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Harnessing machine learning to decode plant-microbiome dynamics for
sustainable agriculture
The world’s growing population of nine billion people is facing a severe global food

insecurity crisis, especially in low and middle-income countries (Hong et al., 2022). Improving

crop yield and productivity through structured breeding programs is a key strategy to address

this issue (Yoosefzadeh-Najafabadi et al., 2024). Plants and microbes have evolved intricate

relationships over millennia, providing benefits such as enhanced growth, improved nutrient

uptake, and increased stress tolerance to plants (Trivedi et al., 2022). In recent years, research

has focused on the interplay between the plant microbiome and phenotype to enhance breeding

programs (Nerva et al., 2022; Araujo et al., 2024; Batool et al., 2024).

Traditional analysis methods struggle to handle data from high-throughput

technologies such as meta-genomics, meta-transcriptomics, and meta-proteomics

(Yoosefzadeh Najafabadi and Torkamaneh, 2025), leading to a lack of understanding of

how the microbiome influences plant traits (Trivedi et al., 2022). Advanced data analysis

techniques have been developed to integrate and analyze data from multiple omics sources

effectively (Trivedi et al., 2022). To harness the potential of plant microbiomes, researchers

are increasingly turning to machine learning, a subset of artificial intelligence that enables

computers to learn from data and make predictions (De Souza et al., 2020). Deep-learning

models, a powerful type of machine learning, are particularly effective for analyzing

complex biological data. These models are built from layers of interconnected nodes that

process input data, such as microbial DNA sequences or plant images, to identify patterns

and relationships. Developers must make critical decisions when designing these models,

such as choosing the number and type of layers, selecting the data features to focus on (e.g.,

specific microbial traits), and determining how the model learns from errors (Zhou and

Gallins, 2019). These choices depend on the specific problem, such as detecting crop
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diseases or predicting yield, and are guided by the need for accuracy,

computational efficiency, and applicability to real-world farming

conditions (Zhou and Gallins, 2019).

The development of a machine vision-based method using an

enhanced YOLOv5s model for grading individual peanut pod rot,

which is a major plant disease affecting peanut production were

investigated in a recent paper published by (Liu et al.) YOLO is a

real-time object detection algorithm known for its speed and

efficiency. Unlike traditional methods that repurpose classifiers or

localizers to perform detection, YOLO frames object detection as a

single regression problem, directly predicting bounding boxes and

class probabilities from full images in one evaluation. This model,

which relies on deep-learning principles to process images,

incorporates a Shuffle Attention module to focus on key visual

features and replaces the loss function CIoU with EIoU to improve

accuracy in distinguishing non-rotted and rotten peanuts in

complex backgrounds. The study also highlighted the potential

for future research to enhance prediction performance for different

peanut varieties and to consider factors like rotten kernel rate for

better yield estimation. In another study by Pandiyaraju et al., the

possibility of using a machine vision-based approach for grading

individual peanut pod rot using an improved YOLOv5s algorithm

were investigated. The study addresses the challenges of visually

identifying and classifying peanut pod rot by introducing a Shuffle

Attention module to enhance feature representation and accuracy

in complex backgrounds. The proposed model demonstrated high

recognition rates for non-rotted and rotten peanuts, offering a

promising solution for automated grading of peanut pod rot,

providing advancements in disease resistance evaluation and

germplasm selection in peanut breeding. Another use of YOLO

algorithms was reported by Wang et al. where they enhanced the

identification of potato seedlings in drone-acquired images by

introducing a new lightweight model named VBGS-YOLOv8n. By

utilizing a modified version of YOLOv8n with a lighter backbone

network and incorporating improvements such as a bidirectional

feature pyramid network and GSConv and Slim-neck designs, the

model achieves high precision and detection performance.

Precise identification and enumeration of flax plant organs play

a vital role in acquiring key phenotypic data necessary for selecting

and managing flax varieties. In research conducted by Kai et al., a

Flax-YOLOv5 model is presented to extract phenotypic information

from flax plants. By extending the YOLOv5x network with the

BiFormer module, which integrates bi-directional encoders and

converters to focus on essential features adaptively, the model’s

computational efficiency is enhanced. Zhang et al. introduced a

novel method for detecting small target cotton bolls in cotton fields

using unmanned aerial vehicle (UAV) imagery. By employing the

YOLO SSPD model, which integrates space-to-depth convolution

and a small target detector head, the researchers achieved significant

improvements in boll detection accuracy on UAV imagery. The

model demonstrated high precision and efficiency in detecting

cotton bolls, supporting the cotton production process and

enhancing reliability in yield estimates. In another research

conducted by Tang et al. they tried to overcome the issues related

to low detection accuracy and limited applicability across different
Frontiers in Microbiomes 026
ripeness levels and varieties of large non-green-ripe citrus fruits in

complex environments. The study introduces YOLOC-tiny, a

precise and lightweight model based on YOLOv7 that leverages

EfficientNet-B0 as the feature extraction backbone. To enhance

detection performance, a convolutional block attention module

(CBAM) is integrated into the aggregation network, along with an

adaptive intersection over union regression loss function tailored to

large non-green-ripe citrus characteristics. Furthermore, a layer-

based adaptive magnitude pruning technique is utilized to reduce

redundancy in model parameters. In practical applications such as

fruit-picking robots, YOLOC-tiny achieves a high accuracy of

92.8% at a swift frame rate of 59 frames per second. (Wang et al.)

also introduced an improved target detection and pose estimation

model called PAE-YOLO for identifying Xiaomila fruits in complex

farmland environments. The model combines an EMA attention

mechanism and a DCNv3 deformable convolution module to

enhance feature extraction capability and reduce computational

complexity. Experimental results show that the PAE-YOLO model

outperforms other classic detection models in terms of accuracy,

model size, and computational efficiency. The model achieved an

average mean accuracy of 88.8% and a F1 score of 83.2%, with

improved performance in target detection and posture estimation.

Efficiently detecting tomatoes in complex environments is

important for automating tomato harvesting. The proposed S-YOLO

model by Sun, an enhancement of YOLOv8s, introduces innovations

such as a lightweight GSConv_SlimNeck structure, improved a-
SimSPPF and b-SIoU algorithms, and an SE attention module to

boost detection accuracy and speed (Figure 1). Experimental results

show the S-YOLO model achieves 96.60% accuracy and 74.05 FPS,

outperforming previous models and making it ideal for use in

robotic tomato-picking systems. In a study conducted by Liu et al.,

the YOLO-SwinTF proposed based on YOLOv7, incorporates Swin

Transformer blocks for capturing global visual information and

Trident Pyramid Networks for improved feature communication.

The model uses Focaler-IoU to adjust focus on sample distribution.

Tested on a tomato dataset, it achieved higher recall, precision, F1

score, and AP compared to YOLOv7, showing strong robustness in

challenging conditions and improved detection accuracy without

compromising speed.

Plant diseases pose a significant threat to global agriculture by

negatively impacting crop yield and quality (Yoosefzadeh

Najafabadi, 2021). Despite the challenges associated with

identifying and classifying these diseases, a new approach

leveraging deep learning algorithms and convolutional neural

networks (CNNs) has been proposed to accurately detect and

categorize leaf diseases in economically important crops such as

strawberries, peaches, cherries, and soybeans (Prince et al.). For this

aim, a research focuses on categorizing 10 disease classes for these

crops, comprising 6 diseased classes and 4 healthy classes, using a

CNN-support vector machine (SVM) model (Prince et al.). Various

pre-trained models were employed, with the proposed model

achieving an average accuracy of 99.09%, outperforming

established models like VGG16. The model utilizes Class

Activation Maps generated through the Grad-CAM technique to

visually illustrate detected diseases and produce heatmaps
frontiersin.org
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highlighting the areas requiring classification (Prince et al.). The

FCHF-DETR model developed by Xin and Li, an enhancement of

RT-DETR-R18, addressed the challenges of detecting tomato leaf

diseases with FasterNet, Cascaded Group Attention, and HSFPN.

Using a dataset of 3147 images, the model achieved high precision

and recall while reducing computational demands. In addressing

the challenge of identifying tea plant diseases amidst complex

backgrounds, the ECA-ResNet50 model improved the ResNet50

architecture by using a multi-layer small convolution kernel

strategy and introducing the ECA attention mechanism (Li and

Zhao). This enhances feature extraction, achieving a 93.06%

accuracy rate, a 3.18% improvement over the original model. The

model’s strong generalization capabilities indicate its effectiveness

in mitigating background interference and precisely recognizing tea

disease targets across various plant datasets (Li and Zhao).

Chinese Herbal Medicine (CHM) faces automation challenges

in microscopic identification due to traditional method limitations

and dataset issues. In a study developed by Zhu et al. introduced a

deep learning-based approach, employing segmentation-

combination data augmentation and a shallow-deep dual

attention module to enhance feature focus. The CHMMI

approach achieves high precision and outperforms models such

as YOLOv5 and ResNet, offering a robust solution to modernize

CHM identification. Jia et al. proposed an enhanced DeepLabv3+

model, named DFMA, incorporating a novel PSPA-ASPP structure
Frontiers in Microbiomes 037
for efficient phenotyping analysis. Tested on various datasets, the

model achieved high mIoU scores, outperforming existing models.

It provides detailed segmentation and precise seedling

measurements, offering an automated solution to improve

analysis efficiency and overcome traditional method challenges.

Potatoes are known as one of the staple foods globally, and

timely detection of foliar diseases is essential for healthy yields.

Traditional image classification struggles with inconsistent data, so

a newmodel combines EfficientNet-LITE for feature extraction with

KE-SVM Optimization for classification. The method developed by

Sangar and Rajasekar refined accuracy by cross-referencing

misclassifications, achieving improved accuracy (87.82% for

uncontrolled data and 99.54% for controlled data) while

maintaining computational efficiency. The model’s small size and

low floating point operations per second (FLOPs) make it ideal for

mobile and edge devices, enhancing its practical use in precision

agriculture. Hyperspectral images provide detailed information,

important for classifying corn seed varieties with different internal

structures. Existing methods struggle with feature extraction from

these complex datasets, resulting in low accuracy (Wang et al.). To

overcome this, the spectral-spatial attention transformer network

(SSATNet) is proposed by Wang et al., which utilizes 3D and 2D

convolutions for feature extraction and incorporates a transformer

encoder with cross-attention for global perspective refinement. This

approach improves classification performance on hyperspectral
FIGURE 1

YOLOv8 algorithm model. The network consists of three main components: the Backbone, Neck, and Head. It incorporates several functional
modules, including the detection head (a), convolutional block (b), cross stage partial with bottlenecks (C2f) (c), spatial pyramid pooling–fast (SPPF)
(d), and bottleneck module (e). Source: Reproduced from Sun.
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corn image datasets, demonstrating its effectiveness over

current methods.

Despite the transformative potential of machine learning in

analyzing plant-associated microbiomes, several challenges persist.

High-quality, standardized datasets are often scarce, particularly for

underrepresented crops or regions, limiting model generalizability.

Scalability remains a hurdle, as many models require significant

computational resources, which may not be accessible to small-scale

farmers or researchers in low-resource settings. Additionally,

integrating multi-omics data with environmental and phenotypic

variables across diverse agricultural systems is complex, often leading

to inconsistent predictions. These limitations highlight the need for

robust, adaptable frameworks that can accommodate varied data types

and practical constraints. Looking forward, promising directions

include fostering interdisciplinary collaborations between plant

scientists, data scientists, and farmers to develop user-friendly tools

that bridge research and application. Advances in computational

efficiency, such as lightweight models and edge computing, could

democratize access to machine-learning technologies. Furthermore,

field-based validations and longitudinal studies are essential to ensure

models perform reliably under real-world conditions. By addressing

these challenges and leveraging emerging technologies, the scientific

community can unlock the full potential of plant microbiomes to

enhance crop resilience and global food security.
Author contributions

MN: Conceptualization, Investigation, Project administration,

Resources, Writing – original draft, Writing – review & editing. EK:
Frontiers in Microbiomes 048
Conceptualization, Investigation, Project administration,

Resources, Writing – review & editing. MM: Writing – review &

editing. AE: Writing – review & editing.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Araujo, A. S. F., de Araujo Pereira, A. P., da Costa, D. P., de Medeiros, E. V., Araujo,
F. F., Sharma, S., et al. (2024). Enhancing plant resilience to pathogens through strategic
breeding: Harnessing beneficial bacteria from the rhizosphere for progeny protection.
Rhizosphere 30, 100890. doi: 10.1016/j.rhisph.2024.100890
Batool, M., Carvalhais, L. C., Fu, B., and Schenk, P. M. (2024). Customized plant

microbiome engineering for food security. Trends Plant Science 29(4), 482–494.
doi: 10.1016/j.tplants.2023.10.012

De Souza, R. S. C., Armanhi, J. S. L., and Arruda, P. (2020). From microbiome to
traits: designing synthetic microbial communities for improved crop resiliency. Front.
Plant Sci. 11, 1179. doi: 10.3389/fpls.2020.01179
Hong, H., Najafabadi, M. Y., Torkamaneh, D., and Rajcan, I. (2022). Identification of

quantitative trait loci associated with seed quality traits between Canadian and
Ukrainian mega-environments using genome-wide association study. Theor. Appl.
Genet. 135, 2515–2530. doi: 10.1007/s00122-022-04134-8
Nerva, L., Sandrini, M., Moffa, L., Velasco, R., Balestrini, R., and Chitarra, W. (2022).

Breeding toward improved ecological plant–microbiome interactions. Trends Plant Sci.
27, 1134–1143. doi: 10.1016/j.tplants.2022.06.004
Trivedi, P., Batista, B. D., Bazany, K. E., and Singh, B. K. (2022). Plant–microbiome
interactions under a changing world: responses, consequences and perspectives. New
Phytol. 234, 1951–1959. doi: 10.1111/nph.v234.6

Yoosefzadeh Najafabadi, M. (2021). Using advanced proximal sensing and genotyping
tools combined with bigdata analysis methods to improve soybean yield (Canada:
University of Guelph).

Yoosefzadeh-Najafabadi, M., Hesami, M., and Eskandari, M. (2024). “Machine
learning-enhanced utilization of plant genetic resources,” in Sustainable utilization
and conservation of plant genetic diversity (USA: Springer), 619–639.

Yoosefzadeh Najafabadi, M., and Torkamaneh, D. (2025). Machine learning-
enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in
cannabis. Plant J. 121, e17164. doi: 10.1111/tpj.17164

Zhou, Y.-H., and Gallins, P. (2019). A review and tutorial of machine learning
methods for microbiome host trait prediction. Front. Genet. 10, 579. doi: 10.3389/
fgene.2019.00579
frontiersin.org

https://doi.org/10.1016/j.rhisph.2024.100890
https://doi.org/10.1016/j.tplants.2023.10.012
https://doi.org/10.3389/fpls.2020.01179
https://doi.org/10.1007/s00122-022-04134-8
https://doi.org/10.1016/j.tplants.2022.06.004
https://doi.org/10.1111/nph.v234.6
https://doi.org/10.1111/tpj.17164
https://doi.org/10.3389/fgene.2019.00579
https://doi.org/10.3389/fgene.2019.00579
https://doi.org/10.3389/frmbi.2025.1602938
https://www.frontiersin.org/journals/microbiomes
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Mohsen Yoosefzadeh Najafabadi,
University of Guelph, Canada

REVIEWED BY

Jieli Duan,
South China Agricultural University, China
Jakub Nalepa,
Silesian University of Technology, Poland

*CORRESPONDENCE

Lifeng Liu

liulifeng@hebau.edu.cn

Limin Shao

shaolimin@hebau.edu.cn

†These authors have contributed equally to
this work

RECEIVED 01 January 2024

ACCEPTED 29 March 2024
PUBLISHED 15 April 2024

CITATION

Liu Y, Li X, Fan Y, Liu L, Shao L, Yan G, Geng Y
and Zhang Y (2024) Classification of peanut
pod rot based on improved YOLOv5s.
Front. Plant Sci. 15:1364185.
doi: 10.3389/fpls.2024.1364185

COPYRIGHT

© 2024 Liu, Li, Fan, Liu, Shao, Yan, Geng and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 15 April 2024

DOI 10.3389/fpls.2024.1364185
Classification of peanut pod rot
based on improved YOLOv5s
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Geng Yan1, Yuhong Geng1 and Yi Zhang1
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Improvement and Regulation, Baoding, China, 3Technology Innovation Center of Intelligent
Agricultural Equipment, Baoding, China
Peanut pod rot is one of themajor plant diseases affecting peanut production and

quality over China, which causes large productivity losses and is challenging to

control. To improve the disease resistance of peanuts, breeding is one significant

strategy. Crucial preventative and management measures include grading

peanut pod rot and screening high-contributed genes that are highly resistant

to pod rot should be carried out. A machine vision-based grading approach for

individual cases of peanut pod rot was proposed in this study, which avoids time-

consuming, labor-intensive, and inaccurate manual categorization and provides

dependable technical assistance for breeding studies and peanut pod rot

resistance. The Shuffle Attention module has been added to the YOLOv5s (You

Only Look Once version 5 small) feature extraction backbone network to

overcome occlusion, overlap, and adhesions in complex backgrounds.

Additionally, to reduce missing and false identification of peanut pods, the loss

function CIoU (Complete Intersection over Union) was replaced with EIoU

(Enhanced Intersection over Union). The recognition results can be further

improved by introducing grade classification module, which can read the

information from the identified RGB images and output data like numbers of

non-rotted and rotten peanut pods, the rotten pod rate, and the pod rot grade.

The Precision value of the improved YOLOv5s reached 93.8%, which was 7.8%,

8.4%, and 7.3% higher than YOLOv5s, YOLOv8n, and YOLOv8s, respectively; the

mAP (mean Average Precision) value was 92.4%, which increased by 6.7%, 7.7%,

and 6.5%, respectively. Improved YOLOv5s has an average improvement of

6.26% over YOLOv5s in terms of recognition accuracy: that was 95.7% for

non-rotted peanut pods and 90.8% for rotten peanut pods. This article

presented a machine vision- based grade classification method for peanut pod

rot, which offered technological guidance for selecting high-quality cultivars with

high resistance to pod rot in peanut.
KEYWORDS

peanut pod rot, machine vision, improved YOLOv5s, Shuffle Attention, grading
classification
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1 Introduction

Peanut pod rot, also known as fruit rot, significantly impacts

peanut yield and quality, with occurrences noted in the United

States (Wheeler et al., 2016), Egypt (Elsayed Abdalla and Abdel-

Fattah, 2000) and various regions of China, including Shandong

(Zhang et al., 2016) and Hebei Province (Li et al., 2011). The

disease’s prevalence and severity are leading to increased losses

annually, with affected plots seeing up to a 15% yield reduction and

severely infected areas losing up to 50%. In some cases, it can lead to

total crop failure (He et al., 2022). So far, N. vasinfect (Gai et al.,

2011; Sun et al., 2011), Fusarium sp (Liu et al., 2020), N. striata (Sun

et al., 2012), P. myriotylum (Yu et al., 2019), and R. solani (Chi et al.,

2015) have been identified as the pathogenic bacteria of peanut pod

rot in China. Peanut pod rot poses a severe danger to the safety of

peanut output and quality, and it is critical to strengthen effective

prevention and control of it.

The difficulty in preventing and treating peanut pod rot can be

attributed to the wide range of pathogen hosts (Abd El-aal et al.,

2013) and the current lack of varietal resistance (Walker and Csinos,

1980; Lewis and Filonow, 1990; Besler et al., 2003). Varietal resistance

is frequently improved through breeding, which is an efficient

method of preventing peanut pod rot (Wynne et al., 1991). By

assessing the resistance grade of individual peanut plants to pod

rot, superior germplasm can be identified, facilitating the

development of new peanut varieties. There is comparatively little

research on peanut pod rot in China, with the majority of studies on

the pathology of peanuts being on leaf diseases, bacterial wilt, and

web blotch. At present, the grade classification of individual peanut

pod rot is still usually done manually. Manual categorization is labor-

intensive, time-consuming, and prone to errors like misidentification,

abandonment, and repeated recognition as work time grows, which is

thus not ideal for large-scale grading because of the varied grades of

peanut decay. More precise grade classification can be attained by

machine vision, which can precisely identify and interpret illness

signs in photos, extract important information from them, classify

and assess them in accordance with predetermined criteria.

Additionally, machine vision technology can expedite breeding

operations by increasing the speed and efficiency of grade

classification in comparison to manual categorization.

CNN (Convolutional neural network) has recently achieved

substantial results in the field of object identification (Zaidi et al.,

2022), including Faster R-CNN (Ren et al., 2017), YOLO (Redmon

et al., 2016), SSD (Single Shot MultiBox Detector) (Liu et al., 2016),

etc. Crop identification based on machine vision is more efficient

and less expensive, exhibiting a progressive trend of replacing

manual identification. Machine vision models have excelled in

crop disease detection. Habib et al. (2020) achieved over 90%

accuracy in classifying papaya diseases using K-means clustering

for segmentation and support vector machines for identification.

Harakannanavar et al. (2022) improved this technique by extracting

tomato leaf boundaries with K-means clustering and contour

tracing, employing SVM (Support Vector Machine), CNN, and

K-NN (K-Nearest Neighbors) algorithms for classification, with

CNN attaining an impressive 99.6% accuracy rate. Hua et al. (2022)

introduced a PD R-CNN algorithm for crop disease detection that
Frontiers in Plant Science 0210
incorporates multi-feature decision fusion, consistently delivering

accuracy rates above 85% across various disease types. In citrus

orchards, Pydipati et al. (2005) developed an algorithm using the

CCM (Color Co-occurrence Method) combined with Mahalanobis

distance-based and neural network classifiers, achieving over 95%

accuracy in distinguishing between healthy and diseased citrus

leaves by leveraging hue and saturation features. To address the

challenge of diagnosing visually similar corn diseases in the field, He

et al. (2023) enhanced the Faster R-CNN by integrating batch

normalization and a central loss function, resulting in a model that

surpassed the original Faster R-CNN and SSD in terms of average

recall rate, F1 score, and both accuracy and detection speed. While

these algorithms excel at identifying and labeling lesions, they do

not quantify the number of lesions or provide crop counts. Our

study addresses this gap by utilizing the YOLO series algorithm,

renowned for its object detection capabilities, to recognize

peanut images.

The use of YOLO algorithms in agriculture is now a

comparatively developed technique. By introducing light-

weighting enhancements to YOLOv3, Shen and Zhao (2021)

developed a peanut seed identification model with great accuracy

that can operate in real-time on the CPU. By adding DenseNet

interlayer density, Gai et al. (2023) enhanced the feature extraction

ability of the YOLOv4 backbone network CSPDarknet53. Sozzi

et al. (2022) tested six versions of the original YOLO model, and the

results demonstrated that YOLOv5s can identify green grapes

quickly and accurately. Lawal (2023) upgraded the YOLOv5

backbone and neck networks and changed the loss function to

EIoU to improve the robustness in complicated and ever-changing

situations. Lawal (2021) improved the YOLOv3 model to solve

interference problems such as branch and leaf obstruction, lighting

shifts, and fruit overlapping. In the identification application of

tomatoes, the improved YOLOv3 model exhibited an average

prediction rate of 99.5%. Aran et al. (2016) employed a BPNN

(Back-propagation neural network) for the grade classification of

cashews, reaching an accuracy of 96.8%.

These methodologies can be well coupled with machine vision

in their respective crop fields, providing technological backing for

the feasibility of this study. The primary challenge faced in this

study was to reduce the model size while maintaining recognition

performance, in order to adapt it for embedded systems and enable

effective grading of outdoor peanut pod rot. The challenges include

the scarcity and diversity of data, which complicate the collection of

standardized datasets and model training; the complexity of peanut

pod rot features, especially the high variability at different stages,

presents significant difficulties for accurate identification and

grading; although existing machine vision models perform

excellently in several other domains, specific improvements are

still required to enhance performance for the characteristics of

peanut pod rot.

There is currently no research on grading peanut pod rot using

machine vision. This study aims to integrate lightweight object

detection models into portable devices to support field applications.

Given the high computational resource demands, YOLOv8 is not

suitable for mobile or embedded devices with limited computing

power. In contrast, the YOLOv5 series of algorithms, with their
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smaller size, are more suitable for integration into such embedded

systems. Among the various versions of YOLOv5, the YOLOv5s has

the smallest model size, with a 35% and 70% reduction in size

compared to YOLOv8s and YOLOv8n, respectively, making

YOLOv5s an ideal choice for integration into resource-

constrained devices. To enhance the data reliability and work

efficiency, the future approach to image acquisition will shift from

single-plant per image to multiple-plants per image, guiding the

detection task towards small object detection. With its multi-scale

feature fusion, optimized anchoring mechanism, powerful data

augmentation, and highly customizable architecture, YOLOv5s

has proven to improve the precision of small object detection

while maintaining rapid processing speed. Based on these factors,

the model was selected for optimization to meet the needs of

practical applications.

To facilitate the screening of peanut germplasm resources

resistant to pod rot, this paper proposed a grading algorithm

based on Shuffle Attention and prediction box location

optimization, targeting interference such as peanut pod adhesion,

root stem and leaf occlusion. To begin, using the YOLOv5s

identification model, the Shuffle Attention mechanism was used

to improve the capability of feature representation, location

accuracy of lesion area, and robustness in complex backdrops.

Then, the loss function was enhanced to improve the regression

accuracy of the prediction box and reduce the likelihood of errors

and omissions. Finally, the rotten pod rate was estimated by

calculating the quantity of rotten peanut pods according to the

projected results. The grade classification was carried out based on

the rotten pod rate and the results were further compared with

those of YOLOv5s, YOLOv8n, and YOLOv8s models. Based on this,

the efficiency of the proposed method in this study can be verified.

The rest of this work is structured as follows: Section 2 discusses

the planting environment of peanuts, the establishment procedure

of the dataset, and the design and optimization of the pod rot

grading model. Section 3 introduces relevant tests and compares the

recognition and prediction performance of four models. Section 4

discusses the shortcomings of the proposed method and future

research directions for the grade classification of peanut pod rot.

Section 5 highlights the experimental results of the proposed model,

emphasizing the application value of this study.
2 Materials and methods

2.1 Sample acquisition

The samples were collected from the Experimental Station of

Hebei Agricultural University in Qingyuan District, Baoding City,

Hebei Province (38°80’N, 115°57’E). A cultivar of peanut,

Jinongxian No.1, was taken as the experimental sample in this

study, which was planted in spring, 2023, with ridge plastic film and

mulching, ridge spacing of 85 cm and two rows per ridge. The

average row spacing was 42.5 cm, with a hole spacing of 15.5 cm

and two seeds per hole. The planting density was 60750 holes/acre.

Thirty peanuts were taken as samples from the field to the

laboratory for washing to remove soil on surfaces. To acquire the
Frontiers in Plant Science 0311
dataset, pictures were taken using a SAMSUNG Galaxy S20+ phone

with 64 megapixels. The sampling period was set from September

27th to September 29th, 2023, all of which are sunny days. The

shooting time was set from 12:00 to 14:00 with sufficient light and

16:00 to 18:00 with dim light. All pictures were taken under natural

light, and a total of 2000 peanut images were collected. The shooting

angle was set as either top right or side up, while the shooting

distance was set as long shot, close shot, and ultra-close shot. The

distance from peanuts in the long shot was about 120 cm, the close

shot about 40 cm, and the ultra-close shot about 10 cm.

High-yielding peanut plants tend to stack more frequently

because of the abundance of pods, which makes automatic

identification challenging. It is unavoidable to run into problems

like peanut occlusion and adhesion when taking pictures. Individual

peanut and pod images were captured independently to better avoid

interference in image recognition and enhance the accuracy and

robustness of the model. Figure 1 presents the images of

typical samples.
2.2 Dataset production and
image enhancement

The images obtained by the phone have a pixel size of

4032*1816. Although a large pixel size can improve the training

effect, it significantly affects the training speed. As a result, the pixel

size of the original image was resized to be 1400*631.

Labeling was used to annotate the gathered peanut images.

Mark the non-rotted peanuts (G) and rotten peanuts (R)

individually throughout labeling, and save the files on the

computer in the “xml” format. Before training the object

detection model, five enhancement procedures were randomly

combined and applied to each image to increase the sample size

and boost the training effect. The enhancement treatment included

noise addition, cutout, rotation, cropping, translation, horizontal

flip, and vertical flip. Figure 2 depicts the enhanced image. The

dataset was finally expanded to 12,000 sheets, which promoted the

learning effect of the model on the characteristics of non-rotted and

rotten peanuts. There was a total of 83,850 labels in the dataset,

including 56,730 non-rotted peanuts and 27,120 rotten peanuts.

The dataset was randomly divided into training and testing sets in a

9:1 ratio.
2.3 YOLOv5 model

The YOLOv5 network structure (Qiao et al., 2021) consists of

three main components: Backbone, Neck, and Prediction Head, as

shown in Figure 3. The Backbone network adopts the

CSPDarknet53 architecture, which performs well in feature

extraction and was used to extract rich multi-scale features from

input images. The feature fusion module was used to fuse feature

maps with different scales from the Backbone network. YOLOv5

employed a Feature Pyramid Network (FPN) to fuse features at

different levels through upsampling and downsampling, thereby

improving the accuracy and robustness of object detection. The
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Prediction Head was responsible for generating the bounding box

and category prediction of the object. YOLOv5 adopted a decoupled

multi-level prediction head structure that can effectively handle

objects of different scales, achieving a good balance between the

speed and accuracy of identification. The combination of these

components gave YOLOv5 excellent performance and efficiency in

object detection tasks.
2.4 Improvement of feature extraction
backbone network

This study enhances YOLOv5s to classify the grade of each

peanut and calculate the rotten pod rate. It is required to output the

total number of G and R labels.

Some peanuts grow densely and have problems like adhesion

and occlusion, which makes it challenging to effectively identify

some peanuts separately. Therefore, a Shuffle Attention (SA)

module (Zhang and Yang, 2021) was devised in this study. Shuffle

Attention is a method of describing feature dependencies through

grouping, parallel processing, and information exchange. According

to the schematic diagram shown in Figure 4, SA first divided the

channel dimensions into several subfeatures and processed each

subfeature in both spatial and channel dimensions using the Shuffle
Frontiers in Plant Science 0412
Unit. The channel shuffle operator was then employed to enhance

information exchange between distinct subfeatures after all

subfeatures had been summarized. After that, Shuffle Attention

was placed after each C3 module in the Backbone, which made local

features visible to the attention module. The Shuffle Attention was

performed on each layer to share learning pressure.

The purpose of adding the SA module is as follows:
1. Boost the capacity for feature representation. Through channel

shuffling and self-attention mechanisms, the SA module can

improve the network’s ability to represent features, including

long-distance dependency and contextual information. It can

also help extract features related to peanut pod rot from

images more effectively, such as fine details of lesion areas

and contextual information.

2. Improve the positioning accuracy of lesion areas. The SA

module employs a self-attention mechanism to gather

association information from various positions of the

image. Based on this, the lesion area of peanut pod rot

can be located more precisely, thereby improving

positioning accuracy and minimizing missing and

false identification.

3. Enhance the ability to distinguish between non-rotted and

rotten peanuts. Peanuts differ from one another in their
B

C D

A

FIGURE 1

Original peanut image samples. (A) Individual non-rotted peanut; (B) Individual rotten peanut; (C) Low-yielding plant without occlusion and
adhesion; (D) High-yielding plant with severe occlusion and adhesion.
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Fron
physical characteristics. The channel shuffling and self-

attention mechanism of the SA module can distinguish

between rotten and non-rotted peanuts based on minute

feature differences. YOLOv5s can learn and discriminate

between rotten and non-rotted peanuts, boosting the

network’s ability to differentiate pod quality.
It can be concluded that the SA module has increased the feature

representation ability, the positioning accuracy of the lesion area, and

the capacity to discriminate different disease grades. The introduction

of the SA module to YOLOv5s has promoted the accuracy and

robustness of peanut pod rot identification by improving the

effectiveness of grade classification. Figure 5 depicts the overall

architecture design of adding a SA module to YOLOv5s.
tiers in Plant Science 0513
2.5 Loss function

The loss functions of YOLOv5s include Classification Loss (Lcla),

Localization Loss (Lloc), and Confidence Loss (Lconf ). The total loss

function is the sum of the three, as shown in Equation (1):

Loss = Lcla + Lloc + Lconf (1)

Currently, the Localization Loss used in the YOLOv5s model is

CIoU (Lu et al., 2022). The sample size of non-rotted peanuts in the

dataset was much larger than that of rotten peanuts. The significant

quantity difference resulted in a problem of imbalanced samples.

Therefore, there is a higher requirement for the accuracy of

prediction box regression. The calculation formula for CIoU is as

shown in Equations (2)–(4):
B

C D

A

E F

FIGURE 2

Original and enhanced images. (A) Original image; (B) Translation; (C) Rotation+cutout+noise; (D) Vertical flip+rotation+translation; (E) Rotation
+cutout+noise+translation; (F) Horizontal flip+rotation+translation.
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CIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (2)

v =
4
p2 (arctan

wgt

hgt
− arctan

w
h
)2 (3)

a =
    0,      if  IoU < 0:5

v
1−IoU+v ,      if  IoU ≥ 0:5

(
(4)

Where, IoU refers to the intersection over union between the

ground truth box and the prediction box. r2(b, bgt) refers to the

Euclidean distance between the center points of two boxes. c2 is

the squared≥value of the diagonal length of the minimum closure

region that can contain two boxes at the same time. The ratio of the

two represents the distance between the ground truth box and the

prediction box. av is the influencing factor of the length-width ratio

between the two boxes. w, h, wgt , and hgt represent the width and

height of the prediction box and the ground truth box, respectively.

When there is an inclusion phenomenon between the detection

box and the ground truth box, CIoU overcomes the problems of

degradation to IoU as well as the slow convergence in the horizontal

and vertical dimensions when the two boxes cross. Although CIoU
Frontiers in Plant Science 0614
offers certain advantages over IoU, the difference in aspect ratio

given by v in the formula is not the real difference between width

and height and its confidence, which will impede effective similarity

optimization of the model.

EIoU takes into account the real difference in length, width,

overlapping area, and center point distance (Zhang et al., 2022). It solves

the imprecise definition of aspect ratio based on CIoU by calculating the

difference in width and height instead of aspect ratio, thus boosting

regression accuracy. The imbalance between non-rotted and rotten

peanut samples in BBox regression can be resolved by introducing Focal

Loss. Therefore, EIoU was used in place of CIoU in this study, and the

calculation formula for EIoU is as shown in Equation (5):

EIoU = 1 − IoU +
r2(b, bgt)

c2
+
r2(w,wgt)

c2w
+
r2(h, hgt)

c2h
(5)

Where, cw and ch are the width and height of the bounding

rectangle of the two boxes, respectively. r2(w,wgt )
c2w

and r2(h,hgt )
c2h

reveal

the difference in width and height between the prediction box and

the ground truth box.

The improved model is named YOLOv5s-ES, which was

established based on the YOLOv5s model with an introduction of

the SA module and a replacement of CIoU with EIoU.
FIGURE 3

Network architecture diagram of YOLOv5.
FIGURE 4

Schematic diagram of Shuffle Attention module.
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2.6 Grade classification module

On the one hand, the grade classification of peanut pod rot can

be used to determine the severity of diseases. Different stages of the

disease may necessitate different prevention and control measures,

and the grading aids in the selection of appropriate tactics as well as

the improvement of preventative and control effectiveness. On the

other hand, the grade classification can offer timely awareness of the

disease progression. Taking early response measures is

advantageous for sensible resource allocation and cost reductions.

The grade classification of peanut pod rot can be claimed to increase

targeted and effective prevention and control work, ensure peanut

output and quality, and reduce economic losses.

According to the findings of Wheeler et al. (2016), the following

are the grading criteria for peanut pod rot: Level 1 for no rotten
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fruit, with a rotten pod rate of 0; Level 3 for a rotten pod rate

between 0 and 10%; Level 5 for a rotten pod rate between 10% and

25%; Level 7 for a rotten pod rate between 25% and 50%; and Level

9 for a rotten pod rate larger than 50%.

As shown in Figure 6, an external grade classification module

was put after the Prediction network to perform the grading

function. After executing detect.py, the predicted images were

generated in the exp folder, along with a graduation folder. This

folder includes.txt files with the predicted image information, as

well as statistical data on the number of non-rotted and rotten

peanuts. Running gradation.py after generating the text file

information will generate an.xlsx file in the root directory that

contains the amount of non-rotted and rotten peanuts, as well as the

overall number, rotten pod rate, and grade classification of rotten

peanuts for all predicted images. The numbers of non-rotted and
FIGURE 5

YOLOv5s architecture diagram with added Shuffle Attention module.
FIGURE 6

Implementing the peanut pod rot grading system in PyCharm.
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rotten peanuts are shown in the second and third columns,

respectively. The rotten pod rate is shown in the fifth column.

The grade of individual rotten peanuts, as decided by the grading

criteria, is shown in the sixth column. The formula for calculating

the rotten pod rate is shown in Equation (6):

Rotten pod rate

=
Number Rotten

Number Non − rotted + Number Rotten
(6)

Where, Number Rotten refers to the number of rotten peanuts;

Number Non-rotted refers to the number of non-rotted peanuts.
3 Results

3.1 Model specification

CUDA 11.3 and cuDNN8.0 were the network training

environments used in this study. A 12GB NVIDIA RTX3070Ti

was used as the training accelerator. Facebook’s open-source deep

learning framework Python 1.11.0 was employed as the

development environment, and the programming language used

was Python 3.9.7. Adaptive Moment Estimation (Adam) was used
Frontiers in Plant Science 0816
to automatically modify the learning rate and solve the gradient

vanishing problem, which allowed the model to converge faster and

perform better. Table 1 displays the parameter configuration of the

training model.
3.2 Evaluation indicator

This study utilized two methods, visual evaluation, and

quantitative comparison, to evaluate the grading performance.

Visual evaluation is a common way to visually compare and

evaluate the detection results. In quantitative analysis, the

evaluation indicators are Precision (P), Average Precision (AP),

mean Average Precision (mAP), and Comparison Precision (CP).

The calculations of the three indicators are shown in Equations (7)–

(9):

P =
TP

TP + FP
� 100% (7)

mAP = o
2
n=1AP(n)

2
� 100% (8)

CP =
AS
RS

� 100% (9)

Where, TP is the quantity of label boxes for non-rotted and

rotten peanuts that accurately match the prediction boxes. FP is the

number of prediction boxes containing inaccurate forecasts. P is the

percentage of non-rotted and rotten peanuts that were accurately

identified in each prediction box. AP represents the average

Precision value of each category. mAP represents the average

Precision value of all categories. AS (Automatic Statistics)

represents the number of images where the model correctly
B

C

A

FIGURE 7

Comparison of recognition results of four models. (A) No adhesion; (B) Slight adhesion; (C) Severe adhesion.
TABLE 1 Parameter configuration of training model.

Parameter Value

Num class 2

Epoch 200

Batch size 32

Initial learning rate 0.01
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identifies non-rotted and rotten peanuts in the image. RS (Realistic

Statistics) represents the actual number of images of different types.

CP represents the comparison precision.
3.3 Experiment result analysis

Plant phenotypic detection makes extensive use of object

detection. In order to compare the detection performance of

YOLOv5s-ES on peanut images, this study used three YOLO-

based object detection models, i.e. YOLOv5s, YOLOv8n, and

YOLOv8s. Comparative experiments were carried out under the

conditions of no adhesion, slight adhesion, and severe adhesion to

validate the improving effect of the model. Comparative

experiments aid in understanding the differences in performance

between different models and drive future improvements to object

detection algorithms. Simultaneously, code availability and

repeatability were taken into consideration to assure the

dependability and reproducibility of the experiment. Figure 7

depicts the identification results of each model under various

adhesion situations.
Frontiers in Plant Science 0917
Figure 7A depicts a peanut image with no adhesion. It can be seen

that the four models all had good recognition performance, achieving

proper recognition with no omissions or errors. Figure 7B depicts a

peanut image with slight adhesion, and the recognition ability of the

three unimproved models all dropped. YOLOv8n missed two

peanuts, and YOLOv5s missed one. Although YOLOv8s

distinguished all the peanuts, the accuracy of the prediction box

was low, and a single peanut pod was not marked. Figure 7C depicts a

peanut image with severe adhesion. The identification ability of the

other three models was considerably diminished, with the exception

of the YOLOv5s-ES model. YOLOv8n missed 4 peanuts, with low

prediction accuracy. YOLOv5s missed 3, with a relatively high

accuracy of the prediction box. Although YOLOv8s recognized all

the peanuts, the accuracy of the prediction box was extremely low,

with cases of repeated and incorrect recognition. The YOLOv5s-ES

model recognized all the peanuts correctly, with only one prediction

box being inaccurately labeled. It can be concluded that the improved

model YOLOv5s-ES effectively solved the problems that other three

algorithms encountered when predicting images, and had the

feasibility of grading peanut pod rot in practical applications.

The SA module was introduced to the YOLOv5s-ES model and

the loss function CIoU was replaced with EIoU. Ablation

experiments were carried out on the YOLOv5s-ES model to

confirm the efficacy of the enhanced model. The experimental

outcomes are displayed in Table 2, the mAP values represent the

average results of five-fold cross-validation.

The mAP of the model increased by 2.5% after the SA module

was introduced to the YOLOv5s backbone network, as shown in

Table 2. The mAP increased by 1.3% after improving the loss

function of the original model. After incorporating both

improvements into the model, the value of mAP reached 92.4%,
frontiersin.o
TABLE 2 Data comparison between the three enhanced models
and YOLOv5s.

No. Added SA Module EIoU mAP/% P-value/%

1 × × 86.2 /

2 √ × 88.7 0.544

3 × √ 87.5 3.759

4 √ √ 92.4 0.002
FIGURE 8

Visual comparison between the three enhanced models and YOLOv5s.
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6.2% higher than that of YOLOv5s. In order to be more convincing,

this study verified whether the differences between the algorithm

variants were statistically significant and calculated the

corresponding P-values. The results showed that the P-values of

the three variants of the algorithms were less than 5%, which proved

that each improvement was significantly correlated to the

improvement of the detection performance. Based on this, the

effectiveness of the improved model can be verified.

This study aims to enhance the performance of a peanut image

recognition model, particularly under complex background

conditions, through two key improvements. To assess the

effectiveness of these enhancements, three groups of high-yield

peanut images, which demonstrated superior recognition

capabilities in preliminary experiments, were selected as cases.

These images encompass rich background information and typical

challenges such as mutual occlusion and environmental noise.

The comparison of the visualization results of the ablation

experiment in Figure 8 reveals the effectiveness of the model

improvement. By integrating the SA (Spatial Attention) mechanism,

themodel focusesmore on key areas when processing peanut images in

complex backgrounds, significantly reducing the missed detection and

false detection rates of the model, especially in cases where peanut
Frontiers in Plant Science 1018
leaves and roots are mixed or adhered to each other, improving the

accuracy and robustness of recognition. Furthermore, themodel adopts

the EIoU loss function instead of the traditional IoU loss, which

increases the comprehensive consideration of the target shape, size,

and center point, improves the accuracy of bounding box positioning,

and is crucial for the accurate classification of peanut fruit rot.
3.4 Comparative experiments between
multiple algorithms

Based on the RS values and AS values of the four models, the CP

values were calculated to validate the identification performance of

the enhanced model on a solitary image. The AS value indicates the

number of images in which the algorithm properly distinguished

non-rotted and rotten peanuts in the image. The RS value indicates

the number of images with severe adhesion, slight adhesion, and no

adhesion. One hundred and fifty images of peanuts were chosen at

random for the validation dataset of the experiment, with 50 images

for each adhesion type. Four models - YOLOv5s, YOLOv5s-ES,

YOLOv8n, and YOLOv8s - were used to identify the 150 images.

The numbers of images for non-rotted and rotten peanuts that can
TABLE 3 Comparison accuracy value comparison of different algorithms.

YOLOv5s YOLOv5s-ES YOLOv8n YOLOv8s

AS1 RS CP1/% AS2 RS CP2/% AS3 RS CP3/% AS4 RS CP4/%

No 50 50 100 50 50 100 49 50 98 50 50 100

Slight 42 50 84 46 50 92 40 50 80 42 50 84

Severe 38 50 76 46 50 92 36 50 72 39 50 78

Total 130 150 86.67 142 150 94.67 125 150 83.33 131 150 87.33
fron
FIGURE 9

Statistical graph of non-rotted and rotten peanuts identified by four different models.
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be successfully identified via the four models were recorded as AS1,

AS2, AS3 and AS4. The corresponding CP1, CP2, CP3 and CP4 were

calculated as well. Table 3 displays the comparison precision values

of the four models.

Due to the relatively simple identification of peanut images with

no adhesion, more attention was paid to comparing the prediction

results of images with slight and severe adhesions. The comparison

precision of the four models was 84%, 92%, 80%, and 84%, for the

images with slight adhesion and 76%, 92%, 72%, and 78% for the

images with severe adhesion, respectively. When it came to

prediction performance, YOLOv5s-ES outperformed the three

unaltered models with an improvement in the case of slight

adhesion and a significant improvement in the case of

severe adhesion.

To confirm the enhanced model’s capacity to distinguish

between non-rotted and rotten peanuts, 100 peanut images

containing a higher proportion of rotten peanuts - a total of 563
Frontiers in Plant Science 1119
non-rotted ones and 337 rotten ones - were chosen for

identification using the four models. Statistical analysis was

performed to determine how many rotten and non-rotted

peanuts were identified, and the results were illustrated in Figure 9.

Figure 9 illustrates that YOLOv8s identified non-rotted peanuts

with a high recognition rate of 90.76%, but only 83.98% for rotten

peanuts, the recognition rate of YOLOv5s is basically the same as

YOLOv8s. This is due, in part, to an imbalance in the sample size

between non-rotted and rotten peanuts, which limited the

information available for model learning about rotten peanuts.

However, some rotten pods shared coloration with rotten stems,

roots, and leaves, making identification more challenging.

YOLOv8n had a moderate recognition rate and a significantly

weaker capacity to distinguish between rotten and non-rotted

peanuts, this model had an overall recognition rate of about 83%.

The above data is essentially in line with the comparison precision

values listed in Table 3. The enhanced YOLOv5s-ES model can

identify rotten peanuts with a recognition rate of 90.8% and non-

rotted ones of 95.74%. The enhanced model considerably enhanced

the capacity to identify rotten peanuts and had a slight

improvement in identifying non-rotted ones.

To further illustrate the superiority of the algorithm proposed in

this study, four models were compared for mAP change curves on

the same dataset. The mAP change curve during training is

displayed in Figure 10. It can be seen that YOLOv5s, YOLOv8n,

YOLOv8s, and YOLOv5s-ES had mAP values of 85.7%, 84.7%,

85.9%, and 92.4%, respectively. The convergence rates of all four

curves were incredibly quick, and the three unimproved models

achieved fitting with around 75 epochs. Excessive data fitting may

result in unstable model parameters. When there is some

randomness or fluctuation in the data, the model may update

parameters excessively to accommodate these changes, resulting

in inconsistent model performance. Instability may affect the

model’s reliability and interpretability, resulting in poor

performance in practical applications since it cannot catch

potential patterns and overall trends in the data. After 100

epochs, the mAP of YOLOv5s-ES hit 91.4% and tended to
FIGURE 10

Comparison curve of mean Average Precision values of
different algorithms.
FIGURE 11

Comparison of Precision (%) for five-fold cross-validation of
four models.
FIGURE 12

Comparison of Recall (%) for five-fold cross-validation of
four models.
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stabilize, eventually achieving 92.4%. It can be concluded that the

enhanced model leveraged the likelihood of capturing real patterns

and overall trends in the data, rather than unnecessarily responding

to the noise and intricacies of the training data. In this way, the

generalization ability of the model can be promoted on unknown

data, making it more suitable for practical applications.

To address the potential inaccuracies in assessment results that

might arise from a single dataset split, a five-fold cross-validation

study was conducted on four different models. Precision and Recall

values from five separate trials were collected and averaged. The
Frontiers in Plant Science 1220
results of the five-fold cross-validation for both metrics are

presented in Figures 11 and 12. The data in the figures reveal

only minor fluctuations in the model’s recognition capabilities

across the five randomly partitioned datasets, confirming the

model’s robust generalization performance in identifying peanut

fruit rot disease. The Precision of the improved model YOLOv5s-ES

was 93.8%, 7.8%, 8.7%, and 7.3% higher than YOLOv5s, YOLOv8n,

and YOLOv8s, respectively. The Recall value was 90.7%, which

increased by 5.7%, 7.7%, and 4.8% than the other three models,

respectively. As shown in Table 4.
4 Discussions

Peanut pod rot causes fruit degradation and yield loss, making

prevention and management difficult and potentially transmittable.

Grade classification of peanut pod rot allows for the evaluation of

disease resistance, the selection of outstanding germplasm

resources, and the promotion of breeding improvement. This

study suggests an object detection approach based on YOLOv5s-
FIGURE 13

Two types of misidentification present in the improved model.
TABLE 4 Comparison of precision and recall metrics across four models
using five-fold cross-validation.

Model YOLOv5s
YOLOv5s-

ES
YOLOv8n YOLOv8s

Precision
(%)

86.0 93.8 85.1 86.5

Recall
(%)

85.0 90.7 83.0 85.9
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ES in response to the drawbacks of manual classification, which can

successfully increase the efficacy and precision of pod rot grading

and eventually replace conventional manual classification.

Although this study is of great significance in addressing pod rot

grading, there are certain concerns that require additional research

and analysis.

The improved YOLOv5s-ES model may encounter

misidentification during prediction. Two typical examples are

shown in Figure 13.

In Figure 13A, the model accurately identified and labeled the

rotten peanut, but incorrectly identified the peanut as a non-rotted

one and repeated labeling, leaving the model unable to differentiate

between the non-rotted and rotten types of the peanut. One

reasonable explanation on the one hand is the insufficient

debugging of the model parameter threshold, which makes it

hard for the model to reliably identify whether this type of peanut

belongs to non-rotted or rotten. Based on this, improvement can be

achieved through parameter adjustment, threshold modification,

etc. On the other hand, some peanut pods have a moderate degree

of decay, making it hard to distinguish between the non-rotted and

rotten types solely based on phenotypic sampling. In this case,

semantic segmentation methods can be introduced. Specifically, the

diseased area of each peanut is calculated, the proportion of which

can be used to determine whether the pod belongs to a rotten one.

In this way, the problem can be solved using the judgment results of

semantic segmentation combined with object detection algorithms.

In Figure 13B, a peanut pod was mistakenly identified as two

pods, meaning that the model labeled a valencia type peanut as a

double-kernal one and a single-kernal one during prediction. This

error tends to happen when the sample size is insufficient. During

training, the model identified a small number of valencia type

peanuts, so that when new valencia type peanuts appeared, the

entire pod could not be correctly identified and was misjudged as

two or more double-kernal and single-kernal pods. Increasing the

sample size, especially the images of valencia type peanuts, is an

effective way to solve such recognition errors.

Furthermore, after being infected with peanut pod rot, some

peanut pods only form a thin coating of decay on the surface, leaving

the kernels unaffected. As a result, the impact on peanut yield

includes the rotten kernel rate. The degree of pod rot was used to

classify peanut pod rot in this study, and the rotten kernel rate was

not considered. As a result, the projected data has a poor practical

application value in yield estimation, which is a shortcoming of

machine vision-based pod rot grade classification. In order to ensure

that the design scheme can be used effectively in more aspects, greater

attention may be paid to the grading of peanut pod rot under the dual

factors of rotten pod rate and rotten kernel rate.

Moreover, due to the differences in pod rot among various

peanut varieties and the lack of relevant samples, this study cannot

predict whether the model’s recognition capability for images of

other peanut varieties will decrease. In order to overcome the

aforementioned drawbacks, we will expand the sample size of

different kinds of peanuts, conduct transfer learning across

different varieties with the model , combine semantic

segmentation methods, and enhance the model’s performance.

First, we will ascertain whether a single peanut has pod rot. Then,
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the peanut pods in the image will be annotated using object

identification methods to improve the accuracy of the results. To

further increase prediction accuracy and visibility, it is feasible to

introduce an instance segmentation algorithm and confirm its

benefits in extreme peanut adhesion scenarios. Additionally, data

on peanut pod rot in complex environments should be analyzed

concurrently to strengthen the resilience of the model and make it

more applicable to peanut plants in various conditions

and cultivars.
5 Conclusions

Starting with the relevance of grading individual peanut pod rot,

this study employed the Jinongxian No.1 peanut as the

experimental object in the field management planting base. To

address the inadequacies of the current grade classification for

peanut pod rot, a machine vision-based method was proposed

using a modified loss function and feature extraction backbone

network of the YOLOv5s algorithm.

(1) The SA module was introduced to the YOLOv5s network as

the main framework to overcome problems like adhesion and

obstruction in the dense development of certain peanut plants,

which are vulnerable to interference from roots, stems, and leaves.

The feature extraction ability of the network for identifying non-

rotted and rotten peanuts was enhanced by substituting the EIoU for

the CIoU in the original network in response to the sample imbalance

problem caused by the fact that the number of non-rotted pods is

much higher than the number of rotten pods in actual situations.

(2) With a Precision value of 93.8%, the improved model

YOLOv5s-ES outperformed YOLOv5s, YOLOv8n, and YOLOv8s

by 7.8%, 8.4%, and 7.3%, respectively. Its mAP value was 92.4%,

outperforming YOLOv5s, YOLOv8n, and YOLOv8s by 6.7%, 7.7%,

and 6.5%, respectively. With a non-rotted pods recognition rate of

95.74% and a rotten pods recognition rate of 90.8%, the comparison

precision reached 94.67%, satisfying the requirements of

exact recognition.

(3) With the addition of a grade classification module after the

Prediction network, this study realized the calculation of the

number of non-rotted and rotten peanuts as well as the rotten

pod rate in the images. The results were then written into a.txt file.

The grading of pod rot can be completed by adding the grade

classification module to the YOLOv5s-ES model, which allows the

database to read text files and record the number of non-rotted and

rotten peanuts, the rotten pod rate, and the grading of pod rot.

In conclusion, the improved model proposed in this study will

help the automatic grade classification of individual peanut pod rot

in practical prediction applications, facilitating in the screening of

superior germplasm resources and peanut breeding.
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Mechanical and Electrical Engineering College, Gansu Agricultural University, Lanzhou, Gansu, China
Introduction: Accurate detection of potato seedlings is crucial for obtaining

information on potato seedlings and ultimately increasing potato yield. This study

aims to enhance the detection of potato seedlings in drone-captured images

through a novel lightweight model.

Methods: We established a dataset of drone-captured images of potato

seedlings and proposed the VBGS-YOLOv8n model, an improved version of

YOLOv8n. This model employs a lighter VanillaNet as the backbone network in-

stead of the original YOLOv8n model. To address the small target features of

potato seedlings, we introduced a weighted bidirectional feature pyramid

network to replace the path aggregation network, reducing information loss

between network layers, facilitating rapid multi-scale feature fusion, and

enhancing detection performance. Additionally, we incorporated GSConv and

Slim-neck designs at the Neck section to balance accuracy while reducing

model complexity.

Results: The VBGS-YOLOv8n model, with 1,524,943 parameters and 4.2 billion

FLOPs, achieves a precision of 97.1%, a mean average precision of 98.4%, and an

inference time of 2.0ms. Comparative tests reveal that VBGS-YOLOv8n strikes a

balance between detection accuracy, speed, and model efficiency compared to

YOLOv8 and other mainstream networks. Specifically, compared to YOLOv8, the

model parameters and FLOPs are reduced by 51.7% and 52.8% respectively, while

precision and a mean average precision are improved by 1.4% and 0.8%

respectively, and the inference time is reduced by 31.0%.

Discussion: Comparative tests with mainstream models, including YOLOv7,

YOLOv5, RetinaNet, and QueryDet, demonstrate that VBGS-YOLOv8n

outperforms these models in terms of detection accuracy, speed, and

efficiency. The research highlights the effectiveness of VBGS-YOLOv8n in the

efficient detection of potato seedlings in drone remote sensing images, providing

a valuable reference for subsequent identification and deployment on

mobile devices.
KEYWORDS

potato seedling detection, UAV remote sensing, YOLOv8n, lightweight, VanillaNet,
GSConv, Slim-Neck
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1 Introduction

In recent years, the global cultivation area for potatoes has

remained stable at approximately 20 million hectares, with China’s

contribution consistently exceeding 25% (Shi and Xu, 2023). This

makes potato cultivation vitally important for food security, economic

growth, and poverty alleviation, particularly in densely populated

developing countries such as China (Lun et al., 2023). A critical phase

in the potato growth cycle is the seedling stage, where accurate

detection and counting of seedlings are crucial for predicting yields

and achieving high-quality production (Shi et al., 2022). However,

traditional manual monitoring methods are costly, inefficient,

inaccurate, and often lack representativeness, which impedes the

timely and effective implementation of replanting strategies (Lu

et al., 2023). The advent of drones, characterized by their agility,

compact size, and cost-effectiveness, has increasingly attracted the

attention of researchers (Saifizi et al., 2019; Li S. et al., 2023). Utilizing

drones in conjunction with deep learning for the automatic detection

of crop seedlings presents a simple yet effective method that

significantly reduces labor costs and facilitates automation.

Drone platforms, through real-time imagery captured by onboard

cameras, have found extensive applications in various fields for target

detection (Osco et al., 2020). However, detecting targets from a drone’s

perspective often involves dealing with complex environmental

backgrounds and small, sometimes blurry, targets. Additionally, the

hardware limitations of drones can restrict the complexity of

deployable models, leading to less than optimal detection outcomes

(Wu et al., 2010; Sishodia et al., 2020). Deep learning algorithms for

target detection are generally categorized into two main types: single-

stage algorithms, such as Centernet, RetinaNet, SSD, and YOLO,

which offer good real-time performance but lower accuracy,

particularly in detecting small targets; and two-stage algorithms, like

R-CNN, Fast R-CNN, and Faster R-CNN, which provide higher

accuracy but at the cost of speed, making them unsuitable for rapid

crop information acquisition by drones. The YOLO series, known for

its superior performance, has been extensively applied in detection

tasks across various domains (Liu et al., 2018; Liang et al., 2022). A

current research challenge, and the focus of this study, is leveraging

YOLO for accurate and efficient crop seedling detection from a drone’s

perspective while maintaining a manageable model size.

The YOLO series models have been broadly applied to drone

image datasets. For instance, research by Jianqing Zhao et al. (Zhao

et al., 2021) introduced an enhanced YOLOv5 model with an added

micro-scale detection layer for wheat ear detection in drone images,

achieving a 94.1% accuracy rate, a 10.8% improvement over the

standard YOLOv5. However, this method is complex and time-

consuming, and the limited memory and processing power

available on drones make efficient crop detection challenging.

Wang et al. (Wang F et al., 2023) addressed the characteristics of

small targets in drone images by embedding a small target detection

structure (STC) in the Neck of YOLOv8, capturing comprehensive

global and contextual information and incorporating a global

attention module (GAM), which significantly improved

performance but also increased the parameter count. Li et al. (Li

Y. et al., 2023) introduced the concept of Bi-PAN-FPN in YOLOv8

to enhance feature fusion across different scales and utilized the
Frontiers in Plant Science 0225
GhostblockV2 structure, achieving an accuracy improvement but

falling short compared to other models. Addressing the challenges

of insufficient drone computing power and the issue of small targets

in drone imagery, Shijie Li (Li, 2023) proposed modifications to the

YOLOv5 model, reducing the model’s parameter count from 7.5M

to 4.2M, albeit with a 1.7% decrease in detection accuracy. To

address the balance between detection accuracy and model size,

scholars have conducted relevant research, proposing the use of

lightweight convolutional approaches aimed at reducing

computational load during the convolution process. For example,

Liu et al. (Liu et al., 2022) proposed an improved YOLOv4 model

based on MobileNetv2 as the backbone network for orange fruit

recognition in orchards, which reduced the model size by 197.5 M

and achieved an average recognition accuracy of 97.24%, though the

detection time was only reduced by 11.39ms. Rihong Zhang et al

(Zhang et al., 2023). introduced a YOLOV4 pineapple seedling

heart detection model incorporating a lightweight attention

mechanism module CBAM, which reduced the total parameter

count by 70% and achieved a recognition accuracy of 95.5%, but the

improvement in detection speed was not significant.

While previous methods have shown effectiveness in detecting

and counting crops in the field, the unique challenges posed by

potato seedlings in UAV imagery—such as their dense distribution,

significant overlap, small size, and the complexity of their

background, result in a higher likelihood of both false positives

and missed detections. These issues compromise the precision of

potato seedling detection. Furthermore, the constraints imposed by

UAV hardware platforms complicate the task of balancing

detection accuracy, speed, and the efficient use of hardware

resources. Notably, there is a scarcity of detection methods that

are both efficient and specifically tailored to potato seedlings. To

address these challenges, this paper introduces a novel lightweight

algorithm, VBGS-YOLOv8n. By employing VanillaNet, a network

characterized by its simplicity and reduced number of layers, as the

backbone network in place of the original YOLOv8n model, we

significantly decrease the model’s computational complexity. We

enhance the model’s feature fusion capabilities by substituting the

PANet path aggregation network with a bidirectional feature

pyramid network (BiFPN). Additionally, integrating GSconv

convolution within the YOLOv8n’s neck and replacing all C2F

networks with the VoV-GCSP module further boosts the model’s

performance. This innovative approach facilitates the efficient

detection of potato seedlings in UAV remote sensing images,

representing a significant advancement in the field.
2 Materials and methods

2.1 Potato seedling image acquisition

Potato seedling drone images were collected at Xinghuaping

Village, Tonganyi Town, Longxi County, Dingxi City, Gansu

Province. The images were captured using a quadcopter drone

(DJI Phantom 4 Advanced) and DJI GS Pro. The drone’s RGB

camera captured images vertically from above with a shutter speed

of 2 seconds. To prevent image blurring, a hover-and-capture
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method was employed at each waypoint. The front and side

overlaps were set at 80% and 70% respectively. The images had a

resolution of 4056×3040 pixels and were saved in JPG format. The

image collection took place in mid-May and mid-June 2022,

between 10:00-12:00. To enhance the model’s ability to generalize

for potato seedling detection in various environments, images were

collected at drone heights of 5 meters and 10 meters. A total of 409

original images were collected, as shown in Figure 1, covering

different heights, growth stages and plots.
2.2 Dataset construction

The process of potato seedling RGB image detection using the

enhanced VBGS-YOLOv8n model is illustrated in Figure 2. In this

study, Pix4Dmapper software was utilized for rapid stitching and

inspection of drone images in the experimental area. During the

stitching process, location information was obtained using the GPS

system of the drone platform at the time of image capture.

Pix4Dmapper then matched approximately 30,000 tie points per
Frontiers in Plant Science 0326
original image based on the flight’s POS (Position and Orientation

System) data. Subsequently, automatic aerial triangulation

technology was employed to calculate the true position data and

stitching numbers of the images, leading to the creation of a point

cloud model. Following this, the positions and stitching parameters

of the original images were automatically optimized and calibrated

to generate a Digital Orthophoto Map (DOM) depicting the entire

experimental plot (Figure 2B). The process resulted in orthophoto

images at heights of 5 meters and 10 meters (Figure 2C) for two

distinct periods. These orthophoto images were then cropped to

obtain the dataset images required for model training and

prediction (Figure 2D). A total of 3089 cropped images were

obtained, each with a pixel size of 800×800. To ensure model

detection accuracy, 2195 images were selected after screening out

unsuitable ones to form the dataset for this study. Manual

annotation of the dataset using the LabelImg annotation tool was

performed (Figure 2E). Subsequently, the improved model (Figure

2F) was trained, and the best model after training was used to detect

images in the experimental plots (Figure 2G), yielding the detection

results (Figure 2H). During annotation, objects were labeled with
A

B

C

FIGURE 1

Overview of experimental area and captured images. (A) The geographical location of Longxi County, Ding xi City; (B) Location of the study area;
(C) Images of potato seedlings at different heights and growth stages of UAVs.
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bounding boxes that best fit them and assigned the label “seedling,”

resulting in the generation of XML files in VOC format. Refer to

Figure 3 for annotated illustrations. Subsequently, the XML files

were converted to TXT files required by YOLO using a script. The

dataset images and their corresponding TXT files were randomly

divided in an 8:1:1 ratio into training set (1754 images), validation

set (220 images), and test set (220 images) to adhere to the standard

coco format, completing the dataset construction.
2.3 Original YOLOv8n

As a one-stage object detection algorithm, YOLOv8 introduces a

more lightweight network structure compared to its predecessors,

maintaining high accuracy while achieving faster inference speeds.

Moreover, YOLOv8 incorporates advanced training methods and

techniques, leading to shorter training times and quicker

convergence rates. In this study, to balance high detection accuracy

with minimal storage usage and enhanced recognition speed for future

deployment on mobile devices, the research opts for the YOLOv8n

detection model known for its low complexity and lightweight design.

The YOLOv8n network architecture comprises three main

components: the input layer (Input), the backbone network
Frontiers in Plant Science 0427
(Backbone), the neck network (Neck), and the detection head

(Head). The input layer preprocesses image inputs for the model,

while the backbone network, based on CSPDarkNet-53 and

utilizing the C2f module, extracts features from input images to

generate multi-scale feature maps. The backbone structure is shown

in Figures 4A, B is a CBS structure diagram. The C2f module in

YOLOv8 provides feature fu-sion functionality, which can enhance

the performance of object detection, as illustrated in Figure 4C. The

convolution utilizes CBS, comprising three components: a 2D

convolution, 2D BatchNorm, and SiLU activation function. The

SiLU activation is computed by multiplying its input with the

sigmoid function, i.e., xs (x). In the case of SPPF, a CBS

convolutional layer is followed by three consecutive Maxpooling

operations. The feature map without Maxpooling and the feature

map obtained after each subsequent Maxpooling operation are

concatenated to achieve feature fusion. The structure is shown in

Figure 4D. The Neck layer adopts the PANet structure, merging

feature maps from various scales to capture more global and

semantically rich features, thereby enhancing object detection

accuracy and recall. The Detect module employs a Decoupled

Head, separating regression and prediction branches to predict

features across three dimensions, providing class and positional

information for the network’s predictions.
FIGURE 3

An example of a labeled image used for model training.
A

B

D E

F

G H

C

FIGURE 2

Workflow for image preprocessing and model prediction. (A) images taken by UAVs; (B) Stitching the images taken by the UAV using Pix4d software;
(C) Orthophoto generated; (D) The large image is cropped into a small image (608 × 608 pixels) for model input; (E) annotated image; (F) model
training; (G) The result image of the model prediction output; (H) A magnified view of the output image.
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In the YOLOv8 model, the loss function plays a crucial role in

training the network to accurately predict object bounding boxes

and class probabilities. The loss function used in YOLOv8 is a

combination of localization loss, confidence loss, and classification

loss. The localization loss in YOLOv8 is typically calculated using

metrics like Mean Squared Error (MSE) or Smooth L1 Loss. It

penalizes the model for inaccuracies in predicting the bounding box

coordinates (center coordinates and width/height) compared to the

ground truth bounding box. By minimizing the localization loss, the

model learns to accurately predict the spatial location and size of

objects in the image, improving the precision of object localization.

Next, YOLOv8 utilizes binary cross-entropy loss to compute the

target confidence loss, assessing the model’s confidence accuracy by

comparing predicted target probabilities with ground truth labels.

Optimizing the confidence loss enables the model to distinguish

objects from the background, enhancing its object detection

capabilities. Additionally, the classification loss evaluates the

model’s category classification accuracy using binary cross-

entropy loss. The calculation formula for classification loss is

shown in Equation (1). About Regression Loss, YOLOv8

introduces a Distance-based Focal Loss (DFL) to complement

Anchor-Free methods, focusing on optimizing probabilities for
Frontiers in Plant Science 0528
the nearest left and right positions to the label y, facilitating

quicker convergence on target positions and neighboring regions’

distributions. DFL is calculated as shown in Equation 2.

Losscls = −o
M

c=1
yo,clog(po, c) (1)

where yo,c is an indicator. 1 if sample o belongs to category c,

and 0 vice versa. po is the probability that the model predicts that

sample o belongs to category c.

DFLðSi, Si+1) = −((yi+1 − y) log (Si) + (y − yi) log (Si+1)) (2)

The detailed conversion process of transforming labels into

DFL format is as follows: y = distance from the center to a specific

edge/current downsampling ratio.

The Bounding Box Loss calculates the sum of squared

differences between the predicted and actual coordinates, as

depicted in Equation 3.

Lossbbox  =o
N

i=1
 (xi  −x

∧
i)
2 (3)

where xi represents the coordinates of the true bounding box,

and x̂ i represents the coordinates of the predicted bounding box.
A B

C

D

FIGURE 4

The backbone structure of the yolov8 model and the diagram of each module. (A) the overall structure of the backbone; (B) the structure of the
CBS module; (C) the C2f module; (D) and the SPPF module.
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The loss function is used as the optimization goal to guide the

model to reduce the gap between the prediction box and the real

box during the training process.
2.4 Improvement of the YOLOv8n model

2.4.1 VBGS-YOLOv8n model structure
The YOLOv8n object detection model has been widely applied in

the agricultural field due to its excellent recognition accuracy and

speed (Sapkota et al., 2023; Wang G et al., 2023). However, the

detection of potato seedlings poses some challenges as it involves

small target detection tasks. For instance, when deploying the

detection task to mobile devices, it is necessary to consider the

lightweight nature of the network structure and the reduction of

device power consumption. Additionally, due to the small size and

overlapping nature of potato seedlings captured by UAVs, there is a

risk of missed detections and low accuracy in small target detection.

Therefore, this paper proposes a VBGS-YOLOv8n deep learning

algorithm based on the YOLOv8n, aiming to achieve higher detection

accuracy and a more lightweight model design to better recognize

potato seedlings. First, lightweight improvements were made to the

backbone, followed by the introduction of the weighted bidirectional

feature pyramid network (BiFPN) at the Neck layer, along with the

GSConv network, replacing the c2f module with VoV-GSCSP.

The structural design of the proposed VBGS-YOLOv8n model, as

depicted in Figure 5, involves replacing the CSPDarkNet network of the

original YOLOv8 with the lightweight VanillaNet algorithm. The

backbone network comprises the initial 4 layers of VBGS-YOLOv8n,

starting with a 640*640 RGB image input. With a stride of 4 and double

downsampling, spatial feature extraction and data normalization

convolution processing are applied, resulting in a halved image
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resolution. This processed image is then fed into the VanillaNet

backbone network. Within the backbone network, stages 1, 2, and 3

utilize max-pooling layers with a stride of 2 to reduce spatial dimensions

while retaining crucial feature information, doubling the channel count

at each layer. Stage 3, representing the third layer of the network,

undergoes an 8x downsampling to yield an image with 512 channels.

Stage 4 maintains the channel count without increase, following an

average pooling layer. The final layer consists of a fully connected layer

for classification output with a stride of 1. Each layer in the VanillaNet

backbone network employs 1x1 convolution kernels to preserve feature

map details efficiently. The input features are downsampled to

appropriate sizes, resulting in image resolutions of 160*160, 160*160,

and 80*80 at Layer 1, Layer 2, and Layer 4, respectively.

The 1st, 3rd, and 4th layers serve as inputs to the neck structure. In

contrast to the PANet bidirectional pathway network used in the

original YOLOv8n network’s neck structure, the VBGS-YOLOv8n

model integrates a BiFPN with adjustable weights in each concat

module of the neck network for feature extraction. The BiFPN

facilitates more efficient multi-scale feature fusion. Furthermore, the

c2f modules at each layer are replaced with the cross-level subnetwork

VoV-GSCSP module. Additionally, GSConv convolution is applied at

the 11th and 14th layers of VBGS-YOLOv8n, aiming to reduce

computational costs and maintain inter-channel connections

effectively. Through a process of layer-wise upsampling and feature

concatenation, diverse scale feature information is fused. By the 16th

layer of the model, the number of output channels in the image is

increased to 1024.Subsequently, the three output branches from the

neck are directed to the detection head for loss computation or result

inference. YOLOv8 introduces a decoupled head, replacing the coupled

head of previous YOLO models. This decoupled head separates the

regression and prediction branches, utilizing the integral form

proposed in the distribution focal loss strategy for the regression
FIGURE 5

The network architecture diagram of the improved VBGS-YOLOv8n.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1387350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1387350
branch. The decoupled head exhibits faster convergence and improved

performance. In VBGS-YOLOv8n, the head network generates images

of sizes 80×80, 40×40, and 20×20 for potato seedling detection.
2.4.2 Lightweight backbone network
VanillaNet, a lightweight neural network architecture that

emphasizes simplicity, was introduced by Huawei’s Noah’s Ark Lab

(Chen et al., 2023). By avoiding complexities like excessive depth,

shortcuts, and self-attention mechanisms, VanillaNet achieves a

balance of simplicity and performance. Overcoming the inherent

complexity of traditional deep networks, VanillaNet emerges as an

optimal choice for environments with limited resources. Its

streamlined architecture not only enhances comprehension but also

provides an effective solution for efficiently deploying potato seedling

detection in drone-based remote sensing applications.

VanillaNet is characterized by the absence of convolution layers

and branches in its network structure, as depicted in Figure 6. The

network comprises a backbone, main body, fully connected layers, and

5 activation functions. The design principle follows a gradual reduction

in resolution and an increase in channel numbers, without

incorporating shortcuts, attention mechanisms, or other computations.

For the backbone, a 4×4×3×C convolution layer is utilized with a

stride of 4, following common configurations from [18,31,32], to

transform 3-channel images into features with C channels. In stages

1, 2, and 3, max-pooling layers with a stride of 2 are used to decrease

size and feature maps while doubling the channel count. Stage 4

maintains the channel count unchanged by employing average

pooling. The final fully connected layer is dedicated to producing

classification outcomes. Each convolution layer employs a 1×1 kernel

to retain feature map details while minimizing computational costs.

Batch Normalization (BN) is applied after each layer to streamline the

training process and enhance the simplicity of the architecture. This

approach achieves an optimal trade-off between speed and accuracy,

showcasing the excellence of VanillaNet.

While VanillaNet’s simple structure is easy to implement, its

limited nonlinearity hinders network performance enhancement.

To tackle this challenge, the authors introduce a deep training

strategy and incorporate a series-inspired activation function to

boost the network’s nonlinear expressive capacity.

The deep training strategy involves splitting the network into two

convolution layers, increasing the network depth only during training,

and merging them during inference. This approach reduces network

computation and complexity. The split convolution layers will utilize
Frontiers in Plant Science 0730
the following Equation 4 activation function:

A
0
(x) = (1 − l)A(x) + lx (4)

When training converges, the two convolutional layers without

non-linear activation are merged into one layer, achieving the effect

of deep training and shallow inference.

(1) Activation Function Inspired by Series: Concurrently

stacking activation functions can significantly enhance the non-

linearity of the activation function. Representing the single

activation function of the input in the neural network as A(x)

Equation 5:

As(x) =o
n

i=1
aiA(x + bi) (5)

In the equation, n represents the number of stacked activation

functions, while ai, bi are the scale and bias of each activation to

avoid simple accumulation. To further enrich the sequence, given

an input feature x ∈ RH�W�C where H, W and C are its width,

height, and number of channels, the activation function is

formulated as Equation 6:

As(xh,w, c) = o
i,j∈ −n,nf g

ai,j,cA(xi+h,j+w,c + bc) (6)

From the equation, it can be found that when n = 0, the

proposed method can be regarded as a general extension of

existing activation functions.

The computational complexity expression of the proposed

activation function O(CONV)compared to its corresponding

convolutional layer is shown in Equation 7).

O(CONV)
O(SA)

=
H �W � Cin � Cout � K2

H �W � Cin � n2
=
Cout � k2

n2
(7)

In the equation,Cin represents the input channels, Cout represents

the output channels, and k represents the kernel size. Taking the

fourth stage of VanillaNet-B as an example, where Cout = 2048, k = 1,

n = 7, the ratio is only 84, indicating that the computational cost of

this activation function is much lower than that of a convolutional

layer. Therefore, the use of these two non-linear solutions can

significantly improve the detection accuracy of VanillaNet.

2.4.3 BiFPN feature fusion
Feature fusion is a critical aspect in object detection, aiding in the

extraction of information from various scales to enhance detection
FIGURE 6

The architecture of the VanillaNet-6 consisting of only 6 convolutional layers.
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accuracy. The traditional Feature Pyramid Network (FPN) structure

serves as a method for feature fusion, integrating a top-down pathway

to merge multi-scale features from levels 3 to 7 (P3 to P7), as depicted

in Figure 7. Expanding on FPN, the YOLOv8 feature extraction

network incorporates PANet (Figure 7B), which introduces an

additional bottom-up pathway aggregation network to FPN

(Figure 7A). However, these fusion methods can lead to information

loss or feature redundancy (Wang Y et al., 2023). This study introduces

an efficient BiFPN (Figure 7C) structure that leverages effective

bidirectional cross-scale connections and weighted feature fusion. By

adjusting feature map scales through upsampling and downsampling

operations, different scale features are fused to preserve finer details,

thereby improving small object detection accuracy.

BiFPN (Tan et al., 2020) is a network structure that efficiently

incorporates repeated bidirectional cross-scale connections and

weighted feature fusion. In comparison to PANet, BiFPN

eliminates nodes with single input edges that do not merge

different features, making it lighter and faster in inference speed

with fewer parameters. Additionally, an extra edge is introduced

between the original input and output nodes at the same layer to

enhance the fusion of additional image features. By leveraging

bidirectional repeated connections for information fusion, feature

details are preserved, enhancing accuracy in small object detection.

BiFPN utilizes a weighted feature fusion mechanism that

differentiates and merges various input features through learning,

adapting to different resolutions, and addressing feature loss issues

caused by simple overlaying of feature maps. It serves as a

straightforward and efficient feature fusion approach. BiFPN adopts

the Fast Normalized Fusion method, akin to Softmax, mapping each

input value to the range [0, 1], thereby improving training speed and

efficiency, enhancing data consistency and comparability for better

analysis and decision-making, as depicted in Equation (8).

O =oi
wi*Ii

e +ojwj
(8)
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In the equation, Ii represents the input features, wi and wj

denote the weights obtained during network training, e = 0.0001.

2.4.4 GSConv network and Slim-Neck
design paradigm

In order to achieve real-time object detection on mobile devices,

reducingmodel complexity, enhancing detection speed, andmaintaining

high accuracy are essential for the task of potato seedling image detection

captured by drones. GSConv+Slim-Neck is a lightweight network

proposed for a vehicle-mounted edge autonomous driving computing

platform (Li et al., 2022). This network design aims to facilitate efficient

object detection to meet real-time application requirements. GSConv

strikes a balance between model accuracy and speed, enabling model

lightweighting while preserving accuracy. Introducing GSConv provides

a design paradigm called Slim-Neck, which utilizes a one-time

aggregation method to create the cross-level subnetwork (GSCSP)

module VoV-GSCSP. This module reduces computational and

network structural complexity, thereby enhancing detection accuracy.

Hence, this paper adopts this network to reduce model complexity,

enhance detection speed, and maintain high accuracy for mobile

deployment, offering an effective solution.

On edge devices, achieving real-time lightweight detection with

large models poses challenges. Traditional Depthwise Separable

Convolution (DSC) models struggle to achieve high accuracy due

to the separation of channel information during computation. This

separation diminishes the feature extraction and fusion capabilities of

DSC, hindering lightweight high-precision detection. Therefore,

GSConv is proposed, merging standard convolution with

Depthwise Separable Convolution. The principle involves

downsampling with a regular convolution, followed by DWConv

depthwise convolution to fuse the results of SCconv and DSCconv,

and finally introducing shuffle operations to combine corresponding

channels. The structure is illustrated in Figure 8.

GSConv has a noticeable impact on lightweight models. Given that

the Neck receives feature maps with maximal channel capacity and

minimal spatial dimensions, this paper employs GSConv within the
A B C

FIGURE 7

Feature network design (A) FPN network; (B) the principle of PANet; (C) is BiFPN schematic.
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Neck. With reduced redundant information in the feature map at this

stage, compression is unnecessary, allowing the attention module to

operate more effectively, leading to a reduction in model layers and

inference time.

Introducing GSConv provides a Slim-Neck design paradigm.

Initially, this design replaces SC with the lightweight convolution

method GSConv in the Neck. GSConv aims to closely match the
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convolutional computing capability of SC while reducing

computational costs. Subsequently, GSbottleNeck is introduced

based on GSConv. Similarly, a one-time aggregation method is

utilized to design the cross-level subnetwork (GSCSP) module

VoV-GSCSP, which simplifies computational and network

structural complexity, enhancing detection accuracy. The structure

is depicted in Figure 9. This paper replaces the C2f module in the
FIGURE 8

The structure of the GSConv module.
A B

FIGURE 9

Schematic diagram of Slim-neck paradigm design structure. (A) The structures of the GS bottleneck module; (B) The VoV-GSCSP modules.
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YOLOv8 structure with the VoV-GSCSP module to enhance

detection performance. After integrating the BIFPN+GSConv

+Slim-Neck module, the detection results are illustrated in Figure 10.

The detection results demonstrate that the model incorporating

BIFPN and GSConv+Slim-Neck achieves high confidence scores when

detecting images of seedlings in different environments and growth

stages. Nearly all seedling targets are successfully identified, highlighting

the feasibility and effectiveness of this improvement method.
2.5 Model training and evaluation metrics

2.5.1 Experimental environment
The configuration of the experimental environment and the settings

of relevant parameters during the trial process are presented in Table 1.

2.5.2 Evaluation metrics
This study employs Precision (P) in Equation 9, Recall (R) in

Equation 10, Mean Average Precision (mAP) as model accuracy

evaluation metrics as in Equation 11, and uses parameters,

computation, (i.e., the number of floating-point operations), and

Detection Time to measure model complexity and speed. The

calculation formulas are as follows.
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P =  
TP

TP + FP
� 100% (9)

R  =  
TP

TP + FN
� 100% (10)

mAP  =  
o
N

i=1 

Z 1

0
P(R)dR

N
� 100% (11)

TP represents the number of correctly detected potato sprouts in the

image; TN represents the number of instances where the model predicts a

negative class and the actual label is also negative. FP stands for the count of

false detections as potato sprouts; FN indicates the number ofmissed targets;

AP is the Average Precision, represented by the area enclosed by the P-R

(e = 0:0001) curve and the coordinate axis; N denotes the number of

categories. In this study, only potato sprouts are detected, hence N = 1.
3 Results and analysis

3.1 VBGS-YOLOv8n ablation experiment

The VBGS-YOLOv8n model proposed in this study adopts a

three-step improvement strategy. Firstly, the BiFPN bidirectional
FIGURE 10

Effect of the detection results after the model is introduced into the BiFPN+GSConv+Slim-neck module.
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feature pyramid network replaces the PANet pathway aggregation

network to enhance feature fusion capabilities and improve small

object detection accuracy. Secondly, the GSConv+Slim-Neck is

integrated into the Neck section to further enhance model

performance. Lastly, to achieve model lightweighting, the main

network in the Backbone layer is replaced with the VanillaNet

network. To validate the effectiveness of the VBGS-YOLOv8n

model in potato seedling detection, this study conducted 7 sets of

ablation experiments, with results shown in Table 2. Additionally,

the training process curve of the model is illustrated in Figure 11.

From the data in Table 2, it is evident that introducing the

BiFPN module alone in the original model improves the model’s

detection accuracy, recall rate, and mAP value by 1.1, 0.5, and 0.8

percentage points, respectively, albeit with a slight increase in model

parameters. When adopting the Gsconv+SlimNeck design

paradigm alone, compared to the original YOLOv8n, the model

with this module shows an increase of 1.4 and 0.6 percentage points

in accuracy and mAP value, respectively. Additionally, the model’s

parameter count decreases by 11.3%, computational load

significantly reduces, and inference speed improves by 13.8%,

indicating a notable enhancement in detection accuracy and

model performance. Furthermore, replacing the Backbone

network of the original YOLOv8n model with the lightweight

VanillaNet network substantially reduces model parameters and

computational load, with a 0.2 percentage point increase in

accuracy. However, this change leads to a decrease of 0.3 and 0.1

percentage points in recall rate and mAP, respectively. This is

attributed to VanillaNet’s lightweight design, which greatly

reduces the number of convolutional layer channels and network
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depth, resulting in decreased performance when handling complex

scenes or small targets, thereby impacting recall rate and mean

average precision in object detection.

By integrating three improvement strategies, the final outcome

of this study is the VBGS-YOLOv8n model. Compared to the

original YOLOv8n model, the VBGS-YOLOv8n model shows

improvements of 1.4 and 0.8 percentage points in accuracy and

mAP, respectively. Additionally, it significantly reduces model

parameters and computational load while enhancing inference

speed. Specifically, the parameter count is only 48.3% of the

original model, the computational load is 47.2% of the original

model, and the inference speed increases by 45.0%. However, due to

the adoption of the lightweight VanillaNet network, the model’s

recall rate decreases by 0.6 percentage points. Nevertheless,

considering the study’s focus on potato seedling monitoring, the

slight decrease in recall rate, alongside the improved mAP and

reduced model complexity, can be deemed negligible in terms of

overall effectiveness.
3.2 Comparison of detection before and
after improvement

The original YOLOv8n network and the improved VBGS-

YOLOv8n model were compared on a test set of 220 images. One

image of potato seedlings was randomly selected from three

different scenarios with varying heights and environmental

conditions for demonstration of the detection performance, as

shown in Figure 12.

The detection results demonstrate the superiority of the VBGS-

YOLOv8n model in recognizing various sizes and shapes of potato

seedlings, surpassing the original YOLOv8n model significantly.

The VBGS-YOLOv8n model can almost entirely identify targets,

successfully avoiding instances of missed detections and even

detecting overlapping potato seedlings independently. In contrast,

the original YOLOv8n model exhibits noticeable issues with missed

detections, particularly for smaller potato seedlings in multi-target

scenarios, and performs poorly in identifying overlapping

potato seedlings.
TABLE 1 Experimental environment and related parameter settings.

Training Environment Details

Programming Python3.9

Deep learning framework Pytorch 2.0

GPU NVIDIA GeForce RTX3060

Operating system Windows11

img size 640 x 640
TABLE 2 Comparison of ablation experiment performance.

Model BiFPN
Gsconv+
slimNeck

VanillaNet
Precision

(%)
Recall
(%)

mAP
(%)

Parameters
(M)

Complexity
(GFLOPs)

Inference
time (ms)

baseline 95.7 96.8 97.6 3157200 8.9 2.9

A √ 96.8 97.3 98.4 3157212 8.9 3.0

B √ 97.1 96.8 98.2 2801619 7.4 2.5

C √ √ 97.0 97.8 98.5 2801631 7.4 2.7

D √ 95.9 96.5 97.5 1644579 5.0 2.3

E √ √ 96.4 96.7 98.0 1644591 5.0 2.4

VBGS-
YOLOv8n

√ √ √ 97.1 96.2 98.4 1524943 4.2 2.0
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3.3 Comparative horizontal experiment

To further explore the superiority of the VBGS-YOLOv8n

network in potato seedling detection, experimental comparisons

were conducted between the VBGS-YOLOv8n model and

mainstream object detection Network algorithms such as

RetinaNet, QueryDet, YOLOv5 and YOLOv8n, as shown in Table 3.

