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Editorial on the Research Topic

Revolutionizing immunological disease understanding through single
cell multi-omics technologies

Introduction

Single cell approaches have revolutionized our understanding of many different
immunological diseases and in this special issue, several new examples are highlighted
that pave the way for new treatment options including better understanding of Th17
biology in fibrosis, HIV pathogenesis, IgA Nephropathy pathobiology, and identification of
key immune subsets in rheumatoid arthritis and other autoimmune diseases. Spatial
technologies have furthered our knowledge of gene expression and protein colocalization,
opening new paths for studying tissue-specific cellular dynamics. Advancements like the
SENSE method for cryopreserving whole blood have simplified single-cell analyses, making
them more viable for clinical use. Innovative multiplexing strategies and developments in
proteomics and Raman spectroscopy are broadening the capabilities of single-cell
technologies, allowing for comprehensive profiling that can enhance precision medicine.
Together, these advances highlight the potential of single-cell omics to lead the future of
immunological research and clinical practice, facilitating the creation of novel therapeutic
strategies and personalized medicine.

Understanding disease mechanisms through single-
cell RNA sequencing

Deng et al. studied fibrotic skin diseases like keloids, hypertrophic scars, and
scleroderma, characterized by excessive fibroblast growth and extracellular matrix
buildup. They used fluorescence-activated cell sorting to isolate CD45+ immune cells
from keloid and normal scar tissues, then applied scRNA-seq to map the immune cell
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landscape. The study found a significant increase in Th17 cells,
which promote fibroblast proliferation, collagen expression, and
migration via IL-17A secretion. This increase in Th17 cells in other
fibrotic conditions suggests a common mechanism in skin fibrosis,
advancing the understanding of these diseases and identifying
potential therapeutic targets.

Hong et al. used multiplex cytokine assays and scRNA-seq to
explore immunological differences between ACPA-positive and
ACPA-negative early rheumatoid arthritis (eRA) patients. They
found that ACPA+ eRA patients had higher levels of interferon-
gamma (IFN-y) and interleukin-12 (IL-12), indicating a Thl
immune response. The study identified 17 distinct cell types, with
notable expansions of IL1B+ proinflammatory monocytes, CD8+
CCL4+ T cells, and IL7R+ T cells in ACPA+ eRA. These cells
showed upregulated IFN-y response genes, suggesting enhanced
IFN-driven monocyte-T cell interactions. IFITM2 and IFITM3
were identified as potential biomarkers for ACPA+ eRA. These
findings indicate that ACPA+ eRA is characterized by a more active
IFN-mediated immune response, potentially guiding personalized
treatment strategies targeting type I and II interferon pathways.

scRNA-seq has been crucial in understanding immunity related
to pathogenic invasion. Knoll et al. conducted a comprehensive
study on immune cell reprogramming in people living with HIV
(PLHIV), revealing persistent functional changes in monocytes
even with long-term antiretroviral therapy (ART). Using various
omics technologies, the study identified significant transcriptomic
changes in monocytes, indicating an “anti-viral” state with
upregulated IFN signaling pathways, like acute HIV infection.
This suggests ongoing immune activation despite ART. The
research also explored drug repurposing to reverse the pro-
inflammatory monocyte phenotype in PLHIV, identifying
sunitinib and doxycycline as promising candidates. These findings
support the larger 2000-HIV multicenter cohort study, highlighting
the need for transcriptomics to define disease endotypes and predict
outcomes. The study emphasizes verifying chromatin-level
differences via ATAC-seq and further exploring monocyte-
mediated immune dysregulation. Despite a small sample size, it
lays the groundwork for future research to refine therapeutic
strategies and understand the immune landscape in PLHIV
under ART.

Nephrotic syndrome (NS) is a severe form of IgA nephropathy
(NS-IgAN) with unclear pathogenesis, marked by immune cell
imbalances and kidney damage. Chen et al. used scRNA-seq on
peripheral blood mononuclear cells and kidney cells from pediatric
NS-IgAN patients to investigate this condition. They found
increased intermediate monocytes (IMs) expressing VSIG4, MHC
class IT molecules, and genes related to oxidative phosphorylation.
Classical and non-classical monocytes showed elevated CCR2,
possibly linked to kidney injury. Two regulatory T cell subsets
were identified, with Treg2 cells expressing high CCR4 and GATA3,
potentially aiding kidney recovery. Podocyte injury was associated
with increased CCL2, PRSS23, and epithelial-mesenchymal
transition genes. PTGDS was suggested as a potential podocyte
marker due to its decreased expression after injury. This study
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provides insights into NS-IgAN pathogenesis and could guide
future targeted therapies.

Huang et al. describe the integration of single-cell and spatial
transcriptomic analyses to unravel the cellular heterogeneity and
molecular mechanisms underlying ulcerative colitis (UC), a chronic
inflammatory bowel disease characterized by immune
dysregulation. By identifying distinct monocyte subtypes and
leveraging machine learning techniques, two key genes, GNG5
and TIMP1, were highlighted as central to UC pathogenesis.
GNGS5, downregulated in UC, is implicated in anti-inflammatory
pathways such as PPAR signaling, while TIMP1, upregulated,
exhibits pro-inflammatory effects and correlates with T cell
exhaustion markers like TIGIT and CTLA4. Spatial
transcriptomic data, immunohistochemical validation in human
UC lesions, and experimental findings from a DSS-induced colitis
mouse model confirmed these gene expression patterns. TIMP1 was
further shown to co-localize with macrophages and promote Th17-
driven inflammation, suggesting its dual role in macrophage
activation and immune depletion. These findings provide a
foundation for developing targeted therapeutic strategies aimed at
mitigating chronic inflammation and immune dysfunction in UC.

Spatial technologies

Spatial technologies are essential for pinpointing specific cell
types and gene expression locations. Moos et al. demonstrated how
spatial-temporal single-cell transcriptomic sequencing can analyze
genetic mutations in pulmonary epithelial nodes related to
pulmonary fibrosis (PF) and interstitial lung diseases. Using a
clinical PF dataset and a murine model with SP-C gene
mutations, they investigated monocyte/macrophage changes in
fibrotic lungs. The study found heterogeneous activation of CD68
+ macrophages, especially near injury sites. Ingenuity Pathway
Analysis showed asynchronous activation of extracellular matrix
reorganization and ApoE signaling in alveolar macrophages.
scRNA-seq identified pro-fibrogenic signaling from Trem2+
macrophages. Although genetic deletion of ApoE had limited
impact on inflammation, the study suggests ApoE as a biomarker
for active macrophages in tissue remodeling. These findings provide
insights into macrophage heterogeneity and cell-cell interactions in
fibrotic diseases.

Advances in spatial proteomics and protein colocalization are
crucial for understanding cellular mechanisms and developing
novel algorithms. Rhomberg-Kauert et al. introduced Molecular
Pixelation (MPX), a method that provides spatial information on
surface proteins in single cells, allowing for in silico graph
representation of protein neighborhoods. To analyze this data
modality, local assortative methods were adapted to assess spatial
relationships, enabling evaluation of pairwise colocalization and
similarity among multiple proteins. MPX was tested on datasets
showing its ability to detect stimuli effects, such as T cells treated
with a chemokine to study uropod formation, and cancerous B-cell
lines treated with rituximab, providing insights into cell polarity.
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This computational approach enhances understanding of immune
responses and cell surface protein reorganization, potentially
guiding new therapeutic designs. MPX offers high throughput,
sensitivity, and three-dimensional analysis, surpassing traditional
microscopy, and enabling deep phenotyping at single-cell
resolution. The method can also analyze other biological spatial
data represented as graphs, showcasing its broad applicability and
potential to advance spatial proteomics.

Sample preparation is often a bottleneck in single-cell
methodologies, especially with biofluids. Satpathy et al. developed
the SENSE method for single-step cryopreservation of whole blood
(WB), streamlining cell suspension preparation for scRNA-seq.
This method overcomes the limitations of labor-intensive
multistep processes unsuitable for clinical use. In a comparative
analysis of six blood samples, the SENSE method produced highly
viable single-cell suspensions, with 22,353 cells showing a viability
rate of 86.3 + 1.51%. It yielded high-quality transcriptomic profiles
comparable to traditional PBMC methods and showed higher T-cell
enrichment, allowing for detailed T-cell subtype characterization.
Both methods captured transcriptional and cellular networks across
cell types, with minimal batch effects, except in myeloid cells. The
SENSE method’s simplicity and effectiveness make it promising for
widespread clinical and research adoption, facilitating single-cell
assays and translational research.

Khoshbakht et al. introduced a label-free sample multiplexing
strategy based on the souporcell algorithm, enabling cost-effective
scRNA-seq and flow cytometry analyses of paired blood and skin
samples. This protocol addresses the complexity and cost of current
methods, applicable to both healthy and inflamed skin. It allows
simultaneous RNA and protein analysis on the same lesion,
reducing costs by 2-4 times. The strategy minimizes batch effects
and examines the impact of different enzymatic incubation
durations (1, 3, and 16 hours, with and without enzyme P) on
flow cytometry results. It includes bioinformatic demultiplexing
and a step-by-step guide, making it accessible for newcomers. This
approach aims to enhance single-cell analysis accessibility,
potentially extending to other dermatological disorders and aiding
in understanding immune mechanisms and identifying new
therapeutic targets.

Single-cell omics techniques for clinical samples have
traditionally focused on genomic, transcriptomic, and more
recently, proteomic methodologies. Raman spectroscopy has
emerged as a complementary bioanalytical tool due to its ability
to characterize the biophysical properties of biomolecules.
Chadokiya et al. review how molecular tumor characterization is
crucial for identifying predictive biomarkers to improve precision
immunotherapy. However, challenges like tumor heterogeneity and
limited biomarker efficacy hinder accurate treatment predictions.
This study highlights label-free Raman spectroscopy as a non-
invasive tool for profiling precision immunotherapy, capable of
unifying various omics data. With its ability to distinguish immune
cell types and detect molecular changes, Raman spectroscopy offers
a promising approach for enhancing treatment prediction and
monitoring in cancer care. As it evolves, Raman spectroscopy
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could become a cost-effective, patient-focused tool integrated into
clinical practice for precise immunotherapy.

Future directions

Future developments in single-cell omics technologies are set to
transform our understanding and treatment of immunological and
tumor-related diseases. Integrating multi-omics data including
genomic, transcriptomic, proteomic, and metabolomic at the single-
cell level, along with spatial information, will provide a comprehensive
view of cellular states and interactions, aiding in the discovery of new
biomarkers and therapeutic targets. Advances in artificial intelligence
and machine learning will be vital for analyzing the large datasets from
these technologies, enabling predictive models for disease progression
and treatment response. Enhancing spatial omics technologies will offer
insights into cell and molecular organization within tissues, enriching
our understanding of tissue architecture and function. Expanding
single-cell techniques to less-studied cell types and rare diseases will
uncover new areas of human health. Making single-cell omics cost-
effective and user-friendly will be crucial for their integration into
routine clinical practice, allowing personalized healthcare for more
patients. These advancements will deepen our understanding of
complex biological systems and lead to innovative therapies and
precision medicine tailored to individual needs.
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Cell-type-specific molecular
characterization of cells from
circulation and kidney in

IgA nephropathy with
nephrotic syndrome

Qilin Chen***, Huimin Jiang“**!, Rong Ding*, Jinjie Zhong"*?,
1,23

Longfei Li*, Junli Wan™?, Xiaogian Feng*??, Liping Peng™?>,
Xia Yang®**, Han Chen'?, Anshuo Wang'?, Jia Jiao™?,

Qin Yang™?, Xuelan Chen™?, Xiaoqin Li*?, Lin Shi*?,

Gaofu Zhang?, Mo Wang*?, Haiping Yang*** and Qiu Li***

tDepartment of Nephrology, Children’s Hospital of Chongging Medical University, Chongqging, China,
2National Clinical Research Center for Child Health and Disorders, Ministry of Education Key
Laboratory of Child Development and Disorders, Chongging, China, *Chongqing Key Laboratory of
Pediatrics, Chongqing, China, “Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform
Co. Ltd, Nanjing, Jiangsu, China

Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA
nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the
pathogenesis of NS-IgAN may involve circulating immune imbalance and
kidney injury; however, this has yet to be fully elucidated. To investigate the
cellular and molecular status of NS-IgAN, we performed single-cell RNA
sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and
kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy.
Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN
patients was higher than in healthy controls. Furthermore, flow cytometry
confirmed that IMs were significantly increased in pediatric patients with NS.
The characteristic expression of VSIG4 and MHC class Il molecules and an
increase in oxidative phosphorylation may be important features of IMs in NS-
IgAN. Notably, we found that the expression level of CCR2 was significantly
increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be
related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets
of cells: Tregl (CCR7M9", TCF7M" and HLA-DR'®") and Treg2 (CCR7'°Y, TCF7*°¥,
and HLA-DRMM). We found that the levels of Treg2 cells expressed significant
levels of CCR4 and GATAS3, which may be related to the recovery of kidney injury.
The state of NS in patients was closely related to podocyte injury. The expression
levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition
were significantly increased in podocytes from NS-IgAN patients. These
represent key features of podocyte injury. Our analysis suggests that PTGDS is
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significantly downregulated following injury and may represent a new marker for
podocytes. In this study, we systematically analyzed molecular events in the
circulatory system and kidney tissue of pediatric patients with NS-IgAN, which
provides new insights for targeted therapy in the future.

KEYWORDS

IgA nephropathy, nephrotic syndrome, single-cell RNA sequencing, peripheral blood
mononuclear cells, podocyte
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GRAPHICAL ABSTRACT
1 Introduction that increased levels of galactose-deficient IgA1 (Gd-IgAl), the

production of autoantibodies, the deposition of immune

IgA nephropathy (IgAN) is the most common form of primary ~ complexes in the mesangial area of the glomeruli, and the
glomerulonephritis worldwide (1). With the increased use of kidney =~ secretion of cytokines, chemokines, and complements by
biopsy in children, there is a growing concern related to pediatric =~ mesangial cells ultimately lead to further kidney injury (3). In
patients with IgAN (2). The diagnostic hallmark of IgAN is the  children, IgAN has long been considered to be a benign disease,
predominance of IgA deposits in the glomerular mesangium. The  with remission usually occurring after timely treatment (4).
pathogenesis of IgAN remains unclear but it is considered an  Nevertheless, patients with heavy proteinuria at biopsy often have

>

autoimmune disease. A “multi-hit” hypothesis has been proposed  a poor prognosis and there is a significant lack of therapeutic

to explain the pathogenesis of IgAN (1). This hypothesis outlines  options for such patients (4). Nephrotic syndrome (NS) is a
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relatively rare and serious presentation of IgAN (NS-IgAN). This
condition has a low incidence (4), ranging from approximately 4%
to 10% (4, 5). Therefore, there is limited information relating
to the molecular mechanism of NS-IgAN, particularly in
pediatric populations.

NS-IgAN patients not only exhibit typical manifestations of
nephrotic syndrome (e.g., edema, heavy proteinuria, and
hypoproteinemia), they also show glomerular mesangial IgA
deposition and extensive foot process effacement on kidney
biopsy (6). When considering NS-IgAN, the presentation of the
typical histological characteristics of IgAN can indicate the
existence of two glomerular diseases: IgAN and “podocytopathy”
(6). The injury and loss of podocytes are key factors that contribute
to progressive proteinuria and filtration dysfunction in IgAN (7). In
addition, mesangial-derived humoral factors, such as tumor
necrosis factor, complement components, and angiotensin II, may
alter glomerular permeability in the presence of proteinuria (8).
Existing literature suggests that abnormal crosstalk between
circulating immune cells and kidney cells may contribute to the
occurrence and progression of IgAN. Systematic dissection of the
molecular characteristics of the circulating immune system and
kidney tissue will help us to identify the mechanisms underlying
proteinuria and provide potential strategies for improving the
treatment and prognosis of pediatric patients with NS-IgAN.

Single-cell transcriptome sequencing (scRNA-seq) technology
can achieve unbiased and high-throughput transcriptome
sequencing at the single-cell level and has been applied in clinical
research for various diseases, including kidney and autoimmune
diseases (9). Previous scRNA-seq studies of IgAN have attempted to
identify the molecular features of kidney cells or circulating
immune cells in IgAN (10-12). However, there is still a
significant lack of research on the systematic identification of the
changes in circulating immune cells and kidney cells that occur in
IgAN (9). To provide valuable insight into the molecular features of
local tissues and the circulatory system, we simultaneously
performed scRNA-seq on kidney biopsies and peripheral blood
mononuclear cells (PBMCs) from pediatric patients with NS-IgAN.
We found that the composition of monocyte subsets was altered in
NS-IgAN and this was accompanied by the increased expression of
CCR2. In addition, we found that PTGDS was significantly
downregulated in podocyte injury. Collectively, our research
provides a new understanding of the molecular characteristics of
cell types in NS-IgAN and may facilitate the development of new
targeted therapies.

2 Materials and methods
2.1 Ethical approval

This study for scRNA-seq analysis was reviewed and approved
by the Institutional Review Board of the Children’s Hospital of
Chonggqing Medical University (File Number: 2022 Research 124).
The research for flow cytometric analysis was reviewed and
approved by the Institutional Review Board of the Children’s
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Hospital of Chongging Medical University. The File Number is
2022 Research 35. Written informed consent was obtained from all
participants and their guardians.

2.2 Sample collection and patient details

In this study, we collected PBMCs from the blood and kidney
tissues from three pediatric patients diagnosed with IgAN by renal
biopsy, all of whom had IgAN with nephrotic-level proteinuria (NS-
IgAN). The PBMCs were harvested from samples that remained
after routine tests had been performed. Patients were classified as
NGC, SGC, or LGC according to their glucocorticoid treatment at
the time of sampling. We also included two kidney tissues as control
kidney samples: one sample was Wilms’ tumor paracancerous tissue
from a child (CTRL-1) while the other sample was from a resected
duplex kidney (CTRL-2). All participants were enrolled from the
Children’s Hospital of Chongqing Medical University, and each
sample was collected for scRNA-seq individually. For comparative
analysis, we downloaded scRNA-seq datasets from the Gene
Expression Omnibus database. The kidney tissue datasets
included one healthy adult (CTRL-3), four adult patients with
IgAN (merged as HU-IgAN) from GSE171314, and PBMC
datasets from three healthy children (Con-1, Con-2, Con-3) from
GSE206295. Detailed information relating to the participants is
shown in Supplementary Table 1. To further investigate the changes
in monocyte subsets in NS patients, we recruited a cohort of 13
healthy children, 26 NS patients with proteinuria, and 6 NS patients
who were in remission after treatment. We collected blood from
samples that remained after routine testing for flow cytometry.

2.3 Preparation of single-cell suspensions

To prepare PBMCs, we collected 2 mL of venous blood in EDTA
collection vessels, which were then taken to the laboratory on ice.
PBMC:s were isolated using Ficoll medium (TBD, Tianjin, China) and
cryopreserved according to the 10X genomics recommended
protocol (CG00039). To dissociate the kidney tissue into single-cell
suspensions, each fresh kidney sample was washed three times with
Hanks’ balanced salt solution and immediately stored in GEXSCOPE
tissue preservation solution (Singleron Biotechnologies, Nanjing,
China) at 2-8°C. Then, the tissue was cut into small pieces and
digested in 1 mL of Tissue Dissociation Mix (Singleron
Biotechnologies) at 37°C for 15 minutes before being passed
through a 40 pm filter. After centrifugation at 3500 g for 5
minutes, cell pellets were resuspended in 1 mL of cold PBS. To
remove red blood cells, 2 mL of GEXSCOPE Red Blood Cell Lysis
Buffer (Singleron) was added into the cell suspension and incubated
at 25°C for 10 minutes. Cells were then centrifuged at 300 g for 5 min
and resuspended in cold PBS. Next, cells were stained with trypan
blue (Beyotime, Shanghai, China) and counted with a TC20
automated cell counter (Bio-Rad, California, USA). Sample
processing and analysis were permitted once cell viability
exceeded 85%.
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2.4 scRNA-seq library construction
and sequencing

Several different sequencing methods were used for the samples
of PBMCs and kidneys. For PBMCs, each sample was diluted to a
final concentration of 700-1200 cells ul™" and loaded onto a
Chromium Single Cell Controller (10X Genomics, San Francisco,
USA). The libraries for scRNA-seq were constructed using a
Chromium Next GEM Single Cell 3 GEM, Library and Gel Bead
Kit v3.1 (10X Genomics) and then sequenced using an Illumina
NovaSeq 6000 system. For each kidney sample, the single-cell
suspension was adjusted to a concentration of approximately 300
cells pl™'. A GEXSCOPE Single Cell RNA Library Kit (Singleron
Biotechnologies) was then used to construct a single-cell RNA-seq
library for kidney samples. The libraries were then sequenced with
an Illumina HiSeq X 10 system. Each sample of PBMCs and kidney
tissue was processed independently.

2.5 scRNA-seq data processing

Raw sequencing reads from PBMCs were processed using Cell
Ranger (version 6.0.0), including demultiplexing, genome
alignment (GRCh38), barcode counting, and unique molecular
identifier (UMI) processing. Similarly, raw data from the kidney
tissues were processed by Celescope (version 1.10.0). We then used
the Seurat (version 4.1.0) package to perform downstream analysis.
To exclude low-quality cells, the cells were filtered by gene counts
and UMI counts; cells with a high mitochondrial content were
removed. Detailed information relating to the quality control (QC)
threshold settings is given in Supplementary Table 2. After cell
filtering, 53,571 PBMCs and 47,602 renal cells were captured for
downstream analysis. Next, we used DoubletFinder (version 2.0.3)
to identify doublets and removed clusters with a high proportion of
doublets. To remove batch-effects, we integrated sample datasets via
the “integrate” function in Seurat. Principal component analysis
(PCA) was then performed on the top 2000 highly variable genes;
the top 20 PCs were used for subsequent analysis. We then used a
graph-based clustering algorithm to identify clusters, thus allowing
us to construct a K-Nearest Neighbor (KNN) graph by Euclidean
distance. The Louvain algorithm was used to group cells and
optimize modules. To display the distribution of cells by status,
we used the uniform manifold approximation and projection
(UMAP) algorithms to visualize clustered cells. First, cells were
identified by SingleR (v1.6.1). This software compared the
transcriptome of each cell cluster to various reference datasets
(e.g., human primary cell atlas, Blueprint/ENCODE, Database of
Immune Cell Expression, Novershtern hematopoietic data, and
Monaco immune data). In order to exclude the influence of
automatic assignment, we also manually adjusted the identities of
clusters by combining data with the expression levels of canonical
marker genes and existing annotated scRNA-Seq data
(Supplementary Tables 3-7, 9).
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2.6 Differentially expressed genes and
enrichment analysis

Differentially expressed genes (DEGs) were computed using the
FindMarkers function of Seurat. DEGs were defined as genes
detected in at least 10% of cells, with a threshold of 0.25 log fold
change using the Two-tailed Wilcoxon Rank-Sum Test with P <
0.01 following Bonferroni correction. Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed with the Metascape web tool
(www.metascape.org) and ClusterProfiler (version 4.2.2).

2.7 Calculation and Analysis of epithelial-
mesenchymal transition scores

We used cell scores to evaluate the degree to which individual cells
expressed a certain predefined expression gene set. This allowed us to
define meaningful functions and states. The cell scores were calculated
using the Seurat function “AddModuleScore”, which calculated the
average expression of genes from the predefined gene set in the
respective cell. The control gene sets were randomly selected based
on aggregate expression level bins. The final gene set score was
obtained by subtracting the control score from the predefined gene
set score. We then used several well-defined EMT markers
(Supplementary Table 8) to define the EMT score.

To assess the statistical significance of scores, for each NS-IgAN
patient or HU-IgAN group, the EMT scores were compared with
that of the control group (CTRL) using the two-tailed Mann-
Whitney U-test. Differences with a P value <0.05 were considered
significant, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.

2.8 Ligand—-receptor analysis

CellphoneDB was used with default parameters to reveal
changes in interactions between different cell types.

2.9 Pseudo-time analysis

R package Monocle2 (version 2.18.0) was used to perform
pseudo-time analysis. To clarify the role of genes in cell fate
decisions, branched expression analysis modeling (BEAM) from
Monocle2 was applied.

2.10 GWAS expression analysis

The defined IgAN susceptibility genes were obtained based on
previous genome-wide association studies (GWASs) in IgAN
combined with NephQTL and eQTL (cf) online analysis tools,
and were provided in Supplementary Table 10. Cell-type specific
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expression of IgAN susceptibility genes was calculated by the
average relative logarithmic expression values.

2.11 Cell culture and treatment

Human immortalized podocytes were provided from the lab of
Zhihong Liu, and the cells were cultured as previously described
(13). Cells were grown at the permissive temperature of 33°C (in 5%
CO,) and differentiated at 37°C (in 5% CO,). After differentiating
for 7-14 days, podocytes were treated with 0.25 pg mL™’
doxorubicin (Sigma-Aldrich, Saint Louis, USA) and 0.5 pg mL™"
doxorubicin for 24 hours.

2.12 Immunofluorescence

The kidney tissue was dewaxed and then heat-mediated antigen
repair was performed in sodium citrate solution (pH=6.0) for
15min, and blocked with goat serum. Cultured podocytes growing
on a glass slide were fixed in 4% paraformaldehyde for 15 min. The
sections and cells were incubated with the following primary
antibodies: Prostaglandin D Synthase (PGDS) (ABclonal, Wuhan,
China), anti-nephrin (PROGEN, Darmstadt, Germany) at 4°C
overnight. Then incubated with the appropriate secondary
antibody for 45 or 60 min at room temperature: anti-guinea pig
IgG antibody conjugated with Alexa Fluor 568 (Invitrogen,
California, USA), anti-rabbit IgG antibody conjugated with Alexa
Fluor 633 (Invitrogen). Nuclei were counterstained with Hoechst
(Thermo Fisher, Boston, USA). Fluorescence signals were viewed
under a fluorescence microscope (Nikon A1R, Tokyo, Japan). NIS-
Element (version 5.5) was used to quantify PGDS and nephrin
staining intensity.

2.13 Flow cytometric analysis

200pL whole blood was incubated with CD14-PE (BioLegend,
California, USA) and CD16-APC (BioLegend, California, USA)
antibodies. After staining for 20 minutes at room temperature in the
dark, erythrocytes (BD Pharmingen, New Jersey, USA) in the
samples were lysed by incubation with lysing solution for 5
minutes. Following centrifugation (300g/5 minutes, 4°C) and
washing with PBS, cells were then examined using BD
FACSCanto . The datasets were analyzed using FlowJo
(version 10.4.2).

2.14 Statistical analysis

Data are expressed as means + standard deviation (SD). The
EMT scores and gene expression levels were analyzed by the two-
tailed Mann-Whitney U-test in SPSS 26.0. Differences in staining
intensity between the two groups were analyzed by the two-tailed
Student’s ¢ test. All other analyses involved the two-tailed Wilcoxon
Rank-Sum Test. Significance was defined as *P<0.05, **P<0.01,
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***P<0.001. No specific indication is given if data were not
significant. Graphs were generated by ggplot2 (version 3.3.5) and
pheatmap (version 1.0.12) in R.

3 Results

3.1 Construction of a cell atlas of renal
tissue and circulating immune cells in
children with NS-IgAN

scRNA-seq was performed on PBMCs and kidney cells from
three pediatric patients, all of whom had IgAN with nephrotic-level
proteinuria, hypoalbuminemia, and hyperlipidemia (NS-IgAN)
(Figure 1A; Supplementary Table 1). Kidney biopsy revealed the
mesangial deposition of IgA and extensive or partial foot process
effacement (Supplementary Figures 1A-C). It is worth noting that
all three patients showed the pathological characteristics of
mesangial hypercellularity. These patients had accepted different
treatments at the time point of sampling, one patient was not on
glucocorticoid (GC) therapy (NGC), one patient was on short-term
GC therapy (SGC), and one patient was on long-term GC therapy
(LGC) (Supplementary Figures 1D-F). Following the scRNA-seq of
PBMC:s, the raw data of three NS-IgAN patients and three healthy
controls (Cons) from GSE206295 were merged and 53,571 PBMCs
were captured following QC (Figure 1B; Supplementary Table 2).
We annotated 30 cell types of PBMCs based on the expression of
canonical markers, including CD4" T cells (CD3D, CD4), CD8" T
cells (CD3D, CD8A), natural killer (NK) cells (KLRBI, GNLY), B
cells (CD19, CD79A), myeloid cells (CD68, LST1), y3T cells (CD3D,
TRDC), and megakaryocytes (PPBP, PF4) (Supplementary
Figure 2A; Supplementary Table 3). For the kidney dataset, we
downloaded data from GSE171314 as the HU-IgAN group,
including four adult IgAN patients with hematuria and no
nephrotic-level proteinuria (Supplementary Table 1). In addition,
we performed scRNA-seq on the kidney tissues from two pediatric
patients and included a single-cell public database (GSE171314)
from one adult kidney as a control group (CTRL) (Figure 1A). The
data from a total of ten kidney samples from three groups (CTRL,
NS-IgAN, HU-IgAN) were integrated and 47,602 kidney cells were
captured after QC (Supplementary Table 2). There were 26 clusters
after dimension reduction (Supplementary Figure 2B). Then, 16
major cell types were annotated with the expression of canonical
marker genes (Figure 1C; Supplementary Table 4). The expression
levels of canonical marker genes for all cell types in the PBMCs and
kidney cells are shown in Figures 1D, E.

3.2 The proportion of intermediate
monocytes expressing MHC class Il
molecules is significantly increased
in the disease

Our investigation of the composition ratio of each sample in the

same cell type found that the composition of SGC and LGC samples in
myeloid cell types was prominent (Figure 1B). In response, we re-
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FIGURE 1

The landscape of PBMCs and kidney cells in NS-IgAN patients and healthy controls identified by single-cell transcriptomic analysis. (A) Schematic
diagram of the study design for scRNA-seq. Con, n=3; NS-IgAN, n=3 (NGC, n=1; SGC, n=1; LGC, n=1); CTRL, n=3; HU-IgAN, n=4. (B) Distribution of
30 cell clusters in PBMCs. The figure on the left is a two-dimensional UMAP visualization of PBMCs. Different colors represent 30 clusters. The figure
on the right is the percentage of each sample in each cell type. (C) Distribution of 16 cell types in kidney cells. The figure on the left is a two-
dimensional UMAP visualization of kidney cells. Different colors represent 16 cell types. The figure on the right is the percentage of each sample in
each cell type (D) Violin plot showing marker genes for each PBMC cell type. (E) Violin plot showing marker genes for each kidney cell type.

clustered the myeloid cell types into 14 cell clusters (Figure 2A).
According to the expression of canonical marker genes for each
cluster, we defined the cell types of clusters (Figure 2B,
Supplementary Table 5). According to the expression levels of CDI14
and FCER3A (encoding CDI16 protein), we respectively defined
classical (CMs, CD14"#", FCER3A™®), intermediate (IMs, CDI14"#",
FCER3A'™"), and non-classical monocytes (NCMs, CD14"Y,
FCER3AMs8) (Figure 2B) (14). Of these, the CMs were composed of

Frontiers in Immunology

13

four cell clusters. Cluster 5 expressed interferon-related genes (ISGI5,
MXI) and was defined as CD14" IFN-related monocytes (IFN-Mon)
(Figure 2B). Notably, we found that cluster 9 expressed CCL4, IL1B,
ICAMI, and CXCL2. This cluster was defined as inflammatory
monocytes (INF-M) (Figure 2B). Although the proportion of INF-M
in myeloid cells did not differ significantly between disease and healthy
samples (Figure 2C), we found that this group of cells was dominant in
the disease group (Figure 2A).
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FIGURE 2

Molecular characterization of myeloid cells in NS-IgAN. (A) 13 clusters were visualized by UMAP plotting through re-clustering analysis of myeloid
cells. (B) Violin plots showing expression of marker genes in 13 clusters. (C) The pie chart shows the proportion of different monocyte subsets in
monocytes. (D) The proportion of monocyte subsets in NS patients, from left to right are CMs, IMs, and NCMs in flow cytometry. (E, F) Expression
level of CCR2 in monocyte subsets from different samples. All differences with P<0.05 are indicated, *P<0.05, **P<0.01, ***P<0.001, and

****P<0.0001, ns means no significant difference.

Figure 2C shows the composition ratio of each monocyte subset
to CD14" cells in the controls and three cases. In NS-IgAN, the
proportions of CM 1-4 and IMs tended to increase, and the
proportion of NCMs tended to decrease; however, these trends
were not statistically significant (Figure 2C, Supplementary
Figure 3A). Previous evidence proved that monocyte subsets
undergo changes in IgAN (15); our data suggested that similar
changes may also exist in NS-IgAN. Since NS is the main clinical
manifestation of NS-IgAN, we collected the peripheral blood of 26 NS
patients with proteinuria, 6 NS patients with remission after
treatment, and 13 healthy children to investigate changes in
monocyte subsets in NS by flow cytometry. Monocytes were
divided into classical monocytes (CMs, CD14""CD16),
intermediate monocytes (IMs, CD14""CD16"), and non-classical
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monocytes (NCMs, CD14"CD16"") through flow cytometry by the
expression levels of CD14 and CD16 (Supplementary Figure 3B). The
proportion of CMs in NS patients with proteinuria was significantly
lower than that in healthy children, and the proportion of IMs and
NCMs was significantly increased (Figure 2D). Following the
glucocorticoid-induced remission of proteinuria, the proportion of
CMs and NCMs returned to normal levels; the proportion of IMs was
even lower than healthy controls (Figure 2D). Although the results of
scRNA-seq and flow cytometry were different when compared
between CMs and NCMs, the results consistently indicated a trend
for an increased proportion of IMs. We found that IMs were
characterized by high expression levels of VSIG4, HLA-DPAI,
HLA-DPBI, and other MHC class II molecules (Supplementary
Figure 3C). KEGG and GO enrichment analysis of the IMs showed
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that their function was mainly related to cytokine-cytokine receptor
interaction, the chemokine signaling pathway, antigen processing and
presentation, and MHC class II protein complex assembly
(Supplementary Figures 4A, B). DEG analysis of IMs in the Cons
and NS-IgAN groups showed that the expression of VSIG4, LYZ,
HLA-C, FN1, and FCGRT was significantly increased in NS-IgAN
(Supplementary Figure 4C). The significant up-regulation of DEGs in
the IMs of NS-IgAN patients were related to oxidative
phosphorylation by KEGG enrichment analysis (Supplementary
Figure 4D). These results suggest that increased oxidative
phosphorylation may be an important feature of IMs in NS-IgAN.

3.3 CCR2 was significantly expressed in the
IMs of NS-IgAN patients

DEG analysis of monocytes in the Cons and NS-IgAN groups
showed that the expression levels of CCR2 were significantly higher
in the CMs (CM1-4), IMs, and NCMs of NS-IgAN patients
(Figures 2E, F). CCR2 mediates monocyte chemoattractant
recruitment to inflammatory regions and promotes the
production of inflammatory cytokines (16). It has been reported
that Ccr2-deficient mice with adriamycin-induced nephropathy
showed reduced levels of injury, along with reduced macrophage
and fibrocyte infiltration and inflammation in the kidney (17). To
investigate the effect of high expression levels of CCR2 on
monocytes in NS-IgAN, we divided monocytes into CCR2*
monocytes and CCR2" monocytes for further analysis. We found
that the proportion of CCR2" monocytes was slightly increased in
NS-IgAN, although this was not statistically significant
(Supplementary Figure 4E). We also found that compared with
CCR2 monocytes, CCR2" monocytes expressed high levels of LYZ
and HLA-DQA2 (Supplementary Figure 4F). HLA-DQA2
encodes HLA class II alpha-chain proteins to constitute MHC
class II molecules. A recent GWAS study of a Chinese IgAN
cohort revealed significant associations between three HLA
polymorphisms, thus indicating the extensive involvement of
HLA-mediated immunity in IgAN development (18). Collectively
these results suggested that the proportion of CCR2" monocytes is
increased in NS-IgAN and that this may participate in the
pathogenetic process.

3.4 GATA3" effector Tregs expressed high
levels of CCR4 in NS-IgAN

The proportion of Tregs in the peripheral blood of IgAN was
significantly lower than that in controls, thus an increase in the
proportion of Treg cells could improve clinical prognosis (19). We
performed a re-clustering analysis of CD4" T cells and identified 13
clusters (Supplementary Figure 5A); these were defined as eight cell
types by the expression of canonical marker genes (Figures 3A, B;
Supplementary Table 6). Of these, two clusters expressed FOXP3
and IL2RA; we defined these as Tregl and Treg?2 cells (Figure 3C).
According to the canonical marker genes expressed by different
subsets of Tregs (20, 21), we found that Tregl cells expressed high
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levels of CCR7, SELL, and TCF7; which may indicate that the cells
are in a naive state; Treg2 cells expressed high levels of CCR4 and
HLA class II molecules, which may indicate that the cells are in an
effector state (Figure 3D). The two groups of Treg cells consistently
expressed some classical genes, including TIGIT, IKZF2H, and
RTKN2, but also had molecular expression characteristics
(Supplementary Figures 5B, C). We found that the proportion of
Treg2 cells in NS-IgAN tended to be higher than that in the Cons
group, while the proportion of Tregl cells tended to be lower,
although these differences were not statistically significant
(Figure 3E). The results of GO enrichment analysis suggested that
the functions of Treg2 cells were mainly related to peptide antigen
binding, MHC protein complex, and antigen processing and
presentation (Figure 3F). In Treg2 cells from NS-IgAN patients,
we found that the expression levels of genes such as FOS, JUN, and
JUNB were decreased, while those of CCR4 were upregulated
(Figure 3G). Recent research reported that a significant increase
in the number of GATA3" Tregs in the kidney was closely related to
disease remission (22). CCR4 is known as an important chemokine
receptor that promotes the infiltration of GATA3"™ Tregs in the
kidney during the later phases of injury (22). Our results suggest
that there may be an increased proportion of CCR4™ GATA3" Tregs
in the circulation of NS-IgAN patients, thus indicating that
dynamic changes of this special subset of Tregs may be involved
in recovering from kidney injury.

Considering the important role of B cells in IgAN, we also
performed a re-clustering analysis of B cells (Supplementary
Figure 6A). We defined 12 clusters as 6 cell types by the
expression of marker genes (Supplementary Figures 6B, C,
Supplementary Table 7). Consistent with expectations, the IGHA1
encoding IgA was mainly expressed in plasma cells. Pseudo-time
analysis of B cells suggested that plasma cells at the end of
differentiation were increasingly dominant in the disease, and
expressed IGHAI and IGHA2 (Supplementary Figures 6D-G).
We compared the expression of key genes related to IgAN in
diseased and healthy B cells; analysis suggested that CIGALTI
expression was downregulated in IgAN; this may be related to the
formation of Gd-IgA1 (Supplementary Figure 6H). In addition, the
expression of IgG and IgA-related genes in the B cells of SGC and
LGC patients was upregulated (Supplementary Figure 6H).
Findings related to Treg cells and plasma cells are restrictive and
limited by the number of captured cells, meaning that further
research needs to be undertaken to validate these findings.

3.5 Podocytes in NS-IgAN expressed high
levels of CCL2 and EMT characteristics

Understanding alterations in the molecular characteristics of
kidney cells may help us to understand the downstream
mechanisms of kidney injury in NS-IgAN. Considering the
clinical characteristics of patients with NS-IgAN who have
“nephrotic-range” proteinuria, we focused on the podocyte cluster
that significantly expressed NPHS2 and FGFI. Podocytes
specifically expressed NPHS2 and FGF1 at both protein and
transcriptional levels (Figures 1E, 4A, B). Unfortunately, only two
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Molecular characterization of CD4™ T cells in NS-IgAN. (A) 7 distinct subsets were visualized by UMAP plotting through re-clustering analysis of
CDA4" T cells. (B) Violin plots showing expression of marker genes in 7 subsets. (C) UMAP plots showing color-coded expression of four
representative markers, FOXP3, IL2RA, CCR7, and HLA-DRB1 in CD4* T cells. (D) Heatmap exhibiting the differential expressing genes of Tregl and
Treg2. (E) The percent of Tregl and Treg2 in CD4* T cells. (F) GO terms identified by differential pathway enrichment and GO analysis via
comparison of Treg?2 cells vs. others. GO terms are labeled with name, and sorted by —log;(P) value. A darker color indicates a smaller P value
Interesting terms are labeled in red. (G) Heatmap exhibiting DEGs of Treg2 in Con, NGC, SGC, and LGC

podocytes were captured in the SGC patient, and we did not include
this group in the subsequent comparative analysis (Supplementary
Table 4). We found that some genes showed a downward trend in
terms of their expression by podocytes in the NS-IGAN group,
including the canonical marker genes (NPHSI and CLIC5), the
genes encoding membranous nephropathy-associated autoantigens
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(PLA2RI and THSD7A), and genes that have not been extensively
investigated in podocytes, such as PCOLCE2 and PTGDS
(Figure 4C). Our data indicated that CCL2 was highly expressed
in the podocytes of NS-IgAN patients (Figure 4C). It has been
reported that the expression of CCL2 in podocytes is closely related
to podocyte injury and proteinuria (24). In the adriamycin-induced
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Molecular characterization of podocytes in NS-IgAN. (A, B) UMAP plots showing expression of NPHS2 (A) and FGF1 (B) in kidney and fluorescence
staining of podocin and FGF1 in healthy kidney from The Human Protein Atlas database (https://www.proteinatlas.org/). (C) Heatmap showing up
and down-regulated DEGs of podocytes in the CTRL, HU-IgAN, NGC, and LGC groups. (D) EMT gene set scores for podocytes in CTRL, HU-IgAN,
NGC, SGC, and LGC groups. (E) PRSS23 mRNA expression in glomeruli of human biopsy specimens with pathological diagnosis of MN, FSGS, IgAN,
or vasculitis disease compared with normal kidneys. Data are from previously published microarray studies by Ju et al. (2013) (23) and were
subjected to further analysis using Nephroseq. A two-tailed Mann—Whitney U test was used for each comparison. All differences with P<0.05 are
indicated, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. (F) UMAP plots showing the expression of PTGDS in the kidney. (G) Statistical analysis
of the expression level of PTGDS in podocytes in HU-IgAN, NGC, and LGC compared with CTRL. Since only 2 podocytes were captured in SGC
patients, the comparison between SGC and CTRL was not performed. (H) PTGDS mRNA expression in glomeruli of human biopsy with pathological
diagnosis of MN, FSGS, IgAN, or vasculitis disease compared with normal kidneys. Data are from previously published microarray studies by Ju et al
(2013) (23) and were subjected to further analysis using Nephroseq. (I) Immunofluorescence staining of PGDS in glomeruli of the NS-IgAN patient
and the healthy control child. (J) Statistical analysis of PGDS glomerular mean fluorescence intensity quantified using NIS-Elements software. (K)
Representative pictures of PGDS and nephrin staining in podocytes exposed to vehicle (CTRL) or Adriamycin (ADR). (L) Statistical analysis of the
mean fluorescence intensity of PGDS between vehicle and ADR podocytes. A two-tailed Mann—Whitney U test was used for each comparison. All
differences with P< 0.05 are indicated, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. ns means no significant difference
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mouse model of nephropathy, researchers found that CCL2 in the
kidney may recruit the infiltration of inflammatory and pro-fibrotic
bone marrow-derived cell populations through its receptor CCR2;
furthermore, a deficiency of Ccr2 in mice can ameliorate renal
injury (17). We detected high expression levels of CCL2 in NS-IgAN
glomerular podocytes and significantly increased expression levels
of CCR2 in circulating monocytes (Figure 2F), thus indicating that
crosstalk may occur in patients between podocytes and circulating
monocytes through the CCL2-CCR2 ligand receptor. Furthermore,
CFH was highly expressed in the podocytes of LGC (Figure 4C).
Complement factor H (CFH) is one of the important circulating
regulators of the alternative pathway, serves as an essential cofactor
for complement factor I (CFI)-mediated C3b cleavage (25).
Podocytes produce functionally active complement components,
such as CFH; these could influence the local glomerular
complement activation and regulation (26).

We also found that genes related to epithelial-to-mesenchymal
transition (EMT) were significantly upregulated in NS-IgAN,
including TGFBI, CAVI1, TAGLN, and COLIAI (Figure 4C). We
constructed an EMT gene set (Supplementary Table 8) and
compared the gene set scores of podocytes between different
groups. The EMT scores of podocytes in the NGC and LGC were
significantly increased, while the EMT scores of podocytes in HU-
IgAN did not change significantly (Figure 4D). EMT is an
important feature of podocyte injury (27). Recent studies have
found that podocytes in the urine of patients with NS also have
EMT characteristics (28). Our results suggest that EMT is an
important molecular feature of NS-IgAN podocytes. Interestingly,
the expression of PRSS23 was significantly elevated in NS-IgAN
patients and to a greater degree than in HU-IgAN patients
(Figure 4C). Bulk RNA-seq results also confirmed the reduced
expression of PRSS23 in various glomerular diseases (Figure 4E).
These results suggest that a novel serine protease encoded by
PRSS23 may be related to podocyte injury.

3.6 The expression of PTGDS significantly
decreased in damaged podocytes

By performing the scRNA-seq on kidney tissues, we found that
PTGDS was only specifically expressed in the podocytes (Figure 4F).
In addition, PTGDS was significantly downregulated in NS-IgAN
podocytes (P < 0.0001) (Figure 4G). The glomerular transcriptome
sequencing of various glomerular diseases, including membranous
nephropathy (MN), focal segmental glomerulosclerosis (FSGS), and
minimal change disease (MCD) confirmed that the transcriptional
level of PTGDS was significantly decreased (Figure 4H). Hence, we
reviewed the previously published scRNA-seq data of kidney tissues
and found that PTGDS only expressed at high levels in human
kidney podocytes (Supplementary Figures 7A, B). By using
immunofluorescence and immunohistochemistry experiments, we
were able to confirm the downregulation of PGDS (prostaglandin
D2 synthase, encoded by PTGDS) in the glomeruli of patients with
NS-IgAN (Figures 41, J; Supplementary Figures 8A, B). The
induction of injury in human immortalized podocytes in vitro (by
applying doxorubicin) also led to a significant reduction in the
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expression levels of PGDS (Figures 4K, L; Supplementary
Figures 8C, D). PGDS, also known as B-Trace protein (BTP), is
an emerging novel marker for glomerular filtration rate (29). PGDS
is produced de novo by both the glomeruli and LOHs in monkey
kidneys (30), although the handling process of BTP in the kidney is
uncertain. BTP is an eicosanoid that plays a role in a variety of
important physiological processes, including vasodilation,
inflammation, and adipogenesis (29). Our findings, and those of
other researchers, indicate that PTGDS may represent a candidate
marker gene for podocytes at the transcriptional level. PTGDS is
expressed at high levels in normal podocytes and at far lower levels
in injured podocytes.

3.7 Crosstalk between kidney cell types
in NS-1IgAN

We investigated cell-to-cell communication between kidney cells
by applying CellphoneDB. In the CTRL group, the cell types present in
the proximal nephrons and kidney immune cells exhibited obvious
intercellular communication, whereas distal convoluted tubules,
intercalated cells and principal cells located in the distal nephron did
not (Figure 5A). Our results suggest that the intercellular
communication of the cells associated with the proximal nephron
may be stronger than that of the cells associated with the distal
nephron. In the CTRL and HU-IgAN groups, PECs may have
served as the center for intercellular crosstalk in kidney cells
(Figure 5A). In the NGC and LGC patients, the center of
intercellular crosstalk was replaced by podocytes and mesenchymal
stromal cells (MSCs) (Figure 5A). In an injury state, podocytes were
affected by collagen-related, extracellular matrix-related, and
inflammation-related signals from PECs and MSCs, such as
COL3A1, FN1, and CCL2 (Figure 5B). These findings were
consistent with previous findings related to IgAN (7, 8).

3.8 The molecular characteristics of
renal lymphocytes

Kidney immune cells were re-clustered and defined into eight cell
subsets by the expression of canonical marker genes (31) (Figure 5C,
Supplementary Table 9). CIQA, C1QB, and CIQC are characteristically
expressed in two subsets of tissue-resident macrophages (RTMs). Of
these, RTM-1 expressed LYVEI, IGF1, and CD209, and RTM-2
expressed TREM2 and MARCO (Figure 5D). Our results suggest that
FCNI and VCAN may be specific markers of monocytes in the human
kidney. Classical monocytes (CMs) in the kidney represented the main
subset of monocytes and expressed CXCL3. In contrast, NCMs
expressed CX3CRI (Figure 5D). XCRI, CLECYA, and IDOI were
expressed in Classical DC-1, and CDIC and CDIE were expressed in
Classical DC-2. Plasmacytoid DC expressed IL3RA, CLEC4C, GZMB,
and TCLIA. It is worth noting that cluster 12 simultaneously expressed
the marker genes of B cells, including CD79A and MZBI, and also
expressed the marker genes of T cells such as CD3D, CD3E, and TRAC
(Figure 5D). These results indicated that this cluster may be composed
of B lymphocytes and T lymphocytes; hence, we defined this cluster as
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Molecular characterization of interactions between kidney cells and kidney immune cells. (A) Cell-to-cell crosstalk networks between kidney cells in
CTRL, HU-IgAN, NGC, and LGC groups. (B) Bubble chart showing dysregulated cell-type specific interactions between mesenchymal stromal cells

(MSCs) and podocytes (PODs) or parietal epithelial cells (PECs) and podocyte

s (PODs) in the CTRL, HU-IgAN, NGC, and LGC group. (C) 8 cell

subtypes were visualized by UMAP plotting through re-clustering analysis of kidney immune cells. (D) Violin plots showing marker genes of 8 kidney
immune cell subtypes. (E) Developmental tree analysis showed the relationship between different kidney immune cells. (F) Cell trajectory map of
lymphocytes showing the pseudo-time (Top). Ordering single cells along a cell conversion trajectory using Monocle 2. Three states were identified
based on their distribution in the cell trajectory map (Bottom). (G) Heatmap: each column represents one cell and each row represents the

expression of one gene. Cells are ordered by Monocle-based pseudotime an

alysis and the color represents expression levels. (H) The GO

enrichment function items of clusterl-3 in (G) are shown by the bubble diagram.

lymphocytes. We performed a developmental analysis of eight groups
of kidney immune cells and confirmed the difference between tissue-
resident macrophages and monocytes (Figure 5E). Previous studies
comprehensively demonstrated the molecular characteristics of
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myeloid cell subsets in the kidney (31-34); however, there was a lack
of understanding of lymphocyte subsets in the kidney. We further
performed pseudo-time analysis on lymphocytes and found that they
were in three different states (states 1-3) in the kidneys (Figure 5F),
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with different molecular characteristics (clusters 1-3) (Figure 5G).
Lymphocytes in state 3 significantly expressed genes related to
cluster 1 (Figure 5G), which were related to B cell activation,
phagocytosis, and recognition (Figure 5H). Lymphocytes in state 1
significantly expressed genes related to cluster 3 (Figure 5G). These
results were related to the production of cytokines from T cells
(Figure 5H). Surprisingly, state 2 lymphocytes significantly expressed
genes related to cluster 2 (Figure 5G). These findings are related to T
cell activation and actin filaments (Figure 5H). These results suggest
that there may be a group of T cells with actin filament-related
functions in the kidney. By applying a scRNA-seq technology
platform, we were fortunate to capture immune cells in the kidney
and provide a preliminary exploration of the molecular characteristics
of lymphocytes. However, due to the limited number of immune cells
captured from the kidney tissue involved in this study, we were not able
to conduct further analysis.

3.9 DCs in circulation and kidney tissue
expressed high levels of genes related
to HLA

Based on the SNPs detected in a recent GWAS meta-analysis of
IgAN (18), we combined NephQTL and eQTL (cf) to predict
susceptibility genes that may be affected in different regions of the
kidney tissue (Supplementary Table 10) and mapped these genes to
kidney cells (Figure 6A) and PBMCs (Figure 6B). In the kidney tissue,
renal resident macrophages, macrophages, and DC cells expressed high
levels of genes related to HLA (Figure 6A). In circulation, multiple B
cell subsets (except plasma cells), cDCs, and pDCs expressed high levels
of genes related to HLA, while monocytes did not (Figure 6B). Previous
studies had identified HLA molecules as the main disease related
susceptibility loci for IgAN (18). Research evidence also indicated that
DCs play key roles in the pathogenesis of IgAN (35). Our present data
showed that DCs express high levels of HLA-related genes in both the
circulation and kidney tissue. This indicated that attention needs to be
paid to the changes in DC cells in the circulation and kidney tissue of
NS-IgAN patients in future research (Figures 6A, B). The CFH-related
genes CFHRI, CFHR3, and CFHR4 were exclusively expressed in
kidney MSCs (Figure 6A). We performed a re-clustering of the
MSCs that significantly expressed POSTN and ACTA2
(Supplementary Table 4; Supplementary Figure 9A). This analysis
suggested that MSCs were a mixed subset composed of fibroblasts,
myofibroblasts, vascular smooth muscle cells, pericytes, and mesangial
cells (Supplementary Figure 9B). Unfortunately, in our study,
mesangial cells could not be defined by canonical marker genes such
as PDGFRB, PIEZ0O2, ITGAS8, and GATA3 (Supplementary Figure 9B).

4 Discussion

Glomerular diseases are still classified based on histological
descriptions; however, these do not help capture the systemic
mechanisms that drive the disease, nor are they suitable for target
identification and drug development (36). Transcriptome sequencing
at single-cell resolution, as represented by scRNA-seq and single-
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nucleus RNA-seq (snRNA-seq), is a powerful and new approach to
unbiased analysis (37). However, it is challenging to create suitable
designs for scRNA-seq experiments because each option requires the
user to make informed decisions to obtain interpretable results (37, 38).
Considering its low requirement for cell viability, we chose plate-based
scRNA-seq technology to study core needle biopsies from the kidneys
of patients (37, 39). We performed strict QC on the data and selected
threshold settings based on the specificity of kidney cells
(Supplementary Table 2). To identify mesangial cells, we performed
a re-clustering of the MSCs (40). Our data suggested that MSCs may be
composed of fibroblasts, myofibroblasts, vascular smooth muscle cells,
pericytes, and mesangial cells (Supplementary Figure 9). As we were
not able to annotate subgroups of cells by canonical marker genes, we
were not able to perform downstream analysis of mesangial cells.
Different methodological and technological platforms can lead to bias
in capturing glomerular cell types; our results provide evidence for
future single-cell research on mesangial-related glomerular diseases.
Considering that immune cells in the kidney may play an important
role in disease, we did not select snRNA-seq for our research to avoid
losing molecular information related to immune cells (37)
(Figures 5C-H).

Monocytes are innate immune cells that can be divided into three
subsets based on the expression of CD14 and CD16 on the cell surface:
classical, intermediate, and non-classical monocytes (14). Under
inflammatory conditions, monocytes in the blood may migrate to
the tissues and differentiate into mononuclear phagocytes in local
regions of tissue (41). Previous research in the field of chronic kidney
disease (CKD) has detected significant expansion of IMs (42), thus
suggesting that changes in monocyte subsets may play an important
role in CKD. Recent studies have found that CKD is associated with an
increase in the number of unique proinflammatory IMs (HLA-DR"&"
IMs), as well as the migration of monocytes and endothelial adhesion
abnormalities (43). Due to the limitation of renal biopsy in children
with NS and the low incidence rate of NS-IgAN, we recruited children
with NS as a validation patient cohort. The consistency of scRNA-seq
data with the flow cytometry results of the validation cohort confirmed
that IMs may be more abundant in NS-IgAN patients. Future studies
on glomerular diseases need to pay specific attention to this group of
IMs, particularly in terms of MHC class II analysis and chemokine
signaling pathway functionality. In several human and experimental
studies of proteinuria nephropathy, the expression of CCL2 was
significantly localized in glomerular podocytes (17). It has also been
confirmed that CCL2 does not only directly affect the actin
cytoskeleton of podocytes (44), thus affecting the permeability of the
slit diaphragm to albumin (45), but also causes indirect damage to
podocytes by attracting macrophages and promoting inflammation
(46). The expression of CCL2 in the kidney will recruit monocytes/
macrophages expressing CCR2 into the circulation to be transported to
the injury site and promote the differentiation of these myeloid cells
toward the proinflammatory “M1” phenotype (47). Previous research
suggested that the persistent infiltration of M1 macrophages and
related inflammation can play a crucial pathogenic role in the
development of podocyte dysfunction (48). The inhibition of CCR2
has been found to improve outcomes in animal models of FSGS (17),
and several trials are currently underway to evaluate the impact of
CCR2 inhibitors on FSGS patients (NCT03649152, NCT03536754,
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NCT03703908) (49). In addition, urinary CCL2 can be used as a
biomarker for kidney inflammation (50) and these specific levels may
be related to the extent of proteinuria (51). These data indicated that we
cannot only gain an understanding of inflammatory progression in the
kidney by detecting the urinary levels of CCL2. We may also be able to
delay the chronic progression of the disease through new drugs
targeting the CCL2-CCR2 ligand receptor pathway.

Podocyte damage is the key to the formation of proteinuria. The
expression levels of EMT-related genes and PRSS23 were significantly
increased in podocytes from patients with NS-IgAN (Figures 4C-E).
EMT is a functional and morphological alteration in podocyte injury
(27, 28). The serine protease encoded by PRSS23 activates protease-
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activated receptor 2, which is known to be associated with TGFp1-
induced podocyte injury in the rat model of doxorubicin nephropathy
(52). The expression levels of canonical marker genes in the podocytes
were significantly downregulated in NS-IgAN conditions, including
those of NPHSI, CLIC5, and MPP5 (Figure 4C). Our scRNA-seq
results indicated that PTGDS was specifically expressed in podocytes
and were significantly downregulated in NS-IgAN (Figures 4G-J).
Unlike the remarkable specificity at the transcriptional level,
immunohistochemistry and immunofluorescence results suggested
that the specificity of PGDS at the protein level was limited
(Supplementary Figure 10). BTP is a heterogeneous monomeric
glycoprotein that is the consequence of post-translational N-
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glycosylation resulting in different glycoforms of varying molecular
weight (53). The presence of multiple isomers certainly affects the
measurement of BTP; the molecular structure of BTP produced by
podocytes needs to be investigated further. Previous studies have
suggested that in the early stages of diabetes nephropathy and CKD,
the urinary levels of PGDS increased significantly (54). In the process of
being excreted by the urine, some PGDS would be reabsorbed into the
tubules and degraded by the lysosomes of tubule cells. We also noted
that the staining intensity of PGDS was significantly reduced in the
tubule cells of NS-IgAN patients (Figure 41, Supplementary Figure 10).
Whether this was due to the reduction of PGDS in podocytes or the
reduced reabsorption capacity of renal tubules needs to be investigated
in future research.

In our study, scRNA-seq of PBMCs and renal tissues were
performed only on three pediatric patients with clinical
manifestations of nephrotic syndrome. There was significant
heterogeneity among the samples, and long-term cohort observations
with larger sample sizes are required to truly elucidate the pathogenesis
of NS-IgAN. Whether NS-IgAN is a combination of two diseases, is
not discussed herein and needs to be further explored in future studies
(4). Even though the findings of this study await future validation, they
provide a rigorous framework for future research.
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Introduction: People living with HIV (PLHIV) are characterized by functional
reprogramming of innate immune cells even after long-term antiretroviral
therapy (ART). In order to assess technical feasibility of omics technologies for
application to larger cohorts, we compared multiple omics data layers.

Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics,
chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation
were performed in a small number of blood samples derived from PLHIV and
healthy controls from the 200-HIV cohort study.

Results: Single-cell RNA-seq analysis revealed that most immune cells in
peripheral blood of PLHIV are altered in their transcriptomes and that a
specific functional monocyte state previously described in acute HIV infection
is still existing in PLHIV while other monocyte cell states are only occurring acute
infection. Further, a reverse transcriptome approach on a rather small number of
PLHIV was sufficient to identify drug candidates for reversing the transcriptional
phenotype of monocytes in PLHIV.
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Discussion: These scientific findings and technological advancements for
clinical application of single-cell transcriptomics form the basis for the larger
2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk
and single-cell transcriptomics will be included as the leading technology to
determine disease endotypes in PLHIV and to predict disease trajectories and

outcomes.

KEYWORDS

systems immunology, transcriptomics, HIV, monocytes, inflammation, drug repurposing

Introduction

For people living with HIV (PLHIV), major risk factors for
developing cardiovascular diseases (CVDs), neurocognitive
impairment, frailty, and cancer are persistent low-grade
inflammation and immune dysfunction even under long-term
effective antiretroviral therapy (ART) (1-6). Although the
adaptive immune system appears to play an important role (7),
there is a growing body of evidence that suggests changes in the
innate immune system as exemplified by elevated levels of
circulating soluble CD163 and sCD14 derived from monocytes
are critical (1, 8, 9). We and others have recently demonstrated that
concentrations of pro-inflammatory monocyte-derived cytokines
are elevated in serum from PLHIV, which was further validated
when peripheral blood mononuclear cells were stimulated ex vivo
with a number of pathogens or their derivatives resulting in
increased levels of IL-1f (1, 10-14).

While CMV infection (15), the HIV reservoir itself (16), as well as
microbial translocation (17) have been proposed as potential drivers of
low-grade inflammation, the complex interplay between the different
immune cell compartments in PLHIV is not fully understood. To
study the role of different immune cells in the pathophysiology of
persistent inflammation in PLHIV it will be necessary to apply higher-
resolution single-cell technologies to larger cohorts of PLHIV (18-20).
Based on our previous experience applying single-cell technologies to
better understand the pathophysiology of COVID-19 (21-23) or
chronic obstructive pulmonary disease (COPD) (24), we have
recently suggested that large-scale studies should be preceded by
smaller optimization studies for clinical application of omics
technologies to a particular disease setting (25, 26).

