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Editorial on the Research Topic

Harnessing machine learning to decode plant-microbiome dynamics for
sustainable agriculture

The world’s growing population of nine billion people is facing a severe global food
insecurity crisis, especially in low and middle-income countries (Hong et al.,, 2022). Improving
crop yield and productivity through structured breeding programs is a key strategy to address
this issue (Yoosefzadeh-Najafabadi et al., 2024). Plants and microbes have evolved intricate
relationships over millennia, providing benefits such as enhanced growth, improved nutrient
uptake, and increased stress tolerance to plants (Trivedi et al., 2022). In recent years, research
has focused on the interplay between the plant microbiome and phenotype to enhance breeding
programs (Nerva et al,, 2022; Araujo et al., 2024; Batool et al., 2024).

Traditional analysis methods struggle to handle data from high-throughput
technologies such as meta-genomics, meta-transcriptomics, and meta-proteomics
(Yoosefzadeh Najafabadi and Torkamaneh, 2025), leading to a lack of understanding of
how the microbiome influences plant traits (Trivedi et al., 2022). Advanced data analysis
techniques have been developed to integrate and analyze data from multiple omics sources
effectively (Trivedi et al.,, 2022). To harness the potential of plant microbiomes, researchers
are increasingly turning to machine learning, a subset of artificial intelligence that enables
computers to learn from data and make predictions (De Souza et al., 2020). Deep-learning
models, a powerful type of machine learning, are particularly effective for analyzing
complex biological data. These models are built from layers of interconnected nodes that
process input data, such as microbial DNA sequences or plant images, to identify patterns
and relationships. Developers must make critical decisions when designing these models,
such as choosing the number and type of layers, selecting the data features to focus on (e.g.,
specific microbial traits), and determining how the model learns from errors (Zhou and
Gallins, 2019). These choices depend on the specific problem, such as detecting crop
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diseases or predicting yield, and are guided by the need for accuracy,
computational efficiency, and applicability to real-world farming
conditions (Zhou and Gallins, 2019).

The development of a machine vision-based method using an
enhanced YOLOv5s model for grading individual peanut pod rot,
which is a major plant disease affecting peanut production were
investigated in a recent paper published by (Liu et al.) YOLO is a
real-time object detection algorithm known for its speed and
efficiency. Unlike traditional methods that repurpose classifiers or
localizers to perform detection, YOLO frames object detection as a
single regression problem, directly predicting bounding boxes and
class probabilities from full images in one evaluation. This model,
which relies on deep-learning principles to process images,
incorporates a Shuffle Attention module to focus on key visual
features and replaces the loss function CloU with EIoU to improve
accuracy in distinguishing non-rotted and rotten peanuts in
complex backgrounds. The study also highlighted the potential
for future research to enhance prediction performance for different
peanut varieties and to consider factors like rotten kernel rate for
better yield estimation. In another study by Pandiyaraju et al, the
possibility of using a machine vision-based approach for grading
individual peanut pod rot using an improved YOLOV5s algorithm
were investigated. The study addresses the challenges of visually
identifying and classifying peanut pod rot by introducing a Shuffle
Attention module to enhance feature representation and accuracy
in complex backgrounds. The proposed model demonstrated high
recognition rates for non-rotted and rotten peanuts, offering a
promising solution for automated grading of peanut pod rot,
providing advancements in disease resistance evaluation and
germplasm selection in peanut breeding. Another use of YOLO
algorithms was reported by Wang et al. where they enhanced the
identification of potato seedlings in drone-acquired images by
introducing a new lightweight model named VBGS-YOLOv8n. By
utilizing a modified version of YOLOv8n with a lighter backbone
network and incorporating improvements such as a bidirectional
feature pyramid network and GSConv and Slim-neck designs, the
model achieves high precision and detection performance.

Precise identification and enumeration of flax plant organs play
a vital role in acquiring key phenotypic data necessary for selecting
and managing flax varieties. In research conducted by Kai et al,, a
Flax-YOLOv5 model is presented to extract phenotypic information
from flax plants. By extending the YOLOv5x network with the
BiFormer module, which integrates bi-directional encoders and
converters to focus on essential features adaptively, the model’s
computational efficiency is enhanced. Zhang et al. introduced a
novel method for detecting small target cotton bolls in cotton fields
using unmanned aerial vehicle (UAV) imagery. By employing the
YOLO SSPD model, which integrates space-to-depth convolution
and a small target detector head, the researchers achieved significant
improvements in boll detection accuracy on UAV imagery. The
model demonstrated high precision and efficiency in detecting
cotton bolls, supporting the cotton production process and
enhancing reliability in yield estimates. In another research
conducted by Tang et al. they tried to overcome the issues related
to low detection accuracy and limited applicability across different
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ripeness levels and varieties of large non-green-ripe citrus fruits in
complex environments. The study introduces YOLOC-tiny, a
precise and lightweight model based on YOLOv7 that leverages
EfficientNet-BO as the feature extraction backbone. To enhance
detection performance, a convolutional block attention module
(CBAM) is integrated into the aggregation network, along with an
adaptive intersection over union regression loss function tailored to
large non-green-ripe citrus characteristics. Furthermore, a layer-
based adaptive magnitude pruning technique is utilized to reduce
redundancy in model parameters. In practical applications such as
fruit-picking robots, YOLOC-tiny achieves a high accuracy of
92.8% at a swift frame rate of 59 frames per second. (Wang et al.)
also introduced an improved target detection and pose estimation
model called PAE-YOLO for identifying Xiaomila fruits in complex
farmland environments. The model combines an EMA attention
mechanism and a DCNv3 deformable convolution module to
enhance feature extraction capability and reduce computational
complexity. Experimental results show that the PAE-YOLO model
outperforms other classic detection models in terms of accuracy,
model size, and computational efficiency. The model achieved an
average mean accuracy of 88.8% and a F1 score of 83.2%, with
improved performance in target detection and posture estimation.

Efficiently detecting tomatoes in complex environments is
important for automating tomato harvesting. The proposed S-YOLO
model by Sun, an enhancement of YOLOVSs, introduces innovations
such as a lightweight GSConv_SlimNeck structure, improved o-
SimSPPF and B-SIoU algorithms, and an SE attention module to
boost detection accuracy and speed (Figure 1). Experimental results
show the S-YOLO model achieves 96.60% accuracy and 74.05 FPS,
outperforming previous models and making it ideal for use in
robotic tomato-picking systems. In a study conducted by Liu et al,,
the YOLO-SwinTF proposed based on YOLOV7, incorporates Swin
Transformer blocks for capturing global visual information and
Trident Pyramid Networks for improved feature communication.
The model uses Focaler-IoU to adjust focus on sample distribution.
Tested on a tomato dataset, it achieved higher recall, precision, F1
score, and AP compared to YOLOvV7, showing strong robustness in
challenging conditions and improved detection accuracy without
compromising speed.

Plant diseases pose a significant threat to global agriculture by
negatively impacting crop yield and quality (Yoosefzadeh
Najafabadi, 2021). Despite the challenges associated with
identifying and classifying these diseases, a new approach
leveraging deep learning algorithms and convolutional neural
networks (CNNs) has been proposed to accurately detect and
categorize leaf diseases in economically important crops such as
strawberries, peaches, cherries, and soybeans (Prince et al.). For this
aim, a research focuses on categorizing 10 disease classes for these
crops, comprising 6 diseased classes and 4 healthy classes, using a
CNN-support vector machine (SVM) model (Prince et al.). Various
pre-trained models were employed, with the proposed model
achieving an average accuracy of 99.09%, outperforming
established models like VGG16. The model utilizes Class
Activation Maps generated through the Grad-CAM technique to
visually illustrate detected diseases and produce heatmaps

frontiersin.org
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FIGURE 1

MaxPool2d

MaxPool2d

YOLOVS8 algorithm model. The network consists of three main components: the Backbone, Neck, and Head. It incorporates several functional
modules, including the detection head (a), convolutional block (b), cross stage partial with bottlenecks (C2f) (c), spatial pyramid pooling—fast (SPPF)

(d), and bottleneck module (e). Source: Reproduced from Sun.

highlighting the areas requiring classification (Prince et al.). The
FCHF-DETR model developed by Xin and Li, an enhancement of
RT-DETR-R18, addressed the challenges of detecting tomato leaf
diseases with FasterNet, Cascaded Group Attention, and HSFPN.
Using a dataset of 3147 images, the model achieved high precision
and recall while reducing computational demands. In addressing
the challenge of identifying tea plant diseases amidst complex
backgrounds, the ECA-ResNet50 model improved the ResNet50
architecture by using a multi-layer small convolution kernel
strategy and introducing the ECA attention mechanism (Li and
Zhao). This enhances feature extraction, achieving a 93.06%
accuracy rate, a 3.18% improvement over the original model. The
model’s strong generalization capabilities indicate its effectiveness
in mitigating background interference and precisely recognizing tea
disease targets across various plant datasets (Li and Zhao).
Chinese Herbal Medicine (CHM) faces automation challenges
in microscopic identification due to traditional method limitations
and dataset issues. In a study developed by Zhu et al. introduced a
deep learning-based approach, employing segmentation-
combination data augmentation and a shallow-deep dual
attention module to enhance feature focus. The CHMMI
approach achieves high precision and outperforms models such
as YOLOvV5 and ResNet, offering a robust solution to modernize
CHM identification. Jia et al. proposed an enhanced DeepLabv3+
model, named DFMA, incorporating a novel PSPA-ASPP structure

Frontiers in Microbiomes

for efficient phenotyping analysis. Tested on various datasets, the
model achieved high mIoU scores, outperforming existing models.
It provides detailed segmentation and precise seedling
measurements, offering an automated solution to improve
analysis efficiency and overcome traditional method challenges.
Potatoes are known as one of the staple foods globally, and
timely detection of foliar diseases is essential for healthy yields.
Traditional image classification struggles with inconsistent data, so
a new model combines EfficientNet-LITE for feature extraction with
KE-SVM Optimization for classification. The method developed by
Sangar and Rajasekar refined accuracy by cross-referencing
misclassifications, achieving improved accuracy (87.82% for
uncontrolled data and 99.54% for controlled data) while
maintaining computational efficiency. The model’s small size and
low floating point operations per second (FLOPs) make it ideal for
mobile and edge devices, enhancing its practical use in precision
agriculture. Hyperspectral images provide detailed information,
important for classifying corn seed varieties with different internal
structures. Existing methods struggle with feature extraction from
these complex datasets, resulting in low accuracy (Wang et al.). To
overcome this, the spectral-spatial attention transformer network
(SSATNet) is proposed by Wang et al., which utilizes 3D and 2D
convolutions for feature extraction and incorporates a transformer
encoder with cross-attention for global perspective refinement. This
approach improves classification performance on hyperspectral
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corn image datasets, demonstrating its effectiveness over
current methods.

Despite the transformative potential of machine learning in
analyzing plant-associated microbiomes, several challenges persist.
High-quality, standardized datasets are often scarce, particularly for
underrepresented crops or regions, limiting model generalizability.
Scalability remains a hurdle, as many models require significant
computational resources, which may not be accessible to small-scale
farmers or researchers in low-resource settings. Additionally,
integrating multi-omics data with environmental and phenotypic
variables across diverse agricultural systems is complex, often leading
to inconsistent predictions. These limitations highlight the need for
robust, adaptable frameworks that can accommodate varied data types
and practical constraints. Looking forward, promising directions
include fostering interdisciplinary collaborations between plant
scientists, data scientists, and farmers to develop user-friendly tools
that bridge research and application. Advances in computational
efficiency, such as lightweight models and edge computing, could
democratize access to machine-learning technologies. Furthermore,
field-based validations and longitudinal studies are essential to ensure
models perform reliably under real-world conditions. By addressing
these challenges and leveraging emerging technologies, the scientific
community can unlock the full potential of plant microbiomes to
enhance crop resilience and global food security.
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Classification of peanut pod rot
based on improved YOLOvVSs
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Peanut pod rot is one of the major plant diseases affecting peanut production and
quality over China, which causes large productivity losses and is challenging to
control. To improve the disease resistance of peanuts, breeding is one significant
strategy. Crucial preventative and management measures include grading
peanut pod rot and screening high-contributed genes that are highly resistant
to pod rot should be carried out. A machine vision-based grading approach for
individual cases of peanut pod rot was proposed in this study, which avoids time-
consuming, labor-intensive, and inaccurate manual categorization and provides
dependable technical assistance for breeding studies and peanut pod rot
resistance. The Shuffle Attention module has been added to the YOLOvV5s (You
Only Look Once version 5 small) feature extraction backbone network to
overcome occlusion, overlap, and adhesions in complex backgrounds.
Additionally, to reduce missing and false identification of peanut pods, the loss
function CloU (Complete Intersection over Union) was replaced with EloU
(Enhanced Intersection over Union). The recognition results can be further
improved by introducing grade classification module, which can read the
information from the identified RGB images and output data like numbers of
non-rotted and rotten peanut pods, the rotten pod rate, and the pod rot grade.
The Precision value of the improved YOLOV5s reached 93.8%, which was 7.8%,
8.4%, and 7.3% higher than YOLOV5s, YOLOv8n, and YOLOVSs, respectively; the
MAP (mean Average Precision) value was 92.4%, which increased by 6.7%, 7.7%,
and 6.5%, respectively. Improved YOLOvV5s has an average improvement of
6.26% over YOLOV5s in terms of recognition accuracy: that was 95.7% for
non-rotted peanut pods and 90.8% for rotten peanut pods. This article
presented a machine vision- based grade classification method for peanut pod
rot, which offered technological guidance for selecting high-quality cultivars with
high resistance to pod rot in peanut.

KEYWORDS

peanut pod rot, machine vision, improved YOLOvVSs, Shuffle Attention, grading
classification
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1 Introduction

Peanut pod rot, also known as fruit rot, significantly impacts
peanut yield and quality, with occurrences noted in the United
States (Wheeler et al., 2016), Egypt (Elsayed Abdalla and Abdel-
Fattah, 2000) and various regions of China, including Shandong
(Zhang et al., 2016) and Hebei Province (Li et al., 2011). The
disease’s prevalence and severity are leading to increased losses
annually, with affected plots seeing up to a 15% yield reduction and
severely infected areas losing up to 50%. In some cases, it can lead to
total crop failure (He et al., 2022). So far, N. vasinfect (Gai et al,
2011; Sun et al,, 2011), Fusarium sp (Liu et al., 2020), N. striata (Sun
etal, 2012), P. myriotylum (Yu et al., 2019), and R. solani (Chi et al.,
2015) have been identified as the pathogenic bacteria of peanut pod
rot in China. Peanut pod rot poses a severe danger to the safety of
peanut output and quality, and it is critical to strengthen effective
prevention and control of it.

The difficulty in preventing and treating peanut pod rot can be
attributed to the wide range of pathogen hosts (Abd El-aal et al,
2013) and the current lack of varietal resistance (Walker and Csinos,
1980; Lewis and Filonow, 1990; Besler et al., 2003). Varietal resistance
is frequently improved through breeding, which is an efficient
method of preventing peanut pod rot (Wynne et al, 1991). By
assessing the resistance grade of individual peanut plants to pod
rot, superior germplasm can be identified, facilitating the
development of new peanut varieties. There is comparatively little
research on peanut pod rot in China, with the majority of studies on
the pathology of peanuts being on leaf diseases, bacterial wilt, and
web blotch. At present, the grade classification of individual peanut
pod rot is still usually done manually. Manual categorization is labor-
intensive, time-consuming, and prone to errors like misidentification,
abandonment, and repeated recognition as work time grows, which is
thus not ideal for large-scale grading because of the varied grades of
peanut decay. More precise grade classification can be attained by
machine vision, which can precisely identify and interpret illness
signs in photos, extract important information from them, classify
and assess them in accordance with predetermined criteria.
Additionally, machine vision technology can expedite breeding
operations by increasing the speed and efficiency of grade
classification in comparison to manual categorization.

CNN (Convolutional neural network) has recently achieved
substantial results in the field of object identification (Zaidi et al.,
2022), including Faster R-CNN (Ren et al., 2017), YOLO (Redmon
etal,, 2016), SSD (Single Shot MultiBox Detector) (Liu et al., 2016),
etc. Crop identification based on machine vision is more efficient
and less expensive, exhibiting a progressive trend of replacing
manual identification. Machine vision models have excelled in
crop disease detection. Habib et al. (2020) achieved over 90%
accuracy in classifying papaya diseases using K-means clustering
for segmentation and support vector machines for identification.
Harakannanavar et al. (2022) improved this technique by extracting
tomato leaf boundaries with K-means clustering and contour
tracing, employing SVM (Support Vector Machine), CNN, and
K-NN (K-Nearest Neighbors) algorithms for classification, with
CNN attaining an impressive 99.6% accuracy rate. Hua et al. (2022)
introduced a PD R-CNN algorithm for crop disease detection that
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incorporates multi-feature decision fusion, consistently delivering
accuracy rates above 85% across various disease types. In citrus
orchards, Pydipati et al. (2005) developed an algorithm using the
CCM (Color Co-occurrence Method) combined with Mahalanobis
distance-based and neural network classifiers, achieving over 95%
accuracy in distinguishing between healthy and diseased citrus
leaves by leveraging hue and saturation features. To address the
challenge of diagnosing visually similar corn diseases in the field, He
et al. (2023) enhanced the Faster R-CNN by integrating batch
normalization and a central loss function, resulting in a model that
surpassed the original Faster R-CNN and SSD in terms of average
recall rate, F1 score, and both accuracy and detection speed. While
these algorithms excel at identifying and labeling lesions, they do
not quantify the number of lesions or provide crop counts. Our
study addresses this gap by utilizing the YOLO series algorithm,
renowned for its object detection capabilities, to recognize
peanut images.

The use of YOLO algorithms in agriculture is now a
comparatively developed technique. By introducing light-
weighting enhancements to YOLOv3, Shen and Zhao (2021)
developed a peanut seed identification model with great accuracy
that can operate in real-time on the CPU. By adding DenseNet
interlayer density, Gai et al. (2023) enhanced the feature extraction
ability of the YOLOv4 backbone network CSPDarknet53. Sozzi
etal. (2022) tested six versions of the original YOLO model, and the
results demonstrated that YOLOv5s can identify green grapes
quickly and accurately. Lawal (2023) upgraded the YOLOvV5
backbone and neck networks and changed the loss function to
EloU to improve the robustness in complicated and ever-changing
situations. Lawal (2021) improved the YOLOv3 model to solve
interference problems such as branch and leaf obstruction, lighting
shifts, and fruit overlapping. In the identification application of
tomatoes, the improved YOLOv3 model exhibited an average
prediction rate of 99.5%. Aran et al. (2016) employed a BPNN
(Back-propagation neural network) for the grade classification of
cashews, reaching an accuracy of 96.8%.

These methodologies can be well coupled with machine vision
in their respective crop fields, providing technological backing for
the feasibility of this study. The primary challenge faced in this
study was to reduce the model size while maintaining recognition
performance, in order to adapt it for embedded systems and enable
effective grading of outdoor peanut pod rot. The challenges include
the scarcity and diversity of data, which complicate the collection of
standardized datasets and model training; the complexity of peanut
pod rot features, especially the high variability at different stages,
presents significant difficulties for accurate identification and
grading; although existing machine vision models perform
excellently in several other domains, specific improvements are
still required to enhance performance for the characteristics of
peanut pod rot.

There is currently no research on grading peanut pod rot using
machine vision. This study aims to integrate lightweight object
detection models into portable devices to support field applications.
Given the high computational resource demands, YOLOVS is not
suitable for mobile or embedded devices with limited computing
power. In contrast, the YOLOV5 series of algorithms, with their
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smaller size, are more suitable for integration into such embedded
systems. Among the various versions of YOLOv5, the YOLOV5s has
the smallest model size, with a 35% and 70% reduction in size
compared to YOLOv8s and YOLOvVS8n, respectively, making
YOLOv5s an ideal choice for integration into resource-
constrained devices. To enhance the data reliability and work
efficiency, the future approach to image acquisition will shift from
single-plant per image to multiple-plants per image, guiding the
detection task towards small object detection. With its multi-scale
feature fusion, optimized anchoring mechanism, powerful data
augmentation, and highly customizable architecture, YOLOv5s
has proven to improve the precision of small object detection
while maintaining rapid processing speed. Based on these factors,
the model was selected for optimization to meet the needs of
practical applications.

To facilitate the screening of peanut germplasm resources
resistant to pod rot, this paper proposed a grading algorithm
based on Shuffle Attention and prediction box location
optimization, targeting interference such as peanut pod adhesion,
root stem and leaf occlusion. To begin, using the YOLOvV5s
identification model, the Shuffle Attention mechanism was used
to improve the capability of feature representation, location
accuracy of lesion area, and robustness in complex backdrops.
Then, the loss function was enhanced to improve the regression
accuracy of the prediction box and reduce the likelihood of errors
and omissions. Finally, the rotten pod rate was estimated by
calculating the quantity of rotten peanut pods according to the
projected results. The grade classification was carried out based on
the rotten pod rate and the results were further compared with
those of YOLOv5s, YOLOV8n, and YOLOv8s models. Based on this,
the efficiency of the proposed method in this study can be verified.

The rest of this work is structured as follows: Section 2 discusses
the planting environment of peanuts, the establishment procedure
of the dataset, and the design and optimization of the pod rot
grading model. Section 3 introduces relevant tests and compares the
recognition and prediction performance of four models. Section 4
discusses the shortcomings of the proposed method and future
research directions for the grade classification of peanut pod rot.
Section 5 highlights the experimental results of the proposed model,
emphasizing the application value of this study.

2 Materials and methods
2.1 Sample acquisition

The samples were collected from the Experimental Station of
Hebei Agricultural University in Qingyuan District, Baoding City,
Hebei Province (38°80°N, 115°57’E). A cultivar of peanut,
Jinongxian No.l, was taken as the experimental sample in this
study, which was planted in spring, 2023, with ridge plastic film and
mulching, ridge spacing of 85 cm and two rows per ridge. The
average row spacing was 42.5 cm, with a hole spacing of 15.5 cm
and two seeds per hole. The planting density was 60750 holes/acre.

Thirty peanuts were taken as samples from the field to the
laboratory for washing to remove soil on surfaces. To acquire the
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dataset, pictures were taken using a SAMSUNG Galaxy S20+ phone
with 64 megapixels. The sampling period was set from September
27th to September 29th, 2023, all of which are sunny days. The
shooting time was set from 12:00 to 14:00 with sufficient light and
16:00 to 18:00 with dim light. All pictures were taken under natural
light, and a total of 2000 peanut images were collected. The shooting
angle was set as either top right or side up, while the shooting
distance was set as long shot, close shot, and ultra-close shot. The
distance from peanuts in the long shot was about 120 c¢m, the close
shot about 40 cm, and the ultra-close shot about 10 cm.

High-yielding peanut plants tend to stack more frequently
because of the abundance of pods, which makes automatic
identification challenging. It is unavoidable to run into problems
like peanut occlusion and adhesion when taking pictures. Individual
peanut and pod images were captured independently to better avoid
interference in image recognition and enhance the accuracy and
robustness of the model. Figure 1 presents the images of
typical samples.

2.2 Dataset production and
image enhancement

The images obtained by the phone have a pixel size of
4032%1816. Although a large pixel size can improve the training
effect, it significantly affects the training speed. As a result, the pixel
size of the original image was resized to be 1400*631.

Labeling was used to annotate the gathered peanut images.
Mark the non-rotted peanuts (G) and rotten peanuts (R)
individually throughout labeling, and save the files on the
computer in the “xml” format. Before training the object
detection model, five enhancement procedures were randomly
combined and applied to each image to increase the sample size
and boost the training effect. The enhancement treatment included
noise addition, cutout, rotation, cropping, translation, horizontal
flip, and vertical flip. Figure 2 depicts the enhanced image. The
dataset was finally expanded to 12,000 sheets, which promoted the
learning effect of the model on the characteristics of non-rotted and
rotten peanuts. There was a total of 83,850 labels in the dataset,
including 56,730 non-rotted peanuts and 27,120 rotten peanuts.
The dataset was randomly divided into training and testing sets in a
9:1 ratio.

2.3 YOLOV5 model

The YOLOV5 network structure (Qiao et al.,, 2021) consists of
three main components: Backbone, Neck, and Prediction Head, as
shown in Figure 3. The Backbone network adopts the
CSPDarknet53 architecture, which performs well in feature
extraction and was used to extract rich multi-scale features from
input images. The feature fusion module was used to fuse feature
maps with different scales from the Backbone network. YOLOv5
employed a Feature Pyramid Network (FPN) to fuse features at
different levels through upsampling and downsampling, thereby
improving the accuracy and robustness of object detection. The
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A
FIGURE 1
Original peanut image samples. (A) Individual non-rotted peanut; (B) Individual rotten peanut; (C) Low-yielding plant without occlusion and
adhesion; (D) High-yielding plant with severe occlusion and adhesion.

Prediction Head was responsible for generating the bounding box
and category prediction of the object. YOLOvV5 adopted a decoupled
multi-level prediction head structure that can effectively handle
objects of different scales, achieving a good balance between the
speed and accuracy of identification. The combination of these
components gave YOLOVS5 excellent performance and efficiency in
object detection tasks.

2.4 Improvement of feature extraction
backbone network

This study enhances YOLOV5s to classify the grade of each
peanut and calculate the rotten pod rate. It is required to output the
total number of G and R labels.

Some peanuts grow densely and have problems like adhesion
and occlusion, which makes it challenging to effectively identify
some peanuts separately. Therefore, a Shuffle Attention (SA)
module (Zhang and Yang, 2021) was devised in this study. Shuffle
Attention is a method of describing feature dependencies through
grouping, parallel processing, and information exchange. According
to the schematic diagram shown in Figure 4, SA first divided the
channel dimensions into several subfeatures and processed each
subfeature in both spatial and channel dimensions using the Shuffle
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Unit. The channel shuffle operator was then employed to enhance
information exchange between distinct subfeatures after all
subfeatures had been summarized. After that, Shuffle Attention
was placed after each C3 module in the Backbone, which made local
features visible to the attention module. The Shuffle Attention was
performed on each layer to share learning pressure.

The purpose of adding the SA module is as follows:

1. Boost the capacity for feature representation. Through channel
shuffling and self-attention mechanisms, the SA module can
improve the network’s ability to represent features, including
long-distance dependency and contextual information. It can
also help extract features related to peanut pod rot from
images more effectively, such as fine details of lesion areas
and contextual information.

2. Improve the positioning accuracy of lesion areas. The SA
module employs a self-attention mechanism to gather
association information from various positions of the
image. Based on this, the lesion area of peanut pod rot
can be located more precisely, thereby improving
positioning accuracy and minimizing missing and
false identification.

3. Enhance the ability to distinguish between non-rotted and
rotten peanuts. Peanuts differ from one another in their
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FIGURE 2

10.3389/fpls.2024.1364185

Original and enhanced images. (A) Original image; (B) Translation; (C) Rotation+cutout+noise; (D) Vertical flip+rotation+translation; (E) Rotation

+cutout+noise+translation; (F) Horizontal flip+rotation+translation.

physical characteristics. The channel shuffling and self-
attention mechanism of the SA module can distinguish
between rotten and non-rotted peanuts based on minute
feature differences. YOLOV5s can learn and discriminate
between rotten and non-rotted peanuts, boosting the
network’s ability to differentiate pod quality.

It can be concluded that the SA module has increased the feature
representation ability, the positioning accuracy of the lesion area, and
the capacity to discriminate different disease grades. The introduction
of the SA module to YOLOv5s has promoted the accuracy and
robustness of peanut pod rot identification by improving the
effectiveness of grade classification. Figure 5 depicts the overall
architecture design of adding a SA module to YOLOV5s.

Frontiers in Plant Science

2.5 Loss function

The loss functions of YOLOV5s include Classification Loss (Lg,),
Localization Loss (Ly,.), and Confidence Loss (L.p¢)- The total loss
function is the sum of the three, as shown in Equation (1):

Loss = Lcla + Lloc + Lconf (1)

Currently, the Localization Loss used in the YOLOv5s model is
CIoU (Lu et al,, 2022). The sample size of non-rotted peanuts in the
dataset was much larger than that of rotten peanuts. The significant
quantity difference resulted in a problem of imbalanced samples.
Therefore, there is a higher requirement for the accuracy of
prediction box regression. The calculation formula for CloU is as
shown in Equations (2)-(4):
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Where, IoU refers to the intersection over union between the
ground truth box and the prediction box. p*(b, b¥) refers to the
Euclidean distance between the center points of two boxes. ¢* is
the squared>value of the diagonal length of the minimum closure
region that can contain two boxes at the same time. The ratio of the
two represents the distance between the ground truth box and the
prediction box. av is the influencing factor of the length-width ratio
between the two boxes. w, h, w¥, and h¢' represent the width and
height of the prediction box and the ground truth box, respectively.

When there is an inclusion phenomenon between the detection
box and the ground truth box, CIoU overcomes the problems of
degradation to IoU as well as the slow convergence in the horizontal
and vertical dimensions when the two boxes cross. Although CloU

@ element-wise © Concat o()=sigmoid(*)

product F(x)=W,+b

FIGURE 4
Schematic diagram of Shuffle Attention module.
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offers certain advantages over IoU, the difference in aspect ratio
given by v in the formula is not the real difference between width
and height and its confidence, which will impede effective similarity
optimization of the model.

EloU takes into account the real difference in length, width,
overlapping area, and center point distance (Zhang et al,, 2022). It solves
the imprecise definition of aspect ratio based on CloU by calculating the
difference in width and height instead of aspect ratio, thus boosting
regression accuracy. The imbalance between non-rotted and rotten
peanut samples in BBox regression can be resolved by introducing Focal
Loss. Therefore, EIoU was used in place of CloU in this study, and the
calculation formula for EloU is as shown in Equation (5):

2 2 ot
P (w, w¥) P (h, h¥)

EloU =1 - IoU + 5 5
[k c,

2
P (lz;bg’) ©)

Where, ¢,, and ¢, are the width and height of the bounding
. R CATD) P> (b
rectangle of the two boxes, respectively. e and o reveal
w h

the difference in width and height between the prediction box and
the ground truth box.

The improved model is named YOLOv5s-ES, which was
established based on the YOLOv5s model with an introduction of

the SA module and a replacement of CloU with EloU.

@ Channel Shuffle
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2.6 Grade classification module

On the one hand, the grade classification of peanut pod rot can
be used to determine the severity of diseases. Different stages of the
disease may necessitate different prevention and control measures,
and the grading aids in the selection of appropriate tactics as well as
the improvement of preventative and control effectiveness. On the
other hand, the grade classification can offer timely awareness of the
disease progression. Taking early response measures is
advantageous for sensible resource allocation and cost reductions.
The grade classification of peanut pod rot can be claimed to increase
targeted and effective prevention and control work, ensure peanut
output and quality, and reduce economic losses.

According to the findings of Wheeler et al. (2016), the following
are the grading criteria for peanut pod rot: Level 1 for no rotten

detect

FIGURE 6
Implementing the peanut pod rot grading system in PyCharm.
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fruit, with a rotten pod rate of 0; Level 3 for a rotten pod rate
between 0 and 10%; Level 5 for a rotten pod rate between 10% and
25%; Level 7 for a rotten pod rate between 25% and 50%; and Level
9 for a rotten pod rate larger than 50%.

As shown in Figure 6, an external grade classification module
was put after the Prediction network to perform the grading
function. After executing detect.py, the predicted images were
generated in the exp folder, along with a graduation folder. This
folder includes.txt files with the predicted image information, as
well as statistical data on the number of non-rotted and rotten
peanuts. Running gradation.py after generating the text file
information will generate an.xlsx file in the root directory that
contains the amount of non-rotted and rotten peanuts, as well as the
overall number, rotten pod rate, and grade classification of rotten
peanuts for all predicted images. The numbers of non-rotted and

File | non-rotted | rotten | Sum |rotten pod rate/% | Grade

y
1 ' 1
HE !
™ 14 7 21 3333 7 |
[ T 17 18 5.56
L1083 4 1 5 20.00 50
Tl 1084axt 4 3 7 4286 7
> 1085.xt 5 4 9 4444 7 |t
L 1086.xt 5 3 8 37.50 7 !
L1087 5 3 3 37.50 7
Lo0ss 6 7B 53.85 5
L1089 7 300 30.00 7
Tl 1090.xt 8 8 16 50.00 7
Lo 109Laxt 9 6 15 40.00 7
E L 1092.txt 15 9 24 37.50 7 ]!
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TABLE 1 Parameter configuration of training model.

Parameter Value

Num class 2
Epoch 200
Batch size 32

Initial learning rate 0.01

rotten peanuts are shown in the second and third columns,
respectively. The rotten pod rate is shown in the fifth column.
The grade of individual rotten peanuts, as decided by the grading
criteria, is shown in the sixth column. The formula for calculating
the rotten pod rate is shown in Equation (6):

Rotten pod rate

_ Number Rotten
" Number Non — rotted + Number Rotten

(6)

Where, Number Rotten refers to the number of rotten peanuts;
Number Non-rotted refers to the number of non-rotted peanuts.

3 Results
3.1 Model specification

CUDA 11.3 and cuDNN8.0 were the network training
environments used in this study. A 12GB NVIDIA RTX3070Ti
was used as the training accelerator. Facebook’s open-source deep
learning framework Python 1.11.0 was employed as the
development environment, and the programming language used
was Python 3.9.7. Adaptive Moment Estimation (Adam) was used

10.3389/fpls.2024.1364185

to automatically modify the learning rate and solve the gradient
vanishing problem, which allowed the model to converge faster and
perform better. Table 1 displays the parameter configuration of the
training model.

3.2 Evaluation indicator

This study utilized two methods, visual evaluation, and
quantitative comparison, to evaluate the grading performance.
Visual evaluation is a common way to visually compare and
evaluate the detection results. In quantitative analysis, the
evaluation indicators are Precision (P), Average Precision (AP),
mean Average Precision (mAP), and Comparison Precision (CP).
The calculations of the three indicators are shown in Equations (7)-

(9):

TP

P=—"" % 100% 7
TP + FP ’ @
2
_ AP
mAP = y x 100 % (8)
AS
CP === x 100 % 9
Rs U ©)

Where, TP is the quantity of label boxes for non-rotted and
rotten peanuts that accurately match the prediction boxes. FP is the
number of prediction boxes containing inaccurate forecasts. P is the
percentage of non-rotted and rotten peanuts that were accurately
identified in each prediction box. AP represents the average
Precision value of each category. mAP represents the average
Precision value of all categories. AS (Automatic Statistics)
represents the number of images where the model correctly

A
YOLOVSs

Original image

FIGURE 7

Comparison of recognition results of four models. (A) No adhesion; (B) Slight adhesion; (C) Severe adhesion.
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TABLE 2 Data comparison between the three enhanced models
and YOLOv5s.

No. Added SA Module EloU mAP/% P-value/%
2 v x 88.7 0.544
3 x Y 87.5 3.759
4 3 Y 924 0.002

identifies non-rotted and rotten peanuts in the image. RS (Realistic
Statistics) represents the actual number of images of different types.
CP represents the comparison precision.