From the table data, it is evident that compared to mainstream

models, the VBGS-YOLOv8n network surpasses current mainstream

detection models in all performance metrics, with a significant
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improvement in mAP. More importantly, while maintaining high

performance, the VBGS-YOLOv8n model has the lowest parameter

count and computational load, further highlighting its superiority and

efficiency. RetinaNet, despite using FPN and a new focal loss function to

enhance model efficiency and run on low-end devices, faces accuracy

issues in small object detection and has high computational load, making

it unsuitable for this experiment. QueryDet, a small object detection

model that accelerates feature pyramid object detector inference speed

using a novel query mechanism, employs the Sparse Cascaded Query

(CSQ) mechanism to obtain high-resolution feature maps while

minimizing computation on background regions. Comparing

QueryDet to RetinaNet in the table data, QueryDet shows

improvements in all metrics, with optimal parameter and

computational load compared to other mainstream models, with

computational load only 3.54 points higher than the VBGS-YOLOv8n

model in this study. However, its detection accuracy is 8.3 percentage

points lower than the model in this study. YOLOv5, another model in

the YOLO series widely used for its good performance and detection

results, shows comparable detection accuracy to the method in this study

but with increased complexity and lower inference speed, making it

unsuitable for mobile deployment and potato seedling detection.

YOLOv7-tiny, the latest algorithm in the YOLO series, achieves decent

accuracy with fewer parameters and computational load, but its FPS is

48% lower than the proposed new method, indicating slower model

detection speed. The experimental data comparison underscores the

superiority and efficiency of the VBGS-YOLOv8n network, which not

only meets the accuracy requirements but also features a more

lightweight network architecture suitable for potato seedling detection

scenarios. The comparative detection performance of different models is

illustrated in Figure 13.
FIGURE 11

Curve of the model improvement training process.
FIGURE 12

Comparison effect of the model before and after the improvement on the detection of potato seedlings at different heights and at different stages.
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The results indicate that the improved lightweight model

outperforms other object detection models in recognizing potato

seedlings at different growth stages and heights. It accurately locates

potato seedlings, which are dense small targets. In the images, the

detection labels and confidence scores were removed for clarity, but

in the experiment, detections exhibited high confidence. The

predicted bounding boxes fully encapsulate the potato seedlings,

even identifying overlapping instances without any missed

detections. In the case of the first set of photos with fewer targets

at a height of 5 meters, where the potato seedlings are larger and less

dense, both YOLOv5 and YOLOv7 in the YOLO series can detect all

targets effectively. However, YOLOv7 shows some instances of

redundant bounding boxes, indicating slightly inferior detection

performance compared to YOLOv5. For small targets at the

corners, QueryDet exhibits some missed detections. In the
TABLE 3 Comparison of experimental results of different
network models.

Model
mAP
(%)

Parameters
(×106 M)

Complexity
(GFLOPs)

FPS

RetinaNet 82.1 28.27 236.28 29.8

QueryDet 90.3 6.61 7.74 37.4

YOLOv5s 95.8 7.20 16.80 68.3

YOLOv7-
tiny

94.3 8.90 13.1 51.5

YOLOv8n 97.9 3.16 8.7 90.1

VBGS-
YOLOv8n

98.4 1.52 4.2 98.4
FIGURE 13

Detection results of potato seedlings in different environments by different models.
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detection results for the other two environments, it is evident that

the proposed VBGS-YOLOv8n model has the fewest missed

detections and minimal redundant bounding boxes. This clearly

demonstrates the excellent performance and accuracy of the VBGS-

YOLOv8n model in recognizing potato seedlings.
4 Conclusion

This study introduces an enhanced VBGS-YOLOv8n network,

aimed at addressing the challenge of detecting potato seedlings in drone

remote sensing imagery. The model utilizes the lightweight VanillaNet

algorithm as its backbone, effectively reducing the model’s complexity.

It incorporates a BiFPN to improve the retention of detailed features,

thereby enhancing the accuracy of small target detection. GSconv

convolution is employed in the neck to maintain overall accuracy, and

the VoV-GSCSP network replaces all C2f modules in the original

YOLOv8n algorithm’s neck, significantly reducing the model’s

parameter count. Experimental validation demonstrates that VBGS-

YOLOv8n exhibits exceptional performance in detecting small targets,

with accuracy and mAP reaching 97.1% and 98.4%, respectively.

Compared to the original YOLOv8 model, there is a 1.4% increase in

accuracy and a 0.8% increase in mAP, alongside a 31.0% reduction in

computation time. The parameter count is 48.3% of the original model,

and the computational load is only 47.2%, with significant reductions

in both missed and false detections. To verify its effectiveness,

comparative analyses with leading models in the field affirm its

superior detection accuracy, efficiency in parameter usage, and

overall performance. The VBGS-YOLOv8n model achieves an

optimal balance between detection speed, accuracy, and size,

rendering it ideal for deployment on agricultural mobile devices.

Future work will focus on optimizing the model for practical drone

applications and broader datasets, ensuring the feasibility of VBGS-

YOLOv8n and its detection capabilities for similar small target crops,

offering technical support for precision agriculture.
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Improved tomato leaf disease
classification through adaptive
ensemble models with
exponential moving average
fusion and enhanced weighted
gradient optimization
Pandiyaraju V.1, A. M. Senthil Kumar1, Joe I. R. Praveen1*,
Shravan Venkatraman1, S. Pavan Kumar1, S. A. Aravintakshan1,
A. Abeshek1 and A. Kannan2

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India,
2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
Tomato is one of the most popular and most important food crops consumed

globally. The quality and quantity of yield by tomato plants are affected by the impact

made by various kinds of diseases. Therefore, it is essential to identify these diseases

early so that it is possible to reduce the occurrences and effect of the diseases on

tomato plants to improve the overall crop yield and to support the farmers. In the

past, many research works have been carried out by applying the machine learning

techniques to segment and classify the tomato leaf images. However, the existing

machine learning-based classifiers are not able to detect the new types of diseases

more accurately. On the other hand, deep learning-based classifierswith the support

of swarm intelligence-based optimization techniques are able to enhance the

classification accuracy, leading to the more effective and accurate detection of

leaf diseases. This research paper proposes a new method for the accurate

classification of tomato leaf diseases by harnessing the power of an ensemble

model in a sample dataset of tomato plants, containing images pertaining to nine

different types of leaf diseases. This research introduces an ensemble model with an

exponential moving average function with temporal constraints and an enhanced

weighted gradient optimizer that is integrated into fine-tuned Visual Geometry

Group-16 (VGG-16) and Neural Architecture Search Network (NASNet) mobile

training methods for providing improved learning and classification accuracy. The

dataset used for the research consists of 10,000 tomato leaf images categorized into

nine classes for training and validating the model and an additional 1,000 images

reserved for testing the model. The results have been analyzed thoroughly and

benchmarked with existing performance metrics, thus proving that the proposed

approach gives better performance in terms of accuracy, loss, precision, recall,

receiver operating characteristic curve, and F1-scorewith values of 98.7%, 4%, 97.9%,

98.6%, 99.97%, and 98.7%, respectively.
KEYWORDS

deep learning, machine learning, image processing, ensemble learning, classification
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1 Introduction

In the dynamic landscape of modern agriculture, where crop

health plays a pivotal role in global food production, the precise and

timely management of plant diseases is an ongoing challenge.

Among these agricultural adversaries, leaf diseases emerge as

intricate and multifaceted adversaries with distinct morphological

manifestations. The science of leaf disease classification, a

subdomain of plant pathology, is at the forefront of efforts to

combat these detrimental afflictions. This research aspires to

contribute to the field of leaf disease classification through the

incorporation of pioneering technologies, namely, artificial

intelligence (AI) and machine learning. The criticality of early

detection and accurate classification in disease management

cannot be overstated. Therefore, this study seeks to harness the

potential of advanced algorithms, including convolutional neural

networks (CNNs) and optimization into deep learning

methodologies, to revolutionize the existing approaches to leaf

disease diagnosis. At its core, this research addresses the

challenges posed by leaf diseases by developing a novel

classification system. By utilizing image recognition and deep

learning techniques, this system aims to empower agriculture

practitioners and plant pathologists with a sophisticated tool for

disease identification. The impact of this system extends to many

applications including crop health, reaching into the realms of

global food security, sustainable agricultural practices, and

environmental conservation.

Deep learning is an extension to the machine learning methods

such as neural networks in AI that trains the computer system to

recognize the patterns similar to the human brain. Deep learning

models are trained to recognize even complex patterns found in

images, text, videos, and voice data to perform accurate

classifications and predictions. Deep learning algorithms perform

both feature extraction and feature selection automatically without

needing human effort as required in machine learning algorithms

for training the software based on the algorithms. A CNN is one of

the most important and fundamental deep learning neural network-

based algorithms used for image recognition as it provides

promising and accurate results in computer vision tasks. It has

many architectural implementations including LeNet, AlexNet,

Visual Geometry Group (VGG), GoogLeNet, and ResNet.

Time and space are important parameters to be considered for

prediction-oriented decision-making systems. The temporal and

spatial data on the disease growth in tomato leaves need time series

analysis on image data with temporal reasoning. Moreover,

prediction using time series analysis must focus on the direction

of sequence that can be performed more effectively using machine

learning-based classifiers. Moving average methods support to

smoothen the time series analysis by identifying the temporal

data patterns more effectively. Moreover, smoothing or filtering

helps to eliminate the random variations that occur in the plotted

time series data. An exponential (weighted) moving average method

that applies a simple recursive procedure under the hood provides

flexibility to the algorithm.

Despite the presence of many works on tomato plant leaf

disease detection that are found in the literature, most of the
Frontiers in Plant Science 0240
existing systems use a machine learning approach for

classification without any optimizer and temporal analysis.

Therefore, it is necessary to employ manual preprocessing or to

apply additional machine learning-based classification algorithms

or clustering algorithms when performing effective feature

extraction and feature selection. Moreover, the existing systems

that use time series data are not designed to give higher importance

to the most recent data and also do not focus on temporal reasoning

by applying temporal constraints. Moreover, the convergence of the

existing deep learning algorithm employed in the detection of

tomato leaf diseases is not supported by an optimization

algorithm. Finally, ensemble-based classification algorithms are

not employed in the classification process to enhance the

detection accuracy. Therefore, it is necessary to propose a new

ensemble classifier with an optimization component and a temporal

data analysis component.

In this paper, an ensemble model is proposed with an

exponential moving average (EMA) function with temporal

constraints based on interval analysis and an enhanced weighted

gradient optimizer (EWGO) in which the gradient optimizer is

enhanced with temporal rules and that is integrated into VGG-16

and Neural Architecture Search Network (NASNet) CNN

architectures. VGG-16 is a fine-tuned model with a 16-layer

depth developed by the VGG that consists of 13 convolution and

max pooling layers with three fully connected layers, and it applies

stride 2. The learning rate is fixed here as 0.1. The regression-based

and binary classification-based loss functions are used in this work

to reduce the errors. Moreover, the NASNet mobile training

methods are integrated in this ensemble model for identifying the

diseases in tomato leaves by providing improved learning and

classification accuracy.

NASNet is also a CNN model that consists of two types of cells,

namely, the normal and the reduction cells. The EMA method is

used in this ensemble model since it gives more weightage to the

current data in the temporally oriented time series data. Moreover,

the Plant Village dataset is used in this work to carry out the

experiments for testing the ensemble model proposed in this paper.

Moreover, the Plant Village dataset is a publicly available dataset

consisting of 54,305 images from which 1,000 images related to

tomato leaves have been extracted and used in this work for training

and testing the system. The main advantages of the proposed

ensemble model are the increase in classification accuracy and the

reduction in error rate in the detection of tomato leaf diseases.

The main motivation for this research work is that the

profession of agriculture is one of the most vital in every world

economy. It is the main source of resources in our country.

Nowadays, leaf disease has a great impact on the productivity of

vegetables. If we cannot control the disease, then it can greatly affect

the harvest. These problems provide great motivation in finding out

the origin of the disease at an earlier stage to help the tomato plants

grow healthily and increase their yield. Another motivation for this

research is that it addresses the challenges posed by leaf diseases by

developing a novel classification system. By utilizing image

recognition and deep learning techniques, this system aims to

empower agriculture practitioners and plant pathologists with a

sophisticated tool for disease identification. The impact of this
frontiersin.org
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system extends beyond crop health, reaching into the realms of

global food security, sustainable agricultural practices, and

environmental conservation.

In this work, the Plant Village dataset is used to carry out the

experiments for testing the model proposed in this paper.

Moreover, the Plant Village dataset is a publicly available dataset

consisting of 54,305 images from which 1,000 images related to

tomato leaves have been extracted and used in this work for training

and testing the system. The Plant Village dataset provides data to

detect 39 different plant diseases. Moreover, the dataset contains

61,486 images of plant leaves with backgrounds. The dataset was

designed using six different augmentation techniques in order to

create more diverse datasets with different background conditions.

The augmentations that have been used in this process include

scaling, rotation, injection of noise, gamma correction, image

flipping, and principal component analysis to perform

color augmentation.

The main contributions of this paper are as follows:
Fron
• Proposal of an ensemble model using VGG-16 and NASNet

mobile training deep learning models with an

EMA function.

• Effective time series analysis using the CNN-based deep

learning classifier along with an EWGO.

• Use of the Plant Village dataset for validation.

• Evaluation using suitable metrics.
The research unfolds in the following sequence: Section 2

provides a comprehensive exploration of the taxonomy and

intricacies of leaf diseases. Section 3 is a detailed methodology

section highlighting the technical aspects of image processing and

machine learning, and the revelation of a state-of-the-art deep

learning classification system designed to improve the accuracy

and efficiency of leaf disease identification. In section 4,

performance assessment of the proposed approach and results are

compared with existing techniques. We conclude the research paper

in section 5.

The VGG-16 architecture is a deep CNN designed for image

classification tasks. It was introduced by the VGG at the University

of Oxford. VGG-16 is characterized by its simplicity and uniform

architecture, making it easy to understand and implement.
2 Literature survey

There are many works on tomato leaf detection, machine

learning (Uma et al., 2016; Anusha and Geetha, 2022;

Harakannanavara et al., 2022), deep learning (Haridasan et al.,

2023; Sankareshwaran et al., 2023; Yakkundimath and Saunshi,

2023), optimization techniques, data mining (Das and Sengupta,

2020; Demilie, 2024), regression analysis, image analysis (Ganatra

and Patel, 2020; Ngugi et al., 2021), and prediction techniques that

are found in the literature. Mustafa et al. (2023) proposed a five-

layer CNN model for detecting plant diseases using leaf images. A

total of 20,000 images were used to train the model. This model

detects the pepper bell plant leaf disease with better accuracy. The
tiers in Plant Science 0341
results are evaluated in terms of accuracy, precision, and recall, and

F1-scores are computed. The model performs better than state-of-

the-art models. Seetharaman et al. (Seetharaman and Mahendran,

2022) presented a region-based CNN model to detect a banana leaf

disease using Gabor extraction. Images are preprocessed by

histogram pixel localization with media filter. The segmentation

part is done with region-based edge normalization. Feature

extraction is performed using the novel method Gabor-based

binary patterns with CNN. A region-based CNN helps in

detecting the disease area. The results are evaluated and they

perform better than CNN, DCNN, ICNN, and SVM models in

terms of precision, recall, accuracy, and sensitivity.

Nerkar et al. (Nerkar and Talbar, 2021) proposed a method to

detect leaf disease using a two-level nonintrusive method. This

model combines generative adversarial network and reinforcement

learning. Cross dataset learning is used. CNN is combined with

GAN for better results. Re-enforcement learning retrains the GAN

using confidence scores. Classification results are evaluated and

results are higher than other models. Mukhopadhyay et al. (2021)

proposed a non-dominated sorting genetic algorithm for tea leaf

disease detection. Image clustering is the main idea of this model.

PCA is used for feature reduction and multi-class SVM is used for

disease detection. Five various datasets of tea leaf are used in the

work. The proposed model provides better accuracy than

traditional models.

Vallabhajosyula et al. (2022) proposed a transfer learning-based

neural network for plant leaf disease detection. In this work, pre-

trained models were used. The deep ensemble neural network is

used along with pre-trained models. Transfer learning and data

augmentation are used for parameter tuning. The results are

evaluated and provide higher accuracy with lesser number of

computations. Huang et al. (2023) discussed a tomato leaf disease

detection model using the full convolutional neural network (FCN)

with suitable normalization dual path networks. The FCN used to

segment the target crop images and improve the dual path network

model is used for feature extraction. The results are evaluated on the

augmentation dataset and accuracy is better than other models.

Chouhan et al. (2021) proposed a model for leaf disease

detection using the fuzzy-based function network. Initially,

preprocessing is done and the scale-invariant feature transform

method is used for feature extraction. The fuzzy-based function

network is used for detecting the leaf disease. Training is done with

the help of the firefly algorithm. The model results are evaluated in

terms of accuracy and are higher than traditional models. He et al.

(2023) presented a maize leaf disease detection model using

machine vision. The batch normalization layer is appended with

the convolution layer to fasten the convergence speed of the

network. Cost function is developed to increase the detection

accuracy. Four types of pre-trained CNN models are used for

feature extraction network for training. The gradient descent

algorithm is applied to optimize the model performance. The

results are evaluated in terms of F1-score, recall rate, and accuracy.

Ruth et al. (2022) proposed a deep learning model for disease

detection using the meta-heuristic algorithm. CNN is used for

feature extraction. The optimal deep neural network is used for

disease detection. A two-level weight optimization is used to
frontiersin.org
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increase the performance of the detection model. Two-level weight

optimization is achieved using an improved butterfly optimization

algorithm, where the genetic algorithm is used to improve the

butterfly optimization algorithm. The results are evaluated in terms

of sensitivity, accuracy, and specificity. The overall accuracy is

higher than other traditional models. Andrushia et al. (Andrushia

and Patricia, 2020) presented a leaf disease detection model using

the artificial bee colony optimization algorithm. Initially,

preprocessing is done by removing noises and background

images. Shape, color, and texture are extracted as features and are

sent to the support vector machine model for disease detection. The

model results are better in terms of recall, precision, and accuracy.

Abed et al. (2021) presented a novel deep learning model for bean

leaf disease detection. This model contains two phases: detection and

diagnosing. For detection, the U-Net architecture using the ResNet34

encoder is used. In the classification part, results are evaluated for five

different deep learning models. The dataset contains 1,295 images of

three classes such as healthy, bean rust, and angular leaf spot. The

results are evaluated in terms of sensitivity, specificity, precision, F1-

score, and area under the curve (AUC). Pandey et al. (Pandey and Jain,

2022) proposed a deep attention residual network using an opposition-

based symbiotic organisms search algorithm. In this model, residual

learning blocks are used with the attention learning mechanism for

feature extraction. A new CNN model, AResNet-50, is designed for

disease detection. The opposition-based symbiotic organisms search

algorithm is used to tune the parameters of themodel. Plants like citrus,

guava, eggplant, and mango leaves are considered for the experimental

analysis. The results of the model are evaluated in terms of accuracy,

and they are better than those of the existing models such as AlexNet,

ResNet-50, VGG-16, and VGG-19. Zhao et al. (2020) proposed a

multi-context fusion network model for crop disease detection. In this

model, standard CNN is used to extract visual features from 50,000

crop disease samples. Contextual features are collected from image

acquisition sensors. A deep, fully connected network is proposed by

combining contextual features and visual features to detect the leaf

disease. The model performance is evaluated in terms of accuracy,

which is higher than state-of-the-art methods.

Wang et al. (2017) proposed a new technique for automatic

estimation of plant disease severity using image analysis through the

effective application of deep learning algorithms. Bracino et al.

(2020) explained the development of a new hybrid model based on

machine learning techniques for the accurate detection of health

using disease classification. Ashwinkumar et al. (2022) proposed an

automated plant leaf disease detection model using deep learning

classification named optimal MobileNet, which is designed based

on CNNs. Khan et al. (2019) developed one optimized method for

disease detection using image segmentation and classification for

identifying the apple diseases. The authors made the decisions by

analyzing whether there is a strong correlation among the features

and also using genetic algorithm for feature selection. Most of the

works found in the literature on tomato leaf disease detection used

the benchmark dataset, namely, the Plant Village dataset

(Kaustubh, 2020).

Sanida et al. (2023) proposed a new methodology for the

effective detection of tomato leaf diseases by identifying them

using a two-stage transfer learning model. Pandiyaraju et al.
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(2023) proposed an optimal energy utilization technique for

reducing the energy consumption via the agricultural sensors

used in precision agriculture. These sensors have been connected

to a WSN that performs energy optimization by using a multi-

objective clustering and deep learning algorithm to reduce the

energy consumption. In another related work, Pandiyaraju et al.

(2020) developed an energy-efficient routing algorithm for WSNs

using clustering of nodes. Moreover, the routing decision has been

made in their work using intelligent fuzzy rules that were applied in

precision agriculture. In the area of agriculture and gardening,

Pandiaraju et al. (Pandiyaraju et al., 2017) proposed a rule-based

intelligent roof control algorithm for effective water conservation

without affecting the agricultural yield with respect to smart terrace

gardening. Such a model can be enhanced to detect the leaf diseases

for providing better yield with minimum water.

Shoaib et al. (2023) presented a review of deep learning

classification algorithms that have been used in the detection of

plant leaf diseases. Santhosh et al. (2014) proposed a farmer

advisory system using intelligent rules based on machine learning

classifier. Jabez Christopher et al. (Jabez et al., 2015) proposed an

optimized classification model that uses rules based on knowledge

mining with swarm optimization for providing effective disease

diagnosis. Gadade et al. (Gadade and Kirange, 2022) proposed an

intelligent approach based on deep learning for the effective

detection of tomato leaf diseases from leaf images that have

captured with varying capturing conditions. Saeed et al. (2023)

proposed one new smart detection methodology for the accurate

detection of tomato leaf diseases by using transfer learning-based

CNNs. Shoaib Muhammad et al. (Shoaib et al., 2022) proposed a

new model for tomato leaf disease detection by using deep learning

algorithms for performing both segmentation and classification of

leaf images.

Sreedevi and Manike (2024) presented a new solution for

identifying the tomato leaf disease based on classification using a

modified recurrent neural network through severity computation.

Prabhjot Kaur et al. (2024) carried out a performance analysis on

the image segmentation models that are used to detect leaf diseases

present in the tomato plants. Thai-Nghe et al. (Nguyen et al., 2023)

presented a deep learning-based approach for the effective detection

of tomato leaf diseases. Chang et al. (2024) developed one general-

purpose edge-feature-guided model for the identification of plant

diseases by enhancing the power of vision transformers. Li et al.

(2023) presented a new lightweight vision transformer model based

on shuffle CNNs for the effective diagnosis of leaf diseases in

sugarcane plants. Thai et al. (2023) proposed a new vision

transformer model designed for the accurate detection of cassava

leaf diseases.

Yu et al. (2023) explained the use of inception convolutional

vision transformers for the effective identification of plant diseases.

Arshad et al. (2023) developed an end-to-end and hybrid model

based on the deep learning framework for the accurate prediction of

potato leaf diseases. Shiloah et al. (Elizabeth et al., 2012) proposed

one new segmentation approach based on machine learning model

for improving the diagnostic accuracy of detecting lung cancers

from chest computed tomography images. Dhalia Sweetlin et al.

(2016) proposed a patient-specific model for the effective
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segmentation of lung computed tomographic images. Singh and

Misra (2017) proposed a machine learning-based model for the

effective detection of plant leaf diseases by performing suitable

image segmentation. Agarwal et al. (2020) developed a new system

for tomato leaf disease detection by applying the CNN classifier.

Chen et al. (2022) proposed the use of the AlexNet CNN model

for the effective detection of tomato leaf diseases by performing

accurate classification of tomato leaf images. Ganapathy et al.

(2014) proposed an intelligent temporal pattern classification

model by using fuzzy temporal rules with particle swarm

optimization algorithm. Jaison et al. (Bennet et al., 2014)

proposed a discrete wavelet transform-based feature extraction

model along with one hybrid machine learning classification

algorithm for performing effective microarray data analysis. Elgin

Christo et al. (2019) proposed a new correlation-based ensemble

feature selection algorithm that has been developed using

bioinspired optimization algorithms integrated with a

backpropagation neural network-based classifier.

Thangaraj et al. (2021) proposed an automated tomato leaf

disease classification algorithm by using a transfer learning-based

deep CNN classifier. Al‐Gaashani et al. (Al-gaashani et al., 2022)

proposed a new model for tomato leaf disease classification by the

application of transfer learning with feature concatenation. Han

et al. (2017) proposed a new weighted gradient-enhanced

classification model not only to provide high-dimensional

surrogate modeling but also to perform design optimization. Wu

et al. (2021) proposed a new distributed optimization method that

uses weighted gradients for solving the economic dispatch problem

pertaining to the multi-microgrid systems. Abouelmagd et al.

(2024) developed an optimized capsule neural network for the

effective classification of tomato leaf diseases. Other approaches

that are used in the detection of leaf diseases include those with deep

learning and also with explainable AI (Rakesh and Indiramma,

2022; Bhandari et al., 2023; Debnath et al., 2023; Nahiduzzaman

et al., 2023).

Despite the presence of all these related work in the literature,

most of the segmentation and classification algorithms use a

machine learning approach for classification. Therefore, it is

necessary to employ either manual work or additional

classification algorithms for performing feature extraction and

feature selection. Moreover, the time series data are not analyzed

by giving higher importance to the most recent data by the

application of temporal constraints. The convergence of the

existing deep learning algorithm employed in the detection of

tomato leaf diseases is not supported by an optimization

algorithm. Finally, ensemble-based classification algorithms are

not employed in the classification process to enhance the

detection accuracy. In order to handle all these limitations that

are present in the existing systems developed for accurate tomato

leaf disease detection, a new ensemble classification model is

proposed in this paper that uses an EMA function with temporal

constraints, and it is supported by an EWGO along with fine-tuned

VGG-16 and NASNet mobile training methods for enhancing the

classification accuracy that can increase the detection accuracy with

respect to the detection of tomato leaf diseases.
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3 Proposed work

3.1 Method

The data that show the features are initially analyzed using

histogram plots and pie charts for better visualization of the data

statistics to check for data imbalance among different classes. It has

been concluded via complete exploration that there is no data

imbalance and that the features of the images have been

completely studied.

Next, the images are preprocessed in order to enhance the

learning ability of our deep learning models. A median filter is

applied on the image to remove noise to improve image quality.

Redundant parts of the image that do not contribute to the model’s

learning process are also removed. Furthermore, the a and b factors

in our images are adjusted in order to modify the brightness and

contrast, thereby making the region of interest more prominent.

The images are finally normalized to have pixel values ranging from

0 to 1, and the data are augmented to ensure a wider scale of

learning by the model.

For the initial part of feature extraction, the VGG-16 transfer

learning model undergoes fine-tuning by unfreezing its last five

layers, enabling to adapt the model that originally contained

ImageNet’s weights to the specified dataset. By employing the use

of Global Average Pooling to pool the CNN layers’ features, the data

are then passed into two fully connected layers ultimately leading to

the output layer. The optimization of the model is achieved using

the Adam optimizer with a learning rate of 0.0001, and evaluation

metrics such as the F1-score, AUC score, precision, and recall

are applied.

The NASNet mobile transfer learning model is employed with

ImageNet weights for the next part. A flattened layer is then used to

transform the outputs from the CNN layers into a one-dimensional

tensor that facilitates the passage through three fully connected

layers that ultimately reach the output layer. The optimization of

the model is once again achieved using the Adam optimizer with a

learning rate of 0.0001, and evaluation metrics such as the F1-score,

AUC score, precision, and recall are applied.

The extracted features obtained from the two transfer learning

models are now taken and passed on as parameters to a custom

ensemble layer that incorporates EMA function that emphasizes the

recent data points with greater weights. The resulting ensemble

model shows an optimized learning curve by adopting the adaptive

rate of learning, which is achieved by using a custom EWGO that

modifies the learning rate based on custom ensemble weight

suitable for our custom ensemble model.
3.2 Dataset

This research utilizes the dataset (Kaustubh, 2020) that consists of

a collection of tomato leaf images, each belonging to one of nine

distinct categories, representing various leaf diseases or a healthy state

(no disease). The dataset encompasses a total of 10,000 images

designated for training and an additional 1,000 images reserved for
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testing. To facilitate model development and evaluation, we

partitioned the training dataset into a 75%–25% split, resulting in

7,500 images allocated for training and 2,500 images for validation,

and the entire additional 1,000 images were reserved for the test set.

This dataset serves as the foundation for the development of the

proposed model, which aims to enhance the classification of tomato

leaf diseases.
3.3 Preprocessing

The following are the steps involved in preprocessing:
Fron
• Median filter

• Image cropping

• Brightness and contrast adjustments

• Normalization
3.3.1 Median filter
The first step of data preprocessing utilizes a median filter,

which is a non-linear digital image filtering technique that runs

through the signal as one entry after another by replacing the entry

value by the median of the neighboring entry values, which depends

on the window size, resulting in the removal of the salt-and-pepper

noise in an image. In this case, a window size of 3 has been chosen

for preprocessing the image.

This median filter is represented mathematically as shown in

Equation (1):

g(x, y) = Med(f (x, y)) (1)

where f(x,y) is the window array and g(x,y) is the median value

of the window array. The steps for the median filter are shown in

Algorithm 1.
f unction  median _ filter() :

input :  raw  tomato _ leaf _image;

output :  median _ filtered _ image;

image = input;

l = length  of  image;

b = breadth  of  image;

c = channels  of  image;

w =  window _size;

filtered _ image = create _ empt;y _ image(l,b)

b _ image = img½l�½b�½1�;
g _ image = img½l�½b�½2�;
r _ image = img½l�½b�½3�;
for  i =   0  to  l − 1   do:

for  j = 0  to  b − 1   do :

b _ img = image½i�½j�½1�
g _ img =  image½i�½j�½2�;
r _ img =    image½i�½j�½3�;

end   for

end   for

apply _ median _ filter(b _ img,w);
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apply _median _filter(g _ img,w);

apply _median _filter(r _ img,w);

for  i = 0  to  l − 1   do :

for  j =   0  to  b − 1   do :

filtered _ image = ½bimg½i�½j� ,gimg½i�½j� ,rimg½i�½j��;
end   for

end   for

end   function

End

Function  apply _ median _ filter() :

input :  single _ channel _ tomato _ leaf _image;

output :  median _filtered _single _channel _ image;

len = length  of  img;

bt = length  of  img;

applied _ img = create _ array(len,bt);

wh = w=2  ;

for  x = 0  to  len − 1   do :

for  b = 0  to  bt − 1   do :

window = ½�;
for  i = −wh  to  wh − 1   do :

for  j = −wh  to  wh − 1   do :

winx = x + i;

winy = y + j;

if    winx >= 0  and  winy >= 0    and  winx <

len  and  winy < bt   then :

append  value  to  window

(img½winx�½winy�)
;

end   if

end   for

end   for

end   for

end   function

End
Algorithm 1. Median filter.

3.3.2 Image cropping
Since the outer areas of the image are not helpful with the

tomato disease detection, the size of the image is reduced by 10

pixels on each side, thus reducing the image size from 256 × 256 to

236 × 236 by removing the areas where there are no significant

features for disease detection. The steps for image cropping are

shown in Algorithm 2.
Function  crop _image   () :

input :  median _ filtered _ image

output :  cropped _median _ filtered _image

img =  median  filtered  image

length = length  of  img

breadth =  breadth  of  img

crop _ value = 10

max _ crop _ length = length − crop _value

max _ crop _ breadth = breadth − crop _ value

crop _ image = create  empty  image  of  dimensions(max _

crop _length,max _ crop _ breadth)
frontiersin.org

https://doi.org/10.3389/fpls.2024.1382416
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


V. et al. 10.3389/fpls.2024.1382416

Fron
crop _image = img½crop _value :max _crop _ length�½crop _

value :max _crop _ breadth�
end  Function

end
Algorithm 2. Image cropping.

3.3.3 Brightness and contrast enhancements
of images

For better-quality images and improved ability of the CNN to

identify the region of interest, its brightness is reduced and the

contrast of the image is increased. This mitigates overexposure of

the images, allowing the CNN to extract the features in the region of

interest easily due to better visibility.

Brightness and contrast enhancement can be represented

mathematically as shown in Equation (2):

g(i, j) = af (i, j) + b (2)

where a is the contrast factor and b is the brightness factor. f(i,j)

represents the pixel of the input image, which is the cropped image,

while g(i,j) is the output image where the image’s brightness and

contrast are adjusted using a and b. The procedure for brightness
and contrast enhancements is shown in Algorithm 3.
Function  adjust _ image() :

input :cropped _ median _filtered _image,brightness _

factor,contrast _factor

output :cropped _ filtered _image _ with _ adjustments

image = cropped _ median _ filtered _ image

l←length  of  image

b←breadth  of  image

c  ←  channels  of  image

adjusted _ img←create  empty  image  of  dimensions

 l  and  b

a←contrast _ factor

b←brightness _ factor

for  i = 0  to  l − 1   do :

for  j = 0  to  b − 1   do :

for  k = 0  to  c − 1   do :

adjusted _ img½i�½j�½k�←a*image½i�½j�½k� + b

end   for

end   for

end   for

  end   Function

end
Algorithm 3. Brightness and contrast enhancement.

3.3.4 Image normalization
For better weight initialization and to maintain consistency in

the pixel range of the input, the image is normalized so that all pixel

values are confined to the interval [0, 1]. Due to this, the deep
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learning model’s convergence is enhanced with the range reduction

from 255 to 1 by dividing each pixel value by 255. This process also

improves the learning rate of our proposed model and the stability

of the model during training. The procedure for image

normalization is shown in Algorithm 4.
Function  normalize _ image() :

input :brightness _ and _ contrast _ adjusted _ image

output :normalised _ image

image = input

l←length  of  image

b←breadth  of  image

c  ←  channels  of  image

normalisation _value← 255

normalised _ image←create _ empty _ image(l,b)

for  i = 0  to  l − 1   do :

for  j = 0  to  b − 1   do :

for  k = 0  to  c − 1   do :

normalised _ image½i�½j�½k�←image½i�½j�½k�=255
end   for

end   for

end   for

end   Function

end
Algorithm 4. Image normalization.
3.4 Feature extraction and classification

Upon successful completion of preprocessing, the tomato

leaf images are subjected to appropriate feature extraction

and thereby will be classified using the deep learning model.

This, in turn, will support not only the identification of

diseases in the leaves but also the severity. The deep

learning model used is the VGG-16 fine-tuned model. In

addition, a CNN model, namely, NASNet, is also employed

for the leaf’s disease identification.

Later, an ensemble model consisting offive ensemble blocks and

a final output block is used with the input layer being received from

the output of the VGG-16 fine-tuned model and the NASNet model

as a list. Furthermore, the results are improved for an enhanced

performance with the aid of an EMA-based approach and

optimized with an EWGO.
3.4.1 VGG-16 fine-tuned model
The last five layers of the VGG-16 model are unfrozen and the

weighs of these layers are updated with the data to fine-tune

the model. The optimizers do not modify the parameters of the

remaining layers, which remain frozen, thereby preserving

the weights.
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This model, which is made up of five different blocks, is

composed of convolution layers with rectified linear unit (ReLU)

activation and a max pooling layer, a global average pooling layer,

dense layers, batch normalization layers, and an output dense layer

with softmax activation. The preprocessed image of size 236 × 236 ×

3 is taken as an input into the model, first entering block 1.

Block 1 consists of two convolution layers and a max pooling

layer. Each convolution layer consists of 64 filters, each of size 3 × 3.

Each layer also has a ReLU activation layer that brings in non-

linearity once the feature extraction is done by that layer. The first

convolution layer receives the input as 236 × 236 × 3, and the first

convolution layer produces the output of shape 236 × 236 × 64 after

the activation function. The second convolution layer takes the

input as the output of the first convolution layer and performs

feature extraction and ReLU activation without making any changes

in the shape of the data. Once the output data are produced by the

second convolution layer, the max pooling layer that has a filter size

of 2 × 2 reduces the size from 236 × 236 × 64 to 118 × 118 × 64,

which sends the output to block 2.

Block 2, just like block 1, consists of two convolution layers

where each layer has a ReLU activation function and a max pooling

layer. The only difference is that the input received by the first

convolution layer of this block will be of size 118 × 118 × 64. At the

end of the second convolution, the output will be of size 118 × 118 ×

128 since the number of filters in the convolution layers of the

second block is 128. The max pooling layer reduces the size of the

data from 118 × 118 × 128 to 59 × 59 × 128.

Block 3, unlike the previous two blocks, has three convolution

layers where each layer has a ReLU activation function and a max

pooling layer. The functionality of the block remains the same with

the difference here being the presence of a third convolutional layer

and the presence of 256 filters in each convolution layer. The first

convolution layer receives the input of size 59 × 59 × 128 from the

max pooling layer of block 2 and produces an output of size 59 × 59

× 256, which is preserved in the second and third convolution layer.

The max pooling layer reduces the size of the data to 29 × 29 × 256.

Blocks 4 and 5 are similar to block 3 with the only difference being

all the convolution layers present in blocks 4 and 5 have 512 filters. The

input received by the first layer of block 4 will be of dimension 29 × 29

× 256 and the output after the third convolution layer will be of size 29

× 29 × 512, which, in turn, is reduced to 14 × 14 × 512 by the max

pooling layer. In case of block 5, the input received by the first

convolution layer will be of size 14 × 14 × 512 and the output is

preserved even after the third convolution layer. The max pooling layer

in block 5 reduces its size from 14 × 14 × 512 to 7 × 7 × 512.

The global average pooling layer takes the output of block 5 as input,

which down-samples the multi-dimensional data into single-dimensional

data by finding the average of each feature map where the filter is of size 2

× 2, resulting in the reduction of data size from 7 × 7 × 512 to 1 × 1 × 512.

After this down-sampling, two dense layers with ReLU activation

composed of 128 and 32 neurons, respectively, transform the output

obtained by extracting the features of the preceding layers into data, which

are suitable for classification. Finally, the output layer, i.e., dense layer with

softmax activation, is used to perform multiclass classification. The steps

for VGG-16 fine-tuned model is shown in Algorithm 5.
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input :  preprocessed  tomato  leaf  image

output :trained  finetuned _ VGG16  classifier  for  

tomato  leaf  disease classification

Function  TrainClassifier(preprocessed _ tomato _leaf _

image) :

model←VGG16    multiclass  Classifier  

k←finetuneable  layers

for  layer  in  last  k  model  layers   do

layer←trainable

end   for

b ←batch  size

N ←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _leaf _ image

w←width  of  preprocessed _ tomato _leaf _ image

c←color  channels  of  preprocessed _ tomato _leaf

_ image

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  layers   L

prob←predicted  tomato  leaf  disease  class  prob

abilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

  d ←− log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  parameters   q  through  backpropagat

ion  using  loss d

q← q − m∇d

where  ∇d ←gradient  of  loss   d  with  respect  to  

model  parameters   q

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,

F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  Adam  optimizer  to  monitor  loss   d  and  tune  

model  learning;

end  while

if  performance  plateaus   then
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Fron
update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputtVGG16 ←output  probabilities  from  model

return  outputVGG16

end   Function

end
Algorithm 5. Tomato leaf classification—fine-tuned VGG-16 training.
input :  preprocessed  tomato  leaf  image

output :trained  NASNet  classifier  for  tomato  leaf  di

sease classification

Function  TrainClassifier(preprocessed _tomato _ leaf _

image) :

model←NASNet    multiclass  Classifier  

b ←batch  size

N←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _ leaf _image

w←width  of  preprocessed _ tomato _ leaf _image

c←color  channels  of  preprocessed _tomato _leaf _

image

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  layers  L

prob←predicted  tomato  leaf  disease  

class  probabilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

  d ← − log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  parameters   q  through  back

propagation  using  loss   d

q← q − m∇d

where  ∇d ←gradient  of  loss   d  with  respect  

to  model  parameters   q

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,
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F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  Adam  optimizer  to  monitor  loss   d  and  

tune  model  learning;

end  while

if  performance  plateaus   then

update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputNASNet ←output  probabilities  from  model

return  outputNASNet

end   Function

end
Algorithm 6. Tomato leaf classification—NASNet training.

3.4.2 NASNet
NASNet is a deep learning architecture where an optimal neural

architecture is searched automatically by using the Neural

Architecture Search (NAS) method. For the best performance on

a specific task, the design of the neural network’s topology is

automated using the NAS process.

The NAS algorithm can be generalized as an algorithm that

searches for the best algorithm to perform a certain task. It involves

three different components, namely, the search space, performance

estimation strategy, and search strategy. The search space encompasses

all the potential architectures that can be looked for within the neural

network’s subspace. It can be categorized into two primary types: the

global search space and the cell-based search space. The global search

space offers a high degree offlexibility, accommodating a wide range of

architecture due to its ample operation arrangement options. In

contrast, the cell-based search space is characterized by recurring

fixed structures in effective, manually designed architectures, leading

to the assembly of smaller cells into larger architectural structures.

Without construction or training of a possible neural network,

the performance is evaluated using the performance estimation

strategy, which returns a number or an accuracy value of the

possible model architecture, which the NASNet predicts as a

possible solution. Different search strategies such as grid search,

random search, gradient-based search, evolutionary algorithm, and

reinforcement learning can be used to identify the best architectures

and avoid bad ones before estimating performance. The steps for

NASNet training is shown in Algorithm 6.
3.4.3 Ensemble model
The ensemble consists offive ensemble blocks and a final output

block. The input layer receives the output of the VGG-16 fine-tuned

model and the NASNet model as a list. This input is then passed

through the five ensemble blocks, finally reaching the output layer.

Each ensemble block is composed of a fully connected layer, a

reshape layer, two convolutional layers, a batch normalization layer,

ReLU activation, an ensemble layer, and a max pooling layer.

The ensemble process in the ensemble layer is carried out based

on effective moving average. This layer has two parameters, namely,
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the decay rate, which is responsible for reducing the effective

moving average, and the update rate, which ensures that for every

update rate iteration, the weights in the ensemble layer will be

modified with the help of the effective moving average.

The output layer is responsible for classification.

The effective moving average is represented mathematically as

shown in Equation (3):

EMAupdated = EMA + (PredNASnet − PredVGG16FT ) * d (3)

where EMAupdated is the updated effective moving average;

EMA denotes the effective moving average before the update

operation; PredNASNet and PredVGG16FT are the predictions of

NASNet and the VGG-16 fine-tuned model, respectively; and d is

the decay rate, which is taken as 0.8 in this case.

The predictions of both models are taken as input. Initially, the

prediction of the VGG-16 fine-tuned model was taken as the

effective moving average, which is then updated with the help of

the above mathematical expression. The update rate ensures that

the weights are modified only after a certain number of iterations,

which is two in this case. Therefore, for every second iteration, the

weights are modified by reshaping the effective moving average

tensor for every weight tensor. The reshaped tensor is updated into

the weight tensor as the new weight tensor for the next two

iterations. The procedure for Ensemble classifier training using

EMA is shown in Algorithm 7 and procedure for exponential

moving average-based ensemble weight update in a custom

ensemble layer is shown in Algorithm 8.
Fron
input :  preprocessed  tomato  leaf  image

output :trained  ensemble  with  EMA  classifier  for  tom

ato  leaf  disease classification

Function  TrainClassifier(preprocessed _tomato _ leaf _

image) :

VGG←train  VGG16  classifier;  

NASNet←train  NASNet  classifier;  

b ←batch  size

N←total  classes  of  tomato  leaf  diseases

h←height  of  preprocessed _ tomato _ leaf _image

w←width  of  preprocessed _ tomato _ leaf _image

c←color  channels  of  preprocessed _ tomato _ leaf _ i

mage

for  epoch = 1  to   100   do

m←learning  rate

while  performance  does  not  plateau   do

batch←obtain  a  batch  of  size   b

feed   batch  into  model  through  ensemble  layer

outputensemble ←EMA _ ensemble(VGG,NASNet)

feed   batch  into  model  through  fully  connected  

and  reshape  layers

outputreshape · shape  ← (h,w,c)

perform  convolution  on  outputreshape

O(x,y)←o
m1

i
o
m2

j
o
mc

k

I(x − i,y − j,k) * K(i,j,k)

flatten  convolution  output
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outputflatten : shape← (b ,  h*w*d)

feed  outputflatten  to  output  layer  

prob←predicted  tomato  leaf  disease  class  

probabilities

labels←ground  truth  probabilities

loss,   d ←categorical  cross  entropy  loss

d ←− log exp

oN
j=1e

xj

 !

xi ←logit  for  class  i ∈ 1, 2,…,Nf g
update  model  weights   q  using  Effective  Moving  

Average,   ema

compute   accuracy,

accuracy = oN
k=1(TPk + TNk)

oN
k=1(TPk + TNk + FPk + FNk)

compute   precision,

precision = on
k=1TPk

on
k=1(TPk + FPk)

compute   recall,

recall = on
k=1TPk

on
k=1(TPk + FNk)

compute   F1 − score,

F1 − Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

use  EWG  optimizer  to  monitor  loss   d  and  tune  

model  learning;

end  while

if  performance  plateaus   then

update  learning  rate  m  to  promote  further  

learning

end   if

end   for

outputNASNet ←output  probabilities  from  model

return  outputNASNet

end   Function

end
Algorithm 7. Ensemble classifier training using EMA for tomato leaf
disease classification.
Initialize  model  ←  EnsembleClassifier(tensor);

Set   decay   rate,  a    ←   0:8;

Set   update   rate,   b  ←   2;  

Set   counter  ←   0;

NasNetOutputs  ←  TrainNasNet(tensor);

VGG16Outputs  ←  TrainVGG16(tensor);

Function  Custom _ EMA _ Ensemble() :

Initialize   ema0  ←  VGG16Outputs

while  EnsembleModel  is  running  do

emai  ←   (1  −  a)   *  emai  −   1   +  a   *  NasNetOutputs

counter  ←   counter   +   1
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Fron
if  counter   %     b  ←   0   then  

weights

←½reshape(emai ,  weight :shape)for  weight  

in  current  model  weights�
Update  Ensemble   Layer  weights  

end   if

end  while

end   Function

end
Algorithm 8. Exponential moving average-based ensemble weight
update in a custom ensemble layer.

3.4.4 Layer information during feature extraction
There are a total of 12 layers used during feature extraction as

enumerated below.

3.4.4.1 (i) Convolutional layer

The convolutional layer is the most important layer used in

CNNs, which is responsible for extracting features from the input

with the use of filters or kernels. The kernel is a matrix consisting of a

set of learnable parameters. The convolution process can be defined

as the conversion of pixels in its receptive field into a single pixel. This

operation is performed as the dot product between the kernel matrix

and another matrix, which is the receptive field restricted to a certain

portion. Hence, in the input image that is composed of three color

channels, the kernel carries out the convolution operation in all the

three channels, although the height and width will be spatially small.

The kernel slides across the height and width of the receptive region

of the image. This sliding size is called a stride. The result is a

production of a two-dimensional representation of the kernel at each

spatial position of the image. The convolution operation results in a

feature map as output, which can be represented mathematically as

shown in Equation (4):

O(x, y) =o∞
i=−∞o∞

j=−∞I(x − i, y − j) * K(i, j) (4)

where O(x,y) represents the value in the output feature map in

the position (x, y) and I(x−I,y−j) represents the pixel value in the

input at position (x−i,y−i). K(i,j) represents the value of the kernel

at position (i,j).

3.4.4.2 (ii) Depthwise separable convolutional layer

Depthwise separable convolution handles both the spatial and

depth dimensions. Here, the kernels cannot be factored into smaller

units. This process is split into two steps:
• Depthwise convolution: a single convolution filter is applied

on each input channel.

• Pointwise convolution: it involves the usage of a 1 × 1 filter

that iterates through every single point of the input.
This kernel has a depth equal to the number of channels that the

input has. The usage of a depthwise separable convolution layer

reduces the number of parameters compared to the standard

convolution layer.
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3.4.4.3 (iii) Max pooling layer

The max pooling layer is one of the largely used layers in CNNs,

normally found after the convolutional layer. Its purpose is to

reduce the spatial dimensions (length and breadth in this case) of

the input feature map resulting from the preceding convolution

layer. The feature map is taken by the layer as input, which applies

the max pooling operation where a window slides through the

feature map the window content with the maximum value in the

window, thus down-sampling the feature map. Providing a stride

value lets the CNN know the number of pixels to move while sliding

through that particular layer. The max pooling layer can be

mathematically represented as shown in Equation (5):

O(x, y) = maxk−1i=0 maxk−1j=0 I(x · s + i,   y · s + j) (5)

where O(x,y) is the value in the output feature map at point (x,

y), s is the stride value, and I(x·s+i,y·s+j) is the value in the input

feature map at position (x·s+i,y·s+j), and k is the size of the

pooling window.

3.4.4.4 (iv) Average pooling layer

The purpose of using the average pooling layer is to reduce the

spatial dimensions such as the length and depth of the feature map

just like the max pooling function, but the difference here is that

down-sampling is performed by transforming the window into a

single value, which is the average of the values present in it. This

returns a smoother feature map compared to the max pooling layer,

which returns a feature map focusing on prominent features. The

average pooling layer can be mathematically represented as shown

in Equation (6):

Y ½i, j, c� = 1
kh * kw

  o
kh−1

p=0
o
kw−1

q=0
X½i * sh + p  ,   j * sw + q, c� (6)

where Y is the output after the pooling function, X is the input

feature map, kh is the height of the feature map, and kw is the width

of the feature map. sw and sh are the stride values for height and

width while sliding through the input feature map.
3.4.4.5 (v) Concatenation layer

The concatenation layer concatenates the inputs having the same

size in all dimensions except the concatenation dimension, received

by the layer along a specified dimension. This layer is used whenever

we want to merge the information from different parts of the network

or data modalities. The concatenation operation takes place by

combining multiple input tensors by stacking them along the

specified axis, resulting in a single tensor with an increase in size.

The layer is mathematically expressed as shown in Equation (7):

O½i, j, c� =
 A½i, j, c�               if   0 ≤ c < C1

B½i, j, c − C1�           if  C1 ≤ c ≤ C1 + C2

(
(7)

where O is the output, A is the first input tensor with C1

channels and B is the second input tensor with C2 channels for

the concatenation layer, i represents the height dimension and

ranges from 0 to H, j represents the width dimension and ranges
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from j to W, and c represents the channels and ranges from 0 to

C1+C2.

3.4.4.6 (vi) Addition layer

This layer adds inputs from multiple neural network element-

wise. This operation can be performed when the input tensors have

the same shape. This is done so that the information flows

seamlessly through the network just by the addition of the output

of one layer to the output of the previous layer. This layer is

mathematically represented as shown in Equation (8):

O½i, j, c� = A½i, j, c� + B½i, j, c� (8)

where O is the output, A is the first input tensor and B is the

second input tensor for the addition layer, i represents the height

dimension and ranges from 0 to H, j represents the width

dimension and ranges from j to W, and c represents the channels

and ranges from 0 to C.

3.4.4.7 (vii) Batch normalization layer

This layer helps in making neural networks faster and more

stable by performing standardization and normalization operations

in the feature map that is provided as input to the layer. The

normalization process is carried out in two steps:
Fron
• Normalization

• Rescaling and offsetting
Before performing normalization, the data are fed into the layer

in the form of mini batches. The mean and standard deviations of

these mini batches can be found using the following equations

shown in Equations (9, 10):

m =
1
mo

m

i=1
xi (9)

and

s 2 =
1
mo

m

i=1
(xi − m)2 (10)

where μ and s are the mean of the values in the ith value in the

mini-batch x of size m.

The main purpose of normalization is to transform the data to

have a mean equal to 0 and standard deviation equal to 1, which is

carried out using the expression as shown in Equation (11):

xi(norm) =
xi − μ
s + ϵ

(11)

Two learnable parameters g and b are used for rescaling and

offsetting, respectively, thereby normalizing each batch accurately.

This is represented using the expression shown in Equation (12):

xi = g xi(norm) + b (12)
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where xi is the ith value of mini batch x and xi(norm) is the

normalized ith value of mini batch x.
3.4.4.8 (viii) Dropout layer

The dropout layer acts as a mask to nullify some of the neurons’

contributions towards the next layer while the rest of the neurons

remain unmodified. It aims to prevent overfitting, avoid

dependency on a specific neuron during training, and ensure

better generalization from the model. The neurons are nullified

using a probability for random exclusion such that they behave like

they are not part of the architecture. The layer can be

mathematically represented as shown in Equations (13, 14):

O = X * M   during   training (13)

and

O = X * (1 − p)during   testing (14)

whereO is the output, X is the input, and p is the probability, and

it is scaled to a factor (1 − p) during output since the dropout will be

turned off during the testing phase.M is a binary mask with the shape

same as X and each element of M is set as 0 or 1 depending on p.
3.4.4.9 (ix) Global average pooling layer

The global average pooling layer is a pooling layer that performs

down-sampling. Unlike the usual pooling layer, the global pooling

layer condenses the feature maps into a one-dimensional mapping

that can easily be read by the single dense classification layer. The

mathematical representation is as shown in Equation (15):

O =
1

H*W
*o
H

i=0
o
W

j=0
(F½i,   j�) (15)
3.4.4.10 (x) Flatten layer

This layer performs the flattening operation that reshapes the

input received into a single-dimensional feature vector without

affecting the batch. It is done to allow the fully connected layers to

operate on the multi-dimensional feature maps since the fully

connected layers can only be trained with single-dimensional

feature vectors.
3.4.4.11 (xi) Fully connected layer

The fully connected layer or simply the dense layer is a CNN

layer where all the neurons or nodes in one layer is connected to

every node to the next layer. This layer works with activation

functions such as the ReLU during feature extraction and softmax

during multiclass classification. It is represented as a mathematical

function as shown in Equation (16):

O = f W*X + bð Þ (16)
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where X is the input, O is the output,W is the weight matrix, b is

the bias vector, and f is the activation layer, which would be ReLU in

case of feature extraction and softmax in case of classification.

3.4.4.12 (xii) ReLU activation layer

The ReLU is a piecewise linear function used to introduce non-

linearity into the feature map obtained as output before the

activation function is applied. The ReLU function works by

applying a simple thresholding operation where the positive

values remain the same while the negative values become zero.

The ReLU activation function can be expressed mathematically as

shown in Equation (17)

f = max (x, 0) (17)

where x is the input given into the function and f is the

output obtained.

3.4.5 Classification
3.4.5.1 (i) Softmax activation

The softmax activation function is responsible for the multi-

class classification of the vector obtained from the convolution

layers after the feature extraction phase in the output layer. It works

by calculating the exponent of each entry in the vector and dividing

the value by the sum of all the exponents in the vector as shown in

Equation (18).

softmax(xi) =
exi

oN
j=1e

xj
(18)

where x is the input vector and i is the ith entry in the input

vector with N entries. The denominator of the softmax activation is

the sum of the exponents of the entries. This is done for the

conversion of N real number entries into a probability

distribution of N possible outcomes.

3.4.5.2 (ii) Categorical cross-entropy loss function

This loss function (also known as softmax loss) is used with a

CNN to provide an output for the probability of each image over N

different classes. This function is a combination of softmax

activation and the cross-entropy loss function and is thus useful

during multi-class classification. Its use allows the comparison of

the target and predicted values by the CNN model as an output,

thereby measuring the modeling efficiency of the training data by

the CNN. The objective of this loss function is to calculate the

difference between the ground truth and predicted class

distribution. Techniques like gradient descent are used to adjust

the weights and biases for minimalization of this loss, thereby

improving the predictions. The categorical cross-entropy loss

function is written as the negation of logarithmic function of the

softmax function as shown in Equation (19):

CE = − log
exp

oN
j e

xj

 !
(19)
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where CE is the cross-entropy loss, xp is the positive class’ CNN

score, N is the number of classes for classification, and xj is the jth

class’ score.

To backpropagate through the network and optimize the

defined loss function resulting in tuning the net parameters, the

loss’ gradient is calculated with respect to the CNN’s output

neurons given by the gradient of the cross-entropy loss with

respect to each CNN’s class score. The derivatives are represented

mathematically as shown in Equations (20, 21):

Derivative with respect to positive class:

∂

∂ xp
− log

exp

oN
j e

xj

 ! !
=

exp

oN
j e

xj
− 1 (20)

Derivative with respect to negative class:

∂

∂ xn
− log

exp

oN
j e

xj

 ! !
=

exn

oN
j e

xj
(21)

where xn is the score of any negative class in N other than Np,

which consists of the positive classes.

3.4.6 Optimizer
3.4.6.1 (i) Adam optimizer

The Adam optimizer is an extension of the stochastic gradient

descent (SGD) algorithm based on adaptive moment estimation, which

takes advantage of two principles, namely, the momentum and root

mean square propagation (RMSprop). The momentum technique is

used to accelerate convergence in gradient descent by adding the

fraction of the previous gradient update with the current update,

reducing the oscillations. The convergence process speeds up along

shadow dimensions, which assists optimization. RMSprop adapts the

learning rate for each parameter individually by maintaining a moving

average of squared gradients. This helps in scaling learning rates and

making the optimization process more robust. With the help of these

twomethods, the following are obtained as shown in Equations (22, 23):

mt = b1mt−1 + (1 − b1)
dL
dWt

� �
(22)

vt = b2vt−1 + (1 − b2)
dL
dWt

� �2
(23)

where mt is the estimate of the first-order moment, which is the

aggregate of gradients at time t, vt is the estimate of the second-

order moment, which is the sum of the squares of the past gradients

at time t, b1 is the decay rate of average of gradient in the

momentum principle, and b2 is the decay rate of average of

gradient in the RMSprop principle. The moment estimates mt

and vt can be called the weight parameters.

In the Adam optimizer, the bias-corrected weights are

considered such that the weight parameters will not be biased

towards 0. The bias-corrected weight parameters are as shown in

Equations (24, 25):
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cmt =
mt

1 − b t
1

(24)

bvt = vt
1 − b t

2
(25)

These bias-corrected weight parameters are used in the general

weight update equation as shown in Equation (26):

wt+1 = wt −cmt
affiffiffiffibvtp
+ ϵ

 !
(26)

where a is the learning rate or the step size parameter and ϵ is a

small positive constant to avoid division by 0.

3.4.6.2 (ii) Enhanced weighted gradient optimizer

This is a modified Adam optimizer that accepts a custom weight as

a parameter and incorporates the gradients multiplied by the custom

weight into its operation. The custom weights are given as a parameter

and are introduced into the gradients with the values being multiplied.

The modified values are introduced into the Adam optimizer and then

used in our ensemble model. The updated weight with the custom

weight parameter before optimization is as shown in Equation (27):

w = g · wt (27)

This updated weight w is introduced to the weight update

process as shown in Equation (28).

wt+1 = w −cmt
affiffiffiffibvtp
+ ϵ

 !
(28)

where g is the custom weight parameter, a is the learning rate

or the step size parameter, ϵ is a small positive constant to avoid

division by 0, wt is the existing weight before the optimization

process, and wt+1 is the updated weight after optimization. m̂t and v̂t
are the bias-corrected weight parameters. The procedure for

enhanced weighted gradient optimizer is shown in Algorithm 9.
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Initialize   epoch  ←   0;

while  EnsembleModel  is  running  do

  forward pass

predictions  ←  EnsembleModel(batch  i);

loss  ←  CategoricalCrossEntropy(predictions,  

batch   i   _ labels);

end forward pass

backward pass

gradient,  mL    ←   ∂L= ∂ q;  

Custom weights,  mL  custom  ←mL  ·  custom _ weight;

Update  EnsembleModel  parameters,  

q  ←   q   –  a  ·  mL  ;

end backward pass

early stopping check

Monitor  validation  loss  Lval

Criteria :   if  Lval  does  not  improve  for   4  

consecutive  epochs  then  end  training

if  Lval   ≤  best  loss   then
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best  loss  ←  Lval

patience  counter  ←   0

  else

patience  counter  ←  patience  counter   +   1

if  patience  counter   ≥   4   then

Break  training  loop;

end if

end else

end early stopping check

end while

end
Algorithm 9. Enhanced weighted gradient optimizer.
4 Results and discussion

In this paper, the focus of research starts by addressing a

pressing issue in agriculture: the management of plant diseases,

with a specific focus on tomato plants. Researchers have employed

complex deep learning methodologies and machine learning

models to tackle this challenge. This paper strives to revolutionize

the ways to identify plant diseases, especially those affecting tomato

plants, and manage them accordingly.

The study adopts data analysis and image preprocessing

techniques to ensure that the dataset used is well-balanced and

that the quality of the images is optimized for deep learning models.

It uses methods such as median filtering, resized cropping, and

brightness normalization to enhance the features derived from

them. This meticulous attention to data quality and balance is

crucial in developing a reliable disease classification system. To

extract relevant features from the tomato leaf images, the research

leverages two transfer learning models, VGG-16 and NASNet.

Furthermore, these models are fine-tuned, allowing them to adapt

to the specific characteristics of the dataset. This adaptability

showcases the potential for pre-trained models to significantly

improve classification accuracy when applied to particular datasets.

One of the key novelties is the incorporation of an ensemble model

with an EMA function and an EWGO. This innovative approach

optimizes the learning process, resulting in a more effective and

accurate disease classification system. It stands as a promising method

to enhance the performance of machine learning models in agriculture.
4.1 Performance metrics

The evaluation of the models is robust, using a variety of

performance metrics, including the confusion matrix, specificity,

accuracy, loss, precision, recall, F1-score, ROC curve, AUC, and

misclassification rate. These metrics provide a comprehensive

assessment of the model’s effectiveness, making it clear that the

research is backed by rigorous analysis and empirical evidence. The

overall proposed architecture is shown in Figure 1, the training data

distributions of the dataset is shown in Figure 2, the validated data

distributions is shown in Figure 3, images of dataset after

preprocessing is shown in Figure 4, images of tomato leaves
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observed at each preprocessing step in shown in Figure 5, layer

architecture for VGG-16 tomato leaf disease classifier is shown in

Figure 6, layer architecture for NASNet mobile tomato leaf disease

classifier is shown in Figure 7 and layer architecture for ensemble

model is shown in Figure 8.
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4.1.1 Confusion matrices
The confusion matrix is an n × nmatrix where the rows represent

the actual classes while the columns represent the predicted class. The

data points are stored in the matrix in cells corresponding to the

specific actual class and specific predicted class as count values.
FIGURE 2

Training data distributions of tomato leaf images.
FIGURE 3

Validation data distributions of tomato leaf images.
FIGURE 1

Overall proposed architecture for tomato leaf disease classification.
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FIGURE 4

The images from the tomato leaf dataset after preprocessing, representing (A) late blight, (B) healthy, (C) early blight, (D) septoria leaf spot, (E) yellow
leaf curl virus, (F) bacterial spot, (G) target spot, (H) mosaic virus, (I) leaf mold, and (J) two spotted spider mite.
FIGURE 5

Images of tomato leaves observed at each preprocessing step.
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FIGURE 6

Layer architecture for VGG16 tomato leaf disease classifier.
FIGURE 7

Layer architecture for NASNet mobile tomato leaf disease classifier.
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The above confusionmatrix consists of the values predicted by the

proposed model corresponding to the actual value. The confusion

matrix of the proposed model is shown in Figure 9, the confusion

matrix of the VGG-16 fine-tuned model is shown in Supplementary

Figure 2, the confusion matrix of the NASNet model is shown in

Supplementary Figure 3, the precision values of VGG-16, NASNet,

and the proposed model is shown in Supplementary Figure 4.
4.1.2 Specificity
The specificity is the ratio of true negatives to the actual number of

negative instances in a specific class. This is a metric to measure the

ability of the classifier for correct identification of negative instance

within a specific class.
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It is mathematically expressed as shown in Equation (29):

Specificity of VGG-16, NASNet, and the proposed model is

shown in Figure 10.

Specificity = on
k=1TNk

on
k=1(TNk + FPk)

(29)
4.1.3 Accuracy
Accuracy can be defined as the number of correctly classified

images to the total number of images in the dataset. This can be

expressed mathematically as shown in Equation (30): Accuracy

curves of VGG-16, NASNet, and the proposed model is shown in

Figure 11.
FIGURE 8

Layer architecture for ensemble model.
FIGURE 9

Confusion matrix of the proposed model.
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B

C

A

FIGURE 10

Specificity of (A) VGG-16, (B) NASNet, (C) proposed model.
B

C

A

FIGURE 11

Accuracy curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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Accuracy = on
k=1(TPk + TNk)

on
k=1(TPk + TNk + FPk + FNk)

(30)
4.1.4 Loss
Loss is represented as the measure of the model’s performance

regarding the ability to minimize the difference between the

predicted and actual values. In our case, we have used the

categorical cross-entropy loss function. Loss Curves of VGG-16,

NASNet and the proposed Model are shown in Figure 12.

Precision = on
k=1TPk

on
k=1(TPk + FPk)

(31)
4.1.5 Precision
Precision is calculated as the ratio of the true total number of

instances that are correctly identified as positive by the classifier to

the total number of instances identified as positive by the classifier.

This is mathematically expressed as shown in Equation (31):

Recall = on
k=1TPk

on
k=1(TPk + FNk)

(32)
4.1.6 Recall
Recall or sensitivity is the ratio of the number of true positives to

the sum of the number of true-positive and false-negative instances

in a specific class. This is a metric to measure the ability of the
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classifier for correct identification of positive instances within a

specific class. The recall curves of VGG-16, NASNet, and the

proposed model is shown in Figure 13.

It is mathematically expressed as shown in Equation (32):

F1   Score =
2on

k=1TPk

on
k=1(2TPk + TNk + FPk)

(33)
4.1.7 F1-score
The F1-score is utilized for striking a balance between

minimizing the false positives and false negatives and is used as a

combination of both precision and recall. Thus, it can be

mathematically expressed as shown in Equation (33) and the F1

score curves of VGG-16, NASNet, and the proposed model is

shown in Figure 14.

4.1.8 ROC curve and AUC
The receiver operating characteristic (ROC) curve is a graphical

representation that consists of the performance of the model in

various classification thresholds and is plotted with sensitivity

against specificity, thereby visualizing the trade-off between both

metrics. AUC helps in quantifying the overall performance of the

classifier, which is measured as the area under the ROC curve and

the ROC curves of VGG-16, NASNet, and the proposed model is

shown in Figure 15.

4.1.9 Misclassification rate
The error rate can be defined as the number of inputs in a particular,

which are classified into a wrong class; this can be expressed
B

C

A

FIGURE 12

Loss curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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mathematically as shown in Equation (34): Misclassification rates in

VGG-16, NASNet, and proposed model is shown in Figure 16.

Error% =
No   of  Misclassified   Instances   in   a   class
Total  Number   of   Instances   in   a   class

(34)
4.2 Performance analysis

The comparison of the three models in the context of the above

explained metrics, namely, (a) VGG-16, (b) NASNet, and (c)

proposed model, is presented below in graphical representations.
4.3 Interpretation

The above computed performance metrics and the respective

graphical representations are proof that the proposed deep learning

technique, the suitable application of the ensemble model, and the

enhanced classifier and optimizer used have shown a tangible

increase of the feasibility in the disease prediction for the given

series of input images of tomato leaves. It also proves that the
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preprocessing procedure applied is a fitting one. The performance

values observed for accuracy, loss, precision, recall, ROC, and F1-

score are 98.7%,<4%, 97.9%, 98.6%, 99.97%, and 98.7% respectively.

It is apparent that the results obtained show significant

improvement compared with those shown by conventional and

present techniques as explained in the literature. The performance

scores recorded for the existing models in the literature are

tabulated below. The techniques studied do not record all the

performance metrics as in the proposed model in this work. One

parameter that is considered in all the models, namely, “accuracy”,

is exponentially high in the proposed approach. The performance

comparison of the proposed model with existing models is shown

in Table 1.
4.4 Testing of hypotheses

In order to provide a statistical analysis on the proposed work,

testing of hypothesis was carried out in this work. It consists of three

hypotheses including a Null hypothesis given in Table 2.

Hypothesis 1: There is a significant influence between season

and tomato leaf diseases.
B

C

A

FIGURE 13

Recall curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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B

C

A

FIGURE 14

F1 score curves of (A) VGG-16, (B) NASNet, and (C) the proposed model.
B

C

A

FIGURE 15

ROC curves of (A) VGG-16, (B) NASNet, and (C) the proposed model.
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Hypothesis 2: There is no relationship between the occurrence

of tomato leaf disease and the environment.
4.5 Testing of Hypothesis 1

As the p-value in this test is greater than 0.01, the given null

hypothesis can be accepted at the 1% significance level. Hence, there

is a significant influence between season and tomato leaf diseases.

Table 3 shows the chi-square test for analyzing the relationship

between the deep learning classifier vs. tomato leaf disease detection.
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4.6 Testing of Hypothesis 2

H0: There is no relationship between the selection of the deep

learning classifier vs. tomato leaf disease detection for performing

accurate detection of the disease.

Since the value of p is less than 0.5, this hypothesis, which is

shown in Table 3, is rejected at the 5% significance level. Therefore, it

is concluded that there is a strong and direct relationship between the

selection of the deep learning classifier and tomato leaf disease

detection from tomato leaf images for performing accurate

detection of the disease.
B

C

A

FIGURE 16

Misclassification rates in (A) VGG-16, (B) NASNet, (C) proposed model.
TABLE 1 Performance comparison.

Models Performance scores (all in %)

Specificity Accuracy Recall Precision F1-score Loss ROC Misclassification

AlexNet (Wang et al., 2017) – 91.00 91.00 91.0 91.00 - - -

GoogLeNet (Wang et al., 2017) – 94.8 94 94 94 - - -

VGG-16 (Wang et al., 2017) – 95 95 95 95 - - -

VGG-16 (Bracino et al., 2020) – 90.40 - - - - - -

LBP M-SVM (Wang et al., 2017) 90.23 97.20 90.75 93.50 - - - -

GPR Quadratic SVM (Ashwinkumar et al., 2022) – 83.30 - - - - 86.00 -

OMCNN (Khan et al., 2019) – 98.7 98.2 - 98.5 - – -

Proposed adaptive ensemble model 98.9 98.7 98.6 97.9 98.7 <4 99.97 <9
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5 Conclusion and future work

In this research paper, a new ensemble classifier along with an

EMA function with temporal constraints, an EWGO that is

integrated with two CNN models, namely, VGG-16 and NASNet,

has been proposed for the effective detection of diseases in tomato

leaves at an early state. This integration of state-of-the-art deep

learning CNN technologies with a gradient optimizer and EMA

function with temporal constraints provides meticulous data

analysis. The proposed model uses image enhancement

techniques, and groundbreaking ensemble models underscore a

comprehensive approach to tomato leaf disease classification. The

amalgamation of image preprocessing, transfer learning, and the

pioneering ensemble model with EWGO exhibits promising

outcomes in disease classification and increases detection

accuracy compared with the existing systems. The main

limitation of this work is the lack of time during training.

However, an optimizer is added to this work to solve the training

time problem. In the future, the implications of this research shall

be extended to areas like crop health, global food security,

sustainable agriculture, and environmental preservation,

underscoring its value within the realm of plant pathology

and agriculture.
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TABLE 3 Analysis of deep learning algorithm’s role in tomato leaf
disease detection.

Important metric
applied on

the algorithm

Chi-
square
value

p-
value

Mean
availability

Up
to

80%

Above
80%

Accuracy of classification 1.91 0.41 25 11
TABLE 2 H0: There is a significant influence between season and tomato leaf diseases.

Reason for
tomato

leaf disease

Weighted mean
using experiments
(observed value O)

Weighted mean
based on

computation
(expected value E)

(O − E)2

V alue is c2 =

c2o(O E)2

E

p-value (with
6 dof)

Fungi 7.692 4.649 0.649

4.11 0.65

Fertilizer use 6.329 3.548 0.779

Bacteria 7.947 4.979 0.612

Virus 7.309 3.648 0.999

Viroids 7.519 4.718 0.60

Geographical Region 6.418 4.269 0.499
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Introduction: Yunnan Xiaomila is a pepper variety whose flowers and fruits

become mature at the same time and multiple times a year. The distinction

between the fruits and the background is low and the background is complex.

The targets are small and difficult to identify.

Methods: This paper aims at the problem of target detection of Yunnan Xiaomila

under complex background environment, in order to reduce the impact caused

by the small color gradient changes between xiaomila and background and the

unclear feature information, an improved PAE-YOLO model is proposed, which

combines the EMA attention mechanism and DCNv3 deformable convolution is

integrated into the YOLOv8 model, which improves the model’s feature

extraction capability and inference speed for Xiaomila in complex

environments, and achieves a lightweight model. First, the EMA attention

mechanism is combined with the C2f module in the YOLOv8 network. The C2f

module can well extract local features from the input image, and the EMA

attention mechanism can control the global relationship. The two complement

each other, thereby enhancing the model’s expression ability; Meanwhile, in the

backbone network and head network, the DCNv3 convolution module is

introduced, which can adaptively adjust the sampling position according to the

input feature map, contributing to stronger feature capture capabilities for

targets of different scales and a lightweight network. It also uses a depth

camera to estimate the posture of Xiaomila, while analyzing and optimizing

different occlusion situations. The effectiveness of the proposed method was

verified through ablation experiments, model comparison experiments and

attitude estimation experiments.

Results: The experimental results indicated that the model obtained an average

mean accuracy (mAP) of 88.8%, which was 1.3% higher than that of the original

model. Its F1 score reached 83.2, and the GFLOPs andmodel sizes were 7.6G and

5.7MB respectively. The F1 score ranked the best among several networks, with

the model weight and gigabit floating-point operations per second (GFLOPs)

being the smallest, which are 6.2% and 8.1% lower than the original model. The

loss value was the lowest during training, and the convergence speed was the

fastest. Meanwhile, the attitude estimation results of 102 targets showed that the

orientation was correctly estimated exceed 85% of the cases, and the average

error angle was 15.91°. In the occlusion condition, 86.3% of the attitude
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estimation error angles were less than 40°, and the average error angle

was 23.19°.

Discussion: The results show that the improved detection model can accurately

identify Xiaomila targets fruits, has higher model accuracy, less computational

complexity, and can better estimate the target posture.
KEYWORDS

improved YOLOv8, Xiaomila fruits, target detection, lightweight, pose estimation
1 Introduction

Pepper is one of the three major vegetable crops in the world. Its

fruit has rich polyphenols, flavonoids, vitamin C, and other natural

active ingredients, with high food value, economic value, and health

care value (Zhang, 2023). Currently, pepper-picking equipment

mainly consists of various forms of harvesters, such as rod and

comb harvesters, unfolding double helix harvesters, drum finger

harvesters, and strip comb harvesters (Fan et al., 2023). Xiaomila is

a smaller, lighter, crispy, and tender variety of pepper, and its

flowers and fruits have the same characteristics. Traditional picking

equipment is not only prone to damaging Xiaomila fruits but also

cannot adapt to the characteristics of Xiaomila flowers and fruits

that are contemporaneous.

In recent years, picking robots have gradually become popular

(Ye et al., 2023; Wang et al., 2023a; Tang et al., 2024), different from

traditional mechanical picking equipment, picking robots have the

capability of non-one-time picking and can reduce uncontrollable
0266
damage caused by traditional mechanical equipment. This enables

the picking robot to adapt well to the characteristics of Xiaomila

flowers and fruits that are contemporaneous and easily damaged.

The spatial attitude estimation of Xiaomila objects is the to accurate

and collision-free picking, and Xiaomila grows in different

directions in the natural farmland environment, as illustrated by

the arrows in Figure 1.

Attitude estimation is to infer the three-dimensional translation

and rotation information of the target in the camera coordinate

system from images or videos (Guo et al., 2023). Traditional attitude

estimation methods have low applicability in weak texture target

detection and real-time detection, while deep learning methods

learn feature information in input images through deep neural

networks and have high robustness in real-time applications

(Lin et al., 2022a). Therefore, current research on target

attitude estimation during picking mainly focuses on deep

learning methods.

Methods based on RGB-D images generally collect image data

containing target depth information through a depth sensor and

extract corresponding features for posture regression. Luo et al.

obtained the grape cluster image mask and point cloud

information using a depth camera, constructed a region of

interest based on the mapping relationship between the two,

and utilized the LOWESS algorithm and geometric method to fit

the pedicel surface and estimate the posture of the pedicel. This

estimation method is highly sensitive to point cloud data

(Luo et al., 2022). Eizentals et al. obtained green pepper surface

point information through a laser rangefinder and obtained the

attitude information of the green pepper fruit in space through

model fitting, but the accuracy and success rate were not high

(Eizentals and Oka, 2016). Yin et al. obtained the grape mask by

using the Mask Region Convolutional Neural Network (Mask R-

CNN); meanwhile, they combined the RANSAC algorithm to fit

the point cloud into a cylindrical model, estimated the grape

posture with its axis, and estimated the posture of each bunch of

grapes. The approach took about 1.7s to complete the task

(Yin et al., 2021). Zhang et al. proposed a tomato bunch attitude

detection method for continuous tomato harvesting operations.

The method consists of a priori model, cascade network, and

three-dimensional reconstruction. It fully exploits the advantages
FIGURE 1

Xiaomila grows in different directions in the natural
farmland environment.
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of convolutional neural networks while avoiding complex point

cloud calculations, but it cannot make correct predictions for

fruits with heavy occlusion (Zhang et al., 2022). Lin et al. used

RGB-D sensors to obtain binary images of guava and branches

through a fully convolutional network, adopted Euclidean

clustering to separate different groups of point clouds, and used

the guava center and nearest branch information for attitude

estimation. However, the success rate and accuracy still need to

be improved (Lin et al., 2019). Wang et al. designed a geometric

perception network that uses point cloud information and RGB

images to detect, segment, and grasp targets. It can better perceive

targets, but changes in distance have a greater impact on the

estimation accuracy (Wang et al., 2022). Li et al. calculated the

local plane normal of each point in the point cloud, scored each

candidate plane, took the lowest-scoring plane as the symmetry

plane of the point cloud, and calculated the symmetry axis based

on this plane to realize attitude estimation of bell peppers.

However, the estimation effect is not good for occluded bell

peppers (Li et al., 2018).

The input data of the method based on RGB images does not

contain depth information, and the features of the image are

directly extracted for analysis. Sun et al. constructed a multi-task

learning model that locates the position of the citrus navel point and

predicts the rotation vector of the citrus by performing RGB image

analysis of citrus. However, for citrus whose navel point is invisible,

the model needs to be further improved (Sun et al., 2023). Zhang

et al. used 3D detection results to regress the 2D key point

coordinates of objects in the image. By using the perspective n-

point algorithm to estimate the pose of an object, this method

enhances the accuracy and efficiency of pose estimation

(Zhang et al., 2019). Kim et al. developed a deep learning

network for determining robot cutting poses during harvesting,

which can perform ripeness classification and pose estimation of

fruits and lateral stems. The study results indicate that this method

performs well in detecting tomatoes in a smart farm environment.

However, the detection effect in complex farmland environments

has not been verified (Kim et al., 2022). Based on the growth

characteristics of grapes, Wu et al. combined human pose

estimation, key point detection models, and target detection

algorithms to identify grape clusters and estimate poses. However,

this method is not effective for complex image processing (Wu et al.,

2023a). Lin et al. analyzed a single RGB image based on key points

and estimated the pose of the object by regressing the size of the

boundary cuboid, but the network was not sufficiently lightweight

(Lin et al., 2022b).

To sum up, the method of using RGB-D images or point cloud

data to estimate the pose of a target requires a large amount of

calculation and is not suitable for transplantation to mobile devices.

Additionally, objects to be identified in farmland are basically

occluded. The above methods are usually combined with the stems

of the identified objects to realize pose estimation. However, the

diameter of Xiaomila stems is very small (1–3 mm), and the

background is complex. Traditional stereo cameras and depth

sensors such as lidar have been proven to be unable to provide

reliable depth information (Coll-Ribes et al., 2023). To solve these

problems, this study mainly makes the following contributions:
Frontiers in Plant Science 0367
1) We propose a lightweight, multiscale detection model, called

PAE-YOLO, for Xiaomila target detection in complex farmland

environments. The EMA attention mechanism can effectively

enhance the feature extraction capability of the model, while

DCNv3 can significantly reduce the computational complexity of

the model and improve the portability of the model.

2) We used a depth camera to detect pepper skins and caps to

determine the posture of Xiaomi spicy. We also analyze and

optimize Xiaomi target detection and posture determination

under different occlusion situations.

3) We determined the effectiveness of the improved model

through ablation experiments and comparison experiments, and

determined the effectiveness of attitude detection through attitude

estimation experiments. Among several classic detection models,

our proposed model has higher accuracy, the smallest model size,

and the lowest computational effort than several classical models.
2 Materials and methods

2.1 Image acquisition

This study takes Xiaomila fruits in the green and mature stage of

farmland as the research object. All images used in the experiment

were taken in 2023 at a Xiaomila plantation in Qiubei County,

Wenshan City, Yunnan Province, China. The Intel realsense D435i

device was utilized to collect RGB images. During the image

collection process, the camera was placed about 15–30 cm away

from the Xiaomila plants and photographed directly above the

Xiaomila plants. The image resolution was 1920×1080 pixels, and a

total of 1060 images were collected.
2.2 Dataset construction and annotation

In the natural farmland environment, Xiaomila fruits have a

similar color to pepper leaves, with small individuals and complex

backgrounds. Considering the difference in images obtained under

actual changing lighting and occlusion conditions, the original images

are collected at different times, under varying lighting, and with

diverse occlusion levels. However, these images typically cannot

encompass all real-world conditions. Furthermore, they differ

somewhat from actual Xiaomila images. Hence, collected RGB

images underwent expansion through random rotation, brightness

adjustment, and noise addition to harmonize and mitigate these

disparities. In the real environment, the pepper’s orientation varies,

and random rotation and flipping primarily serve to diversify its

orientation, enhancing the model’s generalization ability. Random

clipping accounts for the impact of various occlusion scenarios,

ensuring data diversity. Noise addition and brightness adjustment

aim to mitigate factors such as brightness deviations among different

sensors (Akbar et al., 2022; Bosquet et al., 2023).

Of course, there will still be some differences between the

enhanced dataset and the actual changing lighting and occlusion

conditions. To minimize such differences, more factors from real

scenes can be incorporated when collecting data, such as weather
frontiersin.org
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changes, varying occlusion, etc. Additionally, ensuring a similar

distribution between training and test data reflects the actual scene

more accurately.

The expansion effect is demonstrated in Figure 2. The final

target detection data set consists of 2500 images, of which 1750 are

used as a training set and the remaining 750 are used as a

verification set. The labeling tool was used to label Xiaomi fruits

and convert the labeled xml file into the txt file required by

the model.
2.3 YOLOv8 network structure

The YOLO series algorithm is an efficient method with limited

computational parameters, making it a key research focus in target

detection (Wang et al., 2023b). Wu et al. proposed a segmentation

and counting algorithm for banana bunches based on YOLOv5-

Banana (Wu et al., 2023b). Song et al. introduced the YOLOv7-ECA

model, which offers fast detection speed, specifically designed for

the similar color and small size of young apple leaves (Song et al.,

2023). Yao et al. presented the SCR-YOLO model for detecting the

germination rate of wild rice (Yao et al., 2024). Ranjan et al. utilized

the YOLOv8 network to detect and adjust green apples in orchards

(Sapkota et al., 2024). YOLOv8 is the latest version of the YOLO

series network. According to the scaling coefficient, the network is

divided into five scales: n/s/m/l/x. The main updates of the YOLOv8

network lie in the C3 module, head network, and loss function.

Specifically, the C3 module is replaced by the C2f module, which

improves the backbone network’s ability to fuse the detailed

information and semantic information of feature maps at different
Frontiers in Plant Science 0468
scales. The original coupling head is replaced with a decoupling

head, and the regression branch and prediction branch are

separated, leading to better recognition results. Regarding the loss

function, YOLOv8 adopts the task-aligned allocator positive sample

distribution strategy to optimize the calculation process of the loss

function. Figure 3 shows the overall structure of the

YOLOv8 network.
2.4 YOLOv8 model improvement strategy

Though YOLOv8 has strong capabilities in target detection, it

still has limitations in the detection of Xiaomila fruits. Compared

with other crop fruits, Xiaomila fruits exhibit irregular distribution,

there is little change in the color gradient between the fruit area and

the background, and it is more susceptible to interference from

background information. Considering the above limitations, this

study improves YOLOv8 in two aspects: attention mechanism and

convolutional neural network.

First, the EMA attention mechanism is combined with the C2f

module in the YOLOv8 network. The C2f module can well extract

local features from the input image, and the EMA attention

mechanism can control the global relationship. The two

complement each other, thereby enhancing the model’s

expression ability; Meanwhile, in the backbone network and head

network, the DCNv3 convolution module is introduced, which can

adaptively adjust the sampling position according to the input

feature map, contributing to stronger feature capture capabilities

for targets of different scales and a lightweight network. The test

results suggest that the improved model has better performance in
A B

D E F

C

FIGURE 2

Image expansion effect. (A) Original image, (B) random cropping, (C) flipping, (D) noise adding, (E) brightness adjustment, (F) random rotation.
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FIGURE 4

The architecture of the PAE-YOLO network.
FIGURE 3

YOLOv8 network architecture.
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identifying Xiaomila fruits. Since this model is established based on

YOLOv8, the improved model is called PAE-YOLO. Figure 4

demonstrates the entire network framework of PAE-YOLO.

2.4.1 EMA attention mechanism
The attention mechanism is employed to help the model

distinguish important channels and enhance the feature

information in the channels, thereby improving the model’s

perception and generalization ability of feature information.

Traditional attention mechanisms usually produce clear feature

information by reducing channel dimensions. However, the

reduction of channel dimensions may result in partial

information loss and increased errors.

EMA is a multiscale attention mechanism for calculating

attention weights (Ouyang et al., 2023). This mechanism

introduces the concept of exponential moving average, which

divides each channel of the input image into groups containing

multiple sub-features. In the process, the EMA attention

mechanism only requires one learning accumulation factor, and

the number of added parameters is small, which can guarantee that

the spatial semantic features are evenly distributed in each feature

group without changing the channel dimension. The specific

structure of the attention mechanism is shown in Figure 5.

2.4.2 Deformable convolutional network DCNv3
Deformable convolution is a non-fixed sampling convolution

network with stronger generalization ability and feature capture

ability than ordinary convolution networks. DCNv3 (Wang et al.,

2023c) introduces the concept of convolution separation to divide

the original convolution weight into two parts: the depth direction

and the point direction. The point direction part is taken as the

shared projection weight between sampling points to improve the

overall efficiency of the model. Meanwhile, DCNv3 divides the

process of spatial aggregation into multiple groups with
Frontiers in Plant Science 0670
independent sampling offsets and modulation scales. All

modulation scalars between sampling points are normalized

through softmax, and their sum is constrained to 1, thereby

enhancing the training stability of the model. The specific

expression is given in Formula 1.

  y(p0) = o
F

f=1
o
H

h=1

wfmf hXf (p0 + ph + Dpf h) (1)

where, F denotes the total number of aggregated groups, H

represents the number of dimensions, wf represents the position

−independent projection weight of the current group, mfh

represents the h sampling points in the f group, Xf denotes a

slice of the input feature map, p0 denotes the current pixel, ph
represents the grid sampling position of the current group, and Dpfh
stands for the offset corresponding to ph.