Here, we describe a study using bulk and single-cell transcriptomics
technologies as well as chromatin landscaping by ATAC-seq under
clinically applicable conditions to assess the reprogramming of the
peripheral immune cell compartment in PLHIV cohorts. Despite
heterogeneity between individuals, scRNA-seq combined with bulk
transcriptomics on a limited number of PLHIV included in this pilot
study revealed important new information concerning the involvement
of the monocyte compartment in persistent low-grade inflammation.
Further, a reverse transcriptome approach in this setup allowed the
identification of drug candidates reducing the inflammatory
endophenotype, which we validated experimentally in an independent
group of PLHIV.

Frontiers in Immunology

Results

Bulk transcriptomes from PBMC of PLHIV
are dominated by monocyte-related
proinflammatory programs

We previously demonstrated in a cross-sectional study that
PLHIV exhibits a proinflammatory profile in monocyte- but not
lymphocyte-derived cytokines (1). We recalled five male PLHIV
using long-term suppressive ART (mean 7.4 years) from the 200-
HIV study with no overt clinical symptoms at the time of blood
draw, determined as normal progressors, to investigate whether
higher-resolution technologies down to the single-cell level would
reveal further information about molecular and functional changes
within the peripheral immune system in PLHIV. We generated a
multi-layer dataset including selected soluble factors in plasma,
multicolor flow cytometry (MCFC), bulk RNA-seq, Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq)
and microwell-based scRNA-seq comparing five age- and sex-
matched healthy controls (Figure 1A; Supplementary Table SI).

The MCFC data generated here indicate that the five PLHIV chosen
were representative of the 200-HIV cohort with similar alterations in the
circulating immune cell compartment (e.g. higher CD8+ and lower
CD4+ T as well as NK cell population frequencies in PLHIV versus
healthy donors) (11) (Figure S1A). Principal component analysis (PCA)
of bulk RNA-seq of PBMC revealed a disease-associated separation of
the samples (Figure 1B). Exploration of these alterations by differential
gene expression analysis resulted in 287 up- and 914 down-regulated
genes in PLHIV compared to control (|FC|>1.5, adj p-value <0.05, with
independent hypothesis weighting (IHW) correction) (Figure SIB).
Inspection of those differentially expressed genes (DEGs) in more
detail by hierarchical clustering revealed four transcript clusters
similarly regulated across the donors (Figure 1C). One cluster
revealed a group of commonly upregulated early innate immune
response genes for PLHIV and a second cluster contained typical
interferon response genes (Figure 1C), which was corroborated by
functional enrichment analysis (Figure 1D; Supplementary Table S2).
Upregulation of alarmins SI00A8 and SI00A9 (cluster 1), which have
been previously associated with inflammation (27, 28) indicated a
strong signal from the myeloid cell compartment. In cluster 2,
STATI, previously linked to enhanced inflammation in HIV (29, 30),
was strongly expressed. Both heatmap visualization (Figure 1C) and
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FIGURE 1
Bulk transcriptomes from PBMC in PLHIV are dominated by monocyte-related proinflammatory programs (A) Overview of the study design. (B)
Principal component analysis (PCA) of bulk RNA-seq data from PBMCs. (C) Heatmap of DEG (adj. p.val<0.05, [FC|>1.5) from bulk PBMC
transcriptomes based on HIV vs. control (see Figure S1C) and hierarchical clustering of genes into 4 clusters. (D) Functional enrichment using the GO
and Hallmark databases and transcription factor (TF) prediction of gene clusters from (C) (full list see Supplementary Table S2).

gene set variation analysis (Figure S1C) showed the highest
heterogeneity among the five patients in genes belonging to cluster 2.

Collectively, analysis of bulk transcriptomes from PBMCs of
PLHIV revealed upregulation of innate and myeloid
proinflammatory gene programs.

Bulk transcriptomics of monocytes in
PLHIV reveals enriched IFN-signaling

The bulk transcriptomes of PBMCs pointed towards the
involvement of myeloid cells in PLHIV, and indeed plasma

Frontiers in Immunology

concentrations indicated elevated monocyte-specific soluble
factors in circulation such as sCD163 and sCD14, a classical
marker of HIV disease progression and monocyte activation (8,
31, 32), while other markers such as liver-derived C-reactive protein
(CRP) did not show a significant elevation in these PLHIV (Figure
S2A). Consequently, we isolated CD14" monocytes from the same
donors (Figure S2B) and analyzed their transcriptomes. DEGs were
calculated for the comparison of PLHIV vs. control, resulting in 65
up- and 6 down-regulated genes (|JFC|>1.5, p-value <0.05, IHW)
(Figures 2A, S2C). Upregulated genes included several type I IFN-
related genes such as CXCL10, STAT2, MX2, and XAF]I (Figures 2B,
S2D). Functional enrichment analysis of the upregulated DEGs

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1275136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Knoll et al.

supports these findings on the pathway level with IFN response and
response to the virus being the most highly enriched terms
(Figure 2C). The intersection of the CD14" DEG with those from
the PBMC data revealed 3 shared downregulated (HERC2P10,
HSBPIL1, PHLDB3) and 21 upregulated (e.g. CXCLI0,
SERPINGI, GBPI) genes, most of which belong to cluster 2 of the
PBMC DEGs (Figure 2D).

To investigate a possible epigenetic component of the disease-
associated changes, we performed ATAC-seq of sorted CD14"
monocytes. Using default analysis criteria (|FC|>1.5, adj. p-value
< 0.05), we identified no differentially accessible regions (DARs)
when comparing cells from PLHIV with control donors
(Figure S2E).

Collectively, the CD14" monocytes in PLHIV show clear signs
of transcriptional activation of IFN-mediated pathways which is not
significantly impacted by chromatin packing.

“Anti-viral” monocyte state is
persistent in PLHIV

To address whether changes in the transcriptomes of
PBMCs (Figure 1), as well as isolated CD14+ monocytes
(Figure 2), are due to general alterations in the transcriptional
programs of the myeloid compartment or due to the presence of

10.3389/fimmu.2023.1275136

disease-specific cell states, sScRNA-seq was performed on PBMCs of
the same individuals (Figure 3). Transcriptomes from 31,566 single
cells were produced representing all major immune cell types of the
peripheral circulation according to cluster-specific markers known
in literature, such as monocytes (LYZ, SI00A9, S100A8), CD4" T
cells (IL7R, TRATI), CD8" T cells (GZMH, CCL5, CD3G) and NK
cells (GNLY, NKG7, KLRFI) (Figures 3A; S3A). Density-based
coloring of the UMAP for PLHIV and control groups disclosed a
major transcriptional shift in the monocyte cluster, in the CD8" T
cell cluster, but not in the CD4™ T cell cluster (Figure 3B).
These differences are also reflected in changes in the number of
DEG (log2FC=0.25, adj. p-value<0.05, min.pct=0.1) (Figure 3C).
Compared to other immune cell populations, monocytes
showed the highest number of DEGs comparing PLHIV with
controls, 90 up- and 25 down-regulated genes. Functional
enrichment analysis on the HIV-specific up-regulated
DEG of the monocyte compartment included terms such as TFN-
Y response”, “IFN-o. response” and “response to virus” (Figure 3D),
in line with the PBMC and CD14 bulk RNA-seq data (Figures 1B,
2C). Similar to the bulk data produced from CD14" monocytes,
19 genes were also upregulated in the monocyte cluster
resulting from scRNA-seq, including XAFI and GBPI (Figures
S3B, E; Supplementary Table S3). To confirm the upregulation
of the genes from that intersection, we measured protein levels
of SAMDYL, VAMPS5, IFIT3, GBP1, SELL, and EIF2AK2, which are
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FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling (A) Volcano plot showing the DEGs (adj. p.val<0.05, |FC|>1.5) in HIV vs
control of bulk CD14* monocyte transcriptomes. (B) Boxplot and whisker of selected HIV-specific genes. Wilcoxon rank-sum for statistical testing
(*: p-value <0.05, **: p-value <0.01). (C) Functional enrichment using the GO and Hallmark databases upregulated DEG (HIV vs Ctrl). (D) Intersecting
DEG for the comparison of HIV vs Ctrl in bulk transcriptomes from CD14" monocytes and PBMCs. Commonly upregulated DEG mapped to PBMC

clusters from Figure 1C.
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FIGURE 3
“Anti-viral” monocyte state is persistent in PLHIV (A) UMAP of PBMCs from PLHIV patients (n= 31,566 cells) indicating identified cell types. (B) UMAP
from (A) colored by disease group density distribution. (C) Number of DEG (adj. p.val<0.05, |log2FC|>0.25, min.pct=0.1) by major cell types for the
comparison HIV vs Ctrl. (D) Functional enrichment using the GO and Hallmark databases for HIV-specific (up-regulated) genes in monocytes. (E)
Marker expression of XAF1 and GBP1 by disease group for monocytes extracted from scRNA-seq data (left panel) and bulk CD14* monocytes (right
panel). (F) Protein level quantification for SAMDIL, VAMPS5, IFIT3, GBP1, SELL, and EIF2AK2 using the Olink system. Wilcoxon rank-sum for statistical
testing (ns: not significant, *: p-value <0.05, **: p-value <0.01). (G) UMAP of integrated PBMCs from PLHIV (A) and acute HIV (Kazer et al., n= 59,286
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all related to IFN responses (Figure 3F). In PLHIV, all six proteins
showed elevated levels compared to healthy controls with SAMDIL,
VAMPS5, IFIT3, and GBP1 being significant.

To relate our findings from chronic HIV in PLHIV to acute
HIV, in which patients did not yet receive ART and have high
viremia, we integrated the newly produced data with our previously
published results using the same microwell-based single-cell
technology describing several inflammatory monocyte states in
acute HIV infection (33) resulting in 89,500 single-cell
transcriptomes (Figures 3G, S3C, D). To investigate the possible
presence of chronic disease-specific cell states within the monocyte
compartment, we subsetted the monocytes of the integrated
scRNA-seq dataset (Figure 3H). Clustering of the monocyte
compartment resulted in seven monocyte substrates, which could
be annotated based on the previously reported acute monocyte
states (33). These included several inflammatory monocyte states
associated with acute HIV infection, e.g. anti-viral/inflammatory or
IFI27™ monocytes (Figures 3H, S3E). Monocytes from our new data
predominantly exhibited resting and non-classical states,
irrespective of HIV group (Figures 3I, J). Chronic HIV was
characterized by an ‘anti-viral’ monocyte state that was also
found during acute infection (Figure 3J). This ‘anti-viral’
monocyte state expresses interferon-related genes, e.g. IFIT3 and
ISG15 (Figure S3E), and is strongly enriched for the hallmarks TFNy
response’ and ‘TFNo response’ as well as the GO term ‘response to
virus’ (Figure 3K), reminiscent of our results in PBMCs (Figures 1C,
D) and CD14" monocytes (Figure 2C).

Even within the resting and non-classical monocyte substates
that do not exhibit major changes in proportions between the
clinical groups (Figure 3J]), differentially expressed genes
(log2FC=0.25, adj. p-value<0.05, min.pct=0.1) for PLHIV vs.
controls (resting: 70 DEGs, non-classical: 36 DEGs) had a
substantial overlay with the DE genes identified from bulk PBMC
data, i.e. clusters 1 and 2 (Figures 1C, S3F; Supplementary Table S3).
ScRNA-seq also revealed heterogeneity in cell state distribution in
the group of the PLHIV, which was not apparent in the healthy
individuals (Figure S3G).

Collectively, single-cell transcriptomics identified monocytes as
the major cause of changes in PLHIV. Common alterations were
evident across all identified cell states, including resting and non-
classical monocytes, yet scRNA-seq uncovered elevated numbers of
monocytes in the ‘anti-viral’ cell state in chronic HIV that had been
described for acute HIV infection. Thus, pathology in PLHIV is a
combination of molecular alterations and proportion changes that
could only be revealed by analysis on the single-cell level.

Drug repurposing to reverse monocyte
reprogramming in PLHIV

To illustrate how to identify potential drug targets for reversing
amolecular phenotype, here the changes observed in monocytes, we
performed a drug repurposing approach (Figure 4A) following a
previously established methodology (34). In brief, genes up- and
down-regulated in PLHIV who are under ART from scRNA-seq
monocytes, bulk RNA-seq PBMCs, and bulk RNA-seq CD14"
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monocytes were subjected to the drug prediction databases
iLINCS and CLUE (35, 36), resulting in 519 predicted drugs
(Supplementary Table S4). From those drugs, 17,641 signatures
were retrieved from iLINCS and used as input for GSEA on the bulk
RNA-seq CD14" monocytes and PBMC datasets. Drug signatures
were then clustered by their delta normalized enrichment score
(ANES), resulting in 50 clusters (Figure 4B; Supplementary Table
S4). The ANES indicates the efficiency of the respective drug
signature to reverse the PLHIV-specific signature, with higher
ANES indicating a more complete reversal. Cluster 43, consisting
of 32 signatures, showed the highest ANES for CD14™ monocytes
and also a high ANES for PBMCs (Figure 4C). To decipher the
commonalities of those drug responses, we investigated recurring
target genes of all drug signatures in the cluster (Figure 4D). A
majority of genes were interferon-associated such as IFI27, OASI,
MX1, and IFI44L, and the target genes were strongly enriched in the
‘anti-viral’ and ‘anti-viral/inflammatory’ monocyte states
(Figure S4A).

Of the 32 drug signatures, we chose five among the top 20
drugs according to ANES for CD14" monocytes in PLHIV. Four
of them had been studied in the context of HIV infection
[trametinib (37), sunitinib (38, 39), sitagliptin (40, 41),
clofarabine (42)], but had not been reported to alter
transcriptional programs in monocytes. Additionally, the
predicted antibiotic doxycycline, for which neither anti-viral
nor immune-modulating function has been reported, was
chosen as well. Instead of addressing the viral life cycle, this
approach predicts a potential impact on the host’s immune
response to these drugs. To test this hypothesis and validate our
predictions, we performed in vitro experiments stimulating
PBMC from PLHIV with the respective drugs.

Six independent PLHIV were recruited, PBMCs were isolated
and co-cultured in the presence of the selected drugs or with
DMSO as control (Figure 4A, right panel). After overnight
incubation, RNA was extracted and bulk transcriptomics was
performed to measure transcriptional changes induced by the
respective treatment (Figure S4B). The different in vitro
treatments resulted in prominent transcriptional changes in the
PBMCs, evident in the PCA with the strongest alterations
induced by doxycycline followed by trametinib, sunitinib, and
clofarabine (Figure 4E). Differential expression analysis reflected
this finding in the number of DE genes (Figure S4C). Of note,
doxycycline, trametinib, and sunitinib induced a greater number
of downregulated DEGs.

Based on our previous findings, we tested the influence of the
different treatments by analyzing the reduction of gene signature
enrichment for 1) the recurring target genes of cluster 43 identified
from the drug repurposing pipeline (n=35), 2) the ‘anti-viral
monocyte’ markers from our integrated single-cell RNA-seq
analysis (n=137), and the hallmark terms 3) IFNYy response’
(n=200) and 4) ‘inflammatory response’ (n=200) (Figure 4F).
Sunitinib and doxycycline showed the most significant impact,
strongly reversing the four different HIV-specific gene signatures.
Trametinib also showed strong, clofarabine a moderate, and
sitagliptin no reductions of the four signatures in our in vitro
verification experiment. These differential effects of the different

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1275136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

A

1. prediction of potential drugs

HIV vs. control:
« monocytes scRNAseq
* PBMC bulk RNAseq
* CD14 bulk RNAseq

down genes

up genes

~N

&8 E

CLUE
iLINCS

BROAD

l

list of drugs that could reverse
the HIV gene signature (n=519)

&

clustered drug signatures

cluster
]

Aaow Bo

ANES
)

11. enrichment of drug signatures

gene signatures (n=17,641) generated by
identified drugs
(iLINCS, filtering: max. 300 genes by logFC)

genes down by drugs

GSEA on HIV transcriptome data l

NES(down)

ANES = NES(down) - NES(up)

k-mean clustering of drug signatures

selection of best cluster: zoom on cluster 43

frequency of re-occurring target genes cluster 43

Cc

=R

genes up by drugs

NES(up)

(Figure 4§

(Figure 4C)

(Figure 4D)

1. in vitro verification

10.3389/fimmu.2023.1275136

selection of drugs for in
vitro testing efficacy (n=>5),

control = DMSO

P

co-culture with |
treatment (24h)

~
o

validation patients (n=6),

chronic HIV

i

AMC extraction

transcriptional profiling (bulk RNAseq)

principle component analysis (PCA)

(Figure 4E)

HIV-specific signature enrichment (GSVA) by drug

(Figure 4F)

zoom on cluster 43

hii_373_CTRS_9176
alisertib_CTRS_8961

trametinib_CTRS_9400

n9_isopropylolomoucine...
sunitinib_CTRS_9377
birinapant_CTRS_7140
brd_a28746609_CTRS_9292
docetaxel_CTRS_9135

. pf_03758309_CTRS_9303
. gossypol_CTRS_1583
4,11_diethyl_4,9_dihyd...
chembl416418_CTRS_6969

(2]
w
4
<

| |doxycycline_EBI_1442

1y2090314_LINCSCP_174822

| |[clofarabine_CTRS_5825

2

D

recurring target genes

cl

RTP4
IFI127
OAST1
MX1
CMPK2
DDX60

luster 43 drugs

PR

23
o
=8

M

narciclasine_CTRS_6926
dactolisib_CTRS_5994
progesterone_EBI_1431
i_bet151_CTRS_682
tretinoin_DM_855
estriol_DM_615
daunorubicin_DM_561
. azd_5438_LINCSCP_174127

Count

enrichment of gene signatures across in vitro treatments

PCA: in vitro verification

drug repurposing:
recurring target genes

Hallmark term:

scRNAseq analysis:
i IFNy response

Hallmark term:
“anti-viral respon:

N
&

treatment
@ Doxycydline
Q© Trametinib
@ Sunitinib
O Clofarabine
Q© Sitagliptine
© DMsO

)
o

, PC 2:9.2% variance
°
Enrichment score

o
X

-50

054 T 1

0.0 0.0

o%h
o 3P

05 05

-50 -25 25

0
PC 1: 15.3% variance

Sunitinib{ oplo oo

Doxycycline |
Trametinib{
Clofarabine |

FIGURE 4

Sitagliptine |

DMSO
Doxycycline |
Trametinib{
Sunitinib|
Clofarabine {
Sitagliptine |
DMSO
Doxycycline |
Trametinib |
Sunitinib.
Clofarabine {
Sitagliptine |
DMSO
Doxycycline |
Trametinb{ S B
Sunttinib.
Clofarabine {
Sitagliptine |
DMSO

Drug repurposing to reverse monocyte reprogramming in PLHIV. (A) Drug prediction workflow and follow-up in vitro verification, NES=normalized
enrichment score. (B) Heatmap showing hierarchical clustering (k-mean=50) of ANES from all drug signatures (n= 17,641) as groups enriched on
transcriptomes from bulk CD14* monocytes and bulk PBMCs. (C) Zoom into cluster 43 from (B), depicting all involved drug signatures. (D) Recurring
target genes of drug signatures identified in cluster 43 from (C). (E) Principal component analysis (PCA) of bulk PBMC transcriptomes of the in vitro
verification experiment (five HIV donors with six conditions). Samples colored by treatment, DMSO as untreated control. (F) Enrichment of gene
signatures across in vitro treatments, analyzed signatures include the recurring target genes from cluster 43 (drug repurposing), marker for the ‘anti-
viral' monocytes (integrated scRNA-seq analysis), and the hallmark terms ‘IFNy response’ and ‘inflammatory response’. Wilcoxon rank-sum for

statistical testing (ns: not significant, *: p-value <0.05, **: p-value <0.01).

drugs are also seen on the gene level when investigating the top
leading edge genes of the four signatures by each drug (Figure S4D).

Taken together, we predicted drugs that could reverse the
altered monocyte-derived signatures and confirmed our
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repurposing approach in vitro with the drugs doxycycline
and sunitinib strongly reversing the HIV-specific gene
signatures, making them repurposed drug candidates
of interest.
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Discussion

In the present study, we illustrate in a small group of PLHIV
derived from our previous cross-sectional 200-HIV cohort study (1)
that single-cell and bulk transcriptomes of isolated immune cells
revealed reprogramming in multiple cellular compartments in
PLHIV, with innate immune cells, in particular monocytes,
showing most profound changes. We further illustrate that a
certain cellular state of monocytes, previously reported in acute
HIV infection can be observed in PLHIV, while other cell states
associated with acute inflammation are specific for acute HIV and
absent in PLHIV. Long-term usage of ART in PLHIV results in
undetectable viral loads and restores CD4 cell counts to normal
levels, and therefore PLHIV patients differ from people with an
acute HIV infection that have high-level viremia and reduced CD4
cell counts (33). Despite the small number of PLHIV studied, which
clearly showed heterogeneity in their transcriptional profiles, we
also illustrate that combined bulk and single-cell data of these
PLHIV was already sufficient to predict drug candidates for
reversing the observed transcriptional deviations in the monocyte
compartment. While technically applicable to a cohort study
setting, ATAC-seq of this small number of PLHIV did not reveal
any significant differences, which clearly points towards the need for
larger cohorts when assessing chromatin landscape differences. As
such the study reported here provides the necessary information to
include sophisticated transcriptome and epigenome data generation
to be integrated into the larger 2000-HIV cohort study currently
recruiting PLHIV including elite controllers.

The combined analysis of bulk transcriptomes from PBMC and
purified CD14" monocytes together with single-cell transcriptomes
from blood allowed us already in a rather small number of PLHIV
to define major changes within the peripheral immune cell
compartment, e.g. the identification of a gene cluster
characterized by IFN signaling. The higher-resolution information
from scRNA-seq revealed that some of the changes observed in the
PBMC-derived transcriptomes was due to molecular changes in
monocytes including cell-state differences, but not due to cell-type
distribution differences, further supporting the use of higher-
resolution technologies in larger cohort studies. While IFN-
signaling related molecular changes (cluster 2, Figures 1C, D)
were also captured in bulk transcriptomes from purified CD14"
monocytes (Figure 2), the overall information content from purified
CD14" monocytes was surprisingly low, indicating that many of the
changes observed in PBMC are derived from other monocyte cell
states (CD14'°"") and other cell types. Single-cell transcriptomes
clearly corroborated this hypothesis showing that basically all
immune cell types exhibited transcriptional changes in PLHIV.
With the lowest information content and highest technical effort,
we concluded that cell-type isolation procedures are not suitable for
larger cohort studies on PLHIV. Moreover, when assessing DEG in
monocytes using both bulk and single-cell transcriptomes, we
detected less DEG in bulk and only a small intersection with
single-cell data (n=19, Figure S3B). Differences in experimental
sample handling or sequencing resolution could explain this small
intersection, however, even though certain genes were not tested to
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be significantly altered in both methods, the general pathway
activation towards IFN responses was uncovered by both methods.

The systemic assessment of single-cell transcriptomes derived
from PBMC of PLHIV revealed that major transcriptional
reprogramming was mainly observed in monocytes and CD8" T
cells with fewer changes in CD4" T cells, NK cells, and B cells.
Focusing on the cell compartment with the major changes, we
revealed a cell state composition in PLHIV including the well-
described classical and non-classical monocyte states, but also a cell
state we previously termed ‘anti-viral monocytes’ in acute HIV
infection (33). Interestingly, this particular cell state showed high
heterogeneity between PLHIV, which will have to be studied in
larger cohorts to better define whether there is a pattern reminiscent
of PLHIV endotypes or whether this might be explained by
individual clinical incidents prior to blood sampling. Despite the
heterogeneity of this monocyte state, the assessment of genes
enriched in gene clusters derived from bulk transcriptomes
indicated that even classical and non-classical monocyte states in
PLHIV are characterized by elevated expression of cluster 2 genes,
supporting the notion that despite the observed heterogeneity,
persistent IFN signaling seems to be a major hallmark of
persistent inflammation in PLHIV (43). Based on these
informative and promising results we propose to integrate these
levels of omics technologies into larger PLHIV studies.

As we identified a major theme for persistent inflammation in
this small number of PLHIV, we addressed whether this
information would already be sufficient to identify drug
candidates by a reverse transcriptome approach (34).
Interestingly, while most therapeutic strategies are currently
addressing alternative antiviral drugs with less toxicity or
treatment strategies aiming at minimizing ART toxicity, fewer
drug regimens address immunomodulation itself including the
use of purinergic P2X receptor inhibitors (44) or statins (45-49).
In clinical studies testing the efficacy of these therapeutic
approaches to lower inflammation in PLHIV, mainly soluble
mediators (e.g. CRP, sCD14, IL-6, sCD163) measured in plasma
or serum were used as readouts, while high-resolution technologies
to address molecular changes in immune cells were not reported.
We exemplified here, how such an approach could be applied to the
identification of drug candidates lowering the inflammatory
response observed in PLHIV. We focused on a cluster of drugs
with a particularly high probability of reversing the transcriptional
alterations observed in monocytes and experimentally validated a
small number of drug candidates. A surprising finding was that the
antibiotic doxycycline induced the strongest effect mainly reducing
gene expression. Together with sunitinib, doxycycline was most
effective in reversing gene expression alterations of 1) the major
target genes used for drug prediction, 2) of the marker genes
expressed in monocytes with the ‘antiviral’ cell state, 3) of the
hallmark genes related to IFN signaling, and 4) hallmark genes
related to the pro-inflammatory response. These findings strongly
suggested that drugs such as doxycycline might not only function as
antibiotics but also modulate host immune responses. This is
similarly true for the drug candidates sunitinib and trametinib,
which have been developed for completely different purposes (50,
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51). Importantly, the modulation of the monocyte-related immune
activation should not be considered yet as being unrestrictedly
helpful for PLHIV, as it is not yet entirely clear whether these gene
programs would play a clinically beneficial role or not. As these
findings have to be considered as proof-of-concept, further
investigations using more drug candidates, different drug
concentrations, and further optimized computational and
miniaturized experimental procedures in a larger group of PLHIV
are certainly warranted to more quickly identify promising new
drug candidates counteracting the inflammatory state in PLHIV
under ART therapy.

Limitations of the study

The present study was conceptualized based on the previous cross-
sectional 200-HIV cohort study (1) to determine whether the
combination of high-resolution and high-content technologies such as
bulk and scRNA-seq data would lead to additional insights into the
pathophysiology of immune deviations in PLHI and therefore, only a
limited number of individuals were included in this study. As the main
purpose was to determine the best strategy to scale these technologies to
larger clinical cohorts, we were surprised that despite a rather small
number of individuals studied and obvious heterogeneity within the
group of PLHIV, we could retrieve important information about major
molecular changes on transcriptome level in all immune compartments.
However, it became also clear that other layers, e.g. chromatin
landscapes as assessed by ATAC-seq require a much larger number
of individuals to determine whether immune cells in PLHIV are also
altered on this epigenetic level. Based on these initial findings, we have
now started to include these technologies in the much larger 2000-HIV
cohort study of approx. 2000 PLHIV to study aspects such as disease
heterogeneity, potential disease endotypes, and association of cellular
changes with clinical trajectories, or to determine potential biomarkers
predicting disease outcome. Certainly, the observation that innate
immune cells such as monocytes show the most pronounced
transcriptional reprogramming in PLHIV was unexpected and will be
one major focus within the currently being assembled cohort of PLHIV.
Moreover, the identification of these monocyte-derived programs also
opens new avenues toward the identification of new mechanisms on
how transcriptional alterations contribute to immune dysregulation
in PLHIV.

Methods
Lead contact

Dr. Anna C. Aschenbrenner, anna.aschenbrenner@dzne.de.

Materials availability

This study did not generate unique reagents.
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Data and code availability

Bulk RNA-seq datasets and single-cell RNA-seq data have been
deposited at the European Genome-phenome Archive (EGA) and
are publicly available under the accession numbers.

All original code is stored on FASTGenomics: https://
beta.fastgenomics.org/p/HIV_Pilot

Any additional information required to reanalyze the data
reported in this paper is available from the lead contact
upon request.

Study cohort

Five PLHIV were recruited from the outpatient HIV clinic of
the Radboud University Medical Center on March 26-28th 2019.
Included patients were five males of Dutch/Western-European
ethnicity who were receiving cART for more than 6 months and
latest HIV-RNA levels <200 copies/ml. Ethical approval was
granted by the Ethical Committee of the Radboud University
Medical Center Nijmegen, the Netherlands under registration
number NL42561.091.12). Additionally, five age-/sex-matched
healthy volunteers were included as controls (age 43-61), and
ethical approval was granted by the Ethical Committee of the
Radboud University Medical Center Nijmegen, the Netherlands
under registration number NL32357.091.10). For the in vitro
verification experiments of drugs, six additional male PLHIV
were recruited (age 26-43, with ethical approval granted by the
Ethical Committee of the Radboud University Medical Center
Nijmegen, the Netherlands under registration number
NL68056.091.18). Written consent was obtained from all
participants involved in this study and experiments were
conducted according to the Declaration of Helsinki principles.

PBMC isolation

Human peripheral blood mononuclear cells (PBMCs) were
isolated by dilution of blood in pyrogen-free PBS and differential
density centrifugation over Ficoll-Paque (GE Healthcare, UK) as
previously described by (52). Briefly, the interphase layer was
collected, and cells were washed with cold PBS. Cells were
resuspended in RPMI 1640 culture medium (Roswell Park
Memorial Institute medium; Invitrogen, USA) supplemented with
50 g/mL gentamicin, 2 mM glutamax (Gibco, Life Technologies,
USA), and 1 mM pyruvate (Gibco) and quantified. A fraction of
PBMCs was viably frozen for later use. The cell suspension was
spun down for 5 min at 300g, 4°C, after which all supernatant was
removed. Cells were very gently resuspended in freezing medium
(90% fetal calf serum, 10% DMSO) and aliquoted into cryovials.
They were placed first at -80°C in a CoolCell freezing container
(Corning), after which they were transported the next day on dry ice
and moved to liquid nitrogen storage. For the thawing of PBMCs,
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one vial of 5 million cells was thawed in 10ml RMPI medium
supplemented with 10% FCS.

Preparation of Seq-Well
arrays/libraries/sequencing

Seq-Well arrays and libraries were prepared from isolated
PBMC:s as described previously (24).

Measurements of plasma markers

Clinical plasma markers were measured using ELISA (Duoset
or Quantikine, R&D Systems) for IL18-BP, IL-18, hsCRP, sCD14,
sCD163 or using SimplePlex Cartridges (Protein Simple) for IL-6,
all performed according to manufacturers’ instructions. As a
reference, the mean of healthy controls from van der Heijden
et al. (1) were used.

Isolation of CD14+ monocytes

CD14+ monocytes were isolated from PBMC by magnetic-
activated cell sorting (MACS) positive selection with CD14
microbeads (Miltenyi Biotec), according to the manufacturer’s
instructions. Depending on the available PBMC counts used as input,
either MS or LS columns were used (Miltenyi Biotec). After isolation,
cells were again resuspended in a Dutch modified RPMI culture
medium (Invitrogen) supplemented with 50 pg/mL gentamycin, 2
mM glutamax and 1 mM pyruvate (Gibco, Life Technologies).

Flow cytometry

Frozen PBMCs were thawed then stained for surface markers
(Supplementary Table S1) in DPBS with BD Horizon Brilliant Stain
Buffer (Becton Dickinson) for 30min at 4°C. To distinguish live
from dead cells, the cells were incubated with LIVE/DEAD Fixable
Yellow Dead Cell Stain Kit (1:1000 — Thermo Scientific). Following
staining and washing, the cell suspension was fixed with 4% PFA for
10 min at room temperature to prevent any possible risk of
contamination due to aerosol formation during sample handling
and acquisition. Flow cytometry analysis was performed on a BD
Symphony instrument (Becton Dickinson) configured with 5 lasers
(UV, violet, blue, yellow-green, red).

ATAC-seq

Frozen PBMCs were thawed and sorted on a BD FACSAria III
(Blue, Yellow-Green, Red, and Violet lasers), and 20,000 live CD14"
cells were sorted and spun down at 500xg for 5 min at 4°C. The cell
pellet was washed with 50 UL of cold 1x PBS buffer and spun down
at 500 xg for 5 min at 4°C. The pellet was then resuspended in 50 uL
of cold lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM
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MgCl2, 0.1% IGEPAL CA-630) and spun down immediately at
500xg for 10 min at 4°C. The supernatant was then discarded, and
the transposition reaction was immediately performed. To perform
the transposition reaction, a mixture of transposase, 5x TAPS-DMF
buffer (50mM TAPS (T5130 SIGMA), 25mM MgCl2, 50% DMEF (N,
N-Dimethylformamide)), and water was combined and added to
the cell pellet. The transposition reaction was incubated at 37°C for
30 min. Following transposition, the DNA was purified using a
Qiagen MinElute Kit. The transposed DNA was eluted in 10 pL of
water, and purified DNA was stored at 4°C until the following day
or at -20°C.

To amplify the transposed DNA fragments, a PCR mixture was
prepared using the purified DNA, nuclease-free water, customized
Nextera PCR primers, and NEBNext High-Fidelity 2x PCR Master
Mix. The PCR mixture was cycled as follows: 72°C for 5 min, 98°C
for 30 sec, 98°C for 10 sec, 63°C for 30 sec, and 72°C for 1 min. Steps
3-5 were then repeated 11 times for a total of 12 cycles. The PCR
products were then purified using a Qiagen MinElute Kit and eluted
in 12 pL of water. To validate the quality and concentration of the
PCR products, gel electrophoresis was performed using the
TapeStation and Agilent High Sensitivity D1000 Kkit.

Protein measurements

Proteomic profiling of selected markers was performed as
described before (53). In brief, venous whole-blood samples were
collected in EDTA tubes and centrifuged into plasma, and then
stored at -80°C. Protein measurements were performed by Olink
Proteomics AB using the Olink Explore platform. QC and
normalization were performed by Olink services. For this study,
protein markers of interest were selected.

In vitro verification of selected drugs

To verify the effectiveness of predicted drugs, six different PLHIV
from the 200-HIV cohort were re-called, and the PBMCs were
extracted and seeded in triplicates with 500,000 cells per replicate.
The PBMCs were cultured for 24 hours in the presence of a selected
subset of drugs from cluster 43, including trametinib (50 mM in
0.000002% DMSO), sunitinib (100 mM in 0.0001% DMSO),
clofarabine (100 mM in 0.00001% DMSO), doxycycline (100 mM
in H,0) and sitagliptin (100 mM in 0.0001% DMSO) or DMSO
(0.001%) as control. After incubation, replicates were collected in a
total of 1 ml TRIzol reagent and processed for bulk RNA-seq.

Quantification and statistical analysis

RNA-sequencing analysis (bulk RNA
PBMC, CD14)

Sequenced reads were aligned and quantified using STAR: ultrafast
universal RNA-seq aligner (v2.7.3a) (54) and the human reference
genome, GRCh38p13, from the Genome Reference Consortium. Raw
counts were imported using the DESeqDataSetFromMatrix function
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from DESeq2 (v1.32.0) (55) and rlog transformed according to the
DESeq2 pipeline. DESeq2 was used for the calculation of normalized
counts for each transcript using default parameters. All normalized
transcripts with a maximum overall row mean lower than 10 were
excluded resulting in 26,920 present transcripts. All present transcripts
were used as input for principal component analysis (PCA).
Differentially expressed genes were calculated for HIV vs. control
using an independent hypothesis weighting (IHW) adjusted p-value
cutoff of 0.05 and an absolute fold change (|FC|) of 1.5. DEGs were
used as input for the k-mean clustered heatmap (k=4), generating
four clusters.

RNA-sequencing analysis (drug
verification analysis)

Sequenced reads were aligned and quantified using kallisto
v0.44.0 (56) and the human reference genome, GRCh38p13, from
the Genome Reference Consortium. Raw counts were imported
using the DESeqDataSetFromTximport function from DESeq2
(v1.32.0) (55) and vst-transformed according to the DESeq2
pipeline. DESeq2 was used for the calculation of normalized
counts for each transcript using default parameters. All
normalized transcripts with a maximum overall row mean lower
than 10 were excluded resulting in 37,952 present transcripts.
Variation in the data was identified using the SVA package
(v3.40) (57), and batch effects were removed with limma (v3.48.3)
(58) using the first six surrogate variables (SVs), which were also
added in the design of the dds object. All present transcripts were
used as input for principal component analysis (PCA) of the batch-
corrected data. Differentially expressed genes were calculated for
HIV vs. control using a p-value cutoff of 0.05, an adjusted p-value
(IHW) < 0.05 (independent hypothesis weighting), and a |FC|>2.
DEGs were used as input for the clustered heatmap.

Transcription factor prediction analysis

The R package RcisTarget (version 1.12.0) (59) was used to
predict the transcription factors potentially regulating heatmap
cluster-specifically contained gene sets. The genomic regions of
TF-motif search were limited to 10kb around the respective
transcriptional start sites by using the RcisTarget-implemented
“hg19-tss-centered-10kb-7species.mc9nr.feather” motifRanking
file. Prediction was performed using the cisTarget function and
the resulting top 3 predicted TF, according to their normalized
enrichment scores (NES), were selected for each heatmap cluster.

Gene set ontology enrichment analysis

Gene set ontology enrichment analysis using the heatmap
clusters as input was performed on the gene sets from the Gene
Ontology (GO) biological process (BP) database (60, 61) and the
Hallmark gene sets (62) using the R package clusterProfiler (version
4.0.5) (63). Ontologies with the highest and statistically significant
enrichment were used for presentation.

Gene set variation analysis
For the enrichment of the genes included in the four different
clusters of the DE heatmap (PBMC data) and for the enrichment of
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the four different transcriptional signatures for the in vitro
verification of drugs, the GSVA package (version 1.40.1) (64)
was applied.

Flow analysis

After pre-processing, compensated fluorescence intensities were
exported from FlowJo (BD, v. 10.7.1). Exported.fcs files were
imported in R with the flowCore package (v. 2.2.0). Fluorescence
intensities were auto-logicle transformed, used for dimensionality
reduction using the UMAP algorithm (umap package v. 0.2.7.0)
(65) and clustered using the Phenograph package (v. 0.99.1) (66).
Cell types were annotated for each cluster by respective marker
expression. For visualization, the proportions of main cell types
were calculated and stratified by disease group.

ATAC-seq analysis

Reads were aligned to human hg38 reference with bowtie2 (67).
Samtools (68) was used to remove adapter offset and to create bam
files. Open chromatin peaks were called using MACS2 (69),
blacklisted regions (hg38-blacklist.v2.bed.gz, https://
sites.google.com/site/anshulkundaje/projects/blacklists), the low
covered peaks were excluded, and then the peaks were annotated
with gene models from TxDb.Hsapiens.UCSC.hg38 knownGene
using the ChIPseeker package (applying annotatePeaks function)
(70). Downstream analysis was performed with the DESeq2
(v1.26.0) package (55). Differentially accessible regions (DAR)
were detected with a |FC|>1.5 and a corrected p-value > 0.05.
With these standard parameters, no DAR were identified.

ScRNA-seq data analysis

ScRNA-seq UMI count matrices were imported to R 4.1 and
gene expression data analysis was performed using the Seurat
package 4.0.4 (71, 72). Cells with more than 10% mitochondrial
reads and less than 200 expressed genes were excluded from the
analysis and only those genes present in more than 3 cells were
considered for downstream analysis. Moreover, the genes MT-
RNRI and MT-RNR2 were excluded. Log-normalization, scaling,
and dimensionality reduction steps were performed using the
Seurat implemented functions. For scaling, the number of
detected transcripts per cell was regressed out to correct for
heterogeneity associated with differences in sequencing depth. For
dimensionality reduction, PCA was performed on the top 2,000
variable genes identified using the vst method implemented in
Seurat. Subsequently, UMAP was used for two-dimensional
representation of the data structure using the first 30 PCs. Cell
type annotation was based on the respective clustering results
combined with the expression of known marker genes. DEG by
celltype were calculated for the comparison of HIV vs control with a
[log2FC|>0.25, adj. p-value<0.05 and min.pct=0.1.

Data integration

Data integration of the PLHIV PBMCs (this study) and the
acute HIV PBMC dataset (33) were integrated using the harmony
algorithm (73) based on the first 15 principal components. Prior to
integration, the PLHIV dataset was subsetted for major cell types
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present in acute HIV. Cell type annotation was based on the
respective clustering results combined with the expression of
known marker genes.

Integrated scRNA-seq monocyte analysis

The monocyte compartment was subsetted from the integrated
PBMCs and subsequently normalized, scaled, and subjected to PCA
calculation. For UMAP visualization, the first 10 harmony PCs were
used. After clustering the integrated monocytes with the
FindNeighbors and FindClusters function from Seurat, monocyte
states were annotated according to the signatures described in acute
HIV (33) and cluster-specific markers, separating the monocyte
population into anti-viral (TNFSF10, ISG15, IFIT2, IFIT3),
inflammatory (IL8, IL1B, EREG), anti-viral/inflammatory (CCL2,
CCL4), TF127/30™ (IFI127, IFI30), HLA™ (HLA-DRBI, HLA-DQA]I),
resting (S100A8, S100A9, LYZ) and non-classical (FCGR3A,
CIQA) monocytes.

Confusion matrix

For each monocyte cell state, the relative proportion across the
groups (HIV, control) was visualized as a fraction of samples from
the respective condition contributing to the monocyte cell state
stratified by dataset (PLHIV vs. acute HIV).

Drug prediction

To identify drugs that reverse the gene expression signature
observed in the comparison HIV vs. control for bulk RNA-seq
PBMCs, bulk RNA-seq CD14 monocytes, and scRNA-seq
monocytes, the drug prediction databases iLINCS (http://
www.ilincs.org/ilincs/), and CLUE (https://clue.io/) were accessed.
As input for the drug prediction, the top 1000 (iLINCS) or the top
100 (CLUE) DEGs were used. Drugs reversing the HIV gene
expression signature (defined by a negative score) comprised a
total of 519 unique drugs. Using the iLINCS API (https://
github.com/uc-bd2k/ilincsAPI/blob/master/usingllincsApis.Rmd),
every gene expression signature from each drug listed in the
signature libraries iLINCS chemical perturbagens (LINCSCP),
iLINCS targeted proteomics signatures (LINCSTP), Disease-
related signatures (GDS), Connectivity Map signatures (CMAP),
DrugMatrix signatures (DM), Transcriptional signatures from EBI
Expression Atlas (EBI), Cancer therapeutics response signatures
(CTRS), and Pharmacogenomics transcriptional signatures (PG)
was downloaded. Labeling was performed in the following
principle: “drug name”_"database”_"database ID”. Signatures
were ordered by fold change, and only the top 300 genes were
used. This resulted in a total of 17,641 unique drug signatures each
with an up- and downregulated set. Subsequently, GSEA was
performed on the sequencing data for every up- and down-
regulated set for each drug and each cluster comparison. The
resulting normalized enrichment scores (NES) were used to
calculate the delta NES for each drug, defined as ANES =NES
(down) = NES (up), ergo the difference of the NES from the
downregulated set and the NES from the upregulated set of each
respective drug. These ANES values were then k-mean clustered
(k=40). The cluster with the highest ANES values for both CD14
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and PBMCs was chosen and uniquely present drugs were shown.
The leading edge genes of the downregulation signatures of these
drugs (cluster 43) were examined, and the frequency was counted
(recurring target genes).

Data visualization

For data visualization, the R packages Seurat, ggplot2 (version
3.3.5) (74), (https://ggplot2.tidyverse.org), pheatmap (version
1.0.12), and ComplexHeatmap (version 2.8.0) (75) were used.
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SUPPLEMENTARY FIGURE 1

Blood transcriptomes of PLHIV are dominated by monocyte-related
proinflammatory gene programs. (A) Overview of age and sex of the cohort
by disease group. (A) Multicolor flow cytometry (MCFC) cell distribution for
HIV and controls. (B) Number of DEG for the comparison HIV vs. Ctrlin bulk
PBMCs transcriptomes; IHW multiple comparison adjustment and false
discovery rate (FDR) cutoff of 5%, significant fold change of >|1.5|. (C) Gene
set variation analysis (GSVA) of the genes from the four clusters of the DE
heatmap (from ).

SUPPLEMENTARY FIGURE 2

Bulk transcriptomics of monocytes in PLHIV mainly reveals IFN-signaling.
(A) Boxplots of clinically relevant markers measured in the serum of PLHIV.
References as blue bars (1). (B) Overview of MACS CD14 positive selection. (C)
Number of DEG for the comparison HIV vs. Ctrl in bulk RNA-seq CD14; IHW
multiple comparison adjustment and false discovery rate (FDR) cutoff of 5%,
significant fold change of >|1.5|. (D) Boxplot and whisker of selected genes.

SUPPLEMENTARY FIGURE 3

‘Anti-viral' monocyte state is persistent in PLHIV. (A) Cell type marker
expression of the PLHIV dataset for all identified cell types. (B) Overlap of
up-regulated DEG from monocytes extracted from scRNAseq and bulk
CD14" transcriptomes (Supplementary Table S3). Genes contributing to the
IFN-yor IFN-a. response pathways are indicated for the intersection as well as
the uniquely identified DEG. (C) UMAP of integrated PBMCs from PLHIV and
acute HIV split by dataset (total n= 89,500 cells, each 30,000 cells depicted).
(D) Cell type marker expression of the integrated HIV dataset for all included
cell types. (E) Monocyte cell state marker of the integrated monocytes from
PLHIV and acute HIV. (F) Mapping of HIV-specific (upregulated) DEG of
resting and non-classical monocyte states (for DEG see Supplementary
Table S3) to PBMC clusters from . (G) Integrated monocyte UMAP
subsetted for chronic HIV and stratified by donor.

SUPPLEMENTARY FIGURE 4

Drug repurposing to reverse monocyte reprogramming in PLHIV.
(A) Enrichment of recurring target genes from cluster 43 in monocyte
states of the integrated monocyte analysis (see ). (B) Included samples by
treatment condition after quality control (QC) for the in vitro verification
experiment. (C) Number of DEG (adj. p-value<0.05, |[FC|>2, IHW) for each
treatment vs. control (DMSO). (D) Heatmap showing the union of top leading
edge genes of each signature (from ) for each treatment ranked by adj.
p-value.

SUPPLEMENTARY TABLE 1
Donor overview.

SUPPLEMENTARY TABLE 2

Functional enrichment (GO and Hallmark) and transcription factor (TF)
prediction of bulk RNA-seq PBMC heatmap clusters (related to Figure 1)
and MCFC marker.

SUPPLEMENTARY TABLE 3
ScRNA-seq monocytes DEG (related to Figure 3).

SUPPLEMENTARY TABLE 4
Predicted drug clusters and signatures (related to Figure 4).
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Single cElls method for
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generation of single-cell immune
profiles from whole blood
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Introduction: Current multistep methods utilized for preparing and
cryopreserving single-cell suspensions from blood samples for single-cell RNA
sequencing (scRNA-seq) are time-consuming, requiring trained personnel and
special equipment, so limiting their clinical adoption. We developed a method,
Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of
whole blood (WB) along with granulocyte depletion during single-cell assay, to
generate high quality single-cell profiles (SCP).

Methods: WB was cryopreserved using the SENSE method and peripheral blood
mononuclear cells (PBMCs) were isolated and cryopreserved using the
traditional density-gradient method (PBMC method) from the same blood
sample (n=6). The SCPs obtained from both methods were processed using a
similar pipeline and quality control parameters. Further, entropy calculation,
differential gene expression, and cellular communication analysis were
performed to compare cell types and subtypes from both methods.

Results: Highly viable (86.3 + 1.51%) single-cell suspensions (22,353 cells) were
obtained from the six WB samples cryopreserved using the SENSE method. In-
depth characterization of the scRNA-seq datasets from the samples processed
with the SENSE method yielded high-quality profiles of lymphoid and myeloid
cell types which were in concordance with the profiles obtained with classical
multistep PBMC method processed samples. Additionally, the SENSE method
cryopreserved samples exhibited significantly higher T-cell enrichment, enabling
deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC
methods processed samples exhibited transcriptional, and cellular
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communication network level similarities across cell types with no batch effect
except in myeloid lineage cells.

Discussion: Comparative analysis of scRNA-seq datasets obtained with the two
cryopreservation methods i.e., SENSE and PBMC methods, yielded similar cellular
and molecular profiles, confirming the suitability of the former method’s
incorporation in clinics/labs for cryopreserving and obtaining high-quality
single-cells for conducting critical translational research.

KEYWORDS

whole blood, cryopreservation, single cell profiling, density gradient, scRNA seq

1 Introduction

Recent advances in single-cell microfluidic technologies have
resulted in a ubiquitous implementation of single-cell approaches to
understand disease mechanisms and developmental biology (1-3).
Single-cell assays provide high-resolution measurement of cell types/
subtypes (4) and their molecular states associated with health/disease
conditions (5). Single-cell assays have immense potential in the
discovery of cell-specific biomarkers (6) and for gaining
unprecedented insights into composite cell-to-cell interactions that
drive therapeutic responses (7) for expanding disease diagnosis and
therapeutic options (8). We are utilizing single cell assays for the
development of single-cell atlases for multiple myeloma (MM) (9, 10),
pediatric cancers (11) as well as chronic wounds (12-14), to identify
next-generation prognostic biomarkers with high sensitivity and
specificity. Recently, a comparative analysis by our group, of rapid
and non-progressing MM patient samples using single-cell profiling
(SCP), revealed a significant contribution of exhausted T-cells in the
rapid progression of MM (9). The implementation of SCP in another
study on diabetic foot ulcers (DFUs) resulted in the identification of a
unique fibroblast population associated with the healing of chronic
DFUs in diabetic patients (14). A major issue with the single-cell
approach is that samples need to be immediately subjected to
downstream processing for live cell capture or frozen viably, both of
which require precious time and bench-work, often not feasible in a
clinical setting. Therefore, developing and optimizing methodologies
that enable stable cryopreservation of clinic/hospital-collected samples
with minimal intervention is crucial for implementation of SCP assays
as routine.

Sample preparation for bulk sequencing can be performed on
samples collected in the clinic in tubes with RNA/DNA stabilizers (15)
without the need for immediate pre-processing (16). Although this
approach is easy and practical in a clinical setting, a major drawback is
that bulk approaches only reveal the average behavior of all the
different cell populations in a sample (17). On the contrary, single-

Abbreviations: FC, fold change; SCP, Single Cell Profiling; SENSE, Simple
prEservatioN of Single cElls; WB, whole blood; JIA, Juvenile Idiopathic
Arthritis; PBMC, Peripheral Blood Mononuclear Cells; UMAP, Uniform

Manifold Approximation and Projection.
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cell assays measure individual cell profiles (18) and their
transcriptional states in the complex tissue architecture (2).
However, the inherent need for viable cells (19) for performing
single-cell assays limits the adoption of single-cell assays in clinics
(bench to bedside) as well as the collection of clinical samples for
single-cell research (bedside to bench). The traditional method of
isolating PBMCs involves multiple centrifugation steps, the addition of
special density gradient reagents like Ficoll-Paque to facilitate the
isolation of mononuclear cells (20) for downstream single-cell assays
and significant time commitment (Figure 1A). These preprocessing
steps to isolate PBMCs may inevitably delay sample cryopreservation,
which can potentially introduce technical bias and artifacts during
SCP (21). To overcome the limitations associated with traditional
sample preservation for single-cell assays, we have developed and
implemented the Simple prEservatioN of Single cElls (SENSE)
method for one-step cryopreservation of whole blood (WB) by the
direct addition of freezing solution. The SENSE method also
incorporates a granulocyte removal step during single-cell assay
steps, resulting in optimal capture of immune repertoire from WB
samples. In this study for the first time, we have performed a deep
characterization of the SENSE method-generated transcriptome
profiles and compared it with the transcriptome profiles of the
PBMCs isolated by the standard Ficoll-Paque gradient method.
Comparative analysis was performed on the patient blood samples
collected in clinic setting to pave the way for the clinical
implementation of the SENSE method. Development and
implementation of simplified cryopreservation of WB samples using
methods like one-step SENSE method would result in a significant
increase in the adoption of SCP in clinics and single/multi-center
therapeutic trials and enable robust identification of next-generation
diagnostics, prognostics, and therapeutic biomarkers.

2 Results

2.1 Whole blood cryopreservation by the
SENSE method generated high-quality cells

We tested the feasibility and performance of the SENSE method
for SCP on whole blood samples, collected in a clinic at Children’s
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FIGURE 1

Overview of SENSE (Simple PrEservatioN of Single cElls) method for cryopreservation and single-cell immune profiles from whole blood. (A) Assay

Overview: Blood samples were collected in EDTA tubes which were then spl

it into two aliquots. One aliquot was processed using the traditional Ficoll-

Paque density gradient method to isolate PBMCs, which were then cryopreserved. The other aliquot of blood was viably cryopreserved using the SENSE

method, i.e., a cryoprotectant solution was added and the sample frozen. Po
granulocyte depletion, and the CD15" fraction was collected, washed, and pr:

st-thawing, the WB cells from the SENSE method were subjected to
ocessed for single-cell profiling using the 10x Genomics method. The

resulting single-cell data from the SENSE and PBMC methods were then compared to identify any differences in cell quality metrics and molecular

profiles. (B) Schematic for single cell assays using sample stored and process

ed using the SENSE method involving: 1. simple cryopreservation of whole

blood samples stably stored for short or long term in -80 °C or liquid nitrogen respectively, and 2. preparation of sample for single cell assay by
removing granulocytes and RBCs. 3. Generation of single cell RNA sequencing libraries using appropriate 10x Genomics kits (5" or 3'with/without cell
multiplexing). The color bars on the left-hand side serve as visual indicators, with the red bar denoting steps specific to SENSE method, while the blue
bar represents steps common single cell profiling steps for both methods. The figure was prepared using BioRender.com

Healthcare of Atlanta from Juvenile Idiopathic Arthritis (JTA) (n=>5)
and pediatric lupus (n=1) patients (Table 1). The blood samples (3.0
ml - 4.5 ml) were split into two equal aliquots and processed in
parallel using the SENSE and PBMC methods. The Ficoll-Paque
density gradient method was used to isolate PBMCs from one-half
of the sample which were then frozen in freezing media (Fisher
Scientific). These viably frozen PBMCs were thawed and profiled
directly using 10x Genomics Next GEM single cell 3’v3.1 kits (as
described in the methods section) (Figure 1A). The remaining half
of the blood sample was processed using the SENSE method that
involved freezing WB directly by adding freezing solution (80%
FBS, 20% DMSO) at a ratio of 1:1 to obtain a final concentration of
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40% FBS, 10% DMSO in the cryopreserved WB samples. In the
SENSE method, frozen WB was thawed, and the mononuclear cells
were collected and resuspended after the removal of CD15" and red
blood cells as described in the detailed protocol (Supplementary
Document 1; Figure 1B). The cells were then used for generating
single-cell RNA sequencing (scRNA-seq) libraries. The data
obtained from both methods were extensively studied by
comparing various qualitative and quantitative parameters
(Figure 1A). Simple single-step cryopreservation of WB made
possible with incorporation of the SENSE method will promote
the clinical implementation of SCP assays and expand single-cell
research and discoveries (Supplementary Figure 1).
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TABLE 1 Patient characteristics table.

10.3389/fimmu.2023.1271800

Patient no. Diagnosis age (years) = Sample collection age (years) Sex Race Ethnicity Diagnosis
1 6 7 Male White Non-hispanic Oligoarticular JIA
2 2 16 Female White Non-hispanic Polyarticular RF-
3 8 13 Female White Non-hispanic Unfifferntiated JTA
4 5 11 Male AA/black Non-hispanic Systemic JTA
5 1 8 Female Asian Non-hispanic Polyarticular RF+
6 15 16 Female AA/black Non-hispanic Lupus

JIA, Juvenile idiopathic arthritis; RF, Rheumatoid factor. Patient 1-5: JIA, Patient 6: Pediatric lupus.

Comparative analysis of cell viability upon thawing of
cryopreserved WB followed by granulocyte depletion (SENSE
method) and thawing of cryopreserved PBMCs (density gradient
method) revealed that the latter method yielded slightly higher
viability (91 + 1.64%) as compared to the former method (86.3 +
1.51%), however, this difference was not significant (P=.10)
(Figure 2A). A total of 20,024 and 23,502 cells were profiled from
the PBMC:s isolated using density gradient method and WB frozen
using SENSE method respectively, hereby referred to as PBMC’ and
‘SENSE’ for simplicity. The low-quality cell identification based on
unique genes (<200), UMI count (<600), and mitochondrial transcripts
(>20%) identified 793 and 1,149 low-quality cells with PBMC and
SENSE methods respectively, that were filtered out from the
subsequent analysis. This resulted in 19,231 and 22,353 high-quality
cells from the PBMC and SENSE methods respectively (Figure 2B).
The SENSE method was found to capture median gene counts and
unique molecular identifiers (UMIs) comparable to the PBMC method,
with a similar median representation of mitochondrial genes
(Figure 2C). To check whether the SENSE method affected the
integrity of the cells, the representation of genes in the membrane,
extracellular, and ribosomal ontology categories were assessed. Cellular
damage results in increasing the representation of the membrane genes
and lowering the representation of extracellular genes (22).
Comparative analysis showed profiling of similar proportions of
cytoplasmic, membrane, extracellular, and ribosomal ontology
categories with SENSE and PBMC methods, demonstrating that the
former method is as robust as the latter method in obtaining high-
quality cells from WB with no introduction of cellular damage artifacts
(Figure 2D). SCP can be utilized to evaluate the cell cycle phases (i.e.,
G1, G2/M, and S) which significantly impact cellular gene expression
and are vital in classifying cellular sub-populations in the single-cell
assays. The comparative analysis revealed a broadly similar distribution
of cells in various cell cycle phases between cells from all samples from
the SENSE and PBMC methods (Figure 2E). Additionally, we also
assessed the impact of sample processing by each method on the
doublet rates as they are key confounders in the single cell data (23).
The WB samples cryopreserved using the SENSE method had a lower
percentage of doublets (2.41%, 539 cells) as compared to the PBMC
method (4.76%, 916 cells) (Figure 2F), demonstrating that single cells
cryopreserved using the SENSE method generated high-quality SCPs of
clinical WB samples. Clusters with a high percentage of doublets were
manually reviewed using canonical marker expression and excluded
from downstream analysis.
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Altogether, these single-cell quality assessment analyses
demonstrate that the SENSE method is a reliable and effective
method for WB single-cell profiling by preserving high-quality cells
that yield comparable results to the traditional density gradient
PBMC:s isolation method.

2.2 Cellular profile and enrichment
between SENSE and PBMCs methods

The high-quality cells obtained after filtration and
normalization steps were clustered based on the gene expression
profiles using Seurat (24). The initial 21 clusters obtained from the
integrated scRNA-seq data of samples processed using PBMC and
SENSE methods, were annotated to obtain 11 major cell types from
various lineages using canonical marker genes: B-Cells (MS4A17,
CD79A"), Memory B-cells (CD19", IGLC2"), NK cells (NKG7",
KLRDI", CD3D"), Myeloid cells (CD14", MNDA", FCGR3A",
FCN*), CD4+ Naive T-cells (CD3D*, CD4*, CCR7*, LEFI"),
CD4" Memory T-cells (CD3D", CD4", TRAAD", TNFRSF4"), IFN
T-cells (CD3D", ISG15*, STAT1", IFI6"), CD8" Effector T-cells
(GZMAY, GZMB", CD8A™), CD8" Naive T-cells (CDS8A", CCR7",
LEFI", TCF7"), CD8" Memory T-cells (CCL5", GZMB", CD8A"),
and platelets (SNCA™) (Figures 3A, B). Using the doublet detection
algorithm of the DoubletFinder package (25), we identified two
outlier clusters exhibiting doublet proportions greatly exceeding
other clusters: Db 1 (95% doublets) and Db 2 (44.1% doublets). The
remaining clusters demonstrated notably lower doublet percentages
(averaging at 1.7 + 0.8%). We reviewed the canonical markers
expression in these doublet-enriched clusters to explore if they
express markers of cell types from different lineages and correctly
flagged doublets. Cluster Db1 highly expressed both pDC and T-cell
related markers (CD4, JCHAIN, MZBI, IRF8, CLEC4C), whereas
cluster Db2 highly expressed both plasma cell and T cell markers
(CD8A, JCHAIN, MZBI1, CD38). We also observed a small number
of cells in both PBMC (n=120 cells) and SENSE (n=182 cells)
methods that were enriched with mitochondrial genes (Mt
Enriched) (Figures 3A, B). On average, T-cells were the largest
cluster among all patients, followed by myeloid cells, and B-cells
(Figure 3A). All the identified cell types (except platelets) were
detected in samples processed using either SENSE or PBMC
method (split UMAP in Figure 3C). Regardless of the processing
method used, cells of the same type consistently clustered together,
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Comparative analysis of cell quality of SENSE and PBMCs methods. (A) Cell viability % boxplots, and (B) Single-cell counts boxplots with each dot
representing an individual patient. The significance of the difference between the methods was tested using the paired Student's t-test. NS indicates
non-significant differences with P >.05. (C) Count of Genes (log-scale), UMIs (log-scale), and proportion of mitochondrial genes per cell. The violin
plots in the top panel show patient-wise information for the count of genes, UMIs, and proportion of mitochondrial genes per cell, while the violin
plots in the bottom panel show the group-wise comparison of SENSE and PBMC methods. (D) Proportion of patient and group-wise genes in
cytoplasmic, membrane, extracellular, and ribosomal gene ontology categories. (E) Proportion of cells from SENSE and PBMC methods in the G1,
G2M, and S phases, and (F) Proportion of the singlets and doublets cells in the SENSE and PBMCs protocols.

highlighting their high transcriptome similarity. The split UMAP
visualization and bar plots depicted lower enrichment of cells from
the myeloid lineage (PBMC: n=6,085, SENSE: n=1,903) and higher
enrichment of T cells (PBMC: n=8,558, SENSE: n=15,373) in the
SENSE method as compared to the PBMC method (Figures 3C, D).
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Most of the major clusters had contributions of cells from each
patient, implying a similar single-cell landscape across all patients
(Figure 3D). Some clusters, such as IFNYy responsive T-cells (IFN T-
cells), showed a disproportionately high contribution from a single
patient (patient 1) with both processing methods (Figure 3D),
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FIGURE 3

Characterization of blood single cell profiles obtained with SENSE and PBMCs methods. Blood samples for the analysis were obtained from JIA and
pediatric Lupus patients from the rheumatology clinic in CHOA. (A) Uniform Manifold Approximation and Projection (UMAP) embedding of scRNA-
seq data from both methods across all patients consisting of >41,000 high-quality single-cells distributed into 11 cell types. Canonical cell types are
based on the expression of marker genes that include: B-Cells (MS4A1*, CD79A"), Memory B-cells (CD197, IGLC2"), NK Cells (NKG7*, KLRD1",
CD3D), Myeloid cells (CD14*, MNDA*, FCGR3A*, FCN¥), CD4+ Naive T-cells (CD3D*, CD4*, CCR7*, LEF1*), CD4™ Memory T-cells (CD3D*, CD4,
TRAAD?, TNFRSF4*), IFN T cells (CD3D*, ISG15%, STATL", IFI6*), CD8" Effector T-cells (GZMA*, GZMB*, CD8A™), CD8* Naive T-cells (CD8A*, CCR7*,
LEF1*, TCF7*), CD8* Memory T-cells (CCL5", GZMB*, CD8A™), and platelets (SNCA™). (B) Dot Plot depicting expression profile of markers genes
used for annotating different cell type clusters. The relative expression and percent of cells expressing specific markers are shown by shades of red
color and the size of the dot respectively. (C) PBMC and SENSE single-cell method-based split UMAP showing the distribution of cell types. There
are slightly elevated differences in T-cells subtypes in the SENSE group, while PBMC samples showed higher levels of myeloid cells. (D) Stacked bar
plot showing the relative patient contribution in each individual cell type cluster. The samples from PBMC and SENSE methods are shown with
shades of blue and red respectively. Each cluster depicted the varying levels of contribution from individual patients. The contribution of cells from
each sample is shown using a pie graph with orange and purple colors representing SENSE and PBMC profiled samples respectively. (E) Heatmap
displaying the top two gene markers expressed by each cell type. Columns represent individual cells, grouped by cell type, while rows display
individual genes. Horizontal colored bars above the heatmap indicate the different cell types. Relative gene expression is shown in pseudo color,
where blue represents low expression, and red represents high expression. Top markers generally correlate with well-established canonical markers
for each cell type. (F, G) Comparative analysis proportions of cell types in the PBMC and SENSE methods. The proportion of Total (F) and CD45+
(G) cells per sample between PBMC and SENSE methods are shown. Each bar plot depicts the mean proportions and + standard error of the mean.
Each dot represents an individual sample. The significance of the difference in the mean in the groups was tested using paired Student’s t-test, with
significant differences being indicated with * (P<0.05) and ** (P<0.01).
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which may be a result of the clinical condition of that patient.
Patient 1 is a recently diagnosed JIA patient as compared to other
JIA patients in this study who have been undergoing treatment for
quite some time (Table 1).