3.3 Experiment result analysis

Plant phenotypic detection makes extensive use of object
detection. In order to compare the detection performance of
YOLOV5s-ES on peanut images, this study used three YOLO-
based object detection models, i.e. YOLOv5s, YOLOv8n, and
YOLOV8s. Comparative experiments were carried out under the
conditions of no adhesion, slight adhesion, and severe adhesion to
validate the improving effect of the model. Comparative
experiments aid in understanding the differences in performance
between different models and drive future improvements to object
detection algorithms. Simultaneously, code availability and
repeatability were taken into consideration to assure the
dependability and reproducibility of the experiment. Figure 7
depicts the identification results of each model under various
adhesion situations.

10.3389/fpls.2024.1364185

Figure 7A depicts a peanut image with no adhesion. It can be seen
that the four models all had good recognition performance, achieving
proper recognition with no omissions or errors. Figure 7B depicts a
peanut image with slight adhesion, and the recognition ability of the
three unimproved models all dropped. YOLOv8n missed two
peanuts, and YOLOv5s missed one. Although YOLOv8s
distinguished all the peanuts, the accuracy of the prediction box
was low, and a single peanut pod was not marked. Figure 7C depicts a
peanut image with severe adhesion. The identification ability of the
other three models was considerably diminished, with the exception
of the YOLOv5s-ES model. YOLOv8n missed 4 peanuts, with low
prediction accuracy. YOLOv5s missed 3, with a relatively high
accuracy of the prediction box. Although YOLOV8s recognized all
the peanuts, the accuracy of the prediction box was extremely low,
with cases of repeated and incorrect recognition. The YOLOv5s-ES
model recognized all the peanuts correctly, with only one prediction
box being inaccurately labeled. It can be concluded that the improved
model YOLOv5s-ES effectively solved the problems that other three
algorithms encountered when predicting images, and had the
feasibility of grading peanut pod rot in practical applications.

The SA module was introduced to the YOLOv5s-ES model and
the loss function CIoU was replaced with EIoU. Ablation
experiments were carried out on the YOLOv5s-ES model to
confirm the efficacy of the enhanced model. The experimental
outcomes are displayed in Table 2, the mAP values represent the
average results of five-fold cross-validation.

The mAP of the model increased by 2.5% after the SA module
was introduced to the YOLOv5s backbone network, as shown in
Table 2. The mAP increased by 1.3% after improving the loss
function of the original model. After incorporating both
improvements into the model, the value of mAP reached 92.4%,

FIGURE 8
Visual comparison between the three enhanced models and YOLOv5s.
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TABLE 3 Comparison accuracy value comparison of different algorithms.

10.3389/fpls.2024.1364185

YOLOv5s YOLOvV5s-ES YOLOv8n YOLOv8s
RS CP41/% AS; RS CP,/% RS CP3/% AS, RS  CP4/%
No 50 50 100 50 50 100 49 50 98 50 50 100
Slight 42 50 84 46 50 92 40 50 80 42 50 84
Severe 38 50 76 46 50 92 36 50 72 39 50 78
Total 130 150 86.67 142 150 94.67 125 150 83.33 131 150 87.33

6.2% higher than that of YOLOv5s. In order to be more convincing,
this study verified whether the differences between the algorithm
variants were statistically significant and calculated the
corresponding P-values. The results showed that the P-values of
the three variants of the algorithms were less than 5%, which proved
that each improvement was significantly correlated to the
improvement of the detection performance. Based on this, the
effectiveness of the improved model can be verified.

This study aims to enhance the performance of a peanut image
recognition model, particularly under complex background
conditions, through two key improvements. To assess the
effectiveness of these enhancements, three groups of high-yield
peanut images, which demonstrated superior recognition
capabilities in preliminary experiments, were selected as cases.
These images encompass rich background information and typical
challenges such as mutual occlusion and environmental noise.

The comparison of the visualization results of the ablation
experiment in Figure 8 reveals the effectiveness of the model
improvement. By integrating the SA (Spatial Attention) mechanism,
the model focuses more on key areas when processing peanut images in
complex backgrounds, significantly reducing the missed detection and
false detection rates of the model, especially in cases where peanut

leaves and roots are mixed or adhered to each other, improving the
accuracy and robustness of recognition. Furthermore, the model adopts
the EIoU loss function instead of the traditional IoU loss, which
increases the comprehensive consideration of the target shape, size,
and center point, improves the accuracy of bounding box positioning,
and is crucial for the accurate classification of peanut fruit rot.

3.4 Comparative experiments between
multiple algorithms

Based on the RS values and AS values of the four models, the CP
values were calculated to validate the identification performance of
the enhanced model on a solitary image. The AS value indicates the
number of images in which the algorithm properly distinguished
non-rotted and rotten peanuts in the image. The RS value indicates
the number of images with severe adhesion, slight adhesion, and no
adhesion. One hundred and fifty images of peanuts were chosen at
random for the validation dataset of the experiment, with 50 images
for each adhesion type. Four models - YOLOv5s, YOLOvV5s-ES,
YOLOV8n, and YOLOVS8s - were used to identify the 150 images.
The numbers of images for non-rotted and rotten peanuts that can

600

500

400

300

200

100

YOLOVSs

YOLOV5-ES

= Non-rotted peanuts

FIGURE 9

Statistical graph of non-rotted and rotten peanuts identified by four different models.

Non-rotted peanuts
truth value: 563

Rotten peanuts
truth value: 337

YOLOv8n YOLOV8s

H Rotten peanuts
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FIGURE 10

Comparison curve of mean Average Precision values of
different algorithms

be successfully identified via the four models were recorded as AS;,
AS,, AS; and AS,. The corresponding CP,, CP,, CP; and CP, were
calculated as well. Table 3 displays the comparison precision values
of the four models.

Due to the relatively simple identification of peanut images with
no adhesion, more attention was paid to comparing the prediction
results of images with slight and severe adhesions. The comparison
precision of the four models was 84%, 92%, 80%, and 84%, for the
images with slight adhesion and 76%, 92%, 72%, and 78% for the
images with severe adhesion, respectively. When it came to
prediction performance, YOLOv5s-ES outperformed the three
unaltered models with an improvement in the case of slight
adhesion and a significant improvement in the case of
severe adhesion.

To confirm the enhanced model’s capacity to distinguish
between non-rotted and rotten peanuts, 100 peanut images
containing a higher proportion of rotten peanuts - a total of 563

96.00
94.00
92.00
90.00

88.00

————

86.00
84.00

82.00

Round 1 Round 2 Round 3 Round 4 Round 5 Average

—=YOLOvS5s

YOLOv8n =—=YOLOV8s YOLOvS5s-ES

FIGURE 11
Comparison of Precision (%) for five-fold cross-validation of
four models
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FIGURE 12

Comparison of Recall (%) for five-fold cross-validation of
four models.

non-rotted ones and 337 rotten ones - were chosen for
identification using the four models. Statistical analysis was
performed to determine how many rotten and non-rotted
peanuts were identified, and the results were illustrated in Figure 9.

Figure 9 illustrates that YOLOv8s identified non-rotted peanuts
with a high recognition rate of 90.76%, but only 83.98% for rotten
peanuts, the recognition rate of YOLOV5s is basically the same as
YOLOVSs. This is due, in part, to an imbalance in the sample size
between non-rotted and rotten peanuts, which limited the
information available for model learning about rotten peanuts.
However, some rotten pods shared coloration with rotten stems,
roots, and leaves, making identification more challenging.
YOLOv8n had a moderate recognition rate and a significantly
weaker capacity to distinguish between rotten and non-rotted
peanuts, this model had an overall recognition rate of about 83%.
The above data is essentially in line with the comparison precision
values listed in Table 3. The enhanced YOLOvV5s-ES model can
identify rotten peanuts with a recognition rate of 90.8% and non-
rotted ones of 95.74%. The enhanced model considerably enhanced
the capacity to identify rotten peanuts and had a slight
improvement in identifying non-rotted ones.

To further illustrate the superiority of the algorithm proposed in
this study, four models were compared for mAP change curves on
the same dataset. The mAP change curve during training is
displayed in Figure 10. It can be seen that YOLOv5s, YOLOvSn,
YOLOVSs, and YOLOv5s-ES had mAP values of 85.7%, 84.7%,
85.9%, and 92.4%, respectively. The convergence rates of all four
curves were incredibly quick, and the three unimproved models
achieved fitting with around 75 epochs. Excessive data fitting may
result in unstable model parameters. When there is some
randomness or fluctuation in the data, the model may update
parameters excessively to accommodate these changes, resulting
in inconsistent model performance. Instability may affect the
model’s reliability and interpretability, resulting in poor
performance in practical applications since it cannot catch
potential patterns and overall trends in the data. After 100
epochs, the mAP of YOLOvV5s-ES hit 91.4% and tended to
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TABLE 4 Comparison of precision and recall metrics across four models
using five-fold cross-validation.

Model ~YOLOV5s YOLI?S"SS' YOLOV8n YOLOVSs
Precision

86.0 93.8 85.1 86.5
%)
Recall

85.0 90.7 83.0 85.9
(%)

stabilize, eventually achieving 92.4%. It can be concluded that the
enhanced model leveraged the likelihood of capturing real patterns
and overall trends in the data, rather than unnecessarily responding
to the noise and intricacies of the training data. In this way, the
generalization ability of the model can be promoted on unknown
data, making it more suitable for practical applications.

To address the potential inaccuracies in assessment results that
might arise from a single dataset split, a five-fold cross-validation
study was conducted on four different models. Precision and Recall
values from five separate trials were collected and averaged. The

10.3389/fpls.2024.1364185

results of the five-fold cross-validation for both metrics are
presented in Figures 11 and 12. The data in the figures reveal
only minor fluctuations in the model’s recognition capabilities
across the five randomly partitioned datasets, confirming the
model’s robust generalization performance in identifying peanut
fruit rot disease. The Precision of the improved model YOLOv5s-ES
was 93.8%, 7.8%, 8.7%, and 7.3% higher than YOLOv5s, YOLOV8n,
and YOLOVSs, respectively. The Recall value was 90.7%, which
increased by 5.7%, 7.7%, and 4.8% than the other three models,
respectively. As shown in Table 4.

4 Discussions

Peanut pod rot causes fruit degradation and yield loss, making
prevention and management difficult and potentially transmittable.
Grade classification of peanut pod rot allows for the evaluation of
disease resistance, the selection of outstanding germplasm
resources, and the promotion of breeding improvement. This
study suggests an object detection approach based on YOLOV5s-

FIGURE 13
Two types of misidentification present in the improved model.
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ES in response to the drawbacks of manual classification, which can
successfully increase the efficacy and precision of pod rot grading
and eventually replace conventional manual classification.
Although this study is of great significance in addressing pod rot
grading, there are certain concerns that require additional research
and analysis.

The improved YOLOvV5s-ES model may encounter
misidentification during prediction. Two typical examples are
shown in Figure 13.

In Figure 13A, the model accurately identified and labeled the
rotten peanut, but incorrectly identified the peanut as a non-rotted
one and repeated labeling, leaving the model unable to differentiate
between the non-rotted and rotten types of the peanut. One
reasonable explanation on the one hand is the insufficient
debugging of the model parameter threshold, which makes it
hard for the model to reliably identify whether this type of peanut
belongs to non-rotted or rotten. Based on this, improvement can be
achieved through parameter adjustment, threshold modification,
etc. On the other hand, some peanut pods have a moderate degree
of decay, making it hard to distinguish between the non-rotted and
rotten types solely based on phenotypic sampling. In this case,
semantic segmentation methods can be introduced. Specifically, the
diseased area of each peanut is calculated, the proportion of which
can be used to determine whether the pod belongs to a rotten one.
In this way, the problem can be solved using the judgment results of
semantic segmentation combined with object detection algorithms.

In Figure 13B, a peanut pod was mistakenly identified as two
pods, meaning that the model labeled a valencia type peanut as a
double-kernal one and a single-kernal one during prediction. This
error tends to happen when the sample size is insufficient. During
training, the model identified a small number of valencia type
peanuts, so that when new valencia type peanuts appeared, the
entire pod could not be correctly identified and was misjudged as
two or more double-kernal and single-kernal pods. Increasing the
sample size, especially the images of valencia type peanuts, is an
effective way to solve such recognition errors.

Furthermore, after being infected with peanut pod rot, some
peanut pods only form a thin coating of decay on the surface, leaving
the kernels unaffected. As a result, the impact on peanut yield
includes the rotten kernel rate. The degree of pod rot was used to
classify peanut pod rot in this study, and the rotten kernel rate was
not considered. As a result, the projected data has a poor practical
application value in yield estimation, which is a shortcoming of
machine vision-based pod rot grade classification. In order to ensure
that the design scheme can be used effectively in more aspects, greater
attention may be paid to the grading of peanut pod rot under the dual
factors of rotten pod rate and rotten kernel rate.

Moreover, due to the differences in pod rot among various
peanut varieties and the lack of relevant samples, this study cannot
predict whether the model’s recognition capability for images of
other peanut varieties will decrease. In order to overcome the
aforementioned drawbacks, we will expand the sample size of
different kinds of peanuts, conduct transfer learning across
different varieties with the model, combine semantic
segmentation methods, and enhance the model’s performance.
First, we will ascertain whether a single peanut has pod rot. Then,
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the peanut pods in the image will be annotated using object
identification methods to improve the accuracy of the results. To
further increase prediction accuracy and visibility, it is feasible to
introduce an instance segmentation algorithm and confirm its
benefits in extreme peanut adhesion scenarios. Additionally, data
on peanut pod rot in complex environments should be analyzed
concurrently to strengthen the resilience of the model and make it
more applicable to peanut plants in various conditions
and cultivars.

5 Conclusions

Starting with the relevance of grading individual peanut pod rot,
this study employed the Jinongxian No.l peanut as the
experimental object in the field management planting base. To
address the inadequacies of the current grade classification for
peanut pod rot, a machine vision-based method was proposed
using a modified loss function and feature extraction backbone
network of the YOLOV5s algorithm.

(1) The SA module was introduced to the YOLOv5s network as
the main framework to overcome problems like adhesion and
obstruction in the dense development of certain peanut plants,
which are vulnerable to interference from roots, stems, and leaves.
The feature extraction ability of the network for identifying non-
rotted and rotten peanuts was enhanced by substituting the EIoU for
the CIoU in the original network in response to the sample imbalance
problem caused by the fact that the number of non-rotted pods is
much higher than the number of rotten pods in actual situations.

(2) With a Precision value of 93.8%, the improved model
YOLOV5s-ES outperformed YOLOv5s, YOLOv8n, and YOLOvSs
by 7.8%, 8.4%, and 7.3%, respectively. Its mAP value was 92.4%,
outperforming YOLOv5s, YOLOv8n, and YOLOV8s by 6.7%, 7.7%,
and 6.5%, respectively. With a non-rotted pods recognition rate of
95.74% and a rotten pods recognition rate of 90.8%, the comparison
precision reached 94.67%, satisfying the requirements of
exact recognition.

(3) With the addition of a grade classification module after the
Prediction network, this study realized the calculation of the
number of non-rotted and rotten peanuts as well as the rotten
pod rate in the images. The results were then written into a.txt file.
The grading of pod rot can be completed by adding the grade
classification module to the YOLOvV5s-ES model, which allows the
database to read text files and record the number of non-rotted and
rotten peanuts, the rotten pod rate, and the grading of pod rot.

In conclusion, the improved model proposed in this study will
help the automatic grade classification of individual peanut pod rot
in practical prediction applications, facilitating in the screening of
superior germplasm resources and peanut breeding.

Data availability statement

The dataset supporting this study can directly download using
the link below: https://github.com/JiaLBY GG/Peanut-pod-rot-
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Research on improved YOLOv8n
based potato seedling detection
in UAV remote sensing images

Lining Wang, Guanping Wang*, Sen Yang, Yan Liu,
Xiaoping Yang, Bin Feng, Wei Sun and Hongling Li

Mechanical and Electrical Engineering College, Gansu Agricultural University, Lanzhou, Gansu, China

Introduction: Accurate detection of potato seedlings is crucial for obtaining
information on potato seedlings and ultimately increasing potato yield. This study
aims to enhance the detection of potato seedlings in drone-captured images
through a novel lightweight model.

Methods: We established a dataset of drone-captured images of potato
seedlings and proposed the VBGS-YOLOv8n model, an improved version of
YOLOvV8n. This model employs a lighter VanillaNet as the backbone network in-
stead of the original YOLOv8n model. To address the small target features of
potato seedlings, we introduced a weighted bidirectional feature pyramid
network to replace the path aggregation network, reducing information loss
between network layers, facilitating rapid multi-scale feature fusion, and
enhancing detection performance. Additionally, we incorporated GSConv and
Slim-neck designs at the Neck section to balance accuracy while reducing
model complexity.

Results: The VBGS-YOLOv8n model, with 1,524,943 parameters and 4.2 billion
FLOPs, achieves a precision of 97.1%, a mean average precision of 98.4%, and an
inference time of 2.0ms. Comparative tests reveal that VBGS-YOLOvVS8n strikes a
balance between detection accuracy, speed, and model efficiency compared to
YOLOvV8 and other mainstream networks. Specifically, compared to YOLOVS, the
model parameters and FLOPs are reduced by 51.7% and 52.8% respectively, while
precision and a mean average precision are improved by 1.4% and 0.8%
respectively, and the inference time is reduced by 31.0%.

Discussion: Comparative tests with mainstream models, including YOLOvV7,
YOLOvVS5, RetinaNet, and QueryDet, demonstrate that VBGS-YOLOv8n
outperforms these models in terms of detection accuracy, speed, and
efficiency. The research highlights the effectiveness of VBGS-YOLOvV8n in the
efficient detection of potato seedlings in drone remote sensing images, providing
a valuable reference for subsequent identification and deployment on
mobile devices.

KEYWORDS

potato seedling detection, UAV remote sensing, YOLOv8n, lightweight, VanillaNet,
GSConv, Slim-Neck
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1 Introduction

In recent years, the global cultivation area for potatoes has
remained stable at approximately 20 million hectares, with China’s
contribution consistently exceeding 25% (Shi and Xu, 2023). This
makes potato cultivation vitally important for food security, economic
growth, and poverty alleviation, particularly in densely populated
developing countries such as China (Lun et al., 2023). A critical phase
in the potato growth cycle is the seedling stage, where accurate
detection and counting of seedlings are crucial for predicting yields
and achieving high-quality production (Shi et al, 2022). However,
traditional manual monitoring methods are costly, inefficient,
inaccurate, and often lack representativeness, which impedes the
timely and effective implementation of replanting strategies (Lu
et al, 2023). The advent of drones, characterized by their agility,
compact size, and cost-effectiveness, has increasingly attracted the
attention of researchers (Saifizi et al., 2019; Li S. et al,, 2023). Utilizing
drones in conjunction with deep learning for the automatic detection
of crop seedlings presents a simple yet effective method that
significantly reduces labor costs and facilitates automation.

Drone platforms, through real-time imagery captured by onboard
cameras, have found extensive applications in various fields for target
detection (Osco et al., 2020). However, detecting targets from a drone’s
perspective often involves dealing with complex environmental
backgrounds and small, sometimes blurry, targets. Additionally, the
hardware limitations of drones can restrict the complexity of
deployable models, leading to less than optimal detection outcomes
(Wu et al,, 20105 Sishodia et al., 2020). Deep learning algorithms for
target detection are generally categorized into two main types: single-
stage algorithms, such as Centernet, RetinaNet, SSD, and YOLO,
which offer good real-time performance but lower accuracy,
particularly in detecting small targets; and two-stage algorithms, like
R-CNN, Fast R-CNN, and Faster R-CNN, which provide higher
accuracy but at the cost of speed, making them unsuitable for rapid
crop information acquisition by drones. The YOLO series, known for
its superior performance, has been extensively applied in detection
tasks across various domains (Liu et al., 2018; Liang et al, 2022). A
current research challenge, and the focus of this study, is leveraging
YOLO for accurate and efficient crop seedling detection from a drone’s
perspective while maintaining a manageable model size.

The YOLO series models have been broadly applied to drone
image datasets. For instance, research by Jianqing Zhao et al. (Zhao
etal, 2021) introduced an enhanced YOLOvV5 model with an added
micro-scale detection layer for wheat ear detection in drone images,
achieving a 94.1% accuracy rate, a 10.8% improvement over the
standard YOLOvV5. However, this method is complex and time-
consuming, and the limited memory and processing power
available on drones make efficient crop detection challenging.
Wang et al. (Wang F et al,, 2023) addressed the characteristics of
small targets in drone images by embedding a small target detection
structure (STC) in the Neck of YOLOVS, capturing comprehensive
global and contextual information and incorporating a global
attention module (GAM), which significantly improved
performance but also increased the parameter count. Li et al. (Li
Y. etal, 2023) introduced the concept of Bi-PAN-FPN in YOLOv8
to enhance feature fusion across different scales and utilized the
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GhostblockV2 structure, achieving an accuracy improvement but
falling short compared to other models. Addressing the challenges
of insufficient drone computing power and the issue of small targets
in drone imagery, Shijie Li (Li, 2023) proposed modifications to the
YOLOV5 model, reducing the model’s parameter count from 7.5M
to 4.2M, albeit with a 1.7% decrease in detection accuracy. To
address the balance between detection accuracy and model size,
scholars have conducted relevant research, proposing the use of
lightweight convolutional approaches aimed at reducing
computational load during the convolution process. For example,
Liu et al. (Liu et al., 2022) proposed an improved YOLOv4 model
based on MobileNetv2 as the backbone network for orange fruit
recognition in orchards, which reduced the model size by 197.5 M
and achieved an average recognition accuracy of 97.24%, though the
detection time was only reduced by 11.39ms. Rihong Zhang et al
(Zhang et al, 2023). introduced a YOLOV4 pineapple seedling
heart detection model incorporating a lightweight attention
mechanism module CBAM, which reduced the total parameter
count by 70% and achieved a recognition accuracy of 95.5%, but the
improvement in detection speed was not significant.

While previous methods have shown effectiveness in detecting
and counting crops in the field, the unique challenges posed by
potato seedlings in UAV imagery—such as their dense distribution,
significant overlap, small size, and the complexity of their
background, result in a higher likelihood of both false positives
and missed detections. These issues compromise the precision of
potato seedling detection. Furthermore, the constraints imposed by
UAV hardware platforms complicate the task of balancing
detection accuracy, speed, and the efficient use of hardware
resources. Notably, there is a scarcity of detection methods that
are both efficient and specifically tailored to potato seedlings. To
address these challenges, this paper introduces a novel lightweight
algorithm, VBGS-YOLOvV8n. By employing VanillaNet, a network
characterized by its simplicity and reduced number of layers, as the
backbone network in place of the original YOLOv8n model, we
significantly decrease the model’s computational complexity. We
enhance the model’s feature fusion capabilities by substituting the
PANet path aggregation network with a bidirectional feature
pyramid network (BiFPN). Additionally, integrating GSconv
convolution within the YOLOv8n’s neck and replacing all C2F
networks with the VoV-GCSP module further boosts the model’s
performance. This innovative approach facilitates the efficient
detection of potato seedlings in UAV remote sensing images,
representing a significant advancement in the field.

2 Materials and methods
2.1 Potato seedling image acquisition

Potato seedling drone images were collected at Xinghuaping
Village, Tonganyi Town, Longxi County, Dingxi City, Gansu
Province. The images were captured using a quadcopter drone
(DJI Phantom 4 Advanced) and DJI GS Pro. The drone’s RGB
camera captured images vertically from above with a shutter speed
of 2 seconds. To prevent image blurring, a hover-and-capture
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method was employed at each waypoint. The front and side
overlaps were set at 80% and 70% respectively. The images had a
resolution of 4056x3040 pixels and were saved in JPG format. The
image collection took place in mid-May and mid-June 2022,
between 10:00-12:00. To enhance the model’s ability to generalize
for potato seedling detection in various environments, images were
collected at drone heights of 5 meters and 10 meters. A total of 409
original images were collected, as shown in Figure 1, covering
different heights, growth stages and plots.

2.2 Dataset construction

The process of potato seedling RGB image detection using the
enhanced VBGS-YOLOv8n model is illustrated in Figure 2. In this
study, Pix4Dmapper software was utilized for rapid stitching and
inspection of drone images in the experimental area. During the
stitching process, location information was obtained using the GPS
system of the drone platform at the time of image capture.
Pix4Dmapper then matched approximately 30,000 tie points per

10.3389/fpls.2024.1387350

original image based on the flight’s POS (Position and Orientation
System) data. Subsequently, automatic aerial triangulation
technology was employed to calculate the true position data and
stitching numbers of the images, leading to the creation of a point
cloud model. Following this, the positions and stitching parameters
of the original images were automatically optimized and calibrated
to generate a Digital Orthophoto Map (DOM) depicting the entire
experimental plot (Figure 2B). The process resulted in orthophoto
images at heights of 5 meters and 10 meters (Figure 2C) for two
distinct periods. These orthophoto images were then cropped to
obtain the dataset images required for model training and
prediction (Figure 2D). A total of 3089 cropped images were
obtained, each with a pixel size of 800x800. To ensure model
detection accuracy, 2195 images were selected after screening out
unsuitable ones to form the dataset for this study. Manual
annotation of the dataset using the Labellmg annotation tool was
performed (Figure 2E). Subsequently, the improved model (Figure
2F) was trained, and the best model after training was used to detect
images in the experimental plots (Figure 2G), yielding the detection
results (Figure 2H). During annotation, objects were labeled with
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FIGURE 1

Overview of experimental area and captured images. (A) The geographical location of Longxi County, Ding xi City; (B) Location of the study area;
(C) Images of potato seedlings at different heights and growth stages of UAVs.
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FIGURE 2

Workflow for image preprocessing and model prediction. (A) images taken by UAVs; (B) Stitching the images taken by the UAV using Pix4d software;
(C) Orthophoto generated; (D) The large image is cropped into a small image (608 x 608 pixels) for model input; (E) annotated image; (F) model
training; (G) The result image of the model prediction output; (H) A magnified view of the output image.

bounding boxes that best fit them and assigned the label “seedling,”
resulting in the generation of XML files in VOC format. Refer to
Figure 3 for annotated illustrations. Subsequently, the XML files
were converted to TXT files required by YOLO using a script. The
dataset images and their corresponding TXT files were randomly
divided in an 8:1:1 ratio into training set (1754 images), validation
set (220 images), and test set (220 images) to adhere to the standard
coco format, completing the dataset construction.

2.3 Original YOLOvV8n

As a one-stage object detection algorithm, YOLOVS introduces a
more lightweight network structure compared to its predecessors,
maintaining high accuracy while achieving faster inference speeds.
Moreover, YOLOVS incorporates advanced training methods and
techniques, leading to shorter training times and quicker
convergence rates. In this study, to balance high detection accuracy
with minimal storage usage and enhanced recognition speed for future
deployment on mobile devices, the research opts for the YOLOv8n
detection model known for its low complexity and lightweight design.

The YOLOv8n network architecture comprises three main
components: the input layer (Input), the backbone network

(Backbone), the neck network (Neck), and the detection head
(Head). The input layer preprocesses image inputs for the model,
while the backbone network, based on CSPDarkNet-53 and
utilizing the C2f module, extracts features from input images to
generate multi-scale feature maps. The backbone structure is shown
in Figures 4A, B is a CBS structure diagram. The C2f module in
YOLOV8 provides feature fu-sion functionality, which can enhance
the performance of object detection, as illustrated in Figure 4C. The
convolution utilizes CBS, comprising three components: a 2D
convolution, 2D BatchNorm, and SiLU activation function. The
SiLU activation is computed by multiplying its input with the
sigmoid function, i.e., x6 (x). In the case of SPPF, a CBS
convolutional layer is followed by three consecutive Maxpooling
operations. The feature map without Maxpooling and the feature
map obtained after each subsequent Maxpooling operation are
concatenated to achieve feature fusion. The structure is shown in
Figure 4D. The Neck layer adopts the PANet structure, merging
feature maps from various scales to capture more global and
semantically rich features, thereby enhancing object detection
accuracy and recall. The Detect module employs a Decoupled
Head, separating regression and prediction branches to predict
features across three dimensions, providing class and positional
information for the network’s predictions.

Raw Image

FIGURE 3
An example of a labeled image used for model training.
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The backbone structure of the yolov8 model and the diagram of each module. (A) the overall structure of the backbone; (B) the structure of the

CBS module; (C) the C2f module; (D) and the SPPF module.
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In the YOLOvV8 model, the loss function plays a crucial role in
training the network to accurately predict object bounding boxes
and class probabilities. The loss function used in YOLOVS is a
combination of localization loss, confidence loss, and classification
loss. The localization loss in YOLOWVS is typically calculated using
metrics like Mean Squared Error (MSE) or Smooth L1 Loss. It
penalizes the model for inaccuracies in predicting the bounding box
coordinates (center coordinates and width/height) compared to the
ground truth bounding box. By minimizing the localization loss, the
model learns to accurately predict the spatial location and size of
objects in the image, improving the precision of object localization.
Next, YOLOV8 utilizes binary cross-entropy loss to compute the
target confidence loss, assessing the model’s confidence accuracy by
comparing predicted target probabilities with ground truth labels.
Optimizing the confidence loss enables the model to distinguish
objects from the background, enhancing its object detection
capabilities. Additionally, the classification loss evaluates the
model’s category classification accuracy using binary cross-
entropy loss. The calculation formula for classification loss is
shown in Equation (1). About Regression Loss, YOLOv8
introduces a Distance-based Focal Loss (DFL) to complement
Anchor-Free methods, focusing on optimizing probabilities for
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the nearest left and right positions to the label y, facilitating
quicker convergence on target positions and neighboring regions’
distributions. DFL is calculated as shown in Equation 2.

M
Losscl: = _Eya,clog(pw C) (1)
c=1
where y, . is an indicator. 1 if sample o belongs to category c,
and 0 vice versa. p, is the probability that the model predicts that
sample o belongs to category c.

DFL(S;, Sis1) = =((is1 = ) 10g (S)) + (y = ) 1og (Sis1)) ()

The detailed conversion process of transforming labels into
DFL format is as follows: y = distance from the center to a specific
edge/current downsampling ratio.

The Bounding Box Loss calculates the sum of squared
differences between the predicted and actual coordinates, as
depicted in Equation 3.

(©)

N A
Lossppox =2 (xi _xi)
i=1

where x; represents the coordinates of the true bounding box,
and X; represents the coordinates of the predicted bounding box.
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The loss function is used as the optimization goal to guide the
model to reduce the gap between the prediction box and the real
box during the training process.

2.4 Improvement of the YOLOv8n model

2.4.1 VBGS-YOLOv8n model structure

The YOLOvS8n object detection model has been widely applied in
the agricultural field due to its excellent recognition accuracy and
2023; Wang G et al, 2023). However, the
detection of potato seedlings poses some challenges as it involves

speed (Sapkota et al,

small target detection tasks. For instance, when deploying the
detection task to mobile devices, it is necessary to consider the
lightweight nature of the network structure and the reduction of
device power consumption. Additionally, due to the small size and
overlapping nature of potato seedlings captured by UAVs, there is a
risk of missed detections and low accuracy in small target detection.
Therefore, this paper proposes a VBGS-YOLOv8n deep learning
algorithm based on the YOLOV8n, aiming to achieve higher detection
accuracy and a more lightweight model design to better recognize
potato seedlings. First, lightweight improvements were made to the
backbone, followed by the introduction of the weighted bidirectional
feature pyramid network (BiFPN) at the Neck layer, along with the
GSConv network, replacing the c2f module with VoV-GSCSP.

The structural design of the proposed VBGS-YOLOv8n model, as
depicted in Figure 5, involves replacing the CSPDarkNet network of the
original YOLOv8 with the lightweight VanillaNet algorithm. The
backbone network comprises the initial 4 layers of VBGS-YOLOV8n,
starting with a 640*640 RGB image input. With a stride of 4 and double
downsampling, spatial feature extraction and data normalization
convolution processing are applied, resulting in a halved image

10.3389/fpls.2024.1387350

resolution. This processed image is then fed into the VanillaNet
backbone network. Within the backbone network, stages 1, 2, and 3
utilize max-pooling layers with a stride of 2 to reduce spatial dimensions
while retaining crucial feature information, doubling the channel count
at each layer. Stage 3, representing the third layer of the network,
undergoes an 8x downsampling to yield an image with 512 channels.
Stage 4 maintains the channel count without increase, following an
average pooling layer. The final layer consists of a fully connected layer
for classification output with a stride of 1. Each layer in the VanillaNet
backbone network employs 1x1 convolution kernels to preserve feature
map details efficiently. The input features are downsampled to
appropriate sizes, resulting in image resolutions of 160¥160, 160¥160,
and 80*80 at Layer 1, Layer 2, and Layer 4, respectively.

The Ist, 3rd, and 4th layers serve as inputs to the neck structure. In
contrast to the PANet bidirectional pathway network used in the
original YOLOv8n network’s neck structure, the VBGS-YOLOv8n
model integrates a BiFPN with adjustable weights in each concat
module of the neck network for feature extraction. The BiFPN
facilitates more efficient multi-scale feature fusion. Furthermore, the
c2f modules at each layer are replaced with the cross-level subnetwork
VoV-GSCSP module. Additionally, GSConv convolution is applied at
the 11th and 14th layers of VBGS-YOLOvS8n, aiming to reduce
computational costs and maintain inter-channel connections
effectively. Through a process of layer-wise upsampling and feature
concatenation, diverse scale feature information is fused. By the 16th
layer of the model, the number of output channels in the image is
increased to 1024.Subsequently, the three output branches from the
neck are directed to the detection head for loss computation or result
inference. YOLOVS introduces a decoupled head, replacing the coupled
head of previous YOLO models. This decoupled head separates the
regression and prediction branches, utilizing the integral form
proposed in the distribution focal loss strategy for the regression
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FIGURE 5
The network architecture diagram of the improved VBGS-YOLOv8n.
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branch. The decoupled head exhibits faster convergence and improved
performance. In VBGS-YOLOV8n, the head network generates images
of sizes 80x80, 40x40, and 20x20 for potato seedling detection.

2.4.2 Lightweight backbone network

VanillaNet, a lightweight neural network architecture that
emphasizes simplicity, was introduced by Huawei’s Noah’s Ark Lab
(Chen et al.,, 2023). By avoiding complexities like excessive depth,
shortcuts, and self-attention mechanisms, VanillaNet achieves a
balance of simplicity and performance. Overcoming the inherent
complexity of traditional deep networks, VanillaNet emerges as an
optimal choice for environments with limited resources. Its
streamlined architecture not only enhances comprehension but also
provides an effective solution for efficiently deploying potato seedling
detection in drone-based remote sensing applications.

VanillaNet is characterized by the absence of convolution layers
and branches in its network structure, as depicted in Figure 6. The
network comprises a backbone, main body, fully connected layers, and
5 activation functions. The design principle follows a gradual reduction
in resolution and an increase in channel numbers, without
incorporating shortcuts, attention mechanisms, or other computations.