Figure 6 compares different core operators. (a) shows the global

attention operator, which has high computational complexity and

memory cost. (b) shows a local attention operator. Although the

calculation amount is reduced, it cannot handle long-distance

dependencies. (c) shows a large kernel operator, but it cannot

adapt to spatial aggregation. (d) shows the dynamic sparse kernel

operator used in DCNv3 deformable convolution. It has low

computational cost and memory costs, has the capability to handle

long-distance dependencies, and can adapt to spatial aggregation.
2.5 Posture estimation for Xiaomila fruits

In the natural farmland environment, affected by leaves,

branches, and other fruits, the attitude of Xiaomila fruits has little

correlation with the fruit itself. Coupled with complex background

factors, it is difficult to directly estimate the posture of Xiaomila

fruits. This paper adopts the idea of mapping and uses the detection

network to identify all the peppers in the image and takes the single
FIGURE 5

The structure of the EMA attention mechanism.
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pepper image in the recognition frame as the region of interest

(RoI). Then, the data of the RoI is passed to the segmentation

network, which segments the area target and outputs a binary mask.

Next, based on the pixel information of the segmented individual

Xiaomila fruits, two-dimensional pose estimation is performed on

the Xiaomila fruits, and the pose estimation effect is mapped back to
Frontiers in Plant Science 0771
the original image. Finally, combined with the depth information,

the spatial posture of Xiaomila fruits is obtained.

2.5.1 Xiaomila 2D fitting
Xiaomila fruits are very light. Unlike heavier crops such as

grapefruit and apples, the fruit stems are generally facing downward
FIGURE 7

Posture estimation of unoccluded Xiaomila fruits.
A B

DC

FIGURE 6

The schematic diagram of different core operators. (A) global attention operator, (B) local attention operator, (C) large kernel operator, (D) dynamic
sparse kernel operator.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1421381
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2024.1421381
(Kang et al., 2020; Zeng et al., 2021). Meanwhile, the fruit stems of

Xiaomila are very thin and subject to greater interference. These

factors make it difficult to directly identify and fit the fruit stems like

tomatoes, grapes, lychees, etc (Zhong et al., 2021; Li et al., 2023;

Zhang et al., 2023).

There is an obvious gradient change in the color of the pepper

peel and the color of the pepper cap. Based on this characteristic,

this paper segments the pepper peel and the pepper cap respectively,

calculates the moments of the masks of these two parts, and then

takes the two-dimensional vector composed of these two moment

points as the two-dimensional image posture of Xiaomila fruits, as

shown in Figure 7.

In the farmland environment, part of the pepper caps are

blocked, and the moment points of the pepper caps cannot be

successfully obtained. Considering that the Xiaomila fruit is strip-

shaped, this paper employs the least squares method (de Jong, 1993)

to optimally fit the mask data of the Xiaomila fruit. The relevant

parameters and definitions of Xiaomila fruit fitting are given in

Formulas 2–4:

y = k̂ x + b̂ (2)

k̂ =  o
n
i=1(xi − �x)(yi − �y)

on
i=1(xi − �x)2

(3)

b̂ = �y − k̂�x (4)

where, xi is the x-direction coordinate of the mask outline pixel

in the Xiaomila image coordinate system, yi is the y-direction

coordinate of the mask outline pixel, n denotes the number of

mask outline pixel points, �x is the x coordinate of all outline pixels. �y

represents the mean of all y-coordinates of the contour pixel. k̂
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denotes the slope of the mask profile fitting straight line, and b̂ is the

intercept of the straight line.

The final fitting effect is illustrated in Figure 8. Specifically,

(a) shows the original Xiaomila image; (b) shows the mask image of

Xiaomila; (c) shows the extracted mask contour binary image;

(d) shows a schematic diagram of contour fitting; (e) shows a

fitting effect diagram, where the green line represents the Xiaomila

contour line, the blue line AB represents the fitting straight line, and

the red dot indicates the estimated tip of Xiaomila; (f) shows the

posture effect.

Finally, by comparing the sum of the Euclidean distances

between the two end points of the contour and other points on

the contour to determine which end is the tip, two-dimensional

pose estimation of Xiaomila fruits with the pepper cap occluded

is realized.

2.5.2 Estimating space posture for Xiaomila fruits
The Xiaomila fruit fitting line is obtained based on a two-

dimensional image, and its description method is based on the

image pixel coordinate system. To obtain its posture in real space,

the points in the pixel coordinate system need to be converted to the

world coordinate system. The pixel coordinate system (o − uv) takes

the upper left corner of the image as the origin of the coordinate

system, and the unit is pixel; meanwhile, the image coordinate

system (o − xy) takes the center point of the image as the origin of

the coordinate system, and the unit is millimeter (mm);

additionally, the camera coordinate system (oc − xcyczc) takes the

optical center of the depth camera as the origin, and the unit is

meter (m); moreover, the world coordinate system coincides with

the camera coordinate system, as shown in Figure 9.

Before performing coordinate conversion, the Matlab-Camera

Calibrator toolbox is utilized to calibrate the depth camera to obtain
A B

D E F

C

FIGURE 8

Posture fitting of occluded pepper caps. (A) original Xiaomila image, (B) mask image of Xiaomila, (C) extracted mask contour binary image,
(D) schematic diagram of contour fitting, (E) fitting effect, (F) posture effect.
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the camera’s internal parameter matrix and external parameter

matrix. Then, the spatial point coordinates corresponding to the

pixel point coordinates are calculated through Equation 5.

Zc

u

v

1

2664
3775 = KP  

Xw

Yw

Zw

1

266664
377775 (5)

where, zc represents the axial distance of the camera in the Z-

axis, (u, v) is the pixel coordinate, K is the camera internal

parameter matrix, P is the camera external parameter matrix, and

(Xw ,Yw,Zw) is the point coordinate corresponding to the world

coordinate system.

After the depth camera coordinate system is determined, a 3×1

translation matrix can be used to locate any point in the camera

coordinate system. The conversion between the camera

coordinate system and the Xiaomila coordinate system is

represented by a 3×3 rotation matrix. Then, the position and

attitude of the Xiaomila fruit can be determined by combining the

translation matrix and rotation matrix. In this approach, the

spatial position and spatial vector of the Xiaomila fruit are now

known. Through inverse solution, the translation matrix and

rotation matrix are obtained, thereby obtaining the rotation

angle and translation distance of each joint. Finally, based on

the rotation angle and translation information, the end effector is

controlled to reach the designated position to complete the

picking task. The translation matrix and rotation matrix are

shown in Equations 6 and 7.

SP =

px

py

pz

2664
3775 (6)

S
LR =   (S X̂ L    

S Ŷ L    
S Ẑ L ) =  

r11     r12     r13

r21     r22     r23

r31     r32     r33

2664
3775 (7)

where, SP is the translation matrix, SLR is the rotation matrix, S

represents the depth camera coordinate system, and L represents the
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Xiaomila coordinate system; px , py , and pz are the center of gravity of

the Xiaomila fruit relative to the camera, respectively. SX̂ L,
SŶ L, and

 SẐ L respectively represent the distance information of the Xiaomila

coordinate system relative to the camera coordinate system along the

x, y, and z  axes.
2.6 Evaluation metrics

2.6.1 Evaluation of detection and segmentation
This paper takes detection precision (P), mean average

precision (mAP), recall rate (R), F1 score, gigabit floating point

operations per second (GFlops), and model weight file size as

evaluation indicators. Precision is the ratio of the actual number

of positives to the number of predicted positives. The higher the

precision, the lower the false detection rate. The mean average

precision is the mean of the average accuracy across all categories,

and it is used to evaluate the accuracy of the entire model. Recall

rate is used to evaluate the missed detection rate of the model. The

F1 score measures the impact of precision and recall and is used to

evaluate the stability of the model. GFlops represent the number of
FIGURE 9

Schematic diagram of the coordinate systems.
FIGURE 10

Diagram of error angle.
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floating-point operations performed per second, and it is used

to evaluate the computing performance of the model. The

calculation formulas for these evaluation indicators are shown

in Equations 8–11.

P =  
TP

TP + FP
(8)

mAP =  
1
no

n
i=1APi (9)

R =
TP

TP + FN
(10)

F =
2� P � R
P + R

(11)

where, TP represents the number of true positive values;  FP

represents the number of false positive values; FN represents the

number of false negative values; n represents the number of

categories of identified objects, and APi represents the average

accuracy for category i.

2.6.2 Evaluation of pose estimation
The error angle a is the angle between the actual space vector

and the predicted space vector of the Xiaomila fruit. It is used to

represent the error of the posture prediction algorithm, as shown in

Figure 10. The calculation formula of a is shown in Equation 12:

a =   arccos
nxmx + nymy + nzmzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2x + n2y + n2z
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x +m2
y +m2

z

q (12)

where, m =  (nx , ny , nz) is the spatial vector of the Xiaomila fruit

predicted by the attitude estimation algorithm, andm =  (mx ,my ,mz)
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is the actual spatial vector of the Xiaomila fruit. The smaller the error

angle a, the closer the predicted posture is to the real situation.
2.7 Software

The hardware platform used for the experiment is a computer

equipped with Intel Xeon W-2145 (16GB memory) and NVIDIA

GeForce RTX2080Ti (11 GB video memory) and running 64-bit

Windows 11 operating system. The Xiaomila target detection and

segmentation model is trained using CUDA 11.6, Opencv, Pytorch

framework, Python3.9 programming language, etc.
3 Results and discuss

3.1 Analysis of detection and segmentation

3.1.1 Ablation experiment
To evaluate the impacts of the EMA attention mechanism and

the DCNv3 convolution module on improving the detection

performance of Xiaomila fruits, these two structures were

introduced into the official YOLOv8 respectively. Table 1 presents

the impact of each module on the overall detection effect of the

algorithm. The model performance was evaluated in terms of

precision, recall, average precision, F1 score, floating point

operations (FLOPs), and model weight size.

As shown in Table 1, several improvement strategies are

effective in improving the model’s detection effect. Compared

with the original YOLOv8n model, the recall rate and average

precision of the model with the attention mechanism were

increased by 0.7% and 1.4%, respectively. Meanwhile, the model
TABLE 2 Recognition results of different models on Xiaomila images.

Model
P (%) R (%) mAP (%) F1 Score (%) GFLOPs Model

Size/MB

Mobilenetv3 85.0 76.7 85.4 80.6 11.2 10.5

YOLOv5s 88.8 75.3 85.0 81.5 15.8 14.4

YOLOv7-tiny 85.7 82.8 89.5 84.2 13.0 12.3

YOLOv8n 86.5 78.8 87.5 82.5 8.1 6.2

PAE-YOLO 87.2 79.5 88.8 83.2 7.6 5.7
TABLE 1 Ablation experiments of different modules of PAE-YOLO.

Model EMA DCNv3
P (%) R (%) mAP (%) F1 Score (%) GFLOPs Model

Size/MB

YOLOv8n × × 86.5 78.8 87.5 82.5 8.1 6.2

√ × 87.1 79.5 88.9 83.1 8.4 6.3

× √ 87.3 78.1 87.6 82.4 7.4 5.7

√ √ 87.2 79.5 88.8 83.2 7.6 5.7
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weight was slightly increased, and the FLOPs reached 8.4G. After

the convolution in the c2f module of the original model was

replaced, the recall rate and average precision of the model were

slightly improved compared to the original model, the model weight

decreased by 8.1%, and the FLOPs dropped to 7.4G. Compared with

the original YOLOv8n model, the average precision of the final

PAE-YOLO model increased by 1.3%, the recall rate increased by

0.7%, GFLOPs decreased by 6.2%, the model size decreased by 8.1%,

and the F1 score reached 83.2%.The results suggest that the EMA

attention mechanism can improve the feature extraction capability

of the model while adding a small number of parameters, and the
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DCNv3 convolution module enhances the portability and real-time

detection performance of the model.

By combining the EMA attention mechanism and the DCNv3

deformable convolution network, PAE-YOLO not only improved the

detection performance of Xiaomila fruits but also reduced the

model’s calculation amount from 8.4G to 7.6G, and the model

weight size dropped from 6.3M to 5.7M. Compared with the

original YOLOv8n model, the FLOPs of PAE-YOLO were reduced

by 6.2%, the model weight was reduced by 8.1%, the precision

reached 87.2%, the recall rate reached 79.5%, the average precision

reached 88.8%, and the F1 score was 83.2. Therefore, our method
FIGURE 11

mAP and loss curves.
A

B

FIGURE 12

PAE-YOLO detection and segmentation results. (A) detection results of the xiaomila object, (B) segmentation results of the pickable xiaomila object.
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improves the algorithm performance in various indicators and

reduces the algorithm’s computational complexity, which helps

integrate the algorithm into picking robots for real-time applications.

3.1.2 Comparative experiment
To verify the advantages of the model proposed in this paper in

detecting Xiaomila targets, this study selected five classic detection

models based on deep learning for performance comparison.

Table 2 shows the experimental results of Mobilenetv3, YOLOv5s,

YOLOv7-tiny, YOLOv8n, and PAE-YOLO.

As illustrated in Table 2 and Figure 11, compared with

Mobilenetv3 and YOLOv5s networks, the recall rate of the

PAE-YOLO model increased by 2.8% and 4.2% respectively, the

mAP value increased by 3.4% and 3.8% respectively, and the

model weight decreased by 45.7% and 60.4% respectively.

Compared with the YOLOv7-tiny model, although the PAE-

YOLO model had a slight decrease in precision and recall, the

GFLOPs and weight decreased by 41.5% and 53.7%, respectively.

The F1 score of PAE-YOLO ranked the best among the above-

mentioned series of networks, with the smallest model weight and

GFLOPs. Additionally, the PAE-YOLO model exhibited the

lowest loss value and the fastest convergence speed during the

training process.
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These test results suggest that the PAE-YOLO network has a

stronger overall performance in visual recognition of Xiaomila

fruits. Figure 12 shows the detection and segmentation results of

the PAE-YOLO model. Specifically, (a) shows the detection results

of the xiaomila object, in which the xiaomila with purple contour is

the pickable object; (b) shows the segmentation results of the

pickable xiaomila object.
3.2 Analysis of pose estimation effects

3.2.1 Error angle analysis
In the actual farmland picking environment, if the error angle of

Xiaomila’s attitude estimation falls within a certain range, the end

effector of the picking equipment can achieve accurate picking. This

study analyzes the error angles at different angles, as listed

in Table 3.

An example of the spatial pose estimated by the proposed pose

estimation method is demonstrated in Figure 13. In this figure, the

burgundy arrow represents the actual posture of the manually

annotated pepper, the dark purple arrow represents the

preliminary posture of the pepper estimated by the algorithm

based on the surface points of the pepper, and the blue arrow

represents the optimized posture of the pepper.

Figure 13A shows the spatial pose estimation of a Xiaomila fruit

without bending, while Figure 13B shows the spatial attitude

estimation of a Xiaomila fruit in a curved state. The posture of

the Xiaomila fruit with a small curvature estimated based on surface

points is basically consistent with the actual situation, while the

estimation of the Xiaomila fruit with a large curvature based on

surface points produces an error. This error may be ignored in

complex farmland environments, resulting in an inability to

correctly estimate the posture. This paper uses the two-
TABLE 3 Error angle analysis.

Limit
angle

Frequency Average
error

Standard
deviation

Unlimited 1 18.63 13.89

<30° 0.844 13.75 4.94

<20° 0.711 11.98 2.91

<15° 0.556 10.63 1.44
A B

FIGURE 13

Example of spatial pose estimation of Xiaomila fruits. (A) spatial pose estimation of a Xiaomila fruit without bending, (B) spatial attitude estimation of
a Xiaomila fruit in a curved state.
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dimensional Xiaomila fitting straight line as the symmetry axis to

calculate the radial pixels at both end points of the estimated

posture and then determines the inward offset distances h1 and

h2 through the depth camera, thereby performing spatial analysis

on the estimated posture.
3.2.2 Analysis of different occlusion situations
This paper discusses the pose estimation results under four

different occlusion situations: the pepper cap is not occluded (a), the

pepper cap is occluded but the occlusion does not produce a tip on
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the Xiaomila fruit (b), the pepper cap is occluded and the occlusion

produces a tip on the Xiaomila fruit (c), and the pepper cap and tip

are both occluded (d). In Figure 14, (1) shows the Xiaomila pose

estimation with the pepper cap not occluded. (2)(3)(4) show the

Xiaomila pose estimation with the pepper cap occluded. (3)(4) did

not correctly determine the direction of the Xiaomila fruit. This is

because (i) The pepper cap is occluded, and the tip angle formed by

the occluded on the pepper cap part is smaller than the pepper tip

angle. The attitude estimation algorithm makes an error when

judging the orientation of the Xiaomila fruit. (ii) Both the pepper

tip and pepper cap are occluded, and the algorithm cannot correctly

identify and predict the specific orientation of the Xiaomila fruit.

The attitude estimation error results under four different

occlusion situations are presented in Table 4. The attitude

estimation error when the pepper cap is not occluded is smaller

than the attitude estimation error when the pepper cap is occluded.

The average error angle is 23.19°. When the occluded cap is

occluded, the algorithm fails to correctly identify the specific

orientation of the pepper, thus affecting the attitude estimation

effect. Since there are fewer situations (c) and (d) in practice, these

two occlusion situations have less impact on the overall pose
FIGURE 14

Classification of Xiaomila fruits occlusion. (1) Xiaomila pose estimation with the pepper cap not occluded, (2) (3) (4) Xiaomila pose estimation with
the pepper cap occluded.
TABLE 4 Pose estimation error under different occlusion situations.

Occlusion
situation

Frequency Average
error

Standard
deviation

a 0.667 15.68 5.87

b 0.196 16.69 5.63

c 0.059 160.97 6.37

d 0.078 122.31 55.11
FIGURE 15

Attitude estimation renderings.
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estimation effect. The final attitude estimation effect is shown in

Figure 15, where end A represents the pepper tip, and end B

represents the pepper cap.
4 Conclusion and future work

To solve the problems due to complex background, similar fruit

color and background color, and different growth directions in the

natural farmland environment, this paper constructed a Xiaomila

target recognition data set, proposed an improved Xiaomila target

detection model, and the spatial posture and occlusion of Xiaomila

were analyzed. Specifically, the existing YOLOv8 target detection

algorithm has been improved. The addition of the EMA attention

mechanism can better capture the characteristic information of targets

of different scales, and the deformable convolution module makes the

model more lightweight. At the same time, the spatial position

information of the pepper was exploited to describe the translation

part of Xiaomila’s posture, and the transformation information of the

fitted Xiaomila spatial vector relative to the depth camera coordinate

system was utilized to describe the rotation part of Xiaomila’s posture.

The advantage of this work is that no complex annotation model and

calculations is required to obtain the expected estimation results, and

can be better transplanted to embedded devices. In experiments, the

mAP value of the improved PAE-YOLO model reached 88.8%, which

was 1.3% higher than the original model. The model weight and

GFLOPs were 7.6G and 5.7MB respectively, which are 6.2% and 8.1%

lower than the original model, the loss value was the lowest during

training, and the convergence speed was the fastest. Finally, an

experimental analysis was conducted on Xiaomila’s posture and

occlusion conditions. More than 85% of the cases where Xiaomila’s

orientation was correctly estimated, with an average error angle of

15.91°. Under occlusion situations, 86.3% of the attitude estimation

error angles were less than 40°, and the average error angle was 23.19°.

Therefore, the improved detection model can accurately identify

Xiaomila targets in complex environments, and can better estimate

the target posture, and is suitable for visual picking of Xiaomila fruits.

However, current detection models still have some limitations.

Some severely occluded Xiaomila targets cannot be correctly

identified and estimated. For example, the pepper cap and the

pepper peel are covered at the same time or the pepper cap is

covered and the covering splits the pepper in two. Meanwhile, it

remains to be seen whether the target recognition algorithm and

attitude estimation method proposed in this article are applicable to

other fruits. In future work, we will integrate the improved model

into the robot motion control system to realize the automatic

harvesting of Xiaomila in natural farmland environments.
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Introduction: Cotton yield estimation is crucial in the agricultural process, where

the accuracy of boll detection during the flocculation period significantly

influences yield estimations in cotton fields. Unmanned Aerial Vehicles (UAVs)

are frequently employed for plant detection and counting due to their cost-

effectiveness and adaptability.

Methods: Addressing the challenges of small target cotton bolls and low

resolution of UAVs, this paper introduces a method based on the YOLO v8

framework for transfer learning, named YOLO small-scale pyramid depth-aware

detection (SSPD). The method combines space-to-depth and non-strided

convolution (SPD-Conv) and a small target detector head, and also integrates a

simple, parameter-free attentional mechanism (SimAM) that significantly

improves target boll detection accuracy.

Results: The YOLO SSPD achieved a boll detection accuracy of 0.874 on UAV-

scale imagery. It also recorded a coefficient of determination (R2) of 0.86, with a

root mean square error (RMSE) of 12.38 and a relative root mean square error

(RRMSE) of 11.19% for boll counts.

Discussion: The findings indicate that YOLO SSPD can significantly improve the

accuracy of cotton boll detection on UAV imagery, thereby supporting the

cotton production process. This method offers a robust solution for high-

precision cotton monitoring, enhancing the reliability of cotton yield estimates.
KEYWORDS

cotton boll detection, cotton yield estimation, transfer learning, YOLOv8, UAV
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1 Introduction

Cotton yield estimation is essential for the cotton production

process and can influence the price trend in the cotton market

(Sarkar et al., 2023). Cotton yield estimation can be carried out by

boll detection during the cotton fluffing period (Pokhrel et al.,

2023; Torgbor et al., 2023). The quantity of cotton bolls directly

affects the cotton harvest and is also a key indicator for assessing

the quality of cotton (Shi et al., 2022). A high precision boll

number detection model can quickly and accurately model yield

estimation before harvesting and make planting management

related decisions, which is economically vital for cotton

production (Thorp et al., 2020; Naderi Mahdei et al., 2023).

Traditional cotton production information detection methods

require sampling and frequent manual observation of cotton fields

(Tian et al., 2022; Kurihara et al., 2023). With the continuous

improvement of land transfer rate, large-scale planting rate and

technological content, driven by the whole mechanization, many

new technologies have been applied to the field of cotton

production, improving the development of cotton production

process intelligence (Muruganantham et al., 2022; Yan et al.,

2022). Although high-resolution, ground-shot images are not

suitable for cotton boll detection in field environments due to

their high acquisition costs. As remote sensing technology

develops, satellite positioning system and geographic information

system (GIS), unmanned aerial vehicle (UAV) remote sensing

technology has found broad applications (Dhaliwal and Williams,

2023; Hu et al., 2023; Kumar et al., 2023; Priyatikanto et al., 2023).

Due to the small scale of cotton bolls and the complexity of the field

background, large-scale monitoring methods such as satellite

remote sensing cannot describe the detailed changes of cotton

bolls in a small-scale range. Low-altitude UAV remote sensing

acquires the benefit of short cycle time and fast speed, so it provides

technical support for small- and medium-scale crop growth

monitoring (Eskandari et al., 2020; Fernandez-Gallego et al., 2020;

Hassanzadeh et al., 2021; Palacios et al., 2023).

UAVs provide excellent image acquisition flexibility at flight

altitude, flight area and various weather conditions for fast and

accurate crop monitoring (Bouras et al., 2023; X. Wang, Lei, et al.,

2023). UAV remote sensing combined with machine learning

algorithms is an essential area of re-search in target detection

studies based on UAV remote sensing images. In the study of

automated agave detection, the utilization of UAV image data has

demonstrated remarkable accuracy (Flores et al., 2021). Moreover,

red, green, blue (RGB) aerial imagery from UAV, coupled with the

faster regions with convolutional neural network (Faster R-CNN)

object detection model, prove effective in estimating plant density

(Velumani et al., 2021). The application of UAV image data for

training convolutional neural networks (CNNs) shows superior

performance compared to traditional machine learning methods

(Impollonia et al., 2022; Amarasingam et al., 2024; Skobalski et al.,

2024; Zou et al., 2024). High-resolution images significantly

enhance the accuracy of target detection. Collection of high-

resolution UAV RGB images provides a methodology for

counting plants at different growth stages of sunflowers and

corn seedlings (Bai et al., 2022). High-resolution UAV images,
Frontiers in Plant Science 0281
when combined with suitable image segmentation algorithms,

serve as a basis for detection counting and analysis. In a study

focused on the detection and counting of citrus trees using high-

resolution UAV images, the connected component labelling

(CCL) algorithm was employed to segment and label individual

citrus trees in images (Donmez et al., 2021). The relationship

between image based manual counting and algorithmic counting

demonstrates high precision and efficiency through the utilization

of frequency filters, segmentation, and feature extraction

techniques (Azizi et al., 2024; Liu et al., 2024). Given sufficient

data, pre-trained deep learning models offer enhanced

generalization performance in target detection tasks. The pre-

trained ResNet 17 model, when applied to UAV-captured RGB

images of cotton seedlings, enables real-time estimation of the

quantity and canopy size of the seedlings in each frame (Feng

et al., 2020). Building on the success of this method, researchers

have further integrated transfer learning techniques into a new

framework that combines remote sensing and deep learning to

enhance processing efficiency. This integrated framework has

proven particularly effective in sparse counting tasks for

different plant species, such as potatoes and lettuce (Machefer

et al., 2020). Estimating crop density using vegetation indices is

applicable in the early and middle stages of crop growth, but its

performance is limited at maturity due to the gradual onset of

plant senescence, wilting leaves, and the impact of crop fruits

(Huang et al., 2018).

Following the analysis of various multispectral and RGB

vegetation indices, a neural network model can integrate the

analytical results to estimate vegetation coverage and crop density

(Garcıá-Martıńez et al., 2020). Remote sensing imagery has been

widely employed for crop segmentation in the later stages of crop

growth, yielding significant results. UAV images are also utilized in

computing the elevation difference between the crop canopy and

exposed soil surface, extracting cotton height during the boll

spitting period, and using it as a basis for estimating cotton yield.

The specific process involves validating UAV-based height

measurements using known ground reference points, segmenting

crop rows, and obtaining a plant height map based on global

positioning system (GPS) and image features (Feng et al., 2019).

Remote sensing image segmentation can be employed to detect the

quantity of target cotton bolls since cotton often exhibits distinct

optical features (such as color and morphology) from branches and

leaves in the later stages of growth. A cotton boll threshold

segmentation detection algorithm based on UAV remote sensing

images is proposed. Initially, spectral thresholds are derived from

input images through adaptive applications, automatically

distinguishing cotton bolls from other non-target items.

Subsequently, the derived thresholds and other morphological

filters are utilized for binary cotton boll classification to reduce

result noise (Yeom et al., 2018). Combining UAV remote sensing

data with multispectral images and cotton boll pixel coverage

enables the construction of a high precision cotton boll detection

model. This model primarily utilizes a Bayesian regularized back

propagation (BP) neural network to predict cotton yield from the

quantity of cotton bolls and spectral indices(R. Xu et al., 2018; W.

Xu et al., 2021).
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Due to the extension and interlacing of cotton leaves in the

background of the cotton field and the complex changes in the

external environment, the morphological characteristics of cotton

bolls in the field are variable and overlapping. Therefore, for cotton

boll detection in a field environment, the boll-spitting period is

considered the ideal phase. However, due to the large number and

small size of cotton bolls, a specific detection model is required to

achieve accurate applications (Fue et al., 2018). The YOLO series has

undergone multiple updates and iterations, making it suitable for

detection and segmentation in agriculture. This model builds upon

the YOLOv8 architecture with added modules for feature processing,

significantly improving the detection accuracy of small objects in UAV

images (G. Wang, Chen, et al., 2023). The real-time YOLOv8 model

has been effectively applied for detecting kiwifruit diseases, providing

real-time disease estimates (Xiang et al., 2023). Additionally, to address

the challenge of strawberry ripeness detection, the YOLOv8smodel and

the LW-Swin Transformer module have been employed to support the

strawberry picking process in orchard management (Yang et al., 2023).
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This study introduces an enhanced detection model, YOLO small-

scale pyramid depth-aware detection (SSPD), based on YOLOv8 to

improve the accuracy of UAV-based cotton boll detection during the

boll spitting period. High-resolution ground cotton boll images were

initially captured and utilized to train data on network models such as

YOLO SSPD. The trained model was subsequently transferred to

UAV remote sensing images for the detection and counting of cotton

bolls. The Detailed Process Overview is Shown in Figure 1.
2 Materials and methods

2.1 Dataset acquisition and preprocessing

This research was carried out fromAugust to October 2021 in the

Second Company of Experimental Field of Xinjiang Shihezi

University (latitude 44°18′N, longitude 85°58′E, average altitude

443 m), as shown in Figure 2. The experimental area was planted
FIGURE 1

The abstract process framework of this study.
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with “Xinlu Early No. 53” and “Xinlu Early No. 74”, utilizing the

planting pattern “one film, three cylinders and six rows” with the

design of a comprehensive and cramped row. The chosen cotton

variety was “Xinlu Early No. 53”, and the planting density is 20 plants

per square meter. The image data collection activities were carried out

in three stages of the cotton fluffing period. The three stages of

filming were 5 days after the first defoliant spraying (T1, September

8th), 3 days after the second defoliant spraying (T2, September 15th)

and 7 days before cotton picking (T3, September 25th).
2.2 UAV image data acquisition
and processing

This study uses a DJI M Atrice M600 PRO UAV (Shenzhen,

China) with third-party hardware and software extensions, a global

positioning system (GPS) positioning system, a flight imaging

receiver, an a3 Pro flight controller, a Lightbridge 2 high

definition (HD) digital mapper, and a remote control, with a load

capacity of 6.0 kg and an Isuzu Optics real-time camera (Hsinchu

County, Taiwan, China). The UAV captured datasets were all RGB

images, and the real-time camera parameters are shown in Table 1.

Each time the images were taken, three altitudes were flown, 60

meters, 40 meters and 20 meters from the ground. The UAV flight

speed was 2.8 m/s, the camera was oriented parallel to the main

flight path, the heading overlap rate was 70%, the side overlap rate

was 60%, the gimbal pitch angle was -80°, and the camera mode was

set to isometric intervals to increase the efficiency of the shooting as

well as to obtain a clear image of the UAV. The camera configured

and carried by the UAV is shown in Figure 3.
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Pictures taken by UAVs are characterized by small image size,

large data volume, and rich spatial information. Still, environmental

factors also directly affect, such as sunshine, wind direction, etc.

Therefore, even if multiple pictures are acquired in the same

environment, there will be differences in sensitivity and color,

which will directly affect the accuracy of the subsequent detection

of feature points, thus directly affecting the final use of remote

sensing data from UAVs for target detection using UAV remote

sensing data. In this paper, the steps of UAV remote sensing image

processing include UAV flight parameter setting, raw image

acquisition, remote sensing imaging stitching, region of interest

(ROI) selection and datasets cropping, and the remote sensing

image processing steps are shown in Figure 4.
A B

CD

FIGURE 2

Overview of study area: (A) illustrates the graph of Xinjiang, (B) represents the area of Shihezi, (C) represents the testing region, Cotton boll image
acquisition experimental area, the photos in (D) are the RGB images taken by a drone.
TABLE 1 Configuration of the hyperspectral camera carried by
the drone.

Parameter Value

Spectral bandwidth <15nm,collimated

Base imager type CMOS1 imager, CMOSIS
CMV2 2000based

Spatial resolution 408*216 per band

Frame rate Up to 340 hyperspectral cubes/second

Pixel pitch 5.5mm

Bit depth 7or10bit

RGB pixel 4 million
1CMOS-complementary metal-oxide semiconductor. 2CMV-CMOSIS machine vision.
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2.3 Datasets enhancement
and construction

The image annotation tool LabelImg (free and open source,

Taiwan, China) was installed, and each cotton bolls were

annotated. An extensible markup language (XML) record file

was generated for the training images output from each boll for

better image data management and analysis in subsequent studies.

In this study, the entirety of six training datasets was prepared,

including 600 images of each of T1, T2 and T3 randomly selected

from the ground data set and 50 segmented images of each of T1,

T2 and T3 irrelevantly chosen from the UAV images. The training

images were randomly cropped from the UAV RGB composite

images, each with a size of 640 x 640 pixels. Ground images of

7,000, 7,500, and 6,000 were acquired for the three periods, and

UAV cropped images of 250, 450, and 800 were acquired for the

three flight altitudes. The above two different scales of images were

randomly assigned in the proportion of 3:1:1 for the training,

validation and testing of the cotton bolls detection model.
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During the construction of the cotton bolls datasets, due to the

direct influence of various reasons such as shooting time, climate,

flight speed, camera viewpoint, etc. The cotton boll image data

varied greatly, resulting in data imbalance, so it is necessary to carry

out data enhancement on the cotton bolls image datasets. To further

enhance the quality of the datasets, methods, for example, image

rotation, image panning, image mirroring and adding image noise,

are used to perform data enhancement on the existing datasets. The

way the UAV enhanced the RGB image data is shown in Figure 5.
2.4 Cotton boll detection models

The models were trained on a platform equipped with an

NVIDIA GeForce RTX 3060 laptop graphics processing unit

(GPU) with 16GB of random-access memory (RAM). This setup

provides powerful graphics processing, which is critical for handling

complex computations in deep learning models. The system

runs on Windows 10 x64 with a 12th generation Intel® Core™
A B

FIGURE 3

The DJI drone that collected the data, where (A) is the configuration of the DJI M600pro drone and (B) the RGB camera carried by the drone.
A B

F E D

C

FIGURE 4

Remote sensing image processing flow: (A) UAV commissioning, (B) UAV flight parameter setting, (C) raw image acquisition, (D) remote sensing
imaging stitching, (E) ROI selection and (F) datasets cropping.
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i5–12500H central processing unit (CPU), which supports efficient

multitasking and fast data processing. In addition, the device

features 1.0TB of storage capacity, allowing for extensive data

processing and model training without storage limitations. The

Pytorch framework version used is 1.7.1, which is known for its

flexibility and efficiency in model development. Optimized

computational performance with compute unified device

architecture (CUDA) 11.0 and CUDA deep neural network

(cuDNN) 8.0.5 ensures faster training times and enhanced

reproducibility of results.

2.4.1 Faster R-CNN
Faster R-CNN (https://github.com/jwyang/faster-rcnn.pytorch)

(Mai et al., 2020) is an improved version of fast regions with

convolutional neural network (Fast R-CNN) that draws features

straight from the original input image. It then uses ROI Pooling to

extract feature vectors of a specific length for each ROI on the

feature map of the whole image. It regresses the feature vectors

directly on them using multiple full convolution (FC) layers. Two

FC branches are then used to predict the ROI-related categories and

boxes separately, which significantly improving speed and

prediction. The first part of the network architecture uses

convolution layer stacking to extract the feature map from the

image, then fixes the data dimensions using region pooling. The

Region Proposal Network (RPN) network is the second part, which

mainly serves to generate alternate regions. The third part of ROI

Pooling is primarily responsible for the feature maps of the

convolutional network inputs, and the exact proposals generated

by the RPN training (Duan et al., 2019; Chen et al., 2020; Zhang
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et al., 2021), and the pooling process is used to implement edge

regression and region classification. In this study, the image input

size is set to 640 × 640, the learning rate is configured to 0.001, the

step size is adjusted to 5, the batch size is fixed at 16, and the

number of iteration rounds is 500.

2.4.2 YOLOv5
On the input side of YOLOv5 (https://github.com/ultralytics/

yolov5), the mosaic data information boost technique replaces the

traditional single-cut mix data information enhancement method

of the previous generations. It employs the self-fitting stroke

frame method and self-fitting image compression (Ghiasi et al.,

2021). Cross stage partial (CSP) and focus structures are

introduced in the Backbone part of the network to expand the

input channels for subsequent slicing operations. The neck part of

the network greatly improves the deep learning capability of the

network by combining feature pyramid networks (FPN) and path

aggregation network (PAN), and applies PAN to the three

effective feature layers for better fusion of features from

different layers. In addition, in order to obtain more accurate

output results, the neck also adopts generalized intersection over

union (GIOU) loss as the loss function for edge regression to

achieve more efficient model analysis. In this study, the image

input size is 640×640, because it is cotton boll single target

detection, the output category of the network, nb_classes, is

changed to 1, the training weights are yolov5s, the optimizer

chosen is stochastic gradient descent (SGD), the batch size is 16,

the iteration rounds epoch is 500, and the learning rate is set as

0.001, and the rest are default settings.
A B D
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C

FIGURE 5

UAV expanded RGB image datasets methods: (A) original image, (B) horizontal mirroring, (C) increasing brightness, (D) rotating 90° to the right,
(E) vertical mirroring, (F)image panning, (G) increasing noise, and (H) rotating 90 to the left.
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2.4.3 YOLOv7
YOLOv7 (https://github.com/WongKinYiu/yolov7) inherits the

architecture of YOLOv5, including the configuration information

settings, training process, inference and testing procedures.

Additionally, YOLOv7 adopts the structure and methods of

hyperparameter tuning and implicit knowledge learning from

YOLOR. It also incorporates YOLOX’s Optimal Transport

Assignment (OTA) strategy for positive sample matching

strategy. YOLOv7 itself also features an efficient aggregation

network, reparametrized convolution, extra training module and

model scaling (C.-Y. Wang, Bochkovskiy, and Liao 2023). Among

these, the efficient aggregation network enhances the learning

efficiency and aggregation ability of the network system by

controlling the shortest and longest gradient paths (Zhao et al.,

2023). The auxiliary training method and deep supervision in the

YOLOv7 model add additional neurons to the network system to

enhance the model’s accuracy. Notably, the auxiliary training

method is only employed during the training process and does

not degrade the accuracy of the model validation and testing (Jiang

et al., 2022). In this study, the parameters are set as follows, the pre-

training weight is YOLOv7-tiny, the optimizer is Adam, the batch

size is 8, and the epoch is 500.

2.4.4 YOLOv8
YOLOv8 (https://github.com/ultralytics/ultralytics) represents

the latest advancement in the YOLO series of object detection

models, showcasing superior performance in terms of both speed

and accuracy compared to its predecessors. Building upon the

foundation of earlier versions, YOLOv8 introduces notable

enhancements. In the backbone architecture, YOLOv8 refines the

C3 structure of YOLOv5 to the C2f structure. The C2f modification

not only preserves the lightweight nature but also facilitates the

acquisition of more informative features during the gradient

descent process. Within the head component, YOLOv8

transitions from a coupled head to a decoupled head, departing

from the anchor box structure employed in prior iterations in favor
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of an Anchor-Free approach. Moreover, YOLOv8 incorporates an

outstanding dynamic allocation strategy in the design of its loss

function. This strategic approach enhances the adaptability of the

model during training. Notably, YOLOv8 demonstrates versatility

by extending its applicability to earlier versions of the YOLO series,

delivering commendable performance across image detection,

segmentation, and classification tasks. The structure of Yolov8 is

shown in Figure 6.
2.4.5 YOLO SSPD
YOLO SSPD is designed based on the YOLOv8 architecture to

address the challenges of small and dense cotton boll targets and

complex field backgrounds in UAV-scale scenarios. SPD-Conv

(https://github.com/LabSAINT/SPD-Conv) is a combination of

space-to-depth layer and non-strided convolution. To mitigate

the loss of image information during network propagation, the

SPD-Conv structure is introduced (Sunkara and Luo, 2022).

Equations 1–3 elucidate the principles of SPD convolution. The

input feature map X with dimensions S×S× C1. The SPD

transformation downsamples X using a scale parameter scale. For

each position (i, j) in X, X is sliced into scale2sub-feature maps fx,y ,

where x, y∈ {0, 1, …, scale−1}. The sub-feature maps are extracted

as follows:

fx,y = X½x : S : scale, y : S : scale� (1)

Each sub-feature map fx,y downsamples X by extracting pixels at

intervals of scale, and the dimensions of each fx,y are (
S

scale ,
S

scale ,C1) :

These sub-feature maps are then concatenated along the channel

dimension to form a new feature map X′:

​X 0   =   concatenate fx,y ∣ x, y ∈ 0, 1,…, scale − 1f g� �
, axis = channel

� �
(2)

The main purpose of this transformation is to increase the

channel dimension while reducing the spatial dimensions of the

feature map. The dimensions of the new feature map X′ are ( S
scale ,

S
scale , scale

2 � C1). A non-strided (stride=1) convolution operation
FIGURE 6

YOLOv8 model structure.
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is applied to X′ using C2 filters. This convolution transforms X′ into
X′′ as follows:

X = Convolution(X 0, filters = C2, stride = 1) (3)

This convolution operation aims to retain as much

discriminative feature information as possible, preventing the loss

of information. The dimensions of the output feature map X′′ are:
( S
scale ,

S
scale ,C2). By scaling the image proportion before inputting it

into the detection network, the space-to-depth layer preserves

channel dimension information throughout the feature mapping

process, effectively preventing information loss (Wan et al., 2024).

Additionally, non-strided convolutions are added after the space-

to-depth layer to expedite image processing. The simple parameter-

free attention mechanism (SimAM), while not increasing

computational parameters, serves as a versatile attention

mechanism, enhancing model performance. When dealing with

UAV images, this not only accelerates computation speed but also

improves overall model efficiency. The small target detection head

finds widespread applications in the industry, addressing challenges

related to inconspicuous features and potential information loss

during training, thereby enhancing detection capabilities.

Integrating the small target detection head into YOLO SSPD

contributes to improved accuracy in identifying small target

cotton bolls. Figure 7 illustrates the network structure of the

YOLO SSPD.
2.5 Transfer learning based cotton boll
detection from UAV RGB images

Transfer learning involves improving performance in a newly

acquired task by leveraging knowledge gained from a closely

related task that has already been mastered. To address the issue

of limited training instances and low resolution of UAV remote

sensing images, we first train the model on ground boll image data.

Then, the trained model is applied to the boll recognition and
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detection task on UAV RGB images. Image size, quantity and

quality are essential factors affecting the setting of training

parameters, and in order to achieve the best training effect,

these parameters must be refined to improve further the

correctness and credibility of modelling (Tedesco-Oliveira et al.,

2020; Park and Yu, 2021). In this study, the transfer learning

model is configured with a learning rate of 0.0005, a batch size of

8, and a total of 500 iteration rounds.
2.6 Evaluation indicators

In this paper, single target detection of cotton bolls was

investigated, so the model evaluation metrics selected included

precision, recall, F1 score, average precision, average precision

(AP) for a single class, and coefficient of determination (R2),

relative root mean square error (RMSE) and root mean square

error (RRMSE), which were calculated using the formulas shown

below. Equations 4–10 are introduced as metrics for subsequent

model performance evaluation.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1   =   2� Precision� Recall
Precision + recall

(6)

AP =
Z 1

0
P(r)dr (7)

R2 = 1 − o
n
1(pi − ci)

2

on
1(pi − �pi)

2 (8)
FIGURE 7

YOLO SSPD model structure.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

1(pi − ci)
2

n

s
(9)

RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

1(pi − ci)
n

q
on

1pi
� 100% (10)

Where True positive (TP) represents correct prediction of

cotton bolls, False positive (FP) represents misidentification of

background noise as cotton bolls, and False negative (FN)

represents misidentification of cotton bolls as background noise.

The value range of Precision and Recall is between 0 and 1, so the

value range of AP is also in the range of [0,1]. pi, �pi and ci are the

quantity of manually labelled bolls in the i-th image, the mean of the

amount of manually labelled bolls in the i-th image and the count of

bolls obtained by prediction, correspondingly. n is the total of

test images.
3 Results

3.1 Results of ground cotton boll
detection models

Table 2 displays the outcomes of cotton boll recognition and

detection in ground image data at different time intervals utilizing

various object detection networks. When employing models like

Faster R-CNN, a consistent performance trend is observed across

different time periods, with T2 > T1 > T3. This phenomenon is

attributed to the suboptimal effect of defoliant spraying during the

T1 period. In the T3 period, when cotton flowers are fully open,
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distinguishing targets becomes challenging, resulting in instances

where a single cotton boll is identified as multiple ones.

Additionally, due to the proximity of cotton bolls, multiple

instances are detected as a single cotton boll. The second phase,

occurring after the second defoliant spraying, emerges as the

optimal period for cotton boll detection. During this phase, there

is minimal interference from leaves, and the branching of cotton

plants is less pronounced, resulting in relatively independent cotton

bolls. Therefore, it is recommended to select T2 as the golden period

for cotton boll detection in subsequent studies involving transfer

learning. Figure 8 illustrates the detection results of different

networks on ground cotton boll images at time interval T2, with

magenta boxes indicating missed detections. Despite achieving

higher detection recall rates in ground cotton boll image data, the

Faster R-CNN model tends to experience overfitting due to its

robust deep feature extraction capabilities. This results in an

increased false positive rate, significantly impacting the balance

between precision and recall. The YOLO v5 model exhibits some

shortcomings, with less evident features and smaller cotton bolls

going unrecognized. YOLOv7 employs multi-layer modification

techniques in the model, halving aspect ratios, doubling channels,

and reducing downsampling. Consequently, at the same volume,

YOLOv7 outperforms YOLOv5 in efficiently detecting targets with

higher accuracy and faster speed. However, there are still some

shadowed and concealed cotton bolls that go undetected. The

YOLOv8 model provides a scaled-down version based on scaling

factors, catering to the requirements of cotton boll detection scenes.

Nevertheless, further improvements are needed for low-resolution

small target detection. The proposed YOLO SSPD in this study

evidently demonstrates high-precision cotton boll recognition at the

ground scale.
TABLE 2 Model testing results for ground image datasets.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN

T1 80.3 85.2 82.7 83.9

T2 81.6 86.9 84.2 83.0

T3 78.2 82.1 80.1 81.1

YOLOv5

T1 81.1 84.8 81.9 82.2

T2 81.7 83.4 82.5 83.1

T3 79.2 81.6 80.4 81.0

YOLOv7

T1 83.1 85.2 84.1 84.8

T2 83.8 85.8 85.0 85.6

T3 80.2 82.6 81.4 81.3

YOLOv8

T1 81.8 83.8 83.7 82.1

T2 84.6 86.0 84.3 82.6

T3 80.9 81.7 82.6 82.3

YOLO
SSPD

T1 84.1 87.3 85.7 86.5

T2 85.2 88.9 87.0 88.1

T3 81.1 84.6 82.8 83.9
The values are bolded to emphasize that the best-performing models for each period consistently peaked in T2.
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3.2 Results of UAV image cotton boll
detection and transfer learning

The images captured by the UAV at flight altitudes of 20 meters,

40 meters, and 60 meters all exhibit distinct features of open cotton

bolls, with the images obtained at a 20-meter flight altitude having

the highest resolution. The contrast between the target cotton bolls

and the background is more pronounced, resulting in the highest

detection accuracy. Subsequent research focuses on the UAV image

dataset obtained at a 20-meter altitude. When evaluating the impact

of transfer learning, Tables 3, 4 present the cotton boll detection

results using the five aforementioned detection models on the UAV

RGB image dataset during the T2 period, along with the results after

transfer learning on the UAV images during the same period. The

detection results of different models on cotton boll images are

depicted in Figure 9. Due to the small scale of detection targets on

the drone, a portion of the region enclosed by red rectangles in the

original image detection results was cropped for comparison.
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Comparative analysis of detection results before and after model

transfer indicates overall improvement in the detection efficiency of

all model’s post-transfer, with the YOLO SSPD model exhibiting

the highest detection efficiency. Before model transfer, the detection

time for each image in the drone RGB image dataset was 51ms,

while after model transfer, the average detection time for each

image in the drone RGB image dataset was reduced to 22ms. These

results signify the effectiveness of model transfer. The optimal

YOLO SSPD model achieves an optimal balance between

detection accuracy and detection rate.
3.3 Validation of cotton boll
detection models

Neural networks are often perceived as black-box models with

limited interpretability. However, employing class activation maps

(CAM) on a trained model allows for a visual understanding of its
TABLE 3 UAV image datasets models testing results.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN T2 77.6 84.3 80.8 83.2

YOLOv5 T2 80.3 84.2 82.2 83.6

YOLOv7 T2 82.1 85.6 83.9 84.1

YOLOv8 T2 82.6 86.1 83.8 84.6

YOLO SSPD T2 85.3 88.0 86.6 86.9
The bolding is used to highlight the superior metrics of the best-performing models.
A B
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FIGURE 8

The model detection results (Pinkish-purple boxes show missed bolls): (A) Original image, (B) Faster R-CNN, (C) YOLOv5, (D) YOLOv7, (E) YOLOv8,
(F) YOLO SSPD.
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FIGURE 9

Below is a comprehensive comparison of the five object detection models before and after transfer learning. Purple boxes represent detection
results before transfer learning, while blue boxes represent results after transfer learning. Different colored boxes in the images denote the
effectiveness of different detection models, with yellow indicating Faster R-CNN detection, light purple for YOLOv5, blue for YOLOv7, orange for
YOLOv8, and red for YOLO SSPD detection results.
TABLE 4 Testing results after models transfer.

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)

Faster R-CNN T2 79.9 85.6 82.7 83.9

YOLOv5 T2 81.1 86.4 84.8 84.3

YOLOv7 T2 83.8 87.1 85.4 86.0

YOLOv8 T2 84.1 87.2 85.6 86.4

YOLO SSPD T2 87.4 89.3 87.8 88.0
F
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The bolding is used to highlight the superior metrics of the best-performing models.
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principles. CAM (https://github.com/jacobgil/pytorch-grad-cam)

typically operates on the last convolutional layer of the model to

extract class activation maps corresponding to input images (Zhou

et al., 2016). These CAMs, which are the same size as the input

images, facilitate the visualization of predicted class scores and

highlight detected objects. The generation of heatmaps involves

overlaying weighted feature maps obtained from CAM. Within

these heatmaps, the degree of network response in different regions

of the input image can be observed. Larger heatmap ranges indicate

the presence of more predicted class targets in the corresponding

regions, while darker colors signify greater contributions to the

predicted results. To further enhance cotton boll detection, a visual

analysis of the detection results for each model was conducted

through heatmap visualization, providing insights into the neural

network models. As shown in Figure 10, Faster R-CNN focuses on

prominent features of cotton bolls, making it susceptible to

information loss in small target detection, evident in the discrete

distribution of the heatmap. YOLOv5’s feature pyramid structure

exhibits limitations in recognizing obscured and smaller cotton boll

features accurately. While YOLOv7 has a larger model width and

depth compared to YOLOv5, resulting in the extraction of more

features, the heatmap’s predominantly light colors indicate that

these positions contribute less to the network output, indicating
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insufficient feature extraction for practical applications. YOLOv8,

with its ability to adjust the model scale for detection, outperforms

the first three models in small target scenarios. However, the large-

scale field images captured by the UAV exhibit diverse

characteristics of open cotton bolls and suffer from lower

resolution issues. This leads to YOLOv8’s focus on concentrated

open cotton bolls, indicating a need for further attention to the

discrete small cotton boll targets. YOLO SSPD, by introducing SPD

convolution and a small target detection head onto the YOLOv8

model, significantly captures a broader target range in low-

resolution small target images, achieving precise detection in

the images.
3.4 Validation of cotton boll
counting model

This study employed the determination coefficient, RMSE, and

RRMSE as metrics to evaluate the counting effectiveness of the

model. Combining the YOLO SSPD detection model with transfer

learning, counting was performed on UAV RGB image data. The

results demonstrate that the detection model, after being fine-tuned

through a transfer learning approach, achieved an R² of 0.86, RMSE
A B
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FIGURE 10

Five object detection models’ heatmaps: (A) Original image, (B) Faster R-CNN, (C) YOLOv5, (D) YOLOv7, (E) YOLOv8, (F) YOLO SSPD.
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of 12.38, RRMSE of 11.19%, and an AP of 88.9%, thus indicating a

robust counting performance. Figure 11 showcases how the

integration of the YOLO SSPD model with transfer learning

techniques enhances its ability to detect and count cotton bolls

accurately in 20m resolution UAV images during the T2 period.
4 Discussion

Boll detection in the pre-harvest stage of cotton can realize the

assessment of cotton yield, so as to provide scientific and effective

resource allocation and management strategies. As cotton bolls are

not obvious in the early growth stage in a complex field background

environment, the stages of cotton flocculation can be selected to

accurately and reliably identify and locate cotton bolls. In this study,

the three stages of cotton flocculation were selected to be captured

by UAV and on the ground. In order to reduce the interference of

cotton leaves and achieve better detection conditions, 5 days after

the first spraying of defoliant (T1), 3 days after the second spraying

of defoliant (T2), and 7 days before the cotton picking (T3) were

selected, and the image of T2 got the best detection accuracy in the

subsequent experimental results. In the process of cotton boll data

acquisition, although the effects of UAV shooting time stage,

weather conditions, UAV flight speed, camera shooting angle and

other factors on the quality of ground image data and remotely

sensed data were taken into account, factors such as different

degrees of shading and background clutter in the cotton field in

the natural environment still have a significant impact on the

detection accuracy (Kang et al., 2022, 2023; Li et al., 2022; Li

et al., 2020). Data enhancement can balance and enrich the

cotton boll image datasets, better realize the acquisition of cotton

boll features, and also reduce the workload of manual labelling.

For the case of boll detection by UAV in small-scale cotton

fields, which is limited in resolution and insufficient in the number

of samples obtained, ground photography was conducted to obtain

sufficient ground open boll data. From the perspective of transfer

learning, many ground images were used to train the deep learning
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model. After reaching a higher accuracy, the model was transferred

so that the model could achieve a good detection accuracy on UAV

images with a smaller dataset. The specific steps were, on the

ground cotton boll image datasets, to investigate the cotton boll

detection effect of different target detection networks in different

periods through comparative experiments. Then, on UAV RGB

image data, the performance of different target detection networks

on cotton boll detection at UAV scale and different periods were

investigated through comparison and transfer learning (Meng et al.,

2019). In terms of model performance, Faster R-CNN based on

Region Proposal Networks could extract target cotton bolls, but the

model was complex, had slow training speed, and was prone to

overfitting. Due to different growth conditions, cotton bolls during

the boll spitting period exhibit varying shapes and color

characteristics. The feature extraction capability of Faster R-CNN

was too strong, leading to failures of recognizing some cotton bolls.

YOLOv5 introduced CSPDarknet53 as the backbone network and

employed the PANet structure to enhance feature fusion,

demonstrating good performance in both accuracy and speed.

However, when applied to cotton boll detection in UAV images,

the YOLOv5 model produces numerous instances of false negatives.

YOLOv7 builds on YOLOv5 by introducing architectures such as

the Efficient Layer Aggregation Network, but it exhibits weak

generalization, with variations in different scenes and poor

performance in small object detection tasks. YOLOv8 was the

latest achievement in the YOLO series at the time, featuring

adjustable scaling coefficients and excellent application in

practical scenarios with small targets. The proposed YOLO SSPD

object detection model further improves the detection accuracy of

small cotton bolls from UAVs by building upon YOLOv8.

Experimental results indicate that YOLO SSPD performs best on

both the ground cotton boll image dataset (T2) and the UAV RGB

image dataset(T2). The accuracy of cotton boll detection in UAV

scale is enhanced through the transfer model, contributing to

improved accuracy in cotton yield prediction (Wang et al., 2021;

Rodriguez-Sanchez et al., 2022). The combination of the YOLO

SSPD detection model and transfer learning methods excels in
A B

FIGURE 11

The model detection results: (A) Real ground boll counts, (B) YOLO SSPD results (UAV imagery).
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detecting cotton bolls in complex environments from UAV RGB

image data, providing a more precise representation of the specific

locations of targets. The counting results accurately reflect the

number of cotton bolls during the boll spitting stage, closely

matching actual counting results (Siegfried et al., 2023). Utilizing

the YOLO SSPD model for counting cotton bolls in UAV-scale

images can be appropriately applied in practical cotton production

processes (Qiu et al., 2022; Lang et al., 2023).

Although some progress has been made in this study, there are

still many issues that need to be explored and solved in depth. (1)

This study is based on cotton boll image datasets collected by ground

and UAV at three altitudes (20 m, 40 m and 60 m). The image

resolution of the images collected at 40 m and 60 m flight altitudes is

not high, which impacts the precision of cotton boll detection and

recognition. The UAV can be upgraded subsequently in terms of the

camera pixels and the frame rate. High-resolution UAV images are

able to achieve higher accuracy using the method proposed in this

paper. (2) In the future, with a focus on enhancing the efficacy of

cotton boll detection, multi-scale image fusion algorithms can be

targeted to expand the detection area while improving the image

resolution. Further, the large-scale cotton field yield estimation

combined with satellite remote sensing images can be practically

applied to a broader range of production research.
5 Conclusions

This study proposes a target detection network, YOLO SSPD,

based on YOLOv8, specifically designed for detecting cotton bolls

during the boll spitting period. In ground-based cotton boll image

detection, the model was trained alongside four other object detection

models until convergence. Subsequently, transfer learning was

employed to apply these models to UAV-based cotton boll image

detection. A comparison with four other models shows that YOLO

SSPD outperforms them all. In the T2 period, the detection accuracy

on UAV cotton boll images reaches 0.874, and the cotton boll count

R² is 0.86. The results indicate that utilizing transfer learning and the

YOLO SSPD detection model significantly improves the accuracy of

cotton boll detection. The outcomes of this study serve as a practical

tool in the cotton production process, enhancing the efficiency of

cotton information detection. They also provide a basis for

agricultural researchers to make timely decisions in cotton

management, ultimately improving cotton yield and quality.
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YOLOC-tiny: a generalized
lightweight real-time detection
model for multiripeness fruits of
large non-green-ripe citrus in
unstructured environments
Zuoliang Tang1,2, Lijia Xu1*, Haoyang Li1, Mingyou Chen3,
Xiaoshi Shi1,2, Long Zhou1, Yuchao Wang1, Zhijun Wu1,
Yongpeng Zhao1, Kun Ruan2, Yong He4, Wei Ma5, Ning Yang6,
Lufeng Luo3 and Yunqiao Qiu7

1College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya’an, China,
2College of Resources, Sichuan Agriculture University, Chengdu, China, 3School of Mechatronic
Engineering and Automation, Foshan University, Foshan, China, 4College of Biosystems Engineering
and Food Science, Zhejiang University, Hangzhou, China, 5Institute of Urban Agriculture, Chinese
Academy of Agriculture Sciences, Chengdu, China, 6School of Electrical and Information Engineering,
Jiangsu University, Zhenjiang, China, 7Sichuan Academy of Agricultural Machinery Sciences,
Chengdu, China
This study addresses the challenges of low detection precision and limited

generalization across various ripeness levels and varieties for large non-green-

ripe citrus fruits in complex scenarios. We present a high-precision and lightweight

model, YOLOC-tiny, built upon YOLOv7, which utilizes EfficientNet-B0 as the

feature extraction backbone network. To augment sensing capabilities and

improve detection accuracy, we embed a spatial and channel composite

attention mechanism, the convolutional block attention module (CBAM), into

the head’s efficient aggregation network. Additionally, we introduce an adaptive

and complete intersection over union regression loss function, designed by

integrating the phenotypic features of large non-green-ripe citrus, to mitigate

the impact of data noise and efficiently calculate detection loss. Finally, a layer-

based adaptive magnitude pruning strategy is employed to further eliminate

redundant connections and parameters in the model. Targeting three types of

citrus widely planted in Sichuan Province—navel orange, Ehime Jelly orange, and

Harumi tangerine—YOLOC-tiny achieves an impressive mean average precision

(mAP) of 83.0%, surpassing most other state-of-the-art (SOTA) detectors in the

same class. Compared with YOLOv7 and YOLOv8x, its mAP improved by 1.7% and

1.9%, respectively, with a parameter count of only 4.2M. In picking robot

deployment applications, YOLOC-tiny attains an accuracy of 92.8% at a rate of

59 frames per second. This study provides a theoretical foundation and technical

reference for upgrading and optimizing low-computing-power ground-based

robots, such as those used for fruit picking and orchard inspection.
KEYWORDS

non-green-ripe citrus, multiripeness fruits, YOLOv7, EfficientNet, CBAM,
agricultural robot
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1 Introduction

Citrus is one of the most widely cultivated and highest-yielding

fruit crops globally, generating significant economic value (The

United States Department of Agriculture, 2024). However, the

citrus industry faces immense pressure due to skilled labor

shortages, rising production costs, market demand fluctuations,

and extreme climate changes (Castro-Garcia et al., 2019; Apolo-

Apolo et al., 2020a). Agricultural robots can mitigate these pressures

by reducing reliance on skilled labor, lowering economic and

environmental costs, and enhancing orchard management and

productivity (Bargoti and Underwood, 2017; Fu et al., 2020a).

Accurate fruit detection is essential for automated harvesting and

early yield prediction (Zhuang et al., 2018; Apolo-Apolo et al.,

2020b; Lu et al., 2023). Consequently, the detection of citrus fruits

has become a research hotspot (Wang et al., 2022c; Ma et al., 2024).

Particularly, there is an urgent need for high-performance detection

models that can be deployed on resource-limited robots and other

edge devices (Tang et al., 2020; Xu et al., 2023).

Multispectral cameras, optical digital cameras, 3D stereoscopic

cameras, and RGB-D depth cameras are the primary devices used

for fruit detection (Chen et al., 2020; Condotta et al., 2020).

Multispectral cameras can capture spectral information across

various bands from visible to near-infrared and are commonly

mounted on unmanned aerial vehicles for large-scale crop health,

yield estimation, and disease monitoring (Huang et al., 2020; Lan

et al., 2020). However, their high cost and complex data processing

requirements limit their application in ground-based agricultural

robots. Optical digital cameras, 3D stereoscopic cameras, and RGB-

D depth cameras typically produce RGB images with three visible

light bands: red, green, and blue. Many studies have shown that

RGB images are sufficient for fruit detection (Lu et al., 2018; Yu

et al., 2019; Gené-Mola et al., 2020; Liu et al., 2023). These devices

are cost-effective and require less computational power, making

them more suitable for the practical needs of real-time monitoring

and automated harvesting robots.

Over the past few decades, methods combining digital image

processing with traditional machine learning (ML) techniques have

been used for fruit detection, including citrus (Liu et al., 2018),

kiwifruit (Fu et al., 2019), and apples (Lu et al., 2022). However, the

pixel values in RGB images are highly sensitive to changes in

lighting and background interference. Traditional ML algorithms,

such as support vector machines and decision trees, rely on complex

feature extraction and manual rules to handle these variations (Fu

et al., 2018). Consequently, these algorithms exhibit performance

fluctuations in complex environments and fail to meet the need for

stable citrus fruit detection by robots in real-world scenarios.

In recent years, the advancement of deep learning (DL)

technology has significantly impacted the field of agricultural

detection due to its exceptional feature learning capability, robust

generalization performance, and substantial computational power

(Gené-Mola et al., 2020; Maheswari et al., 2021). DL methods for

fruit detection are broadly categorized into two main approaches:

region-based two-stage methods (Girshick et al., 2014; Shaoqing

et al., 2016) and end-to-end single-stage methods (Redmon et al.,

2016; Wei et al., 2016).
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Two-stage detection methods first extract a large number of

regions of interest (RoIs) that potentially contain target fruits. These

RoIs are then passed through a convolutional neural network

(CNN) for detection, with final detection results obtained after

post-processing (Girshick et al., 2014; Shaoqing et al., 2016).

Although this process is time-consuming, these methods typically

achieve high detection precision due to the utilization of CNNs for

fruit detection on RoIs (Redmon et al., 2016). For example, C.H.

Yang et al. (Yang et al., 2020) developed a citrus fruit detection

algorithm based on Mask R-CNN, achieving a detection precision

of 88.15%. Longsheng Fu et al. (Fu et al., 2020b) proposed an apple

detection algorithm based on Faster R-CNN, achieving a detection

precision of 89.3%. However, the inherent characteristics of two-

stage methods, including slower detection speed and high memory

consumption, limit their suitability for applications such as

harvesting robots, which require rapid detection and are

constrained by computational resources.

In contrast, the YOLO series of single-stage detection methods,

introduced in 2015, offers faster detection speeds and high detection

accuracy (Redmon et al., 2016). YOLO models perform target

detection in a single pass through a CNN, eliminating the need

for separate stages and reducing redundant operations (Redmon

et al., 2016; Wang et al., 2022a). While early YOLO models had

lower detection accuracy compared to two-stage models like R-

CNN, subsequent optimizations, and improvements by numerous

researchers have led to the development of several highly effective

fruit detection methods. For instance, Longsheng Fu et al. (Fu et al.,

2021) proposed a kiwifruit detection algorithm, DY3TNet, by

improving the YOLOv3-tiny model, achieving a detection

precision of 90.05%. Shenglian Lu et al. (Lu et al., 2022)

developed the CA-YOLOv4 detection algorithm for apples in

orchard environments, achieving a detection precision of 92.6%

for Envy apples during harvest. Additionally, Lijia Xu et al. (Xu

et al., 2023) proposed the HPL-YOLOv4 citrus detection model for

complex environments, achieving a detection precision of 93.45%.

Citrus is a general term for fruits belonging to the Citrus genus

of the Rutaceae family, with major types including grapefruit,

lemon, tangerine, and orange (Liu et al., 2012). Among these,

navel oranges, Ehime Jelly oranges, and Harumi tangerines are

widely cultivated in the southwestern regions of China, and their

fruits turn orange-red upon ripening. In this study, we refer to them

as non-green-ripe citrus. While existing models can detect single-

variety or single-degree ripeness fruits, such as apples or certain

citrus fruits (Lu et al., 2018, 2022), there remains an urgent need for

a real-time and accurate detection model for multi-ripeness fruits of

different non-green-ripe citrus varieties in complex orchards. To

address this issue, we first collected and created a custom image

dataset of non-green-ripe citrus, covering the detection needs of

unripe, semi-ripe, and ripe fruits. We then proposed a lightweight,

single-stage citrus detection model suitable for deployment on edge

devices such as robots. The main contributions of this work are

as follows:
(1) We designed a comprehensive image dataset, RC3025,

which includes images of non-green-ripe citrus fruits of

various varieties and ripeness levels in complex scenarios.
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(2) We discovered and proposed that incorporating a small

number of pure citrus fruit images into the training set

enhances the model ’s detection performance in

real orchards.

(3) We developed a general, lightweight, and high-

performance multi-ripeness citrus recognition model,

YOLOC-tiny, based on YOLOv7.

(4) We validated the practical performance and advantages of

YOLOC-tiny through robot deployment application

experiments, demonstrating its effectiveness in detecting

non-green-ripe citrus fruits in complex environments.
2 Materials and methods

2.1 Multiripeness non-green-ripe citrus
fruit image dataset

2.1.1 Raw image acquisition and labeling
To properly train the developed DL model, a number of raw

images are required as an initial dataset (Apolo-Apolo et al., 2020a).

Research suggests that 2,500 annotated instances are adequate for

training deep networks to recognize a certain type of fruit (Wang

et al., 2022b). From 2020 to late 2023, we continuously collected raw

images over four years using both manual and robotic photography,

as shown in Figure 1. Various imaging devices, including a 3D

stereoscopic camera (ZED), a Canon 80D camera, and four different

mobile phones (VIVO Y97, Mi 10, Redmi K40, and iPhone Xs),

were employed to capture images of citrus fruits at different ripeness

levels and varieties in three non-green-ripe citrus orchards. These

orchards are located in three different counties in the western part

of Sichuan Province: Yucheng District, Ya’an City (29°58′N, 102°
59′E); Jintang County, Chengdu City (30°43′N, 104°29′E); and
Danling County, Meishan City (29°58′N, 103°32′E). To meet the

operational needs of ground-based agricultural robots, the shooting

distance ranged from 0.3 to 1.2 meters.
tiers in Plant Science 0398
Experienced researchers screened the raw images and collected

a total of 2,905 image data samples covering three citrus varieties

(navel orange, Ehime Jelly orange, and Harumi tangerine) at

different ripeness levels in unstructured orchards. Additionally, to

investigate whether pure citrus images could enhance model

detection performance, 120 images featuring pure citrus fruits

were captured in the laboratory using both ZED and digital

cameras. Specifically, the sections pertaining to citrus images in

complex orchards and pure citrus images were separately labeled as

RC2905 and RC120. The labeling process for the 3,025 images was

completed using the open-source tool LabelImg (Tzutalin, 2015),

and the citrus image dataset RC3025 (raw citrus dataset with 3,025

images) was created, comprising a total of 10,653 labeled instances.

Details of the dataset are shown in Supplementary Table 1.

2.1.2 Dataset partitioning
Several studies have successfully used a 10% validation split (Lu

et al., 2022; Liu et al., 2023; Xu et al., 2023), achieving significant

detection results. To balance computational resources and maintain

training efficiency, the RC2905 dataset was partitioned into the raw

training set (TRAIN-R), the raw validation set (VAL-R), and the raw

test set (TEST-R) in an 8:1:1 ratio, as illustrated in Figure 2. The RC120

dataset was employed to investigate the impact of pure citrus images on

model performance by randomly substituting 120 images in TRAIN-R,

defining the refined training set as FTRAIN-R after fine-tuning. TEST-

R was further categorized based on background complexity and citrus

occlusion, resulting in a complex background test set comprising 166

images (TEST-RCE) and a simple background test set with 124 images

(TEST-RSE). Given the variations in light intensity, the test set was

further stratified into a set containing 228 images with normal light

intensity (TEST-RNL) and another set containing 62 images under

low-light conditions (TEST-RWL).

2.1.3 Image dataset augmentation
Many studies demonstrated that enhancing raw images can

improve the model’s generalization ability. In the present study,

seven enhancement methods, including affine transformation,
FIGURE 1

Schematic diagram of how to capture the images of non-green-ripe citrus fruits and some examples.
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luminance adjustment, cut-out, coarse dropout, Gaussian noise,

motion blur, and salt–pepper noise, were employed to augment the

training and validation sets, as illustrated in Figure 3. These

enhancement operations were executed on TRAIN-R, VAL-R,

TEST-R and FTRAIN-R, resulting in the corresponding enhanced

datasets TRAIN-A, VAL-A, TEST-A and FTRAIN-A, respectively.

Three enhancement methods—up and down flip, contrast

adjustment, and Gaussian blur—were simultaneously applied to

the test set. Two datasets, TEST-ANL and TEST-AWL, were

generated by enhancing the original test set of normal and weak

light environments. Additionally, the TEST-ACE and TEST-ASE

datasets were created by augmenting the original test sets of

complex and simple environments, respectively. These enhanced

datasets aim to simulate accurately the diverse lighting conditions,

backgrounds, and fruit states in real-life orchard scenes, thereby

bolstering the robustness and accuracy of the detection models in

practical scenarios. An overview of the augmented dataset and the

number of images is provided in Supplementary Table 2.
2.2 Design of the YOLOC-tiny model

Orchard operation robots face constraints due to limited

computational resources, whereas traditional DL models pose

challenges with their high computational complexity and demanding

hardware requirements. To ensure that robots can reliably, accurately,

and efficiently detect various types and ripeness levels of citrus fruits in

complex non-green-ripe citrus orchards, we initially used our custom

datasets TRAIN-A, VAL-A, and TEST-A to train and test most of the

popular SOTA object detectors, including YOLOv7 and YOLOv8.

Based on the practical needs of robotic operations and the experiment

results, we chose YOLOv7 (Wang et al., 2022a) as the foundational

network and conducted a series of optimizations and improvements.
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Given the large size of the YOLOv7 backbone network, we

selected a lightweight feature extraction network, EfficientNet-B0,

to replace the original backbone. After comparing various advanced

attention mechanisms, we introduced a composite efficient

attention mechanism, CBAM, to enhance target perception.

Subsequently, after numerous experiments, we carefully designed

an extended efficient aggregation network module incorporating

CBAM, called Efficient Layer Aggregation Networks in the Head

with CBAM (ELAN-HC). Considering the phenotypic features of

the targets, we proposed an adaptive and efficient complete

intersection over the union regression loss function (ACIoU).

This function allows for adjustments to the aspect ratio regression

loss penalty factor, enhancing the perception ability of citrus fruits

and consequently improving detection accuracy.

We integrated these measures to develop a generalized base

network, YOLOC, where C stands for citrus, to recognize non-

green-ripe citrus varieties such as navel orange, Ehime jelly orange,

and Harumi tangerine in complex environments, particularly in the

hilly areas of southwest China. The structure of YOLOC is depicted

in Figure 4, where RepConv denotes reparametrized convolution.

Furthermore, we leveraged transfer learning to train YOLOC on

FTRAIN-A and employed sparse training and Layer-based

Adaptive Magnitude Pruning (LAMP), a quantized pruning

technique, to derive a lightweight recognition model, YOLOC-tiny.

2.2.1 ACIoU
The accuracy of target detection and localization is significantly

influenced by the choice of the loss function (Yu et al., 2022). The

loss function was computed based on the intersection over union

(IoU), and the CIoU utilized by YOLOv7 comprehensively

considered the variations in the overlap area, center distance, and

aspect ratio between the predicted box and the ground truth box

(Zheng et al., 2020), as illustrated in (Equations 1–3).
FIGURE 2

Diagram of dataset partitions.
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LossCIoU = 1 − IoU +
r2( b, bgt )

c2
+ av, (1)

a =
v

1 − IoU + v
, (2)

v =
4
p2 arctan

wgt

hgt
− arctan

w
h

� �2

, (3)

where LossCIoU denotes the loss value, IoU represents the IoU

ratio between the ground truth box and the predicted box, r2( b, bgt )
signifies the Euclidean pixel distance between the ground truth box

and the predicted, c represents the diagonal length of the smallest

enclosing area that surrounds both the predicted and ground truth

bounding boxes, a is the acquired trade-off coefficient, v denotes the

consistency factor of the width and height of the predicted box and

the ground truth box, wgt and hgt are the width and height of the

ground truth box, respectively, and w and h are the width and height

of the predicted box, respectively.

The CIoU loss function is commonly employed in target

detection tasks; however, it exhibits the following drawbacks (Yu

et al., 2022): (1) The use of an inverse tangent function in CIoU

makes it highly sensitive to outliers, resulting in poor robustness.

(2) The value domain ( 0, p=2 ) of the inverse tangent function

cannot directly fulfill the normalization requirements of the loss

function. (3) Adaptability to adjust the corresponding features of

the loss function based on the detection object is lacking. Hence,

considering the phenotypic features of the large non-green-ripe
Frontiers in Plant Science 05100
citrus fruits, we proposed ACIoU. This function can dynamically

adjust the length and width regression loss penalty factor based on

the phenotypic parameters of citrus fruits, as depicted in (Equations

4–6).

LossACIoU = 1 − IoU +
r2( b, bgt )

c2
+ ag , (4)

s( a, b, x ) =
1

1 + e−a(x−b)
, (5)

g = s a, b, wgt

hgt

� �
− s a, b, w

h

� �� �2
, (6)

where LossACIoU represents the value of the ACIoU function, a

and denotes the adaptive Sigmoid deformation parameters that can

be adjusted based on different aspect ratios of the detection targets,

and g signifies the adaptive consistency factor of the width and

height of the predicted box and the ground truth box.

The variation curves of the width and height difference loss

penalty terms corresponding to the real and predicted boxes for

different deformation parameters, a and b, are presented in Figure 5.

The disparity between the length and width of the ground truth box

of citrus fruits is smaller than that in Microsoft Common Objects in

Context (COCO). We randomly selected 47 citrus fruits with

different maturity levels from the orchard of Ya’an Yucheng

District, and their average transverse and longitudinal diameters

were measured using vernier calipers. The transverse diameter
B

A

FIGURE 3

Image augmentations. (A) Augmentation methods for TRAIN-R, FTRAIN-R, and VAL-R: affine transformation, brightness adjustment, cutout, coarse
dropout, Gaussian noise, motion blur, and salt and pepper noise. (B) Augmentation methods for TEST-R: up and down flip, contrast adjustment, and
Gaussian blur.
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represents the maximum equatorial diameter of the mandarin

orange. The longitudinal diameter is the straight-line distance

between the pith (at the stalk) and the center of the top of the

fruit, as shown in Figure 6. The measured average longitudinal

diameter of citrus was 68.04 mm, the average transverse diameter

was 64.94 mm, and the average aspect ratio was 1.05. These

measurements can serve as a reference for adaptively adjusting

the loss function width and high consistency evaluation index.

2.2.2 Efficient feature extraction backbone
This study utilized EfficientNet-B0 as the feature extraction

backbone to optimize the model parameters for practical

deployment in orchard robots for recognizing large non-green-

ripe citrus. EfficientNet-B0, a lightweight and high-performance

neural network, was designed using neural architecture search. The

architecture primarily consists of mobile inverted bottleneck

convolutions (MBConv), as illustrated in Supplementary Figure

1. MBConv integrates depthwise separable convolutions

(DWConv) with Squeeze-and-Excitation (SE) blocks and inverse

residual blocks. The SE module within MBConv dynamically

recalibrates channel-wise feature responses by explicitly modeling

interdependencies between the channels. With its DWConv and SE

modules, MBConv offers a lightweight structure while maintaining

good detection performance.

2.2.3 ELAN-HC
The spatial attention mechanism amplifies the model’s

capability to concentrate on specific regions within the image,

facilitating the extraction of features crucial for target detection.

The channel attention mechanism guides the model to prioritize

significant features in the image, thereby contributing to an overall

enhancement in target detection accuracy. CBAM integrates the

channel attention mechanism and the spatial attention mechanism.

YOLOv7 introduces efficient layer aggregation networks in the

detection head (ELAN-H), leading to significant performance

improvements. Empirically drawing on engineering experience,

we incorporated CBAM into the ELAN-H network module,
Frontiers in Plant Science 06101
resulting in the formation of the ELAN-HC module, as depicted

in Figure 7. This integration is aimed at optimizing further the

model’s detection performance for non-green-ripe citrus in the

unstructured orchards.

2.2.4 Lightweight pruning strategy
We employed the LAMP pruning method on the trained

YOLOC model to eliminate redundant parameters and

connections, thereby enhancing the deployable performance and

detection efficiency of YOLOC-tiny (Supplementary Figure 2).

Subsequently, the pruned model underwent retraining in

FTRAIN-A, resulting in the development of a lightweight

detection model, YOLOC-tiny. The calculation for the LAMP
FIGURE 5

Loss penalty curves of the width and height differences with
different deformation parameters.
FIGURE 4

Structure of the YOLOC network.
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score is expressed in Equation 7. The LAMP score was used to

measure the importance of all weights in each layer of the YOLOC

network to the citrus detection performance. During each round of

pruning iterations, we removed the weights that contributed the

least to the detection performance until the global sparsity

constraint was satisfied. Thus, the model size was compressed,

with little impact on its detection accuracy. LAMP retained at

least one connection in each layer to ensure that at least one

surviving connection was retained in each layer, thereby avoiding

the loss of neurons and helping to maintain the ability to perceive

non-green-ripe large citrus.
Frontiers in Plant Science 07102
score(ui) =
u2i

oi≥ju
2
j

, (7)

where ui is the ith weight magnitude in the kth (k = 0,⋯ 359)

layer of the YOLOC network after ascending order, and score(ui) is

the LAMP score of ui.
3 Experiments and results

In this study, three computers, namely, PC1, PC2 and PC3, were

employed for model training, testing, and deploying applications,

respectively. PC3 is a lightweight industrial control mainframe

computer integrated into the self-developed intelligent citrus

picking robot (ICPR), as shown in Figure 1. The detailed

hardware and software configurations of the three computers are

provided in Table 1.
3.1 Model training and performance
evaluation metrics

The model training was performed on PC1 and initialized with

pre-trained weights from the COCO dataset. The stochastic

gradient descent algorithm was used as the optimizer for model

training. The training parameters included an initial learning rate of

0.01, momentum decay of 0.937, weight decay of 0.0005, a model

input image size of 640 × 640, and a training epoch count of 300. A

label smoothing strategy was implemented to address potential

network overfitting resulting from incorrect data labeling by

improving the model’s generalization ability. Additionally, online

data augmentation using the mosaic method at each iteration was

employed to enrich the citrus image data and further enhance the

model’s generalization ability.

The model evaluation tests were conducted on PC2. The batch

size for model test inputs was set to 1, the confidence threshold was

0.001, the IOU threshold was 0.6, and the model input image size

was 640 × 640 by aligning with the practical conditions of the

orchard robot. Given the constraints of the robot’s limited hardware

resources, the models were comprehensively evaluated in this study

based on three aspects, namely, basic detection performance, degree

of lightweight, and detection speed, to assess the detection
B CA

FIGURE 6

Measurement methods of longitudinal and transverse diameters and samples. (A) Measurement method of citrus fruit longitudinal diameter. (B)
Measurement method of citrus fruit transverse diameter. (C) Samples of citrus fruits.
FIGURE 7

The structure of ELAN-HC.
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performance of different models. The evaluation of basic detection

performance includes detection precision (P), recall (R), and mean

average precision (mAP), which were calculated according to

(Equations 8–10).

P =
TP

TP + FP
� 100%, (8)

R =
TP

TP + FN
� 100%, (9)

mAP =
1
ko

k
i=1

Z 1

0
Pi(Ri)d(Ri)� 100%, (10)

where TP (true positive) represents the count of accurately

detected citrus fruits, FP (false positive) signifies the count of

erroneously identified objects or backgrounds as citrus fruits, FN

(false negative) corresponds to the count of undetected or

inaccurately identified citrus fruits, and k denotes the specific

fruit type to be detected. In this study, k is 3, indicating the three

categories of ripe, semi-ripe, and unripe citrus fruits.

The evaluation metrics for lightweight degree encompass the

memory size occupied by the model (model size), the number of

parameters (params), and the model detection speed measured by

the number of FPS. Additionally, we introduced four normalized

evaluation indicators, including the compound evaluator (CEval),

which provides a holistic assessment of the model considering basic

performance, the degree of lightweight, and detection speed. The

CEval, model size score, model parameter score, and frame rate

score are calculated as depicted in (Equations 11–14).
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CEval = a1P + a2mAP + a3SizeScore + a4ParamsScore

+ a5FPSScore, (11)

SizeScore =
1

1 + exp (0:1� (ModelSize − t1))
, (12)

ParamsScore =
1

1 + exp (0:1� (Params − t2))
, (13)

FPSScore =
1

1 + exp ( − (FPS − t3))
, (14)

where a1, a2, a3, a4, and a5 are the weight coefficients, and

their sum is 1.0. They differentiate the importance of various

indicators for intelligent operation robots in orchards. t1, t2 and

t2 control the thresholds for each evaluation indicator.

The curves illustrating the model size score, model parameter

score, and frame rate score are presented in Figure 8. Slight

variations in the FPS of each model were observed across

experiments; thus, the FPS rates of all models were averaged over

five tests after completing the graphics card warm-up. Aligned with

the real-time target detection task and the goal of maintaining

lightweight models, the threshold values (t1, t2, and t3) in this study

were set at 50, 50, and 30, respectively. A high frame rate score

indicates proximity to 1. However, the frame rate beyond the

robot’s real-time monitoring need of 30 FPS becomes barely

crucial. Conversely, parameter and model size scores approach 1

as they decrease and approach 0 as they increase.
3.2 Comparative experiments of different
attention mechanisms

YOLOv7 was employed as a baseline to elucidate the impact of

attention mechanisms on the detection performance of the YOLOC
TABLE 1 Key hardware and software configurations of the
experimental environment.

Hardware/
Software

PC1 PC2 PC3

CPU
Intel(R) Core
(TM) i9-10920X
CPU @ 3.50 GHz

Intel(R) Core
(TM) i9-10920X
CPU @ 3.50 GHz

Intel(R) Core
(TM) i7-1165G7
CPU @ 2.80 GHz

GPUs
NVIDIA GeForce
RTX 3090 (24576
MB) × 2

NVIDIA GeForce
RTX 3090
(24576MB) × 2

NVIDIA GeForce
MX450 (2048
MB)× 1

RAM
32 GB 3200 MHz
× 4

32 GB 3200 MHz
× 4

16 GB 3200 MHz
× 1

Motherboard
ASUS WS
X299 SAGE

ASUS WS
X299 SAGE

HP 87E2

Operating
system

Microsoft
Windows 10 Pro
(64-bit)

Microsoft
Windows 10 Pro
(64-bit)

Microsoft
Windows 10 Pro
(64-bit)

CUDA 11.7 11.8 11.8

cuDNN 8.5.0 8.7.0 8.7.0

PyTorch 2.0.0 2.0.1 2.0.1

OpenCV 4.7.0 4.8.0 4.8.0

Python 3.8.16 3.8.17 3.9.18

VS code 1.83.1 1.84.1 1.84.1
FIGURE 8

Evaluation metric score curves of model performance.
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model. Various attention mechanisms were incorporated into the

ELAN-H module, and comparative experiments were conducted to

assess the detection performance for non-green-ripe large citrus.

The results are presented in Table 2.

Table 2 reveals that the introduction of different attention

mechanisms impacts the model’s detection performance to

varying degrees. Regarding performance metrics, YOLOv7

+CBAM exhibits a detection accuracy of 83.8%, marking a 1.2

percentage point improvement over YOLOv7. Thus, it only ranks

second to the YOLOv7+CA model. Compared with the average

accuracy of YOLOv7, that of YOLOv7+CBAM reaches 82.5%,

indicating a 1.2 percentage point increase, whereas that of

YOLOv7+CA is only 81.9%. This finding suggests that YOLOv7

+CBAM excels in capturing citrus image features. Although the

model size and number of parameters of YOLOv7+CBAM

experience a slight increase compared with those of YOLOv7, its

detection accuracy is enhanced. The frame rate of YOLOv7+CBAM

is 86 FPS, satisfying the real-time target detection requirements. We

employed the GradCAM algorithm to generate detection heat maps

for multiripeness citrus images and gain deep insights into the

suitability of the CBAM attention mechanism in citrus fruit

detection. The corresponding detection results are presented in

Figure 9. All heat maps were generated at the same layer above the

detection head of the detect network layer of the model.

Figure 9 shows that different attention mechanisms allocate

varying degrees of focus to citrus fruits, leading to differences in the

detection performance of fruits at various ripeness levels. YOLOv7

+CBAM exhibits the highest attention to citrus fruits with diverse

ripeness, surpassing the attention given by YOLOv7, which allocates

minimal attention to citrus fruits. For green unripe citrus, YOLOv7

distributes attention across the surroundings evenly. Despite the

improvement in the model’s attention to citrus fruits with the

introduction of other attention mechanisms, it still falls short of the

performance achieved by the YOLOv7+CBAM model.

In terms of detection results, YOLOv7+CBAM and YOLOv7

exhibit no misdetections or omissions. By contrast, YOLOv7+CA
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has one omission and one misdetection in ripe citrus detection,

YOLOv7+ECA has two omissions, and YOLOv7+SE and YOLOv7

+SimAM have one omission in ripe citrus detection. In summary,

the CBAM attention mechanism demonstrates superior

performance in detecting multiripeness citrus fruits, particularly

for unripe green citrus. Thus, it maintains high-precision results

with no false or missed detections. Therefore, the CBAM attention

mechanism proves to be well-suited for citrus fruit detection.
3.3 Ablation experiments

We conducted ablation experiments to assess comprehensively

the impact of various enhancement measures on the model’s

detection performance by incrementally introducing these

measures with YOLOv7 as the baseline. The experimental results

are presented in Table 3.