To further dissect the expression profiles of different cell types,
we compared the gene expression profile of the target cluster with
the other cells in the sample based on the non-parametric Wilcoxon
Rank Sum test (average log-fold change (FC) 20.25, > 25% of cells
expressing gene, and P<.01). This analysis allowed the
identification of a gene signature for each cell type (Figure 3E).
The SENSE method captured a higher number of T cells per sample
as compared to the PBMCs method indicating its advantage in T-
cell repertoire characterization (Figure 3F; Supplementary Figure 2).
T cell subtype comparison depicted that CD8+ T cells (Naive,
Memory) are significantly elevated (P<.05) in the SENSE method
profiled samples (Figure 3F; Supplementary Figure 3). On the other
hand, the PBMC-based method depicted significant enrichment
(P<.05) of the myeloid cells (Figure 3F). Additionally, PBMC
method also depicted significant enrichment of platelets as
compared to SENSE (P<.01) (Figure 3F). Similar observations
were made while considering only CD45+ immune cells of

>

10.3389/fimmu.2023.1271800

samples, where the PBMC-based method illustrated significantly
better capture for the memory B-Cells in addition to myeloid cells
(Figure 3G). The disparity observed in myeloid cells and platelets
may be attributed to the CD15+ granulocyte removal steps
employed in the SENSE method, while the disparity in T cells
might be due to density gradient step in the PBMC method.

2.3 Cell types exhibited similar
transcriptome profiles for SENSE and
PBMC methods

To assess the sample processing method-induced technical
variations in the overall expression profiles, we studied the
clustering based on cell types split on SENSE and PBMC
methods. Most of the matching cell types, irrespective of the
processing methods, depicted similar clustering patterns except
for subtle variations in the myeloid cells compartment
(Figure 4A). The hierarchical clustering based on the cell types/
subtypes markers genes identified based on the Wilcoxon Rank
Sum test (average log-FC >0.25, >25% of cells expressing gene, and
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FIGURE 4

Comparison of single cell profiles of samples processed using SENSE and PBMC methods. The scRNA-seq data from blood samples processed using
SENSE and PBMC methods were analyzed using a uniform bioinformatics workflow for comparative analysis. (A) Dendrogram showing the distances
between cell types from each method based on the differentially expressed genes for each cell type computed independently. The differentially
expressed genes were identified by comparing the target cell type with others based on an average log FC > 0.25 and Wilcoxon Rank Sum test P<.01
as well as genes expressed in > 25% of a given cell population. (B) A Circos plot showing the correlation between expression profiles of cell types
profiled using SENSE and PBMC methods. The individual cell types between profiling methods depict significant similarities in the expression profiles.
Some cell subtypes within the T cell compartment depicted lower correlations. (C) Comparative analysis of canonical cell type-specific markers
between the two methods. Most of the cell type defining markers are concordantly expressed across corresponding cell types indicating strong
similarity in the SCPs generated by SENSE and PBMC methods. The color scales on the right show the gene expression levels in samples processed
using PBMC (purple) and SENSE (orange) methods. The size of the dot represents the percent of cells expressing specific markers. The Y-axis shows
the cell types with SE indicating samples processed using the SENSE method and PB representing samples processed using the PBMC method. The
X-axis shows the gene names. (D) Shannon's entropy-based batch effect estimation. The UMAP plot shows Shannon'’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC) among the cell's 100 nearest neighbors. The analysis was performed
on normalized data without any batch effect correction. Low entropy values were observed in myeloid cell clusters (marked with red lasso) and an
IFN T-cell cluster (marked with black lasso), indicating poor mixing and method-based batch effect.
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P<.01) depicted that naive and memory T-cells formed one distinct
cluster, while doublets and myeloid cells formed another cluster. B-
cells formed a separate cluster, and natural killer (NK) cells and
effector T-cells clustered together in a different group. For most of
the cellular compartments, the same cell types/subtypes depicted
the highest correlation except the T cells compartment (Figure 4A).
For example, the NK, CD8" effector T-cells, and myeloid cells
depicted the highest correlation between transcriptome profiles
from SENSE and PBMCs method (Figure 4A). In the T cells
compartment, some of the cell types depicted a weaker
correlation between the matching cell types from the two
methods indicating some variation. This finding aligns with a
higher proportion of the T cells captured using the SENSE
method as compared to PBMCs based method. To further
validate the consistency of cell type labeling across methods, we
assessed the similarity of the differentially expressed markers for
each of the 11 cell types from the two methods. To achieve this, cells
from each method were subsetted, and the top differentially
expressed markers for each cell type with respect to all other cells
from the same method were identified based on the Wilcoxon Rank
Sum Test (average log-FC >0.25, >25% of cells expressing gene, and
P<.01) and visualized using Circos plots generated using
ClusterMap (26) R package. The cell types from the SENSE
method depicted high transcriptome correlation with matching
cell types from the PBMCs method, again indicating strong
concordance among the methods (Figure 4B). Next, we assessed
the similarity in canonical/top markers expression for various cell
types based on processing protocol. The markers for each cell type
depicted similar expressions irrespective of the processing method
(split dot plot in Figure 4C). The consistency of key marker genes
expression establishes the transcriptome similarity of cellular
profiles from the SENSE and PBMCs methods. To further assess
and quantify batch effects due to processing methods, we calculated
Shannon’s entropy/cell to assess the degree of mixing of samples
from the two methods (27). Low entropy values indicating poor
mixing of a cells from different samples and methods were observed
mainly in myeloid (0.526 + 0.005) (Figure 4D, red lasso) and T cells
(0.701 £ 0.004) (Figure 4D, black lasso). The rest of the cell types
depicted high entropy (0.872 + 0.001) indicating no batch
effects (Figure 4D).

2.4 SENSE enables deep profiling of
immune repertoire by capturing profiles of
T cell subtypes

T cells are highly diverse and play a critical role in eliciting
immune responses against antigens. To further investigate the
different T cell subtypes captured by SENSE and PBMC methods,
we performed a focused analysis after subsetting out and
reclustering the T and NK cell clusters. The analysis included
27,982 cells that were annotated into 10 distinct T and NK cell
subtypes (Figures 5A, B) based on the expression of marker genes
that include Naive T-cells (CD3D*, CCR7', LEF1"), Effector T-cells
(CD3D", GNLY*, GZMK"), CD4" Naive T-cells (CD4*, CCR7",
LEF1%), CD4" memory T-cells (CD4", TCF7*, TNFRSF4"), CD4"
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Memory IFN T-cells (CD4%, TNFRSF4", ISG15%, MXI"), CD8"
Naive T-cells (CD8", CCR7", LEFI"), CD8" Memory/Effector T-
cells (CD8", TCF7", TNFRSF4"GZMK"), CD8" IFN T-cells (CDS",
ISG15%, MX1™), IFN NK/T cells (CD3D", GNLY*, NKG7", ISG15",
MX1") and NK cells (CD3D", GNLY", NKG7"). In both SENSE and
PBMC methods various subtypes of CD8" T-cells were the
dominant T-cells (~41%), with the remaining cells consisting
primarily of CD4" T-cells (~37%) along with NK cells (~8%),
other T cells (~8.5%) and NK/T (specific to patient 1, ~4.5%)
(Supplementary Figure 3). The Naive T cells formed 51% of the
total T cells captured in the assays. Most of the T cell clusters had
contributions from all the patients except IFN-stimulated clusters
that are patient-specific (Figure 5C). Overall, the SENSE-based
method captured a significantly (P=.007) higher number of T
cells as compared to the PBMC method (Supplementary
Figure 2), but the relative proportion of T cell subtypes is similar
in both methods (Figure 5D; Supplementary Figure 3). Further to
explore the functional landscape of T/NK we performed a
comparative analysis of cellular communication based on the
expression of ligands and receptors (28). Comparison of the
overall number of interactions and their strengths revealed them
to be similar between SENSE and PBMC methods (Figure 5E;
Supplementary Figure 4). Further communication analysis depicted
similar communication patterns among cell types, with CD8+
Naive T-cells with the highest incoming interactions and Effector
T-cells with the highest outgoing interactions (Figure 5F). Further,
we explored the information flow of the signaling pathways based
on the sum of communication probability among cell types of
SENSE and PBMC methods. We observed that most of the
pathways showed a similar information flow pattern, including
CLEC, MHC-], LCK, IL16, ICAM, and ITGB2 (Figure 5G). Some
pathways including MIF, and CD99 depicted different signaling
between cell types from SENSE and PBMC methods. These
pathways typically involve myeloid, platelets, and dendritic cells
(29-31). Therefore, the differential signaling observed in these
pathways may be attributed to the differences in myeloid cells
and platelets captured by the two methods. These results indicate a
common signaling network operates between the cells processed
using either of the two methods, indicating that the SENSE method
yields similar results to the PBMC method and is suitable for
analysis of the T cells landscape in whole blood samples.

2.5 Myeloid lineage cell types have lower
enrichment but similar profiles between
single-cell preparation methods

The myeloid cell compartment is the second largest
compartment of cell types observed in both sample processing
methods. Overall, the SENSE method captured a significantly lower
number of myeloid cells (Figure 3F; Supplementary Figure 2) which
might be due to the filtering out of CD15+ myeloid/granulocytes to
enhance single cell capture efficacy and generate high-quality cells
for capturing. The sub-clustering and annotation on the myeloid
and platelet compartments comprising 7,599 cells yielded seven
distinct cell types or subtypes. Among these, six were identified as
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FIGURE 5
Focused analysis on the T cell clusters to estimate the impact of blood samples processing protocols. (A) A UMAP displaying the T-cell subclusters
split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as T/NK cells (Naive, Effector, IFN+, NK), CD4*
T-cells (Naive, Memory, Memory IFN+), CD8" T-cells (Naive, Memory, IFN+) based on the expression of specific markers. The counts depicted
slightly better capture for T cell sub-clusters in the SENSE method as compared to the PBMC method. (B) Dot plot demonstrating the expression
profile of key markers for each T-cell subtype. The gradient of red color and size of dot represent the relative expression and percent cells
expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual T- cell sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for T-cell subclusters. The
proportion of total T-cells cells per sample between PBMC and SENSE methods for each sub-cluster is shown. (E-G) CellChat based analysis of cell-
cell communication. (E) Total number of interactions and interaction strength of the inferred cell-cell communication networks for T-Cells from
different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the major sources and targets of interaction on the 2D space
where the incoming and outgoing strength for each T cluster along the y-axis and x-axis, respectively. (G) Bar graph to compare the overall
information flow of each signaling pathway between PBMC and SENSE methods.

myeloid subtypes and a single cluster as platelets. Both methods ~ FCGR3A genes along with the expression of other markers
captured every cell type from the myeloid lineage as evident from  (Figure 6B). The analysis of patients’ contribution to different
the split UMAP plot (Figure 6A). These clusters look like classical ~ clusters depicted that some of the clusters like cluster A (LYZ+,
and non-classical monocytes with the expression of CDI4 and  CDI4+, PABPCI+) had contributions from multiple patients
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FIGURE 6
Focused analysis on the Myeloid cell clusters to estimate the impact of single-cell processing protocols. (A) A UMAP displaying the myeloid and
platelet subclusters split based on single-cell processing protocols (i.e., SENSE, PBMC). Subclusters were manually labeled as Clusters A (CD14+, LYZ
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Platelets (PPBP+, PF4+) based on the expression of top markers. The counts were lower for myeloid cell sub-clusters in the SENSE method as
compared to the PBMC method. The platelets were present only in the PBMC samples. (B) Dot plot demonstrating the expression profile of
common myeloid, neutrophils, and platelet markers. The gradient of red color and size of the dot represents the relative expression and percent
cells expressing specific markers, respectively. (C) Stacked bar plot showing the relative patient contribution in each individual sub-cluster. The
samples from PBMC and SENSE methods are shown with shades of blue and red respectively. Each cluster depicted the varying levels of
contribution from individual patients. (D) Comparative analysis proportions of cell types in the PBMC and SENSE methods for myeloid and platelet
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CellChat based analysis of cell-cell communication for Myeloid clusters. (E) Total number of interactions and interaction strength of the inferred
cell-cell communication networks for myeloid cells from different methods, PBMC (purple) and SENSE (orange). (F) Scatter plot to compare the
major sources and targets of interaction on the 2D space where the incoming and outgoing strength for each T cluster along the y-axis and x-axis
respectively, (G) Bar graph to compare overall information flow of each signaling pathway between PBMC and SENSE methods.
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whereas others like cluster F (CD16+, ISG15+) were patient specific
(Figure 6C). Although the SENSE method captured fewer cells in
this compartment, comparative analysis of relative proportions of
myeloid cell subtypes depicts concordance of single cells captured
using the two methods (Figure 6D). To better understand the
communication patterns among different subtypes of the myeloid
lineage, we conducted cell communication analysis. The analysis
was performed only on the clusters that have cells from multiple
patients. Our analysis revealed lower interactions and weaker
strengths of interaction between the subtypes of the myeloid
lineage using the SENSE method (Figure 6E). One possible
explanation for these findings is that there were fewer overall cells
present during the analysis in this compartment from the SENSE
method (PBMC: n=5,401, SENSE: n=1,733). Comparison of cellular
communications patterns among the myeloid cells depicted
significant concordance with cluster A with characteristics like
classical monocytes with most incoming interactions (Figure 6F).
Further analysis of key pathways associated with the flow of
information among cells also depicted multiple similar pathways
including PECAM1, GRN, MHC-I, SELPLG, and Galectin
(Figure 6G). In summary, although there is concordance in the
myeloid cell sub types captured by the two methods, the lower
capture of myeloid cells in the SENSE method is leading to some
cellular communication differences that is one of its limitations.

2.6 SENSE method generated
transcriptome profile similar to publicly
available PBMC transcriptome profile

To further evaluate the transcriptome profile of SENSE method
WB generated data, we performed a comparative analysis with
publicly available PBMC dataset. This PBMC dataset (32) was
obtained from the 10x Genomics Inc. website and processed
uniformly and integrated with our data using integration
anchors-based batch correction. The comparative analysis of
cellular profiles based on split UMAP depicted co-embedding of
major cell types indicating similarity in transcriptome profiles
(Figure 7A). In line with the publicly available 10x Genomics
PBMC dataset (10x PBMC), the SENSE method also captured T
cells as the most abundant cell types from the whole blood profiling.
Shannon’s entropy was computed per cell to assess the degree of
mixing of samples from three datasets (ie., 10x PBMC, PBMC,
SENSE). Most clusters from different datasets depicted high entropy
indicating the mixing of cells from different datasets in respective
clusters (Figure 7B). We observed low entropy in the myeloid cell
clusters (i.e., poor mixing) which might be due to lower capture of
myeloid cells using the SENSE method. Further comparative
analysis of data quality by measuring proportions of cytoplasmic,
extracellular, membrane, ribosomal, and mitochondrial genes
depicted similar profiles indicating the similar quality of single-
cell data (Figure 7C). The assessment of the similarity in canonical
marker expression distribution from 10X PBMC dataset and our
cells from SENSE method depicted similar expressions for most cell
types (Figure 7D), with the primary exception being the previously
noted myeloid cells. The consistency of key marker expression
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demonstrates that cell types can be identified reliably using the
SENSE method, and comparative analysis can be performed among
the samples profiled using different methods.

3 Discussion

Analysis of blood samples is the most direct and least invasive
approach (33) to decipher disease mechanisms and identify
biomarkers (34). SCP of blood samples is ideal for characterizing
how the profiles and characteristics of different immune cells in the
blood change in response to disease or therapy, however, the need
for immediate sample processing to prepare and preserve viable
single cells is a major deterrent towards implementing this on
samples collected in a clinic or hospital setting. The traditional
method for isolating PBMCs using the Ficoll-Paque density
gradient method for SCP is cumbersome and its implementation
is challenging due to the lack of time, equipment, and trained
personnel in most clinics. This may also be partly responsible for
the limited implementation of single-cell profiling in clinical trials.
Direct cryopreservation of blood samples without pre-processing
has been reported to result in cell death and RNA/DNA
degradation, hampering molecular profiling (35). To address
these limitations, we have developed the SENSE method for
viably freezing WB collected in EDTA tubes without any need for
centrifugation steps, special reagents, and trained personnel. The
one-step addition of FBS/DMSO freezing solution assists in the
cryopreservation of WB cells by preventing the formation of
intracellular ice crystals, minimizing cell stress, and thereby
maintaining cell integrity/preventing senescence. Granulocytes
depletion post-thawing of WB samples enables the recovery of
high-quality mononuclear cells as granulocytes are poorly
cryopreserved in freezing media and release DNA and lysosomal
enzymes promoting cellular damage/clumping (36).

Validation of one-step SENSE method for cryopreservation of
WB will jump-start clinical implementation of SCP as well as
advance single-cell research. To validate the SENSE method and
demonstrate its suitability for cryopreserving high-quality single
cells for SCP, we processed freshly collected blood samples with
both the SENSE and the traditional density gradient isolation of
PBMCs methods. The initial step following the procurement of
blood samples, i.e., cryopreservation was much faster and easier
with the SENSE method compared to the more time-consuming
and complex density-gradient isolation of PBMCs. Although there
were slight differences in the viability of cells after the thawing and
washing steps, they were not significant and did not affect the
quality of the single-cell profiles. We tested multiple quality metrics
to evaluate the quality of cells prepared using the SENSE method in
comparison to the PBMC isolation method. Quality metrics like
median gene counts and unique molecular identifiers (UMIs), were
found to be comparable between SENSE and PBMC methods. High
mitochondrial content is indicative of poor-quality cells that are
either undergoing apoptosis or have lyzed (37). The median
representation of <10% mitochondrial genes in WB and PBMC
samples confirms a similar proportion of high-quality single cells
obtained with both methods. The SENSE method depicted a slight
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FIGURE 7

Comparing the transcriptomic profile of SENSE method samples with PBMC method samples from 10x Genomics legacy datasets. (A) Split UMAP of
SENSE and PBMC methods data from our experiments and legacy data, 10x PBMC, from 10x genomics. Cluster labels are based on transferring the
labels from SENSE, PBMC data. (B) Shannon’s entropy-based batch effect estimation. The UMAP plot shows Shannon'’s entropy of different clusters
calculated based on the distribution of SCP protocol labels (i.e., SENSE, PBMC, 10x PBMCs) among the cell's 100 nearest neighbors. The analysis was
performed on normalized data with batch effect correction using integration anchors. (C) Proportion of group-wise genes in cytoplasmic,
membrane, extracellular, and ribosomal gene ontology categories, along with percent mitochondrial genes (green - 10x PBMC, purple-PBMC,
orange - SENSE). (D) Violin Plots comparing the expression of various cell markers among our SENSE, PBMC data with 10x PBMC dataset.

advantage in capturing the profile of the higher number of cells as
compared to the PBMCs method from similar cell suspensions
(concentration and viability). The high quality of cells was further
confirmed by the lack of cellular damage artifacts with the SENSE
method. On closer inspection of the percentage genes in the
cytoplasmic ontology category, we see bimodal distribution in
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PBMC method, in contrast to a unimodal distribution in SENSE
method (Figure 2D). Myeloid and platelet cells were found to have a
higher percentage of cytoplasmic genes (~32% - 40%) as compared
to the rest of the cell types (~20% - 30%) (Supplementary Figure 5).
Myeloid and platelets cells were captured more in the PBMC
method as compared to SENSE method, resulting in the bimodal
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distribution observed in Figure 2D with the former method.
Processing times and cryopreservation can result in changes in
cell cycle stages when performing SCP which will affect the
transcriptome (38). We observed no significant differences in the
cell cycle phases between samples processed using the two methods.
Multiplets can be biologically misleading and arise when two or
more cells are captured in single droplets during encapsulation
steps (39). Doublets can occur due to poor quality of cells resulting
in two cells clumping together, dying cells and/or broken cells
resulting in misleading hybrid transcriptomes (25, 39). We did not
observe any significant differences in the number of doublets
present between the samples processed using the SENSE method
and the PBMCs method. The SENSE method was shown to have
slightly fewer doublets compared to the traditional PBMC method
(doublet cells: PBMC method, n=916; SENSE method, n=539).
Therefore, comparative analysis of the single-cell quality of cells
obtained using the one-step cryopreservation SENSE method
revealed striking similarities to the traditional multi-step
cryopreservation PBMCs method, reinforcing its utility as a
method of choice for ease of cryopreservation and single-cell
profiling of clinical WB samples.

Cellular landscape revealed by clustering enables identification
of cell types and their individual biological states and specific
functional roles in disease development and progression (40). All
major cell types were represented in UMAPs generated from
scRNA-seq data of samples prepared with both methods. The
marker genes were shown to have similar expressions for each
cluster/cell type or subtype from both methods. Hierarchical
clustering demonstrated that different immune cell types have
unique transcriptomes that enable their classification into distinct
clusters irrespective of sample processing method. The relative
cellular abundance analysis revealed that while dominant cell
clusters were similar in samples processed using either of the two
methods, there were differences in the myeloid and T cells subtype
clusters. Although the density gradient centrifugation method to get
PBMCs should remove heavier granulocytes, there are instances of
incomplete removal of granulocytes, especially in certain
pathological conditions like sepsis (41) and autoimmune
disorders (42) where there is increased amounts of low-density
granulocytes (43). Also, delay in processing of blood can result in
granulocyte activation; resultant degranulation gives rise to low
density granulocytes that will not be separated out efficiently by
density gradient methods (44). In SENSE method, the CD15"
granulocytes are selected and removed to obtain high quality
CDI15 mononuclear cells. CD15+ cell depletion was combined
with density gradient centrifugation to effectively purify PBMCs
from sepsis patients with high percentage of low-density
granulocytes (43). Though there was some resultant loss of
additional cells other than granulocytes during the CD15" cells
depletion steps, the functional cellular properties were not
compromised (43). The observed differences in myeloid clusters
in this study might be attributed to the SENSE method’s removal of
CD15" cells to filter out sticky granulocytes that might have also
filtered out aggregating monocytes and platelets. Importantly, the
SENSE method was able to recapitulate the myeloid compartment
associated with disease as we observed similar patient-wise
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differences of cell-type distribution in scRNA-seq data from both
methods. In summary, even though SENSE captures fewer myeloid
cells compared to the PBMC method, it is still capable of revealing
differences in the proportions of myeloid cells within given samples.

On the other hand, we observed more efficient capture of T cells
in SENSE method cryopreserved WB samples. Importantly, our
focused analysis on the T cells compartment showed that the
SENSE method captured a significantly higher number of T cells
representing various types and subtypes, including Naive, Effector,
and Memory T-cells. The possible cause of lower T-cell enrichment
with the PBMCs method might be due to some T-cells being lost
during the Ficoll-Paque density gradient centrifugation step due to
the difference in density of these cells (45). These results make our
simple WB sample cryopreservation combined with CD15"
granulocyte removal method especially suitable for immune
repertoire profiling using VD] enrichment to explore the
association of T cell clonality with disease or therapeutic outcomes
analyses. Based on the single-cell quality metrics, the cryopreserved
WB using the SENSE method yielded high-quality single cells similar
to cryopreserved PBMCs isolated using the traditional density-
gradient method. Furthermore, the SENSE method can be
extended for more granular characterization of immune repertoire
using single cell proteomics/multidimensional profiling.

Comparison analysis of our data with an external 10x Genomics
PBMC dataset (32) revealed concordance between the three datasets
as all cell types were consistently identified in all three datasets. The
high quality of cells obtained with the SENSE method was further
demonstrated by quality metrics like lower % membrane genes and
higher % extracellular genes compared to the external PBMC
dataset. This analysis further validates the robustness of the
SENSE method to acquire high quality single-cells for single
cell profiling.

4 Methods
4.1 Sample collection

Informed consent according to Emory University IRB protocol
(IRB00079391 Determinants of Childhood Autoimmunity) was
obtained from Juvenile Idiopathic Arthritis (JTA) (n=5) and
pediatric Lupus (n=1) patients being treated in the rheumatology
clinic in CHOA prior to sample collection. Blood samples were
collected in lavender top EDTA tubes and transported to the lab
from the clinic at room temperature. Samples were cryopreserved
within 2h post-collection.

4.2 PBMCs isolation and whole
blood cryopreservation

The freshly collected blood was split into two equal aliquots,
with one aliquot processed for isolation of PBMCs while the other
aliquot was frozen directly using a cryopreservation solution.
PBMCs were isolated using the standard Ficoll-Paque density-
gradient method according to manufacturer’s instructions
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(Cytiva). Briefly, blood diluted in phosphate buffer saline (PBS)
(1:1) was gently layered onto Ficoll-Paque PLUS (Cytiva, 17144002)
and spun at 500g for 30 minutes at 21°C. The top layer (plasma) was
removed and discarded. The layer containing the mononuclear cells
was then carefully removed and diluted with 3x volume of PBS,
mixed well, and spun at 500g, for 10 minutes at 21°C. The pellet was
resuspended in PBS and washed again by spinning for 10 minutes at
500g and 21°C. The PBMCs pellet was then resuspended in 1 ml
recovery cell culture freezing media (Fisher Scientific, 12648010) at
a concentration of <10X10° cells/ml. The second set of blood
samples (by the SENSE method) was viably preserved by mixing
whole blood 1:1 with freezing solution made up of 80% heat-
inactivated fetal bovine serum (hiFBS) and 20% dimethyl
sulfoxide (DMSO). Samples were gradually frozen by placing in
Mr. Frosty freezing container (Fisher Scientific, 5100-0001) and
stored at -80 °C till further use.

4.3 Single cells preparation

Frozen PBMC samples were thawed and washed with wash buffer
(PBS containing 1% BSA) to prepare viable single cell suspensions
(14). Frozen whole blood samples were also thawed, and cells were
pelleted (380g, RT, 6.5 minutes), the supernatant was gently removed
so as not to disturb the pellet, which was then resuspended in EasySep
buffer (STEMCELL technologies, 20144) and filtered through 100 um
filter mesh (Fisherbrand, 22363549). The EDTA concentration of
EasySep buffer used for washing and diluting the cells was modified.
The amount of EDTA in the EasySep buffer containing ImM EDTA
was increased to 4mM by adding an additional 3mM EDTA. EDTA is
known to rapidly reverse the preferential binding of platelets to
monocytes (46). Therefore, the presence of higher EDTA
concentration in the buffer results in increased capture of high-
quality mononuclear cells. Granulocytes were removed using a
modified EasySep CD15 selection (EasySepTM Human CD15
Positive Selection Kit; STEMCELL technologies, 18651) protocol.
Also, RBC depletion beads (STEMCELL Technologies, 18170) were
added following the CD15 cocktail mix and RapidSpheres incubation
steps to remove red blood cells. Following EasySep magnetic
separation of CD15" antibody-bound granulocytes, the CD15
mononuclear cells supernatant was collected, cells pelleted and
resuspended in PBS containing 1% BSA for generating viable cells
for scRNA-seq libraries. A detailed stepwise protocol for the SENSE
method is included as Supplementary document 1.

4.4 Single-cell assays and sequencing

ScRNA-seq libraries were prepared from viably thawed WB and
PBMC:s single-cell samples prepared in the previous section according to
manufacturer’s (10x Genomics) instructions. CellPlex kit (10x Genomics,
1000261), which allows the pooling of samples prior to GEMs generation
by labeling samples with unique cell multiplexing oligos (CMOs), was
used to multiplex samples. The pooled samples were used to generate
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GEMs, followed by RT-PCR steps and cDNA amplification using Next
GEM single cell 3'v3.1 kits (10x Genomics, 1000268). Following the
c¢DNA amplification step, size selection beads were used to separate the
CMO and gene expression (GEX) cDNAs that were then used to prepare
the CMO and GEX libraries respectively. The final CMO and GEX
libraries were then pooled and sequenced according to 10x Genomics
sequencing parameters using Novaseq S4 PE100 (Illumina) kits for
comprehensive transcriptome profiling.

4.5 Single-cell profiling analysis

The raw FASTQ files from each multiplex sample were aligned
using 10x Genomics Cell Ranger (32) 6.1.2 to align against a reference
human genome (GRCh38) for generating raw cell-gene count
matrices. The count and CMO matrices from the samples were
analyzed with R (v 4.2.2) using Seurat (47) (v 4.0.4) and other
Bioconductor packages. Low-quality cells were filtered using Seurat
to keep only cells with >200 unique genes, >600 UMI reads, and <
20% mitochondrial UMIs. Potential doublets were marked using the
doubletFinder (25) algorithm that identifies doublets based on
neighborhood search on principal component analysis (PCA).
Assuming 3.5% of doublet formation from the 10x multiplexing
experiment, we performed analysis with top 10 principal components
with a neighborhood size of 0.1(pK) to predict doublets. The count
matrices were normalized using the SCTransform algorithm,
regressing out the per-cell UMI count, the number of unique
features per cell, and the percent mitochondrial reads mapped to a
cell. The normalized cell count was used for selecting the top 2,000
variable genes for principal component analysis (PCA) to identify the
principal components capturing the most variance across the
samples. Similar cells were clustered together via Louvain clustering
on the top principal components using the Seurat package that was
visualized Uniform Manifold Approximation and Projection
(UMAP) to determine the overall relationship among the cells. The
cell clusters were manually annotated based on canonical cell markers
described in our previous studies. The cell markers for the different
cell clusters were identified by comparing target cell types with others
captured in the assay using the Wilcoxon Rank Sum test (adjusted
P<.10, average log2FC > 0.25, and percent cell expression > 25%).

4.6 Entropy calculation and
Gene-Ontology based cellular
component enrichment

Shannon entropy was calculated per cell for assessing the
batch effect due to method variation using 100 neighbors and 20
principal components using the CellMixS (27) R package. The gene
signatures for cellular components (extracellular region, cytoplasm,
membrane, ribosome) were sourced from Gene Ontology (48)
database (GO:0005576, GO:0005737, GO:0016020, GO:0005840).
PercentageFeatureSet function of Seurat was used to calculate the
percentage of all UMIs that belong to the gene signature per cell.
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4.7 Comparative analysis of cell types
across single-cell processing methods

We performed a comparative analysis of cell type abundance
as well as gene expression between SENSE and PBMCs methods.
The cellular proportion per patient were calculated and compared
between methods using paired t-tests. The cell types with a P value
<.05 were considered significantly differently enriched between
methods. To determine the correlation between cell types between
methods we implemented the ClusterMap package in R designed
to compare cellular profiles across multiple single-cell datasets
(26). Initially differentially expressed genes (DEGs) for each cell
type in a method-specific manner (i.e., SENSE, PBMC) were
identified based on the fold change and Wilcoxon Rank Sum
Test (average log-FC 20.25, >25% of cells expressing gene, and P
<.01). DEGs were computed using Seurat’s “FindAllMarkers”
function. This was followed by hierarchical clustering of DEGs
using their presence or absence (binary expression) in different
cell types to generate a cluster dendrogram. The relative distance
of cell types on the cluster dendrogram can be quantified by the
similarity of the cell types. The similarity of the cell types is
measured based on their Jaccard index. To match a cell type
profile with another cell type ClusterMap introduced a purity tree
cut algorithm (26). The algorithm uses the origin of cell types,
clustering pattern on the dendrogram, and similarity to match the
cell types from different methods. This results in matching cell
types as well as merging cell types in a group if cell types depict
>90% similarity within a method. The results from the analysis are
displayed as a Circos plot summarizing the similarity in cell types
and subtypes similarity.

4 8 Cellular communication and
interaction analysis

Cellular communication analysis was performed using the
CellChat platform (28). Cells from each processing method were
isolated, and ligand-receptor (L-R) analysis was performed on the
SENSE and PBMC methods independently using the standard
CellChat analysis. Differentially expressed signaling genes were
identified using the Wilcoxon rank sum test (P< 0.05), which was
followed by communication probability/strength calculation
between any interacting cell types. The cell-cell communications
were filtered out if they were present in a cell type/subtype with less
than 10 cells. The number of interactions and their strengths were
aggregated for each method. To compare the overall signaling
structure between cells in SENSE and PBMC samples, interaction
weights were used, which sum the information flow of all L-R
interactions between two cell types of lymphoid and myeloid
lineages. The sum of outgoing or incoming communication
probability associated with each cell group was visualized on a
scatter plot showing the dominant senders (sources) and receivers
(targets) cell types. The size of the data points on the scatter plot
corresponded to the number of inferred links, both outgoing and
incoming, connected to each specific cell type. Information flow/
interaction strength characterizes the likelihood of cell-cell
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interaction occurring through a given pathway. Cells with high
expression of a known ligand will have high information flow
scores with cells that have high expression of the matching
receptor. The conserved or processing method-specific pathways
were evaluated by comparing the sum of communication
probability among cell-type pairs for each pathway.

4.9 Comparing the SENSE and PBMC data
with external PBMC dataset

Single-cell gene expression dataset for frozen PBMC samples
(10x PBMC) from 3 donors (Donor A, B, and C) were downloaded
from 10x Genomics datasets (32). The filtered gene expression
matrices were merged with the PBMC and SENSE samples. The
count matrices were again normalized using the SCTransform
algorithm, regressing out the per-cell UMI count, the number of
unique features per cell, and the percent mitochondrial reads
mapped to a cell. The top 2,000 variable genes were found, and
further Louvain clustering was performed on the top principal
components using the Seurat package that generated a UMAP to
visualize the overall relationship among the cells. To correct for any
batch effect the samples count matrices from 10x PBMC and
PBMC, SENSE datasets were normalized and integrated using
integration anchors-based batch correction approach of the
Seurat package. The cell clusters were manually annotated by
transferring cluster labels from PBMC, SENSE to 10x PBMC
samples. Based on distribution of existing labels on new
clustering, some clusters were merged like B-Cell (B-Cell and
Memory B-Cell), CD4+ T-Cell (CD4+ Naive and Memory T-
Cell) and CD8" Cytotoxic T-Cell (CD8" Effector and Memory
T-Cell).
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Using adjusted local assortativity
with Molecular Pixelation
unveils colocalization of
membrane proteins with
iImmunological significance
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Johan Dahlberg* and Alvaro Martinez Barrio™
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Advances in spatial proteomics and protein colocalization are a driving force in
the understanding of cellular mechanisms and their influence on biological
processes. New methods in the field of spatial proteomics call for the
development of algorithms and open up new avenues of research. The newly
introduced Molecular Pixelation (MPX) provides spatial information on surface
proteins and their relationship with each other in single cells. This allows for in
silico representation of neighborhoods of membrane proteins as graphs. In order
to analyze this new data modality, we adapted local assortativity in networks of
MPX single-cell graphs and created a method that is able to capture detailed
information on the spatial relationships of proteins. The introduced method can
evaluate the pairwise colocalization of proteins and access higher-order
similarity to investigate the colocalization of multiple proteins at the same
time. We evaluated the method using publicly available MPX datasets where T
cells were treated with a chemokine to study uropod formation. We demonstrate
that adjusted local assortativity detects the effects of the stimuli at both single-
and multiple-marker levels, which enhances our understanding of the uropod
formation. We also applied our method to treating cancerous B-cell lines using a
therapeutic antibody. With the adjusted local assortativity, we recapitulated the
effect of rituximab on the polarity of CD20. Our computational method together
with MPX improves our understanding of not only the formation of cell polarity
and protein colocalization under stimuli but also advancing the overall insight
into immune reaction and reorganization of cell surface proteins, which in turn
allows the design of novel therapies. We foresee its applicability to other types of
biological spatial data when represented as undirected graphs.

KEYWORDS

molecular pixelation, single cell, spatial proteomics, graph theory, topological data
analysis, local assortativity, uropod formation, Rituximab
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Introduction

The spatial organization of proteins governs a number of
complex cellular processes such as cell signaling, cell-cell
communication, and mobility. To enable the detection of proteins
in cells and tissues, affinity reagents have remained the mainstay in
the field. They have been used extensively in fluorescence
microscopy tagged with fluorophores, typically providing
fluorescence intensity data from each channel in one focal plane.
The generation of three-dimensional information at high
throughput and multiplexity is thus limited by the need for
microscopy imaging. Imaging flow cytometry overcomes this
throughput limitation by coupling traditional flow cytometers
with the acquisition of an image of each cell (1). Fluorescence
resonance energy transfer (FRET) microscopy measures the transfer
of energy from an excited molecular fluorophore (the donor) to
another fluorophore (the acceptor) (2). FRET microscopy imaging
can achieve colocalization of labeled pairs of probes within sub-
micron distances. However, the limitation of all microscopy
techniques in terms of dimensionality and high-plexity
information remains, as only a few antibodies can be acquired at
the same time on the different microscope channels. Furthermore,
the signal to noise is also hampered by auto-fluorescence, detector
noise, optical noise, and spectral bleed-through between channels.
Super-resolution imaging methods have provided groundbreaking
insights in three-dimensional (3D) but are yet limited in
multiplexing and throughput (3). Furthermore, super-resolution
instrumentation is expensive and requires advanced training to
even analyze the data.

To overcome the multiplexity problems, mass cytometry
coupled antibodies to isotopes of different atomic weights that are
detected by a mass spectrometer, such that the quantity of detected
ions in a particular mass channel becomes a proxy for molecular
detection (4). Although imaging mass cytometry (IMC) has been
used with success in tissues, still, the multiplexity reported is still as
high as 80 proteins (5). However, the application of IMC to tissues
of 1-mm thickness (6) holds promise for 3D resolution on single
cells one day. With the advent of next-generation sequencing
(NGS), the tagging of antibodies with DNA oligos coupled to
NGS readout has the potential of unlimited multiplexing.
Although reading protein tags does not provide any spatial
information (7), it has been shown to multiplex to 273 proteins
(8). Other methods with different tagging strategies have been
successful in showing antibody specificity to antigens by
sequencing paired B-cell receptor (BCR) clonotypes interacting
with DNA-barcoded antigens (9) or a recent proximity ligation
assay by sequencing that is able to infer protein complexes (10).
Similar to FRET, the drawback of the Prox-seq approach is that only
proteins of interest are found in pairs, not larger constellations, and
the location of proteins in the cell membrane is not achieved, as it
lacks the relationship context.

As a result, developing a novel method to study spatial protein
organization in a single cell has gained enormous significance in the
past decade (11-13). A new emerging NGS-based method,
Molecular Pixelation (MPX), provides spatial information on
surface protein abundance and their relationship with each other
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on single cells in a three-dimensional field of view. Every single cell
in MPX high-throughput datasets is encoded as a bipartite graph,
which in turn can be analyzed to gain new insights into the
colocalization of cell surface proteins (14). As graph metrics are
commonly employed in social and biological networks, there are
many analysis methods with potential applications for this new type
of single-cell proteomics input data. In this study, we have adapted
the application of local assortativity (15) to not only compare sets of
proteins per node in the graph of each single cell but also
numerically compare all nodes of the graph in terms of attribute
distribution. Although MPX is not able to infer direct protein
interactions in its current state, it enables the discovery of protein
constellations of biological significance and allows the exploration
of protein colocalization as a novel therapeutic target.

Materials and methods
Molecular Pixelation

The MPX workflow builds an amplicon in three steps: the first
step involves staining the cells with antibody-oligonucleotide
conjugates (AOCs). In the next step, a set of DNA pixels, each
containing a unique sequence identifier so-called A-pixel, hybridize
into a group of spatially proximal AOCs each, and a gap-fill ligation
reaction adds the unique sequence identifier to the AOC,
imprinting AOCs with the same A-pixel neighborhood tag. Next,
a second reaction is performed with a set of B-pixels connecting
several A-pixel areas. The combined spatial information imprinted
by A- and B-pixels preserves the information of which protein
molecules were spatially adjacent on the original cell surface (14).

MPX data from any immune cell in solution can be represented
as a bipartite graph G, where A- and B-pixels are nodes
interconnected by a set of AOCs as edges. We transformed each
bipartite graph G into an A-node projection, where edge attributes
of the bipartite graph become node attributes of the projected graph
in the A-node of the A-B parts (14). Subsequently, the A-nodes
become directly connected following the original connections of the
B-nodes. We used A-node projected graphs from the original
bipartite graph G throughout this study to move the antibody
edge labels and counts into A-nodes and to be able to use local
assortativity. Local assortativity only works for MPX if protein
labels and counts are projected to the A-node. For the rest of this
study, when we used the concept of node or vertex on a cell graph,
and we referred to an A-node with antibody labels and counts.

MPX can record the counts of each protein molecule, which can
be used to assess differences in protein abundance between cell
states or conditions. However, the two most important features of
this data type are to be able to study the relative positioning of
individual protein markers, as well as their colocalization. First, the
Jaccard Index and Pearson’s correlation across different proteins in
the same single-cell graph were used in order to ascertain if two
proteins tend to colocalize or not upon stimulation. MPX global
measure to study homophily/heterophily in single-cell graphs
currently requires the definition of a local neighborhood
parameter to identify molecules present in pixels assigned to a
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given antibody (14), and it would be desirable to have a parameter-
free definition of local neighborhoods.

Molecular Pixelation datasets

Karlsson and colleagues, by applying the MPX workflow,
generated several datasets' demonstrating the technological
capabilities of MPX for different applications (14).

One of those applications is stimulating human T cells with
phytohemagglutinin (PHA) followed by IL2 for 5 days into the
formation of uropods. Leukocyte migration prompts the formation
of distinct structures in cells in order to follow chemotactic gradients
and reach the target tissue. Leukocytes polarize and convert mechanical
force into forward locomotion by coordinating a regulated bidirectional
cycle: the leading edge pushes the cell forward, whereas the plasma
membrane moves to the rear (16). The leukocyte uropod formation
was first described during studies of the interactions between T
lymphoblasts and macrophages (17). Irrespective of the cell type, the
uropod trailing protrusion, referred to as the “uropod knob” (18),
involves intracellular actin polymerization and actomyosin contraction
providing the force that creates the protrusion. CD50 (ICAM3) and
several proteins are supposed to colocalize on the uropod structure
(Figure 1A) (19) with CD50 polarization being validated by
microscopy (Figure 1B) (14).

Karlsson and colleagues fixed and cultured PHA blasts on plates
coated with either 5 ug/mL of CD54Fc antibody alone or with two
different chemotactic cytokines in solution or 10 ng/mL of CCL5
(RANTES) in one condition or CCL2 (MCP1) in another at 37°C
for 1 h. We downloaded the output dataset PXL files from three of
the conditions in the experimentz, one with cells fixed with CD54
and stimulated within solution RANTES (“uropod CD54 fixed
RANTES stimulated”, 657 cells), a second one with cells fixed
with CD54 (“uropod CD54 fixed”, 733 cells), and the last with
cells in solution without the stimulation as a control (“uropod
control”, 658 cells); for the rest of this paper, we will refer to these
datasets as stimulated cells, fixed control, and control, respectively.

In another MPX application, Raji cells (ATCC, Manassas, VA,
USA)® were Fc-receptor blocked with 50 pg/mL of human IgG for
15 min at 4°C and washed. Cells were then either fixed directly with
paraformaldehyde (PFA) (“control”, 607 cells) or incubated with 20
pg/mL of rituximab (RTX) (ProteoGenix, Schiltigheim, France)
with a specific AOC (“treated”, 873 cells) in Roswell Park
Memorial Institute (RPMI) media for 60 min at 37°C, followed
by PFA fixation and washing. RTX, a monoclonal antibody therapy
approved for medical use in 1997, targets CD20 primarily on the
surface of B cells. RTX mediates antibody-dependent cellular
cytotoxicity (ADCC), allowing specific NK-cell killing (23)
(Figure 1C) by polarizing CD20 on a cap at the surface of B
cells (Figure 1D).

1 https://software.pixelgen.com/datasets/.

2 https://software.pixelgen.com/datasets/uropod-t-cells-v1.0-

immunology-|.

3 https://www.atcc.org/products/ccl-86.
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We downloaded the output dataset PXL files from the two
conditions in the Raji cell MPX experiment® (Figure 1E) and
applied adjusted local assortativity to them. Comparing both
populations of treated and control cells allowed us to recapitulate
the already described RTX mechanism of action (23).

Local assortativity

Assortativity is a well-known concept in graph theory and
network science, which compares the patterns of vertex attributes
across the network. The most common version is the global
assortativity where the whole graph is considered and the vertices
are compared on a global scale (24, 25). A downside of the global
measurement is that it does not account for local heterogeneity in
subregions of the network. This problem was overcome by different
versions of the local assortativity, which focused on studying the
homogeneity in communities of labeled networks. The advantage of
the local assortativity is that each vertex gets assigned a score based
on the attribute of interest, and thus, one can analyze in detail the
distribution of the network properties (15, 26, 27). A classic
example of this is calculating the local assortativity for the degree
of each vertex (Figure 1F). We transformed every cell bipartite
graph into their A-node projected graph and transferred the labels
from the edges to the vertices to be able to apply local assortativity
and calculate an assortativity score for each vertex.

Herein, we used local assortativity as defined by Peel and
colleagues (15) and applied it to two of the MPX public datasets
(Figure 2) generated with slight modifications in the PageRank
threshold (Supplementary Data 1.1).

In addition to the 76 antibodies targeting specific protein
epitopes in the panel (14), three mouse isotype control antibodies
were included (mIgG2b, mIgGl, and mIgG2a). With the
information provided by these control proteins, we determined a
lower boundary required in order to calculate the colocalization
score on the other 76 proteins. This “isotype threshold” is set by the
maximum number of isotype protein counts per cell based on the
three mouse controls.

threshold

‘proteins

= max(Nproteins(mIgGZb)> Nprateins(mIgGl )» Npruteins(mlgcza))

If the number of raw molecule counts for a given protein in a
cell is below that threshold, the assortativity scores are set to zero for
that protein in all nodes of the A-node graph. A second filter
(“vertex threshold”) will require each protein to be present in more
than 10 vertices on the A-node graph. If those limits are not met, we
consider that there is too little information in the cell to create a
high-quality local assortativity distribution and all the A-nodes for
that protein on that cell are also initialized to zero.

4 https://software.pixelgen.com/datasets/cd20-rituximab-v1.0-

immunology-I.
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FIGURE 1
(A) Illustration of the uropod formation on the CD54 coated surface and proteins previously associated with T-cell uropods: ICAMs (ICAM1-3: CD54,
CD102, and CD50), mucins (CD43 and CD162), and integrins (CD11a/CD18; alLB2 integrin or LFA-1) (16); CD44 (19, 20); and CD37 (21, 22). (B)
Widefield immunofluorescence microscopy picture of the uropod formation in both control (left) and stimulated cells (right) with CD50 (red,
phycoerythrin fluorophore) and stained nuclei (blue, DAPI). Some of the polarized CD50 pertaining to the uropods upon stimulation are marked by
white arrows in the picture. (C) Illustration of the stimulated CD20 receptors on the RTX-treated B-cell sample. Here, the RTX monoclonal
antibodies interact with each other, thus creating a strong polarization cap on one side of the cell. (D) Widefield immunofluorescence microscopy
picture of the RTX experiment with control (left) and treated (right) Raji cells with CD20-RTX (red, phycoerythrin fluorophore) and stained nuclei
(blue, DAPI). Cells polarized after RTX capping are marked by white arrows in the picture. (E) The MPX workflow starts with cell fixation to immobilize
the proteome on the surface of the cell, followed by staining with the AOC panel and two steps of Molecular Pixelation before a library is prepared
for sequencing. (F) Illustration of the cell-to-graph transformation as explained in the MPX study (14). The double MPX workflow step carried out in
vitro denotes a spatial neighborhood represented by a bipartite graph with AOC molecule counts associated with the edges. This bipartite graph can
then be represented into its A-nodes. The A-node projection results in a shift of information from the edges to the vertices. Based on these vertex
attributes, we can now compute the (adjusted) local assortativity for each vertex and color the nodes on a scale from assortative (red) to uniform
mixing (white) to disassortative (blue), as seen in the last step of the panel (15). ICAMs, intercellular adhesion molecules; RTX, Rituximab; MPX,
Molecular Pixelation; AOC, antibody—oligonucleotide conjugate
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FIGURE 2
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(A) Adjusted local assortativity scores for the CD50, CD162, and CD37 displaying the characteristic uropod in one of the cells from the stimulated
chemotactic experiment. The color scheme here is a gradient from high local assortativity in red to high local disassortativity in blue with uniform
mixing in white. (B) Stimulated cells from the RTX-treated experiment where CD20, CD54, and CD82 are colored by the adjusted local assortativity.

RTX, Rituximab.

Bound version of local assortativity

The original version of local assortativity defined by Peel and
colleagues (15) did not have explicit boundaries, and the
distribution of values was not generally comparable across
different graphs. Therefore, in this study, we had to improve the
score by creating an adjusted version, which improves the general
comparison across graphs and values. With this in mind, first, we
created a distribution that would have similar maximum and
minimum values for the same marker when looking at different
cells. These values would imply a boundary for each distribution,
allowing us to compare the scores across cells and samples.

To account for the different scores across graphs, we adjusted
local assortativity to have zero mean by reweighting the positive and
negative scores separately and preserving zero as uniform mixing.
This also has the advantage of creating a boundary in both
directions. In practice, we therefore compute first the local
assortativity as defined by Peel et al. and divide each positive
value by the sum of all positive values to normalize the data. The
same is done for the negatives by the sum of all negatives.

In mathematical notation, this is equivalent to the
following statements.

Frontiers in Immunology

Let x; be the unadjusted local assortativity scores as calculated
by Peel et al. (15), and then normalized assortativity f(x;) is
defined as

5 P forx;=0and 7, |x| >0,

f(xj) 2217

i=1,%;>0 1
fx) =r——forx;<0and 37, |x]>0
2i:1,x,<0 ||
and f(x;)) = 0 for and 7, [x;| = 0.

After the first step of normalization, we adjust the created score
to have one standard deviation dividing each value of the scores
from the previous equation by the standard deviation of the
distribution. This results in global upper and lower limits for the
normalized local assortativity distribution. Rewriting now the first
equation for simpler notation, we get x; = f(x;), which when divided
by the standard deviation gives us the normalized standardized local
assortativity of the warkflow g (x;). _
~ X: X: n ~
g(x) = = > = Iy for 7, |x| >0,

! 2?:1 (x; — 1) Ezn=1 Xi ! l
and g (x;) = 0 for 311, |x;] = 0.

In order to correct for outliers and homogenize the scale of this
distribution, akin to standard single-cell methods (28), we used the
log transformation to create a more uniform distribution
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(Supplementary Figure 2). Here, we observed similar minima and
maxima across multiple proteins, assuring the comparability of the
scores across different cells or, more generally, different networks
containing attribute information. Therefore, our work improves the
previous local assortativity method (15) specifying the upper and
lower bounds and enabling representative comparisons and
aggregations.

h(zj) = sgn(z;) - log(|zj| +1)

= Q(xj) = (h°g°f)(xj)-

By combining all these transformations, we obtained the
adjusted version of local assortativity, and proof for its bounds
can be found in Supplementary Data 1.2.

Pairwise colocalization

Our aim was to look at any combination of proteins
colocalizing, but initially, we created a metric that outputs the
colocalization of two proteins by combining the newly introduced
adjusted local assortativity measurements. With local assortativity,
we had positive and negative values for each node; thus,
colocalization would translate to the correlation of vertex values.
Therefore, we can apply Spearman’s correlation to create a metric
that yields the desired colocalization for the two given proteins
of interest.

Let n be the number of vertices in the graph, x; and y; be the
local assortativity scores for two proteins on a vertex in the graph
with 0 < i < n, and R the rank transformation. Then, the
colocalization score of two proteins X = {xo,xy,...,x,} and Y = {yo,
Y1>--yufcan be expressed using ¢(x) and Spearman’s correlation
(29-31) as

S R(e(x) - R(e(y)
VS RS Rel)?

Proteins that failed to pass our filters (“isotype and vertex

coloc(X,Y) =

thresholds”) were zeroed for every node in the A-node graph of
the cell. Additionally, in the special case that one of the two adjusted
local assortativity scores was zero for every node, the pairwise
colocalization score would be defined as zero to avoid edge cases
with Spearman’s correlation. This zeroing in the colocalization
measure was well aligned with the local assortativity distribution
where random noise could be thought of as a case of
uniform mixing.

Proteins measured with AOCs give a relative measurement per
cell, making the pairwise local assortativity scores difficult to
interpret in terms of absolute values. Therefore, a more robust
approach is to compare among experimental conditions, i.e., the
uropod-stimulated sample to the control sample. Therefore, we
calculated differential colocalization by comparing the scores of the
uropod-stimulated sample with both control samples, fixed and in
solution. In the RTX experiment, the treated sample was compared
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to a corresponding control. All statistical tests were performed using
Wilcoxon rank sum tests of different contrasts.

Higher-order colocalization

We ultimately aimed to assess proteins that colocalize in groups
larger than in pairs. However, we only performed pairwise protein
comparisons at the moment. Therefore, a new kind of similarity
measure is required to calculate colocalization for multiple proteins.
In an ecosystem, multi-species interactions can be measured in
multiple sites at the same time using specific scores (32). We
adapted this measure to reflect the overlap of local assortativity
regions and compare the colocalization of multiple proteins at the
same time.

The multiple-site similarity measure (32) is defined as

GroL (}‘M AN A= [ANA4NA]+..+]AN..N AT|>

> Al
R UL, A
o pSHVY

In the simplest case, where T = 2, this simplifies the Serensen
similarity index (Supplementary Figure 3A) (32, 33).

In the cases where T > 3, we can apply this similarity measure to
protein colocalization of multiple proteins (Supplementary
Figure 3B). The multiple-site similarity is well suited for
hypothesis testing on the putative colocalization of a group of
proteins, as the comparison of proteins increases factorially.

Here, the exact selection of the sets that should be compared
was made based on the adjusted local assortativity scores. First, we
selected a threshold for the set of nodes we wanted to compare as
the scores are numerical values. Given that local assortativity was
centered around zero, we decided to select a threshold centered in
zero and proceeded with all values with a score greater than zero.
Effectively, this means a selection on all the nodes displaying
assortativity rather than a random distribution of proteins (i.e.,
uniform mixing).

Results
Pairwise colocalization

The improved pairwise analysis of protein regions on single
cells across the control, fixed control, and stimulated sample
(Figure 3) replicates the results found by Karlson and colleagues
(14) using different computational methods. Three proteins
(CD162, CD37, and CD44) strongly colocalize with CD50 on the
uropod (Figure 3). Specifically, we can observe that CD50, CD162
(P-selectin glycoprotein ligand 1 or PSGL1), and CD37, a member
of the tetraspanin family, show the highest pairwise colocalization
when stimulated with RANTES. The pair CD50 and CD162 is only
second to CD45 and CDI8 in the stimulated condition. Other
known adhesion molecules such as CD102 (ICAM2) did not show a

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1309916
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Rhomberg-Kauert et al.

Control
Colocalization

°
°

Colocalization
o o o
g £ £

°
°

° °

Colocalization
°

Stimulated Fixed Control

°
°

mlgG1
CD18
CD11a
CD162
CD102
CD54

!
cos it 11 itk |

CD43
CD37

FIGURE 3

th

10.3389/fimmu.2024.1309916

e

Pairwise colocalization of selected proteins shown by an UpSet plot (34). Each barplot represents the colocalization score of two proteins on the
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barplot above.

high colocalization with either of these proteins in the stimulated
condition. We also noticed that some of the highly abundant
protein pairs, such as CD18 and CD45, colocalized in all the
conditions: control, fixed control, and stimulated cells (Figure 3).
To account for biases toward highly abundant proteins, we assessed
whether they could be overcome by employing permutation testing
(Supplementary Data 1.3 and 1.4). However, the correction from
permutation per vertex is on average less than 1% from the original
adjusted score in important uropod proteins (CD50) at the expense
of a much longer runtime. Therefore, in the end, we decided to omit
permutation testing for the results presented in this paper.

When fixing cells, we expected to observe CD11a/CD18
complex (0LB2 integrin or LFA-1) binding to the CD54Fc
antibody coated in the plates. However, the pairwise
colocalization, although present and uniformly mixed, is not as
strong as expected (Figure 3).

Furthermore, the pairwise comparison of CD50 with the
colocalization of one of the isotype controls (mIgGl) (Figure 3)
can be interpreted as background noise level and shows the
significance of the colocalization on pairwise combinations
among CD50, CD162, and CD37.

Pairwise differential colocalization

Our differential colocalization analysis compares first the scores
of the uropod-stimulated sample against the two control samples
(Figure 4A and Supplementary Figure 7).

When comparing experimental conditions, a pronounced
increase in colocalization of the uropod structural proteins in

Frontiers in Immunology

stimulated cells could be observed when compared to the
unstimulated control cells, both fixed and in solution, that cannot
be associated with experimental fixation (Figure 4A). This is
especially striking in the colocalization scores in all pairwise
comparisons of CD50, CD162, and CD37 (Figure 4A) (p-value <
0.0001, Wilcoxon rank test). Otherwise, we observed significant
differences (p-value < 0.0001, Wilcoxon rank test) at that level in
mean colocalization scores across the three experimental conditions
involving one of those three proteins in the pair and highly
abundant proteins (HLA-ABC, B2M, CD2, and CD3E). However,
the mean difference to the control conditions was small in all those
cases (<0.05). By taking CD82 or CD44 (P-glycoprotein 1) proteins
combined with CD50, we observed a consistent difference in mean
colocalization (>0.05) and very significant at the same time (p-value
< 0.0001, Wilcoxon rank test) (Figure 4A).

More interestingly, there were some proteins showing high
colocalization with the same sign only in stimulated cells, such as
CD26 and CD29 (Figure 4A), compared to the control condition
samples (p-value < 0.0001, Wilcoxon rank test). CD29 was also
colocalized with HLA-ABC with a mean difference larger than 0.05.
The only two proteins with such a significant difference and
opposite signs against each contrast were CD18 and CD44.

RTX induces the capping of CD20 on the surface of B cells (35)
(23). In our pairwise analysis with CD20, there was a strong increase
of colocalization with CD54 (ICAM1) or CD82 when comparing
treated and control conditions (Supplementary Figure 8). When
compared to the control experiment, those two pair combinations
showed a stronger signal than when comparing CD20 and other
highly abundant proteins, such as HLA-DR or HLA-ABC/B2M
with high significance (p-value < 0.0001, Wilcoxon rank test)
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(A) Differential pairwise colocalization on a group of selected proteins compared for the three experimental conditions in the uropod experiment
(see "Molecular Pixelation datasets” in the Materials and Methods section for a description). First, distributions of all pairwise values per cell are
visualized as boxplots per condition side by side. Then, in the first row, differential colocalization between the stimulated (S) and fixed control (FC)

samples is measured per pairwise comparison as mean(S) — mean(FC) scores per protein. In the second row, differential colocalization between the

stimulated (S) and control (C) samples. The dots indicate p-value ranges generated by a Wilcoxon rank test: O dots (p-value > 0.01), 1 dot (0.001< p-
value < 0.01), 2 dots (0.0001< p-value < 0.001), and 3 dots (p-value < 0.0001). The scale bar of these differences is shown at the bottom.

(B) Differential pairwise colocalization of CD20 with selected proteins from the treated (T) and control (C) samples of the RTX experiment. Analog to
panel A, the differential colocalization is given by the mean difference of both samples, mean(T) — mean(C), and the dots indicate the same p-value

changes as before. RTX, Rituximab.

