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Editorial on the Research Topic

Revolutionizing immunological disease understanding through single
cell multi-omics technologies
Introduction

Single cell approaches have revolutionized our understanding of many different

immunological diseases and in this special issue, several new examples are highlighted

that pave the way for new treatment options including better understanding of Th17

biology in fibrosis, HIV pathogenesis, IgA Nephropathy pathobiology, and identification of

key immune subsets in rheumatoid arthritis and other autoimmune diseases. Spatial

technologies have furthered our knowledge of gene expression and protein colocalization,

opening new paths for studying tissue-specific cellular dynamics. Advancements like the

SENSE method for cryopreserving whole blood have simplified single-cell analyses, making

them more viable for clinical use. Innovative multiplexing strategies and developments in

proteomics and Raman spectroscopy are broadening the capabilities of single-cell

technologies, allowing for comprehensive profiling that can enhance precision medicine.

Together, these advances highlight the potential of single-cell omics to lead the future of

immunological research and clinical practice, facilitating the creation of novel therapeutic

strategies and personalized medicine.
Understanding disease mechanisms through single-
cell RNA sequencing

Deng et al. studied fibrotic skin diseases like keloids, hypertrophic scars, and

scleroderma, characterized by excessive fibroblast growth and extracellular matrix

buildup. They used fluorescence-activated cell sorting to isolate CD45+ immune cells

from keloid and normal scar tissues, then applied scRNA-seq to map the immune cell
frontiersin.org015
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landscape. The study found a significant increase in Th17 cells,

which promote fibroblast proliferation, collagen expression, and

migration via IL-17A secretion. This increase in Th17 cells in other

fibrotic conditions suggests a common mechanism in skin fibrosis,

advancing the understanding of these diseases and identifying

potential therapeutic targets.

Hong et al. used multiplex cytokine assays and scRNA-seq to

explore immunological differences between ACPA-positive and

ACPA-negative early rheumatoid arthritis (eRA) patients. They

found that ACPA+ eRA patients had higher levels of interferon-

gamma (IFN-g) and interleukin-12 (IL-12), indicating a Th1

immune response. The study identified 17 distinct cell types, with

notable expansions of IL1B+ proinflammatory monocytes, CD8+

CCL4+ T cells, and IL7R+ T cells in ACPA+ eRA. These cells

showed upregulated IFN-g response genes, suggesting enhanced

IFN-driven monocyte-T cell interactions. IFITM2 and IFITM3

were identified as potential biomarkers for ACPA+ eRA. These

findings indicate that ACPA+ eRA is characterized by a more active

IFN-mediated immune response, potentially guiding personalized

treatment strategies targeting type I and II interferon pathways.

scRNA-seq has been crucial in understanding immunity related

to pathogenic invasion. Knoll et al. conducted a comprehensive

study on immune cell reprogramming in people living with HIV

(PLHIV), revealing persistent functional changes in monocytes

even with long-term antiretroviral therapy (ART). Using various

omics technologies, the study identified significant transcriptomic

changes in monocytes, indicating an “anti-viral” state with

upregulated IFN signaling pathways, like acute HIV infection.

This suggests ongoing immune activation despite ART. The

research also explored drug repurposing to reverse the pro-

inflammatory monocyte phenotype in PLHIV, identifying

sunitinib and doxycycline as promising candidates. These findings

support the larger 2000-HIV multicenter cohort study, highlighting

the need for transcriptomics to define disease endotypes and predict

outcomes. The study emphasizes verifying chromatin-level

differences via ATAC-seq and further exploring monocyte-

mediated immune dysregulation. Despite a small sample size, it

lays the groundwork for future research to refine therapeutic

strategies and understand the immune landscape in PLHIV

under ART.

Nephrotic syndrome (NS) is a severe form of IgA nephropathy

(NS-IgAN) with unclear pathogenesis, marked by immune cell

imbalances and kidney damage. Chen et al. used scRNA-seq on

peripheral blood mononuclear cells and kidney cells from pediatric

NS-IgAN patients to investigate this condition. They found

increased intermediate monocytes (IMs) expressing VSIG4, MHC

class II molecules, and genes related to oxidative phosphorylation.

Classical and non-classical monocytes showed elevated CCR2,

possibly linked to kidney injury. Two regulatory T cell subsets

were identified, with Treg2 cells expressing high CCR4 and GATA3,

potentially aiding kidney recovery. Podocyte injury was associated

with increased CCL2, PRSS23, and epithelial-mesenchymal

transition genes. PTGDS was suggested as a potential podocyte

marker due to its decreased expression after injury. This study
Frontiers in Immunology 026
provides insights into NS-IgAN pathogenesis and could guide

future targeted therapies.

Huang et al. describe the integration of single-cell and spatial

transcriptomic analyses to unravel the cellular heterogeneity and

molecular mechanisms underlying ulcerative colitis (UC), a chronic

inflammatory bowel disease characterized by immune

dysregulation. By identifying distinct monocyte subtypes and

leveraging machine learning techniques, two key genes, GNG5

and TIMP1, were highlighted as central to UC pathogenesis.

GNG5, downregulated in UC, is implicated in anti-inflammatory

pathways such as PPAR signaling, while TIMP1, upregulated,

exhibits pro-inflammatory effects and correlates with T cell

exhaust ion markers l ike TIGIT and CTLA4. Spat ia l

transcriptomic data, immunohistochemical validation in human

UC lesions, and experimental findings from a DSS-induced colitis

mouse model confirmed these gene expression patterns. TIMP1 was

further shown to co-localize with macrophages and promote Th17-

driven inflammation, suggesting its dual role in macrophage

activation and immune depletion. These findings provide a

foundation for developing targeted therapeutic strategies aimed at

mitigating chronic inflammation and immune dysfunction in UC.
Spatial technologies

Spatial technologies are essential for pinpointing specific cell

types and gene expression locations. Moos et al. demonstrated how

spatial-temporal single-cell transcriptomic sequencing can analyze

genetic mutations in pulmonary epithelial nodes related to

pulmonary fibrosis (PF) and interstitial lung diseases. Using a

clinical PF dataset and a murine model with SP-C gene

mutations, they investigated monocyte/macrophage changes in

fibrotic lungs. The study found heterogeneous activation of CD68

+ macrophages, especially near injury sites. Ingenuity Pathway

Analysis showed asynchronous activation of extracellular matrix

reorganization and ApoE signaling in alveolar macrophages.

scRNA-seq identified pro-fibrogenic signaling from Trem2+

macrophages. Although genetic deletion of ApoE had limited

impact on inflammation, the study suggests ApoE as a biomarker

for active macrophages in tissue remodeling. These findings provide

insights into macrophage heterogeneity and cell-cell interactions in

fibrotic diseases.

Advances in spatial proteomics and protein colocalization are

crucial for understanding cellular mechanisms and developing

novel algorithms. Rhomberg-Kauert et al. introduced Molecular

Pixelation (MPX), a method that provides spatial information on

surface proteins in single cells, allowing for in silico graph

representation of protein neighborhoods. To analyze this data

modality, local assortative methods were adapted to assess spatial

relationships, enabling evaluation of pairwise colocalization and

similarity among multiple proteins. MPX was tested on datasets

showing its ability to detect stimuli effects, such as T cells treated

with a chemokine to study uropod formation, and cancerous B-cell

lines treated with rituximab, providing insights into cell polarity.
frontiersin.org
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This computational approach enhances understanding of immune

responses and cell surface protein reorganization, potentially

guiding new therapeutic designs. MPX offers high throughput,

sensitivity, and three-dimensional analysis, surpassing traditional

microscopy, and enabling deep phenotyping at single-cell

resolution. The method can also analyze other biological spatial

data represented as graphs, showcasing its broad applicability and

potential to advance spatial proteomics.

Sample preparation is often a bottleneck in single-cell

methodologies, especially with biofluids. Satpathy et al. developed

the SENSE method for single-step cryopreservation of whole blood

(WB), streamlining cell suspension preparation for scRNA-seq.

This method overcomes the limitations of labor-intensive

multistep processes unsuitable for clinical use. In a comparative

analysis of six blood samples, the SENSE method produced highly

viable single-cell suspensions, with 22,353 cells showing a viability

rate of 86.3 ± 1.51%. It yielded high-quality transcriptomic profiles

comparable to traditional PBMCmethods and showed higher T-cell

enrichment, allowing for detailed T-cell subtype characterization.

Both methods captured transcriptional and cellular networks across

cell types, with minimal batch effects, except in myeloid cells. The

SENSE method’s simplicity and effectiveness make it promising for

widespread clinical and research adoption, facilitating single-cell

assays and translational research.

Khoshbakht et al. introduced a label-free sample multiplexing

strategy based on the souporcell algorithm, enabling cost-effective

scRNA-seq and flow cytometry analyses of paired blood and skin

samples. This protocol addresses the complexity and cost of current

methods, applicable to both healthy and inflamed skin. It allows

simultaneous RNA and protein analysis on the same lesion,

reducing costs by 2–4 times. The strategy minimizes batch effects

and examines the impact of different enzymatic incubation

durations (1, 3, and 16 hours, with and without enzyme P) on

flow cytometry results. It includes bioinformatic demultiplexing

and a step-by-step guide, making it accessible for newcomers. This

approach aims to enhance single-cell analysis accessibility,

potentially extending to other dermatological disorders and aiding

in understanding immune mechanisms and identifying new

therapeutic targets.

Single-cell omics techniques for clinical samples have

traditionally focused on genomic, transcriptomic, and more

recently, proteomic methodologies. Raman spectroscopy has

emerged as a complementary bioanalytical tool due to its ability

to characterize the biophysical properties of biomolecules.

Chadokiya et al. review how molecular tumor characterization is

crucial for identifying predictive biomarkers to improve precision

immunotherapy. However, challenges like tumor heterogeneity and

limited biomarker efficacy hinder accurate treatment predictions.

This study highlights label-free Raman spectroscopy as a non-

invasive tool for profiling precision immunotherapy, capable of

unifying various omics data. With its ability to distinguish immune

cell types and detect molecular changes, Raman spectroscopy offers

a promising approach for enhancing treatment prediction and

monitoring in cancer care. As it evolves, Raman spectroscopy
Frontiers in Immunology 037
could become a cost-effective, patient-focused tool integrated into

clinical practice for precise immunotherapy.
Future directions

Future developments in single-cell omics technologies are set to

transform our understanding and treatment of immunological and

tumor-related diseases. Integrating multi-omics data including

genomic, transcriptomic, proteomic, and metabolomic at the single-

cell level, along with spatial information, will provide a comprehensive

view of cellular states and interactions, aiding in the discovery of new

biomarkers and therapeutic targets. Advances in artificial intelligence

and machine learning will be vital for analyzing the large datasets from

these technologies, enabling predictive models for disease progression

and treatment response. Enhancing spatial omics technologies will offer

insights into cell and molecular organization within tissues, enriching

our understanding of tissue architecture and function. Expanding

single-cell techniques to less-studied cell types and rare diseases will

uncover new areas of human health. Making single-cell omics cost-

effective and user-friendly will be crucial for their integration into

routine clinical practice, allowing personalized healthcare for more

patients. These advancements will deepen our understanding of

complex biological systems and lead to innovative therapies and

precision medicine tailored to individual needs.
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Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA

nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the

pathogenesis of NS-IgAN may involve circulating immune imbalance and

kidney injury; however, this has yet to be fully elucidated. To investigate the

cellular and molecular status of NS-IgAN, we performed single-cell RNA

sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and

kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy.

Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN

patients was higher than in healthy controls. Furthermore, flow cytometry

confirmed that IMs were significantly increased in pediatric patients with NS.

The characteristic expression of VSIG4 and MHC class II molecules and an

increase in oxidative phosphorylation may be important features of IMs in NS-

IgAN. Notably, we found that the expression level of CCR2 was significantly

increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be

related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets

of cells: Treg1 (CCR7high, TCF7high, and HLA-DRlow) and Treg2 (CCR7low, TCF7low,

and HLA-DRhigh). We found that the levels of Treg2 cells expressed significant

levels ofCCR4 andGATA3, which may be related to the recovery of kidney injury.

The state of NS in patients was closely related to podocyte injury. The expression

levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition

were significantly increased in podocytes from NS-IgAN patients. These

represent key features of podocyte injury. Our analysis suggests that PTGDS is
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significantly downregulated following injury and may represent a new marker for

podocytes. In this study, we systematically analyzed molecular events in the

circulatory system and kidney tissue of pediatric patients with NS-IgAN, which

provides new insights for targeted therapy in the future.
KEYWORDS

IgA nephropathy, nephrotic syndrome, single-cell RNA sequencing, peripheral blood
mononuclear cells, podocyte
GRAPHICAL ABSTRACT
1 Introduction

IgA nephropathy (IgAN) is the most common form of primary

glomerulonephritis worldwide (1). With the increased use of kidney

biopsy in children, there is a growing concern related to pediatric

patients with IgAN (2). The diagnostic hallmark of IgAN is the

predominance of IgA deposits in the glomerular mesangium. The

pathogenesis of IgAN remains unclear but it is considered an

autoimmune disease. A “multi-hit’” hypothesis has been proposed

to explain the pathogenesis of IgAN (1). This hypothesis outlines
029
that increased levels of galactose-deficient IgA1 (Gd-IgA1), the

production of autoantibodies, the deposition of immune

complexes in the mesangial area of the glomeruli, and the

secretion of cytokines, chemokines, and complements by

mesangial cells ultimately lead to further kidney injury (3). In

children, IgAN has long been considered to be a benign disease,

with remission usually occurring after timely treatment (4).

Nevertheless, patients with heavy proteinuria at biopsy often have

a poor prognosis and there is a significant lack of therapeutic

options for such patients (4). Nephrotic syndrome (NS) is a
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relatively rare and serious presentation of IgAN (NS-IgAN). This

condition has a low incidence (4), ranging from approximately 4%

to 10% (4, 5). Therefore, there is limited information relating

to the molecular mechanism of NS-IgAN, particularly in

pediatric populations.

NS-IgAN patients not only exhibit typical manifestations of

nephrotic syndrome (e.g., edema, heavy proteinuria, and

hypoproteinemia), they also show glomerular mesangial IgA

deposition and extensive foot process effacement on kidney

biopsy (6). When considering NS-IgAN, the presentation of the

typical histological characteristics of IgAN can indicate the

existence of two glomerular diseases: IgAN and “podocytopathy”

(6). The injury and loss of podocytes are key factors that contribute

to progressive proteinuria and filtration dysfunction in IgAN (7). In

addition, mesangial-derived humoral factors, such as tumor

necrosis factor, complement components, and angiotensin II, may

alter glomerular permeability in the presence of proteinuria (8).

Existing literature suggests that abnormal crosstalk between

circulating immune cells and kidney cells may contribute to the

occurrence and progression of IgAN. Systematic dissection of the

molecular characteristics of the circulating immune system and

kidney tissue will help us to identify the mechanisms underlying

proteinuria and provide potential strategies for improving the

treatment and prognosis of pediatric patients with NS-IgAN.

Single-cell transcriptome sequencing (scRNA-seq) technology

can achieve unbiased and high-throughput transcriptome

sequencing at the single-cell level and has been applied in clinical

research for various diseases, including kidney and autoimmune

diseases (9). Previous scRNA-seq studies of IgAN have attempted to

identify the molecular features of kidney cells or circulating

immune cells in IgAN (10–12). However, there is still a

significant lack of research on the systematic identification of the

changes in circulating immune cells and kidney cells that occur in

IgAN (9). To provide valuable insight into the molecular features of

local tissues and the circulatory system, we simultaneously

performed scRNA-seq on kidney biopsies and peripheral blood

mononuclear cells (PBMCs) from pediatric patients with NS-IgAN.

We found that the composition of monocyte subsets was altered in

NS-IgAN and this was accompanied by the increased expression of

CCR2. In addition, we found that PTGDS was significantly

downregulated in podocyte injury. Collectively, our research

provides a new understanding of the molecular characteristics of

cell types in NS-IgAN and may facilitate the development of new

targeted therapies.
2 Materials and methods

2.1 Ethical approval

This study for scRNA-seq analysis was reviewed and approved

by the Institutional Review Board of the Children’s Hospital of

Chongqing Medical University (File Number: 2022 Research 124).

The research for flow cytometric analysis was reviewed and

approved by the Institutional Review Board of the Children’s
Frontiers in Immunology 0310
Hospital of Chongqing Medical University. The File Number is

2022 Research 35. Written informed consent was obtained from all

participants and their guardians.
2.2 Sample collection and patient details

In this study, we collected PBMCs from the blood and kidney

tissues from three pediatric patients diagnosed with IgAN by renal

biopsy, all of whom had IgAN with nephrotic-level proteinuria (NS-

IgAN). The PBMCs were harvested from samples that remained

after routine tests had been performed. Patients were classified as

NGC, SGC, or LGC according to their glucocorticoid treatment at

the time of sampling. We also included two kidney tissues as control

kidney samples: one sample was Wilms’ tumor paracancerous tissue

from a child (CTRL-1) while the other sample was from a resected

duplex kidney (CTRL-2). All participants were enrolled from the

Children’s Hospital of Chongqing Medical University, and each

sample was collected for scRNA-seq individually. For comparative

analysis, we downloaded scRNA-seq datasets from the Gene

Expression Omnibus database. The kidney tissue datasets

included one healthy adult (CTRL-3), four adult patients with

IgAN (merged as HU-IgAN) from GSE171314, and PBMC

datasets from three healthy children (Con-1, Con-2, Con-3) from

GSE206295. Detailed information relating to the participants is

shown in Supplementary Table 1. To further investigate the changes

in monocyte subsets in NS patients, we recruited a cohort of 13

healthy children, 26 NS patients with proteinuria, and 6 NS patients

who were in remission after treatment. We collected blood from

samples that remained after routine testing for flow cytometry.
2.3 Preparation of single-cell suspensions

To prepare PBMCs, we collected 2 mL of venous blood in EDTA

collection vessels, which were then taken to the laboratory on ice.

PBMCs were isolated using Ficoll medium (TBD, Tianjin, China) and

cryopreserved according to the 10X genomics recommended

protocol (CG00039). To dissociate the kidney tissue into single-cell

suspensions, each fresh kidney sample was washed three times with

Hanks’ balanced salt solution and immediately stored in GEXSCOPE

tissue preservation solution (Singleron Biotechnologies, Nanjing,

China) at 2–8°C. Then, the tissue was cut into small pieces and

digested in 1 mL of Tissue Dissociation Mix (Singleron

Biotechnologies) at 37°C for 15 minutes before being passed

through a 40 mm filter. After centrifugation at 3500 g for 5

minutes, cell pellets were resuspended in 1 mL of cold PBS. To

remove red blood cells, 2 mL of GEXSCOPE Red Blood Cell Lysis

Buffer (Singleron) was added into the cell suspension and incubated

at 25°C for 10 minutes. Cells were then centrifuged at 300 g for 5 min

and resuspended in cold PBS. Next, cells were stained with trypan

blue (Beyotime, Shanghai, China) and counted with a TC20

automated cell counter (Bio-Rad, California, USA). Sample

processing and analysis were permitted once cell viability

exceeded 85%.
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2.4 scRNA-seq library construction
and sequencing

Several different sequencing methods were used for the samples

of PBMCs and kidneys. For PBMCs, each sample was diluted to a

final concentration of 700–1200 cells µl−1 and loaded onto a

Chromium Single Cell Controller (10X Genomics, San Francisco,

USA). The libraries for scRNA-seq were constructed using a

Chromium Next GEM Single Cell 3´ GEM, Library and Gel Bead

Kit v3.1 (10X Genomics) and then sequenced using an Illumina

NovaSeq 6000 system. For each kidney sample, the single-cell

suspension was adjusted to a concentration of approximately 300

cells µl−1. A GEXSCOPE Single Cell RNA Library Kit (Singleron

Biotechnologies) was then used to construct a single-cell RNA-seq

library for kidney samples. The libraries were then sequenced with

an Illumina HiSeq X 10 system. Each sample of PBMCs and kidney

tissue was processed independently.
2.5 scRNA-seq data processing

Raw sequencing reads from PBMCs were processed using Cell

Ranger (version 6.0.0), including demultiplexing, genome

alignment (GRCh38), barcode counting, and unique molecular

identifier (UMI) processing. Similarly, raw data from the kidney

tissues were processed by Celescope (version 1.10.0). We then used

the Seurat (version 4.1.0) package to perform downstream analysis.

To exclude low-quality cells, the cells were filtered by gene counts

and UMI counts; cells with a high mitochondrial content were

removed. Detailed information relating to the quality control (QC)

threshold settings is given in Supplementary Table 2. After cell

filtering, 53,571 PBMCs and 47,602 renal cells were captured for

downstream analysis. Next, we used DoubletFinder (version 2.0.3)

to identify doublets and removed clusters with a high proportion of

doublets. To remove batch-effects, we integrated sample datasets via

the “integrate” function in Seurat. Principal component analysis

(PCA) was then performed on the top 2000 highly variable genes;

the top 20 PCs were used for subsequent analysis. We then used a

graph-based clustering algorithm to identify clusters, thus allowing

us to construct a K-Nearest Neighbor (KNN) graph by Euclidean

distance. The Louvain algorithm was used to group cells and

optimize modules. To display the distribution of cells by status,

we used the uniform manifold approximation and projection

(UMAP) algorithms to visualize clustered cells. First, cells were

identified by SingleR (v1.6.1). This software compared the

transcriptome of each cell cluster to various reference datasets

(e.g., human primary cell atlas, Blueprint/ENCODE, Database of

Immune Cell Expression, Novershtern hematopoietic data, and

Monaco immune data). In order to exclude the influence of

automatic assignment, we also manually adjusted the identities of

clusters by combining data with the expression levels of canonical

marker genes and existing annotated scRNA-Seq data

(Supplementary Tables 3–7, 9).
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2.6 Differentially expressed genes and
enrichment analysis

Differentially expressed genes (DEGs) were computed using the

FindMarkers function of Seurat. DEGs were defined as genes

detected in at least 10% of cells, with a threshold of 0.25 log fold

change using the Two-tailed Wilcoxon Rank-Sum Test with P <

0.01 following Bonferroni correction. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed with the Metascape web tool

(www.metascape.org) and ClusterProfiler (version 4.2.2).
2.7 Calculation and Analysis of epithelial-
mesenchymal transition scores

We used cell scores to evaluate the degree to which individual cells

expressed a certain predefined expression gene set. This allowed us to

define meaningful functions and states. The cell scores were calculated

using the Seurat function “AddModuleScore”, which calculated the

average expression of genes from the predefined gene set in the

respective cell. The control gene sets were randomly selected based

on aggregate expression level bins. The final gene set score was

obtained by subtracting the control score from the predefined gene

set score. We then used several well-defined EMT markers

(Supplementary Table 8) to define the EMT score.

To assess the statistical significance of scores, for each NS-IgAN

patient or HU-IgAN group, the EMT scores were compared with

that of the control group (CTRL) using the two-tailed Mann-

Whitney U-test. Differences with a P value <0.05 were considered

significant, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.
2.8 Ligand−receptor analysis

CellphoneDB was used with default parameters to reveal

changes in interactions between different cell types.
2.9 Pseudo-time analysis

R package Monocle2 (version 2.18.0) was used to perform

pseudo-time analysis. To clarify the role of genes in cell fate

decisions, branched expression analysis modeling (BEAM) from

Monocle2 was applied.
2.10 GWAS expression analysis

The defined IgAN susceptibility genes were obtained based on

previous genome-wide association studies (GWASs) in IgAN

combined with NephQTL and eQTL (cf) online analysis tools,

and were provided in Supplementary Table 10. Cell-type specific
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expression of IgAN susceptibility genes was calculated by the

average relative logarithmic expression values.
2.11 Cell culture and treatment

Human immortalized podocytes were provided from the lab of

Zhihong Liu, and the cells were cultured as previously described

(13). Cells were grown at the permissive temperature of 33°C (in 5%

CO2) and differentiated at 37°C (in 5% CO2). After differentiating

for 7-14 days, podocytes were treated with 0.25 µg mL-1

doxorubicin (Sigma-Aldrich, Saint Louis, USA) and 0.5 µg mL-1

doxorubicin for 24 hours.
2.12 Immunofluorescence

The kidney tissue was dewaxed and then heat-mediated antigen

repair was performed in sodium citrate solution (pH=6.0) for

15min, and blocked with goat serum. Cultured podocytes growing

on a glass slide were fixed in 4% paraformaldehyde for 15 min. The

sections and cells were incubated with the following primary

antibodies: Prostaglandin D Synthase (PGDS) (ABclonal, Wuhan,

China), anti-nephrin (PROGEN, Darmstadt, Germany) at 4°C

overnight. Then incubated with the appropriate secondary

antibody for 45 or 60 min at room temperature: anti-guinea pig

IgG antibody conjugated with Alexa Fluor 568 (Invitrogen,

California, USA), anti-rabbit IgG antibody conjugated with Alexa

Fluor 633 (Invitrogen). Nuclei were counterstained with Hoechst

(Thermo Fisher, Boston, USA). Fluorescence signals were viewed

under a fluorescence microscope (Nikon A1R, Tokyo, Japan). NIS-

Element (version 5.5) was used to quantify PGDS and nephrin

staining intensity.
2.13 Flow cytometric analysis

200mL whole blood was incubated with CD14-PE (BioLegend,

California, USA) and CD16-APC (BioLegend, California, USA)

antibodies. After staining for 20 minutes at room temperature in the

dark, erythrocytes (BD Pharmingen, New Jersey, USA) in the

samples were lysed by incubation with lysing solution for 5

minutes. Following centrifugation (300g/5 minutes, 4°C) and

washing with PBS, cells were then examined using BD

FACSCanto™. The datasets were analyzed using FlowJo

(version 10.4.2).
2.14 Statistical analysis

Data are expressed as means ± standard deviation (SD). The

EMT scores and gene expression levels were analyzed by the two-

tailed Mann-Whitney U-test in SPSS 26.0. Differences in staining

intensity between the two groups were analyzed by the two-tailed

Student’s t test. All other analyses involved the two-tailed Wilcoxon

Rank-Sum Test. Significance was defined as *P<0.05, **P<0.01,
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***P<0.001. No specific indication is given if data were not

significant. Graphs were generated by ggplot2 (version 3.3.5) and

pheatmap (version 1.0.12) in R.
3 Results

3.1 Construction of a cell atlas of renal
tissue and circulating immune cells in
children with NS-IgAN

scRNA-seq was performed on PBMCs and kidney cells from

three pediatric patients, all of whom had IgAN with nephrotic-level

proteinuria, hypoalbuminemia, and hyperlipidemia (NS-IgAN)

(Figure 1A; Supplementary Table 1). Kidney biopsy revealed the

mesangial deposition of IgA and extensive or partial foot process

effacement (Supplementary Figures 1A–C). It is worth noting that

all three patients showed the pathological characteristics of

mesangial hypercellularity. These patients had accepted different

treatments at the time point of sampling, one patient was not on

glucocorticoid (GC) therapy (NGC), one patient was on short-term

GC therapy (SGC), and one patient was on long-term GC therapy

(LGC) (Supplementary Figures 1D–F). Following the scRNA-seq of

PBMCs, the raw data of three NS-IgAN patients and three healthy

controls (Cons) from GSE206295 were merged and 53,571 PBMCs

were captured following QC (Figure 1B; Supplementary Table 2).

We annotated 30 cell types of PBMCs based on the expression of

canonical markers, including CD4+ T cells (CD3D, CD4), CD8+ T

cells (CD3D, CD8A), natural killer (NK) cells (KLRB1, GNLY), B

cells (CD19, CD79A), myeloid cells (CD68, LST1), gdT cells (CD3D,

TRDC), and megakaryocytes (PPBP, PF4) (Supplementary

Figure 2A; Supplementary Table 3). For the kidney dataset, we

downloaded data from GSE171314 as the HU-IgAN group,

including four adult IgAN patients with hematuria and no

nephrotic-level proteinuria (Supplementary Table 1). In addition,

we performed scRNA-seq on the kidney tissues from two pediatric

patients and included a single-cell public database (GSE171314)

from one adult kidney as a control group (CTRL) (Figure 1A). The

data from a total of ten kidney samples from three groups (CTRL,

NS-IgAN, HU-IgAN) were integrated and 47,602 kidney cells were

captured after QC (Supplementary Table 2). There were 26 clusters

after dimension reduction (Supplementary Figure 2B). Then, 16

major cell types were annotated with the expression of canonical

marker genes (Figure 1C; Supplementary Table 4). The expression

levels of canonical marker genes for all cell types in the PBMCs and

kidney cells are shown in Figures 1D, E.
3.2 The proportion of intermediate
monocytes expressing MHC class II
molecules is significantly increased
in the disease

Our investigation of the composition ratio of each sample in the

same cell type found that the composition of SGC and LGC samples in

myeloid cell types was prominent (Figure 1B). In response, we re-
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clustered the myeloid cell types into 14 cell clusters (Figure 2A).

According to the expression of canonical marker genes for each

cluster, we defined the cell types of clusters (Figure 2B,

Supplementary Table 5). According to the expression levels of CD14

and FCER3A (encoding CD16 protein), we respectively defined

classical (CMs, CD14high, FCER3Aneg), intermediate (IMs, CD14high,

FCER3Alow), and non-classical monocytes (NCMs, CD14low,

FCER3Ahigh) (Figure 2B) (14). Of these, the CMs were composed of
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four cell clusters. Cluster 5 expressed interferon-related genes (ISG15,

MX1) and was defined as CD14+ IFN-related monocytes (IFN-Mon)

(Figure 2B). Notably, we found that cluster 9 expressed CCL4, IL1B,

ICAM1, and CXCL2. This cluster was defined as inflammatory

monocytes (INF-M) (Figure 2B). Although the proportion of INF-M

in myeloid cells did not differ significantly between disease and healthy

samples (Figure 2C), we found that this group of cells was dominant in

the disease group (Figure 2A).
B

C

D E

A

FIGURE 1

The landscape of PBMCs and kidney cells in NS-IgAN patients and healthy controls identified by single-cell transcriptomic analysis. (A) Schematic
diagram of the study design for scRNA-seq. Con, n=3; NS-IgAN, n=3 (NGC, n=1; SGC, n=1; LGC, n=1); CTRL, n=3; HU-IgAN, n=4. (B) Distribution of
30 cell clusters in PBMCs. The figure on the left is a two-dimensional UMAP visualization of PBMCs. Different colors represent 30 clusters. The figure
on the right is the percentage of each sample in each cell type. (C) Distribution of 16 cell types in kidney cells. The figure on the left is a two-
dimensional UMAP visualization of kidney cells. Different colors represent 16 cell types. The figure on the right is the percentage of each sample in
each cell type (D) Violin plot showing marker genes for each PBMC cell type. (E) Violin plot showing marker genes for each kidney cell type.
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Figure 2C shows the composition ratio of each monocyte subset

to CD14+ cells in the controls and three cases. In NS-IgAN, the

proportions of CM 1-4 and IMs tended to increase, and the

proportion of NCMs tended to decrease; however, these trends

were not statistically significant (Figure 2C, Supplementary

Figure 3A). Previous evidence proved that monocyte subsets

undergo changes in IgAN (15); our data suggested that similar

changes may also exist in NS-IgAN. Since NS is the main clinical

manifestation of NS-IgAN, we collected the peripheral blood of 26 NS

patients with proteinuria, 6 NS patients with remission after

treatment, and 13 healthy children to investigate changes in

monocyte subsets in NS by flow cytometry. Monocytes were

divided into classical monocytes (CMs, CD14++CD16-),

intermediate monocytes (IMs, CD14++CD16+), and non-classical
Frontiers in Immunology 0714
monocytes (NCMs, CD14+CD16++) through flow cytometry by the

expression levels of CD14 and CD16 (Supplementary Figure 3B). The

proportion of CMs in NS patients with proteinuria was significantly

lower than that in healthy children, and the proportion of IMs and

NCMs was significantly increased (Figure 2D). Following the

glucocorticoid-induced remission of proteinuria, the proportion of

CMs and NCMs returned to normal levels; the proportion of IMs was

even lower than healthy controls (Figure 2D). Although the results of

scRNA-seq and flow cytometry were different when compared

between CMs and NCMs, the results consistently indicated a trend

for an increased proportion of IMs. We found that IMs were

characterized by high expression levels of VSIG4, HLA-DPA1,

HLA-DPB1, and other MHC class II molecules (Supplementary

Figure 3C). KEGG and GO enrichment analysis of the IMs showed
B

C D

E F

A

FIGURE 2

Molecular characterization of myeloid cells in NS-IgAN. (A) 13 clusters were visualized by UMAP plotting through re-clustering analysis of myeloid
cells. (B) Violin plots showing expression of marker genes in 13 clusters. (C) The pie chart shows the proportion of different monocyte subsets in
monocytes. (D) The proportion of monocyte subsets in NS patients, from left to right are CMs, IMs, and NCMs in flow cytometry. (E, F) Expression
level of CCR2 in monocyte subsets from different samples. All differences with P < 0.05 are indicated, *P<0.05, **P<0.01, ***P<0.001, and
****P<0.0001, ns means no significant difference.
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that their function was mainly related to cytokine-cytokine receptor

interaction, the chemokine signaling pathway, antigen processing and

presentation, and MHC class II protein complex assembly

(Supplementary Figures 4A, B). DEG analysis of IMs in the Cons

and NS-IgAN groups showed that the expression of VSIG4, LYZ,

HLA-C, FN1, and FCGRT was significantly increased in NS-IgAN

(Supplementary Figure 4C). The significant up-regulation of DEGs in

the IMs of NS-IgAN patients were related to oxidative

phosphorylation by KEGG enrichment analysis (Supplementary

Figure 4D). These results suggest that increased oxidative

phosphorylation may be an important feature of IMs in NS-IgAN.
3.3 CCR2 was significantly expressed in the
IMs of NS-IgAN patients

DEG analysis of monocytes in the Cons and NS-IgAN groups

showed that the expression levels of CCR2 were significantly higher

in the CMs (CM1-4), IMs, and NCMs of NS-IgAN patients

(Figures 2E, F). CCR2 mediates monocyte chemoattractant

recruitment to inflammatory regions and promotes the

production of inflammatory cytokines (16). It has been reported

that Ccr2-deficient mice with adriamycin-induced nephropathy

showed reduced levels of injury, along with reduced macrophage

and fibrocyte infiltration and inflammation in the kidney (17). To

investigate the effect of high expression levels of CCR2 on

monocytes in NS-IgAN, we divided monocytes into CCR2+

monocytes and CCR2- monocytes for further analysis. We found

that the proportion of CCR2+ monocytes was slightly increased in

NS-IgAN, although this was not statistically significant

(Supplementary Figure 4E). We also found that compared with

CCR2- monocytes, CCR2+ monocytes expressed high levels of LYZ

and HLA-DQA2 (Supplementary Figure 4F). HLA-DQA2

encodes HLA class II alpha-chain proteins to constitute MHC

class II molecules. A recent GWAS study of a Chinese IgAN

cohort revealed significant associations between three HLA

polymorphisms, thus indicating the extensive involvement of

HLA-mediated immunity in IgAN development (18). Collectively

these results suggested that the proportion of CCR2+ monocytes is

increased in NS-IgAN and that this may participate in the

pathogenetic process.
3.4 GATA3+ effector Tregs expressed high
levels of CCR4 in NS-IgAN

The proportion of Tregs in the peripheral blood of IgAN was

significantly lower than that in controls, thus an increase in the

proportion of Treg cells could improve clinical prognosis (19). We

performed a re-clustering analysis of CD4+ T cells and identified 13

clusters (Supplementary Figure 5A); these were defined as eight cell

types by the expression of canonical marker genes (Figures 3A, B;

Supplementary Table 6). Of these, two clusters expressed FOXP3

and IL2RA; we defined these as Treg1 and Treg2 cells (Figure 3C).

According to the canonical marker genes expressed by different

subsets of Tregs (20, 21), we found that Treg1 cells expressed high
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levels of CCR7, SELL, and TCF7; which may indicate that the cells

are in a naive state; Treg2 cells expressed high levels of CCR4 and

HLA class II molecules, which may indicate that the cells are in an

effector state (Figure 3D). The two groups of Treg cells consistently

expressed some classical genes, including TIGIT, IKZF2H, and

RTKN2, but also had molecular expression characteristics

(Supplementary Figures 5B, C). We found that the proportion of

Treg2 cells in NS-IgAN tended to be higher than that in the Cons

group, while the proportion of Treg1 cells tended to be lower,

although these differences were not statistically significant

(Figure 3E). The results of GO enrichment analysis suggested that

the functions of Treg2 cells were mainly related to peptide antigen

binding, MHC protein complex, and antigen processing and

presentation (Figure 3F). In Treg2 cells from NS-IgAN patients,

we found that the expression levels of genes such as FOS, JUN, and

JUNB were decreased, while those of CCR4 were upregulated

(Figure 3G). Recent research reported that a significant increase

in the number of GATA3+ Tregs in the kidney was closely related to

disease remission (22). CCR4 is known as an important chemokine

receptor that promotes the infiltration of GATA3+ Tregs in the

kidney during the later phases of injury (22). Our results suggest

that there may be an increased proportion of CCR4+ GATA3+ Tregs

in the circulation of NS-IgAN patients, thus indicating that

dynamic changes of this special subset of Tregs may be involved

in recovering from kidney injury.

Considering the important role of B cells in IgAN, we also

performed a re-clustering analysis of B cells (Supplementary

Figure 6A). We defined 12 clusters as 6 cell types by the

expression of marker genes (Supplementary Figures 6B, C,

Supplementary Table 7). Consistent with expectations, the IGHA1

encoding IgA was mainly expressed in plasma cells. Pseudo-time

analysis of B cells suggested that plasma cells at the end of

differentiation were increasingly dominant in the disease, and

expressed IGHA1 and IGHA2 (Supplementary Figures 6D–G).

We compared the expression of key genes related to IgAN in

diseased and healthy B cells; analysis suggested that C1GALT1

expression was downregulated in IgAN; this may be related to the

formation of Gd-IgA1 (Supplementary Figure 6H). In addition, the

expression of IgG and IgA-related genes in the B cells of SGC and

LGC patients was upregulated (Supplementary Figure 6H).

Findings related to Treg cells and plasma cells are restrictive and

limited by the number of captured cells, meaning that further

research needs to be undertaken to validate these findings.
3.5 Podocytes in NS-IgAN expressed high
levels of CCL2 and EMT characteristics

Understanding alterations in the molecular characteristics of

kidney cells may help us to understand the downstream

mechanisms of kidney injury in NS-IgAN. Considering the

clinical characteristics of patients with NS-IgAN who have

“nephrotic-range” proteinuria, we focused on the podocyte cluster

that significantly expressed NPHS2 and FGF1. Podocytes

specifically expressed NPHS2 and FGF1 at both protein and

transcriptional levels (Figures 1E, 4A, B). Unfortunately, only two
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podocytes were captured in the SGC patient, and we did not include

this group in the subsequent comparative analysis (Supplementary

Table 4). We found that some genes showed a downward trend in

terms of their expression by podocytes in the NS-IgAN group,

including the canonical marker genes (NPHS1 and CLIC5), the

genes encoding membranous nephropathy-associated autoantigens
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(PLA2R1 and THSD7A), and genes that have not been extensively

investigated in podocytes, such as PCOLCE2 and PTGDS

(Figure 4C). Our data indicated that CCL2 was highly expressed

in the podocytes of NS-IgAN patients (Figure 4C). It has been

reported that the expression of CCL2 in podocytes is closely related

to podocyte injury and proteinuria (24). In the adriamycin-induced
B

C D

E F G

A

FIGURE 3

Molecular characterization of CD4+ T cells in NS-IgAN. (A) 7 distinct subsets were visualized by UMAP plotting through re-clustering analysis of
CD4+ T cells. (B) Violin plots showing expression of marker genes in 7 subsets. (C) UMAP plots showing color-coded expression of four
representative markers, FOXP3, IL2RA, CCR7, and HLA-DRB1 in CD4+ T cells. (D) Heatmap exhibiting the differential expressing genes of Treg1 and
Treg2. (E) The percent of Treg1 and Treg2 in CD4+ T cells. (F) GO terms identified by differential pathway enrichment and GO analysis via
comparison of Treg2 cells vs. others. GO terms are labeled with name, and sorted by −log10(P) value. A darker color indicates a smaller P value.
Interesting terms are labeled in red. (G) Heatmap exhibiting DEGs of Treg2 in Con, NGC, SGC, and LGC.
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FIGURE 4

Molecular characterization of podocytes in NS-IgAN. (A, B) UMAP plots showing expression of NPHS2 (A) and FGF1 (B) in kidney and fluorescence
staining of podocin and FGF1 in healthy kidney from The Human Protein Atlas database (https://www.proteinatlas.org/). (C) Heatmap showing up-
and down-regulated DEGs of podocytes in the CTRL, HU-IgAN, NGC, and LGC groups. (D) EMT gene set scores for podocytes in CTRL, HU-IgAN,
NGC, SGC, and LGC groups. (E) PRSS23 mRNA expression in glomeruli of human biopsy specimens with pathological diagnosis of MN, FSGS, IgAN,
or vasculitis disease compared with normal kidneys. Data are from previously published microarray studies by Ju et al. (2013) (23) and were
subjected to further analysis using Nephroseq. A two-tailed Mann–Whitney U test was used for each comparison. All differences with P < 0.05 are
indicated, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. (F) UMAP plots showing the expression of PTGDS in the kidney. (G) Statistical analysis
of the expression level of PTGDS in podocytes in HU-IgAN, NGC, and LGC compared with CTRL. Since only 2 podocytes were captured in SGC
patients, the comparison between SGC and CTRL was not performed. (H) PTGDS mRNA expression in glomeruli of human biopsy with pathological
diagnosis of MN, FSGS, IgAN, or vasculitis disease compared with normal kidneys. Data are from previously published microarray studies by Ju et al.
(2013) (23) and were subjected to further analysis using Nephroseq. (I) Immunofluorescence staining of PGDS in glomeruli of the NS-IgAN patient
and the healthy control child. (J) Statistical analysis of PGDS glomerular mean fluorescence intensity quantified using NIS-Elements software. (K)
Representative pictures of PGDS and nephrin staining in podocytes exposed to vehicle (CTRL) or Adriamycin (ADR). (L) Statistical analysis of the
mean fluorescence intensity of PGDS between vehicle and ADR podocytes. A two-tailed Mann–Whitney U test was used for each comparison. All
differences with P< 0.05 are indicated, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. ns means no significant difference.
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mouse model of nephropathy, researchers found that CCL2 in the

kidney may recruit the infiltration of inflammatory and pro-fibrotic

bone marrow-derived cell populations through its receptor CCR2;

furthermore, a deficiency of Ccr2 in mice can ameliorate renal

injury (17). We detected high expression levels of CCL2 in NS-IgAN

glomerular podocytes and significantly increased expression levels

of CCR2 in circulating monocytes (Figure 2F), thus indicating that

crosstalk may occur in patients between podocytes and circulating

monocytes through the CCL2-CCR2 ligand receptor. Furthermore,

CFH was highly expressed in the podocytes of LGC (Figure 4C).

Complement factor H (CFH) is one of the important circulating

regulators of the alternative pathway, serves as an essential cofactor

for complement factor I (CFI)-mediated C3b cleavage (25).

Podocytes produce functionally active complement components,

such as CFH; these could influence the local glomerular

complement activation and regulation (26).

We also found that genes related to epithelial-to-mesenchymal

transition (EMT) were significantly upregulated in NS-IgAN,

including TGFB1, CAV1, TAGLN, and COL1A1 (Figure 4C). We

constructed an EMT gene set (Supplementary Table 8) and

compared the gene set scores of podocytes between different

groups. The EMT scores of podocytes in the NGC and LGC were

significantly increased, while the EMT scores of podocytes in HU-

IgAN did not change significantly (Figure 4D). EMT is an

important feature of podocyte injury (27). Recent studies have

found that podocytes in the urine of patients with NS also have

EMT characteristics (28). Our results suggest that EMT is an

important molecular feature of NS-IgAN podocytes. Interestingly,

the expression of PRSS23 was significantly elevated in NS-IgAN

patients and to a greater degree than in HU-IgAN patients

(Figure 4C). Bulk RNA-seq results also confirmed the reduced

expression of PRSS23 in various glomerular diseases (Figure 4E).

These results suggest that a novel serine protease encoded by

PRSS23 may be related to podocyte injury.
3.6 The expression of PTGDS significantly
decreased in damaged podocytes

By performing the scRNA-seq on kidney tissues, we found that

PTGDS was only specifically expressed in the podocytes (Figure 4F).

In addition, PTGDS was significantly downregulated in NS-IgAN

podocytes (P < 0.0001) (Figure 4G). The glomerular transcriptome

sequencing of various glomerular diseases, including membranous

nephropathy (MN), focal segmental glomerulosclerosis (FSGS), and

minimal change disease (MCD) confirmed that the transcriptional

level of PTGDS was significantly decreased (Figure 4H). Hence, we

reviewed the previously published scRNA-seq data of kidney tissues

and found that PTGDS only expressed at high levels in human

kidney podocytes (Supplementary Figures 7A, B). By using

immunofluorescence and immunohistochemistry experiments, we

were able to confirm the downregulation of PGDS (prostaglandin

D2 synthase, encoded by PTGDS) in the glomeruli of patients with

NS-IgAN (Figures 4I, J; Supplementary Figures 8A, B). The

induction of injury in human immortalized podocytes in vitro (by

applying doxorubicin) also led to a significant reduction in the
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expression levels of PGDS (Figures 4K, L; Supplementary

Figures 8C, D). PGDS, also known as b-Trace protein (BTP), is

an emerging novel marker for glomerular filtration rate (29). PGDS

is produced de novo by both the glomeruli and LOHs in monkey

kidneys (30), although the handling process of BTP in the kidney is

uncertain. BTP is an eicosanoid that plays a role in a variety of

important physiological processes, including vasodilation,

inflammation, and adipogenesis (29). Our findings, and those of

other researchers, indicate that PTGDS may represent a candidate

marker gene for podocytes at the transcriptional level. PTGDS is

expressed at high levels in normal podocytes and at far lower levels

in injured podocytes.
3.7 Crosstalk between kidney cell types
in NS-IgAN

We investigated cell-to-cell communication between kidney cells

by applying CellphoneDB. In the CTRL group, the cell types present in

the proximal nephrons and kidney immune cells exhibited obvious

intercellular communication, whereas distal convoluted tubules,

intercalated cells and principal cells located in the distal nephron did

not (Figure 5A). Our results suggest that the intercellular

communication of the cells associated with the proximal nephron

may be stronger than that of the cells associated with the distal

nephron. In the CTRL and HU-IgAN groups, PECs may have

served as the center for intercellular crosstalk in kidney cells

(Figure 5A). In the NGC and LGC patients, the center of

intercellular crosstalk was replaced by podocytes and mesenchymal

stromal cells (MSCs) (Figure 5A). In an injury state, podocytes were

affected by collagen-related, extracellular matrix-related, and

inflammation-related signals from PECs and MSCs, such as

COL3A1, FN1, and CCL2 (Figure 5B). These findings were

consistent with previous findings related to IgAN (7, 8).
3.8 The molecular characteristics of
renal lymphocytes

Kidney immune cells were re-clustered and defined into eight cell

subsets by the expression of canonical marker genes (31) (Figure 5C,

Supplementary Table 9). C1QA,C1QB, and C1QC are characteristically

expressed in two subsets of tissue-resident macrophages (RTMs). Of

these, RTM-1 expressed LYVE1, IGF1, and CD209, and RTM-2

expressed TREM2 and MARCO (Figure 5D). Our results suggest that

FCN1 and VCANmay be specific markers of monocytes in the human

kidney. Classical monocytes (CMs) in the kidney represented the main

subset of monocytes and expressed CXCL3. In contrast, NCMs

expressed CX3CR1 (Figure 5D). XCR1, CLEC9A, and IDO1 were

expressed in Classical DC-1, and CD1C and CD1E were expressed in

Classical DC-2. Plasmacytoid DC expressed IL3RA, CLEC4C, GZMB,

and TCL1A. It is worth noting that cluster 12 simultaneously expressed

the marker genes of B cells, including CD79A and MZB1, and also

expressed the marker genes of T cells such as CD3D, CD3E, and TRAC

(Figure 5D). These results indicated that this cluster may be composed

of B lymphocytes and T lymphocytes; hence, we defined this cluster as
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lymphocytes. We performed a developmental analysis of eight groups

of kidney immune cells and confirmed the difference between tissue-

resident macrophages and monocytes (Figure 5E). Previous studies

comprehensively demonstrated the molecular characteristics of
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myeloid cell subsets in the kidney (31–34); however, there was a lack

of understanding of lymphocyte subsets in the kidney. We further

performed pseudo-time analysis on lymphocytes and found that they

were in three different states (states 1–3) in the kidneys (Figure 5F),
B C

D E

F G H

A

FIGURE 5

Molecular characterization of interactions between kidney cells and kidney immune cells. (A) Cell-to-cell crosstalk networks between kidney cells in
CTRL, HU-IgAN, NGC, and LGC groups. (B) Bubble chart showing dysregulated cell-type specific interactions between mesenchymal stromal cells
(MSCs) and podocytes (PODs) or parietal epithelial cells (PECs) and podocytes (PODs) in the CTRL, HU-IgAN, NGC, and LGC group. (C) 8 cell
subtypes were visualized by UMAP plotting through re-clustering analysis of kidney immune cells. (D) Violin plots showing marker genes of 8 kidney
immune cell subtypes. (E) Developmental tree analysis showed the relationship between different kidney immune cells. (F) Cell trajectory map of
lymphocytes showing the pseudo-time (Top). Ordering single cells along a cell conversion trajectory using Monocle 2. Three states were identified
based on their distribution in the cell trajectory map (Bottom). (G) Heatmap: each column represents one cell and each row represents the
expression of one gene. Cells are ordered by Monocle-based pseudotime analysis and the color represents expression levels. (H) The GO
enrichment function items of cluster1-3 in (G) are shown by the bubble diagram.
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with different molecular characteristics (clusters 1–3) (Figure 5G).

Lymphocytes in state 3 significantly expressed genes related to

cluster 1 (Figure 5G), which were related to B cell activation,

phagocytosis, and recognition (Figure 5H). Lymphocytes in state 1

significantly expressed genes related to cluster 3 (Figure 5G). These

results were related to the production of cytokines from T cells

(Figure 5H). Surprisingly, state 2 lymphocytes significantly expressed

genes related to cluster 2 (Figure 5G). These findings are related to T

cell activation and actin filaments (Figure 5H). These results suggest

that there may be a group of T cells with actin filament-related

functions in the kidney. By applying a scRNA-seq technology

platform, we were fortunate to capture immune cells in the kidney

and provide a preliminary exploration of the molecular characteristics

of lymphocytes. However, due to the limited number of immune cells

captured from the kidney tissue involved in this study, we were not able

to conduct further analysis.
3.9 DCs in circulation and kidney tissue
expressed high levels of genes related
to HLA

Based on the SNPs detected in a recent GWAS meta-analysis of

IgAN (18), we combined NephQTL and eQTL (cf.) to predict

susceptibility genes that may be affected in different regions of the

kidney tissue (Supplementary Table 10) and mapped these genes to

kidney cells (Figure 6A) and PBMCs (Figure 6B). In the kidney tissue,

renal resident macrophages, macrophages, and DC cells expressed high

levels of genes related to HLA (Figure 6A). In circulation, multiple B

cell subsets (except plasma cells), cDCs, and pDCs expressed high levels

of genes related to HLA, while monocytes did not (Figure 6B). Previous

studies had identified HLA molecules as the main disease related

susceptibility loci for IgAN (18). Research evidence also indicated that

DCs play key roles in the pathogenesis of IgAN (35). Our present data

showed that DCs express high levels of HLA-related genes in both the

circulation and kidney tissue. This indicated that attention needs to be

paid to the changes in DC cells in the circulation and kidney tissue of

NS-IgAN patients in future research (Figures 6A, B). The CFH-related

genes CFHR1, CFHR3, and CFHR4 were exclusively expressed in

kidney MSCs (Figure 6A). We performed a re-clustering of the

MSCs that significantly expressed POSTN and ACTA2

(Supplementary Table 4; Supplementary Figure 9A). This analysis

suggested that MSCs were a mixed subset composed of fibroblasts,

myofibroblasts, vascular smooth muscle cells, pericytes, and mesangial

cells (Supplementary Figure 9B). Unfortunately, in our study,

mesangial cells could not be defined by canonical marker genes such

as PDGFRB, PIEZO2, ITGA8, and GATA3 (Supplementary Figure 9B).
4 Discussion

Glomerular diseases are still classified based on histological

descriptions; however, these do not help capture the systemic

mechanisms that drive the disease, nor are they suitable for target

identification and drug development (36). Transcriptome sequencing

at single-cell resolution, as represented by scRNA-seq and single-
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nucleus RNA-seq (snRNA-seq), is a powerful and new approach to

unbiased analysis (37). However, it is challenging to create suitable

designs for scRNA-seq experiments because each option requires the

user to make informed decisions to obtain interpretable results (37, 38).

Considering its low requirement for cell viability, we chose plate-based

scRNA-seq technology to study core needle biopsies from the kidneys

of patients (37, 39). We performed strict QC on the data and selected

threshold settings based on the specificity of kidney cells

(Supplementary Table 2). To identify mesangial cells, we performed

a re-clustering of theMSCs (40). Our data suggested that MSCs may be

composed of fibroblasts, myofibroblasts, vascular smooth muscle cells,

pericytes, and mesangial cells (Supplementary Figure 9). As we were

not able to annotate subgroups of cells by canonical marker genes, we

were not able to perform downstream analysis of mesangial cells.

Different methodological and technological platforms can lead to bias

in capturing glomerular cell types; our results provide evidence for

future single-cell research on mesangial-related glomerular diseases.

Considering that immune cells in the kidney may play an important

role in disease, we did not select snRNA-seq for our research to avoid

losing molecular information related to immune cells (37)

(Figures 5C–H).

Monocytes are innate immune cells that can be divided into three

subsets based on the expression of CD14 and CD16 on the cell surface:

classical, intermediate, and non-classical monocytes (14). Under

inflammatory conditions, monocytes in the blood may migrate to

the tissues and differentiate into mononuclear phagocytes in local

regions of tissue (41). Previous research in the field of chronic kidney

disease (CKD) has detected significant expansion of IMs (42), thus

suggesting that changes in monocyte subsets may play an important

role in CKD. Recent studies have found that CKD is associated with an

increase in the number of unique proinflammatory IMs (HLA-DRhigh

IMs), as well as the migration of monocytes and endothelial adhesion

abnormalities (43). Due to the limitation of renal biopsy in children

with NS and the low incidence rate of NS-IgAN, we recruited children

with NS as a validation patient cohort. The consistency of scRNA-seq

data with the flow cytometry results of the validation cohort confirmed

that IMs may be more abundant in NS-IgAN patients. Future studies

on glomerular diseases need to pay specific attention to this group of

IMs, particularly in terms of MHC class II analysis and chemokine

signaling pathway functionality. In several human and experimental

studies of proteinuria nephropathy, the expression of CCL2 was

significantly localized in glomerular podocytes (17). It has also been

confirmed that CCL2 does not only directly affect the actin

cytoskeleton of podocytes (44), thus affecting the permeability of the

slit diaphragm to albumin (45), but also causes indirect damage to

podocytes by attracting macrophages and promoting inflammation

(46). The expression of CCL2 in the kidney will recruit monocytes/

macrophages expressing CCR2 into the circulation to be transported to

the injury site and promote the differentiation of these myeloid cells

toward the proinflammatory “M1” phenotype (47). Previous research

suggested that the persistent infiltration of M1 macrophages and

related inflammation can play a crucial pathogenic role in the

development of podocyte dysfunction (48). The inhibition of CCR2

has been found to improve outcomes in animal models of FSGS (17),

and several trials are currently underway to evaluate the impact of

CCR2 inhibitors on FSGS patients (NCT03649152, NCT03536754,
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NCT03703908) (49). In addition, urinary CCL2 can be used as a

biomarker for kidney inflammation (50) and these specific levels may

be related to the extent of proteinuria (51). These data indicated that we

cannot only gain an understanding of inflammatory progression in the

kidney by detecting the urinary levels of CCL2. We may also be able to

delay the chronic progression of the disease through new drugs

targeting the CCL2-CCR2 ligand receptor pathway.

Podocyte damage is the key to the formation of proteinuria. The

expression levels of EMT-related genes and PRSS23 were significantly

increased in podocytes from patients with NS-IgAN (Figures 4C–E).

EMT is a functional and morphological alteration in podocyte injury

(27, 28). The serine protease encoded by PRSS23 activates protease-
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activated receptor 2, which is known to be associated with TGFb1-
induced podocyte injury in the rat model of doxorubicin nephropathy

(52). The expression levels of canonical marker genes in the podocytes

were significantly downregulated in NS-IgAN conditions, including

those of NPHS1, CLIC5, and MPP5 (Figure 4C). Our scRNA-seq

results indicated that PTGDS was specifically expressed in podocytes

and were significantly downregulated in NS-IgAN (Figures 4G–J).

Unlike the remarkable specificity at the transcriptional level,

immunohistochemistry and immunofluorescence results suggested

that the specificity of PGDS at the protein level was limited

(Supplementary Figure 10). BTP is a heterogeneous monomeric

glycoprotein that is the consequence of post-translational N-
B

A

FIGURE 6

IgAN disease risk susceptibility genes expression. (A) The heatmap shows, for each IgAN susceptibility gene, the average expression over all cells in
each kidney cell type. (B) The heatmap shows, for each IgAN susceptibility gene, the average expression over all cells in each PBMC cell subset.
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glycosylation resulting in different glycoforms of varying molecular

weight (53). The presence of multiple isomers certainly affects the

measurement of BTP; the molecular structure of BTP produced by

podocytes needs to be investigated further. Previous studies have

suggested that in the early stages of diabetes nephropathy and CKD,

the urinary levels of PGDS increased significantly (54). In the process of

being excreted by the urine, some PGDS would be reabsorbed into the

tubules and degraded by the lysosomes of tubule cells. We also noted

that the staining intensity of PGDS was significantly reduced in the

tubule cells of NS-IgAN patients (Figure 4I, Supplementary Figure 10).

Whether this was due to the reduction of PGDS in podocytes or the

reduced reabsorption capacity of renal tubules needs to be investigated

in future research.

In our study, scRNA-seq of PBMCs and renal tissues were

performed only on three pediatric patients with clinical

manifestations of nephrotic syndrome. There was significant

heterogeneity among the samples, and long-term cohort observations

with larger sample sizes are required to truly elucidate the pathogenesis

of NS-IgAN. Whether NS-IgAN is a combination of two diseases, is

not discussed herein and needs to be further explored in future studies

(4). Even though the findings of this study await future validation, they

provide a rigorous framework for future research.
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Introduction: People living with HIV (PLHIV) are characterized by functional

reprogramming of innate immune cells even after long-term antiretroviral

therapy (ART). In order to assess technical feasibility of omics technologies for

application to larger cohorts, we compared multiple omics data layers.

Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics,

chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation

were performed in a small number of blood samples derived from PLHIV and

healthy controls from the 200-HIV cohort study.

Results: Single-cell RNA-seq analysis revealed that most immune cells in

peripheral blood of PLHIV are altered in their transcriptomes and that a

specific functional monocyte state previously described in acute HIV infection

is still existing in PLHIV while other monocyte cell states are only occurring acute

infection. Further, a reverse transcriptome approach on a rather small number of

PLHIV was sufficient to identify drug candidates for reversing the transcriptional

phenotype of monocytes in PLHIV.
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Discussion: These scientific findings and technological advancements for

clinical application of single-cell transcriptomics form the basis for the larger

2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk

and single-cell transcriptomics will be included as the leading technology to

determine disease endotypes in PLHIV and to predict disease trajectories and

outcomes.
KEYWORDS
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Introduction

For people living with HIV (PLHIV), major risk factors for

developing cardiovascular diseases (CVDs), neurocognitive

impairment, frailty, and cancer are persistent low-grade

inflammation and immune dysfunction even under long-term

effective antiretroviral therapy (ART) (1–6). Although the

adaptive immune system appears to play an important role (7),

there is a growing body of evidence that suggests changes in the

innate immune system as exemplified by elevated levels of

circulating soluble CD163 and sCD14 derived from monocytes

are critical (1, 8, 9). We and others have recently demonstrated that

concentrations of pro-inflammatory monocyte-derived cytokines

are elevated in serum from PLHIV, which was further validated

when peripheral blood mononuclear cells were stimulated ex vivo

with a number of pathogens or their derivatives resulting in

increased levels of IL-1b (1, 10–14).

While CMV infection (15), the HIV reservoir itself (16), as well as

microbial translocation (17) have been proposed as potential drivers of

low-grade inflammation, the complex interplay between the different

immune cell compartments in PLHIV is not fully understood. To

study the role of different immune cells in the pathophysiology of

persistent inflammation in PLHIV it will be necessary to apply higher-

resolution single-cell technologies to larger cohorts of PLHIV (18–20).

Based on our previous experience applying single-cell technologies to

better understand the pathophysiology of COVID-19 (21–23) or

chronic obstructive pulmonary disease (COPD) (24), we have

recently suggested that large-scale studies should be preceded by

smaller optimization studies for clinical application of omics

technologies to a particular disease setting (25, 26).

Here, we describe a study using bulk and single-cell transcriptomics

technologies as well as chromatin landscaping by ATAC-seq under

clinically applicable conditions to assess the reprogramming of the

peripheral immune cell compartment in PLHIV cohorts. Despite

heterogeneity between individuals, scRNA-seq combined with bulk

transcriptomics on a limited number of PLHIV included in this pilot

study revealed important new information concerning the involvement

of the monocyte compartment in persistent low-grade inflammation.

Further, a reverse transcriptome approach in this setup allowed the

identification of drug candidates reducing the inflammatory

endophenotype, which we validated experimentally in an independent

group of PLHIV.
0226
Results

Bulk transcriptomes from PBMC of PLHIV
are dominated by monocyte-related
proinflammatory programs

We previously demonstrated in a cross-sectional study that

PLHIV exhibits a proinflammatory profile in monocyte- but not

lymphocyte-derived cytokines (1). We recalled five male PLHIV

using long-term suppressive ART (mean 7.4 years) from the 200-

HIV study with no overt clinical symptoms at the time of blood

draw, determined as normal progressors, to investigate whether

higher-resolution technologies down to the single-cell level would

reveal further information about molecular and functional changes

within the peripheral immune system in PLHIV. We generated a

multi-layer dataset including selected soluble factors in plasma,

multicolor flow cytometry (MCFC), bulk RNA-seq, Assay for

Transposase-Accessible Chromatin using sequencing (ATAC-seq)

and microwell-based scRNA-seq comparing five age- and sex-

matched healthy controls (Figure 1A; Supplementary Table S1).

TheMCFC data generated here indicate that the five PLHIV chosen

were representative of the 200-HIV cohort with similar alterations in the

circulating immune cell compartment (e.g. higher CD8+ and lower

CD4+ T as well as NK cell population frequencies in PLHIV versus

healthy donors) (11) (Figure S1A). Principal component analysis (PCA)

of bulk RNA-seq of PBMC revealed a disease-associated separation of

the samples (Figure 1B). Exploration of these alterations by differential

gene expression analysis resulted in 287 up- and 914 down-regulated

genes in PLHIV compared to control (|FC|>1.5, adj p-value <0.05, with

independent hypothesis weighting (IHW) correction) (Figure S1B).

Inspection of those differentially expressed genes (DEGs) in more

detail by hierarchical clustering revealed four transcript clusters

similarly regulated across the donors (Figure 1C). One cluster

revealed a group of commonly upregulated early innate immune

response genes for PLHIV and a second cluster contained typical

interferon response genes (Figure 1C), which was corroborated by

functional enrichment analysis (Figure 1D; Supplementary Table S2).

Upregulation of alarmins S100A8 and S100A9 (cluster 1), which have

been previously associated with inflammation (27, 28) indicated a

strong signal from the myeloid cell compartment. In cluster 2,

STAT1, previously linked to enhanced inflammation in HIV (29, 30),

was strongly expressed. Both heatmap visualization (Figure 1C) and
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gene set variation analysis (Figure S1C) showed the highest

heterogeneity among the five patients in genes belonging to cluster 2.