Table 3 reveals that all proposed enhancements in this study

lead to varying degrees of improvement in the model’s detection

accuracy or lightweight characteristics. Compared with the training

set without the use of the fine-tuned training set, the YOLOv7

model with the fine-tuned training set FTRAIN-A exhibits a 2.4%

improvement in P and a 0.9% improvement in mAP. Furthermore,

incorporating the lightweight backbone network EfficientNet-B0

further enhances the model’s detection accuracy and increases its

lightweight profile. Compared with YOLOv7, the model with the

EfficientNet-B0 backbone shows a 2.9% increase in P and a 0.8%

increase in mAP value whilst maintaining only 32.5% and 32.1% of

the model size and number of parameters of YOLOv7, respectively.

The introduction of the ELAN-HC module with the CBAM

attention mechanism leads to a slight increase in model size and a

decrease in frame rate. However, the P and mAP of the model show

significant improvements, reaching 85.7% and 83.1%, respectively,

representing a 3.1% and 1.8% increase compared with those of

YOLOv7. Given these improvements, the YOLOC model with

ACIoU experiences a marginal decrease in detection accuracy by

0.5% but improves in mAP and frame rate by 0.4% and 6

FPS, respectively.

The YOLOC-tiny model, derived through pruning and

retraining on top of YOLOC, excels not only in accuracy but also

in achieving an extremely compact model size. In particular, the P

and mAP of the model are 85.3% and 83.0%, respectively,

representing 2.7% and 1.7% increases compared with those of

YOLOv7. The model size of YOLOC-tiny is 8.4 MB, with only

11.8% and 11.5% of the model size and number of parameters of

YOLOv7, respectively.
3.4 Comparison experiments of
different detectors

YOLOC-tiny was compared with the leading SOTA target

detection models. The experimental results are presented in Table 4.

Table 4 reveals that YOLOC-tiny achieves an accuracy of 85.3%

in detecting multiripeness citrus fruits. This finding indicates that
TABLE 2 Experimental results of incorporating various
attention mechanisms.

Model P/% mAP/% Size/MB
Params/
M

FPS

YOLOv7 82.6 81.3 71.3 36.5 91

YOLOv7
+CA

84.3 81.9 72.5 37.1 86

YOLOv7
+ECA

83.5 82.2 71.3 36.5 90

YOLOv7
+SE

80.8 82.1 72.8 37.3 91

YOLOv7
+SimAM

83.6 82.0 71.3 36.5 89

YOLOv7
+CBAM

83.8 82.5 72.9 37.3 86
All attention mechanisms were implemented in the same position within ELAN-H. CA refers
to coordinate attention, ECA refers to efficient channel attention, and SimAM refers to a
simple and effective attention module.
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YOLOC-tiny outperforms most SOTA models and even surpasses

YOLOC. Additionally, YOLOC-tiny attains an 83.0%mAP, ranking

only second to YOLOC. YOLOC-tiny occupies a mere 8.4 MB of

storage space, making it significantly more lightweight than

YOLOv7x and YOLOv8x. The model’s parameter count is only

4.2 M, rendering it suitable for deployment in edge devices and

resource-limited environments. Furthermore, YOLOC-tiny

achieves a frame rate of 80 FPS, surpassing YOLOv8l and

YOLOv8x. Thus, it is well-suited for real-time performance-

critical scenarios.
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We utilized the previously mentioned model lightweight, frame

rate, and comprehensive performance indexes to analyze the

detection performance of YOLOC series models comprehensively

and thoroughly in complex environments for multiripeness and

multispecies citrus fruits. The comprehensive performance

diagrams of the aforementioned models were plotted, as shown in

Figure 10. Figure 10 shows that YOLOC and YOLOC-tiny exhibit

excellent detection performance for citrus fruits. YOLOC and

YOLOC-tiny demonstrate commendable average detection

accuracies, with YOLOC-tiny being more compact than other
FIGURE 9

Thermograms and detection results of models integrated with various attention mechanisms. The red arrows indicate the locations where the
detection results of different detectors are significantly different.
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models. This compactness contributes to reduced storage

requirements on edge devices. YOLOC-tiny outperforms all other

SOTA models, including YOLOC, in terms of the total score.

Therefore, YOLOC-tiny has significant advantages in various

aspects, including detection accuracy, lightweight design, frame

rate, and overall performance. It exhibits the strongest overall

performance, making it highly suitable for target detection in

citrus orchard scenarios.
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3.5 Comparison experiments in
different environments

We extensively validated the YOLOC and YOLOC-tiny models

across multiple validation subsets, encompassing various scenarios,

to address varying lighting conditions and environmental

complexities. These subsets comprise the test subsets TEST-ANL

and TEST-AWL for diverse lighting conditions, along with the test

subsets TEST-ACE and TEST-ASE representing varying

environmental complexities. Table 5 presents the average

detection accuracies of different SOTA detectors on the respective

test sets.

Table 5 reveals that YOLOC-tiny exhibits notable mAP

performance across all test sets, with impressive results on TEST-

ANL and TEST-ACE. It achieves a substantial advantage on TEST-

ANL, boasting a mAP of 84.0%, slightly below YOLOC’s 84.7%.

This finding suggests that YOLOC-tiny excels in detection under
TABLE 3 Results of ablation experiments.

Model
P
(%)

mAP
(%)

Size
(MB)

Params
(M)

FPS

YOLOv7 82.6 81.3 71.3 36.5 91

YOLOv7+FTRAIN-A 85.0 82.2 71.3 36.5 90

YOLOv7+FTRAIN-A+EfficientNet-B0 85.5 82.1 23.2 11.7 88

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM 85.7 83.1 23.8 12.0 81

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM+ACIoU
+ACIoU (YOLOC)

85.2 83.5 23.8 12.0 87

YOLOv7+FTRAIN-A+EfficientNet-B0+CBAM+ACIoU
+LAMP+ACIoU+LAMP (YOLOC-tiny)

85.3 83.0 8.4 4.2 80
TABLE 4 Experimental results of different SOTA models.

Model P/%
mAP/
%

Size/
MB

Params/
M

FPS
Total
Score

YOLOv5n 82.3 80.0 3.6 1.8 97 4.60

YOLOv5s 85.6 79.7 13.6 7.0 91 4.61

YOLOv5m 83.4 80.0 40.1 20.9 92 4.31

YOLOv5l 83.4 78.9 88.4 46.1 84 3.24

YOLOv5x 86.0 79.8 165.0 86.2 70 2.67

YOLOv6n 85.4 81.1 10.0 4.6 24 3.99

YOLOv6s 85.0 81.2 38.7 18.5 20 3.65

YOLOv6m 85.1 82.8 72.5 34.8 23 2.93

YOLOv6l 83.1 83.0 114.0 59.5 22 2.37

YOLOv7-
tiny

80.6 82.1 11.6 6.0 101 4.59

YOLOv7 82.6 81.3 71.3 36.5 91 3.54

YOLOv7x 84.6 81.8 135.0 70.8 86 2.77

YOLOv8n 81.8 81.2 5.9 3.0 114 4.61

YOLOv8s 85.4 81.5 21.4 11.1 117 4.59

YOLOv8m 84.3 81.8 49.5 25.8 103 4.09

YOLOv8l 85.0 81.8 83.5 43.6 79 3.35

YOLOv8x 86.0 81.1 130.0 68.1 62 2.77

YOLOC 85.2 83.5 23.8 12.0 87 4.59

YOLOC-
tiny

85.3 83.0 8.4 4.2 80 4.65
FIGURE 10

Detection performance charts for various SOTA models. The size of
each geometric shape corresponds to the model size, with large
shapes indicating large model sizes. The darkness of the geometric
shape color represents the model parameter score, with dark colors
indicating high parameter counts. The detection precision on the
test set is provided for each model following its respective name.
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regular lighting conditions. On TEST-AWL, the mAP of YOLOC-

tiny is slightly lower than that of some algorithms. However, it still

maintains a high level of performance. YOLOC-tiny achieves mAP

scores of 85.4% and 82.6% on TEST-ASE and TEST-ACE,

respectively, indicating its robustness in complex environments.

These experimental results underscore the strong adaptability and

practicality of YOLOC-tiny across various application scenarios.
3.6 Performance assessment in
practical applications

Comparative experiments for real-world applications involving

the YOLOC, YOLOC-tiny, YOLOv7, and YOLOv7-tiny models

were conducted on ICPR, with deployment tests performed on PC3.

The necessary software for model deployment includes onnx 1.14.0,

onnxruntime-gpu 1.51.1, onnx-simplifier 0.4.33, and tensorrt

8.5.3.1. We initially exported the PyTorch models as general-

purpose network models in the ONNX format. Then, we

exported the ONNX model as a TensorRT model for ICPR

deployment. Specific parameters, such as a confidence threshold

of 0.4, an IOU threshold of 0.5, a model input image size of 640 ×

640, and 32-bit floating-point precision, were set. Detection and
Frontiers in Plant Science 12107
labeling of images in the TEST-A dataset were performed on PC3

(Figure 11). Key metrics, including inference time, frame rate,

detection accuracy, and the number of correctly detected citrus,

were recorded. The accuracy rate was derived by sampling 29

images from the 290-image TEST-R test set for detection and

manually verifying them multiple times. The detailed results are

presented in Table 6.

Table 6 reveals that the inference times for YOLOC and

YOLOC-tiny are 27.2 and 17.1 ms, respectively. Although slightly

higher than the 12.7 ms of YOLOv7-tiny, the values mentioned are

significantly lower than the 78.1 ms of YOLOv7 (Figure 12A).

YOLOC and YOLOC-tiny achieve frame rates exceeding the 30 FPS

threshold required for the real-time detection needs of the robot,

with YOLOC-tiny reaching an impressive 59 FPS. Although

YOLOv7 demonstrates high detection accuracy, its FPS falls far

below real-time requirements (Figure 12B). YOLOC-tiny detects

3852 citruses, outperforming the other three models (Figure 12C).

This finding indicates its ability to capture targets comprehensively.

Moreover, YOLOC-tiny exhibits superior real-time performance in

citrus fruit detection. The detection accuracies of YOLOC and

YOLOC-tiny are 92.9% and 92.8%, respectively, slightly lower

than the detection accuracy of YOLOv7 (93.8%) but higher than

that of YOLOv7-tiny (91.5%). This finding suggests that both

models boast high detection accuracy and offer fast inference

speeds and a good balance (Figure 12D). These experimental

results further confirm the exceptional performance of the

YOLOC series in real robotics applications.
4 Discussion

Detecting and localizing fruits are crucial for the agronomic

management of fruit crops, including yield prediction and

automated harvesting (Fu et al., 2020a; Lu et al., 2023). Fruit

harvesting operations typically account for 25% of the total

production cost and 50% of the total labor force (Castro-Garcia

et al., 2019). Developing lightweight, high-precision detection

models suitable for deployment on robots with limited

computational power can ensure operational efficiency in

complex orchard environments (Liu et al., 2023; Xu et al., 2023).

This also can provide stable visual information for early yield

prediction and fruit thinning operations.

Although excellent algorithms for detecting ripe fruits such as

citrus fruits (Xu et al., 2023), apples (Wang and He, 2021), and

kiwifruit (Fu et al., 2021), and for detecting apples at different

growth stages (Ma et al., 2024), have been proposed, rapid detection

of multi-variety and multi-ripeness citrus fruits in complex

orchards remains challenging. Additionally, balancing detection

performance, speed, and model parameters on edge devices with

limited computational power has yet to be achieved satisfactorily.

Based on engineering experience and experimental results, we

compared and analyzed various SOTA object detectors. We selected

YOLOv7 as the base network and implemented a series of

optimizations and improvements, including using a lightweight

backbone network and embedding the attention mechanism

CBAM. We also designed metrics to comprehensively evaluate
TABLE 5 Detection accuracy of SOTA detectors in different
validation subsets.

Model
mAP/%
(TEST-
ANL)

mAP/%
(TEST-
AWL)

mAP/%
(TEST-
ACE)

mAP/%
(TEST-
ASE)

YOLOv5n 81.1 90.6 79.3 86.0

YOLOv5s 80.9 91.7 79.2 83.9

YOLOv5m 81.0 89.4 79.4 83.5

YOLOv5l 80.1 90.1 77.4 83.4

YOLOv5x 80.4 90.9 79.1 83.5

YOLOv6n 82.1 87.3 82.1 82.1

YOLOv6s 82.2 90.8 82.2 82.2

YOLOv6m 83.8 85.8 83.8 83.8

YOLOv6l 83.9 89.0 83.9 83.9

YOLOv7-
tiny

83.0 88.5 81.9 85.1

YOLOv7 82.0 92.4 81.1 84.5

YOLOv7x 82.8 90.7 81.6 84.2

YOLOv8n 81.9 91.6 80.4 84.8

YOLOv8s 81.7 91.0 80.9 83.9

YOLOv8m 82.6 91.0 81.4 85.0

YOLOv8l 82.8 90.8 81.3 85.3

YOLOv8x 81.5 91.5 80.2 84.6

YOLOC 84.7 91.3 83.9 84.7

YOLOC-
tiny

84.0 90.7 82.6 85.4
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the model’s detection performance on edge devices with limited

computational power (see Equations 11–14). Consequently, we

proposed the lightweight detection model YOLOC-tiny.

While YOLOC-tiny demonstrated excellent detection performance

in tasks involving multi-variety and multiripeness non-green-ripe

citrus fruits, several limitations remain. First, as shown in Figure 9 of

the revised manuscript, the model’s detection capability for citrus fruits

that are either distant or severely occluded is insufficient. Although

these fruits can be detected as the robot moves, detecting small, distant

citrus fruits and severely occluded citrus fruits requires further

attention. Second, in distinguishing between different citrus varieties

and maturities, YOLOC-tiny’s detection accuracy is lower compared to

algorithms that detect single-variety, single-maturity fruits (Fu et al.,

2019; Apolo-Apolo et al., 2020a). As shown in Table 5, the mAP of

YOLOC-tiny is slightly lower than that of YOLOv5n in simple

environments, although YOLOC-tiny outperforms YOLOv5n in

complex orchards and varying lighting conditions.
Frontiers in Plant Science 13108
Moreover, in this study, we only verified the impact of adding

pure citrus image datasets on enhancing the detection performance

of citrus fruits in unstructured environments, without conducting

quantitative and qualitative research. Considering the basic

conditions of the robot’s operating environment, we used only

seven data augmentation methods. Furthermore, transformers have

proven effective in large language models and have recently been

applied to object detection tasks, suggesting promising avenues for

improving model performance (Zhu et al., 2022; Yang et al., 2023).

We also note the recent advancements with YOLOv9

and YOLOv10.

We will further expand the dataset, enrich the images with

various scenes and lighting conditions, or increase the image

resolution. We will explore the effectiveness of generative

adversarial networks and MixUp in robot applications in future

research. Therefore, future work will focus on enriching the

dataset and incorporating more efficient network architectures

and modules to further enhance the model ’s detection

performance and lightweight characteristics. In our future

research, we plan to optimize the model structure further to

improve the detection performance of citrus fruits in low-

light environments.

To address these issues, we will expand the dataset, enhance

image diversity with various scenes and lighting conditions, and

increase the image resolution (Wang et al., 2022b). Additionally, we

will explore the effectiveness of generative adversarial networks and

MixUp in dataset augmentation. Future work will focus on

incorporating more efficient network architectures and modules

to enhance the model’s detection performance and lightweight

characteristics. We also plan to optimize the model structure to

improve the detection of citrus fruits in low-light environments.
FIGURE 11

Detection results of various models in dark, complex environments.
TABLE 6 Results of robot application experiments.

Model YOLOv7
YOLOv7-

tiny
YOLOC

YOLOC-
tiny

Inference
time/ms

78.1 12.7 27.2 17.1

FPS 13 79 37 59

Accuracy/% 93.8 91.5 92.9 92.8

Number
of citrus

3723 3801 3758 3852
The accuracy values in the table were calculated by comparing the model’s output results with
the manual detection results.
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5 Conclusions

We introduce a generalized lightweight detection model,

YOLOC-tiny, tailored for large non-green-ripe citrus of different

varieties with multiripeness in complex environments by optimizing

the network structure and reducing the model size to enhance

computational efficiency. Our methodology begins with the

curation of image datasets featuring citrus fruits in various

environments and ripeness stages, encompassing navel orange,

Ehime Jelly orange, and Harumi tangerine. YOLOC-tiny utilizes

the EfficientNet-B0 feature extraction backbone, streamlining

model parameters whilst augmenting feature extraction capabilities.

Furthermore, it integrates a spatial and channel hybrid attention

mechanism, CBAM, to enhance access to contextual information,

intensify focus on diverse citrus fruits, and achieve superior detection

performance. Additional parameter reduction is achieved by

implementing the LAMP strategy.

The key findings from our study include the following:

(1) Ablation experiments confirm the effectiveness of our

enhancement measures in improving network performance for

non-green-ripe citrus fruit detection. (2) Compared with
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TRAIN-A, YOLOv7 based on the F-TRAIN-A dataset exhibits a

2.4% and 0.8% improvement in P and mAP, respectively. This

finding validates the benefit of replacing citrus images in real scenes

with a small number of pure citrus images in complex environments

to enhance model detection performance. (3) Compared with other

SOTA models, such as YOLOv8, YOLOC-tiny surpasses real-time

detection requirements with an impressive frame rate. It also

demonstrates superior detection performance. YOLOC-tiny

achieves an 85.3% P and an 83.0% mAP at a frame rate of 80

FPS, with a parametric count of merely 4.2 M. (4) In a real-world

deployment with a citrus-picking robot, ICPR, YOLOC-tiny attains

92.8% accuracy at a frame rate of 59. Thus, YOLOC-tiny provides

real-time, accurate information on multiripeness and diverse citrus

fruits for orchard robots.
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FIGURE 12

Detection results of different models deployed on ICPR. (A) Inference time of each model. (B) FPS of each model. (C) Number of citrus fruits
detected. (D) Accuracy of each model.
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(2020a). Deep learning techniques for estimation of the yield and size of citrus fruits
using a UAV. Eur. J. Agron. 115, 126030. doi: 10.1016/j.eja.2020.126030

Apolo-Apolo, O. E., Pérez-Ruiz, M., Martıńez-Guanter, J., and Valente, J. (2020b). A
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Plant diseases significantly impact crop productivity and quality, posing a serious

threat to global agriculture. The process of identifying and categorizing these

diseases is often time-consuming and prone to errors. This research addresses this

issue by employing a convolutional neural network and support vector machine

(CNN-SVM) hybrid model to classify diseases in four economically important

crops: strawberries, peaches, cherries, and soybeans. The objective is to

categorize 10 classes of diseases, with six diseased classes and four healthy

classes, for these crops using the deep learning-based CNN-SVM model. Several

pre-trained models, including VGG16, VGG19, DenseNet, Inception, MobileNetV2,

MobileNet, Xception, and ShuffleNet, were also trained, achieving accuracy ranges

from 53.82% to 98.8%. The proposed model, however, achieved an average

accuracy of 99.09%. While the proposed model's accuracy is comparable to that

of the VGG16 pre-trained model, its significantly lower number of trainable

parameters makes it more efficient and distinctive. This research demonstrates

the potential of the CNN-SVM model in enhancing the accuracy and efficiency of

plant disease classification. The CNN-SVM model was selected over VGG16 and

other models due to its superior performance metrics. The proposed model

achieved a 99% F1-score, a 99.98% Area Under the Curve (AUC), and a 99%

precision value, demonstrating its efficacy. Additionally, class activationmaps were

generated using the Gradient Weighted Class Activation Mapping (Grad-CAM)

technique to provide a visual explanation of the detected diseases. A heatmap was

created to highlight the regions requiring classification, further validating the

model's accuracy and interpretability.
KEYWORDS

convolutional neural network (CNN), support vector machine (SVM), gradient-weighted
class activation mapping (GRAD-CAM), pre-trained models, plant diseases
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1 Introduction

In Bangladesh, agriculture is crucial due to a growing

population and higher food demand. Besides, the gross national

income of the country and the families of the farmers depend on the

agriculture field. Many countries rely on agricultural products and

allied businesses as their primary source of income. One of the most

basic and crucial necessities for any country is the safety and

security of agricultural products Akbar et al. (2022). As plants are

the health of agricultural development, so it is essential to increase

the production of crops by ensuring the health of plant leaves. To

boost plant yield, it’s essential to address the issue of low yield

caused by diseases from bacteria, viruses, and fungi. Moreover,

Plant leaf diseases not only impact our daily lives but also have a

terrible impact on farmers whose families depend on the production

of plants. Identifying and classifying these diseases manually is both

time-consuming and prone to errors. To address this, we suggest a

deep learning approach for accurate and efficient identification and

classification of plant leaf diseases. This method utilizes neural

networks to extract characteristics of diseased parts, enhancing the

accuracy of disease area classification. Detecting these plant diseases

can help prevent them, and deep learning methods are effective for

identification because they analyze data directly, focusing on

specific task outcomes. This paper outlines the steps in a plant

disease detection system and compares deep learning techniques for

detecting plant diseases. To identify diseases by applying deep

learning techniques, this paper introduces four kinds of crop

leaves - Cherry, Peach, Strawberry, and Soybean.

Cherries hold notable importance in human health due to their

rich nutritional profile and potential health benefits. Packed with

antioxidants, particularly anthocyanins, cherries contribute to

combating oxidative stress and inflammation, potentially

promoting heart health and reducing the risk of chronic diseases.

However, the cultivation of cherries is not without challenges, as

various diseases, such as bacterial canker, brown rot, and powdery

mildew, can pose significant drawbacks. The cherry leaves infected

by Podosphaera pannosa will suffer powdery mildew, which is a

serious disease threatening the cherry production industry Zhang

et al. (2019). Thus, identifying a cherry leaf infected by Podosphaera

pannosa only needs to identify whether the cherry leaf is healthy or

diseased. To identify the diseased cherry leaves in the early stage, a

combined technique of machine learning and deep learning have

been used.

Peaches, both delicious and nutritious, hold significant

importance in the realm of nutrition and well-being. Several

diseases can attack peaches, including Bacterial spots, also known

as Bacteriosis or shot holes. This disease also can be called peach

spot. However, Bacteriosis severely affects peach crop production.

Bacteriosis typically develops on the peach leaves first; therefore, the

leaves are the primary source for recognizing plant disease Ebrahimi

et al. (2017). The diseases reduce the yield of peaches and cause

harm to human health. Thus, it is important to find rapid and

accurate methods to identify peach diseases and further locate and

segment the areas of the lesion in earlier stages Yao et al. (2022).

In many parts of the world, soybeans are the main food crop for

people and an important source of oil for human consumption. But
Frontiers in Plant Science 02113
in recent years, some factors such as natural disasters, soil erosion,

and fertilizer unreasonably lead to the occurrence of crop diseases.

These diseases seriously affect soybean yield and quality in some

aspects Gui et al. (2015). Traditional diagnosis of these diseases

relies on disease symptom identification based on naked-eye

observation by pathologists, which can lead to a high rate of false

recognition. With the help of machine learning and deep learning

knowledge, this infection of leaves can be identified, and take

necessary steps in an earlier stage. This will lead to the prevention

of the infection rate of other leaves. In this proposed article, three

types of soybean diseases such as soybean sudden death, soybean

yellow mosaic, and soybean bacterial blight which are significant

threats to soybean plant production, have been classified as

providing one healthy class.

Strawberries are one of the most sensitive and important crops

in the world. Strawberries have high nutritional content and

commercial value. So, it is a major fruit for daily consumption

Skrovankova et al. (2015). Strawberries are easily infected by several

plants’ phytopathogenic fungi, bacteria, and viruses Maas (2012);

Pan et al. (2014); Husaini and Neri (2016). That’s why the diseases

in strawberry leaves become the main interruption in its yield.

Strawberry diseases are manually identified by growers, which is

laborious and time-consuming. The shrinking workforce in

agricultural counties also complicates this issue, since it is harder

to accurately predict disease severity over a large scale. Therefore,

it’s urgent to develop an automatic system to identify the diseases in

strawberry leaves Xiao et al. (2020). To accomplish the automatic

identification of diseases, this article introduces a smart

identification system using an image recognition technique for

the detection of strawberry diseases using a Convolutional Neural

Network (CNN) model. The traditional pathology method involves

visually observing diseases, but it is labor-intensive, time-

consuming, and heavily dependent on plant pathologists. To

address these challenges, the Enzyme-linked Immunosorbent

Assay (ELISA) has been suggested, capable of detecting viral

protein content in plant extracts Clark and Bar-Joseph (1984).

However, it proves less effective for diagnosing fungal and

bacterial diseases. Another method, real-time polymerase chain

reaction (PCR), is employed for testing plant pathogens, offering

superior speed and accuracy compared to the aforementioned

techniques Schaad and Frederick (2002). Nevertheless, widespread

implementation is hindered by the requirement for skilled

operators and the high cost of equipment. Consequently, we

propose an image-based diagnostic method using deep learning.

This approach is characterized by high accuracy, ease of

implementation and the potential for real life implementation.

The research offers some contributions. The contributions are –
• Building a deep learning CNN-based model to extract the

most relevant features of the plant leaf images.

• Use of machine learning SVMmodel to classify the diseased

and healthy plant leaf images.

• Keeping the model’s parameters low, will produce a low-

size model to use comfortably on any device.

• Comparison of the proposed CNN Model with some pre-

trained model to show its acceptance and feasibility, as the
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proposed model is superior to the transfer learning models

in terms of parameters and accuracy.

• Comparison with the existing research works by providing

the model’s performance in terms of training accuracy,

validation accuracy, precision, recall, F1-score, Receiver

Operating Characteristics (ROC) curve, precision Vs

recall curve, and the number of trainable parameters.

• Use of explainable AI to visualize the diseased areas that

classify the plant leaves.
2 Related works

The early identification of the plant leaf disease is vital for

profitable harvest yield in the agricultural field. Numerous types of

research have been carried out to detect the leaf disease on the

agricultural land. To achieve this goal, Hang et al. (2019) developed

an integrated CNN-based model using squeeze and the Squeeze-

and-Excitation module to classify 10 classes of plant leaves for 3

crops - apple, cherry, and corn. To achieve a good classification

accuracy and lightweight model, the model was trained using global

average pooling layers instead of dense layers. With a dataset

containing less number of images, the proposed research work

achieved 91.7% accuracy in identifying the diseases in cherries.

Zhang et al. (2019) proposed a CNN model which was built based

on a pre-trained model named GoogleNet. The model was applied

in a binary classification with only 1200 images of cherry plant

leaves. The experiment got an accuracy of 99.6% by adopting 5-fold

cross-validation.

In order to detect bacteriosis in peach leaves, Akbar et al. (2022)

looked for a novel lightweight CNN model based on VGG-19 and

got the experimental result with 99% accuracy. The research was a

binary classification of healthy and diseased peach leaves with a

large dataset. The dataset consists of 1000 images, of which 70% are

used for training and 30% for testing the Models. The LWNet

Model uses 13 convolutional layers, the count of max-pooling is 7,

and the dropout rate is 0.5 with the ReLu activation function.

Alosaimi et al. (2021) proposed an innovative method for the binary

classification of peach leaves and fruits with 3,199 images. The novel

method consists of a CNN-based model and can also locate the

region of disease and help farmers find appropriate treatments to

protect peach crops. This innovative model got only 94% accuracy.

Soybean is another plant that needs to be identified whether it is

infected or not. Wallelign et al. (2018) designed a CNNmodel based

on LeNet architecture to classify four classes including a healthy

class of soybean leaf. The authors collected a huge dataset of 12,673

samples and got an impressive accuracy of 99.32%. The research

work was classified by only four classes of soybean leaves. Wu et al.

(2023) proposed a classification method based on the improved

ConvNeXt model where an attention module was used to generate

feature maps at various depths and increase the network’s focus on

discriminative features as well as reduced background noise. The

authors got an experimental accuracy of 85.42% which was

comparatively poor in terms of AI-based disease detection.

Although the research mentioned some evaluation metrics and a
tiers in Plant Science 03114
method to visualize the images, the number of model parameters

was not satisfactory, as the model was not lightweight. Moreover,

the model classified only three classes of soybean leaves including

one healthy class. Yu et al. (2022) designed a model by constructing

a residual attention layer (RAL) using attention mechanisms and

shortcut connections, which further embedded into the residual

neural network 18 (ResNet18) model to establish a new model of

RANet based on attention mechanism and idea of residuals. The

model achieved 98.49% accuracy for the recognition of three types

of soybean leaf disease without providing a healthy class. Moreover,

their proposed model was not lightweight. Jadhav et al. (2019)

presented a novel system using the support vector machine (SVM)

and K-Nearest Neighbor (KNN) classifiers used for classifying

soybean diseases using color images of diseased leaf samples. The

research was applied to the four classes of soybean leaves - blight,

brown spot, frog eye leaf spot diseases, and Healthy samples with an

accuracy of 87.3% and 83.6%. Besides, the authors didn’t mention

the lightweightness of their model and there was no method of

visualization through explainable AI in terms of detecting

strawberry diseases. The automation of agriculture and image

recognition techniques are indispensable.

Xiao et al. (2020) proposed a CNN model based on ResNet50

that achieves a classification accuracy rate of 100% for leaf blight

cases affecting the crown, leaf, and fruit; 98% for gray mold cases

and 98% for powdery mildew cases. The overall accuracy rate for

the feature images of the dataset was 99.60%. The dataset was not

augmented as the number of total images was just 1306 and the

feature images were built up manually. Moreover, the authors didn’t

use some performance evaluation metrics such as confusion

metrics, ROC curves, and PR curves to compare the experimental

results. Besides, there was no talk about visualization techniques.

With the 5 types of classes, the authors managed to get a decent

accuracy. Dhivya and Shanmugavadivu (2021) proposed a work

that was more concentrated on image pre-processing for the

reduction of noise using various filtering methods. The image

preprocessing helps to enhance the feature extraction and

classification of the leaf disease. The experimental results on the

proposed separating model have been assessed regarding PSNR and

MSE incentive to clarify and demonstrate the precision of the sifting

models by using some image filters based on gradients. Abbas et al.

(2021) worked with four pre-trained CNN models to detect the

diseases of strawberry scorch with just only 2 types including one

healthy class. All the trained CNN models were integrated with a

machine vision system for real-time image acquisition. The authors

showed an impressive comparison between the transfer learning

models and tried to implement the best one for the identification of

strawberry disease where EfficientNet-B3 achieved 92% and 97%

classification accuracy for initial and severe stage leaf scorch disease

respectively. SqueezeNet recorded the lowest disease classification

accuracy values in comparison with AlexNet, VGG-16 and

EfficientNet-B3. Shoaib et al. (2023) proposed a CNN model that

can identify four prevalent diseases: powdery mildew, rust, leaf spot,

and blight from 8000 images. The model was trained with multiple

hyperparameters, such as the learning rate, number of hidden

layers, and dropout rate, and attained a test set accuracy of

95.5%. The authors presented a comparison by changing different
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hyperparameters and displayed hyperspectral images representing

four prevalent types of plant diseases. The results demonstrate that

the proposed CNN model performed better when compared with

other machine learning image classifiers such as Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, and

Random Forest.

Based on the literature reviews, the following gaps have

been identified:
Fron
• Many studies highlight challenges with limited dataset sizes,

impacting the model’s ability to generalize effectively. There

is a need for larger and more diverse datasets to enhance

model robustness and performance across various

environmental conditions.

• The pursuit of lightweight models is emphasized in some

studies; however, achieving both high accuracy and model

simplicity remains a challenge. Research gaps exist in the

development of efficient yet accurate lightweight models

suitable for resource-constrained environments, such as on-

field applications.

• Several studies achieve high accuracy in disease

classification but lack in explaining the affected regions

within plant images. Future research should focus on

integrating explainable AI techniques to visualize and

interpret model decisions, aiding farmers in targeted

disease management.

• Some studies fall short in providing a comprehensive set of

evaluation metrics, such as confusion matrices, ROC curves,

and PR curves. A standardized and thorough evaluation

approach is essential for comparing models and

understanding their performances.

• Many studies focus on binary or limited multiclass

classification, potentially overlooking a broader spectrum

of plant diseases. Research gaps exist in addressing

challenges associated with an increased number of disease

classes and ensuring accurate identification within diverse

plant species.

• While several studies propose innovative models, there is

often a lack of emphasis on the lightweight nature of these

models, critical for practical on-field applications. Future

research should prioritize the development of lightweight

models without compromising accuracy.

• Certain studies lack comprehensive comparisons between

different models or hyperparameters, limiting insights into

the effectiveness of various approaches.

• While some studies explore hyperparameters, there was no

room for more systematic investigations into the impact of

hyperparameter variations on model performance.
With the advancement of machine learning, all the traditional

techniques of observing plant diseases have been considered time-

consuming and complex. To assist farmers in increasing crop

production and identifying diseases at earlier stages, this research

proposed a CNN-based technique that combines machine learning

and deep learning models. Our research purpose is to make the

farmers familiar with the advancement of modern technology easily
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and identify plant diseases without any confusion. To achieve this

goal, different performance evaluation metrics have been added to

this research that represent the acceptance of our CNN-

SVM model.
3 Materials and methods

For the identification of four plant leaf diseases, a 2D CNN-

SVM model has been proposed in this research. The model was

trained using the Kaggle platform to get the advantages of a

Graphics Processing Unit (GPU). To implement the model,

various Python libraries like numpy, and pandas and machine

learning frameworks like tensorFlow, and keras were applied.

Additionally, an explainable AI technique Grad-CAM was used to

know the explanation of the outcome performed by the

proposed model.
3.1 Overall process of establishing the
recognition model

Firstly, a large dataset containing ten classes of four types of

crop images was collected combined from Kaggle datasets named

‘PlantVillage’ and ‘Soybean Diseased Leaf Dataset’. In the final

dataset, we collected four plants (peach, cherry, soybean, and

strawberry) healthy and diseased data. After collecting the dataset,

we did feature scaling (Normalization) to make our picture size

similar and data augmentation like rotating those pictures in

different positions to train our model correctly. So, data

augmentation is used to increase the diversity and size of a

training dataset by applying various transformations to the

existing data. By generating new samples from the original data

through transformations such as rotation, flipping, cropping,

scaling, or adding noise, data augmentation helps improve the

robustness and generalization of deep learning models. After data

augmentation and scaling, the dataset was ready to be trained by

our proposed CNN-SVM model.

As demonstrated in Figure 1, for the identification of four plant

leaf diseases, a 2D CNN-SVM model has been proposed in this

research. CNNmodel has the power of extracting features efficiently

which helps in the classification system. The CNN model has been

fed an enormous dataset that was also augmented to get a

generalized and reliable model. In this research, for classification,

we used a machine learning model Support Vector Machine (SVM)

that works with numerical data. Therefore, CNN works as the

collector of featured data for the SVM model. Moreover,

Convolutional Neural Networks (CNNs) have revolutionized

image analysis and pattern recognition, offering several

advantages over tradit ional observation methods. By

implementing the CNN, we extracted features from the dataset,

Now, we need to detect and classify key classes from those features

in this step we used SVM, a machine learning method for

classification. By implementing SVM, we successfully classified

the healthy and diseased classes of the cherry, peach, soybean,

and strawberry. After correctly classifying the healthy and disease
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classes, we validate the result by obtaining some performance

evaluation metrics - training and validation accuracy curve, loss

curve, ROC and confusion matrix.
3.2 Dataset description

The importance of a well-curated and representative dataset in

deep learning research cannot be overstated. A dataset serves as the

foundation upon which deep learning models are built, trained, and

evaluated. The quality, diversity, and size of the dataset directly

influence the performance, generalization, and reliability of the

models developed.

To maintain the good performance, generalization, and

reliability of the proposed model, a dataset with four types of

plant leaves was collected from the publicly available

‘PlantVillage’ dataset and public available Kaggle ‘Soybean

Diseased Leaf Dataset’. The following Table 1 shows that a total

11,504 numbers of plant leaf images were used as the dataset to feed

the proposed novel model. The merged dataset consists of four plant

leaves – Cherry, Peach, Strawberry, and Soybean. Each type of plant

includes healthy and some diseased classes. To make the model

well-trained, a total 9,220 numbers of images have been used as

training datasets, and 2,304 images for testing purposes are

organized into 10 classes (Six diseased classes and four healthy

classes). Therefore, the split ratio of the training and testing dataset
Frontiers in Plant Science 05116
is approximately 4:1. Here, Figure 2 depicts example images from all

the classes of the dataset.
3.3 Data preprocessing

Image processing plays a pivotal role in enhancing the

effectiveness of deep learning models by facilitating the extraction

of meaningful features from visual data. In the area of computer

vision, where deep learning models are commonly employed for

image classification, object detection, and segmentation tasks, raw

images often contain an abundance of information. In this research,

for the processing of images, two steps have been followed.

3.3.1 Data scaling/resizing
Data scaling or resizing is a crucial preprocessing step in the

realm of deep learning, especially for models designed to extract

features from diverse datasets. Resizing involves adjusting the

dimensions of input data to a uniform size. By bringing input

features to a standardized scale, the optimization process becomes

more efficient. In this study, the images were resized into 120 X 120

for both the proposed 2D CNN-SVM model and the transfer

learning models. Therefore, it becomes ideal to measure the

performance of the proposed model and transfer the learning

model on a uniform scale.

3.3.2 Image augmentation
Augmentation is a useful technique to make our model more

adaptable and avoid getting too focused on specific details. We

applied augmentation to generate more images and increase the

dataset’s size. The main goal of augmentation is to add some variety

to the images quantitatively, which aids the model in avoiding

overfitting during training. Overfitting happens when the model

starts memorizing random details instead of grasping the actual

patterns in the data. Augmentation achieves this by introducing

distortions to the images. As demonstrated in Figure 3, data

augmentation includes different tricks like zooming, shearing,

rotating, shifting in height and width, and flipping horizontally or

vertically. These techniques create a diverse set of images for our

model to learn from, promoting better generalization. For this

purpose, some augmentation techniques have been applied in the
TABLE 1 Dataset details.

Plant Disease Type Training Testing

Cherry
Cherry Mildew
Cherry Healthy

842
682

210
171

Peach
Peach Spot

Peach Healthy
1,838
288

459
72

Strawberry
Strawberry Scorch
Strawberry Healthy

887
365

222
91

Soybean

Soybean Bacterial Blight
Soybean Sudden Death
Soybean Yellow Mosaic

Soybean Healthy

71
88
88

4,071

17
22
22

1,018

Total 9,220 2,304
FIGURE 1

An overview of the whole methodology of the research.
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FIGURE 3

Sample of some augmented leaf images – (A) Original leaf image (B) Zoomed image (C) Sheared image (D) Rotated image (E) Fill Mode image (F)
Horizontally Flipped image (G) Vertically Flipped image (H) Height Shifted image (I) Width Shifted image.
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C

FIGURE 2

Visual Description of the dataset – (A) Cherry Healthy Leaf (B) Cherry Mildew (C) Peach Healthy Leaf (D) Peach Spot (E) Soybean Bacterial Blight (F)
Soybean Healthy (G) Soybean Sudden Death (H) Soybean Yellow Mosaic (I) Strawberry Healthy (J) Strawberry Scorch.
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training images so that the model can observe the dataset from

various aspects and validate the dataset from the memorized

features. After applying eight techniques of data augmentation,

our training dataset gathered a huge collection of datasets. So, a total

of 73, 760 images were achieved from the augmentation.
3.4 Proposed hybrid method of CNN
and SVM

The proposed hybrid (CNN-SVM) model is designed to

combine both CNN & SVM advantages for the good classification

of plant diseases. In this research, a simple structured 2D CNN

model has been proposed to absorb the most important features in

the plant leaf images. As CNN is a powerful tool for extracting

features and taking two-dimensional inputs, we chose the CNN

model to reach our goal. Moreover, enhancing the classification

performance of the model relies on extracting distinctive features

specific to different leaf diseases. These distinctive attributes play a

crucial role in effectively categorizing leaf diseases. The architecture

of the suggested 2D CNN model is depicted in Figure 4. The model

has been formed using four convolutional and max-pooling layers.

A max-pooling layer was added following each convolutional layer.

Each layer is followed by a batch normalization layer.

The batch normalization layer speeds up the training process of

the model. The utilization of batch normalization was implemented

to enhance and expedite the model’s performance by readjusting

and rescaling the inputs of the layers Santurkar et al. (2018).

Besides, the max-pooling layer assumes a pivotal role in the

feature extraction process within convolutional neural networks

(CNNs). Its primary function involves reducing the spatial

dimensions of input feature maps and effectively downsizing

them while preserving essential information. This downsampling

operation facilitates the identification of prominent features by

emphasizing the most significant values within local regions and

removing useless data. This process is called subsampling.

In essence, MaxPooling contributes to the extraction of

dominant features by highlighting the highest values, resulting in

a more refined and condensed representation. Another important

step used in the model is to flatten the layer. when the pooling layer

is applied and the all-important feature is mapped, the flatten layer

converts 2D arrays to 1D arrays before applying a fully connected

layer (CNN-SVM) and is followed by batch normalization. In this

context, the utilization of dropout aimed to mitigate overfitting by

intermittently excluding the training of all nodes within each layer

throughout the training process. This strategic approach led to a

notable acceleration in training speed, contributing to more efficient

model training Peyal et al. (2023). After accelerating the training

speed, it is crucial to note that the fully connected layer represents

the final layer of a neural network. In all neural networks, every

node in this layer is properly connected, and the last layer of the

model works as a machine learning classifier named Support Vector

Machine (SVM). This layer classifies our research goal using the

numerical features collected from the CNN model. This layer

ensures that the information learned and processed through the
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preceding layers is synthesized to produce the final prediction or

classification output.

The following Figure 4 depicts the proposed CNN-SVM model

where the CNN model acts as the most relevant feature extractor

and the SVM model as the disease classifier. The summary of the

proposed model has been drawn in Table 2. The table also shows the

lightweightness of the model where the number of total parameters

is just only 393k which is very impressive and outperforms that of

the transfer learning models mentioned in this research.

Table 3 describes all the hyperparameters of the models including

2D CNN-SVM and transfer learning models – VGG16, VGG19,
FIGURE 4

An overview of the whole methodology of the research.
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DenseNet, Inception V3, MobileNet, MobileNet V2, ShuffleNet and

Xception used in this research.

To show the acceptance of the 2D CNN-SVMmodel, the hyper-

parameters were kept the same for the training purpose of all

transfer learning models. Overall, the experiment helped to detect

the plant leaf diseases impressively.
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4 Experiment and results

4.1 Experimental environment

The experimental environment for image classification using

Convolutional Neural Network (CNN) and Support Vector

Machine (SVM) involved the utilization of the Kaggle platform,

leveraging its available Nvidia P100 GPU with specifications

including 16 GB of GPU memory, a clock speed of 1.32 GHz,

and a performance capability of 9.3 TFLOPS. To enhance model

training efficiency, the input sample size for plant disease images

was adjusted to 120 × 120 pixels to match the real-world operating

conditions. The training process employed a batch size of 32 for

training samples over 350 epochs. The Rectified Linear Unit (ReLU)

activation function was applied, and batch normalization was

incorporated to normalize batch data. The RMSprop optimizer

with a learning rate of 0.001 was chosen for model optimization.

Both the proposed CNN-SVM model and transfer learning models

shared the same training and validation set sample sizes, training

batch configuration, and activation function in the experiment.
4.2 Performance metrics

A classification report serves as a comprehensive overview of

how well a model performs by highlighting crucial metrics like

precision, recall, and F1-score for individual classes. Precision

assesses the accuracy of positive predictions, while recall measures

the model’s capability to identify all relevant instances. The F1 score

combines precision and recall, presenting a consolidated metric.

Additional metrics such as accuracy, indicating overall correctness,

and the confusion matrix, which breaks down true positives, true

negatives, false positives, and false negatives, contribute to a

thorough evaluation. Besides the Precission-Recall curve (PR),

Region of Convergence (ROC) and loss curve were also used

indicating the overall impressive function of the research. These

metrics together provide a detailed insight into a model’s strengths

and weaknesses, enabling practitioners to make well-informed

decisions regarding model improvement and selection based on
TABLE 3 Evaluation metrics comparison with transfer learning models.

Models Accuracy Precision Recall F1-Score Parameters Model Size (MB)

DenseNet 53.82% 76% 78% 70% 7053642 26.91

Inception V3 97.70% 98% 97% 97% 47521706 181.28

MobileNet V2 77.65% 97% 97% 97% 3579978 13.66

MobileNet 69.70% 94% 83% 83% 3250058 12.40

ShuffleNet 98.83% 100% 100% 100% 967874 3.70

VGG 16 98.35% 96% 94% 95% 24683850 94.16

VGG 19 97.61% 97% 96% 96% 20106314 76.70

Xception 84.85% 88% 80% 82% 20881970 79.66

Proposed model 99.09% 99% 99% 99% 393674 1.50
TABLE 2 Summary of proposed simple 2D CNN model.

Layer (type) Output Shape Parameters

L1 (Conv2D) (None, 120, 120, 16) 448

max_pooling2d (MaxPooling2D) (None, 60, 60, 16) 0

batch_normalization
(Batch Normalization)

(None, 60, 60, 16) 64

L2 (Conv2D) (None, 60, 60, 32) 4640

max_pooling2d_1 (MaxPooling2D) (None, 30, 30, 32) 0

batch_normalization_1
(Batch Normalization)

(None, 30, 30, 32) 128

L3 (Conv2D) (None, 30, 30, 64) 18496

max_pooling2d_2 (MaxPooling2D) (None, 15, 15, 64) 0

batch_normalization_2
(Batch Normalization)

(None, 15, 15, 64) 256

L4 (Conv2D) (None, 15, 15, 128) 73856

max_pooling2d_3 (MaxPooling2D) (None, 8, 8, 128) 0

Flatten (Flatten) (None, 8192) 0

batch_normalization_4
(Batch Normalization)

(None, 8192) 32768

dropout (Dropout) (None, 8192) 0

dense (Dense) (None, 32) 262176

dense_1 (Dense) (None, 10) 330

Total parameters: 393674

Trainable parameter: 376810

Non-trainable parameter: 16864
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the specific demands of the image classification task. Thus, the

performance of the CNN models was evaluated with these different

evaluation metrics. Precision, recall, F1Score, and test accuracy

metrics were used to evaluate the performance of the

convolutional neural network models that were used in training.

Validation and test outcomes for all CNN models were adapted in

matrices of binary confusion, which are true positive (TP), false

positive (FP), true negative (TN), and false negative (FN)

Skrovankova et al. (2015). The first performance evaluation

criterion, Accuracy rate, is used to evaluate the performance of

network models. The accuracy rate refers to the proportion of the

number of corrected positive predictions to that of the whole

positive predictions Hang et al. (2019). It signifies the ratio of

accurately identified images to the total number of images and is

expressed by:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision measures how accurate your model is when it predicts

positive instances. It’s calculated by taking the number of true

positive predictions and dividing it by the total number of positive

predictions (both true positives and false positives). It can be

quantified as,

Precision =
TP

TP + FP

The Recall measures the efficiency of the neural network in

identifying and categorizing the target, determined through the

following calculation:

Recall =
TP

TP + FN

The F1-score serves as the harmonic mean of precision and

recall, providing a balanced metric that considers both false

positives and false negatives. It is calculated by taking the

reciprocal of the average of precision and recall through the

following equation:

F1 − Score =
2·Precision·Recall
Precision+Recall
4.3 Multiclass classification results

4.3.1 Accuracy graphs
Accuracy is defined as the sum of correct classifications divided

by the total number of classifications. The sum of all diagonal

elements is divided by the sum of all items in the confusion metrics.

Accuracy gives the overall correctness of the predicted model. The

accuracy of the model is drawn across the number of epochs which

is called the accuracy graph. The accuracy graph contains both the

training and validation accuracy (99.15% and 99.09%) in terms of

epoch numbers. According to our research, the first adoption of the

proposed CNN-SVM model has been clear from the accuracy

graphs of our proposed CNN-SVM model which is shown

in Figure 5.
Frontiers in Plant Science 09120
From Table 3, it is observed that the validation accuracy of

VGG16, VGG19, Inception V3, shuffleNet, MobileNet, MobileNet

V2, DenseNet and Xception are 98.35%, 97.61%, 97.70%, 98.83%,

69.70%, 77,65%, 53.82% and 84.85% respectively. On the other

hand, we checked our model in various epochs and environments

(Table 4) and got the accuracy of 99.09%. In Figure 6, the accuracy

comparison bar graph has also been shown to observe the outcome

of various transfer learning models and the proposed model.

Therefore, it is evident that the evaluation metrics accuracy,

precision, recall, and F1-score of the proposed model are

significantly higher than the transfer learning models which is a

very good indicator of the reliability of the proposed model’s

performance in classifying 10 categories of plant leaf diseases

from a huge dataset using CNN-SVM combined model.
4.3.2 Confusion matrix
The confusion matrix is a table that gives information about

how the test dataset performs on the trained model Sharma et al.

(2022). Various performance measures like accuracy, precision,

recall, or sensitivity and specificity of the model can be calculated

using the confusion matrix Tripathy et al. (2015). The diagonal

values of the confusion matrix represent true positives (TP). To

obtain false negatives, we have to add the values in the

corresponding row items ignoring the true positive values. The

total number of testing samples belonging to a given class can be

calculated by the sum of all items of rows corresponding to that

class (TP + FN). Similarly, the number of false positives (FP) for a

class is obtained by adding the values of the corresponding column

ignoring true positives TP for that class. The total number of true

negative TN for a certain class will be the sum of all columns and

row values ignoring that class’s column and row. However, this

study considered a 10-class problem, which consisted of four

healthy classes and six different unhealthy classes of Cherry,

Peach, Soybean and strawberry leaves. It is noticeable that out of

2304 images, only 21 images were misclassified by the proposed

CNN-SVM model. Therefore, from Figure 7, it is clear that the

proposed model can classify 10 numbers of classes accurately rather

than the existing works.

4.3.3 ROC and PR curves
The ROC curve is a graphical representation of the trade-off

between true positive rate and false positive rate at various

thresholds. It is created by plotting the true positive rate against

the false positive rate across different classification thresholds. The

area under the ROC curve (AUC-ROC) quantifies the overall

performance of the model. A higher AUC-ROC indicates better

discrimination ability. From Figure 8, it is noticeable that the AUC

score for the proposed model is almost nearly one and also it has

surpassed the other transfer learning model’s AUC. It is also known

that a model with a higher AUC-ROC generally performs better.

Besides, ROC curves provide insights into the model’s ability to

discriminate between classes. On the contrary, The PR curve

represents the trade-off between precision and recall at different

classification thresholds. Precision is the ratio of true positives to the

sum of true positives and false positives. Recall is the ratio of true
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positives to the sum of true positives and false negatives. From the

figure, both the ROC and PR curves show an impressive outcome of

the proposed model. In summary, both ROC and PR curves provide

valuable insights into different aspects of model performance.

4.3.4 Experimental research from
different parameters

In order to achieve a reliable and robust classification model, the

research was carried out using different optimizers such as Adam,

SGD and RMSprop. The research was done at 350 epochs but we

got our expected result within 50 epochs to train the model. In this

environment, RMSprop Optimizer has given the best outcome. So,

our proposed model gave 99.09% by using RMSprop as an

optimizer whereas the SGD and Adam optimizer were not

capable of giving this result. The following Table 5 shows the

experimental results in the case of accuracy and AUC score for

various optimizers.

From the table, it is proved that RMSprop performs better than

other optimizers. Overall, the adaptability of RMSprop’s learning

rate, its stability during training, efficient memory usage, and rapid

convergence made it a favored option across various scenarios,

especially when handling complicated deep learning models and

extensive datasets.

4.3.5 Matthews correlation coefficient
The MCC is crucial as it considers sensitivity, specificity,

precision, and negative predictive value simultaneously, providing

a holistic assessment of binary classification models. Matthews

Correlation Coefficient (MCC) can also be used in multi-class

classification problems but is typically used for binary

classification tasks. Unlike the ROC AUC, the MCC generates a
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high score only when the classifier performs well across all four

basic rates of the confusion matrix, ensuring a reliable evaluation.

A high MCC value always corresponds to high values for

sensitivity, specificity, precision, and negative predictive value,

making it a superior performance indicator compared to other

metrics like F1 score and accuracy Chicco and Jurman (2023). The

MCC ranges from -1 to +1, with -1 indicating perfect

misclassification and +1 indicating perfect classification, while the

DOR ranges from 0 to + Chicco et al. (2021).

In our proposed model, We have managed to acquire an

impressive outcome of Matthews Correlation Coefficient (MCC)

that is 0.987, which signifies a near-perfect classification

performance. In summary, the attainment of an MCC value of

0.98 underscores the efficacy and reliability of our model’s

classification capabilities. It provides strong evidence that our

model has learned meaningful patterns from the data and can

generalize well to unseen instances, thereby instilling confidence in

its practical utility and real-world deployment.
4.3.6 Mn/Mg deficient leaf vs. soybean
sudden death

The symptoms of Mn/Mg deficient leaves and Soybean sudden

death leaves are almost similar. These two can look alike, making it

hard to distinguish them by eye since they have almost the same

features in the images. In this case, we tried to classify them through

our proposed model and got an outcome.

To separate the two species through the model, we collected

pictures of Mn/Mg-deficient soybean leaves from Google and added

those to our dataset after augmenting them.

After adding a new class of Mn/Mg-deficient soybean leaves to

our original dataset, the proposed model was applied to the merged

dataset. Figure 9 shows that the model achieved an impressive

training accuracy of 99.11% and validation accuracy of 98.74% over

the merged dataset. From the Figure 10 of the confusion matrix, it is

seen that our model successfully classified all the images of Mn/Mg

deficiency. To make the model recognize the difference among the

soybean diseased classes, we increased the number of images in the

dataset from ‘DRYAD’ dataset which contains high quality images

of the same classes. Eventually, our model became successful in

classifying them. In summary, our model has achieved a success rate
FIGURE 5

Accuracy graph of the proposed CNN-SVM model.
TABLE 4 Accuracy comparison in various epochs.

Epochs Callback Function Accuracy

42 Yes 99.09%

100 No 96.79%

200 No 97.98%
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in distinguishing differences, even when they’re hard to see with the

naked eye.

4.3.7 Reusability of the proposed CNN-
SVM model

The proposed CNN-SVM model was applied to a new, more

extensive dataset comprising larger images of Soybean Rust,

Soybean Frogeye Spot, and Soybean Healthy classes, collected

from ‘SoyNet’, ‘Soybean Leaf Disease Prediction’, and ‘Roboflow’

datasets. After merging new classes to our proposed dataset, the

model was trained on it and achieved an impressive validation

accuracy of 99.04%, closely matching our original dataset’s

performance. Additionally, as shown in Figure 11, the

classification for each class was satisfactory like before,

maintaining the model’s robust performance.
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In Table 6, we have evaluated the performance variations of our

proposed CNN-SVM model across different criteria. Initially, we

observed that certain classes in our proposed dataset contained

images that were relatively small in size. To address this, we replaced

those classes with new ones featuring comparatively larger images from

‘DRYAD’ dataset which contains great quality images. Additionally, we

noted potential confusion between the Mn/Mg deficient class and the

Soybean Sudden Death class. To clarify this, we replaced the Soybean

YellowMosaic class with theMn/Mg deficient class in our dataset as we

wanted to keep the similar types of soybean classes together and

reassessed the model’s performance. Finally, we showed the

performance of our proposed dataset. Therefore, Table 6 represents

an analysis of using the proposed model across different criteria. This

analysis indicates the model’s robustness and effectiveness across

various datasets in the desired classification tasks.
FIGURE 6

Bar graph of different transfer learning models for validation accuracy.
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FIGURE 7

Confusion matrix of (A) DenseNet (B) Inception-V3 (C) MobileNet-V2 (D) MobileNet (E) ShuffleNet (F) VGG16 (G) VGG19 (H) Xception (I) Proposed
CNN-SVM model.
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5 Comparative analysis

In conclusion, the proposed CNN-SVM model stands as a

pioneering solution in the realm of plant disease classification,

showcasing a unique fusion of CNN and SVM for optimal feature
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extraction and classification. The model’s exceptional performance,

as evidenced by its accuracy, evaluation metrics, lightweight design,

and the incorporation of explainable AI techniques, underscores its

superiority. Notably, when compared to well-established transfer

learning models such as VGG16, VGG19, MobileNet, MobileNet-

V2, DenseNet, Inception-V3, Xception and ShuffleNet, our model

emerges as the clear frontrunner. Table 3 shows that our model

performs better than other transfer learning models in terms of

accuracy, precision, recall, F1-score, number of parameters and

model size. Even when compared to strong competitors like

VGG16, VGG19, Inception V3, and ShuffleNet, our model

outperforms them across all evaluation measures. Impressively, it

achieves superior precision, recall and F1-score metrics, further
A

B

D

E

F

G

I

HC

FIGURE 8

ROC curve and PR curve of (A) DenseNet (B) Inception-V3 (C) MobileNet-V2 (D) MobileNet (E) ShuffleNet (F) VGG16 (G) VGG19 (H) Xception (I)
Proposed CNN-SVM model.
TABLE 5 Comparison of various optimizers.

Optimizer Accuracy AUC Score

Adam 99% 99.96%

SGD 95% 99.87%

RMSprop 99.09% 99.98%
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validating its standard and reliability. Additionally, our model is

highly efficient. It’s half the size of the ShuffleNet pre-trained model

but still achieves almost similar accuracy. Compared to other

transfer learning models, it has the fewest parameters, with some

popular models having up to eight times more parameters and

larger sizes. This means our model runs fast, making it perfect for

various mobile devices. These results suggest that our model is not

only effective for diagnosing plant diseases but also has great

potential for use by farmers on a large scale. Therefore, its

economic feasibility and exceptional performance collectively

contribute to its greatness, making it a valuable asset for

agricultural practitioners seeking advanced yet accessible solutions.

The proposed CNN-SVM model’s significance is also evaluated

against several related research works, where it holds a notable

position. Zhang et al. (2019) aimed to develop automatic image-
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based diagnostic methods for identifying cherry diseases using only

two types of cherry leaves – diseased and healthy. The research

achieved a high accuracy rate, outperforming other works, and

demonstrated its superiority through ROC curves, comparing with

various machine learning models. However, they encountered

challenges in creating a lightweight model and explaining their

model’s visualization technique, such as Grad-CAM. Additionally,

they lacked some evaluation metrics like classification reports,

confusion matrix, and PR curve. Hang et al. (2019) proposed a

model which was compared with numerous transfer learning

models regarding accuracy, model size, and training time. Despite

having the same number of classes as ours, the paper aimed to

structure automatic cherry disease identification with two types of

diseased cherry classes and one healthy class. Although the authors

visualized the model’s performance, the accuracy rate fell short of
FIGURE 9

Accuracy graph including Mn/Mg deficiency class.
FIGURE 10

Confusion matrix including Mn/Mg deficiency class.
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expectations and they struggled to develop a lightweight model

efficient for farmers.

Alosaimi et al. (2021) showcased impressive results through

accuracy graphs, confusion matrices, classification reports and ROC

curves, applied to 12 types of peach diseases in a CNN model. They

have worked with several peach diseases, but they could also apply

their model for the other crops. Besides, their accuracy rate was not

as satisfactory as ours and their model lacked visualization

technique. Akbar et al. (2022) proposed a novel lightweight and

parameters-concerned model for classifying two types of peach

leaves, with noticeable experimental outcomes providing various

comparisons of performance evaluation metrics and transfer

learning models. But, while the accuracy was high, it couldn’t

maintain the same accuracy as our proposed model obtained with

ten classes. Besides, they could increase the number of peach classes

or the types of crops and explain the model by using explainable AI.

To sum up, they could increase the dataset by providing more

number of classes and trying to achieve the same accuracy as before.

Xiao et al. (2020) proposed research that was conducted with

two datasets, utilizing original and feature images to detect
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strawberry diseases like leaf blight, gray mold, and powdery

mildew. Their customized CNN model, based on ResNet50

achieved 99.6% accuracy, but they could have explored more

evaluation metrics instead of modifying a transfer learning model.

Moreover, they also needed to focus on the number of parameters

as ResNet50 has a higher number of parameters. In summary, they

have achieved a higher accuracy but with a heavyweight transfer

learning model as it has a higher number of parameters. Dhivya and

Shanmugavadivu (2021) showed an impressive comparison among

various CNN models where EfficientNet-B3 achieved a remarkable

outcome than others. However, they haven’t proposed their own

built model to compare with various transfer learning models.

Moreover, the research paper does not mention the use of

visualization techniques like explainable AI and the authors could

do the same research for more crops instead of only strawberries.

Besides, the authors didn’t show some performance evaluation

matrices like the ROC curve, PR curve and Confusion matrix.

Another drawback of this research is that the research did not

mention the lightweightness of the models.

Wu et al. (2023), the researchers proposed an improved

ConvNeXt model with an attention module for generating feature

maps at different depths, achieving an accuracy of 85.42% on three

types of soybean leaves. Though the number of classes was limited,

the accuracy was unsatisfactory, suggesting room for improvement.

Jadhav et al. (2019), the authors used SVM and KNN algorithms to

classify four types of soybean leaf diseases, achieving 87.3% and

83.6% accuracy, respectively. However, their accuracy value seems

to be a limitation due to the use of a small dataset and only one type

of crop. Wallelign et al. (2018) managed to achieve 99.32% accuracy

with four classes of soybean leaves using a CNNmodel based on the

LeNet architecture, with visualization of the model’s outcome.
TABLE 6 Analysis of applying CNN-SVM over various datasets.

No of Classes Total
Images

Accuracy MCC

10 (Two new classes - Soybean Rust
and Frogeye Spot)

11,532 99.04% 0.98

10 (Replaced Yellow Mosaic with
Mn/Mg deficient class)

11,957 98.74% 0.98

10 (Proposed dataset) 11,524 99.09% 0.98
FIGURE 11

Confusion matrix including soybean frogeye spot and soybean rust classes.
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Although the dataset size was satisfactory, the limited number of

disease types was a drawback. Overall, the limitations in existing

research, particularly the absence of a combined CNN-SVM model

with the Grad-CAM visualization technique have been noticed.

In summary, the discussion highlights our proposed CNN-SVM

model having both the advancements and the remaining challenges

in automating disease identification in crops. From Table 7, our

proposed model has mitigated all the research gaps of the existing

works mentioned above and showed its acceptance for real-world-

based plant disease detection.
6 Explainable-AI application

Significant efforts are underway to enhance the interpretability

and comprehensibility of deep learning, particularly in applications

related to the imaging of plant diseases. Ensuring a clear

understanding of deep learning models is crucial in such contexts.

The Gradient Weighted Class Activation Mapping (Grad-CAM)

method, introduced by Selvaraju et al. (2017) plays a pivotal role in

elucidating deep learning models as an explainable AI application.

Grad-CAM produces a visually interpretable representation of any

intricately connected neural network, thereby aiding in model

comprehension during task detection or prediction. In the

majority of cases, Grad-CAM was primarily applied to the final

convolutional layer. Grad-CAM produces a heatmap, highlighting

essential areas within an image by leveraging gradients derived from

the target class in the last convolutional layer. The regions used for

classification become apparent when superimposing this heatmap
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onto the original image. In this research, Grad-CAM was utilized to

asses if leaf sections in the input image significantly influence the

diagnostic process to visually depict the diagnosis. The calculation

entails evaluating the target class gradient on each feature map and

averaging them to determine the relative significance of each map.

The computation involves determining a weighted sum of

activations from each feature map, where the importance of each

is associated with the input image, resulting in the visualization.

Grad-CAM proves to be an effective technique that does not hinder

performance, as it doesn’t necessitate any additional custom

components Fujita et al. (2018). As depicted in Figure 12, the

proposed model utilized Grad-CAM for detection techniques on a

basic image received as input.
7 Conclusions

Crop diseases are a major threat to food security, but their

rapid identification remains difficult in many parts of the world

due to the lack of the necessary infrastructure. The rise in global

smartphone usage, along with advancements in computer vision

powered by deep learning, has opened doors to smartphone-

enabled disease diagnosis. To accomplish this goal, in the

proposed work, a 2D CNN-based model has been constructed to

detect the 6 disease classes and 4 healthy classes in Peach, Cherry,

Soybean, and Strawberry. The suggested 2D CNN-based

architecture has four convolutional and four max-pooling layers,

two fully connected layers, two dropout layers, and batch

normalization in each layer makeup. The suggested model uses
TABLE 7 Comparison of existing related works.

Reference Method Accuracy Precision Recall F1-Score Classes Plant

Zhang et al. (2019) GoogleNet 99.6% – – – 2 Cherry

Hang et al. (2019) VGG16 91.7% – – – 10
Apple,
Cherry,
Corn

Alosaimi
et al. (2021)

CNN 94% 94% 94% 94% 12 Peach

Akbar et al. (2022) LWNet 99% 100% 99% 99% 2 Peach

Xiao et al. (2020) ResNet50 99.6% – – – 3 Strawberry

Dhivya and
Shanmugavadivu

(2021)

EfficientNet-
B3 97% 98% 97% 97% 2 Strawberry

Wu et al. (2023) Improved
ConvNeXt

85.42% 88.35% 88.44% 88.37% 3 Soybean

Jadhav et al. (2019)
SVM and
KNN

classifiers
83.6%, 87.3% – – – 4 Soybean

Wallelign
et al. (2018)

LeNet 99.32% 99% 99% 99% 4 Soybean

Proposed model CNN-SVM 99.09% 99% 99% 99% 10

Peach,
cherry,
soybean,
strawberry
fro
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less storage capacity and has fewer parameters than transfer

learning models because of this kind of shallow structure, which

has surpassed heavyweight transfer learning architectures

(VGG16, VGG19, and Inception V3) and lightweight transfer

learning architectures (MobileNet, MobileNetV2, DenseNet and

ShuffleNet) which have an average accuracy range from 54% to

97%. Along with the transfer learning models, the model’s

performance has also been evaluated using the confusion

matrix, ROC curve, AUC score, and Matthews Correlation

Coefficient. The model also showed an impressive performance

over various datasets. The outcome shows that the model has

achieved a high level of performance that will assist plant doctors

and farmers in accurately identifying a variety of diseases affecting

cherry, peach, strawberry, and soybean plants. This can help plant

doctors take appropriate action to prevent the disease and save

money for the farmers. Additionally, this can benefit the economy

of the nation. Because the suggested model has significantly fewer

parameters than transfer learning models, it requires between

three and four times less storage space than transfer learning

models. This concept can be easily applied to smartphones and
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other devices due to its lightweight structure. Grad-CAM class

activation maps and a heatmap were created to visualize the

detection the trained model was able to achieve to symbolize the

area in charge of classification. However, there can be several

obstacles and limitations when implementing a model in real-

world situations. Besides, our model should have classified Mn/

Mg deficient images and Soybean sudden death images without

any misclassification although both of the classes have very similar

type of features between them. In the future, we have a plan to

increase the classification rate more and remove the collision

between those two classes. Furthermore, we are planning to

explore different hybrid models to handle upcoming

challenges better.
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Accurate detection and counting of flax plant organs are crucial for obtaining

phenotypic data and are the cornerstone of flax variety selection and

management strategies. In this study, a Flax-YOLOv5 model is proposed for

obtaining flax plant phenotypic data. Based on the solid foundation of the original

YOLOv5x feature extraction network, the network structure was extended to

include the BiFormer module, which seamlessly integrates bi-directional

encoders and converters, enabling it to focus on key features in an adaptive

query manner. As a result, this improves the computational performance and

efficiency of the model. In addition, we introduced the SIoU function to compute

the regression loss, which effectively solves the problem of mismatch between

predicted and actual frames. The flax plants grown in Lanzhou were collected to

produce the training, validation, and test sets, and the detection results on the

validation set showed that the average accuracy (mAP@0.5) was 99.29%. In the

test set, the correlation coefficients (R) of the model’s prediction results with the

manually measured number of flax fruits, plant height, main stem length, and

number of main stem divisions were 99.59%, 99.53%, 99.05%, and 92.82%,

respectively. This study provides a stable and reliable method for the detection

and quantification of flax phenotypic characteristics. It opens up a new technical

way of selecting and breeding good varieties.
KEYWORDS

flax, YOLOv5, target detection, phenotypic data, variety breeding
1 Introduction

Flax (Linum usitatissimum) is one of the most important oil and fiber crops in the world.

Flax is mainly divided into oil flax, fiber flax, and dual-purpose oil and flax varieties according

to their uses (Zhang et al., 2011). Recently, the results of studies emphasizing the anticancer

properties of substances present in flaxseed and oil have attracted great attention (Praczyk

and Wielgusz, 2021) and are widely cultivated worldwide (Kauser et al., 2024). Selection and

breeding of flax varieties are crucial for progress in flax production (Gong et al., 2020).

Obtaining the phenotypic data required for flax breeding is the basis of breeding; only rapid
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and accurate access to flax plant phenotypic data and the breeding of

flax varieties will have a qualitative leap. The traditional acquisition of

flax phenotypic data is through manually counting the number of flax

fruits and the number of main stems divided into stems, measuring

the plant height and main stem length, and manually recording data;

this traditional method of flax production has made a significant

contribution to the progress of flax production, but with the

advancement of science and technology, these methods have

become more and more inefficient and expensive. As a result, these

traditional methods often fail to meet the stringent requirements of

modern breeding practices. To address these challenges, there is an

urgent need to explore innovative techniques that are more efficient,

cost-effective, and compatible with contemporary sub-breeding

acquisition of data.

Currently, computer vision technology is widely used in

agriculture and has made great progress in the accuracy and

efficiency of extracting plant phenotypic data. Currently, there are

two main detection methods for obtaining plant phenotypic data:

traditional target detection methods and target detection methods

based on deep learning (Zhang et al., 2023). Among them, the

traditional target detection process is more complex, requiring

multiple steps to be completed together and time-consuming,

with higher requirements for images, different algorithms for

different detection objects, and greater difficulty in extracting

different information at the same time; deep learning has a

powerful feature extraction capability, which can make up for the

shortcomings of the traditional methods, and therefore, more and

more researchers are using it for agricultural target detection.

In recent years, many scholars have begun to apply deep

learning in the field of agriculture, such as identifying plants,

pests, and diseases, to improve crop yields. Zhu et al. (2024)

proposed a CBF-YOLO network for the detection of common

soybean pests in complex environments. Pei et al. (2022)

proposed a maize field weed detection framework based on crop

row pretreatment and improved YOLOv4 in UAV images. Li et al.

(2023) proposed an apple leaf disease detection method based on

the improved YOLOv5s model. Bai et al. (2024) proposed an

improved YOLO algorithm to detect the flowers and fruits of

strawberry seedlings. Wang et al. (2024) developed a new deep

learning network, YOLO-DCAM, which effectively facilitates

single-wood detection in complex scenarios. Du et al. (2023)

proposed a method for detecting strawberry fruit planted in fields

under different shade levels. Su et al. (2023) proposed an improved

YOLOv5-SE-BiFPN model, which could more effectively detect

brown spot lesion areas in kidney beans. Zhang et al. (2024)

proposed a multi-task learning method named YOLOMS for

mango recognition and rapid location of major picking points.

YOLO series is a single-stage algorithm that ensures high

precision and faster speed, especially in the GPU environment, and

real-time detection can be realized. Due to its excellent performance,

it has achieved great results in the extraction of plant phenotype data

and the application of detection objects. Guo et al. (2022) proposed a

method to obtain phenotypic parameters of soybean plants based on

Re-YOLOv5 and detection region search algorithms, and the results

showed that the average absolute errors of plant height, stem node

count, and soybean branch count were 2.06 cm, 1.37 cm, and 0.03 cm,
Frontiers in Plant Science 02131
respectively. The results were better, and a specialized black box for

filming was developed, but this is time-consuming in the face of a

large number offilms to obtain phenotypic data and does not apply to

realistic breeding requirements. Chen et al. (2024) proposed an

efficient, fast, and real-time seedling counting method for cabbages,

which replaced the C2f block in the main stem network of YOLOv8n

with a Swin-conv block and added a ParNet block to both the main

stem and neck portions of the network. ParNet attention modules

were added to the neck section to accurately track cabbage seedlings

in the field and count them using an unmanned aerial vehicle (UAV),

achieving 90.3% mAP50–95, but its recognition progress needs to be

further improved. She et al. (2022) introduced the ECA attention

mechanism into the YOLOv5s model to improve the accuracy of trap

vial detection and counting, but the recognition accuracy needs to be

further improved. Gao et al. (2022) proposed the YOLOv4-tiny

network combined with the channel spatial reliability discriminant

correlation filtering (CSR-DCF) algorithm for training, and the

correlation coefficient R2 between apple number prediction and

manual counting was 0.9875. The counting accuracy of the orchard

video is 91.49%, so the accuracy of fruit recognition in the video needs

to be further improved.

While deep learning has applications in acquiring plant phenotypic

data, it has received limited attention for the accurate detection of

organs in flax plants. In real-world detection scenarios, complex flax

fruit overlap and branching pose significant challenges to fruit

occlusion. This often leads to incomplete detection, as existing

models ignore occluded flax fruits. In addition, less characterization

of flax plant main stem length and main stem branching increases the

complexity of identification. In addition, the shapes of flax fruits, plant

heights, industrial lengths, and main stem meristems varied, increasing

the difficulty of designing a fusion model for identification. To solve

these problems and improve the accuracy of phenotypic information,

this study proposes a pioneering method to recognize phenotypic

organs offlax plants, and this technological breakthrough is expected to

improve the efficiency of breeding and open up a new way for precision

agriculture. The main contributions are summarized as follows.
(1) Establishing a new flax plant dataset.

(2) Deepening the original YOLOv5x network layer and

adding the BiFormer attention mechanism to its network

layer significantly improve the extraction of flax features

and reduce the risk of overfitting (Yang et al., 2023). In

addition, the SIoU loss function replaces the original CIoU

loss function, which effectively solves the problem of

mismatch between the prediction and the actual

bounding box and improves the accuracy of the model

(Qian et al., 2024).

(3) After the model is fully trained, it is loaded onto the test set

for identification and compared with the manual test data

to obtain a good correlation. The model has been embedded

into PC software and put into use.
The rest of the paper is organized as follows. Section 2 discusses

the methods involved in the flax plant dataset, the improved Flax-

ylolv5, the experimental setup, and the evaluation criteria. The

conclusions are explained and discussed in Section 3. The design of
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the improved Flax-YOLOv5 application software is presented in

Section 4. Section 5 summarizes the conclusions of the paper.
2 Materials and methods

2.1 Phenotypic dataset of flax plants

The experimental study used manually collected samples of

mature and intact plants of flax from the Lanzhou Flax Planting

Base of Gansu Provincial Academy of Agricultural Sciences. A total

of 630 flax plants were collected to ensure phenotypic diversity.

These samples were carefully selected to include a range of plant

types, such as single main-stem split-stem flax plants, multiple main

stem split-stem flax plants, flax plants with different numbers of

fruits, and plants with complex branching patterns.

Images were captured using an MV-HS2000GM/C2 industrial

camera. To eliminate potential interference from natural light,

which can lead to exposure problems and complex backgrounds,

the shoot was conducted indoors. A LED light source was used to

provide supplemental lighting during the shoot, while a black light-

absorbing cloth was used as a backdrop to simplify the test

background and minimize interference. Additionally, the

branches of the flax plants were hand-arranged to prevent

excessive fruit overlap. To ensure accurate measurement of plant

height and main stem length, the flax plant was placed horizontally

below the camera lens. The camera height was set to 140 cm, and

the image resolution was set to 5,472 pixels × 3,000 pixels to capture

high-quality images for subsequent analysis.
2.2 Labeling of phenotypic feature datasets

The image features obtained were carefully measured and

annotated for specific phenotypic traits, including the number of

flax fruits, plant height, length of the main stem, and number of

divisions within the main stem. Length measurements were made in

centimeters with accuracy maintained to one decimal place.
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Considering the irregularity of traits such as number of flax fruits,

plant height, length of the main stem, and branching of the main

stem, we aimed to minimize measurement errors. Therefore, all

phenotypic traits of flax plants were labeled to represent the

average of three separate measurements. The labeling process

utilized a dedicated labeling tool to generate the dataset in text

format. The number of fruits on the flax plant, recorded as

complete fruits, was labeled as “flax”. Plant height, which

represents the vertical extension of the plant from root to tip, was

labeled as “height”. The length of the main stem, i.e., the distance

from the root to the first main branch, is labeled as “length”. In

addition, the number of divisions, representing the number of

branches emanating from the prominent main stem, was labeled

“n” (n = 1, 2,…), and the maximum number of main stem divisions

observed in a single plant was six.
2.3 Data expansion

A traditional data enhancement method was used to enrich the

diversity offlax plant image samples, thus enhancing the generalization

ability and robustness of the model. The enhancement process was

carried out in five different ways: downward brightness adjustment,

mirror operation, rotating the image, a combination of mirroring and

brightness reduction, and a combination of mirroring and noise

addition. Figure 1 shows an illustrative example of this data

enhancement process, which demonstrates the effectiveness of these

techniques in generating a diverse and representative sample of images

to be used for model training.
2.4 Original YOLOv5x

As shown in Figure 2, the original network structure of

YOLOv5x is divided into an input network, a backbone network,

a neck network, and a head network. The input integrates mosaic

data enhancement, adaptive anchoring, and adaptive image scaling

of 1.33 depth and 1.25 width. The backbone is a convolutional
A B

D

E F

C

FIGURE 1

Example of data enhancement: (A) original, (B) rotated, (C) mirrored, (D) reduced brightness, (E) mirrored and reduced brightness, and (F) mirrored
and added noise. The image has been cropped for ease of viewing.
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neural network that accumulates fine-grained images and generates

feature maps. It contains CBS, C3, and Spatial Pyramid Pooling

(SPPF) for feature extraction as shown in Figure 3. The YOLOv5x

neck part uses a PANet structure for multi-scale feature fusion. The

neck network combines the feature maps collected by the backbone

network and then passes the integrated feature maps to the head

network, which generates predictions from the anchor box for

target detection (Rahman et al., 2022). The head network outputs

a vector containing the class probability of the target, the target

score, and the location of the bounding box around the target.
2.5 Improved Flax-YOLOv5

To accurately identify the phenotypic organs of flax plants, a

Flax-YOLOv5 network structure model with high detection

accuracy and detection speed was proposed. First, in the Flax-

YOLOv5 network shown in Figure 3, the adaptive image scaling of

Flax-YOLOv5 is 1.0 times depth and 1.0 times width. This adjusts

the depth and width of the network to meet the needs of different

scenes and improve detection accuracy.

Second, the Flax-YOLOv5 backbone network is improved based

on the inheritance of the YOLOv5x backbone network. In the

improvement of Flax-YOLOv5, the BiFormer module is added after
Frontiers in Plant Science 04133
the CBS module at layer 10 in the original YOLOv5x necking

network. The CBS module, Upsample, Concat, and C3 modules are

added at the end of the 18th layer, and the CBS, Concat, and C3

layers are added at the end of the 28th layer to improve the model’s

ability to extract target features.

Finally, the improved Flax-YOLOv5 head network in Figure 3

generates feature maps with sizes of 160 × 160, 80 × 80, 40 × 40, and

20 × 20 with different scale target detection; the improved network

model is named Flax-YOLOv5, and its structure is shown in Figure 3.

Flax-YOLOv5 is divided into three parts. The backbone is used

for feature extraction of input Flax plant images, the Neck is used

for feature fusion of acquired feature mappings, and the Head is

used for regression prediction. BiFormer is introduced into the

feature fusion network Neck to improve the feature extraction

capability of the model. Second, the SIoU function is introduced

into the output Head to calculate the regression loss and improve

the convergence ability of the model. Among them, the CBS module

is a basic convolutional neural network module, used to extract and

transmit image features; it is composed of Conv (CONvolution

layer), BN (Batch Normalization layer), and SiLU (activation

function) in three parts. The Conv layer is responsible for the

convolution operation of the input feature graph to extract higher-

level features. The BN layer is used to normalize the data, which

helps accelerate training and improve the performance of the
FIGURE 2

YOLOv5x model structure.
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model. SiLU (Sigmoid-weighted Linear Unit) is an activation

function to increase the non-linearity of the model. The C3_x

module is composed of a series of multiple residual network

structures. The inner Bottleneck module can be programmed to

divide C3_x into two different structures, which are applied in the

Backbone network and Neck network. The outer layer of the C3_x

module connects to the CBS module to form a large residual edge.

These residual components enhance the feature extraction

capability of convolutional networks, and the stacking of residual

blocks solves the difficult balance between network depth and

gradient. C3_3 indicates that the C3 module has three Bottleneck

modules. The SPPF module is an improved version of the Spatial

Pyramid Pooling (SPP) module. SPP module is mainly used for

image recognition and target detection, which can extract and

encode image features at different scales, re-scale input images of

any size to a fixed size, and generate fixed-length feature vectors.

The SPPF module changes the parallel structure of SPP to a serial

structure, which significantly reduces the amount of computation

and makes the speed faster. This improvement not only maintains

the function of SPP but also significantly improves the speed.

2.5.1 BiFormer attention mechanism
In the original image, the flax fruit is a small target with fewer

features in terms of main stem length and number of main stem

branches. For better extraction of effective features, the BiFormermodule

is introduced. BiFormer focuses on a small number of relevant markers

in a query-adaptive manner without distracting other irrelevantmarkers,

thus providing good performance and high computational efficiency.

BiFormer is used in the first stage using overlapping block embedding,

and in the second stage through the fourth stage, it uses a block merging

module to reduce the input spatial resolution while increasing the

number of channels and then uses consecutive BiFormer blocks for
Frontiers in Plant Science 05134
feature transformation. Note that the relative position information is

implicitly encoded at the beginning of each block using 3 × 3 deep

convolution. Subsequently, the (Bi-level routing attention, BRA) module

and the 2-layer Multi-Layer Perceptron (MLP) module with an

expansion rate of e are sequentially applied for cross-positional

relation modeling and position-by-position embedding, with the

BiFormer attention mechanism shown in Figure 4 (Kong et al., 2023).
2.5.2 SIoU
YOLOv5x uses the CIoU loss function, which is a traditional

loss function for target detection that relies on the aggregation of

bounding box regression metrics and does not take into account the

desired orientation mismatch between the real and predicted

frames, resulting in slower convergence and lower efficiency. To

solve this problem, the loss function SIoU is introduced in the

improved model, which considers not only the overlap region,

distance, and orientation but also the angle between the predicted

frame and the true frame. The SIoU formula is defined by Equations

1–5, where IoU is the regular regression loss, D is the distance loss,

W is the shape loss, B denotes the prediction frame, Bgt denotes the

ground truth box, wgt and hgt denote the width and height of the

ground truth box, respectively, and w and ℎ denote the width and

height of the prediction box. b and bgt denote the centroid of the

predicted truth box and the true truth box, respectively, and bgtcx and

bgtcy denote the horizontal and vertical coordinates of the center of

the ground truth box, respectively. bcx and bcy are the corresponding

coordinates of the predicted box. q is an adjustable parameter used

to control how much to focus on the shape cost, which is set to 4 in

this study (Zhang et al., 2024).

LossSIoU = 1 − IoU +
D +W
2

(1)
FIGURE 3

Flax-YOLOv5 model structure.
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Iou = B∩Bgt

B∪Bgt , b = υ
(1−IOU)+υ ,

υ = 4
p2 tan−1 wgt

hgt − tan−1 w
h

� �2 (2)

D =ot=x,y(1 − e−grt), rx =
bgtcx − bcx

cw
,

rx =
bgtcy−bcy

ch
, g = 2 − L

(3)

L = 1 − 2   *   sin
2(arcsin (x) −

p
4
, x =

ch
s

= sina (4)

W =ot=w ,h(1 − e−wt )q ,ww =
w − wgtj j

max(w ,wgt)
,wh =

h − hgtj j
max(h, hgt)

(5)
3 Improved model identification
results and analysis

3.1 Experimental process

The specific steps of the experiment are shown in Figure 5.

As shown in Figure 5, data collection was carried out first. Of the

630 images collected, 100 were selected as the test set, and the

remaining 530 images, that is, 3,180 images obtained through five

data enhancement methods, were randomly divided into the training

set and the verification set according to the ratio of 8:2, among which
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2,544 were the training set. The verification set was 636 pieces.

Second, the YOLO series model was trained on the training set.

Finally, the model weight obtained from the above model on the

training set was loaded onto the correspondingmodel and then tested

on the test set. The optimal model was obtained by comparing the

obtained results, and the optimal model was embedded in the

developed software for the convenience of flax breeders.
3.2 Experimental environment

All models completed training on a server configured with CPU:

Intel® Xeon® W-2123 CPU @ 3.60GHz and GPU: RTX 1080Ti with

8-GB video memory. The model training environments were PyTorch

1.10.0, python 3.8, and Cuda 10.2. The training parameters were 300

epochs (Ajayi et al., 2023); batch size was 4; the learning rate was set to

0.01, 0.937 momentum, 0.0005 weight decay, 0.2 IoU, 0.015 hue, 0.7

saturation, 0.4 lightness, 1.0 mosaic, 0.5 scale, and 0.1 translate; image

input resolution was 640 pixels × 640 pixels; other original default

parameters were used. The shooting instrument is shown in Figure 6.
3.3 Evaluation metrics

In this study, in addition to using the target detection algorithm

to evaluate the precision and recall metrics, as well as the metrics for

F1, we evaluated the Mean Average Precision (mAP) performance of
FIGURE 4

BiFormer attention mechanism architecture.
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the model at an Intersection over Union (IoU) threshold of 0.5. In

addition, to assess the accuracy of the phenotypic parameters

extracted from flax plants using the Flax-YOLOv5 model, four

evaluation metrics were used: mean absolute error (MAE),

maximum absolute error (HAE), root mean square error (RMSE),

and correlation coefficient (R). The above evaluation metrics can be

defined by Equations 6–15. tP is true positive (correctly detected), FN

is false negative (not detected), FP is false positive (incorrectly

detected), F1 is the trade-off between precision and recall, mAP is

the average of all the AP values of the different categories, MAE is the

average of all the absolute errors, and HAE is the maximum absolute

error. RMSE is very sensitive to the magnitude error of a set of

measurements and gives a good indication of the precision of the

measurements. r is the degree of correlation between the manually

measured flax plant phenotypic data and the model-predicted data, N

is the number of experimental images, Ti is the manually measured
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ith plant phenotypic data, and mi is the model-predicted ith plant

phenotypic data. These metrics were chosen to comprehensively

evaluate the phenotypic data extraction ability of the directed

search algorithm (Abyaneh et al., 2011).