(Figure 4B and Supplementary Figure 9). CD82 is a membrane
glycoprotein of the tetraspanin family found associated with both B-
cell MHC class IT compartments (36) and CD20 in supramolecular
complexes (37). Other proteins found with slightly lower pairwise
differential colocalization (>0.75) but high significance (p-value <
0.0001, Wilcoxon rank test) were CD37, CD22, CD40, and CD86
(Figure 4B and Supplementary Figure 9).

Higher-order colocalization

When assessing combinations in the stimulated condition of
three proteins (i.e., trios), higher-order colocalization allows us to
specifically test multiple proteins combined and their colocalization
relationship in the same cell graph. Higher-order colocalization was
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applied to the adjusted local assortativity values of the different
experiments and conditions and only calculated on a subset of
proteins of interest from the pairwise results shown above in the
uropod and RTX experiments.

On the uropod datasets, we observed the highest colocalization
score on the stimulated sample among the trio comparison (order of
3) containing CD44, CD45, and CD162 (Supplementary Figure 10).
Furthermore, we observed the second-highest colocalization on
CD44, CD45, and CD54 (Supplementary Figure 10), which are also
well-known uropod proteins (16). One of these proteins (CD44) is
specifically involved in the uropod formation (16, 38), and another
(CD45) is a widely abundant pan-lymphocyte signaling molecule.
Furthermore, all combinations of order 3 containing two out of
CD43, CD44, CD50, and CD54 produce high colocalization scores
(>0.10) (Supplementary Figure 10).
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Strikingly, the combination of CD50 and CD162 with CD44 has
one of the highest scores of colocalization in the stimulated sample
as well as the largest mean differential colocalization with the
controls (Figure 5A and Supplementary Figure 11) on all trios

10.3389/fimmu.2024.1309916

displayed compared to CD50 and CD162 with CD37, which had the
highest pairwise colocalization scores between them behind CD18
and CD45 (Figure 3). As expected, these proteins (CD50, CD162,
CD44, and CD37) colocalized in the same cellular region
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(A) Differential higher-order colocalization of trios (order 3) on a group of selected proteins for the three experimental conditions in the uropod
experiment (see “Molecular Pixelation datasets” in the Materials and Methods section for a description). First, distributions of all protein comparison
values per cell are visualized as boxplots per condition side by side. Then, in the first row, differential colocalization between the stimulated sample
(S) and the fixed control (FC) is measured per pairwise comparison as mean(S) — mean(FC) scores. In the second row, differential colocalization
between the stimulated (S) and control (C) samples can be found. The dots indicate p-value ranges generated by a Wilcoxon rank test: O dots (p-
value > 0.01), 1 dot (0.001< p-value < 0.01), 2 dots (0.0001< p-value < 0.001), and 3 dots (p-value < 0.0001). The scale bar of these differences is
shown at the bottom. (B) Differential higher-order colocalization of CD20 and CD54 with different proteins of relevance on a trio (order 3). The
boxplots display the two experimental conditions, RTX-treated (T) and control (C), and compare these by subtracting mean(T) — mean(C) for each
protein distribution. The significance of the differences in the differential analysis was analogously computed to panel A using the Wilcoxon rank test
and displaying significance using the same dot nomenclature as before. RTX, Rituximab.
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(Supplementary Figure 12) and were in alignment with scientific
knowledge about the uropod formations (19). However, the CD50,
CD162, and CD44 trios demonstrated that our higher-order
colocalization method was able to improve scoring even when
pairs had shown lower pairwise colocalization scores than others.

In the RTX experiment, by combining pairwise scores into a
higher order of 3, the scores of CD20, CD54, and CD82 were
expected to be at the top. Surprisingly, our colocalization method
for higher orders detects new trios with mean colocalization larger
than the score of those three proteins. The combination of CD20
and CD82 with CD45, CD22, CD72, or CD37 in the treated sample
produced a higher mean colocalization of order 3 with high
significance (p-value < 0.0001, Wilcoxon rank sum) (Figure 5B
and Supplementary Figure 13). Interestingly, CD45 or CD37
pairwise colocalized with CD20 had both lower significance and
mean differential colocalization to controls compared to CD54 or
CD82 with CD20 (Figure 4B). However, when CD45 or CD37 was
combined together with CD20 and CD82, they scored two of the 10
highest mean colocalization scores with very high significance (p-
value < 0.0001, Wilcoxon rank sum) (Figure 5B). Again, this is
another observation that our method was able to improve scoring in
cases of pairs with lower pairwise colocalization scores.

Other proteins of interest in the order of 3 that colocalized with
CD20 and CD82, albeit with lower colocalization in the treatment
but with larger differential mean colocalization (>0.07) and high
significance (p-value < 0.0001, Wilcoxon rank sum), were CD55
(DAF), CD44, CD18, CD11a, CD47, CD197 (CCR?7), and CD84.
DAF regulates the complement system on the cell surface that
impairs the formation of the membrane attack complex (MAC),
and another protein, CD59, is the MAC-inhibitory protein. CD59
scored higher in colocalization with CD20 and CD82 than CD55,
but the mean difference against the control experiment was smaller.

Finally, we calculated the colocalization of order 4 for CD20,
CD82, and CD37 with all other non-control proteins
(Supplementary Figure 14). Unexpectedly, the three proteins (i.e.,
CD82, CD54, and CD37) obtaining the highest pairwise
colocalization with CD20 (Figure 4B), not counting in the major
histocompatibility proteins, were colocalized with high scores in
both the control and treatment (>0.20), thus achieving lower
significance (0.001< p-value < 0.01, Wilcoxon rank test)
(Supplementary Figure 14). Any of CD86, HLA-ABC, or HLA-
DR that were high pairwise scoring with CD20 failed to achieve any
significance (p-value > 0.01, Wilcoxon rank test) with CD20, CD82,
and CD37 when compared to the control experiment
(Supplementary Figure 14).

Abundance and colocalization provide
different biological aspects

To understand how protein abundance and colocalization
measure different aspects of cellular responses to the environment
and stimuli, we compared pairwise colocalization and protein
abundance as raw molecule counts. We chose different pairs of
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proteins of interest in both experiments and plotted both the most
abundant protein of the pair and the pairwise colocalization
averaged across cells. Figure 6 shows no inflation in our pairwise
colocalization measurements by abundance.

In the uropod experiment (Figure 6A), all the pairs that we
found to be highly colocalized (CD37, CD162, CD50, CD44, and
CD54) were not among the highly or mid-abundant proteins.
Another highly scoring pair in colocalization, CD29 and HLA-
ABG, is also highly colocalized due to the abundance of one of them.
However, CD37, CD50, and CD162 colocalization with HLA-ABC
was not influenced by its abundance, as they were confined to the
bulge of the uropod.

In the RTX experiment (Figure 6B), CD20 was, on average, the
third most abundant protein in the Raji cells after HLA-DR and
HLA-ABC. Therefore, it was difficult not to perceive dependence on
abundance, as CD20 pairwise colocalization was high with those
two proteins (>0.10). The other two most colocalized proteins,
CD54 and CD82, were the third and fifth most abundant,
respectively. Also, B2M, CD40, and CD86 were some of the most
abundant proteins with high colocalization to CD20.

Discussion

We analyzed two publicly available MPX experiments with our
adjusted local assortativity algorithm for the detection of polarized
and colocalized proteins on the surface of single cells.

Cells that were stimulated to form uropods after fixation of
PHA-stimulated blasts and treated with RANTES (CCL5) showed a
high colocalization score in pairwise comparison of proteins
associated with the uropod (CD50, CD162, and CD37) (16).
Notably, a member of the tetraspanin family, CD37, has been
described as playing a role in the cytoskeleton remodeling of actin
filaments but has never colocalized with other uropod proteins such
as CD50 or CD162 (21). CD37 is necessary for leukocytes to follow
a CXCL1 chemotactic gradient as tested in CD37-deficient
mice (39).

On the attachment side of the stimulated cells, aLf32 integrin
(CD11a/CD18 or LFA-1) pairwise colocalization is not as
significant as expected. This is mostly due to the low abundance
of CD11a, which is often at the threshold level of control isotypes
and leads, therefore, to generally lower scores in the stimulated cells.
It is possible that the experimental conditions by fixing CD54
coating and posterior cleavage by enzymatic reaction may have
affected the protein complex structure as well as epitope availability
of CDl1la.

Intercellular adhesion molecules (ICAMs) are arguably some of
the best-annotated proteins in migrating immune cells (16). At a
higher order of magnitude, we found that ICAMs scored much
more significantly at order 3 and beyond. However, our
colocalization method was able to distinguish that ICAMI-3
(CD54, CD102, and CD50) together at order 3 were not highly
significant compared to the control. It is possible that ICAMs
selectively group together and become more structurally
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FIGURE 6

Comparison of pairwise colocalization and abundance on the proteins of interest for both experiments. (A) In the uropod stimulation experiment,
the abundance is given by the maximum number of counts of the two compared proteins (y-axis), and colocalization is given as Spearman'’s
correlation (size and color). Some protein pairs indicate that high colocalization may be found occasionally when one of the proteins is highly
abundant, e.g., CD29 and HLA-ABC, but not always, e.g., CD37 and HLA-ABC. (B) For the RTX-treated sample, all comparisons are made between
CD20 and the proteins of interest. The abundance axis reflects the counts of the proteins of interest, and the line shows the averaged abundance of

CD20 across all treated cells. RTX, rituximab.

significant in a larger cell membrane area that punctuates the
colocalization of other proteins in pairs. Direct colocalization of
CD18 with ICAM1 or with ICAM3 in trans-interactions has been
reported through microscopy (40), but we cannot discard that cis-
interactions may occur in our migratory model system. It has been
observed that 32 integrin bending on human neutrophils rolling on
a microfluidic device coupled to advanced microscopy facilitates
interaction with ICAMs in cis-, thus inhibiting leukocyte adhesion
in vitro and in vivo (41). On that system, they are able to prove that
ICAMS3 is the dominant LFA-1 ligand in cis- and that inhibition of
the interaction between Mac-1 (C11b/CD18) and ICAMI in cis-
limits significantly neutrophil accumulation.

Pairwise colocalization signals on CD26 and CD29 have been
reported in healthy mouse myofibroblasts in the past (42). Being
present in most cell types, CD26 plays a double functionality as an
immune-regulatory and proteolytic enzyme. CD26 can be found
integral to both the membrane and its soluble form (43). This
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multifunctional protein is able to influence T-cell proliferation and
chemotaxis but also truncate RANTES and alter the sub-receptor
specificity of the cleaved chemokine (44). CD26 has a key role in
adhesion and invasion for several cancer cells and has therefore
become an established cell surface marker in serum (45). The
extracellular matrix (ECM) is able to provide cells with co-
stimulatory signals through different receptor-ligand interactions.
Collagen has been described to provide proliferation signals to CD4
+ cells via the CD3 pathway with the mediation of VLA-3 (CD49¢/
CD29) and CD26 receptors (46). Different adhesion factors of the
very late activation antigen (VLA) family, sharing a common 1
subunit (CD29 or ITGB1), are able to receive signals either directly
or indirectly to different proteins of the ECM and CD26 to collagen
type I, IV, and fibronectin (47). Furthermore, on the pairwise
colocalization effect of CD29 with HLA-ABC, certain isotypes of
HLA-B are able to decrease ITGB1 expression and affect pancreatic
cancer cell migration with contrasting effects (48).
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CD44 is a transmembrane glycoprotein presenting ubiquitous
expression and is able to bind to several ECM proteins (49). Some
sources suggest that CD44 and CD18 may colocalize to mediate
lymphocyte rolling and adhesion (50) and that CD44 interacts with
the B2 subunit (CD18) of the LFA-1 integrin in lymphocytes (51)
(52) and in colon cancer cells (53). CD44 is known to be expressed
on cancer stem cells and implicated in many cancers as a marker of
tumor burden and metastatic potential due to its numerous variant
isoforms (49). Also, CD44 is a signaling partner in relation to cell
growth, survival, and differentiation (54). As a therapeutic target,
CD44 has held some promise in the past, e.g., anti-CD44 mAb
therapy in breast cancer xenografts, reducing tumor growth and
relapse post-chemotherapy (55). Despite recent disappointments in
late-phase trials (56), still, new avenues are explored, e.g.,
nanoparticles (57) or carbon nanotubes (58), and hope remains
on CD44 as a target as well as on better stratification of the patient
population (56).

RTX is one of the pioneer biological therapies effective in many
B-cell malignancies, such as chronic lymphocytic leukemias, non-
Hodgkin’s, and Burkitt’s lymphomas. The human IgG1 Fc portion
of RTX is capable of activating several mechanisms to cause cell
death: complement-dependent cytotoxicity (CDC), complement-
dependent cellular cytotoxicity, antibody-dependent cellular
phagocytosis, or antibody-dependent cellular cytotoxicity (59).
The relative killing efficiencies of RTX have been well studied in
vitro, but the in vivo precise mechanism of action remains elusive
(60), and better understanding is still needed to impede disease
relapsing. In order to design for improved effects, different IgG
subtypes have been engineered and studied both in vitro with
Ramos cells (61) and lymphoma B-cell organoids (62).

Our analysis shows that, upon RTX treatment, CD55 and CD59
are colocalized with CD20 via the CD82 tetraspanin, whereas the
direct pairwise colocalization with CD20 of both proteins was not
significantly differentiated from controls. It suggests that CD55 and
CD59 are indirectly associated with CD20 via a tetraspanin
network, resembling the CD46 association with many f1
integrins and tetraspanins (63). This may indicate that targeting
inhibitors of CDC may achieve superior killing, as it has been
suggested by others (64).

Our data also support that CD82, but not CD9, colocalizes with
CD19 and CD20 (65). Unfortunately, at the time of writing, some
important proteins that play a crucial part in the CD20 therapeutic
“enigma” (59) are not present on the current MPX AOC panel,
among them, CD46, another complement inhibitory component;
CD21 (CR2), the complement C3d receptor; and CD81 (TAPA-1),
another tetraspanin. The trio of proteins, CD21, CD19, and CD81,
form the CR2-CD19-CD81 complex, often called the B-cell co-
receptor complex that enhances BCR signaling (66).

We also found another tetraspanin, CD37, suggested to be part of
a multicomponent supramolecular complex, so-called “tetraspans-
DR complexes”. After solubilization of membranes of human B-cell
lines and tonsillar B cells, seven components were discovered by co-
precipitation together with HLA-DR antigens: four of the
tetraspanins present in B cells (CD37, CD53, TAPA-1, and R2/
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C33), as well as CD19 and CD21 (67). The same laboratory employed
later another technique, flow cytometric energy transfer, to find three
tetraspan molecules (CD53, CD81, and CD82) complexed with MHC
class I, MHC class II, and CD20 on the surface of a human B-cell line
(37). Recently, CD20 and CD37 have been confirmed to form a
complex by a proximity ligation assay (68). In this preprint, it is
hypothesized that the presence of CD20 stabilizes CD37 in the cell
membrane as increased internalization of anti-CD37 is measured on
deficient CD20 lymphoma B-cell lines (68).

The potential of CD37 as a therapeutic target has been
recognized by developing biparatopic antibodies with engineered
Fc chains that form IgG hexamers (69) and, in clinical trials
(NCT01317901), exploring combinatorial therapies for relapsed
patients and good overall response rate (70). Bobrowicz and
colleagues recently tested that upon diminished levels of CD37 in
difterent cell lines, even with downregulation of CD20, cytotoxicity
of CAR-T cells was not significantly impaired. Therefore, in their
opinion, CD37 remains an attractive therapeutic target (68).

Overall, we want to highlight the complexity and dynamism of the
cellular membrane driven by tetraspanins, integrins, and adhesion
molecules. We find several molecules in common to both datasets that
colocalize together upon very different stimuli. Tetraspanin-enriched
microdomains facilitate the compartmentalization of specialized
receptors and adhesion molecules in membrane domains that
connect to the underlying intracellular architecture of the cell (71, 72).

One of the main caveats of colocalization analysis is the
difference between the abundance and true signal. CD20 is the
third molecule in mean abundance in the RTX experiment and
presents high pairwise colocalization with, e.g., HLA-DR. These
macro-complexes have been well described in the literature (37),
but highly abundant proteins may colocalize with all other proteins
by chance. In the uropod experiment, the highly colocalizing pairs
have low mean abundances compared to the highly abundant
proteins distributed uniformly across the area of the cell, e.g.,
HLA-ABC, whereas the CD20 cap on a Raji cell after RTX
treatment is likely a much larger area than the smaller and well-
constrained uropod bulge and, also, more prone to accidental
overlap by low- and high-abundance proteins. While these are
two very different cellular responses and biological systems, the area
of polarization and overlap may warrant different interpretations.

Even though the local assortativity is improving on this by
taking the spatial aspect of the graph into account, there is still some
bias toward abundant proteins on the cell surface. Although the
interesting signal in our method is likely going to be indicated by
low abundant proteins showing high colocalization, inflation of
colocalization scores at higher orders of comparison has been
observed, and strategies to ameliorate this may use corrections
from lower orders of comparison (i.e., correct scores on order 3 with
scores from order 2). We think that the major confounding factor to
colocalization measurements is abundant proteins. Improvements
to our method in this area may consider the idea of richness of
species when comparing values across sites (73). However, we have
shown how the abundance and colocalization of proteins measure
different aspects of cell biology, both equally important.
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MPX capabilities in throughput, sensitivity, and three-
dimensional field of view (14) create exceptional conditions to
study protein constellations at single-cell resolution. Here, we
expand on the concept of local assortativity as presented in the
Peel et al. study (15) for labeled nodes in networks to capture the
influence of both the structure of the cell represented in the graph
and the location distribution of each protein. Adjusted local
assortativity provides a parameter-free algorithm that calculates
the colocalization of molecules, avoiding the complex problem of
finding neighborhoods of clustered features by different approaches
(74, 75).

Local assortativity could be used with other single-cell
technologies and experimental designs. However, it is required for
it to work in that data were processed in the form of networks with
labels and features in the vertices. With the MPX technology, cells
and their protein molecules are modeled in the form of graphs.
With this method, we improved the global scores provided in the
Karlsson et al. study in terms of polarization and colocalization to
find continuous and bounded measures of the biological
phenomena assayed by MPX. Furthermore, we built on the
pairwise local assortativity using a multi-site similarity method
used from an ecological context (32) in order to achieve multiple
protein comparisons from groups of more than two proteins. With
pairwise and multi-way comparison, we aimed to capture detailed
structural properties of the cell graphs and facilitate the comparison
of molecules colocalizing among groups of proteins in a more
detailed way. The scoring methods devised for pairwise and higher-
order colocalization are different, so a direct comparison of score
levels across those two is not possible at the moment. The higher
order of colocalization is very useful for hypothesis testing, but we
foresee its use rather as a tool for specific in silico experiments
guided by prior knowledge.

MPX with pairwise and a higher order of colocalization yields
deep phenotyping not achievable with other assays by measuring
76 proteins (and four controls) at the same time in a single
experimental workflow. This is a throughput of several orders of
magnitude higher in plexity at a reduced experimental time from
sample to processed data over what can be achieved with confocal
and super-resolution microscopy. The experiments presented in
this report took approximately 2 weeks to complete. However,
given the exponential number of protein combinations, there is a
clear need to develop algorithms and tools to exploit this novel
data type.

Another advantage of MPX data is that they achieve single-cell
resolution in one experiment of 300-1,000 cells to study variability in
response to stimuli. We have measured effect sizes against controlled
experiments but have not explored yet the complexity of responses in
terms of dividing treatment and controls in different subgroups. We
should also consider the combinatorial multiplexity of single-cell
studies, and the comparison of experimental conditions is therefore a
vital tool in the analysis of colocalization, which begins with a good
study design.

Our findings underpinned by MPX together with our novel
computational method may provide avenues for hypothesis-driven
therapeutic design that explores spatially colocalized protein
constellations in the cell.
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Spatial and phenotypic
heterogeneity of resident and
monocyte-derived macrophages
during inflammatory
exacerbations leading to
pulmonary fibrosis
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Jessica Noll, Qiuming Wang, Teresa Musci
and Alessandro Venosa*

Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City,
UT, United States

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function
are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung
diseases. The slow progression of these pathologies is often intermitted and
accelerated by acute exacerbations, complex non-resolving cycles of inflammation
and parenchymal damage, resulting in lung function decline and death. Excess
monocyte mobilization during the initial phase of an acute exacerbation, and their
long-term persistence in the lung, is linked to poor disease outcome.

Methods: The present work leverages a clinical idiopathic PF dataset and a
murine model of acute inflammatory exacerbations triggered by mutation in the
alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and
phenotypically define monocyte/macrophage changes in the fibrosing lung.

Results: SP-C mutation triggered heterogeneous CD68" macrophage activation,
with highly active peri-injured cells relative to those sampled from fully remodeled
and healthy regions. Ingenuity pathway analysis of sorted CD11b SigF*CD11c*
alveolar macrophages defined asynchronous activation of extracellular matrix re-
organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the
fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets
predicted pro-fibrogenic signaling (fibronectin/Fnl, osteopontin/Sppl, and Tgfbl)
emanating from Trem2/TREMZ2" interstitial macrophages. These cells also produced
a distinct lipid signature from alveolar macrophages and monocytes, characterized
by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant
mice had limited impact on inflammation and mortality up to 42 day after injury.

Abbreviations: AT2, alveolar type-2 cell; Sftpc'”>"

surfactant protein-C I73T mutant; IPF, idiopathic
pulmonary fibrosis; AIE, acute inflammatory exacerbations; AMs, alveolar macrophages; MoDMs,

monocyte-derived macrophages; ApoE, apolipoprotein-E; FN1, fibronectinl; SPP1, osteopontin.
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Discussion: Together, these results provide a detailed spatio-temporal picture of
resident, interstitial, and monocyte-derived macrophages during SP-C induced
inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a
biomarker to identify activated macrophages involved in tissue remodeling.

KEYWORDS

alveolar type-2 cell, surfactant protein-C 173T mutant, pulmonary fibrosis, alveolar
macrophages, monocyte-derived macrophages, apolipoprotein-E, fibronectinl, osteopontinl

Introduction

Acute inflammatory exacerbations represent a key feature in the
evolution of interstitial lung diseases (ILD). This cluster of chronic
progressive pathologies includes idiopathic pulmonary fibrosis,
non-specific interstitial pneumonia, connective tissue disease
associated ILD, chronic hypersensitivity pneumonitis,
pneumoconiosis, sarcoidosis, and more (1, 2). The exact sequence
of events igniting these flare-ups have yet to be fully understood.
However, epidemiological and experimental evidence suggest that a
combination of genetic susceptibility, preexistent pulmonary and
systemic conditions, biological aging/senescence of the alveolar
compartment, and external stressors (environmental toxic
exposure) contribute to the repeated cycles of focal inflammation,
spatially heterogenous injury, and aberrant repair characteristic of
fibrotic disease (3-7).

To date, over 60 mutations in the alveolar epithelial type 2
specific gene encoding for the surfactant protein C (SP-C) have
been linked to the development of a fibrotic phenotype, with the
isoleucine-to-threonine missense substitution at position 73 of the
SP-C proprotein (SP-C'7*") representing the most common (8-10).
Our group has previously characterized endoplasmic reticulum
toxicity and macroautophagy block resulting from aberrant
processing and trafficking of the SP-C proprotein and described
the sequelae of immunological events accompanying tissue
remodeling (8, 9, 11, 12). Here, we expand on this prior
investigation by defining the spatial and phenotypic distribution
of monocytes and macrophages responding to the initial epithelial
injury and establish patterns of intercellular communication among
cellular species in the lung.

Mounting evidence supports the notion that inflammatory
monocyte mobilization in the fibrosing lung represents a valid
indicator of poor disease prognosis (13, 14). Yet, experimental
modeling and clinical trials designed to non-specifically target
inflammation (e.g., corticosteroids, broad spectrum cytokine
modulation) have revealed low efficacy or even harmful toxicities
(15). Among the reasons for this therapeutic failure is the absence of
a nuance approach capable of controlling the maturation, activation,
and persistence of ontologically and phenotypically heterogeneous
cellular entities, and the relatively fragmented understanding of the
spatial distribution of cells and signals in a temporally extended
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pathology such as fibrosis (16-18). Experimental evidence highlights
distinct transcriptomes emanating from tissue-resident and
monocyte-derived macrophages (19, 20), with the latter generating
a complex fibrogenic signature (10, 21, 22). The fibronectin/FN1,
osteopontin/SPP1, tumor growth factor (TGF)B1, and interleukin 4/
13 signaling pathways represent the most studied networks
mediating tissue remodeling (23-27), while metabolic networks
have gained traction as potential targets in chronic inflammatory
diseases (28, 29). In vitro systems establish a reliance on glycolysis in
response to canonical pro-inflammatory signals (IFNvy, LPS),
juxtaposed to fatty acid oxidation, tricarboxylic acid cycle, and
mitochondrial oxidative phosphorylation following challenge with
anti-inflammatory and pro-remodeling signals (IL-10, IL-4/13,
TGFP1) (30-32). This evidence emphasizes the importance of
factors governing lipid synthesis, handling, and metabolism
(PPARYy LXR, FXR, SREBPI) in regulating macrophage function
(33, 34). The cholesterol and phospholipid transporter
apolipoprotein E (ApoE) has been linked to monocyte-derived
macrophage activation in chemical-induced injury, though there is
limited evidence that these responses are consistent across the
spectrum of fibrosis (35, 36).

Through a combination of bulk, single cell, and spatial
transcriptomics we show a hyperactive niche of macrophages
surrounding fully remodeled lung regions during fibrogenic
exacerbations triggered by mutant SP-C induction. Cellular
annotation and communication analysis identify time-related
changes in intercellular networks, with alveolar and interstitial/
Trem2" macrophages and inflammatory monocytes responsible for
Sppl, Fnl, and TgfBl pro-fibrotic signaling. Analysis of human
idiopathic PF confirms the presence of an interstitial population
responsible for pro-fibrotic signaling in the diseased lung. Our
findings also highlight disease-related shifts in lipid transcriptional
signatures and interstitial/ Trem2" macrophages as the sole cellular
cluster expressing ApoE. While genetic ablation of ApoE in SP-
C"”" induced injury did not significantly impact fibrotic disease
outcome, our results pinpoint this molecule as a potential
biomarker identifying fibrogenic myeloid populations. Together,
these results reveal temporal and phenotypic heterogeneity in the
macrophage compartment and implicates Trem2" interstitial
macrophages and their monocytic precursors as viable targets for
anti-fibrogenic therapy.
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Materials and methods
Sex as a biological variable

These studies utilized both male and female mice.

Murine model of SP-C"*" induced
lung injury

Tamoxifen inducible SP-C'?" mice were generated as
previously reported (9). For studies investigating the role of the

apoliproprotein E in SP-C7*"

induced injury, a parallel line was
crossed with ApoE knock out mice purchased from Jackson
laboratories (Strain #002052, The Jackson Laboratory, Bar
Harbor, ME). Briefly, an estrogen receptor (ER)-2 controlled Flp-
O recombinase strain knocked into the Rosa26 locus (The Jackson
Laboratory). Adult homozygote SP-C"*"Flp mice (8-12 weeks)
received two tamoxifen oral gavages three days apart (90 mg/kg
each) to excise a neomycin cassette placed within the Sftpc gene.
Both male and female animals were used for the studies. For studies
involving apoE mutants, a SP-C7*TApoE"""%® breeding pair was
utilized (SP-C'7*TApoE" ") so as to generate wild type,
heterozygous, and homozygous experimental littermates. Control
groups mice are represented as pooled data from tamoxifen treated
SP-C'*T not expressing Flp-O recombinase or oil (vehicle) treated
Flp-O expressing SP-C'7*" mice. All mice were housed under
pathogen free conditions in AALAC approved barrier facilities at
the Skaggs College of Pharmacy, University of Utah. All
experiments were approved by the Institutional Animal Care and
Use Committee, University of Utah.

Reagents

Tamoxifen (non-pharmaceutical grade) was purchased from
Sigma-Aldrich (St Louis, MO). Giemsa cytological stain was
purchased from Sigma-Aldrich. Antibody list: Spp1 (RNAscope®
Probe Green, Ref#435191); Tgfbl (RNAscope® Probe Red,
Ref# 407751-C2); Apoe (for in situ hybridization - Advanced
Cell Diagnostics, RNAscope® LS 2.5 Probe #313278; for
immunohistochemical - Abcam; Cat #ab183597, 1:500; for
western blot — Cell Signaling Technology, Cat #49285, 1:1000),
CD68 for immunohistochemistry (Cell Signaling Technology; Cat #
97778; 1:1000). Flow cytometric panel for cell sorting and bulk
sequencing of macrophages CD16/32 (clone 93; eBiosciences, San
Diego, CA), CDI11b (clone # M1/70; eFluo450, eBiosciences);
Fixable Viability dye (Cat # 65-0865-14; eFluo780, eBiosciences);
SigF (clone S17007L; PE-CF594, BD Biosciences, San Jose, CA);
CD45 (clone 30-F11; PerCP5.5, Biolegend, San Diego, CA); CD11c
(clone # N418; BV705, Biolegend); Ly6G (clone # 1A8; AF700,
Biolegend); CD64 (clone X54-5/7.1; PE/Cy7, Biolegend); CD3
(clone # 17A2; BUV395, Biolegend). All other reagents were
purchased from Thermo Fisher Scientific, Inc. (Waltham, MA) or
Sigma-Aldrich.
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Bronchoalveolar lavage, cell counts, ELISA,
and western blot analysis

Following terminal anesthesia, inert mice were subject to
cannulation. Bronchoalveolar lavage (BAL) fluid was collected
from mice using 1 mL sterile saline lavage and collected into a
microcentrifuge tube. Four additional lavages were performed and
collected in a separate container. The two fractions were then spun at
400 x g, 6 min. Supernatant from the first lavage was collected and
immediately frozen at -80°C for ELISA and western blot analysis,
while the two cellular pellets were combined and suspended in 1 ml
of saline solution for cell counts, flow cytometric, or RNA
sequencing analysis. BAL cells were enumerated using a
NucleoCounter (New Brunswick Scientific, Edison, NJ). Aliquots
of first lavage were analyzed for IL-4 and IL-13 levels using the
Luminex platform (Panel MCYTOMAG-70K-17) following Thermo
Fisher’s protocol. For western blot, equal volumes (15 pl) of thawed
BAL fluid were loaded onto 4-12% NuPage Bis-Tris gels
(ThermoFisher Scientific) with NuPage 4X LDS sample buffer
(ThermoFisher Scientific) and then electrophoresed approximately
90 minutes using a constant voltage of 100V. Proteins from the gels
were then transferred to a 0.45 um PVDF membrane at 30V and 4°C
for one hour and blocked in 5% non-fat dried milk (NFDM). The
membranes were subsequently probed with primary ApoE
antibodies. The SuperSignal West Dura Chemiluminescent
Substrate detection system was applied before exposing the
membrane on the ProteinSimple FluorChem M imager (BioTechne).

Histology, histochemical and In situ
hybridization analysis

For histological and histochemical analysis, lungs from
unresponsive anesthetized mice were cleared of excess blood through
cardiac perfusion with 0.9% sodium chloride solution. A 20-gauge
cannula was inserted in the trachea for tissue fixation with 10% neutral
buffer formalin at constant pressure (25 cm H,0). A suture was used to
seal the tracheal opening upon cannula removal, thus avoiding
pulmonary deflation during the fixation process. Tissue was placed
in a histology cassette and submerged in 10% neutral buffer formalin
for 72 h. The suture was then removed, and the lung sequentially
moved to a 2% sucrose solution (in PBS, two washes of 5 min) and 70%
ethyl alcohol. The submerged cassettes were submitted to the
University of Utah histology core (Associated Regional and
University Pathologists Inc.) for embedding. Paraffin blocks were
sectioned at 6 um thickness and used for Hematoxylin & Eosin
(H&E) or immunohistochemical staining, alone or in combination
with in situ hybridization as previously described (37). For protein
staining, paraffin was removed using xylene solutions followed by
gradient alcohol washes (100-50%). Citrate antigen retrieval (10.2 mM
sodium citrate, pH 6.0, for 20 min) and endogenous peroxidase
quenching with 3% hydrogen peroxide in methanol (30 min) were
performed. Serum-based blocking (10% goat serum in PBS) preceded
the overnight incubation with anti-rabbit primary antibody. In all
studies, a serum/IgG control was used. During the second day, slides
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underwent incubation with a biotinylated secondary antibody (30
minutes, Vectastain Elite ABC kit, Vector Labs, Burlingame, CA)
and chromogenic reaction achieved using a Peroxidase Substrate Kit
DAB (Vector Labs). Counterstain was accomplished with Harris
Modified Hematoxylin (Thermo Fisher Scientific, Inc.). For in situ
hybridization studies, after paraffin removal with xylene/alcohol
solutions, slides were air dried. Peroxidase quenching (10 min, away
from light) was followed by antigen retrieval (20 min, RNAscope®
Target Retrieval Reagent, ACD) and incubation with protease IV
(30min, RNAscope® Protease IV Reagent, ACD). Excess solution
was then washed off. Slides were then incubated for 2 hours in a 40°
C hybridization oven with a SppI, Tgfbl, or Apoe probe. A series of
signal amplification steps (6 for single color detection, 10 for double-
staining assay) and washes were followed by chromogen development.
At this point the experiment was either concluded with counterstain
and toluene-based permount coverslip placement, or the
immunohistochemistry protocol resumed from the blocking and
primary antibody step as described above.

Fluorescence activated cell sorting

In some studies, following cardiac perfusion the left lobe was tied
off with a suture and removed for flow cytometric and FACS
analysis. Tissue was minced with surgical scissors and transferred
into a 50 ml conical tube and incubated (37°C, 30 minutes) in
DMEM + 5% FBS + 2 mg/ml Collagenase D (Cat #11088866001,
Roche, Indianapolis, IN). Digested lungs were passed through 70-um
nylon mesh to obtain a single-cell suspension, counted and mixed
with ACK Lysis Buffer (Thermo Fisher Scientific, Inc.) to remove any
remaining red blood cells. The single cell suspension was counted
and resuspended to yield 1 x 10° cells per 100ul of flow cytometry
staining buffer (PBS+0.1% sodium azide). Cells were then incubated
with anti-mouse CD16/32 antibody for 10 min at 4°C to block
nonspecific binding. This was followed by 30-minute incubation
with fluorescently-tagged antibodies or appropriate isotype controls
(0.25-1.5 pg/ 10° cells) for 30 minutes (4°C). Cells were then spun
and resuspended in staining buffer for viability staining (30 minutes
at 4°C). Cells were fixed in 2% paraformaldehyde and sorted using a
FACS ARIA (BD Biosciences). Alveolar macrophages (SigF"CD11b°
CD11c") were identified following forward and side scatter selection
of singlet CD45" viable cells. To ensure cell sorting of a purified
population, a series of exclusion gates were designed to remove
eosinophils (SigF™CD11b*CD11¢’), neutrophils (Ly6G*) and
lymphocytes (CD3"). All analysis was performed using Flow]Jo
software (FlowJo, LLC, Ashland, Oregon).

Bulk and single-cell RNA sequencing
preparation and analysis

For bulk RNA sequencing studies (deposited on NCBI GEO
GSE166300), sorted SigF*CD11b"CD11c" macrophages underwent
RNA extraction using Qiagen RNeasy Plus Universal mini kit
following manufacturer’s instructions (Qiagen, Hilden, Germany).
Extracted RNA samples were quantified using a Qubit 2.0

Frontiers in Immunology

10.3389/fimmu.2024.1425466

Fluorometer (Life Technologies, Carlsbad, CA, USA) and RNA
integrity was checked using Agilent TapeStation 4200 (Agilent
Technologies, Palo Alto, CA, USA). RNA sequencing libraries
were prepared using the NEBNext Ultra RNA Library Prep Kit for
MMumina following manufacturer’s instructions (NEB, Ipswich, MA,
USA). Briefly, mRNAs were first enriched with Oligo(dT) beads.
Enriched mRNAs were fragmented for 15 minutes at 94°C. First-
strand and second strand cDNAs were subsequently synthesized.
cDNA fragments were end-repaired and adenylated at 3’ends, and
universal adapters were ligated to cDNA fragments, followed by
index addition and library enrichment by limited-cycle PCR. The
sequencing libraries were validated on the Agilent TapeStation
(Agilent Technologies, Palo Alto, CA, USA), and quantified by
using Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA) as well as
by quantitative PCR (KAPA Biosystems, Wilmington, MA, USA).
The sequencing libraries were pooled and clustered on 1 lane of a
flow cell. After clustering, the flowcell was loaded on the Illumina
HiSeq4000 instrument according to manufacturer’s instructions.
The samples were sequenced using a 2x150bp Paired End (PE)
configuration. Image analysis and base calling were conducted by the
HiSeq Control Software (HCS). Raw sequence data (bcl files)
generated from Illumina HiSeq was converted into fastq files and
de-multiplexed using Illumina’s bcl2fastq 2.17 software. One
mismatch was allowed for index sequence identification. Analysis
of RNA counts was performed using R (3.6.3) (38). Differential gene
expression analysis was conducted using the hciR package (39).
Further pathway analysis was conducted using IPA (QIAGEN Inc).
Datasets were filtered using log2 fold change (minimum -1 or 1) and
p-value cut offs (minimum p<0.05) to ensure an appropriate number
of molecules (200-3000) were used in the IPA pipeline.

C7*" model were

Single-cell RNA sequencing raw data of SP-
deposited in NCBI's Gene Expression Omnibus and are accessible
through GEO Series accession numbers GSE247520 and GSE196657.
Tissue collection and single cell suspension were achieved using
mechanical mincing, digestion in Collagenase D, red blood cell lysis,
and suspension created by using a 70-ium strainer. RNA extraction and
library preparation are described in the published manuscript (10).
Mining of human control and IPF lungs are accessible through
GSE136831 (40). As described by Adams et al., representative apical
and basal segments of explanted lungs were minced mechanically,
digested [elastase (30 U/ml) + deoxyribonuclease I (0.2 mg/ml) +
liberase (0.3 mg/ml) + 1% penicillin/streptomycin], cleared of red
blood cells, and single cell suspension created using a 100/70/40
strainers (40). Re-analysis of each single-cell dataset included
dimension reduction and clustering by SCTransformation (0.3.5)
using the Gamma-Poisson generalized linear model method
(glmGamPoi, 1.8.0) and were performed using the Seurat (4.0.4)
package (41-45). Multiple levels of resolution were evaluated using
Clustree (0.5.0). The data was assessed for cell cycle effects using
CellCycleScoring and regressed for uneven cell cycle expression across
clusters. Cell types were identified using differential gene expression
and all manual annotations were compared to those produced through
automated classification using SingleR (1.10.0). A specific R package
was used to interface with enrichR database (46). For pseudotime
analysis, monocle-3 software was used, while cell-cell communication
analysis was conducted with CellChat software (47-51).
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Spatial transcriptomic analysis

For spatial analysis (deposited on NCBI GEO GSE264128), neutral
buffered formalin-fixed lungs were inflated without bronchoalveolar
lavage. Paraffin-embedded sections were baked for 1 hour at 60°C and
stained according to the NanoString Leica BOND RX RNA FFPE Semi-
Automatic protocol. Following Proteinase K (1.0ug/mL, 15 min) and
ER2 (20 min) processing, sections were incubated with fluorescently
tagged antibodies against PanCytokeratin (PanCK, Novus Biologics,
NBP2-33200AF488; 1:400), Syto83 (S11364; 1:10, Thermo Fisher
Scientific, Inc.), CD45 (Nanostring Technologies, 121302304; 1:5), and
CD68 (Abcam, ab125212; 1:25). Regions of interest (ROL; N = 3, healthy;
N = 4, peri-injured, N = 5, injured/remodeled) were selected based on
histopathological assessment of inflammation and epithelial thickening
and remodeling. Tissue segmentation selectively identified
CD45"CD68" macrophages. The collection plate was then removed
from the GeoMx instrument and prepared for sequencing. The GeoMx
library was prepared, processed, and sequenced according to the
NanoString NGS Readout User Manual Protocol (ref. MAN-10153-
04). Sequencing was performed on the Illumina NovaSeq 6000, S2 v1.5
with a 100 cycles flowcell at 27 bp pair-end reads. Generated FASTQ files
were then processed to DCC files utilizing the NanoString GeoMx NGS
Pipeline according to manufacturer’s instructions. Gene expression was
analyzed using Nanostring DSP analysis software (NanoString
Technologies) with built-in statistical analyses. Raw data counts were
run through internal quality control and biological probe quality control.

Statistical analysis

Unless otherwise indicated, all data are presented as group mean +
SE. Statistical analyses were performed with Prism GraphPad 9.4
(GraphPad Software, San Diego, CA). Student’s t-tests were used for
paired data; for analyses involving multiple groups, one-way or two-
way analysis of variance (ANOVA) was performed with post hoc testing
as indicated. Survival analyses were performed using Log Rank
(Mantel-Cox) test. For spatial analysis, segments were filtered to 55%
of the limit of quantitation (LOQ) to render the top 6,000 expressed
genes. Filtered genes were normalized to Q3 (3™ quartile of all selected
targets). Hierarchical clustering was performed as quality control. CD68
ROIs were compared across regions using a linear mixed model (LMM)
with Benjamini-Hochberg (BH) correction and a random effect for the
region. For RNA sequencing pathway analysis, Wilcoxon rank sum test
was used. In all cases, statistical significance was considered at p < 0.05.

Results

Spatial discrimination of activated
macrophages during SP-C'3T-
induced injury

To spatially define the phenotype of macrophages involved in
fibrotic lung injury, fluorescent antibodies recognizing DNA (green),
CD45 (yellow) and CD68 (red) were used to perform bulk
sequencing in the injured/remodeled or peri-injured alveolar
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regions of the lung 14 days post SP-C'7*"

injury. A control (non-
induced) lung was used to define baseline activation. Identification of
injured regions was based on histopathological evaluation of all five
lobes in the tissue sections. Four peri-injured areas were selected: two
in relative proximity to the injury (areas of interest 006 and 010) and
two distal region (areas of interest 009 and 012) (Figure 1A). Cell-type
deconvolution analysis was used to resolve monocyte/macrophage
specific expression signature from the dataset (52) (Supplementary
Table 1). Principal component analysis identified clustering of
transcriptomes based on sampling annotation, with separation in
the peri-injured regions based on proximity to injury (Figure 1B;
Supplementary Table 1). Global pathway map showed extensive
expression of genes involved in metabolism (including RNA
metabolism), signal transduction, transcriptional regulation,
immune system function and cell cycle (Supplementary Figure 1A).
Reactome-based analysis revealed 20.9% (148/712 pathways) and
34.9% (249/712 pathways) of pathways as differentially expressed
when comparing peri-injury vs. healthy macrophages and peri-injury
vs. injured cells, respectively. Notably, macrophages isolated form
injured regions did not produce a particularly strong signaling
signature and demonstrated a considerable degree of similarity to
healthy macrophages (=90% of pathways) (Figure 1C; Supplementary
Figures 1B-D). Peri-injured macrophages were enriched in pathways
associated with neutrophil degranulation, ROS/RNS production and
release, activation in oxidative stress-induced senescence, pro-
remodeling functions (TGF-beta and GPVI cascade), and metabolic
alterations (citric acid cycle, gluconeogenesis, lipoprotein assembly/
remodeling/clearance) compared to healthy- and injured-derived
CD68" macrophages (Figures 1D, E; Supplementary Table 1).
When compared to controls, injured region macrophages were
defective in programmed cell death signaling, ROS detoxification,
and elastic fiber formation, but displayed enhanced DNA damage-
induced senescence, degradation of extracellular matrix (ECM), and
metalloproteinase function (Figure 1F). Hierarchical gene expression
analysis of pathways related to degradation of ECM (Figure 1G),
assembly of collagen fibrils (Figure 1H), complement system,
adaptive immunity, and L13a-mediated ceruloplasmin expression
all showed robust clustering based on region of origin
(Supplementary Figures 1B-D, Supplementary Table 1).

Among the top 6,000 genes expressed genes in the dataset, genes
associated with complement responses (Clqa, CIgb, Clgb), myeloid
cell recruitment (Cxcl14, Cxcll5), inflammation (CsfIr, Ctss, App)
and metalloproteinases (Mmpl13, Mmpl4, Mmpl5) were most
abundant in peri-injured macrophages (Figure 1I). Despite
increases in normalized counts for fibrogenic genes and
significant enrichments in the associated pathways, expression of
the individual genes did not meet significance (Fnl, Sppl)
(Figure 1J; Supplementary Figures 1E-G).

Temporal heterogeneity of resident
alveolar macrophages during SP-C"3T-
induced injury

To better understand macrophage behavior in the events leading
up to end-stage fibrosis, we sought to examine transcriptional

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1425466
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Moos et al.

10.3389/fimmu.2024.1425466

[ Peri-Injured Regions

o &
)
% &
AR
o &
<
REACTOME Pathway Analysis « Healthy vs. Peri-Injured » REACTOME Pathway Analysis « Injured vs. Peri-Injured — REACTOME Pathway Analysis <« Healthy vs. Injured »

Oxidative Stress Induced Senescence-| Oxygen-dependent pmlme hydmxxaucm of Hypoxia-i maucmre Fadaf AI ha- Nonsense Mediated Decay independent of the Exun Juncmun Complex-
Oxygen-dependent proline hyPer\élal\cn of Hypoxia-inducible Factor A\Eha- enescence-Associated Secretory CAM interactions-

ta receptor signaling activates SMADs| fetabol o valds- Fro Faomed caroe
Sytoprotection by HMOX1- Signaling by TGF-beta Receptor Comy Flex- 3 agsome pathway-
Senescence-Associated Secretory Pherwtyge SSASF)- Sphin, ullpld metabo\ Detoxification of Reao\we xygen Sgaecves
eplication-{ Plasma ipoprotein assembly, emedeling, Signaling by FGFRT
jenesis— ‘mediated a \vano e- GPVI-mediated ac\wau n cascade-
Plasma lipoprotein clearance-| uxmcaﬂon of Reactive ﬁ/geﬂ Sp ues- Elastic fibre formation-

Nonsense Mediated Decay independent of the Exon Junction Complex- The citric acid (TCA) cycle and vesplralory ele tran: PI5P, PP2A and IER3 Regulate PI3K/AKT Signalir

Glycosphingolipid melalm lsm- “Adaptive Immune Syst sm HDR through Hnmo\agous Recombination (HRi

MHC class Il arigen pres ROS and RNS prodicton n phiagocytes DNA DamageTe Induced Senescs
ROS and RNS production in phagc on cellular matrix organization-| ool of amine acids and dervatves
Extracellular matrix organizat ton- MHC dass Il antigen presentation-| i of latrix Metalluprvlemases
Posttransiational proten phosphonyati Neutrophi degranulation- Regulaton ofInsulin-ke Crowth Facior transport and uj
utrophil aegranulauon— L13: radianon of e Sxaceiutar et
6 -3 0 3 6 -3 o 3 6

30
Normalized Enrichment Score

Normalized Enrichment Score Normalized Enrichment Score

© ey casp?

o e

c1qa

G H 1
Degradation of the Assembly of collagen fibrils -
extracellular matrix and other multimeric structures

] Factors: gmn
Healthy region H
FT L ;L‘ M Peri-injured region  © =
[ [REf. [ M Injured region
N I s
FIGURE 1

Spatial analysis of CD68" macrophages in SP-C”* induced injury. Paraffin-
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3T

embedded sections from controls or 14 days post SP-C'*T injury were

stained with fluorescent antibodies against CD45, CD68, and DNA. (A) Twelve alveolar regions were selected for CD68* macrophage RNA
sequencing (cells labeled in red). Regions from an untreated mouse were used as controls (three technical replicates; yellow asterisks). Injured/
remodeled (five technical replicates; white asterisks) and peri-injured (two proximal technical replicates, orange asterisks; two distal technical
replicates; red asterisks) region selection was based on histopathological assessment of inflammation and loss of alveolar architecture structure.
Insets show representative regions. (B) Three dimensional PCA plot shows the clustering of samples based on sampling regions. Orange asterisks
indicate two proximal technical replicates; red asterisks indicate two distal technical replicates. (C) Venn diagram of Reactome-based pathway
analysis shows differentially regulated pathways between each pairing. (D—F) Bar graphs representing normalized enrichment scores for selected
pathways. (G-H) Hierarchical clustering of ‘Degradation of the extracellular matrix’ and ‘Assembly of collagen fibrils and other multimeric structures’

signaling pathways in healthy (dark purple), peri-injured (pink), and injured (green) regions of the lung 14 days after SP-

C"3T induced injury. (1) Box

plots of selected genes associated with macrophage activation (chemokine, metalloproteinases, complement cascade). The Y-axis represents
normalized counts. A p-value <0.05 was considered significant using Linear Mixed Model. (J) Volcano plot comparing gene expression between
peri-injured and injured macrophages. Fold changes are represented on log2 scale. Significance is shown as -logl10(pvalue) using linear mixed
model. In red are representative complement and fibrosis-associated genes

changes in resident macrophages using a model of fibrogenic injury
triggered by mutant SP-C">". For these studies, we leveraged bulk
RNA sequencing of flow cytometry sorted CD11b"
SigF"CD11c¢"CD64" resident mature macrophages isolated from
naive (controls) and inflamed lungs. Exclusion gate ensured no
contamination from Ly6G™ neutrophils, B220" B cells, and CD3"
lymphocytes. Ingenuity Pathway Analysis highlighted distinct gene
and signaling signatures in lung macrophages during inflammatory
initiation (3 days post mutant induction) and early remodeling (14
days). Principal component analysis highlighted transcriptional
variance across the study groups (Figure 2A). Differential gene
expression analysis revealed a relatively small set (48 genes)
between controls and 3-day injury, while these responses were
more pronounced between controls vs. 14-day post induction
(3393) or 3-day vs. 14-day comparison (1446) (Figure 2B). Volcano
plots showed increases in genes linked to innate immunity (the
hematopoietic transcription factor, Gata2; histidine decarboxylase,
Hdg; interferon induced transmembrane protein 1, Ifitml; colony
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stimulating factor 1, Csfl; chemokine ligand, Ccl17; immunoglobulin
epsilon receptor, Ms4a2) and metabolism (cholesterol side-chain
cleavage enzyme, Cypllal; ATPase Na+/K+ transporting subunit
alpha 3, Atpla3; adenylate cyclase 6, adcy6; peptidyl arginine
deiminase 2, Padi2; and myristoylated alanine rich protein kinase
C substrate, Marcks) 3 days post injury (Figure 2C). By comparison,
macrophage expression profile was bidirectional at 14 days, and
demonstrated more sizable changes (as represented by adjusted p-
values and log fold changes). Immunity, cell cycle, and metabolism
genes were among the most significantly altered genes (complement
Clq C-chain, Clqc; peptidoglycan recognition protein 1, Pglyrpl;
ADAM metallopeptidase domain 19, Adam19; secreted protein acidic
and cysteine rich, Sparc; apolipoprotein E, Apoe; insulin like growth
factor 1 receptor, Igflr; toll-like receptor 7, TIr7; cyclin D2, Ccnd2
(Figure 2D). Ingenuity Pathways Analysis predicted signaling related
to activation, proliferation, and apoptosis of leukocyte predominantly
at 3 days, while distinct cell movement and chemotaxis pathways,
proliferation, angiogenesis and fibrogenesis were projected to be
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Transcriptional analysis of flow cytometry sorted alveolar macrophages following SP-C"*" induced injury. Bulk RNA sequencing of flow cytometry
sorted CD11b SigF"CD11c*CD64 " resident lung macrophages from control (N=4; Ctl, oil treated SP-C"*" mice) or tamoxifen-treated SP-C'”*" mice
at 3 d and 14 d (N=3 for each condition). (A) Principal Component Analysis (PCA) plot showing transcriptome variance in Ctl (blue), 3 days (black),
and 14 days post SP-C*T induced injury. (B) Venn diagram breaking down significantly expressed genes among groups. (C, D) Volcano plots
comparing fold change expression between Ctl vs. 3 days and Ctl vs. 14 days. (E-G) Ingenuity Pathway Analysis (IPA) of enriched Diseases and
Functions, Canonical Pathways, and Upstream Regulators in lung macrophages 3- and 14-days after injury relative to Ctl. Bars represent enrichment
[-log(pvalue)] 3 days (gray) and 14 days (black) after injury. Z-scores indicate predicted activation and inhibition respectively (N.P. not predictable).
(H-J) Heat maps depicting significantly altered genes associated with Interferon-y, TGFB1, and Interleukin-4 signaling 3- and 14-days after injury
relative to Ctl; criteria for significance was a 5% false discovery rate. Note that orange and black boxes highlight signatures specific to a given time
point. (K) ELISA for IL-4 and IL-13 from SP-C'”*T BAL fluid collected from controls, 7 days, 14 days, or 42 days post injury. Dot plots with Mean + SE
are shown. *p < 0.05 versus control group using One Way ANOVA followed by Tukey post-hoc test.

induced 14 days post-induction (Figure 2E; Supplementary Table 2).
Specific pathways linked to NFAT dependent regulation of immune
responses (directionality/z-score 1.90), Thl and Th2 activation (no
predicted z-score), granulocyte adhesion and diapedesis (no
predicted z-score), and STAT3 signaling (z-score 1.13) were noted
3 days post injury. Comparatively, glycoprotein 6 (z-score 5.48), IL-
15 production (z-score 5.00), fibrosis (z-score 6.71) and epithelial-
mesenchymal transition signaling (no z-score), and osteoarthritis (z-
score 3.34) were identified in macrophages at 14 days (Figure 2F).
Notably, IPA’s Upstream Regulators analysis predicted activation of
pro-inflammatory signals at 3 days (NFKBI1, IL5, IFNG,
prostaglandin E2, STAT3 and STATS6), and conventional fibrogenic
pathways (TGFBI1, TP53, FGF2, and SOX2) 14 days (Figure 2G).
Reactome-based breakdown of top differentially expressed genes
from the Interferon-y pathway identified distinct gene-sets
expressed during inflammatory initiation (Ifi203, Ifi206, Ifi209,
Ifi213, Stat4) and 14 days post injury (S100a8, Argl, Csfl, AloxI5,
Retnla, 114) (Figure 2H; Supplementary Table 2). A comparable dual
response was observed in the TGF-B1 (3 days: Ms4a2, Ctsk, Clec2i
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and Cd55; 14 days: IlIrl1, Argl, Alox15, F13al, Itgam, Ptgs2, Clqc,
and Anxa8) and IL-4 signaling pathways (3 days: Ms4al, Cxcl5, 116,
Stat4; 14 days: $100a8, Agf2r, Csf1, Retnla, 114) (Figures 21, ]). ELISA-
based validation of this established pro-fibrotic pathway confirmed
increases in IL-4 and IL-13 expression in the bronchoalveolar lavage
fluid 7-14 days post SP-C*”*" injury (Figure 2K). Notably, IL-15 and
Glycoprotein-6 signaling, as well as angiogenesis displayed time
restricted enrichments (14 days post-induction) (Supplementary
Figures 2A, B, and not shown).

Single-cell RNA sequencing reveals
activation of distinct monocyte/
macrophage clusters responding to SP-
C'*Tinduced injury

We then employed single-cell RNA sequencing to overcome the

constraints (and therefore bias) of antibody-based analysis of
macrophages involved in SP-C'”*" induced injury. A 59,440-cell
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dataset including healthy controls (29,213 cells), and two injury
times representing peak inflammation (14 days - 14,266 cells) and
established fibrosis (42 days - 15,961 cells) were studied. Population
clustering using SCTransformation with the glmGamPoi method at
a resolution of 0.4 yielded 33 clusters (Supplementary Figure 3A).
Partition of the clusters based on origin/identity (Ctl, 14 days, 42
days) highlighted shifts in endothelial cells (cluster 25), eosinophils
(cluster 8), and macrophages (cluster 9) composition after SP-C*7**
injury (Figures 3A, B). A combination of SingleR, manual
annotation, and the top three non-redundant genes from each
populations was used for identification of epithelial (3),
endothelial (6), mesenchymal/stromal (3), megakaryocytes,
granulocytes (3), B cells (4), lymphocytes (4), and mononuclear
myeloid populations (9) (Figure 3C; Supplementary Figures 3B-I).
Macrophage Cluster 19 (identified in only one of the eleven
specimens) and Cluster 32 (of low abundance and merged with
Cluster 3 after pseudobulk analysis determined high degree of
transcriptional overlap).

Uniform Manifold Approximation and Projection (UMAP)
analysis for the pan-macrophage gene Cd68 and the mobilization

10.3389/fimmu.2024.1425466

marker Itgam/Cdl1b were utilized to locate resident and recruited
macrophages, monocyte-derived, and by exclusion monocytes and
dendritic cells (Figures 3D, E). A curated gene set (mobility,
maturity, and activation markers) combined with pseudotime
analysis was used to clearly differentiate mononuclear myeloid
clusters (Supplementary Table 3). Cluster 3 was annotated as
alveolar macrophages since it expressed a combination of Cd68,
Itgax, Earl, Ear2, Siglecf, and moderate levels of Mertk (Figure 3F).
Reconstructed trajectory analysis also predicted terminal
differentiation within the alveolar macrophage cluster
(Figure 3G). Cluster 9, identified as interstitial macrophages
(Cd68, Msrl, and Clqa), was labeled based on its specific
expression of Trem2 (Figure 3F and not shown). Cluster 21
(macs_mertk) was identified as a mature subset based on
pseudotime analysis and distinctive expression of Mertk alongside
Itgax, Mrcl, Atp6v0d2, Kcnip4. This cluster was found solely in
controls and 42 days post injury (Figures 3F, G). Two monocyte-
like subsets were annotated as non-classical/NC (cluster 4 - CsfIr,
Cx3crl) and classical/inflammatory (cluster 11 - Ccr2, Ly6¢c2, Lyz2,
Ms4aé6c, F13al) (Figure 3F; Supplementary Table 3). Cluster 10 was
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FIGURE 3

Single-cell RNA sequencing of SP-C'73T

induced injury and fibrosis. Single-cell RNA sequencing analysis was performed on collagenase digested

single cell suspensions from controls (Ctl, oil treated SP-C'”*" mice), 14 days or 42 days post SP-C"*" induction. (A) UMAP analysis overlaying cells
from controls (cl73T, pink), 14 days (t14d 73T, green), and 42 days (t42d 73T, blue). (B) Split identify UMAP depiction of all cellular clusters identified
in controls (cl73T), 14 days (t14d 173T), and 42 days (t42d 173T) at 0.4 resolution. (C) Cluster breakdown identifying 7 endothelial, 3 mesenchymal, 3
epithelial, 2 polymorphonuclear, mast cells, 4 B cell, 4 lymphocytic, and 9 mononuclear myeloid clusters. Note that mononuclear myeloid clusters
were renamed based on single R and manual annotation: cluster 3 = Mac_Alv; cluster 4 = Mono_non classical/NC; cluster 9 = Mac_Trem2; cluster
10 = Mono_DC; cluster 11 = Mono_inflammatory/infl; cluster 19 = was removed from further analysis as it was identified solely in one of the
controls; cluster 21 = Mac_MerTK; cluster 24 = DC; cluster 32 = was combined with cluster 3/Mac_Alv since pseudobulk analysis revealed
analogous gene expression and pathway activation. (D, E) UMAP analysis for Cd68 and ltgam/Cd11b defines distribution and cellular expression in
the SP-C"3T lung. (F) Bubble plot of selected genes associated with macrophage maturation (Trem2, Itgax, Earl, Ear2, Atp6v0d2, Siglecf. Mertk),
recruitment and activation (F13al, Ly6c2, Ccr2, Cx3crl, Ctsk, Lyz2, H2-ebl, CclL22, Ccll7, Cd80, Cd86) in all annotated monocytes/macrophages/
dendritic cell clusters (Mo/Mac/DCs). (G) Pseudotime UMAP analysis. Note color intensity defining cellular maturation among monocyte/
macrophage clusters. (H) Enrichr-based Reactome pathway analysis for the top-15 predicted pathways in the 7 resulting monocyte/macrophage/DC
clusters. Single gradient color heatmap shows logarithmic adjusted p-values. Values above the arbitrary threshold (-log of adjusted p-value) of 20

were color-coated in black.
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annotated as monocyte-derived DCs based on a mixed myeloid and
lymphoid signature (Ccr2, Itgae/Cd103, Cd209/Dc-sign) and major
histocompatibility complex genes. A cluster of lymphoid-derived
DCs (cluster 24) lacking all classical myeloid features and
expressing Cd80, Cd86, Cd40, 1l4i, Ccr7, Ccl17, and Ccl22 was also
annotated (Figure 3F). Split identity analysis of these curated gene
sets also highlighted time related changes in the expression of
established macrophage maturity and identity genes (e.g.
Atp6v0d2, Itgax, and Cd68 expression increases, downregulation
of Siglecf, Earl, and Ear2) (Supplementary Figure 4A). Similar
trends were observed for neutrophils (PMN 1 lost Ptgs2 and
Tgm?2 in favor of Retnlg and Lcn2), eosinophils (PMN 2 - Siglecf,
Itgam, Cxcr2, Cd33, Csf3r, Tgfbrl), epithelial cells (Epil - Cldnl8,
Ager, Hopx, Krt8, Krt19, Sftpb), mesenchymal/stromal cells (Mes 2 -
Tgfbr3, Ccnl, Pdgfra, Npnt, Loxll, Ecml, Fgf2), and lymphatic
endothelial cells (Endo 6 - Nrgn, Itga2b, Gplbb increased 14 days
post injury). By comparison, B and T cells showed limited
transcriptional fluctuation over the 42-day injury (Supplementary
Figures 4B-G).