Collectively, analysis of bulk transcriptomes from PBMCs of

PLHIV revealed upregulat ion of innate and myeloid

proinflammatory gene programs.
Bulk transcriptomics of monocytes in
PLHIV reveals enriched IFN-signaling

The bulk transcriptomes of PBMCs pointed towards the

involvement of myeloid cells in PLHIV, and indeed plasma
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concentrations indicated elevated monocyte-specific soluble

factors in circulation such as sCD163 and sCD14, a classical

marker of HIV disease progression and monocyte activation (8,

31, 32), while other markers such as liver-derived C-reactive protein

(CRP) did not show a significant elevation in these PLHIV (Figure

S2A). Consequently, we isolated CD14+ monocytes from the same

donors (Figure S2B) and analyzed their transcriptomes. DEGs were

calculated for the comparison of PLHIV vs. control, resulting in 65

up- and 6 down-regulated genes (|FC|>1.5, p-value <0.05, IHW)

(Figures 2A, S2C). Upregulated genes included several type I IFN-

related genes such as CXCL10, STAT2,MX2, and XAF1 (Figures 2B,

S2D). Functional enrichment analysis of the upregulated DEGs
A

B

DC

FIGURE 1

Bulk transcriptomes from PBMC in PLHIV are dominated by monocyte-related proinflammatory programs (A) Overview of the study design. (B)
Principal component analysis (PCA) of bulk RNA-seq data from PBMCs. (C) Heatmap of DEG (adj. p.val<0.05, |FC|>1.5) from bulk PBMC
transcriptomes based on HIV vs. control (see Figure S1C) and hierarchical clustering of genes into 4 clusters. (D) Functional enrichment using the GO
and Hallmark databases and transcription factor (TF) prediction of gene clusters from (C) (full list see Supplementary Table S2).
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supports these findings on the pathway level with IFN response and

response to the virus being the most highly enriched terms

(Figure 2C). The intersection of the CD14+ DEG with those from

the PBMC data revealed 3 shared downregulated (HERC2P10,

HSBP1L1 , PHLDB3) and 21 upregulated (e.g. CXCL10,

SERPING1, GBP1) genes, most of which belong to cluster 2 of the

PBMC DEGs (Figure 2D).

To investigate a possible epigenetic component of the disease-

associated changes, we performed ATAC-seq of sorted CD14+

monocytes. Using default analysis criteria (|FC|>1.5, adj. p-value

< 0.05), we identified no differentially accessible regions (DARs)

when comparing cells from PLHIV with control donors

(Figure S2E).

Collectively, the CD14+ monocytes in PLHIV show clear signs

of transcriptional activation of IFN-mediated pathways which is not

significantly impacted by chromatin packing.
“Anti-viral” monocyte state is
persistent in PLHIV

To address whether changes in the transcriptomes of

PBMCs (Figure 1), as well as isolated CD14+ monocytes

(Figure 2), are due to general alterations in the transcriptional

programs of the myeloid compartment or due to the presence of
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disease-specific cell states, scRNA-seq was performed on PBMCs of

the same individuals (Figure 3). Transcriptomes from 31,566 single

cells were produced representing all major immune cell types of the

peripheral circulation according to cluster-specific markers known

in literature, such as monocytes (LYZ, S100A9, S100A8), CD4+ T

cells (IL7R, TRAT1), CD8+ T cells (GZMH, CCL5, CD3G) and NK

cells (GNLY, NKG7, KLRF1) (Figures 3A; S3A). Density-based

coloring of the UMAP for PLHIV and control groups disclosed a

major transcriptional shift in the monocyte cluster, in the CD8+ T

cell cluster, but not in the CD4+ T cell cluster (Figure 3B).

These differences are also reflected in changes in the number of

DEG (log2FC=0.25, adj. p-value<0.05, min.pct=0.1) (Figure 3C).

Compared to other immune cell populations, monocytes

showed the highest number of DEGs comparing PLHIV with

controls, 90 up- and 25 down-regulated genes. Functional

enrichment analysis on the HIV-specific up-regulated

DEG of the monocyte compartment included terms such as ‘IFN-

g response”, “IFN-a response” and “response to virus” (Figure 3D),

in line with the PBMC and CD14 bulk RNA-seq data (Figures 1B,

2C). Similar to the bulk data produced from CD14+ monocytes,

19 genes were also upregulated in the monocyte cluster

resulting from scRNA-seq, including XAF1 and GBP1 (Figures

S3B, E; Supplementary Table S3). To confirm the upregulation

of the genes from that intersection, we measured protein levels

of SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2, which are
A B

DC

FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling (A) Volcano plot showing the DEGs (adj. p.val<0.05, |FC|>1.5) in HIV vs.
control of bulk CD14+ monocyte transcriptomes. (B) Boxplot and whisker of selected HIV-specific genes. Wilcoxon rank-sum for statistical testing
(*: p-value <0.05, **: p-value <0.01). (C) Functional enrichment using the GO and Hallmark databases upregulated DEG (HIV vs Ctrl). (D) Intersecting
DEG for the comparison of HIV vs Ctrl in bulk transcriptomes from CD14+ monocytes and PBMCs. Commonly upregulated DEG mapped to PBMC
clusters from Figure 1C.
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FIGURE 3

“Anti-viral” monocyte state is persistent in PLHIV (A) UMAP of PBMCs from PLHIV patients (n= 31,566 cells) indicating identified cell types. (B) UMAP
from (A) colored by disease group density distribution. (C) Number of DEG (adj. p.val<0.05, |log2FC|>0.25, min.pct=0.1) by major cell types for the
comparison HIV vs Ctrl. (D) Functional enrichment using the GO and Hallmark databases for HIV-specific (up-regulated) genes in monocytes. (E)
Marker expression of XAF1 and GBP1 by disease group for monocytes extracted from scRNA-seq data (left panel) and bulk CD14+ monocytes (right
panel). (F) Protein level quantification for SAMD9L, VAMP5, IFIT3, GBP1, SELL, and EIF2AK2 using the Olink system. Wilcoxon rank-sum for statistical
testing (ns: not significant, *: p-value <0.05, **: p-value <0.01). (G) UMAP of integrated PBMCs from PLHIV (A) and acute HIV (Kazer et al., n= 59,286
cells) for commonly present cell types in both datasets, identified cell types are indicated (total dataset n= 89,500 cells). (H) UMAP of integrated
monocyte subset (n= 39,803 cells) from PLHIV and acute HIV annotated by signatures from Kazer et al. and cluster marker expression. (I) UMAP of
integrated monocytes colored by dataset origin (PLHIV and acute HIV), each n= 10,000 cells. (J) Confusion matrix heatmap showing the distribution
of monocyte cell states for disease groups stratified by dataset. (K) Functional enrichment using the GO and Hallmark databases for markers (from
Figure S3E) of the ‘anti-viral’ monocyte state.
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all related to IFN responses (Figure 3F). In PLHIV, all six proteins

showed elevated levels compared to healthy controls with SAMD9L,

VAMP5, IFIT3, and GBP1 being significant.

To relate our findings from chronic HIV in PLHIV to acute

HIV, in which patients did not yet receive ART and have high

viremia, we integrated the newly produced data with our previously

published results using the same microwell-based single-cell

technology describing several inflammatory monocyte states in

acute HIV infection (33) resulting in 89,500 single-cell

transcriptomes (Figures 3G, S3C, D). To investigate the possible

presence of chronic disease-specific cell states within the monocyte

compartment, we subsetted the monocytes of the integrated

scRNA-seq dataset (Figure 3H). Clustering of the monocyte

compartment resulted in seven monocyte substrates, which could

be annotated based on the previously reported acute monocyte

states (33). These included several inflammatory monocyte states

associated with acute HIV infection, e.g. anti-viral/inflammatory or

IFI27hi monocytes (Figures 3H, S3E). Monocytes from our new data

predominantly exhibited resting and non-classical states,

irrespective of HIV group (Figures 3I, J). Chronic HIV was

characterized by an ‘anti-viral’ monocyte state that was also

found during acute infection (Figure 3J). This ‘anti-viral’

monocyte state expresses interferon-related genes, e.g. IFIT3 and

ISG15 (Figure S3E), and is strongly enriched for the hallmarks ‘IFNg
response’ and ‘IFNa response’ as well as the GO term ‘response to

virus’ (Figure 3K), reminiscent of our results in PBMCs (Figures 1C,

D) and CD14+ monocytes (Figure 2C).

Even within the resting and non-classical monocyte substates

that do not exhibit major changes in proportions between the

clinical groups (Figure 3J), differentially expressed genes

(log2FC=0.25, adj. p-value<0.05, min.pct=0.1) for PLHIV vs.

controls (resting: 70 DEGs, non-classical: 36 DEGs) had a

substantial overlay with the DE genes identified from bulk PBMC

data, i.e. clusters 1 and 2 (Figures 1C, S3F; Supplementary Table S3).

ScRNA-seq also revealed heterogeneity in cell state distribution in

the group of the PLHIV, which was not apparent in the healthy

individuals (Figure S3G).

Collectively, single-cell transcriptomics identified monocytes as

the major cause of changes in PLHIV. Common alterations were

evident across all identified cell states, including resting and non-

classical monocytes, yet scRNA-seq uncovered elevated numbers of

monocytes in the ‘anti-viral’ cell state in chronic HIV that had been

described for acute HIV infection. Thus, pathology in PLHIV is a

combination of molecular alterations and proportion changes that

could only be revealed by analysis on the single-cell level.
Drug repurposing to reverse monocyte
reprogramming in PLHIV

To illustrate how to identify potential drug targets for reversing

a molecular phenotype, here the changes observed in monocytes, we

performed a drug repurposing approach (Figure 4A) following a

previously established methodology (34). In brief, genes up- and

down-regulated in PLHIV who are under ART from scRNA-seq

monocytes, bulk RNA-seq PBMCs, and bulk RNA-seq CD14+
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iLINCS and CLUE (35, 36), resulting in 519 predicted drugs

(Supplementary Table S4). From those drugs, 17,641 signatures

were retrieved from iLINCS and used as input for GSEA on the bulk

RNA-seq CD14+ monocytes and PBMC datasets. Drug signatures

were then clustered by their delta normalized enrichment score

(DNES), resulting in 50 clusters (Figure 4B; Supplementary Table

S4). The DNES indicates the efficiency of the respective drug

signature to reverse the PLHIV-specific signature, with higher

DNES indicating a more complete reversal. Cluster 43, consisting

of 32 signatures, showed the highest DNES for CD14+ monocytes

and also a high DNES for PBMCs (Figure 4C). To decipher the

commonalities of those drug responses, we investigated recurring

target genes of all drug signatures in the cluster (Figure 4D). A

majority of genes were interferon-associated such as IFI27, OAS1,

MX1, and IFI44L, and the target genes were strongly enriched in the

‘anti-viral’ and ‘anti-viral/inflammatory’ monocyte states

(Figure S4A).

Of the 32 drug signatures, we chose five among the top 20

drugs according to DNES for CD14+ monocytes in PLHIV. Four

of them had been studied in the context of HIV infection

[trametinib (37), sunitinib (38, 39), sitagliptin (40, 41),

clofarabine (42)], but had not been reported to alter

transcriptional programs in monocytes. Additionally, the

predicted antibiotic doxycycline, for which neither anti-viral

nor immune-modulating function has been reported, was

chosen as well. Instead of addressing the viral life cycle, this

approach predicts a potential impact on the host’s immune

response to these drugs. To test this hypothesis and validate our

predictions, we performed in vitro experiments stimulating

PBMC from PLHIV with the respective drugs.

Six independent PLHIV were recruited, PBMCs were isolated

and co-cultured in the presence of the selected drugs or with

DMSO as control (Figure 4A, right panel). After overnight

incubation, RNA was extracted and bulk transcriptomics was

performed to measure transcriptional changes induced by the

respective treatment (Figure S4B). The different in vitro

treatments resulted in prominent transcriptional changes in the

PBMCs, evident in the PCA with the strongest alterations

induced by doxycycline followed by trametinib, sunitinib, and

clofarabine (Figure 4E). Differential expression analysis reflected

this finding in the number of DE genes (Figure S4C). Of note,

doxycycline, trametinib, and sunitinib induced a greater number

of downregulated DEGs.

Based on our previous findings, we tested the influence of the

different treatments by analyzing the reduction of gene signature

enrichment for 1) the recurring target genes of cluster 43 identified

from the drug repurposing pipeline (n=35), 2) the ‘anti-viral

monocyte’ markers from our integrated single-cell RNA-seq

analysis (n=137), and the hallmark terms 3) ‘IFNg response’

(n=200) and 4) ‘inflammatory response’ (n=200) (Figure 4F).

Sunitinib and doxycycline showed the most significant impact,

strongly reversing the four different HIV-specific gene signatures.

Trametinib also showed strong, clofarabine a moderate, and

sitagliptin no reductions of the four signatures in our in vitro

verification experiment. These differential effects of the different
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drugs are also seen on the gene level when investigating the top

leading edge genes of the four signatures by each drug (Figure S4D).

Taken together, we predicted drugs that could reverse the

altered monocyte-derived signatures and confirmed our
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repurposing approach in vitro with the drugs doxycycline

and sunitinib strongly reversing the HIV-specific gene

signatures , making them repurposed drug candidates

of interest.
A
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FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV. (A) Drug prediction workflow and follow-up in vitro verification, NES=normalized
enrichment score. (B) Heatmap showing hierarchical clustering (k-mean=50) of DNES from all drug signatures (n= 17,641) as groups enriched on
transcriptomes from bulk CD14+ monocytes and bulk PBMCs. (C) Zoom into cluster 43 from (B), depicting all involved drug signatures. (D) Recurring
target genes of drug signatures identified in cluster 43 from (C). (E) Principal component analysis (PCA) of bulk PBMC transcriptomes of the in vitro
verification experiment (five HIV donors with six conditions). Samples colored by treatment, DMSO as untreated control. (F) Enrichment of gene
signatures across in vitro treatments, analyzed signatures include the recurring target genes from cluster 43 (drug repurposing), marker for the ‘anti-
viral’ monocytes (integrated scRNA-seq analysis), and the hallmark terms ‘IFNg response’ and ‘inflammatory response’. Wilcoxon rank-sum for
statistical testing (ns: not significant, *: p-value <0.05, **: p-value <0.01).
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Discussion

In the present study, we illustrate in a small group of PLHIV

derived from our previous cross-sectional 200-HIV cohort study (1)

that single-cell and bulk transcriptomes of isolated immune cells

revealed reprogramming in multiple cellular compartments in

PLHIV, with innate immune cells, in particular monocytes,

showing most profound changes. We further illustrate that a

certain cellular state of monocytes, previously reported in acute

HIV infection can be observed in PLHIV, while other cell states

associated with acute inflammation are specific for acute HIV and

absent in PLHIV. Long-term usage of ART in PLHIV results in

undetectable viral loads and restores CD4 cell counts to normal

levels, and therefore PLHIV patients differ from people with an

acute HIV infection that have high-level viremia and reduced CD4

cell counts (33). Despite the small number of PLHIV studied, which

clearly showed heterogeneity in their transcriptional profiles, we

also illustrate that combined bulk and single-cell data of these

PLHIV was already sufficient to predict drug candidates for

reversing the observed transcriptional deviations in the monocyte

compartment. While technically applicable to a cohort study

setting, ATAC-seq of this small number of PLHIV did not reveal

any significant differences, which clearly points towards the need for

larger cohorts when assessing chromatin landscape differences. As

such the study reported here provides the necessary information to

include sophisticated transcriptome and epigenome data generation

to be integrated into the larger 2000-HIV cohort study currently

recruiting PLHIV including elite controllers.

The combined analysis of bulk transcriptomes from PBMC and

purified CD14+ monocytes together with single-cell transcriptomes

from blood allowed us already in a rather small number of PLHIV

to define major changes within the peripheral immune cell

compartment, e.g. the identification of a gene cluster

characterized by IFN signaling. The higher-resolution information

from scRNA-seq revealed that some of the changes observed in the

PBMC-derived transcriptomes was due to molecular changes in

monocytes including cell-state differences, but not due to cell-type

distribution differences, further supporting the use of higher-

resolution technologies in larger cohort studies. While IFN-

signaling related molecular changes (cluster 2, Figures 1C, D)

were also captured in bulk transcriptomes from purified CD14+

monocytes (Figure 2), the overall information content from purified

CD14+ monocytes was surprisingly low, indicating that many of the

changes observed in PBMC are derived from other monocyte cell

states (CD14low/-) and other cell types. Single-cell transcriptomes

clearly corroborated this hypothesis showing that basically all

immune cell types exhibited transcriptional changes in PLHIV.

With the lowest information content and highest technical effort,

we concluded that cell-type isolation procedures are not suitable for

larger cohort studies on PLHIV. Moreover, when assessing DEG in

monocytes using both bulk and single-cell transcriptomes, we

detected less DEG in bulk and only a small intersection with

single-cell data (n=19, Figure S3B). Differences in experimental

sample handling or sequencing resolution could explain this small

intersection, however, even though certain genes were not tested to
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be significantly altered in both methods, the general pathway

activation towards IFN responses was uncovered by both methods.

The systemic assessment of single-cell transcriptomes derived

from PBMC of PLHIV revealed that major transcriptional

reprogramming was mainly observed in monocytes and CD8+ T

cells with fewer changes in CD4+ T cells, NK cells, and B cells.

Focusing on the cell compartment with the major changes, we

revealed a cell state composition in PLHIV including the well-

described classical and non-classical monocyte states, but also a cell

state we previously termed ‘anti-viral monocytes’ in acute HIV

infection (33). Interestingly, this particular cell state showed high

heterogeneity between PLHIV, which will have to be studied in

larger cohorts to better define whether there is a pattern reminiscent

of PLHIV endotypes or whether this might be explained by

individual clinical incidents prior to blood sampling. Despite the

heterogeneity of this monocyte state, the assessment of genes

enriched in gene clusters derived from bulk transcriptomes

indicated that even classical and non-classical monocyte states in

PLHIV are characterized by elevated expression of cluster 2 genes,

supporting the notion that despite the observed heterogeneity,

persistent IFN signaling seems to be a major hallmark of

persistent inflammation in PLHIV (43). Based on these

informative and promising results we propose to integrate these

levels of omics technologies into larger PLHIV studies.

As we identified a major theme for persistent inflammation in

this small number of PLHIV, we addressed whether this

information would already be sufficient to identify drug

candidates by a reverse transcriptome approach (34).

Interestingly, while most therapeutic strategies are currently

addressing alternative antiviral drugs with less toxicity or

treatment strategies aiming at minimizing ART toxicity, fewer

drug regimens address immunomodulation itself including the

use of purinergic P2X receptor inhibitors (44) or statins (45–49).

In clinical studies testing the efficacy of these therapeutic

approaches to lower inflammation in PLHIV, mainly soluble

mediators (e.g. CRP, sCD14, IL-6, sCD163) measured in plasma

or serum were used as readouts, while high-resolution technologies

to address molecular changes in immune cells were not reported.

We exemplified here, how such an approach could be applied to the

identification of drug candidates lowering the inflammatory

response observed in PLHIV. We focused on a cluster of drugs

with a particularly high probability of reversing the transcriptional

alterations observed in monocytes and experimentally validated a

small number of drug candidates. A surprising finding was that the

antibiotic doxycycline induced the strongest effect mainly reducing

gene expression. Together with sunitinib, doxycycline was most

effective in reversing gene expression alterations of 1) the major

target genes used for drug prediction, 2) of the marker genes

expressed in monocytes with the ‘antiviral’ cell state, 3) of the

hallmark genes related to IFN signaling, and 4) hallmark genes

related to the pro-inflammatory response. These findings strongly

suggested that drugs such as doxycycline might not only function as

antibiotics but also modulate host immune responses. This is

similarly true for the drug candidates sunitinib and trametinib,

which have been developed for completely different purposes (50,
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51). Importantly, the modulation of the monocyte-related immune

activation should not be considered yet as being unrestrictedly

helpful for PLHIV, as it is not yet entirely clear whether these gene

programs would play a clinically beneficial role or not. As these

findings have to be considered as proof-of-concept, further

investigations using more drug candidates, different drug

concentrations, and further optimized computational and

miniaturized experimental procedures in a larger group of PLHIV

are certainly warranted to more quickly identify promising new

drug candidates counteracting the inflammatory state in PLHIV

under ART therapy.
Limitations of the study

The present study was conceptualized based on the previous cross-

sectional 200-HIV cohort study (1) to determine whether the

combination of high-resolution and high-content technologies such as

bulk and scRNA-seq data would lead to additional insights into the

pathophysiology of immune deviations in PLHI and therefore, only a

limited number of individuals were included in this study. As the main

purpose was to determine the best strategy to scale these technologies to

larger clinical cohorts, we were surprised that despite a rather small

number of individuals studied and obvious heterogeneity within the

group of PLHIV, we could retrieve important information about major

molecular changes on transcriptome level in all immune compartments.

However, it became also clear that other layers, e.g. chromatin

landscapes as assessed by ATAC-seq require a much larger number

of individuals to determine whether immune cells in PLHIV are also

altered on this epigenetic level. Based on these initial findings, we have

now started to include these technologies in the much larger 2000-HIV

cohort study of approx. 2000 PLHIV to study aspects such as disease

heterogeneity, potential disease endotypes, and association of cellular

changes with clinical trajectories, or to determine potential biomarkers

predicting disease outcome. Certainly, the observation that innate

immune cells such as monocytes show the most pronounced

transcriptional reprogramming in PLHIV was unexpected and will be

one major focus within the currently being assembled cohort of PLHIV.

Moreover, the identification of these monocyte-derived programs also

opens new avenues toward the identification of new mechanisms on

how transcriptional alterations contribute to immune dysregulation

in PLHIV.
Methods

Lead contact

Dr. Anna C. Aschenbrenner, anna.aschenbrenner@dzne.de.
Materials availability

This study did not generate unique reagents.
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Data and code availability

Bulk RNA-seq datasets and single-cell RNA-seq data have been

deposited at the European Genome-phenome Archive (EGA) and

are publicly available under the accession numbers.

All original code is stored on FASTGenomics: https://

beta.fastgenomics.org/p/HIV_Pilot

Any additional information required to reanalyze the data

reported in this paper is available from the lead contact

upon request.
Study cohort

Five PLHIV were recruited from the outpatient HIV clinic of

the Radboud University Medical Center on March 26-28th 2019.

Included patients were five males of Dutch/Western-European

ethnicity who were receiving cART for more than 6 months and

latest HIV-RNA levels ≤200 copies/ml. Ethical approval was

granted by the Ethical Committee of the Radboud University

Medical Center Nijmegen, the Netherlands under registration

number NL42561.091.12). Additionally, five age-/sex-matched

healthy volunteers were included as controls (age 43-61), and

ethical approval was granted by the Ethical Committee of the

Radboud University Medical Center Nijmegen, the Netherlands

under registration number NL32357.091.10). For the in vitro

verification experiments of drugs, six additional male PLHIV

were recruited (age 26-43, with ethical approval granted by the

Ethical Committee of the Radboud University Medical Center

Nijmegen, the Netherlands under registration number

NL68056.091.18). Written consent was obtained from all

participants involved in this study and experiments were

conducted according to the Declaration of Helsinki principles.
PBMC isolation

Human peripheral blood mononuclear cells (PBMCs) were

isolated by dilution of blood in pyrogen-free PBS and differential

density centrifugation over Ficoll-Paque (GE Healthcare, UK) as

previously described by (52). Briefly, the interphase layer was

collected, and cells were washed with cold PBS. Cells were

resuspended in RPMI 1640 culture medium (Roswell Park

Memorial Institute medium; Invitrogen, USA) supplemented with

50 g/mL gentamicin, 2 mM glutamax (Gibco, Life Technologies,

USA), and 1 mM pyruvate (Gibco) and quantified. A fraction of

PBMCs was viably frozen for later use. The cell suspension was

spun down for 5 min at 300g, 4°C, after which all supernatant was

removed. Cells were very gently resuspended in freezing medium

(90% fetal calf serum, 10% DMSO) and aliquoted into cryovials.

They were placed first at -80°C in a CoolCell freezing container

(Corning), after which they were transported the next day on dry ice

and moved to liquid nitrogen storage. For the thawing of PBMCs,
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one vial of 5 million cells was thawed in 10ml RMPI medium

supplemented with 10% FCS.
Preparation of Seq-Well
arrays/libraries/sequencing

Seq-Well arrays and libraries were prepared from isolated

PBMCs as described previously (24).
Measurements of plasma markers

Clinical plasma markers were measured using ELISA (Duoset

or Quantikine, R&D Systems) for IL18-BP, IL-18, hsCRP, sCD14,

sCD163 or using SimplePlex Cartridges (Protein Simple) for IL-6,

all performed according to manufacturers’ instructions. As a

reference, the mean of healthy controls from van der Heijden

et al. (1) were used.
Isolation of CD14+ monocytes

CD14+ monocytes were isolated from PBMC by magnetic-

activated cell sorting (MACS) positive selection with CD14

microbeads (Miltenyi Biotec), according to the manufacturer’s

instructions. Depending on the available PBMC counts used as input,

either MS or LS columns were used (Miltenyi Biotec). After isolation,

cells were again resuspended in a Dutch modified RPMI culture

medium (Invitrogen) supplemented with 50 µg/mL gentamycin, 2

mM glutamax and 1 mM pyruvate (Gibco, Life Technologies).
Flow cytometry

Frozen PBMCs were thawed then stained for surface markers

(Supplementary Table S1) in DPBS with BD Horizon Brilliant Stain

Buffer (Becton Dickinson) for 30min at 4°C. To distinguish live

from dead cells, the cells were incubated with LIVE/DEAD Fixable

Yellow Dead Cell Stain Kit (1:1000 – Thermo Scientific). Following

staining and washing, the cell suspension was fixed with 4% PFA for

10 min at room temperature to prevent any possible risk of

contamination due to aerosol formation during sample handling

and acquisition. Flow cytometry analysis was performed on a BD

Symphony instrument (Becton Dickinson) configured with 5 lasers

(UV, violet, blue, yellow-green, red).
ATAC-seq

Frozen PBMCs were thawed and sorted on a BD FACSAria III

(Blue, Yellow-Green, Red, and Violet lasers), and 20,000 live CD14+

cells were sorted and spun down at 500×g for 5 min at 4°C. The cell

pellet was washed with 50 mL of cold 1x PBS buffer and spun down

at 500 ×g for 5 min at 4°C. The pellet was then resuspended in 50 mL
of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM
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MgCl2, 0.1% IGEPAL CA-630) and spun down immediately at

500×g for 10 min at 4°C. The supernatant was then discarded, and

the transposition reaction was immediately performed. To perform

the transposition reaction, a mixture of transposase, 5x TAPS-DMF

buffer (50mM TAPS (T5130 SIGMA), 25mMMgCl2, 50% DMF (N,

N-Dimethylformamide)), and water was combined and added to

the cell pellet. The transposition reaction was incubated at 37°C for

30 min. Following transposition, the DNA was purified using a

Qiagen MinElute Kit. The transposed DNA was eluted in 10 mL of

water, and purified DNA was stored at 4°C until the following day

or at -20°C.

To amplify the transposed DNA fragments, a PCR mixture was

prepared using the purified DNA, nuclease-free water, customized

Nextera PCR primers, and NEBNext High-Fidelity 2x PCR Master

Mix. The PCR mixture was cycled as follows: 72°C for 5 min, 98°C

for 30 sec, 98°C for 10 sec, 63°C for 30 sec, and 72°C for 1 min. Steps

3-5 were then repeated 11 times for a total of 12 cycles. The PCR

products were then purified using a Qiagen MinElute Kit and eluted

in 12 mL of water. To validate the quality and concentration of the

PCR products, gel electrophoresis was performed using the

TapeStation and Agilent High Sensitivity D1000 kit.
Protein measurements

Proteomic profiling of selected markers was performed as

described before (53). In brief, venous whole-blood samples were

collected in EDTA tubes and centrifuged into plasma, and then

stored at -80°C. Protein measurements were performed by Olink

Proteomics AB using the Olink Explore platform. QC and

normalization were performed by Olink services. For this study,

protein markers of interest were selected.
In vitro verification of selected drugs

To verify the effectiveness of predicted drugs, six different PLHIV

from the 200-HIV cohort were re-called, and the PBMCs were

extracted and seeded in triplicates with 500,000 cells per replicate.

The PBMCs were cultured for 24 hours in the presence of a selected

subset of drugs from cluster 43, including trametinib (50 mM in

0.000002% DMSO), sunitinib (100 mM in 0.0001% DMSO),

clofarabine (100 mM in 0.00001% DMSO), doxycycline (100 mM

in H2O) and sitagliptin (100 mM in 0.0001% DMSO) or DMSO

(0.001%) as control. After incubation, replicates were collected in a

total of 1 ml TRIzol reagent and processed for bulk RNA-seq.
Quantification and statistical analysis

RNA-sequencing analysis (bulk RNA
PBMC, CD14)

Sequenced reads were aligned and quantified using STAR: ultrafast

universal RNA-seq aligner (v2.7.3a) (54) and the human reference

genome, GRCh38p13, from the Genome Reference Consortium. Raw

counts were imported using the DESeqDataSetFromMatrix function
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from DESeq2 (v1.32.0) (55) and rlog transformed according to the

DESeq2 pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All normalized

transcripts with a maximum overall row mean lower than 10 were

excluded resulting in 26,920 present transcripts. All present transcripts

were used as input for principal component analysis (PCA).

Differentially expressed genes were calculated for HIV vs. control

using an independent hypothesis weighting (IHW) adjusted p-value

cutoff of 0.05 and an absolute fold change (|FC|) of 1.5. DEGs were

used as input for the k-mean clustered heatmap (k=4), generating

four clusters.

RNA-sequencing analysis (drug
verification analysis)

Sequenced reads were aligned and quantified using kallisto

v0.44.0 (56) and the human reference genome, GRCh38p13, from

the Genome Reference Consortium. Raw counts were imported

using the DESeqDataSetFromTximport function from DESeq2

(v1.32.0) (55) and vst-transformed according to the DESeq2

pipeline. DESeq2 was used for the calculation of normalized

counts for each transcript using default parameters. All

normalized transcripts with a maximum overall row mean lower

than 10 were excluded resulting in 37,952 present transcripts.

Variation in the data was identified using the SVA package

(v3.40) (57), and batch effects were removed with limma (v3.48.3)

(58) using the first six surrogate variables (SVs), which were also

added in the design of the dds object. All present transcripts were

used as input for principal component analysis (PCA) of the batch-

corrected data. Differentially expressed genes were calculated for

HIV vs. control using a p-value cutoff of 0.05, an adjusted p-value

(IHW) < 0.05 (independent hypothesis weighting), and a |FC|>2.

DEGs were used as input for the clustered heatmap.

Transcription factor prediction analysis
The R package RcisTarget (version 1.12.0) (59) was used to

predict the transcription factors potentially regulating heatmap

cluster-specifically contained gene sets. The genomic regions of

TF-motif search were limited to 10kb around the respective

transcriptional start sites by using the RcisTarget-implemented

“hg19-tss-centered-10kb-7species.mc9nr.feather” motifRanking

file. Prediction was performed using the cisTarget function and

the resulting top 3 predicted TF, according to their normalized

enrichment scores (NES), were selected for each heatmap cluster.

Gene set ontology enrichment analysis
Gene set ontology enrichment analysis using the heatmap

clusters as input was performed on the gene sets from the Gene

Ontology (GO) biological process (BP) database (60, 61) and the

Hallmark gene sets (62) using the R package clusterProfiler (version

4.0.5) (63). Ontologies with the highest and statistically significant

enrichment were used for presentation.

Gene set variation analysis
For the enrichment of the genes included in the four different

clusters of the DE heatmap (PBMC data) and for the enrichment of
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the four different transcriptional signatures for the in vitro

verification of drugs, the GSVA package (version 1.40.1) (64)

was applied.

Flow analysis
After pre-processing, compensated fluorescence intensities were

exported from FlowJo (BD, v. 10.7.1). Exported.fcs files were

imported in R with the flowCore package (v. 2.2.0). Fluorescence

intensities were auto-logicle transformed, used for dimensionality

reduction using the UMAP algorithm (umap package v. 0.2.7.0)

(65) and clustered using the Phenograph package (v. 0.99.1) (66).

Cell types were annotated for each cluster by respective marker

expression. For visualization, the proportions of main cell types

were calculated and stratified by disease group.

ATAC-seq analysis
Reads were aligned to human hg38 reference with bowtie2 (67).

Samtools (68) was used to remove adapter offset and to create bam

files. Open chromatin peaks were called using MACS2 (69),

blackl is ted regions (hg38-blackl is t .v2.bed.gz , https : / /

sites.google.com/site/anshulkundaje/projects/blacklists), the low

covered peaks were excluded, and then the peaks were annotated

with gene models from TxDb.Hsapiens.UCSC.hg38.knownGene

using the ChIPseeker package (applying annotatePeaks function)

(70). Downstream analysis was performed with the DESeq2

(v1.26.0) package (55). Differentially accessible regions (DAR)

were detected with a |FC|>1.5 and a corrected p-value > 0.05.

With these standard parameters, no DAR were identified.

ScRNA-seq data analysis
ScRNA-seq UMI count matrices were imported to R 4.1 and

gene expression data analysis was performed using the Seurat

package 4.0.4 (71, 72). Cells with more than 10% mitochondrial

reads and less than 200 expressed genes were excluded from the

analysis and only those genes present in more than 3 cells were

considered for downstream analysis. Moreover, the genes MT-

RNR1 and MT-RNR2 were excluded. Log-normalization, scaling,

and dimensionality reduction steps were performed using the

Seurat implemented functions. For scaling, the number of

detected transcripts per cell was regressed out to correct for

heterogeneity associated with differences in sequencing depth. For

dimensionality reduction, PCA was performed on the top 2,000

variable genes identified using the vst method implemented in

Seurat. Subsequently, UMAP was used for two-dimensional

representation of the data structure using the first 30 PCs. Cell

type annotation was based on the respective clustering results

combined with the expression of known marker genes. DEG by

celltype were calculated for the comparison of HIV vs control with a

|log2FC|>0.25, adj. p-value<0.05 and min.pct=0.1.

Data integration
Data integration of the PLHIV PBMCs (this study) and the

acute HIV PBMC dataset (33) were integrated using the harmony

algorithm (73) based on the first 15 principal components. Prior to

integration, the PLHIV dataset was subsetted for major cell types
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present in acute HIV. Cell type annotation was based on the

respective clustering results combined with the expression of

known marker genes.

Integrated scRNA-seq monocyte analysis
The monocyte compartment was subsetted from the integrated

PBMCs and subsequently normalized, scaled, and subjected to PCA

calculation. For UMAP visualization, the first 10 harmony PCs were

used. After clustering the integrated monocytes with the

FindNeighbors and FindClusters function from Seurat, monocyte

states were annotated according to the signatures described in acute

HIV (33) and cluster-specific markers, separating the monocyte

population into anti-viral (TNFSF10, ISG15, IFIT2, IFIT3),

inflammatory (IL8, IL1B, EREG), anti-viral/inflammatory (CCL2,

CCL4), IFI27/30hi (IFI27, IFI30), HLAhi (HLA-DRB1, HLA-DQA1),

resting (S100A8, S100A9, LYZ) and non-classical (FCGR3A,

C1QA) monocytes.

Confusion matrix
For each monocyte cell state, the relative proportion across the

groups (HIV, control) was visualized as a fraction of samples from

the respective condition contributing to the monocyte cell state

stratified by dataset (PLHIV vs. acute HIV).

Drug prediction
To identify drugs that reverse the gene expression signature

observed in the comparison HIV vs. control for bulk RNA-seq

PBMCs, bulk RNA-seq CD14 monocytes, and scRNA-seq

monocytes, the drug prediction databases iLINCS (http://

www.ilincs.org/ilincs/), and CLUE (https://clue.io/) were accessed.

As input for the drug prediction, the top 1000 (iLINCS) or the top

100 (CLUE) DEGs were used. Drugs reversing the HIV gene

expression signature (defined by a negative score) comprised a

total of 519 unique drugs. Using the iLINCS API (https://

github.com/uc-bd2k/ilincsAPI/blob/master/usingIlincsApis.Rmd),

every gene expression signature from each drug listed in the

signature libraries iLINCS chemical perturbagens (LINCSCP),

iLINCS targeted proteomics signatures (LINCSTP), Disease-

related signatures (GDS), Connectivity Map signatures (CMAP),

DrugMatrix signatures (DM), Transcriptional signatures from EBI

Expression Atlas (EBI), Cancer therapeutics response signatures

(CTRS), and Pharmacogenomics transcriptional signatures (PG)

was downloaded. Labeling was performed in the following

principle: “drug name”_”database”_”database ID”. Signatures

were ordered by fold change, and only the top 300 genes were

used. This resulted in a total of 17,641 unique drug signatures each

with an up- and downregulated set. Subsequently, GSEA was

performed on the sequencing data for every up- and down-

regulated set for each drug and each cluster comparison. The

resulting normalized enrichment scores (NES) were used to

calculate the delta NES for each drug, defined as DNES = NES

(down) −NES (up), ergo the difference of the NES from the

downregulated set and the NES from the upregulated set of each

respective drug. These DNES values were then k-mean clustered

(k = 40). The cluster with the highest DNES values for both CD14
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and PBMCs was chosen and uniquely present drugs were shown.

The leading edge genes of the downregulation signatures of these

drugs (cluster 43) were examined, and the frequency was counted

(recurring target genes).

Data visualization
For data visualization, the R packages Seurat, ggplot2 (version

3.3.5) (74), (https://ggplot2.tidyverse.org), pheatmap (version

1.0.12), and ComplexHeatmap (version 2.8.0) (75) were used.
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SUPPLEMENTARY FIGURE 1

Blood transcriptomes of PLHIV are dominated by monocyte-related

proinflammatory gene programs. (A) Overview of age and sex of the cohort
by disease group. (A) Multicolor flow cytometry (MCFC) cell distribution for

HIV and controls. (B) Number of DEG for the comparison HIV vs. Ctrl in bulk
PBMCs transcriptomes; IHW multiple comparison adjustment and false

discovery rate (FDR) cutoff of 5%, significant fold change of >|1.5|. (C) Gene
set variation analysis (GSVA) of the genes from the four clusters of the DE

heatmap (from ).

SUPPLEMENTARY FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling.

(A) Boxplots of clinically relevant markers measured in the serum of PLHIV.
References as blue bars (1). (B)Overview of MACS CD14 positive selection. (C)
Number of DEG for the comparison HIV vs. Ctrl in bulk RNA-seq CD14; IHW
multiple comparison adjustment and false discovery rate (FDR) cutoff of 5%,

significant fold change of >|1.5|. (D) Boxplot and whisker of selected genes.

SUPPLEMENTARY FIGURE 3

‘Anti-viral’ monocyte state is persistent in PLHIV. (A) Cell type marker

expression of the PLHIV dataset for all identified cell types. (B) Overlap of

up-regulated DEG from monocytes extracted from scRNAseq and bulk
CD14+ transcriptomes (Supplementary Table S3). Genes contributing to the

IFN-g or IFN-a response pathways are indicated for the intersection as well as
the uniquely identified DEG. (C) UMAP of integrated PBMCs from PLHIV and

acute HIV split by dataset (total n= 89,500 cells, each 30,000 cells depicted).
(D) Cell type marker expression of the integrated HIV dataset for all included

cell types. (E) Monocyte cell state marker of the integrated monocytes from

PLHIV and acute HIV. (F) Mapping of HIV-specific (upregulated) DEG of
resting and non-classical monocyte states (for DEG see Supplementary

Table S3) to PBMC clusters from . (G) Integrated monocyte UMAP
subsetted for chronic HIV and stratified by donor.

SUPPLEMENTARY FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV.

(A) Enrichment of recurring target genes from cluster 43 in monocyte
states of the integrated monocyte analysis (see ). (B) Included samples by

treatment condition after quality control (QC) for the in vitro verification
experiment. (C) Number of DEG (adj. p-value<0.05, |FC|>2, IHW) for each

treatment vs. control (DMSO). (D) Heatmap showing the union of top leading
edge genes of each signature (from ) for each treatment ranked by adj.

p-value.

SUPPLEMENTARY TABLE 1

Donor overview.

SUPPLEMENTARY TABLE 2

Functional enrichment (GO and Hallmark) and transcription factor (TF)

prediction of bulk RNA-seq PBMC heatmap clusters (related to Figure 1)

and MCFC marker.

SUPPLEMENTARY TABLE 3

ScRNA-seq monocytes DEG (related to Figure 3).

SUPPLEMENTARY TABLE 4

Predicted drug clusters and signatures (related to Figure 4).
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The Simple prEservatioN of
Single cElls method for
cryopreservation enables the
generation of single-cell immune
profiles from whole blood

Sarthak Satpathy1,2, Beena E. Thomas1,3, William J. Pilcher1,2,
Mojtaba Bakhtiari 1,3, Lori A. Ponder4, Rafal Pacholczyk5,6,
Sampath Prahalad3,4,7, Swati S. Bhasin1,2,3, David H. Munn5,8

and Manoj K. Bhasin1,2,3*

1Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States,
2Department of Biomedical Informatics, Emory University, Atlanta, GA, United States, 3Department of
Pediatrics, Emory University, Atlanta, GA, United States, 4Division of Rheumatology, Children’s
Healthcare of Atlanta, Atlanta, GA, United States, 5Georgia Cancer Center, Augusta University,
Augusta, GA, United States, 6Department of Biochemistry and Molecular Biology, Augusta University,
Augusta, GA, United States, 7Department of Human Genetics, Emory University School of Medicine,
Atlanta, GA, United States, 8Department of Pediatrics, Augusta University, Augusta, GA, United States
Introduction: Current multistep methods utilized for preparing and

cryopreserving single-cell suspensions from blood samples for single-cell RNA

sequencing (scRNA-seq) are time-consuming, requiring trained personnel and

special equipment, so limiting their clinical adoption. We developed a method,

Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of

whole blood (WB) along with granulocyte depletion during single-cell assay, to

generate high quality single-cell profiles (SCP).

Methods: WB was cryopreserved using the SENSE method and peripheral blood

mononuclear cells (PBMCs) were isolated and cryopreserved using the

traditional density-gradient method (PBMC method) from the same blood

sample (n=6). The SCPs obtained from both methods were processed using a

similar pipeline and quality control parameters. Further, entropy calculation,

differential gene expression, and cellular communication analysis were

performed to compare cell types and subtypes from both methods.

Results: Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were

obtained from the six WB samples cryopreserved using the SENSE method. In-

depth characterization of the scRNA-seq datasets from the samples processed

with the SENSE method yielded high-quality profiles of lymphoid and myeloid

cell types which were in concordance with the profiles obtained with classical

multistep PBMC method processed samples. Additionally, the SENSE method

cryopreserved samples exhibited significantly higher T-cell enrichment, enabling

deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC

methods processed samples exhibited transcriptional, and cellular
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communication network level similarities across cell types with no batch effect

except in myeloid lineage cells.

Discussion: Comparative analysis of scRNA-seq datasets obtained with the two

cryopreservationmethods i.e., SENSE and PBMCmethods, yielded similar cellular

and molecular profiles, confirming the suitability of the former method’s

incorporation in clinics/labs for cryopreserving and obtaining high-quality

single-cells for conducting critical translational research.
KEYWORDS

whole blood, cryopreservation, single cell profiling, density gradient, scRNA seq
1 Introduction

Recent advances in single-cell microfluidic technologies have

resulted in a ubiquitous implementation of single-cell approaches to

understand disease mechanisms and developmental biology (1–3).

Single-cell assays provide high-resolution measurement of cell types/

subtypes (4) and their molecular states associated with health/disease

conditions (5). Single-cell assays have immense potential in the

discovery of cell-specific biomarkers (6) and for gaining

unprecedented insights into composite cell-to-cell interactions that

drive therapeutic responses (7) for expanding disease diagnosis and

therapeutic options (8). We are utilizing single cell assays for the

development of single-cell atlases for multiple myeloma (MM) (9, 10),

pediatric cancers (11) as well as chronic wounds (12–14), to identify

next-generation prognostic biomarkers with high sensitivity and

specificity. Recently, a comparative analysis by our group, of rapid

and non-progressing MM patient samples using single-cell profiling

(SCP), revealed a significant contribution of exhausted T-cells in the

rapid progression of MM (9). The implementation of SCP in another

study on diabetic foot ulcers (DFUs) resulted in the identification of a

unique fibroblast population associated with the healing of chronic

DFUs in diabetic patients (14). A major issue with the single-cell

approach is that samples need to be immediately subjected to

downstream processing for live cell capture or frozen viably, both of

which require precious time and bench-work, often not feasible in a

clinical setting. Therefore, developing and optimizing methodologies

that enable stable cryopreservation of clinic/hospital-collected samples

with minimal intervention is crucial for implementation of SCP assays

as routine.

Sample preparation for bulk sequencing can be performed on

samples collected in the clinic in tubes with RNA/DNA stabilizers (15)

without the need for immediate pre-processing (16). Although this

approach is easy and practical in a clinical setting, a major drawback is

that bulk approaches only reveal the average behavior of all the

different cell populations in a sample (17). On the contrary, single-
filing; SENSE, Simple

, Juvenile Idiopathic

ells; UMAP, Uniform
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cell assays measure individual cell profiles (18) and their

transcriptional states in the complex tissue architecture (2).

However, the inherent need for viable cells (19) for performing

single-cell assays limits the adoption of single-cell assays in clinics

(bench to bedside) as well as the collection of clinical samples for

single-cell research (bedside to bench). The traditional method of

isolating PBMCs involves multiple centrifugation steps, the addition of

special density gradient reagents like Ficoll-Paque to facilitate the

isolation of mononuclear cells (20) for downstream single-cell assays

and significant time commitment (Figure 1A). These preprocessing

steps to isolate PBMCs may inevitably delay sample cryopreservation,

which can potentially introduce technical bias and artifacts during

SCP (21). To overcome the limitations associated with traditional

sample preservation for single-cell assays, we have developed and

implemented the Simple prEservatioN of Single cElls (SENSE)

method for one-step cryopreservation of whole blood (WB) by the

direct addition of freezing solution. The SENSE method also

incorporates a granulocyte removal step during single-cell assay

steps, resulting in optimal capture of immune repertoire from WB

samples. In this study for the first time, we have performed a deep

characterization of the SENSE method-generated transcriptome

profiles and compared it with the transcriptome profiles of the

PBMCs isolated by the standard Ficoll-Paque gradient method.

Comparative analysis was performed on the patient blood samples

collected in clinic setting to pave the way for the clinical

implementation of the SENSE method. Development and

implementation of simplified cryopreservation of WB samples using

methods like one-step SENSE method would result in a significant

increase in the adoption of SCP in clinics and single/multi-center

therapeutic trials and enable robust identification of next-generation

diagnostics, prognostics, and therapeutic biomarkers.
2 Results

2.1 Whole blood cryopreservation by the
SENSE method generated high-quality cells

We tested the feasibility and performance of the SENSE method

for SCP on whole blood samples, collected in a clinic at Children’s
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Healthcare of Atlanta from Juvenile Idiopathic Arthritis (JIA) (n=5)

and pediatric lupus (n=1) patients (Table 1). The blood samples (3.0

ml - 4.5 ml) were split into two equal aliquots and processed in

parallel using the SENSE and PBMC methods. The Ficoll-Paque

density gradient method was used to isolate PBMCs from one-half

of the sample which were then frozen in freezing media (Fisher

Scientific). These viably frozen PBMCs were thawed and profiled

directly using 10x Genomics Next GEM single cell 3’v3.1 kits (as

described in the methods section) (Figure 1A). The remaining half

of the blood sample was processed using the SENSE method that

involved freezing WB directly by adding freezing solution (80%

FBS, 20% DMSO) at a ratio of 1:1 to obtain a final concentration of
Frontiers in Immunology 0342
40% FBS, 10% DMSO in the cryopreserved WB samples. In the

SENSE method, frozen WB was thawed, and the mononuclear cells

were collected and resuspended after the removal of CD15+ and red

blood cells as described in the detailed protocol (Supplementary

Document 1; Figure 1B). The cells were then used for generating

single-cell RNA sequencing (scRNA-seq) libraries. The data

obtained from both methods were extensively studied by

comparing various qualitative and quantitative parameters

(Figure 1A). Simple single-step cryopreservation of WB made

possible with incorporation of the SENSE method will promote

the clinical implementation of SCP assays and expand single-cell

research and discoveries (Supplementary Figure 1).
A

B

FIGURE 1

Overview of SENSE (Simple PrEservatioN of Single cElls) method for cryopreservation and single-cell immune profiles from whole blood. (A) Assay
Overview: Blood samples were collected in EDTA tubes which were then split into two aliquots. One aliquot was processed using the traditional Ficoll-
Paque density gradient method to isolate PBMCs, which were then cryopreserved. The other aliquot of blood was viably cryopreserved using the SENSE
method, i.e., a cryoprotectant solution was added and the sample frozen. Post-thawing, the WB cells from the SENSE method were subjected to
granulocyte depletion, and the CD15- fraction was collected, washed, and processed for single-cell profiling using the 10x Genomics method. The
resulting single-cell data from the SENSE and PBMC methods were then compared to identify any differences in cell quality metrics and molecular
profiles. (B) Schematic for single cell assays using sample stored and processed using the SENSE method involving: 1. simple cryopreservation of whole
blood samples stably stored for short or long term in -80 °C or liquid nitrogen respectively, and 2. preparation of sample for single cell assay by
removing granulocytes and RBCs. 3. Generation of single cell RNA sequencing libraries using appropriate 10x Genomics kits (5’ or 3’with/without cell
multiplexing). The color bars on the left-hand side serve as visual indicators, with the red bar denoting steps specific to SENSE method, while the blue
bar represents steps common single cell profiling steps for both methods. The figure was prepared using BioRender.com.
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Comparative analysis of cell viability upon thawing of

cryopreserved WB followed by granulocyte depletion (SENSE

method) and thawing of cryopreserved PBMCs (density gradient

method) revealed that the latter method yielded slightly higher

viability (91 ± 1.64%) as compared to the former method (86.3 ±

1.51%), however, this difference was not significant (P=.10)

(Figure 2A). A total of 20,024 and 23,502 cells were profiled from

the PBMCs isolated using density gradient method and WB frozen

using SENSE method respectively, hereby referred to as ‘PBMC’ and

‘SENSE’ for simplicity. The low-quality cell identification based on

unique genes (<200), UMI count (<600), andmitochondrial transcripts

(>20%) identified 793 and 1,149 low-quality cells with PBMC and

SENSE methods respectively, that were filtered out from the

subsequent analysis. This resulted in 19,231 and 22,353 high-quality

cells from the PBMC and SENSE methods respectively (Figure 2B).

The SENSE method was found to capture median gene counts and

uniquemolecular identifiers (UMIs) comparable to the PBMCmethod,

with a similar median representation of mitochondrial genes

(Figure 2C). To check whether the SENSE method affected the

integrity of the cells, the representation of genes in the membrane,

extracellular, and ribosomal ontology categories were assessed. Cellular

damage results in increasing the representation of the membrane genes

and lowering the representation of extracellular genes (22).

Comparative analysis showed profiling of similar proportions of

cytoplasmic, membrane, extracellular, and ribosomal ontology

categories with SENSE and PBMC methods, demonstrating that the

former method is as robust as the latter method in obtaining high-

quality cells fromWB with no introduction of cellular damage artifacts

(Figure 2D). SCP can be utilized to evaluate the cell cycle phases (i.e.,

G1, G2/M, and S) which significantly impact cellular gene expression

and are vital in classifying cellular sub-populations in the single-cell

assays. The comparative analysis revealed a broadly similar distribution

of cells in various cell cycle phases between cells from all samples from

the SENSE and PBMC methods (Figure 2E). Additionally, we also

assessed the impact of sample processing by each method on the

doublet rates as they are key confounders in the single cell data (23).

The WB samples cryopreserved using the SENSE method had a lower

percentage of doublets (2.41%, 539 cells) as compared to the PBMC

method (4.76%, 916 cells) (Figure 2F), demonstrating that single cells

cryopreserved using the SENSEmethod generated high-quality SCPs of

clinical WB samples. Clusters with a high percentage of doublets were

manually reviewed using canonical marker expression and excluded

from downstream analysis.
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Altogether, these single-cell quality assessment analyses

demonstrate that the SENSE method is a reliable and effective

method for WB single-cell profiling by preserving high-quality cells

that yield comparable results to the traditional density gradient

PBMCs isolation method.
2.2 Cellular profile and enrichment
between SENSE and PBMCs methods

The high-quality cells obtained after filtration and

normalization steps were clustered based on the gene expression

profiles using Seurat (24). The initial 21 clusters obtained from the

integrated scRNA-seq data of samples processed using PBMC and

SENSE methods, were annotated to obtain 11 major cell types from

various lineages using canonical marker genes: B-Cells (MS4A1+,

CD79A+), Memory B-cells (CD19+, IGLC2+), NK cells (NKG7+,

KLRD1+, CD3D-), Myeloid cells (CD14+, MNDA+, FCGR3A+,

FCN+), CD4+ Naïve T-cells (CD3D+, CD4+, CCR7+, LEF1+),

CD4+ Memory T-cells (CD3D+, CD4+, TRAAD+, TNFRSF4+), IFN

T-cells (CD3D+, ISG15+, STAT1+, IFI6+), CD8+ Effector T-cells

(GZMA+, GZMB+, CD8A+), CD8+ Naive T-cells (CD8A+, CCR7+,

LEF1+, TCF7+), CD8+ Memory T-cells (CCL5+, GZMB+, CD8A+),

and platelets (SNCA+) (Figures 3A, B). Using the doublet detection

algorithm of the DoubletFinder package (25), we identified two

outlier clusters exhibiting doublet proportions greatly exceeding

other clusters: Db 1 (95% doublets) and Db 2 (44.1% doublets). The

remaining clusters demonstrated notably lower doublet percentages

(averaging at 1.7 ± 0.8%). We reviewed the canonical markers

expression in these doublet-enriched clusters to explore if they

express markers of cell types from different lineages and correctly

flagged doublets. Cluster Db1 highly expressed both pDC and T-cell

related markers (CD4, JCHAIN, MZB1, IRF8, CLEC4C), whereas

cluster Db2 highly expressed both plasma cell and T cell markers

(CD8A, JCHAIN, MZB1, CD38). We also observed a small number

of cells in both PBMC (n=120 cells) and SENSE (n=182 cells)

methods that were enriched with mitochondrial genes (Mt

Enriched) (Figures 3A, B). On average, T-cells were the largest

cluster among all patients, followed by myeloid cells, and B-cells

(Figure 3A). All the identified cell types (except platelets) were

detected in samples processed using either SENSE or PBMC

method (split UMAP in Figure 3C). Regardless of the processing

method used, cells of the same type consistently clustered together,
TABLE 1 Patient characteristics table.

Patient no. Diagnosis age (years) Sample collection age (years) Sex Race Ethnicity Diagnosis

1 6 7 Male White Non-hispanic Oligoarticular JIA

2 2 16 Female White Non-hispanic Polyarticular RF-

3 8 13 Female White Non-hispanic Unfifferntiated JIA

4 5 11 Male AA/black Non-hispanic Systemic JIA

5 1 8 Female Asian Non-hispanic Polyarticular RF+

6 15 16 Female AA/black Non-hispanic Lupus
JIA, Juvenile idiopathic arthritis; RF, Rheumatoid factor. Patient 1-5: JIA, Patient 6: Pediatric lupus.
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highlighting their high transcriptome similarity. The split UMAP

visualization and bar plots depicted lower enrichment of cells from

the myeloid lineage (PBMC: n=6,085, SENSE: n=1,903) and higher

enrichment of T cells (PBMC: n=8,558, SENSE: n=15,373) in the

SENSE method as compared to the PBMC method (Figures 3C, D).
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Most of the major clusters had contributions of cells from each

patient, implying a similar single-cell landscape across all patients

(Figure 3D). Some clusters, such as IFNg responsive T-cells (IFN T-

cells), showed a disproportionately high contribution from a single

patient (patient 1) with both processing methods (Figure 3D),
A

B

D

E F

C

FIGURE 2

Comparative analysis of cell quality of SENSE and PBMCs methods. (A) Cell viability % boxplots, and (B) Single-cell counts boxplots with each dot
representing an individual patient. The significance of the difference between the methods was tested using the paired Student’s t-test. NS indicates
non-significant differences with P >.05. (C) Count of Genes (log-scale), UMIs (log-scale), and proportion of mitochondrial genes per cell. The violin
plots in the top panel show patient-wise information for the count of genes, UMIs, and proportion of mitochondrial genes per cell, while the violin
plots in the bottom panel show the group-wise comparison of SENSE and PBMC methods. (D) Proportion of patient and group-wise genes in
cytoplasmic, membrane, extracellular, and ribosomal gene ontology categories. (E) Proportion of cells from SENSE and PBMC methods in the G1,
G2M, and S phases, and (F) Proportion of the singlets and doublets cells in the SENSE and PBMCs protocols.
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FIGURE 3

Characterization of blood single cell profiles obtained with SENSE and PBMCs methods. Blood samples for the analysis were obtained from JIA and
pediatric Lupus patients from the rheumatology clinic in CHOA. (A) Uniform Manifold Approximation and Projection (UMAP) embedding of scRNA-
seq data from both methods across all patients consisting of >41,000 high-quality single-cells distributed into 11 cell types. Canonical cell types are
based on the expression of marker genes that include: B-Cells (MS4A1+, CD79A+), Memory B-cells (CD19+, IGLC2+), NK Cells (NKG7+, KLRD1+,
CD3D-), Myeloid cells (CD14+, MNDA+, FCGR3A+, FCN+), CD4+ Naïve T-cells (CD3D+, CD4+, CCR7+, LEF1+), CD4+ Memory T-cells (CD3D+, CD4+,
TRAAD+, TNFRSF4+), IFN T cells (CD3D+, ISG15+, STAT1+, IFI6+), CD8+ Effector T-cells (GZMA+, GZMB+, CD8A+), CD8+ Naive T-cells (CD8A+, CCR7+,
LEF1+, TCF7+), CD8+ Memory T-cells (CCL5+, GZMB+, CD8A+), and platelets (SNCA+). (B) Dot Plot depicting expression profile of markers genes
used for annotating different cell type clusters. The relative expression and percent of cells expressing specific markers are shown by shades of red
color and the size of the dot respectively. (C) PBMC and SENSE single-cell method-based split UMAP showing the distribution of cell types. There
are slightly elevated differences in T-cells subtypes in the SENSE group, while PBMC samples showed higher levels of myeloid cells. (D) Stacked bar
plot showing the relative patient contribution in each individual cell type cluster. The samples from PBMC and SENSE methods are shown with
shades of blue and red respectively. Each cluster depicted the varying levels of contribution from individual patients. The contribution of cells from
each sample is shown using a pie graph with orange and purple colors representing SENSE and PBMC profiled samples respectively. (E) Heatmap
displaying the top two gene markers expressed by each cell type. Columns represent individual cells, grouped by cell type, while rows display
individual genes. Horizontal colored bars above the heatmap indicate the different cell types. Relative gene expression is shown in pseudo color,
where blue represents low expression, and red represents high expression. Top markers generally correlate with well-established canonical markers
for each cell type. (F, G) Comparative analysis proportions of cell types in the PBMC and SENSE methods. The proportion of Total (F) and CD45+
(G) cells per sample between PBMC and SENSE methods are shown. Each bar plot depicts the mean proportions and ± standard error of the mean.
Each dot represents an individual sample. The significance of the difference in the mean in the groups was tested using paired Student’s t-test, with
significant differences being indicated with * (P<0.05) and ** (P<0.01).
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which may be a result of the clinical condition of that patient.

Patient 1 is a recently diagnosed JIA patient as compared to other

JIA patients in this study who have been undergoing treatment for

quite some time (Table 1).

To further dissect the expression profiles of different cell types,

we compared the gene expression profile of the target cluster with

the other cells in the sample based on the non-parametric Wilcoxon

Rank Sum test (average log-fold change (FC) ≥0.25, > 25% of cells

expressing gene, and P< .01). This analysis allowed the

identification of a gene signature for each cell type (Figure 3E).

The SENSE method captured a higher number of T cells per sample

as compared to the PBMCs method indicating its advantage in T-

cell repertoire characterization (Figure 3F; Supplementary Figure 2).

T cell subtype comparison depicted that CD8+ T cells (Naïve,

Memory) are significantly elevated (P<.05) in the SENSE method

profiled samples (Figure 3F; Supplementary Figure 3). On the other

hand, the PBMC-based method depicted significant enrichment

(P<.05) of the myeloid cells (Figure 3F). Additionally, PBMC

method also depicted significant enrichment of platelets as

compared to SENSE (P<.01) (Figure 3F). Similar observations

were made while considering only CD45+ immune cells of
Frontiers in Immunology 0746
samples, where the PBMC-based method illustrated significantly

better capture for the memory B-Cells in addition to myeloid cells

(Figure 3G). The disparity observed in myeloid cells and platelets

may be attributed to the CD15+ granulocyte removal steps

employed in the SENSE method, while the disparity in T cells

might be due to density gradient step in the PBMC method.
2.3 Cell types exhibited similar
transcriptome profiles for SENSE and
PBMC methods

To assess the sample processing method-induced technical

variations in the overall expression profiles, we studied the

clustering based on cell types split on SENSE and PBMC

methods. Most of the matching cell types, irrespective of the

processing methods, depicted similar clustering patterns except

for subtle variations in the myeloid cells compartment

(Figure 4A). The hierarchical clustering based on the cell types/

subtypes markers genes identified based on the Wilcoxon Rank

Sum test (average log-FC ≥0.25, >25% of cells expressing gene, and
A B

DC

FIGURE 4

Comparison of single cell profiles of samples processed using SENSE and PBMC methods. The scRNA-seq data from blood samples processed using
SENSE and PBMC methods were analyzed using a uniform bioinformatics workflow for comparative analysis. (A) Dendrogram showing the distances
between cell types from each method based on the differentially expressed genes for each cell type computed independently. The differentially
expressed genes were identified by comparing the target cell type with others based on an average log FC > 0.25 and Wilcoxon Rank Sum test P<.01
as well as genes expressed in > 25% of a given cell population. (B) A Circos plot showing the correlation between expression profiles of cell types
profiled using SENSE and PBMC methods. The individual cell types between profiling methods depict significant similarities in the expression profiles.
Some cell subtypes within the T cell compartment depicted lower correlations. (C) Comparative analysis of canonical cell type-specific markers
between the two methods. Most of the cell type defining markers are concordantly expressed across corresponding cell types indicating strong
similarity in the SCPs generated by SENSE and PBMC methods. The color scales on the right show the gene expression levels in samples processed
using PBMC (purple) and SENSE (orange) methods. The size of the dot represents the percent of cells expressing specific markers. The Y-axis shows
the cell types with SE indicating samples processed using the SENSE method and PB representing samples processed using the PBMC method. The
X-axis shows the gene names. (D) Shannon’s entropy-based batch effect estimation. The UMAP plot shows Shannon’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC) among the cell’s 100 nearest neighbors. The analysis was performed
on normalized data without any batch effect correction. Low entropy values were observed in myeloid cell clusters (marked with red lasso) and an
IFN T-cell cluster (marked with black lasso), indicating poor mixing and method-based batch effect.
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P< .01) depicted that naive and memory T-cells formed one distinct

cluster, while doublets and myeloid cells formed another cluster. B-

cells formed a separate cluster, and natural killer (NK) cells and

effector T-cells clustered together in a different group. For most of

the cellular compartments, the same cell types/subtypes depicted

the highest correlation except the T cells compartment (Figure 4A).