Precision =
TP

TP + FP
� 100% (6)

Recall =
TP

TP + FN
� 100% (7)

F =
(a2 + 1)2Recall � Precision

Recall + Pr ecision
(8)

F1 =
2   *Recall � Precision
Recall + Precision

(9)

AP =
Z 1

0
Precision(Recall)dR (10)

mAP = o
N
i=1APi
N

(11)

MAE =
1
No

N

1
mi − Tij j (12)

HAE = Max( mi − Tij j) (13)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

1
(mi − Ti)

2

s
(14)

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

N
i=1(mi − Ti)

2

oN
i=1(mi −m)2

s
(15)
FIGURE 6

Shooting instrument. (1) Flax plant carrier table, (2) industrial camera
wide-angle lens, (3) exposure time adjustment, (4) focal length
adjustment, (5) computer data cable connection, (6) height
adjustment, and (7) removable metal tube.
FIGURE 5

Experimental flowchart.
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3.4 Calculate the number of flax fruits,
plant height, length of main stem, and
number of main stem divisions

(1) Number of flax fruits

The number of flax fruits is determined by the number of

“Flax” labels.

(2) Plant height and main stem length

In the same environment, Formulas 16 and 17 define the flax

plant height and main stem length: Htrue is the manually measured

value of plant height and main stem length of the flax plant, Hpi is the

plant height and main stem length of the pixel of the identification

frame, Hrate is the ratio of the actual length of the one-dollar coin to

the length of the pixel, Hrate2 is the actual length of the one-dollar

coin, and Hpi2 is the pixel length of the one-dollar coin.

Htrue = Hpi   *  Hrate (16)

Hrate =
Htrue2

Hpi2
(17)

The actual diameter of the one-dollar coin was measured using

0.02-mm Vernier calipers, and the pixel diameter of the one-dollar

coin was calculated using digital image technology.

(3) Number of main stem divisions

The label “n” (n= 1, 2, …) indicates that the main stem of the

flax plant is n sub-stems, from which the number of sub-stems of

the main stem is calculated.
3.5 Model identification results

The phenotypic organs of 100 flax plant images from the test set

were recognized using the improved Flax-YOLOv5 model. The

results of flax plant phenotypic organ recognition are shown in

Figure 7. In addition, Figure 8A demonstrates the case of some flax

fruits occluding each other, while Figure 8B demonstrates the case

of branches occluding flax fruits, from which it can be seen that the

model proposed in this paper has better recognition results.
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The phenotypic data of 100 flax plants obtained from manual

measurements were thoroughly compared with the phenotypic

prediction data generated by the algorithm proposed in this

study. To assess the reliability and stability of the algorithm in

this paper, a correlation analysis was performed, and the results are

shown in Figure 9.

From Figure 9A, it can be seen that most of the flax plants had

between five and 40 fruits with a strong correlation and a mean

absolute error of 1.37 fruits, although the maximum absolute error

was seven fruits, but this was for very few plants with complex

branching. As can be seen in Figure 9B, the height of most plants

ranged from 50 cm to 75 cm, with a mean absolute error of 0.80 cm.

As can be seen in Figure 9C, the craft length of the majority of plants

was essentially in the range of 30 cm to 50 cm, with a mean absolute

error of 2.24 cm. It is worth noting in Figure 9D that the intensity of

the bubble color in the graphs reflects the number of main stem

divisions of the repeat frequency, the vast majority of the main stem

split number predicted accurately, with an average absolute error of

0.12. In summary, the number of fruits, plant height, main stem

length, and the number of main stem split R of flax plants was

99.59%, 99.53%, 99.05%, and 92.82%, respectively, and the results

were better and in line with the actual production needs.
3.6 Validation set test results and analysis

To evaluate the performance of the Flax-YOLOv5 model, we

performed tests on a validation set. We chose the YOLOv3-tiny

(Redmon and Farhadi, 2018), YOLOv5x (Jocher et al., 2022), YOLOv7-

tiny (Wang et al., 2023), YOLOv7x, YOLOv8n (Lou et al., 2023), and

YOLOv9c (Wang et al., 2024) models for comparison. Changes in

training curves of different models mAP@0.5 are shown in Figure 10. It

can be seen from the figure that mAP@0.5 of the YOLOv3, YOLOv5x,

YOLOv7-tiny, YOLOv8n, and YOLOv9c models is significantly lower

than that of the improved model Flax-YOLOv5. Although mAP@0.5 of

the YOLOv7x model is close to that of the Flax-YOLOv5 model, it does

not exceed it, and mAP@0.5 of the Flax-YOLOv5 model tends to 1 in a

more stable trend with stronger convergence.
FIGURE 7

Results of phenotypic organ recognition in flax plants. The image has been cropped for ease of viewing.
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The experimental results comparing the recognition accuracy of

the improved model Flax-YOLOv5 model with other models are

shown in Table 1. As can be seen from Table 2, F1 and mAP@0.5

values of YOLOv3, YOLOv5x, and YOLOv7-tiny models are lower

than 90%, which indicates that the performance is not ideal and

does not meet the requirements of actual applications. Compared

with the YOLOv7x model, the Flax-YOLOv5 model has an increase

of 0.56 percentage points on F1 and 0.22 percentage points on

mAP@0.5. However, the Flax-YOLOv5 model is 36.22 MB less than

the YOLOv7x model. Although the YOLOv8n and YOLOv9c

models are smaller than the improved model, the F1 evaluation
Frontiers in Plant Science 09138
shows that the improved model has more advantages. Overall, the

improved Flax-YOLOv5 model exhibits superior performance

compared to the YOLOv3, YOLOv5x, YOLOv7-tiny, YOLOv7x,

YOLOv8n, and YOLOv9c models, providing a balance between

accuracy and model size.
3.7 Test set test results and analysis

In this study, four phenotypic data points for each flax plant sample

corresponding to the images in the dataset were successfully obtained
A B

FIGURE 8

Recognition results of partially obscured fruits. The label “flax” in the picture stands for flax fruit; Numbers are confidence rates. (A) demonstrates the
case of some flax fruits occluding each other, while (B) demonstrates the case of branches occluding flax fruits.
A B

DC

FIGURE 9

Correlation analysis between manual and algorithmic measurements: (A) number of flax fruits, (B) plant height, (C) length of main stem, and (D) number
of main stem divisions.
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FIGURE 10

mAP@0.5 change curves of different models.
TABLE 1 Results predicted by different models in the test set.

Model Number of flax
fruits/pieces

Plant height/cm Main stem length/cm Number of main stem
divisions/pieces

MAE HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R

YOLOv3-
tiny

21.16 67.00 25.18 7.69 / / / / / / / / / / / /

YOLOv5x 18.76 61.00 23.00 26.76 2.01 5.84 2.51 97.91 8.27 54.40 14.65 37.41 1.58 4.00 1.92 12.85

YOLOv7-
tiny

9.37 39.00 12.87 89.03
1.40 5.57 1.78

99.04
5.60 51.60 12.21

45.40 1.28 4.00 1.74 19.24

YOLOv7x 5.97 24.00 8.60 94.55 1.28 6.22 1.60 98.94 4.40 42.90 9.99 63.78 0.32 4.00 0.73 70.47

YOLOv8n 19.14 62.00 23.01 53.94 2.01 23.60 4.06 92.76 6.59 51.60 13.65 38.71 0.55 4.00 1.07 48.56

YOLOv9c 19.43 60.00 23.01 72.41 1.21 4.86 1.55 99.15 3.74 44.3 9.25 66.00 0.34 3.00 0.72 74.55

Flax-
YOLOv5

1.37 7.00 2.13 99.59
0.80 2.47 1.05

99.53
0.91 2.24 1.12

99.05 0.12 1.00 0.35 92.82
F
rontiers in P
lant Science
 10139
 frontier
MAE, mean absolute error; HAE, maximum absolute error; RMSE, root mean square error; R, correlation coefficient.
TABLE 2 Comparison of recognition results of different models.

Model Precision (%) Recall (%) F1 (%) mAP@0.5 (%) Model size (MB)

YOLOv3-tiny 81.90 75.92 78.80 79.73 17.15

YOLOv5x 88.01 62.68 73.22 87.60 169.22

YOLOv7-tiny 92.61 66.31 77.28 71.26 12.03

YOLOv7x 92.82 98.15 95.41 99.07 138.88

YOLOv8n 94.58 91.31 92.92 95.75 6.14

YOLOv9c 95.51 90.77 93.08 95.35 50.44

Flax-YOLOv5 93.25 98.86 95.97 99.29 102.66
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FIGURE 11

Original image.
A B

D

E F

G

C

FIGURE 12

Comparison of recognition of different models: (A) YOLOv3-tiny, (B) YOLOv5x, (C) YOLOv7-tiny, (D) YOLOv7x, (E) YOLOv8n, (F) YOLOv9c,
and (G) Flax-YOLOv5. The image has been cropped for ease of viewing.
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through rigorous testing of the test set. These phenotypic measurements

were then comparedwithmanualmeasurements for validation. The results

predicted by the different models in the test set are given in Table 1.

The YOLOv3-tiny model showed limited discrimination,

recognizing only the fruits of the flax plant with a correlation

coefficient of only 7.69%, indicating a large margin of error.

Similarly, the identification results of the YOLOv5x model showed

correlation coefficients of less than 50% for the number of flax fruits,

main stem length, and number of main stem meristems, reflecting

considerable inaccuracy.

The YOLOv7-tiny, YOLOv8n, and YOLOv9c models also

performed poorly in the identification of flax fruit number, main

stem length, and main stem branching number. The correlation

coefficient of the YOLOv7x model in identifying the main stem

length and the main stem branching number was less than 50%, and

the identification accuracy was poor, with correlation coefficients of

identifying the main stem length and the main stem branching

number being 63.78% and 70.04%, which were unsatisfactory.

The improved Flax-YOLOv5 model, in contrast, showed better

prediction results, with correlation coefficients of 99.59%, 99.53%,

99.05%, and 92.82% for flax fruit, plant height, main stem length,

and number of main stem branches, respectively. These results were

significantly better than those of the YOLOv3-tiny, YOLOv5x,

YOLOv7-tiny, YOLOv7x, YOLOv8n, and YOLOv9c models.

To verify the effectiveness of the model improvement, we selected

a flax plant with multiple flax fruits and branches from the test set

and tested it using the above model and the Flax-YOLOv5 model; the

original image is shown in Figure 11, and the comparative results of

the recognition by different models are shown in Figure 12.

As can be seen in Figure 12, the YOLOv3-tiny model has limited

recognition ability and can only accurately recognize two flax fruits.

Similarly, the YOLOv7-tiny, YOLOv7x, YOLOv8n, and YOLOv9c

models were defective in recognizing the main stem length of flax

plants, accompanied by a considerable number of missing fruit

detection. The improved Flax-YOLOv5 model, in contrast, has

better recognition ability and can accurately recognize flax fruits,

plant height, main stem length, and number of main stem divisions.
3.8 Ablation experiments and analysis

To verify the effectiveness of the improved model Flax-

YOLOv5, it is necessary to compare and analyze the models

through ablation experiments, and the results of the ablation

experiments are shown in Table 3.

As can be seen in Table 3, the correlation coefficients of flax

fruits with plant height, main stem length, and number of main

stem divisions in Model 2 are higher than the values of Model 1.

This observation emphasizes the advantages of the BiFormer

network in extracting the target features, which improves the

performance of the network in the plant detection task. Model 3

plant height correlation coefficients were significantly higher than

those of Model 2 by 34.09 percentage points, which indicates that

the integration of SIoU significantly enhanced the model fitting

ability, which led to an overall improvement in the accuracy of the

model recognition framework.
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4 Application

To facilitate researchers in selecting flax varieties, it is simple to

obtain key phenotypic indicators such as the number of fruits, plant

height, main stem length, and the number of main stem divisions of

flax plants. Using the improved Flax-YOLOv5 model, the statistical

software for flax plant phenotypic data was elaborately designed and

developed. This software system is based on PyQt5 technology,

which ensures its robustness and scalability. Deployment was

effectively accomplished using the PyInstaller toolkit.

The software has a variety of features that greatly assist in

phenotypic data analysis. Specifically, users can upload photos and

videos and turn on the camera for real-time recognition. By

entering data, the software automatically recognizes each organ of

the flax plant and provides comprehensive statistics on its

phenotypic data. This comprehensive approach ensures accurate

and efficient data collection, which is essential for accurate flax

variety selection and subsequent breeding programs.
5 Conclusion

The acquisition of flax plant phenotype data is the cornerstone

of flax breeding. The traditional method is manual technical testing,

which is not only time-consuming but also expensive. Therefore, we

propose a Flax-YOLOV5 model specifically designed to obtain Flax

phenotypic data. The experimental results show that in the

verification set, mAP@0.5 is 99.29%. In the test set, the

correlation analysis between the predicted value of the model and

the key phenotypic traits (fruit number, plant height, main stem

length, and main stem number) generated 99.59%, 99.53%, 99.05%,

and 92.82%, respectively, and their MAEs were 1.37 pieces, 0.80 cm,

0.91 cm, and 0.12 pieces, respectively, all of which were within the

acceptable range. These results show that our method can

accurately capture the phenotypic data of flax plants, which

provides convenience for the selection of flax varieties. On this

basis, a PC-based flax phenotype data collection platform was

designed and developed. The platform can efficiently collect key

phenotypic traits such as fruit number, plant height, main stem

length, and main stem number. This practical application highlights

the practicability and effectiveness of our proposed method in

supporting flax plant breeding, improves the efficiency of flax

plant phenotype data acquisition, and greatly reduces the cost of

data acquisition, which provides a solid foundation for flax breeding

to become digital. In future research, for plants with complex

branches and a large number of fruits, the recognition rate should

be further improved, the recognition effect of the number of main

stems should be more accurate, and the model parameters should be

reduced. At present, the statistics of the secondary branches of the
Frontiers in Plant Science 13142
primary branches of flax plants are difficult, and we will further

study and solve the problems.
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Enhanced tomato detection in
greenhouse environments: a
lightweight model based on
S-YOLO with high accuracy
Xiangyang Sun*

College of Information Science and Engineering, Shandong Agricultural University, Tai’an, China
Introduction: Efficiently and precisely identifying tomatoes amidst intricate

surroundings is essential for advancing the automation of tomato harvesting.

Current object detection algorithms are slow and have low recognition accuracy

for occluded and small tomatoes.

Methods: To enhance the detection of tomatoes in complex environments, a

lightweight greenhouse tomato object detection model named S-YOLO is

proposed, based on YOLOv8s with several key improvements: (1) A lightweight

GSConv_SlimNeck structure tailored for YOLOv8s was innovatively constructed,

significantly reducing model parameters to optimize the model neck for lightweight

model acquisition. (2) An improved version of the a-SimSPPF structure was

designed, effectively enhancing the detection accuracy of tomatoes. (3) An

enhanced version of the b-SIoU algorithm was proposed to optimize the training

process and improve the accuracy of overlapping tomato recognition. (4) The SE

attention module is integrated to enable the model to capture more representative

greenhouse tomato features, thereby enhancing detection accuracy.

Results: Experimental results demonstrate that the enhanced S-YOLO model

significantly improves detection accuracy, achieves lightweight model design,

and exhibits fast detection speeds. Experimental results demonstrate that the S-

YOLO model significantly enhances detection accuracy, achieving 96.60%

accuracy, 92.46% average precision (mAP), and a detection speed of 74.05

FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over

the original model. With model parameters at only 9.11M, the S-YOLO

outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m,

YOLOv7, and YOLOv8s, effectively addressing the low recognition accuracy of

occluded and small tomatoes.

Discussion: The lightweight characteristics of the S-YOLO model make it

suitable for the visual system of tomato-picking robots, providing technical

support for robot target recognition and harvesting operations in facility

environments based on mobile edge computing.
KEYWORDS

greenhouse tomatoes, YOLOv8, object detection, deep learning, high accuracy, fast
detection, lightweight, computer vision
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1 Introduction

Tomatoes are one of the most extensively cultivated vegetables

in Chinese agriculture. China not only leads globally in tomato

production but also serves as a major exporter (Huo, 2016). Manual

tomato harvesting requires a significant amount of labor and time.

Mechanized harvesting not only cuts down on labor expenses but

also boosts efficiency in the harvesting process (Li et al., 2021).

Harvesting robots initially utilize computer vision systems for fruit

detection, followed by guiding mechanical arms based on the

detection results for harvesting operations. Therefore, fruit

detection stands as a pivotal aspect throughout the entire

harvesting process, with its accuracy and speed directly

influencing the efficiency of harvesting robots. However, tomato

fruits exhibit diverse growth postures, overlap with each other, and

are heavily obscured by leaves, branches, and stems, presenting

certain challenges for robot recognition. Rapid and precise

identification of tomato fruits in complex greenhouse

environments is a pressing issue in the development of tomato

harvesting robots (Liu, 2017). Moreover, deploying models with

excessively high complexity proves challenging in practical

scenarios. Thus, enhancing fruit detection accuracy, speed, and

lightweight improvements are crucial for bolstering the

performance of harvesting robots.

Traditional methods for tomato fruit recognition in greenhouse

environments rely on extracting and analyzing information based

on color and shape features. Feng et al. (2015) extracted the color

features of red ripe tomato fruits using the 2R-G-B color difference

model and identified red ripe tomato fruits using dynamic threshold

segmentation. However, this method is time-consuming and does

not consider factors such as leaf occlusion in complex environments

during tomato fruit recognition. Ma et al. (2016)) introduced a

technique for recognizing objects by combining saliency detection

with the circular random Hough transform, achieving a correct

recognition rate of 77.6% for immature tomato fruits. Despite the

achievements in feature design in the above studies, they suffer from

slow recognition speed, low detection accuracy, and poor

robustness of traditional machine vision algorithms in complex

scenes, making them difficult to meet practical requirements.

Although these studies have achieved certain success in feature

design and tomato recognition to some extent, their slow

recognition speed, low detection accuracy, and poor robustness in

complex scenes cannot meet practical requirements. Additionally,

they often depend on static color characteristics to recognize desired

fruits. This reliance can make them less adaptable to variations in

lighting and color discrepancies, resulting in reduced effectiveness

when dealing with unstable color conditions. In summary,

traditional methods for tomato fruit recognition fail to meet the

requirements of high accuracy and real-time performance.

Additionally, most of the above studies have not considered the

influencing factors in complex greenhouse environments, lack

robustness to diverse feature changes, and therefore, are unable to

meet practical requirements.
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In recent times, deep convolutional neural networks have

emerged as a pivotal domain within deep learning research,

attracting considerable interest. Their increasing utilization in

greenhouse settings for tomato recognition has offered novel

perspectives on tomato fruit identification. The detection methods

of deep convolutional neural networks can be divided into two

types: single-stage and two-stage detection. Region-based methods,

the first type, create a set of candidate boxes and subsequently

classify the targets contained within these boxes. Representative

models include RCNN (Girshick et al., 2014), Fast-RCNN

(Girshick, 2015), and Faster-RCNN (Ren et al., 2016). Although

these methods exhibit excellent recognition accuracy with relatively

low error rates and miss rates, their complex processing leads to

slow detection speeds, making it difficult to meet real-time detection

requirements. The second type is regression-based methods, where

targets are directly classified while being located. The YOLO series

networks (Redmon et al., 2016; Redmon and Farhadi, 2018; Ge

et al., 2021) are typical representatives of this category. These

methods have the advantage of fast recognition speed, meeting

real-time requirements, and achieving accuracy levels close to the

first type of methods. Given their strong real-time performance, the

second type of object detection methods is beneficial for improving

the efficiency of harvesting robots and monitoring devices, suitable

for real-time target detection in complex environments. (Su et al.

(2022)) used a lightweight YOLOv3 model in greenhouse

environments, combined with lightweight networks, successfully

applied it to classify tomato ripeness, achieving a 97.5% mAP.

However, the model still had a large volume, making deployment

challenging. Liu et al. (2020) proposed an improved tomato

detection model, YOLO-Tomato, based on YOLOv3, achieving

good performance. Nevertheless, the YOLOv3 model they used

was large. Appe et al. (2023)) introduced a tomato detection model

based on YOLOv5, which incorporates the CBAM attention

mechanism into the network architecture, effectively detecting

overlapping small tomatoes with an average precision of 88.1%.

However, this study also faced issues with low detection accuracy.

Tian et al. (2024)) proposed the TF-YOLOv5s model for detecting

tomato flowers and fruits in natural environments, replacing the

complete intersection over union (CIoU) loss with the efficient

intersection over union (EIoU) loss and incorporating the SE

attention module. Bai et al. (2024)) improved the YOLOv7 model

to accurately identify strawberry seedling flowers and fruits by

addressing issues such as small size, similar colors, and

overlapping occlusion. They also applied the GSConv structure to

optimize the model neck, achieving a 92.1% mAP with a frame rate

of 45 frames per second, meeting real-time detection requirements.

Li (Li et al., 2024) et al. proposed a lightweight improved YOLOv5s

model for detecting dragon fruit in illuminated environments

during both day and night. Meng (Meng et al., 2023) et al.

proposed a spatiotemporal convolutional neural network model

that utilizes a shifted window Transformer to integrate a regional

convolutional neural network model for detecting pineapple fruits.

Chen (Chen et al., 2024) et al. proposed a set of visual algorithms for
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motion target estimation, real-time self-localization, and dynamic

harvesting. They also established a reliable coordination mechanism

for continuous movement and picking actions. This study, inspired

by previous research, addresses issues such as large model volumes,

low accuracy, and difficulty in deploying actual robot vision

systems. It proposes a lightweight and accurate S-YOLO model,

considering tomato recognition in complex environments.

Establishing a high-performance, lightweight target detection

model suitable for tomato harvesting robot vision systems

remains a significant challenge.

In actual greenhouse environments, tomato fruits often overlap

and are heavily occluded, varying in sparsity and size, posing

challenges for rapid and accurate tomato fruit recognition.

Therefore, this paper introduces a novel S-YOLO model to

address the aforementioned issues. This model can rapidly and

accurately identify greenhouse tomato fruits while maintaining

lightweight characteristics, addressing some of the limitations

faced by current research and providing new technical support

for the visual systems of tomato harvesting robots. This study

focuses on the target detection problem for automated tomato

harvesting in greenhouse environments. The core of the research

is to develop and optimize a lightweight tomato target detection

model, S-YOLO, aimed at enhancing the accuracy of tomato

detection in complex environments. The model features high

precision, a lightweight design, and rapid detection capabilities.

However, the cost-effectiveness of model deployment and its

practical impact on agricultural production require further

discussion and analysis in future research to provide more robust

support for agricultural production. This paper makes the following

key contributions:
Fron
1. Introducing a S-YOLO model suitable for complex

environment tomato detection, characterized by high

accuracy, lightweight design, and fast speed, suitable for

the visual systems of tomato harvesting robots.

2. Constructing a lightweight GSConv_SlimNeck structure

suitable for YOLOv8s to optimize the model’s neck

section, thereby improving model performance.

3. Creating an enhanced version of the a-SimSPPPF structure

to optimize the network architecture, effectively improving

detection accuracy with better performance.

4. Proposing a new enhanced version of the b-SIoU loss

function, optimizing the training process, and improving

tomato recognition accuracy.

5. Integrating the SE attention module into the network

structure for more effective tomato feature extraction.
The paper’s structure is as follows: Section 2 covers dataset

acquisition and processing. Section 3 outlines the principles of the

proposed S-YOLO network structure and details improvement

methods for each module. In Section 4, experimental setups are

explained, and the performance of each enhanced module is

thoroughly analyzed, evaluating and comparing results with other

mainstream models. Finally, Sections 5 and 6 discuss and

summarize the paper’s findings.
tiers in Plant Science 03146
2 Experimental data and
processing methods

2.1 Datasets

The dataset utilized in this research was originally obtained from

the Kaggle platform, which provides resources for developers and

data scientists to participate in machine learning competitions, host

databases, and write and share code. The tomato dataset used in this

study consists of images collected by the authors from the glass

greenhouse at the National Engineering Research Center for Facility

Agriculture in Chongming Base (Li et al., 2019). All images were

captured in real agricultural environments, not under laboratory

conditions, thus exhibiting complex backgrounds and varying

brightness. The dataset comprises a total of 895 image samples.

Example images from the tomato dataset in complex environments

are shown in Figure 1, which mainly include large tomato targets,

small tomato targets, occluded tomatoes, and clustered tomatoes.
2.2 Data preprocessing

For deep learning tasks, dataset annotation is crucial. In the case

of complex greenhouse tomato images, variations in lighting

conditions due to different weather and angles result in significant

color differences in the collected tomato fruit images. Additionally,

the diverse growth postures and severe overlapping and occlusion of

greenhouse tomato fruits make it challenging to extract shape

features. In this study, the LabelImg tool was used for manual

annotation of tomato images, and the annotation data for each

image was stored in the form of Extensible Markup Language files,

following the VOC format (Everingham et al., 2010). To meet the

training requirements of the detection model, the images were resized

to a uniform size of 640×640 pixels and converted to RGB three-

channel images. Since the YOLOv8 network incorporates online data

augmentation during the training process, including techniques such

as Mosaic and Mixup augmentation, and given that the dataset is not

particularly small, additional offline data augmentation is generally

unnecessary to save training time. Therefore, this study did not

perform additional offline data augmentation.

To facilitate subsequent model training, 80% of the original 895

tomato images were allocated to the training set, 10% to the

validation set, and 10% to the test set. The specific distribution is

shown in Table 1. Finally, these datasets were utilized for training

the network models, followed by additional Mixup and Mosaic

data augmentation.
3 Methods

3.1 Proposed S-YOLO object
detection model

Figure 2 illustrates the architecture of YOLOv8 (Reis et al.,

2023). The neck and backbone parts of YOLOv8 may have drawn
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inspiration from the ELAN module in YOLOv7 (Wang et al., 2023).

It utilizes the C2f structure to replace the C3 structure in YOLOv5

while adjusting the number of channels for various scale models.

This meticulous adjustment of the model structure significantly

enhances its performance. The head part adopts the current

mainstream decoupled head structure, separating the classification

and detection heads. It also transitions from Anchor-Based to

Anchor-Free. Although the YOLOv8s model shows significant

improvements, it still involves substantial computational

complexity. Moreover, accurately detecting tomato fruits in

complex environments remains a huge challenge.

This study introduces a novel lightweight network, termed S-

YOLO, which is built upon the enhancements made to the YOLOv8s

architecture. This entails a meticulous optimization of the model

architecture to strike a delicate balance between model complexity

and performance metrics. This also involves optimizing the

architecture while maximizing the model’s capability to accurately
Frontiers in Plant Science 04147
identify objects in real-time scenarios. To achieve this, four key

strategies are employed. Firstly, we utilize the GSConv_SlimNeck

structure to optimize the model’s neck section, effectively reducing

the parameter count while ensuring performance remains intact.

Secondly, we replace the original SPPF module with the newly

proposed a-SimSPPF module, enhancing the model’s capabilities.

Thirdly, a novel loss function, b-SIoU, is introduced to refine the

training process and enhance overall model performance. Lastly, the

integration of the SE attention module into the YOLOv8s’ neck

network facilitates better focus on crucial features, thereby further

improving the accuracy of tomato fruit target identification. Figure 3

illustrates the architecture of the S-YOLO model proposed in

this study.
3.2 The GSConv_SlimNeck design
for YOLOv8s

GSConv (Li et al., 2022) is a novel lightweight convolutional

operation designed to reduce model complexity while maintaining

accuracy. The structure of GSConv is shown in Figure 4. The

computational cost of GSConv is approximately 60% to 70% of that

of standard convolution (SC), while its contribution to model

learning ability is comparable to SC. By leveraging GSConv, we

can effectively utilize the advantages of Depthwise Separable

Convolution (DSC) while mitigating its drawbacks on the model.
TABLE 1 Tomato images.

Dataset Number

training 724

validation 81

test 90

total 895
FIGURE 1

Tomato datasets. (A) Big tomatoes, (B) Small tomatoes, (C) Occlusion, (D) Clusters of tomatoes.
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FIGURE 3

The proposed S-YOLO algorithm model. The red dashed line represents the added improvement module.
FIGURE 2

YOLOv8 algorithm model.
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SlimNeck is a design paradigm aimed at achieving higher cost-

effectiveness for detectors. The core idea of SlimNeck is to use

GSConv in the Neck part of the detector while maintaining a

standard Backbone, which maximally reduces the impact of DSC

drawbacks on the model while maintaining high accuracy.

SlimNeck also introduces other modules, such as GSbottleneck

and VoVGSCSP, to further improve model performance.

The original Neck structure of YOLOv8s is not sufficiently

lightweight, so this paper proposes a lightweight structure,

GSConv_SlimNeck, suitable for the YOLOv8s model. The

construction process is as follows: Firstly, the conventional Conv

structure in the Neck component is substituted with the GSConv

structure. Subsequently, the terminal C2f structure within the Neck is

substituted with the VoVGSCSP structure. With these two

improvements, we successfully construct a lightweight

GSConv_SlimNeck structure suitable for YOLOv8s, making the model

more lightweight while maintaining higher detection performance.
3.3 The improved a-SimSPPF structure

SimSPPF is an improved spatial pyramid pooling method

proposed in YOLOv6 (Li et al., 2022), which is an upgraded

version of SPPF. SPPF (Spatial Pyramid Pooling Function) is a

technique used for feature map pooling, commonly employed in

Convolutional Neural Networks (CNNs), to pool features at

different scales, thereby better capturing spatial information in

images. It solves the multi-scale problem by extracting features

using pooling kernels of different sizes at different scales. The

fundamental concept behind SPPF involves parallel processing of

the input through multiple MaxPool layers of varying sizes,

followed by fusion to enhance the detector’s performance. In

YOLOv5, SPPF is used to achieve feature-level fusion of local and

global features. SimSPPF is an improved version of SPPF.

Compared to SPPF, SimSPPF can improve the performance of

the detector without increasing computational cost. SimSPPF uses

ReLU activation function, while SPPF uses SiLU activation

function. Structurally, SimSPPF maintains the original parallel

structure of SPPF but with higher computational efficiency.

The SimSPPF structure was enhanced in this study by

substituting the Conv structure with the more lightweight
Frontiers in Plant Science 06149
GSConv structure, resulting in an improved version termed a-
SimSPPF. Compared to both the SPPF structure and SimSPPF, a-
SimSPPF boasts higher detection accuracy with fewer parameters.
3.4 The enhanced b-SIoU algorithm

YOLOv8 by default utilizes the CIoU (Qiu et al., 2022) loss

function, which introduces additional calculations for the distance

between center points and diagonal distances. Therefore, compared

to traditional IoU, the computational complexity increases,

potentially adding some computational cost. CIoU’s computation

method is relatively complex, requiring more processing and

calculation of bounding box coordinates. Traditional methods like

CIoU, DIoU (Zheng et al., 2020), etc., match IoU, center point

distance, aspect ratio, etc., between real and predicted boxes but do

not consider the mismatched orientation between them. This

inadequacy results in slow convergence and lower efficiency,

ultimately leading to poorer models.

Gevorgyan (2022) proposed the SIoU loss function, which

incorporates angle considerations and scale sensitivity,

introducing a more complex bounding box regression method to

address the limitations of previous loss functions. By integrating

these aspects, better training speed and prediction accuracy can be

achieved. The aim of the SIoU is to reduce the gap between

predicted and actual bounding boxes, accounting for variations in

shape and angle. The SIoU schematic is shown in Figure 5.

The process of angle loss calculation is as follows:

AngleLoss = 1 − 2 ∗ sin2(arcsin (
ch
d
) −

p
4
) (1)

DistanceLoss = 2 − e−g px − e−g py (2)

px = (
cw
Cw

)2 (3)

py = (
ch
Ch

)2 (4)

g = 2 − AngleLoss (5)
FIGURE 4

The structure of the GSConv module.
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In this equation, “cw” represents the disparity in width between

the centers of the two bounding boxes, and “Ch” represents the

height of the minimum bounding rectangle of the ground truth

bounding box, while “Cw” represents the width of the minimum

bounding rectangle of the predicted bounding box. The calculation

process for shape loss is as follows:

ShapeLoss = (1 − e−Ww )q + (1 − e−Wh )q (6)

Ww =
w − wgtj j

max(w,wgt)
(7)

Wh =
h − hgtj j

max (h, hgt)
(8)

In this equation, “w”, “h”, “wgt”, and “hgt” respectively represent

the width and height of the predicted bounding box and the true

bounding box. q controls the emphasis on shape loss. To avoid

overly focusing on shape loss and thus reducing the movement of

the predicted bounding box, the authors used a genetic algorithm to

compute a value close to 4. The calculation process for IoU loss is as

follows:

IoU =
A ∩ B
A ∪ B

(9)

Where A∩B represents the intersection of the predicted

bounding box and the ground truth bounding box, and A∪B
represents the union of the predicted bounding box and the

ground truth bounding box. The SIoU can be expressed using the

following formula:

SIoULoss = 1 − IoU +
DistanceLoss + ShapeLoss

2
(10)

He et al. (2022) proposed the a-IoU method, which enhances

bounding box regression by incorporating a power transformation

into the conventional IoU loss function. Inspired by this, to bolster

the robustness of SIoU towards bounding boxes and attain higher

accuracy in the regression of overlapping bounding boxes, this

study enhances SIoU by introducing a power of 1.5 to each of its

terms. We refer to this enhanced version as b-SIoU, and its
Frontiers in Plant Science 07150
effectiveness will be demonstrated through experiments in Section

4.3.5. The computation formula is shown as follows:

b − SIoULoss = 1 − IoU1:5 + (
DistanceLoss + ShapeLoss

2
)1:5 (11)
3.5 SE attention module

Attention mechanisms facilitate models in comprehensively

grasping the structure and attributes of input data, thus

advancing the precision and efficiency of object detection.

Attention mechanisms empower the model to discern the

significance of diverse local details in the image, allowing it to

concentrate more effectively on crucial features and thereby

enhance the accuracy of tomato fruit detection.

The SE (Squeeze-and-Excitation) attention mechanism (Hu

et al., 2018) enhances model performance by modeling the

correlation between different channels. Channel-wise attention

assigns different weights to different channels, focusing on

channels that are crucial for recognizing specific objects. The SE

module captures channel relationships through Squeeze and

Excitation operations. In the Squeeze phase, it condenses the

output feature map from the convolutional layer into a feature

vector via global average pooling. This vector captures

comprehensive statistical data from the entire feature map.

During the Excitation phase, the SE module employs a fully

connected layer and a nonlinear activation function to determine

the significance of each channel by learning their respective weights.

By incorporating Squeeze and Excitation operations, the model

autonomously learns the weight and significance of individual

channels, enhancing the network’s expressive power and

performance. By automatically learning the weight and

significance of individual channels, the network can prioritize

crucial feature channels, enhancing overall model performance.

After comparing different attention mechanisms, this study

selected the SE attention module with the highest accuracy and

incorporated it into the model’s neck. The SE attention structure is

shown in Figure 6.
FIGURE 5

The SIoU loss function (A) and the IoU loss function (B).
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4 Experimental design and
results analysis

4.1 Experimental environment and
parameter setting

The experiments were conducted using PyTorch as the deep

learning framework. Table 2 provides a detailed description of the

experimental setup. To optimize model training, cosine annealing

was employed to update the learning rate and network weight

parameters. The entire process comprised 300 iterations. The

momentum factor was set at 0.937 to effectively smooth gradient

updates, facilitating faster convergence and stabilizing the training

process. The weight decay was set at 0.0005 to help limit the model’s

complexity, prevent overfitting on the training data, and enhance

the model’s generalization ability to new data. The initial learning

rate was set at 0.01 to quickly reduce the loss function during the

initial training phase while avoiding excessively large steps that

could lead to an unstable training process. The SGD optimizer was

employed, which is suitable for large deep learning models. Using

the SGD optimizer simplifies the computation process, and

combined with the momentum factor, effectively speeds up

convergence. During the first 50 iterations, the training of the

backbone network was frozen, with a batch size of 8. Freezing the

backbone network’s training leverages the general features extracted

by the pretrained model. This approach helps to quickly train the

model with fewer computational resources and prevents disruption

of the existing feature extraction capabilities. Setting the batch size

to 8 improves training parallelism and efficiency within the limits of

GPU memory. In the subsequent 250 iterations, the backbone

network was unfrozen for training, and the batch size was

adjusted to 4. Unfreezing the backbone network in the later

training stage allows fine-tuning of the entire model to better

adapt to the specific task’s data distribution. Adjusting the batch

size to 4 helps maintain training stability and efficiency as the model

complexity increases. Freezing the training is also a concept in

transfer learning, as the features extracted by the neural network

backbone are general. Freezing the backbone during training can

accelerate the training process and prevent the weights from

being disrupted.
Frontiers in Plant Science 08151
4.2 Evaluation indicators

This research selected mean Average Precision (mAP), Average

Precision (AP), precision, recall, F1 score, GFLOPs, model

parameters, and frames per second (FPS) as performance metrics

for evaluating the deep-learning model. The evaluation metrics

were calculated using the formulas below.

Precision =
TP

TP + FN
� 100% (12)

Recall =
TP

TP + FP
� 100% (13)

F1 =
2� Precision� Recall
Precision + Recall

� 100% (14)

AP =
Z 1

0
P(R)dR (15)

mAP = o
n
i=1APi
n

(16)

FPS = 1=T (17)

Where TP represents the number of images where tomato fruit

targets were correctly detected by the model, FP represents the

number of images where non-tomato fruit targets were incorrectly

detected by the model, and FN represents the number of images

where tomato fruit targets were missed by the model. Precision
TABLE 2 Hardware and software environment.

Configuration Item Value

CPU Intel i9-12900H

GPU NVIDIA GeForce RTX 3060

CUDA 12.0

Memory 32GB

Operating system Windows11×64

Deep learning frame PyTorch
FIGURE 6

The structure of the SE attention.
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indicates the precision rate, while Recall represents the recall rate.

F1-score serves as a means to strike a balance between precision and

recall. Precision and recall values are utilized to construct the

precision-recall curve (PR curve), with the area under this curve

denoted as AP (Average Precision). The mAP refers to the average

AP. T denotes the detection time for a single image. FPS represents

the number of images detected per second. The model parameters

were calculated considering the input and output channel counts

along with the convolutional kernel sizes, aiding in estimating the

model’s size. GFLOPs are used to measure model complexity.
4.3 Results and analysis

4.3.1 Training and validation of the S-
YOLO algorithm

Figure 7A displays the training loss progression of the S-YOLO

algorithm. During the initial training phase, the model exhibits

relatively high learning efficiency, as indicated by the rapid decline

in the training loss curve, suggesting that the model is quickly

learning new features. As training progresses, the rate of decrease in

the loss curve gradually slows down, implying that the model is

gradually stabilizing and approaching convergence. Throughout

this process, both the training and validation set losses fluctuate

but eventually stabilize, indicating that the model has reached the

expected stable state.

In Figure 7B, the fluctuation of the mean Average Precision

(mAP) throughout each training epoch is depicted. It can be

observed that mAP rapidly increases at the beginning of training,

corresponding to the rapid decline in the training loss curve. As

training continues, the change in mAP stabilizes, indicating a

continuous improvement in the model’s accuracy. At the 150th

training epoch, mAP reaches its peak, indicating that the model is

very close to its optimal performance at this point. These two figures

together depict the training process of the model, from rapid

learning to eventual convergence, demonstrating the effectiveness

and stability of the S-YOLO model.
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4.3.2 Ablation experiments
We conducted ablation experiments on the tomato dataset to

evaluate the performance of GSConv_SlimNeck, a-SimSPPF, b-
SIoU, and SE components integrated into the model. Based on

YOLOv8s, the subsequent models progressively integrated the

improved modules. Model1 optimized the model’s neck structure

using the GSConv_SlimNeck architecture. Model2 replaced the

original SPPF structure with the enhanced version of a-SimSPPF

based on Model1. Model3 introduced the proposed b-SIoU loss

function on top of Model2. Ultimately, the SE attention module was

embedded within the network’s neck in Model3, leading to the

formulation of the S-YOLO model.

As shown in Table 3, based on YOLOv8s, Model1 achieved

improvements in several metrics by introducing the

GSConv_SlimNeck structure. Precision, mAP@0.5, and FPS increased

by 0.86%, 0.86%, and 2.81FPS, respectively, while model complexity

and parameters decreased by 3.35G and 1.78M. The addition of the a-
SimSPPF module further improved model accuracy and mAP@0.5,

while reducing computational overhead. However, this improvement

also slightly decreased detection speed by 0.33FPS. After adding b-SIoU
to Model2, the detection rate increased by 0.45FPS compared to

Model2 and exceeded YOLOv8s and Model1, compensating for the

shortcomings of a-SimSPPF. This indicates a noticeable improvement

in model performance with the enhanced b-SIoU loss function. The

introduction of the SE attention module further improved precision,

mAP@0.5, and FPS by 1.92%, 0.48%, and 0.56FPS, respectively,

compared to Model3, despite a slight increase of 0.04M in model

parameters. This suggests the effectiveness of the attention mechanism

in extracting features relevant to tomato detection. Figure 8 shows the

experimental curves and bar charts for different models.

In summary, the lightweight S-YOLO model surpasses the

original YOLOv8s model significantly. Not only does it achieve

model lightweighting, but it also maximizes the enhancement in

detection accuracy. The model exhibits improvements across

various metrics: precision, mAP@0.5, and FPS see increases of

5.25%, 2.1%, and 3.49FPS, respectively. Furthermore, the model

complexity (measured in GFLOPs) and parameters are reduced by
FIGURE 7

The training loss curve variation (A) and mAP training variation (B).
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3.6G and 2.06M, respectively, showcasing its efficiency and

effectiveness in practical applications.

4.3.3 Comparison of different
lightweight modules

In constructing the lightweight structure GSConv_SlimNeck, both

GSConv and GhostConv (Han et al., 2020) modules were compared

and analyzed to validate their effectiveness. The experimental results in

Table 4 show that both GSConv and GhostConv modules contribute

equally to model lightweighting, resulting in a reduction of model

complexity and parameters by 3.35G and 1.78M, respectively.

However, utilizing the GSConv module to build the

GSConv_SlimNeck structure exhibits superior model performance

compared to using the GhostConv module. Although there is a

slight decrease in recall, precision, and F1 score experience

significant improvements. Specifically, compared to using

GhostConv, using GSConv increases precision by 0.84%, mAP by

0.12%. Overall, the GSConv_SlimNeck structure built using

GSConv demonstrates superior performance.

4.3.4 Comparison of SPPF, SimSPPF, and
a-SimSPPF

To verify the efficacy of the proposed a-SimSPPF structure, this

study conducted a comparative analysis involving SPPF, SimSPPF,

and a-SimSPPF. These three modules were placed at the same

position in the model and trained accordingly. Table 5 presents the

experimental results. From various metrics, it is evident that the

performance of SimSPPF is significantly lower than that of the SPPF

module. However, following the enhancement from SimSPPF to a-
SimSPPF, the model’s performance saw significant improvement. In

comparison to the SPPF module, precision increased by 0.65% and

mAP@0.5 increased by 0.48%. Additionally, the model complexity

and parameters were reduced by 0.25G and 0.32M, respectively.
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Although using the a-SimSPPF structure resulted in a slight

decrease of 0.33FPS in detection speed compared to using the SPPF

structure, the accuracy and mAP@0.5 were significantly improved.

Moreover, the model complexity was lower, and the model

parameters were reduced, aligning with the research goal of this

study. a-SimSPPF demonstrated superior performance on the

dataset used in this study, with higher accuracy and lighter

model, making it more suitable for tomato fruit detection and

deployment in tomato harvesting robot visual systems.

4.3.5 Comparison of different IoU loss functions
This study delved deeper into the influence of integrating the b-

SIoU algorithm on the model’s performance, with a primary focus

on comparing CIoU, DIoU, SIoU, and the b-SIoU algorithm. As

shown in Table 6, compared to CIoU, DIoU achieved higher

precision but slightly decreased mAP@0.5, while increasing the

inference speed by 0.25FPS. SIoU resulted in varying degrees of

decrease in precision, mAP@0.5, and FPS. However, the proposed

b-SIoU algorithm demonstrated improvements across all metrics.

Among all these algorithms, Model3 stood out in multiple key

metrics, particularly in precision, mAP, and processing speed.

Compared to CIoU, DIoU, and SIoU, precision increased by 1.82%,

1.25%, and 2.16%, respectively, while mAP@0.5 increased by 0.28%,

0.69%, and 1.15%, respectively. Detection speed also increased by

0.45FPS, 0.2FPS, and 2.22FPS, respectively. These improvements

significantly enhance model performance, making it suitable for

handling overlapping and densely packed tomato objects, as well as

deployment in tomato harvesting robot visual systems. Figure 9

illustrates the experimental curves for different loss functions.

In addition, this study explored the optimal loss function for the

dataset by examining different exponent values for individual terms

in SIoU. As shown in Table 7, varying the exponent values for

individual terms in SIoU had no impact on the model’s complexity.
FIGURE 8

Experimental curves for different models.
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When the exponent value for individual terms in SIoU was set to

1.5, precision reached 94.68%, mAP@0.5 reached 91.98%, and the

detection rate reached 73.49FPS. When each exponent in

the SIoU function is set to 1.5, the model demonstrates its

optimal performance.

4.3.6 Comparison of different attention modules
To delve deeper into the influence of the SE attention module

and its placement within the model architecture, this study explored

inserting various attention mechanisms, including ECA (Wang

et al., 2020), CBAM (Woo et al., 2018), CA (Hou et al., 2021),

SimAM (Yang et al., 2021), GAM (Liu et al., 2021), Shuffle (Zhang

and Yang, 2021), and EMA (Ouyang et al., 2023), at the same

position. Additionally, three SE attention modules were inserted
T

Frontiers in Plant Science 11154
into the backbone network after the third, fourth, and fifth

Conv structures.

As shown in Table 8, adding any attention mechanism led to an

improvement in accuracy. However, except for the SE attention

module, which increased mAP@0.5, the other attention modules

resulted in varying degrees of decrease in mAP@0.5. This suggests

that the SE attentionmodule is most suitable for incorporation into this

model structure. The decrease in mAP@0.5 when adding other

attention mechanisms may be due to model overfitting or neglect of

certain features of tomato fruits. The SE attention module significantly

improved model performance, with accuracy and mAP@0.5 increasing

by 1.92% and 0.48%, respectively, compared to Model3. Moreover, the

detection rate increased by 0.56FPS. Compared to Model3, adding the

GAM attention module not only increased the model complexity by
TABLE 5 Experimental results of SPPF, SimSPPF, and a-SimSPPF.

Model Precision Recall F1-Score mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

Model1+SPPF
Model1+ SimSPPF

Model1+a-
SimSPPF (Model2)

92.21 81.51 0.87 91.22 25.47 9.39 73.37

91.35 81.72 0.86 91.14 25.47 9.39 72.77

92.86 81.08 0.87 91.70 25.22 9.07 73.04
Bold values represent the best experimental results compared to other models.
ABLE 6 Comparison of different loss functions.

Model Precision mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

Model2 + CIoU 92.86 91.70 25.22 9.07 73.04

Model2 + DIoU 93.43 91.29 25.22 9.07 73.29

Model2 + SIoU 92.52 90.83 25.22 9.07 71.27

Model2 + b-SIoU(Model3) 94.68 91.98 25.22 9.07 73.49
Bold values represent the best experimental results compared to other models.
TABLE 3 Ablation experiments on the proposed S-YOLO algorithm.

Model
GSConv_
SlimNeck

a-
SimSPPF

b-SIoU SE Precision mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

YOLOv8s
Model1

√ 91.35
92.21

90.36
91.22

28.82
25.47

11.17
9.39

70.56
73.37

Model2 √ √ 92.86 91.70 25.22 9.07 73.04

Model3 √ √ √ 94.68 91.98 25.22 9.07 73.49

S-YOLO √ √ √ √ 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
TABLE 4 Experimental results for the lightweight modules.

Model Precision Recall F1-Score mAP@0.5
GFLOPs

(G)
Parameters

(M)
FPS

YOLOv8s 91.35 81.72 0.86 90.36 28.82 11.17 70.56

YOLOv8s +
GhostConv_SlimNeck

YOLOv8s
+ GSConv_SlimNeck

91.37
92.21

81.94
81.51

0.86
0.87

91.10
91.22

25.47
25.47

9.39
9.39

72.86
73.37
Bold values represent the best experimental results compared to other models.
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15.74G and the model parameter quantity by 8.6M but also decreased

mAP@0.5 and the detection rate by 1.36% and 21.51FPS, respectively,

severely reducing model performance. Although the EMA attention

module achieved 97.31% accuracy, both mAP@0.5 and the detection

rate were significantly lower than those with the SE attention

mechanism. In general, the SE attention module exhibited the most

impressive performance, leading to the most substantial enhancement

in the S-YOLO model’s performance.

As demonstrated in Table 9, incorporating the SE attention module

into the backbone network resulted in a decline in model evaluation

metrics. In comparison to models lacking attention mechanisms,

integrating the SE attention module into the backbone network led to

reductions of 0.14% and 2.15% in accuracy and mAP@0.5, respectively.

However, when employing the SE attentionmodule at themodel’s neck,

the accuracy and mAP@0.5 increased by 2.06% and 2.63%, respectively,

compared to inserting it into the backbone network. The performance

decrease resulting from inserting themodule into the backbone network

may be attributed to the compression of spatial and channel dimensions

of the feature maps caused by introducing attention mechanisms in the

backbone network. Attention mechanisms typically selectively
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emphasize certain features, which may lead to the neglect of other

features, resulting in the loss of semantic information. This loss of

information could weaken the model’s feature extraction ability. After

inserting SE into the backbone network, the model’s detection speed

decreased by 0.06 FPS compared toModel3, and the decrease was more

significant when compared to inserting it into the neck network,

reaching 0.62 FPS. Figure 10 displays the experimental curves and bar

charts for different attention modules.

4.3.7 Comparative analysis of various object-
detection models’ performance

To further substantiate the model’s effectiveness, this study

conducted an extensive comparison between the S-YOLO model

and other prominent convolutional neural network object detection

models, including the two-stage object detection model Faster

RCNN, as well as the single-stage object detection algorithms

CenterNet (Duan et al., 2019), YOLOv3 (Tian et al., 2019),

YOLOv4 (Bochkovskiy et al., 2020), YOLOv5m (Yang et al.,

2023), YOLOv7, YOLOv7x, YOLOv8m, and YOLOv8s. The

experimental results are presented in Table 10.
FIGURE 9

Experimental curves for different loss functions.
TABLE 7 Experimental results for different exponential powers of SIoU.

Model Exponent mAP@0.5 GFLOPs (G) Parameters (M) FPS

Model2+SIoU

0.5 91.89 25.22 9.07 71.37

1.0 90.83 25.22 9.07 71.27

1.5 91.98 25.22 9.07 73.49

2.0 91.23 25.22 9.07 72.03

2.5 91.29 25.22 9.07 71.66

3.0 90.97 25.22 9.07 72.62
Bold values represent the best experimental results compared to other models.
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Faster RCNN is a typical two-stage object detection algorithm,

but its model size is large, with model complexity and parameters

much higher than other single-stage object detection algorithms. Its

detection speed is only 10.57 FPS, which is only 14.27% of S-

YOLO’s. The model complexity is as high as 370.21G, about 15

times that of S-YOLO, and the model parameters are as high as

137.10M, about 14 times that of S-YOLO. S-YOLO’s accuracy,

mAP@0.5, and FPS are 45.18%, 14.04%, and 63.48FPS higher than
Frontiers in Plant Science 13156
Faster RCNN, respectively. Overall, the performance of the S-

YOLO model far exceeds that of Faster RCNN.

In comparison to other models, S-YOLO outperforms other

models across all metrics. The model accuracy, mAP@0.5, and

detection speed are 96.60%, 92.46%, and 74.05FPS, respectively, with

model complexity and parameters of only 25.22G and 9.11M.

Compared to CenterNet, the S-YOLO model shows advantages in

mAP@0.5, model complexity, model parameters, and FPS, withmAP@
TABLE 8 Comparison of different attention models’ performance.

Model Precision mAP@0.5 GFLOPs (G) Parameters (M) FPS

Model3 94.68 91.98 25.22 9.07 73.49

Model3 + ECA 96.10 90.94 25.22 9.07 69.30

Model3 + CBAM 95.56 91.91 25.22 9.16 69.06

Model3 + CA 95.05 90.71 25.22 9.13 73.33

Model3 + SimAM 96.01 90.83 25.22 9.07 73.62

Model3 + GAM 95.03 90.62 40.96 17.67 51.98

Model3 + Shuffle 96.67 87.17 25.22 9.07 71.47

Model3 + EMA 97.31 88.17 25.22 9.07 73.19

Model3 + SE(S-YOLO) 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
TABLE 9 Experimental results on the effects of inserting attention modules at different positions.

Model
Embedding
position

Precision GFLOPs (G)
Parameters

(M)
mAP@0.5 FPS

Model3 \ 94.68 25.22 9.07 91.98 73.49

Model3 + SE Backbone 94.54 25.22 9.07 89.83 73.43

Model3 + SE
(S-YOLO)

Neck 96.60 25.22 9.07 92.46 74.05
Bold values represent the best experimental results compared to other models.
FIGURE 10

Experimental curves for different attention mechanisms.
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0.5 7.32% higher, FPS 4.28FPS higher, and model complexity and

parameters only 35.91% and 27.88% of CenterNet, respectively.

YOLOv3 and YOLOv5m have similar model complexities and

detection speeds, but their overall performance is much lower than

S-YOLO. YOLOv4 has the lowest accuracy and mAP@0.5 among all

models. Due to the higher model complexity of YOLOv7, YOLOv7x,

and YOLOv8m, they also have a certain impact on detection speed,

which is 45.66FPS, 56.11FPS, and 36.48FPS lower than S-YOLO,
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respectively, indicating that the lightweight improvements of S-

YOLO have a certain effect on improving detection speed.

Compared to the YOLOv8s model, the S-YOLO model has higher

accuracy by 5.25%, mAP@0.5 by 2.1%, and FPS by 3.49FPS, with

model complexity and parameters reduced by 3.6G and 2.06M,

respectively, indicating that the improved S-YOLO model has

improved in all indicators, and the model performance has been

significantly improved. The following Figure 8 provides a more
TABLE 10 Comparison of different mainstream object detection models.

Model Precision mAP@0.5 GFLOPs (G) Parameters (M) FPS

Faster-RCNN
CenterNet

51.42
95.88

78.42
85.14

370.21
70.22

137.10
32.67

10.57
69.77

YOLOv3 87.62 86.55 66.17 61.95 46.42

YOLOv4 66.96 72.63 60.53 64.36 36.93

YOLOv5m 88.30 86.69 51.62 21.38 44.84

YOLOv7 87.20 89.61 106.47 37.62 28.39

YOLOv7x 91.56 88.84 190.58 71.34 17.94

YOLOv8m 93.19 91.69 79.32 25.90 37.57

YOLOv8s 91.35 90.36 28.82 11.17 70.56

S-YOLO 96.60 92.46 25.22 9.11 74.05
Bold values represent the best experimental results compared to other models.
FIGURE 11

Scatter plots of the experiments for different models. (A) FPS-Parameters, (B) FPS-GFLOPs, (C) Precision-FPS, (D) mAP@0.5-FPS.
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intuitive illustration of the unique advantages of S-YOLO compared to

other models, achieving the optimal balance between model detection

speed, lightweight, and accuracy. Figure 11 illustrates that the S-YOLO

model excels over other models in various aspects.

In summary, the S-YOLO model performs significantly better

than current mainstream object detection models, with high

accuracy while being lightweight, providing technical references

for the deployment of tomato harvesting robot vision systems.
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4.3.8 Model visualization results
The detection performance of CenterNet, YOLOv4, YOLOv5m,

YOLOv7, YOLOv7x, YOLOv8s, and S-YOLO models is illustrated

in Figure 12. For the YOLOv4 model, there are numerous detection

errors, incorrectly identifying tomato leaves and other objects as

tomato fruits. The YOLOv5m model exhibits poor detection

performance for occluded tomatoes, resulting in missed

detections and overall poor recognition. YOLOv7x also struggles
FIGURE 12

Visual detection comparison results of different models. (A) CenterNet, (B) YOLOv4, (C) YOLOv5m, (D) YOLOv7, (E) YOLOv7x, (F) YOLOv8s,
(G) S-YOLO.
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with accurately detecting occluded tomatoes. The overall detection

accuracy of CenterNet, YOLOv7, and YOLOv8s is lower than that

of the S-YOLO model, with S-YOLO achieving higher accuracy

overall. In summary, the S-YOLO model not only achieves

lightweight design but also significantly outperforms other models

in tomato fruit detection.
5 Discussion

This study investigates an improved lightweight S-YOLOmodel

designed for accurately detecting tomato fruits in greenhouse

environments, including occluded and small target tomatoes. It

provides a technical reference for the visual system of tomato

harvesting robots, addressing issues such as low detection

efficiency and accuracy, thus holding considerable practical value.

Previous research has shown limitations in terms of accuracy,

lightweight design, or detection speed. In this work, a lightweight

GSConv_SlimNeck structure is constructed to optimize the model’s

neck region. To enhance detection accuracy, the a-SimSPPF

structure and b-SIoU loss function are proposed. Additionally,

the incorporation of the SE attention module enhances the

accuracy of the model. By implementing these enhancements, the

proposed S-YOLO model significantly outperforms other object

detection models, achieving substantially improved accuracy in

tomato detection while maintaining lightweight characteristics.

Ultimately, the S-YOLO model achieves 96.60% accuracy, 92.46%

mAP@0.5, with a parameter count of only 9.11M and a detection

speed of 74.05FPS, demonstrating excellent detection performance.

While this study has made progress in tomato detection in

greenhouse environments, there are still limitations to address. For

instance, the proposed model may face significant limitations in

detection speed when running on low-cost devices. Considering the

cost limitations of harvesting robot hardware and the pressing need

for real-time detection, future studies should prioritize further size

reduction of the model to expedite its processing speed. This will

ensure real-time tomato detection and enhance its suitability for

integration into the visual systems of tomato harvesting robots.
6 Conclusions

This study introduces a novel model named S-YOLO,

characterized by its lightweight design and exceptional accuracy.

It effectively addresses the low accuracy in detecting occluded and

small tomatoes, providing technical guidance for the visual systems

of tomato harvesting robots. Through experimental research and

result analysis, the main contributions can be summarized

as follows:
Fron
1. Lightweight Design: A GSConv_SlimNeck structure suitable

for YOLOv8s is constructed to optimize the model’s neck

region, achieving model lightweightness.

2. Accuracy Improvement: The substitution of the SPPF

module with the upgraded a-SimSPPF structure and the

replacement of the CIoU loss function with the enhanced b-
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SIoU loss function contributed to the improved accuracy of

the model’s detection capabilities.

3. Effective Feature Extraction: Additional SE attention module is

introduced to focus on crucial information, further enhancing

feature extraction for occluded and small target tomatoes.
Compared to traditional object detection algorithms, S-YOLO

demonstrates robustness, lightweight design, and outstanding

detection performance, providing technical support for efficiently

identifying tomato fruits in tomato harvesting robots. In the future,

more tomato fruit images captured in greenhouse environments

will be collected, and the model will be further improved in a more

lightweight manner to provide stronger technical support for the

visual systems of tomato robots.
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In the current agricultural landscape, a significant portion of tomato plants suffer

from leaf diseases, posing a major challenge to manual detection due to the

task’s extensive scope. Existing detection algorithms struggle to balance speed

with accuracy, especially when identifying small-scale leaf diseases across

diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-

Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an

innovative, high-precision, and lightweight detection algorithm based on RT-

DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was

developed using a carefully curated dataset of 3147 RGB images, showcasing

tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces

ResNet18 in the algorithm’s backbone network, aimed at reducing the model’s

size and improving memory efficiency. Additionally, replacing the conventional

AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded

Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion

Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid

Networks) in the Efficient Hybrid Encoder significantly enhanced detection

accuracy without greatly affecting efficiency. To tackle the challenge of

identifying challenging samples, the Focaler-CIoU loss function was

incorporated, refining the model’s performance throughout the dataset.

Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7%

Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the

test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M

in parameters. These findings clearly demonstrate that the proposed method

improves detection accuracy and reduces computational complexity, addressing

the dual challenges of precision and efficiency in tomato leaf disease detection.
KEYWORDS

tomato leaf disease, Cascaded Group Attention, Real-Time-Detection-Transformer,

lightweight backbone, feature fusion, Focaler-CIoU loss function
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1 Introduction

Tomatoes, rich in nutritional and medicinal value, are among

the most significant crops cultivated globally. China ranks as a

leading tomato producer globally (Coelho et al., 2023). In 2023,

China, leveraging its vast agricultural landscape and favorable

climate, solidified its status as the top tomato producer

worldwide, contributing 67 million tons to the global total of

approximately 190 million tons. This substantial output

underscores China’s dominance in the global tomato market

(Min, 2023). Moreover, China’s 2023 tomato production (Lu

et al., 2023) exceeded initial forecasts, reaching 8 million tons, up

from the predicted 7.3 million tons.

However, tomatoes face threats from various leaf diseases,

including spot disease and leaf mold (Lee, 2022), caused by fungi,

bacteria, and environmental stressors (Hernandez et al., 2021).

Untimely detection and prevention can drastically reduce tomato

yield and quality, resulting in significant economic losses

for farmers.

Traditionally, tomato leaf disease detection has been manual,

presenting numerous limitations and challenges. First, it depends

on professional inspectors, leading to significant human resource

constraints (Geisseler and Horwath, 2014). Second, factors like

visual fatigue compromise the method’s accuracy. In large-scale

settings like tomato plantations, manual detection becomes labor-

intensive, increasing the risk of missed detections and false alarms

(Lambooij et al., 2009). Consequently, automating tomato leaf

detection has emerged as a key research focus to enhance

efficiency and accuracy (Azim et al., 2014).

Advancements in computer technology have facilitated the

incorporation of machine learning into agricultural research

(Pallathadka et al., 2022)’s study preprocesses images with

histogram equalization, followed by principal component analysis

for feature extraction. Support vector machines and naive Bayesian

classifiers are then employed for rice leaf disease classification.

However (Sujatha et al., 2021), notes that machine learning’s

extensive computational demands in preprocessing and feature

extraction limit its practical application. Comparative studies have

shown deep learning’s superior efficacy in plant leaf disease

recognition, with convolutional neural networks (LeCun et al.,

1998) and residual structures (He et al., 2016) leading to

significant advancements in object detection algorithms, including

the evolution to one-stage approaches like DETR with transformers.

DETR (Detection Transformer) is an innovative object detection

approach that utilizes transformers, which are originally designed

for natural language processing tasks. By leveraging transformers,

DETR simplifies the object detection pipeline, eliminating the need

for hand-crafted components such as anchor generation and non-

maximum suppression, and allows for direct end-to-end object

detection with improved accuracy and efficiency.

Notably, two-stage models such as Faster RCNN (Region-based

Convolutional Neural Network) (Ren et al., 2016) and Mask RCNN

(He et al., 2017) have been typical (Teng et al., 2022). enhances pest

detection with super-resolution modules (Dong et al., 2015) and

Soft IoU (Rahman and Wang, 2016) mechanisms, achieving 67.4%

accuracy on a pest dataset (Saleem et al., 2022). optimizes weed
Frontiers in Plant Science 02162
detection using Faster RCNN ResNet-101, with an enhanced

anchor box method (Redmon and Farhadi, 2018) that refines

region proposals and improves accuracy. RCNN3’s Mask RCNN-

based algorithm (Wang et al., 2021) for crop images introduces path

aggregation and feature enhancements (Liu et al., 2018), increasing

edge accuracy with a micro fully connected layer (Lin et al., 2013).

Despite these improvements, the large size, numerous parameters,

and high computational costs challenge the practicality of two-

stage algorithms.

Common one-stage algorithms encompass SSD (Single Shot

MultiBox Detector) (Liu et al., 2016), YOLO v5(You-Only-Look-

Once) (Jocher et al., 2022), YOLOv7 (Wang et al., 2023), and

YOLOv9 (Wang et al., 2024) (Wang et al., 2022)’s YOLOv5

significantly enhances weed detection accuracy and speed via

data augmentation (Simard et al., 2003) and converter encoder

modules (Zhang et al., 2022). Experimental results indicate that

the improved network surpasses the baseline YOLOv5 in F1

score, AP, and mAP@0.5 by 11.8%, 11.3%, and 5.9%,

respectively (Zhang et al. , 2023) ’s study introduced a

lightweight agricultural pest identification method using an

enhanced Yolov5s, merged with MobileNetV3 (Howard et al.,

2019), significantly lowering the network’s parameter count.

Additionally, the study integrated the ECA (Efficient Channel

Attention) attention (Wang et al., 2020) mechanism into

MobileNetV3 ’s shallow network to boost performance.

Experimental results reveal that compared to Yolov5s, their

model cuts parameters by 80.3% with only a 0.8% drop in

mAP, achieving a real-time detection speed of 15.2 FPS on

embedded devices, outperforming the original model by 5.7 FPS.

The aforementioned one-stage algorithms have seen substantial

optimization in speed and scale, yet their accuracy falls short of two-

stage algorithms, rendering them less suited for high-precision

applications in sectors like industry, agriculture, and emerging

technologies (Agarwal et al., 2020). introduces a deep learning

model with three convolutional layers and three max pooling

layers for tomato leaf disease detection and classification.

Outperforming established models like VGG (Visual Geometry

Group)16, InceptionV3, and MobileNet, it achieves a

classification accuracy of 91.2%. The study employs data

augmentation and hyperparameter tuning to aid farmers in

managing tomato diseases, enhancing crop yield and quality.

Additionally, the DETR algorithm has shown significant accuracy

in crop detection. The recent DETR (Carion et al., 2020) algorithm

has also demonstrated notable accuracy in crop detection (Yang

et al., 2023). introduces a DETR-based rice leaf disease detection

algorithm, leveraging an enhanced detection transformer for

diagnosis and recognition. Introducing the Neck structure and the

Dense Higher Level Composition Feature Pyramid Network (Gao

et al., 2019), based on FPN (Feature Pyramid Network), improves

small disease target detection accuracy. However, DETR’s

computational intensity, exacerbated by enhanced feature

extraction, results in less favorable detection speeds and

model parameters.

To facilitate a clearer understanding of the progress in this field,

the methods utilized in the referenced literature are summarized

in Table 1.
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The motivation for developing the FCHF-DETR model arises

from the serious economic losses and social impacts resulting from

global crop diseases. Many farmers depend on the yield and quality

of their crops for their livelihoods, and disease outbreaks not only

threaten their food security, but can also inflict serious damage on

the economic structure of entire regions.

In this context, the need for precise and timely disease detection

is critical. The FCHF-DETRmodel employs advanced deep learning

and real-time detection techniques to rapidly and precisely identify

plant diseases in the field. This capability not only enables farmers

to take timely measures to mitigate losses, but also offers a more

stable and reliable management approach for agricultural

production, thus effectively reducing the economic and social

pressures arising from diseases.

Furthermore, the lightweight design of the FCHF-DETR model

allows it to operate efficiently in resource-limited environments, critical

for resource-poor agricultural areas. This design permits unrestricted

model deployment across various hardware platforms, enabling

farmers worldwide to utilize this technology and thereby enhance the

sustainability and resilience of global agricultural production.

In summary, researchers have introduced numerous innovative

methods and technologies in the field of object detection, which

have significantly advanced the progress of plant disease

management technology. To enhance applicability in crop

production environments, this study introduces an accurate and

lightweight tomato leaf disease detection model based on RT-

DETR-R18. This model is characterized by its lightweight design,

high detection accuracy, and rapid processing speed, facilitating
Frontiers in Plant Science 03163
easy deployment on farm detection equipment. The main

contributions of this study include:
1. The integration of the lightweight and efficient Fasternet in

lieu of the ResNet18 backbone network enhances the

feature extraction speed by mitigating memory access and

computational redundancy through the use of PConv

(Partial Convolution) in Fasternet. This modification not

only optimizes memory efficiency but also reduces the

overall size of the model.

2. The substitution of the Attention-based Intra-scale Feature

Interaction (AIFI) module with Cascaded Group Attention

(CGA) within the Efficient Hybrid Encoder not only

curtails computational expenditure but also enriches

attention diversity. This is achieved by layering attention

maps from different heads, facilitating a dual enhancement

in both efficiency and accuracy.

3. The replacement of the High-Level Screening-feature Fusion

Pyramid Networks (HSFPN) module with the CNN-based

Cross-scale Feature-fusion Module (CCFM) module for

inter-scale feature fusion within the Efficient Hybrid

Encoder incorporates a channel attention mechanism.

Given the dataset’s variety in terms of the types and sizes

of diseased leaves, HSFPN adeptly assimilates global features

across varying scales, synergizing with the decoder to

accurately pinpoint locations.

4. Acknowledging the dataset’s heterogeneity and the varying

levels of detection difficulty presented by diseased leaves,
TABLE 1 Summary of detection methods for tomato leaf disease.

Method Dataset Train & Test mAP50 FPS

Manual detection
(Geisseler and Horwath, 2014)

Automated detection technology
(Azim et al., 2014)

Support vector machines and Naive Bayesian classifiers
(Pallathadka et al., 2022)

Rice Leaf Disease Not mentioned

Inception V3
(Sujatha et al., 2021)

Citrus leaf disease dataset 9:1 89.2

Multi-Scale Super-Resolution RCNN
(Teng et al., 2022)

Capured by Chinese Intelligent
Machines Institute

8:2 67.4

Enhanced Anchor Box-RCNN
(Saleem et al., 2022)

DeepWeeds dataset 9:1 96.2

Segmentation and Extraction Algorithm Based on Mask
RCNN
(Wang et al., 2021)

Fruit 360 dataset 9:1 94.9

Real-time detection YOLOv5
(Wang et al., 2022)

Sugarbeet image dataset 9:1 90.0 20.8

Lightweight detection YOLOv5
(Zhang et al., 2023)

Large-scale open-source dataset IP102 9:1 98.6 15.2

CNN disease detection
(Agarwal et al., 2020)

Tomato leaves dataset from plantvillage 20:1 91.2

Dense Higher-Level Composition DETR
(Yang et al., 2023)

IDADP dataset Not mentioned 93.5 24.4
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Fron
the model adopts the Focaler-IoU loss function in place of

the conventional IoU loss. This strategic alteration aims at

honing the focus on more challenging samples without

amplifying the parameter count or computational

complexity, thereby enhancing accuracy.
In the second section, we will delve into the dataset and the

overarching architecture of FCHF-DETR. Moving on to the third

section, we will undertake a series of ablation studies to dissect the

impact of different modules on FCHF-DETR’s performance,

complemented by visual illustrations. The fourth section is

dedicated to a comparative analysis, highlighting the merits of

our model vis-à-vis the prevalent RT-DETR-R18, and discussing

prospective avenues for refinement. We will conclude by

encapsulating the essence of our model and exploring its potential

implications for practical applications.
2 Materials and methods

2.1 Data collection

To improve the model’s generalization, the dataset includes

tomato leaves photographed from multiple perspectives,

backgrounds, lighting conditions, and featuring different disease

types. A large collection of images was curated to enable accurate

detection of minor diseases. However, due to the scarcity of public

tomato leaf disease datasets, this study utilized the Tomato Leaf

Diseases Detection Computer Vision dataset (Figure 1A) and the

Tomato Disease Multiple Sources dataset (Figure 1B) from Kaggle.

Despite their usefulness, these datasets have limitations, especially

the oversimplified backgrounds with isolated leaves, which differ

from real-world scenarios.

To overcome this and enhance the model’s ability to detect

small-scale diseases, we augmented these datasets with 512

additional tomato leaf photos we collected (Figure 1C), creating a

comprehensive dataset of 3147 images for this experiment. This

carefully curated image collection features specimens of various

resolutions and sizes, taken from many angles to ensure data
tiers in Plant Science 04164
diversity (Figure 1). The detailed presentation of tomato leaves

closely mirrors actual detection settings, including the effects of

natural elements like lighting and shadows. To simulate rainy-day

detection conditions, we deliberately reduced the clarity of some

images, emulating real-world challenges and enhancing the model’s

robustness and applicability.

Images in the dataset were classified into five categories using

LabelMe software: ‘Late blight leaf’, ‘Early blight leaf’, ‘Septoria leaf

spot’, ‘Mold leaf’, and ‘Yellow virus leaf’. In the experimental setup,

the dataset was divided into training, validation, and testing sets in

an 8:1:1 ratio.
2.2 Date preprocessing

During data preprocessing, we utilized the Mosaic data

augmentation technique (Bochkovskiy et al., 2020) to combine four

unique images into one composite image. This composite image

undergoes random scaling, flipping, shifting, and color adjustments

to enhance the model’s generalization ability. This technique enriches

the dataset with extensive contextual details and various object

instances in each synthesized image, as shown in Figure 2.

In tomato leaf disease detection, the uneven distribution of

smaller target samples could hinder the model’s training efficiency.

Using the Mosaic augmentation not only increases the sample

volume but also balances the distribution of smaller targets,

improving the model’s ability to detect them. Visualizing the

disease targets and bounding boxes clarifies the spatial

distribution of label centroids, with ‘x’ and ‘y’ axes representing

the centroids’ coordinates and color intensity indicating proximity

to the image center.

The visualization (Figure 3) highlights the distribution of target

box sizes in the dataset, showing a relatively uniform color gradient

across the image. This uniform color gradient suggests a balanced

mix of large and small targets, achieved by careful preprocessing of

the defect bounding boxes. This processing ensures fair

representation of all target sizes in the dataset, counteracting any

original bias towards larger defects. Aiming for a uniform

distribution of defect sizes enhances the model’s ability to detect
FIGURE 1

Samples of dataset, where (A) is the data from Tomato Leaf Diseases Detection Computer Vision dataset, (B) comes from Tomato Disease Multiple
Sources dataset, (C) is the data collected for this paper’s research.
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anomalies at various scales. This approach reduces size-related bias

during training, enabling the model to accurately identify defects of

different sizes in real scenarios. Ultimately, this preprocessing effort

boosts the model’s generalization and balances its detection ability,

leading to enhanced overall performance.
2.3 Overall structure of FCHF-DETR

This study presents the FCHF-DETR model (Figure 4), a

streamlined yet precise detection network for various tomato leaf

diseases, based on the RT-DETR-R18 (Lv et al., 2024) framework.

The detailed structure of the proposed FCHF-DETR model is

outlined below.

RT-DETR-R18 and the newly introduced FCHF-DETR are

based on three main components: the Backbone, the Hybrid

Encoder, and the Transformer Decoder. The Backbone acts as a

feature extraction unit, effectively distilling multi-level features from

input images, especially from the last three stages, S3, S4, and S5.

These features are then fed into the Hybrid Encoder for further

processing, which includes the AIFI module focusing on S5 feature

maps to enhance precision and reduce complexity, and the CCFM
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module working with S3 and S4 features, using fusion blocks for

feature amalgamation, refined by 1x1 convolutions.

RT-DETR-R18’s original backbone, based on ResNet18,

contained numerous convolutional modules, hindering real-time

detection and mobile deployment. Additionally, early versions of

the AIFI module did not significantly improve accuracy. To

address these challenges, this study introduces the FCHF-DETR

approach, carefully crafted for efficient and accurate tomato leaf

disease detection. Key improvements include integrating

FasterNet instead of ResNet18 and adding PConv layers to

enhance feature extraction speed and reduce model size;

replacing the AIFI module with Cascaded Group Attention for

increased efficiency; substituting the CCFM module with HSFPN

for better feature fusion; and adopting the Focaler-IoU loss

function to improve accuracy for difficult samples without

increasing complexity.

2.3.1 Lightweight network establishment
RT-DETR-R18 ’ s ResNet-18 backbone , fi l l ed wi th

convolutional modules, results in high computational needs and

a large parameter count. Targeting mobile device deployment, this

study prioritizes precise detection, faster inference, fewer
FIGURE 2

Mosaic data augmentation, randomly combining four pictures together.
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parameters, and improved device compatibility. FCHF-DETR

features a streamlined Backbone with FasterNet (Chen et al.,

2023), balancing quick processing and accuracy, as depicted in

Figure 5. FasterNet’s core includes FasterNet Blocks and PConv

layers, dynamically adjusting convolution ranges based on data

relevance for efficient processing.
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2.3.1.1 Partial convolution

Partial convolution, or PConv, uses a unique binary masking

technique to accurately distinguish valid from invalid data points. It

dynamically adjusts the convolution kernel’s reach according to this

distinction, focusing the convolution process on valid data. This

method greatly enhances the model’s resilience in data

incompleteness scenarios, preserving maximum information and

minimizing data gap impacts. Compared to traditional

convolutions (Figure 6A), PConv provides greater flexibility,

efficiency, and precision in processing datasets with missing

entries. Unlike Depth-Wise (Figure 6B) separable convolution

(Chollet, 2017), known for fewer parameters and efficiency,

PConv excels in managing complex imaging tasks with missing

areas (Figure 6C). This suitability makes PConv ideal for

applications like image restoration and content filling, where it

effectively addresses image voids.

Given the similarity across feature maps of different channels,

PConv efficiently performs convolution on a subset of input

channels to extract spatial features, as shown in the Figure 6C.

This method leaves the other channels unchanged. Assuming equal

channel counts for input and output feature maps, PConv’s

computational complexity, in terms of FLOPs, is significantly

reduced:

FLOPsPConv = h� w � k2 � c2p

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

cp is the number of channels for conventional convolution.
FIGURE 4

The overall architecture of FCHF-DETR, which contains Backbone, Cascaded group attention (CGA), High-level screening feature-fusion pyramid
network (HSFPN), Focaler-CIoU loss function and Detection head.
FIGURE 3

Tomato leaf disease size quantification framework based on
target detection.
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In practical implementation, there is generally r = cp=c = 1=4,

so the FLOPs of PConv are only 1/16 of those of conventional

convolutions.

Memory access status of PConv:

MEMPConv = h� w � 2cp + k2 � c2p ≈ h� w � 2cp

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

cp is the number of channels for conventional convolution.

The memory access count of PConv is only 1/4 of that of regular

convolution, and the remaining (c − cp) channels do not participate

in the calculation, so there is no need for memory access.

RT-DETR-R18’s backbone network focuses on improving

detection accuracy with a complex structure and more parameters
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for slightly enhanced capabilities. However, this approach may

impact computational and memory efficiency. In fast-processing

and resource-limited scenarios, like tomato leaf disease detection,

FasterNet’s streamlined architecture could provide a better balance

of accuracy and efficiency.
2.3.2 Cascaded group attention
The attention mechanism is pivotal in tomato leaf disease

recognition, with its primary capability being the substantial

enhancement of recognition accuracy and processing efficiency

through the focus on and emphasis of key features related to

diseases in images. In environments characterized by complex

backgrounds or varied disease manifestations, traditional image

recognition techniques can overlook important details or result in

misjudgments due to information overload. In contrast, the
FIGURE 5

Fasternet’s backbone leverages deep learning for efficient feature extraction and accelerated neural network computations.
FIGURE 6

(A) Standard convolution applies filters across the entire input. (B) Depth-Wise convolution separates channels for independent processing.
(C) Partial convolution dynamically adapts to missing data areas.
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attention mechanism significantly improves the model’s

effectiveness in distinguishing between healthy and diseased

leaves through the construction of rich feature interactions and

the optimization of importance allocation. This mechanism

guarantees that the model maintains high recognition accuracy

even amidst complex backgrounds or in cases of unclear symptoms.

We’ve incorporated the Cascaded Group Attention (CGA)

(Chen et al., 2023) mechanism, shown in Figure 7, to effectively

address the computational efficiency challenges often found with

the SE attention (Hu et al., 2018) approach. Traditional

mechanisms such as SimAM (Yang et al., 2021) falter in complex

scenes, and CBAM’s (Woo et al., 2018) complexity may overload

the model, slowing down inference. Unlike SE, CA, and CBAM,

CGA excels in nuanced feature processing via systematic grading

and grouping, enhancing feature differentiation. CGA highlights

inter-channel and spatial relationships and uses a cascaded

framework to enrich layers with informative attention outputs.

This progressive approach makes CGA highly adaptable and

effective in managing complex features, providing a balanced

depth and breadth in analysis.

~xij = Attn(XijW
Q
ij ,XijW

K
ij ,XijW

V
ij )

~xi+1 = Concat½~xi,j�j=1 : hWp
i

Where:

j-th head computes the self-attention over Xij represents the j-th

split of the input feature Xi,   i : e :,

Xi = ½Xi1,  Xi2,……,Xih� and 1 ≤ j ≤ h, h represents the total

number of heads,

WQ
ij , W

K
ij , W

V
ij represent projection layers mapping the input

feature split into different subspaces,
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WP
i represents a linear layer that projects the concatenated

output features back to the dimension consistent with the input.

Using feature segmentation instead of the full feature set for each

attention head is more efficient and reduces computational cost. While

effective, this approach can be improved by enabling the Q, K, and V

layers to project richer features, thus enhancing their capabilities. A

cascading strategy for attention maps, as shown in the Figure 7,

involves incrementally adding each head’s output to the next,

enhancing feature refinement. This systematic accumulation enables

progressive refinement of feature representation:

X
0
ij = Xij + ~Xi(j−1),   1 < j ≤ h

Where:

X
0
ij represents the addition of the j − th input split Xij and the

(j − 1)-th head output ~Xi(j−1).

In the self-attention computation, we redefine Xij as the novel

input feature for the j − th attention head. Furthermore, we’ve

introduced an additional Token Interaction layer post Q-

projection, enriching the self-attention mechanism’s capability to

concurrently apprehend local and global relationships, thereby

amplifying the feature representation.

In our work, we replaced RT-DETR-R18’s original AIFI module

with the CGA approach, yielding two key advantages. Firstly, varied

feature segmentation for each head enhances attention map

diversity. This is similar to group convolution, where cascaded

group attention can save Flops and parameters by a factor of h.

Secondly, layering the attention heads deepens the network,

enhancing capacity without additional parameters. With reduced

channel dimensions for Q and K in attention map computations,

the resulting latency overhead is minimal. This refined approach

enables precise disease localization across sizes in tomato leaf

disease detection, significantly improving detection accuracy.
FIGURE 7

Cascaded Group Attention employs sequential attention layers, grouping features to focus progressively, enhancing representation by refining
attention at multiple scales for improved contextual learning.
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2.3.3 High-Level Screening-feature Fusion
Pyramid Networks

The High-Level Screening-feature Fusion Pyramid Network

(HSFPN) (Chen et al., 2024) is crafted to build hierarchical

feature pyramids attuned to scale variations, as shown in

Figure 8. This design allows HSFPN to precisely detect disease

features on tomato leaves, varying in size and shape, thus improving

detection accuracy and robustness. Furthermore, HSFPN’s layered

approach to feature fusion preserves detailed information, crucial

for identifying early-stage or subtle leaf disease indicators.

Consequently, HSFPN outperforms CCFM, particularly in

complex agricultural sett ings and in detect ing finely

detailed objects.
2.3.3.1 Selective Feature Fusion

Selective Feature Fusion (SFF), key to HSFPN, shown in

Figure 9, crucially combines feature maps from various scales.

The SFF module uses higher-level features as weights to filter

through and selectively extract relevant information from low-

level features. This involves scaling higher-level features to match

low-level feature dimensions, using methods like transposed

convolution and bilinear interpolation. Then, these scaled

higher-level features act as attention weights to highlight

valuable insights from low-level features. This fusion strategy

effectively combines the semantic depth of high-level features

with the detailed nuances of low-level features, greatly

improving the model ’s abi l i ty to handle mult i -sca le

data challenges.

Given a high-level feature fhigh ∈ RC*H*W and a low-level

feature flow ∈ RC*H1*W1 , the process begins by expanding fhigh
through a transposed convolution operation. This operation

utilizes a stride of 2 and a kernel size of 3� 3, enlarging fhigh to a

new dimension RC*2H*2W .
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Following this, to reconcile the dimensions of the high-level and

low-level features, bilinear interpolation is employed to either

upscale or downscale the high-level features. This adjustment

results in a feature fatt that matches the low-level feature

dimensions in RC*H1*W1 , thus facilitating their subsequent

integration:

fatt = BL(T − Conv(fhigh))

fatt = flow*CA(fatt) + fatt

Next, use the CA module to convert advanced features into

corresponding attention weights to filter out low-level features, after

obtaining features with the same dimension. Finally, the filtered

low-level features are fused with high-level features to enhance the

feature representation of the model and obtain fout ∈ RC*H1*W1 .

Integrating HSFPN with CCFM significantly enhances disease

detection precision in tomato leaf images, especially for size-varying

disease manifestations. HSFPN’s layered feature pyramid

architecture skillfully captures and defines features across scales,

greatly improving the model’s sensitivity and accuracy in

identifying disease stages, from small lesions to widespread areas.

HSFPN’s strategic use of multi-scale features not only strengthens

the model’s ability to detect small targets but also maintains accuracy

for larger ones. This dual strength effectively addresses traditional

challenges in detecting varying disease sizes, offering robust support for

precision agriculture’s complex requirements.

2.3.4 Focaler-CIoU
Sample imbalance is a common issue in object detection,

typically appearing as simple and difficult samples, categorized by

target size. Simple samples involve easier-to-detect targets, while

difficult samples include very small targets, challenging

accurate localization.
FIGURE 8

High-Level Screening-Feature Fusion Pyramid Networks (HSFPN) integrate multi-scale features with high-level screening for enhanced object
detection, achieving superior performance through hierarchical feature fusion.
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In tasks with mainly simple samples, focusing on bounding box

regression for these targets can significantly improve detection.

Conversely, in scenarios with prevalent difficult samples, refining

regression for these targets becomes essential. To address this

variance, the IoU loss function can be adapted using a linear

interval mapping method (Zhang and Zhang, 2024). This method

enables flexible adjustment between simple and difficult samples,

fine-tuning bounding box regression accuracy and improving

detection performance. The modified IoU loss function, designed

to address sample imbalance, is mathematically defined as follows:

IoU =
B ∩  Bgtj j
B ∪  Bgtj j

IoUfocaler =

0,   IoU < d

IoU−d
u−d ,   d ≪ IoU ≪ u                                

1,   IoU > u

8>><
>>:

Where:

B represents the predicted box

Bgt represents the GT (goal target) box

IoUfocaler is the reconstructed Focaler-IoU

IoU is the original IoU value

½d, u� ∈ ½0, 1�
Applying Focaler-IoU loss to existing IoU based bounding box

regression loss function CIoU:

CIoU = IoU −
r2(b, bgt)

c2
− aυ

a =
υ

(1 − IoU) + υ

υ =
4
p2 (arctan

wgt

hgt
− arctan

w
h
)2

LFocaler−CIoU = LCIoU + IoU − IoUFocaler

Where:
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b represents the center points of anchor box

bgt represents the center points of GT box

r( � ) represents the Euclidean distance

c represents the diagonal minimum distance enclosing

bounding box between b and bgt

wgt represents the width of GT box

hgt represents the height of GT box

w represents the width of anchor box

h represents the height of anchor box

In the field of tomato leaf disease detection, the Focaler-CIoU

loss function offers significant advantages over the loss function

originally used in RTDETR. Focaler-CIoU enhances the model’s

ability to recognize challenging samples by adjusting the loss

function to focus on samples of varying difficulty levels,

particularly for disease samples that are challenging to distinguish

or have indistinct boundaries, by assigning higher weights. This is

particularly important when dealing with lesions of varied sizes and

shapes on tomato leaves, as accurately identifying these diseases in

their early stages is often challenging. The characteristic of Focaler-

CIoU can significantly enhance the sensitivity in detecting early or

minor lesions, lower the rate of missed detections, and thus boost

the overall detection efficiency while maintaining high accuracy. It

holds considerable importance in enhancing the early prevention

and control of tomato leaf diseases.
3 Results

This section details the experimental, hyperparameter settings,

and training strategies in Section 3.1. Section 3.2 describes the

indicators and calculation formulas employed to evaluate model

performance. Sections 3.3 and 3.4 discuss the study’s results,

utilizing ablation experiments and visual displays, respectively.
3.1 Experimental setup

The experiment utilized an OpenBayes cloud server equipped

with an Nvidia A100 80GB MIG 1g.10g graphics card, boasting
FIGURE 9

Selective feature fusion in High-Level Screening-Feature Fusion Pyramid Networks intelligently merges critical high-level features, enhancing object
detection by optimizing feature representation.
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16GB of graphics memory, and ran on a Linux operating system.