Pseudobulk differential expression analysis of Trem2"
macrophages surveyed gene expression and patterns during
injury. Approximately 700 genes demonstrated a transient drop
in abundance at 14 days (expression pattern group-1), while the
abundance of 621 genes was significantly increased following SP-
C"T induction (expression pattern group-2) (Supplementary
Figure 5). Smaller gene sets were shown to transiently increase at
14 days (122 genes, expression pattern group-3) or steadily decrease
after SP-C induction (61 genes, expression pattern group-4)
(Supplementary Figure 5). Notably, Reactome-based analysis
predicted no significant pathway to be altered for genes annotated
in expression pattern-1, while cytokine and interleukin signaling,
immunity, antigen presentation, and lipid and carbohydrate
metabolism were among significant pathways for expression
pattern-2 genes. By comparison, transcript abundance in
inflammatory monocytes followed two expression patterns:
transient decrease (237 genes) or increase (158) at 14 days post
injury. The latter predicted engagement of pathways related to
complement cascade, extracellular matrix organization and
immune responses (Supplementary Table 3).

Reactome-based analysis of the top-15 most significantly
regulated pathways revealed shared inflammatory signature
(‘immune system’, ‘neutrophil degranulation’, ‘ROS and RNA
production in phagocytes’) between alveolar macrophages and
Trem2" interstitial macrophages, though at considerably different
adjusted p-values (Aly macs p-value <102 vs. Trem2" p-value <107
193y (Figure 3H; Supplementary Table 3). By comparison, Mertk"
cells were not predicted to engage in innate or adaptive immunity or
cytokine mediated signaling, but generated a strong GTPase
signature (CDC42, RAC, RHO, and ROBO/SLIT). Examination of
monocyte-like clusters highlighted analogous ‘cytokine signaling in
immune system’, ‘innate immunity’, and ‘neutrophil degranulation’
engagement. Cx3cr]l” non-classical cells excelled in ‘VEGF signaling’,
‘signaling by tyrosine kinases’, and ‘Rho GTPase signaling’, while
Ccr2"Ly6¢2" classical/inflammatory monocytes produced a
signature related to RNA synthesis and translation and pathways
involved in ‘cellular response to stress’. Lastly, monocyte-derived and
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lymphoid DCs produced comparable activation profile (infectious
disease response, translational elongation and termination, and
ribosomal homeostasis) (Figure 3H).

Macrophages from human IPF display a
comTparable phenotype as murine SP-
C'”*Tinjury.

A recent dataset published by Adams and colleagues provided in
depth assessment of epithelial, endothelial, mesenchymal, and
immune populations in healthy and IPF tissue explants (40). The
mononuclear myeloid compartment from this set (44,226 cells;
12,514 from controls and 31,712 IPF, GSE136831) was re-
examined to define similarities between clinical and experimental
fibrosis. To avoid overfitting the data, the lowest resolution was
utilized (0.1), ultimately generating 5 major subsets (Supplementary
Figure 6A). UMAP analysis identified clusters 3 and 4 solely in the
controls, with an expansion in clusters 0 and 1 was noted in IPF
(Figure 4A). Cluster-based analysis of top-5 non-redundant genes
revealed differential expression for SPPI, CTSK, MMP7 (cluster 1)
and FABP4 (cluster 2) (Figure 4B; Supplementary Table 4). Disease-
based analysis highlighted notable changes in cluster 0 (SPP1, C1QC,
APOE) and cluster 1 (THBSI, FNI), consistent with our murine
dataset, including, (Figures 4B, C, Supplementary Table 5). A
curated set of 25 identity and lipid associated genes, used to
annotate this clusters, identified cluster 0 as an interstitial
macrophage population (widespread expression of ITGAX,
TREM2, MRCI1, ITGAM, APOE) and Cluster 1 as alveolar
macrophages (ITGAX/CDI11C, ITGAM, ABCAI). Notably, cluster
1 also displayed a signature characteristic of a potentially pro-fibrotic
monocyte-derived population in IPF lungs (TREM2, MERTK,
ATP6V0D2, CTSK, COL4A2, MMP7, MMP9) paired with a shift
in metabolic function (FABP5, LPL and LIPA increases). Clusters 2,
3 and 4 did not exhibit distinguishing signatures besides
overexpression of major histocompatibility complex genes (HLA-
DRB6) (Figure 4C; Supplementary Figure 6B). UMAP analysis of the
distribution of MERTK and fibronectinl/FNI demonstrated
widespread presence in cluster 0 and 1 of the IPF lung, while
ostepontinl/SPP1 was restricted to cluster 1 (Figures 4D-F).
Tumor growth factor B1/TGFBI was expressed in all cells
regardless of disease state (Supplementary Figures 6C, D). Enrichr-
based pathway analysis using the Reactome database highlighted IPF
induced changes (annotated as “global”) in all facets of immune cell
behavior, including “Immunity”, “Cellular Responses to Stress”,
“Cytokine Signaling in Immune System”, complement activation,
and GTPase signaling, and control of transcription and translation.
Clusters 0, 1, 2 were responsible for the majority of these signals
(Figure 4G; Supplementary Table 4). Direct comparison of
Reactome pathways from the spatial analysis and both the murine
and human single-cell sequencing datasets highlighted similarities
between cluster 1 annotated in the human IPF dataset and
inflammatory monocytes from the SP-C"?" mouse model. No
distinctive similarities were noted with respect to CD68"
macrophages sampled from peri-injured and injured regions of the
lung during our spatial analysis (Figure 4H).
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Osteopontinl and fibronectinl intercellular
communication during SP-C'”3T
induced injury

CellChat software was utilized to predict communication
among cellular clusters during SP-C”*" induced fibrotic injury.
Initial analysis grouped all 33 clusters into 7 macro-groups
(epithelial, endothelial, stromal, B cells, granulocytes,
lymphocytes, and Mo/Mac/DCs) (Supplementary Figure 7A) (51,
53). CellChat based aggregation of ligand: receptor expression
estimated increases in differential number and strength of
interaction between mesenchymal-epithelial and mesenchymal-
Mo/Mac/DCs and within epithelial clusters 14 day post-injury,
relative to controls. Within the Mo/Mac/DC macro-groups the
communication was estimated to increase in strength
(Supplementary Figure 7B). Interrogation of the inter-cluster
network 42 days post-induction showed increased interactions in
stromal and Mo/Mac/DC macro clusters relative to controls and 14
days (Supplementary Figures 7C, D), with incoming and outcoming
signals from the Mo/Mac/DC macro-cluster associated with SPP1
and FNI1 pathway (Supplementary Figures 7E-G, Supplementary
Tables 6-9).
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To pinpoint the exact cellular origin of these signals, CellChat
analysis was carried out after split of the Mo/Mac/DC macro-
cluster. This analysis revealed alveolar macrophages as a dynamic
cluster at baseline (both incoming/receptor-based and outgoing/
ligand-based interactions), while Trem2" macrophages produced
high volume of incoming/outgoing signals 14 days post injury and
Mertk" cells became active at 42 days. Classical/inflammatory
monocytes maintained comparable network profile throughout
the 42-day time course, with non-classical monocytes effectively
reducing outgoing signals after SP-C'"*T injury (Figure 5A;
Supplementary Figures 8A-C). Split identity pathway analysis
across the 42-day time course demonstrated the origin of the
osteopontinl/SPP1, fibronectinl/FN1, chemokine ligand/CCL,
laminin, semaphorin3/SEMA3, galectin, complement, and
collagen signaling to be driven by Trem2" macrophages at 14
days (Figure 5B). By 42 days, the predicted interaction strength
was comparable across the monocyte and macrophage clusters
(Supplementary Figures 8D-F). Connectome ring plots were used
to capture the changes and directionality of these interactions
during injury and fibrosis. Analysis of CCL signaling predicted
baseline crosstalk among all annotated mononuclear myeloid cells
and granulocytes. While these responses were unaffected 14 days
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post SP-C"7*" injury, by 42 days there was a global activation of this ~ Trem2* macrophages coordinate pro-
signaling network (Figure 5C). Differential expression of fibrotic communication during SP_CI73T
chemokines/cytokines/interleukins and their receptors highlighted  induced injury and fibrosis

distinct signatures in alveolar macrophages (Ccl6, 1118, Cxcl2, and

Il1a), Trem2" macrophages (Ccl12, Ccl2, Ccl24, Ccl9, Cxcli6, Cer5, We then query the dataset for distinctive extracellular matrix
1110rb, Il11ral), while Mertk" macrophages and monocyte-derived ~ reorganization gene signatures. Unsurprisingly, mesenchymal cells
DCs were relatively quiescent. Classical and inflammatory  produced signals from collagen genes, metalloproteinases, laminins,
monocytes presented a receptor dominant repertoire (Cx3crl, and platelet-derived growth factor receptor alpha and beta
Il10ra, Il17ra, Il6ra - inflammatory monocytes exclusively  (Supplementary Figure 9). Expression of Timpl, Mmpl2, and
expressed Ccr2) (Figures 5D, E). CellChat-based network analysis ~ Mmpl4 were restricted to Trem2" cells, while Sppl, Fnl, and
for complement signaling predicted outgoing communication from  Mmpl9 were shared with alveolar macrophages (Figure 6A).
classical monocytes to other myeloid clusters in all conditions, with ~ Tgfbl transcripts were maximal in inflammatory monocytes,
a transient activation originating from stromal cells 14 days post  though UMAP analysis of distribution suggested widespread
injury (Figure 5F). Differential expression revealed distinct  expression in the lung (Figures 6A, B). Notably, SppI, and Fnl
signatures in trem2" macrophages (Clqa, Clgb, Clqc, C3arl) and  expression was also found in the endothelial and mesenchymal
stromal cells (stromal 2 - Clgtnf7, Clra, C2, C3, C4b, C7), with  compartment (Figures 6C, D). Signaling connectome ring for Tgfbl
granulocytes also expressing C3arl, C5arl, and C5ar2 (Figure 5G).  highlighted baseline signals emanating primarily from alveolar
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FIGURE 5

Cell-cell communication analysis in SP- induced injury and fibrosis. CellChat software was used to estimate cell-cell communication in controls
(Ctl, oil treated SP-C"7*" mice), 14 days or 42 days post SP-C"7*" induction. (A) Ligand:receptor expression analysis examining incoming (y-axis) and
outgoing (x-axis) signals in controls, 14 days or 42 days post injury. Note that individual endothelial, mesenchymal, epithelial, granulocyte, B cell, and
lymphocyte clusters were combined into “macro-clusters”, while mononuclear myeloid cells remained split. The size of the circles is representative
of population size. (B) Prediction of signaling changes in Trem2* macrophages between control and 14-day, control and 42-day, and 14-d and 42 d.
Plot legend describes directionality (circle - shared by both groups, square - incoming in a specific group, triangle - outgoing in a specific group,
diamond - incoming and outgoing in a specific group) and signal specificity (black - shared by both groups, orange - control specific, cyan - injury/
tamoxifen specific). (C) Connectome ring plots for chemokine ligand/CCL signaling pathway network predict directionality and communication
strength among clusters. (D, E) Split identity bubble plot for chemokine/cytokine/interleukin ligands and receptors among mononuclear myeloid
clusters. Note that the size of the bubble indicates the relative abundance of the population expressing target gene. Color coating indicates average
expression. (F) Connectome ring plots for Complement signaling network predicting directionality and strength of communication among clusters.
(G) Split identity bubble plot for complement associated genes among mononuclear myeloid clusters. Note that the size of the bubble indicates the
relative abundance of the population expressing target gene. Color coating indicates average expression.
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macrophages, non-classical monocytes, monocyte-derived DCs,
and B cells. Despite transient drop 14 days post SP-C'”*" induced
injury, the network returned to control levels by 42 days, with
involvement of Mertk" macrophages (Figure 6E; Supplementary
Tables 6-9). Osteopontinl signaling network revealed alveolar

C”T induced

macrophages as the sole driver in control lungs. SP-
injury produced increases in alveolar and Trem2" macrophages (14
days), and ultimately global expression in all lung cells (42 days)
(Figure 6F; Supplementary Tables 6-9). Inflammatory monocytes
and alveolar macrophages were shown to engage in fibronectin 1
signaling in the control and injured lung. Notably, Trem2"
macrophages and stromal cells were predicted to partake in FN1
communication 14 days post-injury, while Mertk™ macrophages
were shown at 42 days (Figure 7G; Supplementary Tables 6-9).
Although spatial examination did not detect significant differences
among CD68" macrophages collected from healthy, peri-injured,
and injured regions of the lung 14 days post injury, we found that
proximity to the remodeled tissue (areas of interest 006 and 010)
resulted in higher expression of Tgfbl, Sppl, and Fnl
(Figures 6H-J).

Genetic ablation of ApoE does not impact
SP-C'"3T induced injury

Curated analysis for genes involved in lipid handling and
metabolism showed heterogeneous expression among
mononuclear myeloid cells during SP-C"?" induced injury and
fibrosis. Monocytes exhibited a limited repertoire of lipid-associated
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genes. Alveolar macrophages displayed an extensive signature at
baseline (Fabpl, Plin2, Lipa, Lpl, Lpinl, Abcgl, Acoxl) which
expanded after injury (Nrl1h3, Marco, Fabp4). Mertk™
macrophages developed distinct signatures at 14 days (Nrlh3,
Marco, Plin2, Abcal) and 42 days (Pparg Ldlr, Lrpl, Lrpl2, and
Acoxl), a time coordinated with their maximal abundance
(Figure 7A). Trem2" gene expression was restricted to ATP
binding cassette transporters (Abcal, Abca9) and exclusive Apoe
expression. Analysis of the distribution of Apoe and two of its
established receptors (Lrpl, Ldlr) confirmed predominant
expression in mononuclear myeloid and mesenchymal clusters
(Figures 7B-D) (54). Immunohistochemical analysis of ApoE
showed increases in parenchymal and immune cells 7 days and
14 days post induction, in particular within injury foci (Figure 7E).
In situ hybridization analysis validated the origin of Apoe in CD68"
macrophages up to 42 days after SP-C'”* injury, while western blot
analysis of BAL fluid also confirmed protein increases after SP-C'”**
induced injury (Figures 7F, G). Our bulk RNA sequencing predicted
activation of the ApoE signaling pathway in SigF*CD11c"CD64"
alveolar macrophages, however its expression (or that of its
receptors) was not spatially restricted (Figures 7H, I). To test the
hypothesis that ApoE is directly implicated in Mo/Mac/DC
function during pulmonary remodeling, mono- and bi-allelic
deletion of ApoE (SP-C'7*TApoE"™® ™ and ApoE"°M) was
designed (Figure 7]). Neither ApoE hypofunctional or null mice
impacted accumulation of Sppl™ macrophages within areas of
injury 14 days post SP-C'7*T
there was no improvements in pulmonary histopathological

induction (Figure 7K). Similarly,

scoring, BAL cell counts, or mortality (Figures 7L-0).
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Pro-fibrotic cell-cell communication in SP-C*T induced injury and fibrosis. CellChat-based analysis of fibrogenic signaling from controls (Ctl, oil
treated SP-C'”*T mice), 14 days or 42 days post SP-C"7*T induction. (A) Split identity bubble plot for fibrosis-associated genes among mononuclear
myeloid clusters. Note that the size of the bubble indicates the relative abundance of the population expressing target gene. Color coating indicates
average expression. (B-D) UMAP analysis for tgfbl, sppl, fnl. (E-G) Connectome ring plots for TGFb, osteopontin/SPP1 fibronectin/FN1 signaling
pathway network predicting directionality and communication strength among clusters. Note that only Mo/Mac/DC clusters are split. (H-J) Box plots
for Tgfbl, Sppl, Fnl. CD68" macrophages isolated from healthy regions are shown in dark purple, peri-injured macrophages in pink, and injured

macrophages are shown in green. The Y-axis represents normalized counts.
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Lipid signature in SP- induced injury and fibrosis. Lipid-associated gene expression was assessed in controls (Ctl, oil treated SP- mice), 14 days or 42
days post SP-C”*T induction. (A) Split identity bubble plot for lipid-associated genes among mononuclear myeloid clusters. Note that the size of the bubble
indicates the relative abundance of the population expressing target gene. Color coating indicates average expression. (B-D) UMAP analysis for Apoe, Lrpl,
Ldlr. (E) Immunohistochemical analysis for ApoE in controls, 14 days or 42 days post SP-C7*" induced injury. A representative image is shown. (F)
Combination of immunohistochemistry (CD68, brown) and in situ hybridization (Apoe, magenta). Protein expression was visualized using a DAB Vectastain
kit. Original magnification, 400x. Insets, 1000x. (G) ApoE western blot analysis of BAL fluid from SP-C”*"control (Ctl), 7 days, 14 days, and 42 days post
induction (N=3). Red arrowhead indicates molecular weight band for ApoE (34 KDa). (H) Heat maps of significantly altered genes associated with ApoE
signaling in flow cytometry sorted CD11b"SigF*CD11c*CD64" resident lung macrophages 3- and 14-days after injury. The criteria for significance was a 5%
false discovery rate. Note that the orange box highlights signatures specific to a given time point. (I) Box plots for Apoe, Lrp1, Ldlr. The Y-axis represents
normalized counts. A p-value <0.05 was considered significant using Linear Mixed Model. (J) ApoE western blot analysis of BAL fluid from control and 14
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arrowhead indicates molecular weight band for ApoE (34 KDa). Black brackets represent ApoE"'", Apoe™ ", ApoE™“M BAL fluid from control SP-C'”*T mice.
Red brackets represent ApoE™, Apoe T, ApoEHM BAL fluid 14 days post SP-C'”*T induced injury. (K) Duplex in situ hybridization analysis for Tgfb1 (pink)
Spp1 (blue) in SP-C73TApoE™T, SP-C73TApoE ET, and SP-C7*TApoE™°M lungs 14 days post injury. Representative images are shown. (L-M) H&E staining and
histological scoring of SP-C7*TApoE"YT, SP-C73TApoE™ET, and SP-C73TApoEH™ lungs 14 days post injury. Pathological scoring included counting of foci of
injury, extent of inflammation, edema, hemorrhage, and alveolar architecture remodeling. Representative images are shown. (N) Bronchoalveolar lavage fluid
(BAL) cell counts of SP-C"*TApoE™T, SP-C”*TApoE™ET, and SP-C73TApoEH™ samples (controls and 14 days post injury). Data are presented as mean + SEM
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(n = 4-9 mice/group), analyzed using two-way ANOVA. A p<0.05 (*) was considered significant. Lines mark significant groups. (O) Kaplan—Meier survival
curve of SP-C73TApoET, SP-C73TApoE T, and SP-C*TApoE™M lungs 14 days post injury. Analysis includes mice found dead or displaying >20% body

weight from study initiation. Log-Sum (Mantel-Cox) Rank test was used.

Discussion

Genetic mutations in key nodes of pulmonary epithelial
function are intertwined with familial forms of pulmonary fibrosis
(PF) and other interstitial lung diseases (55). Dysbiosis among
parenchymal cells promote repeated cycles of injury,
inflammation, epithelial-to-mesenchymal transition, and the
proliferation of polyclonal fibroblast clusters, leading to spatially
and temporally heterogenous tissue remodeling (56-58). In the
current paradigm of PF, the role of immune cells remains
ambiguous and primarily circumscribed to “acute inflammatory
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exacerbations”, sporadic events that severely worsen disease
phenotype and accelerate patient mortality. This paradigm is
supported by clinical and experimental evidence linking excess
inflammatory monocyte mobilization and their retention as pro-
fibrotic monocyte-derived macrophages to poor prognosis (13, 14,
20, 22). Our group has previously defined the involvement of
mononuclear myeloid cells at all stages of inflammatory
exacerbations triggered by a clinically relevant single point
mutation in the alveolar epithelial cell specific gene encoding for
the surfactant protein C (SP—CmT) (59). Using this experimental
platform and available human IPF datasets, this work aimed to
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expand the current understanding of PF and fill an important gap
pertaining to macrophage phenotypic heterogeneity and aberrant
cell-cell crosstalk in fibrotic disease. Specifically, we spatially
characterized the transcriptional profile of CD68" macrophages
within and surrounding fibrotic foci of injury; defined incoming
and outgoing pro-fibrotic communications among pulmonary cells;
identified a dynamic lipid signature across all annotated
macrophage and monocyte clusters, with a sole population
producing Apoe; and showed that SP-C'7*"
marginally impacted by genetic Apoe deletion.

induced fibrosis is

Initial work was designed to spatially localize activated
macrophages in the healthy, inflamed, and fibrosing lung. This
approach aligns with a handful of recent reports that elegantly
resolve epithelial, mesenchymal, and immune cell identity and
abundance in clinical and experimental fibrosis (60, 61). Our
studies go beyond the focus of these publications by placing
emphasis on the distribution of macrophages from spatially
diverse regions of the injured lung. CD68 represents a
compromise allowing to sample both control/healthy and injured
macrophages. Our gene expression and hierarchical clustering
analysis demonstrate heterogenous transcriptional signatures
among macrophages sampled from the fibrosing lung, thus
suggesting a gradient of activation based on spatial localization.
Pathway analysis also painted an unexpected picture characterized
by transcriptionally quiescent CD68" cells sampled from fully
remodeled regions, contrasting a hyperactive phenotype
emanating from peri-injured macrophages. Within this region of
interest our findings also support the notion that macrophages
activation is linked to their proximity to the injury. Findings that
innate and adaptive immunity, matrix remodeling, senescence, and
redox balance signals are predicted to be driven primarily by peri-
injured macrophages (compared to all other sampled regions) adds
depth to previous reports showing unequal expression of
inflammatory proteins among immune cells found in healthy and
fibrotic regions of the clinically diseased lung (62). Our results also
support and complement evidence showing downregulation of
inflammatory signaling (TNFo) in IPF immune infiltrates
compared to healthy/unaffected regions (63). The comprehensive
nature of our transcriptional analysis is novel in the context of
fibrosis, particularly in pulmonary injury triggered by genetic
susceptibility of the epithelial compartment and could provide
insights in the development of more targeted and effective
therapeutics in the future.

To further appreciate the role of the resident alveolar compartment
during inflammatory exacerbations progressing to fibrosis, flow
cytometry-based sorting of CD11b SigF*CD11c" cells was performed
3 days and 14 days after SP-C”*" induced injury. Our results allowed
us to place these cells as players of all phases of the SP-C"”*" injury,
through temporally restricted activation of canonical inflammatory
pathways (IL6 and prostaglandin E2 exclusively shown 3 days post
injury) and pro-fibrotic pathways (glycoprotein/GP6, SOX2, KLF4). At
the same time, we show a subset of signaling networks sustained over
our 14 day analysis, albeit driven by distinct transcriptional signatures
(IFNYy, TGFp1, IL-4) (64, 65). While these signals have been previously
reported in the fibrotic lung, specific annotation in resident alveolar
macrophages strengthens the notion that this population functions as a
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pleiotropic effector of inflammation and tissue remodeling (66, 67), and
further substantiates our prior histopathological investigation of the
SP-C"”*" injury (dysregulated inflammation and increased mortality)
following pharmacological depletion of alveolar macrophages with
clodronate liposomes (10).

Due to the phenotypic heterogeneity intrinsic of monocytes/
macrophages in chronic disease, we built on our previous
characterization of monocyte-derived macrophages through
single-cell RNA sequencing (10, 22, 68). Albeit a low-resolution
clustering analysis, we identified three macrophage (alveolar
macrophages, Trem2", and Mertk™), as well as transcriptionally
distinct populations of monocytes (classical - Itgam/cd11b, Cx3crl;
inflammatory - Ccr2, Ly6c, Lyz2) (69). Our findings that
complement signaling is involved in SP-C"*" injury and fibrosis
is consistent with evidence that soluble defense collagens support
activation, proliferation, and tissue-repair functions of
macrophages (70-72). Alongside these signals, our results define
inflammatory monocytes and monocyte-derived moieties
(interstitial macrophages) as centrally involved in fibronectin/FN1
and osteopontin/SPP1 signaling in the fibrosing lung, a finding
consistent with bleomycin-induced injury (42, 73-78).

Mertk has been used to identify alveolar macrophages due to its role
in mediating phagocytosis of apoptotic cells (79). Our annotation of a
Mertk™ cluster in control lungs is consistent to their identity as alveolar
macrophages. However, identification of a second population of
Mertk"" cells appearing 42 days post injury and displaying a unique
transcriptional signatures suggest these may be monocyte-derived
moieties settling within the lung following the end of the
inflammatory exacerbation. Further work needs to establish their
identity since our pseudotime analysis did not fully recapitulate
their origin.

Mining of a publicly available human IPF dataset (GSE136831,
www.ipfcellatlas.com) offered the opportunity to add a translational
value to these findings (40). Our analysis identified three
macrophage clusters in the IPF lung that generate a
transcriptional signature comparable to our murine results
(innate immunity, interleukin mediated signaling, fibrogenic
processes, and heightened transcriptional and translational
control). In particular, this work confirmed the presence of
TREM?2" interstitial macrophages (cluster 0) and a population of
alveolar macrophages (cluster 1) in late stage IPF (22, 80, 81). Due
to the low resolution of the clustering, our findings do show a single
cluster co-expressing MERTK and TREM2. At this stage, it is
unclear if such population appears in established fibrosis as
clinical literature seldom cites both markers. Independent of the
nomenclature, our assessment is consistent with reports showing
osteopontin/SPP1, fibronectin/FN1, and TGFfB1 signaling in the
fibrotic niche (73, 82-84).

The importance of defining the metabolic signatures
accompanying acute and chronic inflammation has great
therapeutic potential (85). Our analysis identifies a robust lipid
signature in steady-state alveolar macrophages, a notion consistent
with their role in surfactant lipid (fluid) recycling and maintenance
(86). The changes observed during SP-C"”*" injury are consistent
with the notion that pro-fibrotic reprogramming requires a
metabolic shift towards lipid consumption (87, 88).
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Therapeutically noteworthy is the transcriptional signature
produced by Mertk" macrophages 42 days post injury, which
included Pparg and several apolipoprotein receptors. Indeed, there
is a large body of evidence showing that engaging this transcription
factor is effective in attenuating the fibrotic phenotype (89-91). By
comparison, this work leveraged the specificity of the Apoe signal
originating from Trem2" cells and recent experimental evidence
linking this lipoprotein to pro-fibrotic monocyte-derived
macrophages during chemical-induced fibrosis (36, 92-94). Our
findings that ApoE deletion does not provide overt benefits on
Spp1™ cell accumulation in the foci of injury, total inflammation, or
survival is somewhat surprising. Confounding elements related to
the compensatory effects of a global knock out, or the impact of
ApoE deletion on a surfactant impaired system may need further
examination. Despite these incongruences, our results support the
value of ApoE as a biomarker indicative of the presence of SppI*
and Fnl" pro-fibrotic macrophages in the lung.

Though comprehensive, any experimental modeling of disease has
limitations. While pairing murine sequencing data with human single-
cell datasets offers translational value, elements related to disease
staging (early inflammatory exacerbation vs. end-stage disease) and
heterogeneity of human IPF etiology make this assessment less obvious.
Furthermore, it is well established that use of antibody-based sorting
introduces bias to the analysis (e.g., CD11b SigF'CD11c" in our bulk
sequencing, CD45"CD68" for spatial analysis). To a lesser degree,
clustering analysis of single-cell RNA sequencing data and cell-
communication predictive tools introduce bias related to pathway
annotation, and therefore any analysis attempting to describe non-
canonical signaling (e.g. ApoE signaling in inflammation rather than
lipid homeostasis) may not find a fitting match.

Despite any potential drawback, this work comprehensively
assesses the spatial and phenotypic distribution of macrophages in
pulmonary fibrosis triggered by a fibrogenic mutation in the alveolar
epithelial cell restricted gene encoding for the SP-C. Our data finds
peri-injury macrophages to produce an extremely active phenotype,
while CD68" cells localized within the fibrotic foci appear
transcriptionally dormant at the peak of an inflammation
exacerbation. Single cell analysis elucidated the intercellular
communications occurring in the lung, while identifying Ccr2*Ly6c*
inflammatory monocytes and trem2" interstitial macrophages as

distinct fibrogenic populations in SP-C'7*T

induced injury.
Furthermore, our work defined distinct lipid signatures among
macrophage populations and propose ApoE as a potential biomarker
to identify SPP1- and FN1-producing macrophages. Taken together,
this work provides an essential framework for the identification (and
future targeting) of deleterious macrophage populations in the early

and late stages of the fibrogenic process.
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Introduction: Single-cell RNA sequencing (scRNAseq) and flow cytometry
studies in skin are methodologically complex and costly, limiting their
accessibility to researchers worldwide. Ideally, RNA and protein-based analyses
should be performed on the same lesion to obtain more comprehensive data.
However, current protocols generally focus on either scRNAseq or flow
cytometry of healthy skin.

Methods: We present a novel label-free sample multiplexing strategy, building on
the souporcell algorithm, which enables scRNAseq analysis of paired blood and
skin samples. Additionally, we provide detailed instructions for simultaneous flow
cytometry analysis from the same sample, with necessary adaptations for both
healthy and inflamed skin specimens.

Results: This tissue multiplexing strategy mitigates technical batch effects and
reduces costs by 2-4 times compared to existing protocols. We also demonstrate
the effects of varying enzymatic incubation durations (1, 3, and 16 hours, with and
without enzyme P) on flow cytometry outcomes. Comprehensive explanations
of bioinformatic demultiplexing steps and a detailed step-by-step protocol of the
entire experimental procedure are included.

Discussion: The protocol outlined in this article will make scRNAseq and flow
cytometry analysis of skin samples more accessible to researchers, especially
those new to these techniques.

KEYWORDS

skin, inflammation, single cell RNA sequencing (scRNA), flow cytometry, souporcell,
multiplexing, skin dissociation
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Introduction

Analyzing RNA and protein at the single-cell level in lesional
skin is crucial for understanding the immune mechanisms
underlying dermatological disorders and identifying novel
therapeutic targets. Recent advancements in standardized tissue
dissociations and single-cell RNA sequencing (scRNAseq) systems
have facilitated studies on diseases such as psoriasis and atopic
dermatitis using single-cell analysis methods (1-4). These studies
have significantly enhanced our understanding of the immune
mechanisms involved in these disorders. However, the complex
methodology and high costs associated with these studies limit their
accessibility, preventing many laboratories from conducting such
experiments and hindering the application of these studies to other
dermatological disorders. Therefore, there is a pressing need for
cost-effective and detailed experimental protocols to make these
techniques more accessible to researchers.

Obtaining high-quality cells with intact RNA and protein
epitopes from solid tissues has been a significant challenge for
single-cell studies. Numerous protocols for tissue dissociation have
been documented in the scientific literature (5-7). The introduction
of automated tissue dissociator systems has further facilitated flow
cytometry and scRNAseq analysis of dissociated skin cells (8, 9).
Recently, comprehensive methodological papers have provided
efficient and optimized protocols for scRNAseq and flow
cytometry analysis of human and pig skin, which we recommend
for further reading (5, 10-12). However, these papers
predominantly focus on either scRNAseq or flow cytometry,
without testing both methods on the same sample, and primarily
concentrate on healthy skin. Inflamed skin, which typically has a
higher cell count than healthy skin, may require different
experimental conditions.

High-throughput single-cell multi-omics methods, such as
CITE-Seq, have recently been developed to simultaneously study
RNA and protein. However, these techniques are less sensitive to
dim cell surface markers. Conventional and spectral flow cytometry,
as well as mass cytometry, remain the gold standards for single-cell
protein-based studies. Preservation of cell surface epitopes is
essential for these methodologies and can be influenced by
enzyme selection and prolonged enzymatic incubation periods.
Studies systematically comparing the effects of enzymatic
incubation durations are scarce, and none have examined the
impact of enzyme P, commonly used in cell dissociation protocols
to increase cell yield in scRNAseq studies.

Sample multiplexing is vital for reducing technical batch effects
and experimental costs in scRNAseq studies. Traditional sample
multiplexing relies on oligonucleotide-conjugated hashtag
antibodies. However, this approach has limitations, including the
risk of inefficient antibody binding to all cells, additional material
requirements for both multiplexing and demultiplexing steps, and
increased experimental complexity and costs. Existing protocols
often lack detailed steps for multiplexing samples, library
generation for barcodes, and demultiplexing methods. In our
experience, initial attempts at sample multiplexing in our
laboratory faced significant challenges due to insufficient detail in
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existing protocols, risking the loss of samples and materials, which
prompted us to look for alternative sample multiplexing and
demultiplexing methods.

Recently, algorithms that recognize individual-specific single
nucleotide polymorphism signatures have been developed for label-
free demultiplexing of pooled samples. One such method, souporcell,
has shown excellent benchmarking results against antibody-based cell
hashing techniques (13). However, the complex experimental design
proposed in the original article, which involves splitting the same
sample into multiple experimental batches, has limited its usage in
research projects. A novel experimental design is needed to make this
method more widely applicable.

In this study, we aimed to establish a practical and cost-effective
protocol for single-cell protein and RNA analysis. We provide tailored
instructions for both healthy and lesional skin, demonstrating the
influence of various enzymatic incubation conditions on flow
cytometry analysis. Importantly, we introduce a novel, two-layered
sample multiplexing design that combines two complementary
strategies from the literature, along with demultiplexing steps, for
scRNAseq experiments. This approach can lower the experimental
costs 2-4 fold. Detailed explanations for each optimization step are
provided, allowing researchers to adapt and customize protocols
according to their specific needs (Supplementary Material).

Materials and methods
Experimental design

Our experimental design consists of two main parts. The first
part includes the acquisition of skin samples, followed by tissue
dissociation and flow cytometry analysis of freshly isolated cells. A
fraction of dissociated skin cells are cryopreserved for future
scRNAseq analysis at the end of this step (Figure 1). The second
part begins with sample preparation for scRNAseq analysis by cell
sorting, followed by gel beads-in-emulsion (GEM) generation,
library construction, sequencing, and data analysis (Figure 1). A
step-by-step protocol is presented in the Supplementary Materials.

Sample collection

The study was approved by the Ko¢ University Committee on
Human Research (protocol number 2022.058.IRB2.007). Informed
consent was obtained from all participants.

Healthy skin samples were obtained by surgical excision of
excess skin tissue from individuals undergoing surgery (n=6).
Tissues were kept in cold tissue storage solution (130-100-008,
Miltenyi Biotec, Germany) until delivered to the laboratory on ice.
From each large surgical excision, eight 6 mm punch biopsies were
obtained. These punch biopsies were then distributed as two pieces
for each experimental condition, including three different enzyme
incubation periods and treatment with enzyme P. Lesional skin
biopsy specimens were collected from patients with Behget’s disease
(BD, n=12). A 4 mm punch was used to collect skin biopsy samples

frontiersin.org
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FIGURE 1

Graphic representation of our experimental workflow that involves skin biopsy, tissue dissociation using the Whole Skin Dissociation Kit (Miltenyi Biotec,
Germany) in 2 steps of enzymatic and mechanical dissociation, staining part of the dissociated cells for flow cytometry analysis, and cryopreservation part of
cells for subsequent scRNAseq analysis. Second part includes thawing of cell suspensions, sample preparation by Fluorescence-activated cell sorting (FACS),
cell counting by trypan blue exclusion method, Gel Beads-in-emulsion (GEM) generation, library preparation, sequencing and data analysis. The figure was
created with BioRender.com. *For lesional skin, one 4mm punch biopsy was obtained. For healthy skin samples, two 6 mm specimens were obtained.

from the lesional area. Demographic and clinical characteristics of
the study samples are demonstrated in Table 1.

For the isolation of peripheral blood mononuclear cells
(PBMC:s), venous blood was diluted 1:1 with phosphate-buffered
saline (PBS) and spread over an equal volume of Lymphoprep
1.077g/ml density gradient (Axis-Shield, Norway) in 50 ml Falcon
tubes. The tubes were centrifuged at 500g for 30 minutes at room
temperature without brakes. Following centrifugation, the PBMC
layer was transferred into another 50 ml sterile tube and washed
with PBS containing an equal volume of 1% BSA. A fraction of cells
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were analyzed freshly by flow cytometry and the remaining cells
were frozen in the cryopreservation solution (10% DMSO, 90%
FBS) for later usage.

Skin dissociation
After the delivery of skin samples, the tissue was washed

thoroughly with PBS, and subcutaneous tissue was removed with
a scalpel, paying attention to keeping the dermis intact. Then, the
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TABLE 1 Demographic and clinical characteristics of the study samples,
including Behcet's disease (BD) patients and healthy controls.

Characteristic BD (n=12) HC (n=6)
Age: median 35 (30-41) 70 (65-73)
(Interquartile Range)

Gender (Male: Female) 6:6 0:6

Smoking 3/12 1/6

HLA-B51 positivity 4/9 -

Lesion Type:

Erythema Nodosum-like 3 -

lesions (EN)

Papulopustular Eruptions (PPE) | 6 -

Genital Ulcers (GU) 3 -

Data for age are presented as median with interquartile range (IQR). Gender is reported as a
ratio of male to female participants. Smoking status and HLA-B51 positivity are also included.
For patients, lesion types are categorized as erythema nodosum-like lesions (EN),
papulopustular eruptions (PPE), and genital ulcers (GU).

skin tissues were dissociated enzymatically and mechanically using
the Whole Skin Dissociation Kit (130-101-540, Miltenyi Biotec,
Germany) and gentleMACS Octo Dissociator with Heaters
(Miltenyi Biotec, Germany) following the manufacturer’s
protocol. The kit recommends the use of three enzymes (enzymes
A, D, and P) for enzymatic dissociation, with the usage of enzyme P
being optional depending on the subsequent analysis method.
Enzyme P is known to cause cleavage of some extracellular
epitopes, which may interfere with flow cytometry analysis. The
duration of enzymatic incubation can be either 3 hours or overnight
as per the manufacturer’s manual. To investigate the effect of
enzyme P and various incubation durations (1h, 3h, and 16h) on
flow cytometry results, we first conducted a systematic study, as
these factors have not been studied comprehensively before.

The enzymatic steps were carried out as follows: 435 pL of
Buffer L and, if applicable, 12.5 uL of Enzyme P were combined in a
gentleMACS C tube. Subsequently, 50 pL of Enzyme D and 2.5 pL
of Enzyme A were added to the mixture, which was then thoroughly
mixed. The tissue-enzyme mixture was then placed in a 37°C water
bath for incubation. We compared three different incubation
durations: 1, 3, and 16 hours.

After incubation, 500uL of cold DMEM (Gibco, USA) was
added to the mixture, and tubes were placed onto the gentleMACS
system. The “h_skin_01” program was initiated to mechanically
dissociate the tissues into cell suspension. Following completion of
the program, samples were briefly centrifuged and filtered using a
70 pum cell strainer (83.3945.070, Sarstedt, Germany), with 4 ml of
DMEM used to wash the cells.

After centrifugation at 350g for 10 minutes, the cell pellet was
counted using a hemocytometer with 0.4% Trypan blue to exclude
dead cells. Approximately 10 cells (in 100 uL buffer) were stained
and analyzed by flow cytometry on the same day, while the
remaining cells were cryopreserved (in 1 mL fetal bovine serum
plus 10% DMSO) for subsequent scRNAseq analysis.
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Flow cytometry

All antibodies and the fixable viability dye used in this study are
listed in Supplementary Table 1. Initially, 10° freshly isolated skin
cells or PBMCs were incubated with Zombie NIR fixable viability
dye for 10 minutes on ice. Subsequently, 2 ml of FACS buffer (PBS+
1% BSA) was added to the tubes, followed by centrifugation at 500 g
for 5 minutes. After centrifugation, the supernatant was decanted,
and a cell surface antibody cocktail was added. Samples were then
incubated for 20 minutes on ice. Post-incubation, samples were
washed again with 2 ml of FACS buffer and the supernatant was
removed. For intracellular staining, cells were fixed with 500 pL of
Fixation Buffer (420801, BioLegend, USA) for 20 minutes at room
temperature and directly centrifuged at 500 g for 5 minutes.
Following the removal of the supernatant, cells were washed with
Intracellular Staining Permeabilization Wash Buffer (421002,
BioLegend, USA) and incubated with an intracellular antibody
cocktail for 20 minutes at room temperature. After the incubation
period, cells were washed with the Permeabilization Wash Buffer
and the pellet was resuspended with 500 pL of FACS buffer. The
acquisition was performed using a CytoFLEX SRT (Beckman
Coulter) flow cytometer, and the results were analyzed using
FlowJo v.10.9.0 (BD Biosciences, USA). The markers used to
identify the cell populations of interest are listed in
Supplementary Table 2.

Sample preparation for single-cell
RNA sequencing

For successful single-cell RNA sequencing using the 10X
Chromium system, proper sample preparation is paramount. The
viability and concentration of cells for GEM generation must adhere
to the manufacturer’s protocol. A live cell ratio exceeding 90% is
highly advisable, although ratios above 60-70% can also be
attempted with potentially reduced success rates.

In this study, we adopted a sample pooling strategy to mitigate
batch effects and lower experimental costs by combining two or
more samples. Initially, cryopreserved cell suspensions from skin
and peripheral blood were thawed. Subsequently, cells were stained
with fixable viability dye (Zombie NIR) in PBS, followed by anti-
human CD45 PE-Cy5 in FACS buffer (PBS+ 1% BSA). CD45+ live
cells were then simultaneously sorted from two samples using the
CytoFLEX SRT (Beckman Coulter) and FACS Aria III cell sorters
(BD Biosciences, USA). During sorting, a 100 um nozzle was
utilized, with a constant pressure of 20 psi, and the sample
chamber was maintained at 4°C. The sorting speed was kept low
(1500 events/seconds) to ensure high viability and purity.

The manufacturer’s protocol for the Chromium Next GEM
Single Cell 5° Reagent Kit V2 (Dual Index, 10X Genomics, USA)
used for this study suggests an ideal cell concentration of 700 to
1200 cells per microliter for GEM generation. However, cell sorting
from skin tissue often results in concentrations lower than this
range. In such cases, it is necessary to concentrate the cell
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suspension after sorting. In the current study, this was
accomplished by an additional centrifugation step at 850 g for 5
minutes. After carefully removing the supernatant, the cells were
reconstituted in the desired volume.

Library preparation and sequencing

Once the sample preparation step was completed by reaching
the optimum cell concentration, steps for cDNA preparation,
amplification, and library preparation were performed by using
the Chromium Controller and the Chromium Next GEM Single
Cell 5’ Reagent Kits V2 (Dual Index, 10X Genomics, USA).

First, GEMs were generated by loading a master mix containing
cells, gel beads, and partitioning oil on the Chromium Next GEM
Chip K and running the Chromium Controller system. Next, gel
beads were dissolved, cells were lysed and 10X barcoded cDNAs
were produced from poly-adenylated mRNAs. The barcoded
cDNAs were purified from the reaction mixture using Silane
magnetic beads and amplified via PCR. The quality control (QC)
and quantification were performed by Agilent 2100 Bioanalyzer
(Agilent Technologies, USA). For Gene Expression (GEX) library
construction enzymatic fragmentation, size selection was
performed to get the optimal cDNA amplicon lengths. Finally,
sequencing-ready dual index libraries were prepared by end repair,
A-tailing, adaptor ligation, and sample index PCR.

Paired-end sequencing was performed on the Illumina NovaSeq
6000 platform by outsourcing to a service provider. A minimum
reading depth of 20,000 reads per cell was utilized.

Alignment and demultiplexing of single-
cell RNAseq data

The raw FASTQ files were aligned to the reference genome
(GRCh38) using Cell Ranger (v.7.1.0) multi pipeline. Both reference
genome and Cell Ranger software were obtained from the official
10X Genomics website.

We used souporcell for demultiplexing of pooled samples (13).
The BAM file generated by Cell Ranger was plugged into the
souporcell pipeline. This method utilizes single nucleotide
polymorphisms (SNPs) detected in scRNA-seq reads to
demultiplex scRNA-seq data originating from different
individuals (13). This in silico method is freely available and
label-free. The souporcell pipeline was executed on a high-
performance computing cluster using the singularity image
provided by souporcell authors. The analysis employed the
“souporcell_pipeline.py” script and utilized the same reference
transcriptome used during alignment.

Identification of paired samples and donor
sex in dual reactions

After demultiplexing of pooled samples by souporcell, the
identity of each cluster was determined based on: 1) The presence
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of matched skin and PBMC pairs, which have the same genotype in
dual reactions, and 2) the Identification of the donor’s sex. Skin and
PBMC samples from the same donor were identified using the
“shared_samples.py” module of the souporcell. The donor’s sex for
each souporcell cluster was determined by using a subset of Y
chromosome genes including ZFY, RPS4Y1, EIF1AY, KDM5D,
NLGN4Y, TMSB4Y, UTY, DDX3Y, and USPYY (14).

Analysis of single-cell RNAseq data

After alignment and demultiplexing, count matrices were
processed using Scanpy. Cells with less than 200 genes and genes
expressed in fewer than 3 cells were filtered. Moreover, cells
containing more than 4000 genes were excluded. In the doublet
detection part, cross-genotype doublets, as detected by souporcell,
were eliminated, and Scrublet was employed to identify doublets
based on expression profiles.

Subsequently, the data was normalized to 10,000, and the log(x
+1) transformation was applied. Feature selection was performed
using the “sc.pp.highly_variable_genes” function, and principal
component analysis (PCA) was computed on the scaled
expression matrix of the highly variable genes. BBKNN’s ridge
regression function was utilized to eliminate technical confounders
such as donor-specific variation and count depth, while preserving
biological variation such as cell types and disease effects (15, 16).
Following this preprocessing step, different pools were integrated
using the Harmony algorithm (17). A neighborhood graph and
UMAP embedding were computed based on the harmony-
corrected principal components.

Cell type annotation was done by CellTypist using pre-trained
built-in models such as “Immune_All_High.pkl” and
“Immune_All_Low.pkl” (18). During cell type prediction, the
majority voting classifier is enabled to increase the accuracy
of annotation.

Statistical analysis

Repeated Measures One-Way ANOVA was used to compare
different incubation durations. Paired T-test was used to assess the
effect of enzyme P. Statistical analysis was conducted by GraphPad
Prism v8 (GraphPad Software, USA).

Results

Identification of immune cell subsets and
intracellular cytotoxic molecules in skin by
flow cytometry

We initially dissociated healthy skin samples by incubating
them with enzymes A and D (without enzyme P) for three hours
and analyzed them freshly after staining with flow cytometry. Our
gating strategy and fluorescence-minus-one (FMO) controls used
for dimly expressed markers are illustrated in Supplementary
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Figures 1, 2, respectively. Using the antibody panel in this study, we
could readily identify T cell subsets, including CD4+ T helper cells,
CD8+ cytotoxic T cells, CD69+ resident memory T cells, as well as
natural killer (NK) cells. Additionally, we were able to detect
intracellular granzyme B and granzyme K expression in cytotoxic
T cells.

The impact of enzymatic incubation
duration and enzyme P on cell counts and
cell type frequencies

The impact of varying incubation periods and the presence of
enzyme P on selected extracellular and intracellular markers is
illustrated in Figure 2. We observed a significant increase in the yield
of trypan blue-negative live cells with longer incubation durations
(Figure 3A). Specifically, samples subjected to a 1-hour incubation
displayed a live cell count ranging from 5.5 x 10* to 1.22 x 10° per one
6 mm punch specimen, which was deemed suboptimal for subsequent
applications. In contrast, samples incubated for 3 hours yielded a live
cell count ranging from 7.5 x 10* to 1.5 x 10° per one 6 mm punch
specimen, while a 16-hour incubation resulted in a live cell count
ranging from 1.15 x 10° to 2.5 x 10° per one 6 mm punch specimen.

The percentage of CD45+ leukocytes was higher after 16 hours
of incubation compared to 3 hours. The frequency of T cells, NK
cells, CD4+ T helper lymphocytes (THL), CD8+ cytotoxic T
lymphocytes (CTL), double negative cells, and CD69+ resident
memory T (TRM) cells remained similar between groups
(Figure 3A). However, there was a decline in the percentage of
granzyme B-positive cytotoxic T lymphocytes (CTLs) after 16 hours
of incubation compared to 1 hour (median, range: 24.8, 14.5-30.3 vs
13.8, 11.6-24.0; p=0.027), while the ratio of granzyme K-expressing
CTLs remained unchanged. The mean fluorescent intensity (MFI)
of CD3, CD8, CD56, CD69, and granzyme K was similar between
groups. However, there was a significant decrease in the MFI of
CD4 with longer enzymatic incubation periods (1h vs 16h: 33169,
13566-45794 vs 6387, 4494-12979; p=0.0077, 3h vs 16h: 21511,
9628-28753 vs 6387, 4494-12979; p=0.0071), and a decline was seen
in Granzyme B MFI after 16 hours of incubation (1h vs 16h,
p=0.042) (Figure 3B).

We investigated the impact of enzyme P during a 3-hour
incubation period. The live cell count per one 6 mm punch
specimen after 3 hours of incubation without enzyme P ranged
from 7.5 x 10* to 1.5 x 10°, while with the addition of enzyme P, it
increased significantly to 8.5 x 10* to 1.85 x 10> (p<0.0001)
(Figure 4A). The use of enzyme P did not significantly alter the
percentages of T cells, CD4+ T cells, granzyme K positive CTLs, or
granzyme B positive CTLs. However, the percentages of CD8+
CTLs (41.95, 27.2-71.7 vs 1.44, 0.83-2.67; p=0.005) and CD69+
TRM cells (92.7, 81.8-93.8 vs 11.27, 0.52-22; p=0.044) decreased
dramatically. Additionally, there was a statistically significant
reduction in the percentage of NK cells after incubation with
enzyme P (5.03, 1.90-6.48 vs 1.25, 0.82-4.33; p=0.026)
(Figure 4A). Moreover, as anticipated, there was a significant
decrease in the MFI of CD8 (42108, 39568-49811 vs 18090,
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16887-23848; p=0.0009), CD56 (7239, 4347-9927 vs 3964, 3716-
4110; p=0.039), and CD69 (2598, 1606-3370 vs 1515, 1339-1911;
p=0.038) in the group treated with enzyme P compared to the group
without enzyme P (Figure 4B).

Based on the results of these experiments, we decided to use a 3-
hour enzymatic incubation without enzyme P for the analysis of
lesional skin for simultaneous flow cytometry and scRNAseq analysis.

Determination of tissue size required for
flow cytometry and scRNAseq analysis in
the inflamed skin

In prior methodological studies, the necessary size of skin tissue
for scRNAseq analysis was determined. Given the higher
concentration of inflammatory cells in inflamed skin, we
hypothesized that a smaller tissue sample would be adequate for
subsequent analysis compared to healthy skin.

For healthy skin specimens, a single 6 mm punch biopsy
provided an average cell count of 1.125 x 10° after a three-hour
enzymatic incubation without enzyme P (range: 0.75 x 10° to 1.5 x
10°, n=6). This quantity is sufficient for flow cytometry analysis of
lymphocytes. However, if scRNAseq is also intended, we
recommend using a second biopsy specimen.

Conversely, we discovered that after three hours of enzyme
incubation without enzyme P, inflamed skin tissue measuring 4 mm
in diameter yielded an average of 4.6 x10° live cells (range: 8 x 10* -
9.7 x 10°, n=12). Despite some variability between samples, this
amount is typically adequate for both flow cytometry and
scRNAseq analysis.

The effect of cryopreservation on
dissociated skin cells

Sample multiplexing can help avoid technical batch effects and
reduce the cost of single-cell RNA sequencing (scRNAseq).
However, multiplexing freshly isolated cells can be challenging
due to the need for synchronized sample collection from different
individuals. Cryopreservation of isolated cell suspensions offers a
solution to this issue. In our study, we stored dissociated skin cells in
liquid nitrogen for subsequent cell sorting and scRNAseq analyses.
This approach allowed us to compare the viability of CD45+ cells in
freshly isolated and thawed samples. We found that the live CD45+
cell percentage was consistently above 85% in both freshly isolated
and thawed skin cells, with no statistically significant difference
between the two groups (Supplementary Figure 3).

Sample multiplexing strategy for batch
scRNAseq analysis of paired blood and
skin samples

Current sample multiplexing method for scRNAseq analysis rely
on the usage of sample barcoding kits. In this study, our aim was to
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FIGURE 2

Representative flow cytometry graphs demonstrating the effect of enzymatic treatment for 1 hour, 3 hours, 16 hours; and 3 hours of incubation
using enzyme P on all cells in healthy skin (A), live CD19-CD14- cells (B), CD45+ and CD45- cells (C), CD3+ T cells and CD56+ NK cells (D), CD69+
resident memory T cells (TRMs) (E) CD4+ T helper cells (THLs) and CD8+ cytotoxic T cells (CTLs) (F), Granzyme K+ (GrK) CTLs (G), and Granzyme B+
(GrB) CTLs (H). It is demonstrated that, due to the cleavage of CD69 and CD8 antigens by enzyme P, the population of TRMs (E) and CTLs (F)

decreased dramatically.

conduct single-cell RNA sequencing (scRNAseq) analysis of matched
skin and peripheral blood samples from various subjects in batches.
To achieve this, we developed a novel sample multiplexing strategy
that is based on a recently published label-free demultiplexing
algorithm called “souporcell,” which utilizes distinct single
nucleotide polymorphism (SNP) patterns unique to genetically
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different individuals (13). Our strategy represents a modified and
enhanced version of the multiplexing strategy described in the
original paper and allows us to multiplex two or more samples
without using any additional tissue barcoding steps.

In the first strategy, two samples can be multiplexed using a
relatively simple design, similar to the approach outlined in the
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FIGURE 3

The impact of various enzymatic incubation periods (1 hour, 3 hours, 16 hours) on cell percentages (A) and mean fluorescence intensity (MFI)
measurements (B) is shown. A) Live cell counts (determined by trypan blue exclusion method) increased with longer incubation times, indicating
enhanced cell yield. The percentage of viable CD14-CD19- leukocytes, assessed by flow cytometry, showed no significant difference across the
three incubation periods. However, the percentage of CD45- cells decreased, leading to a significant increase in CD45+ percentage after 16 hours
compared to 3 hours of incubation. There was no notable difference in the percentage of lymphocyte subtypes across different incubation times,
except for a decrease in CD8+Granzyme B+ cytotoxic T lymphocytes (CTLs) after 16 hours compared to 1 hour incubation. B) MFI values of CD3,
CD8, CD56, CD69, and Granzyme K (GrK) showed no significant difference following enzymatic incubation for different durations. However, CD4
and Granzyme B (GrB) MFI decreased significantly after 16 hours of incubation.
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The impact of enzyme P on all cell percentages (A) and mean fluorescence intensity (MFI) measurements (B) is shown. A) Live cell counts demonstrated
increased cell yield with the use of enzyme P. However, the percentage of NK cells, CD69+ cells, and CD8+ cytotoxic T lymphocytes (CTLs) significantly
declined when enzyme P was used. B) The MFI of CD8, CD56, and CD69 significantly decreased when enzyme P was used in the enzymatic incubation
Statistical analyses were performed using Repeated Measures ANOVA (to compare different time points) and paired ratio T-test (for comparison of the effect

of enzyme P).

original article (13). To implement this strategy, the PBMC and
dissociated skin samples from the same subject are placed in two
separate tubes. Additionally, one genetically unrelated sample is
added to each tube (these additional samples should not be paired
samples) (Table 2). Subsequently, scRNAseq analysis of these four
samples is conducted in two separate reactions. The demultiplexing
of samples in each reaction is performed with souporcell, where the
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paired samples in different tubes belonging to the same individual
can be readily identified based on their common SNP pattern. As
the identity of paired samples is known beforehand, these clusters
can be annotated with their respective sample identities. Once one
of the sample identities is revealed, it becomes straightforward to
identify the remaining sample in each tube. Using this strategy, it is
possible to process nine pairs of PBMC and skin samples in 9
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TABLE 2 Multiplexing strategy for scRNAseq analysis 18 paired skin and peripheral blood samples obtained from nine different individuals.

Subject code:

Tube/ : .

Reaction no: s s4 S5

I Skin X X

11 PBMC X X

111 Skin X X

v PBMC X X

' Skin X X

VI PBMC X X

VI Skin X X

VII PBMC X X

X Skin + PBMC X X
(PBMC) (Skin)

The PBMC and dissociated skin sample pairs from the same subject were placed separately in two tubes/reactions. Then, one genetically unrelated sample was added to each tube.

reactions, instead of 18, effectively reducing the number of
necessary reactions by half.

Our second, more advanced strategy incorporates two sources
of genetic information: the common individual SNP fingerprint of
paired samples and the donor sex (Table 3, Figure 5). In this
strategy, paired PBMC and dissociated skin samples are again
placed separately in dual reactions. Additionally, two genetically
unrelated samples are added to each tube, resulting in three samples
per tube. The key point in this step is to select samples from subjects
of different sexes for each tube. Following scRNAseq analysis and
sample demultiplexing with souporcell, matched sample pairs with
identical genetic SNP patterns are identified similar to the first
strategy. Subsequently, the sex information of the remaining two
samples in each tube is determined. Specifically, the percentage of Y
chromosome gene expression among the whole transcriptome is
used as a proxy for male sex. With this sex information, the
identities of the remaining samples can be easily determined.
With a carefully designed setup as proposed in Table 3, it is
feasible to analyze nine pairs of matched PBMC and skin tissues
in 6 reactions, instead of 18.

Bioinformatics analysis and
representative results

The individual steps of the bioinformatics analysis pipeline are
summarized in Figure 6. First, alignment was done with Cell
Ranger. Next, demultiplexing was performed with souporcell and
the identification of samples was done with the strategy explained
above. Then, anndata object was formed and quality control,
normalization, feature selection, principal component analysis,
and batch correction were done with Scanpy (19). Quality metrics
of the scRNAseq data is presented at Supplementary Figure 4.
UMAP graph showing representative results belonging to the
analysis of inflamed skin samples obtained from patients with
Behget’s disease (n=4) and healthy skin (n=3) is presented in
Figure 7A. Cell type distribution (Figure 7B) and percentages
(Figure 7C), key genetic markers of each cell subset (Figure 7G),
and cumulative number and percentage of each cell subset
(Figure 7E) are shown. Also, cell type distribution (Figure 7D),
cumulative number, and percentage of each cell subset (Figure 7F)
from 4 PBMC samples of BD patients are illustrated.

TABLE 3 An example of the label-free triplet pooling strategy that allows for the analysis of nine pairs of matched PBMC and skin tissues in six
reactions, instead of 18.

Reaction
no:

Tissue:

Subject code:

I Skin
1I PBMC
111 Skin
v PBMC
\Y% Skin
VI PBMC

Blue color shows samples from males and pink shows samples from females. MP: matched pair of samples obtained from the same subject. Detailed descriptions of the first two reactions in this

table are illustrated in Figure 5.
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FIGURE 5

Schematic representation of our label-free triplet pooling strategy. First, we segregate paired PBMC (S3a) and dissociated skin samples (S3b) from a
selected individual into two distinct tubes. Additionally, two genetically unrelated samples, each from subjects of different sexes (Female is
demonstrated as a circle and Male as a square), are introduced to each tube, resulting in three samples per tube. Following scRNA-seq and sample
demultiplexing using souporcell, we first identify the clusters exhibiting identical genetic single nucleotide polymorphism (SNP) patterns in dual
reactions and then annotate their sample identity. Subsequently, Y chromosome genes are utilized to ascertain the sex information of the remaining
two samples in each tube. By using this information the sample identities of the remaining clusters can be determined readily. S, sample. Different

colors denote samples from separate subjects.

Supplementary Figure 5 demonstrates single-cell expression of
marker genes across different samples. Comparison of lymphocyte
subset frequencies detected by scRNAseq and flow cytometry
analyses is shown in Supplementary Figure 6. Six samples (3 from

Behget’s disease patients and 3 from healthy controls) illustrated in
Figure 7 were analyzed. No statistically significant differences were
observed between the two methods for T cell, T helper cell,
cytotoxic T cell, NK cell, Granzyme K+ T cell, and Granzyme B+

Alignment/Demultiplexing Downstream Analyses

Quality Control
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GEX VD)
library library
Cell Ranger
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Cell-Level Analyses

multi pipeline
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Gene-Level Analyses
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Creating AnnData
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FIGURE 6

Bioinformatic workflow for analyzing single-cell RNA sequencing results that include alignment, demultiplexing, preprocessing, and downstream

analysis of sequencing data.
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FIGURE 7

Representative results of the single cell RNAseq analysis of skin samples (n=7) obtained from patients with Behget's disease (n=4) and healthy
controls (n=3). (A) Demultiplexed skin samples are highlighted on UMAP embedding. (B) Identified high-hierarchy cell types are visualized. (C) Cell
type proportion for skin samples from each donor is illustrated with a stacked bar plot. (D) Cell type proportions for PBMC samples from 4 Behget's
disease patients are illustrated with a stacked bar plot. (E) The cell counts and proportions of cell types in skin samples are shown. The ratio of
fibroblasts is less than 1%, indicating the high purity of the sorted CD45+ cells. (F) The cell counts and percentages of cell types in PBMC samples
are illustrated. (G) Marker genes to characteristic for each cell type are shown as a dot plot.

T cell percentages (Supplementary Figure 6A). Spearman
correlation analysis indicated a strong trend towards correlation
of T cell percentages measured by these two methods
(Supplementary Figure 6B).

Discussion

In this study, we present a novel approach for multiplexing skin
and blood samples for single-cell RNA sequencing, significantly
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reducing costs. Additionally, we provide detailed optimization steps
and a step-by-step protocol that enables both scRNAseq and
protein-based single-cell analyses from the same tissue sample.
Sample multiplexing is a key strategy to enhance experimental
feasibility, mitigate technical batch effects, and significantly reduce
the costs associated with scRNAseq. Several demultiplexing
methods exist in the literature, such as the use of oligonucleotide-
labeled hashtag antibodies to uniquely barcode cells (20). In the
scRNAseq protocol for human skin developed by Saluzzo et al,
hashtag antibodies were employed for sample de-multiplexing (10).
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Compared to our label-free de-multiplexing strategy, this method
adds additional experimental steps and extra costs due to
antibodies, cDNA library preparation, and sequencing and it is
limited to multiplexing of two samples.

Another de-multiplexing method is the demuxlet method that
leverages single-nucleotide polymorphisms (SNPs) from a genotype
reference obtained through whole-genome or exome sequencing,
which was previously regarded as the gold-standard de-
multiplexing method (21). Recently, the souporcell algorithm was
introduced for de-multiplexing samples based on scRNAseq data
without requiring a genotype reference or any other label (13).
Souporcell generated benchmarking results that surpasses the
demuxlet method, showing its huge potential in scRNAseq
studies (13). Based on this, we decided to adopt souporcell as the
basis of our sample multiplexing strategy.