For example, the NK, CD8+ effector T-cells, and myeloid cells

depicted the highest correlation between transcriptome profiles

from SENSE and PBMCs method (Figure 4A). In the T cells

compartment, some of the cell types depicted a weaker

correlation between the matching cell types from the two

methods indicating some variation. This finding aligns with a

higher proportion of the T cells captured using the SENSE

method as compared to PBMCs based method. To further

validate the consistency of cell type labeling across methods, we

assessed the similarity of the differentially expressed markers for

each of the 11 cell types from the two methods. To achieve this, cells

from each method were subsetted, and the top differentially

expressed markers for each cell type with respect to all other cells

from the same method were identified based on the Wilcoxon Rank

Sum Test (average log-FC ≥0.25, >25% of cells expressing gene, and

P < .01) and visualized using Circos plots generated using

ClusterMap (26) R package. The cell types from the SENSE

method depicted high transcriptome correlation with matching

cell types from the PBMCs method, again indicating strong

concordance among the methods (Figure 4B). Next, we assessed

the similarity in canonical/top markers expression for various cell

types based on processing protocol. The markers for each cell type

depicted similar expressions irrespective of the processing method

(split dot plot in Figure 4C). The consistency of key marker genes

expression establishes the transcriptome similarity of cellular

profiles from the SENSE and PBMCs methods. To further assess

and quantify batch effects due to processing methods, we calculated

Shannon’s entropy/cell to assess the degree of mixing of samples

from the two methods (27). Low entropy values indicating poor

mixing of a cells from different samples and methods were observed

mainly in myeloid (0.526 ± 0.005) (Figure 4D, red lasso) and T cells

(0.701 ± 0.004) (Figure 4D, black lasso). The rest of the cell types

depicted high entropy (0.872 ± 0.001) indicating no batch

effects (Figure 4D).
2.4 SENSE enables deep profiling of
immune repertoire by capturing profiles of
T cell subtypes

T cells are highly diverse and play a critical role in eliciting

immune responses against antigens. To further investigate the

different T cell subtypes captured by SENSE and PBMC methods,

we performed a focused analysis after subsetting out and

reclustering the T and NK cell clusters. The analysis included

27,982 cells that were annotated into 10 distinct T and NK cell

subtypes (Figures 5A, B) based on the expression of marker genes

that include Naïve T-cells (CD3D+, CCR7+, LEF1+), Effector T-cells

(CD3D+, GNLY+, GZMK+), CD4+ Naive T-cells (CD4+, CCR7+,

LEF1+), CD4+ memory T-cells (CD4+, TCF7+, TNFRSF4+), CD4+
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Memory IFN T-cells (CD4+, TNFRSF4+, ISG15+, MX1+), CD8+

Naive T-cells (CD8+, CCR7+, LEF1+), CD8+ Memory/Effector T-

cells (CD8+, TCF7+, TNFRSF4+,GZMK+), CD8+ IFN T-cells (CD8+,

ISG15+, MX1+), IFN NK/T cells (CD3D-, GNLY+, NKG7+, ISG15+,

MX1+) and NK cells (CD3D-, GNLY+, NKG7+). In both SENSE and

PBMC methods various subtypes of CD8+ T-cells were the

dominant T-cells (~41%), with the remaining cells consisting

primarily of CD4+ T-cells (~37%) along with NK cells (~8%),

other T cells (~8.5%) and NK/T (specific to patient 1, ~4.5%)

(Supplementary Figure 3). The Naïve T cells formed 51% of the

total T cells captured in the assays. Most of the T cell clusters had

contributions from all the patients except IFN-stimulated clusters

that are patient-specific (Figure 5C). Overall, the SENSE-based

method captured a significantly (P=.007) higher number of T

cells as compared to the PBMC method (Supplementary

Figure 2), but the relative proportion of T cell subtypes is similar

in both methods (Figure 5D; Supplementary Figure 3). Further to

explore the functional landscape of T/NK we performed a

comparative analysis of cellular communication based on the

expression of ligands and receptors (28). Comparison of the

overall number of interactions and their strengths revealed them

to be similar between SENSE and PBMC methods (Figure 5E;

Supplementary Figure 4). Further communication analysis depicted

similar communication patterns among cell types, with CD8+

Naïve T-cells with the highest incoming interactions and Effector

T-cells with the highest outgoing interactions (Figure 5F). Further,

we explored the information flow of the signaling pathways based

on the sum of communication probability among cell types of

SENSE and PBMC methods. We observed that most of the

pathways showed a similar information flow pattern, including

CLEC, MHC-I, LCK, IL16, ICAM, and ITGB2 (Figure 5G). Some

pathways including MIF, and CD99 depicted different signaling

between cell types from SENSE and PBMC methods. These

pathways typically involve myeloid, platelets, and dendritic cells

(29–31). Therefore, the differential signaling observed in these

pathways may be attributed to the differences in myeloid cells

and platelets captured by the two methods. These results indicate a

common signaling network operates between the cells processed

using either of the two methods, indicating that the SENSE method

yields similar results to the PBMC method and is suitable for

analysis of the T cells landscape in whole blood samples.
2.5 Myeloid lineage cell types have lower
enrichment but similar profiles between
single-cell preparation methods

The myeloid cell compartment is the second largest

compartment of cell types observed in both sample processing

methods. Overall, the SENSE method captured a significantly lower

number of myeloid cells (Figure 3F; Supplementary Figure 2) which

might be due to the filtering out of CD15+ myeloid/granulocytes to

enhance single cell capture efficacy and generate high-quality cells

for capturing. The sub-clustering and annotation on the myeloid

and platelet compartments comprising 7,599 cells yielded seven

distinct cell types or subtypes. Among these, six were identified as
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myeloid subtypes and a single cluster as platelets. Both methods

captured every cell type from the myeloid lineage as evident from

the split UMAP plot (Figure 6A). These clusters look like classical

and non-classical monocytes with the expression of CD14 and
Frontiers in Immunology 0948
FCGR3A genes along with the expression of other markers

(Figure 6B). The analysis of patients’ contribution to different

clusters depicted that some of the clusters like cluster A (LYZ+,

CD14+, PABPC1+) had contributions from multiple patients
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FIGURE 5

Focused analysis on the T cell clusters to estimate the impact of blood samples processing protocols. (A) A UMAP displaying the T-cell subclusters
split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as T/NK cells (Naïve, Effector, IFN+, NK), CD4+

T-cells (Naïve, Memory, Memory IFN+), CD8+ T-cells (Naïve, Memory, IFN+) based on the expression of specific markers. The counts depicted
slightly better capture for T cell sub-clusters in the SENSE method as compared to the PBMC method. (B) Dot plot demonstrating the expression
profile of key markers for each T-cell subtype. The gradient of red color and size of dot represent the relative expression and percent cells
expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual T- cell sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for T-cell subclusters. The
proportion of total T-cells cells per sample between PBMC and SENSE methods for each sub-cluster is shown. (E-G) CellChat based analysis of cell-
cell communication. (E) Total number of interactions and interaction strength of the inferred cell-cell communication networks for T-Cells from
different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the major sources and targets of interaction on the 2D space
where the incoming and outgoing strength for each T cluster along the y-axis and x-axis, respectively. (G) Bar graph to compare the overall
information flow of each signaling pathway between PBMC and SENSE methods.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1271800
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Satpathy et al. 10.3389/fimmu.2023.1271800
A

B

D

E F G

C

FIGURE 6

Focused analysis on the Myeloid cell clusters to estimate the impact of single-cell processing protocols. (A) A UMAP displaying the myeloid and
platelet subclusters split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as Clusters A (CD14+, LYZ
+, PABPC1+), B (CD14+, RETN+, IFI44L+), C (CD14+, IFI27+, ISG15+), D (CD14+, NFKBIA+, IL1B+), E (CD16+, CD79B+), F (CD16+, ISG15+), and
Platelets (PPBP+, PF4+) based on the expression of top markers. The counts were lower for myeloid cell sub-clusters in the SENSE method as
compared to the PBMC method. The platelets were present only in the PBMC samples. (B) Dot plot demonstrating the expression profile of
common myeloid, neutrophils, and platelet markers. The gradient of red color and size of the dot represents the relative expression and percent
cells expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for myeloid and platelet
subclusters. The proportion of total myeloid and platelet cells per sample between PBMC and SENSE methods for each sub-cluster is shown. (E–G).
CellChat based analysis of cell-cell communication for Myeloid clusters. (E) Total number of interactions and interaction strength of the inferred
cell-cell communication networks for myeloid cells from different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the
major sources and targets of interaction on the 2D space where the incoming and outgoing strength for each T cluster along the y-axis and x-axis
respectively, (G) Bar graph to compare overall information flow of each signaling pathway between PBMC and SENSE methods.
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whereas others like cluster F (CD16+, ISG15+) were patient specific

(Figure 6C). Although the SENSE method captured fewer cells in

this compartment, comparative analysis of relative proportions of

myeloid cell subtypes depicts concordance of single cells captured

using the two methods (Figure 6D). To better understand the

communication patterns among different subtypes of the myeloid

lineage, we conducted cell communication analysis. The analysis

was performed only on the clusters that have cells from multiple

patients. Our analysis revealed lower interactions and weaker

strengths of interaction between the subtypes of the myeloid

lineage using the SENSE method (Figure 6E). One possible

explanation for these findings is that there were fewer overall cells

present during the analysis in this compartment from the SENSE

method (PBMC: n=5,401, SENSE: n=1,733). Comparison of cellular

communications patterns among the myeloid cells depicted

significant concordance with cluster A with characteristics like

classical monocytes with most incoming interactions (Figure 6F).

Further analysis of key pathways associated with the flow of

information among cells also depicted multiple similar pathways

including PECAM1, GRN, MHC-I, SELPLG, and Galectin

(Figure 6G). In summary, although there is concordance in the

myeloid cell sub types captured by the two methods, the lower

capture of myeloid cells in the SENSE method is leading to some

cellular communication differences that is one of its limitations.
2.6 SENSE method generated
transcriptome profile similar to publicly
available PBMC transcriptome profile

To further evaluate the transcriptome profile of SENSE method

WB generated data, we performed a comparative analysis with

publicly available PBMC dataset. This PBMC dataset (32) was

obtained from the 10x Genomics Inc. website and processed

uniformly and integrated with our data using integration

anchors-based batch correction. The comparative analysis of

cellular profiles based on split UMAP depicted co-embedding of

major cell types indicating similarity in transcriptome profiles

(Figure 7A). In line with the publicly available 10x Genomics

PBMC dataset (10x PBMC), the SENSE method also captured T

cells as the most abundant cell types from the whole blood profiling.

Shannon’s entropy was computed per cell to assess the degree of

mixing of samples from three datasets (i.e., 10x PBMC, PBMC,

SENSE). Most clusters from different datasets depicted high entropy

indicating the mixing of cells from different datasets in respective

clusters (Figure 7B). We observed low entropy in the myeloid cell

clusters (i.e., poor mixing) which might be due to lower capture of

myeloid cells using the SENSE method. Further comparative

analysis of data quality by measuring proportions of cytoplasmic,

extracellular, membrane, ribosomal, and mitochondrial genes

depicted similar profiles indicating the similar quality of single-

cell data (Figure 7C). The assessment of the similarity in canonical

marker expression distribution from 10X PBMC dataset and our

cells from SENSE method depicted similar expressions for most cell

types (Figure 7D), with the primary exception being the previously

noted myeloid cells. The consistency of key marker expression
Frontiers in Immunology 1150
demonstrates that cell types can be identified reliably using the

SENSE method, and comparative analysis can be performed among

the samples profiled using different methods.
3 Discussion

Analysis of blood samples is the most direct and least invasive

approach (33) to decipher disease mechanisms and identify

biomarkers (34). SCP of blood samples is ideal for characterizing

how the profiles and characteristics of different immune cells in the

blood change in response to disease or therapy, however, the need

for immediate sample processing to prepare and preserve viable

single cells is a major deterrent towards implementing this on

samples collected in a clinic or hospital setting. The traditional

method for isolating PBMCs using the Ficoll-Paque density

gradient method for SCP is cumbersome and its implementation

is challenging due to the lack of time, equipment, and trained

personnel in most clinics. This may also be partly responsible for

the limited implementation of single-cell profiling in clinical trials.

Direct cryopreservation of blood samples without pre-processing

has been reported to result in cell death and RNA/DNA

degradation, hampering molecular profiling (35). To address

these limitations, we have developed the SENSE method for

viably freezing WB collected in EDTA tubes without any need for

centrifugation steps, special reagents, and trained personnel. The

one-step addition of FBS/DMSO freezing solution assists in the

cryopreservation of WB cells by preventing the formation of

intracellular ice crystals, minimizing cell stress, and thereby

maintaining cell integrity/preventing senescence. Granulocytes

depletion post-thawing of WB samples enables the recovery of

high-quality mononuclear cells as granulocytes are poorly

cryopreserved in freezing media and release DNA and lysosomal

enzymes promoting cellular damage/clumping (36).

Validation of one-step SENSE method for cryopreservation of

WB will jump-start clinical implementation of SCP as well as

advance single-cell research. To validate the SENSE method and

demonstrate its suitability for cryopreserving high-quality single

cells for SCP, we processed freshly collected blood samples with

both the SENSE and the traditional density gradient isolation of

PBMCs methods. The initial step following the procurement of

blood samples, i.e., cryopreservation was much faster and easier

with the SENSE method compared to the more time-consuming

and complex density-gradient isolation of PBMCs. Although there

were slight differences in the viability of cells after the thawing and

washing steps, they were not significant and did not affect the

quality of the single-cell profiles. We tested multiple quality metrics

to evaluate the quality of cells prepared using the SENSE method in

comparison to the PBMC isolation method. Quality metrics like

median gene counts and unique molecular identifiers (UMIs), were

found to be comparable between SENSE and PBMC methods. High

mitochondrial content is indicative of poor-quality cells that are

either undergoing apoptosis or have lyzed (37). The median

representation of <10% mitochondrial genes in WB and PBMC

samples confirms a similar proportion of high-quality single cells

obtained with both methods. The SENSE method depicted a slight
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advantage in capturing the profile of the higher number of cells as

compared to the PBMCs method from similar cell suspensions

(concentration and viability). The high quality of cells was further

confirmed by the lack of cellular damage artifacts with the SENSE

method. On closer inspection of the percentage genes in the

cytoplasmic ontology category, we see bimodal distribution in
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PBMC method, in contrast to a unimodal distribution in SENSE

method (Figure 2D). Myeloid and platelet cells were found to have a

higher percentage of cytoplasmic genes (~32% - 40%) as compared

to the rest of the cell types (~20% - 30%) (Supplementary Figure 5).

Myeloid and platelets cells were captured more in the PBMC

method as compared to SENSE method, resulting in the bimodal
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FIGURE 7

Comparing the transcriptomic profile of SENSE method samples with PBMC method samples from 10x Genomics legacy datasets. (A) Split UMAP of
SENSE and PBMC methods data from our experiments and legacy data, 10x PBMC, from 10x genomics. Cluster labels are based on transferring the
labels from SENSE, PBMC data. (B) Shannon’s entropy-based batch effect estimation. The UMAP plot shows Shannon’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC, 10x PBMCs) among the cell’s 100 nearest neighbors. The analysis was
performed on normalized data with batch effect correction using integration anchors. (C) Proportion of group-wise genes in cytoplasmic,
membrane, extracellular, and ribosomal gene ontology categories, along with percent mitochondrial genes (green - 10x PBMC, purple-PBMC,
orange - SENSE). (D) Violin Plots comparing the expression of various cell markers among our SENSE, PBMC data with 10x PBMC dataset.
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distribution observed in Figure 2D with the former method.

Processing times and cryopreservation can result in changes in

cell cycle stages when performing SCP which will affect the

transcriptome (38). We observed no significant differences in the

cell cycle phases between samples processed using the two methods.

Multiplets can be biologically misleading and arise when two or

more cells are captured in single droplets during encapsulation

steps (39). Doublets can occur due to poor quality of cells resulting

in two cells clumping together, dying cells and/or broken cells

resulting in misleading hybrid transcriptomes (25, 39). We did not

observe any significant differences in the number of doublets

present between the samples processed using the SENSE method

and the PBMCs method. The SENSE method was shown to have

slightly fewer doublets compared to the traditional PBMC method

(doublet cells: PBMC method, n=916; SENSE method, n=539).

Therefore, comparative analysis of the single-cell quality of cells

obtained using the one-step cryopreservation SENSE method

revealed striking similarities to the traditional multi-step

cryopreservation PBMCs method, reinforcing its utility as a

method of choice for ease of cryopreservation and single-cell

profiling of clinical WB samples.

Cellular landscape revealed by clustering enables identification

of cell types and their individual biological states and specific

functional roles in disease development and progression (40). All

major cell types were represented in UMAPs generated from

scRNA-seq data of samples prepared with both methods. The

marker genes were shown to have similar expressions for each

cluster/cell type or subtype from both methods. Hierarchical

clustering demonstrated that different immune cell types have

unique transcriptomes that enable their classification into distinct

clusters irrespective of sample processing method. The relative

cellular abundance analysis revealed that while dominant cell

clusters were similar in samples processed using either of the two

methods, there were differences in the myeloid and T cells subtype

clusters. Although the density gradient centrifugation method to get

PBMCs should remove heavier granulocytes, there are instances of

incomplete removal of granulocytes, especially in certain

pathological conditions like sepsis (41) and autoimmune

disorders (42) where there is increased amounts of low-density

granulocytes (43). Also, delay in processing of blood can result in

granulocyte activation; resultant degranulation gives rise to low

density granulocytes that will not be separated out efficiently by

density gradient methods (44). In SENSE method, the CD15+

granulocytes are selected and removed to obtain high quality

CD15- mononuclear cells. CD15+ cell depletion was combined

with density gradient centrifugation to effectively purify PBMCs

from sepsis patients with high percentage of low-density

granulocytes (43). Though there was some resultant loss of

additional cells other than granulocytes during the CD15+ cells

depletion steps, the functional cellular properties were not

compromised (43). The observed differences in myeloid clusters

in this study might be attributed to the SENSE method’s removal of

CD15+ cells to filter out sticky granulocytes that might have also

filtered out aggregating monocytes and platelets. Importantly, the

SENSE method was able to recapitulate the myeloid compartment

associated with disease as we observed similar patient-wise
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differences of cell-type distribution in scRNA-seq data from both

methods. In summary, even though SENSE captures fewer myeloid

cells compared to the PBMC method, it is still capable of revealing

differences in the proportions of myeloid cells within given samples.

On the other hand, we observed more efficient capture of T cells

in SENSE method cryopreserved WB samples. Importantly, our

focused analysis on the T cells compartment showed that the

SENSE method captured a significantly higher number of T cells

representing various types and subtypes, including Naïve, Effector,

and Memory T-cells. The possible cause of lower T-cell enrichment

with the PBMCs method might be due to some T-cells being lost

during the Ficoll-Paque density gradient centrifugation step due to

the difference in density of these cells (45). These results make our

simple WB sample cryopreservation combined with CD15+

granulocyte removal method especially suitable for immune

repertoire profiling using VDJ enrichment to explore the

association of T cell clonality with disease or therapeutic outcomes

analyses. Based on the single-cell quality metrics, the cryopreserved

WB using the SENSE method yielded high-quality single cells similar

to cryopreserved PBMCs isolated using the traditional density-

gradient method. Furthermore, the SENSE method can be

extended for more granular characterization of immune repertoire

using single cell proteomics/multidimensional profiling.

Comparison analysis of our data with an external 10x Genomics

PBMC dataset (32) revealed concordance between the three datasets

as all cell types were consistently identified in all three datasets. The

high quality of cells obtained with the SENSE method was further

demonstrated by quality metrics like lower % membrane genes and

higher % extracellular genes compared to the external PBMC

dataset. This analysis further validates the robustness of the

SENSE method to acquire high quality single-cells for single

cell profiling.
4 Methods

4.1 Sample collection

Informed consent according to Emory University IRB protocol

(IRB00079391 Determinants of Childhood Autoimmunity) was

obtained from Juvenile Idiopathic Arthritis (JIA) (n=5) and

pediatric Lupus (n=1) patients being treated in the rheumatology

clinic in CHOA prior to sample collection. Blood samples were

collected in lavender top EDTA tubes and transported to the lab

from the clinic at room temperature. Samples were cryopreserved

within 2h post-collection.
4.2 PBMCs isolation and whole
blood cryopreservation

The freshly collected blood was split into two equal aliquots,

with one aliquot processed for isolation of PBMCs while the other

aliquot was frozen directly using a cryopreservation solution.

PBMCs were isolated using the standard Ficoll-Paque density-

gradient method according to manufacturer’s instructions
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(Cytiva). Briefly, blood diluted in phosphate buffer saline (PBS)

(1:1) was gently layered onto Ficoll-Paque PLUS (Cytiva, 17144002)

and spun at 500g for 30 minutes at 21°C. The top layer (plasma) was

removed and discarded. The layer containing the mononuclear cells

was then carefully removed and diluted with 3x volume of PBS,

mixed well, and spun at 500g, for 10 minutes at 21°C. The pellet was

resuspended in PBS and washed again by spinning for 10 minutes at

500g and 21°C. The PBMCs pellet was then resuspended in 1 ml

recovery cell culture freezing media (Fisher Scientific, 12648010) at

a concentration of <10X106 cells/ml. The second set of blood

samples (by the SENSE method) was viably preserved by mixing

whole blood 1:1 with freezing solution made up of 80% heat-

inactivated fetal bovine serum (hiFBS) and 20% dimethyl

sulfoxide (DMSO). Samples were gradually frozen by placing in

Mr. Frosty freezing container (Fisher Scientific, 5100-0001) and

stored at -80 °C till further use.
4.3 Single cells preparation

Frozen PBMC samples were thawed and washed with wash buffer

(PBS containing 1% BSA) to prepare viable single cell suspensions

(14). Frozen whole blood samples were also thawed, and cells were

pelleted (380g, RT, 6.5 minutes), the supernatant was gently removed

so as not to disturb the pellet, which was then resuspended in EasySep

buffer (STEMCELL technologies, 20144) and filtered through 100 µm

filter mesh (Fisherbrand, 22363549). The EDTA concentration of

EasySep buffer used for washing and diluting the cells was modified.

The amount of EDTA in the EasySep buffer containing 1mM EDTA

was increased to 4mMby adding an additional 3mMEDTA. EDTA is

known to rapidly reverse the preferential binding of platelets to

monocytes (46). Therefore, the presence of higher EDTA

concentration in the buffer results in increased capture of high-

quality mononuclear cells. Granulocytes were removed using a

modified EasySep CD15 selection (EasySep™ Human CD15

Positive Selection Kit; STEMCELL technologies, 18651) protocol.

Also, RBC depletion beads (STEMCELL Technologies, 18170) were

added following the CD15 cocktail mix and RapidSpheres incubation

steps to remove red blood cells. Following EasySep magnetic

separation of CD15+ antibody-bound granulocytes, the CD15-

mononuclear cells supernatant was collected, cells pelleted and

resuspended in PBS containing 1% BSA for generating viable cells

for scRNA-seq libraries. A detailed stepwise protocol for the SENSE

method is included as Supplementary document 1.
4.4 Single-cell assays and sequencing

ScRNA-seq libraries were prepared from viably thawed WB and

PBMCs single-cell samples prepared in the previous section according to

manufacturer’s (10xGenomics) instructions. CellPlex kit (10xGenomics,

1000261), which allows the pooling of samples prior to GEMs generation

by labeling samples with unique cell multiplexing oligos (CMOs), was

used to multiplex samples. The pooled samples were used to generate
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GEMs, followed by RT-PCR steps and cDNA amplification using Next

GEM single cell 3’v3.1 kits (10x Genomics, 1000268). Following the

cDNA amplification step, size selection beads were used to separate the

CMO and gene expression (GEX) cDNAs that were then used to prepare

the CMO and GEX libraries respectively. The final CMO and GEX

libraries were then pooled and sequenced according to 10x Genomics

sequencing parameters using Novaseq S4 PE100 (Illumina) kits for

comprehensive transcriptome profiling.
4.5 Single-cell profiling analysis

The raw FASTQ files from each multiplex sample were aligned

using 10x Genomics Cell Ranger (32) 6.1.2 to align against a reference

human genome (GRCh38) for generating raw cell-gene count

matrices. The count and CMO matrices from the samples were

analyzed with R (v 4.2.2) using Seurat (47) (v 4.0.4) and other

Bioconductor packages. Low-quality cells were filtered using Seurat

to keep only cells with >200 unique genes, >600 UMI reads, and <

20% mitochondrial UMIs. Potential doublets were marked using the

doubletFinder (25) algorithm that identifies doublets based on

neighborhood search on principal component analysis (PCA).

Assuming 3.5% of doublet formation from the 10x multiplexing

experiment, we performed analysis with top 10 principal components

with a neighborhood size of 0.1(pK) to predict doublets. The count

matrices were normalized using the SCTransform algorithm,

regressing out the per-cell UMI count, the number of unique

features per cell, and the percent mitochondrial reads mapped to a

cell. The normalized cell count was used for selecting the top 2,000

variable genes for principal component analysis (PCA) to identify the

principal components capturing the most variance across the

samples. Similar cells were clustered together via Louvain clustering

on the top principal components using the Seurat package that was

visualized Uniform Manifold Approximation and Projection

(UMAP) to determine the overall relationship among the cells. The

cell clusters weremanually annotated based on canonical cell markers

described in our previous studies. The cell markers for the different

cell clusters were identified by comparing target cell types with others

captured in the assay using the Wilcoxon Rank Sum test (adjusted

P<.10, average log2FC > 0.25, and percent cell expression > 25%).
4.6 Entropy calculation and
Gene-Ontology based cellular
component enrichment

Shannon entropy was calculated per cell for assessing the

batch effect due to method variation using 100 neighbors and 20

principal components using the CellMixS (27) R package. The gene

signatures for cellular components (extracellular region, cytoplasm,

membrane, ribosome) were sourced from Gene Ontology (48)

database (GO:0005576, GO:0005737, GO:0016020, GO:0005840).

PercentageFeatureSet function of Seurat was used to calculate the

percentage of all UMIs that belong to the gene signature per cell.
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4.7 Comparative analysis of cell types
across single-cell processing methods

We performed a comparative analysis of cell type abundance

as well as gene expression between SENSE and PBMCs methods.

The cellular proportion per patient were calculated and compared

between methods using paired t-tests. The cell types with a P value

<.05 were considered significantly differently enriched between

methods. To determine the correlation between cell types between

methods we implemented the ClusterMap package in R designed

to compare cellular profiles across multiple single-cell datasets

(26). Initially differentially expressed genes (DEGs) for each cell

type in a method-specific manner (i.e., SENSE, PBMC) were

identified based on the fold change and Wilcoxon Rank Sum

Test (average log-FC ≥0.25, >25% of cells expressing gene, and P

<.01). DEGs were computed using Seurat’s “FindAllMarkers”

function. This was followed by hierarchical clustering of DEGs

using their presence or absence (binary expression) in different

cell types to generate a cluster dendrogram. The relative distance

of cell types on the cluster dendrogram can be quantified by the

similarity of the cell types. The similarity of the cell types is

measured based on their Jaccard index. To match a cell type

profile with another cell type ClusterMap introduced a purity tree

cut algorithm (26). The algorithm uses the origin of cell types,

clustering pattern on the dendrogram, and similarity to match the

cell types from different methods. This results in matching cell

types as well as merging cell types in a group if cell types depict

>90% similarity within a method. The results from the analysis are

displayed as a Circos plot summarizing the similarity in cell types

and subtypes similarity.
4.8 Cellular communication and
interaction analysis

Cellular communication analysis was performed using the

CellChat platform (28). Cells from each processing method were

isolated, and ligand-receptor (L-R) analysis was performed on the

SENSE and PBMC methods independently using the standard

CellChat analysis. Differentially expressed signaling genes were

identified using the Wilcoxon rank sum test (P< 0.05), which was

followed by communication probability/strength calculation

between any interacting cell types. The cell-cell communications

were filtered out if they were present in a cell type/subtype with less

than 10 cells. The number of interactions and their strengths were

aggregated for each method. To compare the overall signaling

structure between cells in SENSE and PBMC samples, interaction

weights were used, which sum the information flow of all L-R

interactions between two cell types of lymphoid and myeloid

lineages. The sum of outgoing or incoming communication

probability associated with each cell group was visualized on a

scatter plot showing the dominant senders (sources) and receivers

(targets) cell types. The size of the data points on the scatter plot

corresponded to the number of inferred links, both outgoing and

incoming, connected to each specific cell type. Information flow/

interaction strength characterizes the likelihood of cell-cell
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interaction occurring through a given pathway. Cells with high

expression of a known ligand will have high information flow

scores with cells that have high expression of the matching

receptor. The conserved or processing method-specific pathways

were evaluated by comparing the sum of communication

probability among cell-type pairs for each pathway.
4.9 Comparing the SENSE and PBMC data
with external PBMC dataset

Single-cell gene expression dataset for frozen PBMC samples

(10x PBMC) from 3 donors (Donor A, B, and C) were downloaded

from 10x Genomics datasets (32). The filtered gene expression

matrices were merged with the PBMC and SENSE samples. The

count matrices were again normalized using the SCTransform

algorithm, regressing out the per-cell UMI count, the number of

unique features per cell, and the percent mitochondrial reads

mapped to a cell. The top 2,000 variable genes were found, and

further Louvain clustering was performed on the top principal

components using the Seurat package that generated a UMAP to

visualize the overall relationship among the cells. To correct for any

batch effect the samples count matrices from 10x PBMC and

PBMC, SENSE datasets were normalized and integrated using

integration anchors-based batch correction approach of the

Seurat package. The cell clusters were manually annotated by

transferring cluster labels from PBMC, SENSE to 10x PBMC

samples. Based on distribution of existing labels on new

clustering, some clusters were merged like B-Cell (B-Cell and

Memory B-Cell), CD4+ T-Cell (CD4+ Naïve and Memory T-

Cell) and CD8+ Cytotoxic T-Cell (CD8+ Effector and Memory

T-Cell).
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Using adjusted local assortativity
with Molecular Pixelation
unveils colocalization of
membrane proteins with
immunological significance
Jan Rhomberg-Kauert1,2, Max Karlsson1, Divya Thiagarajan1,
Tomasz Kallas1, Filip Karlsson1, Simon Fredriksson1,3,
Johan Dahlberg1 and Alvaro Martinez Barrio1*

1Pixelgen Technologies AB, Stockholm, Sweden, 2Department of Geodesy and Geoinformation, TU
Wien, Vienna, Austria, 3Department of Protein Science, Royal Institute of Technology,
Stockholm, Sweden
Advances in spatial proteomics and protein colocalization are a driving force in

the understanding of cellular mechanisms and their influence on biological

processes. New methods in the field of spatial proteomics call for the

development of algorithms and open up new avenues of research. The newly

introduced Molecular Pixelation (MPX) provides spatial information on surface

proteins and their relationship with each other in single cells. This allows for in

silico representation of neighborhoods of membrane proteins as graphs. In order

to analyze this new data modality, we adapted local assortativity in networks of

MPX single-cell graphs and created a method that is able to capture detailed

information on the spatial relationships of proteins. The introduced method can

evaluate the pairwise colocalization of proteins and access higher-order

similarity to investigate the colocalization of multiple proteins at the same

time. We evaluated the method using publicly available MPX datasets where T

cells were treated with a chemokine to study uropod formation. We demonstrate

that adjusted local assortativity detects the effects of the stimuli at both single-

and multiple-marker levels, which enhances our understanding of the uropod

formation. We also applied our method to treating cancerous B-cell lines using a

therapeutic antibody. With the adjusted local assortativity, we recapitulated the

effect of rituximab on the polarity of CD20. Our computational method together

with MPX improves our understanding of not only the formation of cell polarity

and protein colocalization under stimuli but also advancing the overall insight

into immune reaction and reorganization of cell surface proteins, which in turn

allows the design of novel therapies. We foresee its applicability to other types of

biological spatial data when represented as undirected graphs.
KEYWORDS

molecular pixelation, single cell, spatial proteomics, graph theory, topological data
analysis, local assortativity, uropod formation, Rituximab
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Introduction

The spatial organization of proteins governs a number of

complex cellular processes such as cell signaling, cell–cell

communication, and mobility. To enable the detection of proteins

in cells and tissues, affinity reagents have remained the mainstay in

the field. They have been used extensively in fluorescence

microscopy tagged with fluorophores, typically providing

fluorescence intensity data from each channel in one focal plane.

The generation of three-dimensional information at high

throughput and multiplexity is thus limited by the need for

microscopy imaging. Imaging flow cytometry overcomes this

throughput limitation by coupling traditional flow cytometers

with the acquisition of an image of each cell (1). Fluorescence

resonance energy transfer (FRET) microscopy measures the transfer

of energy from an excited molecular fluorophore (the donor) to

another fluorophore (the acceptor) (2). FRET microscopy imaging

can achieve colocalization of labeled pairs of probes within sub-

micron distances. However, the limitation of all microscopy

techniques in terms of dimensionality and high-plexity

information remains, as only a few antibodies can be acquired at

the same time on the different microscope channels. Furthermore,

the signal to noise is also hampered by auto-fluorescence, detector

noise, optical noise, and spectral bleed-through between channels.

Super-resolution imaging methods have provided groundbreaking

insights in three-dimensional (3D) but are yet limited in

multiplexing and throughput (3). Furthermore, super-resolution

instrumentation is expensive and requires advanced training to

even analyze the data.

To overcome the multiplexity problems, mass cytometry

coupled antibodies to isotopes of different atomic weights that are

detected by a mass spectrometer, such that the quantity of detected

ions in a particular mass channel becomes a proxy for molecular

detection (4). Although imaging mass cytometry (IMC) has been

used with success in tissues, still, the multiplexity reported is still as

high as 80 proteins (5). However, the application of IMC to tissues

of 1-mm thickness (6) holds promise for 3D resolution on single

cells one day. With the advent of next-generation sequencing

(NGS), the tagging of antibodies with DNA oligos coupled to

NGS readout has the potential of unlimited multiplexing.

Although reading protein tags does not provide any spatial

information (7), it has been shown to multiplex to 273 proteins

(8). Other methods with different tagging strategies have been

successful in showing antibody specificity to antigens by

sequencing paired B-cell receptor (BCR) clonotypes interacting

with DNA-barcoded antigens (9) or a recent proximity ligation

assay by sequencing that is able to infer protein complexes (10).

Similar to FRET, the drawback of the Prox-seq approach is that only

proteins of interest are found in pairs, not larger constellations, and

the location of proteins in the cell membrane is not achieved, as it

lacks the relationship context.

As a result, developing a novel method to study spatial protein

organization in a single cell has gained enormous significance in the

past decade (11–13). A new emerging NGS-based method,

Molecular Pixelation (MPX), provides spatial information on

surface protein abundance and their relationship with each other
Frontiers in Immunology 0258
on single cells in a three-dimensional field of view. Every single cell

in MPX high-throughput datasets is encoded as a bipartite graph,

which in turn can be analyzed to gain new insights into the

colocalization of cell surface proteins (14). As graph metrics are

commonly employed in social and biological networks, there are

many analysis methods with potential applications for this new type

of single-cell proteomics input data. In this study, we have adapted

the application of local assortativity (15) to not only compare sets of

proteins per node in the graph of each single cell but also

numerically compare all nodes of the graph in terms of attribute

distribution. Although MPX is not able to infer direct protein

interactions in its current state, it enables the discovery of protein

constellations of biological significance and allows the exploration

of protein colocalization as a novel therapeutic target.
Materials and methods

Molecular Pixelation

The MPX workflow builds an amplicon in three steps: the first

step involves staining the cells with antibody–oligonucleotide

conjugates (AOCs). In the next step, a set of DNA pixels, each

containing a unique sequence identifier so-called A-pixel, hybridize

into a group of spatially proximal AOCs each, and a gap-fill ligation

reaction adds the unique sequence identifier to the AOC,

imprinting AOCs with the same A-pixel neighborhood tag. Next,

a second reaction is performed with a set of B-pixels connecting

several A-pixel areas. The combined spatial information imprinted

by A- and B-pixels preserves the information of which protein

molecules were spatially adjacent on the original cell surface (14).

MPX data from any immune cell in solution can be represented

as a bipartite graph G, where A- and B-pixels are nodes

interconnected by a set of AOCs as edges. We transformed each

bipartite graph G into an A-node projection, where edge attributes

of the bipartite graph become node attributes of the projected graph

in the A-node of the A–B parts (14). Subsequently, the A-nodes

become directly connected following the original connections of the

B-nodes. We used A-node projected graphs from the original

bipartite graph G throughout this study to move the antibody

edge labels and counts into A-nodes and to be able to use local

assortativity. Local assortativity only works for MPX if protein

labels and counts are projected to the A-node. For the rest of this

study, when we used the concept of node or vertex on a cell graph,

and we referred to an A-node with antibody labels and counts.

MPX can record the counts of each protein molecule, which can

be used to assess differences in protein abundance between cell

states or conditions. However, the two most important features of

this data type are to be able to study the relative positioning of

individual protein markers, as well as their colocalization. First, the

Jaccard Index and Pearson’s correlation across different proteins in

the same single-cell graph were used in order to ascertain if two

proteins tend to colocalize or not upon stimulation. MPX global

measure to study homophily/heterophily in single-cell graphs

currently requires the definition of a local neighborhood

parameter to identify molecules present in pixels assigned to a
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given antibody (14), and it would be desirable to have a parameter-

free definition of local neighborhoods.

Molecular Pixelation datasets
Karlsson and colleagues, by applying the MPX workflow,

generated several datasets1 demonstrating the technological

capabilities of MPX for different applications (14).

One of those applications is stimulating human T cells with

phytohemagglutinin (PHA) followed by IL2 for 5 days into the

formation of uropods. Leukocyte migration prompts the formation

of distinct structures in cells in order to follow chemotactic gradients

and reach the target tissue. Leukocytes polarize and convert mechanical

force into forward locomotion by coordinating a regulated bidirectional

cycle: the leading edge pushes the cell forward, whereas the plasma

membrane moves to the rear (16). The leukocyte uropod formation

was first described during studies of the interactions between T

lymphoblasts and macrophages (17). Irrespective of the cell type, the

uropod trailing protrusion, referred to as the “uropod knob” (18),

involves intracellular actin polymerization and actomyosin contraction

providing the force that creates the protrusion. CD50 (ICAM3) and

several proteins are supposed to colocalize on the uropod structure

(Figure 1A) (19) with CD50 polarization being validated by

microscopy (Figure 1B) (14).

Karlsson and colleagues fixed and cultured PHA blasts on plates

coated with either 5 μg/mL of CD54Fc antibody alone or with two

different chemotactic cytokines in solution or 10 ng/mL of CCL5

(RANTES) in one condition or CCL2 (MCP1) in another at 37°C

for 1 h. We downloaded the output dataset PXL files from three of

the conditions in the experiment2, one with cells fixed with CD54

and stimulated within solution RANTES (“uropod CD54 fixed

RANTES stimulated”, 657 cells), a second one with cells fixed

with CD54 (“uropod CD54 fixed”, 733 cells), and the last with

cells in solution without the stimulation as a control (“uropod

control”, 658 cells); for the rest of this paper, we will refer to these

datasets as stimulated cells, fixed control, and control, respectively.

In another MPX application, Raji cells (ATCC, Manassas, VA,

USA)3 were Fc-receptor blocked with 50 μg/mL of human IgG for

15 min at 4°C and washed. Cells were then either fixed directly with

paraformaldehyde (PFA) (“control”, 607 cells) or incubated with 20

μg/mL of rituximab (RTX) (ProteoGenix, Schiltigheim, France)

with a specific AOC (“treated”, 873 cells) in Roswell Park

Memorial Institute (RPMI) media for 60 min at 37°C, followed

by PFA fixation and washing. RTX, a monoclonal antibody therapy

approved for medical use in 1997, targets CD20 primarily on the

surface of B cells. RTX mediates antibody-dependent cellular

cytotoxicity (ADCC), allowing specific NK-cell killing (23)

(Figure 1C) by polarizing CD20 on a cap at the surface of B

cells (Figure 1D).
1 https://software.pixelgen.com/datasets/.

2 https://software.pixelgen.com/datasets/uropod-t-cells-v1.0-

immunology-I.

3 https://www.atcc.org/products/ccl-86.
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We downloaded the output dataset PXL files from the two

conditions in the Raji cell MPX experiment4 (Figure 1E) and

applied adjusted local assortativity to them. Comparing both

populations of treated and control cells allowed us to recapitulate

the already described RTX mechanism of action (23).
Local assortativity

Assortativity is a well-known concept in graph theory and

network science, which compares the patterns of vertex attributes

across the network. The most common version is the global

assortativity where the whole graph is considered and the vertices

are compared on a global scale (24, 25). A downside of the global

measurement is that it does not account for local heterogeneity in

subregions of the network. This problem was overcome by different

versions of the local assortativity, which focused on studying the

homogeneity in communities of labeled networks. The advantage of

the local assortativity is that each vertex gets assigned a score based

on the attribute of interest, and thus, one can analyze in detail the

distribution of the network properties (15, 26, 27). A classic

example of this is calculating the local assortativity for the degree

of each vertex (Figure 1F). We transformed every cell bipartite

graph into their A-node projected graph and transferred the labels

from the edges to the vertices to be able to apply local assortativity

and calculate an assortativity score for each vertex.

Herein, we used local assortativity as defined by Peel and

colleagues (15) and applied it to two of the MPX public datasets

(Figure 2) generated with slight modifications in the PageRank

threshold (Supplementary Data 1.1).

In addition to the 76 antibodies targeting specific protein

epitopes in the panel (14), three mouse isotype control antibodies

were included (mIgG2b, mIgG1, and mIgG2a). With the

information provided by these control proteins, we determined a

lower boundary required in order to calculate the colocalization

score on the other 76 proteins. This “isotype threshold” is set by the

maximum number of isotype protein counts per cell based on the

three mouse controls.

thresholdproteins

= max(Nproteins(mIgG2b),Nproteins(mIgG1),Nproteins(mIgG2a))

If the number of raw molecule counts for a given protein in a

cell is below that threshold, the assortativity scores are set to zero for

that protein in all nodes of the A-node graph. A second filter

(“vertex threshold”) will require each protein to be present in more

than 10 vertices on the A-node graph. If those limits are not met, we

consider that there is too little information in the cell to create a

high-quality local assortativity distribution and all the A-nodes for

that protein on that cell are also initialized to zero.
4 https://software.pixelgen.com/datasets/cd20-rituximab-v1.0-

immunology-I.
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FIGURE 1

(A) Illustration of the uropod formation on the CD54 coated surface and proteins previously associated with T-cell uropods: ICAMs (ICAM1–3: CD54,
CD102, and CD50), mucins (CD43 and CD162), and integrins (CD11a/CD18; aLb2 integrin or LFA-1) (16); CD44 (19, 20); and CD37 (21, 22). (B)
Widefield immunofluorescence microscopy picture of the uropod formation in both control (left) and stimulated cells (right) with CD50 (red,
phycoerythrin fluorophore) and stained nuclei (blue, DAPI). Some of the polarized CD50 pertaining to the uropods upon stimulation are marked by
white arrows in the picture. (C) Illustration of the stimulated CD20 receptors on the RTX-treated B-cell sample. Here, the RTX monoclonal
antibodies interact with each other, thus creating a strong polarization cap on one side of the cell. (D) Widefield immunofluorescence microscopy
picture of the RTX experiment with control (left) and treated (right) Raji cells with CD20-RTX (red, phycoerythrin fluorophore) and stained nuclei
(blue, DAPI). Cells polarized after RTX capping are marked by white arrows in the picture. (E) The MPX workflow starts with cell fixation to immobilize
the proteome on the surface of the cell, followed by staining with the AOC panel and two steps of Molecular Pixelation before a library is prepared
for sequencing. (F) Illustration of the cell-to-graph transformation as explained in the MPX study (14). The double MPX workflow step carried out in
vitro denotes a spatial neighborhood represented by a bipartite graph with AOC molecule counts associated with the edges. This bipartite graph can
then be represented into its A-nodes. The A-node projection results in a shift of information from the edges to the vertices. Based on these vertex
attributes, we can now compute the (adjusted) local assortativity for each vertex and color the nodes on a scale from assortative (red) to uniform
mixing (white) to disassortative (blue), as seen in the last step of the panel (15). ICAMs, intercellular adhesion molecules; RTX, Rituximab; MPX,
Molecular Pixelation; AOC, antibody–oligonucleotide conjugate.
Frontiers in Immunology frontiersin.org0460

https://doi.org/10.3389/fimmu.2024.1309916
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rhomberg-Kauert et al. 10.3389/fimmu.2024.1309916
Bound version of local assortativity

The original version of local assortativity defined by Peel and

colleagues (15) did not have explicit boundaries, and the

distribution of values was not generally comparable across

different graphs. Therefore, in this study, we had to improve the

score by creating an adjusted version, which improves the general

comparison across graphs and values. With this in mind, first, we

created a distribution that would have similar maximum and

minimum values for the same marker when looking at different

cells. These values would imply a boundary for each distribution,

allowing us to compare the scores across cells and samples.

To account for the different scores across graphs, we adjusted

local assortativity to have zero mean by reweighting the positive and

negative scores separately and preserving zero as uniform mixing.

This also has the advantage of creating a boundary in both

directions. In practice, we therefore compute first the local

assortativity as defined by Peel et al. and divide each positive

value by the sum of all positive values to normalize the data. The

same is done for the negatives by the sum of all negatives.

In mathematical notation, this is equivalent to the

following statements.
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Let xj be the unadjusted local assortativity scores as calculated

by Peel et al. (15), and then normalized assortativity f(xj) is

defined as

f (xj) =
xj

on
i=1,xi>0

   xi
for xj ≥ 0 and on

i=1    xij j > 0,

f (xj) =
xj

on
i=1,xi<0

    xij j for xj < 0 and on
i=1    xij j > 0

and f(xj) = 0 for and on
i=1    xij j = 0.

After the first step of normalization, we adjust the created score

to have one standard deviation dividing each value of the scores

from the previous equation by the standard deviation of the

distribution. This results in global upper and lower limits for the

normalized local assortativity distribution. Rewriting now the first

equation for simpler notation, we get exj = f (xj), which when divided

by the standard deviation gives us the normalized standardized local

assortativity of the workflow ɡ (exj).
ɡ (exj) = exj

on
i=1 (exi − m) 2

=
exj

on
i=1  exi2 for on

i=1    exij j > 0,

and ɡ (exj) = 0 for on
i=1    exij j = 0.

In order to correct for outliers and homogenize the scale of this

distribution, akin to standard single-cell methods (28), we used the

log transformation to create a more uniform distribution
A

B

FIGURE 2

(A) Adjusted local assortativity scores for the CD50, CD162, and CD37 displaying the characteristic uropod in one of the cells from the stimulated
chemotactic experiment. The color scheme here is a gradient from high local assortativity in red to high local disassortativity in blue with uniform
mixing in white. (B) Stimulated cells from the RTX-treated experiment where CD20, CD54, and CD82 are colored by the adjusted local assortativity.
RTX, Rituximab.
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(Supplementary Figure 2). Here, we observed similar minima and

maxima across multiple proteins, assuring the comparability of the

scores across different cells or, more generally, different networks

containing attribute information. Therefore, our work improves the

previous local assortativity method (15) specifying the upper and

lower bounds and enabling representative comparisons and

aggregations.

h(zj) = sgn(zj) · log( zj
�� �� + 1)

⇒ ϱ(xj) = (h ∘ g ∘ f )(xj):

By combining all these transformations, we obtained the

adjusted version of local assortativity, and proof for its bounds

can be found in Supplementary Data 1.2.
Pairwise colocalization

Our aim was to look at any combination of proteins

colocalizing, but initially, we created a metric that outputs the

colocalization of two proteins by combining the newly introduced

adjusted local assortativity measurements. With local assortativity,

we had positive and negative values for each node; thus,

colocalization would translate to the correlation of vertex values.

Therefore, we can apply Spearman’s correlation to create a metric

that yields the desired colocalization for the two given proteins

of interest.

Let n be the number of vertices in the graph, xi and yi be the

local assortativity scores for two proteins on a vertex in the graph

with 0 ≤ i ≤ n, and R the rank transformation. Then, the

colocalization score of two proteins X = {x0,x1,…,xn} and Y = {y0,

y1,…,yn}can be expressed using ϱ(x) and Spearman’s correlation

(29–31) as

coloc(X,Y) = on
i=1 R ϱ(xi)ð Þ · R ϱ(yi)ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1 R ϱ(xi)ð Þ2·on

i=1 R ϱ(yi)ð Þ2
q

Proteins that failed to pass our filters (“isotype and vertex

thresholds”) were zeroed for every node in the A-node graph of

the cell. Additionally, in the special case that one of the two adjusted

local assortativity scores was zero for every node, the pairwise

colocalization score would be defined as zero to avoid edge cases

with Spearman’s correlation. This zeroing in the colocalization

measure was well aligned with the local assortativity distribution

where random noise could be thought of as a case of

uniform mixing.

Proteins measured with AOCs give a relative measurement per

cell, making the pairwise local assortativity scores difficult to

interpret in terms of absolute values. Therefore, a more robust

approach is to compare among experimental conditions, i.e., the

uropod-stimulated sample to the control sample. Therefore, we

calculated differential colocalization by comparing the scores of the

uropod-stimulated sample with both control samples, fixed and in

solution. In the RTX experiment, the treated sample was compared
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to a corresponding control. All statistical tests were performed using

Wilcoxon rank sum tests of different contrasts.
Higher-order colocalization

We ultimately aimed to assess proteins that colocalize in groups

larger than in pairs. However, we only performed pairwise protein

comparisons at the moment. Therefore, a new kind of similarity

measure is required to calculate colocalization for multiple proteins.

In an ecosystem, multi-species interactions can be measured in

multiple sites at the same time using specific scores (32). We

adapted this measure to reflect the overlap of local assortativity

regions and compare the colocalization of multiple proteins at the

same time.

The multiple-site similarity measure (32) is defined as

C  T
s = T

T−1
oi<j  Ai ∩ Aj

�� �� −oi<j<k  Ai ∩ Aj ∩ Ak

�� �� +… + Ai ∩ … ∩ ATj j
oi   Aij j

 !

=   T
T−1 1 −

∪T
i=1  Aij j

oT
i=1   Aij j

 !

In the simplest case, where T = 2, this simplifies the Sørensen

similarity index (Supplementary Figure 3A) (32, 33).

In the cases where T ≥ 3, we can apply this similarity measure to

protein colocalization of multiple proteins (Supplementary

Figure 3B). The multiple-site similarity is well suited for

hypothesis testing on the putative colocalization of a group of

proteins, as the comparison of proteins increases factorially.

Here, the exact selection of the sets that should be compared

was made based on the adjusted local assortativity scores. First, we

selected a threshold for the set of nodes we wanted to compare as

the scores are numerical values. Given that local assortativity was

centered around zero, we decided to select a threshold centered in

zero and proceeded with all values with a score greater than zero.

Effectively, this means a selection on all the nodes displaying

assortativity rather than a random distribution of proteins (i.e.,

uniform mixing).
Results

Pairwise colocalization

The improved pairwise analysis of protein regions on single

cells across the control, fixed control, and stimulated sample

(Figure 3) replicates the results found by Karlson and colleagues

(14) using different computational methods. Three proteins

(CD162, CD37, and CD44) strongly colocalize with CD50 on the

uropod (Figure 3). Specifically, we can observe that CD50, CD162

(P-selectin glycoprotein ligand 1 or PSGL1), and CD37, a member

of the tetraspanin family, show the highest pairwise colocalization

when stimulated with RANTES. The pair CD50 and CD162 is only

second to CD45 and CD18 in the stimulated condition. Other

known adhesion molecules such as CD102 (ICAM2) did not show a
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high colocalization with either of these proteins in the stimulated

condition. We also noticed that some of the highly abundant

protein pairs, such as CD18 and CD45, colocalized in all the

conditions: control, fixed control, and stimulated cells (Figure 3).

To account for biases toward highly abundant proteins, we assessed

whether they could be overcome by employing permutation testing

(Supplementary Data 1.3 and 1.4). However, the correction from

permutation per vertex is on average less than 1% from the original

adjusted score in important uropod proteins (CD50) at the expense

of a much longer runtime. Therefore, in the end, we decided to omit

permutation testing for the results presented in this paper.

When fixing cells, we expected to observe CD11a/CD18

complex (aLb2 integrin or LFA-1) binding to the CD54Fc

antibody coated in the plates. However, the pairwise

colocalization, although present and uniformly mixed, is not as

strong as expected (Figure 3).

Furthermore, the pairwise comparison of CD50 with the

colocalization of one of the isotype controls (mIgG1) (Figure 3)

can be interpreted as background noise level and shows the

significance of the colocalization on pairwise combinations

among CD50, CD162, and CD37.
Pairwise differential colocalization

Our differential colocalization analysis compares first the scores

of the uropod-stimulated sample against the two control samples

(Figure 4A and Supplementary Figure 7).

When comparing experimental conditions, a pronounced

increase in colocalization of the uropod structural proteins in
Frontiers in Immunology 0763
stimulated cells could be observed when compared to the

unstimulated control cells, both fixed and in solution, that cannot

be associated with experimental fixation (Figure 4A). This is

especially striking in the colocalization scores in all pairwise

comparisons of CD50, CD162, and CD37 (Figure 4A) (p-value ≤

0.0001, Wilcoxon rank test). Otherwise, we observed significant

differences (p-value ≤ 0.0001, Wilcoxon rank test) at that level in

mean colocalization scores across the three experimental conditions

involving one of those three proteins in the pair and highly

abundant proteins (HLA-ABC, B2M, CD2, and CD3E). However,

the mean difference to the control conditions was small in all those

cases (<0.05). By taking CD82 or CD44 (P-glycoprotein 1) proteins

combined with CD50, we observed a consistent difference in mean

colocalization (>0.05) and very significant at the same time (p-value

≤ 0.0001, Wilcoxon rank test) (Figure 4A).

More interestingly, there were some proteins showing high

colocalization with the same sign only in stimulated cells, such as

CD26 and CD29 (Figure 4A), compared to the control condition

samples (p-value ≤ 0.0001, Wilcoxon rank test). CD29 was also

colocalized with HLA-ABC with a mean difference larger than 0.05.

The only two proteins with such a significant difference and

opposite signs against each contrast were CD18 and CD44.

RTX induces the capping of CD20 on the surface of B cells (35)

(23). In our pairwise analysis with CD20, there was a strong increase

of colocalization with CD54 (ICAM1) or CD82 when comparing

treated and control conditions (Supplementary Figure 8). When

compared to the control experiment, those two pair combinations

showed a stronger signal than when comparing CD20 and other

highly abundant proteins, such as HLA-DR or HLA-ABC/B2M

with high significance (p-value ≤ 0.0001, Wilcoxon rank test)
FIGURE 3

Pairwise colocalization of selected proteins shown by an UpSet plot (34). Each barplot represents the colocalization score of two proteins on the
control, fixed control, and stimulated samples. The link panel at the bottom shows what pairs of proteins are interrogated in each respective
barplot above.
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(Figure 4B and Supplementary Figure 9). CD82 is a membrane

glycoprotein of the tetraspanin family found associated with both B-

cell MHC class II compartments (36) and CD20 in supramolecular

complexes (37). Other proteins found with slightly lower pairwise

differential colocalization (>0.75) but high significance (p-value ≤

0.0001, Wilcoxon rank test) were CD37, CD22, CD40, and CD86

(Figure 4B and Supplementary Figure 9).
Higher-order colocalization

When assessing combinations in the stimulated condition of

three proteins (i.e., trios), higher-order colocalization allows us to

specifically test multiple proteins combined and their colocalization

relationship in the same cell graph. Higher-order colocalization was
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applied to the adjusted local assortativity values of the different

experiments and conditions and only calculated on a subset of

proteins of interest from the pairwise results shown above in the

uropod and RTX experiments.

On the uropod datasets, we observed the highest colocalization

score on the stimulated sample among the trio comparison (order of

3) containing CD44, CD45, and CD162 (Supplementary Figure 10).

Furthermore, we observed the second-highest colocalization on

CD44, CD45, and CD54 (Supplementary Figure 10), which are also

well-known uropod proteins (16). One of these proteins (CD44) is

specifically involved in the uropod formation (16, 38), and another

(CD45) is a widely abundant pan-lymphocyte signaling molecule.

Furthermore, all combinations of order 3 containing two out of

CD43, CD44, CD50, and CD54 produce high colocalization scores

(>0.10) (Supplementary Figure 10).
A

B

FIGURE 4

(A) Differential pairwise colocalization on a group of selected proteins compared for the three experimental conditions in the uropod experiment
(see “Molecular Pixelation datasets” in the Materials and Methods section for a description). First, distributions of all pairwise values per cell are
visualized as boxplots per condition side by side. Then, in the first row, differential colocalization between the stimulated (S) and fixed control (FC)
samples is measured per pairwise comparison as mean(S) − mean(FC) scores per protein. In the second row, differential colocalization between the
stimulated (S) and control (C) samples. The dots indicate p-value ranges generated by a Wilcoxon rank test: 0 dots (p-value > 0.01), 1 dot (0.001< p-
value ≤ 0.01), 2 dots (0.0001< p-value ≤ 0.001), and 3 dots (p-value ≤ 0.0001). The scale bar of these differences is shown at the bottom.
(B) Differential pairwise colocalization of CD20 with selected proteins from the treated (T) and control (C) samples of the RTX experiment. Analog to
panel A, the differential colocalization is given by the mean difference of both samples, mean(T) − mean(C), and the dots indicate the same p-value
changes as before. RTX, Rituximab.
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Strikingly, the combination of CD50 and CD162 with CD44 has

one of the highest scores of colocalization in the stimulated sample

as well as the largest mean differential colocalization with the

controls (Figure 5A and Supplementary Figure 11) on all trios
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displayed compared to CD50 and CD162 with CD37, which had the

highest pairwise colocalization scores between them behind CD18

and CD45 (Figure 3). As expected, these proteins (CD50, CD162,

CD44, and CD37) colocalized in the same cellular region
A

B

FIGURE 5

(A) Differential higher-order colocalization of trios (order 3) on a group of selected proteins for the three experimental conditions in the uropod
experiment (see “Molecular Pixelation datasets” in the Materials and Methods section for a description). First, distributions of all protein comparison
values per cell are visualized as boxplots per condition side by side. Then, in the first row, differential colocalization between the stimulated sample
(S) and the fixed control (FC) is measured per pairwise comparison as mean(S) − mean(FC) scores. In the second row, differential colocalization
between the stimulated (S) and control (C) samples can be found. The dots indicate p-value ranges generated by a Wilcoxon rank test: 0 dots (p-
value > 0.01), 1 dot (0.001< p-value ≤ 0.01), 2 dots (0.0001< p-value ≤ 0.001), and 3 dots (p-value ≤ 0.0001). The scale bar of these differences is
shown at the bottom. (B) Differential higher-order colocalization of CD20 and CD54 with different proteins of relevance on a trio (order 3). The
boxplots display the two experimental conditions, RTX-treated (T) and control (C), and compare these by subtracting mean(T) − mean(C) for each
protein distribution. The significance of the differences in the differential analysis was analogously computed to panel A using the Wilcoxon rank test
and displaying significance using the same dot nomenclature as before. RTX, Rituximab.
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(Supplementary Figure 12) and were in alignment with scientific

knowledge about the uropod formations (19). However, the CD50,

CD162, and CD44 trios demonstrated that our higher-order

colocalization method was able to improve scoring even when

pairs had shown lower pairwise colocalization scores than others.

In the RTX experiment, by combining pairwise scores into a

higher order of 3, the scores of CD20, CD54, and CD82 were

expected to be at the top. Surprisingly, our colocalization method

for higher orders detects new trios with mean colocalization larger

than the score of those three proteins. The combination of CD20

and CD82 with CD45, CD22, CD72, or CD37 in the treated sample

produced a higher mean colocalization of order 3 with high

significance (p-value ≤ 0.0001, Wilcoxon rank sum) (Figure 5B

and Supplementary Figure 13). Interestingly, CD45 or CD37

pairwise colocalized with CD20 had both lower significance and

mean differential colocalization to controls compared to CD54 or

CD82 with CD20 (Figure 4B). However, when CD45 or CD37 was

combined together with CD20 and CD82, they scored two of the 10

highest mean colocalization scores with very high significance (p-

value ≤ 0.0001, Wilcoxon rank sum) (Figure 5B). Again, this is

another observation that our method was able to improve scoring in

cases of pairs with lower pairwise colocalization scores.

Other proteins of interest in the order of 3 that colocalized with

CD20 and CD82, albeit with lower colocalization in the treatment

but with larger differential mean colocalization (>0.07) and high

significance (p-value ≤ 0.0001, Wilcoxon rank sum), were CD55

(DAF), CD44, CD18, CD11a, CD47, CD197 (CCR7), and CD84.

DAF regulates the complement system on the cell surface that

impairs the formation of the membrane attack complex (MAC),

and another protein, CD59, is the MAC-inhibitory protein. CD59

scored higher in colocalization with CD20 and CD82 than CD55,

but the mean difference against the control experiment was smaller.

Finally, we calculated the colocalization of order 4 for CD20,

CD82, and CD37 with all other non-control proteins

(Supplementary Figure 14). Unexpectedly, the three proteins (i.e.,

CD82, CD54, and CD37) obtaining the highest pairwise

colocalization with CD20 (Figure 4B), not counting in the major

histocompatibility proteins, were colocalized with high scores in

both the control and treatment (>0.20), thus achieving lower

significance (0.001< p-value ≤ 0.01, Wilcoxon rank test)

(Supplementary Figure 14). Any of CD86, HLA-ABC, or HLA-

DR that were high pairwise scoring with CD20 failed to achieve any

significance (p-value > 0.01, Wilcoxon rank test) with CD20, CD82,

and CD37 when compared to the control experiment

(Supplementary Figure 14).
Abundance and colocalization provide
different biological aspects

To understand how protein abundance and colocalization

measure different aspects of cellular responses to the environment

and stimuli, we compared pairwise colocalization and protein

abundance as raw molecule counts. We chose different pairs of
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proteins of interest in both experiments and plotted both the most

abundant protein of the pair and the pairwise colocalization

averaged across cells. Figure 6 shows no inflation in our pairwise

colocalization measurements by abundance.

In the uropod experiment (Figure 6A), all the pairs that we

found to be highly colocalized (CD37, CD162, CD50, CD44, and

CD54) were not among the highly or mid-abundant proteins.

Another highly scoring pair in colocalization, CD29 and HLA-

ABC, is also highly colocalized due to the abundance of one of them.

However, CD37, CD50, and CD162 colocalization with HLA-ABC

was not influenced by its abundance, as they were confined to the

bulge of the uropod.

In the RTX experiment (Figure 6B), CD20 was, on average, the

third most abundant protein in the Raji cells after HLA-DR and

HLA-ABC. Therefore, it was difficult not to perceive dependence on

abundance, as CD20 pairwise colocalization was high with those

two proteins (>0.10). The other two most colocalized proteins,

CD54 and CD82, were the third and fifth most abundant,

respectively. Also, B2M, CD40, and CD86 were some of the most

abundant proteins with high colocalization to CD20.
Discussion

We analyzed two publicly available MPX experiments with our

adjusted local assortativity algorithm for the detection of polarized

and colocalized proteins on the surface of single cells.

Cells that were stimulated to form uropods after fixation of

PHA-stimulated blasts and treated with RANTES (CCL5) showed a

high colocalization score in pairwise comparison of proteins

associated with the uropod (CD50, CD162, and CD37) (16).

Notably, a member of the tetraspanin family, CD37, has been

described as playing a role in the cytoskeleton remodeling of actin

filaments but has never colocalized with other uropod proteins such

as CD50 or CD162 (21). CD37 is necessary for leukocytes to follow

a CXCL1 chemotactic gradient as tested in CD37-deficient

mice (39).

On the attachment side of the stimulated cells, aLb2 integrin

(CD11a/CD18 or LFA-1) pairwise colocalization is not as

significant as expected. This is mostly due to the low abundance

of CD11a, which is often at the threshold level of control isotypes

and leads, therefore, to generally lower scores in the stimulated cells.

It is possible that the experimental conditions by fixing CD54

coating and posterior cleavage by enzymatic reaction may have

affected the protein complex structure as well as epitope availability

of CD11a.

Intercellular adhesion molecules (ICAMs) are arguably some of

the best-annotated proteins in migrating immune cells (16). At a

higher order of magnitude, we found that ICAMs scored much

more significantly at order 3 and beyond. However, our

colocalization method was able to distinguish that ICAM1–3

(CD54, CD102, and CD50) together at order 3 were not highly

significant compared to the control. It is possible that ICAMs

selectively group together and become more structurally
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significant in a larger cell membrane area that punctuates the

colocalization of other proteins in pairs. Direct colocalization of

CD18 with ICAM1 or with ICAM3 in trans-interactions has been

reported through microscopy (40), but we cannot discard that cis-

interactions may occur in our migratory model system. It has been

observed that b2 integrin bending on human neutrophils rolling on

a microfluidic device coupled to advanced microscopy facilitates

interaction with ICAMs in cis-, thus inhibiting leukocyte adhesion

in vitro and in vivo (41). On that system, they are able to prove that

ICAM3 is the dominant LFA-1 ligand in cis- and that inhibition of

the interaction between Mac-1 (C11b/CD18) and ICAM1 in cis-

limits significantly neutrophil accumulation.

Pairwise colocalization signals on CD26 and CD29 have been

reported in healthy mouse myofibroblasts in the past (42). Being

present in most cell types, CD26 plays a double functionality as an

immune-regulatory and proteolytic enzyme. CD26 can be found

integral to both the membrane and its soluble form (43). This
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multifunctional protein is able to influence T-cell proliferation and

chemotaxis but also truncate RANTES and alter the sub-receptor

specificity of the cleaved chemokine (44). CD26 has a key role in

adhesion and invasion for several cancer cells and has therefore

become an established cell surface marker in serum (45). The

extracellular matrix (ECM) is able to provide cells with co-

stimulatory signals through different receptor–ligand interactions.

