parameters/get

Task decision layer
∼/action/selectable

∼/action/request

User ∼/query

match $a isa Action, has name $name;

 not { $a has status "unfeasible";};

 fetch $name;

Listing 3. TypeDB query to fetch selectable actions’ names.

Frontiers in Robotics and AI 12 frontiersin.org190

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

6.2.2 Monitor
ROSA’s implementation does not provide generic monitor

nodes. They should be implemented as needed for each application
with the requirement that they publish the monitored information
in the /diagnostics topic7 with the standard ROS DiagnosticArray
message format. When a monitor node sends measurement updates
to the KB, the message field in the DiagnosticStatus message needs
to be set to “QA measurement” or “EA measurement”, and when
sending component status updates (e.g., that the component is in
failure), the message field must be set to “Component status”. When
the KB receives monitoring data, it sends an event message in the
“/events” topic to inform thatmonitoring datawaswritten in theKB.

6.2.3 Configuration planner
The configuration planner component selects the configurations

(i.e.,function designs orcomponent configuration)
with the highest priority. When the configuration planner receives
an event message indicating that monitoring data was written in the
KB or that there was an update in the required actions, it calls
the services “/function/adaptable” and “/component/adaptable”
to check which Functions and Components must be
adapted. Then, it calls the services “/function/selectable” and
“/component/selectable” to check which function designs

and component configurations are available for the
Functions and Components that need to be adapted. Finally,
the configuration planner selects the function designs

and component configurations with the highest priority
and informs the KB about the newly selected configuration by
calling the service “/select_configuration”. When this service
is called, the KB component checks the current state of the
robot, creates a reconfiguration plan to bring the robot
to the goal configuration, and sends an event message in the
“/events” topic to inform that there is a new reconfiguration
plan available.

6.2.4 Execute
In ROS-based systems, software components are realized either

as ROS nodes or as a particular type of ROS nodes called lifecycle
nodes. The difference between both is that the latter can be set
to different states at runtime, such as active and inactive, and the
former cannot. To enable ROSA to leverage ROS 2 mechanisms to
adapt the system, the knowledge model was extended to capture
knowledge about ROS 2 components as depicted in Figure 4. The
execute component performs structural adaptation by starting or
killing ROS nodes or switching the state of lifecycle nodes to
active or inactive, and it performs parameter adaptation by calling
the ROS’s parameter API to change the ROS nodes’ parameters
at runtime.

When the execute component receives an event message
indicating that a new reconfiguration plan was added to the
KB, it calls the service “/reconfiguration_plan/get_latest” to
get the latest reconfiguration plan. Then, it adapts
the robot’s architecture according to the reconfiguration plan.

7 The /diagnostics topic is a standard topic for publishing system diagnosis

information within the ROS ecosystem. See ROS REP 107 for more

information.

FIGURE 4
ROS specific knowledge.

Finally, it calls the services “/reconfiguration_plan/result/set” and
“/component/active/set” to update the KB with the result of the
reconfiguration plan and which components are active.

6.2.5 Task decision layer
ROSA’s implementation provides an integration for the task

decision layer for both PDDL-based planners and BTs, which are
implemented leveraging the PlanSys2 (Martín et al., 2021) and the
BehaviorTree.CPP8 packages, respectively.

6.2.5.1 Planning
To enable task decision-making and execution with PDDL-

based planners in combination with ROSA, the planner and plan
executor must consider the runtime feasibility of performing the
robot’s actions as inferred by the KB component.This workmaps the
action status from ROSA’s knowledge model to PDDL by capturing
whether the action’s status is feasible as a PDDL predicate of the
form “action_feasible ?action” and using it as a precondition to
select the respective action. An example can be seen in Listing 4
where the action my_action can only be selected when it does
not have an “unfeasible” status in the KB. At runtime, if an
action becomes unfeasible during execution, the plan executor
triggers re-planning to generate a new action plan. This results
in task execution adaptation and, if the newly selected actions
require a different architectural configuration, also in architectural
adaptation, i.e., TACA.

To handle the interaction between PlanSys2 and ROSA’s KB,
this work provides a custom ROS 2 node called RosaPlanner and
a custom PlanSys2 action called RosaAction. The RosaPlanner is
responsible for querying the KB and updating the PDDL problem
formulation with information on whether the ROSA actions are
feasible or not using the aforementioned “action_feasible ?action”
PDDL predicate. The RosaAction action is responsible for querying
the KB to request or cancel an Action when the execution of

8 https://www.behaviortree.dev/

Frontiers in Robotics and AI 13 frontiersin.org191

https://doi.org/10.3389/frobt.2025.1531743
https://www.behaviortree.dev/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

(:durative−action my_action

 :parameters (?a − action...)

 :duration (...)

 :condition (and

  (over all(my_action_action ?a))

  (over all(action feasible ?a))

  ...

 )

 :effect (and...)

)

Listing 4. PDDL formulation example for ROSA.

FIGURE 5
BT pattern for TACA with ROSA. The IsActionFeasible condition node
takes the action name as a parameter. The MyAction node derives
from the proposed RosaAction node and implements the action
execution. The action names in the BT must match the names
defined in the KB.

an action starts or finishes. Each PlanSys2 action that should be
managed by ROSA should derive from RosaAction, and it should
implement the logic for the specific action execution.

6.2.5.2 Behavior trees
To enable task decision-making and execution with BTs in

combination with ROSA, the BTs must consider the runtime
feasibility of performing the robot’s actions as inferred by the
KB component. This work proposes adding before action nodes a
condition node that queries the KB to ask whether the following
action is feasible.Theproposed pattern is depicted in Figure 5, where
the action MyAction would only be executed when its status in the
KB is not “unfeasible”.

To enable the use of the BehaviorTree.CPP package to
implement BTs for ROSA and abstract away the interactions with
the KB, this work implements a reusable custom condition node
called IsActionFeasible and a custom action node called RosaAction.
The condition node queries the KB to check whether an Action

is feasible before selecting it to be executed, and the action node
queries the KB to request or cancel an Action when the execution
of an action starts or finishes, respectively.

7 Evaluation

This section evaluates ROSA to answer the following questions:

• Feasibility: Is it feasible to use ROSA to enable runtime TACA
in ROS 2-based robotic systems?

• Performance: How does ROSA perform compared to other
managing subsystems for ROS 2-based systems?
• Reusability: To what extent can ROSA’s knowledge model

capture the knowledge required for TACA?
• Development effort: What is the development effort of using

ROSA for adding adaptation to different robotic systems and
how does it compare to other approaches?
• Development effort scalability: How does the development

effort of using ROSA for adding adaptation to robotic systems
scale for more complex systems?

7.1 Experimental design

7.1.1 Feasibility
To evaluate the feasibility of applying ROSA at runtime to enable

TACA in ROS 2-based robotic systems, it was applied to the SUAVE
exemplar described in Section 2. SUAVE was selected since, to the
best of our knowledge, it is the only ROS 2-based open-source
exemplar for self-adaptive robotic systems.

7.1.2 Performance
To evaluate ROSA’s performance, metrics were collected

with the SUAVE exemplar. The metrics collected were the ones
available in SUAVE, search time and distance of the pipeline
inspected, in addition to the reaction time metric introduced
in this paper. For the original use case, the experiments were
performed with no managing subsystem, with a BT managing
system, with Metacontrol9, and with ROSA. For the extended use
case, the experiments were performed with a BT managing system
and with ROSA.

7.1.3 Reusability
To evaluate to what extent ROSA’s knowledge model can

capture the knowledge required for TACA, it was used to model
the TACA scenarios presented by Cámara et al. (2020) and
Braberman et al. (2017)10, and we showcase how the captured
knowledge can be exploited to enable TACA.The experimental setup
for both scenarios is not publicly available. Thus, it was not possible
to apply ROSA at runtime to the simulated environments they used.

7.1.4 Development effort
To evaluate the development effort of using ROSA to enable

adaptation in robotic systems, we analyze the number of elements
contained in the ROSA model created to solve the use cases
described in this paper. Furthermore, we compare it to the
number of elements modeled with the BT approach to solve the
SUAVE use case.

9 Metacontrol is the only managing subsystem packaged with SUAVE. The

Metacontrol implementation for this use case is described in detail in the

SUAVE paper (Silva et al., 2023).

10 To the best of our knowledge, these are the only two scenarios in the

literature in which the authors explicitly claim the need for TACA.

Frontiers in Robotics and AI 14 frontiersin.org192

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

7.1.5 Development effort scalability
To analyze how ROSA’s development effort scales for more

complex use cases, we showcase how many elements must be
modeled in ROSA’s model to include structural and parameter
adaptation in a hypothetical adaptation scenario.

The experimental setup for the Feasibility and Performance
evaluation is open source and reproducible, it can be found
at https://github.com/kas-lab/suave_rosa. The models designed
to evaluate Reusability can be found at https://github.com/kas-
lab/rosa_examples.

7.2 Feasibility

7.2.1 Experimental setup
To solve the adaptation scenarios of the SUAVE exemplar with

ROSA, the model depicted in Figure 6 was created.
Thruster failure (U1) was solved with structural adaptation by

including two possible function designs of the maintain
motion function. Runtime behavior: when a thruster fails, the
maintain function design status is set to unfeasible (see Figure 3d),
and it cannot be selected anymore.Then, the recover function design
is selected, and the recover thruster node component is activated. If all
thrusters are recovered, themaintain function design status becomes
feasible and is selected again.

Changing water visibility (U2) was addressed with parameter
adaptation by including three component configurations

for the generate spiral node, each representing a different altitude
for searching for the pipeline. Furthermore, a water visibility
constraint was added to each configuration, representing the
minimum water visibility in which the configuration can be used.
Runtime behavior: if themeasuredwater visibility is higher than 3.25,
the component configuration High is selected since it has priority
number one. If the water visibility drops below 3.25, its constraint
status is set to violated (see Figure 3a), and, consequently, its status
is set to unfeasible (see Figure 3b). Depending on the water visibility,
the component configuration Medium or Low is then selected. If
the water visibility increases again above 3.25, the High component
configuration status becomes feasible and is selected.

Critical battery level (U3), occurring only in the extended SUAVE
use case, was solved with TACA by extending the knowledge
model with a recharge action, and a battery level constraint
to the search pipeline and inspect pipeline actions, representing the
minimum battery level at which they can be selected. Runtime
behavior: when the battery level drops below 0.25, the status of both
the search pipeline and inspect pipeline actions is set to unfeasible,
and the task decision layer cannot select them anymore. Therefore,
the task decision layer selects the recharge action which also triggers
structural adaptation.

Note that extending the solution to solve SUAVE’s extended
version only required the inclusion of additional knowledge of
the recharge action and the constraint to the search pipeline
and inspect pipeline actions. This demonstrates that an existing
application modeled with ROSA can easily be extended to solve
additional adaptation scenarios.

To apply ROSA in simulation to the SUAVE exemplar, the
knowledge model depicted in Figure 6 was implemented with
TypeDB (see an example in Listing 5), and the AUV’s mission was

implementedwith the BTdepicted in Figure 7 aswell with the PDDL
formulation partially shown in Listing 6.

Action search pipeline

$a_search_pipeline isa Action, has action−name

 "search_pipeline";

$f_generate_search_path isa Function, has

function−name

 "generate_search_path";

functional-requirement relationship

(action: $a_search_pipeline,

required−function: $f_generate_search_path,

required−function: $f_maintain_motion)

isa functional−requirement;

Listing 5. Snippet of SUAVE’s use case implementation in TypeDB.

7.2.2 Result
During the mission execution, the AUV was able to overcome

all uncertainties: adapting to thruster failures (U1) with structural
adaptation, to changing water visibility (U2) with parameter
adaptation, and to an unexpected drop in the battery level (U3)
with TACA, demonstrating the feasibility of using ROSA to enable
runtime TACA in ROS 2-based robotic systems.

(:durative−action search_pipeline

 :parameters (?a − action ?p − pipeline ?r −

robot)

 :condition (and

  (over all(robot_started ?r))

  (over all(search_pipeline_action ?a))

  (over all(action_feasible ?a))

 )

 :effect (and

  (at end(pipeline_found ?p))

 )

)

...

Listing 6. Snippet of the PDDL domain formulation for SUAVE containing
the search pipeline action definition.

7.3 Performance

7.3.1 Experimental setup
To evaluate ROSA’s performance, the SUAVE exemplar

was configured with the same parameters as described in the
SUAVE paper (Silva et al., 2023). In addition, for the extended
use case, the battery was set to discharge within 200 s, and the search
pipeline and inspect pipeline actions were set to require at least 25%
of battery to be performed.

7.3.2 Results
Theresults obtained are shown inTable 6.Thedifferentmanaged

subsystems had similar performance despite the difference in their

Frontiers in Robotics and AI 15 frontiersin.org193

https://doi.org/10.3389/frobt.2025.1531743
https://github.com/kas-lab/suave_rosa
https://github.com/kas-lab/rosa_examples
https://github.com/kas-lab/rosa_examples
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 6
ROSA model for SUAVE.

reaction time. Furthermore, since the performance with ROSA was
better than without a managing subsystem and close to the other
managing subsystems, it can be considered as additional evidence
of the feasibility of applying it at runtime to enable self-adaptation
in robotic systems.

7.4 Reusability

7.4.1 Autonomous ground vehicle use case
In this scenario, an AGV has to navigate from an initial to a goal

position in a graph-like environment while facing uncertainties such
as component failures, corridors with obstacles, and changing light
conditions (Cámara et al., 2020).

The AGV has distinct architectural variants available to solve
navigation. It has three localization algorithms (AMCL, MRPT, or
aruco) and three sensing components (camera, lidar, or Kinect).
However, there are some restrictions on how they can be combined.
The AMCL and MRPT algorithms can only be combined with lidar
or Kinect, and the aruco algorithm can only be combined with a
camera. In low-light conditions, the camera can only be used with

a lamp. Furthermore, the robot can move at three different speeds.
Each configuration has a different energy cost, safety, and accuracy
level. This scenario can be solved with ROSA with the knowledge
model depicted in Figure 811.

When navigating, the robot performs adaptation by selecting
which corridors it needs to go through given its feasible
configurations, and by selecting a suitable architecture configuration
for each corridor it goes through. For example, to go from point A
to B, the AGV can go directly through a corridor with obstacles C1
or through corridors C4→ C3→ C2 without obstacles. Ideally, the
AGV should go through C1 as it is the shortest path. Considering
that the Kinect and AMCL combination is the only one with enough
accuracy to go through a corridor with obstacles, in the case that the
Kinect fails, the robot needs to perform TACA by adapting its task
plan to go through C4→ C3→ C2 while simultaneously adapting
its architecture, e.g., to use the lidar as its sensing component.

11 The accuracy estimation for fd1 and fd2 and all energy estimations are

omitted from the figure to improve readability.