Although multiplexed samples can be successfully separated
using souporcell, the challenge lies in matching these samples to the
correct donor. The original souporcell paper proposed a solution by
using the same donor-specific sample in multiple reactions. This
approach encodes the inclusion or exclusion of each donor as a bit
(0 or 1), and samples in the mixtures are then assigned to
corresponding donors using this information-theoretic method
(13). In our study, we modified this approach by placing matched
skin and PBMC samples from the same donor into different
reactions. This provided a canonical way to identify the donors of
origin. To further enhance this strategy, we incorporated genetic sex
information as a second layer of encoding. This two-step approach
allowed for successful demultiplexing and donor identification,
reducing the number of required reactions and experimental costs
by two-thirds.

Both protein-based methods, such as flow cytometry and
CyTOF, and RNA-based single-cell studies conducted on lesional
skin are surprisingly scarce. One of the main reasons for this is the
challenge associated with skin dissociation compared to other
tissues. The skin’s dense collagenous structure necessitates more
rigorous enzymatic and mechanical processing to obtain a viable
cell suspension, which can sometimes compromise cell viability,
degrade epitopes, and decrease RNA quality. The recent
introduction of automated tissue dissociator systems and skin
dissociation kits has provided a standardized and reliable way to
perform this step. However, these kits offer a general protocol that
needs to be optimized based on the intended experimental methods,
such as cell culturing, or ex vivo single-cell RNA or protein analysis
from fresh or frozen cells. While recent protocol papers have
detailed the use of these kits to prepare skin cell suspensions for
scRNAseq analysis of healthy human and pig skin (10, 11), our
study expands on these methodologies by optimizing the protocol
for inflamed skin. Additionally, we introduce a method suitable for
simultaneous flow cytometry analysis from the same tissue, which
can also be adapted to other protein-based analyses such as CyTOF
and CITE-seq.

The amount of tissue required for analysis is an important
consideration. Our findings align with prior research indicating that
a 6 mm punch biopsy is optimal for obtaining sufficient skin cells
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from healthy skin for subsequent scRNAseq analysis (10, 11).
Previously, Saluzzo et al. showed that a 6 mm punch biopsy
specimen gives a yield of 1-2 x 10° skin cells after incubating
with enzyme P for 3 hours. In our study, we found that 3 hours of
enzymatic digestion without enzyme P yielded an average of 1.125 x
10° cells, in line with Saluzzo et al. We recommend the usage of two
pieces of 6 mm biopsy from healthy skin if both scRNAseq and flow
cytometry analysis are planned. For inflamed skin samples, a 4 mm
punch biopsy specimen yielded an average of 4.6 x 10> cells,
significantly higher than healthy skin, and sufficient for both flow
cytometry and scRNAseq analysis. It should be noted that in this
study we have only tested Behget’s Disease skin lesions which are
acute inflammatory lesions by their nature. There is a possibility
that in more chronic lesions such as psoriasis, systemic sclerosis etc.,
the degree of inflammation and the number of inflammatory cells
may be lower. Therefore, we recommend prior determination of the
size of required skin specimen for other lesion types in
future studies.

Another important consideration for single-cell studies is
whether to analyze cells freshly or after cryopreservation. In a
recent study, scRNAseq was performed on freshly isolated cells
from 4 mm punch biopsies obtained from patients with atopic
dermatitis and psoriasis (14). While fresh analysis of skin samples
may seem ideal, it is challenging to coordinate, as all experimental
steps—beginning with the collection of biopsy specimens—must be
conducted in parallel across multiple patients. In our study, we
opted to use cryopreserved cells, which offered several advantages,
such as greater flexibility in experimental design, simplified sample
multiplexing, and reduced technical batch effects, ultimately
lowering scRNAseq costs. Importantly, our assessment of CD45+
lymphocyte viability before and after cryopreservation showed no
significant differences in live cell count compared to freshly isolated
cells. This finding aligns with previous studies that evaluated the
effects of cryopreservation using a 90% FBS + 10% DMSO solution
on pig skin cells (11), where cryopreservation did not significantly
affect cell viability, aggregation, or gene expression profiles, as
demonstrated by scRNAseq analysis.

Custom protocols for skin dissociation have also been used
previously. Burja et al. developed a method for skin tissue
dissociation for scRNAseq analysis using dispase II, collagenase
IV, and trypsin on 4 mm punch biopsies (5). This method yielded a
total of 24,053 skin cells per sample from fresh healthy skin and
18,535 cells per sample from skin explants obtained from systemic
sclerosis patients cultured for 24 hours. A comparison between
cultured skin explants and freshly dissociated samples revealed no
significant differences in scRNAseq quality metrics. While the
authors observed some alterations in the expression of marker
genes in fibroblasts, no such changes were detected in immune
cells between freshly dissociated and explant-cultured samples.
These findings indicate that the explant method can be an
alternative approach for studying the composition of skin
immune cells.

The successful generation of GEMs is a key step in scRNAseq
using the 10X Chromium system and relies on the presence of high-
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quality cells in the right concentration. It is important to note that
the quality requirements for scRNAseq analysis are higher than
those for flow cytometry analysis, and obtaining high-quality cells
within the recommended concentration range after fluorescence-
activated cell sorting can be challenging. Based on our experience,
minimizing the time between cell sorting and GEM generation is
essential, a point also noted by Saluzzo et al. (10). In our
experimental design, we pooled 2-3 samples for each reaction and
conducted two reactions simultaneously using two cell sorters to
reduce post-sorting handling time. Careful preparation is crucial to
ensure that all necessary materials for GEM generation are ready
immediately after cell sorting. Often, the concentration of cells after
sorting falls below the recommended range. In such cases, Saluzzo
et al. suggest using a volume reduction device (10); however, this
equipment may not be available in all laboratories. To address this
limitation, we recommend centrifuging the cells at 850 g for 5
minutes after sorting, then reconstituting the cell pellet at a higher
concentration than initially desired before recounting the cells, as
some may be lost during centrifugation and supernatant removal.

Enzyme P was used in previous tissue dissociation protocols for
scRNAseq to increase the cellular yield. However, we do not
recommend using enzyme P when protein-based analysis such as
flow cytometry or CITE-Seq is planned as this enzyme cleaves cell
surface epitopes, including CD8, CD56, and CD69. Of note, CD45
is not significantly affected by enzyme P, therefore cell sorting of live
CD45+ leukocytes can still be performed successfully even if this
enzyme is used during dissociation.

The duration of enzymatic incubation is an important
consideration for single cell studies. We tested the effect of various
enzymatic incubation periods on major lymphocyte markers and
found that 1-hour, 3-hour, and 16-hour incubations produced similar
results. However, we observed that prolonged incubation resulted in a
reduction in the percentage of granzyme B-expressing CD8+
cytotoxic T cells, as well as a decrease in CD4 expression on the
surface of T cells. Since granzyme B is typically expressed by effector
cytotoxic lymphocytes, we concluded that a 3-hour incubation
provides an optimal balance between cellular yield and minimizing
damage to effector cells. We recommend refraining from longer
incubation durations for single cell studies whenever possible.

Recently, Polakova et al. (12) published a protocol for rapid
flow cytometry analysis using 4-mm punch biopsies and
collagenase IV and DNase I. In this comprehensive study, the
authors compared different incubation times of enzymatic
digestion, and compared their tissue dissociation method with
the whole skin dissociation kit, which included usage of enzyme
P. Using their protocol 12,000 CD45+ cells could be obtained from
a 4 mm biopsy after 30 minutes of enzymatic incubation. The
percentage of major immune cell types (T cells, B cells, NK cells,
and ILCs) were similar between both skin dissociation techniques.
Moreover, the authors report that 30 minutes of tissue dissociation
can be more reliable for the staining of chemokine receptors
compared to longer incubation periods.

In conclusion, in this method paper, we describe a novel cost-
effective sample multiplexing approach for scRNAseq studies that
can be used with both healthy and inflamed skin and can be
combined with single-cell protein analysis from the same tissue.
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The step-by-step protocol and critical optimization steps reported
in this paper can be used to design customized single-cell omics
experiments by using skin and other solid tissues.
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Molecular characterization of tumors is essential to identify predictive biomarkers
that inform treatment decisions and improve precision immunotherapy
development and administration. However, challenges such as the
heterogeneity of tumors and patient responses, limited efficacy of current
biomarkers, and the predominant reliance on single-omics data, have hindered
advances in accurately predicting treatment outcomes. Standard therapy
generally applies a “one size fits all" approach, which not only provides
ineffective or limited responses, but also an increased risk of off-target
toxicities and acceleration of resistance mechanisms or adverse effects. As the
development of emerging multi- and spatial-omics platforms continues to
evolve, an effective tumor assessment platform providing utility in a clinical
setting should i) enable high-throughput and robust screening in a variety of
biological matrices, ii) provide in-depth information resolved with single to
subcellular precision, and iii) improve accessibility in economical point-of-care
settings. In this perspective, we explore the application of label-free Raman
spectroscopy as a tumor profiling tool for precision immunotherapy. We
examine how Raman spectroscopy’s non-invasive, label-free approach can
deepen our understanding of intricate inter- and intra-cellular interactions
within the tumor-immune microenvironment. Furthermore, we discuss the
analytical advances in Raman spectroscopy, highlighting its evolution to be
utilized as a single "Raman-omics” approach. Lastly, we highlight the
translational potential of Raman for its integration in clinical practice for safe
and precise patient-centric immunotherapy.
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1 Introduction

The immune system plays a vital role in detecting cancer by
recognizing neoantigens generated by tumor cells that can initiate
immune responses (1). However, tumors have evolved several
strategies to evade immune detection (2). These include
downregulating antigen presentation, which impairs the ability of
immune cells to recognize and attack tumor cells, and expression of
surface protein ligands, such as Programmed Death-Ligand 1 (PD-L1),
that interact with immune checkpoint proteins, such as Programmed
Death Protein 1 (PD-1), on immune cells (3). Tumor-secreted factors
modulate the tumor immune microenvironment through several
mechanisms, including: i) releasing immunosuppressive cytokines
such as IL-2, TGF-, IL-10, IL-35 and VEGF, which inhibit various
immune cell activities (4); ii) releasing tumor-derived exosomes which
contain immunosuppressive molecules, including TRAIL, Fas-L, PGE-
2, etc (5); and iii) recruiting regulatory immune cells such as regulatory-
T cells, tumor associated macrophages, and myeloid-derived
suppressor cells to the tumor site (6). Epigenetic modulation within
cancer cells can also silence genes related to antigen presentation (7).
To effectively deploy immunotherapy, it is essential to accurately detect
and classify the evasion tactics of cancer cells. Our manuscript discusses
how Raman spectroscopy, as a label-free, reliable, and cost-effective
technology, can sense these tactics across the immunological synapse.

Various immunotherapy strategies currently utilized include
immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive
cellular therapies (ACT), cytokines, targeted antibodies including
T cell-engaging bispecifics, and adjuvants & immunostimulants.
Although these approaches have led to improved outcomes for
some patients, their benefits are often limited to a small and
unpredictable segment of cancer patients. This has led to
increased cases of immune-related adverse events (irAEs) (8, 9).
For example, in melanoma, where ICIs are the mainstay treatment,
the overall response rate is only 30-45% for the most common
single-agent anti-PD-1 approach (10). Further, many cancers, such
as pancreatic adenocarcinoma, have unique biologic environments
such as high levels of fibrosis, contributing to immune cell resistance
and evasion that render these immunotherapeutic agents
significantly less effective (11, 12). Therefore, accurately assessing
a patient’s tumor microenvironment (TiME) and predicting their
response to immunotherapy are essential for maximizing treatment
effectiveness. An important step towards this is precise biomarker
prediction which helps in establishing more accurate, individualized
profiles to guide immunotherapeutic selection (13, 14). As many
existing biomarker predictive models rely on single-omics data,
which may not capture the complex biological interactions involved
in tumor immunology, their predictive power has been limited (15,
16). Multi-omics approaches that combine genomic (17),
transcriptomic (18), proteomic (19) lipidomic, and metabolomic
data can improve the accuracy of response predictions (20-23). In a
recent study, Kong et al. utilized a machine learning framework that
integrated various -omics data to predict responses to ICIs in
melanoma, gastric cancer, and bladder cancer, demonstrating
superior predictive capabilities compared to traditional
biomarkers. Investigators curated data from more than 700 ICI-
Treated patients’ samples with clinical outcomes and
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transcriptomic data. Their network-based ML algorithm showed
significantly better performance in predicting ICI treatment
responses in all the above-mentioned types of cancers compared
to existing models, demonstrating network biology as a powerful
means to identify robust biomarkers (16).

Multi-omics technologies have increased our understanding of
the complex inter- and intra- molecular cross-talk between immune
cells and tumor cells within TiME. However, working with large
analytical and statistical datasets generated by single or spatial
technologies presents significant computational hurdles (24). One
major issue is the batch effects caused by using different analytical
techniques employed in -omics data collection (25). These
techniques are costly, time consuming, and require extensive
labeling steps which may require disruption of native biological
environments for the cells of focus (26, 27). Raman spectroscopy
can effectively harmonize all the -omics techniques for analyzing
TiME interplay and its intricate changes under a single platform.
Additionally, a combination of Raman and traditional multi-omics
can also leverage the strengths of both methodologies, including the
high sensitivity, multiplexing capabilities, rapid analysis, and non-
destructive, label-free nature of Raman, alongside the specificity and
extensive data provided by traditional -omics approaches. In the
past decade, label-free Raman spectroscopy has found significant
applications in cancer diagnostics, particularly in cell type
differentiation (28-30) and metabolite characterization (31-33). It
also allows for the identification of biochemical changes within
tumors, enhancing our ability to monitor responses to therapies
more efficiently (34). These studies provide the foundation for
deploying Raman spectroscopy as a platform for immunotherapy
development, administration, and response monitoring.

In this perspective, we discuss the principles and role of Raman
spectroscopy in immunotherapy. In section 2, we describe advances in
nanophotonics which render Raman suitable for non-invasive, label-
free detection of the TiME at the single-cell to few-molecule level. We
also discuss the role of machine learning and artificial intelligence (ML/
Al) in Raman spectral analysis and data interpretation. Section 3
describes the role of Raman spectroscopy in identifying, characterizing,
and analyzing the complex inter- and intra- metabolic and phenotypic
changes occurring within TiME, as well as Raman spectrosocpy’s role
in predicting responses to various immunotherapeutic treatments.
Section 4 outlines the current analytical advancements in Raman
spectroscopy within the field of immunology. Finally, Section 5
explores how Raman spectroscopy can serve as a unifying, multi-
omic technique that stitches genomic, transcriptomic, proteomic, and
metabolomic data, as well as a potentially low-cost tool with
translational potential in clinical settings.

2 Nanophotonic-enhanced
Raman spectroscopy and
Al-enabled interpretation

Raman spectroscopy (RS) is a non-invasive, vibrational
spectroscopic method that examines the composition, structure,
and vibrational energy states of materials (including molecules and
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cells). In RS, a sample is illuminated with monochromatic light.
When the incident light interacts with molecular vibrations in the
sample, photons can be inelastically scattered and re-emitted with
either lower or higher energy (Figure 1). This energy difference,
known as a Raman shift, provides a distinct molecular “fingerprint”
of the material (35). By analyzing the unique spectral fingerprints of
molecules fundamental in cellular biology, RS can provide detailed
insight into the molecular composition and the structural and
functional makeup of cells and tissues, both in vivo and ex vivo
(36, 37). For example, there are biologically-relevant windows (38,
39) that elucidate biomarkers spanning lipids (40, 41), proteins and
peptides (42, 43), metabolites (44-46) and nucleic acids (47, 48)
(Figure 1). In turn, these markers can demarcate normal and
malignant cells (49, 50) and stratify cancer types (51) or
pathologic grades (52, 53), facilitating potential early diagnosis
and intervention pathways. As a non-destructive optical
technique, Raman spectroscopy can be seamlessly integrated with
other modalities on the same sample, allowing for multi-omic
resolution in a single measurement.

Although Raman spectroscopy is non-invasive and highly
specific in providing molecular and structural information, a
major challenge of spontaneous RS lies in its intrinsically weak
scattering process. Because of the low likelihood of a Raman
scattering event [roughly 1 in 10E6-7 incident photons (54-56)],
complementary strategies have been adopted to address its signal
intensity and enhance sensitivity. The emergence in the fields of
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nanophotonic materials and machine learning models, in
particular, have improved Raman sensitivity and resolution and
to enable deeper spectral interpretation.

One strategy to amplify the signal-to-noise ratio of Raman is
through surface-enhanced Raman scattering (SERS), which uses
optically resonant surfaces or nanoparticles (NPs) to increase the
Raman cross-section (Figure 1). Vast literature has been published
using metallic nanostructures for SERS. When light interacts with these
metallic nanostructures, the electrons in the metal oscillate in
resonating manner, creating an intensified electromagnetic field
known as a plasmon resonance on the surface. This additional field
strength localization intensifies the light interaction that occurs
between molecules, with enhancement coefficients ranging from 10*-
10% and as high as 10" (45-47). The resulting process generates
highly-detailed, vibrational spectra, making it particularly useful in
fields like cancer immunotherapy (48, 49), biochemistry (50, 51),
medical diagnosis (52), and surgical treatments (53). SERS studies
employing colloidal NPs have shown extensive success in cancer
biological interrogation, from Liu et al. exploiting Au/Ag nanostar
geometries to quantify BRAF gene mutations in colorectal cancer with
comparable LOD to qPCR, to Sun et al. leveraging Au nanorods as a
multifunctional agent to identify and induce photothermal ablation of
tumor margins (45, 46). Recent advances in large-area nanoarray
fabrication leveraging self-assembled NP aggregation or
nanolithography have led to the rise and potential of SERS-active
substrates. Zhao et al. designed one such substrate by fabricating
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nanoarrays of plasmonic trimers to successfully label adenocarcinoma,
squamous carcinoma and benign tumor samples across fresh lung
tissues (57). These SERS-active devices can yield comparable
enhancements to colloidal NPs, all while improving sample adhesion
and hotspot uniformity and distribution.

Although there is less literature, recent innovations in dielectric-
based substrates for SERS present an advantageous opportunity for
material and biological characterization. Unlike metallic nanostructures,
which exhibit high photothermal effects damaging cells or altering
biomolecular structures, dielectric nanostructures undergo minimal
heat conversion, making them highly suitable for biological
preservation and measurement reliability (58, 59). Advancements in
highly resonant, high quality-factor (Q) metasurfaces have also
overcome conventionally limited electromagnetic field enhancements
(60-62), yielding Raman scattering efficiencies comparable to
plasmonic counterparts (58, 63, 64). In work by Cambiasso et al. and
Romano et al,, for example, dielectric nanodimers and photonic crystals
were utilized to demonstrate Raman spectral amplification across 3-
carotenal monolayers and Raman analytes with minimal absorption
loss (65, 66). Silicon-based designs, in particular, can further leverage the
device footprint scaling of matured CMOS infrastructure (67). Barkey
et al. demonstrated one such design by pixelating 2D arrays of Si-ellipse
pairs to resolve real-time conformational dynamics of photoswitchable
lipid membranes representative of cell membrane behavior (68). These
large-area fabricated arrays can enable homogenous SERS regions for
rapid spatial profiling all while providing compatibility to assess the
same sample with other modalities.

Enhancing the utility of Raman spectroscopy can be achieved by
incorporating machine learning (ML) and artificial intelligence
(AI), which can extract underlying spectral features linked to
biological and chemical responses. Spectral information from RS
is often feature-rich, but the unprocessed information can be
complex and noisy. As a result, employment of both more
traditional statistical approaches and newer deep learning
algorithms can be utilized to isolate pertinent information from
background and extract insights in an otherwise opaque spectra.
Dimension reduction techniques adopted prior to analysis can
improve feature selection, reduce overfitting, and improve
computational runtime, all while preserving original spectra
information. Linear techniques such as principal component
analysis (PCA) can decompose large feature sets into smaller ones
encapsulating the most significant spectral patterns and
differentiators, while nonlinear reduction methods like t-
distributed stochastic neighbor embeddings (t-SNE) or uniform
manifold approximation (UMAP) can help contextualize the local
and global structural relationship of Raman spectra datasets.
Classification algorithms can further intake the Raman spectra
and provide distinct cell type labeling to predict post-treatment
outcomes in untested samples. Support vector machines (SVMs)
and Random decision forests (RFs) can be used to robustly classify
cancer subtypes as recently demonstrated in brain tissue (69, 70)
and in breast cancer garnering an accuracy of +97% (69, 70).
Advances in multilayer architectures such as convolutional neural
networks (CNN) and residual neural networks (ResNet) have
further increased the predictive capacity of RS, even against high
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inter-patient variability and complex background sources. For
example, in melanoma, where the clinical diagnostic sensitivity
and specificity ranges from 40-80%, the implementation of artificial
neural networks on Raman spectra resulted in an improved
sensitivity and specificity of 85% and 99%, respectively (53). Such
integration of deep learning and the continued advancements in AI
can stand to provide a powerful opportunity to analyze Raman
spectra beyond single cells and across the tissue domain. Further, as
discussed later in the perspective, integration of RS with existing
multi-omics and spatial-omics data, using existing AI models, could
offer a more comprehensive understanding of tumor heterogeneity.

3 Role of Raman spectroscopy in
characterizing tumor-
immune microenvironment

The TiME is a complex and diverse ecosystem containing a
variety of immunosuppressive cells, including tumor cells, cancer-
associated fibroblasts (CAFs), vascular endothelial cells, suppressive
myeloid cells, regulatory T (Treg) cells, and regulatory B cells.
Increasing evidence strongly suggests that TIME plays a significant
role in immune checkpoint inhibitors’ responses, tumor immune
surveillance, and immunological evasion (71, 72). Paidi et al.
showed evidence that label-free Raman spectroscopy can show
TiME compositional changes in response to ICIs. Using CT26
murine colorectal tumor xenografts, they compared tumor
responses with treatment across three doses of anti-CTLA4 and
anti-PD-L1 antibodies each. They determined that ICI exposure
significantly changes the composition of the TiME independent of
conventional cellular, molecular, or proteomic characterizations
(34). This ability to assess multiple biomolecular changes
simultaneously adds significant depth in understanding the TiME
and response to therapies. Figure 2 highlights the multitude of
signals that Raman spectroscopy can provide about the TiME. As
seen, Raman spectroscopy can be used in differentiating various
cancer and immune cell types, including B cells, cytotoxic T cells,
helper T cells, NK cells, and dendritic cells. For instance, Chen et al.
employed Raman spectroscopy to accurately identify various
subsets of immune cells, including T-lymphocytes, dendritic cells,
and natural killer (NK) cells, distinguishing CD56+ NK cells from
CD4+ and CD8+ T cells with specificities reaching 93% and 96%,
respectively. The differentiation between CD4+ and CD8+ T cells
was less effective, yielding a specificity of 68% and a sensitivity of
69%, suggesting that these closely related cell types present more
challenges in their identification (73). Conventional techniques for
immune cell identification and complex classification of the TIME
currently relies on extensive labeling for label-based techniques, due
to the need to both “rule-in” and “rule-out” broad cell surface
markers and utilize multiple labels related to functional behavior
and activation status. The exploration of RS to distinguish cell types
has been provocative, here we highlight several critical cell types
that have been shown to be highly distinguishable by RS (73). While
the Raman spectra of these immune cells may appear quite similar,
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data analysis techniques can reveal the subtle distinctions among
them (73-75). Raman spectra can also provide information about
the activation states of these cells, including macrophage
polarization and T-cell state responses (eg, from activated to
exhausted.) Single-cell Raman analysis can further reveal how
different cell types interact within the TiME. Finally, Raman can
help elucidate tumor heterogeneity and how the spatial structure of
the tumor impacts immune responses, currently a major obstacle
for effective immunotherapy (76). In this section, we will explore the
utility of RS in characterizing, classifying and analyzing different
inter- and intra-molecular interactions between immune cells
within the TiME.

3.1 Macrophages

Macrophages, essential phagocytic and antigen-presenting cells,
exhibit a diverse functional spectrum from immunosuppressive,
tumor-promoting behaviors to highly inflammatory responses.
Their role in the tumor microenvironment is pivotal, as they can
either support tumor control or contribute to autoimmune
toxicities. Conventionally, differential expression levels of surface
polarization markers, such as CD11b, CD80, CD54, CD163 and
CD206, are used to differentiate macrophage phenotypes, however
the transition from inflammatory to immunosuppressive behavior
is highly linked to metabolic switching that can be detected by
Raman spectroscopy. In a study by Naumann et al., distinct features
of monocyte-derived macrophages, including naive MO, classically
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activated M1, and alternatively activated M2 phenotypes were
detected by analyzing 65 chemically fixed primary human
monocyte-derived macrophages from three donors in
combination with N-FINDR spectral unmixing. The authors
identified polarization-dependent spectral features associated with
the chemical composition of lipids, proteins, and nucleic acids
across macrophage phenotypes.
macrophages displayed a significantly higher lipid content

Pro-inflammatory M1

compared to MO and M2 phenotypes. M2 macrophages exhibited
reduced triacylglycerol content but increased fatty acids. These
spectral distinctions facilitated the development of models for
automated classification of M1 macrophages, achieving a
classification accuracy of 86%, with a sensitivity of 93% and
specificity of 85% (77). In another study by Lu et al., macrophage
response to biomaterial implants was examined to gain insights into
the immune system’s foreign body reaction. Two types of macro-
encapsulation pouches (PVDF and TPU-chronoflex) were
implanted in streptozotocin-induced diabetic rat models for 15
days. Their research demonstrated that label-free Raman
microspectroscopy could effectively identify extracellular matrix
(ECM) components within the fibrotic capsule and distinguish
between pro-inflammatory M1 and anti-inflammatory M2
macrophage activation states. Significant spectral changes in the
nuclei of M1 and M2 macrophages indicated variations in nucleic
acid methylation, a key process in fibrosis progression. Specifically,
increased peak intensities at 857 cm™' and 879 cm™' in M2
macrophages were linked to proline, hydroxyproline, tryptophan,
and tyrosine, suggesting that M2 macrophages have lower
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methylation levels than M1 macrophages (78). Thus, RS plays an
important role in analyzing biochemical changes in lipids, proteins,
and nucleic acids across macrophage phenotypes and identifies
extracellular matrix (ECM) components.

3.2 T-lymphocytes

T cells are important effector cells in the TiME, including
cytotoxic and regulatory subtypes that attack cancers or suppress
immune responses to cancers, respectively. T cell classifications, like
macrophages, generally require multiple labels, such as CD3, CD4,
and CD8, to define subtype in addition to a multitude of co-
stimulatory signals, such as activating ligands or regulating
checkpoints to modulate the degree of amplification for T cell
responses. Authors Pavillon et al. leveraged the non-tissue
destructive nature of RS to monitor live T cell development in
vitro, demonstrating that without directly describing the cell surface
features of these traditional labels, other nuanced molecular
changes related to cell state development and activation had high
correlation with the transition points identified by label-based
assays (29). The sensitivity in this assay also successfully
delineated between activation and differentiation by detecting
differences in the in vitro stimulated cells versus ex vivo activated
T cells that otherwise would have required multiple additional
labeling steps to define naive versus effector cells. Regulatory T

10.3389/fimmu.2024.1520860

cells (Tregs) are crucial for maintaining immunological self-
tolerance and have been identified as having an important role in
immunotherapeutic failures. The findings by Pavillon et al.
indicated that Raman could distinguish Treg subpopulations
without altering cell integrity (29) by the detection of intracellular
transcription factor Foxp3, a specific Treg marker. Since Foxp3 is
not detectable in live cells, the authors employed RS to reliably
identify and isolate functional Treg populations. They sorted
conventional T (Tconv) and Treg cells using FACS with Foxp3-
hCD2 surface staining, followed by Raman measurements on the
isolated populations. A ML model was then developed to
differentiate between Tconv and Treg cells, achieving an accuracy
of 78.3% on test data, comparable between models trained on naive
cells and those based on FACS-sorted data (78.25% for FACS vs.
77.9% for naive cells). When they applied confident learning (CL) to
filter out samples with low-probability labels, the model achieved a
remarkable 92% accuracy. Figure 3A illustrates the classification of
human Tconv/Treg using the CL model transformation. Here,
negative bands observed can be linked to specific protein
structures, such as the amide I1I o-helix (at 1340 cm™* and 1286
cm™') and amide I (at 1619 cm™" and 1669 cm™. Conversely, the
primary positive bands appear to be associated with DNA/RNA,
indicated by cytosine/uracil rings indicated at 785 cm™. This
approach also enabled the distinction of human Tconv and Tregs
from PBMCs with similar accuracy despite donor variability.
However, a notable limitation of this method is its throughput;
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(A) Classification efficacy for human Tconv/Treg cells utilizing a separation vector to detect human Treg cells. Adapted with permission under a
Creative Commons CC-BY License from ref (79). (B) Schematic illustration of NK cells on the Oncolmmune probe platform, synthesized with 3D
networks of nickel- nickel oxide nanocubiforms. (C) Representative Raman spectra of NK cells illustrating the presence of several biomolecules
within NK cells. Adapted with permission under a Creative Commons CC-BY License from ref (80). (D) Average Raman spectra for PD-L1 expression
in cancer cells. Adapted with permission under a Creative Commons CC-BY License from ref (81).
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the automated sequential detection system currently processes
approximately 1,000 cells per hour, which is insufficient for
applications requiring millions of cells (79).

3.3 Natural Killer cells

Natural Killer (NK) cells are lymphocytes that play a crucial role
in targeting viruses and cancer cells, particularly cancer stem cells
(CSCs), which are linked to therapeutic resistance and tumor
relapse (82, 83). Ishwar et al. explored the profiling of circulating
NK cells as a diagnostic tool using SERS-driven liquid biopsy. The
authors specifically synthesized an Oncolmmune probe platform to
detect metabolic changes in NK cells when they interact with tumor
cells, illustrated in Figure 3B. Raman spectra of tumor-free NK cells
exhibited characteristic bands associated with carbohydrates,
proteins, and lipids, including peaks at 1450 cm™' (CH
deformation), 1661 cm™' (amide I), 1555 cm™! (amide II), and
1337 cm™' (amide III) (Figure 3C). In contrast, tumor-associated
NK cells showed altered spectral intensities, indicating an active
response to tumor recognition. A decrease in the peak at 520 cm ™"
suggested changes in Killer Immunoglobulin Receptor (KIR)
expression due to CSC interaction. PCA revealed distinct
clustering of NK cell signatures associated with breast, lung, and
colon CSCs compared to non-cancer-associated NK cells. Utilizing
machine learning, the study demonstrated that features of NK cell
activity could accurately identify cancer from non-cancer samples
using just 5 pL of peripheral blood, achieving 100% accuracy for
cancer detection and 93% for localization. This research also
highlights the importance of material advances for amplifying the
SERS signal, where hybrid material consisting of nickel and nickel
oxide produced an enhanced and reproducible SERS signal. This
marker-free method generated a detailed NK cell metabolic profile
that could be highly advantageous for cellular diagnostic
applications. Thus, label-free SERS technique can be used for
profiling immune cells and their metabolic changes in difficult to
detect tumors such as small-cell lung cancer, triple-negative breast
cancer, and colorectal adenocarcinoma (80).

3.4 Dendritic cell interactions

Dendritic cells (DCs) play a crucial role in cancer
immunotherapy by interacting with cancer cells and presenting
tumor antigens to T cells. When DCs capture antigens from cancer
cells, their maturation status determines the immune response.
Fully mature DCs effectively present these antigens on major
histocompatibility complex (MHC) molecules, activating both
CD4+ helper and CD8+ cytotoxic T cells. Enhancing DC function
and antigen presentation is a key strategy in developing effective
cancer immunotherapies (84). T cell receptors (TCRs) form an
immunological synapse (IS) with antigen-MHC complexes and co-
stimulatory ligands on dendritic cells (DCs), characterized by a
distinct “bull’s-eye” structure known as the supramolecular
activation cluster (SMAC). Zoladek et al. employed label-free
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confocal Raman micro-spectroscopy (CRMS) to analyze the IS
formed between laminin-treated DCs and T cells in vitro. They
compared Raman spectral images with immunofluorescence
imaging to identify signatures of key macromolecules, including
nucleic acids, lipids, and proteins. Using a 785 nm laser, the study
assessed the impact of laminin treatment on the DC-T cell junction
by capturing images of control and treated DCs stained with
phalloidin. Laminin treatment enhanced actin filament
polarization and improved IS formation at the DC-T cell
interface. The Raman spectra revealed detailed actin distribution
in the IS, with characteristic peaks at 1450 cm—1 (CH deformation),
1661 cm™" (amide I), 1555 cm™" (amide II), and 1337 cm™' (amide
IT). A significant band at 1003 cm™ correlated to histone proteins
present in the nucleus. For both DC and T cells, Raman spectral
images in the 788 cm™ band exhibit good concordance with the
DAPI image, demonstrating the potential of CRMS for non-
invasive imaging of live immune cell interactions and providing
insights into the dynamics of the immunological synapse (85). This
research plays an important role in designing dendritic cell based
immunotherapies by providing real time data regarding DC-T cell
interactions within TiME.

3.5 Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are integral to the tumor
microenvironment, often contributing to immunosuppression by
stromal remodeling that protects cancer cells or communication
with multiple immune cells via secreted factors. CAFs undergo
metabolic changes that aid in tumor growth through interactions
with cancer and stromal cells, their inherent plasticity leads to
dynamic shifts in the fibroblast population. This emphasizes the
need for precise evaluation of CAF’s phenotypic and functional
heterogeneity (86). Lipid metabolites released by CAFs not only
facilitate metastasis but also serve as indicators of aggressive cancer
types (87). The accumulation of lipids within the tumor
microenvironment provides fatty acids to nearby tumor cells,
fueling their energy needs. Since obesity is characterized by high
levels of fatty acid, its impact on CAF’s lipid metabolism remains
poorly understood. Yeu et al. investigated this relationship using
Raman spectroscopy as a non-invasive technique to analyze lipid
metabolite changes in CAFs from endometrial cancer (EC) patients
having different BMI. The study focused on Raman spectral regions

-1 and

associated with lipid biochemical changes (600-1800 cm
2800-3200 cm™'). Through direct band and ratiometric analyses,
researchers observed slight shifts in the CH2 symmetric stretch of
lipids at 2879 cm-1 and CH3 asymmetric stretching from proteins
at 2932 cm™' in overweight or obese patient CAFs compared to
non-obese patients. These shifts indicated a higher lipid content and
increased lipid saturation in the obese CAFs and, with the help of
PCA, metabolic phenotypes linked to obesity and cancer
progression were effectively differentiated. The identification of
specific Raman spectral signatures in CAFs offers valuable
insights into the tumor microenvironment’s influence on EC

progression (88).
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3.6 Tumor-immune microenvironment
biomarker prediction

Designing effective studies to evaluate immunotherapeutic
treatment efficacy poses a significant challenge, particularly
regarding immune cell interactions and its characterization. The
interactions within the TiME are intricate and dynamic, and
understanding these interactions are essential towards predicting
immunotherapy response. For instance, in Merkel cell carcinoma
(MCCQC), research has shown that tumor-associated macrophages
(TAMs) can express immunosuppressive markers that inhibit T-cell
function. TAMs exhibit an immunosuppressive gene profile typical
of monocytic MSDCs and notably express several immune
checkpoint molecules that are potential therapeutic targets, such
as PD-L1 and LILRB receptors (89, 90), which are absent on tumor
cells. A study analyzing 54 tumor samples prior to immunotherapy
revealed that a specific subset of TAMs (characterized by CD163+,
S100A8+, CD14+) preferentially infiltrate tumors with a higher
presence of CD8+ T-cells. Furthermore, a higher density of these
TAMs was linked to resistance against PD-1 blockade therapies
(91). In another study, single-cell RNA sequencing (scRNA-seq)
revealed that a lower immune-cell infiltration (CD8 T-cell, NK cells,
and a complete absence of ¥8 T-cells) was more common in acral
melanoma when compared to non-acral melanoma (92). Tumor
heterogeneity not only affects initial responses but also contributes
to acquired resistance to immunotherapies which takes the form of
immunosuppression and antigen escape. As tumors undergo
immunotherapeutic treatments, they may develop subpopulations
of cells that are resistant to immune-mediated cell death (76). These
cases have been noted in melanoma (93) and breast cancer (94)
studies and highlight the necessity of characterizing immune cell
subsets and their activation states to tailor immunotherapy
approaches effectively.

Raman spectroscopy has shown to be effective in
immunological whole-tumor profiling, with Ou et al. showing the
simultaneous detection of PET and SERS in monitoring the
dynamics of tumor cell compositions in vivo. Currently, PD-L1
expression in TiME is the most important clinical biomarker
assessed prior to immunotherapy use. High levels of PD-L1 have
been associated with better outcomes in various cancers, including
melanoma (95), lung cancer (96), and metastatic renal cell
carcinoma (97). However, due to tumor heterogeneity, the
relationship between PD-L1 expression levels in tissues and
therapeutic responses to anti-PD-1/PD-L1 treatments is not
always consistent (3, 98). This variability can be partially
attributed to the influence of N-linked glycosylation on PD-L1,
which may hinder the binding of commonly used anti-PD-LI
antibodies, thus the rapid glycosylation assessment possible with
RS could enhance the reliability of PD-L1 as a biomarker for
predicting responses to immune checkpoint therapies (99).
Additionally, the expression of PD-L1 in both tumor and
immune cells has been correlated to ICI clinical responses,
making accurate PD-L1 characterization a valuable companion
diagnostic for PD-1/PD-L1 inhibitors.
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To assess PD-L1 expression, Zhou et al. developed an intra-
operative technique using label-free Raman spectroscopy combined
with ML for data analysis and visualizing PD-L1 in glioma cells,
macrophages, CD8+ T cells, and normal cells. They employed
stainless steel and Calcium Fluoride substrates to minimize
background signals. Principal component analysis (PCA) was first
utilized to differentiate Raman spectra between PD-L1g (high PD-
L1 expression in glioma cells) and PD-L1; (Low PD-L1 expression
in glioma cells) subgroups. Random Forest (RF) analysis identified
five significant peaks at 723, 783, 837, 874, and 1437 cm L PD-Llg
exhibited stronger intensities at 837, 874, and 1437 cm ! compared
to PD-L1;, which showed weaker intensities at 724 and 783 cm L
Figure 3D represents the average Raman spectra for PD-L1
expression in cancer cells. The peak intensities at 837 cm™ and
834 cm™ showed a positive linear correlation with PD-L1 levels.
This is correlated with the increased expression levels of PD-L1 in
glioma cells. The study also explored spectral differences among
PD-Llg, PD-L1y (high PD-LI expression in T-cell), and PD-L1y
(High PD-L1 expression in macrophage) subgroups, revealing
biological correlations between cell types and their Raman
spectral features. Notably, ganglioside, phosphatidylcholine (PC),
and cytochrome-c contributed to PD-L1y, while sphingomyelin and
oleic acid were linked to PD-L1y. The relationship between spectral
features and biomolecule levels were qualitatively assessed across
different cell types. Multiple ML algorithms—including CLS, HCA,
SVM, and SA—were employed to analyze Raman spectra for model
training and visualize PD-L1 expression in the glioblastoma
immune microenvironment. This method for detecting the PD-L1
biomarker can be extended to other tumor biomarkers or target
cells of interest, enhancing intra-operative diagnostics for surgical
guidance and post-operative immunotherapy (81).

3.7 Predicting response to
immunotherapeutic treatment

The current clinical metrics for prediction and evaluation of
response to anti-CTLA4 and anti-PD-L1 immune checkpoint
inhibitors (ICIs) in the TiME are not very effective (100, 101). PD-L1
score of 0, for example, can still demonstrate response to therapy and
score is not currently utilized as a selection criteria for therapy (102). A
liquid biopsy strategy combining blood count parameters, clinical
characteristics, and serum lactate dehydrogenase predicted the
response of patients without metastatic disease to anti-PD-1 therapy
with about 60% accuracy (103). Studies have also leveraged PD-1/PD-
L1 and CTLA4- targeting antibodies radiolabeled with 89Z for
evaluating the tumor uptake of therapeutics using PET imaging;
however, such measurements are associated with challenges (104).
To address the challenges in predicting immunotherapy responses,
Paidi et al. employed label-free Raman spectroscopy to monitor
compositional changes in the tumor immune microenvironment
(TiME). Using a CT26 murine model of colorectal cancer, tumors
were treated with anti-CTLA-4 or anti-PD-L1 antibodies. Snap-frozen
tumors were thawed, flattened, and positioned between a quartz
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coverslip and an aluminum block with PBS to prevent dehydration,
with the quartz selected for its low fluorescence interference. The team
utilized a fiber-optic probe connected to a portable Raman system (830
nm diode laser) on a motorized translational stage to gather data. They
collected 7,500 spectra from 25 tumors over a 5-second acquisition
time. Ex vivo Raman mapping conducted three days post-treatment
yielded 7,585 spectra from approximately 300 spatially distinct points
across the tumors. Key Raman peaks identified included 849 cm™ (C-
O-C skeletal mode of polysaccharides), 1,260 cm™ (amide 111 of
proteins), 1,301 cm™" (lipid and collagen bending), 1,448 cm™" (lipid
and collagen CH, bending), and 1,657 cm™ (amide I of proteins).
Comparisons between treatment groups revealed subtle yet statistically
significant differences in lipid, nucleic acid, and collagen value,
suggesting that responses to anti-CTLA-4 and anti-PD-L1 therapies
influence TiIME composition (34). These findings align with emerging
research on the role of metabolism and the tumor microenvironment
in shaping immune responses. Variations in lipid-based metabolites
between treatments are likely to reflect differential lipid metabolism
within the TiME due to immunotherapy (105). The machine learning
analyses in this study demonstrated high prediction accuracy for
treatment responses, highlighting precise spectral markers for each
therapy. This study demonstrates that label-free Raman spectroscopy
can sensitively detect early biomolecular changes in tumors. This is
advantageous in offering valuable insights for clinical monitoring of
immunotherapy responses in cancer patients.

4 Raman spectroscopy for drug
response and
metabolomic monitoring

The past years have seen breakthrough achievements in
immunotherapeutic interventions including checkpoint inhibitors,
cytokine-based immunotherapy, vaccines, and cell therapy (eg, CAR-
T cell, CAR-NK cell and TIL therapy). However, the response to
immunotherapeutic treatment has been variable among patients, and
only a small percentage of cancer patients benefit from this treatment
depending on the histological type of tumor and other host factors. In
clinical practice, immunohistochemistry (IHC) typically serves as the
initial method for assessing patient biomarkers. However, this
approach has several limitations, including variability in assay results,
ambiguous positivity thresholds, and instances where patients with low
expression levels still show therapeutic benefits. It is also heavily
dependent on the pathologist’s judgment and experience (106). For
patients suffering from cancer, imaging techniques like FDG-PET scans
enhance understanding of metabolic changes during immunotherapy
(107). Furthermore, radiolabeling checkpoint inhibitors with
radioactive isotopes like 89Z allows for PET imaging to track the
biodistribution of these inhibitors (108). Despite their utility, these
methods often come with challenges related to cost, time, and the need
for specialized personnel (109). As shown by some recent studies,
researchers can leverage Raman spectroscopy to assess responses to
immunotherapeutic drugs while simultaneously examining cancer cell
differentiation (69), drug uptake within cells (110), and patterns of
cancer metastasis (111, 112).
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For drug response monitoring, techniques like colorimetric
analysis, fluoroimmunoassay, ELISA, and radioimmunoassays are
employed, each with distinct advantages and limitations. For
instance, the complexity of ELISA protocols often involves multiple
incubation and washing steps, making them time-consuming (113).
This is especially challenging when working with large sample sizes.
Furthermore, the reagents used are costly and can have lot-to-lot
variability (114). In immunological studies, researchers commonly use
techniques like flow cytometry, ELISA, and confocal microscopy to
study the activation, polarization, and plasticity of immune cells along
with their cytokine profiles. However, these methods often require the
fixation of cells with paraformaldehyde (PFA), the addition of chemical
dyes for labeling, and fluorescent tagging with antibodies—either
conjugated or unconjugated. Such procedures can be invasive, costly,
time consuming and may disrupt biological processes. One notable
advancement for label-free drug screening is the Thermostable Raman
Interaction Profiling (TRIP) method developed by Altangerel et al.
(115). TRIP enables efficient screening of protein-ligand binding at low
concentrations and doses under physiologically relevant conditions, as
illustrated in Figure 4A. TRIP has been successfully applied to eight
different protein-ligand systems which demonstrates excellent
reproducibility in Raman measurements. The technique requires
only a small 10 pL droplet of protein solution on a gold-coated glass
slide which dissipates heat from the excitation laser while blocking
fluorescent interference. Key applications of TRIP include time-
dependent protein-drug binding using 2,4-dinitrophenol (DNP) with
transthyretin (TTR), static protein-drug binding involving the
streptavidin-biotin complex, and antigen-antibody binding detection
with protein A and various antibodies, including those targeting the
SARS-CoV-2 spike protein. TRIP is advantageous because of its cost-
effectiveness and rapid detection capabilities. This eliminates the need
for extensive sample preparation. Future enhancements could enable
high-throughput drug screening and real-time monitoring of drug-
target interactions, potentially improving drug development processes
for complex immunotherapeutic interventions (115).

Single-cell RNA sequencing and other profiling methods allow
researchers to study cells in detail, but these techniques destroy the
cells during the several processing steps (116). On the other hand,
Raman microscopy can analyze the vibrational energy of proteins
and metabolites without damaging the cells, achieving a very fine
resolution. However, it doesn’t provide genetic information.
Raman2RNA (R2R) is a new method that can predict single-cell
expression profiles in living cells using label-free hyperspectral
Raman images (Figure 4B). Either by combining Raman data
with single-molecule fluorescence in situ hybridization or using
advanced machine learning techniques. This kind of approach
performed much better than traditional brightfield imaging, with
cosine similarities of R2R > 0.85 compared to brightfield < 0.15.
When reprogramming mouse fibroblasts into induced pluripotent
stem cells, R2R effectively predicted the expression profiles of
different cell states. Additionally, while tracking mouse embryonic
stem cell differentiation, R2R identified early signs of lineage
divergence and development paths (116).

Fluorescence-Activated Cell Sorting (FACS) has been a
cornerstone for immunophenotyping and the detailed analysis of
immune cell interactions. While FACS bridges the gap between
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genetic, cellular and population analyses, its reliance on fluorescent
probes can interfere with cell metabolism and introduce reliability
issues (117) and spectral spillovers (118, 119). Staining the cells with
fluorescent dyes also impart cytotoxicity (120), alter the behavior of
cells being analyzed (121), and breakdown of dyes which can result
in reliability issues. It also limits its application in in vivo cell
therapies such as stem cell therapy (122) and CAR-T cells (123). In
contrast, Raman-Activated Cell Sorting (RACS) presents an
exciting alternative. It allows for label-free immunophenotyping
by measuring the emitted molecular vibrations of cells as illustrated
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in Figure 4C. RACS integrates multiple technologies to obtain
single-cell Raman spectra using different cell-isolation techniques.
These methods include operating in a flow environment with
microfluidic systems, utilizing Raman tweezers for cellular
analysis in solution, and employing Raman Activated Cell
Ejection (RACE) for surface-based applications In a study by Wu
et al. (124) they developed a novel approach using SERS combined
with microfluidic technology to observe real-time interactions
between cancer cells and the immune system. This platform is
fully automated and integrates optofluidic systems which allows for
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effective monitoring of these intercellular communications. This
integrated system offers several key benefits. Firstly, it facilitates
direct on-chip communication between cells. This helps to maintain
the bioactivity and concentration of proteins released during
interactions, thus closely mimicking the in vivo conditions.
Secondly, a quantitative SERS immunoassay was employed to
evaluate how various drugs influence the secretion patterns of
cancer cells and the functionality of immune cells by utilizing an
SERS-enhanced 3D barcode immunoassay. Moreover, this
automated system significantly minimizes human error and
simplifies operational complexity, enhances the reliability of
results in drug screening and immunotherapy research.

Amongst most critical applications to date, Raman spectroscopy
can probe tumor metabolism in the TiME (125, 126) as growing
evidence suggests that the metabolic state of the TIME plays a crucial
role in the success of cancer immunotherapy. The TiME can
significantly influence the energy consumption and metabolic
reprogramming of immune cells, often causing them to become
tolerogenic and less effective at eliminating cancer cells.
Understanding these metabolic interactions is key to improving
immunotherapy outcomes. Unlike mass spectrometry-based single-
cell metabolomics, which requires destructive sample preparation
(127), label-free Raman spectroscopy can analyze metabolites in
living cells and tissues in a non-invasive manner. This makes it well-
suited for in vivo investigations of tumor metabolism. Recent studies
have utilized Raman confocal microscopy combined with ML
algorithms to analyze the activation of immune cells such as T cells,
B cells, and monocytes (28). For example, Chaudhary et al. employed
Raman micro-spectroscopy to identify activated immune cells. Their
study included both cell lines and primary cells consisting of purified
subgroups of monocytes and lymphocytes, as well as mixed
populations of peripheral blood mononuclear cells (PBMCs), all
obtained from healthy donors. ML models were designed for cell
differentiation and evaluated against flow cytometry data. Spectral
signatures of T-cell, B-cell and monocytes before and after activation
were also determined using high performance classification models,
including spectral fitting to identify spectral biomarkers (28).
Importantly, these analyses were conducted alongside traditional
methods like flow cytometry and ELISA in both in vitro and ex vivo
models. The findings indicate that immune cells exhibit unique spectral
profiles in response to different stimuli, highlighting the critical roles of
both cell type and specific activating signals in shaping their responses.
For instance, upon activation, T cells may undergo significant changes
in lipid metabolism and protein synthesis, while monocytes might
show alterations in cytoskeletal dynamics. These biochemical shifts
vary among different immune cell types and are indicative of the
complex signaling pathways that govern their activation and
differentiation. By examining these spectral changes through Raman
spectroscopy, researchers can gain valuable insights into the
mechanisms driving immune responses (28). This understanding
could pave the way for developing targeted therapeutic strategies
aimed at effectively modulating immune function. For example, if
specific spectral signatures are associated with effective T cell activation
against tumors, therapies could be designed to enhance these pathways
for improved cancer treatment outcomes.
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5 Integrating Raman spectroscopy
with -omics approaches and progress
towards clinical use

The “one-size-fits-all” model in immunotherapy often fails to
account for individual variations in genetics, environment, and
lifestyle, limiting the effectiveness of immunotherapy for many
patients (128). Multi-omic approaches that synthesize divergent
tumor features such as genomics, transcriptomics, proteomics and
metabolomics have significantly advanced the detailed description
of heterogeneous tumors and facilitated better understanding of
immunotherapy responses (129-131). Integrating multi-
dimensional data from various -omics layers remains a significant
challenge, and translating these data into precise drug selection for
clinical applications has yet to be realized. Additionally, the high
costs and labor-intensive nature of genomics, transcriptomics,
proteomics, lipidomics, and metabolomics studies require
sophisticated analytical and statistical methods. Consequently,
these factors have limited the longitudinal capture of events
across clinical studies (104, 105). Raman spectroscopy presents a
crucial opportunity to harmonize these -omics into a single
phenotypic, “Raman-omic” technique. Figure 5A illustrates the
role of Raman spectroscopy in multi-omics approaches in
immunotherapy, to delineate patient heterogeneity, reduce time
for analysis, reduce cost associated with those analyses, and
harmonize data for better ML/AI analysis by reducing
heterogenous data incompatibility. In this section we discuss how
Raman spectroscopy can be used to complement and augment
genomics, transcriptomics, proteomics, and metabolomics
in immunotherapy.

5.1 Raman spectroscopy in genomics
and transcriptomics

Detecting specific DNA sequences and identifying single-
nucleotide polymorphisms (SNPs) are vital for cancer diagnostics
and in predicting immunotherapy treatment outcome (134). Next-
generation sequencing (NGS) highlights the potential of somatic
DNA markers as both independent indicators and novel therapeutic
targets (135, 136). Raman spectroscopy has significant potential for
studying genomic and transcriptomic alterations. In particular,
changes in the vibrational modes of DNA and RNA, including
miRNA, can indicate mutations or epigenetic modifications
relevant to cancer. Studies have indicated that the activation state
of T cells is primarily linked to alterations within DNA rather than
proteins (137-139). Chromosomal DNA degradation of activated
mature T cells when stimulated via the CD3/T cell receptor complex
experience rapid apoptosis. This DNA degradation plays a crucial
role in eliminating autoreactive T cells in the thymus (140, 141).Ina
study by Lee et al., they focused on the Raman spectral analysis of
activated mature CD8* T cells and their DNA changes during
apoptosis. They noted a decrease in Raman spectral intensities
related to DNA, specifically at 768, 1071, and 1463 cm™'. These
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(A) Schematic representation of utility of Raman spectroscopy in multi-omics study. When incident light strikes the cells of interest, it generates
individual fingerprint Raman spectra. This provides information regarding molecular and chemical composition within cells. Raman spectroscopic
data analysis and interpretation using various ML/AI techniques can provide insights for genomics, proteomics, transcriptomics and metabolomics.
(B) Schematic representation of label-free miRNA identification, using Titanium ions to induce silver nanoparticle "hotspots” to identify RNA
sequences of homopolymeric bases and to locate the peak position of each base in the Raman spectrum. Adapted with permission under a Creative
Commons CC-BY License from ref (48). (C) 1) Raman spectra obtained for 8 different degradation studies of therapeutic monoclonal antibodies was
validated against conventional size-exclusion chromatography and peptide mapping. 2) represents the PCA analysis of RS, which can clearly
demarcate samples from different degradation clusters (pH 3, oxidation, 5000 kLux-h and 1000 kLux-h) from the control group to allow rapid
analysis for therapeutic quality control (132). (D) Raman spectra of the DMEM culture medium recorded at various Days in vitro (DIV). The red and
green lines in the spectra highlight peaks that show increasing and decreasing intensities, respectively. Adapted with permission under a Creative

Commons CC-BY License from reference (133).

intensity reductions likely reflect the breakdown of the DNA’s ring
structure, signaling its disintegration during apoptosis. Notably,
significant changes were observed in the O-P-O region of the DNA
backbone (around 780 to 800 cm™) and in PO, (around 1053 to
1087 cm™). This suggests a correlation with internucleosomal DNA
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cleavage progression. The differences in Raman spectra between
resting and activated mature CD8* T cells were analyzed using PCA
which revealed a clear discrimination of DNA from activated T cells
compared to resting T cells. Thus, this study infers that the
decreased Raman intensities in activated mature CD8* T cell
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DNA are indicative of apoptosis, highlighting the utility of label-free
Raman spectroscopy as a tool for assessing the activation status of
these immune cell (142).

In parallel, Li et al. developed a unique detection method for
capturing SERS signal from unlabeled RNA without hampering its
structural integrity. They utilized titanium ions as an aggregating
agent along with silver nanoparticles. This formed electromagnetic
“hot-spots” for non-destructive and label-free single molecule
detection of miRNA molecules. Unlike traditional metal cation
aggregators (like AI** and Mg®*), the acidic titanium ions helped
stabilize RNA molecules. The researchers conducted SERS analysis
on homopolymeric sequences of the four RNA bases (A, G, C, and
U) and examined the secondary hairpin structure (Figure 5B). The

ribose peak at 959 cm™*

was used for normalization, revealing
distinct peak positions for each base: A at 731 cm™, G at 665 cm™,
Cat789 cm™, and U at 795 cm™. To check the robustness of their
system, they designed RNA sequences of IL10 and 1HP3 which
contained the same bases but in a different sequential manner. A
peak at 1446 cm™ corresponded to U vibrations in AU base pairs,
while increases in peak intensities at 1314 cm™" (G in GC pairs) and
1635 cm™ (C in GC pairs) indicated complementary pairing. This
label-free detection method for miRNA demonstrated a high signal-
to-noise ratio with remarkable sensitivity while preserving the
original structure of miRNA. This research reduces the analysis
cost of miRNA characterization as well as supporting the
development of miRNA therapeutics in the future (48).

5.2 Raman spectroscopy in proteomics
and peptidomics

In the context of cancer diagnosis and new therapeutic
development, proteomics plays a valuable role for identifying
biomarkers. By analyzing proteins expressed in cancerous tissues
compared to healthy tissues, researchers can discern proteins that
are uniquely or differentially expressed in either state. Label-free
Raman spectroscopy can characterize proteins and their
conformational states, providing insights into their roles in
cancer. Uzunbajakava et al. demonstrated the first successful use
of nonresonant Raman imaging to analyze protein distribution in
cells. This study compared Raman images of two cell types:
peripheral blood lymphocytes (PBLs) and lens epithelial cells
(LECs). The Raman images revealed distinct differences in protein
distribution within the nuclei of PBLs and LECs, with clear
contrasts in protein intensity visible in the PBL nucleus (near
3000 cm™') (143). Raman scattering can also be utilized to study
the o and B-sheets conformations and changes in proteins. Rygula
et al. explored the secondary structures of 26 different proteins
(including hemoglobin (Hb), cytochrome c¢, peroxidase, albumin,
collagens, lectins, glucose oxidase, proteinase, ubiquitin, and heme
protein) using Raman spectroscopy by analyzing their Amide I and
III vibrations, which reveal the ratios of a-helices and [B-sheets
(144). This research suggests that proteoforms may each have their
own vibrational fingerprint. Therefore, even when specific binders
are unavailable to discern, eg, post-translationally-modified
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proteins, Raman can prove specific information about
modifications or changes in secondary or tertiary structure.
Peptidomics can also benefit from Raman spectroscopy. For
example Raman spectroscopy can help in understanding the roles of
specific peptides involved in tumor cell signaling and immune
responses (145). Raman spectroscopy has also emerged as a
promising tool for detecting post-translational modifications
(PTMs) and assessing degradation in monoclonal antibody
(mADb) therapeutics (132). These modifications, which occur after
protein synthesis, can significantly impact the structure and
properties of antibodies, leading to issues like aggregation and
fragmentation. PTMs are classified based on the modified amino
acids or the enzymes involved, with common modifications
including phosphorylation, glycation, acylation, alkylation,
glycosylation, deamidation, and oxidation. This is particularly
important in mABs, where structural changes can result in
unwanted immune reactions (146), decreased effectiveness (147),
and material loss during production (148). Monoclonal antibodies
are especially vulnerable to aggregation and fragmentation due to
various processing conditions with soluble mAB aggregates posing a
significant risk for triggering unwanted immune responses (149). A
label-free and high throughput Raman spectroscopy can aid in
identifying these PTMs in real-time. Due to rapid spectral data
collection, little to no sample preparation, and without any
interference due to water, Raman spectroscopy emerges as an
outstanding candidate for real-time Process Analytical
Technology analysis in biotherapeutic production (150). For
instance, McAvan et al. studied the effectiveness of label-free RS
in detecting PTMs in IgG4 mAbs under various degradation
conditions, such as changes in pH (3 and 10), temperature (4, 40,
and 50°C), light stresses (1000 and 5000 kLux-h), and agitation. By
integrating principal component analysis (PCA) with RS and
circular dichroism (CD) spectroscopy, they differentiated mABs
based on their PTMs and degradation states. Figure 5C-1
represents Raman spectra which were obtained for 8 different
degradation data. Notably, spectral peaks at 1666 cm™ and 532
cm™' remained stable which indicates that B-sheet and disulfide
bonds were largely unaffected by these conditions. However,
significant changes were observed in the amide III region (1312
to 1334 cm™'), suggesting alterations in the protein’s tertiary
structure linked to the degradation conditions. Additionally, RS
detected shifts at 885, 1121, and 1450 cm™' associated with
tryptophan and other molecular components, showing that both
tryptophan and C-H vibrations increased in wavenumber with
larger aggregates. Conversely, the C-N backbone exhibited a
decrease in wavenumber as aggregation increased. This research
highlights the potential of RS for monitoring PTMs in mAb which
were subjected to various forced degradation conditions. The PCA
analysis revealed that the data with identical conditions group
together. This indicated that the data is consistent and
reproducible. Notably, the samples that form distinct clusters
apart from the control group include those subjected to oxidation,
pH 3, and light exposure at 5000 kLux-h and 1000 kLux-h which is
represented in Figure 5C-2 (132). Furthermore, Zhang et al. used a
label-free RS approach along with SVM and PCA model for
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quantitative prediction of protein aggregation in Antibody Drug
Conjugates. Additionally, they have also investigated the impact of
temperature and humidity (40°C/75% RH/1 month) on aggregation
of proteins that mimics long-term storage conditions (151). These
studies suggest that label-free Raman spectroscopy can be used to
monitor real-time PTMs during biotherapeutic production.

5.3 Raman spectroscopy in metabolomics

Immunometabolomics has become a vital area of study by
providing detailed insights into the metabolic interactions within
the TiME. The transfer of metabolites between cancer cells and
nearby immune cells can shape immune responses, indicating that
these metabolic exchanges are key to both immune surveillance and
evasion. Research is focused on understanding the vital
contribution of metabolic communication between these cells,
particularly how tumor metabolism contributes to immune
evasion and resistance to immunotherapy (152). Tumor
metabolism leads to the buildup of metabolites such as lipids,
carbohydrates etc. that regulate immune responses within the
TiME (153). These metabolites not only serve as signals but also
interfere with the development of immune cells such as CAFs, T-
cells and macrophages (154-156). There is an urgent need for new
techniques that allow for single-cell metabolic interaction analysis
in a quick and cost-effective way. To overcome these hurdles,
researchers have utilized Raman spectroscopy for understanding
these intricate immune-cell metabolic cross talks. For example,
Shalabaeva et al. used a time-resolved method for metabolite
tracking in cell culture using label-free SERS, allowing
simultaneous analysis of multiple molecules without any sample
processing. The method used Ag nanostructures integrated in cell
culture medium in a four day study involving NIH/3T3 cells, with
Raman spectra collected from media. The analysis of specific peaks
revealed temporal changes in metabolic components such as L-
tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine, and
proteins from fetal bovine serum (FBS), as seen in Figure 5D. The
observed trends for L-tyrosine and its degradation products-
acetoacetate and fumarate signified the consumption of L-tyrosine
and simultaneously the production of its breakdown products. The
decreasing intensity of certain peaks likely indicates exhaustion of
these cell medium components over time. This method was also
applied to analyze LPS-driven differentiation of Raw 264.7
macrophage cells. Analysis of the Raman spectra collected over a
24hr period reflected macrophage transition from quiescent to an
activated pro-inflammatory state. This research indicates that label-
free SERS could identify different metabolites at various time points,
thereby providing insights into the immune cell states (133).