Collagen has been described to provide proliferation signals to CD4

+ cells via the CD3 pathway with the mediation of VLA-3 (CD49c/

CD29) and CD26 receptors (46). Different adhesion factors of the

very late activation antigen (VLA) family, sharing a common b1
subunit (CD29 or ITGB1), are able to receive signals either directly

or indirectly to different proteins of the ECM and CD26 to collagen

type I, IV, and fibronectin (47). Furthermore, on the pairwise

colocalization effect of CD29 with HLA-ABC, certain isotypes of

HLA-B are able to decrease ITGB1 expression and affect pancreatic

cancer cell migration with contrasting effects (48).
A

B

FIGURE 6

Comparison of pairwise colocalization and abundance on the proteins of interest for both experiments. (A) In the uropod stimulation experiment,
the abundance is given by the maximum number of counts of the two compared proteins (y-axis), and colocalization is given as Spearman’s
correlation (size and color). Some protein pairs indicate that high colocalization may be found occasionally when one of the proteins is highly
abundant, e.g., CD29 and HLA-ABC, but not always, e.g., CD37 and HLA-ABC. (B) For the RTX-treated sample, all comparisons are made between
CD20 and the proteins of interest. The abundance axis reflects the counts of the proteins of interest, and the line shows the averaged abundance of
CD20 across all treated cells. RTX, rituximab.
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CD44 is a transmembrane glycoprotein presenting ubiquitous

expression and is able to bind to several ECM proteins (49). Some

sources suggest that CD44 and CD18 may colocalize to mediate

lymphocyte rolling and adhesion (50) and that CD44 interacts with

the b2 subunit (CD18) of the LFA-1 integrin in lymphocytes (51)

(52) and in colon cancer cells (53). CD44 is known to be expressed

on cancer stem cells and implicated in many cancers as a marker of

tumor burden and metastatic potential due to its numerous variant

isoforms (49). Also, CD44 is a signaling partner in relation to cell

growth, survival, and differentiation (54). As a therapeutic target,

CD44 has held some promise in the past, e.g., anti-CD44 mAb

therapy in breast cancer xenografts, reducing tumor growth and

relapse post-chemotherapy (55). Despite recent disappointments in

late-phase trials (56), still, new avenues are explored, e.g.,

nanoparticles (57) or carbon nanotubes (58), and hope remains

on CD44 as a target as well as on better stratification of the patient

population (56).

RTX is one of the pioneer biological therapies effective in many

B-cell malignancies, such as chronic lymphocytic leukemias, non-

Hodgkin’s, and Burkitt’s lymphomas. The human IgG1 Fc portion

of RTX is capable of activating several mechanisms to cause cell

death: complement-dependent cytotoxicity (CDC), complement-

dependent cellular cytotoxicity, antibody-dependent cellular

phagocytosis, or antibody-dependent cellular cytotoxicity (59).

The relative killing efficiencies of RTX have been well studied in

vitro, but the in vivo precise mechanism of action remains elusive

(60), and better understanding is still needed to impede disease

relapsing. In order to design for improved effects, different IgG

subtypes have been engineered and studied both in vitro with

Ramos cells (61) and lymphoma B-cell organoids (62).

Our analysis shows that, upon RTX treatment, CD55 and CD59

are colocalized with CD20 via the CD82 tetraspanin, whereas the

direct pairwise colocalization with CD20 of both proteins was not

significantly differentiated from controls. It suggests that CD55 and

CD59 are indirectly associated with CD20 via a tetraspanin

network, resembling the CD46 association with many b1
integrins and tetraspanins (63). This may indicate that targeting

inhibitors of CDC may achieve superior killing, as it has been

suggested by others (64).

Our data also support that CD82, but not CD9, colocalizes with

CD19 and CD20 (65). Unfortunately, at the time of writing, some

important proteins that play a crucial part in the CD20 therapeutic

“enigma” (59) are not present on the current MPX AOC panel,

among them, CD46, another complement inhibitory component;

CD21 (CR2), the complement C3d receptor; and CD81 (TAPA-1),

another tetraspanin. The trio of proteins, CD21, CD19, and CD81,

form the CR2–CD19–CD81 complex, often called the B-cell co-

receptor complex that enhances BCR signaling (66).

We also found another tetraspanin, CD37, suggested to be part of

a multicomponent supramolecular complex, so-called “tetraspans-

DR complexes”. After solubilization of membranes of human B-cell

lines and tonsillar B cells, seven components were discovered by co-

precipitation together with HLA-DR antigens: four of the

tetraspanins present in B cells (CD37, CD53, TAPA-1, and R2/
Frontiers in Immunology 1268
C33), as well as CD19 and CD21 (67). The same laboratory employed

later another technique, flow cytometric energy transfer, to find three

tetraspan molecules (CD53, CD81, and CD82) complexed with MHC

class I, MHC class II, and CD20 on the surface of a human B-cell line

(37). Recently, CD20 and CD37 have been confirmed to form a

complex by a proximity ligation assay (68). In this preprint, it is

hypothesized that the presence of CD20 stabilizes CD37 in the cell

membrane as increased internalization of anti-CD37 is measured on

deficient CD20 lymphoma B-cell lines (68).

The potential of CD37 as a therapeutic target has been

recognized by developing biparatopic antibodies with engineered

Fc chains that form IgG hexamers (69) and, in clinical trials

(NCT01317901), exploring combinatorial therapies for relapsed

patients and good overall response rate (70). Bobrowicz and

colleagues recently tested that upon diminished levels of CD37 in

different cell lines, even with downregulation of CD20, cytotoxicity

of CAR-T cells was not significantly impaired. Therefore, in their

opinion, CD37 remains an attractive therapeutic target (68).

Overall, we want to highlight the complexity and dynamism of the

cellular membrane driven by tetraspanins, integrins, and adhesion

molecules. We find several molecules in common to both datasets that

colocalize together upon very different stimuli. Tetraspanin-enriched

microdomains facilitate the compartmentalization of specialized

receptors and adhesion molecules in membrane domains that

connect to the underlying intracellular architecture of the cell (71, 72).

One of the main caveats of colocalization analysis is the

difference between the abundance and true signal. CD20 is the

third molecule in mean abundance in the RTX experiment and

presents high pairwise colocalization with, e.g., HLA-DR. These

macro-complexes have been well described in the literature (37),

but highly abundant proteins may colocalize with all other proteins

by chance. In the uropod experiment, the highly colocalizing pairs

have low mean abundances compared to the highly abundant

proteins distributed uniformly across the area of the cell, e.g.,

HLA-ABC, whereas the CD20 cap on a Raji cell after RTX

treatment is likely a much larger area than the smaller and well-

constrained uropod bulge and, also, more prone to accidental

overlap by low- and high-abundance proteins. While these are

two very different cellular responses and biological systems, the area

of polarization and overlap may warrant different interpretations.

Even though the local assortativity is improving on this by

taking the spatial aspect of the graph into account, there is still some

bias toward abundant proteins on the cell surface. Although the

interesting signal in our method is likely going to be indicated by

low abundant proteins showing high colocalization, inflation of

colocalization scores at higher orders of comparison has been

observed, and strategies to ameliorate this may use corrections

from lower orders of comparison (i.e., correct scores on order 3 with

scores from order 2). We think that the major confounding factor to

colocalization measurements is abundant proteins. Improvements

to our method in this area may consider the idea of richness of

species when comparing values across sites (73). However, we have

shown how the abundance and colocalization of proteins measure

different aspects of cell biology, both equally important.
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MPX capabilities in throughput, sensitivity, and three-

dimensional field of view (14) create exceptional conditions to

study protein constellations at single-cell resolution. Here, we

expand on the concept of local assortativity as presented in the

Peel et al. study (15) for labeled nodes in networks to capture the

influence of both the structure of the cell represented in the graph

and the location distribution of each protein. Adjusted local

assortativity provides a parameter-free algorithm that calculates

the colocalization of molecules, avoiding the complex problem of

finding neighborhoods of clustered features by different approaches

(74, 75).

Local assortativity could be used with other single-cell

technologies and experimental designs. However, it is required for

it to work in that data were processed in the form of networks with

labels and features in the vertices. With the MPX technology, cells

and their protein molecules are modeled in the form of graphs.

With this method, we improved the global scores provided in the

Karlsson et al. study in terms of polarization and colocalization to

find continuous and bounded measures of the biological

phenomena assayed by MPX. Furthermore, we built on the

pairwise local assortativity using a multi-site similarity method

used from an ecological context (32) in order to achieve multiple

protein comparisons from groups of more than two proteins. With

pairwise and multi-way comparison, we aimed to capture detailed

structural properties of the cell graphs and facilitate the comparison

of molecules colocalizing among groups of proteins in a more

detailed way. The scoring methods devised for pairwise and higher-

order colocalization are different, so a direct comparison of score

levels across those two is not possible at the moment. The higher

order of colocalization is very useful for hypothesis testing, but we

foresee its use rather as a tool for specific in silico experiments

guided by prior knowledge.

MPX with pairwise and a higher order of colocalization yields

deep phenotyping not achievable with other assays by measuring

76 proteins (and four controls) at the same time in a single

experimental workflow. This is a throughput of several orders of

magnitude higher in plexity at a reduced experimental time from

sample to processed data over what can be achieved with confocal

and super-resolution microscopy. The experiments presented in

this report took approximately 2 weeks to complete. However,

given the exponential number of protein combinations, there is a

clear need to develop algorithms and tools to exploit this novel

data type.

Another advantage of MPX data is that they achieve single-cell

resolution in one experiment of 300–1,000 cells to study variability in

response to stimuli. We have measured effect sizes against controlled

experiments but have not explored yet the complexity of responses in

terms of dividing treatment and controls in different subgroups. We

should also consider the combinatorial multiplexity of single-cell

studies, and the comparison of experimental conditions is therefore a

vital tool in the analysis of colocalization, which begins with a good

study design.

Our findings underpinned by MPX together with our novel

computational method may provide avenues for hypothesis-driven

therapeutic design that explores spatially colocalized protein

constellations in the cell.
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Spatial and phenotypic
heterogeneity of resident and
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during inflammatory
exacerbations leading to
pulmonary fibrosis
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Jessica Noll , Qiuming Wang, Teresa Musci
and Alessandro Venosa*

Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City,
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Introduction: Genetic mutations in critical nodes of pulmonary epithelial function

are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung

diseases. The slow progression of these pathologies is often intermitted and

accelerated by acute exacerbations, complex non-resolving cycles of inflammation

and parenchymal damage, resulting in lung function decline and death. Excess

monocyte mobilization during the initial phase of an acute exacerbation, and their

long-term persistence in the lung, is linked to poor disease outcome.

Methods: The present work leverages a clinical idiopathic PF dataset and a

murine model of acute inflammatory exacerbations triggered by mutation in the

alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and

phenotypically define monocyte/macrophage changes in the fibrosing lung.

Results: SP-C mutation triggered heterogeneous CD68+ macrophage activation,

with highly active peri-injured cells relative to those sampled from fully remodeled

and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+

alveolar macrophages defined asynchronous activation of extracellular matrix re-

organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the

fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets

predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1)

emanating from Trem2/TREM2+ interstitial macrophages. These cells also produced

a distinct lipid signature from alveolar macrophages and monocytes, characterized

by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant

mice had limited impact on inflammation and mortality up to 42 day after injury.
Abbreviations: AT2, alveolar type-2 cell; SftpcI73T surfactant protein-C I73T mutant; IPF, idiopathic

pulmonary fibrosis; AIE, acute inflammatory exacerbations; AMs, alveolar macrophages; MoDMs,

monocyte-derived macrophages; ApoE, apolipoprotein-E; FN1, fibronectin1; SPP1, osteopontin.
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Discussion: Together, these results provide a detailed spatio-temporal picture of

resident, interstitial, and monocyte-derived macrophages during SP-C induced

inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a

biomarker to identify activated macrophages involved in tissue remodeling.
KEYWORDS

alveolar type-2 cell, surfactant protein-C I73T mutant, pulmonary fibrosis, alveolar
macrophages,monocyte-derivedmacrophages, apolipoprotein-E, fibronectin1, osteopontin1
Introduction

Acute inflammatory exacerbations represent a key feature in the

evolution of interstitial lung diseases (ILD). This cluster of chronic

progressive pathologies includes idiopathic pulmonary fibrosis,

non-specific interstitial pneumonia, connective tissue disease

associated ILD, chronic hypersensitivity pneumonitis ,

pneumoconiosis, sarcoidosis, and more (1, 2). The exact sequence

of events igniting these flare-ups have yet to be fully understood.

However, epidemiological and experimental evidence suggest that a

combination of genetic susceptibility, preexistent pulmonary and

systemic conditions, biological aging/senescence of the alveolar

compartment, and external stressors (environmental toxic

exposure) contribute to the repeated cycles of focal inflammation,

spatially heterogenous injury, and aberrant repair characteristic of

fibrotic disease (3–7).

To date, over 60 mutations in the alveolar epithelial type 2

specific gene encoding for the surfactant protein C (SP-C) have

been linked to the development of a fibrotic phenotype, with the

isoleucine-to-threonine missense substitution at position 73 of the

SP-C proprotein (SP-CI73T) representing the most common (8–10).

Our group has previously characterized endoplasmic reticulum

toxicity and macroautophagy block resulting from aberrant

processing and trafficking of the SP-C proprotein and described

the sequelae of immunological events accompanying tissue

remodeling (8, 9, 11, 12). Here, we expand on this prior

investigation by defining the spatial and phenotypic distribution

of monocytes and macrophages responding to the initial epithelial

injury and establish patterns of intercellular communication among

cellular species in the lung.

Mounting evidence supports the notion that inflammatory

monocyte mobilization in the fibrosing lung represents a valid

indicator of poor disease prognosis (13, 14). Yet, experimental

modeling and clinical trials designed to non-specifically target

inflammation (e.g., corticosteroids, broad spectrum cytokine

modulation) have revealed low efficacy or even harmful toxicities

(15). Among the reasons for this therapeutic failure is the absence of

a nuance approach capable of controlling the maturation, activation,

and persistence of ontologically and phenotypically heterogeneous

cellular entities, and the relatively fragmented understanding of the

spatial distribution of cells and signals in a temporally extended
0273
pathology such as fibrosis (16–18). Experimental evidence highlights

distinct transcriptomes emanating from tissue-resident and

monocyte-derived macrophages (19, 20), with the latter generating

a complex fibrogenic signature (10, 21, 22). The fibronectin/FN1,

osteopontin/SPP1, tumor growth factor (TGF)b1, and interleukin 4/

13 signaling pathways represent the most studied networks

mediating tissue remodeling (23–27), while metabolic networks

have gained traction as potential targets in chronic inflammatory

diseases (28, 29). In vitro systems establish a reliance on glycolysis in

response to canonical pro-inflammatory signals (IFNg, LPS),

juxtaposed to fatty acid oxidation, tricarboxylic acid cycle, and

mitochondrial oxidative phosphorylation following challenge with

anti-inflammatory and pro-remodeling signals (IL-10, IL-4/13,

TGFb1) (30–32). This evidence emphasizes the importance of

factors governing lipid synthesis, handling, and metabolism

(PPARg, LXR, FXR, SREBP1) in regulating macrophage function

(33, 34). The cholesterol and phospholipid transporter

apolipoprotein E (ApoE) has been linked to monocyte-derived

macrophage activation in chemical-induced injury, though there is

limited evidence that these responses are consistent across the

spectrum of fibrosis (35, 36).

Through a combination of bulk, single cell, and spatial

transcriptomics we show a hyperactive niche of macrophages

surrounding fully remodeled lung regions during fibrogenic

exacerbations triggered by mutant SP-C induction. Cellular

annotation and communication analysis identify time-related

changes in intercellular networks, with alveolar and interstitial/

Trem2+ macrophages and inflammatory monocytes responsible for

Spp1, Fn1, and Tgfb1 pro-fibrotic signaling. Analysis of human

idiopathic PF confirms the presence of an interstitial population

responsible for pro-fibrotic signaling in the diseased lung. Our

findings also highlight disease-related shifts in lipid transcriptional

signatures and interstitial/Trem2+ macrophages as the sole cellular

cluster expressing ApoE. While genetic ablation of ApoE in SP-

CI73T induced injury did not significantly impact fibrotic disease

outcome, our results pinpoint this molecule as a potential

biomarker identifying fibrogenic myeloid populations. Together,

these results reveal temporal and phenotypic heterogeneity in the

macrophage compartment and implicates Trem2+ interstitial

macrophages and their monocytic precursors as viable targets for

anti-fibrogenic therapy.
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Materials and methods

Sex as a biological variable

These studies utilized both male and female mice.
Murine model of SP-CI73T induced
lung injury

Tamoxifen inducible SP-CI73T mice were generated as

previously reported (9). For studies investigating the role of the

apoliproprotein E in SP-CI73T induced injury, a parallel line was

crossed with ApoE knock out mice purchased from Jackson

laboratories (Strain #002052, The Jackson Laboratory, Bar

Harbor, ME). Briefly, an estrogen receptor (ER)-2 controlled Flp-

O recombinase strain knocked into the Rosa26 locus (The Jackson

Laboratory). Adult homozygote SP-CI73TFlp mice (8-12 weeks)

received two tamoxifen oral gavages three days apart (90 mg/kg

each) to excise a neomycin cassette placed within the Sftpc gene.

Both male and female animals were used for the studies. For studies

involving apoE mutants, a SP-CI73TApoEWT/KO breeding pair was

utilized (SP-CI73TApoEHET) so as to generate wild type,

heterozygous, and homozygous experimental littermates. Control

groups mice are represented as pooled data from tamoxifen treated

SP-CI73T not expressing Flp-O recombinase or oil (vehicle) treated

Flp-O expressing SP-CI73T mice. All mice were housed under

pathogen free conditions in AALAC approved barrier facilities at

the Skaggs College of Pharmacy, University of Utah. All

experiments were approved by the Institutional Animal Care and

Use Committee, University of Utah.
Reagents

Tamoxifen (non-pharmaceutical grade) was purchased from

Sigma-Aldrich (St Louis, MO). Giemsa cytological stain was

purchased from Sigma-Aldrich. Antibody list: Spp1 (RNAscope®

Probe Green, Ref#435191); Tgfb1 (RNAscope® Probe Red,

Ref# 407751-C2); Apoe (for in situ hybridization – Advanced

Cell Diagnostics, RNAscope® LS 2.5 Probe #313278; for

immunohistochemical - Abcam; Cat #ab183597, 1:500; for

western blot – Cell Signaling Technology, Cat #49285, 1:1000),

CD68 for immunohistochemistry (Cell Signaling Technology; Cat #

97778; 1:1000). Flow cytometric panel for cell sorting and bulk

sequencing of macrophages CD16/32 (clone 93; eBiosciences, San

Diego, CA), CD11b (clone # M1/70; eFluo450, eBiosciences);

Fixable Viability dye (Cat # 65-0865-14; eFluo780, eBiosciences);

SigF (clone S17007L; PE-CF594, BD Biosciences, San Jose, CA);

CD45 (clone 30-F11; PerCP5.5, Biolegend, San Diego, CA); CD11c

(clone # N418; BV705, Biolegend); Ly6G (clone # 1A8; AF700,

Biolegend); CD64 (clone X54-5/7.1; PE/Cy7, Biolegend); CD3

(clone # 17A2; BUV395, Biolegend). All other reagents were

purchased from Thermo Fisher Scientific, Inc. (Waltham, MA) or

Sigma-Aldrich.
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Bronchoalveolar lavage, cell counts, ELISA,
and western blot analysis

Following terminal anesthesia, inert mice were subject to

cannulation. Bronchoalveolar lavage (BAL) fluid was collected

from mice using 1 mL sterile saline lavage and collected into a

microcentrifuge tube. Four additional lavages were performed and

collected in a separate container. The two fractions were then spun at

400 × g, 6 min. Supernatant from the first lavage was collected and

immediately frozen at -80°C for ELISA and western blot analysis,

while the two cellular pellets were combined and suspended in 1 ml

of saline solution for cell counts, flow cytometric, or RNA

sequencing analysis. BAL cells were enumerated using a

NucleoCounter (New Brunswick Scientific, Edison, NJ). Aliquots

of first lavage were analyzed for IL-4 and IL-13 levels using the

Luminex platform (Panel MCYTOMAG-70K-17) following Thermo

Fisher’s protocol. For western blot, equal volumes (15 µl) of thawed

BAL fluid were loaded onto 4-12% NuPage Bis-Tris gels

(ThermoFisher Scientific) with NuPage 4X LDS sample buffer

(ThermoFisher Scientific) and then electrophoresed approximately

90 minutes using a constant voltage of 100V. Proteins from the gels

were then transferred to a 0.45 mm PVDFmembrane at 30V and 4°C

for one hour and blocked in 5% non-fat dried milk (NFDM). The

membranes were subsequently probed with primary ApoE

antibodies. The SuperSignal West Dura Chemiluminescent

Substrate detection system was applied before exposing the

membrane on the ProteinSimple FluorChemM imager (BioTechne).
Histology, histochemical and In situ
hybridization analysis

For histological and histochemical analysis, lungs from

unresponsive anesthetized mice were cleared of excess blood through

cardiac perfusion with 0.9% sodium chloride solution. A 20-gauge

cannula was inserted in the trachea for tissue fixation with 10% neutral

buffer formalin at constant pressure (25 cmH2O). A suture was used to

seal the tracheal opening upon cannula removal, thus avoiding

pulmonary deflation during the fixation process. Tissue was placed

in a histology cassette and submerged in 10% neutral buffer formalin

for 72 h. The suture was then removed, and the lung sequentially

moved to a 2% sucrose solution (in PBS, two washes of 5min) and 70%

ethyl alcohol. The submerged cassettes were submitted to the

University of Utah histology core (Associated Regional and

University Pathologists Inc.) for embedding. Paraffin blocks were

sectioned at 6 µm thickness and used for Hematoxylin & Eosin

(H&E) or immunohistochemical staining, alone or in combination

with in situ hybridization as previously described (37). For protein

staining, paraffin was removed using xylene solutions followed by

gradient alcohol washes (100-50%). Citrate antigen retrieval (10.2 mM

sodium citrate, pH 6.0, for 20 min) and endogenous peroxidase

quenching with 3% hydrogen peroxide in methanol (30 min) were

performed. Serum-based blocking (10% goat serum in PBS) preceded

the overnight incubation with anti-rabbit primary antibody. In all

studies, a serum/IgG control was used. During the second day, slides
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underwent incubation with a biotinylated secondary antibody (30

minutes, Vectastain Elite ABC kit, Vector Labs, Burlingame, CA)

and chromogenic reaction achieved using a Peroxidase Substrate Kit

DAB (Vector Labs). Counterstain was accomplished with Harris

Modified Hematoxylin (Thermo Fisher Scientific, Inc.). For in situ

hybridization studies, after paraffin removal with xylene/alcohol

solutions, slides were air dried. Peroxidase quenching (10 min, away

from light) was followed by antigen retrieval (20 min, RNAscope®

Target Retrieval Reagent, ACD) and incubation with protease IV

(30min, RNAscope® Protease IV Reagent, ACD). Excess solution

was then washed off. Slides were then incubated for 2 hours in a 40°

C hybridization oven with a Spp1, Tgfb1, or Apoe probe. A series of

signal amplification steps (6 for single color detection, 10 for double-

staining assay) and washes were followed by chromogen development.

At this point the experiment was either concluded with counterstain

and toluene-based permount coverslip placement, or the

immunohistochemistry protocol resumed from the blocking and

primary antibody step as described above.
Fluorescence activated cell sorting

In some studies, following cardiac perfusion the left lobe was tied

off with a suture and removed for flow cytometric and FACS

analysis. Tissue was minced with surgical scissors and transferred

into a 50 ml conical tube and incubated (37°C, 30 minutes) in

DMEM + 5% FBS + 2 mg/ml Collagenase D (Cat #11088866001,

Roche, Indianapolis, IN). Digested lungs were passed through 70-mm
nylon mesh to obtain a single-cell suspension, counted and mixed

with ACK Lysis Buffer (Thermo Fisher Scientific, Inc.) to remove any

remaining red blood cells. The single cell suspension was counted

and resuspended to yield 1 x 106 cells per 100µl of flow cytometry

staining buffer (PBS+0.1% sodium azide). Cells were then incubated

with anti-mouse CD16/32 antibody for 10 min at 4°C to block

nonspecific binding. This was followed by 30-minute incubation

with fluorescently-tagged antibodies or appropriate isotype controls

(0.25–1.5 µg/106 cells) for 30 minutes (4°C). Cells were then spun

and resuspended in staining buffer for viability staining (30 minutes

at 4°C). Cells were fixed in 2% paraformaldehyde and sorted using a

FACS ARIA (BD Biosciences). Alveolar macrophages (SigF+CD11b-

CD11c+) were identified following forward and side scatter selection

of singlet CD45+ viable cells. To ensure cell sorting of a purified

population, a series of exclusion gates were designed to remove

eosinophils (SigFintCD11b+CD11c-), neutrophils (Ly6G+) and

lymphocytes (CD3+). All analysis was performed using FlowJo

software (FlowJo, LLC, Ashland, Oregon).
Bulk and single-cell RNA sequencing
preparation and analysis

For bulk RNA sequencing studies (deposited on NCBI GEO

GSE166300), sorted SigF+CD11b-CD11c+ macrophages underwent

RNA extraction using Qiagen RNeasy Plus Universal mini kit

following manufacturer’s instructions (Qiagen, Hilden, Germany).

Extracted RNA samples were quantified using a Qubit 2.0
Frontiers in Immunology 0475
Fluorometer (Life Technologies, Carlsbad, CA, USA) and RNA

integrity was checked using Agilent TapeStation 4200 (Agilent

Technologies, Palo Alto, CA, USA). RNA sequencing libraries

were prepared using the NEBNext Ultra RNA Library Prep Kit for

Illumina following manufacturer’s instructions (NEB, Ipswich, MA,

USA). Briefly, mRNAs were first enriched with Oligo(dT) beads.

Enriched mRNAs were fragmented for 15 minutes at 94°C. First-

strand and second strand cDNAs were subsequently synthesized.

cDNA fragments were end-repaired and adenylated at 3’ends, and

universal adapters were ligated to cDNA fragments, followed by

index addition and library enrichment by limited-cycle PCR. The

sequencing libraries were validated on the Agilent TapeStation

(Agilent Technologies, Palo Alto, CA, USA), and quantified by

using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) as well as

by quantitative PCR (KAPA Biosystems, Wilmington, MA, USA).

The sequencing libraries were pooled and clustered on 1 lane of a

flow cell. After clustering, the flowcell was loaded on the Illumina

HiSeq4000 instrument according to manufacturer’s instructions.

The samples were sequenced using a 2x150bp Paired End (PE)

configuration. Image analysis and base calling were conducted by the

HiSeq Control Software (HCS). Raw sequence data (bcl files)

generated from Illumina HiSeq was converted into fastq files and

de-multiplexed using Illumina’s bcl2fastq 2.17 software. One

mismatch was allowed for index sequence identification. Analysis

of RNA counts was performed using R (3.6.3) (38). Differential gene

expression analysis was conducted using the hciR package (39).

Further pathway analysis was conducted using IPA (QIAGEN Inc).

Datasets were filtered using log2 fold change (minimum -1 or 1) and

p-value cut offs (minimum p<0.05) to ensure an appropriate number

of molecules (200-3000) were used in the IPA pipeline.

Single-cell RNA sequencing raw data of SP-CI73T model were

deposited in NCBI’s Gene Expression Omnibus and are accessible

through GEO Series accession numbers GSE247520 and GSE196657.

Tissue collection and single cell suspension were achieved using

mechanical mincing, digestion in Collagenase D, red blood cell lysis,

and suspension created by using a 70-mm strainer. RNA extraction and

library preparation are described in the published manuscript (10).

Mining of human control and IPF lungs are accessible through

GSE136831 (40). As described by Adams et al., representative apical

and basal segments of explanted lungs were minced mechanically,

digested [elastase (30 U/ml) + deoxyribonuclease I (0.2 mg/ml) +

liberase (0.3 mg/ml) + 1% penicillin/streptomycin], cleared of red

blood cells, and single cell suspension created using a 100/70/40

strainers (40). Re-analysis of each single-cell dataset included

dimension reduction and clustering by SCTransformation (0.3.5)

using the Gamma-Poisson generalized linear model method

(glmGamPoi, 1.8.0) and were performed using the Seurat (4.0.4)

package (41–45). Multiple levels of resolution were evaluated using

Clustree (0.5.0). The data was assessed for cell cycle effects using

CellCycleScoring and regressed for uneven cell cycle expression across

clusters. Cell types were identified using differential gene expression

and all manual annotations were compared to those produced through

automated classification using SingleR (1.10.0). A specific R package

was used to interface with enrichR database (46). For pseudotime

analysis, monocle-3 software was used, while cell-cell communication

analysis was conducted with CellChat software (47–51).
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Spatial transcriptomic analysis

For spatial analysis (deposited on NCBI GEO GSE264128), neutral

buffered formalin-fixed lungs were inflated without bronchoalveolar

lavage. Paraffin-embedded sections were baked for 1 hour at 60°C and

stained according to theNanoString Leica BONDRXRNAFFPE Semi-

Automatic protocol. Following Proteinase K (1.0ug/mL, 15 min) and

ER2 (20 min) processing, sections were incubated with fluorescently

tagged antibodies against PanCytokeratin (PanCK, Novus Biologics,

NBP2-33200AF488; 1:400), Syto83 (S11364; 1:10, Thermo Fisher

Scientific, Inc.), CD45 (Nanostring Technologies, 121302304; 1:5), and

CD68 (Abcam, ab125212; 1:25). Regions of interest (ROI;N=3, healthy;

N = 4, peri-injured, N = 5, injured/remodeled) were selected based on

histopathological assessment of inflammation and epithelial thickening

and remodeling. Tissue segmentation selectively identified

CD45+CD68+ macrophages. The collection plate was then removed

from the GeoMx instrument and prepared for sequencing. The GeoMx

library was prepared, processed, and sequenced according to the

NanoString NGS Readout User Manual Protocol (ref. MAN-10153-

04). Sequencing was performed on the Illumina NovaSeq 6000, S2 v1.5

with a100 cyclesflowcell at 27bppair-end reads.GeneratedFASTQfiles

were then processed toDCC files utilizing the NanoString GeoMxNGS

Pipeline according to manufacturer’s instructions. Gene expression was

analyzed using Nanostring DSP analysis software (NanoString

Technologies) with built-in statistical analyses. Raw data counts were

run through internal quality control andbiological probequality control.
Statistical analysis

Unless otherwise indicated, all data are presented as group mean ±

SE. Statistical analyses were performed with Prism GraphPad 9.4

(GraphPad Software, San Diego, CA). Student’s t-tests were used for

paired data; for analyses involving multiple groups, one-way or two-

way analysis of variance (ANOVA) was performed with post hoc testing

as indicated. Survival analyses were performed using Log Rank

(Mantel-Cox) test. For spatial analysis, segments were filtered to 55%

of the limit of quantitation (LOQ) to render the top 6,000 expressed

genes. Filtered genes were normalized to Q3 (3rd quartile of all selected

targets). Hierarchical clustering was performed as quality control. CD68

ROIs were compared across regions using a linearmixedmodel (LMM)

with Benjamini-Hochberg (BH) correction and a random effect for the

region. For RNA sequencing pathway analysis, Wilcoxon rank sum test

was used. In all cases, statistical significance was considered at p ≤ 0.05.
Results

Spatial discrimination of activated
macrophages during SP-CI73T-
induced injury

To spatially define the phenotype of macrophages involved in

fibrotic lung injury, fluorescent antibodies recognizing DNA (green),

CD45 (yellow) and CD68 (red) were used to perform bulk

sequencing in the injured/remodeled or peri-injured alveolar
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regions of the lung 14 days post SP-CI73T injury. A control (non-

induced) lung was used to define baseline activation. Identification of

injured regions was based on histopathological evaluation of all five

lobes in the tissue sections. Four peri-injured areas were selected: two

in relative proximity to the injury (areas of interest 006 and 010) and

two distal region (areas of interest 009 and 012) (Figure 1A). Cell-type

deconvolution analysis was used to resolve monocyte/macrophage

specific expression signature from the dataset (52) (Supplementary

Table 1). Principal component analysis identified clustering of

transcriptomes based on sampling annotation, with separation in

the peri-injured regions based on proximity to injury (Figure 1B;

Supplementary Table 1). Global pathway map showed extensive

expression of genes involved in metabolism (including RNA

metabolism), signal transduction, transcriptional regulation,

immune system function and cell cycle (Supplementary Figure 1A).

Reactome-based analysis revealed 20.9% (148/712 pathways) and

34.9% (249/712 pathways) of pathways as differentially expressed

when comparing peri-injury vs. healthy macrophages and peri-injury

vs. injured cells, respectively. Notably, macrophages isolated form

injured regions did not produce a particularly strong signaling

signature and demonstrated a considerable degree of similarity to

healthy macrophages (≈90% of pathways) (Figure 1C; Supplementary

Figures 1B–D). Peri-injured macrophages were enriched in pathways

associated with neutrophil degranulation, ROS/RNS production and

release, activation in oxidative stress-induced senescence, pro-

remodeling functions (TGF-beta and GPVI cascade), and metabolic

alterations (citric acid cycle, gluconeogenesis, lipoprotein assembly/

remodeling/clearance) compared to healthy- and injured-derived

CD68+ macrophages (Figures 1D, E; Supplementary Table 1).

When compared to controls, injured region macrophages were

defective in programmed cell death signaling, ROS detoxification,

and elastic fiber formation, but displayed enhanced DNA damage-

induced senescence, degradation of extracellular matrix (ECM), and

metalloproteinase function (Figure 1F). Hierarchical gene expression

analysis of pathways related to degradation of ECM (Figure 1G),

assembly of collagen fibrils (Figure 1H), complement system,

adaptive immunity, and L13a-mediated ceruloplasmin expression

all showed robust clustering based on region of origin

(Supplementary Figures 1B–D, Supplementary Table 1).

Among the top 6,000 genes expressed genes in the dataset, genes

associated with complement responses (C1qa, C1qb, C1qb), myeloid

cell recruitment (Cxcl14, Cxcl15), inflammation (Csf1r, Ctss, App)

and metalloproteinases (Mmp13, Mmp14, Mmp15) were most

abundant in peri-injured macrophages (Figure 1I). Despite

increases in normalized counts for fibrogenic genes and

significant enrichments in the associated pathways, expression of

the individual genes did not meet significance (Fn1, Spp1)

(Figure 1J; Supplementary Figures 1E–G).
Temporal heterogeneity of resident
alveolar macrophages during SP-CI73T-
induced injury

To better understand macrophage behavior in the events leading

up to end-stage fibrosis, we sought to examine transcriptional
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changes in resident macrophages using a model of fibrogenic injury

triggered by mutant SP-CI73T. For these studies, we leveraged bulk

RNA sequenc ing of flow cytomet ry sor t ed CD11b -

SigF+CD11c+CD64+ resident mature macrophages isolated from

naïve (controls) and inflamed lungs. Exclusion gate ensured no

contamination from Ly6G+ neutrophils, B220+ B cells, and CD3+

lymphocytes. Ingenuity Pathway Analysis highlighted distinct gene

and signaling signatures in lung macrophages during inflammatory

initiation (3 days post mutant induction) and early remodeling (14

days). Principal component analysis highlighted transcriptional

variance across the study groups (Figure 2A). Differential gene

expression analysis revealed a relatively small set (48 genes)

between controls and 3-day injury, while these responses were

more pronounced between controls vs. 14-day post induction

(3393) or 3-day vs. 14-day comparison (1446) (Figure 2B). Volcano

plots showed increases in genes linked to innate immunity (the

hematopoietic transcription factor, Gata2; histidine decarboxylase,

Hdc; interferon induced transmembrane protein 1, Ifitm1; colony
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stimulating factor 1, Csf1; chemokine ligand, Ccl17; immunoglobulin

epsilon receptor, Ms4a2) and metabolism (cholesterol side-chain

cleavage enzyme, Cyp11a1; ATPase Na+/K+ transporting subunit

alpha 3, Atp1a3; adenylate cyclase 6, adcy6; peptidyl arginine

deiminase 2, Padi2; and myristoylated alanine rich protein kinase

C substrate, Marcks) 3 days post injury (Figure 2C). By comparison,

macrophage expression profile was bidirectional at 14 days, and

demonstrated more sizable changes (as represented by adjusted p-

values and log fold changes). Immunity, cell cycle, and metabolism

genes were among the most significantly altered genes (complement

C1q C-chain, C1qc; peptidoglycan recognition protein 1, Pglyrp1;

ADAMmetallopeptidase domain 19,Adam19; secreted protein acidic

and cysteine rich, Sparc; apolipoprotein E, Apoe; insulin like growth

factor 1 receptor, Igf1r; toll-like receptor 7, Tlr7; cyclin D2, Ccnd2

(Figure 2D). Ingenuity Pathways Analysis predicted signaling related

to activation, proliferation, and apoptosis of leukocyte predominantly

at 3 days, while distinct cell movement and chemotaxis pathways,

proliferation, angiogenesis and fibrogenesis were projected to be
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FIGURE 1

Spatial analysis of CD68+ macrophages in SP-CI73T induced injury. Paraffin-embedded sections from controls or 14 days post SP-CI73T injury were
stained with fluorescent antibodies against CD45, CD68, and DNA. (A) Twelve alveolar regions were selected for CD68+ macrophage RNA
sequencing (cells labeled in red). Regions from an untreated mouse were used as controls (three technical replicates; yellow asterisks). Injured/
remodeled (five technical replicates; white asterisks) and peri-injured (two proximal technical replicates, orange asterisks; two distal technical
replicates; red asterisks) region selection was based on histopathological assessment of inflammation and loss of alveolar architecture structure.
Insets show representative regions. (B) Three dimensional PCA plot shows the clustering of samples based on sampling regions. Orange asterisks
indicate two proximal technical replicates; red asterisks indicate two distal technical replicates. (C) Venn diagram of Reactome-based pathway
analysis shows differentially regulated pathways between each pairing. (D–F) Bar graphs representing normalized enrichment scores for selected
pathways. (G-H) Hierarchical clustering of ‘Degradation of the extracellular matrix’ and ‘Assembly of collagen fibrils and other multimeric structures’
signaling pathways in healthy (dark purple), peri-injured (pink), and injured (green) regions of the lung 14 days after SP-CI73T induced injury. (I) Box
plots of selected genes associated with macrophage activation (chemokine, metalloproteinases, complement cascade). The Y-axis represents
normalized counts. A p-value ≤0.05 was considered significant using Linear Mixed Model. (J) Volcano plot comparing gene expression between
peri-injured and injured macrophages. Fold changes are represented on log2 scale. Significance is shown as -log10(pvalue) using linear mixed
model. In red are representative complement and fibrosis-associated genes.
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induced 14 days post-induction (Figure 2E; Supplementary Table 2).

Specific pathways linked to NFAT dependent regulation of immune

responses (directionality/z-score 1.90), Th1 and Th2 activation (no

predicted z-score), granulocyte adhesion and diapedesis (no

predicted z-score), and STAT3 signaling (z-score 1.13) were noted

3 days post injury. Comparatively, glycoprotein 6 (z-score 5.48), IL-

15 production (z-score 5.00), fibrosis (z-score 6.71) and epithelial-

mesenchymal transition signaling (no z-score), and osteoarthritis (z-

score 3.34) were identified in macrophages at 14 days (Figure 2F).

Notably, IPA’s Upstream Regulators analysis predicted activation of

pro-inflammatory signals at 3 days (NFKB1, IL5, IFNG,

prostaglandin E2, STAT3 and STAT6), and conventional fibrogenic

pathways (TGFB1, TP53, FGF2, and SOX2) 14 days (Figure 2G).

Reactome-based breakdown of top differentially expressed genes

from the Interferon-g pathway identified distinct gene-sets

expressed during inflammatory initiation (Ifi203, Ifi206, Ifi209,

Ifi213, Stat4) and 14 days post injury (S100a8, Arg1, Csf1, Alox15,

Retnla, Il4) (Figure 2H; Supplementary Table 2). A comparable dual

response was observed in the TGF-b1 (3 days: Ms4a2, Ctsk, Clec2i
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and Cd55; 14 days: Il1rl1, Arg1, Alox15, F13a1, Itgam, Ptgs2, C1qc,

and Anxa8) and IL-4 signaling pathways (3 days: Ms4a1, Cxcl5, Il6,

Stat4; 14 days: S100a8, Agf2r, Csf1, Retnla, Il4) (Figures 2I, J). ELISA-

based validation of this established pro-fibrotic pathway confirmed

increases in IL-4 and IL-13 expression in the bronchoalveolar lavage

fluid 7-14 days post SP-CI73T injury (Figure 2K). Notably, IL-15 and

Glycoprotein-6 signaling, as well as angiogenesis displayed time

restricted enrichments (14 days post-induction) (Supplementary

Figures 2A, B, and not shown).
Single-cell RNA sequencing reveals
activation of distinct monocyte/
macrophage clusters responding to SP-
CI73T induced injury

We then employed single-cell RNA sequencing to overcome the

constraints (and therefore bias) of antibody-based analysis of

macrophages involved in SP-CI73T induced injury. A 59,440-cell
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FIGURE 2

Transcriptional analysis of flow cytometry sorted alveolar macrophages following SP-CI73T induced injury. Bulk RNA sequencing of flow cytometry
sorted CD11b-SigF+CD11c+CD64+ resident lung macrophages from control (N=4; Ctl, oil treated SP-CI73T mice) or tamoxifen-treated SP-CI73T mice
at 3 d and 14 d (N=3 for each condition). (A) Principal Component Analysis (PCA) plot showing transcriptome variance in Ctl (blue), 3 days (black),
and 14 days post SP-CI73T induced injury. (B) Venn diagram breaking down significantly expressed genes among groups. (C, D) Volcano plots
comparing fold change expression between Ctl vs. 3 days and Ctl vs. 14 days. (E-G) Ingenuity Pathway Analysis (IPA) of enriched Diseases and
Functions, Canonical Pathways, and Upstream Regulators in lung macrophages 3- and 14-days after injury relative to Ctl. Bars represent enrichment
[−log(pvalue)] 3 days (gray) and 14 days (black) after injury. Z-scores indicate predicted activation and inhibition respectively (N.P. not predictable).
(H-J) Heat maps depicting significantly altered genes associated with Interferon-g, TGFb1, and Interleukin-4 signaling 3- and 14-days after injury
relative to Ctl; criteria for significance was a 5% false discovery rate. Note that orange and black boxes highlight signatures specific to a given time
point. (K) ELISA for IL-4 and IL-13 from SP-CI73T BAL fluid collected from controls, 7 days, 14 days, or 42 days post injury. Dot plots with Mean + SE
are shown. *p < 0.05 versus control group using One Way ANOVA followed by Tukey post-hoc test.
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dataset including healthy controls (29,213 cells), and two injury

times representing peak inflammation (14 days - 14,266 cells) and

established fibrosis (42 days - 15,961 cells) were studied. Population

clustering using SCTransformation with the glmGamPoi method at

a resolution of 0.4 yielded 33 clusters (Supplementary Figure 3A).

Partition of the clusters based on origin/identity (Ctl, 14 days, 42

days) highlighted shifts in endothelial cells (cluster 25), eosinophils

(cluster 8), and macrophages (cluster 9) composition after SP-CI73T

injury (Figures 3A, B). A combination of SingleR, manual

annotation, and the top three non-redundant genes from each

populations was used for identification of epithelial (3),

endothelial (6), mesenchymal/stromal (3), megakaryocytes,

granulocytes (3), B cells (4), lymphocytes (4), and mononuclear

myeloid populations (9) (Figure 3C; Supplementary Figures 3B–I).

Macrophage Cluster 19 (identified in only one of the eleven

specimens) and Cluster 32 (of low abundance and merged with

Cluster 3 after pseudobulk analysis determined high degree of

transcriptional overlap).

Uniform Manifold Approximation and Projection (UMAP)

analysis for the pan-macrophage gene Cd68 and the mobilization
Frontiers in Immunology 0879
marker Itgam/Cd11b were utilized to locate resident and recruited

macrophages, monocyte-derived, and by exclusion monocytes and

dendritic cells (Figures 3D, E). A curated gene set (mobility,

maturity, and activation markers) combined with pseudotime

analysis was used to clearly differentiate mononuclear myeloid

clusters (Supplementary Table 3). Cluster 3 was annotated as

alveolar macrophages since it expressed a combination of Cd68,

Itgax, Ear1, Ear2, Siglecf, and moderate levels of Mertk (Figure 3F).

Reconstructed trajectory analysis also predicted terminal

differentiation within the alveolar macrophage cluster

(Figure 3G). Cluster 9, identified as interstitial macrophages

(Cd68, Msr1, and C1qa), was labeled based on its specific

expression of Trem2 (Figure 3F and not shown). Cluster 21

(macs_mertk) was identified as a mature subset based on

pseudotime analysis and distinctive expression of Mertk alongside

Itgax, Mrc1, Atp6v0d2, Kcnip4. This cluster was found solely in

controls and 42 days post injury (Figures 3F, G). Two monocyte-

like subsets were annotated as non-classical/NC (cluster 4 - Csf1r,

Cx3cr1) and classical/inflammatory (cluster 11 - Ccr2, Ly6c2, Lyz2,

Ms4a6c, F13a1) (Figure 3F; Supplementary Table 3). Cluster 10 was
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FIGURE 3

Single-cell RNA sequencing of SP-CI73T induced injury and fibrosis. Single-cell RNA sequencing analysis was performed on collagenase digested
single cell suspensions from controls (Ctl, oil treated SP-CI73T mice), 14 days or 42 days post SP-CI73T induction. (A) UMAP analysis overlaying cells
from controls (cI73T, pink), 14 days (t14d I73T, green), and 42 days (t42d I73T, blue). (B) Split identify UMAP depiction of all cellular clusters identified
in controls (cI73T), 14 days (t14d I73T), and 42 days (t42d I73T) at 0.4 resolution. (C) Cluster breakdown identifying 7 endothelial, 3 mesenchymal, 3
epithelial, 2 polymorphonuclear, mast cells, 4 B cell, 4 lymphocytic, and 9 mononuclear myeloid clusters. Note that mononuclear myeloid clusters
were renamed based on single R and manual annotation: cluster 3 = Mac_Alv; cluster 4 = Mono_non classical/NC; cluster 9 = Mac_Trem2; cluster
10 = Mono_DC; cluster 11 = Mono_inflammatory/infl; cluster 19 = was removed from further analysis as it was identified solely in one of the
controls; cluster 21 = Mac_MerTK; cluster 24 = DC; cluster 32 = was combined with cluster 3/Mac_Alv since pseudobulk analysis revealed
analogous gene expression and pathway activation. (D, E) UMAP analysis for Cd68 and Itgam/Cd11b defines distribution and cellular expression in
the SP-CI73T lung. (F) Bubble plot of selected genes associated with macrophage maturation (Trem2, Itgax, Ear1, Ear2, Atp6v0d2, Siglecf, Mertk),
recruitment and activation (F13a1, Ly6c2, Ccr2, Cx3cr1, Ctsk, Lyz2, H2-eb1, CcL22, Ccl17, Cd80, Cd86) in all annotated monocytes/macrophages/
dendritic cell clusters (Mo/Mac/DCs). (G) Pseudotime UMAP analysis. Note color intensity defining cellular maturation among monocyte/
macrophage clusters. (H) Enrichr-based Reactome pathway analysis for the top-15 predicted pathways in the 7 resulting monocyte/macrophage/DC
clusters. Single gradient color heatmap shows logarithmic adjusted p-values. Values above the arbitrary threshold (-log of adjusted p-value) of 20
were color-coated in black.
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annotated as monocyte-derived DCs based on a mixed myeloid and

lymphoid signature (Ccr2, Itgae/Cd103, Cd209/Dc-sign) and major

histocompatibility complex genes. A cluster of lymphoid-derived

DCs (cluster 24) lacking all classical myeloid features and

expressing Cd80, Cd86, Cd40, Il4i, Ccr7, Ccl17, and Ccl22 was also

annotated (Figure 3F). Split identity analysis of these curated gene

sets also highlighted time related changes in the expression of

established macrophage maturity and identity genes (e.g.

Atp6v0d2, Itgax, and Cd68 expression increases, downregulation

of Siglecf, Ear1, and Ear2) (Supplementary Figure 4A). Similar

trends were observed for neutrophils (PMN 1 lost Ptgs2 and

Tgm2 in favor of Retnlg and Lcn2), eosinophils (PMN 2 - Siglecf,

Itgam, Cxcr2, Cd33, Csf3r, Tgfbr1), epithelial cells (Epi1 - Cldn18,

Ager, Hopx, Krt8, Krt19, Sftpb), mesenchymal/stromal cells (Mes 2 -

Tgfbr3, Ccn1, Pdgfra, Npnt, Loxl1, Ecm1, Fgf2), and lymphatic

endothelial cells (Endo 6 - Nrgn, Itga2b, Gp1bb increased 14 days

post injury). By comparison, B and T cells showed limited

transcriptional fluctuation over the 42-day injury (Supplementary

Figures 4B–G).

Pseudobulk differential expression analysis of Trem2+

macrophages surveyed gene expression and patterns during

injury. Approximately 700 genes demonstrated a transient drop

in abundance at 14 days (expression pattern group-1), while the

abundance of 621 genes was significantly increased following SP-

CI73T induction (expression pattern group-2) (Supplementary

Figure 5). Smaller gene sets were shown to transiently increase at

14 days (122 genes, expression pattern group-3) or steadily decrease

after SP-C induction (61 genes, expression pattern group-4)

(Supplementary Figure 5). Notably, Reactome-based analysis

predicted no significant pathway to be altered for genes annotated

in expression pattern-1, while cytokine and interleukin signaling,

immunity, antigen presentation, and lipid and carbohydrate

metabolism were among significant pathways for expression

pattern-2 genes. By comparison, transcript abundance in

inflammatory monocytes followed two expression patterns:

transient decrease (237 genes) or increase (158) at 14 days post

injury. The latter predicted engagement of pathways related to

complement cascade, extracellular matrix organization and

immune responses (Supplementary Table 3).

Reactome-based analysis of the top-15 most significantly

regulated pathways revealed shared inflammatory signature

(‘immune system’, ‘neutrophil degranulation’, ‘ROS and RNA

production in phagocytes’) between alveolar macrophages and

Trem2+ interstitial macrophages, though at considerably different

adjusted p-values (Alv macs p-value <10-25 vs. Trem2+ p-value <10-

103) (Figure 3H; Supplementary Table 3). By comparison, Mertk+

cells were not predicted to engage in innate or adaptive immunity or

cytokine mediated signaling, but generated a strong GTPase

signature (CDC42, RAC, RHO, and ROBO/SLIT). Examination of

monocyte-like clusters highlighted analogous ‘cytokine signaling in

immune system’, ‘innate immunity’, and ‘neutrophil degranulation’

engagement. Cx3cr1+ non-classical cells excelled in ‘VEGF signaling’,

‘signaling by tyrosine kinases’, and ‘Rho GTPase signaling’, while

Ccr2+Ly6c2+ classical/inflammatory monocytes produced a

signature related to RNA synthesis and translation and pathways

involved in ‘cellular response to stress’. Lastly, monocyte-derived and
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lymphoid DCs produced comparable activation profile (infectious

disease response, translational elongation and termination, and

ribosomal homeostasis) (Figure 3H).
Macrophages from human IPF display a
comparable phenotype as murine SP-
CI73T injury.

A recent dataset published by Adams and colleagues provided in

depth assessment of epithelial, endothelial, mesenchymal, and

immune populations in healthy and IPF tissue explants (40). The

mononuclear myeloid compartment from this set (44,226 cells;

12,514 from controls and 31,712 IPF, GSE136831) was re-

examined to define similarities between clinical and experimental

fibrosis. To avoid overfitting the data, the lowest resolution was

utilized (0.1), ultimately generating 5 major subsets (Supplementary

Figure 6A). UMAP analysis identified clusters 3 and 4 solely in the

controls, with an expansion in clusters 0 and 1 was noted in IPF

(Figure 4A). Cluster-based analysis of top-5 non-redundant genes

revealed differential expression for SPP1, CTSK, MMP7 (cluster 1)

and FABP4 (cluster 2) (Figure 4B; Supplementary Table 4). Disease-

based analysis highlighted notable changes in cluster 0 (SPP1, C1QC,

APOE) and cluster 1 (THBS1, FN1), consistent with our murine

dataset, including, (Figures 4B, C, Supplementary Table 5). A

curated set of 25 identity and lipid associated genes, used to

annotate this clusters, identified cluster 0 as an interstitial

macrophage population (widespread expression of ITGAX,

TREM2, MRC1, ITGAM, APOE) and Cluster 1 as alveolar

macrophages (ITGAX/CD11C, ITGAM, ABCA1). Notably, cluster

1 also displayed a signature characteristic of a potentially pro-fibrotic

monocyte-derived population in IPF lungs (TREM2, MERTK,

ATP6V0D2, CTSK, COL4A2, MMP7, MMP9) paired with a shift

in metabolic function (FABP5, LPL and LIPA increases). Clusters 2,

3 and 4 did not exhibit distinguishing signatures besides

overexpression of major histocompatibility complex genes (HLA-

DRB6) (Figure 4C; Supplementary Figure 6B). UMAP analysis of the

distribution of MERTK and fibronectin1/FN1 demonstrated

widespread presence in cluster 0 and 1 of the IPF lung, while

ostepontin1/SPP1 was restricted to cluster 1 (Figures 4D–F).

Tumor growth factor b1/TGFb1 was expressed in all cells

regardless of disease state (Supplementary Figures 6C, D). Enrichr-

based pathway analysis using the Reactome database highlighted IPF

induced changes (annotated as “global”) in all facets of immune cell

behavior, including “Immunity”, “Cellular Responses to Stress”,

“Cytokine Signaling in Immune System”, complement activation,

and GTPase signaling, and control of transcription and translation.

Clusters 0, 1, 2 were responsible for the majority of these signals

(Figure 4G; Supplementary Table 4). Direct comparison of

Reactome pathways from the spatial analysis and both the murine

and human single-cell sequencing datasets highlighted similarities

between cluster 1 annotated in the human IPF dataset and

inflammatory monocytes from the SP-CI73T mouse model. No

distinctive similarities were noted with respect to CD68+

macrophages sampled from peri-injured and injured regions of the

lung during our spatial analysis (Figure 4H).
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Osteopontin1 and fibronectin1 intercellular
communication during SP-CI73T

induced injury

CellChat software was utilized to predict communication

among cellular clusters during SP-CI73T induced fibrotic injury.

Initial analysis grouped all 33 clusters into 7 macro-groups

(epithelial , endothelial, stromal, B cells , granulocytes,

lymphocytes, and Mo/Mac/DCs) (Supplementary Figure 7A) (51,

53). CellChat based aggregation of ligand: receptor expression

estimated increases in differential number and strength of

interaction between mesenchymal-epithelial and mesenchymal-

Mo/Mac/DCs and within epithelial clusters 14 day post-injury,

relative to controls. Within the Mo/Mac/DC macro-groups the

communication was estimated to increase in strength

(Supplementary Figure 7B). Interrogation of the inter-cluster

network 42 days post-induction showed increased interactions in

stromal and Mo/Mac/DC macro clusters relative to controls and 14

days (Supplementary Figures 7C, D), with incoming and outcoming

signals from the Mo/Mac/DC macro-cluster associated with SPP1

and FN1 pathway (Supplementary Figures 7E–G, Supplementary

Tables 6–9).
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To pinpoint the exact cellular origin of these signals, CellChat

analysis was carried out after split of the Mo/Mac/DC macro-

cluster. This analysis revealed alveolar macrophages as a dynamic

cluster at baseline (both incoming/receptor-based and outgoing/

ligand-based interactions), while Trem2+ macrophages produced

high volume of incoming/outgoing signals 14 days post injury and

Mertk+ cells became active at 42 days. Classical/inflammatory

monocytes maintained comparable network profile throughout

the 42-day time course, with non-classical monocytes effectively

reducing outgoing signals after SP-CI73T injury (Figure 5A;

Supplementary Figures 8A–C). Split identity pathway analysis

across the 42-day time course demonstrated the origin of the

osteopontin1/SPP1, fibronectin1/FN1, chemokine ligand/CCL,

laminin, semaphorin3/SEMA3, galectin, complement, and

collagen signaling to be driven by Trem2+ macrophages at 14

days (Figure 5B). By 42 days, the predicted interaction strength

was comparable across the monocyte and macrophage clusters

(Supplementary Figures 8D–F). Connectome ring plots were used

to capture the changes and directionality of these interactions

during injury and fibrosis. Analysis of CCL signaling predicted

baseline crosstalk among all annotated mononuclear myeloid cells

and granulocytes. While these responses were unaffected 14 days
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FIGURE 4

Single-cell RNA sequencing of annotated macrophages from human IPF. Macrophages from a published IPF dataset (GSE136831) were re-mined. (A) Split
identity UMAP analysis of clusters annotated at 0.1 resolution using the Seurat analysis package. (B) Cluster-based and disease-based top-5 non-redundant
genes from annotated clusters. (C) Split identity UMAP shows expression distribution for TREM2 in control and IPF lungs. (D) Split identity bubble plot of
selected genes associated with macrophage maturation (TREM2, MERTK, ATP6V0D2, ITGAX), recruitment and activation (ITGAM, CD163, HLA-DRB6, CTSK,
COL3A1, COL4A2, MMP7, MMP9, FN1, SPP1, TGFBI), and lipid homeostasis (APOE, CD36, LRP1, LPL, LIPA, ABCA1, ABCG1, FABP5, PPARG). (E) Split identity
UMAP showing expression distribution for MERTK in control and IPF lungs. (F) Split identity UMAP showing expression distribution for FN1 in control and IPF
lungs. (G) Split identity UMAP showing expression distribution for SPP1 in control and IPF lungs. (H) Enrichr-based Reactome pathway analysis for the top-15
predicted pathways between controls and IPF samples. Single gradient color heatmap shows logarithmic adjusted p-values. Values above the arbitrary
threshold (-log of adjusted p-value) of 6 were color-coated in black. (I) Enrichr-based Reactome pathway analysis comparing significant pathways in
mononuclear myeloid clusters from the human IPF dataset, SP-CI73T spatial transcriptomics, and SP-CI73T single-cell sequencing datasets. Single gradient
color heatmap shows logarithmic adjusted p-values. Values above the arbitrary threshold (-log of adjusted p-value) of 10 were color-coated in black.
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post SP-CI73T injury, by 42 days there was a global activation of this

signaling network (Figure 5C). Differential expression of

chemokines/cytokines/interleukins and their receptors highlighted

distinct signatures in alveolar macrophages (Ccl6, Il18, Cxcl2, and

Il1a), Trem2+ macrophages (Ccl12, Ccl2, Ccl24, Ccl9, Cxcl16, Ccr5,

Il10rb, Il11ra1), while Mertk+ macrophages and monocyte-derived

DCs were relatively quiescent. Classical and inflammatory

monocytes presented a receptor dominant repertoire (Cx3cr1,

Il10ra, Il17ra, Il6ra – inflammatory monocytes exclusively

expressed Ccr2) (Figures 5D, E). CellChat-based network analysis

for complement signaling predicted outgoing communication from

classical monocytes to other myeloid clusters in all conditions, with

a transient activation originating from stromal cells 14 days post

injury (Figure 5F). Differential expression revealed distinct

signatures in trem2+ macrophages (C1qa, C1qb, C1qc, C3ar1) and

stromal cells (stromal 2 - C1qtnf7, C1ra, C2, C3, C4b, C7), with

granulocytes also expressing C3ar1, C5ar1, and C5ar2 (Figure 5G).
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Trem2+ macrophages coordinate pro-
fibrotic communication during SP-CI73T

induced injury and fibrosis

We then query the dataset for distinctive extracellular matrix

reorganization gene signatures. Unsurprisingly, mesenchymal cells

produced signals from collagen genes, metalloproteinases, laminins,

and platelet-derived growth factor receptor alpha and beta

(Supplementary Figure 9). Expression of Timp1, Mmp12, and

Mmp14 were restricted to Trem2+ cells, while Spp1, Fn1, and

Mmp19 were shared with alveolar macrophages (Figure 6A).

Tgfb1 transcripts were maximal in inflammatory monocytes,

though UMAP analysis of distribution suggested widespread

expression in the lung (Figures 6A, B). Notably, Spp1, and Fn1

expression was also found in the endothelial and mesenchymal

compartment (Figures 6C, D). Signaling connectome ring for Tgfb1

highlighted baseline signals emanating primarily from alveolar
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FIGURE 5

Cell-cell communication analysis in SP-CI73T induced injury and fibrosis. CellChat software was used to estimate cell-cell communication in controls
(Ctl, oil treated SP-CI73T mice), 14 days or 42 days post SP-CI73T induction. (A) Ligand:receptor expression analysis examining incoming (y-axis) and
outgoing (x-axis) signals in controls, 14 days or 42 days post injury. Note that individual endothelial, mesenchymal, epithelial, granulocyte, B cell, and
lymphocyte clusters were combined into “macro-clusters”, while mononuclear myeloid cells remained split. The size of the circles is representative
of population size. (B) Prediction of signaling changes in Trem2+ macrophages between control and 14-day, control and 42-day, and 14-d and 42 d.
Plot legend describes directionality (circle - shared by both groups, square - incoming in a specific group, triangle - outgoing in a specific group,
diamond - incoming and outgoing in a specific group) and signal specificity (black - shared by both groups, orange - control specific, cyan - injury/
tamoxifen specific). (C) Connectome ring plots for chemokine ligand/CCL signaling pathway network predict directionality and communication
strength among clusters. (D, E) Split identity bubble plot for chemokine/cytokine/interleukin ligands and receptors among mononuclear myeloid
clusters. Note that the size of the bubble indicates the relative abundance of the population expressing target gene. Color coating indicates average
expression. (F) Connectome ring plots for Complement signaling network predicting directionality and strength of communication among clusters.
(G) Split identity bubble plot for complement associated genes among mononuclear myeloid clusters. Note that the size of the bubble indicates the
relative abundance of the population expressing target gene. Color coating indicates average expression.
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macrophages, non-classical monocytes, monocyte-derived DCs,

and B cells. Despite transient drop 14 days post SP-CI73T induced

injury, the network returned to control levels by 42 days, with

involvement of Mertk+ macrophages (Figure 6E; Supplementary

Tables 6–9). Osteopontin1 signaling network revealed alveolar

macrophages as the sole driver in control lungs. SP-CI73T induced

injury produced increases in alveolar and Trem2+ macrophages (14

days), and ultimately global expression in all lung cells (42 days)

(Figure 6F; Supplementary Tables 6–9). Inflammatory monocytes

and alveolar macrophages were shown to engage in fibronectin 1

signaling in the control and injured lung. Notably, Trem2+

macrophages and stromal cells were predicted to partake in FN1

communication 14 days post-injury, while Mertk+ macrophages

were shown at 42 days (Figure 7G; Supplementary Tables 6–9).

Although spatial examination did not detect significant differences

among CD68+ macrophages collected from healthy, peri-injured,

and injured regions of the lung 14 days post injury, we found that

proximity to the remodeled tissue (areas of interest 006 and 010)

resulted in higher expression of Tgfb1 , Spp1, and Fn1

(Figures 6H–J).
Genetic ablation of ApoE does not impact
SP-CI73T induced injury

Curated analysis for genes involved in lipid handling and

metabolism showed heterogeneous expression among

mononuclear myeloid cells during SP-CI73T induced injury and

fibrosis. Monocytes exhibited a limited repertoire of lipid-associated
Frontiers in Immunology 1283
genes. Alveolar macrophages displayed an extensive signature at

baseline (Fabp1, Plin2, Lipa, Lpl, Lpin1, Abcg1, Acox1) which

expanded after injury (Nr1h3, Marco, Fabp4). Mertk+

macrophages developed distinct signatures at 14 days (Nr1h3,

Marco, Plin2, Abca1) and 42 days (Pparg Ldlr, Lrp1, Lrp12, and

Acox1), a time coordinated with their maximal abundance

(Figure 7A). Trem2+ gene expression was restricted to ATP

binding cassette transporters (Abca1, Abca9) and exclusive Apoe

expression. Analysis of the distribution of Apoe and two of its

established receptors (Lrp1, Ldlr) confirmed predominant

expression in mononuclear myeloid and mesenchymal clusters

(Figures 7B–D) (54). Immunohistochemical analysis of ApoE

showed increases in parenchymal and immune cells 7 days and

14 days post induction, in particular within injury foci (Figure 7E).