This experiment was implemented using Python 3.10

and Cuda11.8.

The model training strategy entailed: For IoU-aware query

selection, the first 300 encoder features were selected to initialize

the decoder’s object query. Training employed the AdamW

optimizer, with a base learning rate of 0.0001, weight decay of

0.0001, global gradient clipping norm of 0.0001, 2000 linear warm-

up steps, and spanned 100 epochs.
3.2 Evaluation indicators

In the field of object detection, performance is primarily

evaluated by Precision (P), Recall (R), and Mean Average Precision

(mAP). Precision represents the ratio of correctly predicted positive

samples to all samples labeled as positive by the model. Recall

measures the proportion of correctly identified positive samples

among all actual positive samples. mAP denotes the mean of the

average precisions across all categories. The corresponding formulas

for Recall, Precision, and mAP are provided below:

P =
TP

TP + FP

R =
TP

TP + FN

AP =
Z 1

0
P(R)dR

mAP = o
n
i=1APi
n

TP (True Positive) refers to correctly identified positives, FN

(False Negative) to positives incorrectly labeled as negatives, and FP

(False Positive) to negatives incorrectly labeled as positives.

Precision (P) is the ratio of correctly predicted positive

observations to the total predicted positives, while Recall (R) is

the ratio of correctly predicted positive observations to all actual

positives. The area under the curve drawn through Precision (P)

and Recall (R) values on the PR graph represents the Average

Precision (AP), and the mean of AP values across all categories

yields the Mean Average Precision (mAP).

Beyond the aforementioned performance metrics, model size

and computational cost are assessed using the number of

parameters and FLOPs, to facilitate the selection of a lightweight

network for deployment on mobile devices. A reduction in

parameters and FLOPs enhances model efficiency under identical

computational resources, concurrently minimizing memory

consumption and boosting computational speed.
3.3 Ablation experiment

Each module within FCHF-DETR was evaluated through

ablation experiments to discern which modules enhance detection
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performance and which reduce computational and parameter costs.

RT-DETR-R18 served as the benchmark model, with the

introduction of the lightweight network structure, FasterNet, as

FCHF-DETR’s backbone to assess its capacity to reduce model

parameters and enhance inference speed effectively. Subsequently,

the AIFI module in the Efficient Hybrid Encoder was replaced with

Cascaded Group Attention to extract finer features. Additionally,

the CCFM module was substituted with HSFPN, capable of

capturing and expressing multi-scale features, thereby enhancing

network accuracy. Ultimately, the model’s original loss function was

optimized to the Focaler-CIoU loss function, adept at efficiently

capturing edge information of tomato leaf diseases.

Initially, we evaluated the impact of integrating lightweight

backbone networks versus not integrating them on the test set.

Comparison of the benchmark model RT-DETR-R18 with RT-

DETR FasterNet (Experiments 1 and 2) was performed. The

introduction of lightweight backbone networks led to decreases of

1.9% and 0.5% in Precision and Recall, respectively. The mAP50-95

and mAP50 values decreased by 0.6% and 0.3%, respectively, while

the number of Parameters decreased by 21%, the FPS increased by

1.8, and the FLOP decreased by 13.6%. These results suggest that

FasterNet, as the backbone network of RT-DETR-R18, effectively

reduces computational complexity and parameter count, and

significantly enhances inference speed. Although the accuracy has

marginally decreased, the improvement in efficiency renders this

loss acceptable.

A lightweight network structure significantly trims model size

and elevates detection speed, albeit at the expense of detection

accuracy. Consequently, methods that enhance accuracy without

incurring substantial computational costs are crucial.

Subsequently, employing the lightweight RT-DETR model with

FasterNet as the backbone, we examined the performance

alterations resulting from the integration of various modules.

Experiments 3, 4, and 5 involved the replacement of the AIFI

module in the original Efficient Hybrid Encoder with the SimAM,

SE, and CGA attention mechanisms, respectively, each contributing

to an improvement in accuracy. However, given the focus on

lightweight networks in this study, the CGA attention mechanism

was selected for further investigation. In Experiments 6 and 7, the

CCFM module in the Efficient Hybrid Encoder was replaced by

HSFPN without the SFF module and HSFPN with the SFF module,

respectively. Upon comparison, the HSFPN with the SFF module,

which offered greater accuracy improvements, was chosen. Building

on Experiment 7, the loss function of the benchmark RT-DETR-

R18 model was optimized, with both CIoU and Focaler-CIoU loss

functions being employed for training. Table 2 illustrates the

enhancement in detection performance attributable to the

lightweight DETR model.
• Experiments 3, 4, and 5 evaluated the integration of

SimAM, SE, and CGA attention mechanisms, respectively,

into the RT-DETR-R18 model with FasterNet as the

backbone network. Compared to Experiment 2, the

additions of SimAM, SE, and CGA resulted in increases

of 0.9%, 1.8%, and 2.3% in the mAP50-95 index,

respectively, and changes of -0.1%, 0.4%, and 0.7% in the
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Fron
mAP50 index for SimAM, SE, and CGA, respectively. The

performance metrics suggest that SimAM, likely a non-

parametric attention mechanism, notably improved the

model’s size and inference speed. However, given that

SimAM only slightly improved, or even reduced,

accuracy, despite a comprehensive comparison, the CGA

attention mechanism was ultimately selected due to its

significant accuracy improvements, despite a slight

increase in model parameters. Additionally, substituting

the AIFI module with the selected attention mechanism

enhanced the accuracy of tomato leaf disease detection,

albeit with a minor reduction in inference speed and a slight

increase in model parameters, aligning with the initial

objective of replacing the AIFI module.

• Experiments 6 and 7 demonstrate that replacing the CCFM

module in the RT-DETR model with HSFPN and

HSFPN_SFF leads to significant improvements in the

detection accuracy of the model. In the test set, HSFPN

and HSFPN_SFF increased the parameter count by 0.3M

and 0.5M, respectively, and reduced inference speed by 0.3

and 0.4, respectively. In Experiment 6, incorporating the

HSFPN module yielded a 7% increase in Precision, a 1%

increase in mAP50-95, and a 0.5G reduction in FLOPs.

However, considering the increase in model parameters and

the decrease in inference speed, the improvement in

detection accuracy is deemed insufficient. In Experiment

7, the integration of the SFF module into feature fusion

resulted in increases of 1% in P, 1.3% in Recall, 2.6% in

mAP50-95, and 0.3% in mAP50. Although the model

parameters have increased slightly and the inference

speed is slower compared to FasterNet+CGA in

Experiment 5, the significant improvement in detection

accuracy relative to the benchmark network satisfies the

lightweight standard.

• In Experiments 8 and 9, the loss functions of the benchmark

network were substituted with CIoU and Focaler CIoU,

respectively. Although the impact on inference speed,

parameter count, and computational complexity is
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minimal, the CIoU loss function fails to yield a significant

improvement in detection accuracy. However, optimization

of the Focaler CIoU loss function led to increases of 0.3% in

Precision and Recall, and 1.7% and 0.3% in mAP50-95 and

mAP50, respectively. The uneven distribution of tomato

leaf disease and the presence of small or edge targets in the

images pose challenges to the detection capabilities of the

model, which is expected. The introduction of the Focaler

CIoU loss function significantly enhances the localization

and detection of challenging targets, thereby enhancing the

accuracy and robustness of the model for small,

overlapping, and edge targets.
In conclusion, compared to RT-DETR-R18, the proposed

FCHF-DETR demonstrates a 1.7% increase in Precision, a 3.1%

increase in Recall, a 6% increase in mAP50-95, and a 1% increase in

mAP50. The number of parameters decreased by 3.6M, FPS

increased by 2.2, FLOP decreased by 9.2G, thereby significantly

improving the speed and accuracy of tomato leaf disease detection.

Therefore, FCHF-DETR is highly suitable for deployment on

terminal devices in agricultural environments, such as cameras,

offering the high detection performance necessary for real-

world applications.
3.4 Visual display

Across a test set comprising 3147 images, FCHF-DETR

precisely identified eight types of tomato leaf diseases, alongside

healthy leaves, attaining an overall mAP50-95 of 89.1% and an

mAP50 of 97.2%.

To illustrate the detection performance benefits of the proposed

method, a visual representation of the detection results for tomato

leaf diseases under various conditions is provided. Figure 10 depicts

the model’s detection capability in straightforward settings,

characterized by favorable shooting conditions, a simple

background, clearly visible affected areas on the tomato leaves,

and a minimal number of leaves in the image. Figures 10A–H
TABLE 2 Ablation experiment results: comparative analysis of all modules used in FCHF-DETR.

Model P R mAP50-95 mAP50 Parameters FPS GFLOPs

1 RTDETR-R18 94.7 93.6 83.1 96.2 19,880,748 21.9 57.0

2 RTDETR-FasterNet 92.8 93.1 82.5 95.9 15,792,928 23.7 49.5

3 RTDETR-FasterNet-SimAM 94.1 93.7 83.4 95.8 15,621,884 24.8 47.3

4 RTDETR-FasterNet-SE 94.9 95.2 84.3 96.3 16,882,972 21.7 54.5

5 RTDETR-FasterNet-CGA 95.1 95.1 84.8 96.6 15,812,212 24.5 48.3

6 RTDETR-FasterNet-CGA-HSFPN 95.8 95.2 85.8 96.7 16,101,128 24.2 47.8

7 RTDETR-FasterNet-CGA-HSFPN_SFF 96.1 96.4 87.4 96.9 16,314,816 24.1 47.9

8 RTDETR-FasterNet-CGA-HSFPN_SFF-CIoU 95.8 96.1 87.3 97.0 16,307,482 24.1 47.8

9 RTDETR-FasterNet-CGA-HSFPN_SFF-
Focaler-CIoU

96.4 96.7 89.1 97.2 16,265,580 24.1 47.8
fr
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demonstrate the model’s ability to concurrently and accurately

detect four distinct tomato leaf diseases in uncomplicated

environments: late blight, early blight, Septoria spot, and mold

leaf. Given that yellow viruses typically cluster and are found in

complex settings, their detection results were not showcased in the

depiction of simple environments.

The integration of the CGA attention mechanism and HSFPN

feature fusion module endows the model with a robust capability to

extract pivotal information from images, ensuring high detection

accuracy across various tomato leaf diseases. Figure 11 illustrates

the model’s detection performance in complex scenarios, including

situations where leaves are at the image’s edge or partially obscured.

Figures 11A–D reveal that the FCHF-DETR model precisely

identifies occluded diseased leaves. Figures 11I–L demonstrate

that, with the Focaler-CIoU loss function integrated, the model

enhances the detection accuracy of challenging edge targets,

mitigating the original model’s limitation in identifying partially

visible diseased leaves. In the other images, the enhanced model is

shown to effectively identify edge targets, even those obscured by

surrounding foliage.

To underscore the strengths of the proposed model in complex

scenarios, Figure 12 illustrates its detection capabilities in densely

populated environments. Given the dense distribution and potential

for small spots on tomato leaves in real-world settings, detecting

diseased leaves in such environments is paramount. Despite these

challenges, the model maintains robust performance. Figure 12

demonstrates the model’s efficacy in identifying diseased tomato leaf

areas within dense foliage, under varied conditions such as intense

illumination area A, D, shadow area B, E, or high-dense area C, F.

Acknowledging weather-related challenges at tomato

cultivation sites, pixel reduction was applied to part of the test set

data to simulate the effects of rain or dense fog on camera imagery.

Figure 13 reveals that, even with reduced pixel quality, the FCHF-

DETR model reliably detects most tomato leaf diseases, with only a
Frontiers in Plant Science 13173
minor impact on detection accuracy. The sustained performance in

simulated rainy and foggy conditions is credited to the Cascaded

Group Attention and HSFPN feature fusion mechanisms within the

Efficient Hybrid Encoder, capable of extracting key features from

blurred images. Additionally, the incorporation of the Focaler-

CIoU loss function enables the detection of leaf diseases that pose

challenges for the RT-DETR-R18 model, significantly aiding

practical deployment.

The visual evidence from Figures 10–13 confirms that FCHF-

DETR adeptly addresses a range of challenges typical in real

agricultural settings for tomato leaf disease detection, effectively

resolving longstanding issues in the sector.
4 Discussion

In contemporary agricultural practices, numerous tomato

plants are afflicted by leaf diseases, making manual detection

excessively time-consuming and labor-intensive. Current

technologies frequently fail to balance processing speed with

detection accuracy, particularly when identifying small disease

spots, presenting clear drawbacks. To address this challenge, this

study introduced FCHF-DETR, a high-precision, lightweight

detection algorithm derived from the RT-DETR-R18 framework.

A dataset comprising 3147 images of tomato leaf diseases was

compiled, encompassing diverse scenes and levels of image clarity.

To streamline the model and enhance memory efficiency, the

traditional ResNet18 was substituted with FasterNet in the

backbone network. Concurrently, within efficient hybrid encoders,

replacing the AIFI module with a cascaded group attention

mechanism and the CCFM module with HSFPN notably boosted

detection accuracy with minimal impact on speed.

Furthermore, to better identify challenging samples, the Focaler-

CIoU loss function was introduced, enhancing the model’s
FIGURE 10

(A–H) demonstrate the detection of four distinct types of plant leaf diseases under controlled conditions. The bounding box within the figure
highlights the location and specific types of tomato leaf diseases.
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FIGURE 11

(A–D) illustrate the detection performance of the targeted leaf disease in scenarios where it is obscured by other leaves. (E–H) demonstrate the detection
performance of the targeted leaf disease when situated at the periphery of the image and simultaneously obscured by other foliage. (I–L) reveal the
detection performance of the targeted leaf disease at the image’s edge.
FIGURE 12

(A, D) present the detection results of leaf disease under conditions of intense illumination. (B, E) depict the detection results of leaf disease within shaded
environments. (C, F) illustrate the detection effectiveness of leaf disease in highly dense settings.
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performance across the dataset. Experimental results indicated that

FCHF-DETR achieved an mAP50-95 of 89.1% on the test set, marking

a 6% improvement, and an mAP50 of 97.2%, a 1% increase.

Concurrently, FLOPs decreased by 9.2G, and the model’s parameter

count was reduced by 3.6M. These achievements showcase the

method’s enhancement of detection accuracy and successful

reduction in the model’s computational load, illustrating an effective

balance between accuracy and efficiency.

In practical agricultural settings, particularly on diverse

farmlands, a common challenge arises: the overlapping or

obstruction of leaves from different crops, markedly impacting

tomato leaf disease detection. For instance, in fields where

tomatoes coexist with taller crops like corn or legumes, the foliage

of these crops can obscure tomato leaves, masking critical disease
Frontiers in Plant Science 15175
features. Under these conditions, the effectiveness of even high-

precision detection algorithms like FCHF-DETR may be markedly

limited. Leaf occlusion not only diminishes the available feature

information for algorithmic recognition but can also lead to errors,

like mistaking occluded edges or shadows for disease spots.

This issue underscores the limitations of current visual-based

object detection algorithms in navigating complex agricultural

scenes. Addressing this challenge necessitates a deeper

comprehension of crop interactions and growth patterns to

develop algorithms capable of adapting to such diversity and

complexity. Furthermore, employing multiperspective or

multimodal data acquisition techniques, like integrating aerial and

lateral imagery or additional sensor data, could mitigate these issues

and enhance lesion detection in occluded conditions.
FIGURE 13

(A–D) and (I–L) demonstrate the detection efficacy of tomato leaf disease in standard conditions, while (E–H) and (M–P) exhibit the comparative
detection efficacy of the model on the test set following pixel reduction processing and the simulation of rainy conditions within an authentic
plantation setting.
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Meanwhile, we also investigated that the manifestation of

tomato leaf disease may vary in different natural environments

due to various factors such as climate, soil type, and humidity,

resulting in certain types of leaf diseases being more common in

specific environments. For example, in high humidity and warm

environments, the incidence of downy mildew may be much higher

than that of early or late blight in arid environments. The impact of

these environmental factors on disease occurrence requires the

detection system to adjust the weight of various leaf disease

detection according to different natural conditions, in order to

improve the detection accuracy and efficiency in specific

environments. However, even the high-precision and high-

efficiency detection algorithm FCHF-DETR invented in this

article adopts the same detection strategy for all types of leaf

diseases, failing to fully consider the diversity of natural

environmental factors. This may lead to insufficient sensitivity of

algorithms to detecting high-risk diseases in certain specific

environments, thereby reducing overall detection efficiency

and accuracy.

In order to solve this problem, future detection algorithms

need to introduce environmental awareness mechanisms, analyze

and learn the occurrence patterns of diseases under different

natural environmental conditions, and dynamically adjust the

detection weights for different leaf diseases. This may involve

complex data collection and analysis, such as combining

meteorological data, soil conditions, and crop growth data,

using machine learning algorithms to predict the probability of

disease occurrence under different environmental conditions, and

optimizing the parameters of the detection model accordingly.

Through this approach, the detection system can adapt more

intelligently to different natural environments, improve the

detection accuracy of key diseases, and provide more reliable

technical support for agricultural production.
5 Conclusion

This study introduces FCHF-DETR, a lightweight model for

detecting tomato leaf diseases, effectively balancing accuracy and

speed. It employs data augmentation and reduction techniques to

adapt to real-world environments for detecting tomato leaf

diseases. FCHF-DETR enhances the RT-DETR-R18 framework

by integrating the lightweight FasterNet backbone, boosting

detection speed and reducing model parameters without

compromising accuracy. Additionally, it introduces the

Cascaded Group Attention mechanism, replacing the AIFI

module, and substitutes the CCFM module with HSFPN in the

original network. Despite a minor increase in computational

speed and model parameters, there’s a significant enhancement

in detection accuracy. The adoption of the Focaler-CIOU loss

function, replacing the original, further refines the accuracy for

cha l lenging samples wi thout a l ter ing parameters or

computational complexity. Experimental results reveal that
Frontiers in Plant Science 16176
FCHF-DETR surpasses RT-DETR-R18 with a 1.7% increase in

precision, 3.1% in recall, 1% in mAP50 and 6% in mAP50-95, and

reductions in parameters, FPS, and FLOPs. This signifies not just a

notable boost in accuracy but also a substantial decrease in the

model’s parameter count, thus offering robust support for

contemporary tomato leaf disease detection.

Future research will aim to refine detection accuracy in

diverse farmlands affected by overlapping leaf occlusion. We

plan to leverage multiperspective or multimodal data to

develop more adaptive detection algorithms. Additionally, to

accommodate varying tomato leaf disease patterns across

different environments, future algorithms will incorporate

environmental awareness mechanisms. Dynamic adjustments to

the detection priorities of different diseases will enhance the

accuracy and efficiency in specific environments, broadening

the algorithm’s applicability in complex real-world scenarios.
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Accurate fruit detection is crucial for automated fruit picking. However, real-

world scenarios, influenced by complex environmental factors such as

illumination variations, occlusion, and overlap, pose significant challenges to

accurate fruit detection. These challenges subsequently impact the

commercialization of fruit harvesting robots. A tomato detection model named

YOLO-SwinTF, based on YOLOv7, is proposed to address these challenges.

Integrating Swin Transformer (ST) blocks into the backbone network enables

the model to capture global information by modeling long-range visual

dependencies. Trident Pyramid Networks (TPN) are introduced to overcome

the limitations of PANet’s focus on communication-based processing. TPN

incorporates multiple self-processing (SP) modules within existing top-down

and bottom-up architectures, allowing featuremaps to generate new findings for

communication. In addition, Focaler-IoU is introduced to reconstruct the original

intersection-over-union (IoU) loss to allow the loss function to adjust its focus

based on the distribution of difficult and easy samples. The proposed model is

evaluated on a tomato dataset, and the experimental results demonstrated that

the proposed model’s detection recall, precision, F1 score, and AP reach 96.27%,

96.17%, 96.22%, and 98.67%, respectively. These represent improvements of

1.64%, 0.92%, 1.28%, and 0.88% compared to the original YOLOv7 model. When

compared to other state-of-the-art detection methods, this approach achieves

superior performance in terms of accuracy while maintaining comparable

detection speed. In addition, the proposed model exhibits strong robustness

under various lighting and occlusion conditions, demonstrating its significant

potential in tomato detection.
KEYWORDS

tomato detection, YOLOv7, Swin Transformer, Trident Pyramid Network, Focaler-IoU
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1 Introduction

Fruit harvesting is a critical step in the agricultural production

process. However, traditional manual methods are costly, time-

consuming, and inefficient, complicating meeting large-scale

cultivation demands. Due to the advancement of smart

agriculture, the transition from manual labor to automated fruit

harvesting has become an inevitable trend. For fruit harvesting

robots, accurate fruit identification and localization are essential for

efficient harvesting. Therefore, it is very important to develop robust

and accurate fruit detection algorithms for the robotic

vision systems.

Over the past few decades, numerous researchers have explored

various fruit detection methods. These approaches are generally

categorized into threshold discrimination and machine learning-

based methods. Initially, the fruit targets in images are segmented

by setting thresholds based on simple features such as color (Wei

et al., 2014), shape (Kelman and Linker, 2014), texture (Rakun et al.,

2011), or a combination of these features (Payne et al., 2014), to

complete the detection process. Although these methods yield

reasonable results, the sensitivity of the thresholds to

environmental variations limits their generalization capabilities.

The introduction of machine learning has mitigated these

limitations. Traditional techniques, which integrate handcrafted

features such as Histogram of Oriented Gradients and Haar

features with machine learning models like Support Vector

Machine (SVM) (Liu et al., 2019) and AdaBoost (Zhao et al.,

2016), have been employed to locate and recognize fruits.

Following the success of deep learning in computer vision

(Krizhevsky et al., 2012), it has been applied to smart agriculture

(Sa et al., 2016; Fuentes et al., 2017). Deep learning models are adept

at directly extracting features from data and facilitating end-to-end

training, significantly enhancing the models’ detection performance

and efficiency.

Despite the significant advancements in deep learning-based

fruit detection methods, several shortcomings persist. These models

are typically trained on data from controlled conditions, resulting in

reduced robustness against unconstrained factors in real-world

environments, such as illumination variations and occlusion or

overlap occurrences. In addition, the traditional IoU-based

regression loss function utilized in the YOLO model cannot

accurately predict the position of fruit targets. Due to the

limitations inherent in traditional regression methods, which

neglect the distribution of objects across different scales, they can

fail to accurately identify the location of fruit targets, particularly in

challenging scenarios.

In order to address these challenges, this study introduces a

novel YOLO-SwinTF model, designed to enhance the accuracy of

tomato detection in complex environments while maintaining high

detection efficiency. Based on the YOLOv7 architecture, the model’s

backbone, neck, and loss function are refined to improve feature

extraction and target-focusing capabilities. Specifically, Swin

Transformer blocks are incorporated into the backbone to aid the

model in capturing long-range visual dependencies while

maintaining computational efficiency, thereby enhancing the

semantic information of the features. Then, the original PANet is
Frontiers in Plant Science 02179
replaced with the TPN architecture by embedding multiple SP

modules between the traditional top-down and bottom-up

architectures. This modification allows the feature mapping to

generate new information for propagation. In addition, a Focaler-

IoU loss is constructed using a linear interval mapping method to

adjust its focus based on sample difficulty, improving the model’s

detection performance.

The main contributions to this study are as follows:
1. A novel network architecture, YOLO-SwinTF, is proposed,

which incorporates the Swin Transformer attention

mechanism and Trident Pyramid Network architectures

to enhance feature extraction capabilities.

2. The Focaler-IoU loss is introduced to accurately identify

tomato locations. This method enhances the detection

performance of the model by dynamically adjusting the

focus of the loss among samples of varying difficulty.

3. Extensive experiments on tomato datasets demonstrate that

the proposed YOLO-SwinTF model achieves excellent

performance compared to the current state-of-the-art

methods for tomato detection.
The remainder of this paper is organized as follows: Section 2

reviews the literature on fruit detection methods, which include

threshold-based discriminant analysis, machine learning, and deep

learning approaches. Section 3 introduces the proposed tomato

detection model. The experimental results obtained through the

proposed method are presented and discussed in Section 4. Finally,

Section 5 concludes the study.
2 Related work

2.1 Threshold-based discriminant methods

In the early days, researchers employed simple features such as

color, shape, and texture to detect fruits. Kurtulmus et al. (2011)

developed a method for detecting and counting green citrus fruits in

natural environments using color images. They introduced a novel

“eigenfruit” approach that incorporated color, circularity, and Gabor

texture analysis to identify the fruits. Then, a shifting sub-window

technique was applied at three different scales to scan the image and

localize the fruits. In their study, 73% of green fruits were correctly

identified. Ji et al. (2012) established an automatic vision recognition

system to guide apple harvesting robots. Images of the apples were

captured using a color charge-coupled device camera. An industrial

computer processed and recognized the apples. A vector median filter

removed noise from the color images of the apples, and an image

segmentation algorithm based on region and color features was

applied. The study reported an accuracy of 89% with an average

detection time of 352 ms. Chaivivatrakul and Dailey (2014)

developed a texture-based fruit detection approach. This method

utilizes interest-point feature extraction and descriptor computation.

A low-cost web camera suitable for mechanized systems evaluated 24

combinations of interest-point features and descriptors for

pineapples and bitter melons. The method achieved an accuracy of
frontiersin.org
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85% for the single-image detection of pineapples and 100% for bitter

melons. Jana and Parekh (2017) proposed a shape-based fruit

recognition approach, which included a pre-processing step that

normalizes fruit images to account for translation, rotation, and

scaling differences. This method then employed features unaffected

by variations in distance, growth phase, and surface appearance of the

fruits for detection. The proposed method was applied to a dataset of

210 images covering seven different fruit classes, achieving an overall

recognition accuracy between 88% and 95%.

Although threshold-based discriminant methods have

demonstrated reasonable effectiveness in detecting fruits, their

performance significantly depends on the appropriateness of the

selected thresholds. This dependence can result in limited model

generalization and diminish detection robustness.
2.2 Traditional machine learning-
based methods

Due to the development of machine learning, many researchers

have attempted to apply it to fruit detection. Methodologies include

Adaboost (Payne et al., 2014), Random Forests (Samajpati and

Degadwala, 2016), and SVM (Behera et al., 2020). Using machine

vision and SVM, Peng et al. (2018) conducted a study on detecting

different classes of fruit, such as apples, bananas, citruses,

carambolas, pears, and pitaya. The process involved using a

Gaussian filter and histogram equalization for image processing,

followed by segmentation with the Otsu method. To extract

features, researchers employed shape-invariant moments and

synthesized the color and shape of fruits. An SVM was then used

to classify and detect the fruits, achieving detection rates of 95% for

apples, 80% for bananas, 97.5% for citrus fruits, 86.7% for

carambola, 92.5% for pears, and 96.7% for pitaya. Jiao et al.

(2020) proposed a detection and localization method for

overlapping apples, which began with the transformation and

segmentation of apple images using the Lab color space and K-

means algorithm. Morphological processes such as erosion and

dilation were applied to delineate the apple edges. In addition, a fast

algorithm calculated the minimum distance from each interior

point to the apple outline, determining the radii by identifying

the shortest distance from the center to the edge. Zhu et al. (2021)

developed a carrot detection method by extracting deep features

from a three-layer fully connected layer of network models and

integrating these with an SVM. Their most effective model

combined ResNet101 with an SVM, achieving an accuracy of

98.17%. Yu et al. (2021) proposed a method for identifying ripe

litchi using an RGB-D camera in natural environments. Their

approach utilized both color and depth images for litchi

detection. Initially, depth image segmentation was employed to

eliminate redundant image information outside the effective range

of the manipulator. A random forest binary classification model was

then trained using color and texture features to detect litchi fruits,

achieving detection accuracies of 89.92% for green litchis and

94.50% for red litchis.

Although machine learning has significantly advanced fruit

detection, these methods predominantly rely on handcrafted
Frontiers in Plant Science 03180
features and possess inherent limitations. Their capacity to

abstract features is restricted, confining them to simple scenarios

and limiting their generalization capabilities. In addition, the

models lack end-to-end learning , which diminishes

learning efficiency.
2.3 Deep learning-based methods

In recent years, deep learning-based approaches have emerged as

powerful alternatives. In particular, convolutional neural networks

(CNN) have shown remarkable success in learning discriminative

features directly from raw image data without needing handcrafted

features. CNN-based architectures such as Faster R-CNN (Ren et al.,

2015), YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;

Bochkovskiy et al., 2020; Wang et al., 2023), and SSD (Liu et al., 2016)

have been widely used for fruit detection. Bargoti and Underwood

(2017) proposed a deep model for detecting fruits in orchards, based

on Faster R-CNN (Ren et al., 2015), to detect mangoes, almonds, and

apples. This method achieved an F1 score of 90% for mangoes and

apples. Ganesh et al. (2019) utilized Mask R-CNN (He et al., 2017) to

detect individual fruits and obtain pixel-wise masks for each detected

fruit in an image, achieving an overall F1 score of approximately 89%.

Despite the advancements in two-stage methods that use separate

networks to predict bounding boxes and class probabilities from an

input image, these are not well suited for real-time applications.

Recently, YOLO algorithms have been proposed to address this

issue using a single CNN to predict and classify objects. Hernández

et al. (2023) developed a tomato detection and classification method

based on YOLOv3-tiny (Redmon and Farhadi, 2018), achieving an F1
score of 90% for detecting ripe tomatoes. Guo et al. (2023) employed

YOLOv7 for the real-time detection of ripe tomatoes, using an

improved RepLKNet (Ding et al., 2022) to enhance the receptive

field. In addition, the head structure of YOLOv7 was redesigned to

address the issue of low FLOPS, and FasterNet (Chen et al., 2023) was

used to optimize the structure between the Concat and CBS in the

head. ODConv (Li et al., 2022) was added to improve the feature

extraction for small tomatoes, achieving an mAP (0.5:0.95) of 56.8%

with a detection time of 0.0127 s. Zeng et al. (2023) proposed a

lightweight modified YOLOv5 for real-time localization and ripeness

detection of tomatoes, achieving an mAP of 96.9% with a detection

speed of 42.5 ms. Mbouembe et al. (2023) developed an efficient

tomato detection method based on YOLOv4, incorporating an

improved BottleneckCSP, a modified CSP-SPP, and CARAFE into

the YOLOv4 architecture to enhance the feature expression

capabilities of the model. This method achieved an mAP of 98.5%.

Wang et al. (2024c) developed a grape detection algorithm based on

YOLOv5s, introducing a dual-channel feature extraction attention

mechanism (Li et al., 2017) and a dynamic snake convolution

(Qi et al., 2023) in the backbone network to improve feature

extraction. The mAP (0.5:0.95) was 69.3%. Gao et al. (2024)

established an improved binocular calyx localization method based

on YOLOv5x to detect kiwifruit, achieving an mAP of 93.5% with a

detection speed of 105 ms per image.

Despite advances in deep learning-based fruit detection, several

challenges remain. Variability in fruit appearance due to uneven
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illumination, overlap, and occlusion poses a challenge for accurate

detection. In addition, the presence of similar-looking objects and

background clutter further complicates this task.
3 Materials and methods

3.1 Image acquisition

The tomato dataset for this study was collected at the

Shouguang Vegetable High-Tech Demonstration Park in

Shandong Province, China between 2017 and 2019. The

acquisition equipment utilized was a Sony digital camera (Sony

DSC-W170, Tokio, Japan) with a resolution of 3648 × 2056 pixels.

This study collected 966 tomato images under various

environmental conditions, including sunlight, shade, overlap, and

occlusion. Considering that the dataset is not large, additional

splitting could lead to a smaller training set, which is prone to

overfitting (Ashtiani et al., 2021). Therefore, we divided the data

into training and test sets at a ratio of 3:1, following (Liu et al., 2022;

Jia et al., 2023). The training dataset comprised 725 images

featuring 2553 tomatoes, whereas the test set included 241 images

with 912 tomatoes. Figure 1 displays a selection of example images

captured under various environmental conditions.
3.2 Image augmentation

The study applied data augmentation techniques to the

collected images to enhance the generalization capability of the

trained model and prevent overfitting. This resulted in a final set of

4350 enhanced images, achieved through horizontal flipping,

scaling and cropping, brightness transformation, color balancing

and blurring, as shown in Figure 2. For brightness transformation, a

random factor ranging from 0.6 to 1.4 was employed to modulate

pixel intensity, simulating the effects of diverse weather conditions
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on image brightness. Scaling and cropping were performed

according to the methods described by Liu et al. (2020). During

this phase, images without labels were discarded. The Gray World

algorithm (Lam, 2005) was employed for color balancing to mitigate

the impact of lighting on color rendering. Then, random blurring

was applied to the augmented images to mimic the indistinct visuals

that can result from camera motion. Table 1 lists the total number

of resulting images after data augmentation.
3.3 YOLOv7 model

YOLOv7 (Wang et al., 2023) is an anchor-based detection

method among the widely used YOLO algorithms. Like other

iterations in the YOLO series, this version comprises three

components: a backbone network for feature extraction; a neck

network that fuses and refines the extracted features, yielding large,

medium, and small feature sets; and a head network that utilizes

these features from the neck to generate prediction outputs.

YOLOv7 developed a new backbone network called

EfficientRep, which is a redesigned and improved version of the

EfficientNet architecture (Tan and Le, 2019). This new backbone

network includes different modules: E-ELAN, MPConv, and

SPPCSPC. The E-ELAN module is an extended version of the

ELAN (Wang et al., 2022). The original ELAN was designed to

address the problem of convergence in deep models, which can

gradually deteriorate as the models scale. E-ELAN maintains the

same gradient flow as ELAN, but increases cardinality through

group convolution. The MPConv module strikes a balance between

increasing representat ional capacity and maintaining

computational efficiency. The SPPCSPC module is a combination

of the SPP module (He et al., 2015) and the CSP module (Wang

et al., 2020). The SPP module captures features at different spatial

resolutions, which is beneficial for detecting objects of various sizes.

The CSP module then facilitates the flow of information between

different stages and concatenates the output of the SPP module with
FIGURE 1

Tomato samples with different growing circumstances: (A) separated tomatoes, (B) a cluster of tomatoes, (C) occlusion case, (D) overlap case,
(E) sunlight case, and (F) shade case.
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the previous stage’s feature maps, creating a richer and more diverse

feature representation.

The neck network combines relevant feature maps from the

backbone network using the PANet architecture (Liu et al., 2018)

for feature fusion. In addition, YOLOv7 uses the RepConv

technique (Ding et al., 2021) to address the challenges of

detect ing objects at various scales by enhancing the

representability of feature maps. This technique also improves the

inference results, although it increases the training time by

introducing gradient diversity and allowing for more complex

feature representations.

The head network uses anchor boxes to predict the objects’

position, size, and class in the input image. Subsequently, a post-

processing technique known as Non-Maximum Suppression

(NMS) is employed to refine the predicted object boxes by

eliminating redundant detections, enhancing the accuracy

of YOLOv7.
3.4 The proposed YOLO-SwinTF

This study introduces the YOLO-SwinTF model, an

advancement based on YOLOv7, to enhance the accuracy and

robustness of tomato detection in complex environments. Figure 3

illustrates the architecture of the proposed YOLO-SwinTF model.

It integrates three innovative modules to enhance the feature

expression capability, improving the detection accuracy.

Initially, ST blocks were incorporated into the backbone

network , enabl ing the mode l to capture long-range

dependencies efficiently. Subsequently, the TPN architecture
Frontiers in Plant Science 05182
replaced the original PANet in the neck network. This

replacement was achieved by embedding multiple SP modules

within the existing top-down and bottom-up architectures,

facilitating the generation and effective propagation of new

information within the feature maps. Finally, a Focaler-IoU loss

was constructed using a linear interval mapping method. This

method dynamically adjusts its focus based on the difficulty of the

samples, significantly enhancing the detection capabilities of the

model. Further details are provided in Sections 3.4.1 – 3.4.4.

3.4.1 Swin Transformer block
Although CNN networks can effectively extract local features,

they are limited in capturing global features, impacting the final

detection performance. In order to address this limitation, the

current study introduces the attention mechanism of the Swin

Transformer (Liu et al., 2021) to enhance the model’s long-range

dependencies. Unlike traditional Transformer structures, the Swin

Transformer employs a hierarchical attention mechanism. In this

structure, a sliding window performs attention computations

separately at different layers, diverging from the standard multi-

head self-attention (MSA) module. This approach not only

facilitates the extraction of global information through long-

distance modeling but also reduces the computational complexity

of the original attention method. Figure 4 indicates that a Swin

Transformer module primarily comprises a LayerNorm (LN) layer,

a window-based multi-head self-attention (W-MSA) module, a

shifted window-based multi-head self-attention (SW-MSA)

module, a two-layer multi-layer perceptron (MLP) with a GELU

non-linear activation function between layers , and a

residual connection.
TABLE 1 The number of training images after data augmentation.

Original Honrizontal
flip

Scaling
and cropping

Brightness
transformation

Color
balancing

Blurring Total

No. of images 725 725 725 725 725 725 4350
FIGURE 2

Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) brightness transformation, (E) color
balancing, and (F) image blurring.
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FIGURE 4

The Swin Transformer blocks.
FIGURE 3

The architecture of the proposed YOLO-SwinTF.
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Figure 4 shows that two consecutive Swin Transformer blocks

are computed using Equations 1-4 (Liu et al., 2021):

ẑ l = W −MSA(LN(zl−1)) + zl−1 (1)

zl = MLP(LN(ẑ l)) + ẑ l (2)

ẑ l+1 = SW −MSA(LN(zl)) + zl (3)

zl+1 = MLP(LN(ẑ l+1)) + ẑ l+1 (4)

where ẑ l denotes the output of the (S)W-MSA module and zl

denotes the output of the MLP module of the lth block.

In order to enable the model to capture global information, the

first four CBS modules in YOLOv7 were replaced with four

successive ST blocks, thus expanding the network’s receptive field

and enriching contextual information, as depicted in Figure 3.

3.4.2 Trident Pyramid Network architecture
As discussed by Picron and Tuytelaars (2022), existing feature

pyramid networks (FPN, PANet, and BiFPN) primarily focus on

communication-based processing, enhancing feature fusion

through top-down and bottom-up operations. These networks

can become saturated with communication when multiple

communication-based operations are performed consecutively,

reducing efficiency. Accordingly, this study introduces the TPN

architecture to replace PANet in YOLOv7, which achieves a better

balance between communication-based processing and self-

processing by alternating top-down and bottom-up operations

and parallel self-processing mechanisms.

Specifically, the TPN architecture consists of traditional top-

down and bottom-up operations and parallel SP modules, as

illustrated in Figure 5. An SP module consists of several

consecutive base self-processing layers, each designated as a

bottleneck layer, as depicted in Figure 6.

Multiple SP modules were explicitly embedded between the

original top-down and bottom-up architectures. As shown in
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Figure 3, the SP module was added after the SPPCSPC and

ELAN-W modules in the bottom-up architecture. In addition, the

SP module processed the features again after being merged into the

top-down architecture. In this manner, communication-based

processing is alternated with self-processing, enabling feature

mapping to generate new information for delivery. The TPN

architecture controls the amount of self-processing through the

hyperparameter, the number of layers in the SP module, N, which is

set to 2 in this study.
3.4.3 Focaler-IoU-based regression loss
The accuracy of bounding box localization is critical to target

detection performance. However, existing studies often overlook

the impact of the distribution of difficult samples (small targets that

are difficult to accurately localize) and easy samples (targets that are

easy to detect) on bounding box regression. This oversight can

result in suboptimal performance and a lack of robustness in

challenging scenarios. To address this issue, this study introduces

Focaler-IoU (Zhang and Zhang, 2024) to enhance detector

performance in the tomato detection task by effectively focusing

on different regression samples.

Specifically, the Focaler-IoU reconstructs the original IoU loss

through a linear interval mapping method that allows the loss

function to adjust its focus according to the distribution of difficult

and easy samples. The reconstructed Focaler-IoU IoUfocaler is

expressed as follows (Zhang and Zhang, 2024):

IoUfocaler =

0, IoU < d

IoU−d
u−d , d ≤ IoU ≤ u

1, IoU > u

8>><>>: (5)

where IoU is the original IoU value, and d and u are both in the

range of [0,1]. Adjusting the values of d and u can guide IoUfocaler to

focus on different regression samples. In this study, d and u were set

to 0.1 and 0.9, respectively. Accordingly, the Focaler-IoU loss

LFocaler−IoU is defined below:
FIGURE 5

The TPN architecture. TD, BU and SP denotes top down, bottom up and self-processing modules, respectively.
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LFocaler−IoU =  1  – IoUfocaler (6)

Referring to Zhang and Zhang (2024), the Focaler-IoU loss is

applied to the original CIoU-based bounding box regression loss

used in YOLOv7, resulting in a novel regression loss as follows:

Lreɡ = LCIoU + IoU − IoUfocaler (7)

Where LCIoU is expressed as follows (Zheng et al., 2020):

LCIoU = 1 − IoU +
d2(b, bɡt)

c2
+ bv (8)

where d( · ) denotes Euclidean distance. b and bɡt denote the

central points of the predicted and ground truth bounding boxes,

respectively. b represents a positive trade-off parameter and v

quantifies the consistency of the aspect ratio, as detailed below.

v =
4
p2 arctan 

wɡt

hɡt
− arctan 

w
h

� �2

(9)

b =
v

(1 − IoU) + v
(10)

Combining Equations 7 and 8, we obtain the final regression

loss as follows:

Lreɡ = 1 − IoUfocaler +
d2(b, bɡt)

c2
+ bv (11)

This approach enables the loss function to dynamically adjust

its focus between easy and difficult samples, enhancing the

performance of the model in the detection task. Simultaneously,

the adjustment of the loss function allows the model to concentrate

more on positive samples that are difficult to classify and less on

negative samples that are easy to classify. This adjustment effectively

improves the model’s response to the imbalance between difficult

and easy samples.

3.4.4 Loss function
As in YOLOv7 (Wang et al., 2023), the loss function of the

proposed model consists of three parts, i.e., the regression loss Lreɡ,

confidence loss Lconf , and classification loss Lcls, and is expressed as

follows:

Ltotal = lreɡLreɡ + lconf Lconf + lclsLcls (12)
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where lreɡ, lconf and lcls were set to 5, 1, and 1, respectively, to

balance the different losses. Lreɡ, Lconf , and Lcls are expressed in

Equations 11, 13 and 14, respectively.

Lconf = o
s�s

i=1
o
NB

j=1
li,j½−Cilog ~Ci�

o
s�s

i=1
o
NB

j=1
(1 − li,j) −(1 − Ci)log (1 − ~Ci)

� � (13)

Lcls =o
s�s

i=1
o
NB

j=1
li,j o

a∈classes 

½pi(a)log ~pi(a) + (1 − pi(a))log (1 − ~pi(a))� (14)

where s� s denotes the grid cell size, and NB is the number of

bounding boxes. ~Ci and Ci represent the confidence of the predicted

box and the confidence threshold, respectively. li,j equals 1 if the jth

bounding box falls in the ith grid cell and 0 otherwise. ~pi and pi denote

the predicted and ground truth class probabilities, respectively.
4 Experimental results and discussion

4.1 Experimental environment

Our experiments were conducted on a server with a 43GB Intel

(R) Xeon(R) Platinum 8255C CPU operating at 2.50GHz and an

NVIDIA GeForce RTX 3090 GPU. The server runs Ubuntu 18.04 as

its underlying operating system. The proposed model was

implemented using the PyTorch framework.

The model was trained with an input resolution of 640 × 640

pixels and a batch size of 32. The SGD optimizer was employed for

training with a momentum of 0.937 and a weight decay of 0.0005. A

cosine annealing schedule was applied to control changes in

learning rates, starting with an initial learning rate of 0.001. The

training was carried out over 160 epochs. The hyperparameters

used in this study are listed in Table 2.
4.2 Evaluation metrics

For a thorough evaluation of the performance of the proposed

method, the recall (R), precision (P), and F1 score (Sa et al., 2016) were

adopted as evaluation metrics. These metrics are defined as follows.
FIGURE 6

The architecture of a base self-processing layer. C1 and C3 denote convolution operations with kernel sizes of 1 and 3, respectively.
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P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

F1 =
2� P � R
P + R

(17)

where TP, FP, and FN denote true positive (correct detection),

false positive (false detection), and false negative (missing

detection), respectively.

In addition, this study employed Average Precision (AP)

(Everingham et al., 2010) to assess the overall performance of the

detection system. AP is defined as follows:

AP =o
n
(rn+1 − rn)pinterp(rn+1) (18)

pinterp(rn+1) = max
~r :~r≥rn+1

p(~r) (19)

where p(~r) is the measured precision at a recall level of ~r.
4.3 Ablation study

This study integrated three components, ST block, TPN, and

Focaler-IoU, into the detection model to enhance its performance.

An ablation study was conducted to assess the effectiveness of each

modification within the proposed model. The results are presented

in Table 3 and Figure 7. When the ST block, TPN, and Focaler-IoU

are implemented individually, the detection performance improves
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regarding recall, precision, and AP. Due to the incorporation of the

ST block, recall, precision, and AP increased by 0.49%, 0.23%, and

0.19%, respectively, compared to the original YOLOv7 model. This

improvement results from the ability to learn global contextual

features by establishing long-range dependencies. Including TPN

raised the F1 score and AP by 0.45% and 0.36%, respectively.

Replacing the original IoU with Focaler-IoU led to increases in

the F1 score and AP of 0.28% and 0.31%, respectively, attributed to

the effectiveness of the reconstructed regression loss in handling

difficult small targets. The simultaneous use of the ST block and

TPN in the model resulted in the F1 score and AP of 95.81% and

98.33, increases of 0.51% and 0.35% over using the ST block alone,

and 0.42% and 0.18% over using TPN alone. Combining the ST

block and Focaler-IoU yielded an increase of 0.21% in both F1 score

and AP compared to using the ST block alone. When the TPN

module was paired with the Focaler-IoU, the F1 score and AP

reached 95.71% and 98.20%, improvements of 0.32% and 0.05%

over using TPN alone and 0.49% and 0.1% over using Focaler-IoU

alone. Ultimately, integrating all three modules simultaneously

enabled the proposed model to achieve optimal detection

performance, with F1 score and AP reaching 96.22% and 98.67%,

respectively. Therefore, the effectiveness of the three enhancement

methods – ST block, TPN, and Focaler-IoU-based regression loss –

is verified.
4.4 Comparison of different models

A comparative study was conducted alongside leading detection

algorithms currently utilized in the field to assess the effectiveness of

the newly proposed YOLO-SwinTF model. This study included

sophisticated models such as Faster R-CNN (Ren et al., 2015),

CenterNet (Zhou et al., 2019), YOLOv4 (Bochkovskiy et al., 2020),

YOLO-Tomato (Liu et al., 2020), YOLOv5 (Jocher, 2020),

TomatoDet (Liu et al., 2022), YOLOv7 (Wang et al., 2023),

YOLOv8 (Jocher et al., 2023), YOLOv9 (Wang et al., 2024b), and

YOLOv10 (Wang et al., 2024a). Among these models, Faster R-

CNN belongs to the two-stage detection models, whereas the others

belong to the single-stage detection models. In addition, CenterNet

and TomatoDet are categorized as anchor-free models, while the

remaining models rely on anchors for detection. The
TABLE 3 Ablation study on different components of YOLO-SwinTF.

ST Block TPN Focaler-IoU Recall (%) Precision (%) F1 (%) AP (%)

94.63 95.25 94.94 97.79

✓ 95.12 95.48 95.30 97.98

✓ 95.37 95.41 95.39 98.15

✓ 95.05 95.40 95.22 98.10

✓ ✓ 95.81 95.82 95.81 98.33

✓ ✓ 95.42 95.60 95.51 98.19

✓ ✓ 95.72 95.70 95.71 98.20

✓ ✓ ✓ 96.27 96.17 96.22 98.67
TABLE 2 The hyperparameter settings of YOLO-SwinTF.

Hyperparameter Value

Initial learning rate 0.001

Weight decay 0.0005

Momentum 0.937

Batch size 32

Epochs 160
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hyperparameters used for the comparative study, as specified in the

original papers (Ren et al., 2015; Zhou et al., 2019; Bochkovskiy

et al., 2020; Jocher, 2020; Liu et al., 2020, 2022; Jocher et al., 2023;

Wang et al., 2023, 2024a, b), are listed in Table 4. Table 5 displays

the detection performance metrics for all detection models,

including recall, precision, F1 score, AP, and average detection

time. Precision-recall (PR) curves are illustrated in Figure 8.

Table 5 shows that the proposed model outperforms other

methods in all detection metrics, with the exception of detection

time. In particular, the YOLO-SwinTF model excels in the F1 score

and AP, outperforming the second-ranked YOLOv10 by 0.53% and
Frontiers in Plant Science 10187
0.21%, respectively. This improvement primarily benefits from

integrating the attention mechanism, TPN architecture, and

Focaler-IoU-based loss. However, in terms of detection speed, the

YOLO-SwinTF model is 12 ms slower than YOLOv10, primarily

due to YOLOv10’s elimination of the post-processing step involving

NMS, facilitated by the introduction of dual label assignments. This

finding paves the way for our future research. Compared to the

baseline model, YOLOv7, the YOLO-SwinTF model shows

increases of 1.64% in recall, 0.92% in precision, 1.28% in F1 score,

and 0.88% in AP, demonstrating the effectiveness of the integrated

modules in YOLOv7. The average detection time of the proposed
TABLE 4 The hyperparameter settings of different algorithms for comparison.

Models Batch size Momentum Weight decay
Initial

learning rate
Learning rate
decay strategy

Epochs

Faster
R-CNN

16 0.9 5 × 10−4 10−3
Divided by
10 after
90 epochs

120

CenterNet
TomatoDet

32 0.9 10−4 1.25 × 10−4

Divided by
10 after
90 and

120 epochs

140

YOLO-
Tomato

32 0.9 5 × 10−4 10−3

Divided by
10 after
60 and

90 epochs

160

YOLOv4
YOLOv5
YOLOv7
YOLOv8

32 0.937 5 × 10−4 10−3 Cosine annealing 160

YOLOv9
YOLOv10

32 0.937 5 × 10−4 10−3
Linear decay

160
FIGURE 7

PR curves of the major components of YOLO-SwinTF for ablation study.
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model is 21 ms per image, fulfilling the requirements for real-time

tomato detection in complex environments.
4.5 Network visualization

The Grad-CAM technique (Selvaraju et al., 2017) was

employed to visualize the features of raw images to illustrate the

superiority of the proposed YOLO-SwinTF intuitively.

Specifically, ten images from the tomato dataset were selected,

and visual experiments were conducted, as shown in Figure 9. The
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experimental results demonstrate that the image feature extractor,

enhanced by the ST block, can capture global information by

modeling long-range dependencies and extracting the most

significant descriptive content from the raw samples. This

capability is primarily attributed to the multi-head self-attention

mechanism, which excels in capturing semantic information. In

addition, the incorporation of TPN architecture facilitates a better

balance between communication-based processing and

self-processing, resulting in generating new information

for propagation.
4.6 Performance of the proposed model
under different lighting conditions

The tomato dataset used in this study was divided into

sunlight and shade groups to evaluate the detection performance

of the proposed model under different lighting conditions. Of all

the test data, 425 tomatoes were in the shade, while the remaining

487 tomatoes were under sunlight. We used the correct

identification rate (or recall), false identification rate, and

missing rate as the evaluation metrics. The falsely identified

tomatoes refer to the detected tomatoes that are actually

background, and the term ‘missed tomatoes’ denotes tomatoes

that the model did not detect. The detection results are listed in

Table 6. As shown in Table 6, under sunlight conditions, 470 out

of 487 tomatoes were correctly detected, with a detection rate of

96.51%. For the shade condition, the detection rate was 96.00%. In

addition, under sunlight conditions, some backgrounds were

incorrectly identified as tomatoes, with a total of 17 such

instances, resulting in an incorrect identification rate of 3.49%.

Under the shade condition, the false identification rate was 4.23%.
FIGURE 8

PR curves of different detection algorithms.
TABLE 5 Tomato detection results of different algorithms.

Methods Recall
(%)

Precision
(%)

F1
(%)

AP
(%)

Time
(ms)

CenterNet 91.56 92.98 92.26 95.75 32

Faster
R-CNN

91.78 92.89 92.33 94.37 231

YOLOv4 92.76 94.11 93.43 93.91 25

YOLO-
Tomato

93.09 94.75 93.91 96.40 54

YOLOv5 93.64 94.57 94.10 97.79 22

TomatoDet 94.30 95.77 95.03 98.16 35

YOLOv7 94.63 95.25 94.94 97.79 15

YOLOv8 95.06 95.59 95.32 97.95 12

YOLOv9 95.19 95.71 95.45 98.21 12

YOLOv10 95.55 95.84 95.69 98.46 9

Proposed 96.27 96.17 96.22 98.67 21
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An analysis of the results indicated that these false identifications

typically occurred when the tomatoes were similar in shape and

color to the background. The above results show that the detection

performance of the proposed model is comparable under both

sunlight and shade conditions, verifying the robustness of the

model to illumination variations. The detection results are shown

in Figure 10.
4.7 Performance of the proposed model
under different occlusion conditions

This study also evaluated the detection performance of the

proposed model under different occlusion conditions, which are

common in real environments. According to the degree of

occlusion of the tomatoes by other objects, tomato data can be

categorized into slight and severe occlusion cases. Severe occlusion
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is defined as the tomatoes being more than 50% occluded by

leaves, branches, or other tomatoes, and conversely, they are

recognized as slight cases, as defined by Liu et al. (2020). We

used the same performance evaluation metrics as in the

experiments under different lighting conditions. Table 7 lists the

test results for different occlusion conditions. As shown in Table 7,

588 out of 609 tomatoes were correctly identified in the slight

occlusion condition, with a detection rate of 96.55%, slightly better

than in the severe occlusion condition. The false identification

rates in the slight and severe occlusion conditions were 3.45% and

4.61%, respectively, indicating that overlap or occlusion can affect

the model’s detection performance. Almost all tomatoes can be

detected when the degree of overlap or occlusion is not very

severe. The semantic loss of images resulting from overlap or

occlusion can be compensated by the model’s attention

mechanism and the implicit contextual information mining of

hierarchical feature extraction. The model’s performance in
TABLE 6 Performance of the proposed model under different lighting conditions.

Illumination Tomato Count Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Sunlight 487 470 96.51 17 3.49 17 3.49

Shade 425 408 96.00 18 4.23 17 4.00
FIGURE 9

Visual features of images from the tomato dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1452821
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1452821
detecting overlapping and occluded tomatoes can be further

improved by explicitly modeling the contextual environment of

tomatoes. Figure 11 shows some of the detection results.
5 Conclusion

This study proposes a YOLO-SwinTF model designed to

enhance the feature expression capabilities of YOLOv7 to achieve
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accurate tomato detection in complex environments. Initially, the

backbone network of the proposed framework incorporates Swin

Transformer modules to represent global information by modeling

long-range visual dependencies. Subsequently, in the neck network,

the TPN architecture replaces the PANet to better balance

communication-based processing and self-processing, generating

new information for delivery in the feature map. Finally, a novel

regression loss based on Focaler-IoU is constructed in bounding

box regression to allow the loss function to dynamically adjust its
FIGURE 10

Some examples of the detection results under different lighting conditions: (A-C) sunlight conditions, and (D-F) shade conditions.
FIGURE 11

Some examples of detection results under different occlusion conditions: (A-C) slight cases and (D-F) severe cases.
TABLE 7 Performance of the proposed model under different occlusion conditions.

Occlusion
Condition

Tomato Count Correctly Identified Falsely Identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight case 609 588 96.55 21 3.45 21 3.45

Severe case 303 290 95.71 14 4.61 13 4.29
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focus between easy and difficult samples, enhancing the model’s

detection performance.

Extensive experiments are conducted to verify the performance

of the proposed method. The F1 score and AP of the proposed

YOLO-SwinTF model reached 96.22% and 98.67%, respectively,

surpassing other state-of-the-art detectors. Ablation studies are

performed to verify the effectiveness of each modification. In

addition, the model demonstrates strong robustness in detecting

tomatoes under various illumination and occlusion conditions. The

experimental results confirm the proposed model is highly suitable

for tomato detection in complex environments.

In the future, the ripeness information of tomatoes at different

growth stages will be utilized to achieve multi-stage tomato

detection. In addition, we plan to implement explicit context

modeling for tomatoes to improve the detection performance of

overlapping and occluded tomatoes.
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Introduction: Chinese Herbal Medicine (CHM), with its deep-rooted history and

increasing global recognition, encounters significant challenges in automation for

microscopic identification. These challenges stem from limitations in traditional

microscopic methods, scarcity of publicly accessible datasets, imbalanced class

distributions, and issues with small, unevenly distributed, incomplete, or blurred

features in microscopic images.

Methods: To address these challenges, this study proposes a novel deep learning-

based approach for Chinese Herbal Medicine Microscopic Identification (CHMMI).

A segmentation-combination data augmentation strategy is employed to expand

and balance datasets, capturing comprehensive feature sets. Additionally, a

shallow-deep dual attention module enhances the model's ability to focus on

relevant features across different layers. Multi-scale inference is integrated to

process features at various scales effectively, improving the accuracy of object

detection and identification.

Results: The CHMMI approach achieved an Average Precision (AP) of 0.841, a

mean Average Precision at IoU=.50 (mAP@.5) of 0.887, a mean Average Precision

at IoU from .50 to .95 (mAP@.5:.95) of 0.551, and a Matthews Correlation

Coefficient of 0.898. These results demonstrate superior performance compared

to state-of-the-art methods, including YOLOv5, SSD, Faster R-CNN, and ResNet.

Discussion: The proposed CHMMI approach addresses key limitations of traditional

methods, offering a robust solution for automating CHMmicroscopic identification.

Its high accuracy and effective feature processing capabilities underscore its

potential to modernize and support the growth of the CHM industry.
KEYWORDS

Chinese herbal medicine, deep learning, attention mechanism, cell recognition,
data augmentation
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1 Introduction

Chinese Herbal Medicine (CHM) is a cornerstone of traditional

Eastern healthcare and has been integrated into disease treatment.

With roots deeply embedded in ancient Chinese science, CHM

symbolizes Eastern medicine’s cultural heritage and underscores a

comprehensive medical paradigm that has garnered global

recognition for its efficacy. This acknowledgement has notably

surged during the COVID-19 pandemic, highlighting the potential

of CHM in contributing to contemporary medical practices and

prompting a broader international acceptance and trust in its

remedies. The burgeoning trust in CHM has catalyzed a substantial

expansion of its market, with recent data indicating an annual output

reaching 4,555 million tons and daily testing frequencies surpassing

22 million instances. CHM includes plant, animal, and mineral

medicines, and according to the Chinese Materia Medica, there are

8,980 kinds of herbs in total. With the addition of medicines used by

ethnic minorities, the number of varieties has reached more than

28,000 so far (Li, 1999). These figures reflect the growing reliance on

CHM for healthcare purposes and underscore the potential of the fast

inspection market within this domain. However, the predominant

methodologies employed for CHM identification, particularly

through traditional manual microscopy, present numerous

challenges. These methods are labor-intensive, require extensive

expert knowledge, suffer from low throughput due to the

microscopic equipment’s limited field of view, and are prone to

human error from tester fatigue, potentially leading to misjudgments.

There are four traditional identification methods for CHM: original

plant (i.e., animal) identification, character identification, microscopic

identification, and physical and chemical identification. Original plant
Frontiers in Plant Science 02194
(i.e., animal) identification Yin et al. (2019) was performed by observing

the appearance of plants, animals, and minerals in morphological form

and classifying herbs using knowledge of taxonomy. Character

identification Thongkhao et al. (2020) was carried out by eyes, hand,

nose, mouth taste, water test, fire test, and other simple ways to identify

medicinal materials. Microscopic identification Ichim et al. (2020) uses

microscopy to observe tissue structure, cell shape, and the features of

inclusions of medicinal herbs to determine the nature of cell walls and

cell inclusions or the distribution of active ingredients of certain species

in tissues, and finally to achieve the identification of authenticity of

herbal medicines. Physical and chemical identification Peng and Tsa

(2020) is to use certain physical, chemical, or instrumental analysis

methods to identify the authenticity, purity, and quality of traditional

Chinese medicines. Generally, the first three conventional identification

techniques rely primarily on abundant working experience, making

distinguishing similar or analogous substances difficult.

However, physical and chemical identification is a highly

advanced technique, particularly tedious, requiring specialized

equipment and high costs. The need for an advanced, reliable,

and less subjective method is evident, particularly to keep pace with

the increasing scale of CHM testing and support the industry’s

growth and modernization efforts.

The development of artificial neural networks has opened up

new avenues for image recognition, and deep learning-based

methods have shown great success in various applications Chen

et al. (2022); Jiang et al. (2022). As shown in Figure 1, several key

challenges hinder the development of automated CHMmicroscopic

identification systems:

1) Data collection difficulties and class imbalance: We found

no publicly available herbal microscopic image datasets after
FIGURE 1

Challenges in Chinese herbal medicine microscopy identification.
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reviewing the literature and searching search engines. CHM image

datasets often exhibit significant class imbalance, where certain cell

types or features are underrepresented. This can lead to biased

models that perform poorly on rare classes.

2) Small and Uneven Features: CHM microscopic images

contain small and unevenly distributed features, making it

difficult for traditional object detection algorithms to locate and

classify them accurately.

3) Incomplete and Blurriness Cell Structures: The grinding

process used to prepare CHM samples can damage cell structures,

resulting in incomplete or ambiguous features that further

complicate identification.

This paper proposes a novel methodology, CHMMI, which

innovatively applies a segmentation-combination method for data

augmentation, allowing the model to capture more comprehensive

feature sets from the available microscopic images. Furthermore, by

integrating attention mechanisms, CHMMI enhances the model’s

focus on relevant features across different layers, thereby improving

the accuracy of CHM identification. Finally, features across multiple

scales and dimensions effectively detect and identify herbal

microscopic images. The contributions of this paper can be

summarized as follows:
Fron
• We propose a data augmentation strategy for generating

more datasets by random cutting and random combination

for the problem that a single image in CHM micrographs

includes many different cells, which can extend and balance

the datasets and provide a solid foundation for the training

and prediction of the actual model.

• We develop a shallow-deep dual attention module that

effectively captures valid auxiliary information from

different channels in shallow and deep layers. This

facilitates the processing of small, uneven features and

incomplete and blurry cell structures in CHM.

• In the final prediction stage, we integrate three features with

different object scales through a multi-scale inference

module to predict objects in the image.

• We evaluate the performance of CHMMI through a series

of comparison experiments with existing state-of-the-art

approaches, such as YOLOv5 Zhu et al. (2021), SSD Liu

et al. (2016), Faster R-CNN Khan et al. (2022), and ResNet

He et al. (2016). The experimental results demonstrate that

CHMMI achieves higher accuracy than these approaches,

highlighting its potential for practical application in CHM

microscopic identification.
2 Related work

Image recognition has significantly advanced by integrating

deep learning techniques, predominantly categorized into one-

stage and two-stage detection algorithms. These methodologies

have been extensively employed across various sectors, including

healthcare, autonomous driving, and precision agriculture,

progressively encompassing microscopic image analysis for CHM.
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2.1 Deep learning-based image
recognition methods

Several image recognition approaches based on deep learning

have been proposed, including two-stage detection algorithms (e.g.,

Faster RCNN, SSD) and one-stage detection algorithms (e.g.,

RetinaNet, YOLO). These algorithms have achieved state-of-the-

art performance in various image recognition tasks, such as face

detection, object detection, and image classification. For example,

Sun et al. (2018) improved the state-of-the-art Faster RCNN

framework by combining several strategies, proposed a new face

detection scheme using Deep Learning, and achieved the state-of-

the-art detection performance on the well-known FDDB face

detection benchmark evaluation. Zhai et al. (2020) proposed an

improved SSD object detection algorithm based on Dense

Convolutional Network (DenseNet) and feature fusion; the

algorithm replaces the original backbone network VGG-16 of

SSD with DenseNet-S-32-1 to enhance the feature extraction

ability of the model. Wang et al. (2020) proposed an automatic

ship detection model based on RetinaNet, the model solves the

problem that ships have multi-scale shape features in SAR images

due to the diversity of SAR imaging patterns and the diversity of

ship shapes, resulting in poor recognition rates. Yu et al. (2021)

proposed a Deep Learning model named YOLOv4-FPM to realize

real-time detection for bridge cracks by unmanned aerial vehicles.

Yan et al. (2021) proposed an improved yolov5-based lightweight

apple target detection approach for apple picking robots to address

the problem that existing apple detection algorithms cannot

distinguish between apples obscured by tree branches and apples

obscured by other apples, leading to picking failure. Kim et al.

(2022) proposed an approach with Maritime Dataset on modified

YOLO-V5 with the SMD-Plus, the approach solves the problem of

poor recognition rates due to the presence of noisy labels and

imprecisely positioned bounding boxes in SMD.

The YOLO series of algorithms have been widely used in

various applications, including object detection, pedestrian

detection, and facial recognition. YOLOv5, in particular, has been

shown to be effective in detecting objects in images with varying

sizes, scales, and orientations.
2.2 Microscopic image recognition for
Chinese herbal medicine

In microscopic image recognition for CHM, researchers focus

on several challenges, including the uneven distribution of sample

classes and small differences between classes, stereoscopic features

of cells, and the effect of background color on recognition rate.

For the first type of problem, Wang et al. (2020b) used

techniques such as dynamic ReLU function and multi-channel

color space to use Xception with obvious classification effect as

the base network, and replaced the static ReLU in the network with

dynamic ReLU so that each small sample has a unique ReLU

parameter. For the second type of problem, Ying et al. (2012)

analyzed the differences in the characteristics of cross-sections and

powders of stems and leaves of two herbs, Buddleja albiflora Hemsl
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and Buddleja davidii Franch, which provided important criteria for

the recognition of these two herbs. Ye et al. (2014) used a method of

fusion of coaxial X-ray and micro-CT imaging techniques for three-

dimensional nondestructive in situ microscopic imaging of the

microscopic image of Amomi Rotundus Fructus and Alpiniae

Katsumadai Semen seeds. This method obtained information on

the microscopic image’s internal microstructure and different cross-

sectional orientations. For the third type of problem, Wang et al.

(2017) used MATLAB software to program the stitching of the

cross-sectional tissue images of the CHM Achyranthes bidentata

and Cyathula officinalis. The features such as texture, color, and

invariant moment of the microscopic image were extracted to

recognize the two herbs effectively. Wang et al. (2020a) used a

multi-channel and improved attention method to stitch the

microscopic image data of 34 herbal catheters with images of

different color spaces of the images themselves before inputting

them into the network, and the method effectively improved the

accuracy of recognition.

The above work mainly focuses on researching a single

problem. However, three types of problems simultaneously exist

in detecting CHM microscopic images. Our CHMMI method

shows promising results.
3 Problem statement

CHM identification relies on the microscopic examination of

herbal powders to verify their authenticity. Each herb can be

identified by specific cellular structures, termed “feature cells”, as

illustrated in Figure 2. For example, identifying Scutellaria
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baicalensis requires detecting six distinct feature cells in

microscopic images. We believe that the features of herbal

microscopic images have a direct relationship with the accuracy

of cell recognition. Therefore, we formulate the problem: How can

we achieve automated herbal microscopic identification on an

insufficient data-level scale and with an unbalanced distribution

of sample data?

To systematically approach the problem, we define the terms

and notations used in this study: Given the dataset of microscopic

images X and their corresponding annotations Y, the objective is to

develop a fitted model f (X) that accurately identifies and classifies

the feature cells in new, unseen microscopic images of CHM.

Le t X =   X1, X2,…, Xi,…, XNf g r ep r e s en t s t h e s e t o f

microscopic images used in the dataset, where each image Xi may

contain one or more cell features and N is the total number of

images. Associated with each image are target bounding boxes Y =

  Y1, Y2,…, Yi,…, YNf g, where each Yi contains one or more

bounding boxes indicating the location of feature cells within the

image Xi. For each feature cell j in image Xi, the bounding box is

represented as Yj
i = xji1, y

j
i1

h i
, xji2, y

j
i2

h in o
and xji1, y

j
i1

h i
are the

coordinates of the upper-left and lower-right corners of the

bounding box, respectively.
4 Methods

This section presents three main modules: the Microscopic

Image Data Augmentation (MIDA) Module, the Shallow-Deep

Dual Attention (SDDA) Module, and the Multi-scale Inference

(MI) Module, as shown in Figure 3. These modules are designed to
FIGURE 2

Quality testing process of herbal medicine by feature cells.
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improve the accuracy and reliability of microscopic image analysis

in the study of Chinese herbal medicine.
4.1 Microscopic image data
augmentation module

The MIDAmodule is used to augment and balance the available

dataset for training and predicting herbal microscopic images. Our

MIDA module associates some of the images with features that are

only partially or partially clear, enhancing the representation of

specific cell types or features. The detailed steps of MIDA are listed

as follows:
Fron
1. Random Selection: Randomly select two images from the

original dataset, such as Figures 4A, B.

2. Horizontal Segmentation: Each image is segmented into

two halves along the horizontal axis.

3. Recombination: Two distinct segments are chosen and

stitched together to form four new images from the pool of

segmented halves. This ensures that the resultant image

differs from the original images (a) and (b), thus enhancing

feature representation and diversity.

4. Augmentation Techniques: Beyond simple recombination,

MIDA incorporates advanced image processing techniques

inspired by YOLOv5, such as mirroring, translation, and
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rotation. These techniques enhance the dataset’s diversity

further, enabling the model to generalize better across

unseen images during inference.
4.2 Shallow-deep dual attention module

The SDDA module addresses several prevalent issues in the

microscopic examination of CHM cells, such as the uneven

distribution of cells with distinct morphological features and

incomplete and blurry cell structures. This module integrates two

attention mechanisms: the Shallow Channel Attention Mechanism

(SCAM) and the Deep Channel Attention Mechanism (DCAM).

4.2.1 Shallow channel attention mechanism
The core concept of SCAM is to address the problem of uneven

cell distribution in CHM cell images by assigning more weights to

cell information with significant morphological features while

ignoring unimportant feature information, thus improving the

image feature recognition rate. The SCAM mechanism consists of

three main components: Squeeze, Excitation, and Scale, as shown in

Figure 3A. The Squeeze operation performs a global average

pooling on the image features to compress the features and

reduce the dimensionality. The Excitation operation predicts the

importance of each channel using a gating mechanism of the
FIGURE 3

Network structure of CHMMI. MIDA is allowed to expand and balance the existing herbal microscopic image dataset. SDDA better captures cell
features in the microscopic examination of CHM cells. MI integrates and analyzes features across multiple scales and dimensions intelligently to
make final decisions.
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Sigmoid form, which enables the network model to learn the

importance of each channel automatically. Finally, the Scale

operation outputs the resulting 1 × 1 × C real numbers with the

original feature images, where C is the number of channels. The

specific implementation of the SCAM module is given as follows:

Firstly, the input E is transformed through a series of

convolution operations to obtain the features U. Use V =  ½v1, v2,
…, vC� to denote a series of convolution kernels, where vC denotes

the parameters of the cth layer convolution. That is, the output

feature U =  ½u1, u2,…, uC� can be expressed as follows:

uc = vC ∗ E = o
C0

S=1
 VS

C ∗ E
S (1)

where ∗ denotes the convolution operation VS
C denotes the cth

convolution kernel of the sth input, ES denotes the sth input.

Secondly, a global average pooling Zaidi et al. (2022) is

performed by the Squeeze operation in the SCAM module for the

image features U, intending to compress the image features U. The

compressed image feature becomes a one-dimensional real number

z, and z is denoted as the residual channel statistic. Suppose the

length of the output is set to c, Zc = ½z1, z2 ……, zc�, (x, y) denotes
the size is the feature of W ∗H, x is the horizontal coordinate and y

is the vertical coordinate. That is, the cth element of z can be given

by is expressed as:

zc =
1

H �W
uc(x, y) (2)

Immediately after, the importance of each channel is predicted

by the Excitation operation in the SCAM module using a gating

mechanism of the Sigmoid form to obtain the nonlinear

relationship between the different channels. Assuming that W1  ∈
 R

r�c
c ,  W2  ∈  R

r
c�c are two different fully connected layers, r is the

dimensionality reduction rate when r is small, the global
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information of the upper layer can be better preserved, but the

computational cost will be relatively increased. To balance

propagation speed and detection accuracy, refer to SENet Wang

and Yoon (2021) and set r to 16. The final output parameter of the

Excitation operation is the weight w of each feature channel, and w
can be expressed as follows:

w = s (W2 � d (W1 � z)) (3)

where, s is the Sigmoid function, d is the ReLU

activation function.

Finally, the resulting 1 × 1 × C real numbers are output with the

original feature images by the Scale operation in the SCAMmodule.

The formula is listed as follows:

~EC = wcuc (4)

where ~EC = ½~e1,~e2,…,~ec� denotes the product of the

corresponding pixel points in the channel between the image

feature uc ∈ RW�H and the scalar wc. The Scale operation enables

the network model to automatically learn the importance of each

channel, thus enhancing the recognition of image features.

4.2.2 Deep channel attention mechanism
The DCAM module subtly enhances the feature representation

extracted from the cells by adaptively recalibrating the channel

feature response to address the CHM’s incomplete and blurriness

cell structure. The core of DCAM lies in the clever use of the ECA

attention mechanism to function at deeper layers of the network,

especially at the level where the semantic information is becoming

progressively more abstract and where information localization is

critical in accuracy. This is particularly beneficial in the context of

the CHMMI network structure, where the fusion of features across

d i ff e ren t d imens ions i s c r i t i ca l for ach iev ing h igh

detection performance.
FIGURE 4

Example of MIDA processing. The MIDA module enhances the dataset through image segmentation (A) into a-left and a-right, (B) into b-left and b-
right) and recombination (new_img1, new_img2, new_img3, new_img4, etc.), multiplying the number of images and introducing variability in
the dataset.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1442968
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1442968
In the CHMMI network, the DCAM is strategically positioned

within the ‘Neck’ layer, a critical juncture for feature fusion and

refinement. This layer utilizes architectures like the Path

Aggregation Network (PAN) and Feature Pyramid Network

(FPN) to effectively amalgamate rich locational details from

shallow layers with deeper, semantically strong features. The goal

is to enhance the upward and lateral flow of information across the

network, ensuring that each level receives a balanced mix of depth-

specific features. The specific implementation of the DCAMmodule

is given as follows:

The Neck layer has three different dimensional feature outputs

towards the Prediction layer, namely low (El), medium (Em), and

high (Eh). Taking Eh as an example, Eh can be expressed as follows:

Eh = e(E + f + g)⊕ (Em + g) + d (5)

where + denotes the serial processing of features. ⊕ denotes

tensor stitching, assigning weights to the input features at different

levels. f denotes the processing of input features by the SPPF

module, g denotes the processing of input features by the CBS

module, and d denotes the processing of input features by the

C3_1_F Zhu et al. (2021) module.

The DCAM module modifies the conventional channel

attention by implementing a three-step process—Squeeze,

Convolve, and Scale—tailored to handle multi-dimensional data

more effectively:

Firstly, the input Eh is transformed through a series of

convolution operations to obtain the feature Uh.

Secondly, the global average pooling of the feature Uh is

performed using the Squeeze operation to compress the feature

Uh. The feature Uh is compressed into a one-dimensional real

number z. For the cth cell in z, the following is calculated:

zc =
1

H �W
uhc (x, y) (6)

Next, to avoid dimensionality reduction, the DCAM module is

implemented by a one-dimensional convolution with a convolution

kernel size of k cross-channel information interaction. The equation

is expressed as follows.

w = s (C1Dk(zc)) (7)

where, C1D is the one-dimensional convolution Wang et al.

(2019). k is the size of the one-dimensional convolution kernel to

represent the cross-channel range of interactions. k has a feature

mapping relationship with the number of channels c, which can be

calculated adaptively by the following equation.

k = y (C) = ‖ log2 (C)=g + b=g ‖odd (8)

where, ∥ n ∥odd is the closest odd number to n. Referring to the

experiments in the literature ECA Wang et al. (2019), g and b are

set to 2 and 1. By mapping y, high-dimensional channels have

longer interactions, while low-dimensional channels have shorter

interactions using nonlinear mappings.

Lastly, the obtained weights and the original feature image are

output by the Scale operation in DCAM, and the final residual

features are represented as follows.
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~Eh
C = wc : u

h
c (9)

Similarly, the low-dimensional residual features ~El
C and the

medium-dimensional residual features ~Em
C can be obtained
4.3 Multi-scale inference module

The MI module is a crucial component of the CHMMI network

and is responsible for effectively detecting and identifying herbal

microscopic images. It intelligently integrates and analyzes features

across multiple scales and dimensions, enabling the model to

capture local and global information from the input images. The

module consists of two main components: feature fusion and

microscopic recognition.

The feature fusion module integrates features from different

scales and channels using a feature pyramid network (FPN),

allowing the model to capture local and global information from

the input images. This is achieved by up-sampling the feature maps

and fusing them with the shallow feature maps, resulting in a richer

feature representation that facilitates accurate identification of

cellular structures.

The microscopic recognition module is responsible for

predicting the presence and location of cellular features in the

input images. This is accomplished by applying a combination of

convolutional and spatial attention mechanisms to focus on

relevant regions of the images. The module outputs a set of

bounding boxes and confidence scores for each predicted feature.

The input herbal microscopic images are meshed, and if there is a

center of the object in the mesh, the mesh is used to predict this

object. The prediction of each grid cell includes information on the

location of the three object-bounding boxes and a confidence level.

An object box corresponds to four position information (x,y,w,h)

and one confidence information. Where x and y denote the location

of the object’s center point, w and h denote the center point’s width

and height from the object’s two sides. Confidence C represents the

predicted object box contains two-fold information about the

confidence of the object and the accuracy of the prediction of this

object box, and the formula is expressed as follows:

C = Pr(obj)� IOUA
B (10)

where IOU =  (A ∩ B)=(A ∪ B) A denotes the real box, B

denotes the predicted box, IOUA
B denotes the intersection ratio of

A and B. when Pr(obj) = 1, it indicates that there is an object in the

image, when Pr(obj) = 0, it indicates that there is no object in

the image.

We use Non-maximum Suppression (NMS) Wu et al. (2020) to

eliminate redundant prediction boxes and filter out high-quality

detection results.
4.4 Training strategy

During the training phase, a three-part loss function is used:

object loss, category loss, and confidence loss.
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The object loss measures the difference between the predicted

and ground-truth bounding boxes. It is calculated using the

following equation:

lobj = o
S�S

i=0
o
N

j=0
Iobjij

h
(xi − x̂ i)

2 +   (yi − ŷ i)
2
i

+o
S�S

i=0
o
n

j=0
Iobjij (

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffi
ŵ i

p
)2 +   (

ffiffiffiffi
hi

p
−

ffiffiffiffiffi
ĥ i

q
)2

� � (11)

where S × S denotes the partitioning of the input image into S ×

Smesh grids; N denotes a grid responsible for predicting number of

boxes; (xi, yi,wi, hi) denotes the position information of the real

box; (x̂ i, ŷ i, ŵ i, ĥ i) denotes the position information of the

predicted box; Iobjij denotes that the jth prediction box of each of

the ith network is responsible for predicting object obj is 1,

otherwise is 0.

The category loss measures the difference between the predicted

class probabilities and the ground-truth class labels. It is calculated

using the following equation:

lcls = o
S�S

i=0
 Iobjij o

c∈classes

((pi(c) − p̂ i(c))
2 (12)

where, c denotes the number of categories; pi(c) denotes the

probability of the true category; p̂ i(c) denotes the probability of the

predicted category.

The confidence loss was calculated using CIOU Zheng et al.

(2020), and the equation was expressed as follows:

lciou = o
S�S

i=0
 o
n

j=0
 Iobjij (Ci − Ĉ i)

2 + lnoobjo
S�S

i=0
 o
n

j=0
 Inoobjij (Ci − Ĉ i)

2 (13)

where Inoobjij denotes 0 when the jth prediction box of the ith

network is not responsible for predicting an object and 1 otherwise.

lnoobj is to reduce the confidence loss of the prediction box for the

non-existent object obj. In this paper, reference paper Wang et al.

(2021) sets lnoobj to 0.5.

The total loss is the weighted sum of the three components of

object loss, category loss, and confidence loss, expressed by the

following equation.

L = alobj + b lcls + g lciou (14)

where, a, b, g denote the weights of the three loss

components respectively.
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5 Experiments

To evaluate the performance of the proposed CHMMI method

for microscopic image analysis of Chinese herbal medicines, we

conducted a series of comprehensive experiments using our

custom-built dataset. The experiments were designed to assess the

effectiveness of CHMMI for accurately identifying and classifying

different types of feature cells presented in the microscopic images

of Scutellaria Baicalensis(SB) and Magnolia Officinalis(MO).
5.1 Experiment setup

5.1.1 Datasets
Due to the lack of publicly available datasets for microscopic

images of Chinese herbal medicines, we constructed our dataset by

preparing slides of powdered SB and MO. We used a Nikon E200

electron microscope with a 40/0.65 objective and the software

Labeling to label the microscopic image of Chinese medicine

feature cells. The resulting dataset consists of 11,060 microscopic

images containing 12,840 labeled instances of nine distinct types of

feature cells. The distribution of images and labeled instances for

each feature cell type is shown in Table 1. These feature cells include

Fibers, Stone cells, and Oil cells for MO, Phloem fibers, Stone cells,

Corkcells, Vessels, Xylary fibers, and Starch granules for SB.

Figure 5 presents sample images of the nine feature cell types.

To ensure a robust evaluation of the proposed CHMMImethod,

the dataset was partitioned into training and test sets following an

8:2 ratio. Furthermore, to rigorously assess the effectiveness of the

CHMMI method and its individual components, we conducted a

five-fold cross-validation experiment on the training dataset. This

involved splitting the training data into five non-overlapping

subsets. Each subset was then used in turn as a validation set

while the remaining four subsets were combined for training.

Applying each of the five trained models to the test set,

generating five sets of prediction results for every test sample.

Implementing a voting mechanism across the five predictions to

determine the final predicted label for each test sample.

5.1.2 Implementation details
We implemented the CHMMI method based on the PyTorch

deep learning framework YOLOv5, training the model on an

NVIDIA GeForce RTX 3090 GPU with 24GB memory. The

model has trained 100 epochs with the Adam optimizer, using a
TABLE 1 Statistics of Chinese medicine microscopic image annotation dataset.

Dateset
MO SB

Fibers Stonecells Oilcells Phloem Stonecells Corkcells Vessels Xylary Starch

Images 7555 1662 576 304 156 550 229 13 15

Boxes 9080 1726 644 353 171 580 257 13 16

Images Total 9793 1267

Boxes Total 11450 1390
fr
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learning rate of 0.001 and a batch size of 16. In our implementation,

we adopted a three-scale anchor system: P3/8, P4/16, and P5/32.

Specifically, the P3/8 scale anchors are designed to detect small

targets, the P4/16 anchors are geared towards medium-sized targets,

and the P5/32 anchors aim to detect large targets. This hierarchical

structure ensures comprehensive coverage of the target size

spectrum within the microscopic images.

5.1.3 Evaluation metrics
To evaluate the CHMMI algorithm ’s performance

comprehensively, we select four evaluation metrics: precision,

Recall, Average Precision (AP) curve, Mean Average Precision

(MAP), and Matthews Correlation Coefficient(MCC). These

metrics evaluate the algorithm’s ability to accurately identify and

classify the feature cells present in microscopic images.

Precision denotes the ratio of true positive cases predicted to be

true to all predicted positive cases Liu et al. (2018). It is calculated as:

precision = TP=(TP + FP) (15)

where TP denotes that the predicted value is the same as the

true value, and the predicted value is a positive sample; FP denotes

that the predicted value is different from the true value, and the

predicted value is a positive sample.

Recall denotes the ratio of true positive cases predicted to be

true to all true positive cases. It is calculated as:
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recall = TP=(TP + FN) (16)

where FN denotes that the predicted value is not the same as the

true value and the predicted value is a negative sample.

The AP curve is the area surrounded by the curve in two

dimensions: Precision and Recall. Usually, Precision is higher when

Recall is lower and lower when Recall is higher. That is, the larger

the AP curve, the better the model’s performance.

MAP is a comprehensive evaluation metric focusing on

sequence weights. It has become one of the most important

practical metrics for image recognition problems in recent years.

mAP@.5 indicates that the average AP of all images under each

category is calculated at IoU=0.5, and the higher the value of mAP,

the better the model’s performance.

MCC is an effective and comprehensive evaluation metric

widely used in tasks with unbalanced sample categories, such as

defect detection. It is particularly suitable for performance

evaluation of binary classification models because it integrates the

predictions of the model’s TP, TN, FP, and FN and is thus more

robust than other metrics in evaluating the model’s ability to

distinguish between positive and negative samples. It is calculated

as:

MCC =
TP � TN − FP � FN

(TP + FP)� (TP + FN)� (TN + FP)� (TN + FN)
(17)
FIGURE 5

Sample images of the 9 cell types.
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5.2 Comparisons with state-of-the-
art methods

To assess the efficacy of our proposed CHMMI, we compared it

with several widely adopted state-of-the-art image recognition

algorithms. Specifically, we benchmarked our method against

YOLOv5 Zhu et al. (2021), SSD Liu et al. (2016), Faster R-CNN

Khan et al. (2022), ResNet He et al. (2016), FINet Zhang et al.

(2022), YOLOT Liu et al. (2024), and an improved version of

YOLOv5 (Improved_yolov5) Hu et al. (2024). These algorithms

represent diverse architectural paradigms and have demonstrated

exceptional performance across various computer vision tasks,

providing a robust baseline for comparative analysis.

Table 2 presents the quantitative results of the comparative

analysis. As the table shows, our proposed CHMMI approach

outperformed all the state-of-the-art methods across all four

evaluation metrics. Specifically, CHMMI achieved an impressive

AP of 0.841, surpassing the second-best performer, YOLOT, by a

significant margin of 0.013. Furthermore, CHMMI attained the

highest mAP@.5 of 0.887, outperforming the closest competitor,

Improved_yolov5, by 0.006. CHMMI demonstrated its superiority

in the most challenging mAP@.5:.95 metric, achieving a remarkable

score of 0.551, 0.016 higher than the second-best performer,

Improved yolov5. CHMMI performs excellently on the

comprehensive evaluation metric MCC, achieving an outstanding

score of 0.898, surpassing the second-place YOLOT by 0.011.