Frontiers in Robotics and AI 16 frontiersin.org194

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 7
Behavior tree for the extended SUAVE use case.

7.4.2 Unmanned aerial vehicle use case
In this scenario, a UAV has to search for samples in a predefined

area and analyze them (Braberman et al., 2017). To accomplish
this mission, the UAV can perform the actions (A1) search for
samples, (A2) pick up and analyze samples, (A3) analyze samples
on site, (A4) return to base and recharge, and (A5) land and fold
gripper. The analyze action A2 performs a better analysis than
A3, however, it consumes more battery. Furthermore, action A2
requires a gripper, while A3 requires an infra-red camera. When
operating, the UAV might run out of battery, and its gripper
might fail.

There are three adaptation scenarios in this use case: (1) if the
battery level is insufficient to perform A1, the UAV must perform
A4; (2) if the battery level is insufficient to perform A2 but it is

still sufficient to perform A3, the UAV must perform A3; (3) if the
gripper fails while performingA2, the UAVmust performA3. Before
transitioning from A2 to A3, the UAV must first perform A5.

Adaptation scenarios 1 and 2 can be solved with ROSA’s
knowledge model by capturing the battery level as a Quality

Attribute and using it as a constraint for actions A1
and A2. Adaptation scenario 3 can be solved by capturing that
the Function required by A2 requires a gripper component.
Furthermore, the task decision layer is responsible for guaranteeing
that A3 is only performed when A5 is finished.

7.4.3 Results
This evaluation demonstrates that in addition to SUAVE, the

knowledge required for the adaptation logic to solve the AGV and

Frontiers in Robotics and AI 17 frontiersin.org195

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 6 Mission results.

Managing system Number of runs Search time (s) Distance inspected
(s)

Mean reaction
time (s)

Mean Std dev Mean Std dev U1 U2 U3

SUAVE

 None 100 174.75 36.00 33.20 13.49 N/A N/A N/A

 BT 100 84.09 26.41 62.70 7.78 0.08 0.10 N/A

 Metacontrol 100 89.24 35.57 60.57 11.17 1.55 0.82 N/A

 ROSA 100 85.11 32.48 60.76 10.29 1.24 1.57 N/A

SUAVE extended

 BT 100 94.37 34.92 20.88 3.81 0.07 0.10 1.09

 ROSA 100 92.75 35.92 18.97 3.38 1.39 1.67 2.50

FIGURE 8
ROSA model for the AGV use case (Cámara et al., 2020).

UAV use cases can be captured with ROSA’s knowledge model.
This indicates that ROSA’s knowledge model can be used to capture
the knowledge required for TACA in adaptation scenarios similar
to the ones presented. Furthermore, it shows that all entities and
relationships contained in the proposed knowledge model had to be
used to model the aforementioned adaptation scenarios, supporting
their inclusion in the knowledge model.

7.5 Development effort

7.5.1 Experimental setup
To measure ROSA’s development effort for each use case, we

count the number of entities and relationships contained in the
models created for the use cases presented. To measure the BT
managing system development effort for SUAVE, we count the

Frontiers in Robotics and AI 18 frontiersin.org196

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

TABLE 7 Development effort of using ROSA and BTs as managing
subsystems.

ROSA

Use case Entities Relations Total

SUAVE 18 12 30

SUAVE extended 22 16 38

AGV 18 36 54

UAV 24 16 40

Behavior tree

Use case BT System
modes

Total

SUAVE 27 30 57

SUAVE extended 34 38 72

number of nodes contained in the BTs created to solve it, and the
number of modes and parameters included in the System Modes’
configuration file already packaged in SUAVE. In the remainder of
this paper, we denote the elements modeled in both approaches as
overhead.

7.5.2 Results
The overhead for both approaches can be seen in Table 7.

Although it is not possible to make a straightforward comparison
between the development efforts of both approaches using the
observed overheads since the difficulty ofmodeling an element using
the different modeling techniques is subjective, analyzing the reason
for the observed overheads provides insights for comparing the
development efforts of both approaches.

7.5.2.1 ROSA
In TypeDB, each entity and relationship is inserted in the KB

with TypeQL queries such as the ones presented in Listing 5. Thus,
the total number of queries that the roboticist must define to solve
an adaptation scenario is equal to the sum of the number of entities
and relationships contained in the model, with a clear separation
between the task and adaptation logic.

7.5.2.2 BT managing system
The BT used to model SUAVE’s task logic without adaptation

contains 10 nodes, and the BT used for the extended use
case contains 16 nodes. These values were deducted from the
development effort metric for the BT managing system since they
are independent of the adaptation problem.

Figure 9 depicts the pattern used to model SUAVE’s search
pipeline action and its related adaptations12. As can be seen, there
is no separation between the task and adaptation logic, which is
the main limitation of using BTs in comparison to using ROSA to

12 The full BT can be found in the SUAVE repository.

model the adaptation logic. The coupling of both logics hinders the
reusability of the approach as another system with the same task
logic but different adaptation logic, or vice-versa, cannot reuse the
existing BTs. In addition, when any changes are made to the task or
adaptation problems, it will most likely require changes to parts of
the BT that are not necessarily related to the changes introduced.
Furthermore, it makes the modeling process more difficult as the
roboticist needs to consider both problems simultaneously when
modeling the BTs.

7.6 Development effort scalability

7.6.1 Experimental setup
To evaluate how ROSA’s development effort scales for more

complex use cases, we analyze how the development effort of a base
scenario growswith the addition of new actions and adaptations.The
growth for adding actions and adaptations depends on the specific
application. Thus, we make the following assumptions to generalize
and simplify the analysis of adding adaptation.

Assumption 1: Every action requires one function that has only
one configuration available consisting of a single component with no
parameters.

Assumption 2: Every Component is a ROSNode containing
one package and one executable attribute; every ROSNode
has one component configuration with one Component
Parameter; every function design and component

configurationmust be related to a constraint and contain
a priority attribute; and a single Quality Attribute is
defined for the whole system.

7.6.2 Results
Consider a base scenario where the robot has only one action

and complies with Assumption 1 and Assumption 2. The ROSA
model to solve it contains 10 elements and is depicted in Figure 10a.

To add structural adaptation to the base scenario (given
Assumption 2), it is necessary to add the elements depicted in
Figure 10b to the model. This results in a minimum overhead
of 6 elements for each structural adaptation. To add parameter
adaptation to the base scenario (given Assumption 2), it is necessary
to add the elements depicted in Figure 10c to the model. This
results in a minimum overhead of 3 elements for each parameter
adaptation.

In conclusion, given Assumption 1 and Assumption 2, the total
overhead per action can be defined as 10+ 6∗ nsa + 3∗ npa, where
nsa and npa represent the number of structural and parameter
adaptations for the action, respectively.This indicates that the ROSA
model grows linearly with the number of actions and adaptations,
which is made possible by the clear separation of the task and
adaptation logic.

8 Conclusions and future work

This work proposed ROSA, a knowledge-based solution
for task-and-architecture co-adaptation in robotic systems that

Frontiers in Robotics and AI 19 frontiersin.org197

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

FIGURE 9
Snippet of the BT used to capture SUAVE’s task and adaption logic. WV and BL represent the measured water visibility and battery level, respectively.
GSP, MM, and FP represent SUAVE’s generate search path node, maintain motion node, and follow pipeline node, respectively. The set action changes
the system’s modes.

FIGURE 10
Minimum knowledge required to model adaptation given Assumption 1 and Assumption 2. The name attribute is depicted as name: Entity or name:
Relationship inside each diamond and rectangle shape, respectively. (a) Base model. (b) Structural adaptation. (c) Parameter adaptation.

promotes reusability, extensibility, and composability. Reusability
was achieved by proposing a knowledge model that can capture
the knowledge required for TACA and using it at runtime
to reason about adaptation. Extensibility and composability
were achieved with an architectural design that allows ROSA’s
components to be stateless and self-contained. The feasibility of
using ROSA in robotic systems at runtime was demonstrated

by applying it in simulation to the SUAVE exemplar. ROSA’s
reusability was demonstrated by using it to model different self-
adaptive robotic systems and showing that it can capture all
relevant knowledge for adaptation necessary for these use cases.
Furthermore, ROSA’s development effort and its scalability were
demonstrated for the use cases presented in this paper and for a
hypothetical scenario.

Frontiers in Robotics and AI 20 frontiersin.org198

https://doi.org/10.3389/frobt.2025.1531743
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

ROSA modular architecture has been designed to provide reuse
and extensibility of the framework by future works applying self-
adaptation principles in robotics architectures. For example, the
current ROSA implementation supports integration with robotics
architectures using planning or behavior tree solutions for the task
deliberation layer, but it would be interesting to extend it to support
other decision-making methods, such as state machines or Markov
decision processes.

As a future work, we intend to integrate learning in ROSA. For
example, machine learning methods could be explored to update
at runtime the Quality Attribute and Environmental

Attribute estimations and constraints values. Another
possibility is learning that constraints and estimations exist without
prior knowledge, i.e., learning that the relationship itself should be
modeled. ROSA’s interfaces to manipulate the KB at runtime could
be exploited for this end.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

GR: Conceptualization, Investigation, Methodology,
Software, Writing – original draft, Writing – review and
editing. JP: Conceptualization, Writing – review and editing.
ST: Conceptualization, Writing – review and editing. EJ:
Conceptualization, Writing – review and editing. CH:
Conceptualization, Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by the European Union’s Horizon 2020 Framework
Programme through the MSCA network REMARO (Grant
Agreement No 956200).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998). An architecture
for autonomy. Int. J. Robotics Res. 17, 315–337. doi:10.1177/.027836499801700402

Alberts, E., Gerostathopoulos, I., Malavolta, I., Hernández Corbato, C., and Lago,
P. (2025). Software architecture-based self-adaptation in robotics. J. Syst. Softw. 219,
112258. doi:10.1016/j.jss.2024.112258

Antoniou, G., and van Harmelen, F. (2004). “Web ontology language: OWL,” in
Handbook on ontologies. International handbooks on information systems. Editors S.
Staab, and R. Studer (Springer), 67–92. doi:10.1007/.978-3-540-24750-0_4

Barnett, W., Cavalcanti, A., and Miyazawa, A. (2022). Architectural modelling
for robotics: RoboArch and the CorteX example. Front. Robot. AI 9, 991637.
doi:10.3389/frobt.2022.991637

Beetz, M., Mösenlechner, L., and Tenorth, M. (2010). “CRAM — a Cognitive
Robot Abstract Machine for everyday manipulation in human environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1012–1017.
doi:10.1109/IROS.2010.5650146

Board, S. E. (2023). “The guide to the systems engineering body of knowledge
(SEBoK), v. 2.8,” in BKCASE is managed and maintained by the Stevens Institute
of Technology Systems Engineering Research Center, the International Council on
Systems Engineering, and the Institute of Electrical and Electronics Engineers Systems
Council. Editor R. J. Cloutier (Hoboken, NJ: The Trustees of the Stevens Institute of
Technology).

Bozhinoski, D., Oviedo, M. G., Garcia, N. H., Deshpande, H., van der Hoorn, G.,
Tjerngren, J., et al. (2022). MROS: runtime adaptation for robot control architectures.
Adv. Robot. 36, 502–518. doi:10.1080/01691864.2022.2039761

Bozhinoski, D., and Wijkhuizen, J. (2021). “Context-based navigation for
ground mobile robot in semi-structured indoor environment,” in 2021 fifth IEEE
international conference on robotic computing (IRC), 82–86. doi:10.1109/IRC52146.
2021.00019

Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., and Uchitel, S. (2017).
“An Extended Description of MORPH: A Reference Architecture for Configuration
and Behaviour Self-Adaptation,” in Software engineering for self-adaptive systems
III. Assurances. Editors R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese (Cham:
Springer International Publishing, Lecture Notes in Computer Science), 377–408.
doi:10.1007/978-3-319-74183-3_13

Cámara, J., Schmerl, B., and Garlan, D. (2020). “Software architecture and task
plan co-adaptation for mobile service robots,” in Proceedings 15th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS ’20) (New York, NY: Association for computing Machinery), 20, 125–136.
doi:10.1145/.3387939.3391591

Carreno, Y., Scharff Willners, J., Petillot, Y. R., and Petrick, R. (2021). “Situation-
aware task planning for robust AUV exploration in extreme environments,”
in Proceedings IJCAI Workshop on Robust and Reliable Autonomy in
the Wild.

Chen, P. P. (1976).The entity-relationshipmodel - toward a unified view of data.ACM
Trans. Database Syst. 1, 9–36. doi:10.1145/320434.320440

Colledanchise, M., and Ögren, P. (2018). Behavior trees in robotics and AI: an
introduction. (Boca Raton: CRC Press). doi:10.1201/9780429489105

Dorn, C., and Pribadi, H. (2023). “Type theory as a unifying paradigm for
modern databases,” in Proceedings 32nd International Conference on Information and
Knowledge Management (CIKM 2023). Editors I. Frommholz, F. Hopfgartner, M. Lee,
M. Oakes, M. Lalmas, M. Zhang, et al. (New York, NY: Association for Computing
Machinery), 5238–5239. doi:10.1145/3583780.3615999

Dorn, C., and Pribadi, H. (2024). TypeQL: A Type-Theoretic & Polymorphic Query
Language. Proc. ACM Manag. 27. doi:10.1145/3651611

Garcia, S., Menghi, C., Pelliccione, P., Berger, T., and Wohlrab, R. (2018).
“An architecture for decentralized, collaborative, and autonomous robots,” in

Frontiers in Robotics and AI 21 frontiersin.org199

https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.1177/.027836499801700402
https://doi.org/10.1016/j.jss.2024.112258
https://doi.org/10.1007/.978-3-540-24750-0\string_4
https://doi.org/10.3389/frobt.2022.991637
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1080/01691864.2022.2039761
https://doi.org/10.1109/IRC52146.2021.00019
https://doi.org/10.1109/IRC52146.2021.00019
https://doi.org/10.1007/978-3-319-74183-3_13
https://doi.org/10.1145/.3387939.3391591
https://doi.org/10.1145/320434.320440
https://doi.org/10.1201/9780429489105
https://doi.org/10.1145/3583780.3615999
https://doi.org/10.1145/3651611
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Rezende Silva et al. 10.3389/frobt.2025.1531743

2018 IEEE International Conference on Software Architecture (ICSA), 75–7509.
doi:10.1109/ICSA.2018.00017

Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M., et al.
(1998). PDDL—the planning domain definition language. [Dataset].