In situ hybridization analysis validated the origin of Apoe in CD68+

macrophages up to 42 days after SP-CI73T injury, while western blot

analysis of BAL fluid also confirmed protein increases after SP-CI73T

induced injury (Figures 7F, G). Our bulk RNA sequencing predicted

activation of the ApoE signaling pathway in SigF+CD11c+CD64+

alveolar macrophages, however its expression (or that of its

receptors) was not spatially restricted (Figures 7H, I). To test the

hypothesis that ApoE is directly implicated in Mo/Mac/DC

function during pulmonary remodeling, mono- and bi-allelic

deletion of ApoE (SP-CI73TApoEHET and ApoEHOM) was

designed (Figure 7J). Neither ApoE hypofunctional or null mice

impacted accumulation of Spp1+ macrophages within areas of

injury 14 days post SP-CI73T induction (Figure 7K). Similarly,

there was no improvements in pulmonary histopathological

scoring, BAL cell counts, or mortality (Figures 7L–O).
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FIGURE 6

Pro-fibrotic cell-cell communication in SP-CI73T induced injury and fibrosis. CellChat-based analysis of fibrogenic signaling from controls (Ctl, oil
treated SP-CI73T mice), 14 days or 42 days post SP-CI73T induction. (A) Split identity bubble plot for fibrosis-associated genes among mononuclear
myeloid clusters. Note that the size of the bubble indicates the relative abundance of the population expressing target gene. Color coating indicates
average expression. (B-D) UMAP analysis for tgfb1, spp1, fn1. (E-G) Connectome ring plots for TGFb, osteopontin/SPP1 fibronectin/FN1 signaling
pathway network predicting directionality and communication strength among clusters. Note that only Mo/Mac/DC clusters are split. (H-J) Box plots
for Tgfb1, Spp1, Fn1. CD68+ macrophages isolated from healthy regions are shown in dark purple, peri-injured macrophages in pink, and injured
macrophages are shown in green. The Y-axis represents normalized counts.
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Discussion

Genetic mutations in key nodes of pulmonary epithelial

function are intertwined with familial forms of pulmonary fibrosis

(PF) and other interstitial lung diseases (55). Dysbiosis among

parenchymal cells promote repeated cycles of injury,

inflammation, epithelial-to-mesenchymal transition, and the

proliferation of polyclonal fibroblast clusters, leading to spatially

and temporally heterogenous tissue remodeling (56–58). In the

current paradigm of PF, the role of immune cells remains

ambiguous and primarily circumscribed to “acute inflammatory
Frontiers in Immunology 1384
exacerbations”, sporadic events that severely worsen disease

phenotype and accelerate patient mortality. This paradigm is

supported by clinical and experimental evidence linking excess

inflammatory monocyte mobilization and their retention as pro-

fibrotic monocyte-derived macrophages to poor prognosis (13, 14,

20, 22). Our group has previously defined the involvement of

mononuclear myeloid cells at all stages of inflammatory

exacerbations triggered by a clinically relevant single point

mutation in the alveolar epithelial cell specific gene encoding for

the surfactant protein C (SP-CI73T) (59). Using this experimental

platform and available human IPF datasets, this work aimed to
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FIGURE 7

Lipid signature in SP-CI73T induced injury and fibrosis. Lipid-associated gene expression was assessed in controls (Ctl, oil treated SP-CI73T mice), 14 days or 42
days post SP-CI73T induction. (A) Split identity bubble plot for lipid-associated genes among mononuclear myeloid clusters. Note that the size of the bubble
indicates the relative abundance of the population expressing target gene. Color coating indicates average expression. (B-D) UMAP analysis for Apoe, Lrp1,
Ldlr. (E) Immunohistochemical analysis for ApoE in controls, 14 days or 42 days post SP-CI73T induced injury. A representative image is shown. (F)
Combination of immunohistochemistry (CD68, brown) and in situ hybridization (Apoe, magenta). Protein expression was visualized using a DAB Vectastain
kit. Original magnification, 400x. Insets, 1000x. (G) ApoE western blot analysis of BAL fluid from SP-CI73Tcontrol (Ctl), 7 days, 14 days, and 42 days post
induction (N=3). Red arrowhead indicates molecular weight band for ApoE (34 KDa). (H) Heat maps of significantly altered genes associated with ApoE
signaling in flow cytometry sorted CD11b-SigF+CD11c+CD64+ resident lung macrophages 3- and 14-days after injury. The criteria for significance was a 5%
false discovery rate. Note that the orange box highlights signatures specific to a given time point. (I) Box plots for Apoe, Lrp1, Ldlr. The Y-axis represents
normalized counts. A p-value ≤0.05 was considered significant using Linear Mixed Model. (J) ApoE western blot analysis of BAL fluid from control and 14
days SP-CI73TApoEWT (controls N=2; 14 days N=2), SP-CI73TApoEHET (controls N=2; 14 days N=2), and SP-CI73TApoEHOM (controls N=2; 14 days N=3). Red
arrowhead indicates molecular weight band for ApoE (34 KDa). Black brackets represent ApoEWT, ApoeHET, ApoEHOM BAL fluid from control SP-CI73T mice.
Red brackets represent ApoEWT, ApoeHET, ApoEHOM BAL fluid 14 days post SP-CI73T induced injury. (K) Duplex in situ hybridization analysis for Tgfb1 (pink)
Spp1 (blue) in SP-CI73TApoEWT, SP-CI73TApoEHET, and SP-CI73TApoEHOM lungs 14 days post injury. Representative images are shown. (L-M) H&E staining and
histological scoring of SP-CI73TApoEWT, SP-CI73TApoEHET, and SP-CI73TApoEHOM lungs 14 days post injury. Pathological scoring included counting of foci of
injury, extent of inflammation, edema, hemorrhage, and alveolar architecture remodeling. Representative images are shown. (N) Bronchoalveolar lavage fluid
(BAL) cell counts of SP-CI73TApoEWT, SP-CI73TApoEHET, and SP-CI73TApoEHOM samples (controls and 14 days post injury). Data are presented as mean ± SEM
(n = 4-9 mice/group), analyzed using two-way ANOVA. A p<0.05 (*) was considered significant. Lines mark significant groups. (O) Kaplan–Meier survival
curve of SP-CI73TApoEWT, SP-CI73TApoEHET, and SP-CI73TApoEHOM lungs 14 days post injury. Analysis includes mice found dead or displaying ≥20% body
weight from study initiation. Log-Sum (Mantel-Cox) Rank test was used.
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expand the current understanding of PF and fill an important gap

pertaining to macrophage phenotypic heterogeneity and aberrant

cell-cell crosstalk in fibrotic disease. Specifically, we spatially

characterized the transcriptional profile of CD68+ macrophages

within and surrounding fibrotic foci of injury; defined incoming

and outgoing pro-fibrotic communications among pulmonary cells;

identified a dynamic lipid signature across all annotated

macrophage and monocyte clusters, with a sole population

producing Apoe; and showed that SP-CI73T induced fibrosis is

marginally impacted by genetic Apoe deletion.

Initial work was designed to spatially localize activated

macrophages in the healthy, inflamed, and fibrosing lung. This

approach aligns with a handful of recent reports that elegantly

resolve epithelial, mesenchymal, and immune cell identity and

abundance in clinical and experimental fibrosis (60, 61). Our

studies go beyond the focus of these publications by placing

emphasis on the distribution of macrophages from spatially

diverse regions of the injured lung. CD68 represents a

compromise allowing to sample both control/healthy and injured

macrophages. Our gene expression and hierarchical clustering

analysis demonstrate heterogenous transcriptional signatures

among macrophages sampled from the fibrosing lung, thus

suggesting a gradient of activation based on spatial localization.

Pathway analysis also painted an unexpected picture characterized

by transcriptionally quiescent CD68+ cells sampled from fully

remodeled regions, contrasting a hyperactive phenotype

emanating from peri-injured macrophages. Within this region of

interest our findings also support the notion that macrophages

activation is linked to their proximity to the injury. Findings that

innate and adaptive immunity, matrix remodeling, senescence, and

redox balance signals are predicted to be driven primarily by peri-

injured macrophages (compared to all other sampled regions) adds

depth to previous reports showing unequal expression of

inflammatory proteins among immune cells found in healthy and

fibrotic regions of the clinically diseased lung (62). Our results also

support and complement evidence showing downregulation of

inflammatory signaling (TNFa) in IPF immune infiltrates

compared to healthy/unaffected regions (63). The comprehensive

nature of our transcriptional analysis is novel in the context of

fibrosis, particularly in pulmonary injury triggered by genetic

susceptibility of the epithelial compartment and could provide

insights in the development of more targeted and effective

therapeutics in the future.

To further appreciate the role of the resident alveolar compartment

during inflammatory exacerbations progressing to fibrosis, flow

cytometry-based sorting of CD11b-SigF+CD11c+ cells was performed

3 days and 14 days after SP-CI73T induced injury. Our results allowed

us to place these cells as players of all phases of the SP-CI73T injury,

through temporally restricted activation of canonical inflammatory

pathways (IL6 and prostaglandin E2 exclusively shown 3 days post

injury) and pro-fibrotic pathways (glycoprotein/GP6, SOX2, KLF4). At

the same time, we show a subset of signaling networks sustained over

our 14 day analysis, albeit driven by distinct transcriptional signatures

(IFNg, TGFb1, IL-4) (64, 65). While these signals have been previously

reported in the fibrotic lung, specific annotation in resident alveolar

macrophages strengthens the notion that this population functions as a
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pleiotropic effector of inflammation and tissue remodeling (66, 67), and

further substantiates our prior histopathological investigation of the

SP-CI73T injury (dysregulated inflammation and increased mortality)

following pharmacological depletion of alveolar macrophages with

clodronate liposomes (10).

Due to the phenotypic heterogeneity intrinsic of monocytes/

macrophages in chronic disease, we built on our previous

characterization of monocyte-derived macrophages through

single-cell RNA sequencing (10, 22, 68). Albeit a low-resolution

clustering analysis, we identified three macrophage (alveolar

macrophages, Trem2+, and Mertk+), as well as transcriptionally

distinct populations of monocytes (classical - Itgam/cd11b, Cx3cr1;

inflammatory - Ccr2, Ly6c, Lyz2) (69). Our findings that

complement signaling is involved in SP-CI73T injury and fibrosis

is consistent with evidence that soluble defense collagens support

activation, proliferation, and tissue-repair functions of

macrophages (70–72). Alongside these signals, our results define

inflammatory monocytes and monocyte-derived moieties

(interstitial macrophages) as centrally involved in fibronectin/FN1

and osteopontin/SPP1 signaling in the fibrosing lung, a finding

consistent with bleomycin-induced injury (42, 73–78).

Mertk has been used to identify alveolarmacrophages due to its role

in mediating phagocytosis of apoptotic cells (79). Our annotation of a

Mertkint cluster in control lungs is consistent to their identity as alveolar

macrophages. However, identification of a second population of

Mertkhigh cells appearing 42 days post injury and displaying a unique

transcriptional signatures suggest these may be monocyte-derived

moieties settling within the lung following the end of the

inflammatory exacerbation. Further work needs to establish their

identity since our pseudotime analysis did not fully recapitulate

their origin.

Mining of a publicly available human IPF dataset (GSE136831,

www.ipfcellatlas.com) offered the opportunity to add a translational

value to these findings (40). Our analysis identified three

macrophage clusters in the IPF lung that generate a

transcriptional signature comparable to our murine results

(innate immunity, interleukin mediated signaling, fibrogenic

processes, and heightened transcriptional and translational

control). In particular, this work confirmed the presence of

TREM2+ interstitial macrophages (cluster 0) and a population of

alveolar macrophages (cluster 1) in late stage IPF (22, 80, 81). Due

to the low resolution of the clustering, our findings do show a single

cluster co-expressing MERTK and TREM2. At this stage, it is

unclear if such population appears in established fibrosis as

clinical literature seldom cites both markers. Independent of the

nomenclature, our assessment is consistent with reports showing

osteopontin/SPP1, fibronectin/FN1, and TGFb1 signaling in the

fibrotic niche (73, 82–84).

The importance of defining the metabolic signatures

accompanying acute and chronic inflammation has great

therapeutic potential (85). Our analysis identifies a robust lipid

signature in steady-state alveolar macrophages, a notion consistent

with their role in surfactant lipid (fluid) recycling and maintenance

(86). The changes observed during SP-CI73T injury are consistent

with the notion that pro-fibrotic reprogramming requires a

metabol ic shi ft towards l ipid consumption (87, 88) .
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Therapeutically noteworthy is the transcriptional signature

produced by Mertkhigh macrophages 42 days post injury, which

included Pparg and several apolipoprotein receptors. Indeed, there

is a large body of evidence showing that engaging this transcription

factor is effective in attenuating the fibrotic phenotype (89–91). By

comparison, this work leveraged the specificity of the Apoe signal

originating from Trem2+ cells and recent experimental evidence

linking this lipoprotein to pro-fibrotic monocyte-derived

macrophages during chemical-induced fibrosis (36, 92–94). Our

findings that ApoE deletion does not provide overt benefits on

Spp1+ cell accumulation in the foci of injury, total inflammation, or

survival is somewhat surprising. Confounding elements related to

the compensatory effects of a global knock out, or the impact of

ApoE deletion on a surfactant impaired system may need further

examination. Despite these incongruences, our results support the

value of ApoE as a biomarker indicative of the presence of Spp1+

and Fn1+ pro-fibrotic macrophages in the lung.

Though comprehensive, any experimental modeling of disease has

limitations. While pairing murine sequencing data with human single-

cell datasets offers translational value, elements related to disease

staging (early inflammatory exacerbation vs. end-stage disease) and

heterogeneity of human IPF etiologymake this assessment less obvious.

Furthermore, it is well established that use of antibody-based sorting

introduces bias to the analysis (e.g., CD11b-SigF+CD11c+ in our bulk

sequencing, CD45+CD68+ for spatial analysis). To a lesser degree,

clustering analysis of single-cell RNA sequencing data and cell-

communication predictive tools introduce bias related to pathway

annotation, and therefore any analysis attempting to describe non-

canonical signaling (e.g. ApoE signaling in inflammation rather than

lipid homeostasis) may not find a fitting match.

Despite any potential drawback, this work comprehensively

assesses the spatial and phenotypic distribution of macrophages in

pulmonary fibrosis triggered by a fibrogenic mutation in the alveolar

epithelial cell restricted gene encoding for the SP-C. Our data finds

peri-injury macrophages to produce an extremely active phenotype,

while CD68+ cells localized within the fibrotic foci appear

transcriptionally dormant at the peak of an inflammation

exacerbation. Single cell analysis elucidated the intercellular

communications occurring in the lung, while identifying Ccr2+Ly6c+

inflammatory monocytes and trem2+ interstitial macrophages as

distinct fibrogenic populations in SP-CI73T induced injury.

Furthermore, our work defined distinct lipid signatures among

macrophage populations and propose ApoE as a potential biomarker

to identify SPP1- and FN1-producing macrophages. Taken together,

this work provides an essential framework for the identification (and

future targeting) of deleterious macrophage populations in the early

and late stages of the fibrogenic process.
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Logan N, et al. Local amplifiers of IL-4Ra-mediated macrophage activation promote
repair in lung and liver. Science. (2017) 356:1076–80. doi: 10.1126/science.aaj2067
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Introduction: Single-cell RNA sequencing (scRNAseq) and flow cytometry

studies in skin are methodologically complex and costly, limiting their

accessibility to researchers worldwide. Ideally, RNA and protein-based analyses

should be performed on the same lesion to obtain more comprehensive data.

However, current protocols generally focus on either scRNAseq or flow

cytometry of healthy skin.

Methods:We present a novel label-free samplemultiplexing strategy, building on

the souporcell algorithm, which enables scRNAseq analysis of paired blood and

skin samples. Additionally, we provide detailed instructions for simultaneous flow

cytometry analysis from the same sample, with necessary adaptations for both

healthy and inflamed skin specimens.

Results: This tissue multiplexing strategy mitigates technical batch effects and

reduces costs by 2-4 times compared to existing protocols. We also demonstrate

the effects of varying enzymatic incubation durations (1, 3, and 16 hours, with and

without enzyme P) on flow cytometry outcomes. Comprehensive explanations

of bioinformatic demultiplexing steps and a detailed step-by-step protocol of the

entire experimental procedure are included.

Discussion: The protocol outlined in this article will make scRNAseq and flow

cytometry analysis of skin samples more accessible to researchers, especially

those new to these techniques.
KEYWORDS

skin, inflammation, single cell RNA sequencing (scRNA), flow cytometry, souporcell,
multiplexing, skin dissociation
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Introduction

Analyzing RNA and protein at the single-cell level in lesional

skin is crucial for understanding the immune mechanisms

underlying dermatological disorders and identifying novel

therapeutic targets. Recent advancements in standardized tissue

dissociations and single-cell RNA sequencing (scRNAseq) systems

have facilitated studies on diseases such as psoriasis and atopic

dermatitis using single-cell analysis methods (1–4). These studies

have significantly enhanced our understanding of the immune

mechanisms involved in these disorders. However, the complex

methodology and high costs associated with these studies limit their

accessibility, preventing many laboratories from conducting such

experiments and hindering the application of these studies to other

dermatological disorders. Therefore, there is a pressing need for

cost-effective and detailed experimental protocols to make these

techniques more accessible to researchers.

Obtaining high-quality cells with intact RNA and protein

epitopes from solid tissues has been a significant challenge for

single-cell studies. Numerous protocols for tissue dissociation have

been documented in the scientific literature (5–7). The introduction

of automated tissue dissociator systems has further facilitated flow

cytometry and scRNAseq analysis of dissociated skin cells (8, 9).

Recently, comprehensive methodological papers have provided

efficient and optimized protocols for scRNAseq and flow

cytometry analysis of human and pig skin, which we recommend

for further reading (5, 10–12). However, these papers

predominantly focus on either scRNAseq or flow cytometry,

without testing both methods on the same sample, and primarily

concentrate on healthy skin. Inflamed skin, which typically has a

higher cell count than healthy skin, may require different

experimental conditions.

High-throughput single-cell multi-omics methods, such as

CITE-Seq, have recently been developed to simultaneously study

RNA and protein. However, these techniques are less sensitive to

dim cell surface markers. Conventional and spectral flow cytometry,

as well as mass cytometry, remain the gold standards for single-cell

protein-based studies. Preservation of cell surface epitopes is

essential for these methodologies and can be influenced by

enzyme selection and prolonged enzymatic incubation periods.

Studies systematically comparing the effects of enzymatic

incubation durations are scarce, and none have examined the

impact of enzyme P, commonly used in cell dissociation protocols

to increase cell yield in scRNAseq studies.

Sample multiplexing is vital for reducing technical batch effects

and experimental costs in scRNAseq studies. Traditional sample

multiplexing relies on oligonucleotide-conjugated hashtag

antibodies. However, this approach has limitations, including the

risk of inefficient antibody binding to all cells, additional material

requirements for both multiplexing and demultiplexing steps, and

increased experimental complexity and costs. Existing protocols

often lack detailed steps for multiplexing samples, library

generation for barcodes, and demultiplexing methods. In our

experience, initial attempts at sample multiplexing in our

laboratory faced significant challenges due to insufficient detail in
Frontiers in Immunology 0290
existing protocols, risking the loss of samples and materials, which

prompted us to look for alternative sample multiplexing and

demultiplexing methods.

Recently, algorithms that recognize individual-specific single

nucleotide polymorphism signatures have been developed for label-

free demultiplexing of pooled samples. One such method, souporcell,

has shown excellent benchmarking results against antibody-based cell

hashing techniques (13). However, the complex experimental design

proposed in the original article, which involves splitting the same

sample into multiple experimental batches, has limited its usage in

research projects. A novel experimental design is needed to make this

method more widely applicable.

In this study, we aimed to establish a practical and cost-effective

protocol for single-cell protein and RNA analysis. We provide tailored

instructions for both healthy and lesional skin, demonstrating the

influence of various enzymatic incubation conditions on flow

cytometry analysis. Importantly, we introduce a novel, two-layered

sample multiplexing design that combines two complementary

strategies from the literature, along with demultiplexing steps, for

scRNAseq experiments. This approach can lower the experimental

costs 2-4 fold. Detailed explanations for each optimization step are

provided, allowing researchers to adapt and customize protocols

according to their specific needs (Supplementary Material).
Materials and methods

Experimental design

Our experimental design consists of two main parts. The first

part includes the acquisition of skin samples, followed by tissue

dissociation and flow cytometry analysis of freshly isolated cells. A

fraction of dissociated skin cells are cryopreserved for future

scRNAseq analysis at the end of this step (Figure 1). The second

part begins with sample preparation for scRNAseq analysis by cell

sorting, followed by gel beads-in-emulsion (GEM) generation,

library construction, sequencing, and data analysis (Figure 1). A

step-by-step protocol is presented in the Supplementary Materials.
Sample collection

The study was approved by the Koç University Committee on

Human Research (protocol number 2022.058.IRB2.007). Informed

consent was obtained from all participants.

Healthy skin samples were obtained by surgical excision of

excess skin tissue from individuals undergoing surgery (n=6).

Tissues were kept in cold tissue storage solution (130-100-008,

Miltenyi Biotec, Germany) until delivered to the laboratory on ice.

From each large surgical excision, eight 6 mm punch biopsies were

obtained. These punch biopsies were then distributed as two pieces

for each experimental condition, including three different enzyme

incubation periods and treatment with enzyme P. Lesional skin

biopsy specimens were collected from patients with Behçet’s disease

(BD, n=12). A 4 mm punch was used to collect skin biopsy samples
frontiersin.org
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from the lesional area. Demographic and clinical characteristics of

the study samples are demonstrated in Table 1.

For the isolation of peripheral blood mononuclear cells

(PBMCs), venous blood was diluted 1:1 with phosphate-buffered

saline (PBS) and spread over an equal volume of Lymphoprep

1.077g/ml density gradient (Axis-Shield, Norway) in 50 ml Falcon

tubes. The tubes were centrifuged at 500g for 30 minutes at room

temperature without brakes. Following centrifugation, the PBMC

layer was transferred into another 50 ml sterile tube and washed

with PBS containing an equal volume of 1% BSA. A fraction of cells
Frontiers in Immunology 0391
were analyzed freshly by flow cytometry and the remaining cells

were frozen in the cryopreservation solution (10% DMSO, 90%

FBS) for later usage.
Skin dissociation

After the delivery of skin samples, the tissue was washed

thoroughly with PBS, and subcutaneous tissue was removed with

a scalpel, paying attention to keeping the dermis intact. Then, the
FIGURE 1

Graphic representation of our experimental workflow that involves skin biopsy, tissue dissociation using the Whole Skin Dissociation Kit (Miltenyi Biotec,
Germany) in 2 steps of enzymatic and mechanical dissociation, staining part of the dissociated cells for flow cytometry analysis, and cryopreservation part of
cells for subsequent scRNAseq analysis. Second part includes thawing of cell suspensions, sample preparation by Fluorescence-activated cell sorting (FACS),
cell counting by trypan blue exclusion method, Gel Beads-in-emulsion (GEM) generation, library preparation, sequencing and data analysis. The figure was
created with BioRender.com. *For lesional skin, one 4mm punch biopsy was obtained. For healthy skin samples, two 6 mm specimens were obtained.
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skin tissues were dissociated enzymatically and mechanically using

the Whole Skin Dissociation Kit (130-101-540, Miltenyi Biotec,

Germany) and gentleMACS Octo Dissociator with Heaters

(Miltenyi Biotec, Germany) following the manufacturer’s

protocol. The kit recommends the use of three enzymes (enzymes

A, D, and P) for enzymatic dissociation, with the usage of enzyme P

being optional depending on the subsequent analysis method.

Enzyme P is known to cause cleavage of some extracellular

epitopes, which may interfere with flow cytometry analysis. The

duration of enzymatic incubation can be either 3 hours or overnight

as per the manufacturer’s manual. To investigate the effect of

enzyme P and various incubation durations (1h, 3h, and 16h) on

flow cytometry results, we first conducted a systematic study, as

these factors have not been studied comprehensively before.

The enzymatic steps were carried out as follows: 435 µL of

Buffer L and, if applicable, 12.5 µL of Enzyme P were combined in a

gentleMACS C tube. Subsequently, 50 µL of Enzyme D and 2.5 µL

of Enzyme A were added to the mixture, which was then thoroughly

mixed. The tissue-enzyme mixture was then placed in a 37˚C water

bath for incubation. We compared three different incubation

durations: 1, 3, and 16 hours.

After incubation, 500µL of cold DMEM (Gibco, USA) was

added to the mixture, and tubes were placed onto the gentleMACS

system. The “h_skin_01” program was initiated to mechanically

dissociate the tissues into cell suspension. Following completion of

the program, samples were briefly centrifuged and filtered using a

70 µm cell strainer (83.3945.070, Sarstedt, Germany), with 4 ml of

DMEM used to wash the cells.

After centrifugation at 350g for 10 minutes, the cell pellet was

counted using a hemocytometer with 0.4% Trypan blue to exclude

dead cells. Approximately 105 cells (in 100 µL buffer) were stained

and analyzed by flow cytometry on the same day, while the

remaining cells were cryopreserved (in 1 mL fetal bovine serum

plus 10% DMSO) for subsequent scRNAseq analysis.
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Flow cytometry

All antibodies and the fixable viability dye used in this study are

listed in Supplementary Table 1. Initially, 105 freshly isolated skin

cells or PBMCs were incubated with Zombie NIR fixable viability

dye for 10 minutes on ice. Subsequently, 2 ml of FACS buffer (PBS+

1% BSA) was added to the tubes, followed by centrifugation at 500 g

for 5 minutes. After centrifugation, the supernatant was decanted,

and a cell surface antibody cocktail was added. Samples were then

incubated for 20 minutes on ice. Post-incubation, samples were

washed again with 2 ml of FACS buffer and the supernatant was

removed. For intracellular staining, cells were fixed with 500 µL of

Fixation Buffer (420801, BioLegend, USA) for 20 minutes at room

temperature and directly centrifuged at 500 g for 5 minutes.

Following the removal of the supernatant, cells were washed with

Intracellular Staining Permeabilization Wash Buffer (421002,

BioLegend, USA) and incubated with an intracellular antibody

cocktail for 20 minutes at room temperature. After the incubation

period, cells were washed with the Permeabilization Wash Buffer

and the pellet was resuspended with 500 µL of FACS buffer. The

acquisition was performed using a CytoFLEX SRT (Beckman

Coulter) flow cytometer, and the results were analyzed using

FlowJo v.10.9.0 (BD Biosciences, USA). The markers used to

identify the cell populations of interest are listed in

Supplementary Table 2.
Sample preparation for single-cell
RNA sequencing

For successful single-cell RNA sequencing using the 10X

Chromium system, proper sample preparation is paramount. The

viability and concentration of cells for GEM generation must adhere

to the manufacturer’s protocol. A live cell ratio exceeding 90% is

highly advisable, although ratios above 60-70% can also be

attempted with potentially reduced success rates.

In this study, we adopted a sample pooling strategy to mitigate

batch effects and lower experimental costs by combining two or

more samples. Initially, cryopreserved cell suspensions from skin

and peripheral blood were thawed. Subsequently, cells were stained

with fixable viability dye (Zombie NIR) in PBS, followed by anti-

human CD45 PE-Cy5 in FACS buffer (PBS+ 1% BSA). CD45+ live

cells were then simultaneously sorted from two samples using the

CytoFLEX SRT (Beckman Coulter) and FACS Aria III cell sorters

(BD Biosciences, USA). During sorting, a 100 µm nozzle was

utilized, with a constant pressure of 20 psi, and the sample

chamber was maintained at 4°C. The sorting speed was kept low

(1500 events/seconds) to ensure high viability and purity.

The manufacturer’s protocol for the Chromium Next GEM

Single Cell 5’ Reagent Kit V2 (Dual Index, 10X Genomics, USA)

used for this study suggests an ideal cell concentration of 700 to

1200 cells per microliter for GEM generation. However, cell sorting

from skin tissue often results in concentrations lower than this

range. In such cases, it is necessary to concentrate the cell
TABLE 1 Demographic and clinical characteristics of the study samples,
including Behcet’s disease (BD) patients and healthy controls.

Characteristic BD (n=12) HC (n=6)

Age: median
(Interquartile Range)

35 (30-41) 70 (65-73)

Gender (Male: Female) 6:6 0:6

Smoking 3/12 1/6

HLA-B51 positivity 4/9 –

Lesion Type:

Erythema Nodosum-like
lesions (EN)

3 –

Papulopustular Eruptions (PPE) 6 –

Genital Ulcers (GU) 3 –
Data for age are presented as median with interquartile range (IQR). Gender is reported as a
ratio of male to female participants. Smoking status and HLA-B51 positivity are also included.
For patients, lesion types are categorized as erythema nodosum-like lesions (EN),
papulopustular eruptions (PPE), and genital ulcers (GU).
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suspension after sorting. In the current study, this was

accomplished by an additional centrifugation step at 850 g for 5

minutes. After carefully removing the supernatant, the cells were

reconstituted in the desired volume.
Library preparation and sequencing

Once the sample preparation step was completed by reaching

the optimum cell concentration, steps for cDNA preparation,

amplification, and library preparation were performed by using

the Chromium Controller and the Chromium Next GEM Single

Cell 5’ Reagent Kits V2 (Dual Index, 10X Genomics, USA).

First, GEMs were generated by loading a master mix containing

cells, gel beads, and partitioning oil on the Chromium Next GEM

Chip K and running the Chromium Controller system. Next, gel

beads were dissolved, cells were lysed and 10X barcoded cDNAs

were produced from poly-adenylated mRNAs. The barcoded

cDNAs were purified from the reaction mixture using Silane

magnetic beads and amplified via PCR. The quality control (QC)

and quantification were performed by Agilent 2100 Bioanalyzer

(Agilent Technologies, USA). For Gene Expression (GEX) library

construction enzymatic fragmentation, size selection was

performed to get the optimal cDNA amplicon lengths. Finally,

sequencing-ready dual index libraries were prepared by end repair,

A-tailing, adaptor ligation, and sample index PCR.

Paired-end sequencing was performed on the Illumina NovaSeq

6000 platform by outsourcing to a service provider. A minimum

reading depth of 20,000 reads per cell was utilized.
Alignment and demultiplexing of single-
cell RNAseq data

The raw FASTQ files were aligned to the reference genome

(GRCh38) using Cell Ranger (v.7.1.0) multi pipeline. Both reference

genome and Cell Ranger software were obtained from the official

10X Genomics website.

We used souporcell for demultiplexing of pooled samples (13).

The BAM file generated by Cell Ranger was plugged into the

souporcell pipeline. This method utilizes single nucleotide

polymorphisms (SNPs) detected in scRNA-seq reads to

demultiplex scRNA-seq data originating from different

individuals (13). This in silico method is freely available and

label-free. The souporcell pipeline was executed on a high-

performance computing cluster using the singularity image

provided by souporcell authors. The analysis employed the

“souporcell_pipeline.py” script and utilized the same reference

transcriptome used during alignment.
Identification of paired samples and donor
sex in dual reactions

After demultiplexing of pooled samples by souporcell, the

identity of each cluster was determined based on: 1) The presence
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of matched skin and PBMC pairs, which have the same genotype in

dual reactions, and 2) the Identification of the donor’s sex. Skin and

PBMC samples from the same donor were identified using the

“shared_samples.py” module of the souporcell. The donor’s sex for

each souporcell cluster was determined by using a subset of Y

chromosome genes including ZFY, RPS4Y1, EIF1AY, KDM5D,

NLGN4Y, TMSB4Y, UTY, DDX3Y, and USP9Y (14).
Analysis of single-cell RNAseq data

After alignment and demultiplexing, count matrices were

processed using Scanpy. Cells with less than 200 genes and genes

expressed in fewer than 3 cells were filtered. Moreover, cells

containing more than 4000 genes were excluded. In the doublet

detection part, cross-genotype doublets, as detected by souporcell,

were eliminated, and Scrublet was employed to identify doublets

based on expression profiles.

Subsequently, the data was normalized to 10,000, and the log(x

+1) transformation was applied. Feature selection was performed

using the “sc.pp.highly_variable_genes” function, and principal

component analysis (PCA) was computed on the scaled

expression matrix of the highly variable genes. BBKNN’s ridge

regression function was utilized to eliminate technical confounders

such as donor-specific variation and count depth, while preserving

biological variation such as cell types and disease effects (15, 16).

Following this preprocessing step, different pools were integrated

using the Harmony algorithm (17). A neighborhood graph and

UMAP embedding were computed based on the harmony-

corrected principal components.

Cell type annotation was done by CellTypist using pre-trained

buil t- in models such as “Immune_All_High.pkl” and

“Immune_All_Low.pkl” (18). During cell type prediction, the

majority voting classifier is enabled to increase the accuracy

of annotation.
Statistical analysis

Repeated Measures One-Way ANOVA was used to compare

different incubation durations. Paired T-test was used to assess the

effect of enzyme P. Statistical analysis was conducted by GraphPad

Prism v8 (GraphPad Software, USA).
Results

Identification of immune cell subsets and
intracellular cytotoxic molecules in skin by
flow cytometry

We initially dissociated healthy skin samples by incubating

them with enzymes A and D (without enzyme P) for three hours

and analyzed them freshly after staining with flow cytometry. Our

gating strategy and fluorescence-minus-one (FMO) controls used

for dimly expressed markers are illustrated in Supplementary
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Figures 1, 2, respectively. Using the antibody panel in this study, we

could readily identify T cell subsets, including CD4+ T helper cells,

CD8+ cytotoxic T cells, CD69+ resident memory T cells, as well as

natural killer (NK) cells. Additionally, we were able to detect

intracellular granzyme B and granzyme K expression in cytotoxic

T cells.
The impact of enzymatic incubation
duration and enzyme P on cell counts and
cell type frequencies

The impact of varying incubation periods and the presence of

enzyme P on selected extracellular and intracellular markers is

illustrated in Figure 2. We observed a significant increase in the yield

of trypan blue-negative live cells with longer incubation durations

(Figure 3A). Specifically, samples subjected to a 1-hour incubation

displayed a live cell count ranging from 5.5 × 104 to 1.22 × 105 per one

6 mm punch specimen, which was deemed suboptimal for subsequent

applications. In contrast, samples incubated for 3 hours yielded a live

cell count ranging from 7.5 × 104 to 1.5 × 105 per one 6 mm punch

specimen, while a 16-hour incubation resulted in a live cell count

ranging from 1.15 × 105 to 2.5 × 105 per one 6 mm punch specimen.

The percentage of CD45+ leukocytes was higher after 16 hours

of incubation compared to 3 hours. The frequency of T cells, NK

cells, CD4+ T helper lymphocytes (THL), CD8+ cytotoxic T

lymphocytes (CTL), double negative cells, and CD69+ resident

memory T (TRM) cells remained similar between groups

(Figure 3A). However, there was a decline in the percentage of

granzyme B-positive cytotoxic T lymphocytes (CTLs) after 16 hours

of incubation compared to 1 hour (median, range: 24.8, 14.5-30.3 vs

13.8, 11.6-24.0; p=0.027), while the ratio of granzyme K-expressing

CTLs remained unchanged. The mean fluorescent intensity (MFI)

of CD3, CD8, CD56, CD69, and granzyme K was similar between

groups. However, there was a significant decrease in the MFI of

CD4 with longer enzymatic incubation periods (1h vs 16h: 33169,

13566-45794 vs 6387, 4494-12979; p=0.0077, 3h vs 16h: 21511,

9628-28753 vs 6387, 4494-12979; p=0.0071), and a decline was seen

in Granzyme B MFI after 16 hours of incubation (1h vs 16h,

p=0.042) (Figure 3B).

We investigated the impact of enzyme P during a 3-hour

incubation period. The live cell count per one 6 mm punch

specimen after 3 hours of incubation without enzyme P ranged

from 7.5 × 104 to 1.5 × 105, while with the addition of enzyme P, it

increased significantly to 8.5 × 104 to 1.85 × 105 (p<0.0001)

(Figure 4A). The use of enzyme P did not significantly alter the

percentages of T cells, CD4+ T cells, granzyme K positive CTLs, or

granzyme B positive CTLs. However, the percentages of CD8+

CTLs (41.95, 27.2-71.7 vs 1.44, 0.83-2.67; p=0.005) and CD69+

TRM cells (92.7, 81.8-93.8 vs 11.27, 0.52-22; p=0.044) decreased

dramatically. Additionally, there was a statistically significant

reduction in the percentage of NK cells after incubation with

enzyme P (5.03, 1.90-6.48 vs 1.25, 0.82-4.33; p=0.026)

(Figure 4A). Moreover, as anticipated, there was a significant

decrease in the MFI of CD8 (42108, 39568-49811 vs 18090,
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16887-23848; p=0.0009), CD56 (7239, 4347-9927 vs 3964, 3716-

4110; p=0.039), and CD69 (2598, 1606-3370 vs 1515, 1339-1911;

p=0.038) in the group treated with enzyme P compared to the group

without enzyme P (Figure 4B).

Based on the results of these experiments, we decided to use a 3-

hour enzymatic incubation without enzyme P for the analysis of

lesional skin for simultaneous flow cytometry and scRNAseq analysis.
Determination of tissue size required for
flow cytometry and scRNAseq analysis in
the inflamed skin

In prior methodological studies, the necessary size of skin tissue

for scRNAseq analysis was determined. Given the higher

concentration of inflammatory cells in inflamed skin, we

hypothesized that a smaller tissue sample would be adequate for

subsequent analysis compared to healthy skin.

For healthy skin specimens, a single 6 mm punch biopsy

provided an average cell count of 1.125 × 105 after a three-hour

enzymatic incubation without enzyme P (range: 0.75 × 105 to 1.5 ×

105, n=6). This quantity is sufficient for flow cytometry analysis of

lymphocytes. However, if scRNAseq is also intended, we

recommend using a second biopsy specimen.

Conversely, we discovered that after three hours of enzyme

incubation without enzyme P, inflamed skin tissue measuring 4 mm

in diameter yielded an average of 4.6 ×105 live cells (range: 8 × 104 -

9.7 × 105, n=12). Despite some variability between samples, this

amount is typically adequate for both flow cytometry and

scRNAseq analysis.
The effect of cryopreservation on
dissociated skin cells

Sample multiplexing can help avoid technical batch effects and

reduce the cost of single-cell RNA sequencing (scRNAseq).

However, multiplexing freshly isolated cells can be challenging

due to the need for synchronized sample collection from different

individuals. Cryopreservation of isolated cell suspensions offers a

solution to this issue. In our study, we stored dissociated skin cells in

liquid nitrogen for subsequent cell sorting and scRNAseq analyses.

This approach allowed us to compare the viability of CD45+ cells in

freshly isolated and thawed samples. We found that the live CD45+

cell percentage was consistently above 85% in both freshly isolated

and thawed skin cells, with no statistically significant difference

between the two groups (Supplementary Figure 3).
Sample multiplexing strategy for batch
scRNAseq analysis of paired blood and
skin samples

Current sample multiplexing method for scRNAseq analysis rely

on the usage of sample barcoding kits. In this study, our aim was to
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conduct single-cell RNA sequencing (scRNAseq) analysis of matched

skin and peripheral blood samples from various subjects in batches.

To achieve this, we developed a novel sample multiplexing strategy

that is based on a recently published label-free demultiplexing

algorithm called “souporcell,” which utilizes distinct single

nucleotide polymorphism (SNP) patterns unique to genetically
Frontiers in Immunology 0795
different individuals (13). Our strategy represents a modified and

enhanced version of the multiplexing strategy described in the

original paper and allows us to multiplex two or more samples

without using any additional tissue barcoding steps.

In the first strategy, two samples can be multiplexed using a

relatively simple design, similar to the approach outlined in the
FIGURE 2

Representative flow cytometry graphs demonstrating the effect of enzymatic treatment for 1 hour, 3 hours, 16 hours; and 3 hours of incubation
using enzyme P on all cells in healthy skin (A), live CD19-CD14- cells (B), CD45+ and CD45- cells (C), CD3+ T cells and CD56+ NK cells (D), CD69+
resident memory T cells (TRMs) (E) CD4+ T helper cells (THLs) and CD8+ cytotoxic T cells (CTLs) (F), Granzyme K+ (GrK) CTLs (G), and Granzyme B+
(GrB) CTLs (H). It is demonstrated that, due to the cleavage of CD69 and CD8 antigens by enzyme P, the population of TRMs (E) and CTLs (F)
decreased dramatically.
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FIGURE 3

The impact of various enzymatic incubation periods (1 hour, 3 hours, 16 hours) on cell percentages (A) and mean fluorescence intensity (MFI)
measurements (B) is shown. A) Live cell counts (determined by trypan blue exclusion method) increased with longer incubation times, indicating
enhanced cell yield. The percentage of viable CD14-CD19- leukocytes, assessed by flow cytometry, showed no significant difference across the
three incubation periods. However, the percentage of CD45- cells decreased, leading to a significant increase in CD45+ percentage after 16 hours
compared to 3 hours of incubation. There was no notable difference in the percentage of lymphocyte subtypes across different incubation times,
except for a decrease in CD8+Granzyme B+ cytotoxic T lymphocytes (CTLs) after 16 hours compared to 1 hour incubation. B) MFI values of CD3,
CD8, CD56, CD69, and Granzyme K (GrK) showed no significant difference following enzymatic incubation for different durations. However, CD4
and Granzyme B (GrB) MFI decreased significantly after 16 hours of incubation.
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original article (13). To implement this strategy, the PBMC and

dissociated skin samples from the same subject are placed in two

separate tubes. Additionally, one genetically unrelated sample is

added to each tube (these additional samples should not be paired

samples) (Table 2). Subsequently, scRNAseq analysis of these four

samples is conducted in two separate reactions. The demultiplexing

of samples in each reaction is performed with souporcell, where the
Frontiers in Immunology 0997
paired samples in different tubes belonging to the same individual

can be readily identified based on their common SNP pattern. As

the identity of paired samples is known beforehand, these clusters

can be annotated with their respective sample identities. Once one

of the sample identities is revealed, it becomes straightforward to

identify the remaining sample in each tube. Using this strategy, it is

possible to process nine pairs of PBMC and skin samples in 9
FIGURE 4

The impact of enzyme P on all cell percentages (A) and mean fluorescence intensity (MFI) measurements (B) is shown. A) Live cell counts demonstrated
increased cell yield with the use of enzyme P. However, the percentage of NK cells, CD69+ cells, and CD8+ cytotoxic T lymphocytes (CTLs) significantly
declined when enzyme P was used. B) The MFI of CD8, CD56, and CD69 significantly decreased when enzyme P was used in the enzymatic incubation.
Statistical analyses were performed using Repeated Measures ANOVA (to compare different time points) and paired ratio T-test (for comparison of the effect
of enzyme P).
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reactions, instead of 18, effectively reducing the number of

necessary reactions by half.

Our second, more advanced strategy incorporates two sources

of genetic information: the common individual SNP fingerprint of

paired samples and the donor sex (Table 3, Figure 5). In this

strategy, paired PBMC and dissociated skin samples are again

placed separately in dual reactions. Additionally, two genetically

unrelated samples are added to each tube, resulting in three samples

per tube. The key point in this step is to select samples from subjects

of different sexes for each tube. Following scRNAseq analysis and

sample demultiplexing with souporcell, matched sample pairs with

identical genetic SNP patterns are identified similar to the first

strategy. Subsequently, the sex information of the remaining two

samples in each tube is determined. Specifically, the percentage of Y

chromosome gene expression among the whole transcriptome is

used as a proxy for male sex. With this sex information, the

identities of the remaining samples can be easily determined.

With a carefully designed setup as proposed in Table 3, it is

feasible to analyze nine pairs of matched PBMC and skin tissues

in 6 reactions, instead of 18.
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Bioinformatics analysis and
representative results

The individual steps of the bioinformatics analysis pipeline are

summarized in Figure 6. First, alignment was done with Cell

Ranger. Next, demultiplexing was performed with souporcell and

the identification of samples was done with the strategy explained

above. Then, anndata object was formed and quality control,

normalization, feature selection, principal component analysis,

and batch correction were done with Scanpy (19). Quality metrics

of the scRNAseq data is presented at Supplementary Figure 4.

UMAP graph showing representative results belonging to the

analysis of inflamed skin samples obtained from patients with

Behçet’s disease (n=4) and healthy skin (n=3) is presented in

Figure 7A. Cell type distribution (Figure 7B) and percentages

(Figure 7C), key genetic markers of each cell subset (Figure 7G),

and cumulative number and percentage of each cell subset

(Figure 7E) are shown. Also, cell type distribution (Figure 7D),

cumulative number, and percentage of each cell subset (Figure 7F)

from 4 PBMC samples of BD patients are illustrated.
TABLE 2 Multiplexing strategy for scRNAseq analysis 18 paired skin and peripheral blood samples obtained from nine different individuals.

Tube/
Reaction no:

Tissue:
Subject code:

S1 S2 S3 S4 S5 S6 S7 S8 S9

I Skin X X

II PBMC X X

III Skin X X

IV PBMC X X

V Skin X X

VI PBMC X X

VII Skin X X

VIII PBMC X X

IX Skin + PBMC X
(PBMC)

X
(Skin)
fro
The PBMC and dissociated skin sample pairs from the same subject were placed separately in two tubes/reactions. Then, one genetically unrelated sample was added to each tube.
TABLE 3 An example of the label-free triplet pooling strategy that allows for the analysis of nine pairs of matched PBMC and skin tissues in six
reactions, instead of 18.

Reaction
no:

Tissue:
Subject code:

S1 S2 S3 S4 S5 S6 S7 S8 S9

I Skin MP1 PBMC

II PBMC MP1 Skin

III Skin MP2 PBMC

IV PBMC MP2 Skin

V Skin

VI PBMC
Blue color shows samples from males and pink shows samples from females. MP: matched pair of samples obtained from the same subject. Detailed descriptions of the first two reactions in this
table are illustrated in Figure 5.
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Supplementary Figure 5 demonstrates single-cell expression of

marker genes across different samples. Comparison of lymphocyte

subset frequencies detected by scRNAseq and flow cytometry

analyses is shown in Supplementary Figure 6. Six samples (3 from
Frontiers in Immunology 1199
Behçet’s disease patients and 3 from healthy controls) illustrated in

Figure 7 were analyzed. No statistically significant differences were

observed between the two methods for T cell, T helper cell,

cytotoxic T cell, NK cell, Granzyme K+ T cell, and Granzyme B+
FIGURE 5

Schematic representation of our label-free triplet pooling strategy. First, we segregate paired PBMC (S3a) and dissociated skin samples (S3b) from a
selected individual into two distinct tubes. Additionally, two genetically unrelated samples, each from subjects of different sexes (Female is
demonstrated as a circle and Male as a square), are introduced to each tube, resulting in three samples per tube. Following scRNA-seq and sample
demultiplexing using souporcell, we first identify the clusters exhibiting identical genetic single nucleotide polymorphism (SNP) patterns in dual
reactions and then annotate their sample identity. Subsequently, Y chromosome genes are utilized to ascertain the sex information of the remaining
two samples in each tube. By using this information the sample identities of the remaining clusters can be determined readily. S, sample. Different
colors denote samples from separate subjects.
FIGURE 6

Bioinformatic workflow for analyzing single-cell RNA sequencing results that include alignment, demultiplexing, preprocessing, and downstream
analysis of sequencing data.
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T cell percentages (Supplementary Figure 6A). Spearman

correlation analysis indicated a strong trend towards correlation

of T cell percentages measured by these two methods

(Supplementary Figure 6B).
Discussion

In this study, we present a novel approach for multiplexing skin

and blood samples for single-cell RNA sequencing, significantly
Frontiers in Immunology 12100
reducing costs. Additionally, we provide detailed optimization steps

and a step-by-step protocol that enables both scRNAseq and

protein-based single-cell analyses from the same tissue sample.

Sample multiplexing is a key strategy to enhance experimental

feasibility, mitigate technical batch effects, and significantly reduce

the costs associated with scRNAseq. Several demultiplexing

methods exist in the literature, such as the use of oligonucleotide-

labeled hashtag antibodies to uniquely barcode cells (20). In the

scRNAseq protocol for human skin developed by Saluzzo et al.,

hashtag antibodies were employed for sample de-multiplexing (10).
FIGURE 7

Representative results of the single cell RNAseq analysis of skin samples (n=7) obtained from patients with Behçet’s disease (n=4) and healthy
controls (n=3). (A) Demultiplexed skin samples are highlighted on UMAP embedding. (B) Identified high-hierarchy cell types are visualized. (C) Cell
type proportion for skin samples from each donor is illustrated with a stacked bar plot. (D) Cell type proportions for PBMC samples from 4 Behçet’s
disease patients are illustrated with a stacked bar plot. (E) The cell counts and proportions of cell types in skin samples are shown. The ratio of
fibroblasts is less than 1%, indicating the high purity of the sorted CD45+ cells. (F) The cell counts and percentages of cell types in PBMC samples
are illustrated. (G) Marker genes to characteristic for each cell type are shown as a dot plot.
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Compared to our label-free de-multiplexing strategy, this method

adds additional experimental steps and extra costs due to

antibodies, cDNA library preparation, and sequencing and it is

limited to multiplexing of two samples.

Another de-multiplexing method is the demuxlet method that

leverages single-nucleotide polymorphisms (SNPs) from a genotype

reference obtained through whole-genome or exome sequencing,

which was previously regarded as the gold-standard de-

multiplexing method (21). Recently, the souporcell algorithm was

introduced for de-multiplexing samples based on scRNAseq data

without requiring a genotype reference or any other label (13).

Souporcell generated benchmarking results that surpasses the

demuxlet method, showing its huge potential in scRNAseq

studies (13). Based on this, we decided to adopt souporcell as the

basis of our sample multiplexing strategy.

Although multiplexed samples can be successfully separated

using souporcell, the challenge lies in matching these samples to the

correct donor. The original souporcell paper proposed a solution by

using the same donor-specific sample in multiple reactions. This

approach encodes the inclusion or exclusion of each donor as a bit

(0 or 1), and samples in the mixtures are then assigned to

corresponding donors using this information-theoretic method

(13). In our study, we modified this approach by placing matched

skin and PBMC samples from the same donor into different

reactions. This provided a canonical way to identify the donors of

origin. To further enhance this strategy, we incorporated genetic sex

information as a second layer of encoding. This two-step approach

allowed for successful demultiplexing and donor identification,

reducing the number of required reactions and experimental costs

by two-thirds.

Both protein-based methods, such as flow cytometry and

CyTOF, and RNA-based single-cell studies conducted on lesional

skin are surprisingly scarce. One of the main reasons for this is the

challenge associated with skin dissociation compared to other

tissues. The skin’s dense collagenous structure necessitates more

rigorous enzymatic and mechanical processing to obtain a viable

cell suspension, which can sometimes compromise cell viability,

degrade epitopes, and decrease RNA quality. The recent

introduction of automated tissue dissociator systems and skin

dissociation kits has provided a standardized and reliable way to

perform this step. However, these kits offer a general protocol that

needs to be optimized based on the intended experimental methods,

such as cell culturing, or ex vivo single-cell RNA or protein analysis

from fresh or frozen cells. While recent protocol papers have

detailed the use of these kits to prepare skin cell suspensions for

scRNAseq analysis of healthy human and pig skin (10, 11), our

study expands on these methodologies by optimizing the protocol

for inflamed skin. Additionally, we introduce a method suitable for

simultaneous flow cytometry analysis from the same tissue, which

can also be adapted to other protein-based analyses such as CyTOF

and CITE-seq.

The amount of tissue required for analysis is an important

consideration. Our findings align with prior research indicating that

a 6 mm punch biopsy is optimal for obtaining sufficient skin cells
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from healthy skin for subsequent scRNAseq analysis (10, 11).

Previously, Saluzzo et al. showed that a 6 mm punch biopsy

specimen gives a yield of 1-2 × 105 skin cells after incubating

with enzyme P for 3 hours. In our study, we found that 3 hours of

enzymatic digestion without enzyme P yielded an average of 1.125 ×

105 cells, in line with Saluzzo et al. We recommend the usage of two

pieces of 6 mm biopsy from healthy skin if both scRNAseq and flow

cytometry analysis are planned. For inflamed skin samples, a 4 mm

punch biopsy specimen yielded an average of 4.6 × 105 cells,

significantly higher than healthy skin, and sufficient for both flow

cytometry and scRNAseq analysis. It should be noted that in this

study we have only tested Behçet’s Disease skin lesions which are

acute inflammatory lesions by their nature. There is a possibility

that in more chronic lesions such as psoriasis, systemic sclerosis etc.,

the degree of inflammation and the number of inflammatory cells

may be lower. Therefore, we recommend prior determination of the

size of required skin specimen for other lesion types in

future studies.

Another important consideration for single-cell studies is

whether to analyze cells freshly or after cryopreservation. In a

recent study, scRNAseq was performed on freshly isolated cells

from 4 mm punch biopsies obtained from patients with atopic

dermatitis and psoriasis (14). While fresh analysis of skin samples

may seem ideal, it is challenging to coordinate, as all experimental

steps—beginning with the collection of biopsy specimens—must be

conducted in parallel across multiple patients. In our study, we

opted to use cryopreserved cells, which offered several advantages,

such as greater flexibility in experimental design, simplified sample

multiplexing, and reduced technical batch effects, ultimately

lowering scRNAseq costs. Importantly, our assessment of CD45+

lymphocyte viability before and after cryopreservation showed no

significant differences in live cell count compared to freshly isolated

cells. This finding aligns with previous studies that evaluated the

effects of cryopreservation using a 90% FBS + 10% DMSO solution

on pig skin cells (11), where cryopreservation did not significantly

affect cell viability, aggregation, or gene expression profiles, as

demonstrated by scRNAseq analysis.

Custom protocols for skin dissociation have also been used

previously. Burja et al. developed a method for skin tissue

dissociation for scRNAseq analysis using dispase II, collagenase

IV, and trypsin on 4 mm punch biopsies (5). This method yielded a

total of 24,053 skin cells per sample from fresh healthy skin and

18,535 cells per sample from skin explants obtained from systemic

sclerosis patients cultured for 24 hours. A comparison between

cultured skin explants and freshly dissociated samples revealed no

significant differences in scRNAseq quality metrics. While the

authors observed some alterations in the expression of marker

genes in fibroblasts, no such changes were detected in immune

cells between freshly dissociated and explant-cultured samples.

These findings indicate that the explant method can be an

alternative approach for studying the composition of skin

immune cells.

The successful generation of GEMs is a key step in scRNAseq

using the 10X Chromium system and relies on the presence of high-
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quality cells in the right concentration. It is important to note that

the quality requirements for scRNAseq analysis are higher than

those for flow cytometry analysis, and obtaining high-quality cells

within the recommended concentration range after fluorescence-

activated cell sorting can be challenging. Based on our experience,

minimizing the time between cell sorting and GEM generation is

essential, a point also noted by Saluzzo et al. (10). In our

experimental design, we pooled 2-3 samples for each reaction and

conducted two reactions simultaneously using two cell sorters to

reduce post-sorting handling time. Careful preparation is crucial to

ensure that all necessary materials for GEM generation are ready

immediately after cell sorting. Often, the concentration of cells after

sorting falls below the recommended range. In such cases, Saluzzo

et al. suggest using a volume reduction device (10); however, this

equipment may not be available in all laboratories. To address this

limitation, we recommend centrifuging the cells at 850 g for 5

minutes after sorting, then reconstituting the cell pellet at a higher

concentration than initially desired before recounting the cells, as

some may be lost during centrifugation and supernatant removal.

Enzyme P was used in previous tissue dissociation protocols for

scRNAseq to increase the cellular yield. However, we do not

recommend using enzyme P when protein-based analysis such as

flow cytometry or CITE-Seq is planned as this enzyme cleaves cell

surface epitopes, including CD8, CD56, and CD69. Of note, CD45

is not significantly affected by enzyme P, therefore cell sorting of live

CD45+ leukocytes can still be performed successfully even if this

enzyme is used during dissociation.

The duration of enzymatic incubation is an important

consideration for single cell studies. We tested the effect of various

enzymatic incubation periods on major lymphocyte markers and

found that 1-hour, 3-hour, and 16-hour incubations produced similar

results. However, we observed that prolonged incubation resulted in a

reduction in the percentage of granzyme B-expressing CD8+

cytotoxic T cells, as well as a decrease in CD4 expression on the

surface of T cells. Since granzyme B is typically expressed by effector

cytotoxic lymphocytes, we concluded that a 3-hour incubation

provides an optimal balance between cellular yield and minimizing

damage to effector cells. We recommend refraining from longer

incubation durations for single cell studies whenever possible.

Recently, Polakova et al. (12) published a protocol for rapid

flow cytometry analysis using 4-mm punch biopsies and

collagenase IV and DNase I. In this comprehensive study, the

authors compared different incubation times of enzymatic

digestion, and compared their tissue dissociation method with

the whole skin dissociation kit, which included usage of enzyme

P. Using their protocol 12,000 CD45+ cells could be obtained from

a 4 mm biopsy after 30 minutes of enzymatic incubation. The

percentage of major immune cell types (T cells, B cells, NK cells,

and ILCs) were similar between both skin dissociation techniques.

Moreover, the authors report that 30 minutes of tissue dissociation

can be more reliable for the staining of chemokine receptors

compared to longer incubation periods.

In conclusion, in this method paper, we describe a novel cost-

effective sample multiplexing approach for scRNAseq studies that

can be used with both healthy and inflamed skin and can be

combined with single-cell protein analysis from the same tissue.
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The step-by-step protocol and critical optimization steps reported

in this paper can be used to design customized single-cell omics

experiments by using skin and other solid tissues.
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Advancing precision cancer
immunotherapy drug
development, administration,
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1Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford,
CA, United States, 2Department of Electrical Engineering, Stanford University, Stanford, CA, United States,
3Pumpkinseed Technologies, Palo Alto, CA, United States, 4Genentech, South San Francisco, CA, United
States, 5Department of Materials Science and Engineering, Stanford University, Stanford, CA, United
States, 6Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University
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Molecular characterization of tumors is essential to identify predictive biomarkers

that inform treatment decisions and improve precision immunotherapy

development and administration. However, challenges such as the

heterogeneity of tumors and patient responses, limited efficacy of current

biomarkers, and the predominant reliance on single-omics data, have hindered

advances in accurately predicting treatment outcomes. Standard therapy

generally applies a “one size fits all” approach, which not only provides

ineffective or limited responses, but also an increased risk of off-target

toxicities and acceleration of resistance mechanisms or adverse effects. As the

development of emerging multi- and spatial-omics platforms continues to

evolve, an effective tumor assessment platform providing utility in a clinical

setting should i) enable high-throughput and robust screening in a variety of

biological matrices, ii) provide in-depth information resolved with single to

subcellular precision, and iii) improve accessibility in economical point-of-care

settings. In this perspective, we explore the application of label-free Raman

spectroscopy as a tumor profiling tool for precision immunotherapy. We

examine how Raman spectroscopy’s non-invasive, label-free approach can

deepen our understanding of intricate inter- and intra-cellular interactions

within the tumor-immune microenvironment. Furthermore, we discuss the

analytical advances in Raman spectroscopy, highlighting its evolution to be

utilized as a single “Raman-omics” approach. Lastly, we highlight the

translational potential of Raman for its integration in clinical practice for safe

and precise patient-centric immunotherapy.
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Raman spectroscopy, label-free analysis, immunotherapy, time analysis, multiomics
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1 Introduction

The immune system plays a vital role in detecting cancer by

recognizing neoantigens generated by tumor cells that can initiate

immune responses (1). However, tumors have evolved several

strategies to evade immune detection (2). These include

downregulating antigen presentation, which impairs the ability of

immune cells to recognize and attack tumor cells, and expression of

surface protein ligands, such as Programmed Death-Ligand 1 (PD-L1),

that interact with immune checkpoint proteins, such as Programmed

Death Protein 1 (PD-1), on immune cells (3). Tumor-secreted factors

modulate the tumor immune microenvironment through several

mechanisms, including: i) releasing immunosuppressive cytokines

such as IL-2, TGF-b, IL-10, IL-35 and VEGF, which inhibit various

immune cell activities (4); ii) releasing tumor-derived exosomes which

contain immunosuppressive molecules, including TRAIL, Fas-L, PGE-

2, etc (5); and iii) recruiting regulatory immune cells such as regulatory-

T cells, tumor associated macrophages, and myeloid-derived

suppressor cells to the tumor site (6). Epigenetic modulation within

cancer cells can also silence genes related to antigen presentation (7).

To effectively deploy immunotherapy, it is essential to accurately detect

and classify the evasion tactics of cancer cells. Ourmanuscript discusses

how Raman spectroscopy, as a label-free, reliable, and cost-effective

technology, can sense these tactics across the immunological synapse.

Various immunotherapy strategies currently utilized include

immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive

cellular therapies (ACT), cytokines, targeted antibodies including

T cell-engaging bispecifics, and adjuvants & immunostimulants.

Although these approaches have led to improved outcomes for

some patients, their benefits are often limited to a small and

unpredictable segment of cancer patients. This has led to

increased cases of immune-related adverse events (irAEs) (8, 9).

For example, in melanoma, where ICIs are the mainstay treatment,

the overall response rate is only 30-45% for the most common

single-agent anti-PD-1 approach (10). Further, many cancers, such

as pancreatic adenocarcinoma, have unique biologic environments

such as high levels offibrosis, contributing to immune cell resistance

and evasion that render these immunotherapeutic agents

significantly less effective (11, 12). Therefore, accurately assessing

a patient’s tumor microenvironment (TiME) and predicting their

response to immunotherapy are essential for maximizing treatment

effectiveness. An important step towards this is precise biomarker

prediction which helps in establishing more accurate, individualized

profiles to guide immunotherapeutic selection (13, 14). As many

existing biomarker predictive models rely on single-omics data,

which may not capture the complex biological interactions involved

in tumor immunology, their predictive power has been limited (15,

16). Multi-omics approaches that combine genomic (17),

transcriptomic (18), proteomic (19) lipidomic, and metabolomic

data can improve the accuracy of response predictions (20–23). In a

recent study, Kong et al. utilized a machine learning framework that

integrated various -omics data to predict responses to ICIs in

melanoma, gastric cancer, and bladder cancer, demonstrating

superior predictive capabilities compared to traditional

biomarkers. Investigators curated data from more than 700 ICI-

Treated patients ’ samples with clinical outcomes and
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transcriptomic data. Their network-based ML algorithm showed

significantly better performance in predicting ICI treatment

responses in all the above-mentioned types of cancers compared

to existing models, demonstrating network biology as a powerful

means to identify robust biomarkers (16).

Multi-omics technologies have increased our understanding of

the complex inter- and intra- molecular cross-talk between immune

cells and tumor cells within TiME. However, working with large

analytical and statistical datasets generated by single or spatial

technologies presents significant computational hurdles (24). One

major issue is the batch effects caused by using different analytical

techniques employed in -omics data collection (25). These

techniques are costly, time consuming, and require extensive

labeling steps which may require disruption of native biological

environments for the cells of focus (26, 27). Raman spectroscopy

can effectively harmonize all the -omics techniques for analyzing

TiME interplay and its intricate changes under a single platform.

Additionally, a combination of Raman and traditional multi-omics

can also leverage the strengths of both methodologies, including the

high sensitivity, multiplexing capabilities, rapid analysis, and non-

destructive, label-free nature of Raman, alongside the specificity and

extensive data provided by traditional -omics approaches. In the

past decade, label-free Raman spectroscopy has found significant

applications in cancer diagnostics, particularly in cell type

differentiation (28–30) and metabolite characterization (31–33). It

also allows for the identification of biochemical changes within

tumors, enhancing our ability to monitor responses to therapies

more efficiently (34). These studies provide the foundation for

deploying Raman spectroscopy as a platform for immunotherapy

development, administration, and response monitoring.

In this perspective, we discuss the principles and role of Raman

spectroscopy in immunotherapy. In section 2, we describe advances in

nanophotonics which render Raman suitable for non-invasive, label-

free detection of the TiME at the single-cell to few-molecule level. We

also discuss the role of machine learning and artificial intelligence (ML/

AI) in Raman spectral analysis and data interpretation. Section 3

describes the role of Raman spectroscopy in identifying, characterizing,

and analyzing the complex inter- and intra- metabolic and phenotypic

changes occurring within TiME, as well as Raman spectrosocpy’s role

in predicting responses to various immunotherapeutic treatments.

Section 4 outlines the current analytical advancements in Raman

spectroscopy within the field of immunology. Finally, Section 5

explores how Raman spectroscopy can serve as a unifying, multi-

omic technique that stitches genomic, transcriptomic, proteomic, and

metabolomic data, as well as a potentially low-cost tool with

translational potential in clinical settings.
2 Nanophotonic-enhanced
Raman spectroscopy and
AI-enabled interpretation

Raman spectroscopy (RS) is a non-invasive, vibrational

spectroscopic method that examines the composition, structure,

and vibrational energy states of materials (including molecules and
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cells). In RS, a sample is illuminated with monochromatic light.

When the incident light interacts with molecular vibrations in the

sample, photons can be inelastically scattered and re-emitted with

either lower or higher energy (Figure 1). This energy difference,

known as a Raman shift, provides a distinct molecular “fingerprint”

of the material (35). By analyzing the unique spectral fingerprints of

molecules fundamental in cellular biology, RS can provide detailed

insight into the molecular composition and the structural and

functional makeup of cells and tissues, both in vivo and ex vivo

(36, 37). For example, there are biologically-relevant windows (38,

39) that elucidate biomarkers spanning lipids (40, 41), proteins and

peptides (42, 43), metabolites (44–46) and nucleic acids (47, 48)

(Figure 1). In turn, these markers can demarcate normal and

malignant cells (49, 50) and stratify cancer types (51) or

pathologic grades (52, 53), facilitating potential early diagnosis

and intervention pathways. As a non-destructive optical

technique, Raman spectroscopy can be seamlessly integrated with

other modalities on the same sample, allowing for multi-omic

resolution in a single measurement.

Although Raman spectroscopy is non-invasive and highly

specific in providing molecular and structural information, a

major challenge of spontaneous RS lies in its intrinsically weak

scattering process. Because of the low likelihood of a Raman

scattering event [roughly 1 in 10E6-7 incident photons (54–56)],

complementary strategies have been adopted to address its signal

intensity and enhance sensitivity. The emergence in the fields of
Frontiers in Immunology 03106
nanophotonic materials and machine learning models, in

particular, have improved Raman sensitivity and resolution and

to enable deeper spectral interpretation.