To provide a visual representation of the performance difference,

we plot the Receiver Operating Characteristic (ROC) curves for both

YOLOv5 and CHMMI, using thresholds ranging from 0.1 to 1.0.

Figure 6 illustrates these curves, revealing a higher Area Under the

Curve (AUC) value for CHMMI (0.83) compared to YOLOv5 (0.74),

further confirming CHMMI’s superior performance.

In comparison to other CNN models, the CHMMI model has

several advantages. For example, the YOLOv5 model uses a single-

stage detection approach, which may not be suitable for handling

the complexity of microscopic images. The SSD model uses a multi-

scale feature fusion approach, but it may not be able to capture the

contextual information of cells as effectively as the CHMMI model.
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The Faster R-CNN model uses a two-stage detection approach, but

it may not be able to handle the issues of uneven cell distribution

and incomplete and blurry cell structures as effectively as the

CHMMI model. The ResNet model uses a residual learning

approach, but it may not be able to capture the complex

relationships between cells as effectively as the CHMMI model.

These results underscore the efficacy of our proposed approach in

accurately detecting and localizing objects under varying degrees of

occlusion and overlap.

In addition, we show the detection results of our CHMMI

model, as shown in Figure 7. As can be seen from the figure,

CHMMI can not only identify different categories of Chinese

medicine feature cells but also accurately detect incomplete and

blurriness cell structures.
5.3 Ablation studies

5.3.1 Effectiveness of different modules
To assess the impact of each proposed module, we conducted a

comprehensive set of ablation studies. Specifically, we systematically

included or excluded the Microscopic Image Data Augmentation

(MIDA), Shallow Channel Attention Module (SCAM), and Deep

Channel Attention Module (DCAM) from our model and evaluated

its performance. We employ a five-fold cross-validation strategy

during the training phase to ensure a robust evaluation and mitigate

the potential impact of data partitioning bias. The training dataset is

divided into five non-overlapping subsets. For each fold, one subset

is held out for validation, while the remaining four subsets are used

for training. This process results in five distinct sets of model

weights (M1, M2, M3, M4, and M5). During the testing phase,

each of the five trained models (M1 to M5) is independently applied

to the test set. This generates five sets of prediction results for each

test sample. To combine these predictions, we implement a voting

mechanism. The final predicted label for each test sample is

determined by selecting the category that received the most votes

across the five individual model predictions.
TABLE 2 Comparisons with state-of-the-art methods.

Method AP mAP@.5 mAP@.5:.95 MCC

YOLOv5
Zhu et al. (2021)

0.803 0.843 0.511 0.753

SSD Liu et al. (2016) 0.781 0.819 0.532 0.798

Faster R-CNN
Khan et al. (2022)

0.629 0.757 0.521 0.647

ResNet He et al. (2016) 0.712 0.823 0.513 0.695

FINet Zhang et al. (2022) 0.637 0.869 0.524 0.823

YOLOT Liu et al. (2024) 0.828 0.877 0.531 0.887

Improved_yolov5
Hu et al. (2024)

0.807 0.881 0.535 0.873

CHMMI 0.841 0.887 0.551 0.898
FIGURE 6

ROC Curves for models YOLOv5 and CHMMI.
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The data in Table 3 demonstrates a clear trend of increasing

model performance as more modules are incorporated. The

inclusion of all three modules (MIDA, SCAM, and DCAM)

results in the highest precision (P), recall(R), mAP@.5, and

mAP@.5:.95. This suggests a synergistic effect between data

augmentation, shallow feature attention, and deep feature

attention mechanisms. The consistent improvement across all

evaluation metrics indicates that the SDDA is vital in enhancing

object detection accuracy. Furthermore, the results show that

including MIDA alone significantly improves the model’s

performance compared to using SCAM or DCAM individually.

This highlights the importance of data augmentation in improving

the model’s ability to detect objects in microscopic images.

Integrating MIDA, SCAM, and DCAM leads to the most

significant improvement in object detection accuracy,

emphasizing the importance of combining data augmentation,

shallow feature attention, and deep feature attention mechanisms.

5.3.2 Effectiveness of microscopic image data
augmentation module

The MIDA module plays a crucial role in enhancing the

performance of our model by addressing the challenges posed by

limited and imbalanced datasets of herbal microscopic images. It is

particularly effective when dealing with images that only partially

demonstrate certain features or cell types. By enhancing the

representation of these specific attributes, we improve our data’s

overall quality and diversity.

To evaluate the effectiveness of the MIDA module, we

conducted extensive experiments by training our model with and
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without the augmented dataset generated by MIDA. The results, as

shown in Table 4, demonstrate the significant impact of MIDA on

the model’s performance metrics. As evident from the table,

including the MIDA module resulted in significant improvements

across all performance metrics. The precision and recall values

increased from 0.831 and 0.808, respectively, without MIDA to

0.854 and 0.835 with MIDA, indicating a substantial enhancement

in the model’s ability to accurately classify cell types and features

while minimizing false positives and false negatives. Moreover, the

mean Average Precision (mAP) values, which comprehensively

evaluate the model’s performance across different confidence

thresholds, also exhibited notable improvements. The mAP@.5,

which measures the average precision at an intersection-over-union

(IoU) threshold of 0.5, increased from 0.843 without MIDA to 0.855

with MIDA. Similarly, the mAP@.5:.95, which averages the

precision values across IoU thresholds ranging from 0.5 to 0.95,

improved from 0.511 to 0.522 with MIDA.

5.3.3 Effectiveness of shallow-deep dual
attention module

The SDDA module represents a significant advancement in

addressing the complex challenges inherent in the microscopic

examination of CHM cells. This module integrates the strengths of

both shallow and deep feature representations within the model. The

heatmaps in Figure 8 provide a visual representation of the impact of

the SDDAmodule. When only the SCAM is used, the model tends to

focus on less relevant areas, potentially discarding crucial feature

information. Conversely, when only the DCAM is used, the attention

becomes scattered, hindering the model’s ability to focus on the
FIGURE 7

Visualization of the detection results using CHMMI.
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TABLE 3 Experimental results using SCAM only, DCAM only, and SCAM+DCAM.

MIDA SCAM DCAM Model P R mAP@.5 mAP@.5:.95

M1 0.874 0.789 0.834 0.507

M2 0.804 0.809 0.845 0.508

M3 0.811 0.763 0.839 0.509

M4 0.821 0.787 0.812 0.491

M5 0.793 0.830 0.844 0.511

vote 0.831 0.808 0.843 0.511

M1 0.883 0.791 0.842 0.520

M2 0.845 0.811 0.864 0.522

✓ M3 0.841 0.793 0.840 0.512

M4 0.833 0.801 0.818 0.497

M5 0.799 0.837 0.858 0.517

vote 0.854 0.835 0.855 0.522

M1 0.884 0.811 0.869 0.521

M2 0.821 0.809 0.863 0.518

✓ M3 0.828 0.849 0.859 0.516

M4 0.825 0.823 0.853 0.497

M5 0.805 0.838 0.850 0.514

vote 0.851 0.831 0.861 0.522

M1 0.875 0.811 0.841 0.509

M2 0.812 0.831 0.852 0.520

✓ M3 0.859 0.798 0.855 0.530

M4 0.825 0.812 0.847 0.493

M5 0.831 0.846 0.860 0.517

vote 0.856 0.835 0.868 0.528

M1 0.891 0.825 0.878 0.530

M2 0.859 0.815 0.867 0.522

✓ ✓ M3 0.849 0.849 0.868 0.519

M4 0.842 0.835 0.858 0.504

M5 0.824 0.841 0.861 0.519

vote 0.876 0.844 0.881 0.532

M1 0.902 0.814 0.875 0.529

M2 0.865 0.838 0.877 0.525

✓ ✓ M3 0.864 0.823 0.857 0.535

M4 0.838 0.826 0.850 0.506

M5 0.835 0.847 0.869 0.527

vote 0.868 0.845 0.879 0.537

M1 0.893 0.821 0.877 0.524

M2 0.863 0.848 0.861 0.538

✓ ✓ M3 0.866 0.848 0.860 0.537

(Continued)
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foreground regions of interest precisely. However, the simultaneous

use of both SCAM and DCAM results in a focused and accurate

attention map, highlighting the model’s ability to detect cells with

diverse morphological features, even incomplete or blurry.

Overall, the Shallow-Deep Dual Attention module effectively

enhances the CHMMI model’s ability to accurately detect and
TABLE 3 Continued

MIDA SCAM DCAM Model P R mAP@.5 mAP@.5:.95

M4 0.858 0.839 0.849 0.518

M5 0.845 0.857 0.865 0.532

vote 0.873 0.854 0.879 0.541

M1 0.917 0.838 0.885 0.531

M2 0.897 0.850 0.875 0.549

✓ ✓ ✓ M3 0.874 0.856 0.883 0.546

M4 0.871 0.849 0.866 0.534

M5 0.861 0.871 0.882 0.543

vote 0.905 0.871 0.887 0.551
The symbol ✓ indicates that the module has been selected.
FIGURE 8

Heatmap examples using SCAM only, DCAM only, and SDDA.
TABLE 4 Experimental results with and without microscopic image data
augmentation module.

Module Name P R mAP@.5 mAP@.5:.95

w/o MIDA 0.831 0.808 0.843 0.511

w MIDA 0.854 0.835 0.855 0.522
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analyze CHM cells by addressing the limitations of individual

attention mechanisms. The combination of SCAM and DCAM

allows the model to focus on relevant features and handle various

challenges in microscopic cell examination, leading to improved

performance and more accurate results.
6 Conclusion

Traditional Chinese Herbal Medicine (CHM) identification

methodologies, such as original plant identification, character

identification, microscopic identification, and physical and

chemical identification, have long been relied upon but present

significant challenges regarding labor intensity, subjectivity, and

limitations in distinguishing similar substances. The rapid growth

of the CHM market and the need for modernization call for more

advanced and reliable identification techniques. Developing deep

learning-based methods, particularly artificial neural networks,

offers a promising solution to automate CHM microscopic

identification. Our proposed methodology, CHMMI, addresses

key challenges in automated CHM identification by combining

segmentation methods with data augmentation and integrating

attention mechanisms to enhance feature recognition and model

accuracy. By effectively capturing small and uneven features and

addressing issues with incomplete and blurry cell structures in

CHM samples, CHMMI outperforms existing state-of-the-art

approaches in experimental comparisons. CHMMI can be

integrated into the quality control processes of CHM

manufacturers. Automating the identification of herbal

components can ensure consistency in raw material selection,

detect adulterants or contaminants, and maintain the purity of

herbal preparations. This application could significantly improve

product quality and safety, potentially reducing the risk of adverse

reactions due to misidentified or contaminated herbs. CHMMI can

accelerate the discovery of new bioactive compounds from

traditional herbal medicines in pharmaceutical research. By

quickly and accurately identifying cellular structures, researchers

can more efficiently screen large numbers of herbal samples,

potentially leading to the development of novel drugs or therapies.

While CHMMI shows superior performance, understanding

why certain features are prioritized over others could be beneficial.

Future research will focus on developing or integrating explainable

AI techniques to provide insights into the model’s decision-making

process, enhancing trust and acceptance in clinical and

regulatory settings.
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DFMA: an improved DeepLabv3+
based on FasterNet, multi-
receptive field, and attention
mechanism for high-throughput
phenotyping of seedlings
Liangquan Jia1†, Tao Wang1†, Xiangge Li1, Lu Gao1*,
Qiangguo Yu2, Xincheng Zhang3 and Shanlin Ma3*

1School of Information Engineering, Huzhou University, Huzhou, China, 2School of Electronic
Information Engineering, Huzhou College, Huzhou, China, 3Institute of Crop Science, Huzhou
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With the rapid advancement of plant phenotyping research, understanding plant

genetic information and growth trends has become crucial. Measuring seedling

length is a key criterion for assessing seed viability, but traditional ruler-based

methods are time-consuming and labor-intensive. To address these limitations,

we propose an efficient deep learning approach to enhance plant seedling

phenotyping analysis. We improved the DeepLabv3+ model, naming it DFMA,

and introduced a novel ASPP structure, PSPA-ASPP. On our self-constructed rice

seedling dataset, the model achieved a mean Intersection over Union (mIoU) of

81.72%. On publicly available datasets, including Arabidopsis thaliana,

Brachypodium distachyon, and Sinapis alba, detection scores reached 87.69%,

91.07%, and 66.44%, respectively, outperforming existing models. The model

generates detailed segmentation masks, capturing structures such as the

embryonic shoot, axis, and root, while a seedling length measurement

algorithm provides precise parameters for component development. This

approach offers a comprehensive, automated solution, improving phenotyping

analysis efficiency and addressing the challenges of traditional methods.
KEYWORDS

plant seedlings, deep learning, plant seedling phenotyping analysis, DeepLabv3+, DFMA
1 Introduction

“High-Throughput Phenotyping” is a method for rapidly and automatically acquiring

and analyzing large volumes of phenotypic data from plant or biological samples. This

approach utilizes imaging technology, sensors, computer vision, and machine learning to

collect extensive data without disrupting sample growth, thus revealing growth
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characteristics, health status, and physiological changes of the

organisms. This technique is particularly applicable in agriculture

and plant sciences, enabling efficient evaluation of different

genotypes under various environmental conditions, and providing

essential data to support crop improvement and breeding programs.

In recent years, plant phenotyping has emerged as a rapidly

advancing, data-intensive field (Zhao et al., 2019; Yang et al.,

2020). Studying plant phenotypes allows for a deeper

understanding of genetic information (Richard et al., 2015;

Holman et al., 2016) and the growth trends of plants. When it

comes to monitoring the growth of plant seedlings, phenotypic

analysis of seedlings becomes particularly crucial. Assessing various

aspects of seedling development often requires the measurement of

specific physical dimensions, with the length of the hypocotyl being

a key phenotypic trait for monitoring and quantifying different

responses (Dobos et al., 2019). Hypocotyl cells are formed during

embryogenesis and undergo several rounds of cell division to

develop. During seedling growth, the length of the hypocotyl is

no longer determined by cell division but rather by the elongation of

hypocotyl cells (Gendreau et al., 1997). Phenotypic analysis of the

root system, known as Root System Architecture (RSA), is also a

vital indicator for assessing seedling development. RSA refers to the

spatial arrangement of the root system and its components (Lynch,

1995), and its functions include water and nutrient absorption,

storage, as well as anchoring and facilitation of plant-microbe

interactions, such as nodule formation in nitrogen-fixing crops.

Although these features may not be readily apparent during plant

growth, they have a crucial impact on overall plant performance,

particularly for non-tuberous or rhizomatous crops (York et al.,

2015). Root system architecture is closely related to a plant’s

competitive advantage in the environment, including nutrient

acquisition (Lynch, 1995; MansChadi et al., 2014), drought

tolerance (Ribaut, 2006; Comas et al., 2013; Fenta et al., 2014;

Wade et al., 2015), waterlogging tolerance (VanToai et al., 2001),

and lodging resistance (Guingo et al., 1998).

In the field of seedling phenotypic analysis, seed viability

testing, and seed germination experiments, parameters such as

germination rate, seedling length, and growth rate are frequently

measured. For instance, Wang Binbin et al. (Wang and Wu, 2022)

conducted a study on the impact of extracellular polysaccharides

from lactic acid bacteria on the germination and stress tolerance of

japonica rice seeds. They performed statistical analysis on

parameters such as germination potential, germination rate, root

length, and shoot length of japonica rice seeds incubated in different

culture solutions at a constant temperature for 7 days. However, this

process required a significant amount of manual measurements.

Similarly, Jiang Yuting et al. (Jiang et al., 2022) investigated the

effects of different particle sizes and concentrations of polystyrene

microplastics (PS-MPs) on the germination and seedling growth of

sorghum seeds to understand the material’s impact on plants. These

experiments also necessitated accurate measurements of

germination, root length, and shoot length. Nevertheless,

traditional manual measurement methods are no longer adequate

to meet the demands of modern agriculture for efficient, precise,
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and automated measurements. Particularly in seed germination

experiments, accurately measuring shoot length has become an

urgent issue. Currently, there is a relatively limited body of research

on methods for measuring shoot length during the seed

germination stage, and there is no widely accepted automated

detection method for measuring root or shoot length during

seed germination.

In recent years, with the continuous progress of artificial

intelligence, computer vision, and other technologies, more and

more researchers have begun to explore how to utilize advanced

technologies such as deep learning to solve problems in the field of

agricultural detection. These studies have proposed a series of deep

learning-based methods for image semantic segmentation and

target detection to address the needs of modern agriculture. For

example, Marset et al. (Marset et al., 2021) proposed a grape bud

detection method based on the Fully Convolutional Network

Mobile Network architecture (FCN-MN), which achieved

improvements in segmentation, correspondence recognition, and

localization, and realized the detection of the number of grape buds,

bud area, and internode length. On the other hand, Yaying Shi et al.

(Shi et al., 2022) achieved significant performance based on the

YOLOv5 family of networks trained on a barley seed dataset, with

the trained YOLOv5x6 model achieving a mean accuracy (mAP) of

97.5% in the recognition of barley seeds of different varieties. The

development and application of these techniques provide new ideas

and solutions to address automated seedling phenotyping, which is

expected to play an important role in modern agriculture.

Considering the need for non-destructive, efficient, accurate,

and consistent measurements for phenotyping rice seedlings,

DeepLabv3+ (Chen et al., 2017) was used in this study as a

baseline model for pixel-level segmentation of seedling images to

extract the seedling’s shoot, radicle, and seed parts. Subsequently,

the shoot and root lengths of the seeds were analyzed in depth by

further length measurement analysis methods. In the field of image

segmentation, the DeepLab family is one of the widely used and

excellent models. DeepLabv3+ has achieved 89.0% and 82.1% test

performance on PASCAL VOC 2012 and Cityscapes datasets,

respectively (Chen et al., 2017), which is accurate enough for

high-precision image segmentation tasks. However, the main

backbone network of this model, Xception, has a large number of

parameters, which consumes a significant amount of GPU memory.

Additionally, the model’s memory footprint is substantial. As a

result, it fails to meet the efficiency requirements for bud growth

detection. To achieve fast and efficient detection, we optimized and

improved the DeepLabv3+ model. We chose the FasterNet (Chen

et al., 2023) network module with PConv as the backbone network

to reduce the computational complexity. At the same time, we

introduced the PSPA-ASPP structure and applied the EMA

attention mechanism (Ouyang et al., 2023) to the network to

improve the network operation speed and segmentation accuracy.

This enables us to realize image segmentation in terms of efficiency

and accuracy and significantly extends the applicability of the

algorithm in practical applications. With this improvement, we

can quickly and accurately recognize sprout root targets on the
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germination plate. After obtaining the target contour, we used a

length recognition algorithm and performed skeleton extraction

based on the sprout-root contour, thus obtaining a high-precision

skeleton of the seed germination and realizing the automated

detection of sprout length and root length.

The goal of this study is to perform detailed phenotyping of rice

seed germination and seedling stages based on deep learning

techniques and high-throughput plant phenotyping methods. By

deeply investigating the phenotypic changes in these critical growth

stages, we can better understand the mechanisms of plant growth,

development, and adaptation to the environment, and provide

strong support for plant breeding and crop improvement.

Meanwhile, this study is also expected to reveal the dynamic

changes in root system structure during plant seed germination

and seedling growth, thus providing new strategies and directions

for improving crop yield and adapting to planting under different

environmental conditions.

The contributions or innovations of this paper are mainly

the following:
Fron
(1) A deep-learning-based high-throughput phenotyping tool

for hypocotyls is presented, which is fully automated and

achieves the accuracy of a human expert in length

measurement tasks across various plant species.

(2) Using a germination plate to simulate the growth

environment of rice seeds, images of rice seedlings were

collected under the germination plate. Three common

phenotypic targets—shoots, roots, and seeds—were

selected to produce the dataset.

(3) An efficient plant phenotype segmentation method is

provided, which can achieve efficient segmentation of

crop images at the pixel level.

(4) The FasterNet-DeepLabv3+ (DFMA) semantic

segmentation model is proposed, which reduces the

computational complexity of the network and the impact

of hollow convolutional meshing. It improves detection

efficiency and accuracy, and addresses the problem of

frequent memory accesses and inefficiency caused by

using depth-separable convolution in the original network.
tiers in Plant Science 03210
2 Materials and methods

2.1 Image acquisition and data preparation

The dataset is divided into two parts. The first part is a

homemade rice seedling dataset for training and testing the

model. The second part is the publicly available dataset used to

validate the generalization of the proposed model.

The construction of the self-made rice seedling dataset involves

two main stages, beginning with the setup of the growth

environment. To simulate the natural growth environment of rice

and ensure sample consistency, a custom-designed germination

board was developed for this experiment. Seeds were laid flat on a

black velvet cloth, then gently clamped between two acrylic sheets,

which secured both the cloth and seeds without disrupting the

normal growth process or disturbing their stable positions. The

germination board was placed vertically in an incubator set to a

temperature of 28°C, thus controlling the temperature to provide

optimal conditions for germination. To maintain a moist

environment, water was evenly sprayed onto the seed surface

every 12 hours using a spray bottle. This controlled environment

minimized external disturbances, creating consistent experimental

conditions. The experiment spanned the critical 7- to 14-day

growth period for rice seedlings, during which there are

significant morphological changes, from germination to the

preliminary formation of plant structure, capturing key

characteristics of each growth stage. Consequently, the dataset

contains images of seedlings from various growth stages,

establishing a foundational resource for model development to

recognize growth stage characteristics. A germination board

seedling image is illustrated in Figure 1A.

During the germination and image capture phase, the

experiment ensured stable seedling growth on the germination

board under constant temperature and humidity conditions.

Images were taken using various mobile devices to increase

dataset diversity. All images were captured perpendicular to the

germination board to minimize viewpoint deviation, while the well-

lit laboratory environment ensured high-quality image sources. The

use of different devices introduced natural device noise, attributed
FIGURE 1

Homemade dataset germination plate pictures, (A) raw images, (B) mask images.
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to sensor variations or light reflections, enhancing both the dataset’s

diversity and its robustness in real-world applications. To ensure

data quality, all images were meticulously reviewed by botanical

experts. A total of 115 healthy rice seedling samples were collected,

spanning the 7- to 14-day growth period, thereby ensuring both

representativeness and diversity in the dataset. In this study,

Labelme open-source annotation software was used for manual

image segmentation of images. The image was divided into four

categories including shoots, roots, seeds and background. In the

segmentation process, the parts of rice seedlings were separated

from the background. For the fluff and secondary roots on the roots,

they were treated as background. In this way, a homemade labeled

dataset with the file suffix “.json” was obtained. Processed by the

program, 115 sets of images were finally obtained. The sample

image is shown in Figure 1B.

The public dataset was created using the Plant Segmentation

Dataset, which was made public on the Kaggle platform by Orsolya

Dobos et al. (https://www.kaggle.com/tivadardanka/plant-

segmentation) in 2019. This dataset contains images of three

seedlings, including Arabidopsis thaliana, Brachypodium

distachyon, and Sinapis alba. The authors manually placed

seedlings of these three plants on the surface of 1% agar plates

and collected images using an EPSON PERFECTION V30 scanner.

Images were saved in “.tif” or “.jpg” format using 800 dpi and 24-bit

color settings. After collection, hypocotyls, cotyledons, seed coats,

and roots were labeled using FIJI and used to create masks to train

the segmentation algorithm. A sample of the dataset is shown

in Figure 2.
2.2 Seedling phenotyping method

2.2.1 FasterNet network model
Some common network models, such as MobileNet (Howard

et al., 2017), ShuffleNet (Zhang et al., 2017), and GhostNet (Han

et al., 2020), widely utilize Depth-wise Separable Convolution

(DWConv) and Group Convolution (GConv) to extract spatial

features. Depth-wise Separable Convolution is favored for its

advantage in reducing the number of parameters. However,

replacing 2D convolution with Depth-wise Separable Convolution
Frontiers in Plant Science 04211
may result in a drop in model performance, yielding suboptimal

models. Furthermore, Depth-wise Separable Convolution places

higher demands on memory access, leading to slower

computation speeds on GPUs, lower FLOPs, and higher latency.

Similarly, Group Convolution can reduce the number of

parameters, but the limited interaction between channels within

the group may result in the loss of global channel information.

During the process of reducing parameters and FLOPs, the

computational operators often experience the side effect of

increased memory access. These networks are often accompanied

by additional data operations, such as concatenation, shuffling, and

pooling, and the runtime latency of these operations is crucial for

small-scale models. The formula for calculating latency is as follows:

Latency = FLOPs
FLOPS (1)

One of them, FLOPS (floating point operations per second), is

widely used to evaluate the effectiveness of computational speed.

Although there are many approaches aimed at reducing FLOPs, few

of them also consider low-latency optimization. To address this

issue, the authors (Chen et al., 2023) introduced PConv and

proposed FasterNet. as a new family of net-works with lower

latency, on a variety of devices, FasterNet not only provides state-

of-the-art performance, but also enables lower latency and

higher throughput.

The overall architecture of FasterNet has four layers, each

containing respectively l1, and l2, l3, and l4 individual FasterNet

blocks, which are preceded by an embedding or merging layer. The

last layer is used for feature classification. In each FasterNet block,

there is one PConv and two PWConv layers, corresponding to the two

Conv 1×1 layers shown in the bottom-right corner of Figure 3. The

resulting feature maps are convolved 1×1 after data normalization and

ReLU activation function to preserve the complexity of the feature

maps and to achieve lower latency. where PConv is a convolution

operator that reduces computational redundancy and memory access.

Figure 3, bottom left, illustrates how PConv works. It simply applies

regular Conv to a portion of the input channel for spatial feature

extraction while keeping the rest of the channel unchanged. For

consecutive or regular memory accesses, the first or last consecutive

channel is computed by considering the first or last consecutive

channel as a representation of the entire feature map. The input
FIGURE 2

Plant segmentation public datasets. (A) Arabidopsis thaliana (B) Brachypodium dis-tachyon (C) Sinapis alba.
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and output feature maps are considered to have the same number

of channels without loss of generality. As a result, PConv reduces

the FLOPs from h� w � 2c0 + k2 � c0 ≈ h� w � 2c0 down to the

number of channels in the h� w � k2 � c2p.

2.2.2 EMA attention mechanisms module
Attention mechanism modules are employed in neural

networks to improve the selection and integration of information

from image data, thereby enhancing model performance and

accuracy. Examples include SE (Squeeze-and-Excitation) (Hu

et al., 2020), CBAM (Convolutional Block Attention Module)

(Woo et al., 2018), and CA (Channel Attention) (Hou et al.,

2021). The SE attention mechanism focuses solely on channel-

level attention and is suitable for scenarios with a higher number of

channels but performs poorly when channels are limited. CBAM

requires more computational resources, increasing computational

complexity and FLOPs. CA also incurs additional computational

overhead as it computes attention weights for the entire feature

map, and it cannot capture long-range dependencies.

To further improve the performance of DeepLabv3+ network in

extracting global information, we introduce a new efficient multi-

scale attention module, EMA (Efficient Multiscale Attention)

(Ouyang et al., 2023). EMA aims to preserve the information in

each channel and reduce the computational overhead to achieve the

goal of simultaneously preserving rich information and reducing

the goal of computational cost. It achieves the effect of uniformly

distributing spatial semantic features in each feature group by

reconstructing some of the channels into batch dimensions and

grouping the channel dimensions into multiple sub-features. The

specific structure of EMA is shown in Figure 4.

A parallel substructure is used in the EMA module, which is

applied in the attention mechanism to help the network avoid more

parameters and greater depth, and the large local receptive fields of

the neurons enable the neurons to collect multiscale spatial

information. Therefore, EMA utilizes three parallel routes to

extract the attention weight descriptors for the grouped feature
Frontiers in Plant Science 05212
maps. Two of the parallel routes are 1×1 branches and the third

route is 3×3 branches. Cross-channel information interactions are

also modeled in the channel direction. More specifically two 1D

global average pooling operations are employed in the 1×1 branch

to encode the channel along the two spatial directions respectively,

while only one 3×3 kernel is stacked in the 3×3 branch for capturing

multi-scale feature representations. Based on such a structure, EMA

not only encodes the inter-channel information to adjust the

importance of different channels, but also preserves the precise

spatial structure information.
Groups
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FIGURE 4

EMA self-attention module.
FIGURE 3

Overall architecture of FasterNet.
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2.2.3 PSPA-ASPP spatial pooling pyramid layer
Inspired by Spatial Pyramid Pooling (SPP) (He et al., 2014),

DeepLabv2 (Chen et al., 2017) introduced a novel module for

semantic segmentation known as Atrous Spatial Pyramid Pooling

(ASPP). The ASPP module’s design is primarily based on the

concept of dilated convolution. Traditional image segmentation

algorithms often use pooling and convolution layers to increase the

receptive field while simultaneously reducing the feature map size.

However, when it becomes necessary to upsample or restore the size

of feature maps from downsample and pooled layers, it can lead to a

loss in the accuracy of image features and potential loss of semantic

information from the original image. To address this issue, a

method is needed that can increase the receptive field while

keeping the feature map size unchanged, thus replacing

upsampling and downsampling operations. Dilated convolution is

precisely designed to meet this requirement. Dilated convolution

extends the receptive field of convolutional operations by

introducing holes (gaps) in the convolution kernel without

changing the kernel’s size. Specifically, dilated convolution

introduces some virtual zero-value pixels in the convolution

operation, allowing the expansion of the convolution kernel’s

receptive field without altering the feature map size. Figure 5A

represents regular convolution, while (Figure 5B) represents dilated

convolution with a dilation rate of 2, providing a comparison of the

changes in receptive field between the two. ASPP’s design represents

a typical application of dilated convolution, achieving multiscale

target information by parallelizing three dilated convolutions with
Frontiers in Plant Science 06213
different dilation rates, along with a standard convolution and a

pooling operation.

Although introducing dilated convolutions can increase the

receptive field, it also suffers from two significant drawbacks.

Firstly, dilated convolutions can lead to the problem of sparse

sampling. While dilated convolutions excel in extracting global

information, they may lack some semantic information when

dealing with small targets. This is because larger dilation rates can

result in excessive gaps between sampled points, making it

challenging to capture fine details of small objects. Secondly,

dilated convolutions exhibit the grid effect issue. When the same

dilation rate is used or there exists a common divisor greater than 1,

during the process of feature map stacking, it may lead to the loss of

local detailed information in image features, resulting in a pixelated

grid-like effect in the im-ages. This occurs because the same dilation

rate or common divisor causes multiple sampled points to form a

regular grid structure on the feature map, preventing the recovery

of certain local information. Figure 6 illustrates the gridding effect

of feature maps. When three consecutive convolution operations

with a dilation rate of 2 and a kernel size of 3×3 are applied to a

feature map, not all pixels on the feature map participate in

the computation.

2.2.4 CARAFE up-sampling operator
The operator for feature upsampling is essential for increasing

the resolution of low-resolution feature maps to match the size of

high-resolution feature maps, and the design of an effective

upsampling operator is of paramount importance (Mazzini, 2018;

Chen et al., 2021; Dai et al., 2021). Among the widely used feature

upsampling operators, nearest-neighbor interpolation and bilinear

interpolation only consider sub-pixel neighborhoods, failing to

capture the rich semantic information required for dense

prediction tasks. The Transposed Convolution (Dumoulin and

Visin, 2016), serving as the inverse operator of convolutional

layers, employs convolution kernels of the same size throughout

the entire image, thereby neglecting local information variations

and leading to a significant increase in parameter count.

Wang et al. (Wang et al., 2019) introduced the CARAFE

(Content-Aware ReAssembly of Features) feature re-sampling

operator, which adaptively aggregates information within larger

receptive fields, while maintaining remarkable computational

efficiency. CARAFE generates weights in a content-aware manner

by combining features within predefined regions near the central

position. Multiple sets of such upsampling weights are computed

for each central position, and the resulting features are rearranged

into spatial blocks to complete the feature upsampling process. To

validate the effectiveness of the CARAFE operator, the original

authors conducted extensive experiments on Faster RCNN (Ren

et al., 2015), employing various operators for upsampling within the

Feature Pyramid Network (FPN). The results, as shown in Table 1,

included cases denoted as “nearest neighbor + convolution” (N.C.)

and “bilinear + convolution” (B.C.), where an additional 3×3

convolution layer was added after the corresponding upsampling.

The comparative experiments also included three typical

upsampling methods: deconvolution (Deconv), pixel shuffle (P.S.),
Stride=1

Kernel size=3

Stride=1

Kernel size=3

Dilated=2

FIGURE 5

Visualization of the receptive field after the introduction of the null
rate. (A) Represents regular convolution and (B) represents
dilated convolution.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1457360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2024.1457360
and guided upsampling (GUM), as well as spatial attention (S.A.).

CARAFE exhibited the highest average precision (AP) among all

upsampling operators while maintaining lower FLOPs and

parameter counts, indicating its efficiency in enhancing detail

recovery and excelling in model lightweighting. Results for N.C.

and B.C. suggested that additional parameters did not yield

significant gains, whereas Deconv, P.S., GUM, and S.A. all

exhibited inferior performance compared to CARAFE.

As shown in Figure 8, CARAFE, as an upsampling operator

with a content-aware kernel, consists of two steps. The first step is to

predict the reassembly kernel for each target position based on its

content (i.e., the Kernel Prediction Module in Figure 8). The second

step is to use the predicted kernel to reassemble the features (i.e., the

Content-aware Reassembly Module in Figure 8). In the first step, a

feature map X of size C �W � H is upsampled by a factor of s,
resulting in a new feature map of size C×sH×sW. Assuming an

upsample kernel size of kup � kup, if different upsample kernels are

desired for each position in the output feature map, the predicted
Frontiers in Plant Science 07214
upsample kernel should have a shape of sH � sW � kup � kup.

To compress the input feature map, a convolution layer with a

kernel size of   kencoder � kencoder is used to predict the upsample

kernel, with an input channel number of Cm and an output channel

number of s 2k2up, resulting in an upsample kernel of shape sH �
sW � k2up. In the second step, for each position in the output

feature map, it is mapped back to the input feature map, and a kup �
kup region centered on that point is extracted. The dot product is

then computed between the extracted region and the predicted

upsample kernel for that point to obtain the output value. Different

channels at the same position share the same upsample kernel.

In the improved Deeplab v3+ network, as illustrated in

Equation 2, the kernel prediction module y predicts the position

for each location based on the learned weights  W l0 in the first step.

Subsequently, as described in Equation 3, the content-aware

recombination module f recombines the features X l with the

kernel W l0 in the second step. To reduce the parameter count of

upsampling operators and enhance efficiency, an 8-fold upsampling

CARAFE module is introduced after the ASPP module, which

restores the size of the feature maps from 256 × 16 × 16 to 256 ×

128 × 128. Following feature fusion, a 4-fold upsampling operation

is applied to restore the final feature map to 4 × 512 × 512

dimensions.

W l0 = y (N(X l , kencoder)) (2)

X l0 = f(N(X l , kup),W l0 ) (3)
2.2.5 DFMA overall network structure
The DFMA model integrates the FasterNet backbone with the

SPA-ASPP module enhanced by an EMA attention mechanism,

aimed at improving feature extraction and segmentation accuracy

for plant seedling images while being optimized for mobile

deployment. Initially, the input RGB image undergoes feature

extraction via the FasterNet backbone. FasterNet leverages a
TABLE 1 Comparison of the performance of sampling operators
on CARAFE.

Method AP FLOPs Params

Nearest 36.5 0 0

Bilinear 36.7 8k 0

N.C 36.6 4.7M 590K

B.C 36.6 4.7M 590K

Deconv 36.4 1.2M 590K

P.S 36.5 4.7M 2.4M

GUM 36.9 1.1M 132K

S.A 36.9 28K 2.3K

CARAFE 37.8 199K 74K
FIGURE 6

Mapping of gridding effects. From left to right, the dilation rates are 2, 2, and 2, respectively. Following the approach outlined by Shi et al (Shi and
Bao, 2023), our research team devised a novel ASPP (Atrous Spatial Pyramid Pooling) structure known as PSPA-ASPP. Firstly, we replaced the original
ASPP’s first branch layer’s 1×1 convolution with a 3×3 Pconv convolution to broaden the receptive field of the first layer while avoiding redundant
learning. Secondly, we employed two 3×3 dilated convolutions with dilation rates of 2 and 3, each with 128 convolution kernels, which is half of the
original ASPP’s individual branch, and concatenated them in the channel dimension. Subsequently, we applied two additional 3×3 dilated
convolutions with dilation rates of 5 and 7 in a similar concatenated manner. This design allows the network to capture features from different scales
while substantially reducing the grid effect and making more effective use of feature layer information. The final layer still employs average pooling
to capture global features of the feature map. Figure 7 illustrates the overall network architecture of PSPA-ASPP.
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CARAFE up-sampling operator.
FIGURE 7

PSPA-ASPP series-parallel network structure diagram.
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hybrid structure combining Pconv, PWconv, and standard

convolution to efficiently extract both low-level and high-level

features, overcoming the limitations of depthwise separable

convolution. To ensure the participation of shallow features in

subsequent processing, the model retains shallow feature maps

downsampled four times within the backbone network. Following

this, DFMA introduces an EMA (attention mechanism) module

that enhances the fusion capability of high-level features. The EMA

mechanism dynamically reweights features from different layers,

enabling the network to focus on key parts of the image when

extracting high-level features, thus boosting overall performance.

During the multi-scale feature extraction stage, DFMA employs

the SPA-ASPP module with EMA attention. This module captures

high-level semantic information across multiple scales through

several branches, effectively avoiding grid effects common in

traditional methods. The EMA attention mechanism further

strengthens the representation capacity of these branches,

allowing the model to concentrate on crucial features within plant

seedling images.

In the decoding stage, the multi-scale feature information is

merged and upsampled using the CARAFER operator, aligning the

high-level feature map dimensions with the low-level feature map for

subsequent fusion. DFMA applies a 1×1 convolution on the shallow

feature map to match channel dimensions with the upsampled deep

feature map, preparing it for concatenation. The concatenated feature

map then undergoes partial convolution and additional upsampling,

ultimately generating the model’s prediction. This integrated design

combines the strengths of FasterNet and the SPA-ASPP module,

enhancing the model’s feature extraction capacity while ensuring

efficiency and accuracy for mobile deployment. The DFMA model

structure is shown in Figure 9.
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2.3 Seedling length detection method

Through training the DFMA network model, we can easily input

seedling images for analysis and obtain corresponding masks. These

masks accurately represent the different positions of seeds within the

images, allowing researchers to observe the developmental details of

seed germination, embryonic axis, and root structure clearly. In

certain studies, it is not only necessary to conduct in-depth analysis

of the development of various plant parts but also to acquire precise

parameters for these developmental aspects. Therefore, we introduce

a seedling length measurement algorithm, which not only provides

accurate segmentation masks for the images but also enables us to

obtain exact parameters for the development of different plant parts.

In this seedling length detection, we divided into two main

steps. First, we skeletonize the image using the Hilditch algorithm to

obtain the median length of the segmented image. Secondly, we

utilize Hough Transform to obtain the transformation relationship

between the true length of the seedling detection site and the pixels.

The Hough Transform is an early image processing algorithm that

employs a voting-based approach for shape fitting. Its objective is to

mathematically describe certain edges in an image to enhance

information extraction. Unlike alternative techniques such as least

squares, robust estimation, and RANSAC, the Hough Transform

excels in simultaneously fitting multiple objects. The detection process

in the Hough Transform involves iterating through all non-zero points,

accumulating votes for each point’s center, and assigning scores. For

each point along a circle, its center lies on the vector perpendicular to

the point and passing through the point’s location. The intersection

point of these center vectors corresponds to the desired circle center

position. In this experiment, coins serve as a real-world scale for

converting lengths to pixels, enabling the detection of coin diameters.
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FIGURE 9

Improvement of the overall architecture of FasterNet-Deeplab v3+.
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Within the Hough Transform, fitting circles requires three parameters -

(x, y, r), where x and y denote coordinates, and r represents the circle’s

radius. These parameters are determined using the following formula:

(X − x2) + (Y − y2) = r2 (4)

The Hough Gradient method optimizes the standard Hough Circle

Transform by eliminating the need to draw complete circles in

parameter space for voting. Instead, it calculates the gradient vectors

at contour points and casts votes along the gradient direction, at a

distance of R in both directions from the contour point, effectively

conducting one vote on each side. Ultimately, the circle center’s position

is determined based on the voting results as depicted in Figure 10.

As shown in the diagram, assuming that the gradient directions

of the contour points ACDE all pass through point B, they will each

cast a vote for point B. Within a search radius of R, votes are cast on

both sides of the contour points at a distance of R based on the

gradient direction. Ultimately, the center position is determined

based on the voting results. Compared to the parameter space

voting method for determining the center, this approach offers

better resistance to interference. Even if other points also cast votes,

their voting results are too dispersed, and their interference with the

overall voting result can be almost negligible.

For this experiment we use coins as a scale between real and

pixel values, and the actual value of the sprout length can be

calculated based on the coin diameter. A dollar coin as a circle

with a diameter of 25mm, get how many pixels it occupies in the

figure, it can get the number of pixels per metric (pixel Per Metric),

and then calculate the pixels occupied by other objects n, it can get

the actual length (n × pixel Per Metric).
3 Experiments and results

3.1 Model evaluation criteria

In this network model of bud root region segmentation, the

deep learning network mainly adopts Mean Intersection over
Frontiers in Plant Science 10217
Union (mIoU) as the evaluation index of the model, and mean

intersection over union refers to the ratio of intersection and

concatenation values between the true and predicted values of

each classification, and then averages over multiple classifications.

In the field of scientific research and data analysis, True Positive

(TP)is defined as the portion where both the actual value and the

predicted value are true. True Negative (TN)corresponds to cases

where both the actual value and the predicted value are false. False

Positive (FP)refers to instances where the actual value is false, but

the predicted value is true. False Negative (FN) denotes situations

where the actual value is true, but the predicted value is false.

MIoU = 1
k+1o

k

i=0

TP
FN + FP + TP

(5)

In addition to mIoU, precision (Pre), recall (Rec), and accuracy

(Acc) are also used as evaluation metrics for the algorithm. Precision

(Pre) is used to measure the proportion of predictions that are

correct in the samples that the model predicts as positive examples,

with the formula shown in Equation 6:

precision   = TP
 TP+FP (6)

Recall (Rec) is the proportion of all positive cases that the model

predicts correctly, as shown in Equation 7:

recall   = TP
 TP+FN (7)

Accuracy (Acc) is the number of samples with all correct

predictions as a percentage of all samples. The higher its value,

the better the model. As shown in Equation 8:

Accuracy   = TP+TN
TP+TN+FP+FN (8)
3.2 Data augmentation settings in the
training phase

In this study, we employed online data augmentation

techniques to enhance the robustness and generalization

capability of the model. The data augmentation operations

included random scaling (with a scale range of 0.25 to 2 times),

aspect ratio distortion, horizontal flipping (with a probability of

50%), gray padding (pixel value of 128), random adjustments to

hue, saturation, and brightness in the HSV color space, as well as

random cropping and shifting. These augmentation methods were

dynamically applied to the training data’s images and labels during

each training iteration, thereby expanding the original data

distribution, simulating target variations under different scenarios

and conditions, and significantly improving the model’s

adaptability to changes in lighting, orientation, and target shapes.

Moreover, dynamic augmentation reduced the need for storing pre-

augmented data while significantly increasing data diversity,

thereby improving training effectiveness. It is important to note

that data augmentation was only applied during the training phase

and not during the validation phase to ensure that the validation

results objectively reflect the true performance of the model. The

FIGURE 10

Hough gradient method.
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experimental results demonstrate the effectiveness of the proposed

method in reducing overfitting and improving model performance.
3.3 Experimental platform and
parameter design

The network is implemented based on the PyTorch library and

trained on a single Nvidia RTX 3060 GPU, with a 12th Gen Intel(R)

Core(TM) i5 - 12400F processor. The initial batch size is set to 10,

and the initial learning rate is 0.05. Stochastic Gradient Descent

(SGD) is adopted as the optimization method, and both Dice loss

and cross - entropy loss are utilized as the objective functions. L2

regularization is applied for model regularization. We use online

data augmentation techniques, such as rotation (by 90, 180, and 270

degrees), horizontal flipping, and random adjustments to hue,

saturation, and brightness in the HSV color space. The original

dataset contains 115 images, which are split into a training set of 92

images and a validation set of 23 images following an 8:2 ratio.

Through these online augmentation operations, each original

training image can generate multiple variants during each

training iteration. To estimate the approximate quantity of the

augmented training data, considering that each image has 7

different augmented forms on average (3 rotations + 1 horizontal
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flip + 3 color space adjustments), the total number of augmented

training images is about 644. During training, the batch size is

adjusted to 8. The training process will automatically stop when the

loss function output of the validation set does not decrease for 20

consecutive epochs, with a maximum of 500 epochs permitted. The

segmentation performance is evaluated on the validation set using

the Mean Intersection over Union (mIoU) metric (Table 2).
3.4 Evaluation of the results of the seedling
phenotype segmentation experiment

According to the analysis results in Table 3, it is evident that

FasterNet exhibits significant advantages in network backbone

selection. Moreover, during the experimental phase, we observed

that FasterNet’s training process is notably faster, which may be

attributed to the frequent memory access associated with depth-

wise separable convolutions and pointwise convolutions used in

Xception and MobileNet. In our proposed PSPA-ASPP structure,

when the backbone networks are the same, the combination of

FasterNet with ASPP achieves an mIoU of 79.84, whereas when

combined with PSPA-ASPP, it reaches 81.36. It is noteworthy that

FasterNet+PSPA-ASPP also boasts lower GFLOPs, indicating its

competitiveness in terms of computational efficiency. The final

experimental results demonstrate that the FasterNet+EMA

+PSPA-ASPP+CARAFE combination exhibits the best

performance, further substantiating its outstanding performance

in image segmentation tasks.

The primary objective of this experiment is to achieve more

precise phenotypic analysis; therefore, when differences in other

metrics are minimal, this study prioritizes model accuracy. The

improved FasterNet-DeepLab V3+ achieves the highest mIoU while

significantly reducing GFLOPs. By simplifying the branches with

the PSPA-ASPPmodule, the GFLOPs are reduced by approximately

2.161 G, effectively enhancing the model’s learning capacity.

In accordance with Figure 11, we conducted a comparative

experimental analysis of prediction results using the DeepLabv3+

semantic segmentation model with MobileNet and Xception as
TABLE 3 Results of ablation experiments.

Xception MobileNetV2 FasterNet CA SP EMA PSPA_ASPP CARAFE MIoU/% GFLOPs/G

✔ 67.09 167.00

✔ 74.21 53.03

✔ 79.84 138.70

✔ ✔ 78.79 138.71

✔ ✔ ✔ 81.32 141.52

✔ ✔ ✔ 81.35 139.45

✔ ✔ 81.36 135.23

✔ ✔ ✔ 81.63 139.83

✔ ✔ ✔ 81.58 137.29

✔ ✔ ✔ ✔ 81.72 137.67
Bold value represents the highest mIoU achieved by our model in the tests.
TABLE 2 Training parameters.

Parameter Value

Initial learning rate 0.005

End Lr 0.0001

Momentum 0.937

Batch size 8

Lr policy Adam

Lr decay cos

epoch 500
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backbone networks, the Unet-VGG segmentation model, and our

improved DFMA network in our research. As evident from the

results in Figure 11D, the segmentation performance is the poorest

in this case, with issues of coherence in the regions covered by

masks for rice seedling shoots and root areas, resulting in

suboptimal segmentation. In contrast, our proposed DFMA

network model exhibits the best performance, accurately

segmenting each region.

On the public dataset, the DFMA was compared with networks

such as UNet (a network provided by the original authors of the

public dataset), MobileNetV2, and Xception in terms of

equalization and concurrency results, as shown in the Table 4.

Based on the analysis results presented in Table 4 and illustrated

in Figure 12, it is evident that our proposed DFMA model

demonstrates exceptional performance on publicly available

datasets, outperforming other models. Across three distinct plant

datasets, namely short-stalked grass, white Sinapis alba, and

Arabidopsis thaliana, the DFMA model achieves average

intersection over union (mIoU) ratios of 87.69%, 91.07%, and

66.44%, respectively, surpassing the other two models by at least

2 percentage points. Furthermore, as depicted in Figure 12, during

the training process, it is apparent that the DFMA network model

converges more swiftly and maintains a lower loss function value,

providing additional evidence of its superior performance

and efficiency.
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In accordance with Table 5, our proposed DFMA network

achieves the best segmentation performance on publicly available

datasets. Due to the limitations of depth-wise separable convolution,

the MobileNet network exhibits poor mask recognition in the bud

apex region. Conversely, due to its restricted network depth, UNet

produces relatively coarse results in fine detail recognition.

The DFMA model outperforms other models in plant

phenotyping analysis, largely due to its design tailored to address

the unique challenges of seedling segmentation tasks. Plant

phenotyping often requires accurate identification of intricate and

complex structures. Seedling images commonly contain multi-scale,

fine structural features, such as leaf edges and stems, which demand

high segmentation precision. Additionally, the execution

environment for seedling segmentation tasks is typically resource-

limited, such as mobile devices or automated equipment, imposing

strict requirements for model efficiency and lightweight design.

The DFMA model utilizes FasterNet as its backbone network,

known for its efficient spatial feature extraction without relying on

depthwise separable convolutions. While depthwise separable

convolutions offer a lightweight solution, they may fall short in

efficiently capturing details within complex structural images.

FasterNet’s design, incorporating a combination of Pconv,

PWconv, and standard convolution, achieves a balance between

lightweight operation and efficiency, making it well-suited for

deployment in resource-constrained environments.

Furthermore, DFMA integrates an SPA-ASPP module with

EMA (Attention Mechanism), enabling detailed feature capture

across multi-scale branches and mitigating the grid effect

commonly seen in traditional ASPP modules. The grid effect can

lead to feature loss or blurred image boundaries, but the EMA

attention mechanism allows the model to focus precisely on key

areas of seedlings, such as leaves and stems, resulting in outstanding

performance in detail-rich scenarios. This capability is critical for

fine-grained segmentation in plant phenotyping, as capturing

details aids researchers in better understanding plant growth

conditions and morphological characteristics.
FIGURE 12

Loss curves of different models on two-spike phragmites
picture dataset.
FIGURE 11

Phenotypic recognition results for homemade datasets. (A) Original
figure. (B) DFMA. (C) deepLab v3+-MobileNet. (D) deepLab v3
+-Xception. (E) UNet-VGG.
TABLE 4 MIoU results (%) of different network trainings on
public dataset.

Model Brachypodium
distachyon

Sinapis
alba

Arabidopsis
thaliana

DFMA 87.69 91.07 66.44

MobileNetV2 84.84 87.21 63.39

Xception 78.78 68.75 56.22

UNet-VGG 80.10 85.65 62.82
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TABLE 5 Plant phenotype segmentation results for different networks of the open dataset.

original figure
Improvement of

FasterNet-Deeplab
V3+

Deeplab
V3+-MobileNet

UNet-VGG

Arabidopsis thaliana

Brachypodium distachyon

Sinapis alba
F
rontiers in Plant Science
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FIGURE 13

Scatterplot of identifying rice seedlings (A) Adam optimizer detects bud length (B) SGD optimizer detects bud length (C) Adam optimizer detects
root length (D) The SGD optimizer detects root length.
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3.5 Evaluation of the results of the seedling
phenotype segmentation experiment

The skeleton extraction algorithm was employed to identify the

central axis of the mask, enabling the computation of the seedling

shoot and root length. Figure 13 and Table 6 depict the image
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analysis results obtained through both manual detection and the

experimental method described in this paper. In these

visualizations, the horizontal axis represents the manually

measured values, while the vertical axis represents the

corresponding measurements obtained from seedling images

using the method outlined in this study. Statistical analysis in
TABLE 6 Relative errors of different algorithms for length recognition of rice seedling images.

Model
Serial

number
Maximum absolute

error (cm)
Minimum absolute

error (cm)
Mean absolute

error (cm)

Improvement (%)

Vs.
DeepLabV3+

Vs.
Unet-VGG

Original Deeplab
V3+ model

bud 0.583 0.028 0.386
– –

radical 0.506 0.016 0.724

UNet-VGG
bud 0.876 0.034 0.410

– –
radical 1.467 0.074 0.862

DFMA
bud 0.384 0.007 0.146 +62.20 +64.44

radical 0.393 0.006 0.231 +68.09 +73.20
FIGURE 14

Results of batch testing of rice shoot root lengths.
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Table 6 is conducted by grouping every 5 seedlings together

for assessment.

The measured values obtained by the algorithm used in this paper

and the manual measurement values are highly consistent, and the

improved DeepLabv3+ network yields better results than the original

DeepLabv3+ network. However, there is still a small error. Possible

reasons for the error include the skeleton extraction step after filling

the interior of the contour, which causes the algorithm to use the

centerline instead of the main root. Additionally, there is an offset in

the refinement process, resulting in inconsistent calculated lengths.

Compared to the original DeepLabv3+ model, the improved

model reduced the mean absolute errors in measuring shoots and

roots by 62.20% and 68.09%, respectively. Compared with the

UNet-VGG model, it achieved improvements of 64.44% and

73.20%, respectively, and demonstrated a more significant

detection advantage in terms of maximum and minimum

absolute errors.

In this study, based on the improved DeepLabv3+ target

segmentation network combined with the length detection

algorithm, the sprout target is recognized and segmented, and the

sprout length is ultimately obtained. The recognition results are

shown in Figure 14 below. The model in this study demonstrates

superior recognition of the target, accurately segments the outline

and key parts of the target, and simultaneously avoids confusion

between the target and the background. It provides more accurate

length detection results and is capable of batch detection.
4 Discussion

This study proposes a high-throughput plant phenotyping

method based on deep learning, highlighting its broad application

potential and significance across multiple fields. Through a non-

destructive, efficient, accurate, and consistent measurement

approach, we achieved phenotypic analysis of rice seedlings at

early growth stages, significantly improving research efficiency

and broadening future applications. In line with specific

experimental tasks, we selected datasets from four species, three

from public Kaggle datasets and one collected independently. This

choice allowed us to test the model’s performance under relatively

consistent environmental conditions, minimizing external factors

and yielding clearer experimental results. However, we recognize

that the current datasets are limited in species and environmental

diversity, and expanding this diversity is necessary to further

enhance the model’s robustness and generalizability. Future

research will therefore introduce more samples from diverse

species and environmental conditions to improve the model’s

adaptability and applicability in complex, dynamic scenarios.

Although the improved DeepLabv3+ and the newly introduced

DFMA semantic segmentation model perform excellently in

segmentation efficiency and accuracy, they still face limitations in

lighting adaptability, cross-crop transferability, and multi-species

analysis. To enhance the model’s broad applicability, future work

will focus on further strengthening the model’s robustness to

varying lighting conditions and exploring ways to adjust feature
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extraction and attention modules to better accommodate plants

with diverse morphological features. As research progresses, we also

plan to expand this technology to other crops and plant species,

further uncovering growth and developmental characteristics. This

will provide scientific support for crop improvement and

cultivation, and advance ecological research, helping scientists

better understand plant responses to environmental changes.

The application prospects of this technology extend beyond

plant phenotyping, with potential in fields such as medical image

analysis and autonomous driving, demonstrating deep learning’s

immense potential for automation and precision in image

processing. This technology holds significant value for research in

biology and botany. In the future, we plan to open-source a

WeChat-based plant phenotyping mini-program to promote

practical applications of this research and facilitate further

developments. This will provide innovative tools and directions

for plant breeding and crop improvement.
5 Conclusion

In summary, our study addresses a critical need in the rapidly

evolving field of plant phenotypic research. Accurate seedling

length measurement is essential for evaluating seed viability and

growth status. We have developed an efficient and versatile deep

learning approach, named DFMA, which incorporates the

innovative PSPA-ASPP structure. Our model consistently

outperforms traditional methods and other models, achieving

remarkable segmentation and detection results across various

plant species. DFMA generates precise segmentation masks that

highlight detailed developmental aspects of seedling components,

such as cotyledons, hypocotyls, and roots. Furthermore, we

introduce a novel seedling length measurement algorithm,

providing precise parameters for a comprehensive plant

phenotypic analysis. Our research holds great promise for offering

more efficient tools and data support to advance the field of plant

biology, enhancing our understanding of plant genetics and growth

trends in the top-tier scientific community.
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Guingo, E., Hébert, Y., and Charcosset, A. (1998). Genetic analysis of root traits in
maize. Agronomie 18, 225–235. doi: 10.1051/agro:19980305

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., and Xu, C. (2020). “GhostNet: more
features from cheap operations,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June. 1577–
1586. New York: IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2014). “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in Computer Vision—ECCV 2014. Eds.
D. Fleet, T. Pajdla, B. Schiele and T. Tuytelaars (Switzerland: Springer International
Publishing, Cham), 346–361.

Holman, F. H., Riche, A. B., Michalski, A., Castle, M., Wooster, M. J., and
Hawkesford, M. J. (2016). High throughput field phenotyping of wheat plant height
and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 8,
1031. doi: 10.3390/rs8121031

Hou, Q., Zhou, D., and Feng, J. (2021). Coordinate attention for efficient Mobile
Network Design. arXiv, arXiv:2103.02907.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv, arXiv:1704.04861.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2020). Squeeze-and-excitation
networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023. doi: 10.1109/TPAMI.34
Jiang, Y., Xu, H., Yan, S., and Wang, J. (2022). Effects of polystyrene microplastics on
seed germination and seedling growth of wine sorghum variety “Red Cherry”. Seed 41,
108–113. doi: 10.16590/j.cnki.1001-4705.2022.10.108

Lynch, J. (1995). Root architecture and plant productivity. Plant Physiol. 109, 7.
doi: 10.1104/pp.109.1.7

MansChadi, A. M., Kaul, H. P., Vollmann, J., Eitzinger, J., and Wenzel, W. (2014).
Developing phosphorus-efficient crop varieties—an interdisciplinary research
framework. Field Crops Res. 162, 87–98. doi: 10.1016/j.fcr.2013.12.016
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Hyperspectral images are rich in spectral and spatial information, providing a

detailed and comprehensive description of objects, which makes hyperspectral

image analysis technology essential in intelligent agriculture. With various corn

seed varieties exhibiting significant internal structural differences, accurate

classification is crucial for planting, monitoring, and consumption. However,

due to the large volume and complex features of hyperspectral corn image data,

existing methods often fall short in feature extraction and utilization, leading to

low classification accuracy. To address these issues, this paper proposes a

spectral-spatial attention transformer network (SSATNet) for hyperspectral

corn image classification. Specifically, SSATNet utilizes 3D and 2D convolutions

to effectively extract local spatial, spectral, and textural features from the data

while incorporating spectral and spatial morphological structures to understand

the internal structure of the data better. Additionally, a transformer encoder with

cross-attention extracts and refines feature information from a global

perspective. Finally, a classifier generates the prediction results. Compared to

existing state-of-the-art classification methods, our model performs better on

the hyperspectral corn image dataset, demonstrating its effectiveness.
KEYWORDS

corn identification, hyperspectral image classification, deep learning, morphology,
image classification
1 Introduction

Hyperspectral imaging technology comprehensively measures an object’s spectral

properties by recording its absorption and reflection across various spectral bands (Li

et al., 2024c; Zhang et al., 2024b; Li et al., 2024a). The resulting hyperspectral images,

composed of multiple consecutive bands, are rich in feature information and can
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thoroughly reveal the nature of the object. This technology advances

intelligent agriculture by utilizing the detailed feature information

in hyperspectral images, thereby avoiding the destructive methods

of traditional seed identification. Hyperspectral imaging has

gradually been applied to intelligent agriculture, geological

exploration, and medical treatment, offering new development

opportunities and technical capabilities.

The increasing variety of corn seeds available in the market

presents a significant challenge to the cereal farming industry,

making the accurate identification of corn varieties especially

crucial. Recently, researchers have been investigating hyperspectral

image classification techniques using machine learning and deep

learning approaches (Zhang et al., 2023c; Wu et al., 2022). Ahmad

et al. (Ahmad et al., 2019). utilized a self-encoder paired with a

multilayer extreme learning machine to mitigate high computational

overhead and the Thuesian phenomenon in hyperspectral images,

which improved the accuracy of hyperspectral image classification.

Okwuashi et al. (Okwuashi and Ndehedehe, 2020) introduced a deep

support vector machine algorithm incorporating four kernel functions

and demonstrated its effectiveness in hyperspectral image

classification using publicly available datasets. Zhang et al. (Zhang

et al., 2020) employed a deep forest model with hyperspectral imaging

to classify rice seeds with different levels of frost damage in small

sample datasets. Su et al. (Su et al., 2022) introduced a new semi-

supervised method for hyperspectral image classification that

integrates normalized spectral clustering with kernel learning,

effectively addressing the issues of relevant features appearing in

non-adjacent regions and the lack of non-Euclidean spatial

correlation. Jin et al. (Jin et al., 2023) developed a cost-sensitive K-

neighborhood algorithm to reduce noise interference, enhance spatial

information utilization, and achieve robust performance in

hyperspectral wheat image classification. Farmonov et al.

(Farmonov et al., 2023) employed wavelet transform for feature

extraction, combined with random forests and support vector

machine algorithms, to localize crops in farmland and classify crop

hyperspectral images, playing a significant role in crop growth

monitoring and harvest prediction. Sim et al. (Sim et al., 2024)

combined machine learning algorithms with hyperspectral imaging

for fast, non-destructive detection of coffee origin without sample

processing. Wang et al. (Wang et al., 2024b) proposed a cross-domain

few-shot learning strategy utilizing a two-branch domain adaptation

technique to mitigate distortion caused by enforcing different domain

alignments, achieving effective cross-domain transfer learning for low/

high spatial resolution data. Althoughmachine learning methods have

demonstrated exemplary performance in hyperspectral image

classification, their reliance on manual or semi-automatic feature

extraction limits their potential. The emergence of deep learning

methods has enabled the automatic extraction of spectral, spatial

and spatial-spectral features from hyperspectral images, leading to

significant advancements in this field.

Zhang et al. (Zhang et al., 2019) created a straightforward 1D

convolutional capsule network to tackle the high dimensionality and

limited labeled samples in hyperspectral images, achieving effective

feature extraction and classification. Wang et al. (Wang et al., 2020)

developed an end-to-end cubic convolutional neural network that

integrates Principal Component Analysis with 1D convolution for
Frontiers in Plant Science 02226
efficient extraction of spatial and spectral features. Roy et al.

(Roy et al., 2020) proposed an improved residual network using an

adaptive spatial-spectral kernel with attention mechanisms, utilizing 3D

convolutional kernels to simultaneously extract spatial and spectral

features, achieving excellent classification results. Cui et al.

(Cui et al., 2021) introduced a lightweight deep network using 3D

deep convolution to classify hyperspectral images with fewer parameters

and lower computational costs. Ortac et al. (Ortac and Ozcan, 2021)

evaluated the performance of 1D, 2D, and 3D convolutions in

hyperspectral image classification, demonstrating that 3D convolution

offers superior feature extraction capabilities. Ghaderizadeh et al.

(Ghaderizadeh et al., 2021) employed depth-separable and fast

convolutional blocks in combination with 2D convolutional neural

networks to effectively tackle data noise and insufficient training

samples. Paoletti et al. (Paoletti et al., 2023a) proposed a channel

attention mechanism to automatically design and optimize

convolutional neural networks, reducing the computational burden in

feature extraction while obtaining effective classification outcomes. Sun

et al. (Sun et al., 2023) introduced an extensive kernel spatial-spectral

attention network designed to efficiently leverage 3D spatial-spectral

features, maintaining the 3D structure of hyperspectral images. Jia et al.

(Jia et al., 2023) developed a structure-adaptive CNN for hyperspectral

image classification, which employs structure-adaptive convolution and

mean pooling to extract deep spectral, spatial, and geometric features

from a uniform hyperpixel region. Gao et al. (Gao et al., 2023) designed a

lightweight 3D-2D multigroup feature extraction module for

hyperspectral image classification, which mitigates the loss of crucial

details in single-scale feature extraction and the high computational

expense of multiscale extraction. Zhang et al. (Zhang et al., 2023b)

introduced a method combining 3D and 2D convolution to fully utilize

the spatial, texture and spectral features of hyperspectral data for the task

of identifying wheat varieties. In conclusion, while 2D and 3D

convolutions effectively capture spectral and spatial features from

hyperspectral data, traditional convolutional neural networks are

limited by high computational complexity and insufficient feature

utilization, impacting their classification performance.

Inspired by (Vaswani et al., 2017), researchers have suggested a

Transformer-based network model for image classification (Zhang

et al., 2024a). Hong et al. (Hong et al., 2021) effectively classified

hyperspectral remote sensing images by leveraging spectral local

sequence information from neighboring bands, considering the

temporal properties, and designing cross-layer skipping

connections combined with the Transformer structure. Roy et al.

(Roy et al., 2021) introduced an innovative end-to-end deep

learning framework, using spectral and spatial morphological

blocks for nonlinear transformations in feature extraction. Yang

et al. (Yang et al., 2022) integrated convolutional operations into

the Transformer structure to capture local spatial context and

subtle spectral differences, fully utilizing the sequence attributes of

spectral features. Sun et al. (Sun et al., 2022b) developed a spatial-

spectral feature tokenization converter to capture both spectral-

spatial and high-level semantic features, achieving hyperspectral

image classification through a feature transformation module, a

feature extraction module, and a sample label learning module.

Kumar et al. (Kumar et al., 2022) developed a novel morphology-

expanding convolutional neural network that connects the
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morphological feature domain with the original hyperspectral data,

reducing computational complexity and achieving good

classification results. Peng et al. (Peng et al., 2022) developed a

two-branch spectral-spatial converter with cross-attention, using

spatial sequences to extract spectral features and capture deep

spatial information to establish interrelationships among spectral

sequences. Tang et al. (Tang et al., 2023) introduced a dual-

attention Transformer encoder based on the Transformer

backbone network for hyperspectral image classification,

effectively extracting global dependencies and local spatial

information between spectral bands. Qi et al. (Qi et al., 2023a)

embedded 3D convolution in a two-branch Transformer structure

to capture globally and locally correlated spectral-spatial domain

features, demonstrating good performance for hyperspectral image

classification through validation. Qiu et al. (Qiu et al., 2023)

proposed a cross-channel dynamic spectral-spatial fusion

Transformer capable of extracting multi-channel and multi-scale

features, using multi-head self-attention to extract cross-channel

global features and enhancing spatial-spectral joint features for

hyperspectral image classification. Sun et al. (Sun et al., 2024)

converted the spatial-spectral features into a memory marker

storing a priori knowledge into an in-memory tagger, using a

memory-enhanced Transformer encoder for the hyperspectral

image classification task. Ahmad et al. (Ahmad et al., 2024)

designed a Transformer-based network for hyperspectral image

classification by combining wavelet transform with downsampling.

The wavelet transform performs reversible downsampling,

enabling attentional learning while preserving data integrity.

Based on these studies, we propose utilizing a combination of

2D-3D convolution and Transformer, leveraging spectral-spatial

morphological features to identify hyperspectral corn seed

varieties. The contributions of this paper can be summarized

as follows:
Fron
• We developed a 3D-2D convolutional cascade structure that

autonomously extracts contextual features, reduces data

complexity and efficiently captures high-level abstract

features for integration into the Transformer architecture.

• We introduced a spectral-spatial morphology structure that

employs expansion and erosion operations for spectral-spatial

morphology convolution, enhancing the understanding of the

data’s intrinsic properties.

• We employed a Transformer Encoder with CrossAttention

to comprehensively extract and refine feature information

from hyperspectral corn images on a global scale using the

attention mechanism.
2 Related works

Currently, researchers have proposed a variety of methods for

classifying hyperspectral remote sensing images and hyperspectral seed

images. We classify these approaches into deep learning methods,

machine learning methods and traditional methods. The deep learning

methods are further divided into hybrid CNN-Transformer methods,
tiers in Plant Science 03227
Transformer-based methods, and CNN-based methods. Next, we

overview and summarize these research outcomes.

Traditional methods for hyperspectral image classification

primarily rely on analyzing physical and statistical features. These

methods typically include spectral feature extraction, pixel-based

classification, and target-based classification. For example, Cui et al.

(Cui et al., 2020) introduced a super-pixel and multi-classifier

fusion approach to tackle the challenges of limited labeled

samples and substantial spectral variations. Similarly, Chen et al.

(Chen et al., 2021a) introduced a feature extraction means that

combines PCA and LBP, optimized using the Gray Wolf

optimization algorithm for hyperspectral image classification.

While these methods perform well for simpler classification tasks,

their effectiveness diminishes when faced with complex

backgrounds and highly mixed pixels.

Machine learning methods effectively classify hyperspectral

images by learning the features of sample data. With the

advancement of machine learning technology, researchers

increasingly utilize machine learning algorithms for hyperspectral

image classification. For example, Pham et al. (Pham and Liou,

2022) developed a push-sweep hyperspectral system using a support

vector machine to date surface defects, addressing the problem of

insufficient accuracy and speed in detecting date skin defects with

traditional methods. Sun et al. (Sun et al., 2022a) constructed a

network integrating multi-feature and multi-scale extraction with a

swift and efficient kernel-extreme learning machine for rapid

classification, significantly enhancing hyperspectral image

classification accuracy. Wang et al. (Wang et al., 2023b) proposed

a capsule vector neural network that combines capsule

representation of vector neurons with an underlying fully

convolutional network, achieving good classification performance

with insufficient labeled samples. Compared to traditional methods,

machine learning approaches handle high-dimensional data more

effectively and achieve higher classification accuracy. However,

these methods still rely on human-designed feature extraction

and selection, preventing them from fully utilizing all the

information in hyperspectral data.

Deep learning methods excel in hyperspectral image

classification due to their automatic feature extraction and end-

to-end learning capability (Zhang et al., 2024c; Hong et al., 2023).

These methods can be categorized into hybrid CNN-Transformer

methods, Transformer-based methods, and CNN-based methods.

CNN-based methods are designed to capture spectral and spatial

features through convolutional layers specifically tailored for

hyperspectral data, significantly improving classification performance

(Wu et al., 2021). Yang et al. (Yang et al., 2021) introduced a spatial-

spectral cross-attention network that suppresses redundant data bands

and achieves robust, accurate classification. Yu et al. (Yu et al., 2021)

developed a spectral-spatial dense convolutional neural network

framework with a feedback attention mechanism to tackle issues of

high complexity, information redundancy, and inefficient description,

thereby improving classification efficiency and accuracy. Zheng et al.

(Zheng et al., 2022) developed a rotationally invariant attention

network for pixel feature class recognition, leveraging spectral

features and spatial information. Paoletti et al. (Paoletti et al., 2023b)

created a channel attention mechanism to automatically design and
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optimize a CNN, integrating 1D and spectral-spatial (3D) classifiers to

process data from various perspectives while reducing computational

overhead. Guo et al. (Guo et al., 2023) introduced a dual-view global

spatial and spectral feature fusion network that efficiently extracts

spectral-spatial features from hyperspectral images, accounting for

global and local information.

Transformer-based methods excel at capturing long-range

dependencies and complex features in hyperspectral images

through a self-attention mechanism. Huang et al. (Huang et al.,

2022) introduced a 3D swin transformer that captures rich spatial-

spectral information, learns semantic representations from

unlabeled data, and overcomes traditional methods’ limitations

regarding receptive fields and labeling requirements. Yu et al. (Yu

et al., 2022) proposed a multilevel spatial-spectral transformer

network that processes hyperspectral images into sequences,

addressing issues faced by CNN-based methods such as limited

receptive fields, information loss in downsampling layers, and high

computational resource consumption. Zhang et al. (Zhang et al.,

2023d) developed a location-lightweight multi-head self-attention

module and a channel-lightweight multi-head self-attention

module, allowing each channel or pixel to associate with global

information while reducing memory and computational burdens.

Zhao et al. (Zhao et al., 2023) proposed an active learning

hyperspectral image classification framework using an adaptive

super-pixel segmentation and multi-attention transformer,

achieving good classification performance with small sample sizes.

Wang et al. (Wang et al., 2023a) introduced a trispectral image

generation channel that converts hyperspectral images into high-

quality trispectral images, mitigating the spatial variability problem

caused by complex imaging conditions. Compared to CNNs,

transformers have significant advantages in processing global and

multi-scale features, allowing for better handling of global

information in hyperspectral images.

Methods that hybrid CNN and Transformer aim to utilize the

strengths of both to enhance hyperspectral image classification

performance. These hybrid methods typically employ

Transformers to capture global dependencies and CNNs to

extract local spatial features. Zhang et al. (Zhang et al., 2022a)

designed a dual-branch structure combining Transformer and CNN

branches, effectively extracting both global hyperspectral features

and local spectral-spatial features, resulting in high classification

accuracy. Zhang et al. (Zhang et al., 2023a) proposed a network that

integrates Transformer and multiple attention mechanisms,

utilizing spatial and channel attention to focus on salient

information, thereby enhancing spatial-spectral feature extraction

and semantic understanding. Qi et al. (Qi et al., 2023b) introduced a

global-local 3D convolutional Transformer network, embedding a

dual-branch Transformer in 3D convolution to simultaneously

capture global-local correlations across spatial and spectral

domains, addressing the restricted receptive field issue of

traditional CNNs. Xu et al. (Xu et al., 2024) proposed a two-

branch convolutional Transformer network based on 3D CNN

and an improved Transformer encoder, integrating spatial and

local-global spectral features with lower computational

complexity. Chen et al. (Chen et al., 2024) developed the TCCU-

Net, a two-stream collaborative network that learns spatial, spectral,
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local and global information end-to-end for effective hyperspectral

unmixing. This integration enables the model to leverage both

spectral and spatial information from hyperspectral images more

comprehensively, enhancing classification robustness and accuracy.
3 Methodology

The network flowchart of our proposed Spectral-Spatial

Attention Transformer for hyperspectral corn image classification

is shown in Figure 1. It contains 3D-2D Convolutional Module,

Spectral-Spatial Morphology, Transformer Encoder with

CrossAttention, and Classifier.
3.1 Motivation

With the development of intelligent agriculture, the integration of

hyperspectral imaging technology and deep learning has gained

widespread application in crop research, particularly in seed

classification and identification. As a globally important food crop,

the classification of corn seeds is significant for improving agricultural

productivity and preserving crop genetic resources. Hyperspectral

images can capture reflectance features at different wavelengths,

providing researchers with rich spectral information for more precise

seed classification and quality assessment (Chang et al., 2024).

In recent years, transformer models have emerged as popular in

computer vision due to their powerful feature extraction and

representation capabilities (Han et al., 2023; Li et al., 2024b).

Compared to traditional convolutional neural networks,

transformers are better at handling high-dimensional data and

capturing long-range dependencies, which are crucial for

extracting complex features from hyperspectral images.

Additionally, the self-attention mechanism of Transformers

enables the model to flexibly focus on important areas within the

image, thereby enhancing classification accuracy. Consequently,

choosing Transformer-based methods allows for more effective

utilization of hyperspectral data, providing more reliable support

for corn seed classification.
3.2 3D-2D convolution module

In hyperspectral image classification, effective feature extraction

is vital for improving accuracy. Both 3D and 2D convolutions are

widely used in this domain due to their unique advantages. 3D

convolution simultaneously operates in spectral and spatial

dimensions, capturing their correlation. Unlike traditional 2D or

1D convolutions, 3D convolution provides richer feature

descriptions and retains more original spectral and spatial

information, thus enhancing classification accuracy. It fully

leverages the three-dimensional data structure of hyperspectral

images, avoiding information loss or oversimplification. However,

as network depth and input data size increase, the computational

complexity and memory requirements of 3D convolution rise

significantly, demanding higher hardware resources and more
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training time. 2D convolution, on the other hand, has lower

computational complexity and high efficiency, as it operates on

two-dimensional space (width and height). It effectively utilizes

spatial and texture information, making it suitable for handling

local features and texture details in hyperspectral images.

Combining 3D and 2D convolutions can efficiently leverage the

strengths to extract features from hyperspectral corn images. 3D

convolution captures complex spectral-spatial relationships, while

2D convolution extracts local spatial features and texture

information, maintaining computational efficiency. This

combination optimizes feature extraction, leading to improved

classification performance.

3D convolution is mainly used for three-dimensional data

processing, extracting features by sliding a convolution kernel

across the three dimensions of the input data. Suppose the input

data is ID×H×W×C, where C is the number of channels, W is the

width, H is the height, and D is the depth (spectral dimension).The

dimensions of the 3D convolution kernel are Kd � Kh � Kw � C �
N , where N is the number of output channels (i.e., the number of

convolution kernels), C is the number of input channels, Kw is the

size in the width direction, Kh is the size in the height direction, and

Kd is the size of the convolution kernel in the depth direction. For

an input tensor I and a convolution kernelW, the output tensor Y of

the 3D convolution can be expressed as

Y(n, d, h,w) = o
C−1

c=0
o
Kd−1

kd=0
o
Kh−1

kh=0
o
Kw−1

kw=0

I(c, d + kd , h + kh,w + kw)

�W(n, c, kd , kh, kw) + b(n) (1)

where I(c, d + kd , h + kh,w + kw) is the value of the input tensor

I at channel c and position (d + kd , h + kh,w + kw). W(n, c, kd , kh,

kw) represents the weight of the convolution kernel W at output

channel n and input channel c, positioned at (kd , kh, kw). b(n) is the

bias term for each output channel n in the convolutional layers. It is

initialized with random values (typically small values close to zero)

and then adjusted during training via backpropagation. The

gradient of the loss with respect to the bias is computed and used
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to update b(n), just like the weights of the convolutional filters. This

adjustment allows the model to shift the activations of each channel,

enabling the network to adapt to various patterns in the data and

improve its representation of features.

2D convolution is applied to 2D data processing, extracting features

by sliding a convolution kernel (filter) across the two dimensions of the

input data. Assuming the input data is IH×W×C, the 2D convolution

kernel has dimensions Kh � Kw � C � N , with the parameter

presentation consistent with that of 3D convolution. For an input

tensor I and a convolution kernel W, the output tensor Y of the 2D

convolution can be expressed as

Y(n, i, j) = o
C−1

c=0
o
Kh−1

kh=0
o
Kw−1

kw=0

I(c, i + kh, j + kw)�W(n, c, kh, kw)

+ b(n) (2)

where I(c, i + kh, j + kw) is the value at position (i + kh, j + kw) in

the input tensor I at channel c.W(n, c, kh, kw) represents the weight

of the convolutional kernel W at position (kh, kw) for output

channel n and input channel c.
3.3 Spectral-spatial morphology module

Hyperspectral images contain abundant textural, spatial, and

spectral information. Morphology, a nonlinear image processing

technique, is mainly used to analyze and manipulate the shape and

structure of images. In hyperspectral image processing,

morphological methods can effectively extract spatial and spectral

features, enhancing the robustness and accuracy of image

classification. Building on this, we integrate morphology with 2D

convolution to locally manipulate images using structural elements,

which can highlight or suppress specific shape features.

Spatial features can be extracted from each spectral band of a

hyperspectral corn image through morphological operations like

dilation and erosion. The dilation operation can emphasize the

bright areas in the image and expand the edges of the target object,
FIGURE 1

Flowchart of the spectral-spatial attention Transformer for hyperspectral corn image classification. Initially, the data are preprocessed with region of
interest extraction and PCA dimensionality reduction. Subsequently, local spatial, spectral, and texture features are extracted using 2D and 3D
convolutions. The spectral and spatial morphology modules further analyze the internal structure of the data. The Transformer encoder with cross-
attention then extracts and refines the feature information from a global perspective. Finally, the classifier provides the prediction results.
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making the morphological features of the corn seed more

pronounced. The computational expression for dilation is as

D(I) = I ⊕ B¼∪b∈B(I + b) (3)

where I denotes the input image, B is the structural element (a

small template used to detect the morphological features of the

image), ⊕ stands for the dilation operation, ∪b∈B() represents the

union of all structural element positions to take the maximum value,

and + denotes the pixel displacement operation. b influences the

dilation and erosion operations. These operations involve shifting

and adjusting the shape of features within the image, where b helps

control the degree of expansion (dilation) or contraction (erosion).

Like the convolutional biases, the values of b in these operations are

also learned during training, refining the model’s ability to capture

spatial relationships and remove irrelevant details in the data.

Conversely, the erosion operation removes noise and small bright

spots, resulting in a smoother and more uniform target area. The

computational expression for erosion is as

E(I) = I⊖B = ∩b∈B(I − b) (4)

where ⊖ denotes the erosion operation, ∩b∈B() represents the

intersection operation to take the minimum value for all structural

element positions, and − indicates the negative displacement

operation of pixels. Performing these operations on each spectral

band extracts subtle spatial variations and enhances the

representation of spatial features. Subsequently, these spatial

features are combined with spectral features to fully utilize the

spectral and spatial information in hyperspectral images.

Specifically, we apply morphological operations to each spectral

band to extract spatial features. These spatial features are merged

with the original spectral information to construct high-dimensional

feature vectors. This method preserves the spectral information of the

hyperspectral image while enhancing the representation of spatial

structure information. The feature extraction and classification

effectiveness is further improved by integrating these morphological

operations with 2D convolution. 2D convolution extracts local spatial

features within each spectral band and enhances the representation of

spatial information. These two convolutional operations complement

each other, allowing the features, preprocessed through

morphological operations, to be input into the convolutional neural

network for more accurate classification.

The bias b in these equations plays a crucial role in adjusting the

output activations, improving the feature extraction process. In the

convolutional operations (Equations 1, 2), it allows the network to

adapt to various activation patterns, enhancing the model’s ability

to learn more complex relationships in the data. In the

morphological operations (Equations 3, 4), it enhances spatial

feature representation by refining the shapes and structures in the

image. This combination of accurate feature extraction and

refinement leads to better corn seeds classification performance.

By integrating morphological and convolutional techniques, we

substantially enhance hyperspectral corn image classification

accuracy and robustness. This combined approach boosts

classification performance and improves resilience against

complex backgrounds and noise.
Frontiers in Plant Science 06230
3.4 Transformer encoder with
CrossAttention module

The Transformer encoder enhances input data representation

through a sophisticated attention module that captures

dependencies among different parts of the input sequence.

Figure 2 depicts the detailed structure of this attention module,

consisting of two primary components: multi-head self-attention

and scaled dot-product attention.

Originally, the Transformer architecture was designed for

natural language processing, particularly for handling sequence

data, and it excels in this domain due to its multiple self-attention

core blocks. Unlike conventional Convolutional Neural Networks

and Recurrent Neural Networks, the Transformer exclusively

utilizes the attention mechanism, enabling efficient capture of

global dependencies in sequential data. The input sequence is

initially converted into a fixed-dimensional vector representation

via an embedding layer, with positional information preserved

through positional encoding, which is generated by sine and

cosine functions.

Each encoder layer includes multiple self-attention heads,

each independently processing the input sequence to generate an

attention representation, which is then concatenated and

integrated through a linear transformation. The multi-head

self-attention mechanism enables the model to attend to

mult iple parts of the input sequence simultaneously.

Specifically, the input sequence is represented as a key (K),

query (Q), and value (V). Multiple sets of Q, K, and V are

created through the linear projection of a learned weight

matrix. Each set of Q, K, and V is passed to the scaled dot-

product attention mechanism, where attention scores are

calculated and applied to the values. The Q is multiplied by the

transposed key KT to obtain the raw attention score, which is

then divided by the square root of the key’s dimension,
ffiffiffiffiffi
dk

p
, to

maintain gradient stability. The computational process of self-

attention can be summarized as
FIGURE 2

Diagram illustrating the structure of the multi-head attention
mechanism and scaled dot-product attention.
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SA = Attention (Q,K ,V) = softmax 
QKTffiffiffiffiffiffi
dK

p
� �

V (5)

Through its unique multi-head self-attention mechanism and

feed-forward neural network, the Transformer structure efficiently

captures global dependencies and improves the classification

accuracy of hyperspectral corn images.
3.5 Loss function

In this paper, we propose a method that combines spectral-spatial

morphology with a 3D-2D convolutional Transformer network to

classify hyperspectral corn images. This approach fully utilizes the

spatial and spectral features of hyperspectral images. To optimize

model performance, we employ the CrossEntropyLoss function.

The CrossEntropyLoss function is commonly used in

classification tasks, especially for multi-class classification

problems. It measures the discrepancy between the true category

distribution and the predicted probability distribution by

computing the negative log-likelihood between the actual labels

and the predicted probabilities. This function ensures numerical

stability by converting the output into a probability distribution

using the Softmax function. Additionally, the gradient of the

CrossEntropyLoss function is relatively easy to compute,

facilitating the implementation of the back-propagation algorithm

and model optimization. By directly quantifying the alignment

between predicted probabilities and actual labels, it accurately

reflects the performance of the class ificat ion model .

Consequently, we apply the CrossEntropyLoss function to the

hyperspectral corn image classification task. Its computational

expression is as

CrossEntropyLoss = −o
N

i=0
 yi log (ŷ i) (6)

where yi represents the true label of the sample, N is the total

number of samples, and ŷ i is the predicted probability from the

model. The network model converts the output to a probability

distribution using the Softmax function

ŷ i =
ezi

oje
zj

(7)

where zi represents the linear output of the model. For a given

category c, the true label yc =  1 while the labels for all other

categories are 0. The predicted probability ŷ i corresponding to

the true label yi is substituted into Equation 6, and the loss value for

each sample is

Loss = −o
i
 yi log (ŷ i) (8)

By measuring the difference between actual and predicted labels

and updating the model parameters through the backpropagation

algorithm to minimize the loss, this approach effectively guides the

model in learning to handle complex hyperspectral corn image

features. Consequently, it improves both the classification accuracy

and robustness.
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4 Experiment and analysis

In this section, we will first discuss the dataset used, detail the

specific implementation of SSATNet, and then present the

evaluation metrics, multi-classification results, and ablation study.
4.1 Experimental dataset

To verify the effectiveness of the SSATNet, we utilized the

hyperspectral corn image dataset from SSTNet (Zhang et al.,

2022b). This dataset contains 10 corn varieties, each with 120

samples. The collected images cover a spectral range from 400 to

1000 nm, encompassing 128 bands. To reduce computational

overhead and focus on retaining only the core area of the corn

seeds, the collected raw data resolution of 696 × 520 was reduced to

210 × 200 for feature extraction. The corn seed images were sourced

from planting areas in Henan Province, including varieties such as

FengDa601, BaiYu9284, BaiYu8317, BaiYu918, BaiYu897,

BaiYu879, BaiYu833, BaiYu818, BaiYu808, and BaiYu607.

Figure 3 shows different spectral band maps of a sample

randomly selected from FengDa601, BaiYu818, and BaiYu833.