Gherardi, L., and Hochgeschwender, N. (2015). RRA: Models and tools
for robotics run-time adaptation. IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS, 1777–1784. doi:10.1109/IROS.2015.
7353608

Hamilton, J., Stefanakos, I., Calinescu, R., and Cámara, J. (2022). “Towards adaptive
planning of assistive-care robot tasks,” Proceedings 4th International Workshop on
Formal Methods for Autonomous Systems (FMAS 2022), 371 of EPTCS, 175–183. M.
Luckcuck and M. Farrell. doi:10.4204/.EPTCS.371.12

Hernández, C., Bermejo-Alonso, J., and Sanz, R. (2018). A self-adaptation framework
based on functional knowledge for augmented autonomy in robots. Integr. Computer-
Aided Eng. 25, 157–172. doi:10.3233/ica-180565

Hochgeschwender, N., Schneider, S., Voos, H., Bruyninckx, H., and Kraetzschmar,
G. K. (2016). “Graph-based software knowledge: storage and semantic querying
of domain models for run-time adaptation,” in Proc. Intl. Conf. On simulation,
modeling, and programming for autonomous robots (SIMPAR 2016) (IEEE), 83–90.
doi:10.1109/SIMPAR.2016.7862379

IEEE Approved Draft Standard for Robot Task Representation (2024). P1872.1/D5.
IEEE, 1–35.

Kazhoyan, G., Stelter, S., Kenfack, F. K., Koralewski, S., and Beetz, M. (2021).
“The robot household marathon experiment,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), 9382–9388. doi:10.1109/.ICRA48506.2021.
9560774

Kephart, J. O., and Chess, D. M. (2003). The vision of autonomic computing.
Computer 36, 41–50. doi:10.1109/mc.2003.1160055

Kortenkamp, D., Simmons, R., and Brugali, D. (2016). Robotic systems
architectures and programming. Cham: Springer International Publishing, 283–306.
doi:10.1007/.978-3-319-32552-1_12

Kotseruba, I., and Tsotsos, K. J. (2018). 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artif. Intell. Rev. 53, 17–94.
doi:10.1007/s10462-018-9646-y

Lotz, A., Inglés-Romero, J. F., Vicente-Chicote, C., and Schlegel, C. (2013). “Managing
run-time variability in robotics software by modeling functional and non-functional
behavior,” in Enterprise, business-process and information systems modeling. Editors
S. Nurcan, H. A. Proper, P. Soffer, J. Krogstie, R. Schmidt, T. Halpin, et al. (Berlin,
Heidelberg: Springer Berlin Heidelberg), 441–455.

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W. (2022). Robot
operating system 2: design, architecture, and uses in the wild. Sci. Robotics 7, eabm6074.
doi:10.1126/scirobotics.abm6074

Martín, F., Clavero, J. G., Matellán, V., and Rodríguez, F. J. (2021). PlanSys2:
A planning system framework for ROS2. IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS, 9742–9749. doi:10.1109/IROS51168.2021.
9636544

Niemczyk, S., and Geihs, K. (2015). “Adaptive run-time models for groups
of autonomous robots,” in 2015 IEEE/ACM 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, 127–133.
doi:10.1109/.SEAMS.2015.21

Niemczyk, S., Opfer, S., Fredivianus, N., andGeihs, K. (2017). “Ice: self-configuration
of information processing in heterogeneous agent teams,” in Proceedings of the
Symposium on Applied Computing (New York, NY, USA: Association for Computing
Machinery, SAC ’17), 417–423. doi:10.1145/.3019612.3019653

Nordmann, A., Lange, R., and Rico, F. M. (2021). “System modes - digestible system
(re-)configuration for robotics,” in 2021 IEEE/ACM 3rd international Workshop on
Robotics Software Engineering (RoSE), 19–24. doi:10.1109/.RoSE52553.2021.00010

Olivé, A. (2007). Conceptual modeling of information systems. Springer.
doi:10.1007/978-3-540-39390-0

Park, Y.-S., Koo, H.-M., and Ko, I.-Y. (2012). A task-based and resource-aware
approach to dynamically generate optimal software architecture for intelligent service
robots. Softw. Pract. Exp. 42, 519–541. doi:10.1002/spe.1074

Sanchez-Lopez, J. L., Suárez Fernández, R. A., Bavle, H., Sampedro, C., Molina,
M., Pestana, J., et al. (2016). “Aerostack: an architecture and open-source software
framework for aerial robotics,” in 2016 International Conference onUnmannedAircraft
Systems (ICUAS), 332–341. doi:10.1109/ICUAS.2016.7502591

Silva, G. R., Päßler, J., Zwanepol, J., Alberts, E., Tapia Tarifa, S. L., Gerostathopoulos,
I., et al. (2023). “SUAVE: an exemplar for self-adaptive underwater vehicles,” in Proc.
18th IEEE/ACM symposium on software engineering for adaptive and self-managing
systems SEAMS 2023 (IEEE), 181–187.

Thalheim, B. (1993). Foundations of entity - relationship modeling. Ann. Math. Artif.
Intell. 7, 197–256. doi:10.1007/BF01556354

Thalheim, B. (2000). Entity-relationship modeling - foundations of database
technology. Springer.

Valner, R., Vunder, V., Aabloo, A., Pryor, M., and Kruusamäe, K. (2022). TeMoto:
a software framework for adaptive and dependable robotic autonomy with dynamic
resource management. IEEE Access 10, 51889–51907. doi:10.1109/access.2022.3173647

Weyns, D. (2020). An introduction to self-adaptive systems: a contemporary software
engineering perspective. John Wiley and Sons.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., et al. (2013).
“On patterns for decentralized control in self-adaptive systems,” in Software engineering
for self-adaptive systems II: international seminar, dagstuhl castle, Germany, october 24-
29, 2010 revised selected and invited papers. Editors R. de Lemos, H. Giese, H. A.Müller,
andM. Shaw (Berlin, Heidelberg: Springer), 76–107. doi:10.1007/978-3-642-35813-5_4

Frontiers in Robotics and AI 22 frontiersin.org200

https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.1109/ICSA.2018.00017
https://doi.org/10.1109/IROS.2015.7353608
https://doi.org/10.1109/IROS.2015.7353608
https://doi.org/10.4204/.EPTCS.371.12
https://doi.org/10.3233/ica-180565
https://doi.org/10.1109/SIMPAR.2016.7862379
https://doi.org/10.1109/.ICRA48506.2021.9560774
https://doi.org/10.1109/.ICRA48506.2021.9560774
https://doi.org/10.1109/mc.2003.1160055
https://doi.org/10.1007/.978-3-319-32552-1_12
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1109/IROS51168.2021.9636544
https://doi.org/10.1109/IROS51168.2021.9636544
https://doi.org/10.1109/.SEAMS.2015.21
https://doi.org/10.1145/.3019612.3019653
https://doi.org/10.1109/.RoSE52553.2021.00010
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1002/spe.1074
https://doi.org/10.1109/ICUAS.2016.7502591
https://doi.org/10.1007/BF01556354
https://doi.org/10.1109/access.2022.3173647
https://doi.org/10.1007/978-3-642-35813-5_4
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 16 July 2025
DOI 10.3389/frobt.2025.1592523

OPEN ACCESS

EDITED BY

Ivano Malavolta,
VU Amsterdam, Netherlands

REVIEWED BY

Calvin Cheung,
University of Michigan–Dearborn,
United States
Marco Stadler,
Johannes Kepler University of Linz, Austria

*CORRESPONDENCE

Lukas Dust,
lukas.dust@mdu.se

RECEIVED 12 March 2025
ACCEPTED 16 June 2025
PUBLISHED 16 July 2025

CITATION

Dust L, Gu R, Mubeen S, Ekström M and
Seceleanu C (2025) A model-based approach
to automation of formal verification of ROS
2-based systems.
Front. Robot. AI 12:1592523.
doi: 10.3389/frobt.2025.1592523

COPYRIGHT

© 2025 Dust, Gu, Mubeen, Ekström and
Seceleanu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

A model-based approach to
automation of formal verification
of ROS 2-based systems

Lukas Dust*, Rong Gu, Saad Mubeen, Mikael Ekström and
Cristina Seceleanu

School of Innovation, Design, and Technology, Mälardalen University, Västerås, Sweden

Formal verification of robotic applications, particularly those based on ROS
2, is desirable for ensuring correctness and safety. However, the complexity
of formal methods and the manual effort required for model creation and
parameter extraction often hinder their adoption. This paper addresses these
challenges by proposing a model-based methodology that automates the
formal verification process using model-driven engineering techniques. We
introduce a methodology which can be applied as a toolchain that automates
the initialization of formal model templates in UPPAAL using system parameters
derived from ROS 2 execution traces generated by the ROS2_tracing tool.
The toolchain employs four model representations based on custom Eclipse
Ecore metamodels to capture both structural and verification aspects of ROS
2 systems. The methodology supports both implemented and conceptual
systems and enables iterative verification of timing and scheduling parameters
through model-to-model and model-to-text transformations. A proof-of-
concept implementation demonstrates the feasibility of the proposed approach.
The designed toolchain supports verification using two types of UPPAAL
models: one for individual node verification (e.g., callback latency and buffer
overflow) and another for end-to-end latency analysis of ROS 2 processing
chains. Experiments conducted on two implemented and one conceptual
ROS 2 systems validate the correctness and adaptability of the toolchain. The
results show that the toolchain can automate parameter extraction and model
generation. The proposed methodology modularizes the verification process,
allowing domain experts to focus on their areas of expertise. It targets to
enhances traceability and reusability across different verification scenarios and
formal models. The approach aims to make formal verification more accessible
and practical to robotics developers.

KEYWORDS

ROS 2, robotic systems, formal verification, model checking, model-based engineering

1 Introduction

Ensuring that a robotic system’s design and implementation meet the requirements
specification is crucial for guaranteeing the system’s desired behavior. Various verification
methods are employed to achieve this, with formal methods, e.g., model checking, being
particularly effective due to their rigorous mathematical approach to analyzing complex
system models during the design phase (Carvalho et al., 2020). Model checking involves an
exhaustive exploration of the system’s model state space to verify that the system meets its

Frontiers in Robotics and AI 01 frontiersin.org201

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1592523
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1592523&domain=pdf&date_stamp=2025-07-15
mailto:lukas.dust@mdu.se
mailto:lukas.dust@mdu.se
https://doi.org/10.3389/frobt.2025.1592523
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1592523/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1592523/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1592523/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

specification, uncovering potential errors that might be missed
by traditional trial-and-error methods such as simulation and
experimentation (Dust et al., 2023a).

Despite its advantages, the application of formal model-
based approaches in distributed and complex systems poses
significant challenges. The steep learning curve associated with the
mathematical syntax and semantics of formal modeling languages
can be a barrier for robotic developers. Consequently, the high
initial effort required for model checking often deters its use in
industry, leading developers to rely on less rigorous, trial-and-
error methods (Rajkumar et al., 2010).

The Robot Operating System (ROS) (OpenRobotics, 2023b;
OpenRobotics, 2023a) is an open-source middleware that facilitates
rapid prototyping and deployment of robotic systems. ROS-based
systems, particularly those with safety-critical applications, have
stringent timing requirements that necessitate real-time capabilities
in the middleware. These capabilities are influenced by various
system components, including communication, task scheduling,
and execution. To address the limitations of ROS in real-
time applications, ROS 2 was developed, incorporating real-time
communication through the Data Distribution Service (DDS) C. S.
V. (Gutiéerrez et al., 2018). While DDS provides a robust framework
for real-time communication, the task scheduling in ROS 2 still
requires extensive analysis to ensure deterministic timing behavior
(Casini et al., 2019; Blaß et al., 2021).

Tools like ROS2_tracing (Bédard et al., 2022) and Autoware_
perf (Li et al., 2022) have been developed to trace system execution
and analyze performance based on execution traces. However,
these tools primarily offer experimental analysis, which may not
be exhaustive and could miss potential system errors. In contrast,
model checking offers a comprehensive verification approach
capable of identifying all potential bugs in the model. Despite this,
themanual application of formalmethods to ROS 2 systems remains
error-prone and time-consuming, requiring significant background
knowledge.

In our previous work (Dust et al., 2023a), we utilize
the UPPAAL model checker (Alur and Dill, 1994) to create
reusable templates for verifying timing behavior and buffer
overflow in ROS 2 systems. These templates simplify the
modeling process by allowing systems to be instantiated from
pre-defined templates rather than constructed from scratch.
However, this approach still requires detailed knowledge of static
and runtime system parameters, as well as of the modeling
language itself, to represent verification properties accurately. The
manual nature of this process makes it susceptible to errors, as
parameters are often determined through source-code analysis and
runtime evaluation.

1.1 Problem definition and paper
contributions

In our previous work (Dust et al., 2023b; Dust et al., 2024),
we identified scheduling-related timing issues in ROS 2 and
developed formalmodel templates to address such issues (Dust et al.,
2023a). The proposed template-based verification facilitates formal
verification, but initializing the formal model templates requires
extended knowledge and analysis of static and runtime parameters.

Furthermore, due to the manual process of initializing the formal
models, extended knowledge about the modeling language is
needed. Additionally, manual source code and runtime analysis
make the proposed verification vulnerable to errors. In this paper,
we aim to simplify the formal verification process by proposing a
model-basedmethodology that automates parameter determination
and model initialization using the existing formal model templates.
This methodology is designed for robotics developers, with the goal
of making formal verification more accessible and less error-prone.
In this article, we extend our work (Dust et al., 2024), automating
model-based formal verification using model-driven engineering
techniques.

Based on the problem definition, we develop the three research
questions. The research questions are presented in the following
paragraphs.

As the first goal of this paper, we aim to identify an approach
that can be used to automate the application of formal verification.
By proposing an approach, we aim to reduce the complexity for
practitioners when applying formalmethods through the facilitation
of automation. To achieve the stated goal, we design a methodology
and implement a proof of concept of a toolchain that enables
the application of such methodology. Hence, we contribute a
bridging approach utilizing ROS 2 traces, modeling, and formal
methods that automate formal verification through automated
transformations.

As the second goal of this paper, we aim to modularize
the process of formal verification. The modularization targets to
decouple components of the verification process to enable actors to
focus on their domain of expertise in the creation and adaptation
of the verification process. In this paper, we modularize the process
of formal verification through the design and modeling of a
methodology that we apply in a novel toolchain implemented in this
paper. Hence, we propose a layered and modular methodology that
can be applied through the implemented toolchain.

As the third goal of the paper, we aim to propose a methodology
that allows verification of different formal models, focusing on
different properties to verify. The proposed methodology aims to
separate the concerns in terms of the type of properties to verify.
We demonstrate the ability of the methodology to allow verification
of different formal models by implementation of a toolchain and
experimental evaluation. As a result of the design, implementation,
and evaluation, we develop a novel validated UPPAAL model
for end-to-end (E2E) latency to enable comparison to formal
models proposed in the literature. Furthermore, we develop a
proof of concept that covers multiple verification goal-oriented
UPPAAL models.

Summarizing, the following research questions are tackled
in this paper:

RQ1: What approach can be employed to automate the application
of formal verification of ROS 2-based applications?

RQ2: How can the formal verification process be modularized to
enable domain experts to concentrate on their specific areas of
expertise without requiring deep formalmethods knowledge?