One strategy to amplify the signal-to-noise ratio of Raman is

through surface-enhanced Raman scattering (SERS), which uses

optically resonant surfaces or nanoparticles (NPs) to increase the

Raman cross-section (Figure 1). Vast literature has been published

using metallic nanostructures for SERS.When light interacts with these

metallic nanostructures, the electrons in the metal oscillate in

resonating manner, creating an intensified electromagnetic field

known as a plasmon resonance on the surface. This additional field

strength localization intensifies the light interaction that occurs

between molecules, with enhancement coefficients ranging from 104-

108, and as high as 1011 (45–47). The resulting process generates

highly-detailed, vibrational spectra, making it particularly useful in

fields like cancer immunotherapy (48, 49), biochemistry (50, 51),

medical diagnosis (52), and surgical treatments (53). SERS studies

employing colloidal NPs have shown extensive success in cancer

biological interrogation, from Liu et al. exploiting Au/Ag nanostar

geometries to quantify BRAF gene mutations in colorectal cancer with

comparable LOD to qPCR, to Sun et al. leveraging Au nanorods as a

multifunctional agent to identify and induce photothermal ablation of

tumor margins (45, 46). Recent advances in large-area nanoarray

fabrication leveraging self-assembled NP aggregation or

nanolithography have led to the rise and potential of SERS-active

substrates. Zhao et al. designed one such substrate by fabricating
FIGURE 1

A schematic illustration of Raman spectroscopic workflow for analyzing and observing inter and intra cellular interactions within TiME.
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nanoarrays of plasmonic trimers to successfully label adenocarcinoma,

squamous carcinoma and benign tumor samples across fresh lung

tissues (57). These SERS-active devices can yield comparable

enhancements to colloidal NPs, all while improving sample adhesion

and hotspot uniformity and distribution.

Although there is less literature, recent innovations in dielectric-

based substrates for SERS present an advantageous opportunity for

material and biological characterization. Unlike metallic nanostructures,

which exhibit high photothermal effects damaging cells or altering

biomolecular structures, dielectric nanostructures undergo minimal

heat conversion, making them highly suitable for biological

preservation and measurement reliability (58, 59). Advancements in

highly resonant, high quality-factor (Q) metasurfaces have also

overcome conventionally limited electromagnetic field enhancements

(60–62), yielding Raman scattering efficiencies comparable to

plasmonic counterparts (58, 63, 64). In work by Cambiasso et al. and

Romano et al., for example, dielectric nanodimers and photonic crystals

were utilized to demonstrate Raman spectral amplification across b-
carotenal monolayers and Raman analytes with minimal absorption

loss (65, 66). Silicon-based designs, in particular, can further leverage the

device footprint scaling of matured CMOS infrastructure (67). Barkey

et al. demonstrated one such design by pixelating 2D arrays of Si-ellipse

pairs to resolve real-time conformational dynamics of photoswitchable

lipid membranes representative of cell membrane behavior (68). These

large-area fabricated arrays can enable homogenous SERS regions for

rapid spatial profiling all while providing compatibility to assess the

same sample with other modalities.

Enhancing the utility of Raman spectroscopy can be achieved by

incorporating machine learning (ML) and artificial intelligence

(AI), which can extract underlying spectral features linked to

biological and chemical responses. Spectral information from RS

is often feature-rich, but the unprocessed information can be

complex and noisy. As a result, employment of both more

traditional statistical approaches and newer deep learning

algorithms can be utilized to isolate pertinent information from

background and extract insights in an otherwise opaque spectra.

Dimension reduction techniques adopted prior to analysis can

improve feature selection, reduce overfitting, and improve

computational runtime, all while preserving original spectra

information. Linear techniques such as principal component

analysis (PCA) can decompose large feature sets into smaller ones

encapsulating the most significant spectral patterns and

differentiators, while nonlinear reduction methods like t-

distributed stochastic neighbor embeddings (t-SNE) or uniform

manifold approximation (UMAP) can help contextualize the local

and global structural relationship of Raman spectra datasets.

Classification algorithms can further intake the Raman spectra

and provide distinct cell type labeling to predict post-treatment

outcomes in untested samples. Support vector machines (SVMs)

and Random decision forests (RFs) can be used to robustly classify

cancer subtypes as recently demonstrated in brain tissue (69, 70)

and in breast cancer garnering an accuracy of +97% (69, 70).

Advances in multilayer architectures such as convolutional neural

networks (CNN) and residual neural networks (ResNet) have

further increased the predictive capacity of RS, even against high
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inter-patient variability and complex background sources. For

example, in melanoma, where the clinical diagnostic sensitivity

and specificity ranges from 40-80%, the implementation of artificial

neural networks on Raman spectra resulted in an improved

sensitivity and specificity of 85% and 99%, respectively (53). Such

integration of deep learning and the continued advancements in AI

can stand to provide a powerful opportunity to analyze Raman

spectra beyond single cells and across the tissue domain. Further, as

discussed later in the perspective, integration of RS with existing

multi-omics and spatial-omics data, using existing AI models, could

offer a more comprehensive understanding of tumor heterogeneity.
3 Role of Raman spectroscopy in
characterizing tumor-
immune microenvironment

The TiME is a complex and diverse ecosystem containing a

variety of immunosuppressive cells, including tumor cells, cancer-

associated fibroblasts (CAFs), vascular endothelial cells, suppressive

myeloid cells, regulatory T (Treg) cells, and regulatory B cells.

Increasing evidence strongly suggests that TiME plays a significant

role in immune checkpoint inhibitors’ responses, tumor immune

surveillance, and immunological evasion (71, 72). Paidi et al.

showed evidence that label-free Raman spectroscopy can show

TiME compositional changes in response to ICIs. Using CT26

murine colorectal tumor xenografts, they compared tumor

responses with treatment across three doses of anti–CTLA4 and

anti–PD-L1 antibodies each. They determined that ICI exposure

significantly changes the composition of the TiME independent of

conventional cellular, molecular, or proteomic characterizations

(34). This ability to assess multiple biomolecular changes

simultaneously adds significant depth in understanding the TiME

and response to therapies. Figure 2 highlights the multitude of

signals that Raman spectroscopy can provide about the TiME. As

seen, Raman spectroscopy can be used in differentiating various

cancer and immune cell types, including B cells, cytotoxic T cells,

helper T cells, NK cells, and dendritic cells. For instance, Chen et al.

employed Raman spectroscopy to accurately identify various

subsets of immune cells, including T-lymphocytes, dendritic cells,

and natural killer (NK) cells, distinguishing CD56+ NK cells from

CD4+ and CD8+ T cells with specificities reaching 93% and 96%,

respectively. The differentiation between CD4+ and CD8+ T cells

was less effective, yielding a specificity of 68% and a sensitivity of

69%, suggesting that these closely related cell types present more

challenges in their identification (73). Conventional techniques for

immune cell identification and complex classification of the TiME

currently relies on extensive labeling for label-based techniques, due

to the need to both “rule-in” and “rule-out” broad cell surface

markers and utilize multiple labels related to functional behavior

and activation status. The exploration of RS to distinguish cell types

has been provocative, here we highlight several critical cell types

that have been shown to be highly distinguishable by RS (73). While

the Raman spectra of these immune cells may appear quite similar,
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data analysis techniques can reveal the subtle distinctions among

them (73–75). Raman spectra can also provide information about

the activation states of these cells, including macrophage

polarization and T-cell state responses (eg, from activated to

exhausted.) Single-cell Raman analysis can further reveal how

different cell types interact within the TiME. Finally, Raman can

help elucidate tumor heterogeneity and how the spatial structure of

the tumor impacts immune responses, currently a major obstacle

for effective immunotherapy (76). In this section, we will explore the

utility of RS in characterizing, classifying and analyzing different

inter- and intra-molecular interactions between immune cells

within the TiME.
3.1 Macrophages

Macrophages, essential phagocytic and antigen-presenting cells,

exhibit a diverse functional spectrum from immunosuppressive,

tumor-promoting behaviors to highly inflammatory responses.

Their role in the tumor microenvironment is pivotal, as they can

either support tumor control or contribute to autoimmune

toxicities. Conventionally, differential expression levels of surface

polarization markers, such as CD11b, CD80, CD54, CD163 and

CD206, are used to differentiate macrophage phenotypes, however

the transition from inflammatory to immunosuppressive behavior

is highly linked to metabolic switching that can be detected by

Raman spectroscopy. In a study by Naumann et al., distinct features

of monocyte-derived macrophages, including naïve M0, classically
Frontiers in Immunology 05108
activated M1, and alternatively activated M2 phenotypes were

detected by analyzing 65 chemically fixed primary human

monocyte-derived macrophages from three donors in

combination with N-FINDR spectral unmixing. The authors

identified polarization-dependent spectral features associated with

the chemical composition of lipids, proteins, and nucleic acids

across macrophage phenotypes. Pro-inflammatory M1

macrophages displayed a significantly higher lipid content

compared to M0 and M2 phenotypes. M2 macrophages exhibited

reduced triacylglycerol content but increased fatty acids. These

spectral distinctions facilitated the development of models for

automated classification of M1 macrophages, achieving a

classification accuracy of 86%, with a sensitivity of 93% and

specificity of 85% (77). In another study by Lu et al., macrophage

response to biomaterial implants was examined to gain insights into

the immune system’s foreign body reaction. Two types of macro-

encapsulation pouches (PVDF and TPU-chronoflex) were

implanted in streptozotocin-induced diabetic rat models for 15

days. Their research demonstrated that label-free Raman

microspectroscopy could effectively identify extracellular matrix

(ECM) components within the fibrotic capsule and distinguish

between pro-inflammatory M1 and anti-inflammatory M2

macrophage activation states. Significant spectral changes in the

nuclei of M1 and M2 macrophages indicated variations in nucleic

acid methylation, a key process in fibrosis progression. Specifically,

increased peak intensities at 857 cm−1 and 879 cm−1 in M2

macrophages were linked to proline, hydroxyproline, tryptophan,

and tyrosine, suggesting that M2 macrophages have lower
FIGURE 2

Use of Raman spectroscopy in immune cell classification and its interaction within tumor-immune microenvironment.
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methylation levels than M1 macrophages (78). Thus, RS plays an

important role in analyzing biochemical changes in lipids, proteins,

and nucleic acids across macrophage phenotypes and identifies

extracellular matrix (ECM) components.
3.2 T-lymphocytes

T cells are important effector cells in the TiME, including

cytotoxic and regulatory subtypes that attack cancers or suppress

immune responses to cancers, respectively. T cell classifications, like

macrophages, generally require multiple labels, such as CD3, CD4,

and CD8, to define subtype in addition to a multitude of co-

stimulatory signals, such as activating ligands or regulating

checkpoints to modulate the degree of amplification for T cell

responses. Authors Pavillon et al. leveraged the non-tissue

destructive nature of RS to monitor live T cell development in

vitro, demonstrating that without directly describing the cell surface

features of these traditional labels, other nuanced molecular

changes related to cell state development and activation had high

correlation with the transition points identified by label-based

assays (29). The sensitivity in this assay also successfully

delineated between activation and differentiation by detecting

differences in the in vitro stimulated cells versus ex vivo activated

T cells that otherwise would have required multiple additional

labeling steps to define naive versus effector cells. Regulatory T
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cells (Tregs) are crucial for maintaining immunological self-

tolerance and have been identified as having an important role in

immunotherapeutic failures. The findings by Pavillon et al.

indicated that Raman could distinguish Treg subpopulations

without altering cell integrity (29) by the detection of intracellular

transcription factor Foxp3, a specific Treg marker. Since Foxp3 is

not detectable in live cells, the authors employed RS to reliably

identify and isolate functional Treg populations. They sorted

conventional T (Tconv) and Treg cells using FACS with Foxp3-

hCD2 surface staining, followed by Raman measurements on the

isolated populations. A ML model was then developed to

differentiate between Tconv and Treg cells, achieving an accuracy

of 78.3% on test data, comparable between models trained on naive

cells and those based on FACS-sorted data (78.25% for FACS vs.

77.9% for naive cells). When they applied confident learning (CL) to

filter out samples with low-probability labels, the model achieved a

remarkable 92% accuracy. Figure 3A illustrates the classification of

human Tconv/Treg using the CL model transformation. Here,

negative bands observed can be linked to specific protein

structures, such as the amide III a-helix (at 1340 cm−1 and 1286

cm−1) and amide I (at 1619 cm−1 and 1669 cm−1. Conversely, the

primary positive bands appear to be associated with DNA/RNA,

indicated by cytosine/uracil rings indicated at 785 cm−1. This

approach also enabled the distinction of human Tconv and Tregs

from PBMCs with similar accuracy despite donor variability.

However, a notable limitation of this method is its throughput;
FIGURE 3

(A) Classification efficacy for human Tconv/Treg cells utilizing a separation vector to detect human Treg cells. Adapted with permission under a
Creative Commons CC-BY License from ref (79). (B) Schematic illustration of NK cells on the OncoImmune probe platform, synthesized with 3D
networks of nickel- nickel oxide nanocubiforms. (C) Representative Raman spectra of NK cells illustrating the presence of several biomolecules
within NK cells. Adapted with permission under a Creative Commons CC-BY License from ref (80). (D) Average Raman spectra for PD-L1 expression
in cancer cells. Adapted with permission under a Creative Commons CC-BY License from ref (81).
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the automated sequential detection system currently processes

approximately 1,000 cells per hour, which is insufficient for

applications requiring millions of cells (79).
3.3 Natural Killer cells

Natural Killer (NK) cells are lymphocytes that play a crucial role

in targeting viruses and cancer cells, particularly cancer stem cells

(CSCs), which are linked to therapeutic resistance and tumor

relapse (82, 83). Ishwar et al. explored the profiling of circulating

NK cells as a diagnostic tool using SERS-driven liquid biopsy. The

authors specifically synthesized an OncoImmune probe platform to

detect metabolic changes in NK cells when they interact with tumor

cells, illustrated in Figure 3B. Raman spectra of tumor-free NK cells

exhibited characteristic bands associated with carbohydrates,

proteins, and lipids, including peaks at 1450 cm−1 (CH

deformation), 1661 cm−1 (amide I), 1555 cm−1 (amide II), and

1337 cm−1 (amide III) (Figure 3C). In contrast, tumor-associated

NK cells showed altered spectral intensities, indicating an active

response to tumor recognition. A decrease in the peak at 520 cm−1

suggested changes in Killer Immunoglobulin Receptor (KIR)

expression due to CSC interaction. PCA revealed distinct

clustering of NK cell signatures associated with breast, lung, and

colon CSCs compared to non-cancer-associated NK cells. Utilizing

machine learning, the study demonstrated that features of NK cell

activity could accurately identify cancer from non-cancer samples

using just 5 μL of peripheral blood, achieving 100% accuracy for

cancer detection and 93% for localization. This research also

highlights the importance of material advances for amplifying the

SERS signal, where hybrid material consisting of nickel and nickel

oxide produced an enhanced and reproducible SERS signal. This

marker-free method generated a detailed NK cell metabolic profile

that could be highly advantageous for cellular diagnostic

applications. Thus, label-free SERS technique can be used for

profiling immune cells and their metabolic changes in difficult to

detect tumors such as small-cell lung cancer, triple-negative breast

cancer, and colorectal adenocarcinoma (80).
3.4 Dendritic cell interactions

Dendritic cells (DCs) play a crucial role in cancer

immunotherapy by interacting with cancer cells and presenting

tumor antigens to T cells. When DCs capture antigens from cancer

cells, their maturation status determines the immune response.

Fully mature DCs effectively present these antigens on major

histocompatibility complex (MHC) molecules, activating both

CD4+ helper and CD8+ cytotoxic T cells. Enhancing DC function

and antigen presentation is a key strategy in developing effective

cancer immunotherapies (84). T cell receptors (TCRs) form an

immunological synapse (IS) with antigen–MHC complexes and co-

stimulatory ligands on dendritic cells (DCs), characterized by a

distinct “bull’s-eye” structure known as the supramolecular

activation cluster (SMAC). Zoladek et al. employed label-free
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confocal Raman micro-spectroscopy (CRMS) to analyze the IS

formed between laminin-treated DCs and T cells in vitro. They

compared Raman spectral images with immunofluorescence

imaging to identify signatures of key macromolecules, including

nucleic acids, lipids, and proteins. Using a 785 nm laser, the study

assessed the impact of laminin treatment on the DC–T cell junction

by capturing images of control and treated DCs stained with

phalloidin. Laminin treatment enhanced actin filament

polarization and improved IS formation at the DC–T cell

interface. The Raman spectra revealed detailed actin distribution

in the IS, with characteristic peaks at 1450 cm−1 (CH deformation),

1661 cm−1 (amide I), 1555 cm−1 (amide II), and 1337 cm−1 (amide

III). A significant band at 1003 cm-1 correlated to histone proteins

present in the nucleus. For both DC and T cells, Raman spectral

images in the 788 cm-1 band exhibit good concordance with the

DAPI image, demonstrating the potential of CRMS for non-

invasive imaging of live immune cell interactions and providing

insights into the dynamics of the immunological synapse (85). This

research plays an important role in designing dendritic cell based

immunotherapies by providing real time data regarding DC-T cell

interactions within TiME.
3.5 Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are integral to the tumor

microenvironment, often contributing to immunosuppression by

stromal remodeling that protects cancer cells or communication

with multiple immune cells via secreted factors. CAFs undergo

metabolic changes that aid in tumor growth through interactions

with cancer and stromal cells, their inherent plasticity leads to

dynamic shifts in the fibroblast population. This emphasizes the

need for precise evaluation of CAF’s phenotypic and functional

heterogeneity (86). Lipid metabolites released by CAFs not only

facilitate metastasis but also serve as indicators of aggressive cancer

types (87). The accumulation of lipids within the tumor

microenvironment provides fatty acids to nearby tumor cells,

fueling their energy needs. Since obesity is characterized by high

levels of fatty acid, its impact on CAF’s lipid metabolism remains

poorly understood. Yeu et al. investigated this relationship using

Raman spectroscopy as a non-invasive technique to analyze lipid

metabolite changes in CAFs from endometrial cancer (EC) patients

having different BMI. The study focused on Raman spectral regions

associated with lipid biochemical changes (600–1800 cm–1 and

2800–3200 cm–1). Through direct band and ratiometric analyses,

researchers observed slight shifts in the CH2 symmetric stretch of

lipids at 2879 cm–1 and CH3 asymmetric stretching from proteins

at 2932 cm–1 in overweight or obese patient CAFs compared to

non-obese patients. These shifts indicated a higher lipid content and

increased lipid saturation in the obese CAFs and, with the help of

PCA, metabolic phenotypes linked to obesity and cancer

progression were effectively differentiated. The identification of

specific Raman spectral signatures in CAFs offers valuable

insights into the tumor microenvironment’s influence on EC

progression (88).
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3.6 Tumor-immune microenvironment
biomarker prediction

Designing effective studies to evaluate immunotherapeutic

treatment efficacy poses a significant challenge, particularly

regarding immune cell interactions and its characterization. The

interactions within the TiME are intricate and dynamic, and

understanding these interactions are essential towards predicting

immunotherapy response. For instance, in Merkel cell carcinoma

(MCC), research has shown that tumor-associated macrophages

(TAMs) can express immunosuppressive markers that inhibit T-cell

function. TAMs exhibit an immunosuppressive gene profile typical

of monocytic MSDCs and notably express several immune

checkpoint molecules that are potential therapeutic targets, such

as PD-L1 and LILRB receptors (89, 90), which are absent on tumor

cells. A study analyzing 54 tumor samples prior to immunotherapy

revealed that a specific subset of TAMs (characterized by CD163+,

S100A8+, CD14+) preferentially infiltrate tumors with a higher

presence of CD8+ T-cells. Furthermore, a higher density of these

TAMs was linked to resistance against PD-1 blockade therapies

(91). In another study, single-cell RNA sequencing (scRNA-seq)

revealed that a lower immune-cell infiltration (CD8 T-cell, NK cells,

and a complete absence of gd T-cells) was more common in acral

melanoma when compared to non-acral melanoma (92). Tumor

heterogeneity not only affects initial responses but also contributes

to acquired resistance to immunotherapies which takes the form of

immunosuppression and antigen escape. As tumors undergo

immunotherapeutic treatments, they may develop subpopulations

of cells that are resistant to immune-mediated cell death (76). These

cases have been noted in melanoma (93) and breast cancer (94)

studies and highlight the necessity of characterizing immune cell

subsets and their activation states to tailor immunotherapy

approaches effectively.

Raman spectroscopy has shown to be effective in

immunological whole-tumor profiling, with Ou et al. showing the

simultaneous detection of PET and SERS in monitoring the

dynamics of tumor cell compositions in vivo. Currently, PD-L1

expression in TiME is the most important clinical biomarker

assessed prior to immunotherapy use. High levels of PD-L1 have

been associated with better outcomes in various cancers, including

melanoma (95), lung cancer (96), and metastatic renal cell

carcinoma (97). However, due to tumor heterogeneity, the

relationship between PD-L1 expression levels in tissues and

therapeutic responses to anti-PD-1/PD-L1 treatments is not

always consistent (3, 98). This variability can be partially

attributed to the influence of N-linked glycosylation on PD-L1,

which may hinder the binding of commonly used anti-PD-L1

antibodies, thus the rapid glycosylation assessment possible with

RS could enhance the reliability of PD-L1 as a biomarker for

predicting responses to immune checkpoint therapies (99).

Additionally, the expression of PD-L1 in both tumor and

immune cells has been correlated to ICI clinical responses,

making accurate PD-L1 characterization a valuable companion

diagnostic for PD-1/PD-L1 inhibitors.
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To assess PD-L1 expression, Zhou et al. developed an intra-

operative technique using label-free Raman spectroscopy combined

with ML for data analysis and visualizing PD-L1 in glioma cells,

macrophages, CD8+ T cells, and normal cells. They employed

stainless steel and Calcium Fluoride substrates to minimize

background signals. Principal component analysis (PCA) was first

utilized to differentiate Raman spectra between PD-L1G (high PD-

L1 expression in glioma cells) and PD-L1L (Low PD-L1 expression

in glioma cells) subgroups. Random Forest (RF) analysis identified

five significant peaks at 723, 783, 837, 874, and 1437 cm−1. PD-L1G
exhibited stronger intensities at 837, 874, and 1437 cm−1 compared

to PD-L1L, which showed weaker intensities at 724 and 783 cm−1.

Figure 3D represents the average Raman spectra for PD-L1

expression in cancer cells. The peak intensities at 837 cm-1 and

834 cm-1 showed a positive linear correlation with PD-L1 levels.

This is correlated with the increased expression levels of PD-L1 in

glioma cells. The study also explored spectral differences among

PD-L1G, PD-L1T (high PD-L1 expression in T-cell), and PD-L1M
(High PD-L1 expression in macrophage) subgroups, revealing

biological correlations between cell types and their Raman

spectral features. Notably, ganglioside, phosphatidylcholine (PC),

and cytochrome-c contributed to PD-L1T, while sphingomyelin and

oleic acid were linked to PD-L1M. The relationship between spectral

features and biomolecule levels were qualitatively assessed across

different cell types. Multiple ML algorithms—including CLS, HCA,

SVM, and SA—were employed to analyze Raman spectra for model

training and visualize PD-L1 expression in the glioblastoma

immune microenvironment. This method for detecting the PD-L1

biomarker can be extended to other tumor biomarkers or target

cells of interest, enhancing intra-operative diagnostics for surgical

guidance and post-operative immunotherapy (81).
3.7 Predicting response to
immunotherapeutic treatment

The current clinical metrics for prediction and evaluation of

response to anti–CTLA4 and anti–PD-L1 immune checkpoint

inhibitors (ICIs) in the TiME are not very effective (100, 101). PD-L1

score of 0, for example, can still demonstrate response to therapy and

score is not currently utilized as a selection criteria for therapy (102). A

liquid biopsy strategy combining blood count parameters, clinical

characteristics, and serum lactate dehydrogenase predicted the

response of patients without metastatic disease to anti–PD-1 therapy

with about 60% accuracy (103). Studies have also leveraged PD-1/PD-

L1 and CTLA4– targeting antibodies radiolabeled with 89Z for

evaluating the tumor uptake of therapeutics using PET imaging;

however, such measurements are associated with challenges (104).

To address the challenges in predicting immunotherapy responses,

Paidi et al. employed label-free Raman spectroscopy to monitor

compositional changes in the tumor immune microenvironment

(TiME). Using a CT26 murine model of colorectal cancer, tumors

were treated with anti–CTLA-4 or anti–PD-L1 antibodies. Snap-frozen

tumors were thawed, flattened, and positioned between a quartz
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coverslip and an aluminum block with PBS to prevent dehydration,

with the quartz selected for its low fluorescence interference. The team

utilized a fiber-optic probe connected to a portable Raman system (830

nm diode laser) on a motorized translational stage to gather data. They

collected 7,500 spectra from 25 tumors over a 5-second acquisition

time. Ex vivo Raman mapping conducted three days post-treatment

yielded 7,585 spectra from approximately 300 spatially distinct points

across the tumors. Key Raman peaks identified included 849 cm⁻¹ (C–
O–C skeletal mode of polysaccharides), 1,260 cm⁻¹ (amide III of

proteins), 1,301 cm⁻¹ (lipid and collagen bending), 1,448 cm⁻¹ (lipid
and collagen CH₂ bending), and 1,657 cm⁻¹ (amide I of proteins).

Comparisons between treatment groups revealed subtle yet statistically

significant differences in lipid, nucleic acid, and collagen value,

suggesting that responses to anti–CTLA-4 and anti–PD-L1 therapies

influence TiME composition (34). These findings align with emerging

research on the role of metabolism and the tumor microenvironment

in shaping immune responses. Variations in lipid-based metabolites

between treatments are likely to reflect differential lipid metabolism

within the TiME due to immunotherapy (105). The machine learning

analyses in this study demonstrated high prediction accuracy for

treatment responses, highlighting precise spectral markers for each

therapy. This study demonstrates that label-free Raman spectroscopy

can sensitively detect early biomolecular changes in tumors. This is

advantageous in offering valuable insights for clinical monitoring of

immunotherapy responses in cancer patients.
4 Raman spectroscopy for drug
response and
metabolomic monitoring

The past years have seen breakthrough achievements in

immunotherapeutic interventions including checkpoint inhibitors,

cytokine-based immunotherapy, vaccines, and cell therapy (eg, CAR-

T cell, CAR-NK cell and TIL therapy). However, the response to

immunotherapeutic treatment has been variable among patients, and

only a small percentage of cancer patients benefit from this treatment

depending on the histological type of tumor and other host factors. In

clinical practice, immunohistochemistry (IHC) typically serves as the

initial method for assessing patient biomarkers. However, this

approach has several limitations, including variability in assay results,

ambiguous positivity thresholds, and instances where patients with low

expression levels still show therapeutic benefits. It is also heavily

dependent on the pathologist’s judgment and experience (106). For

patients suffering from cancer, imaging techniques like FDG-PET scans

enhance understanding of metabolic changes during immunotherapy

(107). Furthermore, radiolabeling checkpoint inhibitors with

radioactive isotopes like 89Z allows for PET imaging to track the

biodistribution of these inhibitors (108). Despite their utility, these

methods often come with challenges related to cost, time, and the need

for specialized personnel (109). As shown by some recent studies,

researchers can leverage Raman spectroscopy to assess responses to

immunotherapeutic drugs while simultaneously examining cancer cell

differentiation (69), drug uptake within cells (110), and patterns of

cancer metastasis (111, 112).
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For drug response monitoring, techniques like colorimetric

analysis, fluoroimmunoassay, ELISA, and radioimmunoassays are

employed, each with distinct advantages and limitations. For

instance, the complexity of ELISA protocols often involves multiple

incubation and washing steps, making them time-consuming (113).

This is especially challenging when working with large sample sizes.

Furthermore, the reagents used are costly and can have lot-to-lot

variability (114). In immunological studies, researchers commonly use

techniques like flow cytometry, ELISA, and confocal microscopy to

study the activation, polarization, and plasticity of immune cells along

with their cytokine profiles. However, these methods often require the

fixation of cells with paraformaldehyde (PFA), the addition of chemical

dyes for labeling, and fluorescent tagging with antibodies—either

conjugated or unconjugated. Such procedures can be invasive, costly,

time consuming and may disrupt biological processes. One notable

advancement for label-free drug screening is the Thermostable Raman

Interaction Profiling (TRIP) method developed by Altangerel et al.

(115). TRIP enables efficient screening of protein-ligand binding at low

concentrations and doses under physiologically relevant conditions, as

illustrated in Figure 4A. TRIP has been successfully applied to eight

different protein-ligand systems which demonstrates excellent

reproducibility in Raman measurements. The technique requires

only a small 10 μL droplet of protein solution on a gold-coated glass

slide which dissipates heat from the excitation laser while blocking

fluorescent interference. Key applications of TRIP include time-

dependent protein-drug binding using 2,4-dinitrophenol (DNP) with

transthyretin (TTR), static protein-drug binding involving the

streptavidin-biotin complex, and antigen-antibody binding detection

with protein A and various antibodies, including those targeting the

SARS-CoV-2 spike protein. TRIP is advantageous because of its cost-

effectiveness and rapid detection capabilities. This eliminates the need

for extensive sample preparation. Future enhancements could enable

high-throughput drug screening and real-time monitoring of drug-

target interactions, potentially improving drug development processes

for complex immunotherapeutic interventions (115).

Single-cell RNA sequencing and other profiling methods allow

researchers to study cells in detail, but these techniques destroy the

cells during the several processing steps (116). On the other hand,

Raman microscopy can analyze the vibrational energy of proteins

and metabolites without damaging the cells, achieving a very fine

resolution. However, it doesn’t provide genetic information.

Raman2RNA (R2R) is a new method that can predict single-cell

expression profiles in living cells using label-free hyperspectral

Raman images (Figure 4B). Either by combining Raman data

with single-molecule fluorescence in situ hybridization or using

advanced machine learning techniques. This kind of approach

performed much better than traditional brightfield imaging, with

cosine similarities of R2R > 0.85 compared to brightfield < 0.15.

When reprogramming mouse fibroblasts into induced pluripotent

stem cells, R2R effectively predicted the expression profiles of

different cell states. Additionally, while tracking mouse embryonic

stem cell differentiation, R2R identified early signs of lineage

divergence and development paths (116).

Fluorescence-Activated Cell Sorting (FACS) has been a

cornerstone for immunophenotyping and the detailed analysis of

immune cell interactions. While FACS bridges the gap between
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genetic, cellular and population analyses, its reliance on fluorescent

probes can interfere with cell metabolism and introduce reliability

issues (117) and spectral spillovers (118, 119). Staining the cells with

fluorescent dyes also impart cytotoxicity (120), alter the behavior of

cells being analyzed (121), and breakdown of dyes which can result

in reliability issues. It also limits its application in in vivo cell

therapies such as stem cell therapy (122) and CAR-T cells (123). In

contrast, Raman-Activated Cell Sorting (RACS) presents an

exciting alternative. It allows for label-free immunophenotyping

by measuring the emitted molecular vibrations of cells as illustrated
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in Figure 4C. RACS integrates multiple technologies to obtain

single-cell Raman spectra using different cell-isolation techniques.

These methods include operating in a flow environment with

microfluidic systems, utilizing Raman tweezers for cellular

analysis in solution, and employing Raman Activated Cell

Ejection (RACE) for surface-based applications In a study by Wu

et al. (124) they developed a novel approach using SERS combined

with microfluidic technology to observe real-time interactions

between cancer cells and the immune system. This platform is

fully automated and integrates optofluidic systems which allows for
FIGURE 4

Advanced Raman spectroscopy based techniques for immunotherapy. (A) Schematic illustration of Thermostable Raman Interaction Profiling (TRIP)
for personalized drug screening. (B) Raman spectroscopy based single-cell RNA sequencing for providing high spatial single-cell analysis. (C) Raman
activated cell sorting (RACS) for label-free cell sorting.
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effective monitoring of these intercellular communications. This

integrated system offers several key benefits. Firstly, it facilitates

direct on-chip communication between cells. This helps to maintain

the bioactivity and concentration of proteins released during

interactions, thus closely mimicking the in vivo conditions.

Secondly, a quantitative SERS immunoassay was employed to

evaluate how various drugs influence the secretion patterns of

cancer cells and the functionality of immune cells by utilizing an

SERS-enhanced 3D barcode immunoassay. Moreover, this

automated system significantly minimizes human error and

simplifies operational complexity, enhances the reliability of

results in drug screening and immunotherapy research.

Amongst most critical applications to date, Raman spectroscopy

can probe tumor metabolism in the TiME (125, 126) as growing

evidence suggests that the metabolic state of the TiME plays a crucial

role in the success of cancer immunotherapy. The TiME can

significantly influence the energy consumption and metabolic

reprogramming of immune cells, often causing them to become

tolerogenic and less effective at eliminating cancer cells.

Understanding these metabolic interactions is key to improving

immunotherapy outcomes. Unlike mass spectrometry-based single-

cell metabolomics, which requires destructive sample preparation

(127), label-free Raman spectroscopy can analyze metabolites in

living cells and tissues in a non-invasive manner. This makes it well-

suited for in vivo investigations of tumor metabolism. Recent studies

have utilized Raman confocal microscopy combined with ML

algorithms to analyze the activation of immune cells such as T cells,

B cells, and monocytes (28). For example, Chaudhary et al. employed

Raman micro-spectroscopy to identify activated immune cells. Their

study included both cell lines and primary cells consisting of purified

subgroups of monocytes and lymphocytes, as well as mixed

populations of peripheral blood mononuclear cells (PBMCs), all

obtained from healthy donors. ML models were designed for cell

differentiation and evaluated against flow cytometry data. Spectral

signatures of T-cell, B-cell and monocytes before and after activation

were also determined using high performance classification models,

including spectral fitting to identify spectral biomarkers (28).

Importantly, these analyses were conducted alongside traditional

methods like flow cytometry and ELISA in both in vitro and ex vivo

models. The findings indicate that immune cells exhibit unique spectral

profiles in response to different stimuli, highlighting the critical roles of

both cell type and specific activating signals in shaping their responses.

For instance, upon activation, T cells may undergo significant changes

in lipid metabolism and protein synthesis, while monocytes might

show alterations in cytoskeletal dynamics. These biochemical shifts

vary among different immune cell types and are indicative of the

complex signaling pathways that govern their activation and

differentiation. By examining these spectral changes through Raman

spectroscopy, researchers can gain valuable insights into the

mechanisms driving immune responses (28). This understanding

could pave the way for developing targeted therapeutic strategies

aimed at effectively modulating immune function. For example, if

specific spectral signatures are associated with effective T cell activation

against tumors, therapies could be designed to enhance these pathways

for improved cancer treatment outcomes.
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5 Integrating Raman spectroscopy
with -omics approaches and progress
towards clinical use

The “one-size-fits-all” model in immunotherapy often fails to

account for individual variations in genetics, environment, and

lifestyle, limiting the effectiveness of immunotherapy for many

patients (128). Multi-omic approaches that synthesize divergent

tumor features such as genomics, transcriptomics, proteomics and

metabolomics have significantly advanced the detailed description

of heterogeneous tumors and facilitated better understanding of

immunotherapy responses (129–131). Integrating multi-

dimensional data from various -omics layers remains a significant

challenge, and translating these data into precise drug selection for

clinical applications has yet to be realized. Additionally, the high

costs and labor-intensive nature of genomics, transcriptomics,

proteomics, lipidomics, and metabolomics studies require

sophisticated analytical and statistical methods. Consequently,

these factors have limited the longitudinal capture of events

across clinical studies (104, 105). Raman spectroscopy presents a

crucial opportunity to harmonize these -omics into a single

phenotypic, “Raman-omic” technique. Figure 5A illustrates the

role of Raman spectroscopy in multi-omics approaches in

immunotherapy, to delineate patient heterogeneity, reduce time

for analysis, reduce cost associated with those analyses, and

harmonize data for better ML/AI analysis by reducing

heterogenous data incompatibility. In this section we discuss how

Raman spectroscopy can be used to complement and augment

genomics, transcriptomics, proteomics, and metabolomics

in immunotherapy.
5.1 Raman spectroscopy in genomics
and transcriptomics

Detecting specific DNA sequences and identifying single-

nucleotide polymorphisms (SNPs) are vital for cancer diagnostics

and in predicting immunotherapy treatment outcome (134). Next-

generation sequencing (NGS) highlights the potential of somatic

DNAmarkers as both independent indicators and novel therapeutic

targets (135, 136). Raman spectroscopy has significant potential for

studying genomic and transcriptomic alterations. In particular,

changes in the vibrational modes of DNA and RNA, including

miRNA, can indicate mutations or epigenetic modifications

relevant to cancer. Studies have indicated that the activation state

of T cells is primarily linked to alterations within DNA rather than

proteins (137–139). Chromosomal DNA degradation of activated

mature T cells when stimulated via the CD3/T cell receptor complex

experience rapid apoptosis. This DNA degradation plays a crucial

role in eliminating autoreactive T cells in the thymus (140, 141). In a

study by Lee et al., they focused on the Raman spectral analysis of

activated mature CD8⁺ T cells and their DNA changes during

apoptosis. They noted a decrease in Raman spectral intensities

related to DNA, specifically at 768, 1071, and 1463 cm⁻¹. These
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intensity reductions likely reflect the breakdown of the DNA’s ring

structure, signaling its disintegration during apoptosis. Notably,

significant changes were observed in the O-P-O region of the DNA

backbone (around 780 to 800 cm⁻¹) and in PO₂ (around 1053 to

1087 cm⁻¹). This suggests a correlation with internucleosomal DNA
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cleavage progression. The differences in Raman spectra between

resting and activated mature CD8⁺ T cells were analyzed using PCA

which revealed a clear discrimination of DNA from activated T cells

compared to resting T cells. Thus, this study infers that the

decreased Raman intensities in activated mature CD8⁺ T cell
FIGURE 5

(A) Schematic representation of utility of Raman spectroscopy in multi-omics study. When incident light strikes the cells of interest, it generates
individual fingerprint Raman spectra. This provides information regarding molecular and chemical composition within cells. Raman spectroscopic
data analysis and interpretation using various ML/AI techniques can provide insights for genomics, proteomics, transcriptomics and metabolomics.
(B) Schematic representation of label-free miRNA identification, using Titanium ions to induce silver nanoparticle “hotspots” to identify RNA
sequences of homopolymeric bases and to locate the peak position of each base in the Raman spectrum. Adapted with permission under a Creative
Commons CC-BY License from ref (48). (C) 1) Raman spectra obtained for 8 different degradation studies of therapeutic monoclonal antibodies was
validated against conventional size-exclusion chromatography and peptide mapping. 2) represents the PCA analysis of RS, which can clearly
demarcate samples from different degradation clusters (pH 3, oxidation, 5000 kLux·h and 1000 kLux·h) from the control group to allow rapid
analysis for therapeutic quality control (132). (D) Raman spectra of the DMEM culture medium recorded at various Days in vitro (DIV). The red and
green lines in the spectra highlight peaks that show increasing and decreasing intensities, respectively. Adapted with permission under a Creative
Commons CC-BY License from reference (133).
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DNA are indicative of apoptosis, highlighting the utility of label-free

Raman spectroscopy as a tool for assessing the activation status of

these immune cell (142).

In parallel, Li et al. developed a unique detection method for

capturing SERS signal from unlabeled RNA without hampering its

structural integrity. They utilized titanium ions as an aggregating

agent along with silver nanoparticles. This formed electromagnetic

“hot-spots” for non-destructive and label-free single molecule

detection of miRNA molecules. Unlike traditional metal cation

aggregators (like Al³⁺ and Mg²⁺), the acidic titanium ions helped

stabilize RNA molecules. The researchers conducted SERS analysis

on homopolymeric sequences of the four RNA bases (A, G, C, and

U) and examined the secondary hairpin structure (Figure 5B). The

ribose peak at 959 cm⁻¹ was used for normalization, revealing

distinct peak positions for each base: A at 731 cm⁻¹, G at 665 cm⁻¹,
C at 789 cm⁻¹, and U at 795 cm⁻¹. To check the robustness of their

system, they designed RNA sequences of IL10 and 1HP3 which

contained the same bases but in a different sequential manner. A

peak at 1446 cm⁻¹ corresponded to U vibrations in AU base pairs,

while increases in peak intensities at 1314 cm⁻¹ (G in GC pairs) and

1635 cm⁻¹ (C in GC pairs) indicated complementary pairing. This

label-free detection method for miRNA demonstrated a high signal-

to-noise ratio with remarkable sensitivity while preserving the

original structure of miRNA. This research reduces the analysis

cost of miRNA characterization as well as supporting the

development of miRNA therapeutics in the future (48).
5.2 Raman spectroscopy in proteomics
and peptidomics

In the context of cancer diagnosis and new therapeutic

development, proteomics plays a valuable role for identifying

biomarkers. By analyzing proteins expressed in cancerous tissues

compared to healthy tissues, researchers can discern proteins that

are uniquely or differentially expressed in either state. Label-free

Raman spectroscopy can characterize proteins and their

conformational states, providing insights into their roles in

cancer. Uzunbajakava et al. demonstrated the first successful use

of nonresonant Raman imaging to analyze protein distribution in

cells. This study compared Raman images of two cell types:

peripheral blood lymphocytes (PBLs) and lens epithelial cells

(LECs). The Raman images revealed distinct differences in protein

distribution within the nuclei of PBLs and LECs, with clear

contrasts in protein intensity visible in the PBL nucleus (near

3000 cm⁻¹) (143). Raman scattering can also be utilized to study

the a and b-sheets conformations and changes in proteins. Rygula

et al. explored the secondary structures of 26 different proteins

(including hemoglobin (Hb), cytochrome c, peroxidase, albumin,

collagens, lectins, glucose oxidase, proteinase, ubiquitin, and heme

protein) using Raman spectroscopy by analyzing their Amide I and

III vibrations, which reveal the ratios of a-helices and b-sheets
(144). This research suggests that proteoforms may each have their

own vibrational fingerprint. Therefore, even when specific binders

are unavailable to discern, eg, post-translationally-modified
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proteins, Raman can prove specific information about

modifications or changes in secondary or tertiary structure.

Peptidomics can also benefit from Raman spectroscopy. For

example Raman spectroscopy can help in understanding the roles of

specific peptides involved in tumor cell signaling and immune

responses (145). Raman spectroscopy has also emerged as a

promising tool for detecting post-translational modifications

(PTMs) and assessing degradation in monoclonal antibody

(mAb) therapeutics (132). These modifications, which occur after

protein synthesis, can significantly impact the structure and

properties of antibodies, leading to issues like aggregation and

fragmentation. PTMs are classified based on the modified amino

acids or the enzymes involved, with common modifications

including phosphorylation, glycation, acylation, alkylation,

glycosylation, deamidation, and oxidation. This is particularly

important in mABs, where structural changes can result in

unwanted immune reactions (146), decreased effectiveness (147),

and material loss during production (148). Monoclonal antibodies

are especially vulnerable to aggregation and fragmentation due to

various processing conditions with soluble mAB aggregates posing a

significant risk for triggering unwanted immune responses (149). A

label-free and high throughput Raman spectroscopy can aid in

identifying these PTMs in real-time. Due to rapid spectral data

collection, little to no sample preparation, and without any

interference due to water, Raman spectroscopy emerges as an

outstanding candidate for real-time Process Analytical

Technology analysis in biotherapeutic production (150). For

instance, McAvan et al. studied the effectiveness of label-free RS

in detecting PTMs in IgG4 mAbs under various degradation

conditions, such as changes in pH (3 and 10), temperature (4, 40,

and 50°C), light stresses (1000 and 5000 kLux·h), and agitation. By

integrating principal component analysis (PCA) with RS and

circular dichroism (CD) spectroscopy, they differentiated mABs

based on their PTMs and degradation states. Figure 5C–1

represents Raman spectra which were obtained for 8 different

degradation data. Notably, spectral peaks at 1666 cm⁻¹ and 532

cm⁻¹ remained stable which indicates that b-sheet and disulfide

bonds were largely unaffected by these conditions. However,

significant changes were observed in the amide III region (1312

to 1334 cm⁻¹), suggesting alterations in the protein’s tertiary

structure linked to the degradation conditions. Additionally, RS

detected shifts at 885, 1121, and 1450 cm⁻¹ associated with

tryptophan and other molecular components, showing that both

tryptophan and C−H vibrations increased in wavenumber with

larger aggregates. Conversely, the C−N backbone exhibited a

decrease in wavenumber as aggregation increased. This research

highlights the potential of RS for monitoring PTMs in mAb which

were subjected to various forced degradation conditions. The PCA

analysis revealed that the data with identical conditions group

together. This indicated that the data is consistent and

reproducible. Notably, the samples that form distinct clusters

apart from the control group include those subjected to oxidation,

pH 3, and light exposure at 5000 kLux·h and 1000 kLux·h which is

represented in Figure 5C–2 (132). Furthermore, Zhang et al. used a

label-free RS approach along with SVM and PCA model for
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quantitative prediction of protein aggregation in Antibody Drug

Conjugates. Additionally, they have also investigated the impact of

temperature and humidity (40°C/75% RH/1 month) on aggregation

of proteins that mimics long-term storage conditions (151). These

studies suggest that label-free Raman spectroscopy can be used to

monitor real-time PTMs during biotherapeutic production.
5.3 Raman spectroscopy in metabolomics

Immunometabolomics has become a vital area of study by

providing detailed insights into the metabolic interactions within

the TiME. The transfer of metabolites between cancer cells and

nearby immune cells can shape immune responses, indicating that

these metabolic exchanges are key to both immune surveillance and

evasion. Research is focused on understanding the vital

contribution of metabolic communication between these cells,

particularly how tumor metabolism contributes to immune

evasion and resistance to immunotherapy (152). Tumor

metabolism leads to the buildup of metabolites such as lipids,

carbohydrates etc. that regulate immune responses within the

TiME (153). These metabolites not only serve as signals but also

interfere with the development of immune cells such as CAFs, T-

cells and macrophages (154–156). There is an urgent need for new

techniques that allow for single-cell metabolic interaction analysis

in a quick and cost-effective way. To overcome these hurdles,

researchers have utilized Raman spectroscopy for understanding

these intricate immune-cell metabolic cross talks. For example,

Shalabaeva et al. used a time-resolved method for metabolite

tracking in cell culture using label-free SERS, allowing

simultaneous analysis of multiple molecules without any sample

processing. The method used Ag nanostructures integrated in cell

culture medium in a four day study involving NIH/3T3 cells, with

Raman spectra collected from media. The analysis of specific peaks

revealed temporal changes in metabolic components such as L-

tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine, and

proteins from fetal bovine serum (FBS), as seen in Figure 5D. The

observed trends for L-tyrosine and its degradation products-

acetoacetate and fumarate signified the consumption of L-tyrosine

and simultaneously the production of its breakdown products. The

decreasing intensity of certain peaks likely indicates exhaustion of

these cell medium components over time. This method was also

applied to analyze LPS-driven differentiation of Raw 264.7

macrophage cells. Analysis of the Raman spectra collected over a

24hr period reflected macrophage transition from quiescent to an

activated pro-inflammatory state. This research indicates that label-

free SERS could identify different metabolites at various time points,

thereby providing insights into the immune cell states (133).

In cancer metabolomics, lipid metabolism plays a crucial role in

cancer development, progression and also influences tumor growth

mechanisms, including support for metastasis, ferroptosis-mediated

cell death, and interactions between tumor and immune cells (157).

Abnormal lipid levels and disrupted metabolic pathways contribute

to cancer growth, metastasis, and treatment resistance. As Raman

vibrational peaks are exceptionally sensitive for observing lipid
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content, Raman spectroscopy is increasingly applied for lipidomic

analysis across a wide range of cancers (157–159). Lipid droplets

(LDs) are dynamic organelles primarily involved in lipid storage

and metabolism, and dictating cellular energy balance and

signaling. Their significance in cancer biology has garnered

attention, particularly regarding resistance to chemotherapy, their

interactions with immune cells within the TiME, and implications

for immunotherapy (160). It was found that a significantly higher

quantity of lipid droplets was present in high-grade glioblastoma

and colorectal cancer when compared with low-grade cancers and

normal tissues (161). Ben et al. utilized Multiplex coherent anti-

Stokes Raman scattering (MCARS), a label-free technique, to detect

lipid droplets in colon cancer cell lines expressing the neurotrophin

receptor TrkB. The overexpression of TrkB subsequently activates

the PI3K/Akt signaling pathway and phosphorylation of Akt (P-

Akt), leading to lipid droplet formation in cells. The MCARS

technique focused on the 2500–3200 cm−1 spectral range, where

the CH2 (2850 cm−1) and CH3 (2930 cm−1) vibrational signatures

are primarily associated with lipid and protein contents

respectively. MCARS images of cells generated from signal

integration of CH2 stretching modes allowed researchers to

discriminate between lipid accumulation in the endoplasmic

reticulum and the formation of cytoplasmic lipid droplets. This

approach tracked the changes in lipid metabolism in both TrkB

high-expressing HT29 cells and low-expressing HEK293 cells

following treatment with brain-derived neurotrophic factor

(BDNF), demonstrating that BDNF-induced TrkB activation leads

to lipid droplet formation in HT29 cells. Thus, with MCARS along

with data processing, researchers were able to a) detect cancerous

cells, b) assess the tumor progression, and c) predict the resistivity

of cancer cells by analyzing the content of cytoplasmic lipid

droplets (162).
5.4 Translational potential of Raman
spectroscopy in cancer diagnosis
and treatment

Raman spectroscopy is increasingly recognized for its clinical

utility in cancer diagnosis and therapy (163, 164). One notable

application of label-free Raman spectroscopy is intraoperative

margin assessment of brain tumors, particularly glioblastomas.

Studies have shown that Raman spectroscopy can differentiate

between tumor and healthy brain tissue in real-time during

surgical procedures, potentially improving surgical outcomes by

ensuring complete tumor resection while preserving surrounding

healthy tissue. Jermyn et al. utilized a handheld Raman

spectroscopy probe, without any labeling, for real-time detection

of cancer cells in human brain tissue during surgery. This technique

achieved a sensitivity of 93% and specificity of 91%, effectively

distinguishing between normal brain tissue, dense cancer, and

cancer-invaded areas. The probe illuminated a 0.5-mm tissue

area, sampling up to 1 mm deep in just 0.2 seconds, integrating

seamlessly into neurosurgical workflows. The spectra covered a

range of shifts from 381 to 1653 cm−1. The Raman spectra revealed
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distinct differences in lipid bands and nucleic acid content between

cancerous and normal tissues. Specifically, variations at 700 cm−1

and 1142 cm−1 indicated changes in cholesterol and phospholipids,

while increased bands from 1540 to 1645 cm−1 suggested higher

nucleic acid levels in cancerous tissues. With ML analysis, they were

able to classify the samples with an overall accuracy of 92% (107).

This portable Raman technology enhances intraoperative decision-

making by providing quick, reliable identification of invasive

cancer, minimizing residual tumor volume and improving patient

survival outcomes. Raman spectroscopy has also now been used for

real time cancer cell differentiation and diagnosis in oral cancer

(165, 166), gastric cancer (167), and skin cancer (168).

Furthermore, Raman spectroscopy is gaining momentum as a

non-invasive diagnostic tool in oncology-based clinical trials

(Table 1). In a recent clinical investigation by Wang et al., serum

samples from 729 patients diagnosed with either prostate cancer

(PC) or benign prostatic hyperplasia (BPH) were analyzed. The
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researchers utilized SERS combined with an AI model based on

convolutional neural networks (CNN) for diagnostic purposes.

Their findings indicate an accuracy of ~85% for distinguishing

between PC and BPHBy integrating patient age and prostate-

specific antigen (PSA) levels into their multimodal CNN

approach, the classification accuracy improved significantly to

over 88% (169). Encouraged by these results, the researchers have

initiated a clinical trial to explore this diagnostic technique,

registered under NCT05854940 (170).

In another example, label-free RS has been used for diagnosis and

staging of diffuse large B-cell lymphoma (DLBCL) and chronic

lymphocytic leukemia (CLL) (171, 172). Label-free Raman

spectroscopy (RS) has emerged as a valuable tool for diagnosing and

staging diffuse large B-cell lymphoma (DLBCL) and chronic

lymphocytic leukemia (CLL). In a study conducted by Chen et al.

(2022), label-free SERS spectra were obtained from 47 healthy controls

and 53 DLBCL patients. AgNPs was used as a substrate for SERS
TABLE 1 Current clinical trials of Raman spectroscopy for cancer diagnosis and treatment.

Sr.
no

NCT
number Study title Conditions Interventions Brief summary

1 NCT04162431 DOLPHIN-VIVO:
Diagnosis Of LymPHoma
IN Vivo (Ex Vivo Phase)

Lymphoma; Head and
Neck Cancer

Combined FNA/Raman
spectroscopy
needle probe

Study for the use of Raman spectroscopy for non-invasive
analysis of lymph node tissue (x-vivo and in-vivo) for
providing immediate diagnostic results without laboratory
delays. It aims to streamline the biopsy process by
integrating fine needle aspiration during routine
procedures, maintaining clinical standards.

2 NCT05010369 DOLPHIN-VIVO:
Diagnosis of LymPHoma
in Vivo (In Vivo Phase)

3 NCT06384924 Raman Spectroscopy and
Skin Cancer

Skin Cancer; Basal Cell
Carcinoma; Squamous

Cell Carcinoma

Handheld Raman
Spectroscopy probe

Retrospective trial investigating the effectiveness of
Raman Spectroscopy in assessing skin cancer tumor size
and spread using a handheld probe that gently contacts
the skin with laser light. This method aims to enhance
diagnostic accuracy and efficiency.

4 NCT06394050 Label-free Raman
Spectroscopy for
Discrimination Between
Breast Cancer Tumor and
Adjacent Tissues After
Neoadjuvant Treatment

Breast cancer Label-free Raman
spectroscopy

based diagnosis

This trial aims to utilize label-free Raman spectroscopy to
distinguish between cancerous cells and adjacent tissues
in breast cancer patients’ post-treatment.

5 NCT04817449 Spectroscopy in
Ovarian Cancer

Ovarian Cancer;
Ovarian Neoplasms

Raman spectroscopy This trial investigates the utility of label-free RS for early
detection of ovarian cancer, by analyzing blood plasma
(from ovarian cancer patients) and fibrotic tissue (post-
chemotherapy) with label-free RS to identify
active cancer.

6 NCT04869618 Validation of an Artificial
Intelligence System Based
on Raman Spectroscopy
for Diagnosis of Gastric
Premalignant Lesions and
Early Gastric Cancer

Gastric Intestinal
Metaplasia;

Gastric Cancer

AI and Raman
spectroscopy-based

device
(SPECTRA IMDx)

Study for using Raman spectroscopy based artificial
intelligence system (SPECTRA IMDx) for early detection
and treatment of gastric premalignant lesions and early
gastric cancer (EGC).

7 NCT05854940 Multicenter, Prospective
Clinical Study of the
Serum Raman
Spectroscopy Intelligent
System for the Diagnosis of
Prostate Cancer

Prostate Cancer Serum Raman
spectroscopy intelligent

diagnostic system

Trial for validating the effectiveness of RS at screening
prostate cancer by detecting prostate-specific antigen
(PSA)focusing on early prostate cancer diagnosis.

8 NCT05995990 Raman Spectroscopy for
Liver Tumours Following
Liver Surgery

Colorectal
Cancer Metastatic

Raman Spectrometry Trial utilizing both RS and multivariate spectral analysis
to develop a quick and reliable method for evaluating
tissue sections for residual tumors in liver samples
after surgery.
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analysis. Their analysis revealed that DLBCL samples exhibited higher

spectral intensities at 725, 1093, 1329, 1371, and 1444 cm⁻¹, indicating
the presence of biomolecules such as hypoxanthine, adenine, thymine,

collagen, and phospholipids. While lower intensities were observed at

493, 636, 888, 1003, 1133, 1580, and 1652 cm⁻¹ which relate to

ergothioneine, uric acid, tyrosine, lactose, phenylalanine, acetoacetate,

amide I, and alpha-helix. They also found distinct spectral variations

between early-stage (I and II) and late-stage (III and IV) DLBCL. To

analyze the complex SERS data effectively, multivariate techniques were

employed. The k-nearest neighbors (kNN) model demonstrated better

results in both diagnosing and staging DLBCL with an accuracy of

87.3%, sensitivity of 0.921 and specificity rates of 0.809 for diagnosis

(171). In another patient-centric study, Bai et al. explored the potential

of RS to create a blood test for the noninvasive detection of DLBCL and

CLL through biomarker analysis. They examined blood plasma

samples from 33 DLBCL patients, 39 CLL patients, and 30 healthy

individuals. Their analysis revealed that the intensity at 1445 cm⁻¹,
associated with collagen and lipids, was notably higher in DLBCL

samples. Conversely, the intensity at 1655 cm⁻¹, linked to proteins and
alpha-helix structures decreased in CLL samples while increasing in

DLBCL samples. By combining RS with orthogonal partial least

squares discriminant analysis (OPLS-DA), the researchers were able

to differentiate the blood plasma of CLL and DLBCL patients from that

of healthy donors. This integrated approach achieved sensitivity rates of

92.86% for CLL and 80% for DLBCL along with specificity rates of

100% and 92.31%, respectively (172). To further this research, various

ongoing clinical trials are investigating both ex vivo and in vivo

diagnostic methods for lymphoma detection. These trials highlight

the current clinical need in cancer diagnostic approaches, especially in

cancer immunotherapy. With the advancement of ML and AI

technology, integrating RS in biomarker prediction as a diagnostic

tool can be crucial for a personalized approach in immunotherapy.

This will help solve many current limitations which are present in

immunotherapeutic treatment.
6 Future directions in label-free assays
to develop personalized
therapeutic approaches

Label-free Raman spectroscopy in cancer diagnosis and

immunotherapy is poised to revolutionize the landscape of

oncological care. As a non-invasive diagnostic tool, label-free

Raman offers advantages in terms specificity and throughput,

enabling the detection of molecular signatures associated with

various cancers directly from biofluids such as blood, urine, and

saliva (173), distinguishing various tissue types, and detecting

pathological alterations across a multitude of diseases. Preclinical,

translational, and clinical in vivo applications have significantly

enhanced Raman spectroscopy’s role in bridging crucial knowledge

gaps, especially in the complex analysis of whole-tissue to accurately

describe tumor microenvironments. However, several challenges

persist in utilizing Raman spectroscopy as a standalone multi-omic

test or as a complementary tool to existing multi-omics. Achieving
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the ambitious goal of entirely label-free assays that are low-cost and

high-throughput is essential for accelerating clinical patient studies.

One important step to advancing Raman application for cancers

is increasing utilization of formalin-fixed paraffin-embedded (FFPE)

specimens, where currently-described studies predominantly

concentrate on fresh or frozen tissue samples. FFPE is the

conventional method used for the preservation and storage of

tissue, especially tumor sampling that is a very small size such as in

melanoma or biopsies of metastatic tissues. Due to the dominant

vibrational signal native in paraffin, deconvoluting the relatively weak

signature of the tissue spectra from paraffin spectra remains a

persistent challenge. Robust suppression of the background signal

from the paraffin, either through chemical dewaxing demonstrated by

Ning et al. and Gaifulina et al (174, 175), digital processing as shown

by Tfayli et al. and Ibrahim et al. (176, 177), or vibrational mode-

suppressing SERS devices as shown by Kurouski et al. (178), can

greatly increase the possible patient data banks available to process

and construct the necessary library for the integration of Raman into

multi-omic studies. A notable study by Lewis et al. exemplifies this

potential by utilizing label-free Raman spectroscopy to compare

findings with immunohistochemistry (IHC). They generated

Raman spectral maps from FFPE colonic tissues obtained from

healthy individuals and used principal components analysis (PCA)

to validate their findings against several IHC markers. Their results

demonstrated the ability to differentiate mucin based on glycosylation

patterns, identify nuclear regions through DNA content analysis, and

categorize various tissues according to their amino acid compositions.

Their results confirm excellent correlation between the IHC markers

and label-free RS. This assures that label-free RS could be utilized in

detecting compositional changes, thus eliminating the use of

expensive antibodies (179). Ability to access the wealth of banked

and stored FFPE could facilitate the next leap in biologic study by

greatly expanding available specimens.

A second step for widespread adoption of RS in clinical care,

particularly at point of care sites, is efficient sample pre-processing

and data post-processing. Clinical integration of sample

preprocessing techniques prior would greatly facilitate Raman

analysis by eliminating unwanted background and noise.

Common sample preparation materials and ubiquitously-present

chemical molecules can often obscure and influence relevant

functional group vibrational signals. Strategic suppression of non-

relevant chemical groups or biological bands either chemically

(180) or through Raman-active platforms (181) can greatly

improve functional group targeting and better map them to

observable biomarker differences. Additional construction of a

global spectra library would further assist in signal deconvolution

and aid in standardization across samples. Timely tumor profiling

will also require rapid integration at subcellular resolution over the

entire tissue sample. As such, utilization of higher-throughput

Raman systems enabling line- or image-based spectral collection

pathways can greatly improve spectral acquisition throughput and

capacity. Higher collection bandwidth can aid in the population of a

data bank derived from historical samples.

Further advancements in Raman-based tumor investigations

necessitate continuous enhancements in the technical performance
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of spectral acquisition and the resolution of signals. While current

SERS devices strategically drive enhancements at the incident light

source, signal intensity can further be amplified by additional

consideration of enhancements in the scattering wavelength regime.

Design of doubly resonant platforms, with the second broader

resonance directing Raman scattered light towards the detector, can

yield increased spectra intensity and sensitivity. Further, multi-

resonant platforms accounting for polarization dependency can

enable sample filtering by polarizability. Careful considerations will

need to address spectral fidelity associated with fabrication

imperfections and hotspot intensities variations across regions.

Finally, as tumors and the TiME are most faithfully depicted as a

three-dimensional ecosystem, future SERS designs should extend

applicability to include all three degrees of spatial freedom.

Although confocal RS has been utilized as a 3D molecular

contrasting tool (180, 182), similar applications have not yet been

applied in SERS-based tumor studies. Potential adoption of

suspended or resonantly stratified NPs could provide z-stacking

capabilities, while maintaining high-sensitivity. Similarly,

considerations will need to be taken to address hotspot uniformity

and off-focus signal contributions.

The field of AI and machine learning in Raman spectroscopy data

analysis has revolutionized the way we approach real-time data

interpretation, particularly in single-cell and multi-omics studies.

These LLM models have shown remarkable potential in integrating

diverse data types, allowing researchers to simultaneously characterize

different cellular processes. However, the journey from laboratory

research to clinical application of Raman spectroscopy to

immunotherapy principles faces several hurdles. One significant

challenge lies in the data acquisition process, which often lacks

standardization. Researchers employ varying methods for sample

preparation, instrument operation, and data labeling. This leads to

inconsistencies across different studies. To address this, the scientific

community could benefit from establishing a global, public database for

Raman spectroscopy data. This repository would not only store data

from laboratories worldwide but also implement standardized

normalization and preprocessing techniques, paving the way for

more robust AI and ML method development. Another pressing

issue is the "black box" nature of many AI models. While these

algorithms excel at producing results, the opacity of their decision-

making processes can be a stumbling block for clinical adoption.

Healthcare professionals understandably hesitate to rely on tools they

cannot fully comprehend or explain. Therefore, enhancing the

transparency and interpretability of these models is crucial for their

acceptance in medical settings. Looking ahead, the field of

immunotherapy applications using Raman spectroscopy and AI has

several promising fields for growth. Multi-center studies should be

prioritized to improve data consistency and reliability, as current

research often relies on single-center data. Additionally, the

development of semi-supervised or unsupervised machine learning

models could unlock new possibilities beyond current applications.

These advanced models could potentially uncover hidden correlations

between various omics data sets, opening doors for innovative

hypothesis testing, drug discovery, and personalized medicine

approaches in immunotherapy (35). By addressing these challenges

and exploring new frontiers, the integration of AI, Raman
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spectroscopy, and immunotherapy holds promise for advancing our

understanding of cellular processes and improving patient outcomes.