In cancer metabolomics, lipid metabolism plays a crucial role in
cancer development, progression and also influences tumor growth
mechanisms, including support for metastasis, ferroptosis-mediated
cell death, and interactions between tumor and immune cells (157).
Abnormal lipid levels and disrupted metabolic pathways contribute
to cancer growth, metastasis, and treatment resistance. As Raman
vibrational peaks are exceptionally sensitive for observing lipid
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content, Raman spectroscopy is increasingly applied for lipidomic
analysis across a wide range of cancers (157-159). Lipid droplets
(LDs) are dynamic organelles primarily involved in lipid storage
and metabolism, and dictating cellular energy balance and
signaling. Their significance in cancer biology has garnered
attention, particularly regarding resistance to chemotherapy, their
interactions with immune cells within the TiME, and implications
for immunotherapy (160). It was found that a significantly higher
quantity of lipid droplets was present in high-grade glioblastoma
and colorectal cancer when compared with low-grade cancers and
normal tissues (161). Ben et al. utilized Multiplex coherent anti-
Stokes Raman scattering (MCARS), a label-free technique, to detect
lipid droplets in colon cancer cell lines expressing the neurotrophin
receptor TrkB. The overexpression of TrkB subsequently activates
the PI3K/Akt signaling pathway and phosphorylation of Akt (P-
Akt), leading to lipid droplet formation in cells. The MCARS
technique focused on the 2500-3200 cm-1 spectral range, where
the CH2 (2850 cm—1) and CH3 (2930 cm-1) vibrational signatures
are primarily associated with lipid and protein contents
respectively. MCARS images of cells generated from signal
integration of CH2 stretching modes allowed researchers to
discriminate between lipid accumulation in the endoplasmic
reticulum and the formation of cytoplasmic lipid droplets. This
approach tracked the changes in lipid metabolism in both TrkB
high-expressing HT29 cells and low-expressing HEK293 cells
following treatment with brain-derived neurotrophic factor
(BDNF), demonstrating that BDNF-induced TrkB activation leads
to lipid droplet formation in HT29 cells. Thus, with MCARS along
with data processing, researchers were able to a) detect cancerous
cells, b) assess the tumor progression, and c) predict the resistivity
of cancer cells by analyzing the content of cytoplasmic lipid
droplets (162).

5.4 Translational potential of Raman
spectroscopy in cancer diagnosis
and treatment

Raman spectroscopy is increasingly recognized for its clinical
utility in cancer diagnosis and therapy (163, 164). One notable
application of label-free Raman spectroscopy is intraoperative
margin assessment of brain tumors, particularly glioblastomas.
Studies have shown that Raman spectroscopy can differentiate
between tumor and healthy brain tissue in real-time during
surgical procedures, potentially improving surgical outcomes by
ensuring complete tumor resection while preserving surrounding
healthy tissue. Jermyn et al. utilized a handheld Raman
spectroscopy probe, without any labeling, for real-time detection
of cancer cells in human brain tissue during surgery. This technique
achieved a sensitivity of 93% and specificity of 91%, effectively
distinguishing between normal brain tissue, dense cancer, and
cancer-invaded areas. The probe illuminated a 0.5-mm tissue
area, sampling up to 1 mm deep in just 0.2 seconds, integrating
seamlessly into neurosurgical workflows. The spectra covered a
range of shifts from 381 to 1653 cm—1. The Raman spectra revealed
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distinct differences in lipid bands and nucleic acid content between
cancerous and normal tissues. Specifically, variations at 700 cm-1
and 1142 cm-1 indicated changes in cholesterol and phospholipids,
while increased bands from 1540 to 1645 cm—1 suggested higher
nucleic acid levels in cancerous tissues. With ML analysis, they were
able to classify the samples with an overall accuracy of 92% (107).
This portable Raman technology enhances intraoperative decision-
making by providing quick, reliable identification of invasive
cancer, minimizing residual tumor volume and improving patient
survival outcomes. Raman spectroscopy has also now been used for
real time cancer cell differentiation and diagnosis in oral cancer
(165, 166), gastric cancer (167), and skin cancer (168).
Furthermore, Raman spectroscopy is gaining momentum as a
non-invasive diagnostic tool in oncology-based clinical trials
(Table 1). In a recent clinical investigation by Wang et al., serum
samples from 729 patients diagnosed with either prostate cancer
(PC) or benign prostatic hyperplasia (BPH) were analyzed. The

10.3389/fimmu.2024.1520860

researchers utilized SERS combined with an AI model based on
convolutional neural networks (CNN) for diagnostic purposes.
Their findings indicate an accuracy of ~85% for distinguishing
between PC and BPHBy integrating patient age and prostate-
specific antigen (PSA) levels into their multimodal CNN
approach, the classification accuracy improved significantly to
over 88% (169). Encouraged by these results, the researchers have
initiated a clinical trial to explore this diagnostic technique,
registered under NCT05854940 (170).

In another example, label-free RS has been used for diagnosis and
staging of diffuse large B-cell lymphoma (DLBCL) and chronic
lymphocytic leukemia (CLL) (171, 172). Label-free Raman
spectroscopy (RS) has emerged as a valuable tool for diagnosing and
staging diffuse large B-cell lymphoma (DLBCL) and chronic
lymphocytic leukemia (CLL). In a study conducted by Chen et al
(2022), label-free SERS spectra were obtained from 47 healthy controls
and 53 DLBCL patients. AgNPs was used as a substrate for SERS

TABLE 1 Current clinical trials of Raman spectroscopy for cancer diagnosis and treatment.

Sr. NCT
number Study title Conditions Interventions Brief summary

1 | NCT04162431 = DOLPHIN-VIVO: Lymphoma; Head and Combined FNA/Raman  Study for the use of Raman spectroscopy for non-invasive
Diagnosis Of LymPHoma Neck Cancer spectroscopy analysis of lymph node tissue (x-vivo and in-vivo) for
IN Vivo (Ex Vivo Phase) needle probe providing immediate diagnostic results without laboratory

delays. It aims to streamline the biopsy process by

2 NCT05010369 = DOLPHIN-VIVO: integrating fine needle aspiration during routine
Diagnosis of LymPHoma procedures, maintaining clinical standards.
in Vivo (In Vivo Phase)

3 | NCT06384924 = Raman Spectroscopy and Skin Cancer; Basal Cell Handheld Raman Retrospective trial investigating the effectiveness of
Skin Cancer Carcinoma; Squamous Spectroscopy probe Raman Spectroscopy in assessing skin cancer tumor size

Cell Carcinoma and spread using a handheld probe that gently contacts
the skin with laser light. This method aims to enhance
diagnostic accuracy and efficiency.

4  NCT06394050 = Label-free Raman Breast cancer Label-free Raman This trial aims to utilize label-free Raman spectroscopy to
Spectroscopy for spectroscopy distinguish between cancerous cells and adjacent tissues
Discrimination Between based diagnosis in breast cancer patients’ post-treatment.

Breast Cancer Tumor and
Adjacent Tissues After
Neoadjuvant Treatment

5 NCT04817449 = Spectroscopy in Ovarian Cancer; Raman spectroscopy This trial investigates the utility of label-free RS for early

Ovarian Cancer Ovarian Neoplasms detection of ovarian cancer, by analyzing blood plasma
(from ovarian cancer patients) and fibrotic tissue (post-
chemotherapy) with label-free RS to identify
active cancer.

6  NCT04869618 = Validation of an Artificial Gastric Intestinal Al and Raman Study for using Raman spectroscopy based artificial
Intelligence System Based Metaplasia; spectroscopy-based intelligence system (SPECTRA IMDx) for early detection
on Raman Spectroscopy Gastric Cancer device and treatment of gastric premalignant lesions and early
for Diagnosis of Gastric (SPECTRA IMDx) gastric cancer (EGC).

Premalignant Lesions and

Early Gastric Cancer

7 | NCT05854940 = Multicenter, Prospective Prostate Cancer Serum Raman Trial for validating the effectiveness of RS at screening
Clinical Study of the spectroscopy intelligent | prostate cancer by detecting prostate-specific antigen
Serum Raman diagnostic system (PSA)focusing on early prostate cancer diagnosis.
Spectroscopy Intelligent
System for the Diagnosis of
Prostate Cancer

8 | NCT05995990 Raman Spectroscopy for Colorectal Raman Spectrometry Trial utilizing both RS and multivariate spectral analysis
Liver Tumours Following Cancer Metastatic to develop a quick and reliable method for evaluating
Liver Surgery tissue sections for residual tumors in liver samples

after surgery.
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analysis. Their analysis revealed that DLBCL samples exhibited higher
spectral intensities at 725, 1093, 1329, 1371, and 1444 cm™, indicating
the presence of biomolecules such as hypoxanthine, adenine, thymine,
collagen, and phospholipids. While lower intensities were observed at
493, 636, 888, 1003, 1133, 1580, and 1652 cm™ which relate to
ergothioneine, uric acid, tyrosine, lactose, phenylalanine, acetoacetate,
amide I, and alpha-helix. They also found distinct spectral variations
between early-stage (I and II) and late-stage (III and IV) DLBCL. To
analyze the complex SERS data effectively, multivariate techniques were
employed. The k-nearest neighbors (KNN) model demonstrated better
results in both diagnosing and staging DLBCL with an accuracy of
87.3%, sensitivity of 0.921 and specificity rates of 0.809 for diagnosis
(171). In another patient-centric study, Bai et al. explored the potential
of RS to create a blood test for the noninvasive detection of DLBCL and
CLL through biomarker analysis. They examined blood plasma
samples from 33 DLBCL patients, 39 CLL patients, and 30 healthy
individuals. Their analysis revealed that the intensity at 1445 cm™,
associated with collagen and lipids, was notably higher in DLBCL
samples. Conversely, the intensity at 1655 cm™, linked to proteins and
alpha-helix structures decreased in CLL samples while increasing in
DLBCL samples. By combining RS with orthogonal partial least
squares discriminant analysis (OPLS-DA), the researchers were able
to differentiate the blood plasma of CLL and DLBCL patients from that
of healthy donors. This integrated approach achieved sensitivity rates of
92.86% for CLL and 80% for DLBCL along with specificity rates of
100% and 92.31%, respectively (172). To further this research, various
ongoing clinical trials are investigating both ex vivo and in vivo
diagnostic methods for lymphoma detection. These trials highlight
the current clinical need in cancer diagnostic approaches, especially in
cancer immunotherapy. With the advancement of ML and AI
technology, integrating RS in biomarker prediction as a diagnostic
tool can be crucial for a personalized approach in immunotherapy.
This will help solve many current limitations which are present in
immunotherapeutic treatment.

6 Future directions in label-free assays
to develop personalized
therapeutic approaches

Label-free Raman spectroscopy in cancer diagnosis and
immunotherapy is poised to revolutionize the landscape of
oncological care. As a non-invasive diagnostic tool, label-free
Raman offers advantages in terms specificity and throughput,
enabling the detection of molecular signatures associated with
various cancers directly from biofluids such as blood, urine, and
saliva (173), distinguishing various tissue types, and detecting
pathological alterations across a multitude of diseases. Preclinical,
translational, and clinical in vivo applications have significantly
enhanced Raman spectroscopy’s role in bridging crucial knowledge
gaps, especially in the complex analysis of whole-tissue to accurately
describe tumor microenvironments. However, several challenges
persist in utilizing Raman spectroscopy as a standalone multi-omic
test or as a complementary tool to existing multi-omics. Achieving
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the ambitious goal of entirely label-free assays that are low-cost and
high-throughput is essential for accelerating clinical patient studies.

One important step to advancing Raman application for cancers
is increasing utilization of formalin-fixed paraffin-embedded (FFPE)
specimens, where currently-described studies predominantly
concentrate on fresh or frozen tissue samples. FFPE is the
conventional method used for the preservation and storage of
tissue, especially tumor sampling that is a very small size such as in
melanoma or biopsies of metastatic tissues. Due to the dominant
vibrational signal native in paraffin, deconvoluting the relatively weak
signature of the tissue spectra from paraffin spectra remains a
persistent challenge. Robust suppression of the background signal
from the paraffin, either through chemical dewaxing demonstrated by
Ning et al. and Gaifulina et al (174, 175), digital processing as shown
by Tfayli et al. and Ibrahim et al. (176, 177), or vibrational mode-
suppressing SERS devices as shown by Kurouski et al. (178), can
greatly increase the possible patient data banks available to process
and construct the necessary library for the integration of Raman into
multi-omic studies. A notable study by Lewis et al. exemplifies this
potential by utilizing label-free Raman spectroscopy to compare
findings with immunohistochemistry (IHC). They generated
Raman spectral maps from FFPE colonic tissues obtained from
healthy individuals and used principal components analysis (PCA)
to validate their findings against several IHC markers. Their results
demonstrated the ability to differentiate mucin based on glycosylation
patterns, identify nuclear regions through DNA content analysis, and
categorize various tissues according to their amino acid compositions.
Their results confirm excellent correlation between the IHC markers
and label-free RS. This assures that label-free RS could be utilized in
detecting compositional changes, thus eliminating the use of
expensive antibodies (179). Ability to access the wealth of banked
and stored FFPE could facilitate the next leap in biologic study by
greatly expanding available specimens.

A second step for widespread adoption of RS in clinical care,
particularly at point of care sites, is efficient sample pre-processing
and data post-processing. Clinical integration of sample
preprocessing techniques prior would greatly facilitate Raman
analysis by eliminating unwanted background and noise.
Common sample preparation materials and ubiquitously-present
chemical molecules can often obscure and influence relevant
functional group vibrational signals. Strategic suppression of non-
relevant chemical groups or biological bands either chemically
(180) or through Raman-active platforms (181) can greatly
improve functional group targeting and better map them to
observable biomarker differences. Additional construction of a
global spectra library would further assist in signal deconvolution
and aid in standardization across samples. Timely tumor profiling
will also require rapid integration at subcellular resolution over the
entire tissue sample. As such, utilization of higher-throughput
Raman systems enabling line- or image-based spectral collection
pathways can greatly improve spectral acquisition throughput and
capacity. Higher collection bandwidth can aid in the population of a
data bank derived from historical samples.

Further advancements in Raman-based tumor investigations
necessitate continuous enhancements in the technical performance
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of spectral acquisition and the resolution of signals. While current
SERS devices strategically drive enhancements at the incident light
source, signal intensity can further be amplified by additional
consideration of enhancements in the scattering wavelength regime.
Design of doubly resonant platforms, with the second broader
resonance directing Raman scattered light towards the detector, can
yield increased spectra intensity and sensitivity. Further, multi-
resonant platforms accounting for polarization dependency can
enable sample filtering by polarizability. Careful considerations will
need to address spectral fidelity associated with fabrication
imperfections and hotspot intensities variations across regions.
Finally, as tumors and the TiME are most faithfully depicted as a
three-dimensional ecosystem, future SERS designs should extend
applicability to include all three degrees of spatial freedom.
Although confocal RS has been utilized as a 3D molecular
contrasting tool (180, 182), similar applications have not yet been
applied in SERS-based tumor studies. Potential adoption of
suspended or resonantly stratified NPs could provide z-stacking
capabilities, while maintaining high-sensitivity. Similarly,
considerations will need to be taken to address hotspot uniformity
and off-focus signal contributions.

The field of AT and machine learning in Raman spectroscopy data
analysis has revolutionized the way we approach real-time data
interpretation, particularly in single-cell and multi-omics studies.
These LLM models have shown remarkable potential in integrating
diverse data types, allowing researchers to simultaneously characterize
different cellular processes. However, the journey from laboratory
research to clinical application of Raman spectroscopy to
immunotherapy principles faces several hurdles. One significant
challenge lies in the data acquisition process, which often lacks
standardization. Researchers employ varying methods for sample
preparation, instrument operation, and data labeling. This leads to
inconsistencies across different studies. To address this, the scientific
community could benefit from establishing a global, public database for
Raman spectroscopy data. This repository would not only store data
from laboratories worldwide but also implement standardized
normalization and preprocessing techniques, paving the way for
more robust Al and ML method development. Another pressing
issue is the "black box" nature of many AI models. While these
algorithms excel at producing results, the opacity of their decision-
making processes can be a stumbling block for clinical adoption.
Healthcare professionals understandably hesitate to rely on tools they
cannot fully comprehend or explain. Therefore, enhancing the
transparency and interpretability of these models is crucial for their
acceptance in medical settings. Looking ahead, the field of
immunotherapy applications using Raman spectroscopy and Al has
several promising fields for growth. Multi-center studies should be
prioritized to improve data consistency and reliability, as current
research often relies on single-center data. Additionally, the
development of semi-supervised or unsupervised machine learning
models could unlock new possibilities beyond current applications.
These advanced models could potentially uncover hidden correlations
between various omics data sets, opening doors for innovative
hypothesis testing, drug discovery, and personalized medicine
approaches in immunotherapy (35). By addressing these challenges
and exploring new frontiers, the integration of AI, Raman
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spectroscopy, and immunotherapy holds promise for advancing our
understanding of cellular processes and improving patient outcomes.
These technical advancements are crucial not only for studying
therapeutic responses and discovering biomarkers but also for achieving
precision immunotherapeutics. Accurate intraoperative diagnosis for
complete tumor resection is essential for improving prognosis and
determining optimal surgical approaches in multi-modal care
settings.Raman spectroscopy has demonstrated the ability to
distinguish malignant tissue from healthy tissue in real-time that can
facilitate margin assessment and in vivo pathologic classification (183,
184). For example, one recent study applied label-free visible resonance
Raman spectroscopy to enhance the precision of tumor boundary
identification during glioma surgeries, with remarkable sensitivity,
specificity, and accuracy rates reaching 100%, 96.3%, and 99.6%,
respectively (185). Looking ahead, the integration of label-free Raman
spectroscopy into surgical practice holds significant promise for
improving cancer surgery outcomes. As this technology matures, it is
expected to facilitate real-time assessments of tumor margins during
surgical procedures. This will aid surgeons in achieving complete tumor
resections. The development of portable Raman analytical techniques
and advanced algorithms for data analysis will further enhance the utility
of in-situ applications. This will make label-free Raman spectroscopy an
invaluable tool in the future landscape of oncological surgery.

7 Conclusion

Label-free Raman spectroscopy could transform cancer
diagnosis and immunotherapy by offering a non-invasive, high-
throughput method for detecting molecular signatures in biofluids
and tissue specimens. The studies outlined here highlight the
myriad of challenges in multifaceted profiling of complex and
heterogeneous tumors that can be addressed with technical
innovations in Raman spectroscopy to transcend traditional
single-omic strategies. The analytical advancements in Raman
technologies, encompassing enhanced spectral isolation and
refined data processing capabilities, establish it as a crucial
instrument for elucidating the intricate mechanisms by which
tumors circumvent immune detection—a critical stride towards
precision medicine. Coupled with machine learning for real-time
data analysis, these techniques position Raman technology as a
disruptive tool throughout the continuum of oncological
intervention.As techniques for suppressing background signals
improve and as the construction of global spectral libraries
advances, the accuracy and efficiency of Raman spectroscopy in
clinical settings will be enhanced. The potential integration of
Raman spectroscopy with existing multi-omics platforms could
harmonize diverse datasets, facilitating a more comprehensive
characterization of tumors and better predictive biomarker
identification. Moreover, the potential for real-time tumor
boundary identification during surgeries positions Raman
technology at the forefront of precision immunotherapeutics. The
ongoing development of portable systems and sophisticated data
analysis algorithms promises to further embed label-free Raman
spectroscopy within surgical practice, ultimately improving patient
outcomes through more precise and informed interventions. By
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enabling timely, personalized, and precise immunotherapy
strategies, this technology could ultimately transform the
landscape of oncological care, reducing reliance on a “one size fits
all” treatment paradigm and enhancing patient outcomes.
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Single-cell RNA-seq reveals
Immune cell heterogeneity and
increased Thl/ cells in human
fibrotic skin diseases

Cheng-Cheng Deng’, Xue-Yan Xu', Yan Zhang', Long-Can Liu,
Xuan Wang, Jun-Yi Chen, Liu-Yi Yao, Ding-Heng Zhu*
and Bin Yang*

Dermatology Hospital, Southern Medical University, Guangzhou, China

Background: Fibrotic skin disease represents a major global healthcare burden,
characterized by fibroblast hyperproliferation and excessive accumulation of
extracellular matrix components. The immune cells are postulated to exert a
pivotal role in the development of fibrotic skin disease. Single-cell RNA
sequencing has been used to explore the composition and functionality of
immune cells present in fibrotic skin diseases. However, these studies detected
the gene expression of all cells in fibrotic skin diseases and did not enrich immune
cells. Thus, the precise immune cell atlas in fibrotic skin diseases remains
unknown. In this study, we plan to investigate the intricate cellular landscape
of immune cells in keloid, a paradigm of fibrotic skin diseases.

Methods: CD45" immune cells were enriched by fluorescence-activated cell
sorting. Single-cell RNA sequencing was used to analyze the cellular landscape of
immune cells in keloid and normal scar tissues. Ki-67 staining, a scratch
experiment, real-time PCR, and Western blotting were used to explore the
effect of the Th17 cell supernatant on keloid fibroblasts.

Results: Our findings revealed the intricate cellular landscape of immune cells in
fibrotic skin diseases. We found that the percentage of Th17 cells was significantly
increased in keloids compared to normal scars. All the subclusters of
macrophages and dendritic cells (DCs) showed similar proportions between
keloid samples and normal scar samples. However, upregulated genes in keloid
M1 macrophages, M2 macrophages, and cDC2 are associated with the MHC
class Il protein complex assembly and antigen assembly, indicating that
macrophages and cDC2 are active in keloids. Functional studies suggested that
the supernatant of Thl7 cells could promote proliferation, collagen expression,
and migration of keloid fibroblasts through interleukin 17A. Importantly,
increased Thl7 cells are also found in other fibrotic skin diseases, such as
hypertrophic scars and scleroderma, suggesting this represents a broad
mechanism for skin fibrosis.
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Conclusion: In summary, we built a single-cell atlas of fibrotic skin diseases in this
study. In addition, we explored the function of Th17 cell-fibroblast interaction in
skin fibrosis. These findings will help to understand fibrotic skin disease
pathogenesis in depth and identify potential targets for fibrotic skin

disease treatment.

immune cell, Th17 cell, fibrotic skin diseases, keloid, macrophage, dendritic cell, IL-17

1 Introduction

Fibrosis is a condition that is characterized by fibroblast
proliferation and excessive accumulation of extracellular matrix
components (1, 2). Fibrosis contributes to a high level of morbidity
and mortality worldwide and can lead to progressive tissue scarring
and organ dysfunction (1-3). Fibrotic skin diseases are
characterized by the accumulation of extracellular matrix
components in the dermis and include hypertrophic scars,
keloids, scleroderma, and graft-vs.-host diseases (4-8). Studies
have indicated a correlation between the development of fibrotic
skin diseases and genetic predisposition, tissue tension, aberrant
collagen synthesis and degradation processes, inflammatory
responses, and immune dysregulation (3, 6, 7). However, the
precise underlying pathogenesis of fibrotic skin diseases remains
elusive, and radical treatments are still lacking.

The immune response is postulated to exert a pivotal role in the
occurrence and progression of fibrotic skin diseases (6-10). A
substantial infiltration of immune cells is observed within fibrotic
skin diseases, and these cells potentially influence the development
of fibrotic skin disease lesions through the release of inflammatory
mediators and the modulation of extracellular matrix synthesis.
Furthermore, it has been demonstrated that immune cells occupy a
pivotal position in regulating the aberrant behavior exhibited by
fibroblasts in fibrotic skin diseases (6, 7, 9, 11, 12). Single-cell RNA
sequencing (scRNA-seq) has been used to explore the composition
and functionality of immune cells present in fibrotic skin diseases,
such as in keloids and scleroderma (13-15). However, these studies
detected the gene expression of all cells in fibrotic skin diseases and
did not enrich immune cells. Most of the cells in these single-cell
RNA sequencing studies were keratinocytes, fibroblasts, and
vascular endothelial cells, and the proportion of immune cells was
low in the results (13-15). We need to enrich immune cells in
single-cell RNA sequencing studies of fibrotic skin diseases to get a
more precise immune cell atlas for fibrotic skin diseases.

Th17 cells are a lineage of CD4" T helper cells. Th17 cells have
been implicated in numerous inflammatory diseases, including
Crohn’s disease, psoriasis, multiple sclerosis, rheumatoid arthritis,
and inflammatory bowel disease (16-18). The pro-inflammatory
cytokines derived from Th17 cells, including interleukin 17A (IL-
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17A), IL-17F, IL-21, IL-22, and IL-26, play crucial roles in the
pathogenesis of these diseases (16-18). It has been observed that the
inhibition of Th17 cell differentiation leads to a downregulation of
IL-17A expression, subsequently mitigating hepatic fibrosis and
pulmonary fibrosis (19, 20). It has been discovered that IL-17A
secreted by Th17 cells augments the release of pro-inflammatory
chemokines, including monocyte chemoattractant protein (MCP)-1
and IL-8, from dermal fibroblasts in systemic sclerosis. This, in turn,
exerts a profound impact on the remodeling of the extracellular
matrix (21, 22). These comprehensive investigations have
established a link between Th17 cells and fibrotic diseases.
However, the specific role and function of Th17 cells in fibrotic
skin diseases are not fully understood.

In this study, we isolated CD45™" cells from keloids, a paradigm
of fibrotic skin diseases, using fluorescence-activated cell sorting
(FACS) and performed single-cell RNA sequencing analysis. Our
results revealed the intricate cellular landscape of immune cells in
keloids. Compared to normal scar tissue, the percentage of Th17
cells was significantly increased in keloids. Further functional
studies revealed that Th17 cells promote the proliferation,
collagen expression, and migration of keloid fibroblasts by
secreting IL-17A. Importantly, increased Th17 cells were also
found in other fibrotic skin diseases, such as hypertrophic scars
and scleroderma, suggesting this represents a broad mechanism for
skin fibrosis. These findings will help us more thoroughly
understand the pathogenesis of fibrotic skin diseases and provide
potential targets for therapies for fibrotic skin diseases.

2 Materials and methods

2.1 Sample preparation and
tissue dissociation

This study was approved by the Medical and Ethics Committees
of Dermatology Hospital, Southern Medical University, and each
patient signed an informed consent form before participating in this
study. Keloid tissues were harvested during plastic surgery from
three patients confirmed to have clinical evidence of keloid
(Supplementary Table S1). Normal scar tissue was obtained from
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three patients who underwent elective scar resection surgery
(Supplementary Table S1). The tissues were washed with PBS on
ice and the fat tissue was removed. The tissue samples were then cut
into 1 cm” pieces in a digestion medium composed of 2.5 mg/ml
Dispase II (Roche, USA, 04942078001) in PBS and incubated at
37°C for 2h. After removing the epidermis, the dermal portion was
further cut and digested in 2.5 mg/ml collagenase IV (Yeasen
Biotechnology, China; 40510ES60) at 37°C for 2h. The cell
suspension was filtered through a 70pum-cell strainer, and then
the enzymes were neutralized with buffer (PBS with 1% fetal bovine
serum). The cells were centrifuged at 2,000 rpm for 10 min at 4°C
and resuspended in buffer (PBS with 1% FBS). We then sorted the
CD45" immune cells and constructed scRNA-seq libraries.

2.2 Single-cell cDNA and
library preparation

Single-cell ¢cDNA, library preparation, and 3’-end single-cell
RNA sequencing were performed by Novogene (Beijing, China).
For experiments using the 10xGenomics platform, the Chromium
Single Cell 3’ Library and Gel Bead Kit v3.1, Chromium Single Cell
3’ Chip Kit v3.1, and Chromium i7 Multiplex Kit were used
according to the manufacturer’s instructions in the Chromium
Single Cell 3" Reagents Kits v3.1 User Guide. The single-cell
suspension was washed twice with 1xPBS + 0.04% BSA. The cell
number and concentration were confirmed using a TC20™
Automated Cell Counter.

Approximately 10,000 cells were immediately subjected to the
10xGenomics Chromium Controller machine for Gel Beads-in-
Emulsion (GEM) generation. mRNA was prepared using
10xGenomics Chromium Single Cell 3’ reagent kits (V3
chemistry). During this step, cells were partitioned into the GEMs
along with gel beads coated with oligos. These oligos provide poly-
dT sequences to capture mRNAs released after cell lysis inside the
droplets and cell-specific and transcript-specific barcodes (16 bp
10xbarcodes and 10 bp unique molecular identifiers
(UMlIs), respectively).

After RT-PCR, cDNA was recovered, purified, and amplified to
generate sufficient quantities for library preparation. Library quality
and concentration were assessed using an Agilent Bioanalyzer 2100.
Libraries were run on the Novaseq 6000 for Illumina
PE150 sequencing.

2.3 Single-cell RNA-sequence
data processing

The 10xGenomics Cell Ranger toolkit (v6.1.2) was used to
process 10xGenomics raw data for read alignment and UMI matrix
generation. Reads were aligned to the human reference genome
(GRCh38) downloaded from the 10xGenomics official website with
the STAR algorithm. The aligned reads were quantified as a gene
expression matrix based on the number of UMIs detected in
individual cells. Filtered gene-cell UMI matrices were generated
for further single-cell analysis.
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Low-quality cells that expressed fewer than 200 genes or more
than 4,000 genes and more than 10% mitochondrial gene
expression were eliminated. The R package DoubletFinder
(v2.0.3) was applied to filter doublets. After removing low-quality
cells and doublets, R package Seurat (v4.0.3) was used for
unsupervised clustering of individual cells. First, a global-scaling
normalization method, LogNormalize, that normalizes the gene
expression measurements for each cell by the total number of UMIs
in single cells and multiplied by a scaling factor of 10000 was used.
After log-transformation, the top 2,000 highly variable genes were
detected and principal component analysis (PCA) was performed
for downstream unsupervised clustering analysis. The Louvain
algorithm was adopted to cluster individual cells based on the top
30 PCs and the identified clusters were visualized with Uniform
Manifold Approximation and Projection (UMAP). The accuracy of
single-cell analysis can be aftected by batch effects, and the
canonical correlation analysis (CCA) method was applied based
on the top 30 PCs with the default parameters for batch correction.

2.4 Gene signature scores

To assist in the identification of subpopulations of CD4 and
CD8 T cells, we downloaded the sets of gene signatures associated
with CD4 and CD8 T cells from the literature (23) and calculated
functional signature scores for each cell with the AddModuleScore
function in the Seurat package to illustrate the functional properties
of each cell type.

To assign M1/M2 polarization estimates to the macrophage
cells, we applied the AddModuleScore function in the Seurat
package. The gene sets associated with M1 and M2 polarization
were obtained from Sun et al. (24).

2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) were identified using the
FindMarkers function, implemented in the Seurat package, with the
Wilcoxon rank sum test with the following criteria: log-scaled fold
change > 0.25 and P value < 0.05. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using the clusterProfiler (v4.11.0) package based on
the upregulated genes and downregulated genes. Pathways with
adjusted P < 0.05 were considered significant.

2.6 Cell-cell interactions analysis

To investigate the cell-cell interactions between different cell
types in the normal scar samples and keloid samples, cellular spatial
organization mapper (CSOmap) software (v1.0) was used to
identify ligand-receptor pairs. CSOmap was used to construct a
three-dimensional (3D) pseudo space and infer the cell-cell
interactions based on scRNA-seq data. CSOmap combined the
gene expression data of single cells with prior knowledge of
signaling and gene regulatory networks. FANTOMS5, a human

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1522076
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Deng et al.

ligand-receptor interaction database, was used to combine immune-
associated chemokines, cytokines, costimulators, coinhibitors, and
their receptors to estimate the cell-cell affinity matrix. The
contribution of each L-R pair to the cell-cell affinity can provide
clues to highlight important LR pairs underlying the
cellular interactions.

2.7 Immunofluorescence staining

Human skin biopsies (Supplementary Table S2) were
submerged in 4% paraformaldehyde for 24h at room temperature.
The samples were dehydrated in gradient alcohol and embedded in
paraffin according to standard protocols. Samples were sectioned at
4um thickness and then incubated at 75°C for 20min. The sections
were deparaffinized with environmental dewaxling dip wax
transparentize solution (Bioshap, China, 22181809) and
rehydrated in 95% alcohol. The sections were placed with high-
pH repair buffer (GeneTech, China; GT102410) in a 95°C water
bath for 20 min with a microwave. After overnight incubation at 4°C
with rabbit anti-IL-17A (Santa Cruz, sc-374218) and mouse anti-
CD4 (Abcam, ab183685), sections were washed thrice with PBS and
treated with 1:1000 diluted anti-rabbit Alexa Flour 488 (Abcam,
ab150113) and anti-mouse Alexa Flour555 (Abcam, ab150110), and
conjugated for 1 h at room temperature. After three washes with
PBS, counterstaining of cell nuclei was performed using DAPI
(Beyotime, China, P0131). Images were taken using a Nikon Al
confocal laser-scanning microscope.

2.8 Thl7 cells polarizing

Peripheral blood mononuclear cells (PBMCs) were isolated
from keloid patients’ whole blood by centrifugation in a density
gradient medium (Ficoll-PaqueTM Plus, Cytiva, 17144003). The
cells were resuspended at a concentration of 5x10” cells/mL in
buffer (PBS containing 2% fetal bovine serum and 1 mM EDTA).
Naive CD4" T cells (purity >99%) were isolated using an EasySepTM
Human Naive CD4" T Cell Isolation Kit II (Stemcell, 17555).
Purified naive T cells obtained as described above were cultured
in a Th17-polarizing medium for 7 days to induce Th17 cells. The
Th17-polarizing medium contained anti-CD3 Ab (2ug/mL, OKT-3;
BioLegend), anti-CD28 Ab (1ug/mL, OKT-3, BioLegend), IL2
(10ng/ml,PeproTech), IL6 (20ng/mL, R&D Systems), TGF-f1
(10ng/mL, R&D Systems), IL1B (10ng/mL, PeproTech), IL23
(10ng/mL, PeproTech), anti-IL4 Ab (10ug/mL, BioLegend), and
anti-IFN-y Ab (10pug/mL, BioLegend).

2.9 Real-time quantitative PCR

RNA extraction from cells was performed using TRIzol Reagent
(Invitrogen, Life Technologies, USA) according to the
manufacturer’s instructions. 1iug of RNA fraction was reverse
transcribed to ¢cDNA using PrimeScriptTM RT Master Mix
(Takara, Dalian, China). qRT-PCR was conducted using a BIO-
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RAD CFX Connect Real-time PCR Detection System and primers
and templates mixed with SYBR Premix Ex Taq II (Vazyme,
Nanjing, China). Threshold cycle (CT) values were used to
272CT method. The relative

mRNA expression was normalized to the GAPDH gene. Gene-

calculate the fold change using the

specific primer pairs were designed with Primer Premier 5.0
software (Supplementary Table S3).

2.10 Western blot

The cells were washed once with ice-cold PBS and lysed with
chilled RIPA buffer containing protease inhibitors. Cell lysates were
separated by 10% SDS-PAGE (Bio-Rad) and then transferred from
the gel to 0.45 um polyvinylidene difluoride membranes (Millipore,
Billerica, USA). Page Ruler Plus Prestained Protein Ladder
(Fermentas, Hanover, USA) was used to confirm protein
electrophoresis and transferring. After blocking in a solution of
5% non-fat dry milk diluted in tris-buffered saline/Tween (TBST),
the membranes were washed with TBST and then incubated with
primary antibodies overnight at 4°C. The following antibodies were
used for signaling pathway analysis: rabbit anti-Collagen I (Abcam,
ab270993), rabbit anti-Collagen III (Abcam, ab184993), rabbit anti-
alpha smooth muscle actin (Abcam, ab124964), and mouse anti-
GAPDH (Beijing Ray Antibody Biotech, RM2002). After washing,
the membranes were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies [Goat anti-Mouse IgG (Beijing
Ray Antibody Biotech, RM3001); Goat Anti-Rabbit IgG (Beijing
Ray Antibody Biotech, RM3002)] for 1 h at 37°C. Bound antibodies
were detected using the ECL Western blotting detection system.

2.11 Statistical analysis

All experiments were performed in triplicate and repeated at
least three times. Statistical analyses were performed using SPSS
software, version 19.0 (IBM, Armonk, NY, USA). Data represent
mean * standard deviation. A two-tailed, unpaired Student’s t-test
or the Mann-Whitney U test was employed to compare the values
between subgroups for quantitative data. P < 0.05 was considered to
be statistically significant.

3 Results

3.1 Single-cell RNA-seq reveals immune
cell heterogeneity of fibrotic skin diseases
and normal scar dermis tissues

To explore the immunological profile of fibrotic skin disease, we
used FACS to isolate CD45" cells from keloid, a paradigm of fibrotic
skin diseases, and normal scar dermis tissues for scRNA-seq
(Figure 1A). We chose CD45 to enrich immune cells because
CD45 has been suggested to express on almost all hematopoietic
cells except for mature erythrocytes (25-27). We only used the
dermis for scRNA-seq analysis because keloid is a skin dermis
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FIGURE 1

Single-cell transcriptome map of immune cells in fibrotic skin disease and normal scar dermis samples. (A) Workflow depicting the collection and
processing of keloid, a paradigm of fibrotic skin diseases, and normal scar CD45" cells for scRNA-seq. (B) Unsupervised clustering of the 41,084
single cells from three keloid samples and three normal scar samples, including 25 clusters and 16 major clusters. KC, keratinocyte; SMC, smooth
muscle cell; Fib, fibroblast; EC, endothelial cell; ILC, innate lymphoid cell; NK, natural killer; DC, dendritic cell; Mono, monocyte; Macro,
macrophage. (C) Dot plot of the expression of key cell type marker genes in each cell cluster. Bubble size is proportional to the percentage of cells
expressing a gene in a cluster and color intensity is related to the average scaled gene expression. (D) Feature plots of expression distribution for cell
type-specific markers. (E) The proportion of each cell type in three keloid samples and three normal scar samples. K, keloid; N, normal scar. (F) The
percentage of cells for each immune cell type in keloids and normal scars. Ns, not significant; *, P<0.05; K, keloid; N, normal scar.
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fibrotic disease. After stringent quality control (Supplementary
Figures S1A, B), we obtained the transcriptomes of 41,084 cells.
Unsupervised UMAP clustering revealed 25 cell clusters (Figure 1B;
Supplementary Figure S1C). Based on established lineage-specific
marker genes (Figures 1C, D; Supplementary Figure S1D), we
assigned these clusters to multiple cell lineages. The immune cell
lineage was identified by PTPRC (Figure 1D). T cells, macrophages,
dendritic cells (DCs), and mast cells accounted for the majority of
the sequenced cells. Some cells expressed non-immune cell markers,
such as fibroblast or endothelial cell markers, which may have
resulted from the incomplete removal of these cells by FACS.

We next analyzed the proportions of immune cell lineages in
keloids and normal scars. The immune cell lineages in the dermis of
keloids and normal scars showed distinct relative cell number ratios
(Figures 1E, F). The proportion of CD4" T cells increased
significantly in keloids compared to normal scars, suggesting that
CD4" T cells may play an important role in keloid development
(Figure 1F). The proportions of natural killer (NK) cells, NK T cells,
B cells, and macrophages were decreased in keloid tissues compared
to normal scar tissues, although the difference is not significant.
Some other T cells, such as CD8 T cells and y0 T cells, showed
similar proportions in keloids and normal scars (Figure 1F).

3.2 T cell subclustering into distinct cell
populations and Thl7 cells are increased in
fibrotic skin disease

Because CD4" T cells undergo significant changes in keloids
compared to normal scars (Figure 1F), and T cells are important for
keloid pathogenesis, we next performed unsupervised clustering of
all keloid and normal scar T cells (Figure 2A; Supplementary Figure
S2A). Based on DEGs, canonical immune markers, and curated
gene signatures (Figures 2B-Dj; Supplementary Figure S2B), we
defined 13 transcriptional states: naive T (C9 and C10), CD8 Teft
(C2,C7,and C12), Th17(C3), CD4 Trm (C4), CD4 Tmet (C5), CD4
Treg (C6), CD4 Tcm (C8), MAIT (Cl11), and Cycling T (C13)
(Figures 2A-D). Figures 2E, F show the cell proportions of the T cell
subclusters in keloids and normal scars. From the results, we can see
that the proportion of Thl7 cells and CD4 Tcm cells was
consistently increased in the keloid samples compared to the
normal scar samples (Figures 2E, F).

Because Th17 cells play an important role in the pathogenesis of
a diverse group of inflammation-mediated skin diseases, and
inflammation is important for keloid pathogenesis, we next
focused on Thl17 cells. We compared differences between keloid
Th17 cells and normal scar Th17 cells. We identified genes
associated with the IL-17 and TNF signaling pathways, such as
IL-17A, TNFAIP3, and CCL20, which were significantly increased
in keloid Th17 cells (Figure 2G). KEGG pathway analysis also
suggested that the IL-17 signaling pathway, TNF signaling pathway,
and Th17 cell differentiation-associated pathway were enriched in
the keloid Th17 cells (Figure 2H; Supplementary Figure S2C). These
results suggest that not only was the proportion of Th17 cells
increased but also the identities of Th17 cells changed in keloids
compared to normal scars.
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We next integrated the scRNA-seq data from CD45" cells in
healthy skin tissues (26) into our study. We integrated and analyzed
73,597 single cells from three keloid, three normal scar, and seven
healthy control skin samples (Supplementary Figures S3A, B). The
results also showed that the proportion of CD4" T cells increased
significantly in keloids compared to normal scars and healthy skin
(Supplementary Figure S3C). We next performed unsupervised
clustering of all T cells in the keloid, normal scar, and healthy
skin samples. Based on canonical immune markers and curated
gene signatures, we defined 15 subclusters (Supplementary Figures
S3D-F). The proportion of Th1l7 cells was increased in keloids
compared to healthy skin (Supplementary Figure S3G), which is
consistent with the finding in normal scars. We also found that the
proportion of CD8 Teff (IFNG+) was consistently increased in
keloids and normal scars compared to healthy skin (Supplementary
Figure S3G), suggesting that the cells may play a role in scar
formation. We next compared differences in the keloid Th17 cells,
normal scar Th17 cells, and healthy skin Th17 cells. IL-17A,
TNFAIP3, and CCL20 were found to be significantly increased in
the keloid Th17 cells compared to the healthy skin Th17 cells
(Supplementary Figure S3H). We also found that the Th17-type
immune response and IL17-mediated signaling pathway were
enriched in the keloid Th17 cells compared to the healthy skin
Th17 cells (Supplementary Figure S3I).

We also analyzed Tregs, another important cell in immune
regulation. We performed unsupervised clustering on all Tregs in
keloids and normal scars. We observed further heterogeneity with
two subclusters, KLF2" Tregs and LAIR2" Tregs (Supplementary
Figure S4A). Pathway analysis suggested that the upregulated genes
in the LAIR2" Tregs were associated with a response to the
interleukin-2 and interleukin-15-mediated signaling pathway and
the upregulated genes in the KLF2" Tregs were associated with the
regulation of protein stability and fibrillar center (Supplementary
Figure S4B). Both Treg subclusters showed similar proportions in
the keloid and normal scar samples (Supplementary Figure S4C).
We next compared the differences between the keloid Tregs and
normal scar Tregs. GO analysis showed that the upregulated genes
in the keloid KLF2" Tregs were associated with the platelet-derived
growth factor receptor signaling pathway and the regulation of B
cell activation, and the upregulated genes in the keloid LAIR2"
Tregs were associated with the toll-like receptor 2 signaling pathway
(Supplementary Figure $4D).

3.3 Transcriptional landscapes reveal the
heterogeneity of mono-macrophages and
increased macrophage activity in fibrotic
skin disease

Because mono-macrophages are reported to play an important
role in fibrotic skin disease pathogenesis (9, 11), we next performed
unsupervised clustering of all mono-macrophages. Based on DEGs
and canonical mono-macrophage markers, we observed further
heterogeneity with five subclusters, C1 through C5 (Figures 3A-C).
C1, C2, and C3 were macrophages, and C4 and C5 were monocytes.
All the mono-macrophage subclusters expressed canonical CD14,
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CD68, and CD163 except the C4 subcluster, which highly expressed Macrophages can be divided into M1 macrophages and M2
C5AR1 and CSF3R. Figure 3D shows the cell proportions of the =~ macrophages (28). By calculating M1 and M2 polarization scores
mono-macrophage subclusters in keloids and normal scars. From  using related gene sets, we found that the C1 macrophages were more
the results, we can see that all five subclusters showed similar  like M1 macrophages, and the C2 macrophages were more like M2

proportions in the keloid samples and normal scar samples. macrophages. The C3 macrophages were like the intermediate state
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FIGURE 2

Transcriptional diversity of CD4* and CD8™ T cells. (A) Uniform Manifold Approximation and Projection (UMAP) of 13 subclusters identified in CD4*
and CD8" T cells. (B) Dot plots showing distinct expressions of the selected marker genes in each subcluster. (C) Heatmap illustrating the scaled
score calculated based on the expression of curated gene signatures across CD4* T cell subclusters (left) and CD8" T cell subclusters (right).

(D) Heatmap of the top 10 differentially expressed genes (ranked by log-transformed fold change in descending order) in the CD4" and CD8" T cell
subclusters. (E) Box plots showing the percentage of cells for each T cell subcluster in the keloid and normal scar samples. The p-value indicated in
the plot was calculated by unpaired two-tailed t-tests. (F) The proportion of each T cell subcluster in three keloid samples and three normal scar
samples. K, keloid; N, normal scar. (G) Violin plots showing differentially expressed genes in the Th17 cells in keloids and normal scars. K, keloid;

N, normal scar. (H) Functional KEGG pathway enrichment of the upregulated genes (keloid vs. normal scar, avg_logFC > 0.25, and p value < 0.05) in
Th17 cells. The p-value was calculated using the hypergeometric distribution and corrected using the Benjamini and Hochberg method. Pathways
with an adjusted p-value of <0.05 are considered significant.
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FIGURE 3

Fibrotic skin disease and normal scar mono-macrophages subclustered into distinct cell populations. (A) Uniform Manifold Approximation and

Projection (UMAP) plots of the mono-macrophage subpopulations. (B) Violin plot showing key marker gene expression between the mono-
macrophage subpopulations. (C) Heatmap showing the expression of the top 5 differentially expressed genes in the mono-macrophage

subpopulations. (D) Bar plots showing the percentage of each mono-macrophage subpopulation in the keloid and normal scar samples. (E) UMAP
plots showing the M1 and M2 scores for each cell in the macrophages. (F) Box plots showing the M1 and M2 scores for each subpopulation of

macrophages. Significance was determined by the unpaired two-tailed t test. (G) GO terms enrichment of the upregu

lated genes (keloid vs. normal

scar, avg_logFC > 0.25, and p-value < 0.05) in macrophages. GO terms with an adjusted p-value of <0.05 are considered significant.
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between M1 and M2 macrophages (Figures 3E, F). We next
compared differences between keloid mono-macrophages and
normal scar mono-macrophages (Figure 3G; Supplementary
Figures S5A-C). GO analysis showed that the upregulated genes in
the keloid C1, C2, and C3 macrophages compared to the normal scar
macrophages were all associated with MHC class II protein complex
assembly and antigen processing and presentation (Figure 3G),
suggesting the consistent active state of macrophages in keloids.

3.4 Transcriptional landscapes reveal
heterogeneity of dendritic cells and
increased cDC2 and migDC cell activity in
fibrotic skin disease

DCs are important antigen-presenting cells (APCs) in the skin.
We next performed unsupervised clustering of all DCs in keloids
and normal scars. Consistent with previous reports, DCs in the skin
were clustered into ¢DC1, ¢cDC2, pDC, migDC, and Langerhans
cells (LCs) (Figures 4A-C). Most of the DCs in keloids and normal
scars were cDC2 (Figures 4A-C). There were several LCs in the
results, which may have resulted from the incomplete removal of
the epidermis. Cell proportion analysis suggested that the five
subclusters showed similar proportions in the keloid and normal
scar samples (Figures 4D, E).

We next compared differentially expressed genes in the keloid
DCs and normal scar DCs (Figure 4F; Supplementary Figures S6A-
D). GO analysis showed that the upregulated genes in keloid cDC2
and migDC were associated with MHC class II protein complex
assembly and peptide antigen assembly (Figure 4F; Supplementary
Figure S6B), suggesting the active state of cDC2 and migDC in keloids.

3.5 Transcriptional landscapes reveal
heterogeneity of mast cells in keloids and
increased IL-17 signaling in mast cells in
fibrotic skin disease

Mast cells are reported to play an important role in fibrotic skin
disease pathogenesis (7, 9, 11). We next performed unsupervised
clustering of all mast cells in keloids and normal scars (Figure 5A).
Based on differentially expressed genes (Figures 5B-D), we observed
further heterogeneity with four subclusters, C1 through C4
(Figures 5A-D). The C1 subcluster constitutes the majority of the
mast cells and highly expressed GLUL, RRAD, DUSP14, and so on.
Figures 5E and F show the cell proportions of the mast cell
subclusters in keloids and normal scars. From the results, we can
see that all four subclusters showed similar proportions in the keloid
and normal scar samples.

We next compared differentially expressed genes in the keloid
mast cells and normal scar mast cells (Figure 5G; Supplementary
Figures S7A-D). KEGG analysis showed that the upregulated genes
in the keloid CI and C2 mast cell subclusters were associated with
the IL-17 signaling pathway (Figure 5G; Supplementary Figure
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S7A), suggesting that activating IL-17 signaling in the keloid
microenvironment may act on mast cells.

3.6 Transcriptional landscapes reveal
heterogeneity of B cells and increased
plasma cell activity in fibrotic skin disease

Like T cells, B cells are important lymphocytes in the immune
system. We next performed unsupervised clustering of all B cells in
keloids and normal scars (Supplementary Figure S8A). Consistent
with previous reports, B cells in the skin can be clustered into naive B
cells, activated B cells, and plasma cells (Supplementary Figure S8A).
A dot plot shows the expression of specific markers in the B cell
subpopulations (Supplementary Figure S8B). Cell proportion analysis
suggested that the three subclusters showed similar proportions in the
keloid and normal scar samples (Supplementary Figure S8C).

We next compared differentially expressed genes in keloid B
cells and normal scar B cells (Supplementary Figure S8D). GO
analysis showed that the upregulated genes in the keloid plasma
cells were associated with antigen binding, the immunoglobulin
complex, and the MHC protein complex (Supplementary Figure
S8D), suggesting the active state of plasma cells in keloids.

3.7 Potential ligand—receptor interactions
in fibrotic skin disease and normal scars

The single-cell dataset provided us with a unique chance to
analyze cell-cell communication mediated by ligand-receptor
interactions. To define the cell-cell communication landscape in
keloids and normal scar immune cells, we used CSOmap, a
bioinformatics tool to infer the spatial organization of tissues and
molecular determinants of cellular interaction (29). We observed a
significant increase in cell-cell communications in keloids
compared to normal scars (Supplementary Figure S9A).
Interestingly, the cell-cell communications between Th17 cells
and other cells increased significantly in keloids compared to
normal scars (Figure 6A), suggesting the active cell
communication of Th17 cells and its important role in keloids.
The main ligand-receptor pairs contributing to the cell-cell
communications between Th17 cells and other cells were IL-17A,
IL-17F, TNFa, and their receptors (Figure 6B).

3.8 Thl7 cells promote proliferation,
collagen expression, and migration of
fibrotic skin disease fibroblasts by secreting
IL-17A

Based on the scRNA-seq analysis, the percentage of Th17 cells
was significantly increased in keloids compared to normal scars. To
validate this finding, we performed immunofluorescence (IF)
staining on skin tissues derived from normal controls and keloids.
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Projection (UMAP) plot showing the annotation and color codes for subclusters of DCs. (B) Dot plot of representative genes of cell types in DCs.
(C) Heatmap showing the expression of the top 10 differentially expressed genes in each subcluster of DCs. (D) Percentage distribution of each
subcluster in the keloid and normal scar samples. (E) Box plots showing the percentage of DC subclusters in keloids and normal scars. (F) GO terms
enrichment of differentially expressed genes in cDC2 cells. GO terms with an adjusted p-value of <0.05 are considered significant.

Th17 cells were identified based on CD4 and IL-17A expression
(Figure 7A). The IF staining results showed that the proportion of
IL-17AY/CD4"
controls (Figures 7A, B). This result is consistent with the

cells was higher in keloids than in the normal

scRNA-seq transcriptomics analysis. To explore the function of
Th17 cells in keloids, we induced Th17 cells from keloid patients in

Frontiers in Immunology

135

vitro (Supplementary Figure S10A) and subsequently co-cultured
them with primary keloid fibroblasts (KF) isolated from keloid
patients. After co-culturing with Th17 cells, the KFs exhibited a
significant increase in collagen I/III and o-SMA expression and in
their proliferative and migratory capabilities, compared to the
control groups (Figures 7C-F; Supplementary Figures S10B, C).
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FIGURE 5

Fibrotic skin disease and normal scar mast cells subcluster into distinct cell populations. (A) Uniform Manifold Approximation and Projections
(UMAPs) of subclustered mast cells, labeled in different colors. Cell type annotations are provided in the figure. (B) Dot plot indicating the expression
of selected gene sets in mast subclusters. (C) Scaled expression of differentially expressed genes in mast subclusters. (D) Enrichment of differentially
expressed genes in one mast subcluster compared to other mast subclusters. Results with adjusted P-value of <0.05 are considered significant. (E)
Bar plot showing the fraction of mast subcluster in keloid and normal scar samples. (F) Boxplot showing the fraction of mast subclusters in keloid
and normal scar. (G) KEGG pathway enrichment of differentially expressed genes in C1 subcluster. GO terms with adjusted P-value of <0.05 are

considered significant.
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Cellular interactions between Th17 cells and other cell types. (A) CSOmap analysis showing the interaction between Thl7 cells and other cell subsets
in normal scars (left) and keloids (right). Line thickness represents the significance of the cell-cell interaction. (B) Putative ligand and receptor pairs
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thicker the line, the greater the contribution of the ligand-receptor pairs. **, p<0.01, ***, p<0.001, **** p<0.0001.

IL-17A has been reported to be the key molecule for Th17 cells’
functions in fibrotic diseases. To ascertain whether the increased
collagen I/III expression and proliferative and migratory capabilities
of KFs had resulted from IL-17A secreted by Th17 cells, we next
introduced a neutralizing antibody against IL-17A into the co-
culture system of Th17 cells and KFs. The IL-17A neutralizing
antibody inhibited the increased expression of collagen I and IIT and
the proliferative and migratory capabilities of the KFs co-cultured
with Th17 (Figures 7G-J; Supplementary Figures S10D, E),
suggesting that Thl7 cells promote proliferation, collagen
expression, and migration of keloid fibroblasts through IL-17A.

Frontiers in Immunology

3.9 Thl7 cells are increased in hypertrophic
scars and scleroderma

To examine the consistency of our findings in other fibrotic skin
diseases, we performed immunofluorescence staining in hypertrophic
scar and scleroderma tissues. The immunofluorescence staining
results showed that the proportion of IL-17A7/CD4" cells was
higher in hypertrophic scar and scleroderma tissues than in normal
control tissues (Figures 8A-D). Taken together, these results
indicated that increasing Th17 cells may be a universal mechanism
in fibrotic skin diseases.
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FIGURE 7

Th17 cell promotes the proliferation and collagen expression of keloid fibroblasts by secreting IL-17A. (A) Immunofluorescence staining of IL-17A and
CD4 in keloid and normal scar tissues. The right panels are the insets of the left panels. Scale bar = 100 um (left panel) and 50 um (right panel).

(B) Percentage of IL-17A"/CD4" cells in normal and keloid tissues. Error bars represent SD (n=6). ***, p<0.001. (C, D) Ki67 staining analysis of
fibroblasts co-cultured with ThO or Th17 cells. Scale bar = 100 um. Error bars represent SD (n=3). *, P<0.05. (E, F) gRT-PCR and Western blot
analysis of collagen |, collagen Ill, and a.-SMA expression in fibroblast co-cultured with ThO or Th17 cells. Error bars represent SD (n=3). *, p<0.05;

** P<0.01. (G, H) Ki67 staining analysis of fibroblasts co-cultured with ThO or Th17 cells in the presence or absence of anti-IL-17A antibody. Error
bars represent SD (n=3). *, p<0.05; **, p<0.01. (I, J) gRT-PCR and Western blot analysis of collagen I, collagen I, and o.-SMA expression in
fibroblasts co-cultured with ThO or Th17 cells in the presence or absence of anti-IL-17A antibody. Error bars represent SD (n=3). *p<0.05; **, p<0.01

4 DiSCUS Sion of immune cells in fibrotic skin diseases, these studies detected the
gene expression of all cells in fibrotic skin disease tissues and did not

Immune cells and inflammation have been reported to be  enrich immune cells (13-15). In this study, we built a single-cell
important for the pathogenesis of fibrotic skin diseases (7, 9, 11).  atlas of fibrotic skin disease and normal scar immune cells using
Although there have been some studies exploring the composition ~ FACS-enriched CD45" cells and explored the function of the Th17
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cell-fibroblast interaction in the pathogenesis of fibrotic skin
disease. These findings will help us understand fibrotic skin
disease pathogenesis in depth, and provide potential targets for
clinical therapies for fibrotic skin diseases.

Mast cells, Treg cells, and M2 macrophages have been reported
to play important roles in the pathogenesis of fibrotic skin disease
(6, 7, 11, 12). These cells have been suggested to be increased and
promote extracellular matrix deposition in keloid tissues. However,
in our single-cell atlas of keloid and normal scar immune cell
research, we found that there were no differences in the proportions
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of these cells in keloids and normal scars. The gene expression of
these cells had significant differences in keloids and normal scars.
The upregulated genes in the keloid C1 mast cell subcluster, the
major subcluster of mast cells, were associated with lipids and
atherosclerosis, the TNF signaling pathway, and the IL-17 signaling
pathway (Figure 5G). The upregulated genes in the keloid Treg cells,
compared to normal scar Treg cells, were associated with the TNF
signaling pathway, IL-17 signaling pathway, and apoptosis
(Supplementary Figure S2C). The upregulated genes in the keloid
M2 macrophages, compared to normal scar M2 macrophages, were
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Th17 cells are increased in hypertrophic scars and scleroderma. (A) Immunofluorescence staining of IL-17A and CD4 in hypertrophic scar and normal
scar tissues. The right panels are the insets of the left panels. Scale bar = 100 um (left panel) and 50 um (right panel). (B) Percentage of IL-17A"/
CD4" cells in hypertrophic scar and normal scar tissues. Error bars represent SD (n=6). **, p<0.01. (C) Immunofluorescence staining of IL-17A and
CD4 in scleroderma and normal skin tissues. The right panels are the insets of the left panels. Scale bar = 100 um (left panel) and 50 um (right
panel). (D) Percentage of IL-17A"/CD4" cells in scleroderma and normal skin tissues. Error bars represent SD (n=6). ***, p<0.001.
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associated with MHC class II protein complex assembly and antigen
processing and presentation (Figure 3G). These findings suggested
that not the change in cell proportions but the change in gene
expression of mast cells, Treg cells, and M2 macrophages may
contribute to fibrotic skin disease development.

Th17 cells are key cells for host protection against mucosal
infections and are major pathogenic cells in multiple autoimmune
and inflammatory diseases, including psoriasis and systemic lupus
erythematosus (16, 30, 31). IL-17 has been reported to be the major
effector molecule of Th17 in the aforementioned functions (32, 33).
In recent years, the roles of Th17 cells in fibrotic diseases have been
paid increasing attention. Th17 cells have been reported to play
important roles in intestinal fibrosis, lung fibrosis, and myocardial
fibrosis (18, 34, 35). However, the functions of Th17 cells in keloids
are still unknown. In this study, we found that the percentage of
Th17 cells was significantly increased in keloids compared to
normal scars and Thl7 cells promoted the collagen expression,
proliferation, and migration of keloid fibroblast (Figures 2E, 7,
Supplementary Figure S10). Mechanism studies showed that the
Th17 cells performed the above functions by secreting IL-17A
(Figure 7, Supplementary Figure S10), which is consistent with
previous findings (36, 37). Importantly, we also found an increased
number of Thl7 cells in hypertrophic scars and scleroderma
compared to normal controls (Figure 8). These results suggested
that Th17 cells may have an important role in multiple skin fibrosis
diseases, and may serve as target cells for fibrosis treatment.

The mechanism that IL-17A promotes fibrotic diseases is
complex, organ-specific, and disease-specific. IL-17A has been
reported to promote the fibrosis of systemic sclerosis by
increasing inflammation and the proliferation and collagen
deposition of fibroblasts (38, 39). The increased level of IL-17A in
liver fibrosis facilitates the influx of inflammatory cells, drives the
expression of profibrogenic growth factors, and activates hepatic
stellate cells in the liver (40-42). The liver-infiltrating inflammatory
cells in turn induce the production of profibrotic cytokines such as
TNF-q, IL-6, IL-1, and TGF-B1 to accelerate fibrosis (40). Several
studies have suggested that IL-17 directly interacts with colonic IL-
17R, expressing myofibroblasts and contributing significantly to
stricture development in Crohn’s disease (43-45). IL-6, IL-8, and
MCP-1 secretions were rapidly induced by IL-17 in colonic
subepithelial myofibroblasts (43). In vitro stimulation of IL-17
induced HSP47 and type I collagen in human intestinal
myofibroblasts (45). The mechanism by which IL-17A facilitates
fibrosis in keloids is still unclear. We will explore the mechanism
using high-throughput sequencing methods and molecular biology
experiments. Illustrating the downstream signaling pathways
activated by IL-17A in fibroblasts of keloids can supply new
targets for keloid therapy.