RQ3: How can a methodology incorporate verification using
different formal models?

The contributions of this paper are summarized as follows:

Frontiers in Robotics and AI 02 frontiersin.org202

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

1. A novel methodology for model-based verification of ROS 2
systems, featuring a toolchain that includes UPPAAL, Eclipse,
and ROS2_tracing.

2. UPPAAL models for verification of end-to-end latencies in
ROS 2 processing chains in a single executor.

3. Ecore metamodels to capture system structure and support
verification activities.

4. Automated and conceptual model-to-model transformations
from ROS 2 execution traces to Ecore models, and from Ecore
models to UPPAAL models.

5. Demonstration of the proposed toolchain’s workflow through
a proof of concept implementation, covering key aspects of the
toolchain architecture.

The remainder of this paper is organized as follows.
Section 2 provides an overview of model checking, ROS 2, and
model-driven engineering using Eclipse. Section 3 details the
proposed methodology and toolchain architecture, along with
the potential workflow. Section 4 presents the proof of concept
implementation, followed by a discussion of related work in
Section 6. The paper concludes with final remarks, and prospective
future work in Section 7.

2 Background

In this section, we provide an overview of the essential
concepts and tools relevant to our work, including model checking,
ROS 2, model-driven engineering using Eclipse, and end-to-end
timing analysis.

2.1 Model checking and UPPAAL

Model checking is a formal verification technique that offers a
rigorous, mathematical approach to the analysis of complex systems
during the design phase (Carvalho et al., 2020). It involves an
exhaustive exploration of the system’s model state space to ensure
that the system meets its specification. UPPAAL is a widely used
model checker for themodeling, simulation, and verification of real-
time systems described as timed automata (Alur and Dill, 1994). It
supports the creation of reusable templates to verify timing behavior
and buffer overflow, making the application of formal verification
more accessible.

Below, we provide a brief, informal overview of timed automata
(TA). For detailed and precise definitions of TA and their application
in UPPAAL, we refer the reader to the literature (Alur and
Dill, 1994; Hendriks et al., 2006).

A timed automaton (TA) (Alur andDill, 1994) consists of a finite
set of locations, including an initial location, which are connected
by edges, as well as a finite set of non-negative real-valued variables,
known as clocks, which measure the elapse of time and progress
simultaneously at rate 1. The edges are decorated with a finite set of
actions, and guards, which are conjunctive Boolean formulas of clock
constraints that need to evaluate to true for the edge to be traversed.
Clocks can be reset over the edges, and a partial function assigns
invariants to locations, which constrain the time allowed to elapse
in a particular location. The semantics of TA is defined as a labeled
transition system with delay and action transitions.

FIGURE 1
Examples of UTA in UPPAAL. (a) UTA template TA1. (b) UTA template
TA2.

UPPAAL (Hendriks et al., 2006) is a tool used for modeling,
simulation, and model checking of an extended version of timed
automata called UPPAAL Timed Automata (UTA). In UPPAAL,
UTA are organized as templates (see Figure 1) that can be
instantiated. UTA enhances the capabilities of TA by adding features
such as data variables, synchronization channels (Boolean variables
decorated by “!” for sending, and by “?” for receiving), urgent and
committed locations, and more. Furthermore, UPPAAL allows the
composition of UTA in parallel as a network of UTA (NUTA),
synchronized via channels.

Figures 1a,b show twoNUTA implemented inUPPAAL. In these
figures, blue circles represent locations connected by directional
edges. Double-circled locations are the initial locations (e.g., L0).
Locations marked with an encircled ”u” are urgent (e.g., L3),
and those with an encircled ”c” are committed (e.g., L4). UTA
imposes constraints that prevent time from progressing in urgent
and committed locations. Committed locations have stricter rules:
the next edge traversal must start from one of them.

Edges allow for assignments such as resetting clocks (e.g.,
c1≔0), updating data variables (e.g., v1≔para1), guards (e.g.,
c1>=10), and synchronization channels (e.g., a! and a?). At
location L1, an invariant c1<=15 ensures that clock c1 does not
exceed 15 time units in that location. In UPPAAL, UTA templates
can include parameters (e.g.,para1 in TA1) that are assigned values
upon instantiation.

2.2 ROS 2

The Robot Operating System 2 (ROS 2) (OpenRobotics,
2023a) is an open-source middleware designed to facilitate
the rapid development and prototyping of robotic systems.
Unlike what its name suggests, ROS 2 is not a standalone

Frontiers in Robotics and AI 03 frontiersin.org203

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 2
An example ROS 2 system showing the concepts of Node, Timer, Topic, Publisher, Subscriber, Service, and Client.

operating system but rather runs on top of an existing host OS,
predominantly Linux.

ROS 2 was developed to meet industrial requirements such
as fault tolerance and real-time performance. To achieve real-time
capabilities, ROS 2 introduced the Data Distribution Service (DDS)
Group (2022) as its communication protocol. DDS, created by the
Object Management Group (OMG) Group (2022), enables efficient
communication between distributed applications. While DDS is the
default communication protocol, other protocols such as Zenoh can
be utilized.

The fundamental building blocks of ROS 2 systems are nodes,
which communicate through designated channels using DDS.
ROS 2 supports two primary communication paradigms (Birman
and Joseph, 1987): Publisher-Subscriber and Service-Client. In the
Publisher-Subscriber model, nodes can either publish messages
to a specific topic or subscribe to receive messages from that
topic. All nodes subscribed to a topic receive the published
messages. Conversely, the Service-Client model involves directed
communication, where a client node requests a service from a
server node, which then processes the request and sends back
a response.

Figure 2 illustrates an example of a ROS 2 systemwith two nodes
communicating over four channels. In addition to communication
channels, system timers can be used to trigger functions within a
node at specified intervals.

Nodes in ROS 2 are executable entities within the host OS
and consist of several functions known as callbacks, which are
the atomic schedulable units in ROS 2. Callbacks are triggered by
events such as the arrival of data in an input buffer or a timer
event. There are four types of callbacks: timer, subscriber, service,
and client.

Each node also includes an executor, which is responsible for
scheduling and executing callbacks (Casini et al., 2019; Blaß et al.,
2021). The executor can operate with single or multiple threads,
depending on the configuration chosen. However, the latest versions
of ROS 2 do not provide options to set callback priorities, making
the execution susceptible to blocking. This can lead to issues such
as buffer overflow and missed callback instances in worst-case
scenarios (Dust et al., 2023b; Dust et al., 2023a).

2.3 ROS2_tracing

ROS2_tracing (Bédard et al., 2022) is a low-overhead framework
based on the Linux Trace Toolkit next-generation (LTTng). It is
included in the ROS 2 installation and allows for the generation
of execution traces. These traces provide valuable insights into
the system’s behavior, including callback execution times, message
passing instances, and system initialization events. The ROS2_
tracing toolbox includes a Python library called tracetools_analysis,
which transforms LTTng traces into a defined ROS 2 data model,
represented as pandas Python objects (Bédard et al., 2022).

2.4 Autoware real Time reference system

TheAutowareReference System (ROS Realtime Working Group,
2025b) is part of the ROS 2 (Robot Operating System) ecosystem,
specifically designed to provide a standardized and repeatable
benchmarking environment for evaluating the performance of
various executors and configurations within the ROS 2 framework
(ROS Realtime Working Group, 2025a). This real-time reference
system simulates the Autoware. Auto (Autoware Foundation, 2025)
LiDAR data pipeline, to measure and compare the performance
of different executor implementations. The reference system is
defined by a fixed number of nodes, each with specific publishers,
subscribers, processing times, and publishing rates. It uses a fixed
message type and size for consistency.The system can run on various
platforms, including different hardware and operating systems,
ensuring that the benchmarks are portable and replicable.

2.5 Pattern-based verification of ROS 2
timing

In our previous work (Dust et al., 2023a), we proposed a pattern-
based verification approach for analyzing the execution behavior of
ROS 2 systems using UPPAAL. This approach focuses on verifying
two key properties: callback latency and input buffer sizes.

Callback Latency: This is defined as the maximum time
between the release of a callback instance and the completion of its

Frontiers in Robotics and AI 04 frontiersin.org204

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

// Executor start_exp

// Release Times for WallTimeCallbacks

const int releasesSUBSCRIBER0[MAXX]=

{43,43,43,43,0,0,0,0,0,0};

// Executor

ExV1 = ExecutorExV1(StopTime);

// Callbacks

SUBSCRIBER0 =

WallTimeCallback(0,5,4,releasesSUBSCRIBER0,

SUBSCRIBER,1000);

// System Definition

system ExV1 < SUBSCRIBER0;

Listing 1. Example of UPPAAL System Initialization.

execution. Ensuring low callback latency is crucial for maintaining
the responsiveness of the system.

Input Buffer Size: This property verifies that the input buffer
is large enough to handle incoming data for a given system
configuration. Adequate buffer sizes prevent data loss and ensure
smooth data flow within the system.

To facilitate the verification process, we create three types of
UPPAAL templates to represent ROS 2 nodes:

• Wall-Time-Callbacks: These are callbacks that are released at
specific times.
• Periodic Callbacks: These are callbacks that are released

periodically.
• Executors: These represent different versions of the ROS 2

executor, which schedules and executes callbacks.

These templates can be composed to model a ROS 2 system,
allowing for exhaustive verification of timing properties. Listing 1
illustrates an example of UPPAAL system initialization:

The listing above shows an example of how a ROS 2 system can
be initialized using UPPAAL templates. In this example:

• An array is created to hold the release times for a Wall-Time-
Callback. In this case, the callback is released four times at 43 m
intervals.
• An executor is initialized with a defined stop time, which

describes the interval for which the verification will be
conducted.
• The Wall-Time-Callback template is instantiated with

parameters such as the callback ID, execution time, number of
releases, release time array, callback type, and buffer size.
• The system is defined as a composition of the executor and

the callback.

This initialization process allows for the simulation and
verification of the system’s timing behavior using UPPAAL. By
modeling the system in this way, we can conduct exhaustive
verification to ensure that the system meets its timing requirements
and identify any potential issues related to callback latency and
buffer sizes.The actual verification of such properties happens in the
UPPAAL verifier through checking the states of defined variables.

The pattern-based verification approach provides a structured
and systematic method for analyzing the timing behavior of ROS 2

systems, making it easier for developers to ensure the correctness
and reliability of their systems.

2.6 Eclipse modeling framework (EMF)

The Eclipse Modeling Framework (EMF) (Steinberg et al., 2008)
is a widely used tool for model-driven engineering (MDE). EMF
provides a framework for defining metamodels and generating
code from models. It supports model-to-model and model-to-text
transformations, enabling the automation of various development
tasks. In our work, we utilize EMF to create metamodels that
represent different abstractions of ROS 2 systems, facilitating the
automation of formal verification. EMF allows the definition of
metamodels that are instances of the Ecore metamodel, which can
be used to create models representing system components and their
interactions.

2.7 End-to-end timing analysis

End-to-end timing analysis is crucial for ensuring the correct
functionality and safety of autonomous systems, particularly in real-
time applications. It involves analyzing the timing behavior of cause-
effect chains, which represent sequences of reactions from a cause
(e.g., sensing) to an effect (e.g., actuation). Two key metrics in
end-to-end timing analysis are the maximum reaction time (the
maximum time for the system to react to an external input) and the
maximum data age (the maximum time between sampling and the
output being based on that sample) (Teper et al., 2022).

In ROS 2 systems, end-to-end timing analysis can be challenging
due to the combination of time-triggered and event-triggered
components. Existing methods for periodic and sporadic task
systems are not directly applicable to ROS 2. Therefore, we propose
new UPPAAL templates that resemble the end-to-end timing
analysis presented in (Teper et al., 2022). These templates are used
to model and verify the timing behavior of ROS 2 systems, to ensure
that they meet the required timing constraints.

3 Proposed methodology

In this section, we present a methodology designed to automate
the formal verification of ROS 2-based systems. The methodology
integrates execution traces generated at runtime, model-driven
development, and the composition of formal model declarations
and verification. This methodology aims to decouple the process
of formal modeling from system development while ensuring
traceability, enabling users to apply formal verification without
requiring extensive domain expertise.

3.1 Definition of users

The primary goal of this methodology is to simplify the
verification process for robotic systems. The intended end users are
robotics developers who may have limited knowledge of modeling

Frontiers in Robotics and AI 05 frontiersin.org205

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

and formal verification.Hence, the aim is to allow robotics engineers
to perform formal verification with limited learning effort.

Practically, the methodology is designed to enable the design
of an extensible toolchain, where domain experts, such as formal
verification specialists and modeling engineers focus on the aspects
where they can contribute most. Once such a toolchain following
the developed methodology is developed, implemented, and set up,
robotics engineers should be able to operate it with limited learning
effort. The definition of users and maintainers of the toolchain is
essential to analyze potential modularization, as stated in RQ2.

3.2 Architectural overview

The toolchain comprises four main architectural components.

1. System Implementation Layer
2. Tracing Layer
3. Modeling Layer
4. Verification Layer

Figure 3 provides an overview of the methodology, showing the
included layers and their connections. Each layer is marked in a
different color. It can be seen that with Start A and Start B, there are
two starting points for the potential application of the methodology.
They refer to the two possible application approaches, namely, the
verification of already implemented, executable systems, and the
verification of conceptual system design. A more detailed overview
of the components of each layer can be found in Figure 4. In the
figures, MM stands for Meta-Model, M stands for Model, and T
stands for Transformation. In Figure 4, boxes stand for artifacts and
system components such as models and traces, while ellipses stand
for actions such as transformations.The subsequent sections explain
the layers in more detail.

3.2.1 System Implementation Layer
The ROS 2 Layer 0 (light blue) represents the ROS 2 system

implementation, encompassing both static information (Figure 4a)
(dark blue) and dynamic information (white). Static information
includes system components such as nodes, timers, subscriptions,
publishers, services, and clients. Dynamic information involves
runtime data such as callback execution times, timer release times,
and message passing instances that describe the system behavior
during execution.

3.2.2 Tracing layer
TheTracing Layer 1 (green) utilizes tracing to generate execution

traces from the running system. An overview of the elements
in this layer is presented in Figure 4b. Generated traces contain
both static and dynamic information, and are then transformed
into a human-readable ROS 2 Data Model representation (M0).
Additionally, customized analysis can be performed during the
initial analysis of the traces, such as message flow analysis, as
proposed in (Bédard et al., 2023). Based on the generated traces
and analysis, a detailed visualization of system components and their
interactions is possible. The traces are an important part to answer
RQ1, as they enable automated determination of systemparameters.

FIGURE 3
Architectural overview of the proposed methodology for automating
verification of ROS 2-based systems. The architecture includes layers
for system implementation, tracing, modeling, and verification.