For the backbone, a 4x4x3xC convolution layer is utilized with a
stride of 4, following common configurations from [18,31,32], to
transform 3-channel images into features with C channels. In stages
1, 2, and 3, max-pooling layers with a stride of 2 are used to decrease
size and feature maps while doubling the channel count. Stage 4
maintains the channel count unchanged by employing average
pooling. The final fully connected layer is dedicated to producing
classification outcomes. Each convolution layer employs a 1x1 kernel
to retain feature map details while minimizing computational costs.
Batch Normalization (BN) is applied after each layer to streamline the
training process and enhance the simplicity of the architecture. This
approach achieves an optimal trade-off between speed and accuracy,
showcasing the excellence of VanillaNet.

While VanillaNet’s simple structure is easy to implement, its
limited nonlinearity hinders network performance enhancement.
To tackle this challenge, the authors introduce a deep training
strategy and incorporate a series-inspired activation function to
boost the network’s nonlinear expressive capacity.

The deep training strategy involves splitting the network into two
convolution layers, increasing the network depth only during training,
and merging them during inference. This approach reduces network
computation and complexity. The split convolution layers will utilize

10.3389/fpls.2024.1387350

the following Equation 4 activation function:

A(x) = (1-DARX) + Ax (4)

When training converges, the two convolutional layers without
non-linear activation are merged into one layer, achieving the effect
of deep training and shallow inference.

(1) Activation Function Inspired by Series: Concurrently
stacking activation functions can significantly enhance the non-
linearity of the activation function. Representing the single
activation function of the input in the neural network as A(x)
Equation 5:

n
Ay(x) = z;u,-A(x +b;) (5)
=

In the equation, n represents the number of stacked activation
functions, while a;, b; are the scale and bias of each activation to
avoid simple accumulation. To further enrich the sequence, given
an input feature x € REXWXC where H, W and C are its width,
height, and number of channels, the activation function is
formulated as Equation 6:

Ay(xp, wy0) =

>

i€ (-nm)

i AXipjowe + be) (6)
From the equation, it can be found that when n =0, the
proposed method can be regarded as a general extension of
existing activation functions.
The computational complexity expression of the proposed
activation function O(CONV)compared to its corresponding
convolutional layer is shown in Equation 7).

O(CONV)  H x W x Cyy X Coyy X K*  Cppyp X I @)
O(SA) Hx W x Cy x n? - 2

n

In the equation, Cj, represents the input channels, C,,, represents
the output channels, and k represents the kernel size. Taking the
fourth stage of VanillaNet-B as an example, where C,,; = 2048, k =1,
n = 7, the ratio is only 84, indicating that the computational cost of
this activation function is much lower than that of a convolutional
layer. Therefore, the use of these two non-linear solutions can
significantly improve the detection accuracy of VanillaNet.

2.4.3 BiFPN feature fusion
Feature fusion is a critical aspect in object detection, aiding in the
extraction of information from various scales to enhance detection

FIGURE 6

The architecture of the VanillaNet-6 consisting of only 6 convolutional layers.
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accuracy. The traditional Feature Pyramid Network (FPN) structure
serves as a method for feature fusion, integrating a top-down pathway
to merge multi-scale features from levels 3 to 7 (P3 to P7), as depicted
in Figure 7. Expanding on FPN, the YOLOv8 feature extraction
network incorporates PANet (Figure 7B), which introduces an
additional bottom-up pathway aggregation network to FPN
(Figure 7A). However, these fusion methods can lead to information
loss or feature redundancy (Wang Y et al,, 2023). This study introduces
an efficient BiFPN (Figure 7C) structure that leverages effective
bidirectional cross-scale connections and weighted feature fusion. By
adjusting feature map scales through upsampling and downsampling
operations, different scale features are fused to preserve finer details,
thereby improving small object detection accuracy.

BiFPN (Tan et al, 2020) is a network structure that efficiently
incorporates repeated bidirectional cross-scale connections and
weighted feature fusion. In comparison to PANet, BiFPN
eliminates nodes with single input edges that do not merge
different features, making it lighter and faster in inference speed
with fewer parameters. Additionally, an extra edge is introduced
between the original input and output nodes at the same layer to
enhance the fusion of additional image features. By leveraging
bidirectional repeated connections for information fusion, feature
details are preserved, enhancing accuracy in small object detection.
BiFPN utilizes a weighted feature fusion mechanism that
differentiates and merges various input features through learning,
adapting to different resolutions, and addressing feature loss issues
caused by simple overlaying of feature maps. It serves as a
straightforward and efficient feature fusion approach. BiFPN adopts
the Fast Normalized Fusion method, akin to Softmax, mapping each
input value to the range [0, 1], thereby improving training speed and
efficiency, enhancing data consistency and comparability for better
analysis and decision-making, as depicted in Equation (8).

wirl;
RS 7 ?

A B

P7 P7
Pg Pe
P5 P5
P, Py
Ps Ps

FPN PANet

FIGURE 7

10.3389/fpls.2024.1387350

In the equation, I; represents the input features, w; and w;
denote the weights obtained during network training, € = 0.0001.

2.4.4 GSConv network and Slim-Neck
design paradigm

In order to achieve real-time object detection on mobile devices,
reducing model complexity, enhancing detection speed, and maintaining
high accuracy are essential for the task of potato seedling image detection
captured by drones. GSConv+Slim-Neck is a lightweight network
proposed for a vehicle-mounted edge autonomous driving computing
platform (Li et al,, 2022). This network design aims to facilitate efficient
object detection to meet real-time application requirements. GSConv
strikes a balance between model accuracy and speed, enabling model
lightweighting while preserving accuracy. Introducing GSConv provides
a design paradigm called Slim-Neck, which utilizes a one-time
aggregation method to create the cross-level subnetwork (GSCSP)
module VoV-GSCSP. This module reduces computational and
network structural complexity, thereby enhancing detection accuracy.
Hence, this paper adopts this network to reduce model complexity,
enhance detection speed, and maintain high accuracy for mobile
deployment, offering an effective solution.

On edge devices, achieving real-time lightweight detection with
large models poses challenges. Traditional Depthwise Separable
Convolution (DSC) models struggle to achieve high accuracy due
to the separation of channel information during computation. This
separation diminishes the feature extraction and fusion capabilities of
DSC, hindering lightweight high-precision detection. Therefore,
GSConv is proposed, merging standard convolution with
Depthwise Separable Convolution. The principle involves
downsampling with a regular convolution, followed by DWConv
depthwise convolution to fuse the results of SCconv and DSCconv,
and finally introducing shuffle operations to combine corresponding
channels. The structure is illustrated in Figure 8.

GSConv has a noticeable impact on lightweight models. Given that
the Neck receives feature maps with maximal channel capacity and
minimal spatial dimensions, this paper employs GSConv within the

BiFPN

Feature network design (A) FPN network; (B) the principle of PANet; (C) is BiFPN schematic.
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The structure of the GSConv module.

Neck. With reduced redundant information in the feature map at this
stage, compression is unnecessary, allowing the attention module to
operate more effectively, leading to a reduction in model layers and
inference time.

Introducing GSConv provides a Slim-Neck design paradigm.
Initially, this design replaces SC with the lightweight convolution
method GSConv in the Neck. GSConv aims to closely match the

A
intput
Cichannels

II \\
| ]
i i
! ¢2 /2 channels !
l |
[} |
i |
: C2 channels E
i i
| :
i Output GS :
\ C2channels /

\

bottleneck/

-

—— e, ,—,——————

FIGURE 9

convolutional computing capability of SC while reducing
computational costs. Subsequently, GSbottleNeck is introduced
based on GSConv. Similarly, a one-time aggregation method is
utilized to design the cross-level subnetwork (GSCSP) module
VoV-GSCSP, which simplifies computational and network
structural complexity, enhancing detection accuracy. The structure
is depicted in Figure 9. This paper replaces the C2f module in the
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Effect of the detection results after the model is introduced into the BiFPN+GSConv+Slim-neck module.

YOLOVS8 structure with the VoV-GSCSP module to enhance
detection performance. After integrating the BIFPN+GSConv
+Slim-Neck module, the detection results are illustrated in Figure 10.

The detection results demonstrate that the model incorporating
BIFPN and GSConv+Slim-Neck achieves high confidence scores when
detecting images of seedlings in different environments and growth
stages. Nearly all seedling targets are successfully identified, highlighting
the feasibility and effectiveness of this improvement method.

2.5 Model training and evaluation metrics

2.5.1 Experimental environment
The configuration of the experimental environment and the settings
of relevant parameters during the trial process are presented in Table 1.

2.5.2 Evaluation metrics

This study employs Precision (P) in Equation 9, Recall (R) in
Equation 10, Mean Average Precision (mAP) as model accuracy
evaluation metrics as in Equation 11, and uses parameters,
computation, (i.e., the number of floating-point operations), and
Detection Time to measure model complexity and speed. The
calculation formulas are as follows.

Frontiers in Plant Science

P= 2 100% 9)
" TP+ FP ?
R= —  100% (10)
" TP+ EN ’
N 1l
S [ P(R)AR
i=1J0

mAP = x 100 % (11)

TP represents the number of correctly detected potato sprouts in the
image; TN represents the number of instances where the model predicts a
negative class and the actual label is also negative. FP stands for the count of
false detections as potato sprouts; FN indicates the number of missed targets;
AP is the Average Precision, represented by the area enclosed by the P-R
(€ =0.0001) curve and the coordinate axis; N denotes the number of
categories. In this study, only potato sprouts are detected, hence N = 1.

3 Results and analysis
3.1 VBGS-YOLOvV8n ablation experiment

The VBGS-YOLOvV8n model proposed in this study adopts a
three-step improvement strategy. Firstly, the BiFPN bidirectional
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TABLE 1 Experimental environment and related parameter settings.

Training Environment Details

Programming Python3.9
Deep learning framework Pytorch 2.0

GPU NVIDIA GeForce RTX3060
Operating system Windows11
img size 640 x 640

feature pyramid network replaces the PANet pathway aggregation
network to enhance feature fusion capabilities and improve small
object detection accuracy. Secondly, the GSConv+Slim-Neck is
integrated into the Neck section to further enhance model
performance. Lastly, to achieve model lightweighting, the main
network in the Backbone layer is replaced with the VanillaNet
network. To validate the effectiveness of the VBGS-YOLOv8n
model in potato seedling detection, this study conducted 7 sets of
ablation experiments, with results shown in Table 2. Additionally,
the training process curve of the model is illustrated in Figure 11.

From the data in Table 2, it is evident that introducing the
BiFPN module alone in the original model improves the model’s
detection accuracy, recall rate, and mAP value by 1.1, 0.5, and 0.8
percentage points, respectively, albeit with a slight increase in model
parameters. When adopting the Gsconv+SlimNeck design
paradigm alone, compared to the original YOLOv8n, the model
with this module shows an increase of 1.4 and 0.6 percentage points
in accuracy and mAP value, respectively. Additionally, the model’s
parameter count decreases by 11.3%, computational load
significantly reduces, and inference speed improves by 13.8%,
indicating a notable enhancement in detection accuracy and
model performance. Furthermore, replacing the Backbone
network of the original YOLOv8n model with the lightweight
VanillaNet network substantially reduces model parameters and
computational load, with a 0.2 percentage point increase in
accuracy. However, this change leads to a decrease of 0.3 and 0.1
percentage points in recall rate and mAP, respectively. This is
attributed to VanillaNet’s lightweight design, which greatly
reduces the number of convolutional layer channels and network

TABLE 2 Comparison of ablation experiment performance.

10.3389/fpls.2024.1387350

depth, resulting in decreased performance when handling complex
scenes or small targets, thereby impacting recall rate and mean
average precision in object detection.

By integrating three improvement strategies, the final outcome
of this study is the VBGS-YOLOv8n model. Compared to the
original YOLOv8n model, the VBGS-YOLOv8n model shows
improvements of 1.4 and 0.8 percentage points in accuracy and
mAP, respectively. Additionally, it significantly reduces model
parameters and computational load while enhancing inference
speed. Specifically, the parameter count is only 48.3% of the
original model, the computational load is 47.2% of the original
model, and the inference speed increases by 45.0%. However, due to
the adoption of the lightweight VanillaNet network, the model’s
recall rate decreases by 0.6 percentage points. Nevertheless,
considering the study’s focus on potato seedling monitoring, the
slight decrease in recall rate, alongside the improved mAP and
reduced model complexity, can be deemed negligible in terms of
overall effectiveness.

3.2 Comparison of detection before and
after improvement

The original YOLOv8n network and the improved VBGS-
YOLOv8n model were compared on a test set of 220 images. One
image of potato seedlings was randomly selected from three
different scenarios with varying heights and environmental
conditions for demonstration of the detection performance, as
shown in Figure 12.

The detection results demonstrate the superiority of the VBGS-
YOLOvV8n model in recognizing various sizes and shapes of potato
seedlings, surpassing the original YOLOv8n model significantly.
The VBGS-YOLOv8n model can almost entirely identify targets,
successfully avoiding instances of missed detections and even
detecting overlapping potato seedlings independently. In contrast,
the original YOLOv8n model exhibits noticeable issues with missed
detections, particularly for smaller potato seedlings in multi-target
scenarios, and performs poorly in identifying overlapping
potato seedlings.

Model  BiFPN G_sconv+ VanillaNet Precc:’ision Reocall mAP  Parameters Complexity Ir_1ference
slimNeck (%) (%) (M) (GFLOPs) time (ms)
baseline 95.7 96.8 97.6 3157200 8.9 29
A \ 96.8 97.3 98.4 3157212 8.9 3.0
B V 97.1 96.8 98.2 2801619 74 25
C y y 97.0 97.8 98.5 2801631 7.4 2.7
D V 95.9 96.5 97.5 1644579 5.0 23
E V y 96.4 96.7 98.0 1644591 5.0 2.4
VBGS- v V V 97.1 96.2 98.4 1524943 42 2.0
YOLOv8n
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Curve of the model improvement training process.

3.3 Comparative horizontal experiment

To further explore the superiority of the VBGS-YOLOv8n
network in potato seedling detection, experimental comparisons
were conducted between the VBGS-YOLOv8n model and
mainstream object detection Network algorithms such as
RetinaNet, QueryDet, YOLOv5 and YOLOV8n, as shown in Table 3.

From the table data, it is evident that compared to mainstream
models, the VBGS-YOLOv8n network surpasses current mainstream
detection models in all performance metrics, with a significant

Raw Image

2022/6/2
5 meters
high

2022/6/21
10 meters
high

Correctly recognized seedling

FIGURE 12

Comparison effect of the model before and after the improvement on the detection of potato seedlings at different heights and at different stages.
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improvement in mAP. More importantly, while maintaining high
performance, the VBGS-YOLOv8n model has the lowest parameter
count and computational load, further highlighting its superiority and
efficiency. RetinaNet, despite using FPN and a new focal loss function to
enhance model efficiency and run on low-end devices, faces accuracy
issues in small object detection and has high computational load, making
it unsuitable for this experiment. QueryDet, a small object detection
model that accelerates feature pyramid object detector inference speed
using a novel query mechanism, employs the Sparse Cascaded Query
(CSQ) mechanism to obtain high-resolution feature maps while
minimizing computation on background regions. Comparing
QueryDet to RetinaNet in the table data, QueryDet shows
improvements in all metrics, with optimal parameter and
computational load compared to other mainstream models, with
computational load only 3.54 points higher than the VBGS-YOLOv8n
model in this study. However, its detection accuracy is 8.3 percentage
points lower than the model in this study. YOLOV5, another model in
the YOLO series widely used for its good performance and detection
results, shows comparable detection accuracy to the method in this study
but with increased complexity and lower inference speed, making it
unsuitable for mobile deployment and potato seedling detection.
YOLOV7-tiny, the latest algorithm in the YOLO series, achieves decent
accuracy with fewer parameters and computational load, but its FPS is
48% lower than the proposed new method, indicating slower model
detection speed. The experimental data comparison underscores the
superiority and efficiency of the VBGS-YOLOv8n network, which not
only meets the accuracy requirements but also features a more
lightweight network architecture suitable for potato seedling detection
scenarios. The comparative detection performance of different models is
illustrated in Figure 13.

YOLOvVS8n VBGS-YOLOv8n

D Misdetected and missed seedling
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TABLE 3 Comparison of experimental results of different The results indicate that the improved lightweight model

network models. outperforms other object detection models in recognizing potato

seedlings at different growth stages and heights. It accurately locates

mAP | Parameters Complexity

(x10° M) (GFLOPs) potato seedlings, which are dense small targets. In the images, the

detection labels and confidence scores were removed for clarity, but
RetinaNet 82.1 28.27 236.28 29.8 . . . . .

in the experiment, detections exhibited high confidence. The
QueryDet | 90.3 6.61 774 374 predicted bounding boxes fully encapsulate the potato seedlings,
YOLOvSs 958 720 16.80 683 even identifying overlapping instances without any missed

detections. In the case of the first set of photos with fewer targets
YOLOV7- 943 8.90 13.1 515 . :
tiny at a height of 5 meters, where the potato seedlings are larger and less

dense, both YOLOvV5 and YOLOV7 in the YOLO series can detect all
YOLOvEn | 979 >1e 87 01 targets effectively. However, YOLOv7 shows some instances of
VBGS- 984 1.52 42 98.4 redundant bounding boxes, indicating slightly inferior detection
YOLOvEn performance compared to YOLOv5. For small targets at the

corners, QueryDet exhibits some missed detections. In the

Raw Image

YOLOvVS

QueryDet

YOLOv7

FIGURE 13
Detection results of potato seedlings in different environments by different models.
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detection results for the other two environments, it is evident that
the proposed VBGS-YOLOv8n model has the fewest missed
detections and minimal redundant bounding boxes. This clearly
demonstrates the excellent performance and accuracy of the VBGS-
YOLOvV8n model in recognizing potato seedlings.

4 Conclusion

This study introduces an enhanced VBGS-YOLOv8n network,
aimed at addressing the challenge of detecting potato seedlings in drone
remote sensing imagery. The model utilizes the lightweight VanillaNet
algorithm as its backbone, effectively reducing the model’s complexity.
It incorporates a BiFPN to improve the retention of detailed features,
thereby enhancing the accuracy of small target detection. GSconv
convolution is employed in the neck to maintain overall accuracy, and
the VoV-GSCSP network replaces all C2f modules in the original
YOLOv8n algorithm’s neck, significantly reducing the model’s
parameter count. Experimental validation demonstrates that VBGS-
YOLOWV8n exhibits exceptional performance in detecting small targets,
with accuracy and mAP reaching 97.1% and 98.4%, respectively.
Compared to the original YOLOV8 model, there is a 1.4% increase in
accuracy and a 0.8% increase in mAP, alongside a 31.0% reduction in
computation time. The parameter count is 48.3% of the original model,
and the computational load is only 47.2%, with significant reductions
in both missed and false detections. To verify its effectiveness,
comparative analyses with leading models in the field affirm its
superior detection accuracy, efficiency in parameter usage, and
overall performance. The VBGS-YOLOv8n model achieves an
optimal balance between detection speed, accuracy, and size,
rendering it ideal for deployment on agricultural mobile devices.
Future work will focus on optimizing the model for practical drone
applications and broader datasets, ensuring the feasibility of VBGS-
YOLOV8n and its detection capabilities for similar small target crops,
offering technical support for precision agriculture.
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Tomato is one of the most popular and most important food crops consumed
globally. The quality and quantity of yield by tomato plants are affected by the impact
made by various kinds of diseases. Therefore, it is essential to identify these diseases
early so that it is possible to reduce the occurrences and effect of the diseases on
tomato plants to improve the overall crop yield and to support the farmers. In the
past, many research works have been carried out by applying the machine learning
techniques to segment and classify the tomato leaf images. However, the existing
machine learning-based classifiers are not able to detect the new types of diseases
more accurately. On the other hand, deep learning-based classifiers with the support
of swarm intelligence-based optimization techniques are able to enhance the
classification accuracy, leading to the more effective and accurate detection of
leaf diseases. This research paper proposes a new method for the accurate
classification of tomato leaf diseases by harnessing the power of an ensemble
model in a sample dataset of tomato plants, containing images pertaining to nine
different types of leaf diseases. This research introduces an ensemble model with an
exponential moving average function with temporal constraints and an enhanced
weighted gradient optimizer that is integrated into fine-tuned Visual Geometry
Group-16 (VGG-16) and Neural Architecture Search Network (NASNet) mobile
training methods for providing improved learning and classification accuracy. The
dataset used for the research consists of 10,000 tomato leaf images categorized into
nine classes for training and validating the model and an additional 1,000 images
reserved for testing the model. The results have been analyzed thoroughly and
benchmarked with existing performance metrics, thus proving that the proposed
approach gives better performance in terms of accuracy, loss, precision, recall,
receiver operating characteristic curve, and F1-score with values of 98.7%, 4%, 97.9%,
98.6%, 99.97%, and 98.7%, respectively.
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1 Introduction

In the dynamic landscape of modern agriculture, where crop
health plays a pivotal role in global food production, the precise and
timely management of plant diseases is an ongoing challenge.
Among these agricultural adversaries, leaf diseases emerge as
intricate and multifaceted adversaries with distinct morphological
manifestations. The science of leaf disease classification, a
subdomain of plant pathology, is at the forefront of efforts to
combat these detrimental afflictions. This research aspires to
contribute to the field of leaf disease classification through the
incorporation of pioneering technologies, namely, artificial
intelligence (AI) and machine learning. The criticality of early
detection and accurate classification in disease management
cannot be overstated. Therefore, this study seeks to harness the
potential of advanced algorithms, including convolutional neural
networks (CNNs) and optimization into deep learning
methodologies, to revolutionize the existing approaches to leaf
disease diagnosis. At its core, this research addresses the
challenges posed by leaf diseases by developing a novel
classification system. By utilizing image recognition and deep
learning techniques, this system aims to empower agriculture
practitioners and plant pathologists with a sophisticated tool for
disease identification. The impact of this system extends to many
applications including crop health, reaching into the realms of
global food security, sustainable agricultural practices, and
environmental conservation.

Deep learning is an extension to the machine learning methods
such as neural networks in AI that trains the computer system to
recognize the patterns similar to the human brain. Deep learning
models are trained to recognize even complex patterns found in
images, text, videos, and voice data to perform accurate
classifications and predictions. Deep learning algorithms perform
both feature extraction and feature selection automatically without
needing human effort as required in machine learning algorithms
for training the software based on the algorithms. A CNN is one of
the most important and fundamental deep learning neural network-
based algorithms used for image recognition as it provides
promising and accurate results in computer vision tasks. It has
many architectural implementations including LeNet, AlexNet,
Visual Geometry Group (VGG), GoogLeNet, and ResNet.

Time and space are important parameters to be considered for
prediction-oriented decision-making systems. The temporal and
spatial data on the disease growth in tomato leaves need time series
analysis on image data with temporal reasoning. Moreover,
prediction using time series analysis must focus on the direction
of sequence that can be performed more effectively using machine
learning-based classifiers. Moving average methods support to
smoothen the time series analysis by identifying the temporal
data patterns more effectively. Moreover, smoothing or filtering
helps to eliminate the random variations that occur in the plotted
time series data. An exponential (weighted) moving average method
that applies a simple recursive procedure under the hood provides
flexibility to the algorithm.

Despite the presence of many works on tomato plant leaf
disease detection that are found in the literature, most of the
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existing systems use a machine learning approach for
classification without any optimizer and temporal analysis.
Therefore, it is necessary to employ manual preprocessing or to
apply additional machine learning-based classification algorithms
or clustering algorithms when performing effective feature
extraction and feature selection. Moreover, the existing systems
that use time series data are not designed to give higher importance
to the most recent data and also do not focus on temporal reasoning
by applying temporal constraints. Moreover, the convergence of the
existing deep learning algorithm employed in the detection of
tomato leaf diseases is not supported by an optimization
algorithm. Finally, ensemble-based classification algorithms are
not employed in the classification process to enhance the
detection accuracy. Therefore, it is necessary to propose a new
ensemble classifier with an optimization component and a temporal
data analysis component.

In this paper, an ensemble model is proposed with an
exponential moving average (EMA) function with temporal
constraints based on interval analysis and an enhanced weighted
gradient optimizer (EWGO) in which the gradient optimizer is
enhanced with temporal rules and that is integrated into VGG-16
and Neural Architecture Search Network (NASNet) CNN
architectures. VGG-16 is a fine-tuned model with a 16-layer
depth developed by the VGG that consists of 13 convolution and
max pooling layers with three fully connected layers, and it applies
stride 2. The learning rate is fixed here as 0.1. The regression-based
and binary classification-based loss functions are used in this work
to reduce the errors. Moreover, the NASNet mobile training
methods are integrated in this ensemble model for identifying the
diseases in tomato leaves by providing improved learning and
classification accuracy.

NASNet is also a CNN model that consists of two types of cells,
namely, the normal and the reduction cells. The EMA method is
used in this ensemble model since it gives more weightage to the
current data in the temporally oriented time series data. Moreover,
the Plant Village dataset is used in this work to carry out the
experiments for testing the ensemble model proposed in this paper.
Moreover, the Plant Village dataset is a publicly available dataset
consisting of 54,305 images from which 1,000 images related to
tomato leaves have been extracted and used in this work for training
and testing the system. The main advantages of the proposed
ensemble model are the increase in classification accuracy and the
reduction in error rate in the detection of tomato leaf diseases.

The main motivation for this research work is that the
profession of agriculture is one of the most vital in every world
economy. It is the main source of resources in our country.
Nowadays, leaf disease has a great impact on the productivity of
vegetables. If we cannot control the disease, then it can greatly affect
the harvest. These problems provide great motivation in finding out
the origin of the disease at an earlier stage to help the tomato plants
grow healthily and increase their yield. Another motivation for this
research is that it addresses the challenges posed by leaf diseases by
developing a novel classification system. By utilizing image
recognition and deep learning techniques, this system aims to
empower agriculture practitioners and plant pathologists with a
sophisticated tool for disease identification. The impact of this
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system extends beyond crop health, reaching into the realms of
global food security, sustainable agricultural practices, and
environmental conservation.

In this work, the Plant Village dataset is used to carry out the
experiments for testing the model proposed in this paper.
Moreover, the Plant Village dataset is a publicly available dataset
consisting of 54,305 images from which 1,000 images related to
tomato leaves have been extracted and used in this work for training
and testing the system. The Plant Village dataset provides data to
detect 39 different plant diseases. Moreover, the dataset contains
61,486 images of plant leaves with backgrounds. The dataset was
designed using six different augmentation techniques in order to
create more diverse datasets with different background conditions.
The augmentations that have been used in this process include
scaling, rotation, injection of noise, gamma correction, image
flipping, and principal component analysis to perform
color augmentation.

The main contributions of this paper are as follows:

* Proposal of an ensemble model using VGG-16 and NASNet
mobile training deep learning models with an
EMA function.

» Effective time series analysis using the CNN-based deep
learning classifier along with an EWGO.

+ Use of the Plant Village dataset for validation.

 Evaluation using suitable metrics.

The research unfolds in the following sequence: Section 2
provides a comprehensive exploration of the taxonomy and
intricacies of leaf diseases. Section 3 is a detailed methodology
section highlighting the technical aspects of image processing and
machine learning, and the revelation of a state-of-the-art deep
learning classification system designed to improve the accuracy
and efficiency of leaf disease identification. In section 4,
performance assessment of the proposed approach and results are
compared with existing techniques. We conclude the research paper
in section 5.

The VGG-16 architecture is a deep CNN designed for image
classification tasks. It was introduced by the VGG at the University
of Oxford. VGG-16 is characterized by its simplicity and uniform
architecture, making it easy to understand and implement.

2 Literature survey

There are many works on tomato leaf detection, machine
learning (Uma et al., 2016; Anusha and Geetha, 2022;
Harakannanavara et al., 2022), deep learning (Haridasan et al,
2023; Sankareshwaran et al., 2023; Yakkundimath and Saunshi,
2023), optimization techniques, data mining (Das and Sengupta,
2020; Demilie, 2024), regression analysis, image analysis (Ganatra
and Patel, 2020; Ngugi et al., 2021), and prediction techniques that
are found in the literature. Mustafa et al. (2023) proposed a five-
layer CNN model for detecting plant diseases using leaf images. A
total of 20,000 images were used to train the model. This model
detects the pepper bell plant leaf disease with better accuracy. The
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results are evaluated in terms of accuracy, precision, and recall, and
Fl-scores are computed. The model performs better than state-of-
the-art models. Seetharaman et al. (Seetharaman and Mahendran,
2022) presented a region-based CNN model to detect a banana leaf
disease using Gabor extraction. Images are preprocessed by
histogram pixel localization with media filter. The segmentation
part is done with region-based edge normalization. Feature
extraction is performed using the novel method Gabor-based
binary patterns with CNN. A region-based CNN helps in
detecting the disease area. The results are evaluated and they
perform better than CNN, DCNN, ICNN, and SVM models in
terms of precision, recall, accuracy, and sensitivity.

Nerkar et al. (Nerkar and Talbar, 2021) proposed a method to
detect leaf disease using a two-level nonintrusive method. This
model combines generative adversarial network and reinforcement
learning. Cross dataset learning is used. CNN is combined with
GAN for better results. Re-enforcement learning retrains the GAN
using confidence scores. Classification results are evaluated and
results are higher than other models. Mukhopadhyay et al. (2021)
proposed a non-dominated sorting genetic algorithm for tea leaf
disease detection. Image clustering is the main idea of this model.
PCA is used for feature reduction and multi-class SVM is used for
disease detection. Five various datasets of tea leaf are used in the
work. The proposed model provides better accuracy than
traditional models.

Vallabhajosyula et al. (2022) proposed a transfer learning-based
neural network for plant leaf disease detection. In this work, pre-
trained models were used. The deep ensemble neural network is
used along with pre-trained models. Transfer learning and data
augmentation are used for parameter tuning. The results are
evaluated and provide higher accuracy with lesser number of
computations. Huang et al. (2023) discussed a tomato leaf disease
detection model using the full convolutional neural network (FCN)
with suitable normalization dual path networks. The FCN used to
segment the target crop images and improve the dual path network
model is used for feature extraction. The results are evaluated on the
augmentation dataset and accuracy is better than other models.

Chouhan et al. (2021) proposed a model for leaf disease
detection using the fuzzy-based function network. Initially,
preprocessing is done and the scale-invariant feature transform
method is used for feature extraction. The fuzzy-based function
network is used for detecting the leaf disease. Training is done with
the help of the firefly algorithm. The model results are evaluated in
terms of accuracy and are higher than traditional models. He et al.
(2023) presented a maize leaf disease detection model using
machine vision. The batch normalization layer is appended with
the convolution layer to fasten the convergence speed of the
network. Cost function is developed to increase the detection
accuracy. Four types of pre-trained CNN models are used for
feature extraction network for training. The gradient descent
algorithm is applied to optimize the model performance. The
results are evaluated in terms of F1-score, recall rate, and accuracy.

Ruth et al. (2022) proposed a deep learning model for disease
detection using the meta-heuristic algorithm. CNN is used for
feature extraction. The optimal deep neural network is used for
disease detection. A two-level weight optimization is used to
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increase the performance of the detection model. Two-level weight
optimization is achieved using an improved butterfly optimization
algorithm, where the genetic algorithm is used to improve the
butterfly optimization algorithm. The results are evaluated in terms
of sensitivity, accuracy, and specificity. The overall accuracy is
higher than other traditional models. Andrushia et al. (Andrushia
and Patricia, 2020) presented a leaf disease detection model using
the artificial bee colony optimization algorithm. Initially,
preprocessing is done by removing noises and background
images. Shape, color, and texture are extracted as features and are
sent to the support vector machine model for disease detection. The
model results are better in terms of recall, precision, and accuracy.

Abed et al. (2021) presented a novel deep learning model for bean
leaf disease detection. This model contains two phases: detection and
diagnosing. For detection, the U-Net architecture using the ResNet34
encoder is used. In the classification part, results are evaluated for five
different deep learning models. The dataset contains 1,295 images of
three classes such as healthy, bean rust, and angular leaf spot. The
results are evaluated in terms of sensitivity, specificity, precision, F1-
score, and area under the curve (AUC). Pandey et al. (Pandey and Jain,
2022) proposed a deep attention residual network using an opposition-
based symbiotic organisms search algorithm. In this model, residual
learning blocks are used with the attention learning mechanism for
feature extraction. A new CNN model, AResNet-50, is designed for
disease detection. The opposition-based symbiotic organisms search
algorithm is used to tune the parameters of the model. Plants like citrus,
guava, eggplant, and mango leaves are considered for the experimental
analysis. The results of the model are evaluated in terms of accuracy,
and they are better than those of the existing models such as AlexNet,
ResNet-50, VGG-16, and VGG-19. Zhao et al. (2020) proposed a
multi-context fusion network model for crop disease detection. In this
model, standard CNN is used to extract visual features from 50,000
crop disease samples. Contextual features are collected from image
acquisition sensors. A deep, fully connected network is proposed by
combining contextual features and visual features to detect the leaf
disease. The model performance is evaluated in terms of accuracy,
which is higher than state-of-the-art methods.

Wang et al. (2017) proposed a new technique for automatic
estimation of plant disease severity using image analysis through the
effective application of deep learning algorithms. Bracino et al.
(2020) explained the development of a new hybrid model based on
machine learning techniques for the accurate detection of health
using disease classification. Ashwinkumar et al. (2022) proposed an
automated plant leaf disease detection model using deep learning
classification named optimal MobileNet, which is designed based
on CNNs. Khan et al. (2019) developed one optimized method for
disease detection using image segmentation and classification for
identifying the apple diseases. The authors made the decisions by
analyzing whether there is a strong correlation among the features
and also using genetic algorithm for feature selection. Most of the
works found in the literature on tomato leaf disease detection used
the benchmark dataset, namely, the Plant Village dataset
(Kaustubh, 2020).

Sanida et al. (2023) proposed a new methodology for the
effective detection of tomato leaf diseases by identifying them
using a two-stage transfer learning model. Pandiyaraju et al.
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(2023) proposed an optimal energy utilization technique for
reducing the energy consumption via the agricultural sensors
used in precision agriculture. These sensors have been connected
to a WSN that performs energy optimization by using a multi-
objective clustering and deep learning algorithm to reduce the
energy consumption. In another related work, Pandiyaraju et al.
(2020) developed an energy-efficient routing algorithm for WSN’s
using clustering of nodes. Moreover, the routing decision has been
made in their work using intelligent fuzzy rules that were applied in
precision agriculture. In the area of agriculture and gardening,
Pandiaraju et al. (Pandiyaraju et al., 2017) proposed a rule-based
intelligent roof control algorithm for effective water conservation
without affecting the agricultural yield with respect to smart terrace
gardening. Such a model can be enhanced to detect the leaf diseases
for providing better yield with minimum water.

Shoaib et al. (2023) presented a review of deep learning
classification algorithms that have been used in the detection of
plant leaf diseases. Santhosh et al. (2014) proposed a farmer
advisory system using intelligent rules based on machine learning
classifier. Jabez Christopher et al. (Jabez et al., 2015) proposed an
optimized classification model that uses rules based on knowledge
mining with swarm optimization for providing effective disease
diagnosis. Gadade et al. (Gadade and Kirange, 2022) proposed an
intelligent approach based on deep learning for the effective
detection of tomato leaf diseases from leaf images that have
captured with varying capturing conditions. Saced et al. (2023)
proposed one new smart detection methodology for the accurate
detection of tomato leaf diseases by using transfer learning-based
CNNs. Shoaib Muhammad et al. (Shoaib et al., 2022) proposed a
new model for tomato leaf disease detection by using deep learning
algorithms for performing both segmentation and classification of
leaf images.