These technical advancements are crucial not only for studying

therapeutic responses and discovering biomarkers but also for achieving

precision immunotherapeutics. Accurate intraoperative diagnosis for

complete tumor resection is essential for improving prognosis and

determining optimal surgical approaches in multi-modal care

settings.Raman spectroscopy has demonstrated the ability to

distinguish malignant tissue from healthy tissue in real-time that can

facilitate margin assessment and in vivo pathologic classification (183,

184). For example, one recent study applied label-free visible resonance

Raman spectroscopy to enhance the precision of tumor boundary

identification during glioma surgeries, with remarkable sensitivity,

specificity, and accuracy rates reaching 100%, 96.3%, and 99.6%,

respectively (185). Looking ahead, the integration of label-free Raman

spectroscopy into surgical practice holds significant promise for

improving cancer surgery outcomes. As this technology matures, it is

expected to facilitate real-time assessments of tumor margins during

surgical procedures. This will aid surgeons in achieving complete tumor

resections. The development of portable Raman analytical techniques

and advanced algorithms for data analysis will further enhance the utility

of in-situ applications. This will make label-free Raman spectroscopy an

invaluable tool in the future landscape of oncological surgery.
7 Conclusion

Label-free Raman spectroscopy could transform cancer

diagnosis and immunotherapy by offering a non-invasive, high-

throughput method for detecting molecular signatures in biofluids

and tissue specimens. The studies outlined here highlight the

myriad of challenges in multifaceted profiling of complex and

heterogeneous tumors that can be addressed with technical

innovations in Raman spectroscopy to transcend traditional

single-omic strategies. The analytical advancements in Raman

technologies, encompassing enhanced spectral isolation and

refined data processing capabilities, establish it as a crucial

instrument for elucidating the intricate mechanisms by which

tumors circumvent immune detection—a critical stride towards

precision medicine. Coupled with machine learning for real-time

data analysis, these techniques position Raman technology as a

disruptive tool throughout the continuum of oncological

intervention.As techniques for suppressing background signals

improve and as the construction of global spectral libraries

advances, the accuracy and efficiency of Raman spectroscopy in

clinical settings will be enhanced. The potential integration of

Raman spectroscopy with existing multi-omics platforms could

harmonize diverse datasets, facilitating a more comprehensive

characterization of tumors and better predictive biomarker

identification. Moreover, the potential for real-time tumor

boundary identification during surgeries positions Raman

technology at the forefront of precision immunotherapeutics. The

ongoing development of portable systems and sophisticated data

analysis algorithms promises to further embed label-free Raman

spectroscopy within surgical practice, ultimately improving patient

outcomes through more precise and informed interventions. By
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enabling timely, personalized, and precise immunotherapy

strategies, this technology could ultimately transform the

landscape of oncological care, reducing reliance on a “one size fits

all” treatment paradigm and enhancing patient outcomes.
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Single-cell RNA-seq reveals
immune cell heterogeneity and
increased Th17 cells in human
fibrotic skin diseases
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Background: Fibrotic skin disease represents a major global healthcare burden,

characterized by fibroblast hyperproliferation and excessive accumulation of

extracellular matrix components. The immune cells are postulated to exert a

pivotal role in the development of fibrotic skin disease. Single-cell RNA

sequencing has been used to explore the composition and functionality of

immune cells present in fibrotic skin diseases. However, these studies detected

the gene expression of all cells in fibrotic skin diseases and did not enrich immune

cells. Thus, the precise immune cell atlas in fibrotic skin diseases remains

unknown. In this study, we plan to investigate the intricate cellular landscape

of immune cells in keloid, a paradigm of fibrotic skin diseases.

Methods: CD45+ immune cells were enriched by fluorescence-activated cell

sorting. Single-cell RNA sequencing was used to analyze the cellular landscape of

immune cells in keloid and normal scar tissues. Ki-67 staining, a scratch

experiment, real-time PCR, and Western blotting were used to explore the

effect of the Th17 cell supernatant on keloid fibroblasts.

Results: Our findings revealed the intricate cellular landscape of immune cells in

fibrotic skin diseases. We found that the percentage of Th17 cells was significantly

increased in keloids compared to normal scars. All the subclusters of

macrophages and dendritic cells (DCs) showed similar proportions between

keloid samples and normal scar samples. However, upregulated genes in keloid

M1 macrophages, M2 macrophages, and cDC2 are associated with the MHC

class II protein complex assembly and antigen assembly, indicating that

macrophages and cDC2 are active in keloids. Functional studies suggested that

the supernatant of Th17 cells could promote proliferation, collagen expression,

and migration of keloid fibroblasts through interleukin 17A. Importantly,

increased Th17 cells are also found in other fibrotic skin diseases, such as

hypertrophic scars and scleroderma, suggesting this represents a broad

mechanism for skin fibrosis.
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Conclusion: In summary, we built a single-cell atlas of fibrotic skin diseases in this

study. In addition, we explored the function of Th17 cell-fibroblast interaction in

skin fibrosis. These findings will help to understand fibrotic skin disease

pathogenesis in depth and identify potential targets for fibrotic skin

disease treatment.
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1 Introduction

Fibrosis is a condition that is characterized by fibroblast

proliferation and excessive accumulation of extracellular matrix

components (1, 2). Fibrosis contributes to a high level of morbidity

and mortality worldwide and can lead to progressive tissue scarring

and organ dysfunction (1–3). Fibrotic skin diseases are

characterized by the accumulation of extracellular matrix

components in the dermis and include hypertrophic scars,

keloids, scleroderma, and graft-vs.-host diseases (4–8). Studies

have indicated a correlation between the development of fibrotic

skin diseases and genetic predisposition, tissue tension, aberrant

collagen synthesis and degradation processes, inflammatory

responses, and immune dysregulation (3, 6, 7). However, the

precise underlying pathogenesis of fibrotic skin diseases remains

elusive, and radical treatments are still lacking.

The immune response is postulated to exert a pivotal role in the

occurrence and progression of fibrotic skin diseases (6–10). A

substantial infiltration of immune cells is observed within fibrotic

skin diseases, and these cells potentially influence the development

of fibrotic skin disease lesions through the release of inflammatory

mediators and the modulation of extracellular matrix synthesis.

Furthermore, it has been demonstrated that immune cells occupy a

pivotal position in regulating the aberrant behavior exhibited by

fibroblasts in fibrotic skin diseases (6, 7, 9, 11, 12). Single-cell RNA

sequencing (scRNA-seq) has been used to explore the composition

and functionality of immune cells present in fibrotic skin diseases,

such as in keloids and scleroderma (13–15). However, these studies

detected the gene expression of all cells in fibrotic skin diseases and

did not enrich immune cells. Most of the cells in these single-cell

RNA sequencing studies were keratinocytes, fibroblasts, and

vascular endothelial cells, and the proportion of immune cells was

low in the results (13–15). We need to enrich immune cells in

single-cell RNA sequencing studies of fibrotic skin diseases to get a

more precise immune cell atlas for fibrotic skin diseases.

Th17 cells are a lineage of CD4+ T helper cells. Th17 cells have

been implicated in numerous inflammatory diseases, including

Crohn’s disease, psoriasis, multiple sclerosis, rheumatoid arthritis,

and inflammatory bowel disease (16–18). The pro-inflammatory

cytokines derived from Th17 cells, including interleukin 17A (IL-
02127
17A), IL-17F, IL-21, IL-22, and IL-26, play crucial roles in the

pathogenesis of these diseases (16–18). It has been observed that the

inhibition of Th17 cell differentiation leads to a downregulation of

IL-17A expression, subsequently mitigating hepatic fibrosis and

pulmonary fibrosis (19, 20). It has been discovered that IL-17A

secreted by Th17 cells augments the release of pro-inflammatory

chemokines, including monocyte chemoattractant protein (MCP)-1

and IL-8, from dermal fibroblasts in systemic sclerosis. This, in turn,

exerts a profound impact on the remodeling of the extracellular

matrix (21, 22). These comprehensive investigations have

established a link between Th17 cells and fibrotic diseases.

However, the specific role and function of Th17 cells in fibrotic

skin diseases are not fully understood.

In this study, we isolated CD45+ cells from keloids, a paradigm

of fibrotic skin diseases, using fluorescence-activated cell sorting

(FACS) and performed single-cell RNA sequencing analysis. Our

results revealed the intricate cellular landscape of immune cells in

keloids. Compared to normal scar tissue, the percentage of Th17

cells was significantly increased in keloids. Further functional

studies revealed that Th17 cells promote the proliferation,

collagen expression, and migration of keloid fibroblasts by

secreting IL-17A. Importantly, increased Th17 cells were also

found in other fibrotic skin diseases, such as hypertrophic scars

and scleroderma, suggesting this represents a broad mechanism for

skin fibrosis. These findings will help us more thoroughly

understand the pathogenesis of fibrotic skin diseases and provide

potential targets for therapies for fibrotic skin diseases.
2 Materials and methods

2.1 Sample preparation and
tissue dissociation

This study was approved by the Medical and Ethics Committees

of Dermatology Hospital, Southern Medical University, and each

patient signed an informed consent form before participating in this

study. Keloid tissues were harvested during plastic surgery from

three patients confirmed to have clinical evidence of keloid

(Supplementary Table S1). Normal scar tissue was obtained from
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three patients who underwent elective scar resection surgery

(Supplementary Table S1). The tissues were washed with PBS on

ice and the fat tissue was removed. The tissue samples were then cut

into 1 cm2 pieces in a digestion medium composed of 2.5 mg/ml

Dispase II (Roche, USA, 04942078001) in PBS and incubated at

37°C for 2h. After removing the epidermis, the dermal portion was

further cut and digested in 2.5 mg/ml collagenase IV (Yeasen

Biotechnology, China; 40510ES60) at 37°C for 2h. The cell

suspension was filtered through a 70mm-cell strainer, and then

the enzymes were neutralized with buffer (PBS with 1% fetal bovine

serum). The cells were centrifuged at 2,000 rpm for 10 min at 4°C

and resuspended in buffer (PBS with 1% FBS). We then sorted the

CD45+ immune cells and constructed scRNA-seq libraries.
2.2 Single-cell cDNA and
library preparation

Single-cell cDNA, library preparation, and 3′-end single-cell

RNA sequencing were performed by Novogene (Beijing, China).

For experiments using the 10×Genomics platform, the Chromium

Single Cell 3′ Library and Gel Bead Kit v3.1, Chromium Single Cell

3′ Chip Kit v3.1, and Chromium i7 Multiplex Kit were used

according to the manufacturer’s instructions in the Chromium

Single Cell 3′ Reagents Kits v3.1 User Guide. The single-cell

suspension was washed twice with 1×PBS + 0.04% BSA. The cell

number and concentration were confirmed using a TC20™

Automated Cell Counter.

Approximately 10,000 cells were immediately subjected to the

10×Genomics Chromium Controller machine for Gel Beads-in-

Emulsion (GEM) generation. mRNA was prepared using

10×Genomics Chromium Single Cell 3′ reagent kits (V3

chemistry). During this step, cells were partitioned into the GEMs

along with gel beads coated with oligos. These oligos provide poly-

dT sequences to capture mRNAs released after cell lysis inside the

droplets and cell-specific and transcript-specific barcodes (16 bp

10×barcodes and 10 bp unique molecular identifiers

(UMIs), respectively).

After RT-PCR, cDNA was recovered, purified, and amplified to

generate sufficient quantities for library preparation. Library quality

and concentration were assessed using an Agilent Bioanalyzer 2100.

Libraries were run on the Novaseq 6000 for Illumina

PE150 sequencing.
2.3 Single-cell RNA-sequence
data processing

The 10×Genomics Cell Ranger toolkit (v6.1.2) was used to

process 10×Genomics raw data for read alignment and UMI matrix

generation. Reads were aligned to the human reference genome

(GRCh38) downloaded from the 10×Genomics official website with

the STAR algorithm. The aligned reads were quantified as a gene

expression matrix based on the number of UMIs detected in

individual cells. Filtered gene-cell UMI matrices were generated

for further single-cell analysis.
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Low-quality cells that expressed fewer than 200 genes or more

than 4,000 genes and more than 10% mitochondrial gene

expression were eliminated. The R package DoubletFinder

(v2.0.3) was applied to filter doublets. After removing low-quality

cells and doublets, R package Seurat (v4.0.3) was used for

unsupervised clustering of individual cells. First, a global-scaling

normalization method, LogNormalize, that normalizes the gene

expression measurements for each cell by the total number of UMIs

in single cells and multiplied by a scaling factor of 10000 was used.

After log-transformation, the top 2,000 highly variable genes were

detected and principal component analysis (PCA) was performed

for downstream unsupervised clustering analysis. The Louvain

algorithm was adopted to cluster individual cells based on the top

30 PCs and the identified clusters were visualized with Uniform

Manifold Approximation and Projection (UMAP). The accuracy of

single-cell analysis can be affected by batch effects, and the

canonical correlation analysis (CCA) method was applied based

on the top 30 PCs with the default parameters for batch correction.
2.4 Gene signature scores

To assist in the identification of subpopulations of CD4 and

CD8 T cells, we downloaded the sets of gene signatures associated

with CD4 and CD8 T cells from the literature (23) and calculated

functional signature scores for each cell with the AddModuleScore

function in the Seurat package to illustrate the functional properties

of each cell type.

To assign M1/M2 polarization estimates to the macrophage

cells, we applied the AddModuleScore function in the Seurat

package. The gene sets associated with M1 and M2 polarization

were obtained from Sun et al. (24).
2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) were identified using the

FindMarkers function, implemented in the Seurat package, with the

Wilcoxon rank sum test with the following criteria: log-scaled fold

change ≥ 0.25 and P value < 0.05. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

were performed using the clusterProfiler (v4.11.0) package based on

the upregulated genes and downregulated genes. Pathways with

adjusted P < 0.05 were considered significant.
2.6 Cell-cell interactions analysis

To investigate the cell-cell interactions between different cell

types in the normal scar samples and keloid samples, cellular spatial

organization mapper (CSOmap) software (v1.0) was used to

identify ligand-receptor pairs. CSOmap was used to construct a

three-dimensional (3D) pseudo space and infer the cell-cell

interactions based on scRNA-seq data. CSOmap combined the

gene expression data of single cells with prior knowledge of

signaling and gene regulatory networks. FANTOM5, a human
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ligand-receptor interaction database, was used to combine immune-

associated chemokines, cytokines, costimulators, coinhibitors, and

their receptors to estimate the cell-cell affinity matrix. The

contribution of each L-R pair to the cell-cell affinity can provide

clues to highlight important LR pairs underlying the

cellular interactions.
2.7 Immunofluorescence staining

Human skin biopsies (Supplementary Table S2) were

submerged in 4% paraformaldehyde for 24h at room temperature.

The samples were dehydrated in gradient alcohol and embedded in

paraffin according to standard protocols. Samples were sectioned at

4mm thickness and then incubated at 75℃ for 20min. The sections

were deparaffinized with environmental dewaxling dip wax

transparentize solution (Bioshap, China, 22181809) and

rehydrated in 95% alcohol. The sections were placed with high-

pH repair buffer (GeneTech, China; GT102410) in a 95℃ water

bath for 20 min with a microwave. After overnight incubation at 4℃
with rabbit anti-IL-17A (Santa Cruz, sc-374218) and mouse anti-

CD4 (Abcam, ab183685), sections were washed thrice with PBS and

treated with 1:1000 diluted anti-rabbit Alexa Flour 488 (Abcam,

ab150113) and anti-mouse Alexa Flour555 (Abcam, ab150110), and

conjugated for 1 h at room temperature. After three washes with

PBS, counterstaining of cell nuclei was performed using DAPI

(Beyotime, China, P0131). Images were taken using a Nikon A1

confocal laser-scanning microscope.
2.8 Th17 cells polarizing

Peripheral blood mononuclear cells (PBMCs) were isolated

from keloid patients’ whole blood by centrifugation in a density

gradient medium (Ficoll-PaqueTM Plus, Cytiva, 17144003). The

cells were resuspended at a concentration of 5×107 cells/mL in

buffer (PBS containing 2% fetal bovine serum and 1 mM EDTA).

Naïve CD4+ T cells (purity >99%) were isolated using an EasySep™

Human Naïve CD4+ T Cell Isolation Kit II (Stemcell, 17555).

Purified naïve T cells obtained as described above were cultured

in a Th17-polarizing medium for 7 days to induce Th17 cells. The

Th17-polarizing medium contained anti-CD3 Ab (2mg/mL, OKT-3;

BioLegend), anti-CD28 Ab (1mg/mL, OKT-3, BioLegend), IL2

(10ng/ml,PeproTech), IL6 (20ng/mL, R&D Systems), TGF-b1
(10ng/mL, R&D Systems), IL1b (10ng/mL, PeproTech), IL23

(10ng/mL, PeproTech), anti-IL4 Ab (10mg/mL, BioLegend), and

anti-IFN-g Ab (10mg/mL, BioLegend).
2.9 Real-time quantitative PCR

RNA extraction from cells was performed using TRIzol Reagent

(Invitrogen, Life Technologies, USA) according to the

manufacturer’s instructions. 1mg of RNA fraction was reverse

transcribed to cDNA using PrimeScript™ RT Master Mix

(Takara, Dalian, China). qRT-PCR was conducted using a BIO-
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RAD CFX Connect Real-time PCR Detection System and primers

and templates mixed with SYBR Premix Ex Taq II (Vazyme,

Nanjing, China). Threshold cycle (CT) values were used to

calculate the fold change using the 2-DDCT method. The relative

mRNA expression was normalized to the GAPDH gene. Gene-

specific primer pairs were designed with Primer Premier 5.0

software (Supplementary Table S3).
2.10 Western blot

The cells were washed once with ice-cold PBS and lysed with

chilled RIPA buffer containing protease inhibitors. Cell lysates were

separated by 10% SDS-PAGE (Bio-Rad) and then transferred from

the gel to 0.45 um polyvinylidene difluoride membranes (Millipore,

Billerica, USA). Page Ruler Plus Prestained Protein Ladder

(Fermentas, Hanover, USA) was used to confirm protein

electrophoresis and transferring. After blocking in a solution of

5% non-fat dry milk diluted in tris-buffered saline/Tween (TBST),

the membranes were washed with TBST and then incubated with

primary antibodies overnight at 4°C. The following antibodies were

used for signaling pathway analysis: rabbit anti-Collagen I (Abcam,

ab270993), rabbit anti-Collagen III (Abcam, ab184993), rabbit anti-

alpha smooth muscle actin (Abcam, ab124964), and mouse anti-

GAPDH (Beijing Ray Antibody Biotech, RM2002). After washing,

the membranes were incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies [Goat anti-Mouse IgG (Beijing

Ray Antibody Biotech, RM3001); Goat Anti-Rabbit IgG (Beijing

Ray Antibody Biotech, RM3002)] for 1 h at 37°C. Bound antibodies

were detected using the ECL Western blotting detection system.
2.11 Statistical analysis

All experiments were performed in triplicate and repeated at

least three times. Statistical analyses were performed using SPSS

software, version 19.0 (IBM, Armonk, NY, USA). Data represent

mean ± standard deviation. A two-tailed, unpaired Student’s t-test

or the Mann-Whitney U test was employed to compare the values

between subgroups for quantitative data. P < 0.05 was considered to

be statistically significant.
3 Results

3.1 Single-cell RNA-seq reveals immune
cell heterogeneity of fibrotic skin diseases
and normal scar dermis tissues

To explore the immunological profile offibrotic skin disease, we

used FACS to isolate CD45+ cells from keloid, a paradigm offibrotic

skin diseases, and normal scar dermis tissues for scRNA-seq

(Figure 1A). We chose CD45 to enrich immune cells because

CD45 has been suggested to express on almost all hematopoietic

cells except for mature erythrocytes (25–27). We only used the

dermis for scRNA-seq analysis because keloid is a skin dermis
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FIGURE 1

Single-cell transcriptome map of immune cells in fibrotic skin disease and normal scar dermis samples. (A) Workflow depicting the collection and
processing of keloid, a paradigm of fibrotic skin diseases, and normal scar CD45+ cells for scRNA-seq. (B) Unsupervised clustering of the 41,084
single cells from three keloid samples and three normal scar samples, including 25 clusters and 16 major clusters. KC, keratinocyte; SMC, smooth
muscle cell; Fib, fibroblast; EC, endothelial cell; ILC, innate lymphoid cell; NK, natural killer; DC, dendritic cell; Mono, monocyte; Macro,
macrophage. (C) Dot plot of the expression of key cell type marker genes in each cell cluster. Bubble size is proportional to the percentage of cells
expressing a gene in a cluster and color intensity is related to the average scaled gene expression. (D) Feature plots of expression distribution for cell
type-specific markers. (E) The proportion of each cell type in three keloid samples and three normal scar samples. K, keloid; N, normal scar. (F) The
percentage of cells for each immune cell type in keloids and normal scars. Ns, not significant; *, P<0.05; K, keloid; N, normal scar.
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fibrotic disease. After stringent quality control (Supplementary

Figures S1A, B), we obtained the transcriptomes of 41,084 cells.

Unsupervised UMAP clustering revealed 25 cell clusters (Figure 1B;

Supplementary Figure S1C). Based on established lineage-specific

marker genes (Figures 1C, D; Supplementary Figure S1D), we

assigned these clusters to multiple cell lineages. The immune cell

lineage was identified by PTPRC (Figure 1D). T cells, macrophages,

dendritic cells (DCs), and mast cells accounted for the majority of

the sequenced cells. Some cells expressed non-immune cell markers,

such as fibroblast or endothelial cell markers, which may have

resulted from the incomplete removal of these cells by FACS.

We next analyzed the proportions of immune cell lineages in

keloids and normal scars. The immune cell lineages in the dermis of

keloids and normal scars showed distinct relative cell number ratios

(Figures 1E, F). The proportion of CD4+ T cells increased

significantly in keloids compared to normal scars, suggesting that

CD4+ T cells may play an important role in keloid development

(Figure 1F). The proportions of natural killer (NK) cells, NK T cells,

B cells, and macrophages were decreased in keloid tissues compared

to normal scar tissues, although the difference is not significant.

Some other T cells, such as CD8 T cells and gd T cells, showed

similar proportions in keloids and normal scars (Figure 1F).
3.2 T cell subclustering into distinct cell
populations and Th17 cells are increased in
fibrotic skin disease

Because CD4+ T cells undergo significant changes in keloids

compared to normal scars (Figure 1F), and T cells are important for

keloid pathogenesis, we next performed unsupervised clustering of

all keloid and normal scar T cells (Figure 2A; Supplementary Figure

S2A). Based on DEGs, canonical immune markers, and curated

gene signatures (Figures 2B–D; Supplementary Figure S2B), we

defined 13 transcriptional states: naïve T (C9 and C10), CD8 Teff

(C2, C7, and C12), Th17(C3), CD4 Trm (C4), CD4 Tmet (C5), CD4

Treg (C6), CD4 Tcm (C8), MAIT (C11), and Cycling T (C13)

(Figures 2A–D). Figures 2E, F show the cell proportions of the T cell

subclusters in keloids and normal scars. From the results, we can see

that the proportion of Th17 cells and CD4 Tcm cells was

consistently increased in the keloid samples compared to the

normal scar samples (Figures 2E, F).

Because Th17 cells play an important role in the pathogenesis of

a diverse group of inflammation-mediated skin diseases, and

inflammation is important for keloid pathogenesis, we next

focused on Th17 cells. We compared differences between keloid

Th17 cells and normal scar Th17 cells. We identified genes

associated with the IL-17 and TNF signaling pathways, such as

IL-17A, TNFAIP3, and CCL20, which were significantly increased

in keloid Th17 cells (Figure 2G). KEGG pathway analysis also

suggested that the IL-17 signaling pathway, TNF signaling pathway,

and Th17 cell differentiation-associated pathway were enriched in

the keloid Th17 cells (Figure 2H; Supplementary Figure S2C). These

results suggest that not only was the proportion of Th17 cells

increased but also the identities of Th17 cells changed in keloids

compared to normal scars.
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We next integrated the scRNA-seq data from CD45+ cells in

healthy skin tissues (26) into our study. We integrated and analyzed

73,597 single cells from three keloid, three normal scar, and seven

healthy control skin samples (Supplementary Figures S3A, B). The

results also showed that the proportion of CD4+ T cells increased

significantly in keloids compared to normal scars and healthy skin

(Supplementary Figure S3C). We next performed unsupervised

clustering of all T cells in the keloid, normal scar, and healthy

skin samples. Based on canonical immune markers and curated

gene signatures, we defined 15 subclusters (Supplementary Figures

S3D–F). The proportion of Th17 cells was increased in keloids

compared to healthy skin (Supplementary Figure S3G), which is

consistent with the finding in normal scars. We also found that the

proportion of CD8 Teff (IFNG+) was consistently increased in

keloids and normal scars compared to healthy skin (Supplementary

Figure S3G), suggesting that the cells may play a role in scar

formation. We next compared differences in the keloid Th17 cells,

normal scar Th17 cells, and healthy skin Th17 cells. IL-17A,

TNFAIP3, and CCL20 were found to be significantly increased in

the keloid Th17 cells compared to the healthy skin Th17 cells

(Supplementary Figure S3H). We also found that the Th17-type

immune response and IL17-mediated signaling pathway were

enriched in the keloid Th17 cells compared to the healthy skin

Th17 cells (Supplementary Figure S3I).

We also analyzed Tregs, another important cell in immune

regulation. We performed unsupervised clustering on all Tregs in

keloids and normal scars. We observed further heterogeneity with

two subclusters, KLF2+ Tregs and LAIR2+ Tregs (Supplementary

Figure S4A). Pathway analysis suggested that the upregulated genes

in the LAIR2+ Tregs were associated with a response to the

interleukin-2 and interleukin-15-mediated signaling pathway and

the upregulated genes in the KLF2+ Tregs were associated with the

regulation of protein stability and fibrillar center (Supplementary

Figure S4B). Both Treg subclusters showed similar proportions in

the keloid and normal scar samples (Supplementary Figure S4C).

We next compared the differences between the keloid Tregs and

normal scar Tregs. GO analysis showed that the upregulated genes

in the keloid KLF2+ Tregs were associated with the platelet-derived

growth factor receptor signaling pathway and the regulation of B

cell activation, and the upregulated genes in the keloid LAIR2+

Tregs were associated with the toll-like receptor 2 signaling pathway

(Supplementary Figure S4D).
3.3 Transcriptional landscapes reveal the
heterogeneity of mono-macrophages and
increased macrophage activity in fibrotic
skin disease

Because mono-macrophages are reported to play an important

role in fibrotic skin disease pathogenesis (9, 11), we next performed

unsupervised clustering of all mono-macrophages. Based on DEGs

and canonical mono-macrophage markers, we observed further

heterogeneity with five subclusters, C1 through C5 (Figures 3A–C).

C1, C2, and C3 were macrophages, and C4 and C5 were monocytes.

All the mono-macrophage subclusters expressed canonical CD14,
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CD68, and CD163 except the C4 subcluster, which highly expressed

C5AR1 and CSF3R. Figure 3D shows the cell proportions of the

mono-macrophage subclusters in keloids and normal scars. From

the results, we can see that all five subclusters showed similar

proportions in the keloid samples and normal scar samples.
Frontiers in Immunology 07132
Macrophages can be divided into M1 macrophages and M2

macrophages (28). By calculating M1 and M2 polarization scores

using related gene sets, we found that the C1 macrophages were more

like M1 macrophages, and the C2 macrophages were more like M2

macrophages. The C3 macrophages were like the intermediate state
FIGURE 2

Transcriptional diversity of CD4+ and CD8+ T cells. (A) Uniform Manifold Approximation and Projection (UMAP) of 13 subclusters identified in CD4+

and CD8+ T cells. (B) Dot plots showing distinct expressions of the selected marker genes in each subcluster. (C) Heatmap illustrating the scaled
score calculated based on the expression of curated gene signatures across CD4+ T cell subclusters (left) and CD8+ T cell subclusters (right).
(D) Heatmap of the top 10 differentially expressed genes (ranked by log-transformed fold change in descending order) in the CD4+ and CD8+ T cell
subclusters. (E) Box plots showing the percentage of cells for each T cell subcluster in the keloid and normal scar samples. The p-value indicated in
the plot was calculated by unpaired two-tailed t-tests. (F) The proportion of each T cell subcluster in three keloid samples and three normal scar
samples. K, keloid; N, normal scar. (G) Violin plots showing differentially expressed genes in the Th17 cells in keloids and normal scars. K, keloid;
N, normal scar. (H) Functional KEGG pathway enrichment of the upregulated genes (keloid vs. normal scar, avg_logFC > 0.25, and p value < 0.05) in
Th17 cells. The p-value was calculated using the hypergeometric distribution and corrected using the Benjamini and Hochberg method. Pathways
with an adjusted p-value of <0.05 are considered significant.
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FIGURE 3

Fibrotic skin disease and normal scar mono-macrophages subclustered into distinct cell populations. (A) Uniform Manifold Approximation and
Projection (UMAP) plots of the mono-macrophage subpopulations. (B) Violin plot showing key marker gene expression between the mono-
macrophage subpopulations. (C) Heatmap showing the expression of the top 5 differentially expressed genes in the mono-macrophage
subpopulations. (D) Bar plots showing the percentage of each mono-macrophage subpopulation in the keloid and normal scar samples. (E) UMAP
plots showing the M1 and M2 scores for each cell in the macrophages. (F) Box plots showing the M1 and M2 scores for each subpopulation of
macrophages. Significance was determined by the unpaired two-tailed t test. (G) GO terms enrichment of the upregulated genes (keloid vs. normal
scar, avg_logFC > 0.25, and p-value < 0.05) in macrophages. GO terms with an adjusted p-value of <0.05 are considered significant.
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between M1 and M2 macrophages (Figures 3E, F). We next

compared differences between keloid mono-macrophages and

normal scar mono-macrophages (Figure 3G; Supplementary

Figures S5A–C). GO analysis showed that the upregulated genes in

the keloid C1, C2, and C3 macrophages compared to the normal scar

macrophages were all associated with MHC class II protein complex

assembly and antigen processing and presentation (Figure 3G),

suggesting the consistent active state of macrophages in keloids.
3.4 Transcriptional landscapes reveal
heterogeneity of dendritic cells and
increased cDC2 and migDC cell activity in
fibrotic skin disease

DCs are important antigen-presenting cells (APCs) in the skin.

We next performed unsupervised clustering of all DCs in keloids

and normal scars. Consistent with previous reports, DCs in the skin

were clustered into cDC1, cDC2, pDC, migDC, and Langerhans

cells (LCs) (Figures 4A–C). Most of the DCs in keloids and normal

scars were cDC2 (Figures 4A–C). There were several LCs in the

results, which may have resulted from the incomplete removal of

the epidermis. Cell proportion analysis suggested that the five

subclusters showed similar proportions in the keloid and normal

scar samples (Figures 4D, E).

We next compared differentially expressed genes in the keloid

DCs and normal scar DCs (Figure 4F; Supplementary Figures S6A–

D). GO analysis showed that the upregulated genes in keloid cDC2

and migDC were associated with MHC class II protein complex

assembly and peptide antigen assembly (Figure 4F; Supplementary

Figure S6B), suggesting the active state of cDC2 andmigDC in keloids.
3.5 Transcriptional landscapes reveal
heterogeneity of mast cells in keloids and
increased IL-17 signaling in mast cells in
fibrotic skin disease

Mast cells are reported to play an important role in fibrotic skin

disease pathogenesis (7, 9, 11). We next performed unsupervised

clustering of all mast cells in keloids and normal scars (Figure 5A).

Based on differentially expressed genes (Figures 5B–D), we observed

further heterogeneity with four subclusters, C1 through C4

(Figures 5A–D). The C1 subcluster constitutes the majority of the

mast cells and highly expressed GLUL, RRAD, DUSP14, and so on.

Figures 5E and F show the cell proportions of the mast cell

subclusters in keloids and normal scars. From the results, we can

see that all four subclusters showed similar proportions in the keloid

and normal scar samples.

We next compared differentially expressed genes in the keloid

mast cells and normal scar mast cells (Figure 5G; Supplementary

Figures S7A–D). KEGG analysis showed that the upregulated genes

in the keloid C1 and C2 mast cell subclusters were associated with

the IL-17 signaling pathway (Figure 5G; Supplementary Figure
Frontiers in Immunology 09134
S7A), suggesting that activating IL-17 signaling in the keloid

microenvironment may act on mast cells.
3.6 Transcriptional landscapes reveal
heterogeneity of B cells and increased
plasma cell activity in fibrotic skin disease

Like T cells, B cells are important lymphocytes in the immune

system. We next performed unsupervised clustering of all B cells in

keloids and normal scars (Supplementary Figure S8A). Consistent

with previous reports, B cells in the skin can be clustered into naïve B

cells, activated B cells, and plasma cells (Supplementary Figure S8A).

A dot plot shows the expression of specific markers in the B cell

subpopulations (Supplementary Figure S8B). Cell proportion analysis

suggested that the three subclusters showed similar proportions in the

keloid and normal scar samples (Supplementary Figure S8C).

We next compared differentially expressed genes in keloid B

cells and normal scar B cells (Supplementary Figure S8D). GO

analysis showed that the upregulated genes in the keloid plasma

cells were associated with antigen binding, the immunoglobulin

complex, and the MHC protein complex (Supplementary Figure

S8D), suggesting the active state of plasma cells in keloids.
3.7 Potential ligand–receptor interactions
in fibrotic skin disease and normal scars

The single-cell dataset provided us with a unique chance to

analyze cell-cell communication mediated by ligand-receptor

interactions. To define the cell-cell communication landscape in

keloids and normal scar immune cells, we used CSOmap, a

bioinformatics tool to infer the spatial organization of tissues and

molecular determinants of cellular interaction (29). We observed a

significant increase in cell-cell communications in keloids

compared to normal scars (Supplementary Figure S9A).

Interestingly, the cell-cell communications between Th17 cells

and other cells increased significantly in keloids compared to

normal scars (Figure 6A), suggest ing the act ive cel l

communication of Th17 cells and its important role in keloids.

The main ligand-receptor pairs contributing to the cell-cell

communications between Th17 cells and other cells were IL-17A,

IL-17F, TNFa, and their receptors (Figure 6B).
3.8 Th17 cells promote proliferation,
collagen expression, and migration of
fibrotic skin disease fibroblasts by secreting
IL-17A

Based on the scRNA-seq analysis, the percentage of Th17 cells

was significantly increased in keloids compared to normal scars. To

validate this finding, we performed immunofluorescence (IF)

staining on skin tissues derived from normal controls and keloids.
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Th17 cells were identified based on CD4 and IL-17A expression

(Figure 7A). The IF staining results showed that the proportion of

IL-17A+/CD4+ cells was higher in keloids than in the normal

controls (Figures 7A, B). This result is consistent with the

scRNA-seq transcriptomics analysis. To explore the function of

Th17 cells in keloids, we induced Th17 cells from keloid patients in
Frontiers in Immunology 10135
vitro (Supplementary Figure S10A) and subsequently co-cultured

them with primary keloid fibroblasts (KF) isolated from keloid

patients. After co-culturing with Th17 cells, the KFs exhibited a

significant increase in collagen I/III and a-SMA expression and in

their proliferative and migratory capabilities, compared to the

control groups (Figures 7C–F; Supplementary Figures S10B, C).
FIGURE 4

Fibrotic skin disease and normal scar dendritic cells (DCs) subclustered into distinct cell populations. (A) Uniform Manifold Approximation and
Projection (UMAP) plot showing the annotation and color codes for subclusters of DCs. (B) Dot plot of representative genes of cell types in DCs.
(C) Heatmap showing the expression of the top 10 differentially expressed genes in each subcluster of DCs. (D) Percentage distribution of each
subcluster in the keloid and normal scar samples. (E) Box plots showing the percentage of DC subclusters in keloids and normal scars. (F) GO terms
enrichment of differentially expressed genes in cDC2 cells. GO terms with an adjusted p-value of <0.05 are considered significant.
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FIGURE 5

Fibrotic skin disease and normal scar mast cells subcluster into distinct cell populations. (A) Uniform Manifold Approximation and Projections
(UMAPs) of subclustered mast cells, labeled in different colors. Cell type annotations are provided in the figure. (B) Dot plot indicating the expression
of selected gene sets in mast subclusters. (C) Scaled expression of differentially expressed genes in mast subclusters. (D) Enrichment of differentially
expressed genes in one mast subcluster compared to other mast subclusters. Results with adjusted P-value of <0.05 are considered significant. (E)
Bar plot showing the fraction of mast subcluster in keloid and normal scar samples. (F) Boxplot showing the fraction of mast subclusters in keloid
and normal scar. (G) KEGG pathway enrichment of differentially expressed genes in C1 subcluster. GO terms with adjusted P-value of <0.05 are
considered significant.
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IL-17A has been reported to be the key molecule for Th17 cells’

functions in fibrotic diseases. To ascertain whether the increased

collagen I/III expression and proliferative and migratory capabilities

of KFs had resulted from IL-17A secreted by Th17 cells, we next

introduced a neutralizing antibody against IL-17A into the co-

culture system of Th17 cells and KFs. The IL-17A neutralizing

antibody inhibited the increased expression of collagen I and III and

the proliferative and migratory capabilities of the KFs co-cultured

with Th17 (Figures 7G–J; Supplementary Figures S10D, E),

suggesting that Th17 cells promote proliferation, collagen

expression, and migration of keloid fibroblasts through IL-17A.
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3.9 Th17 cells are increased in hypertrophic
scars and scleroderma

To examine the consistency of our findings in other fibrotic skin

diseases, we performed immunofluorescence staining in hypertrophic

scar and scleroderma tissues. The immunofluorescence staining

results showed that the proportion of IL-17A+/CD4+ cells was

higher in hypertrophic scar and scleroderma tissues than in normal

control tissues (Figures 8A–D). Taken together, these results

indicated that increasing Th17 cells may be a universal mechanism

in fibrotic skin diseases.
FIGURE 6

Cellular interactions between Th17 cells and other cell types. (A) CSOmap analysis showing the interaction between Th17 cells and other cell subsets
in normal scars (left) and keloids (right). Line thickness represents the significance of the cell-cell interaction. (B) Putative ligand and receptor pairs
related to IL-17 and TNF within the Th17 cells and other cell populations in normal scars (left) and in keloids (right). The color of the middle ring is
related to the average expression of genes in the cell types, with red representing a high expression and blue representing a low expression. The
thicker the line, the greater the contribution of the ligand-receptor pairs. **, p<0.01, ***, p<0.001, ****, p<0.0001.
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4 Discussion

Immune cells and inflammation have been reported to be

important for the pathogenesis of fibrotic skin diseases (7, 9, 11).

Although there have been some studies exploring the composition
Frontiers in Immunology 13138
of immune cells in fibrotic skin diseases, these studies detected the

gene expression of all cells in fibrotic skin disease tissues and did not

enrich immune cells (13–15). In this study, we built a single-cell

atlas of fibrotic skin disease and normal scar immune cells using

FACS-enriched CD45+ cells and explored the function of the Th17
FIGURE 7

Th17 cell promotes the proliferation and collagen expression of keloid fibroblasts by secreting IL-17A. (A) Immunofluorescence staining of IL-17A and
CD4 in keloid and normal scar tissues. The right panels are the insets of the left panels. Scale bar = 100 mm (left panel) and 50 mm (right panel).
(B) Percentage of IL-17A+/CD4+ cells in normal and keloid tissues. Error bars represent SD (n=6). ***, p<0.001. (C, D) Ki67 staining analysis of
fibroblasts co-cultured with Th0 or Th17 cells. Scale bar = 100 mm. Error bars represent SD (n=3). *, P<0.05. (E, F) qRT-PCR and Western blot
analysis of collagen I, collagen III, and a-SMA expression in fibroblast co-cultured with Th0 or Th17 cells. Error bars represent SD (n=3). *, p<0.05;
**, P<0.01. (G, H) Ki67 staining analysis of fibroblasts co-cultured with Th0 or Th17 cells in the presence or absence of anti-IL-17A antibody. Error
bars represent SD (n=3). *, p<0.05; **, p<0.01. (I, J) qRT-PCR and Western blot analysis of collagen I, collagen III, and a-SMA expression in
fibroblasts co-cultured with Th0 or Th17 cells in the presence or absence of anti-IL-17A antibody. Error bars represent SD (n=3). *p<0.05; **, p<0.01.
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cell-fibroblast interaction in the pathogenesis of fibrotic skin

disease. These findings will help us understand fibrotic skin

disease pathogenesis in depth, and provide potential targets for

clinical therapies for fibrotic skin diseases.

Mast cells, Treg cells, and M2 macrophages have been reported

to play important roles in the pathogenesis of fibrotic skin disease

(6, 7, 11, 12). These cells have been suggested to be increased and

promote extracellular matrix deposition in keloid tissues. However,

in our single-cell atlas of keloid and normal scar immune cell

research, we found that there were no differences in the proportions
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of these cells in keloids and normal scars. The gene expression of

these cells had significant differences in keloids and normal scars.

The upregulated genes in the keloid C1 mast cell subcluster, the

major subcluster of mast cells, were associated with lipids and

atherosclerosis, the TNF signaling pathway, and the IL-17 signaling

pathway (Figure 5G). The upregulated genes in the keloid Treg cells,

compared to normal scar Treg cells, were associated with the TNF

signaling pathway, IL-17 signaling pathway, and apoptosis

(Supplementary Figure S2C). The upregulated genes in the keloid

M2 macrophages, compared to normal scar M2 macrophages, were
FIGURE 8

Th17 cells are increased in hypertrophic scars and scleroderma. (A) Immunofluorescence staining of IL-17A and CD4 in hypertrophic scar and normal
scar tissues. The right panels are the insets of the left panels. Scale bar = 100 mm (left panel) and 50 mm (right panel). (B) Percentage of IL-17A+/
CD4+ cells in hypertrophic scar and normal scar tissues. Error bars represent SD (n=6). **, p<0.01. (C) Immunofluorescence staining of IL-17A and
CD4 in scleroderma and normal skin tissues. The right panels are the insets of the left panels. Scale bar = 100 mm (left panel) and 50 mm (right
panel). (D) Percentage of IL-17A+/CD4+ cells in scleroderma and normal skin tissues. Error bars represent SD (n=6). ***, p<0.001.
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associated with MHC class II protein complex assembly and antigen

processing and presentation (Figure 3G). These findings suggested

that not the change in cell proportions but the change in gene

expression of mast cells, Treg cells, and M2 macrophages may

contribute to fibrotic skin disease development.

Th17 cells are key cells for host protection against mucosal

infections and are major pathogenic cells in multiple autoimmune

and inflammatory diseases, including psoriasis and systemic lupus

erythematosus (16, 30, 31). IL-17 has been reported to be the major

effector molecule of Th17 in the aforementioned functions (32, 33).

In recent years, the roles of Th17 cells in fibrotic diseases have been

paid increasing attention. Th17 cells have been reported to play

important roles in intestinal fibrosis, lung fibrosis, and myocardial

fibrosis (18, 34, 35). However, the functions of Th17 cells in keloids

are still unknown. In this study, we found that the percentage of

Th17 cells was significantly increased in keloids compared to

normal scars and Th17 cells promoted the collagen expression,

proliferation, and migration of keloid fibroblast (Figures 2E, 7,

Supplementary Figure S10). Mechanism studies showed that the

Th17 cells performed the above functions by secreting IL-17A

(Figure 7, Supplementary Figure S10), which is consistent with

previous findings (36, 37). Importantly, we also found an increased

number of Th17 cells in hypertrophic scars and scleroderma

compared to normal controls (Figure 8). These results suggested

that Th17 cells may have an important role in multiple skin fibrosis

diseases, and may serve as target cells for fibrosis treatment.

The mechanism that IL-17A promotes fibrotic diseases is

complex, organ-specific, and disease-specific. IL-17A has been

reported to promote the fibrosis of systemic sclerosis by

increasing inflammation and the proliferation and collagen

deposition of fibroblasts (38, 39). The increased level of IL-17A in

liver fibrosis facilitates the influx of inflammatory cells, drives the

expression of profibrogenic growth factors, and activates hepatic

stellate cells in the liver (40–42). The liver-infiltrating inflammatory

cells in turn induce the production of profibrotic cytokines such as

TNF-a, IL-6, IL-1, and TGF-b1 to accelerate fibrosis (40). Several

studies have suggested that IL-17 directly interacts with colonic IL-

17R, expressing myofibroblasts and contributing significantly to

stricture development in Crohn’s disease (43–45). IL-6, IL-8, and

MCP-1 secretions were rapidly induced by IL-17 in colonic

subepithelial myofibroblasts (43). In vitro stimulation of IL-17

induced HSP47 and type I collagen in human intestinal

myofibroblasts (45). The mechanism by which IL-17A facilitates

fibrosis in keloids is still unclear. We will explore the mechanism

using high-throughput sequencing methods and molecular biology

experiments. Illustrating the downstream signaling pathways

activated by IL-17A in fibroblasts of keloids can supply new

targets for keloid therapy.

Both macrophages and DCs are important antigen-presenting

cells in the skin. Many studies suggest that M2 macrophages are

increased and play an important role in keloid development (12,

46), but the roles of DCs are still unclear in keloids. In our findings,

all the subclusters of macrophages and DCs showed similar

proportions between the keloid and normal scar samples
Frontiers in Immunology 15140
(Figures 3, 4). However, the upregulated genes in the keloid M1

macrophages, M2 macrophages, and cDC2 were all associated with

MHC class II protein complex assembly and antigen assembly

(Figures 3G, 4F). These results indicate that macrophages and

cDC2 are active in fibrotic skin diseases and may serve as target

cells for fibrotic skin disease therapy.

In conclusion, we provided a systematic analysis of immune cell

heterogeneity in fibrotic skin disease at single-cell resolution in this

study. In addition, we identified that increased Th17 cells in fibrotic

skin disease are involved in the proliferation, collagen expression,

and migration of fibrotic skin disease fibroblasts. These findings will

help us to understand fibrotic skin disease pathogenesis in depth

and identify potential targets for fibrotic skin disease treatment.
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Seoul, Republic of Korea, 6Department of Internal Medicine, The Catholic University of Korea,
Seoul St. Mary’s Hospital, Seoul, Republic of Korea, 7The Catholic University of Korea and Ho-Youn
Kim’s Clinic for Arthritis Rheumatism, Seoul, Republic of Korea
Introduction: Our aim was to investigate the insufficiently understood

differences in the immune system between anti-citrullinated peptide antibody

(ACPA)-positive (ACPA+) and ACPA-negative (ACPA-) early rheumatoid arthritis

(eRA) patients.

Methods: We performed multiple cytokine assays using sera from drug-naïve

ACPA+ and ACPA- eRA patients. Additionally, we conducted single-cell RNA

sequencing of CD45+ cells from peripheral blood samples to analyze and

compare the distribution and functional characteristics of the cell subsets

based on the ACPA status.

Results: Serum concentrations of interferon-g (IFN-g) and interleukin (IL)-12 were

higher in ACPA+ eRA than in ACPA- eRA. Single-cell transcriptome analysis of

37,318 cells identified 17 distinct cell types and revealed the expansion of IL1B+

proinflammatory monocytes, IL7R+ T cells, and CD8+ CCL4+ T cells in ACPA+

eRA. Furthermore, we observed an enrichment of IFN-g response genes in nearly

all monocytes and T cells of ACPA+ eRA subsets. Heightened interactions

between IFN-g and IFN-g receptors were observed in ACPA+ eRA, particularly

between monocytes and T cells. We examined IFITM2 and IFITM3 as potential

key markers in ACPA+ eRA given their pronounced upregulation and association

with the IFN response. Specifically, the expression of these genes was elevated in

IL1B+ proinflammatory monocytes (likely M1 monocytes), correlating with serum

IFN-g levels.
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Discussion: Compared to ACPA- eRA, ACPA+ eRA showed higher serum IFN-g
and IL-12 levels, upregulated IFN-g response genes, and enhanced IFN-g-driven
monocyte-T cell interactions. These distinct immune features of the peripheral

circulation in ACPA+ eRA suggest a role for type 1 helper T cell-related immunity

in its pathogenesis.
KEYWORDS

single-cell transcriptomics, peripheral blood mononuclear cells, anti-citrullinated
peptide antibody, rheumatoid arthritis, rheumatoid arthritis pathogenesis, Th1
immunity, interferon signature, IFITM2/3
Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by inflammation of the joint synovium (1). It results

from complex interplays of synovial T cells, B cells, macrophages,

dendritic cells (DCs), and fibroblast-like synoviocytes (FLSs)

leading to joint destruction via autoreactive antibodies,

chemokines, and pathogenic cytokines (2). Over recent decades,

targeted biologics against lymphocytes and key pathogenic

cytokines have achieved great success in managing RA (1).

Nevertheless, 6% of patients with RA in Japan and 10% in the

United Kingdom are refractory to these therapies, highlighting the

limitations of the current treatment strategies (3, 4).

RA is a heterogeneous disease with various endo-phenotypes,

for which personalized medicine is desirable (5, 6). Although a

personalized approach has not been established in RA, there have

been efforts to guide therapy using the anti-citrullinated peptide

antibody (ACPA), the most commonly used diagnostic and

prognostic biomarker (7). Clinical studies have suggested a better

response to Abatacept than a tumor necrosis factor inhibitor in

ACPA+ RA (8). Moreover, longer drug retention of a Janus kinase

inhibitor (JAK) was observed in ACPA+ RA than in ACPA- RA (9).

Together, these earlier reports indicate that the presence or absence

of ACPA could significantly shape the most effective treatment

strategy for RA, underscoring the importance of a patient-centric

approach to RA treatment by considering each patient’s

ACPA status.

To utilize ACPA as a biomarker in guiding treatment, it is

crucial to comprehend the immunologic difference according to the

presence of ACPA. Previously known, immune complexes of

ACPAs and citrullinated peptides can promote pro-inflammatory

reactions of macrophages through binding to Fc receptors (10).

Antibodies against mutated citrullinated vimentin, a highly specific

ACPA for RA, can activate osteoclastogenesis and bone resorption

(11). Transcriptome analysis has revealed that chemokine profiles

of myeloid cells are altered and cytotoxic properties of T cells are
02144
differentially upregulated in ACPA+ RA (12). Despite previous

investigations, we have insufficient understanding of the

differentiating immunologic characteristics between endotypes of

ACPA+ and ACPA- RA.

Interferon-gamma (IFN-g) holds significant interest in the field

of autoimmunity research due to its influential role in promoting

and regulating inflammation (13). This aspect is particularly critical

in the context of RA, where the dominant pathogenic cells are type 1

helper T (Th1) cells, known for their primary production of IFN-g
(2, 13, 14). A number of studies have documented elevated levels of

IFN-g in patients with RA, as well as in mouse models of

autoimmune arthritis (15–17). JAK inhibitor targeting the IFN

pathway, as well as other pathogenic cytokines, have shown

excellent efficacy in the treatment of RA (18). Considering the

highly heterogeneous nature of RA, an in-depth understanding of

the level of IFN-g expression in individual RA patients is needed.

Here, to gain insight into the immunological background for

tailored medicine, we aimed to comparatively study immunologic

characteristics according to ACPA status. To this end, we

performed multiplex cytokine assay (MCA) demonstrating

increased serum levels of Th1 cell-related cytokines, specifically

IL-12 and IFN-g, in ACPA+ early RA (eRA). Subsequently, we

performed single-cell RNA sequencing (scRNA-seq) analysis of

peripheral blood mononuclear cells (PBMCs) from eRA patients

and then compared gene expression and cell-cell interaction

patterns between ACPA+ and ACPA- eRA. It revealed that

interferon response genes (IRGs), particularly IFITM2 and

IFITM3, were distinctly upregulated in monocytes and T cells of

ACPA+ eRA compared to those of ACPA- eRA. Such upregulation

in ACPA+ eRA might have resulted from Th1-skewed antigen-

specific T-cell immunity and its related activation of monocytes

involved in RA. Furthermore, we found a positive correlation

between expression levels of the major IRGs in monocytes and T

cells and levels of serum IL-6 and IFN-g. Collectively, these findings
provide novel insights into the immuno-pathogenic mechanisms

underlying RA, potentially contributing to the development of more

effective, personalized treatments for this complex disease.
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Materials and methods

Patient recruitment and sample processing

Untreated (no current or prior use of glucocorticoids or disease-

modifying anti-rheumatic drugs) patients with early and active RA

who met the 2010 ACR/EULAR RA classification criteria (19) were

recruited from Seoul St. Mary’s Hospital in Korea. Unclassified

arthritis patients were recruited based on the following inclusion

criteria: (1) at least one swollen joint in the wrists or hands; (2)

negative result for ACPA; (3) symptom duration of less than 12

months. The exclusion criteria for unclassified arthritis were: (1)

meeting the 2010 ACR/EULAR RA classification criteria (19); (2)

presence of other connective tissue diseases; (3) acute trauma; and (4)

current or previous use of glucocorticoids or disease-modifying anti-

rheumatic drugs (20, 21). Healthy volunteers were also recruited as

controls. Peripheral blood samples were obtained from the

participants for scRNA-seq and cytokine assay at the time of

recruitment. Patient information, including demographic profile,

laboratory markers, and disease activity scores, was collected at the

time of blood sampling (Supplementary Table S1). Peripheral blood

mononuclear cells were isolated using Ficoll-Paque gradient

centrifugation. Cell quantity and viability were then determined by

Trypan Blue staining. This study was approved by the Institutional

Review Board of Seoul St Mary’s Hospital (approval number:

KC14TIMI0697). All participants provided written informed consent.
Multiplex cytokine assay

Concentrations of IFN-g, IL-12 and IL-6, in serum samples of eRA

patients were measured from using Millipore’s MILLIPLEX MAP High

Sensitivity Human Cytokine multiplex kit (cat. no. HSTCMAG-28SK;

Merck, Billerica,MA,USA) according to themanufacturer’s instructions.

The minimum detection limits for the MCAwere established at 0.61 pg/

mL for IFN-g, 0.49 pg/mL for IL-12, and 0.18 pg/mL for IL-6.
Single cell preparation and multiplexing
individual samples for scRNA-seq

Cell stocks were thawed in 37°C 10% FBS/DMEM. The samples

were washed twice with cold, Ca2+- and Mg2+-free 0.04% BSA/PBS at

300 × g for 5 min at 4°C. They were then gently resuspended in cold

staining buffer (BD Biosciences, catalog no. 554656) and counted

using a LUNA-FX7 Automated Fluorescence Cell Counter (Logos

Biosystems) with AO/PI staining. To multiplex the samples, each

sample was tagged with an antibody-polyadenylated DNA barcode

specific for human cells (BD Biosciences, catalog no. 633781). Briefly,

the cells were stained with the multiplexing antibody for 20 min at

room temperature, followed by three washes with staining buffer (BD

Biosciences, catalog no. 554656). After the final wash, the samples

were gently resuspended in cold Sample Buffer (BD Biosciences,

catalog no. 664887), counted using a LUNA-FX7 Automated

Fluorescence Cell Counter (Logos Biosystems), and pooled.
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Single cell capture and cDNA synthesis

Single-cell capture was performed using a BD Rhapsody

Express instrument according to the manufacturer’s instructions

(BD Biosciences). Briefly, pooled cells from each sample were

suspended in cold sample buffer and loaded into a BD Rhapsody

cartridge (BD Biosciences, catalog no. 633731). After cell

separation, cell-barcode magnetic beads were added to the

cartridge. The cells were then lysed and the mRNA capture beads

were retrieved. cDNA synthesis and Exonuclease I treatment were

performed on the mRNA capture beads using a BD Rhapsody

cDNA Kit (BD Biosciences, catalog no. 633773).
Library preparation and scRNA-seq

According to the ‘mRNA Whole Transcriptome Analysis

(WTA) and Sample Tag Library Preparation’ protocol, scRNA-

seq libraries were constructed using the BD Rhapsody WTA

amplification kit (BD Biosciences, catalog no. 633801). For the

WTA library, cDNA was sequentially subjected to random priming

and extension (RPE), RPE amplification, and index PCR. For the

sample tag library, cDNA was sequentially subjected to nested PCR

(PCR 1 and PCR 2) and index PCR. The purified WTA and sample

tag libraries were quantified using qPCR according to the qPCR

Quantification Protocol Guide (KAPA) and assessed using the 4200

TapeStation System (Agilent Technologies, catalog no. 5067-4626).

The libraries were sequenced using the HiSeq platform (Illumina).
Preprocessing of sequencing data

The raw sequencing data were processed using the BD

Rhapsody WTA Analysis Pipeline v1.8 (BD Biosciences) and

aligned against the human reference genome (GRCh38) obtained

from the Ensembl database. The resulting gene expression matrices

were converted to individual Seurat objects using the Seurat

package in R (v3.8.0) (22). For each object, we filtered data based

on the number of unique molecular identifiers (UMIs) and the

number of genes detected. The genes that were expressed in at least

five cells, and cells with gene detection between 500 to 2000 were

retained. The filtered objects were normalized and their variance

stabilized using the SCTransform function of Seurat. We reduced

batch effects and performed combined analysis by integrating

individual Seurat objects from various batches using the

FindIntegrationAnchors and IntegrateData functions in Seurat.

We addressed batch effects through a confirmation process as

shown in Supplementary Figure S1.
Dimension reduction and major cell
type annotation

The number of UMIs, percentage of mitochondrial genes, and

cell cycle genes were regressed out, and genes were scaled to unit
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variance. Principle component analysis (PCA) was performed.

Clusters were then identified using UMAP. Cell identity was

assigned using known cell markers shown in Supplementary

Figure S2. We compared gene expression levels between cells in

the cluster and those in all the other clusters to determine cluster

marker genes. Clusters were manually annotated based on known

marker genes. Thereafter, we validated annotations by referring to

results from “seurat_annotation,” “human cell atlas,” and

“Z_annotation” (Supplementary Table S2) (23). Adjacent clusters

were merged if they were regarded as identical entities according to

the similarity of transcriptomes.
Detection of differentially expressed genes
and pathway analysis

Differential gene expression testing was performed using the

‘FindMarkers’ function within Seurat, employing the Wilcoxon test.

All p-values were adjusted using Bonferroni correction. Differentially

expressed genes (DEGs) were filtered using a minimum log2(fold

change) of 0.5 and a maximum adjusted p-value of 0.05. They were

then ranked by average log2(fold change) and false discovery rate

(FDR). Enrichment analysis for functions of the DEGs was conducted

using the clusterProfiler package and DAVID (https://

david.ncifcrf.gov/) (24). Gene sets were based on Gene Ontology

terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways.
Analysis of cell-cell interaction

To comprehensively analyze cell-to-cell interactions between

immune cells, we used SingleCellSignalR (25). We derived potential

ligand-receptor interactions based on the expression of a receptor

by one cell subpopulation and ligand expression by another. We

separately fetched normalized counts from healthy controls,

ACPA+, and ACPA- eRA patients and used them as input for the

algorithm. To validate the cell-to-cell interactions and ligand-

receptor interaction result from SinglCellSignalR, we performed

the same analysis with CellChat (v.1.0) (26) and CellphoneDB

(v.4.0) (27).
Inferring differentially expressed
transcription factors

To determine the relationship between IFN signaling activity

and anti-CCP antibodies, we used transcriptomics data to estimate

the overall expression of IFN signaling genes for each sample. The

decoupleR (v1.6.0) ‘wmean’method and ‘SCTransform’ normalized

data were used to calculate normalized gene expression levels of

IFNA, IFNG, IFNAR1, IFANR2, IFNGR1, and IFNGR2 per cell for

each unfiltered slide (28).
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Chromatin binding profiles

We searched for chromatin binding sites of IFITM2 and

IFITM3 based on chromatin binding profiles provided by ReMap

2022. Detected transcription factors (TFs), which were matched to

upregulated TFs derived from master regulator analysis, were

visualized with Integrative Genomics Viewer (IGV) (29).
Data visualization

All plots were generated using the ggplot2 (v3.2.1), pheatmap

(v1.0.12), and EnhancedVolcano (v1.2.0) packages in R v4.0.0. Box

plots are defined as follows: the middle line corresponds to the

median; lower and upper hinges correspond to the first and third

quartiles, respectively; the upper whisker extends from the hinge to

the largest value, reaching no more than 1.5× the interquartile range

(or the distance between the first and third quartiles) from the

hinge; and the lower whisker extends from the hinge to the smallest

value, not exceeding 1.5× the interquartile range from the hinge.

Data beyond the end of whiskers were designated as “outliers”. They

were plotted individually.
Results

Serum cytokine profiles of ACPA+ and
ACPA- eRA

To elucidate differences between ACPA+ eRA patients and

ACPA- eRA patients, we recruited 37 eRA patients, 16

unclassified arthritis patients, and 21 healthy participants. Based

on the experimental design presented in Figure 1A, their serum

cytokine levels and transcriptome were examined using MCA and

scRNA-seq, respectively. Among eRA patients, the ACPA+ eRA

group displayed elevated serum levels of IFN-g and IL-12, the

hallmark cytokines of type 2 interferon signaling, in comparison

with the ACPA- eRA group (Figures 1B, C). There was a strong

positive correlation between the two cytokine levels (Figure 1D).

These findings highlight that increased serum IFN-g concentrations
are closely related to the seropositivity of RA.
Single-cell RNA-seq analysis landscape of
eRA PBMCs

We next conducted scRNA-seq to characterize and compare

transcriptome profiles of CD45+ cells from PBMCs obtained from

healthy controls (n = 4), drug-naïve ACPA- eRA patients (n = 6),

and drug-naïve ACPA+ eRA patients (n = 6). We initially addressed

batch effects through a QC confirmation process (Supplementary

Figure S1) and subsequently performed filtering procedures. A total

of 37,318 immune cells were analyzed and segregated into 21
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distinct clusters based on their transcriptomic profiles (Figures 2A,

B). To identify the cell types within each cluster, we analyzed

expression levels of marker genes (CD14, MS4A1, CD3E,

FCGR3A, FCER1A, CD8A, PCNA, CD38, and CD4). The results

are presented in Figure 2C and Supplementary Figure S2A. Those

levels were cross-referenced with immune cell data predicted from

singleR (Supplementary Figure S2B). Additionally, we consulted

canonical cell marker expression (Supplementary Figure 3), Human

Cell Atlas annotations, and gene sets extracted from publicly

available scRNA-seq data on RA synovial cells (https://

www.immport.org/shared/study/SDY998) (23) (Supplementary

Table S2). As a result, we finally identified 17 unique cell types

within 21 clusters.

A Uniform Manifold Approximation and Projection (UMAP)

plot demonstrated six clusters for T cells, four clusters for
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monocytes, three clusters for B cells/plasmablasts, two clusters for

dendritic cells, one cluster for natural killer (NK) cells, and one

cluster for progenitor cells (Figures 2A, D, E). Proportions of B cells,

dendritic cells, monocytes, and T cells were comparable between

ACPA- RA and ACPA+ eRA (Supplementary Figure S2C).

However, we observed a substantial expansion of IL1B+

proinflammatory monocytes, CD8+ CCL4+ T cells, and IL7R+ T

cells in eRA patients compared to healthy controls. Furthermore,

these three subsets were significantly frequent in ACPA+ eRA than

in ACPA- eRA (Figures 2F–H).

Conclusively, through global transcriptome profiling, we

identified 17 unique cell types in human PBMCs, including three

subsets of immune cells, IL1B+ proinflammatory monocytes, CD8+

CCL4+ T cells, and IL7R+ T cells, presumably representing the

peripheral landscape of immuno-pathology of ACPA+ eRA.
FIGURE 1

Overall study design and multiplex cytokine analysis of rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMCs). (A) Workflow chart
outlining the overall study design, illustrating each step from patient selection to data analysis, and highlighting the methodologies used in the
extraction and analysis of PBMCs from unclassified arthritis (UA), healthy controls, ACPA-negative early RA (ACPA- eRA), and ACPA-positive early RA
(ACPA+ eRA). (B) Dot plot showing the serum concentration levels of interferon-g (IFN-g) in UA (n = 21), controls (n = 16), ACPA- eRA (n = 18), and
ACPA+ eRA (n = 19). The horizontal bar indicates the mean value. (C) Dot plot showing the serum concentration levels of interleukin-12 (IL-12) in UA
(n = 21), controls (n = 16), ACPA- eRA (n = 17), and ACPA+ eRA (n = 19). The horizontal bar represents the mean value. (D) Scatter plot illustrating the
correlation between IFN-g and IL-12 concentrations in serum samples. Statistical significance was assessed using the Kruskal–Wallis test for (B, C)
and Pearson’s correlation coefficient for (D). P-values less than 0.05 were considered significant.
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FIGURE 2

Cellular fractions of PBMCs reconstructed from single-cell RNA-sequencing (scRNA-seq) analysis in RA patients. (A) Uniform Manifold Approximation
and Projection (UMAP) based on scRNA-seq data from PBMCs of drug naïve RA patients (n =12) and age-sex matched healthy controls (n = 4).
A total of 37,318 cells were classified into 21 clusters (left panel) and differentiated into major cell types, including monocytes, dendritic cells (DCs),
T cells, B cells, natural killer (NK) cells, and progenitors. (B) UMAP illustrates the distribution of the main cell types in PBMCs of control subjects,
ACPA- RA patients, and ACPA+ RA patients. (C) Heatmap representing marker gene expression patterns for major cell types across different clusters,
providing a detailed view of gene expression signatures characteristic of each cell type. (D, E) Subsequent UMAP plots denoting sub-clusters and
specific cell types for main cellular subsets, focusing on T cells (D) and monocytes (E). (F-H) Bar graphs showcasing the relative proportion of
specific cell subsets in PBMCs, including IL1B+ proinflammatory monocytes (F), CD8+ CCL4+ T cells (G), and IL7R+ T cells (H), in control, ACPA- RA,
and ACPA+ RA group. P-values from z-tests for population proportions indicate significant cell type expansions. *P-value<0.05, **P-value<0.01, and
****P-value<0.0001.
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Increased expression of interferon
response genes in ACPA+ eRA

To gain a deeper understanding of the alterations in gene

expression linked to ACPA positivity and to explore the

underlying mechanisms of RA associated with these changes, we

next analyzed DEGs in each cell type of PBMCs from ACPA+ and

ACPA- eRA patients. Given the multiplex cytokine data in Figure 1,

we sought to focus on the IFN-g and IL-12-JAK pathway for the

analysis. The top 20 DEGs from the scRNA-seq analysis are listed,

which included IRGs such as IER3, JUNB, and IFITM2, and

IFITM3, and among them, IFITM3 showed nearly the highest

fold change (Table 1). Notably, volcano plots of cell subsets

demonstrated that differential expression of IFITM3 was mainly

observed in monocytes and T cells, not in B cells (Figure 3A).