3.2.3 Modeling layer
The Modeling Layer 2 (light yellow) shown in Figure 4c

involves the use of a modeling framework to create and utilize
different metamodels and transformations. The metamodels allow
the definition of models to model the system from different
perspectives. The following exemplary types of metamodels allow
representation of various abstractions of the ROS 2 system:

• MM1 Metamodel: Input Metamodel: Maps the ROS 2 Data
Model to an model for use in a model editor, allowing detailed
analysis and traceability.
• MM2 Metamodel 2: System Model: Allows modeling of

the system from a perspective towards the formal model.
Parameters not needed for verification might be excluded, and
component links might be made using a different approach.
This model is used to decouple the formal modeling further
from the tracing andparsing.Hence, if a different formalmodel
is introduced, MM2 has to be exchanged. Nevertheless, there
can bemultiple different implementations ofMM2 to allow the
generation of different formal model representations.

While it is possible to generate the verification code from
the traces directly, it is beneficial to include different metamodels
during the generation steps. This allows traceability throughout the
generation process, which might lead to a better understanding
of parameters. Furthermore, this allows for the testing of different
parameters without the need to adapt and rerun the system.
Additionally, the introduction of incremental steps is essential to
achieve modularization as stated in RQ2. Note that in a modeling
environment, there might be multiple different implementations of
MM2 to allow the application of different formal models.

Frontiers in Robotics and AI 06 frontiersin.org206

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 4
Detailed overview of the elements in the component layers. (1) System Implementation Layer. (2) Tracing Layer. (3) EMF Modeling Layer. (4) Verification
Layer. (a) Overview of the ROS 2 system implementation, highlighting the static and dynamic information captured during system execution. (b) Tracing
layer overview, showing the process of generating and analyzing execution traces to create the ROS 2 Data Model. (c) Modeling Layer overview,
illustrating the different metamodels and transformations used to automate the verification process. M2M stands for model-to-model transformation.
(d) Verification Layer overview, showing the generation of UPPAAL artifacts from EMF models for formal verification.

To simplify the transformation between the different
model representations, three types of transformations can be
employed:

• Model Parsing (T1): Transforms textual model descriptions
into model representations specific to the chosen modeling
environment, ensuring compatibility with the metamodel
definitions.
• Model to Model Transformation (T2): Converts one model

representation to another, facilitating different sets of features
and abstractions.
• Code Generation (T3): Translates models into executable

code, enabling the generation of formalmodel declarations and
verification queries.

The shown transformations can be automated using designated
tools. Such automation potential is important to answer RQ1.

3.2.4 Verification layer
The Verification Layer 3 (violet) shown in Figure 4d contains

three main elements. First of all, there are the formal model
templates, which are created by a verification expert; the templates
capture the behavior of the system components, formally. The
templates can be composed into a system, in the system declaration.
Using the toolchain, the systemdeclaration can be produced through
model-to-text transformations. Verification queries can be executed
in the verifier. The verifier allows verification of the properties
of a system specified by such queries. They can be predefined as
templates and adapted to the chosennotation andnaming during the

Frontiers in Robotics and AI 07 frontiersin.org207

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

model-to-text transformations. When applying the methodology
following the architectural overview in Figure 3, upon creation of
the formal model and queries in form of a compatible file (3.1), the
outcome of the verification is given as potential execution traces
and the query results (3.2). In the proposed methodology, multiple
different implementations of Templates, Systems Declarations,
and Verification Queries can be employed. This is essential to
answer RQ3.

3.2.5 Relation of components and
modularization

In the previous subsections, we divided the methodology into
four layers. Each of the layers consists of multiple components.

While the metamodels proposed in the Tracing Layer and the
Modeling Layer are not strictly needed to enable automation, in this
paper, they are introduced to enable modularization and decoupling
of domain knowledge in the verification processes.

Generally, the boxes shown in Figures 4b–d show artifacts that
result from specific actions shown as ellipses.

Two consecutive artifacts in the methodology are related by the
fact that the set of attributes of the first artifact is an extension
of the attributes of the second artifact. Hence, a transformation
reduces the set of parameters while changing the structure of the
model. As an example, one can transform an instance of the class
Trace to an instance of the class ROS 2 Data Model by using
Trace_analysis library functions. The classes are substitutable by
any other class that obeys the extends mechanism. However, the
transformation needs to be adapted, provided that the inherited
attributes of the substituted class change. In the Modeling Layer,
multiple, different instances of the two metamodels might be
created. Any instance of MM1 can be transformed in any instance
of MM2, as long as the extends mechanism for the parameters is
true. Hence, in case a preceding model is adapted or exchanged,
the transformation only needs to be adapted when the inherited
attributes change.

The layered approach with the different artifacts allows for
reducing complexity and shifting the goal of the models in defined
steps through an adaptation of the modeled system architectures
incrementally. While the MM1 reflects more the architecture of
a ROS 2 system, the MM2 reflects closer the architecture of the
proposed formalmodel. Each parameter reduction and architectural
model change is conducted incrementally, reducing the need
for complex domain knowledge while allowing traceability. This
reflection is essential as an informal proof of modularization to
tackle RQ2.

3.3 Application of the methodology

To apply the methodology, a toolchain is needed that
implements the required components, such as metamodels
and transformations. Once the necessary metamodels and
transformations are established, the end user (robotics developer)
can perform the verification by following the outlined approach.
The general flow of applying the methodology is shown in Figure 3,
and the workflow can start from two points: verifying legacy systems
(Start A) or conceptual systems (Start B).

3.3.1 Verification of legacy systems
Starting with a ROS 2 system implementation (Start A), tracing

is used to generate runtime execution traces. These traces are
transformed into the ROS 2 Data Model using analysis tools. A
parser then converts the ROS 2 Data Model into a model. Multiple
model-to-model transformations can be applied within the EMF
environment to generate a formal model based on predefined
templates. The generated formal model definition is used for formal
verification, and the results can guide parameter adjustments in the
model or the real system. This iterative process allows for thorough
testing before implementing changes in the actual system.

3.3.2 Verification of new systems
For new system designs (Start B), the system can be modeled

directly using the created metamodels. This approach allows for
system definition without existing source code. By modeling
a system using a modeling environment, only the necessary
parameters for verification need to be determined, and the code
generation can automatically produce the formal model declaration.
Iterative verification of system parameters can then be conducted
using themodels and formalmodeling tool, ensuring a robust design
before implementation.

3.4 Toolchain setup, development, and
extension

As described in the previous section, a toolchain is needed to
enable the application of the methodology following Figure 3 to
verify ROS 2-based applications. The design and implementation of
such toolchain is done in a different order than the actual verification
process shown in Figure 3. The modularity of components in the
methodology allows domain experts to focus on their area of
expertise when implementing the toolchain. Each domain expert
is responsible for the implementation of specific components
and only interacts with other domain experts to implement the
connectors, such as transformations. Below, we give an overview of
the implementation process of a toolchain that involves several steps,
each requiring specific expertise:

Step 1: Development of Formal Models (Formal Methods Expert):
In a first step, the formal model component templates
need to be defined, created, and tested in the formal
modeling tool.

Step 2: Determination and setting of Parameters (Formal Methods
Expert/Robotics Expert): Next, the needed input parameters
for the formal verification, and how they can be obtained
(e.g., through ROS2_tracing), need to be identified. If they
cannot be obtained through the mainline analysis tools,
additional analysis methods may be required.

Step 3: Development or Adaptation of Tracing Tools (Robotics
Expert): In a following step, the tracing needs to be adapted
to capture the parameters as required.

Step 4: Development or Adaptation of Metamodels (Software
Engineering/Modeling Expert): The next step incorporates
an update of the ROS 2 data model and creation of the
metamodels needed to cover the components needed for
formal verification.

Frontiers in Robotics and AI 08 frontiersin.org208

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

Step 5: Development or Adaptation of Transformations (Software
Engineering/Modeling Expert): Implementation of
the parsing, the model-to-model, and model-to-text
transformations. Create verification models in the
formal verification environment and corresponding
metamodels.

When creating a toolchain, we assume the goal is the verification
using one specific formalmodel representation.Nevertheless, in case
different formal model approaches are to be used, the toolchain
can be extended by extending the second and third layer. While
the first metamodel in the layer is for a seamless parsing of a
trace output to a model in the model environment, the second
metamodel enables the transformation towards the formal model
representation. Hence, when adding a formal model representation,
a further implementation of the second metamodel has to be
introduced to adapt to the new formal model. The first metamodel
and the parsing can be reused. The possibility of domain experts
focusing on defined steps with defined connectors with inputs and
outputs in between different layers, is evidence of modularization
and helps answering RQ2.

4 Toolchain implementation and
application

In this section, we apply and evaluate the proposedmethodology
through the design, implementation, and application of a toolchain.
In the first step, we design and implement a toolchain following the
process explained in Section 3.4.

4.1 Toolchain design

Following the four layers of the proposed methodology, the
designed toolchain comprises four main architectural components:
three tools (ROS2_tracing, Eclipse/EMF, and UPPAAL) and the
actual system implementation.

An overview of the Tracing Layer, the EMF Modeling Layer and
the Verification Layer of the toolchain created in this evaluation
is given in Figure 5.

To show the extensibility of the approach, in this paper we
implement formal verification based on two approaches of formal
modeling. The first approach is verifying callback latency (CBL).
The second approach focuses on verification of end to end delays
(E2E). Hence, the verification layer comprises of two different
UPPAAL models. Each UPPAAL model consists of the UPPAAL
timed automata templates, the UPPAAL systems definition and the
verification queries.

The parsing layer consists of the tool ROS2_tracing and
generated outputs created by the python libraries of tracetools_
analysis, such as custom graph visualization.

The modeling layer contains the EMF Data MM, which allows
direct parsing of the ROS 2 data model to a model in Eclipse. The
model can be reused for the generation of both formal models. Next,
the specialized model representation has to be designed for each of
the verification approaches individually. Hence, the EMF Modeling
Layer contains one metamodel for the CBL and one metamodel for

the E2E. Besides the metamodels, the EMF modeling layer contains
model transformations.

We implement the transformations,T1,T2.1 and T31 to an
extent to be conducted automatically using the chosen tools.
Transformations T2.2and T2.3are conducted by hand. Nevertheless,
if a feature is contained in the preceding model, it can be contained
in the next model after the transformation. Furthermore, some
features that are not directly contained can be calculated during the
transformation from the parameters that are contained.

In the following, we explain the implementation of the
toolchain and the order in which it is designed. Furthermore, we
explain the parameters and features that are contained in each
element in Figure 5.

4.2 Toolchain implementation

In the next sections, we follow the workflow for creation of a
toolchain following the methodology presented in Section 3.4.

4.2.1 Step 1: Formal models in UPPAAL
To demonstrate the methodology and toolchain we utilize two

different kinds of UPPAAL models for verification. The first kind
of UPPAAL models has been created previously (Dust et al., 2023a),
and are explained in Section 2.Themodel focuses on the verification
of latency and callback size of a single callback in a ROS 2 system.

The second kind of UPPAAL models (E2E) used for evaluation
in this paper are created during the implementation of the toolchain.
The models aim to allow verification of end-to-end (E2E) latency
as proposed in the literature (Teper et al., 2022). Generally, our
modeling approach is to create a chain that contains all the
components of the original chain and adds delays during the
execution that are equally long as the maximum latency for each
component. Hence, when executing the model, at the end of the
simulation of the last component, the system time will be according
to the maximum latency of the chain. In related work (Teper et al.,
2022), the authors define six types that can describe a callback based
on the function in a processing chain: Sensor, Filter, Timer Fusion,
Subscription Fusion, Timer Actuator, and Subscription Actuator.
For each of the types of callbacks, we propose UPPAAL templates
that can be used to model the end-to-end delays and are shown
in Figure 6. In what follows, we give an overview of the proposed
templates, where the details, such as included parameters, are
explained in Section 4.2.2.

Sensor: A sensor node is the start of a chain and sends amessage
periodically. According to (Teper et al., 2022) the maximum latency
is defined as the period minus the maximum execution time plus
two times the execution time of all callbacks in the executor. To
model the callback in UPPAAL, the callback starts in a location
where it waits for the time to elapse until the maximum latency to
finish its execution. When the execution of the sensor callback has
ended, a following callback is triggered. This is modeled through a
synchronized channel to the following callback that is initiated by
the sensor.

Filter: The subscription actuator can be modeled like a filter,
as the maximum latency is equal to two times the sum of all
callback execution times (Teper et al., 2022).The callback ismodeled
by triggering the execution through the synchronized channel

Frontiers in Robotics and AI 09 frontiersin.org209

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 5
Overview of the proposed toolchain and its components. Note that Layer 0 (ROS 2 Layer) is omitted for space reasons.

FIGURE 6
UPPAAL templates for the callbacks.

through the preceding callback. Upon triggering of the execution,
the callbacks stay in the execution location until the maximum
blocking time has elapsed. Upon finishing the execution, the next
callback is triggered through a synchronized channel.

Timer fusion: Timer fusion in a chain basically consists of two
relevant callbacks. The first callback receiving a message from the
preceding node can be modeled as a filter. The second callback is a
timer callback that has the same latency as a sensor (Teper et al.,
2022). Hence, we model the callback as a sensor, but with the

difference that the callback is triggered by another callback and upon
execution triggers another following callback.

Subscription Fusion: When modeling a subscription fusion,
there are two different paths possible for a chain. If the subscription
that triggers the following node of a fusion lies within the same chain
(is triggered by a callback in the chain that is modeled). In this case,
the callback can be modeled as a filter node.

If the callback that outputs the fusion result is not contained in
the same chain, a second chain has to be introduced to determine the

Frontiers in Robotics and AI 10 frontiersin.org210

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

maximum latency. As each chain starts with a sensor node, wemodel
the start of that chain as a sensor that is triggered by another node.
Following, each element of the same chain including the fusion
callback has to be included separately as a fusion callback.

Timer actuator: The timer actuator actually consists of two
callbacks that have to be modeled accordingly in our UPPAAL
representation. The first callback is triggered by the preceding node
in the system and resembles a subscription node. In our example,
the callback has to be modeled as a filter. The final callback is a timer
callback that executes the actuator.This callback has the same latency
as a sensor callback (Teper et al., 2022).Hence,wemodel the callback
as a sensor, but with the difference that the execution is triggered by a
preceding callback.Uponfinishing the execution, the callback passes
through an End location that is used for the verification query.

Subscription actuator: The subscription actuator can be
modeled like a filter, as the maximum latency is equal to two times
the sum of all callback execution times (Teper et al., 2022). The only
difference is the actuator being the end of the chain. Hence it does
not need to trigger another execution of a following callback.

The shown templates are sufficient tomodel processing chains of
callbacks and determine the upper bound for the latency by checking
the global system time while the Actuator callback passes through
the End location.

4.2.2 Step 2: Determining parameters, features,
and formal model declaration

In this step, we identify the parameters required to instantiate
the UPPAAL templates for model verification. These parameters are
essential for accurately modeling the system’s behavior and ensuring
the correctness of the verification process.