Sreedevi and Manike (2024) presented a new solution for
identifying the tomato leaf disease based on classification using a
modified recurrent neural network through severity computation.
Prabhjot Kaur et al. (2024) carried out a performance analysis on
the image segmentation models that are used to detect leaf diseases
present in the tomato plants. Thai-Nghe et al. (Nguyen et al., 2023)
presented a deep learning-based approach for the effective detection
of tomato leaf diseases. Chang et al. (2024) developed one general-
purpose edge-feature-guided model for the identification of plant
diseases by enhancing the power of vision transformers. Li et al.
(2023) presented a new lightweight vision transformer model based
on shuffle CNNs for the effective diagnosis of leaf diseases in
sugarcane plants. Thai et al. (2023) proposed a new vision
transformer model designed for the accurate detection of cassava
leaf diseases.

Yu et al. (2023) explained the use of inception convolutional
vision transformers for the effective identification of plant diseases.
Arshad et al. (2023) developed an end-to-end and hybrid model
based on the deep learning framework for the accurate prediction of
potato leaf diseases. Shiloah et al. (Elizabeth et al., 2012) proposed
one new segmentation approach based on machine learning model
for improving the diagnostic accuracy of detecting lung cancers
from chest computed tomography images. Dhalia Sweetlin et al.
(2016) proposed a patient-specific model for the effective
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segmentation of lung computed tomographic images. Singh and
Misra (2017) proposed a machine learning-based model for the
effective detection of plant leaf diseases by performing suitable
image segmentation. Agarwal et al. (2020) developed a new system
for tomato leaf disease detection by applying the CNN classifier.

Chen et al. (2022) proposed the use of the AlexNet CNN model
for the effective detection of tomato leaf diseases by performing
accurate classification of tomato leaf images. Ganapathy et al.
(2014) proposed an intelligent temporal pattern classification
model by using fuzzy temporal rules with particle swarm
optimization algorithm. Jaison et al. (Bennet et al., 2014)
proposed a discrete wavelet transform-based feature extraction
model along with one hybrid machine learning classification
algorithm for performing effective microarray data analysis. Elgin
Christo et al. (2019) proposed a new correlation-based ensemble
feature selection algorithm that has been developed using
bioinspired optimization algorithms integrated with a
backpropagation neural network-based classifier.

Thangaraj et al. (2021) proposed an automated tomato leaf
disease classification algorithm by using a transfer learning-based
deep CNN classifier. Al-Gaashani et al. (Al-gaashani et al.,, 2022)
proposed a new model for tomato leaf disease classification by the
application of transfer learning with feature concatenation. Han
et al. (2017) proposed a new weighted gradient-enhanced
classification model not only to provide high-dimensional
surrogate modeling but also to perform design optimization. Wu
et al. (2021) proposed a new distributed optimization method that
uses weighted gradients for solving the economic dispatch problem
pertaining to the multi-microgrid systems. Abouelmagd et al.
(2024) developed an optimized capsule neural network for the
effective classification of tomato leaf diseases. Other approaches
that are used in the detection of leaf diseases include those with deep
learning and also with explainable AI (Rakesh and Indiramma,
2022; Bhandari et al., 2023; Debnath et al., 2023; Nahiduzzaman
et al., 2023).

Despite the presence of all these related work in the literature,
most of the segmentation and classification algorithms use a
machine learning approach for classification. Therefore, it is
necessary to employ either manual work or additional
classification algorithms for performing feature extraction and
feature selection. Moreover, the time series data are not analyzed
by giving higher importance to the most recent data by the
application of temporal constraints. The convergence of the
existing deep learning algorithm employed in the detection of
tomato leaf diseases is not supported by an optimization
algorithm. Finally, ensemble-based classification algorithms are
not employed in the classification process to enhance the
detection accuracy. In order to handle all these limitations that
are present in the existing systems developed for accurate tomato
leaf disease detection, a new ensemble classification model is
proposed in this paper that uses an EMA function with temporal
constraints, and it is supported by an EWGO along with fine-tuned
VGG-16 and NASNet mobile training methods for enhancing the
classification accuracy that can increase the detection accuracy with
respect to the detection of tomato leaf diseases.
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3 Proposed work
3.1 Method

The data that show the features are initially analyzed using
histogram plots and pie charts for better visualization of the data
statistics to check for data imbalance among different classes. It has
been concluded via complete exploration that there is no data
imbalance and that the features of the images have been
completely studied.

Next, the images are preprocessed in order to enhance the
learning ability of our deep learning models. A median filter is
applied on the image to remove noise to improve image quality.
Redundant parts of the image that do not contribute to the model’s
learning process are also removed. Furthermore, the o.and B factors
in our images are adjusted in order to modify the brightness and
contrast, thereby making the region of interest more prominent.
The images are finally normalized to have pixel values ranging from
0 to 1, and the data are augmented to ensure a wider scale of
learning by the model.

For the initial part of feature extraction, the VGG-16 transfer
learning model undergoes fine-tuning by unfreezing its last five
layers, enabling to adapt the model that originally contained
ImageNet’s weights to the specified dataset. By employing the use
of Global Average Pooling to pool the CNN layers’ features, the data
are then passed into two fully connected layers ultimately leading to
the output layer. The optimization of the model is achieved using
the Adam optimizer with a learning rate of 0.0001, and evaluation
metrics such as the Fl-score, AUC score, precision, and recall
are applied.

The NASNet mobile transfer learning model is employed with
ImageNet weights for the next part. A flattened layer is then used to
transform the outputs from the CNN layers into a one-dimensional
tensor that facilitates the passage through three fully connected
layers that ultimately reach the output layer. The optimization of
the model is once again achieved using the Adam optimizer with a
learning rate of 0.0001, and evaluation metrics such as the F1-score,
AUC score, precision, and recall are applied.

The extracted features obtained from the two transfer learning
models are now taken and passed on as parameters to a custom
ensemble layer that incorporates EMA function that emphasizes the
recent data points with greater weights. The resulting ensemble
model shows an optimized learning curve by adopting the adaptive
rate of learning, which is achieved by using a custom EWGO that
modifies the learning rate based on custom ensemble weight
suitable for our custom ensemble model.

3.2 Dataset

This research utilizes the dataset (Kaustubh, 2020) that consists of
a collection of tomato leaf images, each belonging to one of nine
distinct categories, representing various leaf diseases or a healthy state
(no disease). The dataset encompasses a total of 10,000 images
designated for training and an additional 1,000 images reserved for
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testing. To facilitate model development and evaluation, we
partitioned the training dataset into a 75%-25% split, resulting in
7,500 images allocated for training and 2,500 images for validation,
and the entire additional 1,000 images were reserved for the test set.

This dataset serves as the foundation for the development of the
proposed model, which aims to enhance the classification of tomato
leaf diseases.

3.3 Preprocessing
The following are the steps involved in preprocessing:

*  Median filter

e Image cropping

* Brightness and contrast adjustments
* Normalization

3.3.1 Median filter

The first step of data preprocessing utilizes a median filter,
which is a non-linear digital image filtering technique that runs
through the signal as one entry after another by replacing the entry
value by the median of the neighboring entry values, which depends
on the window size, resulting in the removal of the salt-and-pepper
noise in an image. In this case, a window size of 3 has been chosen
for preprocessing the image.

This median filter is represented mathematically as shown in
Equation (1):

g(x,y) = Med(f(x,y)) 1)

where f(x,y) is the window array and g(x,y) is the median value
of the window array. The steps for the median filter are shown in
Algorithm 1.

function median_filter():
input: raw tomato_leaf _image;
output: median_filtered_image;
image = input ;
1=1ength of image;
b=breadth of image;
¢ =channels of image;
w= window_size;
filtered_image =create_empt;y_1image(l,b)
b_image = img[1][b][1];
g_1image = img[1][b][2];
r_1image = img[1][b][3];
for 1= 0 to 1-1 do:
for j=0 to b-1 do:
b_1img = image[1][j][1]
g_img = image[i][j][2];
r_img = imagel[i][j][3];
end for
end for
apply _median_filter(b_1img,w);
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apply _median_filter(g_img,w);
apply _median_filter(r_img,w);
for 1=0 to 1-1 do:
for j= 0 to b-1 do:
filtered_image = [bingii)s] Jimglilis]» Mimgi)ii)]
end for
end for
end function
End
Function apply _median_filter():

input: single _channel _tomato_leaf _image;

output: median_filtered_single_channel _image;

len = length of img;

bt = length of img;

applied _img = create _array(len,bt);

wh=w/2 ;

for x=0 to len-1 do:

for b=0 to bt-1 do:

window = [|;

for 1=-wh to wh-1 do:

for j=-wh to wh-1 do:

winx = x + 1;

winy =y +7j;

if winx >=0 and winy >=0 and winx <

len and winy < bt then:
append value tq window
(img[winx]winy])

end if

end for

end for

end for

end function

End

Algorithm 1. Median filter.

3.3.2 Image cropping

Since the outer areas of the image are not helpful with the
tomato disease detection, the size of the image is reduced by 10
pixels on each side, thus reducing the image size from 256 x 256 to
236 x 236 by removing the areas where there are no significant
features for disease detection. The steps for image cropping are
shown in Algorithm 2.

Function crop _image ():

input: median_filtered_image

output: cropped_median_filtered_image
img = median filtered image

length = length of img

breadth = breadth of img

crop_value =10

max _crop_1length =1ength-crop_value
max _crop_breadth =breadth-crop_value
crop_1image = create empty image of dimensions(max _
crop _length,max _crop _breadth)
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crop_1image = img[crop _value:max_crop _length]{crop _
value:max _crop_breadth]
end Function

end
Algorithm 2. Image cropping.

3.3.3 Brightness and contrast enhancements
of images

For better-quality images and improved ability of the CNN to
identify the region of interest, its brightness is reduced and the
contrast of the image is increased. This mitigates overexposure of
the images, allowing the CNN to extract the features in the region of
interest easily due to better visibility.

Brightness and contrast enhancement can be represented
mathematically as shown in Equation (2):

80ij) = of (isj) + B @)

where o is the contrast factor and f3 is the brightness factor. f{i,)
represents the pixel of the input image, which is the cropped image,
while g(i,j) is the output image where the image’s brightness and
contrast are adjusted using o and f. The procedure for brightness
and contrast enhancements is shown in Algorithm 3.

Function adjust_1image():
input:cropped _median_filtered_image,brightness
factor,contrast_factor

output:cropped_filtered _image_with_adjustments
image = cropped _median_filtered_image
1< length of image
b« breadth of image
¢ « channels of image
adjusted_img«create empty image of dimensions
1 and b
a<«contrast_factor
B« brightness_factor
for 1=0 to 1-1 do:
for j=0 to b-1 do:
for k=0 to c-1 do:
adjusted _img[i][j][k] < aximage[i][j][k] + B
end for
end for
end for

end Function

end
Algorithm 3. Brightness and contrast enhancement.

3.3.4 Image normalization

For better weight initialization and to maintain consistency in
the pixel range of the input, the image is normalized so that all pixel
values are confined to the interval [0, 1]. Due to this, the deep
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learning model’s convergence is enhanced with the range reduction
from 255 to 1 by dividing each pixel value by 255. This process also
improves the learning rate of our proposed model and the stability
of the model during training. The procedure for image
normalization is shown in Algorithm 4.

Function normalize _image():
input:brightness _and_contrast_adjusted_image
output:normalised_image
image = input
1« length of image
b«—breadth of image
¢ « channels of image
normalisation_value « 255
normalised_image«create_empty _image(l,b)
for 1=0 to 1-1 do:
for j=0 to b-1 do:
for k=0 to c-1 do:
normalised_image(i][j][k] < image|i][j][k]/255
end for
end for
end for

end Function

end

Algorithm 4. Image normalization.

3.4 Feature extraction and classification

Upon successful completion of preprocessing, the tomato
leaf images are subjected to appropriate feature extraction
and thereby will be classified using the deep learning model.
This, in turn, will support not only the identification of
diseases in the leaves but also the severity. The deep
learning model used is the VGG-16 fine-tuned model. In
addition, a CNN model, namely, NASNet, is also employed
for the leaf’s disease identification.

Later, an ensemble model consisting of five ensemble blocks and
a final output block is used with the input layer being received from
the output of the VGG-16 fine-tuned model and the NASNet model
as a list. Furthermore, the results are improved for an enhanced
performance with the aid of an EMA-based approach and
optimized with an EWGO.

3.4.1 VGG-16 fine-tuned model

The last five layers of the VGG-16 model are unfrozen and the
weighs of these layers are updated with the data to fine-tune
the model. The optimizers do not modify the parameters of the
remaining layers, which remain frozen, thereby preserving
the weights.
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This model, which is made up of five different blocks, is
composed of convolution layers with rectified linear unit (ReLU)
activation and a max pooling layer, a global average pooling layer,
dense layers, batch normalization layers, and an output dense layer
with softmax activation. The preprocessed image of size 236 x 236 x
3 is taken as an input into the model, first entering block 1.

Block 1 consists of two convolution layers and a max pooling
layer. Each convolution layer consists of 64 filters, each of size 3 x 3.
Each layer also has a ReLU activation layer that brings in non-
linearity once the feature extraction is done by that layer. The first
convolution layer receives the input as 236 x 236 x 3, and the first
convolution layer produces the output of shape 236 x 236 x 64 after
the activation function. The second convolution layer takes the
input as the output of the first convolution layer and performs
feature extraction and ReLU activation without making any changes
in the shape of the data. Once the output data are produced by the
second convolution layer, the max pooling layer that has a filter size
of 2 x 2 reduces the size from 236 x 236 x 64 to 118 x 118 x 64,
which sends the output to block 2.

Block 2, just like block 1, consists of two convolution layers
where each layer has a ReLU activation function and a max pooling
layer. The only difference is that the input received by the first
convolution layer of this block will be of size 118 x 118 x 64. At the
end of the second convolution, the output will be of size 118 x 118 x
128 since the number of filters in the convolution layers of the
second block is 128. The max pooling layer reduces the size of the
data from 118 x 118 x 128 to 59 x 59 x 128.

Block 3, unlike the previous two blocks, has three convolution
layers where each layer has a ReLU activation function and a max
pooling layer. The functionality of the block remains the same with
the difference here being the presence of a third convolutional layer
and the presence of 256 filters in each convolution layer. The first
convolution layer receives the input of size 59 x 59 x 128 from the
max pooling layer of block 2 and produces an output of size 59 x 59
x 256, which is preserved in the second and third convolution layer.
The max pooling layer reduces the size of the data to 29 x 29 x 256.

Blocks 4 and 5 are similar to block 3 with the only difference being
all the convolution layers present in blocks 4 and 5 have 512 filters. The
input received by the first layer of block 4 will be of dimension 29 x 29
x 256 and the output after the third convolution layer will be of size 29
x 29 x 512, which, in turn, is reduced to 14 x 14 x 512 by the max
pooling layer. In case of block 5, the input received by the first
convolution layer will be of size 14 x 14 x 512 and the output is
preserved even after the third convolution layer. The max pooling layer
in block 5 reduces its size from 14 x 14 x 512 to 7 x 7 x 512.

The global average pooling layer takes the output of block 5 as input,
which down-samples the multi-dimensional data into single-dimensional
data by finding the average of each feature map where the filter is of size 2
x 2, resulting in the reduction of data size from 7 x 7 x 512 to 1 x 1 x 512.
After this down-sampling, two dense layers with ReLU activation
composed of 128 and 32 neurons, respectively, transform the output
obtained by extracting the features of the preceding layers into data, which
are suitable for classification. Finally, the output layer, ie., dense layer with
softmax activation, is used to perform multiclass classification. The steps
for VGG-16 fine-tuned model is shown in Algorithm 5.
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input: preprocessed tomato leaf image
output:trained finetuned_VGG16 classifier for
tomato leaf diseaseclassification
Function TrainClassifier(preprocessed_tomato_leaf _
image):

model — VGG16 multiclass Classifier

k< finetuneable layers
for layer in last k model layers do
layer — trainable

end for

B<—batch size

N« total classes of tomato leaf diseases

h—height of preprocessed_tomato_leaf _image

w—width of preprocessed_tomato_leaf_image
c«color channels of preprocessed_tomato_leaf
_1mage
for epoch=1 to 100 do
u—learning rate
while performance does not plateau do
batch—obtain a batch of size B
feed batch into model through layers L
prob—predicted tomato leaf disease class prob
abilities
labels<— ground truth probabilities
loss, §«categorical cross entropy loss

_ e*p
& ——log <29,:16X] )

x;«logit for class i€ {1,2,.,N}

update model parameters @ through backpropagat
ion using lossé

O—06-uvd
where V§«gradient of loss & with respect to
model parameters 6

compute accuracy,

S (TP + TNy)

accuracy = —y
EK:I(TPk + TN;< + F:Dk + FNk)

compute precision,

.. §Q=13F1<
recision = <= 5—rp5~
P EZZI(}FK"'FFK)

compute recall,

", TP,
recall = —p ket /Pk
E’;:l(TP,< + FNy)
compute F1 — score,

230 TPy
Sh QTP+ TNy + FPy)

F1-Score =

use Adam optimizer to monitor loss & and tune
model learning;

end while

if performance plateaus then
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update learning rate u to promote further
Iearning
end if
end for
outputt g < output probabilities from model

return oUtPUtyge6

end Function

end

Algorithm 5. Tomato leaf classification—fine-tuned VGG-16 training.

input: preprocessed tomato leaf image
output:trained NASNet classifier for tomato leaf di
sease classification
Function TrainClassifier(preprocessed_tomato_leaf _
image):
model — NASNet multiclass Classifier
B<—batch size
N« total classes of tomato leaf diseases
h—height of preprocessed_tomato_leaf_image
w—width of preprocessed_tomato_leaf _image
c«<color channels of preprocessed_tomato_leaf _
image
for epoch=1 to 100 do
u—learning rate
while performance does not plateau do
batch—obtain a batch of size f
feed batch into model through layers L
prob—predicted tomato leaf disease
class probabilities
labels— ground truth probabilities
Jloss, 6 —categorical cross entropy loss

x; «Ilogit for class i€ {1,2,.,N}
update model parameters 6 through back
propagation using loss &

60— 0-uvd
where Vé«gradient of loss & with respect
to model parameters 6

compute accuracy,

S (TP + TN)
SO (TPy + TNy + FPy + FN)

accuracy =

compute precision,

2[;:1 TPy

recision = <=L -
P ST (TP + FPY)

compute recall,

St TPx

recall = 72Z:1(Tpk TN

compute F1 - score,
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ZEZ:I TPK

F1-Score =S o7p, + TN+ FPy)

use Adam optimizer to monitor loss & and
tune model learning;
end while
if performance plateaus then
update learning rate u to promote further
learning
end if
end for
outputy,syet < output probabilities from model

return OUTPUTyssnet
end Function

end

Algorithm 6. Tomato leaf classification—NASNet training.

3.4.2 NASNet

NASNet is a deep learning architecture where an optimal neural
architecture is searched automatically by using the Neural
Architecture Search (NAS) method. For the best performance on
a specific task, the design of the neural network’s topology is
automated using the NAS process.

The NAS algorithm can be generalized as an algorithm that
searches for the best algorithm to perform a certain task. It involves
three different components, namely, the search space, performance
estimation strategy, and search strategy. The search space encompasses
all the potential architectures that can be looked for within the neural
network’s subspace. It can be categorized into two primary types: the
global search space and the cell-based search space. The global search
space offers a high degree of flexibility, accommodating a wide range of
architecture due to its ample operation arrangement options. In
contrast, the cell-based search space is characterized by recurring
fixed structures in effective, manually designed architectures, leading
to the assembly of smaller cells into larger architectural structures.

Without construction or training of a possible neural network,
the performance is evaluated using the performance estimation
strategy, which returns a number or an accuracy value of the
possible model architecture, which the NASNet predicts as a
possible solution. Different search strategies such as grid search,
random search, gradient-based search, evolutionary algorithm, and
reinforcement learning can be used to identify the best architectures
and avoid bad ones before estimating performance. The steps for
NASNet training is shown in Algorithm 6.

3.4.3 Ensemble model

The ensemble consists of five ensemble blocks and a final output
block. The input layer receives the output of the VGG-16 fine-tuned
model and the NASNet model as a list. This input is then passed
through the five ensemble blocks, finally reaching the output layer.
Each ensemble block is composed of a fully connected layer, a
reshape layer, two convolutional layers, a batch normalization layer,
ReLU activation, an ensemble layer, and a max pooling layer.

The ensemble process in the ensemble layer is carried out based
on effective moving average. This layer has two parameters, namely,
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the decay rate, which is responsible for reducing the effective
moving average, and the update rate, which ensures that for every
update rate iteration, the weights in the ensemble layer will be
modified with the help of the effective moving average.

The output layer is responsible for classification.

The effective moving average is represented mathematically as
shown in Equation (3):

EMA pdatea = EMA + (Predyssuer — Predyceirr) * 6 (3)

where EMA pqatea is the updated effective moving average;
EMA denotes the effective moving average before the update
operation; Predyasner and Predyggierr are the predictions of
NASNet and the VGG-16 fine-tuned model, respectively; and 0 is
the decay rate, which is taken as 0.8 in this case.

The predictions of both models are taken as input. Initially, the
prediction of the VGG-16 fine-tuned model was taken as the
effective moving average, which is then updated with the help of
the above mathematical expression. The update rate ensures that
the weights are modified only after a certain number of iterations,
which is two in this case. Therefore, for every second iteration, the
weights are modified by reshaping the effective moving average
tensor for every weight tensor. The reshaped tensor is updated into
the weight tensor as the new weight tensor for the next two
iterations. The procedure for Ensemble classifier training using
EMA is shown in Algorithm 7 and procedure for exponential
moving average-based ensemble weight update in a custom
ensemble layer is shown in Algorithm 8.

input: preprocessed tomato leaf image
output:trained ensemble with EMA classifier for tom
ato leaf diseaseclassification

image):

VGG« train VGG16 classifier;

NASNet — train NASNet classifier;

B<—batch size

N« total classes of tomato leaf diseases

h<—height of preprocessed_tomato_leaf _image

w—width of preprocessed_tomato_leaf _image

c<color channels of preprocessed_tomato_leaf_1i

mage

for epoch=1 to 100 do

u—learning rate

while performance does not plateau do

batch—obtain a batch of size B

feed batch into model through ensemble layer
outputepcenpie <— EMA _ensemble(VGG,NASNet)

feed batch into model through fully connected

and reshape layers

output cspape - shape —(h,w,c)

perform convolution on output espape

my my me . o
O Y) =SS I(x -1,y - J,k) » K(1,7,k)
ik

flatten convolution output
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outputiatten - shape — (B, h«wxd)
feed outputsiarren to output layer
prob—predicted tomato leaf disease class
probabilities
labels— ground truth probabilities
loss, 6« categorical cross entropy loss

6 -log %)
(Ej:le !

[
N
x;«—1logit for class i€ {1,2,.,N}
update model weights 6 using Effective Moving
Average, ema

compute accuracy,

S (TP + Ty)

accuracy = —y
Ek:l(TPk + TNk + FPk + FNk)

compute precision,

- S0 TP
recision = g <=——r5~
P ST (TP + FPo)

compute recall,

noTP
recall = —y ket 1Pk
ST P+ FN)

compute F1 - score,

222:1 TP,

F1-Score =S 51p, + T, + FP)

use EWG optimizer to monitor loss & and tune
model learning;

end while

if performance plateaus then
update learning rate u to promote further
learning

end if

end for

outputy,syer < output probabilities from model

return OUtPUTysgyer
end Function

end

Algorithm 7. Ensemble classifier training using EMA for tomato leaf
disease classification.

Initialize model <« EnsembleClassifier(tensor);
Set decay rate, o0 «— 0.8;
Set update rate, B — 2;
Set counter — 0;
NasNetg,p,cs < TrainNasNet(tensor);
VGG16g,tpyts < TrainVGGle(tensor);
Function Custom_EMA _Ensemble():
Initialize ema, < VGGl6gytpyts
while EnsembleModel is running do

ema; «— (1 — a) x ema; — 1 + o » NasNeto,epurs

| counter — counter + 1
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if counter % f «— 0 then
weights
«|[reshape(ema;, weight.shape)for weight
in current model weights]
Update Ensemble Layer weights
end if
end while

end Function

end

Algorithm 8. Exponential moving average-based ensemble weight
update in a custom ensemble layer.

3.4.4 Layer information during feature extraction
There are a total of 12 layers used during feature extraction as
enumerated below.

3.4.4.1 (i) Convolutional layer

The convolutional layer is the most important layer used in
CNNs, which is responsible for extracting features from the input
with the use of filters or kernels. The kernel is a matrix consisting of a
set of learnable parameters. The convolution process can be defined
as the conversion of pixels in its receptive field into a single pixel. This
operation is performed as the dot product between the kernel matrix
and another matrix, which is the receptive field restricted to a certain
portion. Hence, in the input image that is composed of three color
channels, the kernel carries out the convolution operation in all the
three channels, although the height and width will be spatially small.
The kernel slides across the height and width of the receptive region
of the image. This sliding size is called a stride. The result is a
production of a two-dimensional representation of the kernel at each
spatial position of the image. The convolution operation results in a
feature map as output, which can be represented mathematically as
shown in Equation (4):

O(x,y) = Ez,wzﬁ,wf(x - 1>)’ _]) * K(Z>]) 4)

where O(x,y) represents the value in the output feature map in
the position (x, y) and I(x—Ly—j) represents the pixel value in the
input at position (x—i,y—i). K(i,j) represents the value of the kernel
at position (i).

3.4.4.2 (ii) Depthwise separable convolutional layer

Depthwise separable convolution handles both the spatial and
depth dimensions. Here, the kernels cannot be factored into smaller
units. This process is split into two steps:

*  Depthwise convolution: a single convolution filter is applied
on each input channel.

* Pointwise convolution: it involves the usage of a 1 x 1 filter
that iterates through every single point of the input.

This kernel has a depth equal to the number of channels that the
input has. The usage of a depthwise separable convolution layer
reduces the number of parameters compared to the standard
convolution layer.
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3.4.4.3 (iii) Max pooling layer

The max pooling layer is one of the largely used layers in CNNs,
normally found after the convolutional layer. Its purpose is to
reduce the spatial dimensions (length and breadth in this case) of
the input feature map resulting from the preceding convolution
layer. The feature map is taken by the layer as input, which applies
the max pooling operation where a window slides through the
feature map the window content with the maximum value in the
window, thus down-sampling the feature map. Providing a stride
value lets the CNN know the number of pixels to move while sliding
through that particular layer. The max pooling layer can be
mathematically represented as shown in Equation (5):

O(x,y) = max,]-‘:_olmaxf:_oll(x S+, yes+]) (5)

where O(x,y) is the value in the output feature map at point (x,
y), s is the stride value, and I(x-s+i,y-s+j) is the value in the input
feature map at position (x-s+i,y-s+j), and k is the size of the
pooling window.

3.4.4.4 (iv) Average pooling layer

The purpose of using the average pooling layer is to reduce the
spatial dimensions such as the length and depth of the feature map
just like the max pooling function, but the difference here is that
down-sampling is performed by transforming the window into a
single value, which is the average of the values present in it. This
returns a smoother feature map compared to the max pooling layer,
which returns a feature map focusing on prominent features. The
average pooling layer can be mathematically represented as shown
in Equation (6):

ky—1k,, 1

S D Xlixsp+p, jrs, +g.c] (6
p=0 g=0

Ylijoe] = Ky k

where Y is the output after the pooling function, X is the input
feature map, k, is the height of the feature map, and k,, is the width
of the feature map. s,, and s, are the stride values for height and
width while sliding through the input feature map.

3.4.4.5 (v) Concatenation layer

The concatenation layer concatenates the inputs having the same
size in all dimensions except the concatenation dimension, received
by the layer along a specified dimension. This layer is used whenever
we want to merge the information from different parts of the network
or data modalities. The concatenation operation takes place by
combining multiple input tensors by stacking them along the
specified axis, resulting in a single tensor with an increase in size.
The layer is mathematically expressed as shown in Equation (7):

Alirjic] if 0<c<C
Olbjre =9 , )
Bli,j,c - Cy] if C,<c<C+C,

where O is the output, A is the first input tensor with C;
channels and B is the second input tensor with C, channels for
the concatenation layer, i represents the height dimension and
ranges from 0 to H, j represents the width dimension and ranges
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from j to W, and c represents the channels and ranges from 0 to
C1+C2.

3.4.4.6 (vi) Addition layer

This layer adds inputs from multiple neural network element-
wise. This operation can be performed when the input tensors have
the same shape. This is done so that the information flows
seamlessly through the network just by the addition of the output
of one layer to the output of the previous layer. This layer is
mathematically represented as shown in Equation (8):

O[i,j, c] = Ali,j,c] + B[i,j, ] (8)

where O is the output, A is the first input tensor and B is the
second input tensor for the addition layer, i represents the height
dimension and ranges from 0 to H, j represents the width
dimension and ranges from j to W, and c represents the channels
and ranges from 0 to C.

3.4.4.7 (vii) Batch normalization layer

This layer helps in making neural networks faster and more
stable by performing standardization and normalization operations
in the feature map that is provided as input to the layer. The
normalization process is carried out in two steps:

* Normalization
* Rescaling and offsetting

Before performing normalization, the data are fed into the layer
in the form of mini batches. The mean and standard deviations of
these mini batches can be found using the following equations
shown in Equations (9, 10):

and

m
1 2
o =— > (x; — 1) (10)
m .
i=1
where y and o are the mean of the values in the ith value in the
mini-batch x of size m.
The main purpose of normalization is to transform the data to
have a mean equal to 0 and standard deviation equal to 1, which is
carried out using the expression as shown in Equation (11):

Xi— |
O +e

(1m

xi(norm) =

Two learnable parameters y and f3 are used for rescaling and
offsetting, respectively, thereby normalizing each batch accurately.
This is represented using the expression shown in Equation (12):

Xi = yxi(norm) + ﬁ (12)
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where x; is the ith value of mini batch x and X, is the
normalized ith value of mini batch x.

3.4.4.8 (viii) Dropout layer

The dropout layer acts as a mask to nullify some of the neurons’
contributions towards the next layer while the rest of the neurons
remain unmodified. It aims to prevent overfitting, avoid
dependency on a specific neuron during training, and ensure
better generalization from the model. The neurons are nullified
using a probability for random exclusion such that they behave like
they are not part of the architecture. The layer can be
mathematically represented as shown in Equations (13, 14):

O=Xx*M during training (13)

and

O = X+ (1 - p)during testing (14)

where O is the output, X is the input, and p is the probability, and
it is scaled to a factor (1 — p) during output since the dropout will be
turned off during the testing phase. M is a binary mask with the shape
same as X and each element of M is set as 0 or 1 depending on p.

3.4.4.9 (ix) Global average pooling layer

The global average pooling layer is a pooling layer that performs
down-sampling. Unlike the usual pooling layer, the global pooling
layer condenses the feature maps into a one-dimensional mapping
that can easily be read by the single dense classification layer. The
mathematical representation is as shown in Equation (15):

H

) w
0= L SS(Fi, f])

i=0j=0

(15)

3.4.4.10 (x) Flatten layer

This layer performs the flattening operation that reshapes the
input received into a single-dimensional feature vector without
affecting the batch. It is done to allow the fully connected layers to
operate on the multi-dimensional feature maps since the fully
connected layers can only be trained with single-dimensional
feature vectors.

3.4.4.11 (xi) Fully connected layer

The fully connected layer or simply the dense layer is a CNN
layer where all the neurons or nodes in one layer is connected to
every node to the next layer. This layer works with activation
functions such as the ReLU during feature extraction and softmax
during multiclass classification. It is represented as a mathematical
function as shown in Equation (16):

0 = f(W+X +b) (16)
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where X is the input, O is the output, W is the weight matrix, b is
the bias vector, and fis the activation layer, which would be ReLU in
case of feature extraction and softmax in case of classification.

3.4.4.12 (xii) ReLU activation layer

The ReLU is a piecewise linear function used to introduce non-
linearity into the feature map obtained as output before the
activation function is applied. The ReLU function works by
applying a simple thresholding operation where the positive
values remain the same while the negative values become zero.
The ReLU activation function can be expressed mathematically as
shown in Equation (17)

f = max (x,0) (17)

where x is the input given into the function and f is the
output obtained.

3.4.5 Classification
3.4.5.1 (i) Softmax activation
The softmax activation function is responsible for the multi-

class classification of the vector obtained from the convolution
layers after the feature extraction phase in the output layer. It works
by calculating the exponent of each entry in the vector and dividing
the value by the sum of all the exponents in the vector as shown in
Equation (18).

eti

N x;

j=1¢"

softmax(x;) = (18)

where x is the input vector and i is the ith entry in the input
vector with N entries. The denominator of the softmax activation is
the sum of the exponents of the entries. This is done for the
conversion of N real number entries into a probability
distribution of N possible outcomes.

3.4.5.2 (ii) Categorical cross-entropy loss function

This loss function (also known as softmax loss) is used with a
CNN to provide an output for the probability of each image over N
different classes. This function is a combination of softmax
activation and the cross-entropy loss function and is thus useful
during multi-class classification. Its use allows the comparison of
the target and predicted values by the CNN model as an output,
thereby measuring the modeling efficiency of the training data by
the CNN. The objective of this loss function is to calculate the
difference between the ground truth and predicted class
distribution. Techniques like gradient descent are used to adjust
the weights and biases for minimalization of this loss, thereby
improving the predictions. The categorical cross-entropy loss
function is written as the negation of logarithmic function of the
softmax function as shown in Equation (19):

e
CE = - log <W>

(19)

Frontiers in Plant Science

51

10.3389/fpls.2024.1382416

where CE is the cross-entropy loss, x, is the positive class’ CNN
score, N is the number of classes for classification, and x; is the jth
class’ score.

To backpropagate through the network and optimize the
defined loss function resulting in tuning the net parameters, the
loss” gradient is calculated with respect to the CNN’s output
neurons given by the gradient of the cross-entropy loss with
respect to each CNN’s class score. The derivatives are represented
mathematically as shown in Equations (20, 21):

Derivative with respect to positive class:

I (Crog[ L)) =2 (20)
J Xp g EJN & ;\I &Y
Derivative with respect to negative class:
0 ev en
— | -lo = 21
axn( g(zﬁ“e"f» Y

where x,, is the score of any negative class in N other than N,
which consists of the positive classes.

3.4.6 Optimizer
3.4.6.1 (i) Adam optimizer

The Adam optimizer is an extension of the stochastic gradient
descent (SGD) algorithm based on adaptive moment estimation, which
takes advantage of two principles, namely, the momentum and root
mean square propagation (RMSprop). The momentum technique is
used to accelerate convergence in gradient descent by adding the
fraction of the previous gradient update with the current update,
reducing the oscillations. The convergence process speeds up along
shadow dimensions, which assists optimization. RMSprop adapts the
learning rate for each parameter individually by maintaining a moving
average of squared gradients. This helps in scaling learning rates and
making the optimization process more robust. With the help of these
two methods, the following are obtained as shown in Equations (22, 23):

)
me = Bmy +(1- By) [&H 22)
5 2
Ve = ﬂth,l +(1-P) {ﬁ} (23)

where m, is the estimate of the first-order moment, which is the
aggregate of gradients at time ¢, v, is the estimate of the second-
order moment, which is the sum of the squares of the past gradients
at time f, fB; is the decay rate of average of gradient in the
momentum principle, and f, is the decay rate of average of
gradient in the RMSprop principle. The moment estimates
and v; can be called the weight parameters.