To compare functional characteristics of each cell subset

between ACPA+ and ACPA- eRA, we also performed Gene Set

Enrichment Analysis (GSEA) using Hallmark gene sets provided by

MsigDB. The results indicate that all monocyte subsets of ACPA+

eRA had higher transcriptional profiles for “IFN-g response” and

“IFN-a response” than those of ACPA- eRA (Figure 3B). Most T

cell subsets, with the exception of IL32high T cells, exhibited strong

enrichment for these IFN responses (Figures 3B, C). In particular, in

ACPA+ eRA, the three cell subsets-IL1B+ proinflammatory
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monocytes, CD8+ CCL4+ T cells, and IL7R+ T cells-exhibited

increased expansion with heightened enrichment profiles for

IFN-g and IFN-a responses compared to those in ACPA-

eRA (Figure 3C).

The hierarchical clustering and heat map analysis illustrate that

upregulated IRGs in monocytes were different from those in T cells,

indicating that transcriptional responses to IFN are different according

to cell type (Figures 3D, E). Through pseudo-bulk analysis of scRNA-

seq data, we also observed the increases in JAK-STAT pathway-related

genes in IL7R+ T cells and IL1B+ proinflammatory monocytes of

ACPA+ eRA patients as compared to those of ACPA- eRA patients

(Supplementary Figures S4A, B, D, E). Subsequent GSEA analysis

revealed upregulation of the genes associated with the IL2-STAT5

signaling pathway (Supplementary Figure S4C). Given that IL-2 plays

a role in Th1 differentiation by inducing the expression of IL-12

receptor and T-bet in a STAT5-dependent manner (30), this finding

supports the notion that ACPA+ eRA has upregulated Th1 immunity.

Interestingly, there was a strong positive correlation between ESR

levels and IFN-g signature genes in RA, which were obtained from the

previously published data (Supplementary Figures S5A, B) (31–33). In

summary, ACPA+ eRA showed increased activity of the IFN-JAK-

STAT pathway as compared to ACPA- eRA, which was more

prominent in the cell types of IL1B+ proinflammatory monocytes

and IL7R+ T cells.
TABLE 1 The top 20 differentially expressed genes between ACPA- and ACPA+ from PBMC scRNA-seq.

p-value avg_log2FC pct.1 pct.2 p-value_(adj)

HLA-DQA2 7.97E-266 1.892949811 0.132 0.037 1.29E-261

IFITM3 1.79E-205 0.965439862 0.407 0.289 2.91E-201

HLA-DRB5 7.71E-191 0.729622267 0.313 0.189 1.25E-186

JUNB 6.23E-163 0.339508966 0.861 0.804 1.01E-158

IFITM2 6.14E-135 0.467551747 0.58 0.482 9.96E-131

ERAP2 3.73E-122 0.663834203 0.258 0.166 6.05E-118

BTG2 9.67E-112 0.405070841 0.605 0.519 1.57E-107

IFI44L 4.05E-110 0.903485471 0.179 0.105 6.57E-106

TNFSF10 3.71E-108 0.818914251 0.199 0.123 6.02E-104

IFI6 6.41E-108 0.789436412 0.311 0.227 1.04E-103

FOSB 7.27E-106 0.362939434 0.737 0.664 1.18E-101

IER3 1.07E-96 0.805034193 0.38 0.304 1.73E-92

XAF1 2.85E-96 0.612964022 0.313 0.23 4.62E-92

MNDA 4.82E-90 0.601017761 0.38 0.303 7.82E-86

HLA-C 6.54E-85 0.171143633 0.99 0.984 1.06E-80

FOS 1.16E-84 0.274752943 0.933 0.907 1.89E-80

TSC22D3 6.51E-84 0.370209625 0.56 0.481 1.06E-79

TNFAIP3 1.29E-79 0.383694023 0.657 0.589 2.09E-75

IER2 8.44E-75 0.358348283 0.567 0.498 1.37E-70

IFIT3 2.25E-73 1.163609645 0.075 0.035 3.64E-69
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FIGURE 3

Differentially expressed gene sets in each cell subset based on gene ontology terms and Kyoto Encyclopedia of Genes and Genomes. (A) Volcano
plot comparing ACPA+ and ACPA- group for PBMCs, T cells, B cells, and monocytes, revealing differentially expressed genes. IFITM2/3 are
highlighted in yellow. (B) Heat map displaying gene set enrichment analysis of genes with changing expression levels in ACPA- and ACPA+ across 17
cell types. Column annotations on the heatmap show major cell types. Red color indicates the enrichment score increased in ACPA+ RA, and blue
color indicates an increased enrichment score in ACPA- RA. (C) GSEA plots of IFN-a and IFN-g response gene sets in the three subsets expanded in
ACPA+ patients, including IL1B+ proinflammatory monocytes, CD8+ CCL4+ T cells, and IL7R+ T cells. (D, E) Heatmap representing differences in
expression of genes related to IFN-g by cell type. The heatmap in (D) shows the expression patterns of IFN-a and IFN-g response genes in each of
the 21 cell clusters. In the dendrogram of both columns and rows, blue represents genes highly expressed in T cells, while red denotes those highly
expressed in monocytes. The color matrix represents the Z-score of relative IRG expression levels within cells, where red indicates high expression
and blue indicates low expression. The heatmap in (E) shows the log2 scaled fold change values of 19 IFN-g response genes in ACPA+ patients
compared to those in ACPA- patients. The highly expressed genes in monocytes were selected for this heatmap. Red indicates an increase in ACPA+

patients, while blue indicates a decrease.
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Upregulation of interferon-activated
transcription factors in ACPA+ eRA

IFN-g is primarily produced by Th1 cells. It is a critical activator

of immune response, promoting the killing of intracellular microbes

by macrophages and dendritic cells (13, 34). In RA patients, IFN-g is
known to be produced due to Th1 skewing (14). Here, we focused

on identifying TFs induced by IFN-g signaling, including signal

activators of transcription (STATs) and interferon regulatory factor

(IRFs) (34, 35), in T cells and monocytes of PBMCs obtained from

ACPA+ eRA versus ACPA+ eRA patients. To address this, we

performed a master regulator analysis using VIPER score, which

enabled us to identify differentially activated TFs in each cell type

between healthy controls, ACPA+, and ACPA- eRA. As a result, we

found that IL1B+ proinflammatory monocytes and CD14+ CD16-

monocytes exhibited higher STAT1, 2, and 3 transcriptional

activities in ACPA+ eRA patients than in ACPA+ eRA

(Figure 4A). Moreover, IL1B+ proinflammatory monocytes,

NAMPT+ monocytes, GZMB+ T cells, IL32high T cells, and IL7R+

T cells in ACPA+ eRA exhibited higher STAT3 activity than other

cell subsets (Figure 4A).

We further investigated the upstream reactions governing IRGs

by quantitatively assessing the interaction of IFN-g with its

receptors using ligand-receptor (LR) scores. Our results indicate

that the LR scores for IFN-g-IFN-g receptors were significantly

higher in ACPA+ eRA than in ACPA- eRA, as seen in the dot plot of

LR scores above 0.5 (Figure 4B). Based on this interaction data, we

next compared cell-to-cell interactions in ACPA- eRA versus

ACPA+ eRA, focusing on monocytes and T cell interaction. As

shown in Figure 4C, the total number of IFN-g-IFN-g receptor

interactions within diverse monocyte and T cell subsets was

substantially higher in ACPA+ eRA than in ACPA- eRA. Most

strikingly, the interaction direction was entirely from T cells (→) to

monocytes in ACPA- eRA. In a sharp contrast, there were

bidirectional and even multidirectional interactions between T

cells and monocytes in ACPA+ eRA (Figure 4C, lower panel).

Particularly, many interactions from monocytes (→) to T cells, in

addition to those from T cells (→) to monocytes, were observed in

ACPA+ eRA, and they were primarily driven by a subset of CD14+

CD16- monocytes (See green arrows in the upper panel of

Figure 4C). Moreover, we also detected interaction between CD4+

and CD8+ T cells, as well as between different subsets of monocytes

in ACPA+ eRA, which were rarely found in ACPA- eRA. To avoid

any differences between the algorithms and sources of LR

interaction information, we performed a cell-to-cell interaction

analysis using CellPhoneDB (v.4.0) (27) and obtained the same

results as previously obtained (Supplementary Figure S6). The cell-

to-cell communications between CD4+, CD8+ T cells and

monocytes were also detected in the analysis using CellChat

(26) (Figure 4D).

Taken together, we observed the elevated STAT activity in

IL1B+ proinflammatory monocytes in ACPA+ eRA, which seems

to be associated with more interactions between IFN-g-IFN-g
receptors. Notably, there were discernible patterns in monocyte
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and T cell interactions that appear to distinguish ACPA+ eRA

(bidirectional) from ACPA- eRA (unidirectional).
Association of IFITM2/IFITM3 expression
with STAT3, IL-6, and IFN-g level in
eRA patients

It is well known that IFITM2 and IFITM3 are induced by

interferon stimulation (36, 37). As seen in Table 1, IFITM2 and

IFITM3 were found to be the top 5 DEGs as IRGs (Table 1). Elevated

levels of IFITM2 and IFITM3 were observed in the monocytes of

ACPA+ eRA patients, especially in IL1B+ proinflammatory

monocytes, which are presumably the M1 monocyte subset

(Figures 5A, B). These findings have sparked our curiosity to

explore further the regulatory mechanisms that control the

transcription of IFITM2 and IFITM3 in ACPA+ eRA. To address

this, we searched for the chromatin binding profiles of IFITM2 and

IFITM3 (Figure 6A) using the ReMap2022 database (38). We

identified 27 binding regions for 13 TFs from public data produced

by 11 independent studies (Supplementary Table S3). The results

showed that STAT3, which is known as an IFN-activated TF (39), was

identified as one of the regulatory TFs for IFITM2 and IFITM3

transcription. These results, together with the data in Figures 4A and

B, suggest that increased activation of STAT3 is involved in

regulation of IFITM2 and IFITM3 in ACPA+ eRA.

Finally, we examined the relationships of IFITM2 and IFITM3

expression in monocytes and T cells with pathogenic cytokines of

eRA (Figures 6B, C). We found a moderate positive correlation

between serum IL-6 concentrations and expression levels of IFITM2

in T/NK cells (R = 0.65, p = 0.03). The serum IL-6 level showed a

strong positive association with expression levels of IFITM3 in T/

NK cells (R = 0.77, p = 0.0051) and IFITM3 in monocytes (R = 0.8,

p = 0.0031) (Figure 6B). Serum levels of IFN-g had moderate to

strong positive correlations with expression levels of IFITM2 in T/

NK cells (R = 0.68, p = 0.02), IFITM3 in T/NK cells (R = 0.77,

p = 0.0052) , and IFITM3 in monocytes (R = 0.65 ,

p = 0.031) (Figure 6C).

Together, these data suggest that IFITM2 and IFITM3, the

highly upregulated IRGs in ACPA+ eRA, are associated with

STAT3 activation and increased serum levels of IL-6 and IFN-g.
Discussion

ACPA-based stratification is the most widely accepted method

for classifying RA. Our study elaborated contrasting immunologic

features depending on ACPA status by mainly investigating global

transcriptome profile of RA PBMCs and serum cytokines. Here, we

demonstrated that serum IFN-g and IL-12 levels were higher in in

ACPA+ eRA than in ACPA- eRA and healthy controls, indicating a

skewing towards a Th1 phenotype . Moreover , IL1B+

proinflammatory monocytes (most strikingly), CD8+ CCL4+ T

cells, and IL7R+ T cells were expanded in ACPA+ eRA. In
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1439082
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hong et al. 10.3389/fimmu.2024.1439082
ACPA+ eRA, most of monocyte and T cell subsets, including the

three expanded subsets of ACPA+ eRA, had upregulated

expressions of IRGs related to IFN-g and IFN-a. The observed

elevation in the transcriptional activity of IRGs is supported by

increased expression of STATs, the IFN-driven TFs, in monocytes

of ACPA+ eRA. Notably, IFN-g and its receptor interaction between

monocytes and T cells in ACPA+ eRA was markedly increased and

displayed a multi-directional pattern, contrasting with the

unidirectional pattern observed in ACPA- eRA. Together, these

findings suggest that IFN-mediated responses are overactive in
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ACPA+ eRA. In support of this, IFITM2 and IFITM3 expression

levels of in monocytes and T/NK cells had positive correlations with

circulatory IL-6 and/or IFN-g levels.
This study initially identified concurrent increases in serum

levels of IFN-g and IL-12, the Th1 cytokines, in ACPA+ eRA

compared to ACPA- eRA. Furthermore, our transcriptome

analysis demonstrated an elevation of IRGs, suggesting substantial

IFN-g exposure in monocytes and T cells of ACPA+ eRA.

Consistent with this, recent research shows that ACPA+ RA

patients have a significantly higher count and proportion of
FIGURE 4

Downstream regulators of IFN-g signaling and IFN-g and its receptor interaction in monocytes and T cells of RA. (A) Heatmap displaying the activity
scores of STAT and IRF family members predicted as downstream regulators of IFN-g signaling. The scores were calculated by the DoRothEA
package, a gene regulatory network containing signed transcription factor-target gene interactions. (B) Bar graph illustrating ligand-receptor (LR)
scores for the interaction between IFN-g (IFNG) and its receptor IFNGR1, derived from a ligand-receptor analysis. (C) Chord diagram illustrating
variations in interactions between IFN-g and IFNGR1 in monocytes and T cell subsets within ACPA+ and ACPA- patient groups (upper panel). The
outermost layer of the diagram represents the original major cell types, including monocytes, CD4+ T cells, and CD8+ T cells. Moving inward, the
diagram shows the subsets of each cell type, which are color-coded according to the legend on the right side of the diagram. This color-coding is
to facilitate the identification and differentiation of the various cell subsets within each primary cell category. The bar graph in the bottom panel
depicts the directional variability of IFN-g—IFN-g receptor signaling in monocyte and T cell subsets from both ACPA+ and ACPA- patients, showing
the quantity of signals according to their signaling direction. (D) Cell-to-cell communication diagram depicts differential number of interactions
between the three major cell types. Red indicates high in ACPA+ and blue indicates low in ACPA-.
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circulating Th1 cells relative to ACPA- RA patients (40). James et al.

reported that Th1 cells are the most abundant subset within CD4+ T

cells that are specific to citrullinated peptides in RA patients (41).

Although we did not provide direct evidence of Th1 cell expansion

in ACPA+ eRA cells, we observed an increase in the number of

IL7R+ T cells. Notably, a large proportion of the IL7Rhigh CD62Llow

T cells were Th1 cells (42). IL-7 potently stimulated IFN-g
Frontiers in Immunology 11153
production in synovial CD4+ T cells, suggesting a link between

IL7R+ T cells and the Th1 response (43). Collectively, our findings

not only support previous observations, but also underscore the

critical role of Th1 immunity in the peripheral circulation of

ACPA+ eRA through a systemic approach.

Here, we found that IFN-g response genes were upregulated in

ACPA+ eRA. IFN-g both induces Th1 cell differentiation and is
FIGURE 5

Comparison of expressions of IFITM1, IFITM2, and IFITM3 across different cell types in the control, ACPA- eRA, and ACPA+ eRA groups. (A) A boxplot
showing the expression of IFITM1, IFITM2, and IFITM3 in each cell type of control subjects, ACPA- eRA patients, and ACPA+ eRA patients. (B) A table
showing the differences in expression of IFITM2 and IFITM3 in monocytes and T cells, which was analyzed across control subjects, ACPA- eRA
patients, and ACPA+ eRA patients. The meanings of each statistical value are as follows: Average log2 Fold Change: The log fold-change of the
average expression between the two groups. Positive value indicates a higher expression in ACPA+ eRA; Raw P-Value: The unadjusted P-value;
Adjusted P-Value: The adjusted P-value, based on the Bonferroni correction using all features in the dataset. PCT1: The percentage of cells in which
the feature is detected in the ACPA+ eRA; PCT2: The percentage of cells in which the feature is detected in the ACPA- eRA.
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subsequently secreted by them, initiating a cascade of

immunological responses (44). IFN-g drives the polarization of

macrophages into the M1 subtype and enhances antigen

presentation via MHC class II (14). IFN-g also induces synovial

fibroblasts to express MHC class II, significantly enhancing their

interaction with citrullinated vimentin upon autophagy induction

(45). Beyond its association with autoimmunity, IFN-g is involved
with synovial inflammation in RA. An omics study revealed a

notable expansion of HLA-DRAhi sublining fibroblasts, enriched

with HLA-DR, HLA-DP, and IFN-g-inducible protein 30, in the

leukocyte-rich RA synovium (23). IFN-activated monocytes,

another highly expanded subset of these tissues, exhibit elevated

IRG transcription (23). IFN-g has a complex role, as mice lacking it

are more prone to arthritis (46) and an anti-IFN-g antibody was
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ineffective in an RA trial (14), yet excess levels are likely to

exacerbate autoimmune diseases (14). This study suggests that

IFN-g response genes are enriched in ACPA+ eRA and may serve

as a therapeutic target specific to this population, as earlier findings

support that excess of IFN-g is likely pathogenic.

Type I IFN, known for their antiviral role, also contribute to

autoimmunity through maladaptive lymphocyte activation (47).

Our scRNA-seq analysis of drug-naïve RA PBMCs suggested that

type I IFN response genes were upregulated in monocytes and T

cells of ACPA+ eRA. An earlier study supported this finding by

showing a positive correlation between type I IFN signature gene

expression and ACPA levels in patients with RA (31). Consistent

with this, persistent stimulation of type I IFN can trigger the

enhancement of T and B cell effector functions, resulting in the
FIGURE 6

Differences in IFITM2/3 expression in monocytes and T cells of RA patients depending on the presence of anti-CCP antibodies. (A) Illustration
depicting the transcription factors predicted to bind to the promoters of IFITM2 and IFITM3 genes, along with their specific binding locations. The
binding sites for the same TF are indicated by the same color. The first parenthesis indicates which cell line it is from and the second indicates the
treatment. The absence of these indicates the basal condition with no treatment. (B, C) Graphs correlating mRNA expression levels of IFITM2 (B) and
IFITM3 (C) in T/NK cells and monocytes with the concentrations of IL-6 and interferons simultaneously measured in the serum of RA patients. The
correlation coefficient (R) is indicated, and a linear regression line is fitted to the data points. Statistical significance of the correlation is assessed
using Pearson’s correlation coefficient. P-values less than 0.05 were considered significant.
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synthesis of autoantibodies (35, 47). IFN gene signatures and IFN-a
levels are associated with RA disease activity (48). Additionally,

IFN-activated monocytes are more abundant in leukocyte-rich

synovial tissues compared to those with fewer leukocytes (23).

Given the association of type I IFN with autoimmunity and RA

severity, this study emphasizes the relevance of type I IFN in

ACPA+ eRA and its potential as a therapeutic target.

According to the Accelerating Medicines Partnership (AMP)

publication, bulk-RNA seq using leukocyte-rich RA synovium

shows upregulation of IL1B and CCL4 in monocytes and CD8 T

cells, respectively (23). IL1B is regarded as a conventionally

important pathogenic cytokine of RA (2). Thus, increased IL1B+

monocytes support a more aggressive phenotype of ACPA+ eRA.

CCL4, also known as macrophage inflammatory protein 1-b (MIP-

1b), is amplified in the joint tissues and peripheral circulation of

patients with RA. This amplification of CCL4 facilitates the

migration of inflammatory cells and osteoclasts, positioning it as

a significant pathogenic chemokine in RA (49). Our scRNA-seq

data on the higher proportion of IL1B+ proinflammatory

monocytes and CD8+ CCL4+ T cells in ACPA+ eRA are

compatible to the previous reports (23), which indicates that the

peripheral scRNA-seq landscape may be a molecular reflection of

immunologic dysregulation in synovial compartment of RA

patients, suggesting a possible communication between the

periphery and the joints in establishing RA pathology.

Of note, our scRNA-seq analysis revealed that IFITM2 and

IFITM3 belonging to IRGs were included in the top 20 DEGs. The

human genome encodes at least five IFITM proteins. In particular,

IFITM1, IFITM2, and IFITM3 have antiviral activities by inhibiting

viral entry into human cells and some other pathways (37). Both

type I and II IFNs can increase the expression of IFITM1, IFITM2,

and IFITM3. In mice, among those IFITM proteins, Ifitm3 is most

strongly induced by IFN (37). Despite the proven role of IFITMs in

defense against viral infection and in the mouse system, little is

known about their role in human RA. IFITM3 is one of the marker

genes of the IFN-activated monocyte subset in synovial tissues;

however, how the expression of IFITM3 affects RA pathogenesis

remains unclear (23). Here, we found that expression levels of

IFITM3 and IFITM2 in monocytes and T/NK cells had a positive

linear relation with the serum levels of IL-6 and/or IFN-g,
suggesting a possible induction of IFITM2 and IFITM3 by a

cytokine-rich microenvironment. Notably, the specific linkage of

IFITMs with IFN-g points to a possible role for IFITMs in

influencing Th1 skewing in the immunological dynamics of

ACPA+ eRA. This finding is particularly intriguing as it offers a

new perspective on the functions of IFITMs, extending beyond their

established antiviral roles. Given its promise, this hypothesis

warrants further detailed exploration.

In sum, our data, along with the earlier studies, indicate that

targeting type 1 and 2 IFN signaling may be a patient-centric

approach for ACPA+ RA patients. In this regard, the JAK inhibitor,

which targets type I and type II IFNs (18), can be more effective in

treating ACPA+ eRA than ACPA- eRA. In support of this notion, two

clinical studies have shown that ACPA positivity leads to a higher rate

of drug retention of JAK inhibitor, an indicator for overall
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effectiveness and safety of a drug (9, 50). Although earlier findings

suggest that an IFN-targeting strategy may hold promise for better

efficacy in patients with ACPA+ RA, further research is needed to

confirm its superiority in this population.

This study has several limitations. First, we did not perform

experimental validation of the findings from the scRNA-seq

analysis. Second, the sample size for scRNA-seq analysis was

small. Third, this study provides only an immunological basis

that supports the potential for greater efficacy of interferon-

targeting strategies in ACPA+ eRA than in ACPA- eRA, which

was not examined here. Therefore, these findings require further

confirmation in follow-up studies.

To summarize, we observed differences in cytokine profiles, cell

subset abundance, and gene expression patterns within the

peripheral landscape between ACPA+ eRA and ACPA- eRA. In

ACPA+ eRA, serum IFN-g levels were elevated, and peripheral

blood T cells and monocytes exhibited upregulated IFN-g response
genes and IFN-g-mediated cell-cell interactions, suggesting Th1

skewing. Moreover, ACPA+ eRA patients showed an expanded

population of IL1B+ proinflammatory monocytes, CD8+ CCL4+ T

cells, and IL7R+ T cells, in which IRGs were upregulated.

Particularly, IFITM 2 and 3, which are associated with IRGs,

could be new biomarkers for ACPA+ RA, offering promising

avenues for future research and treatment strategies in eRA.
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Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease

marked by dysregulated immune responses, resulting in sustained inflammation

and ulceration of the colonic and rectal mucosa. To elucidate the cellular

subtypes and gene expression profiles implicated in the pathogenesis of UC,

we utilized single-cell and spatial transcriptomic analyses.

Methods: We conducted an analysis of single-cell data to identify cell types

involved in the pathogenesis of UC. Employing machine learning methodologies,

we screened for key genes implicated in UC and validated these findings through

spatial transcriptomics. Additionally, immunohistochemistry was performed on

UC lesion samples to investigate the expression patterns of the identified

key genes. In an animal model, we utilized immunofluorescence and

western blotting to validate the expression of these genes in the affected

intestinal segments.

Results: Our investigation identified specific monocyte subtypes associated with

UC through a comprehensive analysis involving cell communication, Least

Absolute Shrinkage and Selection Operator (LASSO), and Support Vector

Machine (SVM) methodologies. Notably, two genes, G protein subunit gamma

5 (GNG5) and tissue inhibitor of metalloproteinase 1 (TIMP1), were identified as

key regulators of UC development. Spatial transcriptomic indicated a

downregulation of GNG5 expression in UC, whereas TIMP1 expression

was upregulated. Furthermore, a significant correlation was detected between

TIMP1 and T cell exhaustion-related genes such as genes related to T cell

exhaustion, including T cell immunoreceptor with Ig and ITIM domains

(TIGIT) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) .

Immunohistochemical analysis of UC lesion samples revealed diminished

expression levels of GNG5 and elevated expression levels of TIMP1. A dextran
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sulfate sodium (DSS)-induced colitis mouse model was developed,

demonstrating that the protein expression levels of GNG5 in the colonic tissue

of model mice were significantly decreased compared to controls w)ile the

expression levels of TIMP1 were increased (p < 0.01). Furthermore,

immunofluorescence staining indicated co-localization of TIMP1 with the

macrophage marker F4/80 in monocytes.

Conclusion: Our research delineated distinct monocyte subtypes correlated

with UC and identified two pivotal genes, GNG5 and TIMP1, that contribute to

the disease’s pathogenesis. These insights offer a significant theoretical basis for

enhancing the clinical diagnosis and therapeutic strategies for patients with UC.
KEYWORDS

immune infiltration, single-cell transcriptome sequencing, spatial transcriptome
sequencing, ulcerative colitis, T cell exhaustion
1 Background

Ulcerative colitis (UC) is a chronic, idiopathic form of

inflammatory bowel disease (IBD) that predominantly affects the

mucosal and submucosal layers of the colorectal region. The

pathogenesis of UC is characterized by dysregulated immune

responses, resulting in persistent inflammation and ulceration of

the colonic and rectal mucosa. Contributing factors include genetic

predisposition, environmental influences—including infections and

dietary components—and an exaggerated immune response to gut

microbiota. These factors collectively undermine the integrity of the

mucosal barrier, facilitate the infiltration of inflammatory cells, and

promote the re lease of pro-inflammatory mediators .

Epidemiological evidence suggests that UC is relatively prevalent

in developed countries, with high incidence rates in North America

and Europe (1). In recent years, however, there has been an

observable increase in the incidence of UC in many newly

industrialized countries, including China, coinciding with global

economic development and dietary changes (2). This trend is

particularly concerning given the generally reduced life

expectancy of UC patients, alongside their heightened risk of

requiring colectomy and progression to colorectal cancer.

Therefore, the active investigation of UC pathogenesis and the

formulation of precise therapeutic strategies have become urgent

research imperatives.

Currently, the management of UC primarily involves the

administration of 5-aminosalicylic acid (5-ASA) preparations and

glucocorticoids. While these pharmacological agents frequently

offer prompt alleviation of symptoms, they are also linked to

considerable toxic side effects and low patient adherence.

Immunosuppressants are primarily employed for maintenance

therapy following the remission of symptoms induced by

glucocorticoids, with the objective of minimizing glucocorticoid

dosage. Additionally, biological agents, specifically monoclonal
02159
antibodies that target distinct inflammatory mediators such as

tumor necrosis factor or integrins, are incorporated into the

therapeutic regimen. The American Gastroenterological

Association (AGA) guidelines (3) advocate for the initiation of

biologic therapy as a first-line treatment and suggest early step-

down strategies, thereby surpassing traditional treatment

approaches (4). In the context of selecting biologics for UC,

current clinical guidelines endorse the use of vedolizumab (VDZ)

or anti-tumor necrosis factor alpha (TNF-a) agents (5). It is

important to highlight that over 30% of patients demonstrate

resistance to TNF-a therapies, with a subset eventually

necessitating intestinal or colon resection surgery (6). In China,

over 50% of patients with IBD show suboptimal responses to

treatment after approximately one year of first-line anti-TNF-a
therapy (7). This secondary dysregulation may be attributed to the

immunogenicity of TNF-a antibodies, leading to the development

of drug-resistant antibodies (8). Therefore, a deeper investigation

into the intricate biological mechanisms underlying UC is essential

for advancing the development of effective therapeutic strategies.

Single-cell transcriptome sequencing (scRNA-seq) is a

sophisticated technique employed to examine RNA expression at

the individual cell level, revealing cellular heterogeneity and the

transcriptional profiles of specific cell types. Our preliminary single-

cell analysis revealed significant increases in the populations of

Plasma cells, activated memory CD4+ T cells, resting Natural Killer

(NK) cells, M0 Macrophages, M1 Macrophages, activated Dendritic

cells, activated Mast cells, and Neutrophils in patients with UC

compared to healthy controls. Subsequently, we conducted an in-

depth investigation into the expression of target genes within

immune cells, taking into account the complex interactions

between bile acid metabolism and immune cell dynamics (9).

Spatial transcriptome sequencing, which retains the spatial

context of tissues, quantifies gene expression through methods

such as microarrays applied to tissue sections or spatial
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fluorescence in situ hybridization. This methodology facilitates the

examination of gene expression within specific tissue regions. The

integration of single-cell and spatial transcriptome sequencing

techniques permits the concurrent exploration of mechanisms at

both the cellular and tissue levels, providing novel insights into the

complex mechanisms underlying diseases (10). In this study, we

integrated single-cell and spatial transcriptome sequencing to

identify target genes associated with UC and conducted a

preliminary investigation into the interrelationships among these

target genes, immune cells, and the microenvironment. This

approach was designed to advance our understanding of UC

therapeutic targets and the underlying mechanisms.
Frontiers in Immunology 03160
2 Materials and methods

2.1 Study design

The study design is presented in Figure 1.
2.2 Data acquisition

The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/info/datasets.html), curated by the

National Center for Biotechnology Information (NCBI), functions
FIGURE 1

Research flowchart.
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as a comprehensive repository for gene expression data. From this

resource, we acquired the single-cell transcriptome data

corresponding to GSE189754, concentrating on 11 samples that

provided complete single-cell expression profiles for single-cell

analysis. Additionally, we downloaded the spatial transcriptome

data for GSE189184, selecting two control groups (B10, C5) and two

disease groups (B8, B4) for analysis. Furthermore, we procured the

transcriptome data for GSE48958, encompassing data from 8

controls and 13 disease samples.
2.3 Quality control and data
standardization

In this study, the processes of quality control and data

standardization are essential to ensure the accuracy of subsequent

analyses. We employed the Seurat package (11) for initial data

processing. For cell quality control, we conducted screening based

on the total number of unique molecular identifiers (UMIs) per cell,

the number of expressed genes, and the proportion of

mitochondrial gene expression. Typically, a high proportion of

mitochondrial gene expression in a cell indicates low RNA

expression levels and potential progression towards cell death,

warranting the exclusion of such cells. Additionally, we utilized

the median absolute deviation (MAD) for quality control, removing

outliers that deviate from the median by more than three times the

MAD to maintain data reliability. Subsequently, we applied

DoubletFinder (version 2.0.4) (12) to individually filter doublet

cells in each sample, thereby completing the comprehensive cell

quality control process.

In the data standardization process, the LogNormalize method

of global normalization is employed. This technique mitigates the

impact of variations in total RNA content between cells on gene

expression analysis by scaling the total expression level of each cell

with a coefficient \(s_0\), adjusting it to 10,000, and subsequently

normalizing it through logarithmic transformation. Cell cycle

scores are computed using the CellCycleScoring function, and

highly variable genes are identified via the FindVariableFeatures

function. The ScaleData function is utilized to eliminate gene

expression fluctuations attributable to mitochondrial gene

expression, ribosomal gene expression ratios, and cell cycle

differences. Linear dimensionality reduction is conducted on the

expression matrix using the RunPCA function, with 20 principal

components selected for further analysis. The Harmony algorithm

is applied with default parameters to correct for batch effects, and

finally, the RunUMAP function is employed with default

parameters for nonlinear dimensionality reduction.
2.4 Identification of cell clusters

Cell types and corresponding marker genes were identified

using CellMarker (13), PanglaoDB (14), and literature,

supplemented by automated annotation with SingleR (15)

software. The FindAllMarkers function was employed to filter
Frontiers in Immunology 04161
marker genes within each category, with only positive markers

expressed in at least 25% of the cells retained (only.pos = TRUE,

min.pct = 0.25).
2.5 Ligand receptor interaction analysis
(Cellchat)

CellChat (16) is a sophisticated tool designed for the

quantitative inference and analysis of intercellular communication

networks derived from single-cell data. Employing network analysis

and pattern recognition methodologies, CellChat facilitates the

prediction of principal signaling inputs and outputs of cells,

elucidating the mechanisms by which these cells and signals

orchestrate their functions. In this study, we employed

standardized single-cell expression profiles as input data,

alongside cell subtype classifications obtained through single-cell

analysis, to serve as cell-specific information. We conducted an in-

depth examination of cell-related interactions, quantifying the

strength and frequency of cell-to-cell interactions to observe the

activity and impact of each cell type in the disease.
2.6 Feature selection process of LASSO
regression and SVM algorithm

We utilized the Least Absolute Shrinkage and Selection

Operator (LASSO) logistic regression and Support Vector

Machine (SVM) algorithms to select features for diagnostic

markers of diseases. The LASSO algorithm utilizes the “glmnet”

package, while SVM-Recursive Feature Elimination (SVM-RFE) is a

machine learning method based on support vector machines (17).

SVM-RFE removes feature vectors generated by SVM to identify

optimal variables, and establishes a support vector machine model

through the “e1071” package to further assess the diagnostic value

of these biomarkers in disease contexts.
2.7 Immune infiltration analysis

The CIBERSORT method is a prevalent technique for assessing

immune cell types within microenvironments (18). In this study,

utilized the CIBERSORT algorithm was employed to analyze

patient data, allowing for the inference of the relative proportions

of 22 immune-infiltrating cell types. Furthermore, a correlation

analysis was conducted to examine the relationship between gene

expression and immune cell content.
2.8 GSEA analysis

Patients were categorized into high and low-expression groups

based on the expression of key genes. Subsequently, Gene Set

Enrichment Analysis (GSEA) was utilized to examine disparities
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in signaling pathways between these cohorts. The annotation gene

set employed for the subtype pathway analysis was derived from

version 7.0 of the Molecular Signatures Database (MsigDB).

Differential expression analysis of pathways between the groups

was conducted, and significantly enriched gene sets (adjusted p-

value < 0.05) were ranked by consistency score. GSEA is frequently

used to explore the correlation between disease classification and

biological significance.
2.9 GSVA analysis

Gene Set Variation Analysis (GSVA) is a nonparametric,

unsupervised method for assessing gene set enrichment in

transcriptome data. GSVA assigns a comprehensive score to each

gene set of interest, converting gene-level changes into pathway-

level changes. This allows for the identification of potential

biological function changes in different samples. In this study,

gene sets were downloaded from MsigDB, and the GSVA

algorithm was applied to comprehensively score each gene set,

enabling the evaluation of potential biological function differences

among the samples.
2.10 Non-coding RNA network associated
with key genes

MicroRNAs (miRNAs) are small non-coding RNAs known to

regulate gene expression by facilitating mRNA degradation or

inhibiting mRNA translation. Consequently, we conducted an in-

depth analysis to determine the presence of miRNAs associated

with key genes involved in the transcriptional regulation or

degradation of potentially deleterious genes. We identified

miRNAs related to these key genes using the miRcode database

and subsequently visualized the miRNA-gene interaction network

utilizing Cytoscape software (19).
2.11 Transcription factor regulatory
network

This study utilized the R package “RcisTarget” to predict

transcription factors, with all computations conducted by

RcisTarget being predicated on motif analysis. The normalized

enrichment score (NES) of a motif depended on the total number

of motifs in the database. In addition to the motifs annotated by the

source data, we inferred further annotation files based on motif

similarity and gene sequences. To estimate the overrepresentation

of each motif in the gene set, we initially calculated the area under

the curve (AUC) for each pair of motif-motif set. This was

performed based on the recovery curve calculation of the gene set

ranking of the motifs. The NES of each motif was calculated based

on the AUC distribution of all motifs in the gene set.
Frontiers in Immunology 05162
2.12 Source of human sample

To verify the expression of target genes in the diseased colon

tissue of UC patients, tissue biopsy samples were collected from UC

patients within the research cohort at the Digestive Endoscopy

Center of Changshu Hospital Affiliated to Nanjing University of

Chinese Medicine (Ethical Number: CZYLS-2024120). Patients

with UC secondary to other diseases or with differing pathological

results were excluded. Normal tissue samples for the control group

were obtained from the periphery of pathological specimens

diagnosed with colon cancer and subjected to Miles surgery in the

General Surgery Department of Changshu Hospital Affiliated to

Nanjing University of Chinese Medicine. The collection of all

samples was approved by the hospital’s Ethics committee, and

written informed consent was obtained from the patients.
2.13 Immunohistochemistry

Colon tissue sections fixed with paraformaldehyde were

deparaffinized using xylene and incubated with primary

antibodies (tissue inhibitor of metalloproteinase 1 (TIMP1):1:200,

Absin, Shanghai, China; G protein subunit gamma 5 (GNG5):1:200,

Abcam, Shanghai, China) at 37°C for 1.5 hours. After three washes

with PBS, immunocomplex detection was performed using

diaminobenzidine, and nuclei were counterstained with

hematoxylin. The sections were examined under a microscope

(Leica, Wetzlar, Germany) (20).
2.14 Animals and treatment

Male C57BL/6 mice (weighing 18–20 grams) were obtained

from Beijing Vital River Laboratory Animal Technology Co., Ltd.

(SCXK-2021-0011, Beijing, China). Before the experiments, the

mice were provided with standard laboratory chow and water ad

libitum under controlled conditions of 60 ± 5% humidity, 23 ± 1°C

temperature, and a 12-hour light/dark cycle. The experimental

protocol was approved by the Ethics Committee of the

Experimental Animal Center at Nanjing University of Chinese

Medicine (Ethical Number: NJUCCSHAE-2021-1123). The mice

were randomly divided into two groups: a control group and a

dextran sulfate sodium (DSS) group, each with 6 mice. The control

group received drinking water, while the DSS group was given 3%

DSS in drinking water for 7 days (21). On the 8th day, all mice were

euthanized, and their colon samples were collected for

further analysis.
2.15 Hematoxylin and eosin staining

Colon tissue was fixed in 4% paraformaldehyde, subsequently

embedded in dehydrated paraffin, and sectioned at a thickness of
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4.5mm. The sections were then stained with H&E. Pathological

alterations in the tissue samples were examined using an optical

microscope (Leica, Wetzlar, Germany).
2.16 Enzyme-linked immunosorbent assay

Accurately weigh the colon tissue to achieve a weight (mg) to

volume (µL) ratio of 1:9. Add nine times the volume of

physiological saline and homogenize the mixture mechanically

under ice water bath conditions to prepare a 10% homogenate.

Centrifuge the homogenate at 2500–3000 rpm for 10 minutes and

collect the supernatant for subsequent ELISA analysis. Following

the manufacturer’s protocol, the concentrations of TNF-a
(mIC50536-1, Mlbio, Shanghai, China) and interleukin-6 (IL-6)

(ml098430, Mlbio, Shanghai, China), were quantified using a

commercially available ELISA kit.
2.17 Immunofluorescence staining for co-
localization validation

The sample slices were fixed in 10% formalin, embedded in

paraffin, dewaxed, and subjected to antigen retrieval. After a one-

hour blocking step at room temperature, the slices were incubated

overnight at 4°C with primary antibodies TIMP1 (1:200, Absin,

Shanghai, China) and F4/80 (1:50, Abcam, Shanghai, China).

Following three 10-minute washes with PBS, the slices were

incubated for one hour at room temperature with Alexa Fluor

488 and Alexa Fluor 594 secondary antibodies. After another three

PBS washes, an anti-quenching medium was used to mount the

cover glass onto the slide. The sections were then examined under a

fluorescence microscope (Leica, Wetzlar, Germany) at a

magnification of 80 for microscopic analysis and imaging (22).
2.18 Western blot for expression validation

Total protein was extracted from colon tissue samples of human

or mouse origin using RIPA lysis buffer (Beyotime, Nanjing, China)

and quantified using the Bicinchoninic Acid (BCA) protein assay

kit (Beyotime, Nanjing, China). Subsequently, 20 micrograms of

protein were separated on a 10% SDS-PAGE gel and transferred to a

polyvinylidene fluoride (PVDF) membrane. The membrane was

then blocked with 5% (w/v) bovine serum albumin (BSA) or skim

milk at room temperature for 1 hour. Following the blocking step,

the membrane was incubated overnight at 4°C with primary

antibodies targeting GNG5 (1:1000, Absin, Shanghai, China),

TIMP1 (1:1000, Absin, Shanghai, China), and GAPDH (1:5000,

Proteintech, Wuhan, China). On the next day, the membrane was

incubated with secondary antibodies (horseradish peroxidase-

conjugated goat anti-rabbit or anti-mouse IgG, 1:5000, Cell

Signaling Technology, Danvers, MA, USA) at room temperature
Frontiers in Immunology 06163
for 1 hour. Visualization of the protein bands was performed using

an ECL detection kit and a gel imaging system (Tanon, Shanghai,

China). The intensity of the bands was then quantified using the

densitometric analysis feature of Gel Pro 4.0 software (Tanon,

Shanghai, China) (23).
2.19 Statistical analysis

All statistical analyses were performed using the R

programming language (version 4.3.0), with a significance

threshold set at p < 0.05.
3 Results

3.1 Preliminary processing of single-cell
expression profile data

During the initial processing of single-cell expression profile

data, rigorous adherence to established quality control and

standardized procedures was maintained. Following the screening

process, cells with fewer than 200 captured genes were excluded,

while those meeting the criteria were retained based on indicators

such as nFeature-RNA, nCount-RNA, and percent.mt, resulting in

a dataset of 22,345 high-quality cells. Concurrently, doublets were

removed, and the top 2,000 highly variable genes were selected for

subsequent analysis. The processed data demonstrated favorable

distribution characteristics, as evidenced by violin plots and scatter

plots, thereby establishing a robust foundation for precise cell

subpopulation annotation and gene expression analysis in future

studies (Supplementary Figure S1A, C). This approach effectively

mitigates analysis bias associated with data quality issues.
3.2 Single-cell data cell subpopulation
annotation and ligand-receptor interaction
analysis (Cellchat)

The data underwent standardization, homogenization, and

subsequent analysis using Principal Component Analysis (PCA),

Harmony, and Uniform Manifold Approximation and Projection

(UMAP) (Supplementary Figures S1D-F, Figure 2A). Each subtype

was annotated to one of seven cell categories: CD4+ T cells, B cells,

CD8+ T cells, Fibroblasts, Monocytes, Mast cells, and NK cells

(Figure 2A). A bubble plot and histogram were generated to

visualize the expression of classic markers and cell proportions

for these categories (Figures 2B, C). The software package Cellchat

was employed to examine ligand-receptor interactions within the

single-cell expression profile, revealing intricate relationships

between the cell subtypes (Figure 2D). Notably, Monocytes

demonstrated a closer potential interaction with other cell types

(Figures 2E, F).
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3.3 Feature selection process of LASSO
regression and SVM algorithm

To investigate the genetic underpinnings of UC, we retrieved

expression profile data from the GEO database (GSE48958). This

dataset comprised 21 patient samples. To identify key genes

associated with this condition, we employed a two-step approach.

First, we utilized a combination of LASSO regression and SVM

algorithms to screen the 386 monocyte marker genes (p_adj < 0.05

& LogFC > 0.585) previously identified. LASSO regression yielded

18 characteristic genes (Figures 3A, B), while SVM identified 4

(Figure 3C). By intersecting these gene sets, we identified 2 genes,

GNG5 and TIMP1, as the most promising candidates for further

exploration in our research on UC (Figure 3D).
3.4 Immune infiltration analysis

The microenvironment, a pivotal factor in disease progression,

consists of a complex interplay between cellular and extracellular

components. This intricate ecosystem includes fibroblasts, immune

cells, extracellular matrix, growth factors, inflammatory factors, and
Frontiers in Immunology 07164
unique physical and chemical properties. The microenvironment

exerts a substantial influence on disease diagnosis, prognosis, and

therapeutic response. Our investigation revealed distinct patterns of

immune cell infiltration and correlation in various disease states

(Figures 4A, B). Compared to the control group, the disease group

exhibited significantly elevated levels of M1Macrophages, resting NK

cells, CD4+ memory activated T cells, and CD4+ memory resting T

cells. Conversely, resting Mast cells and NK cells activated were

significantly reduced in the disease group (Figure 4C). Further

analysis of the relationship between key genes and immune cells

demonstrated a strong positive correlation between TIMP1 and

several immune cell types, including CD4+ memory resting T cells,

CD4+ memory activated T cells, follicular helper T cells, resting NK

cells, M0 Macrophages, M1 Macrophages, activated Dendritic cells,

and Neutrophils. Conversely, TIMP1 was negatively correlated with

Plasma cells, CD8+,T cells regulatory T cells (Tregs), activated NK

cells, and restingMast cells (Figure 4D). Moreover, our analysis of the

correlation between key genes and different immune factors,

including immunosuppressive factors, immunostimulatory factors,

chemokines, and receptors, suggests that these genes are intimately

involved in shaping the immune microenvironment (Supplementary

Figures S2A-E).
FIGURE 2

Cell annotation and communication. (A) UMAP-based clustering of cells into 12 groups. Classification of clusters into 7 cell types: CD4+ T cells, B
cells, CD8+ T cells, Fibroblasts, Monocytes, Mast cells, and NK cells. (B) A Dotplot visualization of cell type markers and their expression levels. (C)
Bar charts displaying the proportions and content of 7 cell types in the sample. (D) Cell interaction network among 7 cell types based on
communication probability and strength. (E) Bubble plot of receptor-ligand interactions between cells, with colors showing communication
probabilities. (F) Comparison of total interactions among 7 cell types, showing a decreasing trend from left to right, with Monocytes having the
strongest interactions.
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3.5 Signaling pathways involved in key
genes

To elucidate the specific signaling pathways involved in the key

genes and explore their potential molecular mechanisms in disease

progression, we conducted a comprehensive analysis. GSEA

revealed that GNG5 was significantly enriched in signaling

pathways such as propanoate metabolism, butanoate metabolism,

and peroxisome proliferator-activated receptor (PPAR) signaling

(Figures 5A, B). TIMP1, on the other hand, was enriched in

pathways including B cell receptor signaling, interleukin-17 (IL-

17) signaling, and NF-kB signaling (Figures 5D, E). Additionally,

GSVA identified GNG5 as being enriched in pathways associated

with protein secretion and adipogenesis (Figure 5C). TIMP1 was

found to be enriched in pathways related to hedgehog signaling and

epithelial-mesenchymal transition (Figure 5F). These findings

collectively suggest that the key genes may influence disease

progression through these identified signaling pathways.
Frontiers in Immunology 08165
3.6 Non-coding RNA network and
transcriptional regulatory network related
to key genes

Subsequently, we employed the miRcode database to conduct a

reverse prediction of the key genes, resulting in the identification of 20

miRNAs and a total of 23 mRNA-miRNA regulatory relationships.

These interactions were visualized using Cytoscape (Supplementary

Figure S3A). By utilizing the key genes as a gene set for this analysis, we

discovered that these genes were subject to regulation by common

mechanisms, such as multiple transcription factors. To identify these

transcription factors, we employed cumulative recovery curves and

conducted motif-transcription factor annotation and selection analysis

on the key genes. The motif with the highest standardized enrichment

score (NES: 14) was determined to be cisbp:M6056. We have provided

a comprehensive visualization of all the enriched motifs and their

corresponding transcription factors associated with the key genes

(Supplementary Figure S3B, C).
FIGURE 3

LASSO Model Construction. (A) LASSO coefficient distribution and gene combination at the minimum lambda value. (B) Ten-fold cross-validation for
tuning parameter selection to find the minimum lambda. (C) Top four feature genes with the lowest error rate in the SVM algorithm. (D) Venn plot
showing two overlapping genes selected by both LASSO regression and SVM algorithms.
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FIGURE 4

Immune Infiltration Analysis. (A) Comparison of immune cell subset percentages between control and disease groups, with immune cells on the x-
axis and relative percentages on the y-axis. (B) Correlation of immune cell infiltration, showing cell types on both axes; red indicates positive
correlation, blue indicates negative, and darker colors signify stronger associations. (C) Blue and pink bars show the immune cell content differences
between control and disease groups, respectively, with cell types on the x-axis, scores on the y-axis, and * indicating statistical significance. (D) The
x-axis shows immune cell types, the y-axis shows two key genes, and an asterisk marks statistical significance in their correlation. **: p < 0.01.
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3.7 Relationship between key genes and
disease-related genes

In the current study, the GeneCards database (https://

www.genecards.org/) was utilized to identify genes potentially
Frontiers in Immunology 10167
implicated in disease regulation. To assess inter-group expression

differences amongst these genes, we analyzed the expression levels of

20 highly ranked genes (based on the Relevance*score) with confirmed

expression within the transcriptome data. This analysis revealed

significant expression differences between the two patient groups for
FIGURE 5

Signal pathways of key genes. (A, B) GNG5 in the KEGG signaling pathway and their regulatory roles. (C) GSVA analysis showing signaling pathways
for high expression GNG5 (blue) and low expression GNG5 (green), using the Hallmark gene set as a reference. (D, E) TIMP1 in the KEGG signaling
pathway and their regulatory roles. (F) GSVA analysis showing signaling pathways for high expression TIMP1 (blue) and low expression TIMP1 (green),
using the Hallmark gene set as a reference.
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genes including interleukin 23 receptor (IL23R), interferon gamma

(IFNG), nucleotide-binding oligomerization domain 2 (NOD2), tumor

protein 53 (TP53), transforming growth factor beta 1 (TGFB1),

interleukin 1 receptor antagonist (IL1RN), interleukin-1 beta (IL1B),

interleukin 8 (CXCL8), tumor necrosis factor (TNF) and ATP-binding

cassette subfamily B member 1 (ABCB1) (Figure 6A). Furthermore, a

correlation analysis was performed to investigate the relationship

between key genes and disease regulation genes. The expression

levels of these key genes demonstrated statistically significant

correlations with the expression levels of disease regulation genes.

Notably, TIMP1 exhibited a strong positive correlation (cor = 0.949)

with IL1RN while displaying a significant negative correlation (cor =

-0.807) with ABCB1 (Figure 6B).
3.8 Expression profile of key genes in
spatial transcriptome and validation of
pathological tissues derived from human
sources

We analyzed the spatial transcriptome data to assess the

expression levels of two key genes. Compared with the control
Frontiers in Immunology 11168
group, GNG5 expression was inhibited in the disease group, while

TIMP1 expression was significantly upregulated in the disease

group (Figure 7A). We assessed the differential expression levels

of key genes across various groups utilizing bubble and violin plot

visualizations. Our analysis revealed a downregulation of GNG5 and

an upregulation of TIMP1 in UC (Figure 7B). IHC analysis was

conducted on colon lesions from patients with UC to assess the

expression levels of GNG5 and TIMP1. Results demonstrated a

significant upregulation of TIMP1, and a significant downregulation

of GNG5 in the disease group compared to the control group (p <

0.001), aligning with the previously presented spatial transcriptome

data (Figure 7C).
3.9 Validation of key genes in tissues from
a DSS-induced colitis mouse model

A DSS-induced colitis mice model was generated successfully

(Figure 8A). The distal colon tissue was collected and its length was

measured and then imaged. It was found that compared with the

control group, the colon of the DSS-induced colitis mice model was

significantly shortened under inflammatory stimulation (p < 0.001)
FIGURE 6

Correlation between key genes and disease genes. (A) The top figure illustrates the differential expression of disease regulatory genes, with blue for
control patients and yellow for disease patients. (B) The bottom figure presents correlation analysis, where blue denotes negative and red denotes
positive correlations. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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(Figure 8B). The colon tissue of mice was collected for H&E

staining. As illustrated in Figure 8C, DSS induction resulted in

the desquamation and necrosis of colonic epithelial cells, infiltration

of inflammatory cells within the mucosal layer, and loss of crypt

structures in DSS-induced colitis model mice. The levels of IL-6 and
Frontiers in Immunology 12169
TNF-a in colon tissue were measured utilizing ELISA. The results

revealed a significant increase in the levels of inflammatory

cytokines IL-6 and TNF-a in the colon tissue of DSS-induced

colitis model mice (p < 0.001) compared with the control group

(Figures 8D, E). To further elucidate the expression of key genes in
FIGURE 7

Key gene expression in spatial transcriptome and lesion tissues of UC patients. (A) Scatter plot showing key gene expression levels in single-cell
idling. (B) Up: Bubble plot depicting key gene expression levels (blue = low, red = high). Down: Violin plot illustrating key gene expression
distribution in single-cell idling. (C) Differential expression of GNG5 and TIMP1 between control and UC groups. *** P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1534768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2025.1534768
UC, we conducted Western blot to evaluate corresponding protein

expression levels in colon samples obtained from a DSS-induced

colitis mouse model. Results indicated that, compared to the control

group, GNG5 protein levels were significantly downregulated and

TIMP1 levels were significantly upregulated in the DSS group (p <

0.001, p < 0.01), which confirmed our spatial transcriptome

predictions (Figure 8G).
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Our single-cell sequencing data showed high monocyte

expression in UC samples, with macrophages being crucial

monocyte components. Lots of references indicates that

macrophages are vital in UC inflammation and tissue repair (24).

Immune infiltration analysis revealed a stronger correlation between

TIMP1 and UC-related immune cells compared to GNG5. Thus, we

used immunofluorescence co-localization to assess TIMP1 expression
FIGURE 8

Key gene expression in DSS-induced colonic lesions in mice model. (A) The animal experimental protocol. (B) H&E staining images of colon tissue
from the indicated groups. (C) Comparison of colon length in the indicated groups. (D, E) The levels of IL-6 and TNF-a in the colon homogenate of
each group. F Protein levels of GNG5 and TIMP1 in the colon. (G) Co-localization of TIMP1 with the macrophage marker F4/80 in the colon. *** P <
0.001; ** P < 0.01.
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in macrophages. The results indicated that TIMP1 co-localizes with

macrophage marker F4/80 in colon tissue, suggesting that TIMP1

may affect disease progression through functional expression in UC

colon macrophages (Figure 8G).
3.10 The link between key genes and
immune metabolic pathways along with T
cell exhaustion correlation analysis

To quantitatively assess the activity of immune metabolism

genes in individual cells, we utilized AUCell. Bubble plots were

employed to visualize the differential activity of key genes within

these pathways. Our findings revealed that GNG5 and TIMP1 were

significantly upregulated in oxidative phosphorylation, the

unfolded protein response, and related pathways (Figure 9A).

Furthermore, an analysis of classical exhaustion-related genes

(LAG3, PDCD1, TIGIT, HAVCR2, CTLA4) in single cells

indicated a pronounced T cell exhaustion phenotype (Figures 9B,

C). We also investigated the correlation between exhaustion-related

genes and immune infiltration as well as their differential expression
Frontiers in Immunology 14171
in the transcriptome. CTLA4, LAG3 and TIGIT were found to be

significantly up-regulated in UC (Figure 9D).Our analysis identified

a significant positive correlation between five exhaustion-related

genes and activated memory CD4+ T cells, T follicular helper cells,

as well as other cell types. (Figure 9E). To delve deeper into the

relationship between GNG5, TIMP1, and cellular depletion, a

correlation analysis was conducted involving five depletion-

related genes. This analysis identified a significant positive

correlation between TIMP1 and TIGIT as well as CTLA4

(Figure 9F) (p = 3.5e-06, 1.1e-07).
4 Discussion

The integration of single-cell and spatial transcriptomic

analyses in this study has yielded novel insights into the cellular

heterogeneity and molecular dynamics underlying the pathogenesis

of UC. Our findings underscore the pivotal roles of specific

monocyte subtypes and two key genes, GNG5 and TIMP1, in

modulating the inflammatory microenvironment and driving

disease progression. These discoveries not only enhance our
FIGURE 9

Link between key genes and immune metabolic pathways, and T cell exhaustion analysis. (A) Correlation bubble plot: x-axis shows immune
metabolism pathways, y-axis shows two key genes, blue indicates low expression, red indicates high expression. (B) UMAP diagram: expression
profile of exhaustion-related genes in single cells. (C) Bubble plot showing single-cell expression of exhausted phase genes, with blue for low and
red for high expression. (D) Circle size and color represent the correlation coefficient and p-value between exhaustion-related genes and immune
cells. (E) Differential expression of exhausted genes in UC. (F) Blue and red circles indicate negative and positive correlations between key and
exhaustion-related genes, with circle size showing statistical significance.
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understanding of UC immunopathology but also suggest potential

therapeutic targets for precision medicine. Utilizing single-cell

transcriptomics, we identified distinct subpopulations of

monocytes characterized by altered communication networks in

UC, and monocytes demonstrated the most robust ligand-receptor

interactions. The application of machine learning techniques,

specifically LASSO and SVM algorithms, further identified GNG5

and TIMP1 as central regulatory elements in UC. GNG5, a G

protein subunit involved in signal transduction, was significantly

downregulated in UC lesions, whereas TIMP1, a metalloproteinase

inhibitor associated with extracellular matrix remodeling, was

markedly upregulated. These findings are corroborated by spatial

transcriptomic and immunohistochemical analyses in human UC

tissues, as well as in DSS-induced murine colitis models, thereby

confirming their consistent dysregulation across species.

In UC, the disproportionate distribution of monocyte subtypes

—characterized by a predominance of classical and intermediate

subtypes with pro-inflammatory tendencies, alongside functional

impairments in non-classical subtypes—contributes to the

pathogenesis of intestinal inflammation and fibrosis. Monocytes

are capable of further differentiation into macrophages within

specific tissues, including the intestinal and dermal regions (25).

Classical monocytes, identified by the CD14++/CD16 phenotype,

engage C-C motif chemokine receptor 2 (CCR2) signaling, which is

pivotal for their function, thereby activating downstream NF-kB
and MAPK pathways. This activation facilitates their differentiation

into pro-inflammatory M1 macrophages and augments the

secretion of inflammatory mediators, including interleukin-1b
(IL-1b) and reactive oxygen species (ROS) (26). CCR2 signaling

has the potential to enhance TIMP1 expression, potentially through

the activation of the PI3K/Akt pathway, inhibit MMP-9 activity,

and consequently exacerbate extracellular matrix (ECM) deposition

and fibrosis (27). Intermediate monocytes, identified by the CD14+/

CD16+, undergo differentiation into M2 macrophages in response

to the influence of TGF-b. The GNG5 protein is involved in G

protein-coupled receptor (GPCR) signaling pathways, including

those mediated by CCR2 and chemokine (C-X3-C motif) receptor

1 (CX3CR1). The absence of GNG5 may impede the migration of

monocytes to the intestinal environment and their subsequent

differentiation into anti-inflammatory phenotypes, such as M2

macrophages (28).

GNG5, a member of the G protein gamma subunit family, is a

component of the glutamate transporter family. G proteins are

essential signaling molecules involved in various physiological

processes. GNG5 plays a regulatory role in the body, influencing cell

proliferation, differentiation, and metabolism. Previous studies (29)

have implicated GNG5 in glioma cell proliferation, migration, and

macrophage infiltration. GNG5 is involved in cell cycle regulation and

promotes cell proliferation, potentially through the modulation of

growth factor receptor-associated signaling pathways (30).

Additionally, GNG5 has been linked to apoptosis in human

chondrocytes (31) and lung cancer cells (32). However, the

correlation between GNG5, UC, and immune cells remains

understudied. In this study, we present novel findings identifying
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GNG5 as a target gene associated with monocyte markers and

characteristics of UC. The observed downregulation of GNG5 in UC

tissues, as evidenced by spatial transcriptomic, immunohistochemical,

and murine model analyses, indicates its potential involvement in

maintaining mucosal homeostasis. GNG5 is implicated in modulating

intracellular signaling pathways, including those mediated by G

Protein-Coupled Receptors (GPCRs), which are essential for

immune cell activation and epithelial repair. Our analyses utilizing

GSEA and GSVA have linked GNG5 to propanoate metabolism and

the PPAR signaling pathways, both of which are known for their roles

in regulating anti-inflammatory responses and preserving epithelial

barrier integrity. The reduced expression of GNG5 may undermine

these protective mechanisms, potentially exacerbating inflammation

and tissue damage.

TIMP1 is a zinc and calcium-containing proteolytic enzyme

secreted by neutrophils and lymphocytes. Its primary function is to

inhibit matrix metalloproteinases (MMPs), which are crucial for

extracellular matrix (ECM) degradation. MMPs are upregulated

after tissue injury and are involved in cytokine activation, cell

migration, and ECM remodeling. TIMPs balance MMP activity,

promoting tissue wound healing (33). MMPs and TIMPs are key

regulators in IBD pathogenesis. Their imbalance is associated with

inflammation and intestinal fibrosis in IBD (34). MMPs also

modulate the inflammatory response by cleaving and activating

cytokines, intensifying inflammation (35). Despite TIMP1’s

inhibitory effect on MMPs, it does not exhibit the expected anti-

inflammatory properties in inflammatory diseases. Elevated TIMP1

levels have been associated with poor prognosis in various

inflammatory conditions (36). Schoeps et al. (37) found that high

TIMP1 expression can activate neutrophils to release neutrophil

extracellular traps (NETs). In patients with IBD, TIMP1 expression

is significantly elevated in colon tissue and serum, correlating with

disease severity (38). These findings suggest that TIMP1’s pro-

inflammatory properties outweigh its MMP inhibitory effects in

inflammatory diseases. In this study, we hypothesized that TIMP1 is

a target gene associated with monocyte markers and UC

characteristics, with more significant interaction with immune

cells than GNG5. TIMP1 expression is markedly upregulated in

UC samples and positively correlates with various immune cell

populations, including M0 and M1 macrophages, activated

dendritic cells, and neutrophils. Human sample analysis

corroborated these findings. A DSS-induced acute colitis model in

mice revealed a significant increase in TIMP1 protein levels in

colonic tissue compared to controls. Immunofluorescence

demonstrated TIMP1 co-localization with the macrophage marker

F4/80, suggesting that TIMP1’s pro-inflammatory effects in mice

may be mediated through its influence on macrophage function in

the colon.

UC is often associated with dysregulated intestinal immune cells,

particularly T cell activation and functional alterations. T cell

exhaustion, a progressive decline in T cell function under prolonged

immune stimulation, is common in chronic infections and tumor

microenvironments. This phenomenon limits T cell antigen response

capacity and effector functions, reducing overall immune response
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efficacy (39). Exhausted T cells exhibit decreased proliferative capacity,

upregulated inhibitory receptors(programmed cell death protein 1

(PD-1), CTLA4, and LAG3), and loss of effector function (40). LAG3

and PD-1 co-expression drives T cell exhaustion and regulates the

expression of thymus high mobility group box protein (TOX). Ectopic

TOX expression in effector T cells induces T cell exhaustion

transcriptional programs (41). Slevin et al. (42) reported LAG3

upregulation in mucositis, primarily on effector memory T cells,

correlating with disease activity, suggesting LAG3 as a potential

therapeutic target for UC. However, a clinical trial by D’Haens et al.

(43) showed that LAG3-depleting monoclonal antibody GSK2831781

did not reduce colonic mucosal inflammation despite successful LAG3

depletion. Therefore, the mechanisms linking T cell exhaustion to UC

prognosis require further exploration. Our analysis of immune

infiltration has identified a skewed microenvironment in UC,

characterized by a predominance of M1 Macrophages, activated

CD4+ T cells, and Neutrophils, alongside a reduction in regulatory

T cells and resting Mast cells. This imbalance reflects the pro-

inflammatory environment observed in advanced stages of UC,

where persistent inflammation contributes to tissue damage.

Importantly, TIMP1 was identified as a central gene positively

associated with markers of T cell exhaustion, such as TIGIT and

CTLA4. T cell exhaustion, indicative of chronic antigen exposure, is

increasingly recognized in UC and may account for the limited

effectiveness of current immunotherapies. The co-enrichment of

TIMP1 with the IL-17 and NF-kB pathways further implicates it in

sustaining Th17-driven inflammation, a critical pathway in UC

pathogenesis. These findings suggest that targeting TIMP1 or its

downstream effectors could alleviate both inflammation and

immune exhaustion, providing a dual therapeutic approach.
5 Conclusion

This study represents the inaugural integration of single-cell

and spatial transcriptomics methodologies to examine the spatial

distribution characteristics of cellular heterogeneity and gene

expression in UC. The investigation elucidates the metabolic

regulatory role of GNG5 and the pro-inflammatory and

depletion-promoting effects of TIMP1, identifying them as

potential novel biomarkers or targets for therapeutic intervention.

The study further identified that TIMP1 facilitates the progression

of ulcerative colitis via a dual mechanism involving T cell depletion

and macrophage activation. This finding offers a theoretical

foundation for developing therapeutic strategies aimed at

targeting TIMP1 or other associated immune checkpoints.
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