4.2.2.1 Buffer overflow UPPAAL templates
The legacy UPPAAL model includes three types of templates:

BufferOverflow, Executor, and Callbacks. Each template requires
specific parameters to be instantiated, as follows.

4.2.2.1.1 Executor template

• stoptime: The time at which the executor stops executing. This
parameter defines the duration for which the verification is
conducted.

4.2.2.1.2 PeriodicCallback template

• id: A unique identifier for the callback.
• execution time (Ci):The time required to execute the callback.
• period (Ti): The interval at which the callback is triggered.
• type: The type of callback (e.g., timer, subscriber).
• buffer size: The size of the buffer associated with the callback.

4.2.2.1.3 SporadicCallback template

• id: A unique identifier for the callback.
• execution time (Ci):The time required to execute the callback.
• amount of releases: The number of times the callback

is released.
• release array: An array specifying the release times of

the callback.
• type: The type of callback (e.g., timer, subscriber).
• buffer size: The size of the buffer associated with the callback.

4.2.2.2 End-to-end (E2E) timing analysis templates
For end-to-end timing analysis, we use several templates to

model different components of the system. Each template requires
specific parameters to capture the timing behavior accurately.

4.2.2.2.1 Sensor template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• Ci: The execution time of the callback.
• Ti: The period of the callback.
• SenderID: A unique identifier for the callback that sends

information.

4.2.2.2.2 Filter template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• ReceiverID: The identifier of the callback that receives

information.
• SenderID: The identifier of the callback that sends

information.

4.2.2.2.3 SubFus template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• Ci: The execution time of the callback.
• Ti: The period of the callback.
• ReceiverID: The identifier of the callback that receives

information.
• SenderID: The identifier of the callback that sends

information.

4.2.2.2.4 TimFus template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• Ci: The execution time of the callback.
• Ti: The period of the callback.
• ReceiverID: The identifier of the callback that receives

information.
• SenderID: The identifier of the callback that sends

information.

4.2.2.2.5 SubAct template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• ReceiverID: The identifier of the callback that receives

information.

4.2.2.2.6 TimAct template

• Csum: The sum of the execution times of all callbacks in the
system/executor.
• Ci: The execution time of the callback.
• Ti: The period of the callback.
• ReceiverID: The identifier of the callback that receives

information.

Frontiers in Robotics and AI 11 frontiersin.org211

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

4.2.2.2.7 Explanation of parameters

• Ci (execution time): The time required to execute a callback.
• Ti (period): The interval at which a callback is triggered.
• SenderID: A unique identifier for the callback that sends

information, ensuring it can be correctly identified.
• ReceiverID: Matches the receiving callback with the sender,

ensuring proper communication between callbacks.
• Csum: The cumulative execution time of all callbacks within

the system or executor, used to assess overall system load.

After determining the described parameters, we can instantiate
the UPPAAL templates to create a model that allows for formal
verification of buffer overflows and end-to-end latency, via
model checking.

4.2.3 Step 3: Setup of ROS2_tracing and graph
analysis

In a trace generated by ROS2_tracing, the execution of each
individual callback is contained. Hence, the callbacks and their
executions can bemapped from the tracing output to themodel.The
timing information contained in the traces allows the calculation
of the maximum execution time for each callback. Additionally,
for timers, the configured period is recorded in the traces. By
aggregating the execution times of all callbacks, the total execution
time for the system can be calculated, with the assumption that all
callbacks are executed within the same executor.

To model the callback chain, we utilize the tracing information
to identify publishers and subscribers, along with their preceding
and following nodes. The primary challenge lies in determining the
type of each callback for accurate modeling. In the initial automated
transition, we categorize all receiving and sending callbacks as filters,
all timers as sensors, and all sinks as actuators. A message flow
analysis is conducted to visualize the internal connections and
relationships, which helps in manually constructing the graphs.

4.2.4 Step 4: Development of metamodels
To follow the process shown in Figure 5, we implement three

different Metamodels that can be used to create models containing
the information needed to automate the verification. MM1 is used
to parse the tracing output with all its information into a model of
the same architecture to allow traceability.

MM2 is the EMFCBLMetamodel allowing to createmodels that
resemble the system architecture for individual node verification
and MM3 is the EMF E2E metamodel allowing modeling of a
system to transform it into UPPAAL code for verification of the
E2E latency. In the following, we show the implementation of the
metamodels.

4.2.4.1 Metamodel 1 - Eclipse Data Metamodel
In the initial step, we develop the EMF Data metamodel, which

includes all system components specified by the ROS 2 Data Model,
such as subscriptions, callbacks, and timers, represented as classes
with parameters as attributes. Figure 7 shows an excerpt from the
metamodel implementation.The yellow boxes indicate the classes in
the metamodel, with arrows illustrating the dependencies between
them. All classes representing system components are child objects
of amaster class that represents the entire system.Although in a ROS
2 implementation, components like Publishers are contained within

Nodes, in this metamodel, the association of Publishers to Nodes
is managed by identification handlers modeled as attributes. This
approach aligns the representation of the ROS 2 Data Model with
the EMF data model.

4.2.4.2 Metamodel 2 - EMF CBL Metamodel
The second metamodel represents the UPPAAL templates

within the EMF framework, which are utilized for formal
verification. An overview is provided in Figure 8.

In this metamodel, each of the three UPPAAL templates
(Executor, WallTimeCallback, and PeriodicCallback) is represented
as a distinct class, which are components of a system. As
detailed in Section 2, each template includes parameters such as
ids and buffer sizes. Additionally, the metamodel defines datatypes
for attributes like callback type and executor version, which can be
specified in a model instance.

Although the toolchain proposal mentions the modeling of
requirements such as maximum callback latency, this aspect is
reserved for future work.

4.2.4.3 Metamodel 3 - EMF E2E Metamodel
In the created metamodel in Figure 9, the callbacks are modeled

as a single class contained in an executor that is part of a system.
The callbacks are distinguished by their Type, which is a parameter.
Furthermore, the parameters needed to initialize the UPPAAL
model such as execution times and the sum of callback execution
times. This model allows the representation of the features needed
for the end-to-end verification.

4.2.5 Step 5: Implementation of model-to-model
transformations
4.2.5.1 T1: Model parsing - ROS 2 to EMF Data Metamodel

We implement the parsing T1 as a python function in
Trace_Analysis. The function takes the ROS 2 Data Model and
creates an XML file that can be imported as a model (using the
EMF Data Metamodel) in the Eclipse workspace. The parsing is
done by reading the data of the ROS 2 Data Model and printing
them in an XML document with the desired formatting of the EMF
Data Model.

4.2.5.2 T2.1: Model-to-Model - EMF Data Metamodel to
EMF CBL Metamodel

In this model-to-model transformation, T2.1 the components
of the EMF Data Model are mapped to the components in
the verification model using QVT-O. QVT-O is an operational
mapping language (Eclipse Foundation, 2025b). In the first step,
the periodic timers are mapped to periodic callbacks with the type
attribute set to TIMER. The period and execution time is extracted
from the attributes in the EMF Data Model and passed to the
verification model. Furthermore, for timers, the buffer size is set
to one. The second mapping is between the subscription callback
and thewall-time-callback of the type SUBSCRIBER. A subscription
callback is released on the reception of data. As neither the release
time of the callback, nor the reception of the data is initially
contained in the system traces, we map the publishing time of the
data in the topic the callback is subscribed to as the release time.
Furthermore, we pass the execution time and buffer size as further
parameters.

Frontiers in Robotics and AI 12 frontiersin.org212

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 7
Data Metamodel in Eclipse.

4.2.5.3 T3.1: Model-to-Text - EMF CBL Metamodel to
UPPAAL code

With the model-to-text transformation T3.1 using the
tool Acceleo (Eclipse Foundation, 2025a), the EMF verification
model is translated into the UPPAAL code. Therefore, the classes
contained in the EMFverificationmodel aremapped to specific code
snippets, e.g., representing the UPPAAL template instantiation.
Then, the code is dynamically filled with the needed parameters
based on the class attributes.

4.2.5.4 T2.2, T3.2: EMF Data Metamodel to EMF E2E
Metamodel to E2E UPPAAL code

The transformations T2.2 and T3.2 are needed to fully automate
the process of verifying ROS 2 applications using the E2E UPPAAL
models. As we evaluate the automation of such transformations
on T2.1 and T3.1, and the repetitive implementation of the
transformation as being rather engineering than research, for the
sake of simplicity, T2.2 and T3.2 are not implemented by a tool but,
in the context of this paper, are conducted manually.

4.3 Toolchain application

The application and evaluation of the toolchain is carried out
using three ROS 2 systems (Use-Case 1, 2, 3). Use-Case 1 and Use-
Case 3 are implemented in source code and executable, while Use-
Case 2 is evaluated from a conceptual perspective without actual
source code implementation.

We show the automation of formal verification on two examples
of formal models in UPPAAL, each focusing on a different set of
properties to verify. The implementation shows how to set up the
toolchain and its main components in the context of verification
of buffer overflow, callback latency and end-to-end delays for ROS 2
processing chains.

While for the verification of the buffer overflow and callback
latency, we reuse UPPAAL templates that have been proposed in
related work, for the verification of end-to-end timing analysis, we
propose new UPPAAL UTA templates. We implement exemplar
metamodels to demonstrate the application of the toolchain. For the
verification of the buffer overflow, we implement prototypes of the

Frontiers in Robotics and AI 13 frontiersin.org213

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 8
Verification Metamodel in Eclipse.

FIGURE 9
E2E Metamodel in Eclipse.

Frontiers in Robotics and AI 14 frontiersin.org214

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 10
System overview.

model parsing, the model-to-model transformation, and themodel-
to-text transformation. In the second part of verifying end-to-end
latencies, we perform the transformations by hand. The created
artifacts, such as metamodels, templates, source code, and graphs,
are published in (Dust et al., 2025).

4.3.1 Use-cases
The first system (Use-Case 1) is a lightweight ROS two

implementation of two nodes similar to the setup depicted in
Figure 2. The system has been proposed by Casini et al. (2019)
and used for real-time evaluation and demonstration of different
scheduling approaches of ROS two in Blaß et al. (2021), Dust et al.
(2023b), and Dust et al. (2023a). The system offers traceability
through controlled execution times and controlled trigger events
of the included callbacks. The limited complexity simplifies manual
analysis, and hence enables simpler comparison and evaluation of
verification and modeling approaches.

The second system (Use-Case 2) is a conceptual ROS two system
as given in the evaluation of Teper et al. (2022). The system is used
to evaluate the correctness of the created UPPAAL templates for
E2E verification. As a part of RQ3 we aim to provide validated
UPPAAL models. The correctness of the proposed formal models
is demonstrated by repeating the calculations from the case study
in Teper et al. (2022). Furthermore, as the system is a conceptual
design, as we have no access to the original ROS two code,
the approach of verification of conceptual designs (START B) is
demonstrated. An overview of the nodes in the system is given
in Figure 10. The system consists of two sensors, which contain a
ROS two timer each publishing a message at a given interval. The
message is received by a filter callback that forwards the message
on reception. The two filter messages are fused into one message in
the fusion node. A third filter node receives and forwards the fused
message. The final message is received by an actuator node. In an
actual system, the fusion and the actuator can be implemented in
two different ways. The subscription fusion and actuation, and the
timer subscription and actuation. Both are shown in Figures 11, 12.
In the subscription configuration, the messages are forwarded using
the same callback triggered by the subscriptions. In the timer
configuration, the messages are received by a subscription callback,
and then the final message is published by a different timer callback.

The third system (Use-Case 3) is an ROS two real-time
benchmark system (ROS Realtime Working Group, 2025b) and

resembles parts of an autonomous driving stack. As a controlled
real-world system is used to demonstrate applicability of the
proposed methodology. In Figure 13, we show an excerpt of the
system, visualized through implemented message flow analysis. For
simplicity, we focus the verification of the end-to-end latency on the
chains shown in the figure.

4.3.2 Application of legacy UPPAAL models and
automated transformations on use-case 1

As a first step, we utilize Use-Case 1 to assess and validate our
toolchain prototype regarding automation as stated in RQ1, and
verification as stated in RQ3. We evaluate the proof of concept by
generating UPPAAL code through our proposed workflow, with an
example excerpt shown in Listing 1. Instead of manually analyzing
the system and calculating potential release times, our approach
automatically generates traces and performs model transformations
to produce executable UPPAAL code. We then ran this code in
UPPAAL and verified the accuracy of the results at each stage.

By focusing on subscription and timer callbacks, the generated
traces provided the necessary information to either directly
determine or infer the required parameters, such as callback periods,
release times, buffer sizes, and execution times. However, some
parameters for services and clients, as well as certain subscription
callback release times, are currently not captured by ROS2_tracing.

Despite these limitations, the presence of parameters for
subscribers and periodic timers demonstrates the feasibility of
our toolchain. Additionally, it is possible to add custom trace
points, although this requires expert knowledge. We are working
on incorporating the necessary trace points into the mainline
releases of ROS 2.

Our observations indicate that the model-based verification of
ROS two applications can be automated by using system execution
traces and model-driven engineering to automatically populate
model-based verification templates.

4.3.3 Verification of E2E latency of conceptual
system design on use-case 2

To implement the system in the modeling layer, we create
models in Eclipse containing the different configurations following
the grammar of the defined E2E metamodel. An example of such
a model for a subscription fusion and the subscription actuation
is shown in Figure 14. It can be seen that all callbacks are included in

Frontiers in Robotics and AI 15 frontiersin.org215

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 11
Two versions of the fusion node.

FIGURE 12
Two versions of the actuator node.

the same executor. Furthermore, the callbacks contain information
such as the period and type of timers. The callback, whose
parameters are shown in the example, is the Fusion F1 CB that
receives the data from Filter one and forwards the fused message to
Filter 3.The links are done through the connection of the parameters
External Receiver and External Sender. The fusion is indicated
through the internal sender Sub Fusion 2.

Next, we transform the model into the system instantiation
for UPPAAL as shown in Listing 2 for an example with a
subscription fusion and subscription actuation. As described, the
actual transformation in this example is done by hand, but can be
automated through Acceleo model-to-text transformation.

After performing the transformations and modeling in
UPPAAL, we run the verification and compare the obtained results
for the E2E latency with the results from (Teper et al., 2022). Table 1

shows the system parameters and the results of the verification,
which match the results from Teper et al. (2022). Hence, we validate
the correctness of our models to achieve parts of our goal in RQ3
and the approach to the transformations towards RQ1 with the
verification of conceptual system designs.