In the Adam optimizer, the bias-corrected weights are
considered such that the weight parameters will not be biased
towards 0. The bias-corrected weight parameters are as shown in
Equations (24, 25):
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—

my

m;

C1-p

(29)

Vi
1-5

These bias-corrected weight parameters are used in the general

~

Ve =

(25)

weight update equation as shown in Equation (26):

—~ o
Wipl = We =My | — = (26)
) (W + 6)
where o is the learning rate or the step size parameter and ¢ is a
small positive constant to avoid division by 0.

3.4.6.2 (i) Enhanced weighted gradient optimizer

This is a modified Adam optimizer that accepts a custom weight as
a parameter and incorporates the gradients multiplied by the custom
weight into its operation. The custom weights are given as a parameter
and are introduced into the gradients with the values being multiplied.
The modified values are introduced into the Adam optimizer and then
used in our ensemble model. The updated weight with the custom

weight parameter before optimization is as shown in Equation (27):
0= w (27)

This updated weight @ is introduced to the weight update
process as shown in Equation (28).

©— 7 o
Wi = O —my \/:
v, te

where 7y is the custom weight parameter, o is the learning rate

(28)

or the step size parameter, € is a small positive constant to avoid
division by 0, w, is the existing weight before the optimization
process, and w, ; is the updated weight after optimization. 11, and v,
are the bias-corrected weight parameters. The procedure for
enhanced weighted gradient optimizer is shown in Algorithm 9.

Initialize epoch «— 0;

while EnsembleModel is running do

forward pass

predictions «— EnsembleModel(batch 1);

loss — CategoricalCrossEntropy(predictions,
batch i _labels);

end forward pass
backward pass
gradient, V| «— dL/96;

Custom weights, VL custom «—VL - custom_weight;
Update EnsembleModel parameters,

0 «— 06 -0o - VL;

end backward pass

early stopping check
Monitor validation loss Lval
Criteria: if Lval does not improve for 4
consecutive epochs then end training

if Lval < best 10Ss then
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best loss « Lval
patience counter « 0
else
patience counter « patience counter + 1
if patience counter = 4 then

Break training loop;
end if

end else

end early stopping check

end while

end

Algorithm 9. Enhanced weighted gradient optimizer.

4 Results and discussion

In this paper, the focus of research starts by addressing a
pressing issue in agriculture: the management of plant diseases,
with a specific focus on tomato plants. Researchers have employed
complex deep learning methodologies and machine learning
models to tackle this challenge. This paper strives to revolutionize
the ways to identify plant diseases, especially those affecting tomato
plants, and manage them accordingly.

The study adopts data analysis and image preprocessing
techniques to ensure that the dataset used is well-balanced and
that the quality of the images is optimized for deep learning models.
It uses methods such as median filtering, resized cropping, and
brightness normalization to enhance the features derived from
them. This meticulous attention to data quality and balance is
crucial in developing a reliable disease classification system. To
extract relevant features from the tomato leaf images, the research
leverages two transfer learning models, VGG-16 and NASNet.
Furthermore, these models are fine-tuned, allowing them to adapt
to the specific characteristics of the dataset. This adaptability
showcases the potential for pre-trained models to significantly
improve classification accuracy when applied to particular datasets.

One of the key novelties is the incorporation of an ensemble model
with an EMA function and an EWGO. This innovative approach
optimizes the learning process, resulting in a more effective and
accurate disease classification system. It stands as a promising method
to enhance the performance of machine learning models in agriculture.

4.1 Performance metrics

The evaluation of the models is robust, using a variety of
performance metrics, including the confusion matrix, specificity,
accuracy, loss, precision, recall, F1-score, ROC curve, AUC, and
misclassification rate. These metrics provide a comprehensive
assessment of the model’s effectiveness, making it clear that the
research is backed by rigorous analysis and empirical evidence. The
overall proposed architecture is shown in Figure 1, the training data
distributions of the dataset is shown in Figure 2, the validated data
distributions is shown in Figure 3, images of dataset after
preprocessing is shown in Figure 4, images of tomato leaves
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FIGURE 1

Overall proposed architecture for tomato leaf disease classification.

Train Data Distribution

Tomato___Early_blight

Tomato___Septoria_leaf_spot

Tomato___Tomato_Yellow_Leaf_Curl_Virus

Tomato___Bacterial_spot

Tomato__Target_Spot

Tomato___Tomato_mosaic_virus

FIGURE 2
Training data distributions of tomato leaf images.

Tomato___healthy

Tomato___Late_blight

Tomato___Spider_mites Two-spotted_spider_mite

Tomato___Leaf_Mold

Validation Data Distribution

Tomato___Early_blight

Tomato___Septoria_leaf_spot

Tomato__Tomato_Yellow_Leaf_Curl_Virus

Tomato___Bacterial_spot

Tomato__Target_Spot

Tomato___Tomato_mosaic_virus

FIGURE 3
Validation data distributions of tomato leaf images.

observed at each preprocessing step in shown in Figure 5, layer
architecture for VGG-16 tomato leaf disease classifier is shown in
Figure 6, layer architecture for NASNet mobile tomato leaf disease
classifier is shown in Figure 7 and layer architecture for ensemble
model is shown in Figure 8.
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Tomato___healthy

Tomato___Late_blight

Tomato___Spider_mites Two-spotted_spider_mite

Tomato___Leaf_Mold

4.1.1 Confusion matrices

The confusion matrix is an # x n matrix where the rows represent
the actual classes while the columns represent the predicted class. The
data points are stored in the matrix in cells corresponding to the
specific actual class and specific predicted class as count values.
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FIGURE 4
The images from the tomato leaf dataset after preprocessing, representing (A) late blight, (B) healthy, (C) early blight, (D) septoria leaf spot, (E) yellow
leaf curl virus, (F) bacterial spot, (G) target spot, (H) mosaic virus, (I) leaf mold, and (J) two spotted spider mite.

Original Median Blur Focus ROI

Normalization

Brightness Correction

Original Median Blur Focus ROI Brightness Correction Normalization

Original Median Blur Focus ROI Brightness Correction Normalization

Original Median Blur Focus ROI Brightness Correction Normalization

Original Median Blur Focus ROI Brightness Correction Normalization

FIGURE 5
Images of tomato leaves observed at each preprocessing step.
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FIGURE 6
Layer architecture for VGG16 tomato leaf disease classifier.
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FIGURE 7
Layer architecture for NASNet mobile tomato leaf disease classifier.
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FIGURE 8
Layer architecture for ensemble model.

The above confusion matrix consists of the values predicted by the
proposed model corresponding to the actual value. The confusion
matrix of the proposed model is shown in Figure 9, the confusion
matrix of the VGG-16 fine-tuned model is shown in Supplementary
Figure 2, the confusion matrix of the NASNet model is shown in
Supplementary Figure 3, the precision values of VGG-16, NASNet,
and the proposed model is shown in Supplementary Figure 4.

4.1.2 Specificity

The specificity is the ratio of true negatives to the actual number of
negative instances in a specific class. This is a metric to measure the
ability of the classifier for correct identification of negative instance
within a specific class.

}

convoLuTion

BATCH NORMALIZATION

MAX POOLING

FULLY CONNECTED

It is mathematically expressed as shown in Equation (29):
Specificity of VGG-16, NASNet, and the proposed model is
shown in Figure 10.

22:1 INi

ST (TN, + FPy) (29)

Specificity =

4.1.3 Accuracy

Accuracy can be defined as the number of correctly classified
images to the total number of images in the dataset. This can be
expressed mathematically as shown in Equation (30): Accuracy
curves of VGG-16, NASNet, and the proposed model is shown in
Figure 11.
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FIGURE 9
Confusion matrix of the proposed model.
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FIGURE 11

Ensemble : Training and Validation Accuracy
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Accuracy curves of (A) VGG-16, (B) NASNet, (C) proposed model.
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S (TP + TN)
EZZl(TPk + TNk + FPk + FNk)

Accuracy = (30)

4.1.4 Loss

Loss is represented as the measure of the model’s performance
regarding the ability to minimize the difference between the
predicted and actual values. In our case, we have used the
categorical cross-entropy loss function. Loss Curves of VGG-16,
NASNet and the proposed Model are shown in Figure 12.

Sk TPy

EZZI(TP]( +FPk) (31)

Precision =

4.1.5 Precision

Precision is calculated as the ratio of the true total number of
instances that are correctly identified as positive by the classifier to
the total number of instances identified as positive by the classifier.
This is mathematically expressed as shown in Equation (31):

i1 TPy

Recall = ——~=———
EZ:I(TPk +FNk)

(32)

4.1.6 Recall

Recall or sensitivity is the ratio of the number of true positives to
the sum of the number of true-positive and false-negative instances
in a specific class. This is a metric to measure the ability of the

— training_loss
— val_loss

Epochs

10.3389/fpls.2024.1382416

classifier for correct identification of positive instances within a
specific class. The recall curves of VGG-16, NASNet, and the
proposed model is shown in Figure 13.

It is mathematically expressed as shown in Equation (32):

ZELITP](
EZ:I(ZTPIC + TNk + FPk)

F1 Score = (33)

4.1.7 Fl-score

The Fl-score is utilized for striking a balance between
minimizing the false positives and false negatives and is used as a
combination of both precision and recall. Thus, it can be
mathematically expressed as shown in Equation (33) and the F1
score curves of VGG-16, NASNet, and the proposed model is
shown in Figure 14.

4.1.8 ROC curve and AUC

The receiver operating characteristic (ROC) curve is a graphical
representation that consists of the performance of the model in
various classification thresholds and is plotted with sensitivity
against specificity, thereby visualizing the trade-off between both
metrics. AUC helps in quantifying the overall performance of the
classifier, which is measured as the area under the ROC curve and
the ROC curves of VGG-16, NASNet, and the proposed model is
shown in Figure 15.

4.1.9 Misclassification rate
The error rate can be defined as the number of inputs in a particular,
which are classified into a wrong class; this can be expressed

0.7

— training_loss
— val_loss

0.6 |
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FIGURE 12
Loss curves of (A) VGG-16, (B) NASNet, (C) proposed model.

Frontiers in Plant Science

0.6 0.8 10

frontiersin.org


https://doi.org/10.3389/fpls.2024.1382416
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

V. etal

Model recall

— Train
~ Validation

T T T

80

100

10.3389/fpls.2024.1382416

Model recall
10

AMAMAMMS AN AN
AN W W\ AA)
09 f.']v\ VW YV

08

07

recall

0.6

05

04 — Train

~ Validation

03+ T T T T
80

100

Ensemble : Training and Validation recall

1.00 A

0.95

0.90 A

0.85 A

recall

0.80 -

0.75 A

—— Training recall
— Validation recall

FIGURE 13
Recall curves of (A) VGG-16, (B) NASNet, (C) proposed model.

mathematically as shown in Equation (34): Misclassification rates in
VGG-16, NASNet, and proposed model is shown in Figure 16.

No of Misclassified Instances in a class

Error % =
* ™ “Total Number of Instances in a class

(34)

4.2 Performance analysis

The comparison of the three models in the context of the above
explained metrics, namely, (a) VGG-16, (b) NASNet, and (c)
proposed model, is presented below in graphical representations.

4.3 Interpretation

The above computed performance metrics and the respective
graphical representations are proof that the proposed deep learning
technique, the suitable application of the ensemble model, and the
enhanced classifier and optimizer used have shown a tangible
increase of the feasibility in the disease prediction for the given
series of input images of tomato leaves. It also proves that the
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T T

60 80 100

Epochs

preprocessing procedure applied is a fitting one. The performance
values observed for accuracy, loss, precision, recall, ROC, and F1-
score are 98.7%,<4%, 97.9%, 98.6%, 99.97%, and 98.7% respectively.
It is apparent that the results obtained show significant
improvement compared with those shown by conventional and
present techniques as explained in the literature. The performance
scores recorded for the existing models in the literature are
tabulated below. The techniques studied do not record all the
performance metrics as in the proposed model in this work. One
parameter that is considered in all the models, namely, “accuracy”,
is exponentially high in the proposed approach. The performance
comparison of the proposed model with existing models is shown
in Table 1.

4.4 Testing of hypotheses

In order to provide a statistical analysis on the proposed work,
testing of hypothesis was carried out in this work. It consists of three
hypotheses including a Null hypothesis given in Table 2.

Hypothesis 1: There is a significant influence between season
and tomato leaf diseases.
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Hypothesis 2: There is no relationship between the occurrence

of tomato leaf disease and the environment.

4.5 Testing of Hypothesis 1

As the p-value in this test is greater than 0.01, the given null
hypothesis can be accepted at the 1% significance level. Hence, there

is a significant influence between season and tomato leaf diseases.

Table 3 shows the chi-square test for analyzing the relationship
between the deep learning classifier vs. tomato leaf disease detection.

TABLE 1 Performance comparison.

Tomato__Target_Spot
Tomato__Leaf Mold

Tomato__Tomato_mosaic_virus

Tomato_Tomato_Yellow Lea

Tomato,

True Label

4.6 Testing of Hypothesis 2

HO: There is no relationship between the selection of the deep
learning classifier vs. tomato leaf disease detection for performing
accurate detection of the disease.

Since the value of p is less than 0.5, this hypothesis, which is
shown in Table 3, is rejected at the 5% significance level. Therefore, it
is concluded that there is a strong and direct relationship between the
selection of the deep learning classifier and tomato leaf disease
detection from tomato leaf images for performing accurate
detection of the disease.

Performance scores (all in %)

Specificity =~ Accuracy Recall Precision Fl-score Loss ROC @ Misclassification
AlexNet (Wang et al., 2017) - 91.00 91.00 91.0 91.00 - - -
GoogLeNet (Wang et al., 2017) - 94.8 94 94 94 - - -
VGG-16 (Wang et al,, 2017) - 95 95 95 95 - - -
VGG-16 (Bracino et al.,, 2020) - 90.40 - - - - _ -
LBP M-SVM (Wang et al., 2017) 90.23 97.20 90.75 93.50 - - - -
GPR Quadratic SVM (Ashwinkumar et al., 2022) - 83.30 - - - - 86.00 -
OMCNN (Khan et al., 2019) - 98.7 98.2 - 98.5 - - -
Proposed adaptive ble model 98.9 98.7 98.6 97.9 98.7 <4 99.97 <9
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TABLE 2 HO: There is a significant influence between season and tomato leaf diseases.

. Weighted mean (O - E)?
7 . 2 .
R?asontfor Weighted f’neant eEEe G Value is x> / p-value (with
| ;)g’lna (o] (uskl)ng exgerlrlnenos) computation O 2 6 dof)
eaf disease observed value (expected value E) XZET
Fungi 7.692 4.649 0.649
Fertilizer use 6.329 3.548 0.779
Bacteria 7.947 4.979 0.612
4.11 0.65
Virus 7.309 3.648 0.999
Viroids 7.519 4.718 0.60
Geographical Region 6.418 4.269 0.499

TABLE 3 Analysis of deep learning algorithm's role in tomato leaf
disease detection.

Mean

Chi- availability

square
value

Important metric
applied on
the algorithm

value

Accuracy of classification

5 Conclusion and future work

In this research paper, a new ensemble classifier along with an
EMA function with temporal constraints, an EWGO that is
integrated with two CNN models, namely, VGG-16 and NASNet,
has been proposed for the effective detection of diseases in tomato
leaves at an early state. This integration of state-of-the-art deep
learning CNN ' technologies with a gradient optimizer and EMA
function with temporal constraints provides meticulous data
analysis. The proposed model uses image enhancement
techniques, and groundbreaking ensemble models underscore a
comprehensive approach to tomato leaf disease classification. The
amalgamation of image preprocessing, transfer learning, and the
pioneering ensemble model with EWGO exhibits promising
outcomes in disease classification and increases detection
accuracy compared with the existing systems. The main
limitation of this work is the lack of time during training.
However, an optimizer is added to this work to solve the training
time problem. In the future, the implications of this research shall
be extended to areas like crop health, global food security,
sustainable agriculture, and environmental preservation,
underscoring its value within the realm of plant pathology
and agriculture.
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*Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming, Yunnan, China, ?Engineering Training Center, Kunming University of Science and
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Introduction: Yunnan Xiaomila is a pepper variety whose flowers and fruits
become mature at the same time and multiple times a year. The distinction
between the fruits and the background is low and the background is complex.
The targets are small and difficult to identify.

Methods: This paper aims at the problem of target detection of Yunnan Xiaomila
under complex background environment, in order to reduce the impact caused
by the small color gradient changes between xiaomila and background and the
unclear feature information, an improved PAE-YOLO model is proposed, which
combines the EMA attention mechanism and DCNv3 deformable convolution is
integrated into the YOLOv8 model, which improves the model's feature
extraction capability and inference speed for Xiaomila in complex
environments, and achieves a lightweight model. First, the EMA attention
mechanism is combined with the C2f module in the YOLOvV8 network. The C2f
module can well extract local features from the input image, and the EMA
attention mechanism can control the global relationship. The two complement
each other, thereby enhancing the model's expression ability; Meanwhile, in the
backbone network and head network, the DCNv3 convolution module is
introduced, which can adaptively adjust the sampling position according to the
input feature map, contributing to stronger feature capture capabilities for
targets of different scales and a lightweight network. It also uses a depth
camera to estimate the posture of Xiaomila, while analyzing and optimizing
different occlusion situations. The effectiveness of the proposed method was
verified through ablation experiments, model comparison experiments and
attitude estimation experiments.

Results: The experimental results indicated that the model obtained an average
mean accuracy (mAP) of 88.8%, which was 1.3% higher than that of the original
model. Its F1 score reached 83.2, and the GFLOPs and model sizes were 7.6G and
5.7MB respectively. The F1 score ranked the best among several networks, with
the model weight and gigabit floating-point operations per second (GFLOPs)
being the smallest, which are 6.2% and 8.1% lower than the original model. The
loss value was the lowest during training, and the convergence speed was the
fastest. Meanwhile, the attitude estimation results of 102 targets showed that the
orientation was correctly estimated exceed 85% of the cases, and the average
error angle was 15.91°. In the occlusion condition, 86.3% of the attitude
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estimation error angles were less than 40° and the average error angle

was 23.19°.

Discussion: The results show that the improved detection model can accurately
identify Xiaomila targets fruits, has higher model accuracy, less computational
complexity, and can better estimate the target posture.

KEYWORDS

improved YOLOVS8, Xiaomila fruits, target detection, lightweight, pose estimation

1 Introduction

Pepper is one of the three major vegetable crops in the world. Its
fruit has rich polyphenols, flavonoids, vitamin C, and other natural
active ingredients, with high food value, economic value, and health
care value (Zhang, 2023). Currently, pepper-picking equipment
mainly consists of various forms of harvesters, such as rod and
comb harvesters, unfolding double helix harvesters, drum finger
harvesters, and strip comb harvesters (Fan et al., 2023). Xiaomila is
a smaller, lighter, crispy, and tender variety of pepper, and its
flowers and fruits have the same characteristics. Traditional picking
equipment is not only prone to damaging Xiaomila fruits but also
cannot adapt to the characteristics of Xiaomila flowers and fruits
that are contemporaneous.

In recent years, picking robots have gradually become popular
(Yeetal., 2023; Wang et al., 2023a; Tang et al., 2024), different from
traditional mechanical picking equipment, picking robots have the
capability of non-one-time picking and can reduce uncontrollable

FIGURE 1
Xiaomila grows in different directions in the natural
farmland environment.
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damage caused by traditional mechanical equipment. This enables
the picking robot to adapt well to the characteristics of Xiaomila
flowers and fruits that are contemporaneous and easily damaged.
The spatial attitude estimation of Xiaomila objects is the to accurate
and collision-free picking, and Xiaomila grows in different
directions in the natural farmland environment, as illustrated by
the arrows in Figure 1.

Attitude estimation is to infer the three-dimensional translation
and rotation information of the target in the camera coordinate
system from images or videos (Guo et al., 2023). Traditional attitude
estimation methods have low applicability in weak texture target
detection and real-time detection, while deep learning methods
learn feature information in input images through deep neural
networks and have high robustness in real-time applications
(Lin et al., 2022a). Therefore, current research on target
attitude estimation during picking mainly focuses on deep
learning methods.

Methods based on RGB-D images generally collect image data
containing target depth information through a depth sensor and
extract corresponding features for posture regression. Luo et al.
obtained the grape cluster image mask and point cloud
information using a depth camera, constructed a region of
interest based on the mapping relationship between the two,
and utilized the LOWESS algorithm and geometric method to fit
the pedicel surface and estimate the posture of the pedicel. This
estimation method is highly sensitive to point cloud data
(Luo et al., 2022). Eizentals et al. obtained green pepper surface
point information through a laser rangefinder and obtained the
attitude information of the green pepper fruit in space through
model fitting, but the accuracy and success rate were not high
(Eizentals and Oka, 2016). Yin et al. obtained the grape mask by
using the Mask Region Convolutional Neural Network (Mask R-
CNN); meanwhile, they combined the RANSAC algorithm to fit
the point cloud into a cylindrical model, estimated the grape
posture with its axis, and estimated the posture of each bunch of
grapes. The approach took about 1.7s to complete the task
(Yin et al., 2021). Zhang et al. proposed a tomato bunch attitude
detection method for continuous tomato harvesting operations.
The method consists of a priori model, cascade network, and
three-dimensional reconstruction. It fully exploits the advantages
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of convolutional neural networks while avoiding complex point
cloud calculations, but it cannot make correct predictions for
fruits with heavy occlusion (Zhang et al., 2022). Lin et al. used
RGB-D sensors to obtain binary images of guava and branches
through a fully convolutional network, adopted Euclidean
clustering to separate different groups of point clouds, and used
the guava center and nearest branch information for attitude
estimation. However, the success rate and accuracy still need to
be improved (Lin et al., 2019). Wang et al. designed a geometric
perception network that uses point cloud information and RGB
images to detect, segment, and grasp targets. It can better perceive
targets, but changes in distance have a greater impact on the
estimation accuracy (Wang et al, 2022). Li et al. calculated the
local plane normal of each point in the point cloud, scored each
candidate plane, took the lowest-scoring plane as the symmetry
plane of the point cloud, and calculated the symmetry axis based
on this plane to realize attitude estimation of bell peppers.
However, the estimation effect is not good for occluded bell
peppers (Li et al., 2018).

The input data of the method based on RGB images does not
contain depth information, and the features of the image are
directly extracted for analysis. Sun et al. constructed a multi-task
learning model that locates the position of the citrus navel point and
predicts the rotation vector of the citrus by performing RGB image
analysis of citrus. However, for citrus whose navel point is invisible,
the model needs to be further improved (Sun et al., 2023). Zhang
et al. used 3D detection results to regress the 2D key point
coordinates of objects in the image. By using the perspective n-
point algorithm to estimate the pose of an object, this method
enhances the accuracy and efficiency of pose estimation
(Zhang et al,, 2019). Kim et al. developed a deep learning
network for determining robot cutting poses during harvesting,
which can perform ripeness classification and pose estimation of
fruits and lateral stems. The study results indicate that this method
performs well in detecting tomatoes in a smart farm environment.
However, the detection effect in complex farmland environments
has not been verified (Kim et al, 2022). Based on the growth
characteristics of grapes, Wu et al. combined human pose
estimation, key point detection models, and target detection
algorithms to identify grape clusters and estimate poses. However,
this method is not effective for complex image processing (Wu et al.,
2023a). Lin et al. analyzed a single RGB image based on key points
and estimated the pose of the object by regressing the size of the
boundary cuboid, but the network was not sufficiently lightweight
(Lin et al., 2022b).

To sum up, the method of using RGB-D images or point cloud
data to estimate the pose of a target requires a large amount of
calculation and is not suitable for transplantation to mobile devices.
Additionally, objects to be identified in farmland are basically
occluded. The above methods are usually combined with the stems
of the identified objects to realize pose estimation. However, the
diameter of Xiaomila stems is very small (1-3 mm), and the
background is complex. Traditional stereo cameras and depth
sensors such as lidar have been proven to be unable to provide
reliable depth information (Coll-Ribes et al., 2023). To solve these
problems, this study mainly makes the following contributions:
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1) We propose a lightweight, multiscale detection model, called
PAE-YOLO, for Xiaomila target detection in complex farmland
environments. The EMA attention mechanism can effectively
enhance the feature extraction capability of the model, while
DCNV3 can significantly reduce the computational complexity of
the model and improve the portability of the model.

2) We used a depth camera to detect pepper skins and caps to
determine the posture of Xiaomi spicy. We also analyze and
optimize Xiaomi target detection and posture determination
under different occlusion situations.

3) We determined the effectiveness of the improved model
through ablation experiments and comparison experiments, and
determined the effectiveness of attitude detection through attitude
estimation experiments. Among several classic detection models,
our proposed model has higher accuracy, the smallest model size,
and the lowest computational effort than several classical models.

2 Materials and methods
2.1 Image acquisition

This study takes Xiaomila fruits in the green and mature stage of
farmland as the research object. All images used in the experiment
were taken in 2023 at a Xiaomila plantation in Qiubei County,
Wenshan City, Yunnan Province, China. The Intel realsense D4351
device was utilized to collect RGB images. During the image
collection process, the camera was placed about 15-30 cm away
from the Xiaomila plants and photographed directly above the
Xiaomila plants. The image resolution was 1920x1080 pixels, and a
total of 1060 images were collected.

2.2 Dataset construction and annotation

In the natural farmland environment, Xiaomila fruits have a
similar color to pepper leaves, with small individuals and complex
backgrounds. Considering the difference in images obtained under
actual changing lighting and occlusion conditions, the original images
are collected at different times, under varying lighting, and with
diverse occlusion levels. However, these images typically cannot
encompass all real-world conditions. Furthermore, they differ
somewhat from actual Xiaomila images. Hence, collected RGB
images underwent expansion through random rotation, brightness
adjustment, and noise addition to harmonize and mitigate these
disparities. In the real environment, the pepper’s orientation varies,
and random rotation and flipping primarily serve to diversify its
orientation, enhancing the model’s generalization ability. Random
clipping accounts for the impact of various occlusion scenarios,
ensuring data diversity. Noise addition and brightness adjustment
aim to mitigate factors such as brightness deviations among different
sensors (Akbar et al., 2022; Bosquet et al., 2023).

Of course, there will still be some differences between the
enhanced dataset and the actual changing lighting and occlusion
conditions. To minimize such differences, more factors from real
scenes can be incorporated when collecting data, such as weather
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FIGURE 2

Image expansion effect. (A) Original image, (B) random cropping, (C) flipping, (D) noise adding, (E) brightness adjustment, (F) random rotation

changes, varying occlusion, etc. Additionally, ensuring a similar
distribution between training and test data reflects the actual scene
more accurately.

The expansion effect is demonstrated in Figure 2. The final
target detection data set consists of 2500 images, of which 1750 are
used as a training set and the remaining 750 are used as a
verification set. The labeling tool was used to label Xiaomi fruits
and convert the labeled xml file into the txt file required by
the model.

2.3 YOLOvVS8 network structure

The YOLO series algorithm is an efficient method with limited
computational parameters, making it a key research focus in target
detection (Wang et al., 2023b). Wu et al. proposed a segmentation
and counting algorithm for banana bunches based on YOLOV5-
Banana (Wu et al,, 2023b). Song et al. introduced the YOLOv7-ECA
model, which offers fast detection speed, specifically designed for
the similar color and small size of young apple leaves (Song et al.,
2023). Yao et al. presented the SCR-YOLO model for detecting the
germination rate of wild rice (Yao et al., 2024). Ranjan et al. utilized
the YOLOVS8 network to detect and adjust green apples in orchards
(Sapkota et al., 2024). YOLOVS is the latest version of the YOLO
series network. According to the scaling coefficient, the network is
divided into five scales: n/s/m/l/x. The main updates of the YOLOvS
network lie in the C3 module, head network, and loss function.
Specifically, the C3 module is replaced by the C2f module, which
improves the backbone network’s ability to fuse the detailed
information and semantic information of feature maps at different
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scales. The original coupling head is replaced with a decoupling
head, and the regression branch and prediction branch are
separated, leading to better recognition results. Regarding the loss
function, YOLOVS adopts the task-aligned allocator positive sample
distribution strategy to optimize the calculation process of the loss
function. Figure 3 shows the overall structure of the
YOLOVS8 network.

2.4 YOLOvV8 model improvement strategy

Though YOLOV8 has strong capabilities in target detection, it
still has limitations in the detection of Xiaomila fruits. Compared
with other crop fruits, Xiaomila fruits exhibit irregular distribution,
there is little change in the color gradient between the fruit area and
the background, and it is more susceptible to interference from
background information. Considering the above limitations, this
study improves YOLOVS in two aspects: attention mechanism and
convolutional neural network.

First, the EMA attention mechanism is combined with the C2f
module in the YOLOV8 network. The C2f module can well extract
local features from the input image, and the EMA attention
mechanism can control the global relationship. The two
complement each other, thereby enhancing the model’s
expression ability; Meanwhile, in the backbone network and head
network, the DCNv3 convolution module is introduced, which can
adaptively adjust the sampling position according to the input
feature map, contributing to stronger feature capture capabilities
for targets of different scales and a lightweight network. The test
results suggest that the improved model has better performance in
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FIGURE 5
The structure of the EMA attention mechanism.

identifying Xiaomila fruits. Since this model is established based on
YOLOVS, the improved model is called PAE-YOLO. Figure 4
demonstrates the entire network framework of PAE-YOLO.

2.4.1 EMA attention mechanism

The attention mechanism is employed to help the model
distinguish important channels and enhance the feature
information in the channels, thereby improving the model’s
perception and generalization ability of feature information.
Traditional attention mechanisms usually produce clear feature
information by reducing channel dimensions. However, the
reduction of channel dimensions may result in partial
information loss and increased errors.

EMA is a multiscale attention mechanism for calculating
attention weights (Ouyang et al., 2023). This mechanism
introduces the concept of exponential moving average, which
divides each channel of the input image into groups containing
multiple sub-features. In the process, the EMA attention
mechanism only requires one learning accumulation factor, and
the number of added parameters is small, which can guarantee that
the spatial semantic features are evenly distributed in each feature
group without changing the channel dimension. The specific
structure of the attention mechanism is shown in Figure 5.

2.4.2 Deformable convolutional network DCNv3
Deformable convolution is a non-fixed sampling convolution
network with stronger generalization ability and feature capture
ability than ordinary convolution networks. DCNv3 (Wang et al.,
2023c¢) introduces the concept of convolution separation to divide
the original convolution weight into two parts: the depth direction
and the point direction. The point direction part is taken as the
shared projection weight between sampling points to improve the
overall efficiency of the model. Meanwhile, DCNv3 divides the
process of spatial aggregation into multiple groups with
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independent sampling offsets and modulation scales. All
modulation scalars between sampling points are normalized
through softmax, and their sum is constrained to 1, thereby
enhancing the training stability of the model. The specific
expression is given in Formula 1.

F H
¥(po) =f21hElemthf(Po + pn + Apsn) (1)

where, F denotes the total number of aggregated groups, H
represents the number of dimensions, wy represents the position
—independent projection weight of the current group, my,
represents the 1 sampling points in the f group, X; denotes a
slice of the input feature map, p, denotes the current pixel, p;,
represents the grid sampling position of the current group, and Apy,
stands for the offset corresponding to p,.

Figure 6 compares different core operators. (a) shows the global
attention operator, which has high computational complexity and
memory cost. (b) shows a local attention operator. Although the
calculation amount is reduced, it cannot handle long-distance
dependencies. (c) shows a large kernel operator, but it cannot
adapt to spatial aggregation. (d) shows the dynamic sparse kernel
operator used in DCNv3 deformable convolution. It has low
computational cost and memory costs, has the capability to handle
long-distance dependencies, and can adapt to spatial aggregation.

2.5 Posture estimation for Xiaomila fruits

In the natural farmland environment, affected by leaves,
branches, and other fruits, the attitude of Xiaomila fruits has little
correlation with the fruit itself. Coupled with complex background
factors, it is difficult to directly estimate the posture of Xiaomila
fruits. This paper adopts the idea of mapping and uses the detection
network to identify all the peppers in the image and takes the single
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response pixels with fixed weights

A

FIGURE 6

The schematic diagram of different core operators. (A) global attention operator, (B) local attention operator, (C) large kernel operator, (D) dynamic

sparse kernel operator.

pepper image in the recognition frame as the region of interest
(Rol). Then, the data of the Rol is passed to the segmentation
network, which segments the area target and outputs a binary mask.
Next, based on the pixel information of the segmented individual
Xiaomila fruits, two-dimensional pose estimation is performed on
the Xiaomila fruits, and the pose estimation effect is mapped back to

response pixels with adaptive weights

10.3389/fpls.2024.1421381

Y query pixels

the original image. Finally, combined with the depth information,
the spatial posture of Xiaomila fruits is obtained.

2.5.1 Xiaomila 2D fitting
Xiaomila fruits are very light. Unlike heavier crops such as
grapefruit and apples, the fruit stems are generally facing downward

FIGURE 7
Posture estimation of unoccluded Xiaomila fruits.
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(Kang et al., 2020; Zeng et al., 2021). Meanwhile, the fruit stems of
Xiaomila are very thin and subject to greater interference. These
factors make it difficult to directly identify and fit the fruit stems like
tomatoes, grapes, lychees, etc (Zhong et al., 20215 Li et al., 2023;
Zhang et al., 2023).

There is an obvious gradient change in the color of the pepper
peel and the color of the pepper cap. Based on this characteristic,
this paper segments the pepper peel and the pepper cap respectively,
calculates the moments of the masks of these two parts, and then
takes the two-dimensional vector composed of these two moment
points as the two-dimensional image posture of Xiaomila fruits, as
shown in Figure 7.

In the farmland environment, part of the pepper caps are
blocked, and the moment points of the pepper caps cannot be
successfully obtained. Considering that the Xiaomila fruit is strip-
shaped, this paper employs the least squares method (de Jong, 1993)
to optimally fit the mask data of the Xiaomila fruit. The relevant
parameters and definitions of Xiaomila fruit fitting are given in
Formulas 2-4:

y=kx+b 2)

k= S —x)(y; - y) 3)
S - %)

b=y-kx (4)

where, x; is the x-direction coordinate of the mask outline pixel
in the Xiaomila image coordinate system, y; is the y-direction
coordinate of the mask outline pixel, n denotes the number of
mask outline pixel points, X is the x coordinate of all outline pixels. y
represents the mean of all y-coordinates of the contour pixel. k

o x

FIGURE 8

10.3389/fpls.2024.1421381

denotes the slope of the mask profile fitting straight line, and b is the
intercept of the straight line.

The final fitting effect is illustrated in Figure 8. Specifically,
(a) shows the original Xiaomila image; (b) shows the mask image of
Xiaomila; (c) shows the extracted mask contour binary image;
(d) shows a schematic diagram of contour fitting; (e) shows a
fitting effect diagram, where the green line represents the Xiaomila
contour line, the blue line AB represents the fitting straight line, and
the red dot indicates the estimated tip of Xiaomila; (f) shows the
posture effect.