This corn image dataset was obtained by contacting the authors.
4.2 Implementation details

The hyperspectral corn image dataset includes 10 varieties,

totaling 1200 samples, divide into training and test sets in a 4:1

ratio. We conducted our experiments on a Windows 10 PC with an

Intel® Xeon® Gold 5218 CPU @ 2.30GHz x64, an NVIDIA

GeForce RTX 3090*2 graphics card, and 256 GB RAM. The

Batch size is set to 16 for the training and 8 for the testing. We

used Adamax as the optimizer with a learning rate of 0.01, an

exponential decay rate of 0.9, a gradient squared moving average

rate of 0.999, and 250 iterations. Additionally, we implemented a

Dropout mechanism that randomly deactivates 10% of nodes,

effectively preventing overfitting.
4.3 Evaluation metrics

To thoroughly assess the performance of our SSATNet in

classifying hyperspectral corn images, we employ four standard

evaluation metrics: F1-Score, Recall, Precision, and the Kappa

coefficient(KA). Precision assesses the accuracy of the

classification model by evaluating the proportion of instances

predicted to be positive that are actually positive. There exists a

trade-off between Precision and Recall; increasing Precision may

lead to a decrease in Recall and vice versa. Therefore, the F1-Score,

derived as the harmonic mean of Precision and Recall, is often used

for a more balanced evaluation of model performance, and its

calculation expression is shown in Equation 9. The KA is a

consistency test metric that evaluates the agreement between the

classified image and the reference image in hyperspectral remote
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sensing classification tasks, providing a more comprehensive

reflection of the overall classification accuracy. Higher scores in

these four evaluation metrics indicate better model performance.

Figure 4 shows the confusion matrix of our model’s classification

results for hyperspectral corn images and the results of one of the

training and testing sessions.

F1 − Score  =  2 ▪
Precision ▪ Recall
Precision + Recall

(9)
4.4 Multi-classification results

Extensive experiments were performed to thoroughly test the

generalization and effectiveness of our model for hyperspectral corn

image classification. The comparison methods include KNN (Kumbure

et al., 2020), SGD (Lei and Tang, 2021), RFA (Chen et al., 2021b),

HybridNet (Roy et al., 2019), SSTNet (Zhang et al., 2022b), CTMixer

(Zhang et al., 2022a), MSTNet (Yu et al., 2022), MATNet (Zhang et al.,

2023a), and 3DCT (Wang et al., 2024a). The experimental results are

presented in Table 1. The source code and parameters for the

comparison methods were acquired from the original authors.

The results presented in Table 1 demonstrate the performance of

various methods on the hyperspectral corn images dataset. Traditional

machine learning models such as KNN (Kumbure et al., 2020), RFA

(Chen et al., 2021b), and SGD (Lei and Tang, 2021) show subpar
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performance across all evaluation metrics, with RFA (Chen et al., 2021b)

performing the worst across all metrics. These traditionalmodels, lacking

nonlinear activationmechanisms, struggle to extract deep spectral-spatial

features effectively. In contrast, HybridNet (Roy et al., 2019), SSTNet

(Zhang et al., 2022b), and 3DCT (Wang et al., 2024a), which integrate

3D convolution, demonstrate superior results due to their ability to

capture spectral and spatial features simultaneously. Models like

CTMixer (Zhang et al., 2022a), MSTNet (Yu et al., 2022), and

MATNet (Zhang et al., 2023a) further leverage the Transformer

architecture to address the complex relationships inherent in

hyperspectral data. Our proposed model, which combines

convolutional networks with Transformers and incorporates a novel

spectral-spatial attention mechanism, achieves the best overall

performance across all metrics. The integration of local and global

feature extraction methods allows our model to substantially improve

Precision, Recall, F1-Score, and KA, surpassing existing state-of-the-art

methods. These results validate the effectiveness of our design in

capturing the complex spectral-spatial features of hyperspectral corn

images and its superior ability to generalize to high-dimensional datasets.
4.5 Ablation study

To further evaluate the contribution of each module in SSATNet

to the classification performance of hyperspectral corn seed images, we

conducted ablation experiments on the dataset introduced by SSTNet
FIGURE 3

Randomly select a sample from three corn varieties, FengDa601 (A–D), BaiYu818 (E–H), and BaiYu833 (I–L), and display their partial spectral bands.
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(Zhang et al., 2022b). In these experiments, we systematically removed

individual components of the network while retaining the remaining

modules unchanged. Specifically, we excluded the following

components: 1) the 3D convolution module (-w/o 3DConv); 2) the

2D convolution module (-w/o 2DConv); 3) the spectral morphology

structure (-w/o SpectralMorph); and 4) the spatial morphology

structure (-w/o SpatialMorph). The Table 2 below illustrates the
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quantitative analysis metrics for each ablation experiment. The

results demonstrate that the removal of the 3D convolution module

leads to the most significant degradation in performance,

underscoring its crucial role in capturing both spectral and spatial

features in hyperspectral corn seed images. Without 3D convolution,

the model’s ability to integrate spatial-spectral correlations is

substantially weakened. Similarly, the removal of the 2D
TABLE 1 Test results of various methods on the hyperspectral corn images dataset.

Models
Hyperspectral Corn images

Precision Recall F1-Score KA

KNN (Kumbure et al., 2020) 96.12 ± 0.35 95.72 ± 0.32 95.90 ± 0.24 0.9675 ± 0.011

SGD (Lei and Tang, 2021) 96.98 ± 0.28 96.50 ± 0.18 96.70 ± 0.21 0.9721 ± 0.008

RFA (Chen et al., 2021b) 94.50 ± 0.40 94.10 ± 0.38 94.22 ± 0.39 0.9519 ± 0.009

HybridNet (Roy et al., 2019) 96.72 ± 0.30 96.44 ± 0.28 96.34 ± 0.21 0.9772 ± 0.007

SSTNet (Zhang et al., 2022b) 98.12 ± 0.18 97.78 ± 0.15 97.95 ± 0.17 0.9887 ± 0.005

CTMixer (Zhang et al., 2022a) 97.38 ± 0.33 97.75 ± 0.30 97.20 ± 0.32 0.9827 ± 0.008

MSTNet (Yu et al., 2022) 97.00 ± 0.38 96.95 ± 0.35 96.80 ± 0.36 0.9802 ± 0.009

MATNet (Zhang et al., 2023a) 98.27 ± 0.16 98.34 ± 0.14 98.25 ± 0.15 0.9930 ± 0.004

3DCT (Wang et al., 2024a) 98.30 ± 0.28 98.12 ± 0.25 98.19 ± 0.27 0.9928 ± 0.004

Our 98.65 ± 0.18 98.57 ± 0.15 98.60 ± 0.17 0.9965 ± 0.003
Optimal, bolded; Suboptimal, blue.
FIGURE 4

(A) The confusion matrix of our SSATNet classification results. (B) The results of one of the testing. (C) The results of one of the training.
TABLE 2 Quantitative test results of ablation experiments.

Module Precision Recall F1-Score KA

-w/o 3DConv 86.42 ± 0.31 87.33 ± 0.29 87.05 ± 0.36 0.8768 ± 0.006

-w/o 2DConv 89.51 ± 0.25 90.35 ± 0.25 90.52 ± 0.29 0.9117 ± 0.004

-w/o SpectralMorph 93.65 ± 0.22 93.27 ± 0.19 93.86 ± 0.25 0.9408 ± 0.004

-w/o SpatialMorph 92.59 ± 0.20 92.69 ± 0.21 92.31 ± 0.21 0.9332 ± 0.005

SSATNet (full model) 98.65 ± 0.18 98.57 ± 0.15 98.60 ± 0.17 0.9965 ± 0.003
Optimal, bolded.
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convolution module also causes a noticeable decline in performance,

although to a lesser extent compared to the absence of 3D convolution.

This is because 2D convolution primarily focuses on extracting local

spatial features and refining feature representations. The exclusion of

the spectral morphology structure results in performance degradation,

highlighting its importance in enhancing spectral feature

representation and managing the complex spectral relationships

inherent in hyperspectral data. Likewise, the spatial morphology

structure significantly contributes to the model’s performance by

extracting and enhancing spatial features, enabling more accurate

classification of corn seed images.

In summary, each module is crucial to the overall performance

of SSATNet. The 3D convolution module provides the most

significant enhancement to classification performance, followed

by the spectral morphology structure and the spatial morphology

structure. The 2D convolution module also provides substantial

support in refining feature representation. Through the synergy of

these modules, SSATNet excels in the hyperspectral corn seed

classification task, demonstrating the effectiveness of its design.
5 Conclusion

In this paper, we propose the SSATNet method for non-

destructive identification of hyperspectral corn varieties. First, we

design a 3D-2D cascade structure to reduce image data complexity

and effectively extract local feature information, facilitating the

Transformer structure’s processing. Additionally, we introduce a

spectral-spatial morphology structure combined with 2D

convolution to perform expansion and erosion operations on the

data, providing a deeper understanding of the data’s nature. Finally,

we employ the Transformer structure to extract global feature

information from hyperspectral corn images through the self-

attention mechanism, achieving efficient capture of global

dependencies between corn spectra. Ablation experiments highlight

the effectiveness of each component of SSATNet in extracting

features and classifying hyperspectral corn images. This method

offers a new approach to non-destructive corn variety identification

and significantly promotes the development of intelligent agriculture.
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Tea disease identification based
on ECA attention mechanism
ResNet50 network
Lanting Li* and Yingding Zhao

School of Software, Jiangxi Agricultural University, Nanchang, China
Addressing the challenge of identifying tea plant diseases against the complex

background of tea gardens, this study proposes the ECA-ResNet50 model. By

optimizing the ResNet50 architecture, adopting a multi-layer small convolution

kernel strategy to enhance feature extraction capabilities, and introducing the

ECA attention mechanism to focus on key features, the model achieves a 93.06%

accuracy rate in tea disease identification, representing a 3.18% improvement

over the original model, demonstrating industry-leading performance

advantages. This model not only accurately identifies tea diseases in gardens

but also possesses excellent generalization capabilities, performing

outstandingly on datasets of other plant categories. These results indicate that

ECA-ResNet50 can effectively mitigate the interference of complex backgrounds

and precisely recognize tea disease targets.
KEYWORDS

tea plant diseases, ECA attention mechanism, ResNet50, deep learning, leave
1 Introduction

The tea industry in China has undergone years of development and continues to grow

steadily, occupying an important position in the domestic market and enjoying a strong

reputation internationally. However, throughout the cultivation process, tea plants

inevitably face various diseases and pests, which not only severely affect tea yields but

also pose a serious threat to the quality of the tea. To effectively address this challenge, it is

essential to actively introduce and apply emerging technologies such as artificial

intelligence, enabling precise and rapid detection and effective control of tea diseases,

thereby ensuring the sustainable and healthy development of the tea industry.

Computer vision, as an important branch of artificial intelligence technology, aims to

enable machines to possess visual perception capabilities similar to those of humans (Yu et al.,

2023). Currently, many countries are actively exploring the practical applications of computer

vision in the agricultural sector, achieving significant research results. Among these,

employing deep learning technology for crop disease recognition, followed by the

application of effective control strategies, has emerged as a pivotal trend shaping

agricultural progress. The application of this technology not only allows computers to
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provide rapid and accurate diagnostic results but also significantly

enhances the quality and overall yield of crops while reducing

additional labor costs and time consumption, thereby providing

strong support for the sustainable development of agriculture

(Dhanya et al., 2022).

In 2016, Li (2017) designed a tobacco disease diagnosis system

based on a six-layer convolutional neural network model. This system

utilizes deep learning techniques to identify tobacco diseases and

provides convenient diagnosis and prevention services for growers

through web design. The research further delved into the impacts of

varying iteration numbers and resolutions on the training efficiency

and classification capabilities of the network model. In 2017, Sun et al.

(2017) and his team introduced a convolutional neural network

framework incorporating batch normalization and global pooling

methodologies. After adjusting the network structure and

parameters, this model greatly improved the accuracy, efficiency,

and stability of plant disease identification. Optimizations resulted

in the best model significantly outpacing traditional convolutional

neural networks in convergence speed, achieving an accuracy rate

exceeding 90% after just three training iterations. Furthermore, this

proposed model necessitates minimal computational demands,

featuring a parameter memory of merely 2.6 MB, and attained a

remarkable average testing recognition accuracy of 99.56%, with

comprehensive performance for recall and precision reaching

99.41%. These improvements enable the model to deliver efficient

and accurate performance in the field of plant disease identification. In

2018, Lu et al. (2018) and colleagues proposed a deep learning-based

recognition method for rice leaf disease images. They constructed a

rice disease image database and employed PCA (Principal Component

Analysis) for dimensionality reduction. Utilizing the Caffe deep

learning framework, they crafted a profound network architecture

encompassing four convolutional tiers, three pooling stages, and a

solitary fully connected layer. Training and simulation with 2,000 rice

disease images, combined with ten-fold cross-validation testing,

verified that the designed deep learning structure and learning

algorithm achieved an average recognition rate of 96.9% for

common diseases such as rice blast and sheath blight in northern

cold region rice. The experimental results thoroughly demonstrated

the effectiveness of this method in identifying major rice leaf diseases,

providing strong technical support for accurate recognition and

prevention of rice diseases. In 2019, Wu (2019) proposed a tomato

leaf disease recognition technology based on a deep residual network.

This technology automatically adjusts the key hyperparameters in the

network using a Bayesian optimization algorithm, streamlining the

training procedure for the deep learning network. By incorporating

residual units into the traditional neural network structure, it

mitigated potential concerns related to gradient vanishing and

explosion phenomena within deep networks significantly enhancing

the performance of the network model and allowing for precise

extraction of high-dimensional features from tomato leaf images.

These features were then used for accurate disease identification.

Experiments showed that the deep residual network model in this

study achieved recognition accuracy exceeding 95% for common

tomato leaf diseases such as powdery mildew, early blight, late

blight, and leaf mold on public datasets. This study offers a

noteworthy reference for swiftly and precisely identifying tomato
Frontiers in Plant Science 02238
leaf diseases. In 2020, Ji et al. (2020) and colleagues adopted a

convolutional neural network based on an improved residual

network, using publicly available plant image datasets for training.

Comparative experiments with the Xception and VGG-16 network

models showed that the improved neural network model achieved an

accuracy rate of 98.6%, significantly surpassing Xception’s 93% and

VGG-16’s 95%, demonstrating its efficiency and accuracy. In 2021,

Wang et al. (2021) and colleagues proposed an improved CenterNet-

SPP model for potato leaf diseases. This model first precisely locates

the central points of the targets using a feature extraction network, and

then accurately obtains key image information such as center point

offset and target size through center point regression techniques. The

experiments demonstrated that the model attained a mean average

precision (mAP) score of 90.03% on the validation dataset. In 2022,

Sun and Lin (2022) and colleagues introduced a novel approach for

detecting apple leaf diseases, leveraging ensemble learning techniques.

This method integrates the YOLOv5 and EfficientDet models,

achieving model integration through a non-maximum suppression

algorithm. Testing showed that the new method effectively improved

the detection performance of three common apple leaf diseases

without sacrificing detection speed, with average precision rising to

73.4%. Compared to the individual use of YOLOv5 and EfficientDet,

the newmethod improved accuracy by 3.0% and 4.8%, respectively. In

2023, Li et al. (2023) and colleagues constructed an alfalfa disease

recognition model using an improved AlexNet deep learning

convolutional neural network, trained on a dataset of 13 common

alfalfa diseases. After comparing different image input resolutions,

they found that the optimal model achieved the highest recognition

accuracy with an input size of 512 pixels × 512 pixels, reaching an

overall recognition accuracy of 72%. After further excluding low-

accuracy samples, the recognition accuracy for five key alfalfa diseases

significantly increased to 92%. In 2024, Qiu et al. (2024) and colleagues

developed an algorithm called CBAM-YOLOv5l based on an

improved YOLOv5. Through experiments, they confirmed that the

method enhanced detection accuracy without compromising on the

swiftness of the detection process. The algorithm achieved an overall

average precision of 96.52% on the validation set, with an average

detection time of 27.52 ms, demonstrating significant advantages in

detection accuracy compared to other object detection algorithms like

YOLOv4, YOLOv4-Tiny, and Faster R-CNN.

Currently, investigations into recognizing plant leaf diseases

and pests with convolutional neural networks predominantly

depend on conventional frameworks devoid of an attention

weighting mechanism. This can lead to a misalignment of the

model’s focus, subsequently affecting recognition accuracy.

Moreover, the aforementioned studies have not applied the

improved models to the recognition of diseases and pests in other

crop leaves, making it impossible to comprehensively validate their

generalization capabilities. To tackle these challenges, this research

introduces the ECA-ResNet50 model, which integrates the ECA

attention mechanism with the ResNet50 network framework. This

model focuses on various tea leaf diseases, such as algal leaf disease,

anthracnose, and bird’s eye spot disease, as well as healthy tea

leaves. Through comparative experiments with traditional

convolutional neural networks, the effectiveness of ResNet-ECA

in tea disease recognition was validated. Additionally, to further
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assess the generalization performance of the improved model, it was

applied to train and validate datasets of disease and pest leaves from

other crops, including corn, apples, and potatoes.
2 Research and implementation
of algorithm

2.1 Dataset construction

2.1.1 Data acquisition for dataset
According to statistical data analysis of the system, China’s tea

plants suffer from a wide variety of diseases, totaling approximately

over 140 types, which are widely distributed across various parts of

the tea plants, including leaves, stems, roots, and flowers (Chen,

2022). Given the limitations of experimental conditions, this study

collected a total of 885 images of tea diseases through search engines

(https://www.kaggle.com/datasets/shashwatwork/identifying-

disease-in-tea-leafs). After meticulous identification and

classification by authoritative experts, these images were

categorized into seven distinct types of leaf diseases, as well as

healthy leaves. The seven disease types are algae leaf spot,

anthracnose, bird’s eye spot, cloud blotch, gray spot, red leaf spot,

and white spot disease. Some images of tea disease leaves are shown

in Figure 1.
Frontiers in Plant Science 03239
2.1.2 Dataset processing
During the training phase of a Convolutional Neural Network

(CNN) model, ensuring a large-scale and diverse dataset plays a

decisive role in enhancing the model’s performance. However,

acquiring a sufficient number of images that cover various types

of tea plant disease under current conditions is a formidable

challenge. To address this issue, this research employs data

augmentation strategies to efficiently augment the training dataset

thereby improving the model’s generalization capability and

recognition accuracy for tea plant disease images. Firstly, the

original dataset is expanded through a series of data

augmentation techniques, including flipping, rotation, cropping,

color transformation, and blurring, with each method expanding

the dataset to 1000 images. Some examples of the augmented

images are shown in Figure 2. Subsequently, the expanded dataset

is divided into a training set and a test set at an 8:2 ratio. During the

data preprocessing stage, to ensure data consistency and

compatibility with the model’s input requirements, all images are

resized to a uniform dimension of 224×224 pixels. Furthermore,

through padding and random shuffling, we aim to fully utilize the

data information and enhance the model’s training effectiveness.
2.2 ECA mechanism

The ECA (Wang et al., 2020) module is an optimized version of

the SE (Hu et al., 2019) attention module that significantly enhances
FIGURE 1

Images of tea diseases.
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performance despite having fewer parameters. When performing

global average pooling, it ingeniously avoids compressing the

channels of the input feature map, aiming to mitigate the adverse

effects of learning inter-channel dependencies. Within the ECA

module, the extent of local cross-channel interaction is defined as

k, meaning each channel and its adjacent k channels are considered.

By utilizing a one-dimensional fast convolution tailored to the k

value, the module efficiently accomplishes local cross-channel

interaction, capturing the relationships among channels. Finally,

the weights, post-processed via a Sigmoid function, are scaled with

the corresponding entries in the input feature map to yield the

output. Its structural diagram is shown in Figure 3. The distinctive

architecture of the ECA module enables the model to prioritize the

feature information pertaining to smaller objects, ensuring both

efficiency and computational effectiveness. Since the k value is

proportional to the number of channels, to avoid cross-validation,

the k value can be obtained through Equation 1:

K =
1bC + b

g

���� ����
odd

(1)
Frontiers in Plant Science 04240
In the equation, C denotes the channel count in the input

feature map, while b and g are conventionally initialized as 1 and 2,

respectively, respectively, to adjust the ratio between the dimensions

of the convolutional kernel and the value of C. The notation odd

indicates that K should be the odd number closest to the

function’s value.
2.3 ResNet50

ResNet50 (He et al., 2016) is a deep convolutional neural network-

based algorithm designed for image classification tasks, proposed by

Kaiming He and his colleagues at Microsoft Research in 2015. As an

important member of the ResNet family, ResNet50 addresses the issue

of gradient vanishing during the training of deep networks by

introducing residual connections, effectively enhancing the

model’s performance.

The ResNet50 architecture comprises numerous residual

blocks, which include additional layers such as pooling layers and

fully connected layers. The overall structure of the network is very
FIGURE 3

ECA architecture diagram.
FIGURE 2

Image enhancement examples.
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deep, employing 50 convolutional layers, hence the name ResNet50.

These convolutional layers extract features from images at different

sizes and depths, enabling the model to capture features at various

levels. The configuration of a residual block is depicted in Figure 4.

Each residual block is linked to each other by residual

connections. This direct connection mitigates the issue of

vanishing gradients by enabling the seamless flow of information

across network layers. In ResNet50, each residual block consists of

two convolutional layers, called the main path and the hop

connection, respectively. By adding the input to the output of the

main path, the residual learning of the information is realized. The

formula for each residual element is as follows:

xj+1 = xj + F(xj,Wj) (2)

where xj、 xj+1 denotes both the input and output information

of the layer network, respectively, and represents the learnable

parameters within that layer. Perform a recursive operation on

Equation 2 to obtain the relational expression of any deep J and

shallow J:

xJ = xj +oJ−1
i=j F(xi,Wi) (3)

According to the chain derivative used in the backpropagation

algorithm, the gradient of backpropagation can be expressed as:

∂ e
∂ xj

=
∂ e
∂ xJ

∂ e
∂ xJ

=
∂ e
∂ xJ

1 +
∂

∂ xj
oi=jF(xi,wi)

" #
(4)

Because all ∂
∂ xj oi=jF(xi,Wi) in Equation 4 may be equal to −1,

this unit effectively mitigates the issue of information loss during

the learning phase.
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2.4 Network architecture based on ECA
attention mechanism and ResNet50

The ECA-ResNet50 model is optimized and improved on top of

the ResNet-50 infrastructure. Firstly, the 7×7 convolution kernel of

the first layer of ResNet-50 was replaced by three 3×3 convolution

kernels. In the traditional ResNet50, the 7×7 convolution kernel is

designed to capture a wider range of spatial context information in

the input image, however, in the tea disease identification scenario,

the disease characteristics are often complex and subtle, and the

affected area is comparatively minute. In view of this, the strategy of

using multi-layer small convolutional kernel not only refines the

granularity of feature extraction and improves the accuracy of

disease identification, but also enhances the learning ability and

complexity of the model by reducing the total number of

parameters and increasing the network depth, and significantly

optimizes the performance. Moreover, to enhance the model’s

sensitivity and recognition efficiency towards tea disease

characteristics even further, ECA-ResNet50 integrates the ECA

attention mechanism into the first residual module of ResNet-50.

Although ResNet-50 itself can effectively alleviate the gradient

problem in deep network training, relying solely on numerical

transfer may not be enough to accurately capture the key features

when dealing with tea diseases with similar characteristics, which

will affect the recognition accuracy and generalization ability. By

introducing the ECA attention mechanism, the model can focus on

more discriminative feature information in the image, which

effectively enhances the learning and recognition ability of tea

disease characteristics, which is a key measure to improve the

overall performance of the model, Figure 5 is the structure

diagram of ECA-ResNet50.
2.5 Experimental parameters and
evaluation metrics

Precision, recall, accuracy, and F1-score were employed to

assess the network model’s performance in identifying tea

diseases. The formulas for calculating these evaluation metrics are

outlined below:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

accuray =
TP + TN

TP + FN + FP + TN
(7)

F1 =
2TP

2TP + FP + FN
(8)

Here, TP denotes the count of samples accurately labeled as

positive by the model, TN represents the count of samples correctly

identified as negative. FP signifies the number of negative samples

mistakenly predicted as positive, while FN represents the number of
FIGURE 4

Residual block structure diagram.
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positive samples incorrectly labeled as negative. Accuracy gauges the

fraction of samples correctly predicted by the model among all test

samples, calculated as the total number of correctly predicted samples

divided by the total test samples. Precision focuses on the ratio of

samples predicted as positive by the model that are actually positive,

computed as the number of correctly predicted positive samples

divided by the total number of samples predicted as positive. Recall,

also known as the true positive rate, assesses the proportion of actual

positive samples accurately identified by the model, calculated as the

number of correctly predicted positive samples divided by the total

number of positive samples. F1 score serves as a comprehensive

metric, balancing the significance of precision and recall by

computing their harmonic mean. A higher F1 score signifies
Frontiers in Plant Science 06242
superior performance in both precision and recall, making it a

frequently utilized evaluation metric for classification models.
3 Results and discussion

3.1 Experimental environment

This investigation is conducted utilizing the TensorFlow

platform of the Python programming language, encompassing

two distinct phases: model training and testing. In terms of

hardware environment, IT uses an intel(R) Xeon(R) Silver 4112

processor with a frequency of 2.6 GHz. 16 GB of memory space;
FIGURE 5

Structure diagram of ECA-ResNet50.
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NVIDIA Quadro RTX5000 graphics card. In terms of software

environment configuration, CUDAToolkit 10.0, CUDNN 10.1 and

TensorFlow 2.2 are selected as the deep learning framework, and the

operating system is Windows 10.
3.2 Activation function
comparison experiment

In neural network models, activation functions play a very

important role, which greatly enhances the network’s ability to

process complex data and function mapping by giving the network

nonlinear ability, adjusting the output range, and promoting sparse

expression (Bahdanau et al., 2014). To enhance the efficiency and

effectiveness of the model, optimization efforts are undertaken,

three activation functions, ReLU (Xu et al., 2016), LeakyReLU

(Technicolor T. et al., 2019) and ELU, were selected for training

and comparison, so as to select the activation function strategy that

is most consistent with the model. The experimental results are

shown in Table 1, as evident from the tabular data, the ReLU

activation function exhibits favorable performance in terms of

accuracy, recall, and F1-score, and its accuracy is 1.68% and 7.5%

higher than that of LeakyReLU and ELU, respectively. The above

data show the superiority and applicability of the ReLU activation

function in the ECA-ResNet50 model adopted in this study, and it

can give full play to the potential of the model and achieve better

performance than the other two activation functions.
3.3 Comparative experiments on
attention mechanisms

Within the framework of neural network designs, the attention

mechanism module plays a pivotal role, as an additional component

of the neural network, can selectively focus on a specific part of the

input, or effectively filter the information by assigning differentiated

weights to different elements of the input. In recent times, due to its

substantial contribution to enhancing model performance, this

mechanism has garnered widespread adoption and implementation
Frontiers in Plant Science 07243
across diverse fields. In this study, three mainstream attention

mechanisms, ECA, SE, and CABM (Fe et al., 2017), were selected

to test and evaluate their respective effects in enhancing model

performance. Table 2 shows the performance comparison results

achieved after introducing these three attention mechanisms into the

model. Based on an examination of the experimental data, under the

same experimental environment settings and conditions, the ECA

attention mechanism has the best effect among the three attention

mechanisms, showing the best performance, with an accuracy of

93.06%, exhibiting a 3.5% increase in comparison to the SE attention

mechanism within the model and 1.81% more accurate than the

CBAM attention mechanism. These results show that the ECA

attention mechanism can more effectively enhance the recognition

ability and robustness of the model in this experimental model.
3.4 Ablation experiments

To validate the efficacy of the ECA attention mechanism

module alongside three 3×3 convolutional kernel modules,

ablation experiments were performed on the tea dataset, utilizing

ResNet50 as the foundation network. The qualitative comparative

outcomes are presented in Table 3. As can be seen from the data

analysis in Table 3, the recognition accuracy of the model is

significantly improved by 1.82% after the ECA attention

mechanism is integrated into the ResNet50 model. The notable

enhancement stems from the integration of the attention

mechanism, empowering the model to precisely concentrate on

the pivotal distinguishing characteristics within the image, thereby

enhancing the recognition and learning efficiency of tea disease

features, and improving the overall performance of the model. In

addition, the replacement of three 3×3 convolution kernels with one

7×7 convolution kernel also brings a slight improvement in

recognition accuracy. This improvement is due to the refinement

of feature extraction brought about by the multi-layer small

convolutional kernel design, which not only reduces the total

number of model parameters, additionally, it enhances the

intricacy and learning capacity of the model by augmenting

the depth of the network, thereby promoting the improvement of
TABLE 1 Activation function comparison experiment.

Activate the function The number of iterations Precision% Recall% F1% Accuracy%

ReLU 200 93.09 93.06 93.07 93.06

LeakyReLu 200 91.43 91.38 91.40 91.38

ELu 200 87.71 85.56 86.62 85.56
TABLE 2 Comparative experiments on attention mechanisms.

Attention mechanisms Batch size The number of iterations Activate the function Accuracy% #P

Join ECA 64 200 ReLu 93.06 23,569,869

Join SE 64 200 ReLu 90.56 23,585,736

Join CBAM 64 200 ReLu 91.25 23,585,834
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the accuracy of tea disease identification. Figures 6, 7 are ECA-

ResNet50 and ResNet50 confusion matrices, respectively.
3.5 Comparative experiments with
other datasets

To ascertain the versatility and generalizability of the model

introduced in this research, extending beyond tea disease

identification, we sourced disease image exemplars of apple and

corn crops from the publicly accessible PlantVillage dataset

(github.com/spMohanty/PlantVillage-Dataset), and each crop

contained three different disease types, including 3000 apple

disease images and 3192 maize disease images. The image data is

divided into 80% training set and 20% test set. The ECA-ResNet50

model was then trained and tested with the original ResNet50

model, and the outcomes, presented in Table 4, indicate that the

ECA-ResNet50 model demonstrates exceptional performance in the

recognition of apple and maize diseases, and its accuracy is
Frontiers in Plant Science 08244
significantly improved compared with the unimproved ResNet50

model, which is 9.43% higher in apple disease identification and

4.17% higher in maize disease identification. This experimental

endeavor conclusively establishes that the model presented in this

research transcends the confines of solely tea disease identification,

but also has a wide range of applicability, and can be effectively

applied to the disease detection of other crops.
3.6 Other models than experiments

To assess the performance of the model introduced in this

research in an unbiased manner, eight classical network models,

including AlexNet (Huang et al., 2024), MobileNet (Sandler et al.,

2018), and VGG16 (Zhao et al., 2024), were used to test and

compare on the tea disease dataset, and the specific comparison

results are shown in Table 5. The tabular data underscores the

notable superiority of the ECA-ResNet50 model in the realm of tea

disease identification, and its accuracy exceeds that of AlexNet
TABLE 3 Ablation experiments.

Join ECA Replace the 3×3
convolution

kernel

Accuracy% Precision% Recall% F1%

× × 89.88 89.90 89.88 88.89

√ × 92.5 92.61 92.5 92.55

× √ 90.68 90.69 90.69 90.69

√ √ 93.06 93.09 93.06 93.07
× is not added, √ is added.
FIGURE 6

Confusion matrix diagram of ECA-ResNet50.
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(2.68%), MobileNet (7.18%), VGG16 (1.81%), ResNet34 (2.43%),

ResNet50 (3.18%) and ResNet101 (2.62%). Only slightly lower than

InceptionResnetv2 model (0.57% lower) and lower than

Transformer (1.43% lower). Nonetheless, it is pertinent to

mention that the InceptionResnetv2 model and Transformer

model exhibits a considerably higher level of complexity in

comparison to ECA-ResNet50. In summary, the ECA-ResNet50

model not only performs well in tea disease identification, but also

has high robustness, which is a relatively lightweight model with

superior performance.
Frontiers in Plant Science 09245
4 Conclusion

To address the challenge posed by the difficulty in identifying

tea diseases amidst the intricate backdrop of tea gardens, a tea

disease identification model based on ECA attention mechanism

and ResNet50 network was proposed, namely ECA-ResNet50. In

this study, utilizing ResNet50 as the fundamental network structure

enhances the model’s capability to discern tea disease traits within

the intricate environment of tea gardens. Using three 3×3

convolutional kernels to replace the 7×7 convolutional kernels of
FIGURE 7

Confusion matrix diagram of ECA-ResNet50.
TABLE 4 Comparative experiments with other datasets.

Model Plant species Type of disease Precision% Recall% F1% Accuracy%

ResNet50 Apple Scab 79.60 97.50 87.65 89.39

Black rot 97.50 99.50 98.49

Red Star Disease 100 71.20 83.18

Corn Gray spot disease 88.00 92.50 90.19 93.55

rust 99.60 98.70 99.15

Big spot disease 92.10 88.40 90.21

ECA-ResNet50 Apple Scab 100 96.50 98.22 98.82

Black rot 98.00 100 98.99

Red Star Disease 98.50 100 99.24

Corn Gray spot disease 89.50 94.50 91.94 94.65

rust 99.60 99.60 99.60

Big spot disease 94.10 88.90 91.43
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the first layer of ResNet50, the strategy of using multi-layer small

convolutional kernels can not only refine the granularity of feature

extraction and improve the accuracy of disease identification,

moreover, it augments the model’s learning prowess and intricacy

while optimizing performance through parameter reduction and

network depth enhancement. The incorporation of the ECA

attention mechanism fosters the model’s ability to prioritize

salient feature details within the imagery, which effectively

enhanced the learning and recognition ability of tea disease

characteristics and improved the overall performance of the

model. Compared with the original ResNet50 model, the

identification accuracy of ECA-ResNet50 on the tea disease

dataset was improved by 3.18%. At the same time, its

performance is also better than that of six other commonly used

network models (such as AlexNet, MobileNet, VGG16, etc.). In

addition, the ECA-ResNet50 model has also achieved good results

in other plant datasets, which fully demonstrates the effectiveness

and generalization of the model.

In this study, the tea disease identification model based on the

ECA attention mechanism and ResNet50 network realized the

accurate and efficient identification of seven tea diseases and one

healthy leaf in the complex background of tea garden, which has

certain significance for the prevention and control of tea garden

diseases. However, the number of tea diseases in the dataset used in

this study was relatively small, and some of the diseases were similar

in color and characteristics, and may even appear in the same leaf,

presenting a complex disease combination. In subsequent studies,
Frontiers in Plant Science 10246
the number of images of tea diseases will be expanded; The

versatility and robustness of the model will be further improved,

and the design will be lightweight to be embedded in different

mobile equipment for tea gardening, thus, offering valuable insights

for the intelligent oversight and management of the tea

cultivation industry.
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Introduction: Potatoes are a vital global product, and prompt identification of

foliar diseases is imperative for sustaining healthy yields. Computer vision is

essential in precision agriculture, facilitating automated disease diagnosis and

decision-making through real-time data. Inconsistent data in uncontrolled

contexts undermines classic image classification techniques, hindering precise

illness detection.

Methods: We present a novel model that integrates EfficientNet-LITE for

enhanced feature extraction with KE-SVM Optimization for effective

classification. KE-SVM Optimization cross-references misclassified instances

with correct classifications across kernels, iteratively refining the confusion

matrix to improve accuracy across all classes. EfficientNet-LITE improves the

model's emphasis on pertinent features through Channel Attention (CA) and 1-D

Local Binary Pattern (LBP), while preserving computational economy with a

reduced model size of 12.46 MB, fewer parameters at 3.11M, and a diminished

FLOP count of 359.69 MFLOPs.

Results: Before optimization, the SVM classifier attained an accuracy of 79.38%

on uncontrolled data and 99.07% on laboratory-controlled data. Following the

implementation of KE-SVM Optimization, accuracy increased to 87.82% for

uncontrolled data and 99.54% for laboratory-controlled data.

Discussion: The model's efficiency and improved accuracy render it especially

appropriate for settings with constrained computational resources, such as

mobile or edge devices, offering substantial practical advantages for

precision agriculture.
KEYWORDS

EfficientNet-LITE, KE-SVM optimization, channel attention, 1-D local binary pattern,
Sobel edge augmentation, uncontrolled environment data, potato leaf disease
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1 Introduction

Crop and plant diseases lead to substantial revenue drops,

incurring elevated disease management expenses and financial

losses for farmers globally. Potatoes serve as a fundamental food

source in India, which ranks as the second-largest producer

globally, contributing over 15% to worldwide potato production.

In India, potatoes are grown on around 2 million hectares, yielding

56 million tons (Mishra et al., 2024), thereby playing a crucial role

in food security and the economy of agriculture. Potato crops

experience yield losses of 5% to 15% owing to leaf diseases

(Mishra et al., 2024), necessitating the implementation of effective

disease management methods. Precisely diagnosing and

categorizing diseases under diverse conditions is important for

effective disease management. Conventional methods (Singla

et al., 2024) necessitated manual field scouting, resulting in

delayed disease diagnosis. These approaches are both inefficient

and subjective, depending on visual evaluations conducted by

trained plant pathologists. Computer vision-based image analysis

(Gulame et al., 2023; Tholkapiyan et al., 2023) has been developed

to address these constraints, enabling rapid and precise disease

identification. However, initial solutions primarily focused on

feature engineering to define particular attributes for each illness,

which is unfeasible for the extensive variety of plant species and

diseases. This has concluded in increased dependency on deep

learning (DL) to provide more generalized and scalable options.

In recent years, deep learning has gained prominence because to

developments in Graphics Processing Units (GPUs), increased

storage space, and the availability of vast datasets. Convolutional

Neural Networks (CNNs) (Huang et al., 2023) have become highly

favored for the recognition and classification of plant diseases owing

to their capacity to independently extract and learn optimal features

from images. Although they perform well in controlled settings,

numerous models fail to reproduce these outcomes with field data

acquired under uncontrolled conditions (Shabrina et al., 2024). To

mitigate this deficiency, the EfficientNet-LITE model, based on

Convolutional Neural Networks (CNN) (Haque et al., 2022;

Khamparia et al., 2020; Nagaraju and Chawla, 2022; Thakur et al.,

2022), was utilized to extract pertinent and advanced features from

images, facilitated by the incorporation of Channel Attention (CA)

(Chen et al., 2021) and 1-D Local Binary Pattern (LBP) (Rachmad

et al., 2022) features. The incorporation of 1-D LBP for texture

analysis from feature maps is a distinctive method that markedly

improved the model’s capacity to identify complex patterns in

uncontrolled settings. Additionally, Sobel edge-detected samples

were incorporated into the improved dataset, providing an

innovative method to improve edge information during training.

Furthermore, KE-SVM Optimization (Deepti, 2023; Shrivastava et

al., 2023) was employed to enhance classification by optimizing

(Sorensen and Nielsen, 2018) SVM kernels and producing superior

prediction data. This integrated methodology attained elevated

precision in both regulated laboratory settings and demanding

outdoor environments. The primary contributions of the paper

are outlined below.
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• The EfficientNet-LITE model, with the innovative

incorporation of Channel Attention and the original

utilization of 1-D Local Binary Pattern features,

substantially enhanced the accuracy of plant disease

classification, especially in severe uncontrolled situations.

This distinctive integration enabled the model to

concentrate more efficiently on pertinent image attributes.

• The incorporation of Sobel edge-detected samples into the

supplemented dataset greatly enhanced the model’s

capacity to capture and leverage edge information,

consequently raising classification performance.

• The KE-SVM Optimization utilized a kernel ensemble and

presented an innovative method to enhance the confusion

matrix by revisiting misclassified samples and accurately

categorizing them with other kernels. This novel approach

successfully reduced the constraints of conventional SVMs,

resulting in enhanced classification efficiency across

various datasets.

• The integration of EfficientNet-LITE with KE-SVM

Optimization demonstrated a revolutionary methodology

that attained higher accuracy and resilience. The model

effectively generalized over both controlled and

uncontrolled datasets.

• This research introduced an innovative, rapid, precise, and

dependable approach for classifying plant diseases, thereby

enhancing agricultural disease management, potentially

reducing yield losses, and enabling informed decision-

making for farmers.
Effective management of plant diseases requires timely and

precise identification and classification. Development in artificial

intelligence and machine learning has resulted in substantial

enhancements in automated disease detection. This review

examines contemporary methodologies and technologies,

concentrating on image processing and deep learning models

applied to various crops, with the objective of summarizing

current achievements and pinpointing research opportunities.

Nabila Husna Shabrina et al. revealed shortcomings in the

PlantVillage dataset for the diagnosis of potato leaf diseases in

real-world scenarios. To resolve this, they presented a novel dataset

of 3,076 pictures obtained in uncontrolled settings, encompassing

seven disease varieties. This dataset offers a more precise depiction

of potato leaf conditions. Testing EfficientNetV2B3 (Shabrina et al.,

2024) resulted in 73.63% accuracy on the new dataset, in contrast to

98.15% on PlantVillage.

Aanis Ahmad et al. investigated (Ahmad et al., 2023) the

generalization capacity of deep learning (DL) models for

diagnosing corn diseases in field conditions using many datasets,

including PlantVillage, PlantDoc, Digipathos, NLB, and a

proprietary CD&S dataset. Five deep learning architectures—

InceptionV3, ResNet50, VGG16, DenseNet169, and Xception—

were trained utilizing diverse dataset pairings. DenseNet169

exhibited enhanced performance, achieving an accuracy of

81.60% using RGBA images from the CD&S dataset after
frontiersin.or
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background removal. Furthermore, the amalgamation of field-

acquired and laboratory data, encompassing sources from

PlantVillage and CD&S, yielded an accuracy range of 77.50% to

80.33%, hence improving model generalization for field application.

Penghui Gui et al. tackled the issue of identifying plant diseases

in uncontrolled field environments. They proposed an enhanced

CNN model for field plant (Gui et al., 2021) disease identification

(FPDR), incorporating strategies such as backdrop substitution and

leaf resizing to optimize data augmentation. To improve feature

differentiation, they employed a channel orthogonal constraint and

utilized species categorization as a supplementary task. Utilizing the

proprietary Field-PlantVillage (Field-PV) dataset, comprising 665

field photos, the model attained an accuracy of 72.03%, representing

a substantial enhancement from 41.81%, despite being exclusively

trained on the PlantVillage dataset.

A. Ubaidillah et al. sought to improve the categorizing of corn

diseases using Random Forest, Neural Network, and Naive Bayes

(Ubaidillah et al., 2022) techniques. The study utilized a

compilation of corn leaf photographs obtained from agricultural

regions in the Madura Region, concentrating on four classifications:

healthy, gray leaf spot, blight, and common rust. The Neural

Network technique outperformed the alternatives, with an AUC

of 90.09%, a classification accuracy of 74.44%, an F1-score of

72.01%, precision of 74.14%, and recall of 74.43%, so establishing

it as the most effective model for detecting maize diseases.

Priyanka Sahu and associates proposed a Deep-Dream (DD)

architecture (Sahu et al., 2023) for Crop Leaf Disease Detection

(CLDD), amalgamating deep learning (DL) with machine learning

(ML) techniques. The study utilized the tomato crop dataset from

PlantVillage and created 24 Hybrid Deep Neural (HDN) models,

utilizing EfficientNet (B0-B7) as a feature extractor in conjunction

with classifiers such as Random Forest (RF), AdaBoost (ADB), and

Stochastic Gradient Boosting (SGB). The DD-EffiNet-B4-ADB

model achieved optimal accuracy, ranging from 84% to 96%.

Hieu Phan et al. presented a deep learning approach utilizing

Simple Linear Iterative Clustering (SLIC) segmentation (Phan et al.,

2022) to identify diseased regions on corn leaves. The study

employed five pre-trained models—VGG16, ResNet50,

DenseNet121, Xception, and InceptionV3—on the PlantVillage

and CD&S datasets, concentrating on super-pixel classes like

northern leaf blight, gray leaf spot, and common rust. One

hundred models were trained using diverse segments and split

ratios. DenseNet121 achieved a peak accuracy of 97.77% on the

CD&S dataset, employing five segments per image and an 80:20

split. Web and mobile applications were developed for disease

identification, demonstrating the effectiveness of automated

disease tracking relative to manual monitoring.

Mohit Agarwal et al. devised an efficient CNN model of 8

hidden layers (Agarwal et al., 2020) for the identification of tomato

illnesses, therefore alleviating the computational demands linked to

pre-trained models. Their approach, assessed with the PlantVillage

dataset, achieved an accuracy of 98.4%, surpassing traditional

machine learning methods (94.9% with k-NN) and pre-trained

models like VGG16 (93.5%). The research employed image pre-

processing techniques to enhance efficiency, achieving an accuracy
Frontiers in Plant Science 03250
of 98.7% on additional datasets. This study highlights the

effectiveness and efficiency of lightweight (Zhu et al., 2023) CNN

(Dai et al., 2023) models for disease detection in tomato crops.

Hasibul Islam Peyal and associates developed a lightweight 2D

CNN model employing deep learning for the categorization of

diseases in tomato and cotton plants. The algorithm, incorporated

into an Android application named “Plant Disease Classifier,”

(Peyal et al., 2023) proficiently categorized 14 classifications,

consisting of 12 diseased and 2 healthy categories. Despite having

fewer variables than pre-trained models like VGG16, VGG19, and

InceptionV3, it achieved an impressive average accuracy of 97.36%,

with precision, recall, and F1-scores around at 97%, and an Area

under Curve (AUC) score of 99.9%. The utilization of Grad-CAM

for visual interpretations and the model’s rapid classification time of

around 4.84ms highlight its efficiency and effectiveness in

disease detection.

Qiang Dai et al. created DATFGAN, a generative adversarial

network that employs dual-attention and topology-fusion

techniques to enhance the identification of agricultural disease

photos. DATFGAN (Dai et al., 2020) improves image clarity and

resolution, alleviating issues related to unclear images that hinder

identification accuracy. The network’s weight-sharing approach

reduces the parameter count, and actual evidence demonstrates

that DATFGAN produces visually superior results and significantly

outperforms existing methods in practical identification tasks.

Junde Chen et al. developed the Crop Disease Recognition

Model (CDRM), including the Location-wise Soft Attention

mechanism (Ubaidillah et al., 2022) into a pre-trained MobileNet-

V2 to enhance the detection of subtle lesion features. This model

addresses challenges associated with chaotic backgrounds and

variable lighting in crop disease images. The study’s experimental

results demonstrated an average accuracy of 99.71% on an open-

source dataset, with a 99.13% accuracy in challenging conditions.

The proposed method outperforms prior dominant techniques,

showcasing its effectiveness and robustness in detecting

agricultural illnesses.

Rabbia Mahum et al. proposed an enhanced deep learning

technique for the diagnosis and categorization of potato leaf

diseases. Unlike existing methods that categorize potato leaves

into two groups utilizing the Plant Village dataset, their approach

classifies leaves into five separate categories: Potato Late Blight

(PLB), Potato Early Blight (Feng et al., 2023) (PEB), Potato Leaf Roll

(PLR), Potato Verticillium Wilt (PVw), and Healthy (PH). Their

model achieved an accuracy of 97.2% by utilizing a pre-trained

Efficient DenseNet (Mahum et al., 2022) model, integrating an

additional transition layer, and implementing a reweighted cross-

entropy loss function. This method effectively tackles class

imbalance and overfitting, offering a robust solution for

comprehensive disease classification in potato leaves.

Zubair Saeed and associates developed a deep learning system

focused on computer vision for the early detection and classification

of potato leaf diseases. Utilizing deep convolutional neural networks

(Saeed et al., 2021), specifically ResNet-152 and InceptionV3,

trained on the Kaggle potato dataset, their methodology achieved

accuracies of 98.34% and 95.24%, respectively, with a learning rate
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of 0.0005. The method precisely classifies potato leaves into three

categories: healthy, early blight, and late blight. This method aims to

mitigate economic losses by enabling the prompt detection of

disease outbreaks through accurate image-based categorization.

Kashif Shaheed et al. developed EfficientRMT-Net, a novel

model that combines Vision Transformer (ViT) with ResNet-50

(Shaheed et al., 2023) for the automated detection and classification

of potato leaf diseases. This technology addresses the limitations of

traditional methods, such as labor-intensive procedures and

inadequate illness detection. EfficientRMT-Net utilizes CNN for

feature extraction, depth-wise convolution to reduce processing

demands, and a stage block architecture to enhance scalability and

sensitivity. The model, trained on bespoke datasets, achieved

accuracies of 97.65% on a generic dataset and 99.12% on a

tailored potato leaf dataset. EfficientRMT-Net offers a dependable

approach for accurate disease classification, consequently

improving crop yield and resource efficiency.

Mingjie Lv and associates devised a maize leaf disease

recognition method to tackle challenges including variable

lighting and complexities in feature extraction. Their

methodology integrates a maize leaf enhancement framework and

the DMS-Robust AlexNet, an advanced neural network (Lv et al.,

2020) based on AlexNet. This network incorporates dilated and

multi-scale convolutions to improve feature extraction. It utilizes

batch normalization to reduce overfitting, with the PReLU

activation function and Adabound optimizer to improve

convergence and precision. Experimental results demonstrate that

this technique significantly enhances disease identification in

complex scenarios, providing a dependable alternative for

advanced plant disease diagnostics.

Hatice Catal Reis and Veysel Turk developed the Multi-head

Attention Mechanism Depthwise Separable Convolution Inception

Reduction Network (MDSCIRNet) for the early identification of

potato leaf diseases. This deep convolutional neural network utilizes

depthwise separable convolutions and a multi-head attention

mechanism to enhance classification accuracy. MDSCIRNet (Reis

and Turk, 2024) achieved an accuracy of 99.33% by combining deep

learning with SVM, outperforming contemporary algorithms such

as Xception and MobileNet, as well as traditional methods like SVM

and Random Forest. The study highlights the effectiveness of

MDSCIRNet in improving early disease detection and reducing

financial losses for agricultural producers.

Xiangpeng Fan and Zhibin Guan address critical challenges in

maize disease identification with their proposed VGNet, a system that

employs a pretrained VGG16 model. VGNet incorporates batch

normalizing, global average pooling, and L2 normalization to enhance

performance. Utilizing transfer learning and the Adam optimizer, the

model achieves an accuracy of 98.3% with a learning rate of 0.001,

exhibiting remarkable precision and recall for nine maize diseases.

VGNet’s small architecture (Fan and Guan, 2023), requiring only 79.5

MB, enables efficient processing, demonstrating effective disease

recognition with a testing duration of 75.21 seconds for 230 images.

The reviewed literature demonstrates significant advancements

in plant disease classification learning models, (Saritha and

Thangaraja, 2023; Shahoveisi et al., 2023) using deep learning and
Frontiers in Plant Science 04251
machine learning models, yet several limitations persist. Many

studies rely heavily on the PlantVillage dataset, which, while

comprehensive, is collected in controlled environments and lacks

diversity for real-world applications. For instance, Nabila Husna

Shabrina et al. and Penghui Gui et al. highlighted the challenges of

generalization in uncontrolled settings. Additionally, while methods

such as DenseNet and EfficientNet have been explored, the absence

of innovative feature extraction techniques, such as attention

mechanisms and edge detection, limits their performance in

detecting fine-grained features. Furthermore, traditional classifiers

like SVMs, as used by A. Ubaidillah et al., often suffer from

limitations in handling misclassified samples, reducing overall

efficiency. Despite efforts to enhance accuracy, many studies fail

to effectively combine lightweight models with robust optimization

techniques for scalable and practical applications.

The proposed methods address these gaps by introducing

EfficientNet-LITE with Channel Attention (Haider et al., 2024;

Kumar et al., 2023; Navrozidis et al., 2018) and 1-D Local Binary

Pattern (LBP) features, enabling precise focus on critical attributes

even in uncontrolled environments. The inclusion of Sobel edge-

detected samples enhances fine-detail recognition, while KE-SVM

Optimization revisits and corrects misclassified samples,

significantly improving classification efficiency. This integrated

approach achieves superior generalization across diverse datasets,

offering a fast, accurate, and reliable solution for real-world

agricultural disease management, ultimately empowering farmers

to reduce yield losses.

The remainder of the article is organized as follows: Section 2

outlines the structure of the feature extraction and classification

model. Section 3 examines the experimental findings and analysis,

while Section 4 presents the conclusions and future directions.
2 Materials and methods

The proposed approach initiates with image augmentation and

Sobel edge identification to improve and diversity the dataset. Figure 1

illustrates the application of an attention-based EfficientNet-LITE

model for feature extraction to identify essential leaf attributes,

succeeded by KE-SVM optimization for precise classification of

potato leaf diseases across diverse environments.
2.1 Dataset collection

This work utilized two datasets for the detection of potato leaf

diseases: one from an uncontrolled environment (Shabrina et al.,

2024) in Indonesia and the PlantVillage Dataset (Potato Species)

(Shaheed et al., 2023) from a controlled laboratory setting. The first

dataset, acquired from a Kaggle source, was compiled from multiple

potato farms throughout Java Island by teams from Universitas

Multimedia Nusantara and Universitas Gadjah Mada. It comprises

3,076 photos categorized into seven disease types: Figure 2 (a). virus,

(b). phytophthora, (c). nematode, (d). fungal, (e). bacteria, (f). pest,

and (g). healthy, taken under various settings. Figure 2 presents the
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FIGURE 1

Proposed methodology for potato leaf disease classification.
a) Virus b) Phytophthora c) Nematode 

d) Fungi e) Bacteria f) Pest 

g) Healthy

FIGURE 2

Samples of the seven categories in the potato leaf disease dataset: (a) Virus, (b) Phytophthora, (c) Nematode, (d) Fungal, (e) Bacteria, (f) Pest, and
(g) Healthy.
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sample photographs for each class. Each image possesses a

resolution of 1500 × 1500 pixels and is stored in.jpg format for

accessibility and compatibility with image-processing software.

The second dataset, PlantVillage (potato species), has 2,152

photos categorized into three classes: Healthy, Potato Late Blight,

and Potato Early Blight, captured under uniform lighting

circumstances with a resolution of 256 x 256 pixels. Both datasets

provide a significant contrast between real-world and controlled

settings for assessing model efficacy in disease diagnosis.
2.2 Preprocessing

Use bilinear interpolation (cv2.INTER_LINEAR) (Shabrina et al.,

2024) to resize 1500x1500 potato leaf disease images to 224x224

pixels for machine learning models. This scaling was necessary to

match image dimensions to models. We picked bilinear interpolation

because it smoothed images while maintaining crucial characteristics

and particulars from the high-resolution originals. Preprocessing the

potato leaf disease images reduced computational effort and memory

utilization, optimizing model performance and preparing the dataset

for training and evaluation.
2.3 Data augmentation strategy

A complete data augmentation technique was applied to expand

the training dataset of potato leaf disease image and improve the

performance and resilience of the machine learning model. The
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initial dataset consisted of 3,076 pictures, with 2,460 allocated for

training and 616 left aside for testing. Various augmentation

strategies were employed to generate a more diverse and

comprehensive training dataset, substantially enhancing the

quantity of training samples.

Multiple fundamental augmentation methods were employed

(Shabrina et al., 2024) to synthetically enlarge the training dataset.

Rotation within a 20-degree range was implemented to imitate

diverse viewing angles, enhancing the model’s capacity to generalize

across multiple orientations. Width and height adjustments of up to

20% of the image dimensions were executed to simulate differences

in image positioning. Furthermore, shear transformations with a

magnitude of 0.2 were implemented to produce tilting effects,

facilitating the model’s ability to manage images with perspective

deviations. Zoom changes, with modifications of up to 20%,

emulated various focal lengths and scales. Horizontal flips were

utilized to mirror pictures and augment the model’s resilience to

variations in orientation.

Sobel edge detection was employed to enhance the edges and

transitions in the potato leaf disease images. Employing the

OpenCV library, Sobel filters calculated gradients in both the x

and y directions, yielding edge-detected representations of the

source images. This technique enhanced texture and boundary

information, which was integrated into the training dataset. The

edge-detected images were merged with the augmented versions

generated through fundamental changes, enhancing the dataset

with intricate edge information.

The enhancing method was efficiently performed by processing

images of potato leaf disease in phases. Each image in a batch was
a) Original Image b) Rotate c) Flip d) Left Shift 

e) Sobel edge sample f) Sobel zoom g) Sobel Flip h) Zoom 

FIGURE 3

Sample images demonstrating original and augmented versions using various techniques: (a) Original Image, (b) Rotate, (c) Flip, (d) Left Shift, (e)
Sobel Edge Sample, (f) Sobel Zoom, (g) Sobel Flip, and (h) Zoom.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1499909
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sangar and Rajasekar 10.3389/fpls.2025.1499909
initially converted to float32 format and augmented to incorporate

a batch dimension. Six specific augmentations were done to each

image with Keras’s ImageDataGenerator class, enabling

transformations including rotation, shifting, shearing, zooming,

and flipping. Furthermore, Sobel edge detection was executed to

produce further variations. Figures 3a–h illustrates the modified

photos, accompanied by their respective labels, image names, and

class names, which were subsequently gathered and preserved for

model training.

This augmentation method led to a significant increase in the

quantity of training samples. The initial training dataset of 2,460 photos

was enlarged to 14,760 augmented samples (Xiong et al., 2020),

incorporating those enhanced by Sobel edge detection. The quantity

of original testing samples stayed at 616 and was not increased. The

augmentation of the training dataset yielded a more varied collection of

images, markedly improving the model’s capacity to generalize and

excel in multiple circumstances.
2.4 Feature extraction

EfficientNet-LITE is an enhanced version of the basic

EfficientNetB0 (Upadhyay et al., 2024) design, specifically

engineered to improve feature extraction through the strategic

integration of a Channel Attention (CA) mechanism and 1-D

Local Binary Pattern (LBP) for features. The improvements

implemented post-Global Average Pooling layer are designed to
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augment the model’s capacity to concentrate on pertinent features

in images of diseased potato leaves, thus improving performance

while preserving computational efficiency.

EfficientNet-LITE preserves the key principles of

EfficientNetB0, which optimizes network depth, width, and

resolution for enhanced accuracy with reduced parameters and

FLOPs, while incorporating an attention mechanism for more

targeted feature extraction. Figure 4 (Reproduced from

(Upadhyay et al., 2024)) shows the combination of EfficientNetB0

with Channel Attention mechanism. In contrast to EfficientNetB0,

which depends exclusively on convolutional processes and

depthwise separable convolutions (Reis and Turk, 2024),

EfficientNet-LITE’s incorporation of Channel Attention and 1-D

LBP enables the network to dynamically emphasize significant

features. This produces a model that is both efficient and

proficient at identifying nuanced patterns and details in potato

leaf images, rendering it especially suitable for jobs demanding high

accuracy with constrained computational resources.

The incorporation of the Channel Attention mechanism with 1-

Dimensional LBP in EfficientNet-LITE tackles certain issues in

feature extraction.

2.4.1 Channel Attention (CA)
Channel Attention operates by initially condensing the spatial

dimensions of the input tensor into a channel descriptor by global

average pooling. This description encapsulates the overall context

for each channel, succinctly conveying its significance.
FIGURE 4

The architecture of EfficientNet-LITE Model with channel attention mechanism.
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zc =
1

H*W
o
H

h=1
o
W

w=1
Xb,c,h,w   (1)

In Equation 1, zcthe global average is pooled value for channel c,

Xb,c,h,w is the value of the input tensor at batch b, channel c, height h,

and width w.

The two completely connected layers subsequently convert this

description into a series of attention weights. The initial fully

connected layer diminishes the descriptor’s dimensionality,

whereas the subsequent fully connected layer reverts it to the

original channel dimension. The ReLU activation introduces non-

linearity, while the sigmoid activation guarantees that attention

weights remain constrained between 0 and 1.

The vector z is then passed through two fully connected (FC)

layers to generate channel attention weights:

First FC Layer :      y1 = ReLU(W1z + b1) (2)

In Equation 2, W1 is the weight matrix of the first fully

connected layer, b1 is the bias vector of the first fully connected

layer, ReLU is the Rectified Linear Unit activation function.

Second FC Layer :      y2 = W2y1 + b2 (3)

In Equation 3, W2 is the weight matrix of the second fully

connected layer, b2 is the bias vector of the second fully

connected layer.

Apply a sigmoid activation function to obtain the channel

attention weights:

ac = s (y2) (4)

In Equation 4, s is the sigmoid function, a2 is the attention

weight of channel c.

Ultimately, these attention weights are employed to scale the

original input tensor, accentuating channels with greater weights

and reducing the influence of channels with lesser weights. This

approach allows the model to concentrate on the most pertinent

aspects, enhancing its capacity to derive significant information

from the incoming data.

2.4.2 1-D Local Binary Pattern (1D LBP):
1-D Local Binary Pattern (1-D LBP) is a method for identifying

textural features from one-dimensional data, such sequential signals

or feature vectors obtained from photographs. It operates by

juxtaposing each data point with its adjacent counterparts to

produce a binary pattern, subsequently transformed into a

decimal code. The codes are compiled into a histogram that

illustrates the distribution of local textures within the data points.

This approach is resilient to periodic changes and effectively

identifies critical local structures, including edges and peaks. The

1-D LBP (Algorithm 1) histogram offers a concise and distinctive

feature descriptor that is efficient for signal classification and texture

analysis tasks.
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Input: 1D signal X = {X1,X2,…,Xn}, Number of neighbors P

Output: LBP codes for each point in the signal

1 Step 1: Initialize Parameters

2 P ← Number of neighbors;

3 Step 2: Compute LBP Codes for Each Point in the Signal;

4 for each point i from P + 1 to N - P do

5 LBPi ← 0;

6 for each neighbor j from 1 to 2P do

7 if j ≤ P then

8 Xj ← Xi–P +j–1;

9 else

10 Xj ← Xi+j–P;

11 if Xj ≥ Xi then

12 S (Xi, Xj) ← 1;

13 else

14 S (Xi, Xj) ← 0;

15 LBPi ← LBPi + S (Xi, Xj) • 2j–1;

16 Step 3: Return LBP Codes;

Output: LBPi for each i
Algorithm 1. 1–D Local Binary Pattern (1–D LBP).

2.4.3 Model Structure:
The Table 1 below summarizes the modified structure of

EfficientNet-LITE, detailing the input and output shapes at each

stage, along with the expansion factors, repeat times, and strides.

The proposed EfficientNet-LITE model was meticulously

engineered with a systematic arrangement of layers to attain a

compromise between computing efficiency and performance. The

input layer received potato leaf pictures measuring 224×224×3,

which were subsequently processed through a Conv2D layer that

downsampled the input to 112×112×32 with a stride of 2, thus

diminishing the spatial dimensions while augmenting the channel

depth. Batch Normalization and Swish Activation are utilized to

stabilize and non-linearly activate the refined feature maps, priming

them for the ensuing MBConv blocks.

The Swish activation function is defined Equation 5 as:

Swish(x) = x · s (x) (5)

where s (x) is the sigmoid function, given by Equation 6:

s (x) =
1

1 + e−x
(6)

The MBConv layers facilitate effective feature extraction by

gradually diminishing spatial dimensions while augmenting the

amount of channels, culminating in a dense and compact feature

representation. The model subsequently employed a 1x1 convolution

to refine the features, followed by global pooling and a Channel

Attention mechanism, which improved the model’s capacity to

concentrate on the most pertinent channels. This was succeeded by
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a 1-D Local Binary Pattern (LBP) layer that expanded the feature

vector to 1290 dimensions by integrating texture features.

2.4.4 Performance Comparison: EfficientNet-LITE
vs EfficientNet-B0

In deep learning, determines like Floating Point Operations

(FLOPs), parameter count, model size, and depth are essential for

evaluating the performance and efficiency of neural network

models. FLOPs measure a model’s computational complexity,

whereas the parameter count reflects its ability to learn and

express intricate aspects. The model’s size pertains to storage

demands, whereas depth frequently associates with the model’s

capacity to discern complex patterns within the data.

EfficientNet-LITE had 359.69 MFLOPs, somewhat less than

EfficientNet-B0 ’s 390. EfficientNet-LITE required fewer

computational resources due to its lower FLOPs, making it ideal

for mobile or edge devices. Despite adding Channel Attention and

1-D LBP features, EfficientNet-LITE maintained a computational

efficiency similar to EfficientNet-B0, demonstrating its design

efficiency. There are 3.11 million parameters in EfficientNet-LITE,

compared to 5.3 million in B0. EfficientNet-LITE’s reduced

parameters indicate a more streamlined architecture for memory-

constrained applications. EfficientNet-LITE’s 12.46 MB model size

was lower than EfficientNet-B0’s 20 MB due to fewer parameters.

The compactness of EfficientNet-LITE accelerated model loading,

memory usage, and inference times, making it better for real-time

applications. Table 2 shows the size of pre-trained network model.
Frontiers in Plant Science 09256
Also important is model depth, as deeper models can learn

complex representations. EfficientNet-LITE had 27 layers,

compared to 24 for EfficientNet-B0. This increased depth

suggested that EfficientNet-LITE could capture more complex

data characteristics, improving performance in sophisticated

feature extraction tasks. The comparable FLOPs show that the

extra depth did not reduce computing efficiency. EfficientNet-

LITE balanced computational efficiency with model capacity.

EfficientNet-LITE was ideal for mobile or embedded systems with

limited computational resources because to its low FLOPs,

parameter count, and model size. Despite being smaller, the

model’s depth let it accomplish complex tasks well.

Finally, EfficientNet-LITE has fewer parameters (3.11 million)

and a smaller model (12.46 MB vs. 20 MB) (Ubaidillah et al., 2022)

than EfficientNet-B0. It has more layers (27 vs. 24) but fewer FLOPs

(359.69 vs. 390), requiring fewer computations. EfficientNet-LITE

was more resource-efficient and performed well.
2.5 KE-SVM optimization (kernel ensemble
SVM optimization)

SVMs were widely employed in image classification and

machine learning to define class boundaries. By translating input

information into high-dimensional spaces, SVM classifiers

(Sorensen and Nielsen, 2018) accurately handled complex and

non-linear patterns in many applications.
TABLE 1 Structure of the proposed model.

Operators (modules) Input shapes Expansion factor Output shapes Repeat times Strides

Input Layer 224 × 224 × 3 – 224 × 224 × 3 1 –

Conv2d 224 × 224 × 3 – 112 × 112 × 32 1 2

BatchNorm 112 × 112 × 32 – 112 × 112 × 32 1 –

Swish Activation 112 × 112 × 32 – 112 × 112 × 32 1 –

MBConv1 112 × 112 × 32 1 112 × 112 × 16 1 1

MBConv6 112 × 112 × 16 6 56 × 56 × 24 2 2

MBConv6 56 × 56 × 24 6 28 × 28 × 40 2 2

MBConv6 28 × 28 × 40 6 14 × 14 × 80 3 2

MBConv6 14 × 14 × 80 6 14 × 14 × 112 3 1

MBConv6 14 × 14 × 112 6 7 × 7 × 192 4 2

MBConv6 7 × 7 × 192 6 7 × 7 × 320 1 1

Conv2d 1 × 1 7 × 7 × 320 – 7 × 7 × 1280 1 1

Globalpool 7 × 7 × 1280 – 1 × 1280 1 –

Channel Attention 1 × 1280 1 × 1280 1 –

1-D LBP 1 × 1280 1 × 1290 1

Dropout 1290 – 1290 1 –

Output Layer 1290 – num_classes 1 –
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However, datasets from uncontrolled environments with

different backdrops, perspectives, and lighting conditions were

difficult. Inconsistencies in image acquisition caused SVM kernels

to struggle. Ensemble approaches (Sorensen and Nielsen, 2018) in

machine learning improve performance by combining different

models. This helped classify potato leaf diseases, where the

dataset’s unpredictability required a more robust technique.

Kernel-Ensemble SVM (KE-SVM) Optimization used Linear,

Polynomial, Radial Basis Function (RBF), and Sigmoid SVM

kernels to address these issues. KE-SVM Optimization enhanced

classification accuracy and discussed dataset variability by capturing

different data features and integrating their predictions. KE-SVM

Optimization improves classification by combining SVM kernel

strengths. Figures 5, 6 shows the work flow of KE-SVM method.

This method compares misclassified instances in one kernel against

proper classifications in others. The optimum confusion matrix is

iteratively adjusted using this ensemble technique to optimize

classification accuracy across all classes.
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The novelty of this work lies in the application of Kernel-

Ensemble SVM (KE-SVM) Optimization (Algorithm 2) to

substantially improve classification efficacy by harnessing the

advantages of several SVM kernels. Misclassified samples from

the kernel exhibiting the highest accuracy were verified against

predictions from alternative kernels, with those accurately classified

by other kernels deemed as True Positives. The iterative

modification process persisted until all classes were sufficiently

addressed , resu l t ing in s ignificant enhancements in

classification performance.

The potato leaf disease dataset, obtained from uncontrolled

conditions, demonstrated that the SVM RBF kernel initially gave

the highest performance among the kernels, attaining an accuracy

of 79.38%. The Linear kernel achieved an accuracy of 72.89%,

followed by the Polynomial kernel at 71.27%, and the Sigmoid

kernel at 64.12%. The classification metrics and confusion matrix

indicated a necessity for enhancement owing to the dataset’s

h e t e r o g en e i t y , i n c l ud i n g d i ff e r i n g b a ckd rop s and

lighting conditions.
1 Result: Optimized confusion matrix and evaluation

metrics (accuracy, precision, recall, F1 score)

2 initialization;

3 confusion matrices ← [];

4 csv files ← [];

5 kernels ← {‘linear’,’poly’,’rbf’,’sigmoid’};

6 while each kernel k ∈ kernels do

7 svm classifier ← SVC (kernel = k, probability =

True);

8 svm classifier.fit (Xtrain resampled, Ytrain resampled);

9 ypred ← svm classifier.predict (Xtest features);

10 predictions df ← {Xtest features, Class Name, True

Label, Predicted Label};

11 csv filename ← base path + ‘predicted labels’ + k +

‘.csv’;
TABLE 2 The model size of the main networks.

Networks Model size Parameters Depth

VGG16 528 MB 138 million 23

Inception V3 92 MB 23.8 million 159

ResNet50 98 MB 25.6 million –

DenseNet121 33 MB 8.1 million 121

MobileNet-V1 16 MB 4.2 million 88

MobileNet-V2 14 MB 3.5 million 88

NASNetMobile 23 MB 5.2 million –

EfficientNet-B0 20 MB 5.3 million 24

EfficientNet-LITE 12.46 MB 3.11 million 27
Bold values indicate the best performance.
FIGURE 5

Block diagram of KE-SVM optimization.
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Fron
12 save (predictions df, csv filename);

13 csv files.append (csv filename);

14 Evaluate the Model;

15 accuracy ← accuracy score (ytest, ypred);

1 6 p r e c i s i o n ← p r e c i s i o n s c o r e ( y t e s t ,

ypred,’weighted’);

17 recall ← recall score (ytest, ypred, ‘weighted’);

18 f1 ← f1 score (ytest, ypred,’weighted’);

19 cm ← confusion matrix (ytest, ypred);

20 confusion matrices.append (cm);

21 end while

22 Determine the best kernel;

23 best index ← argmax ({accuracy (cm) for each cm ∈

confusion matrices});

24 best matrix ← confusion matrices [best index];

25 optimized matrix ← copy (best matrix);

26 while each sample with (true label ≠ best pred label)

in csv files [best index]do

27 for each i ≠ best index in csv files do

28 if other preds [i] = true label for sample then

29 optimized matrix [true label, best pred

label]

← optimized matrix [true label, best pred

label] – 1;

30 optimized matrix [true label, true label]

← optimized matrix [true label, true

label] + 1;

31 break;

32 end if
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33 end for

34 end while

35 Compute and print optimized metrics;

36 (accuracy, precision, recall, f1–score) ← calculate

metrics (optimized matrix);

37 print (optimized matrix);

38 print (accuracy, precision, recall, f1–score);
Algorithm 2. KE–SVM Optimization.

The SVM classifiers with different kernels attained good

accuracy on the lab-controlled dataset from PlantVillage (potato

species). The Polynomial kernel attained the maximum accuracy of

99.07%, succeeded by the RBF kernel at 98.84%, the Linear kernel at

98.38%, and the Sigmoid kernel at 96.06%. The classification report

indicated an exceptional performance, with an overall accuracy of

1.00. The precision, recall, and F1-scores were remarkably elevated

across all categories, indicating the consistent conditions of the

dataset. The confusion matrix revealed minimal misclassifications,

illustrating the effectiveness of the SVM Polynomial kernel in

controlled laboratory circumstances.

The EfficientNet-LITE + SVM model demonstrated

higher performance on datasets from both controlled

and uncontrolled settings. Following KE-SVM optimization, the

accuracy on the PlantVillage dataset rises to 99.54%, while on the

uncontrolled environment dataset, it dramatically climbs to 87.82%,

showing the model’s improved capacity to manage intricate,

uncontrolled conditions.
FIGURE 6

Misclassified samples re-evaluate with other kernels.
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3 Result and discussions

This study’s results are structured into three primary stages: (1)

results before augmentation, (2) results before optimization, and (3)

results after KE-SVM optimization. These stages comprehensively

illustrate the progression in performance of the SVM classifiers

when applied to controlled (PlantVillage) and uncontrolled

environment datasets for diagnosing potato leaf diseases. The

evaluation metrics employed include accuracy, precision, recall,

F1-score, and other relevant measures to validate the model’s

effectiveness. Equation 7, Equation 8, Equation 9, Equation 10

employed to calculate these measures were included to clarify the

evaluation procedure.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)
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Recall =
TP

TP + FN
(9)

F1   Score =
2*Precision*Recall
Precision + Recall

(10)

Accuracy evaluated overall correctness, whereas precision and

recall examined the management of false positives and negatives.

The F1-score offered a comprehensive assessment of the model’s

classification performance, as illustrated in Table 3 below.

The initial experiments were conducted using the raw dataset

without applying Sobel edge filtering or augmentation techniques.

The SVM classifier’s performance in uncontrolled and controlled

environments revealed significant room for improvement. In the

uncontrolled environment dataset, the accuracy was 75.62%, while

in the lab-controlled dataset, the accuracy was 98.62%. These results

underscore the challenges posed by the inherent variability in the

uncontrolled environment dataset.

The lab-controlled dataset demonstrated high accuracy due to

reduced variability and noise. Following data augmentation with
            

(a)                                              (b)                                                 (c) 

                  

                       (d)                                                 (e)                                                   (f) 

0 1 2 3 4 5 6
0 107 4 1 1 2 1 18
1 1 96 3 0 23 11 18
2 1 0 28 0 4 0 2
3 0 3 1 6 3 0 0
4 3 12 11 0 66 7 21
5 0 8 0 0 3 51 1
6 2 4 4 0 2 2 85

0 1 2 3 4 5 6
0 113 6 1 1 3 2 8
1 1 84 8 3 29 19 8
2 0 0 29 0 4 0 2
3 0 4 0 7 2 0 0
4 6 17 22 1 48 12 14
5 0 10 3 1 4 45 0
6 7 5 10 0 5 3 69

0 1 2 3 4 5 6
0 128 3 0 0 1 0 2
1 1 122 4 0 11 7 7
2 0 2 28 0 3 0 2
3 0 8 1 4 0 0 0
4 4 16 5 1 76 5 13
5 0 11 0 0 3 47 2
6 2 6 2 0 3 2 84

0 1 2 3 4 5 6
0 117 5 1 0 1 2 8
1 1 112 4 0 15 13 7
2 0 4 30 0 1 0 0
3 0 0 0 10 2 1 0
4 6 23 10 2 58 4 17
5 0 9 0 1 3 50 0
6 3 5 15 0 4 0 72

FIGURE 7

Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (RBF). (a) Linear, (b) Polynomial, (c)
Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) RBF.
TABLE 3 Shows the results of both datasets before optimization.

Model Dataset Accuracy Precision Recall F1-score

EfficientNet-LITE + SVM Potato Leaf Disease in Uncontrolled Environment 79.38% 80% 79% 79%

EfficientNet-LITE + SVM PlantVillage (Potato Species) 99.07% 99% 99% 99%
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Sobel edge filtering to enhance feature extraction, the performance

of the SVM classifiers was evaluated before applying the KE-SVM

optimization technique. The augmented samples contributed to

improved classification, particularly in uncontrolled environments.

A comprehensive examination of the SVM model was

performed on the uncontrolled environment dataset utilizing four

distinct kernels: Linear (Figure 7a), Polynomial (Figure 7b), RBF

(Figure 7f), and Sigmoid (Figure 7c). Confusion matrices were

produced for each kernel, offering insights into the model’s

classification proficiency across diverse categories: 0: Virus, 1:

Phytophthora, 2: Nematode, 3: Fungi, 4: Bacteria, 5: Pest, 6:

Healthy. Visual representations of these matrices are provided to

illustrate the model’s performance.
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The overall effectiveness was evaluated by plotting the AUC-

ROC curve (Figure 7d) and learning curves (Figure 7e) for the

kernel exhibiting the highest accuracy. These visuals facilitated

awareness of the model’s capacity to generalize to unfamiliar data.

To test the model’s dependability, 5-fold cross-validation was

employed. Table 4 results demonstrated constant performance

across the folds, signifying the resilience of the SVM with RBF

kernel, which attained the best accuracy.

The SVM model utilizing the RBF kernel exhibited robust

performance, attaining an average training accuracy of 99.32 and

a validation accuracy of 96.94. The minor discrepancy between

these metrics signified effective generalization throughout the

sample. The uniformity of results over the five folds further
 

                             

(a)                                                    (b)                                              (c) 

                     

                        (d)                                                     (e)                                               (f) 

0 1 2
0 195 0 1
1 0 26 0
2 1 5 203

0 1 2
0 194 0 2
1 0 23 3
2 1 5 203

0 1 2
0 192 0 4
1 0 26 0
2 2 4 203

0 1 2
0 195 0 1
1 0 25 1
2 0 2 207

FIGURE 8

Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (Polynomial). (a) Linear, (b) RBF, (c)
Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) Polynomial.
TABLE 4 5-Fold cross validation for potato leaf disease in uncontrolled environment dataset.

Fold Training Accuracy Validation Accuracy Training Loss Validation Loss

Fold 1 0.993 0.9656 0.0796 0.4502

Fold 2 0.9932 0.969 0.0726 0.3942

Fold 3 0.9933 0.9736 0.0705 0.302

Fold 4 0.9936 0.9702 0.0626 0.3604

Fold 5 0.993 0.9686 0.0757 0.3837

Average 0.9932 0.9694 0.0722 0.3781
Bold values indicate the best performance.
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emphasized the model’s resilience, even in an uncontrolled setting.

The RBF kernel effectively captured intricate correlations within the

data, demonstrating its appropriateness for the dataset’s inherent

unpredictability. The model’s excellent accuracy underscored its

efficacy in classifying leaf diseases.

In the lab-controlled dataset, identical SVM kernels were

utilized, and confusion matrices were produced for each kernel:

Linear (Figure 8a), Polynomial (Figure 8f), RBF (Figure 8b), and

Sigmoid (Figure 8c). It offers insights into the model’s

categorization proficiency across different categories: 0: Early

Blight, 1: Healthy, 2: Late Blight. The findings from this dataset

exhibited remarkably high accuracy owing to the controlled

environment, which minimized data fluctuation.

The model’s performance was additionally assessed by plotting

the AUC-ROC curve (Figure 8d) and the learning curve (Figure 8e)

for the optimal kernel. These curves demonstrated nearly flawless

generalization. Consistent with the uncontrolled dataset, 5-fold

cross-validation validated the model’s reliability, with Table 5

indicating minimal variance among the folds.

The SVM model utilizing a polynomial kernel was assessed on

laboratory-controlled data, demonstrating superior performance

across all five folds. The model attained an average training

accuracy of 99.96 and a validation accuracy of 99.84. The training
Frontiers in Plant Science 14261
loss of 0.0004 and validation loss of 0.0024 signify little error and

robust generalization in a regulated environment. The results

highlight the efficacy of the polynomial kernel in managing clean,

organized data, exhibiting little variability relative to

uncontrolled contexts.
3.1 After optimization

After implementing KE-SVM Optimization, the model’s

performance on the uncontrolled environment dataset shown

significant enhancement. The optimal accuracy increased to

87.82%, accompanied by enhancements in precision to 86.77%,
              

(a)                                                               (b) 

0 1 2 3 4 5 6
0 130 3 0 0 0 0 1
1 1 131 2 0 8 5 5
2 0 0 33 0 2 0 0
3 0 1 1 11 0 0 0
4 4 5 5 1 88 4 13
5 0 6 0 0 1 56 0
6 0 1 2 0 2 2 92

0 1 2
0 195 0 1
1 0 26 0
2 0 1 208

FIGURE 9

Optimized confusion matrices for both datasets: (a) Uncontrolled data and (b) Laboratory-controlled data.
TABLE 5 5-Fold cross validation for PlantVillage dataset (potato species).

Fold Training Accuracy Validation Accuracy Training Loss Validation Loss

Fold 1 0.9996 1.0000 0.0004 0.000

Fold 2 0.9997 0.9972 0.0003 0.0028

Fold 3 0.9997 0.9986 0.0003 0.0024

Fold 4 0.9996 0.9979 0.0004 0.0031

Fold 5 0.9996 0.9983 0.0004 0.0038

Average 0.9996 0.9984 0.0004 0.0024
Bold values indicate the best performance.
TABLE 6 Optimized results for both lab and uncontrolled dataset.

Model Dataset
No. of
Classes

Accuracy

EfficientNet-
LITE + SVM

Potato Leaf Disease in
Uncontrolled Environment

07 87.82%

EfficientNet-
LITE + SVM

PlantVillage(Potato Species) 03 99.54%
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recall to 88.18%, and F1-score to 87.19%. The lab-controlled dataset

has been somewhat enhanced to 99.54%. (Figure 9a) presents the

optimized confusion matrix for uncontrolled data, while (Figure 9b)

displays the matrix for the laboratory-controlled dataset.

The optimization approach improved classification by cross-

validating misclassified examples from the most effective kernel

with predictions from other kernels, resulting in a more precise and

balanced confusion matrix. Table 6 presents the optimal outcomes

of the KE-SVM optimization technique.
3.2 Comparative performance

The proposed model (EfficientNet-LITE + KE-SVM

Optimization) exhibited substantial enhancements in accuracy

relative to previous models utilized on comparable datasets. Prior

to optimization, the model attained an accuracy of 79.38%, which

rose to 87.82% post-optimization. This performance surpassed

those of models like DenseNet121, ResNet50, and MobileNetV3-

Large, which exhibited accuracies between 59.16% and 73.63%. This

significant enhancement can be ascribed to the ensemble SVM

kernel methodology and improved feature extraction with

EfficientNet-LITE.

In the lab-controlled PlantVillage dataset, the suggested model

attained nearly flawless accuracy both prior to and subsequent to

KE-SVM Optimization. The model initially achieved an accuracy of

99.07%, which then increased to 99.54% during optimization. This

performance surpassed other prominent models, including

ResNet152, InceptionV3, and VGNet, which exhibited accuracies
Frontiers in Plant Science 15262
between 95.24% and 98.34%. The substantial enhancement upon

optimization is attributable to the improved feature extraction and

the strong classification capabilities of KE-SVM.

An optimized version of EfficientNetB0, EfficientNet-LITE,

integrated Channel Attention (CA) and 1D Local Binary Pattern

(LBP) features to increase feature extraction. This model prioritized

potato leaf traits while being computationally efficient, making it

ideal for resource-constrained mobile devices. KE-SVM

Optimization used linear, polynomial, RBF, and sigmoid kernels

to overcome typical SVM constraints. With SMOTE and confusion

matrix optimization, classification accuracy improved, handling

class imbalance and data variability.

The strengths of EfficientNet-LITE and KE-SVM Optimization

were combined. EfficientNet-LITE’s superior feature extraction and

KE-SVM Optimization’s classification created a model that could

handle complex datasets. This collaboration produced high

accuracy and reliable performance in all settings. The combined

model exceeded expectations in early illness identification and

uncontrolled environment management to satisfy research

objectives. The results confirmed the model’s efficacy and

versatility in solving research problems.

Tables 7 and 8 highlight the superior performance of our

proposed EfficientNet-LITE + KE-SVM Optimization model

compared to existing methods. Notably, the model achieved an

accuracy of 87.82% on uncontrolled datasets and 99.54% on the

PlantVillage dataset, surpassing models such as DenseNet121 and

ResNet50. These results underscore the robustness of our approach

in handling variability and improving classification accuracy. The

enhanced classification accuracy of our model has significant

implications for agricultural diagnostics. By addressing challenges

posed by uncontrolled environments, our model paves the way for

reliable and resource-efficient solutions applicable in real-world

farming scenarios. This contributes to the broader goal of

precision agriculture and early disease detection.
TABLE 8 To compare the results with existing state-of-art-methods
with PlantVillage(Potato) dataset.

Author
& Year

Model Name Dataset Accuracy

Saeed Z
et al., 2021

ResNet152 PlantVillage
(Potato)

98.34%

InceptionV3 95.24%

Rabia M
et al., 2022

ResNet-202
PlantVillage
(Potato)

97.2%

Shabrina
et al., 2024

EfficientNetV2B3
PlantVillage
(Potato)

98.15%

Jain J
et al., 2024

EfficientNetB0
PlantVillage
(Potato)

99.05

Proposed
Model

EfficientNet-LITE
(Before Optimization)

PlantVillage
(Potato)

99.07%

Proposed
Model

EfficientNet-LITE
(After Optimization)

PlantVillage
(Potato)

99.54%
Bold values indicate the best performance.
TABLE 7 To compare the results with existing state-of-art-methods for
uncontrolled dataset.

Author
& Year

Model Name Dataset Accuracy

Penghui Gui,
et al., 2021

CNN Field-PV 72.03%

A Ubaidillah,
et al., 2022

ANN
Cotton Disease
(Field Data)

74.44%

AANIS
AHMAD,
et al., 2023

DenseNet169(RGBA) Field-PV 77.50%

Shabrina,
et al., 2024

EfficientNetV2B3

Potato Leaf Disease
in Uncontrolled
Environment

73.63%

MobileNetV3-Large 72.03%

VGG-16 59.81%

ResNet50 68.17%

DenseNet121 59.16%

Proposed
Model

EfficientNet-LITE
(Before
Optimization)

Potato Leaf Disease
in Uncontrolled
Environment

79.38%

Proposed
Model

EfficientNet-LITE
(After Optimization)

Potato Leaf Disease
in Uncontrolled
Environment

87.82%
Bold values indicate the best performance.
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4 Conclusion

In conclusion, our research revealed the effectiveness of

combining EfficientNet-LITE with KE-SVM Optimization for the

classification of potato leaf diseases. Initially, SVM classifiers

demonstrated disparate performance, with the RBF kernel

achieving 79.38% accuracy on uncontrolled data and the sigmoid

kernel reaching 99.07% accuracy on laboratory-controlled data.

Subsequent to KE-SVM Optimization, the accuracy on the

uncontrolled dataset markedly increased to 0.8782, with precision

at 86.77%, recall at 88.18%, and F1-score at 87.19%. Conversely, the

accuracy on the lab-controlled dataset exhibited a minor

enhancement to 99.54%. This integrated model adeptly tackles

issues associated with early disease classification, dataset

variability, and model robustness, demonstrating its versatility

and dependability across many settings. Future work could

explore integrating more comprehensive datasets that combine

image data with clinical parameters such as plant height, size,

irrigation schedules, and expert farmer insights. Additionally,

leveraging generative AI techniques could provide holistic

solutions for farmers, enhancing decision-making and improving

crop management practices.
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