4.3.4 Verification of E2E latency of legacy system
implementation on use-case 3

In the following, we use the implementation of the ROS 2
Autoware Real-Time benchmark (ROS Realtime Working Group,
2025b) (Use-Case 3) to show the verification process on an actual
ROS two implementation. In this experiment, we demonstrate
formal verification on a real-world use-case to answer RQ3.
Furthermore, we demonstrate the modularization of the toolchain
and reusability of components compared to the application of Use-
Case 1 to answer RQ2. We run the system in a development
container and create a ROS2_tracing trace. The trace is transformed
into the ROS 2 Data Model. In Figure 13, we show an excerpt of the
system, visualized through implemented message flow analysis. For
simplicity, we focus the evaluation on the chains shown in the figure.
Furthermore, we assume all the callbacks to be in the same executor.

We perform verification using the E2E metamodels. We
transform the system into four different versions of the verification
metamodel. Each representing a different chain that can be verified
from the given example. The first chain is going from the Euclidean
Cluster Settings to the Intersection Output. The second chain goes
from the Front Lidar Driver to the Object Collision Estimator. The
third chain goes from the Front Lidar Driver to the Intersection
Output via subscription fusion on Euclidean Cluster Detector. The
last chain goes from the Euclidean Cluster Settings to the Object

Frontiers in Robotics and AI 16 frontiersin.org216

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 13
Extract from the lidar pipeline in the autoware reference system with
the obtained worst case execution times C and the periods T
for timers.

Collision Estimator via subscription fusion on the Euclidean Cluster
Detector. Hence, following the methodology from Start A, the
following results in Table 2 are obtained for the E2E latency for the
individual chains.

5 Evaluation and discussion

In this section, we first compare the proposed methodology
and implemented toolchain with a manual application of formal
verification. Next, we discuss the threats to validity before answering
the research questions.

5.1 Comparison of manual and automated
verification

After implementation and application of the toolchain, in
this section, we compare the verification steps following the
methodology to a manual approach to provide more evidence
towards automation in RQ1 and modularization for RQ2.

5.1.1 Verification of legacy systems
The following steps are needed to perform formal verification of

legacy systems using a manual approach:

1. System Implementation
2. System Component Determination
3. Real-Time Parameter Determination
4. Formal model System composition
5. Formal Verification

The following steps are needed to perform formal verification of
legacy systems using the automated approach:

1. System Implementation
2. Systems Execution and Tracing
3. Model Parsing
4. Model Transformation
5. Verification Code Generation
6. Formal Verification

At first glance, the automated verification approach contains
more steps. Nevertheless, the given steps can be performed using
pre-defined transformations. In the manual approach, analysis and
extraction of system components and runtime parameters have to be
conducted by hand, which is error-prone and requires application
and domain knowledge. Furthermore, additional domain expert
knowledge in formal verification is needed to apply formalmodeling
and verification.

5.1.2 Verification of conceptual systems
The following steps are needed to perform formal verification of

conceptual systems using a manual approach:

1. Formal Model System Definition
2. Real-Time Parameter Determination
3. Formal Verification

The following steps are needed to perform formal verification of
conceptual systems using the automated approach:

1. Architectural Modeling
2. Real-Time Parameter Determination
3. Generation of Formal Models
4. Formal Verification

In a manual approach to verifying conceptual systems, the
practitioner directly works in the formal modeling environment.
This reduces the complexity of the toolchain. However, domain
knowledge is required to create formal models and formal
verification. In the automated approach, a practitioner models the
system in a modeling environment before automatically generating
the formal models using pre-defined transformations.

5.2 Limitations and threats to validity

While the proposed methodology has strong potential for
generalization due to its use of MDE techniques, the need
for customization and the reliance on specific tools during the
implementation present challenges.

First of all, there might be scenarios where transformations
from ROS two execution traces to formal models (via EMF
metamodels) may not fully capture all relevant system behaviors
and parameters. Additionally, ROS2_tracing may not capture all
necessary parameters (e.g., service/client interactions), which could
lead to incomplete or incorrect models.

Frontiers in Robotics and AI 17 frontiersin.org217

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

FIGURE 14
E2E Model instance in Eclipse.

// Under Utilized System: Sub Fus, Sub Act

// Csum: 180ms, Cch1: 110ms, Cch2 160ms, Ts 360ms

// Ct1: 10ms Tt1: 360ms

// Ct2: 20ms Ct2: 360ms

// CHAIN 1:

/∗

S1 = Sensor(180, 10, 360, 0);

F1 = Filter(180, 0, 1);

Fus1 = Filter(180, 1, 2);

F3 = Filter(180, 2, 3);

A = SubAct(180, 3);

system S1, F1, Fus1, F3, A;

∗/

// CHAIN 2:

/∗

S2 = Sensor(180, 20, 360, 0);

F2 = Filter(180, 0, 1);

Fus2Cb = Filter(180, 1, 2);

S1 = SubFus(180, 10, 360, 2, 3);

F1 = Filter(180, 3, 4);

Fus1 = Filter(180, 4, 5);

F3 = Filter(180, 5, 6);

A = SubAct(180, 6);

system S2, F2, S1, Fus2Cb, F1, Fus1, F3, A;

∗/

Listing 2. Created UPPAAL model system declaration.

Next, the automated classification of callbacks and system
components (e.g., as filters, sensors, actuators) based on trace data
may lead to misclassifications, especially in complex chains.

In the implementation of the methodology, there is
a toolchain dependency, where the correctness of the
verification heavily depends on the accurate functioning of
multiple tools (ROS2_tracing, Eclipse EMF, QVT-O, Acceleo,
UPPAAL). Bugs or misconfigurations in any of these could
compromise results.

In this paper, a proof of concept is demonstrated on a conceptual
system and a specific benchmark (Autoware). The scaling of the
approach to large, heterogeneous, or multi-executor ROS two
systems has to be evaluated further. As an example, the evaluation
in this paper assumes all callbacks are in the same executor, which
may not reflect real-world deployments with multiple executors or
distributed systems.

Additionally, the toolchain and formal models rely on specific
versions or configurations of ROS two and the tracing tools used,
limiting applicability across different setups. Nevertheless, different
templates of formal models can be introduced to model different
versions of ROS two systems that can be matched through manually
set parameters by the developer.

While the toolchain is shown to work in a controlled setting,
there is a need for extended statistical or empirical analysis
to support claims of improved efficiency, accuracy, or usability.
Furthermore, user studies or usability evaluations are needed to
evaluate the simplifications for robotics developers when applying
formal methods. Furthermore, more evaluation is needed on how
verification results are interpreted or used to guide system design
decisions.

5.3 Answers to the research questions

After utilizing the methodology to implement and apply formal
verification, in this section, we answer the posed research goals.

Frontiers in Robotics and AI 18 frontiersin.org218

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

TABLE 1 Experiment Results with the formal models (all results are in ms).

Csum Cch Ts Tf Ta Teper et al. Formal models

sub fus + sub act
Chain 1 180 110 360 — — 1,430 1,430

Chain 2 180 160 360 — — 2,490 2,490

sub fus + tim act
Chain 1 210 140 420 — 840 2,900 2,900

Chain 2 210 190 420 — 840 4,140 4,140

tim fus + sub act
Chain 1 210 140 420 840 — 2,900 2,900

Chain 2 210 160 420 840 — 2,890 2,890

tim fus + tim act
Chain 1 240 170 480 960 960 4,730 4,730

Chain 2 240 190 480 960 960 4,720 4,720

TABLE 2 Obtained Upper bounds for the End-To-End Latency.

Chain E2E Latency

C1 134.333 m

C2 291.553 m

C3 398.511 m

C4 398.511 m

RQ1: What approach can be employed to automate the application
of formal verification of ROS 2-based applications?

Answering this question, we first propose a methodology that
incorporates four layers.The first layer is the implementation of ROS
two application. In case an implementation is given, the system can
be run, and runtime information can be recorded during execution
in an execution trace. Such a generated trace can be utilized to parse
the given system and run-time parameters into a model in a chosen
modeling environment. In the modeling environment, a second
metamodel allows the focus on needed parameters and components
for formal verification. To allow automation in themodeling process,
model-to-model transformations can be utilized to automatically
create a model instance of the second model based on an instance
of the first model. The second model can then be automatically
transformed to the formal model representation utilizing formal
model templates and a model-to-text transformation.

Generally, while the traces could be parsed into the second
model representation or even the formal model directly, the
introduction of the second layer of modeling allows extendability
and decouples the process of tracing from the modeling and
verification.

Following the methodology, verification can not only be
automated with a given ROS two system implementation, but the
model-to-text transformation can be used to generate a formal
model from the EMF model automatically. This allows users to start

with conceptual systems design in themodeling environment before
implementing a system.

To demonstrate and assess the automation, we implement a
toolchain with the model parsing, the model-to-model, and a
model-to-text transformation for verification of callback latency.

We use the tool ROS2_tracing to generate system traces, which
are converted into a ROS two data model using trace_analysis. We
extend trace_analysis by a function that allows automated parsing of
the datamodel to anEMF instance of the samedatamodel in Eclipse.

We implement model-to-model transformation utilizing QVT-
O and test the generation of the second EMF model representation.
Next, we implement and test themodel-to-text transformation using
Acceleo, where we generate runnable UPPAAL code that is used for
formal verification.

Hence, we show that utilizing model-driven engineering
techniques with model parsing, model-to-model, and model-to-
text transformation can automate the process of determining the
parameters and, secondly, the instantiation of formal models.

Furthermore, in the same toolchain, we implement models to
verify end-to-end latency in ROS two processing chains. In this
implementation, the model parsing and the EMF data model can
be reused. We implement the second model and the UPPAAL
templates. The model-to-model and model-to-text transformations
have not been implemented and have only been conducted
by hand. Nevertheless, we demonstrate the automation of such
transformations on the first verification example. Hence, in future
work, the transformations can be automated as well.

RQ2: How can the formal verification process be modularized to
enable domain experts to concentrate on their specific areas of
expertise without requiring deep formalmethods knowledge?

In this methodology, we apply model-driven engineering to
decouple the process of formal modeling from systems tracing and
automate significant steps throughout the process. We implement
two different metamodels for each formal verification approach.
The first metamodel allows the import of parameters obtained by
tracing and does not need to be adapted until the tracing approach
changes. The second metamodel focuses on the parameters needed
in a specific verification approach. Hence, such a metamodel is

Frontiers in Robotics and AI 19 frontiersin.org219

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

added or changed when formal models are adapted or added. Two
consecutive models are connected by the fact that the first model
is an extension of the second model. The models are substitutable
by any other model that obeys the extension mechanism. However,
the transformation needs to be adapted, provided that the
attributes of the substituted class change. This acts as an informal
proof of modularization. In the implementation of the toolchain,
we demonstrate such ability of replacement by implementing
verification of ROS two systems using two different UPPAAL
models. Each of the UPPAAL models has its own implementation
of MM2, but stems from the same implementation of MM1.

Following the proposed methodology, we identify three main
expert domains that are needed in the creation and maintenance of
a toolchain.

1. Robotics Expert: Following the given methodology, the
robotics expert is responsible for the tracing of systems and
runtime parameters, such as the application of the final
toolchain.

2. Software Engineering/Modeling Expert: The software
engineering/modeling expert implements themodel-to-model
transformations, such as the definition of the metamodels.
The implementation of the parsing and the model-to-
text transformations needs to be in collaboration with the
robotics expert (parsing) and the formal methods expert
(model-to-text).

3. Formal Methods Expert: The formal methods expert is
responsible for the creation of the formal model templates that
can be reused for verification. Furthermore, the expert needs
to compose the formal verification queries.

As the transformations between the toolchain components can
be automated, the robotics developer as a practitioner only needs
to learn the execution of such transformations to apply a toolchain
following the proposed methodology.

RQ3: How can a methodology incorporate verification using
different formal models?

With the last research question, we focus on the modularity
and extensibility of the toolchain. The proposed methodology
incorporates multiple steps in a modeling environment. Firstly,
this allows the decoupling of domain expertise needed to design
such a component, but it also allows for the extendability of the
toolchain. The model parsing and implementation of the ROS two
data model, such as the EMF data model, is reusable for different
verification approaches. As long as the parameters are contained
in the trace, multiple formal model representations can be built
upon such parameters. To introduce a different formal model
representation to the toolchain, we add a different EMF model in
the second part of the toolchain. This EMF model represents the
parameters and components needed for the second formal model
representation. To automate the verification process, new model-
to-model and model-to-text transformations have to be created,
incorporating the new EMF model representation and the UPPAAL
templates. When applying the methodology to multiple formal
model representations in the same toolchain, such a toolchain
consists of one tracing and parsing and data model implementation
that can be reused for all formal model representations, as long
as all needed parameters are contained in the trace. Next, there

will be their formal models and individual EMF metamodels for
each of the individual approaches with their specific model-to-
model and model-to-text transformations. Hence, when extending
the toolchain with a new formal model, the methodology can be
applied to extend an existing toolchainwith the needed components,
while reusing the model parsing and the EMF data model.

6 Related work

The analysis of ROS two execution behavior has been a subject
of interest in recent research. Casini et al. (2019) and Blaß et al.
(2021) conduct response time analysis, which is crucial for the
formal verification of ROS two timing behavior. Their work has laid
the foundation for creating formal model templates and modeling
timing requirements.

Halder et al. (2017) propose formal verification of ROS two
communication between nodes using UPPAAL. Their approach
models low-level parameters such as queue sizes and timeouts
to verify queue overflow. While their focus is on modeling and
verification, our toolchain emphasizes the automation of verification
processes.

Carvalho et al. (2020) employ an Alloy extension called
Electrum to implement a model-checking technique that
automatically creates models from configurations extracted in
continuous integration and specifications. Their approach targets
high-level architectural verification, whereas our toolchain aims to
verify low-level behavior such as system execution.

Webster et al. (2016) and Liu et al. (2018) work on formal
verification of requirements for robotic systems and ROS two
message passing in DDS using different model checkers. Although
their approaches are manual and use different model checkers
than UPPAAL, our focus is on automating the verification process.
Extending our toolchain to support other model checkers could be
a valuable future direction.

Kim and Kim (2022) introduce the Robo Fuzz Framework,
which is used for fuzz testing robotic systems to find bugs in
system implementations. Their framework focuses on data type
mutation and violation of physical laws and hardware specifications.
In contrast, our framework focuses on timing and execution
verification of ROS two applications. Additionally, fuzz testing is not
exhaustive.

Anand and Knepper (2015) present ROSCoq, a “correct-by-
construction” approach for developing certified ROS two systems.
While their approach is not applicable to legacy systems, it
complements the verification conducted in our work.

Beckmann and Thoss (2010) explore model-based development
of DDS-based systems such as ROS 2. The work highlights how the
DDS architecture supports model-based development, whereas our
focus is on verification.

Parra et al. (2021) develop Ecore models to specify QoS
requirements for ROS 2. This work is complementary to ours, as we
focus on architectural components and verification related to task
scheduling.