Finally, by comparing the sum of the Euclidean distances
between the two end points of the contour and other points on
the contour to determine which end is the tip, two-dimensional
pose estimation of Xiaomila fruits with the pepper cap occluded
is realized.

2.5.2 Estimating space posture for Xiaomila fruits

The Xiaomila fruit fitting line is obtained based on a two-
dimensional image, and its description method is based on the
image pixel coordinate system. To obtain its posture in real space,
the points in the pixel coordinate system need to be converted to the
world coordinate system. The pixel coordinate system (o — uv) takes
the upper left corner of the image as the origin of the coordinate
system, and the unit is pixel; meanwhile, the image coordinate
system (o — xy) takes the center point of the image as the origin of
the coordinate system, and the unit is millimeter (mm);
additionally, the camera coordinate system (o, — x.y.z.) takes the
optical center of the depth camera as the origin, and the unit is
meter (m); moreover, the world coordinate system coincides with
the camera coordinate system, as shown in Figure 9.

Before performing coordinate conversion, the Matlab-Camera
Calibrator toolbox is utilized to calibrate the depth camera to obtain

Posture fitting of occluded pepper caps. (A) original Xiaomila image, (B) mask image of Xiaomila, (C) extracted mask contour binary image,
(D) schematic diagram of contour fitting, (E) fitting effect, (F) posture effect.
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FIGURE 9
Schematic diagram of the coordinate systems.

10.3389/fpls.2024.1421381

the camera’s internal parameter matrix and external parameter
matrix. Then, the spatial point coordinates corresponding to the
pixel point coordinates are calculated through Equation 5.

X,
u
Y
Z. |v|=kp | " (5)
1 le

where, z. represents the axial distance of the camera in the Z-
axis, (u,v) is the pixel coordinate, K is the camera internal
parameter matrix, P is the camera external parameter matrix, and
(X,,Y,,Z,) is the point coordinate corresponding to the world
coordinate system.

After the depth camera coordinate system is determined, a 3x1
translation matrix can be used to locate any point in the camera
coordinate system. The conversion between the camera
coordinate system and the Xiaomila coordinate system is
represented by a 3x3 rotation matrix. Then, the position and
attitude of the Xiaomila fruit can be determined by combining the
translation matrix and rotation matrix. In this approach, the
spatial position and spatial vector of the Xiaomila fruit are now
known. Through inverse solution, the translation matrix and
rotation matrix are obtained, thereby obtaining the rotation
angle and translation distance of each joint. Finally, based on
the rotation angle and translation information, the end effector is
controlled to reach the designated position to complete the
picking task. The translation matrix and rotation matrix are
shown in Equations 6 and 7.

P«
P=|p, (6)
p:
' T T3
iR= (SXL SY, $Z,)= |ry 1 T (7)
31 T3 T33

where, SP is the translation matrix, iR is the rotation matrix, S
represents the depth camera coordinate system, and L represents the
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Xiaomila coordinate system; py, p,, and p, are the center of gravity of
the Xiaomila fruit relative to the camera, respectively. Sx s Sy 1, and
$7 1 respectively represent the distance information of the Xiaomila
coordinate system relative to the camera coordinate system along the

x, ¥, and z axes.

2.6 Evaluation metrics

2.6.1 Evaluation of detection and segmentation
This paper takes detection precision (P), mean average
precision (mAP), recall rate (R), FI score, gigabit floating point
operations per second (GFlops), and model weight file size as
evaluation indicators. Precision is the ratio of the actual number
of positives to the number of predicted positives. The higher the
precision, the lower the false detection rate. The mean average
precision is the mean of the average accuracy across all categories,
and it is used to evaluate the accuracy of the entire model. Recall
rate is used to evaluate the missed detection rate of the model. The
F1 score measures the impact of precision and recall and is used to
evaluate the stability of the model. GFlops represent the number of

/

Ve

FIGURE 10
Diagram of error angle.

frontiersin.org


https://doi.org/10.3389/fpls.2024.1421381
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

floating-point operations performed per second, and it is used
to evaluate the computing performance of the model. The
calculation formulas for these evaluation indicators are shown
in Equations 8-11.

TP ®
" TP+FP
1 n
mAP = ;EHAP,- 9)
TP
= 1
R TP + FN (10)
2xPxR
_exX P xR (11)
P+R

where, TP represents the number of true positive values; FP
represents the number of false positive values; FN represents the
number of false negative values; n represents the number of
categories of identified objects, and AP; represents the average
accuracy for category i.

2.6.2 Evaluation of pose estimation

The error angle o is the angle between the actual space vector
and the predicted space vector of the Xiaomila fruit. It is used to
represent the error of the posture prediction algorithm, as shown in
Figure 10. The calculation formula of o is shown in Equation 12:

n.m, + n,m

7y

\/n§+n§+n§>< \/m§+m§+m§

+n,m,

o = arccos (12)

where, m = (n,, n,,n;) is the spatial vector of the Xiaomila fruit
predicted by the attitude estimation algorithm, and m = (m,, m,, m)

TABLE 1 Ablation experiments of different modules of PAE-YOLO.

10.3389/fpls.2024.1421381

is the actual spatial vector of the Xiaomila fruit. The smaller the error
angle o, the closer the predicted posture is to the real situation.

2.7 Software

The hardware platform used for the experiment is a computer
equipped with Intel Xeon W-2145 (16GB memory) and NVIDIA
GeForce RTX2080Ti (11 GB video memory) and running 64-bit
Windows 11 operating system. The Xiaomila target detection and
segmentation model is trained using CUDA 11.6, Opencv, Pytorch
framework, Python3.9 programming language, etc.

3 Results and discuss
3.1 Analysis of detection and segmentation

3.1.1 Ablation experiment

To evaluate the impacts of the EMA attention mechanism and
the DCNvV3 convolution module on improving the detection
performance of Xiaomila fruits, these two structures were
introduced into the official YOLOVS respectively. Table 1 presents
the impact of each module on the overall detection effect of the
algorithm. The model performance was evaluated in terms of
precision, recall, average precision, F1 score, floating point
operations (FLOPs), and model weight size.

As shown in Table 1, several improvement strategies are
effective in improving the model’s detection effect. Compared
with the original YOLOv8n model, the recall rate and average
precision of the model with the attention mechanism were
increased by 0.7% and 1.4%, respectively. Meanwhile, the model

P (% R (% mAP (% F1 Score (% GFLOPs Model
Model EMA DCNv3 (%) () e (%) Size/MB
YOLOv8n X X 86.5 78.8 87.5 82.5 8.1 6.2
Y X 87.1 79.5 88.9 83.1 8.4 6.3
X V 87.3 78.1 87.6 82.4 7.4 5.7
V v 87.2 79.5 88.8 832 7.6 57
TABLE 2 Recognition results of different models on Xiaomila images.
Model P (%) R (%) mAP (%) F1 Score (%) GFLOPs Model
Size/MB
Mobilenetv3 85.0 76.7 85.4 80.6 11.2 10.5
YOLOV5s 88.8 753 85.0 81.5 15.8 14.4
YOLOvV7-tiny 85.7 82.8 89.5 84.2 13.0 12.3
YOLOv8n 86.5 78.8 87.5 82.5 8.1 6.2
PAE-YOLO 87.2 79.5 88.8 83.2 7.6 5.7
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weight was slightly increased, and the FLOPs reached 8.4G. After
the convolution in the c2f module of the original model was
replaced, the recall rate and average precision of the model were
slightly improved compared to the original model, the model weight
decreased by 8.1%, and the FLOPs dropped to 7.4G. Compared with
the original YOLOv8n model, the average precision of the final
PAE-YOLO model increased by 1.3%, the recall rate increased by
0.7%, GFLOPs decreased by 6.2%, the model size decreased by 8.1%,
and the F1 score reached 83.2%.The results suggest that the EMA
attention mechanism can improve the feature extraction capability
of the model while adding a small number of parameters, and the

FIGURE 12

PAE-YOLO detection and segmentation results. (A) detection results of the xiaomila object, (B) segmentation results of the pickable xiaomila object.

DCNv3 convolution module enhances the portability and real-time
detection performance of the model.

By combining the EMA attention mechanism and the DCNv3
deformable convolution network, PAE-YOLO not only improved the
detection performance of Xiaomila fruits but also reduced the
model’s calculation amount from 8.4G to 7.6G, and the model
weight size dropped from 6.3M to 5.7M. Compared with the
original YOLOv8n model, the FLOPs of PAE-YOLO were reduced
by 6.2%, the model weight was reduced by 8.1%, the precision
reached 87.2%, the recall rate reached 79.5%, the average precision
reached 88.8%, and the F1 score was 83.2. Therefore, our method
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TABLE 3 Error angle analysis.

Limit Frequency Average
angle error deviation
Unlimited 1 18.63 13.89
<30° 0.844 13.75 4.94
<20° 0711 11.98 291
<15° 0.556 10.63 1.44

improves the algorithm performance in various indicators and
reduces the algorithm’s computational complexity, which helps
integrate the algorithm into picking robots for real-time applications.

3.1.2 Comparative experiment

To verify the advantages of the model proposed in this paper in
detecting Xiaomila targets, this study selected five classic detection
models based on deep learning for performance comparison.
Table 2 shows the experimental results of Mobilenetv3, YOLOV5s,
YOLOvV7-tiny, YOLOv8n, and PAE-YOLO.

As illustrated in Table 2 and Figure 11, compared with
Mobilenetv3 and YOLOv5s networks, the recall rate of the
PAE-YOLO model increased by 2.8% and 4.2% respectively, the
mAP value increased by 3.4% and 3.8% respectively, and the
model weight decreased by 45.7% and 60.4% respectively.
Compared with the YOLOv7-tiny model, although the PAE-
YOLO model had a slight decrease in precision and recall, the
GFLOPs and weight decreased by 41.5% and 53.7%, respectively.
The F1 score of PAE-YOLO ranked the best among the above-
mentioned series of networks, with the smallest model weight and
GFLOPs. Additionally, the PAE-YOLO model exhibited the
lowest loss value and the fastest convergence speed during the
training process.

FIGURE 13

10.3389/fpls.2024.1421381

These test results suggest that the PAE-YOLO network has a
stronger overall performance in visual recognition of Xiaomila
fruits. Figure 12 shows the detection and segmentation results of
the PAE-YOLO model. Specifically, (a) shows the detection results
of the xiaomila object, in which the xiaomila with purple contour is
the pickable object; (b) shows the segmentation results of the
pickable xiaomila object.

3.2 Analysis of pose estimation effects

3.2.1 Error angle analysis

In the actual farmland picking environment, if the error angle of
Xiaomila’s attitude estimation falls within a certain range, the end
effector of the picking equipment can achieve accurate picking. This
study analyzes the error angles at different angles, as listed
in Table 3.

An example of the spatial pose estimated by the proposed pose
estimation method is demonstrated in Figure 13. In this figure, the
burgundy arrow represents the actual posture of the manually
annotated pepper, the dark purple arrow represents the
preliminary posture of the pepper estimated by the algorithm
based on the surface points of the pepper, and the blue arrow
represents the optimized posture of the pepper.

Figure 13A shows the spatial pose estimation of a Xiaomila fruit
without bending, while Figure 13B shows the spatial attitude
estimation of a Xiaomila fruit in a curved state. The posture of
the Xiaomila fruit with a small curvature estimated based on surface
points is basically consistent with the actual situation, while the
estimation of the Xiaomila fruit with a large curvature based on
surface points produces an error. This error may be ignored in
complex farmland environments, resulting in an inability to
correctly estimate the posture. This paper uses the two-

Example of spatial pose estimation of Xiaomila fruits. (A) spatial pose estimation of a Xiaomila fruit without bending, (B) spatial attitude estimation of

a Xiaomila fruit in a curved state.
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FIGURE 14

Classification of Xiaomila fruits occlusion. (1) Xiaomila pose estimation with the pepper cap not occluded, (2) (3) (4) Xiaomila pose estimation with

the pepper cap occluded.

TABLE 4 Pose estimation error under different occlusion situations.

Standard
deviation

Occlusion
situation

Frequency Average

6.37

55.11

dimensional Xiaomila fitting straight line as the symmetry axis to
calculate the radial pixels at both end points of the estimated
posture and then determines the inward offset distances hl and
h2 through the depth camera, thereby performing spatial analysis
on the estimated posture.

3.2.2 Analysis of different occlusion situations

This paper discusses the pose estimation results under four
different occlusion situations: the pepper cap is not occluded (a), the
pepper cap is occluded but the occlusion does not produce a tip on

10.3389/fpls.2024.1421381

the Xiaomila fruit (b), the pepper cap is occluded and the occlusion
produces a tip on the Xiaomila fruit (c), and the pepper cap and tip
are both occluded (d). In Figure 14, (1) shows the Xiaomila pose
estimation with the pepper cap not occluded. (2)(3)(4) show the
Xiaomila pose estimation with the pepper cap occluded. (3)(4) did
not correctly determine the direction of the Xiaomila fruit. This is
because (i) The pepper cap is occluded, and the tip angle formed by
the occluded on the pepper cap part is smaller than the pepper tip
angle. The attitude estimation algorithm makes an error when
judging the orientation of the Xiaomila fruit. (ii) Both the pepper
tip and pepper cap are occluded, and the algorithm cannot correctly
identify and predict the specific orientation of the Xiaomila fruit.
The attitude estimation error results under four different
occlusion situations are presented in Table 4. The attitude
estimation error when the pepper cap is not occluded is smaller
than the attitude estimation error when the pepper cap is occluded.
The average error angle is 23.19°. When the occluded cap is
occluded, the algorithm fails to correctly identify the specific
orientation of the pepper, thus affecting the attitude estimation
effect. Since there are fewer situations (c) and (d) in practice, these
two occlusion situations have less impact on the overall pose

per,0.85 =
RS
373 e
p&r N

FIGURE 15
Attitude estimation renderings.
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estimation effect. The final attitude estimation effect is shown in
Figure 15, where end A represents the pepper tip, and end B
represents the pepper cap.

4 Conclusion and future work

To solve the problems due to complex background, similar fruit
color and background color, and different growth directions in the
natural farmland environment, this paper constructed a Xiaomila
target recognition data set, proposed an improved Xiaomila target
detection model, and the spatial posture and occlusion of Xiaomila
were analyzed. Specifically, the existing YOLOVS target detection
algorithm has been improved. The addition of the EMA attention
mechanism can better capture the characteristic information of targets
of different scales, and the deformable convolution module makes the
model more lightweight. At the same time, the spatial position
information of the pepper was exploited to describe the translation
part of Xiaomila’s posture, and the transformation information of the
fitted Xiaomila spatial vector relative to the depth camera coordinate
system was utilized to describe the rotation part of Xiaomila’s posture.
The advantage of this work is that no complex annotation model and
calculations is required to obtain the expected estimation results, and
can be better transplanted to embedded devices. In experiments, the
mAP value of the improved PAE-YOLO model reached 88.8%, which
was 1.3% higher than the original model. The model weight and
GFLOPs were 7.6G and 5.7MB respectively, which are 6.2% and 8.1%
lower than the original model, the loss value was the lowest during
training, and the convergence speed was the fastest. Finally, an
experimental analysis was conducted on Xiaomila’s posture and
occlusion conditions. More than 85% of the cases where Xiaomila’s
orientation was correctly estimated, with an average error angle of
15.91°. Under occlusion situations, 86.3% of the attitude estimation
error angles were less than 40°, and the average error angle was 23.19°.
Therefore, the improved detection model can accurately identify
Xiaomila targets in complex environments, and can better estimate
the target posture, and is suitable for visual picking of Xiaomila fruits.

However, current detection models still have some limitations.
Some severely occluded Xiaomila targets cannot be correctly
identified and estimated. For example, the pepper cap and the
pepper peel are covered at the same time or the pepper cap is
covered and the covering splits the pepper in two. Meanwhile, it
remains to be seen whether the target recognition algorithm and
attitude estimation method proposed in this article are applicable to
other fruits. In future work, we will integrate the improved model
into the robot motion control system to realize the automatic
harvesting of Xiaomila in natural farmland environments.
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Introduction: Cotton yield estimation is crucial in the agricultural process, where
the accuracy of boll detection during the flocculation period significantly
influences yield estimations in cotton fields. Unmanned Aerial Vehicles (UAVs)
are frequently employed for plant detection and counting due to their cost-
effectiveness and adaptability.

Methods: Addressing the challenges of small target cotton bolls and low
resolution of UAVs, this paper introduces a method based on the YOLO v8
framework for transfer learning, named YOLO small-scale pyramid depth-aware
detection (SSPD). The method combines space-to-depth and non-strided
convolution (SPD-Conv) and a small target detector head, and also integrates a
simple, parameter-free attentional mechanism (SimAM) that significantly
improves target boll detection accuracy.

Results: The YOLO SSPD achieved a boll detection accuracy of 0.874 on UAV-
scale imagery. It also recorded a coefficient of determination (R?) of 0.86, with a
root mean square error (RMSE) of 12.38 and a relative root mean square error
(RRMSE) of 11.19% for boll counts.

Discussion: The findings indicate that YOLO SSPD can significantly improve the
accuracy of cotton boll detection on UAV imagery, thereby supporting the
cotton production process. This method offers a robust solution for high-
precision cotton monitoring, enhancing the reliability of cotton yield estimates.

KEYWORDS

cotton boll detection, cotton yield estimation, transfer learning, YOLOvS, UAV
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1 Introduction

Cotton yield estimation is essential for the cotton production
process and can influence the price trend in the cotton market
(Sarkar et al., 2023). Cotton yield estimation can be carried out by
boll detection during the cotton fluffing period (Pokhrel et al,
2023; Torgbor et al., 2023). The quantity of cotton bolls directly
affects the cotton harvest and is also a key indicator for assessing
the quality of cotton (Shi et al., 2022). A high precision boll
number detection model can quickly and accurately model yield
estimation before harvesting and make planting management
related decisions, which is economically vital for cotton
production (Thorp et al., 2020; Naderi Mahdei et al., 2023).

Traditional cotton production information detection methods
require sampling and frequent manual observation of cotton fields
(Tian et al, 2022; Kurihara et al., 2023). With the continuous
improvement of land transfer rate, large-scale planting rate and
technological content, driven by the whole mechanization, many
new technologies have been applied to the field of cotton
production, improving the development of cotton production
process intelligence (Muruganantham et al., 2022; Yan et al,
2022). Although high-resolution, ground-shot images are not
suitable for cotton boll detection in field environments due to
their high acquisition costs. As remote sensing technology
develops, satellite positioning system and geographic information
system (GIS), unmanned aerial vehicle (UAV) remote sensing
technology has found broad applications (Dhaliwal and Williams,
2023; Hu et al., 2023; Kumar et al., 2023; Priyatikanto et al., 2023).
Due to the small scale of cotton bolls and the complexity of the field
background, large-scale monitoring methods such as satellite
remote sensing cannot describe the detailed changes of cotton
bolls in a small-scale range. Low-altitude UAV remote sensing
acquires the benefit of short cycle time and fast speed, so it provides
technical support for small- and medium-scale crop growth
monitoring (Eskandari et al., 2020; Fernandez-Gallego et al., 2020;
Hassanzadeh et al., 2021; Palacios et al., 2023).

UAVs provide excellent image acquisition flexibility at flight
altitude, flight area and various weather conditions for fast and
accurate crop monitoring (Bouras et al., 2023; X. Wang, Lei, et al.,
2023). UAV remote sensing combined with machine learning
algorithms is an essential area of re-search in target detection
studies based on UAV remote sensing images. In the study of
automated agave detection, the utilization of UAV image data has
demonstrated remarkable accuracy (Flores et al., 2021). Moreover,
red, green, blue (RGB) aerial imagery from UAYV, coupled with the
faster regions with convolutional neural network (Faster R-CNN)
object detection model, prove effective in estimating plant density
(Velumani et al., 2021). The application of UAV image data for
training convolutional neural networks (CNNs) shows superior
performance compared to traditional machine learning methods
(Impollonia et al., 2022; Amarasingam et al., 2024; Skobalski et al.,
20245 Zou et al, 2024). High-resolution images significantly
enhance the accuracy of target detection. Collection of high-
resolution UAV RGB images provides a methodology for
counting plants at different growth stages of sunflowers and
corn seedlings (Bai et al., 2022). High-resolution UAV images,
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when combined with suitable image segmentation algorithms,
serve as a basis for detection counting and analysis. In a study
focused on the detection and counting of citrus trees using high-
resolution UAV images, the connected component labelling
(CCL) algorithm was employed to segment and label individual
citrus trees in images (Donmez et al., 2021). The relationship
between image based manual counting and algorithmic counting
demonstrates high precision and efficiency through the utilization
of frequency filters, segmentation, and feature extraction
techniques (Azizi et al., 2024; Liu et al., 2024). Given sufficient
data, pre-trained deep learning models offer enhanced
generalization performance in target detection tasks. The pre-
trained ResNet 17 model, when applied to UAV-captured RGB
images of cotton seedlings, enables real-time estimation of the
quantity and canopy size of the seedlings in each frame (Feng
et al., 2020). Building on the success of this method, researchers
have further integrated transfer learning techniques into a new
framework that combines remote sensing and deep learning to
enhance processing efficiency. This integrated framework has
proven particularly effective in sparse counting tasks for
different plant species, such as potatoes and lettuce (Machefer
et al., 2020). Estimating crop density using vegetation indices is
applicable in the early and middle stages of crop growth, but its
performance is limited at maturity due to the gradual onset of
plant senescence, wilting leaves, and the impact of crop fruits
(Huang et al., 2018).

Following the analysis of various multispectral and RGB
vegetation indices, a neural network model can integrate the
analytical results to estimate vegetation coverage and crop density
(Garcia-Martinez et al., 2020). Remote sensing imagery has been
widely employed for crop segmentation in the later stages of crop
growth, yielding significant results. UAV images are also utilized in
computing the elevation difference between the crop canopy and
exposed soil surface, extracting cotton height during the boll
spitting period, and using it as a basis for estimating cotton yield.
The specific process involves validating UAV-based height
measurements using known ground reference points, segmenting
crop rows, and obtaining a plant height map based on global
positioning system (GPS) and image features (Feng et al., 2019).
Remote sensing image segmentation can be employed to detect the
quantity of target cotton bolls since cotton often exhibits distinct
optical features (such as color and morphology) from branches and
leaves in the later stages of growth. A cotton boll threshold
segmentation detection algorithm based on UAV remote sensing
images is proposed. Initially, spectral thresholds are derived from
input images through adaptive applications, automatically
distinguishing cotton bolls from other non-target items.
Subsequently, the derived thresholds and other morphological
filters are utilized for binary cotton boll classification to reduce
result noise (Yeom et al., 2018). Combining UAV remote sensing
data with multispectral images and cotton boll pixel coverage
enables the construction of a high precision cotton boll detection
model. This model primarily utilizes a Bayesian regularized back
propagation (BP) neural network to predict cotton yield from the
quantity of cotton bolls and spectral indices(R. Xu et al., 2018; W.
Xu et al., 2021).
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Due to the extension and interlacing of cotton leaves in the
background of the cotton field and the complex changes in the
external environment, the morphological characteristics of cotton
bolls in the field are variable and overlapping. Therefore, for cotton
boll detection in a field environment, the boll-spitting period is
considered the ideal phase. However, due to the large number and
small size of cotton bolls, a specific detection model is required to
achieve accurate applications (Fue et al., 2018). The YOLO series has
undergone multiple updates and iterations, making it suitable for
detection and segmentation in agriculture. This model builds upon
the YOLOVS architecture with added modules for feature processing,
significantly improving the detection accuracy of small objects in UAV
images (G. Wang, Chen, et al,, 2023). The real-time YOLOv8 model
has been effectively applied for detecting kiwifruit diseases, providing
real-time disease estimates (Xiang et al,, 2023). Additionally, to address
the challenge of strawberry ripeness detection, the YOLOv8s model and
the LW-Swin Transformer module have been employed to support the
strawberry picking process in orchard management (Yang et al., 2023).
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This study introduces an enhanced detection model, YOLO small-
scale pyramid depth-aware detection (SSPD), based on YOLOV8 to
improve the accuracy of UAV-based cotton boll detection during the
boll spitting period. High-resolution ground cotton boll images were
initially captured and utilized to train data on network models such as
YOLO SSPD. The trained model was subsequently transferred to
UAV remote sensing images for the detection and counting of cotton
bolls. The Detailed Process Overview is Shown in Figure 1.

2 Materials and methods
2.1 Dataset acquisition and preprocessing

This research was carried out from August to October 2021 in the
Second Company of Experimental Field of Xinjiang Shihezi
University (latitude 44°18'N, longitude 85°58’E, average altitude
443 m), as shown in Figure 2. The experimental area was planted
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FIGURE 1
The abstract process framework of this study.
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FIGURE 2

Overview of study area: (A) illustrates the graph of Xinjiang, (B) represents the area of Shihezi, (C) represents the testing region, Cotton boll image
acquisition experimental area, the photos in (D) are the RGB images taken by a drone.

with “Xinlu Early No. 53” and “Xinlu Early No. 747, utilizing the
planting pattern “one film, three cylinders and six rows” with the
design of a comprehensive and cramped row. The chosen cotton
variety was “Xinlu Early No. 53, and the planting density is 20 plants
per square meter. The image data collection activities were carried out
in three stages of the cotton fluffing period. The three stages of
filming were 5 days after the first defoliant spraying (T1, September
8th), 3 days after the second defoliant spraying (T2, September 15th)
and 7 days before cotton picking (T3, September 25th).

2.2 UAV image data acquisition
and processing

This study uses a DJI M Atrice M600 PRO UAV (Shenzhen,
China) with third-party hardware and software extensions, a global
positioning system (GPS) positioning system, a flight imaging
receiver, an a3 Pro flight controller, a Lightbridge 2 high
definition (HD) digital mapper, and a remote control, with a load
capacity of 6.0 kg and an Isuzu Optics real-time camera (Hsinchu
County, Taiwan, China). The UAV captured datasets were all RGB
images, and the real-time camera parameters are shown in Table 1.
Each time the images were taken, three altitudes were flown, 60
meters, 40 meters and 20 meters from the ground. The UAV flight
speed was 2.8 m/s, the camera was oriented parallel to the main
flight path, the heading overlap rate was 70%, the side overlap rate
was 60%, the gimbal pitch angle was -80°, and the camera mode was
set to isometric intervals to increase the efficiency of the shooting as
well as to obtain a clear image of the UAV. The camera configured
and carried by the UAV is shown in Figure 3.
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Pictures taken by UAVs are characterized by small image size,
large data volume, and rich spatial information. Still, environmental
factors also directly affect, such as sunshine, wind direction, etc.
Therefore, even if multiple pictures are acquired in the same
environment, there will be differences in sensitivity and color,
which will directly affect the accuracy of the subsequent detection
of feature points, thus directly affecting the final use of remote
sensing data from UAVs for target detection using UAV remote
sensing data. In this paper, the steps of UAV remote sensing image
processing include UAV flight parameter setting, raw image
acquisition, remote sensing imaging stitching, region of interest
(ROI) selection and datasets cropping, and the remote sensing
image processing steps are shown in Figure 4.

TABLE 1 Configuration of the hyperspectral camera carried by
the drone.

Parameter Value

Spectral bandwidth <15nm,collimated

CMOS' imager, CMOSIS
CMV? 2000based

Base imager type

Spatial resolution 408+216 per band

Frame rate Up to 340 hyperspectral cubes/second
Pixel pitch 5.5um

Bit depth 7or10bit

RGB pixel 4 million

!CMOS-complementary metal-oxide semiconductor. >*CMV-CMOSIS machine vision.
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The DJI drone that collected the data, where (A) is the configuration of the DJI M600pro drone and (B) the RGB camera carried by the drone.

2.3 Datasets enhancement
and construction

The image annotation tool Labellmg (free and open source,
Taiwan, China) was installed, and each cotton bolls were
annotated. An extensible markup language (XML) record file
was generated for the training images output from each boll for
better image data management and analysis in subsequent studies.
In this study, the entirety of six training datasets was prepared,
including 600 images of each of T1, T2 and T3 randomly selected
from the ground data set and 50 segmented images of each of T1,
T2 and T3 irrelevantly chosen from the UAV images. The training
images were randomly cropped from the UAV RGB composite
images, each with a size of 640 x 640 pixels. Ground images of
7,000, 7,500, and 6,000 were acquired for the three periods, and
UAV cropped images of 250, 450, and 800 were acquired for the
three flight altitudes. The above two different scales of images were
randomly assigned in the proportion of 3:1:1 for the training,
validation and testing of the cotton bolls detection model.

During the construction of the cotton bolls datasets, due to the
direct influence of various reasons such as shooting time, climate,
flight speed, camera viewpoint, etc. The cotton boll image data
varied greatly, resulting in data imbalance, so it is necessary to carry
out data enhancement on the cotton bolls image datasets. To further
enhance the quality of the datasets, methods, for example, image
rotation, image panning, image mirroring and adding image noise,
are used to perform data enhancement on the existing datasets. The
way the UAV enhanced the RGB image data is shown in Figure 5.

2.4 Cotton boll detection models

The models were trained on a platform equipped with an
NVIDIA GeForce RTX 3060 laptop graphics processing unit
(GPU) with 16GB of random-access memory (RAM). This setup
provides powerful graphics processing, which is critical for handling
complex computations in deep learning models. The system
runs on Windows 10 x64 with a 12th generation Intel® Core™

FIGURE 4

Remote sensing image processing flow: (A) UAV commissioning, (B) UAV flight parameter setting, (C) raw image acquisition, (D) remote sensing

imaging stitching, (E) ROI selection and (F) datasets cropping.
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FIGURE 5

UAV expanded RGB image datasets methods: (A) original image, (B) horizontal mirroring, (C) increasing brightness, (D) rotating 90° to the right,
(E) vertical mirroring, (F)image panning, (G) increasing noise, and (H) rotating 90 to the left

i5-12500H central processing unit (CPU), which supports efficient
multitasking and fast data processing. In addition, the device
features 1.0TB of storage capacity, allowing for extensive data
processing and model training without storage limitations. The
Pytorch framework version used is 1.7.1, which is known for its
flexibility and efficiency in model development. Optimized
computational performance with compute unified device
architecture (CUDA) 11.0 and CUDA deep neural network
(cuDNN) 8.0.5 ensures faster training times and enhanced
reproducibility of results.

2.4.1 Faster R-CNN

Faster R-CNN (https://github.com/jwyang/faster-rcnn.pytorch)
(Mai et al, 2020) is an improved version of fast regions with
convolutional neural network (Fast R-CNN) that draws features
straight from the original input image. It then uses ROI Pooling to
extract feature vectors of a specific length for each ROI on the
feature map of the whole image. It regresses the feature vectors
directly on them using multiple full convolution (FC) layers. Two
FC branches are then used to predict the ROI-related categories and
boxes separately, which significantly improving speed and
prediction. The first part of the network architecture uses
convolution layer stacking to extract the feature map from the
image, then fixes the data dimensions using region pooling. The
Region Proposal Network (RPN) network is the second part, which
mainly serves to generate alternate regions. The third part of ROI
Pooling is primarily responsible for the feature maps of the
convolutional network inputs, and the exact proposals generated
by the RPN training (Duan et al., 2019; Chen et al., 2020; Zhang
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et al, 2021), and the pooling process is used to implement edge
regression and region classification. In this study, the image input
size is set to 640 x 640, the learning rate is configured to 0.001, the
step size is adjusted to 5, the batch size is fixed at 16, and the
number of iteration rounds is 500.

2.4.2 YOLOvVS

On the input side of YOLOV5 (https://github.com/ultralytics/
yolov5), the mosaic data information boost technique replaces the
traditional single-cut mix data information enhancement method
of the previous generations. It employs the self-fitting stroke
frame method and self-fitting image compression (Ghiasi et al.,
2021). Cross stage partial (CSP) and focus structures are
introduced in the Backbone part of the network to expand the
input channels for subsequent slicing operations. The neck part of
the network greatly improves the deep learning capability of the
network by combining feature pyramid networks (FPN) and path
aggregation network (PAN), and applies PAN to the three
effective feature layers for better fusion of features from
different layers. In addition, in order to obtain more accurate
output results, the neck also adopts generalized intersection over
union (GIOU) loss as the loss function for edge regression to
achieve more efficient model analysis. In this study, the image
input size is 640x640, because it is cotton boll single target
detection, the output category of the network, nb_classes, is
changed to 1, the training weights are yolov5s, the optimizer
chosen is stochastic gradient descent (SGD), the batch size is 16,
the iteration rounds epoch is 500, and the learning rate is set as
0.001, and the rest are default settings.
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2.4.3 YOLOv7

YOLOV7 (https://github.com/WongKinYiu/yolov7) inherits the
architecture of YOLOVS5, including the configuration information
settings, training process, inference and testing procedures.
Additionally, YOLOv7 adopts the structure and methods of
hyperparameter tuning and implicit knowledge learning from
YOLOR. It also incorporates YOLOX’s Optimal Transport
Assignment (OTA) strategy for positive sample matching
strategy. YOLOV7 itself also features an efficient aggregation
network, reparametrized convolution, extra training module and
model scaling (C.-Y. Wang, Bochkovskiy, and Liao 2023). Among
these, the efficient aggregation network enhances the learning
efficiency and aggregation ability of the network system by
controlling the shortest and longest gradient paths (Zhao et al,
2023). The auxiliary training method and deep supervision in the
YOLOvV7 model add additional neurons to the network system to
enhance the model’s accuracy. Notably, the auxiliary training
method is only employed during the training process and does
not degrade the accuracy of the model validation and testing (Jiang
etal, 2022). In this study, the parameters are set as follows, the pre-
training weight is YOLOvV7-tiny, the optimizer is Adam, the batch
size is 8, and the epoch is 500.

2.4.4YOLOvVS

YOLOV8 (https://github.com/ultralytics/ultralytics) represents
the latest advancement in the YOLO series of object detection
models, showcasing superior performance in terms of both speed
and accuracy compared to its predecessors. Building upon the
foundation of earlier versions, YOLOvV8 introduces notable
enhancements. In the backbone architecture, YOLOVS refines the
C3 structure of YOLOVS5 to the C2f structure. The C2f modification
not only preserves the lightweight nature but also facilitates the
acquisition of more informative features during the gradient
descent process. Within the head component, YOLOvV8
transitions from a coupled head to a decoupled head, departing
from the anchor box structure employed in prior iterations in favor

10.3389/fpls.2024.1409194

of an Anchor-Free approach. Moreover, YOLOVS8 incorporates an
outstanding dynamic allocation strategy in the design of its loss
function. This strategic approach enhances the adaptability of the
model during training. Notably, YOLOvV8 demonstrates versatility
by extending its applicability to earlier versions of the YOLO series,
delivering commendable performance across image detection,
segmentation, and classification tasks. The structure of Yolov8 is
shown in Figure 6.