Both macrophages and DCs are important antigen-presenting
cells in the skin. Many studies suggest that M2 macrophages are
increased and play an important role in keloid development (12,
46), but the roles of DCs are still unclear in keloids. In our findings,
all the subclusters of macrophages and DCs showed similar
proportions between the keloid and normal scar samples
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(Figures 3, 4). However, the upregulated genes in the keloid M1
macrophages, M2 macrophages, and cDC2 were all associated with
MHC class II protein complex assembly and antigen assembly
(Figures 3G, 4F). These results indicate that macrophages and
cDC2 are active in fibrotic skin diseases and may serve as target
cells for fibrotic skin disease therapy.

In conclusion, we provided a systematic analysis of immune cell
heterogeneity in fibrotic skin disease at single-cell resolution in this
study. In addition, we identified that increased Th17 cells in fibrotic
skin disease are involved in the proliferation, collagen expression,
and migration of fibrotic skin disease fibroblasts. These findings will
help us to understand fibrotic skin disease pathogenesis in depth
and identify potential targets for fibrotic skin disease treatment.
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Kim’s Clinic for Arthritis Rheumatism, Seoul, Republic of Korea

Introduction: Our aim was to investigate the insufficiently understood
differences in the immune system between anti-citrullinated peptide antibody
(ACPA)-positive (ACPA™) and ACPA-negative (ACPA") early rheumatoid arthritis
(eRA) patients.

Methods: We performed multiple cytokine assays using sera from drug-naive
ACPA* and ACPA™ eRA patients. Additionally, we conducted single-cell RNA
sequencing of CD45"* cells from peripheral blood samples to analyze and
compare the distribution and functional characteristics of the cell subsets
based on the ACPA status.

Results: Serum concentrations of interferon-y (IFN-y) and interleukin (IL)-12 were
higher in ACPA™ eRA than in ACPA™ eRA. Single-cell transcriptome analysis of
37,318 cells identified 17 distinct cell types and revealed the expansion of IL1B*
proinflammatory monocytes, IL7R* T cells, and CD8" CCL4" T cells in ACPA™
eRA. Furthermore, we observed an enrichment of IFN-yresponse genes in nearly
all monocytes and T cells of ACPA™ eRA subsets. Heightened interactions
between IFN-y and IFN-y receptors were observed in ACPA* eRA, particularly
between monocytes and T cells. We examined IFITM2 and IFITM3 as potential
key markers in ACPA* eRA given their pronounced upregulation and association
with the IFN response. Specifically, the expression of these genes was elevated in
IL1B* proinflammatory monocytes (likely M1 monocytes), correlating with serum
IFN-v levels.

143 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1439082/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1439082&domain=pdf&date_stamp=2025-01-14
mailto:ho0919@gmail.com
mailto:wan725@catholic.ac.kr
https://doi.org/10.3389/fimmu.2024.1439082
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1439082
https://www.frontiersin.org/journals/immunology

Hong et al.

10.3389/fimmu.2024.1439082

Discussion: Compared to ACPA™ eRA, ACPA™ eRA showed higher serum IFN-y
and IL-12 levels, upregulated IFN-y response genes, and enhanced IFN-y-driven
monocyte-T cell interactions. These distinct immune features of the peripheral
circulation in ACPA™ eRA suggest a role for type 1 helper T cell-related immunity

in its pathogenesis.

single-cell transcriptomics, peripheral blood mononuclear cells, anti-citrullinated
peptide antibody, rheumatoid arthritis, rheumatoid arthritis pathogenesis, Thl
immunity, interferon signature, IFITM2/3

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by inflammation of the joint synovium (1). It results
from complex interplays of synovial T cells, B cells, macrophages,
dendritic cells (DCs), and fibroblast-like synoviocytes (FLSs)
leading to joint destruction via autoreactive antibodies,
chemokines, and pathogenic cytokines (2). Over recent decades,
targeted biologics against lymphocytes and key pathogenic
cytokines have achieved great success in managing RA (1).
Nevertheless, 6% of patients with RA in Japan and 10% in the
United Kingdom are refractory to these therapies, highlighting the
limitations of the current treatment strategies (3, 4).

RA is a heterogeneous disease with various endo-phenotypes,
for which personalized medicine is desirable (5, 6). Although a
personalized approach has not been established in RA, there have
been efforts to guide therapy using the anti-citrullinated peptide
antibody (ACPA), the most commonly used diagnostic and
prognostic biomarker (7). Clinical studies have suggested a better
response to Abatacept than a tumor necrosis factor inhibitor in
ACPA™ RA (8). Moreover, longer drug retention of a Janus kinase
inhibitor (JAK) was observed in ACPA* RA than in ACPA™ RA (9).
Together, these earlier reports indicate that the presence or absence
of ACPA could significantly shape the most effective treatment
strategy for RA, underscoring the importance of a patient-centric
approach to RA treatment by considering each patient’s
ACPA status.

To utilize ACPA as a biomarker in guiding treatment, it is
crucial to comprehend the immunologic difference according to the
presence of ACPA. Previously known, immune complexes of
ACPAs and citrullinated peptides can promote pro-inflammatory
reactions of macrophages through binding to Fc receptors (10).
Antibodies against mutated citrullinated vimentin, a highly specific
ACPA for RA, can activate osteoclastogenesis and bone resorption
(11). Transcriptome analysis has revealed that chemokine profiles
of myeloid cells are altered and cytotoxic properties of T cells are
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differentially upregulated in ACPA™ RA (12). Despite previous
investigations, we have insufficient understanding of the
differentiating immunologic characteristics between endotypes of
ACPA™" and ACPA™ RA.

Interferon-gamma (IFN-v) holds significant interest in the field
of autoimmunity research due to its influential role in promoting
and regulating inflammation (13). This aspect is particularly critical
in the context of RA, where the dominant pathogenic cells are type 1
helper T (Thl) cells, known for their primary production of IFN-y
(2, 13, 14). A number of studies have documented elevated levels of
IFN-y in patients with RA, as well as in mouse models of
autoimmune arthritis (15-17). JAK inhibitor targeting the IFN
pathway, as well as other pathogenic cytokines, have shown
excellent efficacy in the treatment of RA (18). Considering the
highly heterogeneous nature of RA, an in-depth understanding of
the level of IFN-y expression in individual RA patients is needed.

Here, to gain insight into the immunological background for
tailored medicine, we aimed to comparatively study immunologic
characteristics according to ACPA status. To this end, we
performed multiplex cytokine assay (MCA) demonstrating
increased serum levels of Thl cell-related cytokines, specifically
IL-12 and IFN-y, in ACPA™ early RA (eRA). Subsequently, we
performed single-cell RNA sequencing (scRNA-seq) analysis of
peripheral blood mononuclear cells (PBMCs) from eRA patients
and then compared gene expression and cell-cell interaction
patterns between ACPA™ and ACPA™ eRA. It revealed that
interferon response genes (IRGs), particularly IFITM2 and
IFITM3, were distinctly upregulated in monocytes and T cells of
ACPA" eRA compared to those of ACPA™ eRA. Such upregulation
in ACPA" eRA might have resulted from Thl-skewed antigen-
specific T-cell immunity and its related activation of monocytes
involved in RA. Furthermore, we found a positive correlation
between expression levels of the major IRGs in monocytes and T
cells and levels of serum IL-6 and IFN-y. Collectively, these findings
provide novel insights into the immuno-pathogenic mechanisms
underlying RA, potentially contributing to the development of more
effective, personalized treatments for this complex disease.
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Materials and methods
Patient recruitment and sample processing

Untreated (no current or prior use of glucocorticoids or disease-
modifying anti-rheumatic drugs) patients with early and active RA
who met the 2010 ACR/EULAR RA classification criteria (19) were
recruited from Seoul St. Mary’s Hospital in Korea. Unclassified
arthritis patients were recruited based on the following inclusion
criteria: (1) at least one swollen joint in the wrists or hands; (2)
negative result for ACPA; (3) symptom duration of less than 12
months. The exclusion criteria for unclassified arthritis were: (1)
meeting the 2010 ACR/EULAR RA classification criteria (19); (2)
presence of other connective tissue diseases; (3) acute trauma; and (4)
current or previous use of glucocorticoids or disease-modifying anti-
rheumatic drugs (20, 21). Healthy volunteers were also recruited as
controls. Peripheral blood samples were obtained from the
participants for scRNA-seq and cytokine assay at the time of
recruitment. Patient information, including demographic profile,
laboratory markers, and disease activity scores, was collected at the
time of blood sampling (Supplementary Table S1). Peripheral blood
mononuclear cells were isolated using Ficoll-Paque gradient
centrifugation. Cell quantity and viability were then determined by
Trypan Blue staining. This study was approved by the Institutional
Review Board of Seoul St Mary’s Hospital (approval number:
KC14TIMI0697). All participants provided written informed consent.

Multiplex cytokine assay

Concentrations of IFN-y, IL-12 and IL-6, in serum samples of eRA
patients were measured from using Millipore’s MILLIPLEX MAP High
Sensitivity Human Cytokine multiplex kit (cat. no. HSTCMAG-28SK;
Merck, Billerica, MA, USA) according to the manufacturer’s instructions.
The minimum detection limits for the MCA were established at 0.61 pg/
mL for IFN-y, 0.49 pg/mL for IL-12, and 0.18 pg/mL for IL-6.

Single cell preparation and multiplexing
individual samples for scRNA-seq

Cell stocks were thawed in 37°C 10% FBS/DMEM. The samples
were washed twice with cold, Ca**- and Mg**-free 0.04% BSA/PBS at
300 x g for 5 min at 4°C. They were then gently resuspended in cold
staining buffer (BD Biosciences, catalog no. 554656) and counted
using a LUNA-FX7 Automated Fluorescence Cell Counter (Logos
Biosystems) with AO/PI staining. To multiplex the samples, each
sample was tagged with an antibody-polyadenylated DNA barcode
specific for human cells (BD Biosciences, catalog no. 633781). Briefly,
the cells were stained with the multiplexing antibody for 20 min at
room temperature, followed by three washes with staining bufter (BD
Biosciences, catalog no. 554656). After the final wash, the samples
were gently resuspended in cold Sample Buffer (BD Biosciences,
catalog no. 664887), counted using a LUNA-FX7 Automated
Fluorescence Cell Counter (Logos Biosystems), and pooled.
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Single cell capture and cDNA synthesis

Single-cell capture was performed using a BD Rhapsody
Express instrument according to the manufacturer’s instructions
(BD Biosciences). Briefly, pooled cells from each sample were
suspended in cold sample buffer and loaded into a BD Rhapsody
cartridge (BD Biosciences, catalog no. 633731). After cell
separation, cell-barcode magnetic beads were added to the
cartridge. The cells were then lysed and the mRNA capture beads
were retrieved. cDNA synthesis and Exonuclease I treatment were
performed on the mRNA capture beads using a BD Rhapsody
cDNA Kit (BD Biosciences, catalog no. 633773).

Library preparation and scRNA-seq

According to the ‘mRNA Whole Transcriptome Analysis
(WTA) and Sample Tag Library Preparation’ protocol, scRNA-
seq libraries were constructed using the BD Rhapsody WTA
amplification kit (BD Biosciences, catalog no. 633801). For the
WTA library, cDNA was sequentially subjected to random priming
and extension (RPE), RPE amplification, and index PCR. For the
sample tag library, cDNA was sequentially subjected to nested PCR
(PCR 1 and PCR 2) and index PCR. The purified WTA and sample
tag libraries were quantified using qPCR according to the qPCR
Quantification Protocol Guide (KAPA) and assessed using the 4200
TapeStation System (Agilent Technologies, catalog no. 5067-4626).
The libraries were sequenced using the HiSeq platform (Illumina).

Preprocessing of sequencing data

The raw sequencing data were processed using the BD
Rhapsody WTA Analysis Pipeline v1.8 (BD Biosciences) and
aligned against the human reference genome (GRCh38) obtained
from the Ensembl database. The resulting gene expression matrices
were converted to individual Seurat objects using the Seurat
package in R (v3.8.0) (22). For each object, we filtered data based
on the number of unique molecular identifiers (UMIs) and the
number of genes detected. The genes that were expressed in at least
five cells, and cells with gene detection between 500 to 2000 were
retained. The filtered objects were normalized and their variance
stabilized using the SCTransform function of Seurat. We reduced
batch effects and performed combined analysis by integrating
individual Seurat objects from various batches using the
FindIntegrationAnchors and IntegrateData functions in Seurat.
We addressed batch effects through a confirmation process as
shown in Supplementary Figure SI.

Dimension reduction and major cell
type annotation

The number of UMIs, percentage of mitochondrial genes, and
cell cycle genes were regressed out, and genes were scaled to unit
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variance. Principle component analysis (PCA) was performed.
Clusters were then identified using UMAP. Cell identity was
assigned using known cell markers shown in Supplementary
Figure S2. We compared gene expression levels between cells in
the cluster and those in all the other clusters to determine cluster
marker genes. Clusters were manually annotated based on known
marker genes. Thereafter, we validated annotations by referring to
results from “seurat_annotation,” “human cell atlas,” and
“Z_annotation” (Supplementary Table S2) (23). Adjacent clusters
were merged if they were regarded as identical entities according to
the similarity of transcriptomes.

Detection of differentially expressed genes
and pathway analysis

Differential gene expression testing was performed using the
‘FindMarkers’ function within Seurat, employing the Wilcoxon test.
All p-values were adjusted using Bonferroni correction. Differentially
expressed genes (DEGs) were filtered using a minimum log2(fold
change) of 0.5 and a maximum adjusted p-value of 0.05. They were
then ranked by average log2(fold change) and false discovery rate
(FDR). Enrichment analysis for functions of the DEGs was conducted
using the clusterProfiler package and DAVID (https://
david.ncifcrf.gov/) (24). Gene sets were based on Gene Ontology
terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways.

Analysis of cell-cell interaction

To comprehensively analyze cell-to-cell interactions between
immune cells, we used SingleCellSignalR (25). We derived potential
ligand-receptor interactions based on the expression of a receptor
by one cell subpopulation and ligand expression by another. We
separately fetched normalized counts from healthy controls,
ACPA", and ACPA" eRA patients and used them as input for the
algorithm. To validate the cell-to-cell interactions and ligand-
receptor interaction result from SinglCellSignalR, we performed
the same analysis with CellChat (v.1.0) (26) and CellphoneDB
(v.4.0) (27).

Inferring differentially expressed
transcription factors

To determine the relationship between IFN signaling activity
and anti-CCP antibodies, we used transcriptomics data to estimate
the overall expression of IFN signaling genes for each sample. The
decoupleR (v1.6.0) ‘wmean’ method and ‘SCTransform’ normalized
data were used to calculate normalized gene expression levels of
IFNA, IENG, IFNARI, IFANR2, IFNGRI1, and IFNGR2 per cell for
each unfiltered slide (28).
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Chromatin binding profiles

We searched for chromatin binding sites of IFITM2 and
IFITM3 based on chromatin binding profiles provided by ReMap
2022. Detected transcription factors (TFs), which were matched to
upregulated TFs derived from master regulator analysis, were
visualized with Integrative Genomics Viewer (IGV) (29).

Data visualization

All plots were generated using the ggplot2 (v3.2.1), pheatmap
(v1.0.12), and EnhancedVolcano (v1.2.0) packages in R v4.0.0. Box
plots are defined as follows: the middle line corresponds to the
median; lower and upper hinges correspond to the first and third
quartiles, respectively; the upper whisker extends from the hinge to
the largest value, reaching no more than 1.5x the interquartile range
(or the distance between the first and third quartiles) from the
hinge; and the lower whisker extends from the hinge to the smallest
value, not exceeding 1.5x the interquartile range from the hinge.
Data beyond the end of whiskers were designated as “outliers”. They
were plotted individually.

Results

Serum cytokine profiles of ACPA* and
ACPA™ eRA

To elucidate differences between ACPA™ eRA patients and
ACPA™ eRA patients, we recruited 37 eRA patients, 16
unclassified arthritis patients, and 21 healthy participants. Based
on the experimental design presented in Figure 1A, their serum
cytokine levels and transcriptome were examined using MCA and
scRNA-seq, respectively. Among eRA patients, the ACPA™ eRA
group displayed elevated serum levels of IFN-y and IL-12, the
hallmark cytokines of type 2 interferon signaling, in comparison
with the ACPA™ eRA group (Figures 1B, C). There was a strong
positive correlation between the two cytokine levels (Figure 1D).
These findings highlight that increased serum IFN-y concentrations
are closely related to the seropositivity of RA.

Single-cell RNA-seq analysis landscape of
eRA PBMCs

We next conducted scRNA-seq to characterize and compare
transcriptome profiles of CD45" cells from PBMCs obtained from
healthy controls (n = 4), drug-naive ACPA” eRA patients (n = 6),
and drug-naive ACPA" eRA patients (n = 6). We initially addressed
batch effects through a QC confirmation process (Supplementary
Figure S1) and subsequently performed filtering procedures. A total
of 37,318 immune cells were analyzed and segregated into 21
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distinct clusters based on their transcriptomic profiles (Figures 2A,
B). To identify the cell types within each cluster, we analyzed
expression levels of marker genes (CDI14, MS4Al1, CD3E,
FCGR3A, FCERIA, CD8A, PCNA, CD38, and CD4). The results
are presented in Figure 2C and Supplementary Figure S2A. Those
levels were cross-referenced with immune cell data predicted from
singleR (Supplementary Figure S2B). Additionally, we consulted
canonical cell marker expression (Supplementary Figure 3), Human
Cell Atlas annotations, and gene sets extracted from publicly
available scRNA-seq data on RA synovial cells (https://
www.immport.org/shared/study/SDY998) (23) (Supplementary
Table S2). As a result, we finally identified 17 unique cell types
within 21 clusters.

A Uniform Manifold Approximation and Projection (UMAP)
plot demonstrated six clusters for T cells, four clusters for

PBMCs storage
(Cryopreserved) ‘
- DMARDs naive ACPA+ RA (n = 19)

10.3389/fimmu.2024.1439082

monocytes, three clusters for B cells/plasmablasts, two clusters for
dendritic cells, one cluster for natural killer (NK) cells, and one
cluster for progenitor cells (Figures 2A, D, E). Proportions of B cells,
dendritic cells, monocytes, and T cells were comparable between
ACPA™ RA and ACPA" eRA (Supplementary Figure S2C).
However, we observed a substantial expansion of ILIB*
proinflammatory monocytes, CD8" CCL4" T cells, and IL7R" T
cells in eRA patients compared to healthy controls. Furthermore,
these three subsets were significantly frequent in ACPA™ eRA than
in ACPA™ eRA (Figures 2F-H).

Conclusively, through global transcriptome profiling, we
identified 17 unique cell types in human PBMCs, including three
subsets of immune cells, IL1B* proinflammatory monocytes, CD8*
CCL4" T cells, and IL7R* T cells, presumably representing the
peripheral landscape of immuno-pathology of ACPA™ eRA.
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1
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Overall study design and multiplex cytokine analysis of rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMCs). (A) Workflow chart
outlining the overall study design, illustrating each step from patient selection to data analysis, and highlighting the methodologies used in the
extraction and analysis of PBMCs from unclassified arthritis (UA), healthy controls, ACPA-negative early RA (ACPA™ eRA), and ACPA-positive early RA
(ACPA* eRA). (B) Dot plot showing the serum concentration levels of interferon-y (IFN-y) in UA (n = 21), controls (n = 16), ACPA™ eRA (n = 18), and
ACPA* eRA (n = 19). The horizontal bar indicates the mean value. (C) Dot plot showing the serum concentration levels of interleukin-12 (IL-12) in UA
(n = 21), controls (n = 16), ACPA™ eRA (n = 17), and ACPA* eRA (n = 19). The horizontal bar represents the mean value. (D) Scatter plot illustrating the
correlation between IFN-y and IL-12 concentrations in serum samples. Statistical significance was assessed using the Kruskal-Wallis test for (B, C)
and Pearson's correlation coefficient for (D). P-values less than 0.05 were considered significant.
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Increased expression of interferon
response genes in ACPA* eRA

To gain a deeper understanding of the alterations in gene
expression linked to ACPA positivity and to explore the
underlying mechanisms of RA associated with these changes, we
next analyzed DEGs in each cell type of PBMCs from ACPA" and
ACPA’ eRA patients. Given the multiplex cytokine data in Figure I,
we sought to focus on the IFN-y and IL-12-JAK pathway for the
analysis. The top 20 DEGs from the scRNA-seq analysis are listed,
which included IRGs such as IER3, JUNB, and IFITM2, and
IFITM3, and among them, IFITM3 showed nearly the highest
fold change (Table 1). Notably, volcano plots of cell subsets
demonstrated that differential expression of IFITM3 was mainly
observed in monocytes and T cells, not in B cells (Figure 3A).

To compare functional characteristics of each cell subset
between ACPA" and ACPA™ eRA, we also performed Gene Set
Enrichment Analysis (GSEA) using Hallmark gene sets provided by
MsigDB. The results indicate that all monocyte subsets of ACPA*
eRA had higher transcriptional profiles for “IFN-y response” and
“IFN-o. response” than those of ACPA™ eRA (Figure 3B). Most T
cell subsets, with the exception of 1L.32Meh T cells, exhibited strong
enrichment for these IFN responses (Figures 3B, C). In particular, in
ACPA™ eRA, the three cell subsets-IL1B" proinflammatory

10.3389/fimmu.2024.1439082

monocytes, CD8" CCL4"™ T cells, and IL7R" T cells-exhibited
increased expansion with heightened enrichment profiles for
IFN-y and IFN-o responses compared to those in ACPA"
eRA (Figure 3C).

The hierarchical clustering and heat map analysis illustrate that
upregulated IRGs in monocytes were different from those in T cells,
indicating that transcriptional responses to IFN are different according
to cell type (Figures 3D, E). Through pseudo-bulk analysis of scRNA-
seq data, we also observed the increases in JAK-STAT pathway-related
genes in IL7R" T cells and IL1B" proinflammatory monocytes of
ACPA" eRA patients as compared to those of ACPA™ eRA patients
(Supplementary Figures S4A, B, D, E). Subsequent GSEA analysis
revealed upregulation of the genes associated with the IL2-STATS5
signaling pathway (Supplementary Figure S4C). Given that IL-2 plays
a role in Thl differentiation by inducing the expression of IL-12
receptor and T-bet in a STAT5-dependent manner (30), this finding
supports the notion that ACPA" eRA has upregulated Th1 immunity.
Interestingly, there was a strong positive correlation between ESR
levels and IFN-y signature genes in RA, which were obtained from the
previously published data (Supplementary Figures S5A, B) (31-33). In
summary, ACPA" eRA showed increased activity of the IFN-JAK-
STAT pathway as compared to ACPA™ eRA, which was more
prominent in the cell types of ILIB" proinflammatory monocytes
and IL7R" T cells.

TABLE 1 The top 20 differentially expressed genes between ACPA™ and ACPA* from PBMC scRNA-seq.

p-value avg_log2FC pct.l pct.2 p-value_(adj)
HLA-DQA2 7.97E-266 1.892949811 0.132 0.037 1.29E-261
IFITM3 1.79E-205 0965439862 0.407 0.289 2.91E-201
HLA-DRB5 7.71E-191 0729622267 0313 0.189 1.25E-186
JUNB 6.23E-163 0339508966 0.861 0.804 1.O1E-158
IFITM2 6.14E-135 0.467551747 0.58 0.482 9.96E-131
ERAP2 3.73E-122 0.663834203 0.258 0.166 6.05E-118
BTG2 9.67B-112 0.405070841 0.605 0.519 1.57E-107
TFI44L 4.05E-110 0.903485471 0.179 0.105 6.57E-106
TNESF10 3.71E-108 0.818914251 0.199 0123 6.02E-104
IFI6 6.41E-108 0.789436412 0311 0227 1.04E-103
FOSB 7.27E-106 0.362939434 0.737 0.664 1.18E-101
IER3 1.07B-96 0.805034193 038 0.304 1.73E-92
XAF1 2.85E-96 0.612964022 0313 023 4.62E-92
MNDA 4.82E-90 0.601017761 038 0.303 7.82E-86
HLA-C 6.54E-85 0171143633 0.99 0.984 1.06E-80
FOS 1.16E-84 0.274752943 0.933 0.907 1.89E-80
TSC22D3 6.51E-84 0.370209625 0.56 0481 1.06E-79
TNFAIP3 1.29E-79 0.383694023 0.657 0.589 2.09E-75
IER2 8.44E-75 0.358348283 0.567 0.498 1.37E-70
IFIT3 225E-73 1.163609645 0.075 0.035 3.64E-69
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Upregulation of interferon-activated
transcription factors in ACPA™ eRA

IFN-yis primarily produced by Th1 cells. It is a critical activator
of immune response, promoting the killing of intracellular microbes
by macrophages and dendritic cells (13, 34). In RA patients, IFN-vis
known to be produced due to Thl skewing (14). Here, we focused
on identifying TFs induced by IFN-y signaling, including signal
activators of transcription (STATs) and interferon regulatory factor
(IRFs) (34, 35), in T cells and monocytes of PBMCs obtained from
ACPA™ eRA versus ACPA" eRA patients. To address this, we
performed a master regulator analysis using VIPER score, which
enabled us to identify differentially activated TFs in each cell type
between healthy controls, ACPA", and ACPA™ eRA. As a result, we
found that IL1B" proinflammatory monocytes and CD14" CD16°
monocytes exhibited higher STAT1, 2, and 3 transcriptional
activities in ACPA" eRA patients than in ACPA" eRA
(Figure 4A). Moreover, IL1B" proinflammatory monocytes,
NAMPT" monocytes, GZMB™ T cells, IL32M8" T cells, and IL7R*
T cells in ACPA™ eRA exhibited higher STAT3 activity than other
cell subsets (Figure 4A).

We further investigated the upstream reactions governing IRGs
by quantitatively assessing the interaction of IFN-y with its
receptors using ligand-receptor (LR) scores. Our results indicate
that the LR scores for IFN-y-IFN-y receptors were significantly
higher in ACPA" eRA than in ACPA” eRA, as seen in the dot plot of
LR scores above 0.5 (Figure 4B). Based on this interaction data, we
next compared cell-to-cell interactions in ACPA™ eRA versus
ACPA" eRA, focusing on monocytes and T cell interaction. As
shown in Figure 4C, the total number of IFN-y-IFN-y receptor
interactions within diverse monocyte and T cell subsets was
substantially higher in ACPA™ eRA than in ACPA™ eRA. Most
strikingly, the interaction direction was entirely from T cells (—) to
monocytes in ACPA™ eRA. In a sharp contrast, there were
bidirectional and even multidirectional interactions between T
cells and monocytes in ACPA" eRA (Figure 4C, lower panel).
Particularly, many interactions from monocytes (—) to T cells, in
addition to those from T cells (—) to monocytes, were observed in
ACPA" eRA, and they were primarily driven by a subset of CD14"*
CD16™ monocytes (See green arrows in the upper panel of
Figure 4C). Moreover, we also detected interaction between CD4"
and CD8" T cells, as well as between different subsets of monocytes
in ACPA™ eRA, which were rarely found in ACPA™ eRA. To avoid
any differences between the algorithms and sources of LR
interaction information, we performed a cell-to-cell interaction
analysis using CellPhoneDB (v.4.0) (27) and obtained the same
results as previously obtained (Supplementary Figure S6). The cell-
to-cell communications between CD4", CD8" T cells and
monocytes were also detected in the analysis using CellChat
(26) (Figure 4D).

Taken together, we observed the elevated STAT activity in
IL1B" proinflammatory monocytes in ACPA" eRA, which seems
to be associated with more interactions between IFN-y-IFN-y
receptors. Notably, there were discernible patterns in monocyte
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and T cell interactions that appear to distinguish ACPA* eRA
(bidirectional) from ACPA™ eRA (unidirectional).

Association of IFITM2/IFITM3 expression
with STAT3, IL-6, and IFN-vy level in
eRA patients

It is well known that IFITM2 and IFITM3 are induced by
interferon stimulation (36, 37). As seen in Table 1, IFITM2 and
IFITM3 were found to be the top 5 DEGs as IRGs (Table 1). Elevated
levels of IFITM2 and IFITM3 were observed in the monocytes of
ACPA™ eRA patients, especially in ILIB" proinflammatory
monocytes, which are presumably the M1 monocyte subset
(Figures 5A, B). These findings have sparked our curiosity to
explore further the regulatory mechanisms that control the
transcription of IFITM2 and IFITM3 in ACPA" eRA. To address
this, we searched for the chromatin binding profiles of IFITM2 and
IFITM3 (Figure 6A) using the ReMap2022 database (38). We
identified 27 binding regions for 13 TFs from public data produced
by 11 independent studies (Supplementary Table S3). The results
showed that STA T3, which is known as an IFN-activated TF (39), was
identified as one of the regulatory TFs for IFITM2 and IFITM3
transcription. These results, together with the data in Figures 4A and
B, suggest that increased activation of STAT3 is involved in
regulation of IFITM2 and IFITM3 in ACPA" eRA.

Finally, we examined the relationships of IFITM2 and IFITM3
expression in monocytes and T cells with pathogenic cytokines of
eRA (Figures 6B, C). We found a moderate positive correlation
between serum IL-6 concentrations and expression levels of IFITM2
in T/NK cells (R = 0.65, p = 0.03). The serum IL-6 level showed a
strong positive association with expression levels of IFITM3 in T/
NK cells (R = 0.77, p = 0.0051) and IFITM3 in monocytes (R = 0.8,
p = 0.0031) (Figure 6B). Serum levels of IFN-y had moderate to
strong positive correlations with expression levels of IFITM2 in T/
NK cells (R = 0.68, p = 0.02), IFITM3 in T/NK cells (R = 0.77,
p = 0.0052), and IFITM3 in monocytes (R = 0.65,
p = 0.031) (Figure 6C).

Together, these data suggest that IFITM2 and IFITM3, the
highly upregulated IRGs in ACPA" eRA, are associated with
STAT3 activation and increased serum levels of IL-6 and IFN-y.

Discussion

ACPA-based stratification is the most widely accepted method
for classifying RA. Our study elaborated contrasting immunologic
features depending on ACPA status by mainly investigating global
transcriptome profile of RA PBMCs and serum cytokines. Here, we
demonstrated that serum IFN-y and IL-12 levels were higher in in
ACPA™ eRA than in ACPA™ eRA and healthy controls, indicating a
skewing towards a Thl phenotype. Moreover, IL1IB"
proinflammatory monocytes (most strikingly), CD8" CCL4™ T
cells, and IL7R" T cells were expanded in ACPA™ eRA. In
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ACPA* eRA, most of monocyte and T cell subsets, including the
three expanded subsets of ACPA™ eRA, had upregulated
expressions of IRGs related to IFN-y and IFN-o. The observed
elevation in the transcriptional activity of IRGs is supported by
increased expression of STATS, the IFN-driven TFs, in monocytes
of ACPA" eRA. Notably, IFN-yand its receptor interaction between
monocytes and T cells in ACPA™ eRA was markedly increased and
displayed a multi-directional pattern, contrasting with the
unidirectional pattern observed in ACPA™ eRA. Together, these
findings suggest that IFN-mediated responses are overactive in

10.3389/fimmu.2024.1439082

ACPA" eRA. In support of this, IFITM2 and IFITM3 expression
levels of in monocytes and T/NK cells had positive correlations with
circulatory IL-6 and/or IFN-y levels.

This study initially identified concurrent increases in serum
levels of IFN-y and IL-12, the Thl cytokines, in ACPA" eRA
compared to ACPA"™ eRA. Furthermore, our transcriptome
analysis demonstrated an elevation of IRGs, suggesting substantial
IFN-y exposure in monocytes and T cells of ACPA" eRA.
Consistent with this, recent research shows that ACPA™ RA
patients have a significantly higher count and proportion of
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FIGURE 4

Downstream regulators of IFN-y signaling and IFN-y and its receptor interaction in monocytes and T cells of RA. (A) Heatmap displaying the activity
scores of STAT and IRF family members predicted as downstream regulators of IFN-vy signaling. The scores were calculated by the DoRothEA
package, a gene regulatory network containing signed transcription factor-target gene interactions. (B) Bar graph illustrating ligand-receptor (LR)
scores for the interaction between IFN-y (IFNG) and its receptor IFNGR1, derived from a ligand-receptor analysis. (C) Chord diagram illustrating
variations in interactions between IFN-y and IFNGR1 in monocytes and T cell subsets within ACPA* and ACPA" patient groups (upper panel). The
outermost layer of the diagram represents the original major cell types, including monocytes, CD4+ T cells, and CD8+ T cells. Moving inward, the
diagram shows the subsets of each cell type, which are color-coded according to the legend on the right side of the diagram. This color-coding is
to facilitate the identification and differentiation of the various cell subsets within each primary cell category. The bar graph in the bottom panel
depicts the directional variability of IFN-y—IFN-vy receptor signaling in monocyte and T cell subsets from both ACPA™ and ACPA™ patients, showing
the quantity of signals according to their signaling direction. (D) Cell-to-cell communication diagram depicts differential number of interactions
between the three major cell types. Red indicates high in ACPA* and blue indicates low in ACPA".
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circulating Th1 cells relative to ACPA™ RA patients (40). James et al.
reported that Th1 cells are the most abundant subset within CD4™ T
cells that are specific to citrullinated peptides in RA patients (41).
Although we did not provide direct evidence of Thl cell expansion
in ACPA" eRA cells, we observed an increase in the number of
IL7R" T cells. Notably, a large proportion of the IL7R™&" CD62L'™
T cells were Thl cells (42). IL-7 potently stimulated IFN-y

10.3389/fimmu.2024.1439082

production in synovial CD4" T cells, suggesting a link between
IL7R" T cells and the Th1 response (43). Collectively, our findings
not only support previous observations, but also underscore the
critical role of Thl immunity in the peripheral circulation of
ACPA" eRA through a systemic approach.

Here, we found that IFN-y response genes were upregulated in
ACPA" eRA. IFN-y both induces Thl cell differentiation and is
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FIGURE 5

Comparison of expressions of IFITM1, IFITM2, and IFITM3 across different cell types in the control, ACPA™ eRA, and ACPA* eRA groups. (A) A boxplot
showing the expression of IFITM1, IFITM2, and IFITM3 in each cell type of control subjects, ACPA™ eRA patients, and ACPA™ eRA patients. (B) A table
showing the differences in expression of IFITM2 and IFITM3 in monocytes and T cells, which was analyzed across control subjects, ACPA™ eRA
patients, and ACPA* eRA patients. The meanings of each statistical value are as follows: Average log2 Fold Change: The log fold-change of the
average expression between the two groups. Positive value indicates a higher expression in ACPA* eRA; Raw P-Value: The unadjusted P-value
Adjusted P-Value: The adjusted P-value, based on the Bonferroni correction using all features in the dataset. PCT1: The percentage of cells in which
the feature is detected in the ACPA™ eRA; PCT2: The percentage of cells in which the feature is detected in the ACPA™ eRA.
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FIGURE 6

Differences in IFITM2/3 expression in monocytes and T cells of RA patients depending on the presence of anti-CCP antibodies. (A) Illustration
depicting the transcription factors predicted to bind to the promoters of IFITM2 and IFITM3 genes, along with their specific binding locations. The
binding sites for the same TF are indicated by the same color. The first parenthesis indicates which cell line it is from and the second indicates the
treatment. The absence of these indicates the basal condition with no treatment. (B, C) Graphs correlating mRNA expression levels of /FITM2 (B) and
IFITM3 (C) in T/NK cells and monocytes with the concentrations of IL-6 and interferons simultaneously measured in the serum of RA patients. The
correlation coefficient (R) is indicated, and a linear regression line is fitted to the data points. Statistical significance of the correlation is assessed
using Pearson’s correlation coefficient. P-values less than 0.05 were considered significant.
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subsequently secreted by them, initiating a cascade of
immunological responses (44). IFN-y drives the polarization of
macrophages into the M1 subtype and enhances antigen
presentation via MHC class II (14). IFN-y also induces synovial
fibroblasts to express MHC class II, significantly enhancing their
interaction with citrullinated vimentin upon autophagy induction
(45). Beyond its association with autoimmunity, IFN-y is involved
with synovial inflammation in RA. An omics study revealed a
notable expansion of HLA-DRA™ sublining fibroblasts, enriched
with HLA-DR, HLA-DP, and IFN-y-inducible protein 30, in the
leukocyte-rich RA synovium (23). IFN-activated monocytes,
another highly expanded subset of these tissues, exhibit elevated
IRG transcription (23). IFN-y has a complex role, as mice lacking it
are more prone to arthritis (46) and an anti-IFN-y antibody was
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ineffective in an RA trial (14), yet excess levels are likely to
exacerbate autoimmune diseases (14). This study suggests that
IFN-y response genes are enriched in ACPA™ eRA and may serve
as a therapeutic target specific to this population, as earlier findings
support that excess of IFN-y is likely pathogenic.

Type I IEN, known for their antiviral role, also contribute to
autoimmunity through maladaptive lymphocyte activation (47).
Our scRNA-seq analysis of drug-naive RA PBMCs suggested that
type I IEN response genes were upregulated in monocytes and T
cells of ACPA" eRA. An earlier study supported this finding by
showing a positive correlation between type I IFN signature gene
expression and ACPA levels in patients with RA (31). Consistent
with this, persistent stimulation of type I IFN can trigger the
enhancement of T and B cell effector functions, resulting in the
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synthesis of autoantibodies (35, 47). IFN gene signatures and IFN-o
levels are associated with RA disease activity (48). Additionally,
IFN-activated monocytes are more abundant in leukocyte-rich
synovial tissues compared to those with fewer leukocytes (23).
Given the association of type I IFN with autoimmunity and RA
severity, this study emphasizes the relevance of type I IFN in
ACPA" eRA and its potential as a therapeutic target.

According to the Accelerating Medicines Partnership (AMP)
publication, bulk-RNA seq using leukocyte-rich RA synovium
shows upregulation of IL1B and CCL4 in monocytes and CD8 T
cells, respectively (23). IL1B is regarded as a conventionally
important pathogenic cytokine of RA (2). Thus, increased IL1B"
monocytes support a more aggressive phenotype of ACPA" eRA.
CCL4, also known as macrophage inflammatory protein 1- (MIP-
1B), is amplified in the joint tissues and peripheral circulation of
patients with RA. This amplification of CCL4 facilitates the
migration of inflammatory cells and osteoclasts, positioning it as
a significant pathogenic chemokine in RA (49). Our scRNA-seq
data on the higher proportion of ILIB* proinflammatory
monocytes and CD8" CCL4" T cells in ACPA™ eRA are
compatible to the previous reports (23), which indicates that the
peripheral scRNA-seq landscape may be a molecular reflection of
immunologic dysregulation in synovial compartment of RA
patients, suggesting a possible communication between the
periphery and the joints in establishing RA pathology.

Of note, our scRNA-seq analysis revealed that IFITM2 and
IFITM3 belonging to IRGs were included in the top 20 DEGs. The
human genome encodes at least five IFITM proteins. In particular,
IFITM1, TIFITM2, and IFITM3 have antiviral activities by inhibiting
viral entry into human cells and some other pathways (37). Both
type I and II IFNs can increase the expression of IFITM1, IFITM2,
and IFITM3. In mice, among those IFITM proteins, Ifitm3 is most
strongly induced by IFN (37). Despite the proven role of IFITMs in
defense against viral infection and in the mouse system, little is
known about their role in human RA. IFITM3 is one of the marker
genes of the IFN-activated monocyte subset in synovial tissues;
however, how the expression of IFITM3 affects RA pathogenesis
remains unclear (23). Here, we found that expression levels of
IFITM3 and IFITM2 in monocytes and T/NK cells had a positive
linear relation with the serum levels of IL-6 and/or IFN-v,
suggesting a possible induction of IFITM2 and IFITM3 by a
cytokine-rich microenvironment. Notably, the specific linkage of
IFITMs with IFN-y points to a possible role for IFITMs in
influencing Thl skewing in the immunological dynamics of
ACPA" eRA. This finding is particularly intriguing as it offers a
new perspective on the functions of IFITMs, extending beyond their
established antiviral roles. Given its promise, this hypothesis
warrants further detailed exploration.

In sum, our data, along with the earlier studies, indicate that
targeting type 1 and 2 IFN signaling may be a patient-centric
approach for ACPA™ RA patients. In this regard, the JAK inhibitor,
which targets type I and type II IENs (18), can be more effective in
treating ACPA" eRA than ACPA™ eRA. In support of this notion, two
clinical studies have shown that ACPA positivity leads to a higher rate
of drug retention of JAK inhibitor, an indicator for overall
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effectiveness and safety of a drug (9, 50). Although earlier findings
suggest that an IFN-targeting strategy may hold promise for better
efficacy in patients with ACPA™ RA, further research is needed to
confirm its superiority in this population.

This study has several limitations. First, we did not perform
experimental validation of the findings from the scRNA-seq
analysis. Second, the sample size for scRNA-seq analysis was
small. Third, this study provides only an immunological basis
that supports the potential for greater efficacy of interferon-
targeting strategies in ACPA™ eRA than in ACPA™ eRA, which
was not examined here. Therefore, these findings require further
confirmation in follow-up studies.

To summarize, we observed differences in cytokine profiles, cell
subset abundance, and gene expression patterns within the
peripheral landscape between ACPA™ eRA and ACPA™ eRA. In
ACPA" eRA, serum IFN-y levels were elevated, and peripheral
blood T cells and monocytes exhibited upregulated IFN-y response
genes and IFN-y-mediated cell-cell interactions, suggesting Thl
skewing. Moreover, ACPA" eRA patients showed an expanded
population of IL1B™ proinflammatory monocytes, CD8" CCL4™ T
cells, and IL7R* T cells, in which IRGs were upregulated.
Particularly, IFITM 2 and 3, which are associated with IRGs,
could be new biomarkers for ACPA™ RA, offering promising
avenues for future research and treatment strategies in eRA.
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Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China, *Department of
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Background: Ulcerative colitis (UC) is a chronic inflammatory bowel disease
marked by dysregulated immune responses, resulting in sustained inflammation
and ulceration of the colonic and rectal mucosa. To elucidate the cellular
subtypes and gene expression profiles implicated in the pathogenesis of UC,
we utilized single-cell and spatial transcriptomic analyses.

Methods: We conducted an analysis of single-cell data to identify cell types
involved in the pathogenesis of UC. Employing machine learning methodologies,
we screened for key genes implicated in UC and validated these findings through
spatial transcriptomics. Additionally, immunohistochemistry was performed on
UC lesion samples to investigate the expression patterns of the identified
key genes. In an animal model, we utilized immunofluorescence and
western blotting to validate the expression of these genes in the affected
intestinal segments.

Results: Our investigation identified specific monocyte subtypes associated with
UC through a comprehensive analysis involving cell communication, Least
Absolute Shrinkage and Selection Operator (LASSO), and Support Vector
Machine (SVM) methodologies. Notably, two genes, G protein subunit gamma
5 (GNG5) and tissue inhibitor of metalloproteinase 1 (TIMP1), were identified as
key regulators of UC development. Spatial transcriptomic indicated a
downregulation of GNG5 expression in UC, whereas TIMP1 expression
was upregulated. Furthermore, a significant correlation was detected between
TIMP1 and T cell exhaustion-related genes such as genes related to T cell
exhaustion, including T cell immunoreceptor with Ig and ITIM domains
(TIGIT) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4).
Immunohistochemical analysis of UC lesion samples revealed diminished
expression levels of GNG5 and elevated expression levels of TIMP1. A dextran

158 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1534768/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1534768&domain=pdf&date_stamp=2025-05-13
mailto:fsyy01040ss@njucm.edu.cn
mailto:13862313063@163.com
https://doi.org/10.3389/fimmu.2025.1534768
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1534768
https://www.frontiersin.org/journals/immunology

Huang et al.

10.3389/fimmu.2025.1534768

sulfate sodium (DSS)-induced colitis mouse model was developed,
demonstrating that the protein expression levels of GNG5 in the colonic tissue
of model mice were significantly decreased compared to controls w)ile the
expression levels of TIMP1 were increased (p < 0.01). Furthermore,
immunofluorescence staining indicated co-localization of TIMP1 with the
macrophage marker F4/80 in monocytes.

Conclusion: Our research delineated distinct monocyte subtypes correlated
with UC and identified two pivotal genes, GNG5 and TIMP1, that contribute to
the disease’s pathogenesis. These insights offer a significant theoretical basis for
enhancing the clinical diagnosis and therapeutic strategies for patients with UC.

immune infiltration, single-cell transcriptome sequencing, spatial transcriptome

sequencing, ulcerative colitis, T cell exhaustion

1 Background

Ulcerative colitis (UC) is a chronic, idiopathic form of
inflammatory bowel disease (IBD) that predominantly affects the
mucosal and submucosal layers of the colorectal region. The
pathogenesis of UC is characterized by dysregulated immune
responses, resulting in persistent inflammation and ulceration of
the colonic and rectal mucosa. Contributing factors include genetic
predisposition, environmental influences—including infections and
dietary components—and an exaggerated immune response to gut
microbiota. These factors collectively undermine the integrity of the
mucosal barrier, facilitate the infiltration of inflammatory cells, and
promote the release of pro-inflammatory mediators.
Epidemiological evidence suggests that UC is relatively prevalent
in developed countries, with high incidence rates in North America
and Europe (1). In recent years, however, there has been an
observable increase in the incidence of UC in many newly
industrialized countries, including China, coinciding with global
economic development and dietary changes (2). This trend is
particularly concerning given the generally reduced life
expectancy of UC patients, alongside their heightened risk of
requiring colectomy and progression to colorectal cancer.
Therefore, the active investigation of UC pathogenesis and the
formulation of precise therapeutic strategies have become urgent
research imperatives.

Currently, the management of UC primarily involves the
administration of 5-aminosalicylic acid (5-ASA) preparations and
glucocorticoids. While these pharmacological agents frequently
offer prompt alleviation of symptoms, they are also linked to
considerable toxic side effects and low patient adherence.
Immunosuppressants are primarily employed for maintenance
therapy following the remission of symptoms induced by
glucocorticoids, with the objective of minimizing glucocorticoid
dosage. Additionally, biological agents, specifically monoclonal
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antibodies that target distinct inflammatory mediators such as
tumor necrosis factor or integrins, are incorporated into the
therapeutic regimen. The American Gastroenterological
Association (AGA) guidelines (3) advocate for the initiation of
biologic therapy as a first-line treatment and suggest early step-
down strategies, thereby surpassing traditional treatment
approaches (4). In the context of selecting biologics for UC,
current clinical guidelines endorse the use of vedolizumab (VDZ)
or anti-tumor necrosis factor alpha (TNF-o) agents (5). It is
important to highlight that over 30% of patients demonstrate
resistance to TNF-o therapies, with a subset eventually
necessitating intestinal or colon resection surgery (6). In China,
over 50% of patients with IBD show suboptimal responses to
treatment after approximately one year of first-line anti-TNF-o
therapy (7). This secondary dysregulation may be attributed to the
immunogenicity of TNF-o antibodies, leading to the development
of drug-resistant antibodies (8). Therefore, a deeper investigation
into the intricate biological mechanisms underlying UC is essential
for advancing the development of effective therapeutic strategies.
Single-cell transcriptome sequencing (scRNA-seq) is a
sophisticated technique employed to examine RNA expression at
the individual cell level, revealing cellular heterogeneity and the
transcriptional profiles of specific cell types. Our preliminary single-
cell analysis revealed significant increases in the populations of
Plasma cells, activated memory CD4" T cells, resting Natural Killer
(NK) cells, MO Macrophages, M1 Macrophages, activated Dendritic
cells, activated Mast cells, and Neutrophils in patients with UC
compared to healthy controls. Subsequently, we conducted an in-
depth investigation into the expression of target genes within
immune cells, taking into account the complex interactions
between bile acid metabolism and immune cell dynamics (9).
Spatial transcriptome sequencing, which retains the spatial
context of tissues, quantifies gene expression through methods
such as microarrays applied to tissue sections or spatial
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fluorescence in situ hybridization. This methodology facilitates the
examination of gene expression within specific tissue regions. The
integration of single-cell and spatial transcriptome sequencing
techniques permits the concurrent exploration of mechanisms at
both the cellular and tissue levels, providing novel insights into the
complex mechanisms underlying diseases (10). In this study, we
integrated single-cell and spatial transcriptome sequencing to
identify target genes associated with UC and conducted a
preliminary investigation into the interrelationships among these
target genes, immune cells, and the microenvironment. This
approach was designed to advance our understanding of UC
therapeutic targets and the underlying mechanisms.

Hub Genes

10.3389/fimmu.2025.1534768

2 Materials and methods

2.1 Study design

The study design is presented in Figure 1.

2.2 Data acquisition
The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/info/datasets.html), curated by the
National Center for Biotechnology Information (NCBI), functions
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as a comprehensive repository for gene expression data. From this
resource, we acquired the single-cell transcriptome data
corresponding to GSE189754, concentrating on 11 samples that
provided complete single-cell expression profiles for single-cell
analysis. Additionally, we downloaded the spatial transcriptome
data for GSE189184, selecting two control groups (B10, C5) and two
disease groups (B8, B4) for analysis. Furthermore, we procured the
transcriptome data for GSE48958, encompassing data from 8
controls and 13 disease samples.

2.3 Quality control and data
standardization

In this study, the processes of quality control and data
standardization are essential to ensure the accuracy of subsequent
analyses. We employed the Seurat package (11) for initial data
processing. For cell quality control, we conducted screening based
on the total number of unique molecular identifiers (UMIs) per cell,
the number of expressed genes, and the proportion of
mitochondrial gene expression. Typically, a high proportion of
mitochondrial gene expression in a cell indicates low RNA
expression levels and potential progression towards cell death,
warranting the exclusion of such cells. Additionally, we utilized
the median absolute deviation (MAD) for quality control, removing
outliers that deviate from the median by more than three times the
MAD to maintain data reliability. Subsequently, we applied
DoubletFinder (version 2.0.4) (12) to individually filter doublet
cells in each sample, thereby completing the comprehensive cell
quality control process.

In the data standardization process, the LogNormalize method
of global normalization is employed. This technique mitigates the
impact of variations in total RNA content between cells on gene
expression analysis by scaling the total expression level of each cell
with a coefficient \(s_0\), adjusting it to 10,000, and subsequently
normalizing it through logarithmic transformation. Cell cycle
scores are computed using the CellCycleScoring function, and
highly variable genes are identified via the FindVariableFeatures
function. The ScaleData function is utilized to eliminate gene
expression fluctuations attributable to mitochondrial gene
expression, ribosomal gene expression ratios, and cell cycle
differences. Linear dimensionality reduction is conducted on the
expression matrix using the RunPCA function, with 20 principal
components selected for further analysis. The Harmony algorithm
is applied with default parameters to correct for batch effects, and
finally, the RunUMAP function is employed with default
parameters for nonlinear dimensionality reduction.

2.4 |ldentification of cell clusters

Cell types and corresponding marker genes were identified
using CellMarker (13), PanglaoDB (14), and literature,
supplemented by automated annotation with SingleR (15)
software. The FindAllMarkers function was employed to filter
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marker genes within each category, with only positive markers
expressed in at least 25% of the cells retained (only.pos = TRUE,
min.pct = 0.25).

2.5 Ligand receptor interaction analysis
(Cellchat)

CellChat (16) is a sophisticated tool designed for the
quantitative inference and analysis of intercellular communication
networks derived from single-cell data. Employing network analysis
and pattern recognition methodologies, CellChat facilitates the
prediction of principal signaling inputs and outputs of cells,
elucidating the mechanisms by which these cells and signals
orchestrate their functions. In this study, we employed
standardized single-cell expression profiles as input data,
alongside cell subtype classifications obtained through single-cell
analysis, to serve as cell-specific information. We conducted an in-
depth examination of cell-related interactions, quantifying the
strength and frequency of cell-to-cell interactions to observe the
activity and impact of each cell type in the disease.

2.6 Feature selection process of LASSO
regression and SVM algorithm

We utilized the Least Absolute Shrinkage and Selection
Operator (LASSO) logistic regression and Support Vector
Machine (SVM) algorithms to select features for diagnostic
markers of diseases. The LASSO algorithm utilizes the “glmnet”
package, while SVM-Recursive Feature Elimination (SVM-RFE) is a
machine learning method based on support vector machines (17).
SVM-REE removes feature vectors generated by SVM to identify
optimal variables, and establishes a support vector machine model
through the “e1071” package to further assess the diagnostic value
of these biomarkers in disease contexts.

2.7 Immune infiltration analysis

The CIBERSORT method is a prevalent technique for assessing
immune cell types within microenvironments (18). In this study,
utilized the CIBERSORT algorithm was employed to analyze
patient data, allowing for the inference of the relative proportions
of 22 immune-infiltrating cell types. Furthermore, a correlation
analysis was conducted to examine the relationship between gene
expression and immune cell content.

2.8 GSEA analysis

Patients were categorized into high and low-expression groups
based on the expression of key genes. Subsequently, Gene Set
Enrichment Analysis (GSEA) was utilized to examine disparities
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in signaling pathways between these cohorts. The annotation gene
set employed for the subtype pathway analysis was derived from
version 7.0 of the Molecular Signatures Database (MsigDB).
Differential expression analysis of pathways between the groups
was conducted, and significantly enriched gene sets (adjusted p-
value < 0.05) were ranked by consistency score. GSEA is frequently
used to explore the correlation between disease classification and
biological significance.

2.9 GSVA analysis

Gene Set Variation Analysis (GSVA) is a nonparametric,
unsupervised method for assessing gene set enrichment in
transcriptome data. GSVA assigns a comprehensive score to each
gene set of interest, converting gene-level changes into pathway-
level changes. This allows for the identification of potential
biological function changes in different samples. In this study,
gene sets were downloaded from MsigDB, and the GSVA
algorithm was applied to comprehensively score each gene set,
enabling the evaluation of potential biological function differences
among the samples.

2.10 Non-coding RNA network associated
with key genes

MicroRNAs (miRNAs) are small non-coding RNAs known to
regulate gene expression by facilitating mRNA degradation or
inhibiting mRNA translation. Consequently, we conducted an in-
depth analysis to determine the presence of miRNAs associated
with key genes involved in the transcriptional regulation or
degradation of potentially deleterious genes. We identified
miRNAs related to these key genes using the miRcode database
and subsequently visualized the miRNA-gene interaction network
utilizing Cytoscape software (19).

2.11 Transcription factor regulatory
network

This study utilized the R package “RcisTarget” to predict
transcription factors, with all computations conducted by
RcisTarget being predicated on motif analysis. The normalized
enrichment score (NES) of a motif depended on the total number
of motifs in the database. In addition to the motifs annotated by the
source data, we inferred further annotation files based on motif
similarity and gene sequences. To estimate the overrepresentation
of each motif in the gene set, we initially calculated the area under
the curve (AUC) for each pair of motif-motif set. This was
performed based on the recovery curve calculation of the gene set
ranking of the motifs. The NES of each motif was calculated based
on the AUC distribution of all motifs in the gene set.
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2.12 Source of human sample

To verify the expression of target genes in the diseased colon
tissue of UC patients, tissue biopsy samples were collected from UC
patients within the research cohort at the Digestive Endoscopy
Center of Changshu Hospital Affiliated to Nanjing University of
Chinese Medicine (Ethical Number: CZYLS-2024120). Patients
with UC secondary to other diseases or with differing pathological
results were excluded. Normal tissue samples for the control group
were obtained from the periphery of pathological specimens
diagnosed with colon cancer and subjected to Miles surgery in the
General Surgery Department of Changshu Hospital Affiliated to
Nanjing University of Chinese Medicine. The collection of all
samples was approved by the hospital’s Ethics committee, and
written informed consent was obtained from the patients.

2.13 Immunohistochemistry

Colon tissue sections fixed with paraformaldehyde were
deparaffinized using xylene and incubated with primary
antibodies (tissue inhibitor of metalloproteinase 1 (TIMPI):1:200,
Absin, Shanghai, China; G protein subunit gamma 5 (GNG5):1:200,
Abcam, Shanghai, China) at 37°C for 1.5 hours. After three washes
with PBS, immunocomplex detection was performed using
diaminobenzidine, and nuclei were counterstained with
hematoxylin. The sections were examined under a microscope
(Leica, Wetzlar, Germany) (20).

2.14 Animals and treatment

Male C57BL/6 mice (weighing 18-20 grams) were obtained
from Beijing Vital River Laboratory Animal Technology Co., Ltd.
(SCXK-2021-0011, Beijing, China). Before the experiments, the
mice were provided with standard laboratory chow and water ad
libitum under controlled conditions of 60 + 5% humidity, 23 + 1°C
temperature, and a 12-hour light/dark cycle. The experimental
protocol was approved by the Ethics Committee of the
Experimental Animal Center at Nanjing University of Chinese
Medicine (Ethical Number: NJUCCSHAE-2021-1123). The mice
were randomly divided into two groups: a control group and a
dextran sulfate sodium (DSS) group, each with 6 mice. The control
group received drinking water, while the DSS group was given 3%
DSS in drinking water for 7 days (21). On the 8th day, all mice were
euthanized, and their colon samples were collected for
further analysis.

2.15 Hematoxylin and eosin staining

Colon tissue was fixed in 4% paraformaldehyde, subsequently
embedded in dehydrated paraffin, and sectioned at a thickness of
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4.5um. The sections were then stained with H&E. Pathological
alterations in the tissue samples were examined using an optical
microscope (Leica, Wetzlar, Germany).

2.16 Enzyme-linked immunosorbent assay

Accurately weigh the colon tissue to achieve a weight (mg) to
volume (pL) ratio of 1:9. Add nine times the volume of
physiological saline and homogenize the mixture mechanically
under ice water bath conditions to prepare a 10% homogenate.
Centrifuge the homogenate at 2500-3000 rpm for 10 minutes and
collect the supernatant for subsequent ELISA analysis. Following
the manufacturer’s protocol, the concentrations of TNF-o
(mIC50536-1, Mlbio, Shanghai, China) and interleukin-6 (IL-6)
(ml098430, Mlbio, Shanghai, China), were quantified using a
commercially available ELISA kit.

2.17 Immunofluorescence staining for co-
localization validation

The sample slices were fixed in 10% formalin, embedded in
paraffin, dewaxed, and subjected to antigen retrieval. After a one-
hour blocking step at room temperature, the slices were incubated
overnight at 4°C with primary antibodies TIMPI1 (1:200, Absin,
Shanghai, China) and F4/80 (1:50, Abcam, Shanghai, China).
Following three 10-minute washes with PBS, the slices were
incubated for one hour at room temperature with Alexa Fluor
488 and Alexa Fluor 594 secondary antibodies. After another three
PBS washes, an anti-quenching medium was used to mount the
cover glass onto the slide. The sections were then examined under a
fluorescence microscope (Leica, Wetzlar, Germany) at a
magnification of 80 for microscopic analysis and imaging (22).

2.18 Western blot for expression validation

Total protein was extracted from colon tissue samples of human
or mouse origin using RIPA lysis buffer (Beyotime, Nanjing, China)
and quantified using the Bicinchoninic Acid (BCA) protein assay
kit (Beyotime, Nanjing, China). Subsequently, 20 micrograms of
protein were separated on a 10% SDS-PAGE gel and transferred to a
polyvinylidene fluoride (PVDF) membrane. The membrane was
then blocked with 5% (w/v) bovine serum albumin (BSA) or skim
milk at room temperature for 1 hour. Following the blocking step,
the membrane was incubated overnight at 4°C with primary
antibodies targeting GNG5 (1:1000, Absin, Shanghai, China),
TIMPI (1:1000, Absin, Shanghai, China), and GAPDH (1:5000,
Proteintech, Wuhan, China). On the next day, the membrane was
incubated with secondary antibodies (horseradish peroxidase-
conjugated goat anti-rabbit or anti-mouse IgG, 1:5000, Cell
Signaling Technology, Danvers, MA, USA) at room temperature
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for 1 hour. Visualization of the protein bands was performed using
an ECL detection kit and a gel imaging system (Tanon, Shanghai,
China). The intensity of the bands was then quantified using the
densitometric analysis feature of Gel Pro 4.0 software (Tanon,
Shanghai, China) (23).

2.19 Statistical analysis

All statistical analyses were performed using the R
programming language (version 4.3.0), with a significance
threshold set at p < 0.05.

3 Results

3.1 Preliminary processing of single-cell
expression profile data

During the initial processing of single-cell expression profile
data, rigorous adherence to established quality control and
standardized procedures was maintained. Following the screening
process, cells with fewer than 200 captured genes were excluded,
while those meeting the criteria were retained based on indicators
such as nFeature-RNA, nCount-RNA, and percent.mt, resulting in
a dataset of 22,345 high-quality cells. Concurrently, doublets were
removed, and the top 2,000 highly variable genes were selected for
subsequent analysis. The processed data demonstrated favorable
distribution characteristics, as evidenced by violin plots and scatter
plots, thereby establishing a robust foundation for precise cell
subpopulation annotation and gene expression analysis in future
studies (Supplementary Figure S1A, C). This approach effectively
mitigates analysis bias associated with data quality issues.

3.2 Single-cell data cell subpopulation
annotation and ligand-receptor interaction
analysis (Cellchat)

The data underwent standardization, homogenization, and
subsequent analysis using Principal Component Analysis (PCA),
Harmony, and Uniform Manifold Approximation and Projection
(UMAP) (Supplementary Figures S1D-F, Figure 2A). Each subtype
was annotated to one of seven cell categories: CD4™ T cells, B cells,
CD8" T cells, Fibroblasts, Monocytes, Mast cells, and NK cells
(Figure 2A). A bubble plot and histogram were generated to
visualize the expression of classic markers and cell proportions
for these categorie<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>