Dal Zilio et al. (2023) propose a toolchain for runtime and
offline verification of general robotic systems beyond ROS. While
the authors focus on general robotic systems and application code
with internal logic, our toolchain targets timing issues induced by

Frontiers in Robotics and AI 20 frontiersin.org220

https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

using ROS 2 as middleware. Additionally, our toolchain leverages
model-driven engineering in the Eclipse environment to support
iterative verification and model-based development.

Teper et al. (2022) provide an end-to-end timing analysis for
ROS two systems, focusing on cause-effect chains and their timing
behavior. The work is significant for understanding the maximum
reaction time and maximum data age in ROS two systems, which
are critical for ensuring real-time performance.

Bédard et al. (2023) utilize ROS2_tracing to allow message flow
analysis of ROS two systems. The work can be used as a ground for
allowing additional analysis in the tracing layer of our toolchain, and
is used as a foundation for the structural analysis of ROS two systems
in our evaluation.

In our previous work (Dust et al., 2023a), we develop reusable
UPPAAL templates to verify timing behavior and buffer overflow
in ROS two systems. Building on this foundation, our current
work aims to further simplify the formal verification process
by automating parameter determination and model initialization,
making formal verification more accessible and less error-prone for
robotics developers.

7 Conclusion and future work

In this article, we introduce a novel approach to automating
model-based verification for ROS 2-based applications usingmodel-
driven engineering techniques. This work extends our paper
(Dust et al., 2024) and builds on our previous work (Dust et al.,
2023b), which identified potential timing issues, and utilizing the
formal model templates proposed in (Dust et al., 2023a). In this
article, we develop a methodology that leverages ROS two system
traces to automate the verification process. Our toolchain uses
ROS two execution traces to initialize pre-defined formal model
templates through models and model transformations.

The toolchain supports the verification of both implemented
and conceptual systems by providing four different model
representations, enhancing traceability throughout the process.
Additionally, it allows for parameter refinement and iterative
verification of system parameters without repeated source code
adaptation.

A key feature of our approach is its flexibility in supporting
different types of formal modeling analyses. We demonstrated
this by comparing two formal modeling approaches: one at the
individual node level and one at the system level (end-to-end
analysis). The individual node level analysis focuses on verifying
the timing behavior of specific nodes, while the end-to-end analysis
examines the timing behavior of cause-effect chains across the entire
system. This comparison showcases the toolchain’s versatility in
accommodating various verification needs.

Our evaluation demonstrates the feasibility of using ROS2_
tracing to capture the necessary trace points for verification.
However, customization may be required to include all needed
parameters. Further evaluation is needed to determine the extent to
which execution times from a single system execution are sufficient
for verification. Nonetheless, our work shows the potential for
automatic parameter determination using system traces and model-
based development for formal verification.

The toolchain also opens up possibilities for automated model-
based generation of ROS two application code and modeling of
requirements, which are areas for future research. While these
features would enhance automation, they are not essential to
demonstrate the feasibility and novelty of our methodology.

Despite being demonstrated with specific tools (ROS2_tracing,
Eclipse EMF, Acceleo, QVT-O, and UPPAAL), our approach can
be implemented using different tools, such as other tracing tools,
model editors, and verification tools. This flexibility makes our
methodology adaptable to various development environments.
As an example, when choosing a different formal modeling
environment, only an additional metamodel with the corresponding
model-to-model and model-to-text transformations is needed. In
contrast, the tracing and parsing components do not need to
be changed.

Given the preliminary state of the toolchain implementation,
this paper serves as a first proposal and proof of feasibility, making
it suitable for researchers and tool developers. More evaluation
and implementation are needed to make the toolchain usable on
real robotics systems. To enable more extensive verification, the
proposed metamodels and transformations need to be refined and
extended. Additional formal model templates should be developed
and integrated into the toolchain. Future work will also involve
modeling requirements and verification properties, which were not
included in this implementation.

In conclusion, our work demonstrates the potential of using
system traces and model-driven engineering to automate the formal
verification of ROS two systems. By refining the data model and
output of ROS2_tracing, and providing formal proof of correctness
for the toolchain implementation, we can further enhance
the robustness and usability of our approach. Future research
will focus on automating verification and simulation feedback,
modeling requirements, and generating ROS two application code.
Additionally, investigating the ease of use of the proposed toolchain
will be essential to ensure its practical applicability in real-world
scenarios.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://sites.google.
com/view/mbfvros2.

Author contributions

LD: Writing – original draft, Writing – review and editing. RG:
Writing – review and editing. SM:Writing – review and editing.ME:
Writing – review and editing. CS: Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. We acknowledge
the support of the Swedish Knowledge Foundation via the

Frontiers in Robotics and AI 21 frontiersin.org221

https://doi.org/10.3389/frobt.2025.1592523
https://sites.google.com/view/mbfvros2
https://sites.google.com/view/mbfvros2
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Dust et al. 10.3389/frobt.2025.1592523

synergy project ACICS–Assured Cloud Platforms for Industrial
Cyber-Physical Systems, grant nr. 20190038, the Hög project
SEINE–Automatic Self-configuration of Industrial Networks, grant
nr. 20220230, the research profile DPAC - Dependable Platform
for Autonomous Systems and Control project, grant number:
20150022, and the Swedish Governmental Agency for Innovation
Systems (VINNOVA) via the PROVIDENT, INTERCONNECT, and
FLEXATION projects.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of this manuscript. Generative AI was used to correct the text
from spelling and grammar mistakes, such as rephrasing specific
sentences.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Alur, R., and Dill, D. L. (1994). A theory of timed automata. Theor. Comput. Sci. 126,
183–235. doi:10.1016/0304-3975(94)90010-8

Anand, A., and Knepper, R. (2015). “Roscoq: robots powered by constructive reals,”
in Interactive theorem proving. Editors C. Urban, and X. Zhang (Cham: Springer
International Publishing), 34–50.

Autoware Foundation (2025). Autoware: open-source software stack for autonomous
driving. Available online at: https://github.com/autowarefoundation/autoware
(Accessed May 26, 2025).

Beckmann, K., and Thoss, M. (2010). “A model-driven software development
approach using omg dds for wireless sensor networks,” in IFIP international workshop
on software technolgies for embedded and ubiquitous systems (Springer), 95–106.

Bédard, C., Lajoie, P.-Y., Beltrame,G., andDagenais,M. (2023).Message flow analysis
with complex causal links for distributed ros 2 systems. Robot. Aut. Syst. 161, 104361.
doi:10.1016/j.robot.2022.104361

Bédard, C., Lütkebohle, I., and Dagenais, M. (2022). ros2_tracing: multipurpose
low-overhead framework for real-time tracing of ros 2. IEEE Robot. Autom. Lett. 7,
6511–6518. doi:10.1109/lra.2022.3174346

Birman, K., and Joseph, T. (1987). “Exploiting virtual synchrony in distributed
systems,” in Proceedings of the eleventh ACMSymposium onOperating systems principles.
doi:10.1145/41457.37515

Blaß, T., Casini, D., Bozhko, S., and Brandenburg, B. B. (2021). “A ros 2 response-time
analysis exploiting starvation freedom and execution-time variance,” in IEEE real-time
systems symposium RTSS (IEEE), 41–53.

Carvalho, R., Cunha, A., Macedo, N., and Santos, A. (2020). Verification of system-
wide safety properties of ros applications. IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS.

Casini, D., Blaß, T., Lütkebohle, I., and Brandenburg, B. (2019). “Response-time
analysis of ros 2 processing chains under reservation-based scheduling,” in 31st
euromicro conference on real-time systems, 1–23.

Dal Zilio, S., Hladik, P.-E., Ingrand, F., and Mallet, A. (2023). A formal toolchain
for offline and run-time verification of robotic systems. Robot. Aut. Syst. 159, 104301.
doi:10.1016/j.robot.2022.104301

Dust, L., Ekström, M., Gu, R., Mubeen, S., and Seceleanu, C. (2024). “A model-based
methodology for automated verification of ros 2 systems,” in Proceedings of the 2024
ACM/IEEE 6th international workshop on robotics software engineering, 35–42.

Dust, L., Gu, R., Seceleanu, C., Ekström, M., and Mubeen, S. (2023a). “Pattern-based
verification of ros 2 nodes using uppaal,” in International conference on formal methods
for industrial critical systems (Springer), 57–75.

Dust, L., Gu, R., Seceleanu, C., Ekström, M., and Mubeen, S. (2025). A model-based
approach to automation of formal verification of ROS 2-based systems — sites.google.com
Sweden. Available online at: https://sites.google.com/view/mbfvros2 (Accessed March
08, 2025).

Dust, L., Persson, E., Ekström, M., Mubeen, S., Seceleanu, C., and Gu, R. (2023b).
“Experimental evaluation of callback behavior in ros 2 executors,” in 28th international
conf. On emerging technologies and factory automation.

Eclipse Foundation (2025a). Acceleo: code generator for eclipse. Available online at:
https://eclipse.dev/acceleo/ (Accessed May 26, 2025).

Eclipse Foundation (2025b). Qvt operational mappings (qvto). Available online at:
https://wiki.eclipse.org/QVTo/ (Accessed May 26, 2025).

Group, O. M. (2022). Object management group. Available online at: https://www.
omg.org/ (Accessed November 7, 2022).

Gutiéerrez, C. S. V., Juan, L. U. S., Ugarte, I. Z., and Vilches, V. M. (2018). Towards a
distributed and real-time framework for robots: Evaluation of ROS 2.0 communications
for real-time robotic applications. doi:10.48550/arXiv.1809.02595

Halder, R., Proença, J.,Macedo, N., and Santos, A. (2017). “Formal verification of ros-
based robotic applications using timed-automata,” in 2017 IEEE/ACM 5th international
FME workshop on formal methods in software engineering (FormaliSE), 44–50.

Hendriks, M., Yi, W., Petterson, P., Hakansson, J., Larsen, K., David, A., et al. (2006).
“Uppaal 4.0,” in Third international conference on the quantitative evaluation of systems
- (QEST’06).

Kim, S., and Kim, T. (2022). “Robofuzz: fuzzing robotic systems over robot operating
system (ros) for finding correctness bugs,” in Proceedings of the 30th ACM joint
European software engineering conference and symposium on the foundations of software
engineering, 447–458.

Li, Z., Hasegawa, A., and Azumi, T. (2022). Autoware_perf: a tracing and
performance analysis framework for ros 2 applications. J. Syst. Archit. 123, 102341.
doi:10.1016/j.sysarc.2021.102341

Liu, Y., Guan, Y., Li, X., Wang, R., and Zhang, J. (2018). “Formal analysis and
verification of dds in ros2,” in 2018 16th ACM/IEEE international conference on formal
methods and models for system design (MEMOCODE) (IEEE).

OpenRobotics (2023a). Ros 2: documentation. Available online at: https://docs.ros.
org/en/humble (Accessed May 22, 2023).

OpenRobotics (2023b). Ros: distributions. Available online at: http://wiki.ros.
org/Distributions (Accessed July 28, 2023).

Parra, S., Schneider, S., and Hochgeschwender, N. (2021). “Specifying qos
requirements and capabilities for component-based robot software,” in 2021 IEEE/ACM
3rd international workshop on robotics software engineering (RoSE).

Rajkumar, R., Lee, I., Sha, L., and Stankovic, J. (2010). “Cyber-physical systems: the
next computing revolution,” in Proceedings of the 47th design automation conference,
731–736.

ROS Realtime Working Group (2025a). Ros 2 realtime reference system. Available
online at: https://github.com/ros-realtime/reference-system (Accessed May 26, 2025).

ROS Realtime Working Group (2025b). Autoware reference system. Available online
at: https://github.com/ros (Accessed May 26, 2025).

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008). EMF: eclipse
modeling framework. 2nd edn. Addison-Wesley Professional.

Teper, H., Günzel,M., Ueter, N., von der Brüggen, G., andChen, J.-J. (2022). “End-to-
end timing analysis in ros2,” in 2022 IEEE real-time systems symposium (RTSS), 53–65.
doi:10.1109/RTSS55097.2022.00015

Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K. L., et al.
(2016). Toward reliable autonomous robotic assistants through formal verification:
a case study. IEEE Trans. Human-Machine Syst. 46, 186–196. doi:10.1109/thms.
2015.2425139

Frontiers in Robotics and AI 22 frontiersin.org222

https://doi.org/10.3389/frobt.2025.1592523
https://doi.org/10.1016/0304-3975(94)90010-8
https://github.com/autowarefoundation/autoware
https://doi.org/10.1016/j.robot.2022.104361
https://doi.org/10.1109/lra.2022.3174346
https://doi.org/10.1145/41457.37515
https://doi.org/10.1016/j.robot.2022.104301
https://sites.google.com/view/mbfvros2
https://eclipse.dev/acceleo/
https://wiki.eclipse.org/QVTo/
https://wiki.eclipse.org/QVTo/
https://www.omg.org/
https://www.omg.org/
https://doi.org/10.48550/arXiv.1809.02595
https://doi.org/10.1016/j.sysarc.2021.102341
https://docs.ros.org/en/humble
https://docs.ros.org/en/humble
http://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions
https://github.com/ros-realtime/reference-system
https://github.com/ros
https://doi.org/10.1109/RTSS55097.2022.00015
https://doi.org/10.1109/thms.2015.2425139
https://doi.org/10.1109/thms.2015.2425139
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

+41 (0)21 510 17 00
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores the applications of robotics technology

for modern society

A multidisciplinary journal focusing on the theory

of robotics, technology, and artificial intelligence,

and their applications - from biomedical to space

robotics.

Discover the latest
Research Topics

See more

Frontiers in
Robotics and AI

https://www.frontiersin.org/journals/Robotics-and-Ai/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Robotics software engineering

	Table of contents

	Editorial: Robotics software engineering

	Architectural modelling for robotics: RoboArch and the CorteX example
	1 Introduction
	2 Related work
	2.1 Discussion

	3 Materials and methods: RoboArch
	3.1 Overview
	3.2 Metamodel and well-formedness
	3.3 RoboArch in RoboChart

	4 Results: Reactive skills in RoboArch
	4.1 Overview
	4.2 Metamodel and well-formedness conditions
	4.3 Reactive skills in RoboChart

	5 Discussion: CorteX and RoboArch
	5.1 From RoboArch to CorteX
	5.2 CorteX in RoboArch

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	A containerised approach for multiform robotic applications

	A survey of ontology-enabled processes for dependable robot autonomy

	Composable and executable scenarios for simulation-based testing of mobile robots

	Software patterns and data structures for the runtime coordination of robots, with a focus on real-time execution performance

	AAT4IRS: automated acceptance testing for industrial robotic systems

	EzSkiROS: enhancing robot skill composition with embedded DSL for early error detection

	Semantic composition of robotic solver algorithms on graph structures

	Energy efficiency in ROS communication: a comparison across programming languages and workloads

	ROSA: a knowledge-based solution for robot self-adaptation

	A model-based approach to automation of formal verification of ROS 2-based systems

	Back Cover