2.4.5YOLO SSPD

YOLO SSPD is designed based on the YOLOV8 architecture to
address the challenges of small and dense cotton boll targets and
complex field backgrounds in UAV-scale scenarios. SPD-Conv
(https://github.com/LabSAINT/SPD-Conv) is a combination of
space-to-depth layer and non-strided convolution. To mitigate
the loss of image information during network propagation, the
SPD-Conv structure is introduced (Sunkara and Luo, 2022).
Equations 1-3 elucidate the principles of SPD convolution. The
input feature map X with dimensions SxSx C,. The SPD
transformation downsamples X using a scale parameter scale. For
each position (i, j) in X, X is sliced into scale?sub-feature maps Sy
where x, y€ {0, 1, ..., scale-1}. The sub-feature maps are extracted
as follows:

fuy = X[x:S:scale, y:S: scale] (1)

Each sub-feature map f, , downsamples X by extracting pixels at
intervals of scale, and the dimensions of each fx,}, are ( ﬁ R ﬁ ,C).
These sub-feature maps are then concatenated along the channel

dimension to form a new feature map X":

X' = concatenate({f,, | x,y € {0,1,...,scale — 1} }, axis = channel) (2)

The main purpose of this transformation is to increase the
channel dimension while reducing the spatial dimensions of the

feature map. The dimensions of the new feature map X’ are (

S
scale

s
scale *
,scale* x Cy). A non-strided (stride=1) convolution operation
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YOLOvV8 model structure.
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is applied to X’ using C2 filters. This convolution transforms X" into
X' as follows:

X = Convolution(X', filters = C,, stride = 1) (3)

This convolution operation aims to retain as much
discriminative feature information as possible, preventing the loss
of information. The dimensions of the output feature map X'’ are:
(25> 25> Cy). By scaling the image proportion before inputting it

into the detection network, the space-to-depth layer preserves

channel dimension information throughout the feature mapping
process, effectively preventing information loss (Wan et al., 2024).
Additionally, non-strided convolutions are added after the space-
to-depth layer to expedite image processing. The simple parameter-
free attention mechanism (SimAM), while not increasing
computational parameters, serves as a versatile attention
mechanism, enhancing model performance. When dealing with
UAV images, this not only accelerates computation speed but also
improves overall model efficiency. The small target detection head
finds widespread applications in the industry, addressing challenges
related to inconspicuous features and potential information loss
during training, thereby enhancing detection capabilities.
Integrating the small target detection head into YOLO SSPD
contributes to improved accuracy in identifying small target
cotton bolls. Figure 7 illustrates the network structure of the
YOLO SSPD.

2.5 Transfer learning based cotton boll
detection from UAV RGB images

Transfer learning involves improving performance in a newly
acquired task by leveraging knowledge gained from a closely
related task that has already been mastered. To address the issue
of limited training instances and low resolution of UAV remote
sensing images, we first train the model on ground boll image data.
Then, the trained model is applied to the boll recognition and

10.3389/fpls.2024.1409194

detection task on UAV RGB images. Image size, quantity and
quality are essential factors affecting the setting of training
parameters, and in order to achieve the best training effect,
these parameters must be refined to improve further the
correctness and credibility of modelling (Tedesco-Oliveira et al.,
2020; Park and Yu, 2021). In this study, the transfer learning
model is configured with a learning rate of 0.0005, a batch size of
8, and a total of 500 iteration rounds.

2.6 Evaluation indicators

In this paper, single target detection of cotton bolls was
investigated, so the model evaluation metrics selected included
precision, recall, F1 score, average precision, average precision
(AP) for a single class, and coefficient of determination (R?),
relative root mean square error (RMSE) and root mean square
error (RRMSE), which were calculated using the formulas shown
below. Equations 4-10 are introduced as metrics for subsequent

model performance evaluation.

.. P
Precision = TP FP (4)
TP
Recall = ——
ecall T FN (5)
Precisi R
Fl = 2x reczfu.m X Recall ©)
Precision + recall
1
AP = / P(r)dr (7)
0
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FIGURE 7
YOLO SSPD model structure.
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n 2
RMSE = \/721@;_ 2
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RRMSE = ——;—— x 100%
P

Where True positive (TP) represents correct prediction of

(10)

cotton bolls, False positive (FP) represents misidentification of
background noise as cotton bolls, and False negative (FN)
represents misidentification of cotton bolls as background noise.
The value range of Precision and Recall is between 0 and 1, so the
value range of AP is also in the range of [0,1]. p;, p; and ¢; are the
quantity of manually labelled bolls in the i-th image, the mean of the
amount of manually labelled bolls in the i-th image and the count of
bolls obtained by prediction, correspondingly. n is the total of
test images.

3 Results

3.1 Results of ground cotton boll
detection models

Table 2 displays the outcomes of cotton boll recognition and
detection in ground image data at different time intervals utilizing
various object detection networks. When employing models like
Faster R-CNN, a consistent performance trend is observed across
different time periods, with T2 > T1 > T3. This phenomenon is
attributed to the suboptimal effect of defoliant spraying during the
T1 period. In the T3 period, when cotton flowers are fully open,

TABLE 2 Model testing results for ground image datasets.

10.3389/fpls.2024.1409194

distinguishing targets becomes challenging, resulting in instances
where a single cotton boll is identified as multiple ones.
Additionally, due to the proximity of cotton bolls, multiple
instances are detected as a single cotton boll. The second phase,
occurring after the second defoliant spraying, emerges as the
optimal period for cotton boll detection. During this phase, there
is minimal interference from leaves, and the branching of cotton
plants is less pronounced, resulting in relatively independent cotton
bolls. Therefore, it is recommended to select T2 as the golden period
for cotton boll detection in subsequent studies involving transfer
learning. Figure 8 illustrates the detection results of different
networks on ground cotton boll images at time interval T2, with
magenta boxes indicating missed detections. Despite achieving
higher detection recall rates in ground cotton boll image data, the
Faster R-CNN model tends to experience overfitting due to its
robust deep feature extraction capabilities. This results in an
increased false positive rate, significantly impacting the balance
between precision and recall. The YOLO v5 model exhibits some
shortcomings, with less evident features and smaller cotton bolls
going unrecognized. YOLOv7 employs multi-layer modification
techniques in the model, halving aspect ratios, doubling channels,
and reducing downsampling. Consequently, at the same volume,
YOLOV7 outperforms YOLOVS5 in efficiently detecting targets with
higher accuracy and faster speed. However, there are still some
shadowed and concealed cotton bolls that go undetected. The
YOLOV8 model provides a scaled-down version based on scaling
factors, catering to the requirements of cotton boll detection scenes.
Nevertheless, further improvements are needed for low-resolution
small target detection. The proposed YOLO SSPD in this study
evidently demonstrates high-precision cotton boll recognition at the
ground scale.

Model Time Precision(%) Recall(%) F1-Score(%) AP5q(%)
T1 803 852 82.7 83.9
Faster R-CNN T2 81.6 86.9 842 83.0
T3 782 82.1 80.1 81.1
T1 81.1 84.8 81.9 82.2
YOLOVS T2 81.7 83.4 82.5 83.1
T3 79.2 816 80.4 81.0
T1 83.1 852 84.1 84.8
YOLOV7 T2 83.8 85.8 85.0 85.6
T3 80.2 82.6 814 813
T1 81.8 83.8 837 82.1
YOLOVS T2 84.6 86.0 84.3 82.6
T3 80.9 81.7 82.6 823
T1 84.1 87.3 85.7 86.5
YOLO T2 85.2 88.9 87.0 88.1

SSPD

T3 81.1 84.6 82.8 83.9

The values are bolded to emphasize that the best-performing models for each period consistently peaked in T2.
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The model detection results (Pinkish-purple boxes show missed bolls): (A) Original image, (B) Faster R-CNN, (C) YOLOV5, (D) YOLOv7, (E) YOLOVS,

(F) YOLO SSPD.

3.2 Results of UAV image cotton boll
detection and transfer learning

The images captured by the UAV at flight altitudes of 20 meters,
40 meters, and 60 meters all exhibit distinct features of open cotton
bolls, with the images obtained at a 20-meter flight altitude having
the highest resolution. The contrast between the target cotton bolls
and the background is more pronounced, resulting in the highest
detection accuracy. Subsequent research focuses on the UAV image
dataset obtained at a 20-meter altitude. When evaluating the impact
of transfer learning, Tables 3, 4 present the cotton boll detection
results using the five aforementioned detection models on the UAV
RGB image dataset during the T2 period, along with the results after
transfer learning on the UAV images during the same period. The
detection results of different models on cotton boll images are
depicted in Figure 9. Due to the small scale of detection targets on
the drone, a portion of the region enclosed by red rectangles in the
original image detection results was cropped for comparison.

TABLE 3 UAV image datasets models testing results.

Comparative analysis of detection results before and after model
transfer indicates overall improvement in the detection efficiency of
all model’s post-transfer, with the YOLO SSPD model exhibiting
the highest detection efficiency. Before model transfer, the detection
time for each image in the drone RGB image dataset was 51ms,
while after model transfer, the average detection time for each
image in the drone RGB image dataset was reduced to 22ms. These
results signify the effectiveness of model transfer. The optimal
YOLO SSPD model achieves an optimal balance between
detection accuracy and detection rate.

3.3 Validation of cotton boll
detection models

Neural networks are often perceived as black-box models with
limited interpretability. However, employing class activation maps
(CAM) on a trained model allows for a visual understanding of its

Model Time Precision(%) Recall(%) F1-Score(%) AP50(%)
Faster R-CNN T2 77.6 84.3 80.8 83.2
YOLOv5 T2 80.3 84.2 82.2 83.6
YOLOv7 T2 82.1 85.6 83.9 84.1
YOLOv8 T2 82.6 86.1 83.8 84.6
YOLO SSPD T2 85.3 88.0 86.6 86.9

The bolding is used to highlight the superior metrics of the best-performing models.
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TABLE 4 Testing results after models transfer.

" Model  Tme  Presont | Recall) | Fiscoetd | APuld
2 79.9 85.6 82.7 83.9

Faster R-CNN T
YOLOvV5 T2 81.1 86.4 84.8 84.3
YOLOv7 T2 83.8 87.1 85.4 86.0
YOLOVS T2 84.1 87.2 85.6 86.4
YOLO SSPD T2 87.4 89.3 87.8 88.0

The bolding is used to highlight the superior metrics of the best-performing models.

]  @voLovr [[]  voLows [ ®voLossep

[] Transfer learning effects [T] Themissed bolls

[ @vyorowr [ @vorows [ ®vorossep

FIGURE 9

Below is a comprehensive comparison of the five object detection models before and after transfer learning. Purple boxes represent detection
results before transfer learning, while blue boxes represent results after transfer learning. Different colored boxes in the images denote the
effectiveness of different detection models, with yellow indicating Faster R-CNN detection, light purple for YOLOVS5, blue for YOLOv7, orange for
YOLOVS, and red for YOLO SSPD detection results.
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principles. CAM (https://github.com/jacobgil/pytorch-grad-cam)
typically operates on the last convolutional layer of the model to
extract class activation maps corresponding to input images (Zhou
et al, 2016). These CAMs, which are the same size as the input
images, facilitate the visualization of predicted class scores and
highlight detected objects. The generation of heatmaps involves
overlaying weighted feature maps obtained from CAM. Within
these heatmaps, the degree of network response in different regions
of the input image can be observed. Larger heatmap ranges indicate
the presence of more predicted class targets in the corresponding
regions, while darker colors signify greater contributions to the
predicted results. To further enhance cotton boll detection, a visual
analysis of the detection results for each model was conducted
through heatmap visualization, providing insights into the neural
network models. As shown in Figure 10, Faster R-CNN focuses on
prominent features of cotton bolls, making it susceptible to
information loss in small target detection, evident in the discrete
distribution of the heatmap. YOLOV5’s feature pyramid structure
exhibits limitations in recognizing obscured and smaller cotton boll
features accurately. While YOLOv7 has a larger model width and
depth compared to YOLOVS5, resulting in the extraction of more
features, the heatmap’s predominantly light colors indicate that
these positions contribute less to the network output, indicating

10.3389/fpls.2024.1409194

insufficient feature extraction for practical applications. YOLOVS,
with its ability to adjust the model scale for detection, outperforms
the first three models in small target scenarios. However, the large-
scale field images captured by the UAV exhibit diverse
characteristics of open cotton bolls and suffer from lower
resolution issues. This leads to YOLOVS8’s focus on concentrated
open cotton bolls, indicating a need for further attention to the
discrete small cotton boll targets. YOLO SSPD, by introducing SPD
convolution and a small target detection head onto the YOLOv8
model, significantly captures a broader target range in low-
resolution small target images, achieving precise detection in
the images.

3.4 Validation of cotton boll
counting model

This study employed the determination coefficient, RMSE, and
RRMSE as metrics to evaluate the counting effectiveness of the
model. Combining the YOLO SSPD detection model with transfer
learning, counting was performed on UAV RGB image data. The
results demonstrate that the detection model, after being fine-tuned
through a transfer learning approach, achieved an R* of 0.86, RMSE

FIGURE 10

Five object detection models’ heatmaps: (A) Original image, (B) Faster R-CNN, (C) YOLOV5, (D) YOLOv7, (E) YOLOVS, (F) YOLO SSPD.
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of 12.38, RRMSE of 11.19%, and an AP of 88.9%, thus indicating a
robust counting performance. Figure 11 showcases how the
integration of the YOLO SSPD model with transfer learning
techniques enhances its ability to detect and count cotton bolls
accurately in 20m resolution UAV images during the T2 period.

4 Discussion

Boll detection in the pre-harvest stage of cotton can realize the
assessment of cotton yield, so as to provide scientific and effective
resource allocation and management strategies. As cotton bolls are
not obvious in the early growth stage in a complex field background
environment, the stages of cotton flocculation can be selected to
accurately and reliably identify and locate cotton bolls. In this study,
the three stages of cotton flocculation were selected to be captured
by UAV and on the ground. In order to reduce the interference of
cotton leaves and achieve better detection conditions, 5 days after
the first spraying of defoliant (T1), 3 days after the second spraying
of defoliant (T2), and 7 days before the cotton picking (T3) were
selected, and the image of T2 got the best detection accuracy in the
subsequent experimental results. In the process of cotton boll data
acquisition, although the effects of UAV shooting time stage,
weather conditions, UAV flight speed, camera shooting angle and
other factors on the quality of ground image data and remotely
sensed data were taken into account, factors such as different
degrees of shading and background clutter in the cotton field in
the natural environment still have a significant impact on the
detection accuracy (Kang et al, 2022, 2023; Li et al, 2022; Li
et al., 2020). Data enhancement can balance and enrich the
cotton boll image datasets, better realize the acquisition of cotton
boll features, and also reduce the workload of manual labelling.

For the case of boll detection by UAV in small-scale cotton
fields, which is limited in resolution and insufficient in the number
of samples obtained, ground photography was conducted to obtain
sufficient ground open boll data. From the perspective of transfer
learning, many ground images were used to train the deep learning

10.3389/fpls.2024.1409194

model. After reaching a higher accuracy, the model was transferred
so that the model could achieve a good detection accuracy on UAV
images with a smaller dataset. The specific steps were, on the
ground cotton boll image datasets, to investigate the cotton boll
detection effect of different target detection networks in different
periods through comparative experiments. Then, on UAV RGB
image data, the performance of different target detection networks
on cotton boll detection at UAV scale and different periods were
investigated through comparison and transfer learning (Meng et al.,
2019). In terms of model performance, Faster R-CNN based on
Region Proposal Networks could extract target cotton bolls, but the
model was complex, had slow training speed, and was prone to
overfitting. Due to different growth conditions, cotton bolls during
the boll spitting period exhibit varying shapes and color
characteristics. The feature extraction capability of Faster R-CNN
was too strong, leading to failures of recognizing some cotton bolls.
YOLOVS5 introduced CSPDarknet53 as the backbone network and
employed the PANet structure to enhance feature fusion,
demonstrating good performance in both accuracy and speed.
However, when applied to cotton boll detection in UAV images,
the YOLOvV5 model produces numerous instances of false negatives.
YOLOV7 builds on YOLOV5 by introducing architectures such as
the Efficient Layer Aggregation Network, but it exhibits weak
generalization, with variations in different scenes and poor
performance in small object detection tasks. YOLOv8 was the
latest achievement in the YOLO series at the time, featuring
adjustable scaling coefficients and excellent application in
practical scenarios with small targets. The proposed YOLO SSPD
object detection model further improves the detection accuracy of
small cotton bolls from UAVs by building upon YOLOVS.
Experimental results indicate that YOLO SSPD performs best on
both the ground cotton boll image dataset (T2) and the UAV RGB
image dataset(T2). The accuracy of cotton boll detection in UAV
scale is enhanced through the transfer model, contributing to
improved accuracy in cotton yield prediction (Wang et al., 2021;
Rodriguez-Sanchez et al., 2022). The combination of the YOLO

SSPD detection model and transfer learning methods excels in

FIGURE 11

The model detection results: (A) Real ground boll counts, (B) YOLO SSPD results (UAV imagery).
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detecting cotton bolls in complex environments from UAV RGB
image data, providing a more precise representation of the specific
locations of targets. The counting results accurately reflect the
number of cotton bolls during the boll spitting stage, closely
matching actual counting results (Siegfried et al., 2023). Utilizing
the YOLO SSPD model for counting cotton bolls in UAV-scale
images can be appropriately applied in practical cotton production
processes (Qiu et al., 2022; Lang et al.,, 2023).

Although some progress has been made in this study, there are
still many issues that need to be explored and solved in depth. (1)
This study is based on cotton boll image datasets collected by ground
and UAV at three altitudes (20 m, 40 m and 60 m). The image
resolution of the images collected at 40 m and 60 m flight altitudes is
not high, which impacts the precision of cotton boll detection and
recognition. The UAV can be upgraded subsequently in terms of the
camera pixels and the frame rate. High-resolution UAV images are
able to achieve higher accuracy using the method proposed in this
paper. (2) In the future, with a focus on enhancing the efficacy of
cotton boll detection, multi-scale image fusion algorithms can be
targeted to expand the detection area while improving the image
resolution. Further, the large-scale cotton field yield estimation
combined with satellite remote sensing images can be practically
applied to a broader range of production research.

5 Conclusions

This study proposes a target detection network, YOLO SSPD,
based on YOLOVS, specifically designed for detecting cotton bolls
during the boll spitting period. In ground-based cotton boll image
detection, the model was trained alongside four other object detection
models until convergence. Subsequently, transfer learning was
employed to apply these models to UAV-based cotton boll image
detection. A comparison with four other models shows that YOLO
SSPD outperforms them all. In the T2 period, the detection accuracy
on UAV cotton boll images reaches 0.874, and the cotton boll count
R’ is 0.86. The results indicate that utilizing transfer learning and the
YOLO SSPD detection model significantly improves the accuracy of
cotton boll detection. The outcomes of this study serve as a practical
tool in the cotton production process, enhancing the efficiency of
cotton information detection. They also provide a basis for
agricultural researchers to make timely decisions in cotton
management, ultimately improving cotton yield and quality.

References

Amarasingam, N., Vanegas, F., Hele, M., Warfield, A., and Gonzalez, F. (2024).
Integrating artificial intelligence and UAV-acquired multispectral imagery for the
mapping of invasive plant species in complex natural environments. Remote Sens. 16,
15825. doi: 10.3390/rs16091582

Azizi, A., Zhang, Z., Rui, Z., Li, Y., Igathinathane, C., Flores, P, et al. (2024).
Comprehensive wheat lodging detection after initial lodging using UAV RGB images.
Expert Syst. Appl. 238, 121788. doi: 10.1016/j.eswa.2023.121788

Bai, Y., Nie, C., Wang, H., Cheng, M,, Liu, S,, Yu, X,, et al. (2022). A fast and robust
method for plant count in sunflower and maize at different seedling stages using high-

Frontiers in Plant Science

10.3389/fpls.2024.1409194

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding authors.

Author contributions

MZ: Conceptualization, Investigation, Methodology, Writing —
original draft. WC: Conceptualization, Resources, Software, Writing —
review & editing. PG: Conceptualization, Funding acquisition, Project
administration, Supervision, Writing - review & editing. YL:
Methodology, Writing - review & editing. FT: Validation,
Visualization, Writing - review & editing. YZ: Data curation,
Validation, Writing - review & editing. SR: Validation, Writing —
review & editing. PX: Formal analysis, Writing - review & editing.
LG: Data curation, Validation, Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the National Natural Science Foundation of
China (Grant No. 62265015) and Eight division Shihezi City key
areas of innovation team plan (2023TDO1).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

resolution UAV RGB imagery. Precis. Agric. 23, 1720-17425. doi: 10.1007/s11119-022-
09907-1

Bouras, El h., Olsson, P.-O., Thapa, S., Diaz, JesusM., Albertsson, J., and Eklundh, L.
(2023). Wheat Yield Estimation at High Spatial Resolution through the Assimilation of
Sentinel-2 Data into a Crop Growth Model. Remote Sens. 15, 44255. doi: 10.3390/
rs15184425

Chen, K., Lin, W., Li, J,, See, J., Wang, J., and Zou, J. (2020). AP-loss for accurate one-
stage object detection. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3782-37985.
doi: 10.1109/TPAMI.2020.2991457

frontiersin.org


https://doi.org/10.3390/rs16091582
https://doi.org/10.1016/j.eswa.2023.121788
https://doi.org/10.1007/s11119-022-09907-1
https://doi.org/10.1007/s11119-022-09907-1
https://doi.org/10.3390/rs15184425
https://doi.org/10.3390/rs15184425
https://doi.org/10.1109/TPAMI.2020.2991457
https://doi.org/10.3389/fpls.2024.1409194
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

Dhaliwal, D. S., and Williams, M. M. (2023). Sweet corn yield prediction using
machine learning models and field-level data. Precis. Agriculture. doi: 10.1007/s11119-
023-10057-1

Donmez, C., Villi, O., Berberoglu, S., and Cilek, A. (2021). Computer vision-based
citrus tree detection in a cultivated environment using UAV imagery. Comput.
Electron. Agric. 187, 106273. doi: 10.1016/j.compag.2021.106273

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. (2019). “Centernet:
Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision. doi: 10.1109/ICCV43118.2019

Eskandari, R., Mahdianpari, M., Mohammadimanesh, F., Salehi, B., Brisco, B., and
Homayouni, S. (2020). Meta-analysis of unmanned aerial vehicle (UAV) imagery for
agro-environmental monitoring using machine learning and statistical models. Remote
Sens. 12, 35115. doi: 10.3390/rs12213511

Feng, A., Zhang, M., Sudduth, K. A., Vories, E. D., and Zhou, J. (2019). Cotton yield
estimation from UAV-based plant height. Trans. ASABE 62, 393-4045. doi: 10.13031/
trans.13067

Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A,, and Zhang, M. (2020). Yield
estimation in cotton using UAV-based multi-sensor imagery. Biosyst. Eng. 193, 101-
114. doi: 10.1016/j.biosystemseng.2020.02.014

Fernandez-Gallego, J. A., Lootens, P., Borra-Serrano, I., Derycke, V., Haesaert, G.,
Roldan-Ruiz, L, et al. (2020). Automatic wheat ear counting using machine learning
based on RGB UAV imagery. Plant J. 103, 1603-16135. doi: 10.1111/tpj.14799

Flores, D., Gonzalez-Hernandez, 1., Lozano, R., Vazquez-Nicolas, J. M., and Toral, J.
L. H. (2021). Automated agave detection and counting using a convolutional neural
network and unmanned aerial systems. Drones 5, 45. doi: 10.3390/drones5010004

Fue, K. G,, Porter, W. M., and Rains, G. C. (2018). “Deep Learning based Real-time
GPU-accelerated Tracking and Counting of Cotton Bolls under Field Conditions using
a Moving Camera,” in 2018 ASABE Annual International Meeting (St. Joseph, MI).

Garcia-Martinez, H., Flores-Magdaleno, H., Ascencio-Hernandez, R., Khalil-
Gardezi, A., Tijerina-Chavez, L., Mancilla-Villa, O. R,, et al. (2020). Corn grain yield
estimation from vegetation indices, canopy cover, plant density, and a neural network
using multispectral and RGB images acquired with unmanned aerial vehicles.
Agriculture 10, 2775. doi: 10.3390/agriculture10070277

Ghiasi, G., Cui, Y., Srinivas, A., Qian, R,, Lin, T.-Y., Cubuk, E. D,, et al. (2021).
“Simple copy-paste is a strong data augmentation method for instance segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
doi: 10.1109/CVPR46437.2021.00294

Hassanzadeh, A., Zhang, F., Aardt, J. v., Murphy, S. P, and Pethybridge., S. J. (2021).
Broadacre crop yield estimation using imaging spectroscopy from unmanned aerial
systems (UAS): A field-based case study with snap bean. Remote Sens. 13, 32415.
doi: 10.3390/rs13163241

Hu, T., Zhang, X,, Bohrer, G., Liu, Y., Zhou, Y., Martin, J., et al. (2023). Crop yield
prediction via explainable Al and interpretable machine learning: Dangers of black box
models for evaluating climate change impacts on crop yield. Agric. For. Meteorol. 336,
109458. doi: 10.1016/j.agrformet.2023.109458

Huang, H., Lan, Y,, Deng, J., Yang, A., Deng, X., Zhang, L., et al. (2018). A semantic
labeling approach for accurate weed mapping of high resolution UAV imagery. Sensors
18. doi: 10.3390/s18072113

Impollonia, G., Croci, M., Ferrarini, A., Brook, J., Martani, E., Blandiniéres, H., et al.
(2022). UAV remote sensing for high-throughput phenotyping and for yield prediction
of miscanthus by machine learning techniques. Remote Sens. 14, 29275. doi: 10.3390/
rs14122927

Jiang, K., Xie, T., Yan, R, Wen, X,, Li, D,, Jiang, H., et al. (2022). An attention
mechanism-improved YOLOv7 object detection algorithm for hemp duck count
estimation. Agriculture 12, 16595. doi: 10.3390/agriculture12101659

Kang, X., Huang, C., Zhang, L., Wang, H., Zhang, Z., and Lv, X. (2023). Regional-
scale cotton yield forecast via data-driven spatio-temporal prediction (STP) of solar-
induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 299, 113861.
doi: 10.1016/j.rse.2023.113861

Kang, X., Huang, C., Zhang, L., Zhang, Z., and Lv, X. (2022). Downscaling solar-
induced chlorophyll fluorescence for field-scale cotton yield estimation by a two-step
convolutional neural network. Comput. Electron. Agric. 201, 107260. doi: 10.1016/
j.compag.2022.107260

Kumar, C., Mubvumba, P., Huang, Y., Dhillon, J., and Reddy, K. (2023). Multi-stage
corn yield prediction using high-resolution UAV multispectral data and machine
learning models. Agronomy 13, 12775. doi: 10.3390/agronomy13051277

Kurihara, J., Nagata, T., and Tomiyama, H. (2023). Rice yield prediction in different
growth environments using unmanned aerial vehicle-based hyperspectral imaging.
Remote Sens. 15, 20045. doi: 10.3390/rs15082004

Lang, P., Zhang, L., Huang, C., Chen, J., Kang, X., Zhang, Z., et al. (2023). Integrating
environmental and satellite data to estimate county-level cotton yield in Xinjiang
Province. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1048479

Li, F, Bai, ], Zhang, M., and Zhang, R. (2022). Yield estimation of high-density
cotton fields using low-altitude UAV imaging and deep learning. Plant Methods 18,
555. doi: 10.1186/s13007-022-00881-3

Li, N, Lin, H., Wang, T., Li, Y., Liu, Y., Chen, X,, et al. (2020). Impact of climate
change on cotton growth and yields in Xinjiang, China. Field Crops Res. 247, 107590.
doi: 10.1016/j.fcr.2019.107590

Frontiers in Plant Science

10.3389/fpls.2024.1409194

Liu, P, Qian, W., and Wang, Y. (2024). YWnet: A convolutional block attention-
based fusion deep learning method for complex underwater small target detection. Ecol.
Inf. 79, 102401. doi: 10.1016/j.ecoinf.2023.102401

Machefer, M., Lemarchand, F., Bonnefond, V., Hitchins, A., and Sidiropoulos, P.
(2020). Mask R-CNN refitting strategy for plant counting and sizing in UAV imagery.
Remote Sens. 12, 30155. doi: 10.3390/rs12183015

Mai, X, Zhang, H,, Jia, X., and Meng, M. Q.-H. (2020). Faster R-CNN with classifier
fusion for automatic detection of small fruits. IEEE Trans. Automation Sci. Eng. 17,
1555-15695. doi: 10.1109/TASE.8856

Meng, L., Liu, H,, Zhang, X,, Ren, C., Ustin, S., Qiu, Z, et al. (2019). Assessment of
the effectiveness of spatiotemporal fusion of multi-source satellite images for cotton
yield estimation. Comput. Electron. Agric. 162, 44-52. doi: 10.1016/
j.compag.2019.04.001

Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N. H., and Islam, N. (2022). A
systematic literature review on crop yield prediction with deep learning and remote
sensing. Remote Sens. 14, 19905. doi: 10.3390/rs14091990

Naderi Mahdei, K., Esfahani, S. M. ], Lebailly, P., Dogot, T., Passel, S. V., and Azadi,
H. (2023). Environmental impact assessment and efficiency of cotton: the case of
Northeast Iran. Environment Dev. Sustainability 25, 10301-103215. doi: 10.1007/
$10668-022-02490-5

Palacios, F., Diago, M. P., Melo-Pinto, P., and Tardaguila, J. (2023). Early yield
prediction in different grapevine varieties using computer vision and machine learning.
Precis. Agric. 24, 407-4355. doi: 10.1007/s11119-022-09950-y

Park, J., and Yu, W. (2021). A sensor fused rear cross traffic detection system using
transfer learning. Sensors 21, 60555. doi: 10.3390/s21186055

Pokhrel, A., Virk, S., Snider, J. L., Vellidis, G., Hand, L. C,, et al. (2023). Estimating
yield-contributing physiological parameters of cotton using UAV-based imagery.
Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1248152

Priyatikanto, R., Lu, Y., Dash, J., and Sheffield, J. (2023). Improving generalisability
and transferability of machine-learning-based maize yield prediction model through
domain adaptation. Agric. For. Meteorol. 341, 109652. doi: 10.1016/
j.agrformet.2023.109652

Qiu, R, He, Y., and Zhang, M. (2022). Automatic detection and counting of wheat
spikelet using semi-automatic labeling and deep learning. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.872555

Rodriguez-Sanchez, J., Li, C., and Paterson, A. H. (2022). Cotton yield estimation
from aerial imagery using machine learning approaches. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.870181

Sarkar, S., Zhou, J., Scaboo, A., Zhou, J., Aloysius, N., and Lim, T. T. (2023).
Assessment of soybean lodging using UAV imagery and machine learning. Plants 12,
28935. doi: 10.3390/plants12162893

Shi, G., Du, X,, Du, M,, Li, Q,, Tian, X,, Ren, Y., et al. (2022). Cotton yield estimation
using the remotely sensed cotton boll index from UAV images. Drones 6, 254.
doi: 10.3390/drones6090254

Siegfried, J., Adams, C. B., Rajan, N., Hague, S., Schnell, R, and Hardin, R. (2023).
Combining a cotton ‘Boll Area Index’ with in-season unmanned aerial multispectral
and thermal imagery for yield estimation. Field Crops Res. 291, 108765. doi: 10.1016/
j.fcr.2022.108765

Skobalski, J., Sagan, V., Alifu, H., Akkad, O. A., Lopes, F. A., and Grignola, F. (2024).
Bridging the gap between crop breeding and GeoAl: Soybean yield prediction from
multispectral UAV images with transfer learning. ISPRS J. Photogrammetry Remote
Sens. 210, 260-281. doi: 10.1016/j.isprsjprs.2024.03.015

Sunkara, R., and Luo, T. (2022). “No more strided convolutions or pooling: A new
CNN building block for low-resolution images and small objects,” in ECML/PKDD.

Tedesco-Oliveira, D., da Silva, R. P., Maldonado, W., and Zerbato, C.
(2020). Convolutional neural networks in predicting cotton yield from images of
commercial fields. Comput. Electron. Agric. 171, 105307. doi: 10.1016/j.compag.2020.
105307

Thorp, K. R,, Thompson, A. L., and Bronson, K. F. (2020). Irrigation rate and timing
effects on Arizona cotton yield, water productivity, and fiber quality. Agric. Water
Manage. 234, 106146. doi: 10.1016/j.agwat.2020.106146

Tian, Z., Zhang, Y., Liu, K,, Li, Z,, Li, M., Zhang, H,, et al. (2022). UAV remote
sensing prediction method of winter wheat yield based on the fused features of crop and
soil. Remote Sens. 14, 50545. doi: 10.3390/rs14195054

Torgbor, B. A,, Rahman, M. M., Brinkhoff, J., Sinha, P., and Robson, A. (2023).
Integrating remote sensing and weather variables for mango yield prediction using a
machine learning approach. Remote Sens. 15, 30755. doi: 10.3390/rs15123075

Velumani, K., Lopez-Lozano, R., Madec, S., Guo, W., Gillet, J., Comar, A., et al.
(2021). Estimates of maize plant density from UAV RGB images using faster-RCNN
detection model: Impact of the spatial resolution. Plant Phenomics. doi: 10.34133/2021/
9824843

Wan, S., Lin, S., Yuan, Q., and He, Z. (2024). A novel defect detection method for
color printing fabrics based on attention mechanism and space-to-depth
transformation. Signal Image Video Processing. doi: 10.1007/s11760-024-03146-9

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). “YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi: 10.1109/
CVPR52729.2023.00721

frontiersin.org


https://doi.org/10.1007/s11119&ndash;023-10057&ndash;1
https://doi.org/10.1007/s11119&ndash;023-10057&ndash;1
https://doi.org/10.1016/j.compag.2021.106273
https://doi.org/10.1109/ICCV43118.2019
https://doi.org/10.3390/rs12213511
https://doi.org/10.13031/trans.13067
https://doi.org/10.13031/trans.13067
https://doi.org/10.1016/j.biosystemseng.2020.02.014
https://doi.org/10.1111/tpj.14799
https://doi.org/10.3390/drones5010004
https://doi.org/10.3390/agriculture10070277
https://doi.org/10.1109/CVPR46437.2021.00294
https://doi.org/10.3390/rs13163241
https://doi.org/10.1016/j.agrformet.2023.109458
https://doi.org/10.3390/s18072113
https://doi.org/10.3390/rs14122927
https://doi.org/10.3390/rs14122927
https://doi.org/10.3390/agriculture12101659
https://doi.org/10.1016/j.rse.2023.113861
https://doi.org/10.1016/j.compag.2022.107260
https://doi.org/10.1016/j.compag.2022.107260
https://doi.org/10.3390/agronomy13051277
https://doi.org/10.3390/rs15082004
https://doi.org/10.3389/fpls.2022.1048479
https://doi.org/10.1186/s13007-022-00881-3
https://doi.org/10.1016/j.fcr.2019.107590
https://doi.org/10.1016/j.ecoinf.2023.102401
https://doi.org/10.3390/rs12183015
https://doi.org/10.1109/TASE.8856
https://doi.org/10.1016/j.compag.2019.04.001
https://doi.org/10.1016/j.compag.2019.04.001
https://doi.org/10.3390/rs14091990
https://doi.org/10.1007/s10668-022-02490-5
https://doi.org/10.1007/s10668-022-02490-5
https://doi.org/10.1007/s11119-022-09950-y
https://doi.org/10.3390/s21186055
https://doi.org/10.3389/fpls.2023.1248152
https://doi.org/10.1016/j.agrformet.2023.109652
https://doi.org/10.1016/j.agrformet.2023.109652
https://doi.org/10.3389/fpls.2022.872555
https://doi.org/10.3389/fpls.2022.870181
https://doi.org/10.3390/plants12162893
https://doi.org/10.3390/drones6090254
https://doi.org/10.1016/j.fcr.2022.108765
https://doi.org/10.1016/j.fcr.2022.108765
https://doi.org/10.1016/j.isprsjprs.2024.03.015
https://doi.org/10.1016/j.compag.2020.105307
https://doi.org/10.1016/j.compag.2020.105307
https://doi.org/10.1016/j.agwat.2020.106146
https://doi.org/10.3390/rs14195054
https://doi.org/10.3390/rs15123075
https://doi.org/10.34133/2021/9824843
https://doi.org/10.34133/2021/9824843
https://doi.org/10.1007/s11760-024-03146-9
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.3389/fpls.2024.1409194
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

Wang, G., Chen, Y., An, P., Hong, H., Hu, J., and Huang, T. (2023). UAV-YOLOVS8:
A small-object-detection model based on improved YOLOv8 for UAV aerial
photography scenarios. Sensors 23, 71905. doi: 10.3390/s23167190

Wang, L., Liu, Y., Wen, M., Li, M., Dong, Z., He, Z., et al. (2021). Using field
hyperspectral data to predict cotton yield reduction after hail damage. Comput.
Electron. Agric. 190, 106400. doi: 10.1016/j.compag.2021.106400

Wang, X, Lei, H.,, Li, J., Huo, Z.,, Zhang, Y., and Qu, Y. (2023). Estimating
evapotranspiration and yield of wheat and maize croplands through a remote
sensing-based model. Agric. Water Manage. 282, 108294. doi: 10.1016/
j.agwat.2023.108294

Xiang, Y., Yao, J., Yang, Y., Yao, K., Wu, C,, Yue, X,, et al. (2023). Real-time detection

algorithm for kiwifruit canker based on a lightweight and efficient generative
adversarial network. Plants 12, 30535. doi: 10.3390/plants12173053

Xu, R, Li, C, Paterson, A. H,, Jiang, Y., Sun, S., and Robertson, J. S. (2018). Aerial
images and convolutional neural network for cotton bloom detection. Front. Plant Sci.
8. doi: 10.3389/fpls.2017.02235

Xu, W, Chen, P., Zhan, Y., Chen, S., Zhang, L., and Lan, Y. (2021). Cotton yield
estimation model based on machine learning using time series UAV remote sensing
data. Int. J. Appl. Earth Observation Geoinformation 104, 102511. doi: 10.1016/
j.jag.2021.102511

Frontiers in Plant Science

95

10.3389/fpls.2024.1409194

Yan, P, Han, Q, Feng, Y., and Kang, S. (2022). Estimating LAI for cotton using multisource
UAV data and a modified universal model. Remote Sens. 14, 42725. doi: 10.3390/rs14174272

Yang, S., Wang, W., Gao, S., and Deng, Z. (2023). Strawberry ripeness detection
based on YOLOVS algorithm fused with LW-Swin Transformer. Comput. Electron.
Agric. 215, 108360. doi: 10.1016/j.compag.2023.108360

Yeom, J., Jung, J., Chang, A., Maeda, M., and Landivar, J. (2018). Automated open
cotton boll detection for yield estimation using unmanned aircraft vehicle (UAV) data.
Remote Sens. 10, 18955. doi: 10.3390/rs10121895

Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2021). Fairmot: On the
fairness of detection and re-identification in multiple object tracking. Int. J. Comput.
Vision 129, 3069-3087. doi: 10.1007/s11263-021-01513-4

Zhao, H., Zhang, H., and Zhao, Y. (2023). “Yolov7-sea: Object detection of maritime
uav images based on improved yolov7,” in Proceedings of the IEEE/CVF winter
conference on applications of computer vision. doi: 10.1109/WACVW58289.2023.00029

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). “Learning
deep features for discriminative localization,” in Proceedings of the IEEE conference on
computer vision and pattern recognition. doi: 10.1109/CVPR.2016.319

Zou, M,, Liu, Y., Fu, M., Li, C,, Zhou, Z., Meng, H., et al. (2024). Combining spectral and
texture feature of UAV image with plant height to improve LAI estimation of winter
wheat at jointing stage. Front. Plant Sci. 14, 1272049. doi: 10.3389/fpls.2023.1272049

frontiersin.org


https://doi.org/10.3390/s23167190
https://doi.org/10.1016/j.compag.2021.106400
https://doi.org/10.1016/j.agwat.2023.108294
https://doi.org/10.1016/j.agwat.2023.108294
https://doi.org/10.3390/plants12173053
https://doi.org/10.3389/fpls.2017.02235
https://doi.org/10.1016/j.jag.2021.102511
https://doi.org/10.1016/j.jag.2021.102511
https://doi.org/10.3390/rs14174272
https://doi.org/10.1016/j.compag.2023.108360
https://doi.org/10.3390/rs10121895
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1109/WACVW58289.2023.00029
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.3389/fpls.2023.1272049
https://doi.org/10.3389/fpls.2024.1409194
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Mohsen Yoosefzadeh Najafabadi,
University of Guelph, Canada

REVIEWED BY

Orly Enrique Apolo-Apolo,

KU Leuven, Belgium

Rismen Sinambela,

Christian University of Indonesia, Indonesia
Raja Hamza,

University of Sfax, Tunisia

*CORRESPONDENCE
Lijia Xu
xulijla@sicau.edu.cn

RECEIVED 09 April 2024
ACCEPTED 18 June 2024
PUBLISHED 05 July 2024

CITATION

Tang Z, Xu L, Li H, Chen M, Shi X, Zhou L,
Wang Y, Wu Z, Zhao Y, Ruan K, He Y, Ma W,
Yang N, Luo L and Qiu Y (2024) YOLOC-
tiny: a generalized lightweight real-time
detection model for multiripeness fruits

of large non-green-ripe citrus in
unstructured environments.

Front. Plant Sci. 15:1415006.

doi: 10.3389/fpls.2024.1415006

COPYRIGHT

© 2024 Tang, Xu, Li, Chen, Shi, Zhou, Wang,
Wu, Zhao, Ruan, He, Ma, Yang, Luo and Qiu.
This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Plant Science

TvpPE Original Research
PUBLISHED 05 July 2024
D01 10.3389/fpls.2024.1415006

YOLOC-tiny: a generalized
lightweight real-time detection
model for multiripeness fruits of
large non-green-ripe citrus in
unstructured environments

Zuoliang Tang™?, Lijia Xu™, Haoyang Li*, Mingyou Chen’,
Xiaoshi Shi*?, Long Zhou*, Yuchao Wang®, Zhijun Wu',
Yongpeng Zhao*, Kun Ruan?, Yong He*, Wei Ma®, Ning Yang®,
Lufeng Luo® and Yungiao Qiu’

!College of Mechanical and Electrical Engineering, Sichuan Agriculture University, Ya'an, China,
2College of Resources, Sichuan Agriculture University, Chengdu, China, *School of Mechatronic
Engineering and Automation, Foshan University, Foshan, China, “College of Biosystems Engineering
and Food Science, Zhejiang University, Hangzhou, China, ®Institute of Urban Agriculture, Chinese
Academy of Agriculture Sciences, Chengdu, China, ¢School of Electrical and Information Engineering,
Jiangsu University, Zhenjiang, China, “Sichuan Academy of Agricultural Machinery Sciences,
Chengdu, China

This study addresses the challenges of low detection precision and limited
generalization across various ripeness levels and varieties for large non-green-
ripe citrus fruits in complex scenarios. We present a high-precision and lightweight
model, YOLOC-tiny, built upon YOLOv7, which utilizes EfficientNet-BO as the
feature extraction backbone network. To augment sensing capabilities and
improve detection accuracy, we embed a spatial and channel composite
attention mechanism, the convolutional block attention module (CBAM), into
the head's efficient aggregation network. Additionally, we introduce an adaptive
and complete intersection over union regression loss function, designed by
integrating the phenotypic features of large non-green-ripe citrus, to mitigate
the impact of data noise and efficiently calculate detection loss. Finally, a layer-
based adaptive magnitude pruning strategy is employed to further eliminate
redundant connections and parameters in the model. Targeting three types of
citrus widely planted in Sichuan Province—navel orange, Ehime Jelly orange, and
Harumi tangerine—YOLOC-tiny achieves an impressive mean average precision
(MmAP) of 83.0%, surpassing most other state-of-the-art (SOTA) detectors in the
same class. Compared with YOLOV7 and YOLOV8Y, its mAP improved by 1.7% and
1.9%. respectively, with a parameter count of only 4.2M. In picking robot
deployment applications, YOLOC-tiny attains an accuracy of 92.8% at a rate of
59 frames per second. This study provides a theoretical foundation and technical
reference for upgrading and optimizing low-computing-power ground-based
robots, such as those used for fruit picking and orchard inspection.

KEYWORDS

non-green-ripe citrus, multiripeness fruits, YOLOv7, EfficientNet, CBAM,
agricultural robot
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1 Introduction

Citrus is one of the most widely cultivated and highest-yielding
fruit crops globally, generating significant economic value (The
United States Department of Agriculture, 2024). However, the
citrus industry faces immense pressure due to skilled labor
shortages, rising production costs, market demand fluctuations,
and extreme climate changes (Castro-Garcia et al.,, 2019; Apolo-
Apolo et al., 2020a). Agricultural robots can mitigate these pressures
by reducing reliance on skilled labor, lowering economic and
environmental costs, and enhancing orchard management and
productivity (Bargoti and Underwood, 2017; Fu et al., 2020a).
Accurate fruit detection is essential for automated harvesting and
early yield prediction (Zhuang et al., 2018; Apolo-Apolo et al,
2020b; Lu et al,, 2023). Consequently, the detection of citrus fruits
has become a research hotspot (Wang et al., 2022¢; Ma et al., 2024).
Particularly, there is an urgent need for high-performance detection
models that can be deployed on resource-limited robots and other
edge devices (Tang et al., 2020; Xu et al., 2023).

Multispectral cameras, optical digital cameras, 3D stereoscopic
cameras, and RGB-D depth cameras are the primary devices used
for fruit detection (Chen et al, 2020; Condotta et al., 2020).
Multispectral cameras can capture spectral information across
various bands from visible to near-infrared and are commonly
mounted on unmanned aerial vehicles for large-scale crop health,
yield estimation, and disease monitoring (Huang et al., 2020; Lan
et al,, 2020). However, their high cost and complex data processing
requirements limit their application in ground-based agricultural
robots. Optical digital cameras, 3D stereoscopic cameras, and RGB-
D depth cameras typically produce RGB images with three visible
light bands: red, green, and blue. Many studies have shown that
RGB images are sufficient for fruit detection (Lu et al., 2018; Yu
et al., 2019; Gené-Mola et al., 2020; Liu et al., 2023). These devices
are cost-effective and require less computational power, making
them more suitable for the practical needs of real-time monitoring
and automated harvesting robots.

Over the past few decades, methods combining digital image
processing with traditional machine learning (ML) techniques have
been used for fruit detection, including citrus (Liu et al., 2018),
kiwifruit (Fu et al., 2019), and apples (Lu et al., 2022). However, the
pixel values in RGB images are highly sensitive to changes in
lighting and background interference. Traditional ML algorithms,
such as support vector machines and decision trees, rely on complex
feature extraction and manual rules to handle these variations (Fu
et al,, 2018). Consequently, these algorithms exhibit performance
fluctuations in complex environments and fail to meet the need for
stable citrus fruit detection by robots in real-world scenarios.

In recent years, the advancement of deep learning (DL)
technology has significantly impacted the field of agricultural
detection due to its exceptional feature learning capability, robust
generalization performance, and substantial computational power
(Gene-Mola et al., 2020; Maheswari et al.,, 2021). DL methods for
fruit detection are broadly categorized into two main approaches:
region-based two-stage methods (Girshick et al., 2014; Shaoqing
et al,, 2016) and end-to-end single-stage methods (Redmon et al.,
2016; Wei et al., 2016).
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Two-stage detection methods first extract a large number of
regions of interest (Rols) that potentially contain target fruits. These
Rols are then passed through a convolutional neural network
(CNN) for detection, with final detection results obtained after
post-processing (Girshick et al., 2014; Shaoqing et al., 2016).
Although this process is time-consuming, these methods typically
achieve high detection precision due to the utilization of CNNs for
fruit detection on Rols (Redmon et al.,, 2016). For example, C.H.
Yang et al. (Yang et al., 2020) developed a citrus fruit detection
algorithm based on Mask R-CNN, achieving a detection precision
of 88.15%. Longsheng Fu et al. (Fu et al., 2020b) proposed an apple
detection algorithm based on Faster R-CNN, achieving a detection
precision of 89.3%. However, the inherent characteristics of two-
stage methods, including slower detection speed and high memory
consumption, limit their suitability for applications such as
harvesting robots, which require rapid detection and are
constrained by computational resources.

In contrast, the YOLO series of single-stage detection methods,
introduced in 2015, offers faster detection speeds and high detection
accuracy (Redmon et al, 2016). YOLO models perform target
detection in a single pass through a CNN, eliminating the need
for separate stages and reducing redundant operations (Redmon
et al, 2016; Wang et al., 2022a). While early YOLO models had
lower detection accuracy compared to two-stage models like R-
CNN, subsequent optimizations, and improvements by numerous
researchers have led to the development of several highly effective
fruit detection methods. For instance, Longsheng Fu et al. (Fu et al,,
2021) proposed a kiwifruit detection algorithm, DY3TNet, by
improving the YOLOv3-tiny model, achieving a detection
precision of 90.05%. Shenglian Lu et al. (Lu et al., 2022)
developed the CA-YOLOv4 detection algorithm for apples in
orchard environments, achieving a detection precision of 92.6%
for Envy apples during harvest. Additionally, Lijia Xu et al. (Xu
et al,, 2023) proposed the HPL-YOLOV4 citrus detection model for
complex environments, achieving a detection precision of 93.45%.

Citrus is a general term for fruits belonging to the Citrus genus
of the Rutaceae family, with major types including grapefruit,
lemon, tangerine, and orange (Liu et al, 2012). Among these,
navel oranges, Ehime Jelly oranges, and Harumi tangerines are
widely cultivated in the southwestern regions of China, and their
fruits turn orange-red upon ripening. In this study, we refer to them
as non-green-ripe citrus. While existing models can detect single-
variety or single-degree ripeness fruits, such as apples or certain
citrus fruits (Lu et al., 2018, 2022), there remains an urgent need for
a real-time and accurate detection model for multi-ripeness fruits of
different non-green-ripe citrus varieties in complex orchards. To
address this issue, we first collected and created a custom image
dataset of non-green-ripe citrus, covering the detection needs of
unripe, semi-ripe, and ripe fruits. We then proposed a lightweight,
single-stage citrus detection model suitable for deployment on edge
devices such as robots. The main contributions of this work are
as follows:

(1) We designed a comprehensive image dataset, RC3025,

which includes images of non-green-ripe citrus fruits of
various varieties and ripeness levels in complex scenarios.
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(2) We discovered and proposed that incorporating a small
number of pure citrus fruit images into the training set
enhances the model’s detection performance in
real orchards.

(3) We developed a general, lightweight, and high-
performance multi-ripeness citrus recognition model,
YOLOC-tiny, based on YOLOV7.

(4) We validated the practical performance and advantages of
YOLOC-tiny through robot deployment application
experiments, demonstrating its effectiveness in detecting
non-green-ripe citrus fruits in complex environments.

2 Materials and methods

2.1 Multiripeness non-green-ripe citrus
fruit image dataset

2.1.1 Raw image acquisition and labeling

To properly train the developed DL model, a number of raw
images are required as an initial dataset (Apolo-Apolo et al., 2020a).
Research suggests that 2,500 annotated instances are adequate for
training deep networks to recognize a certain type of fruit (Wang
etal., 2022b). From 2020 to late 2023, we continuously collected raw
images over four years using both manual and robotic photography,
as shown in Figure 1. Various imaging devices, including a 3D
stereoscopic camera (ZED), a Canon 80D camera, and four different
mobile phones (VIVO Y97, Mi 10, Redmi K40, and iPhone Xs),
were employed to capture images of citrus fruits at different ripeness
levels and varieties in three non-green-ripe citrus orchards. These
orchards are located in three different counties in the western part
of Sichuan Province: Yucheng District, Ya’an City (29°58'N, 102°
59'E); Jintang County, Chengdu City (30°43'N, 104°29'E); and
Danling County, Meishan City (29°58'N, 103°32’E). To meet the
operational needs of ground-based agricultural robots, the shooting
distance ranged from 0.3 to 1.2 meters.

¢ 3D Stereoscopic camera~\ ICPR

0.3-1.2 m e

0.3-1.2m

¢ Mobile phone
e Optical digital camera

~ Raw image acquisition

FIGURE 1

10.3389/fpls.2024.1415006

Experienced researchers screened the raw images and collected
a total of 2,905 image data samples covering three citrus varieties
(navel orange, Ehime Jelly orange, and Harumi tangerine) at
different ripeness levels in unstructured orchards. Additionally, to
investigate whether pure citrus images could enhance model
detection performance, 120 images featuring pure citrus fruits
were captured in the laboratory using both ZED and digital
cameras. Specifically, the sections pertaining to citrus images in
complex orchards and pure citrus images were separately labeled as
RC2905 and RC120. The labeling process for the 3,025 images was
completed using the open-source tool Labellmg (Tzutalin, 2015),
and the citrus image dataset RC3025 (raw citrus dataset with 3,025
images) was created, comprising a total of 10,653 labeled instances.
Details of the dataset are shown in Supplementary Table 1.

2.1.2 Dataset partitioning

Several studies have successfully used a 10% validation split (Lu
et al, 20225 Liu et al, 2023; Xu et al, 2023), achieving significant
detection results. To balance computational resources and maintain
training efficiency, the RC2905 dataset was partitioned into the raw
training set (TRAIN-R), the raw validation set (VAL-R), and the raw
test set (TEST-R) in an 8:1:1 ratio, as illustrated in Figure 2. The RC120
dataset was employed to investigate the impact of pure citrus images on
model performance by randomly substituting 120 images in TRAIN-R,
defining the refined training set as FTRAIN-R after fine-tuning. TEST-
R was further categorized based on background complexity and citrus
occlusion, resulting in a complex background test set comprising 166
images (TEST-RCE) and a simple background test set with 124 images
(TEST-RSE). Given the variations in light intensity, the test set was
further stratified into a set containing 228 images with normal light
intensity (TEST-RNL) and another set containing 62 images under
low-light conditions (TEST-RWL).

2.1.3 Image dataset augmentation

Many studies demonstrated that enhancing raw images can
improve the model’s generalization ability. In the present study,
seven enhancement methods, including affine transformation,

Harumi
Tangerine

Ehime Jelly
Orange

Navel
Orange

Schematic diagram of how to capture the images of non-green-ripe citrus fruits and some examples.
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Diagram of dataset partitions.

luminance adjustment, cut-out, coarse dropout, Gaussian noise,
motion blur, and salt-pepper noise, were employed to augment the
training and validation sets, as illustrated in Figure 3. These
enhancement operations were executed on TRAIN-R, VAL-R,
TEST-R and FTRAIN-R, resulting in the corresponding enhanced
datasets TRAIN-A, VAL-A, TEST-A and FTRAIN-A, respectively.
Three enhancement methods—up and down flip, contrast
adjustment, and Gaussian blur—were simultaneously applied to
the test set. Two datasets, TEST-ANL and TEST-AWL, were
generated by enhancing the original test set of normal and weak
light environments. Additionally, the TEST-ACE and TEST-ASE
datasets were created by augmenting the original test sets of
complex and simple environments, respectively. These enhanced
datasets aim to simulate accurately the diverse lighting conditions,
backgrounds, and fruit states in real-life orchard scenes, thereby
bolstering the robustness and accuracy of the detection models in
practical scenarios. An overview of the augmented dataset and the
number of images is provided in Supplementary Table 2.

2.2 Design of the YOLOC-tiny model

Orchard operation robots face constraints due to limited
computational resources, whereas traditional DL models pose
challenges with their high computational complexity and demanding
hardware requirements. To ensure that robots can reliably, accurately,
and efficiently detect various types and ripeness levels of citrus fruits in
complex non-green-ripe citrus orchards, we initially used our custom
datasets TRAIN-A, VAL-A, and TEST-A to train and test most of the
popular SOTA object detectors, including YOLOv7 and YOLOVS.
Based on the practical needs of robotic operations and the experiment
results, we chose YOLOv7 (Wang et al., 2022a) as the foundational
network and conducted a series of optimizations and improvements.
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Given the large size of the YOLOv7 backbone network, we
selected a lightweight feature extraction network, EfficientNet-B0,
to replace the original backbone. After comparing various advanced
attention mechanisms, we introduced a composite efficient
attention mechanism, CBAM, to enhance target perception.
Subsequently, after numerous experiments, we carefully designed
an extended efficient aggregation network module incorporating
CBAM, called Efficient Layer Aggregation Networks in the Head
with CBAM (ELAN-HC). Considering the phenotypic features of
the targets, we proposed an adaptive and efficient complete
intersection over the union regression loss function (ACIoU).
This function allows for adjustments to the aspect ratio regression
loss penalty factor, enhancing the perception ability of citrus fruits
and consequently improving detection accuracy.

We integrated these measures to develop a generalized base
network, YOLOC, where C stands for citrus, to recognize non-
green-ripe citrus varieties such as navel orange, Ehime jelly orange,
and Harumi tangerine in complex environments, particularly in the
hilly areas of southwest China. The structure of YOLOC is depicted
in Figure 4, where RepConv denotes reparametrized convolution.
Furthermore, we leveraged transfer learning to train YOLOC on
FTRAIN-A and employed sparse training and Layer-based
Adaptive Magnitude Pruning (LAMP), a quantized pruning
technique, to derive a lightweight recognition model, YOLOC-tiny.

2.2.1 ACloU

The accuracy of target detection and localization is significantly
influenced by the choice of the loss function (Yu et al.,, 2022). The
loss function was computed based on the intersection over union
(IoU), and the CIoU utilized by YOLOv7 comprehensively
considered the variations in the overlap area, center distance, and
aspect ratio between the predicted box and the ground truth box
(Zheng et al., 2020), as illustrated in (Equations 1-3).
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(k) contrast (I) Gaussian blur

Image augmentations. (A) Augmentation methods for TRAIN-R, FTRAIN-R, and VAL-R: affine transformation, brightness adjustment, cutout, coarse
dropout, Gaussian noise, motion blur, and salt and pepper noise. (B) Augmentation methods for TEST-R: up and down flip, contrast adjustment, and

Gaussian blur.

2
b, b%'
Losscy =1 —1oU +p(72)+ ov, (1)
c
v
o=—"-, 2
1-IoU +v @)
4 . s can 2 3)
v =— | arctan—- —arctan— | ,
w? hst h

where Losscp,y denotes the loss value, IoU represents the IoU
ratio between the ground truth box and the predicted box, p*( b, b¢")
signifies the Euclidean pixel distance between the ground truth box
and the predicted, ¢ represents the diagonal length of the smallest
enclosing area that surrounds both the predicted and ground truth
bounding boxes, ¢ is the acquired trade-off coefficient, v denotes the
consistency factor of the width and height of the predicted box and
the ground truth box, w¥ and h¥" are the width and height of the
ground truth box, respectively, and w and & are the width and height
of the predicted box, respectively.

The CIoU loss function is commonly employed in target
detection tasks; however, it exhibits the following drawbacks (Yu
et al,, 2022): (1) The use of an inverse tangent function in CloU
makes it highly sensitive to outliers, resulting in poor robustness.
(2) The value domain (0, 7/2) of the inverse tangent function
cannot directly fulfill the normalization requirements of the loss
function. (3) Adaptability to adjust the corresponding features of
the loss function based on the detection object is lacking. Hence,
considering the phenotypic features of the large non-green-ripe
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citrus fruits, we proposed ACIoU. This function can dynamically

adjust the length and width regression loss penalty factor based on

the phenotypic parameters of citrus fruits, as depicted in (Equations

4-6).

p*(b, b%)
2

LOSSACIOU =1-1IoU + + ay, (4)

s(a, b,x)z1 ! (5)

+ e—u(x—b) >

r=(s(ab ) -s(aby)) (6)

where Loss,cj,u represents the value of the ACIoU function, a
and denotes the adaptive Sigmoid deformation parameters that can
be adjusted based on different aspect ratios of the detection targets,
and v signifies the adaptive consistency factor of the width and
height of the predicted box and the ground truth box.

The variation curves of the width and height difference loss
penalty terms corresponding to the real and predicted boxes for
different deformation parameters, a and b, are presented in Figure 5.
The disparity between the length and width of the ground truth box
of citrus fruits is smaller than that in Microsoft Common Objects in
Context (COCO). We randomly selected 47 citrus fruits with
different maturity levels from the orchard of Ya’an Yucheng
District, and their average transverse and longitudinal diameters
were measured using vernier calipers. The transverse diameter
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Structure of the YOLOC network.

represents the maximum equatorial diameter of the mandarin
orange. The longitudinal diameter is the straight-line distance
between the pith (at the stalk) and the center of the top of the
fruit, as shown in Figure 6. The measured average longitudinal
diameter of citrus was 68.04 mm, the average transverse diameter
was 64.94 mm, and the average aspect ratio was 1.05. These
measurements can serve as a reference for adaptively adjusting
the loss function width and high consistency evaluation index.

2.2.2 Efficient feature extraction backbone

This study utilized EfficientNet-B0O as the feature extraction
backbone to optimize the model parameters for practical
deployment in orchard robots for recognizing large non-green-
ripe citrus. EfficientNet-B0, a lightweight and high-performance
neural network, was designed using neural architecture search. The
architecture primarily consists of mobile inverted bottleneck
convolutions (MBConv), as illustrated in Supplementary Figure
1. MBConv integrates depthwise separable convolutions
(DWConv) with Squeeze-and-Excitation (SE) blocks and inverse
residual blocks. The SE module within MBConv dynamically
recalibrates channel-wise feature responses by explicitly modeling
interdependencies between the channels. With its DWConv and SE
modules, MBConv offers a lightweight structure while maintaining

good detection performance.

2.2.3 ELAN-HC

The spatial attention mechanism amplifies the model’s
capability to concentrate on specific regions within the image,
facilitating the extraction of features crucial for target detection.
The channel attention mechanism guides the model to prioritize
significant features in the image, thereby contributing to an overall
enhancement in target detection accuracy. CBAM integrates the
channel attention mechanism and the spatial attention mechanism.
YOLOV7 introduces efficient layer aggregation networks in the
detection head (ELAN-H), leading to significant performance
improvements. Empirically drawing on engineering experience,
we incorporated CBAM into the ELAN-H network module,
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resulting in the formation of the ELAN-HC module, as depicted
in Figure 7. This integration is aimed at optimizing further the
model’s detection performance for non-green-ripe citrus in the
unstructured orchards.

2.2.4 Lightweight pruning strategy

We employed the LAMP pruning method on the trained
YOLOC model to eliminate redundant parameters and
connections, thereby enhancing the deployable performance and
detection efficiency of YOLOC-tiny (Supplementary Figure 2).
Subsequently, the pruned model underwent retraining in
FTRAIN-A, resulting in the development of a lightweight
detection model, YOLOC-tiny. The calculation for the LAMP
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FIGURE 5

Loss penalty curves of the width and height differences with
different deformation parameters.
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FIGURE 6

Measurement methods of longitudinal and transverse diameters and samples. (A) Measurement method of citrus fruit longitudinal diameter. (B)
Measurement method of citrus fruit transverse diameter. (C) Samples of citrus fruits.

score is expressed in Equation 7. The LAMP score was used to
measure the importance of all weights in each layer of the YOLOC
network to the citrus detection performance. During each round of
pruning iterations, we removed the weights that contributed the
least to the detection performance until the global sparsity
constraint was satisfied. Thus, the model size was compressed,
with little impact on its detection accuracy. LAMP retained at
least one connection in each layer to ensure that at least one
surviving connection was retained in each layer, thereby avoiding
the loss of neurons and helping to maintain the ability to perceive
non-green-ripe large citrus.
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FIGURE 7
The structure of ELAN-HC.
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St
where u; is the ith weight magnitude in the kth (k = 0, --- 359)

layer of the YOLOC network after ascending order, and score(u;) is
the LAMP score of u;.

(7)

score(u;) =

3 Experiments and results

In this study, three computers, namely, PC1, PC2 and PC3, were
employed for model training, testing, and deploying applications,
respectively. PC3 is a lightweight industrial control mainframe
computer integrated into the self-developed intelligent citrus
picking robot (ICPR), as shown in Figure 1. The detailed
hardware and software configurations of the three computers are
provided in Table 1.

3.1 Model training and performance
evaluation metrics

The model training was performed on PC1 and initialized with
pre-trained weights from the COCO dataset. The stochastic
gradient descent algorithm was used as the optimizer for model
training. The training parameters included an initial learning rate of
0.01, momentum decay of 0.937, weight decay of 0.0005, a model
input image size of 640 x 640, and a training epoch count of 300. A
label smoothing strategy was implemented to address potential
network overfitting resulting from incorrect data labeling by
improving the model’s generalization ability. Additionally, online
data augmentation using the mosaic method at each iteration was
employed to enrich the citrus image data and further enhance the
model’s generalization ability.

The model evaluation tests were conducted on PC2. The batch
size for model test inputs was set to 1, the confidence threshold was
0.001, the IOU threshold was 0.6, and the model input image size
was 640 x 640 by aligning with the practical conditions of the
orchard robot. Given the constraints of the robot’s limited hardware
resources, the models were comprehensively evaluated in this study
based on three aspects, namely, basic detection performance, degree
of lightweight, and detection speed, to assess the detection
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TABLE 1 Key hardware and software configurations of the
experimental environment.

Hardware/

Software
Intel(R) Core Intel(R) Core Intel(R) Core

CPU (TM) i9-10920X (TM) 19-10920X (TM) i7-1165G7
CPU @ 3.50 GHz CPU @ 3.50 GHz CPU @ 2.80 GHz
NVIDIA GeForce NVIDIA GeForce NVIDIA GeForce

GPUs RTX 3090 (24576 RTX 3090 MX450 (2048
MB) x 2 (24576MB) x 2 MB)x 1

RAM 32 GB 3200 MHz 32 GB 3200 MHz 16 GB 3200 MHz
X 4 x 4 x 1
ASUS WS ASUS WS

Motherboard X299 SAGE X299 SAGE HP 87E2

Overatin Microsoft Microsoft Microsoft

P: atng Windows 10 Pro Windows 10 Pro Windows 10 Pro

system

4 (64-bit) (64-bit) (64-bit)

CUDA 11.7 11.8 11.8

cuDNN 8.5.0 8.7.0 8.7.0

PyTorch 2.0.0 2.0.1 2.0.1

OpenCV 4.7.0 4.8.0 4.8.0

Python 3.8.16 3.8.17 3.9.18

VS code 1.83.1 1.84.1 1.84.1

performance of different models. The evaluation of basic detection
performance includes detection precision (P), recall (R), and mean
average precision (mAP), which were calculated according to
(Equations 8-10).

PP 100% (8)
“TP+FP >

R=—"2 . 100% 9)
“TP+FN >

mAP = %Eﬂ;l A 1 Pi(R)d(R;) x 100 %, (10)

where TP (true positive) represents the count of accurately
detected citrus fruits, FP (false positive) signifies the count of
erroneously identified objects or backgrounds as citrus fruits, FN
(false negative) corresponds to the count of undetected or
inaccurately identified citrus fruits, and k denotes the specific
fruit type to be detected. In this study, k is 3, indicating the three
categories of ripe, semi-ripe, and unripe citrus fruits.

The evaluation metrics for lightweight degree encompass the
memory size occupied by the model (model size), the number of
parameters (params), and the model detection speed measured by
the number of FPS. Additionally, we introduced four normalized
evaluation indicators, including the compound evaluator (CEval),
which provides a holistic assessment of the model considering basic
performance, the degree of lightweight, and detection speed. The
CEval, model size score, model parameter score, and frame rate
score are calculated as depicted in (Equations 11-14).
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CEval = o4 P + 0,mAP + o SizeScore + oy ParamsScore

+ o FPSScore, (11)
SizeScore ! (12)
1 = >
1+ exp (0.1 X (ModelSize — t,))
P, S ! (13)
aramsScore = ,
1 +exp (0.1 x (Params — t,))
1
FPSScore = (14)

1+exp(—(FPS-t3))’

where o, 0, 03, 0y, and o5 are the weight coefficients, and
their sum is 1.0. They differentiate the importance of various
indicators for intelligent operation robots in orchards. ¢, f, and
t, control the thresholds for each evaluation indicator.

The curves illustrating the model size score, model parameter
score, and frame rate score are presented in Figure 8. Slight
variations in the FPS of each model were observed across
experiments; thus, the FPS rates of all models were averaged over
five tests after completing the graphics card warm-up. Aligned with
the real-time target detection task and the goal of maintaining
lightweight models, the threshold values (;, f,, and £3) in this study
were set at 50, 50, and 30, respectively. A high frame rate score
indicates proximity to 1. However, the frame rate beyond the
robot’s real-time monitoring need of 30 FPS becomes barely
crucial. Conversely, parameter and model size scores approach 1
as they decrease and approach 0 as they increase.

3.2 Comparative experiments of different
attention mechanisms

YOLOvV7 was employed as a baseline to elucidate the impact of
attention mechanisms on the detection performance of the YOLOC
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FIGURE 8

Evaluation metric score curves of model performance.
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TABLE 2 Experimental results of incorporating various
attention mechanisms.

. Params/
Model P/% mAP/%  Size/MB M FPS
YOLOVZ | 826 81.3 713 36.5 91
YOL
OLOV7 443 81.9 725 37.1 86

+CA
YOLOv7

83.5 82.2 713 36.5 90
+ECA
YOLOV7

80.8 82.1 72.8 373 91
+SE
YOLOVZ o6 82.0 713 36.5 89
+SimAM :
YOLOVZ o g 82.5 72.9 373 86
+CBAM : : : :

All attention mechanisms were implemented in the same position within ELAN-H. CA refers
to coordinate attention, ECA refers to efficient channel attention, and SimAM refers to a
simple and effective attention module.

model. Various attention mechanisms were incorporated into the
ELAN-H module, and comparative experiments were conducted to
assess the detection performance for non-green-ripe large citrus.
The results are presented in Table 2.

Table 2 reveals that the introduction of different attention
mechanisms impacts the model’s detection performance to
varying degrees. Regarding performance metrics, YOLOV7
+CBAM exhibits a detection accuracy of 83.8%, marking a 1.2
percentage point improvement over YOLOv7. Thus, it only ranks
second to the YOLOv7+CA model. Compared with the average
accuracy of YOLOv7, that of YOLOv7+CBAM reaches 82.5%,
indicating a 1.2 percentage point increase, whereas that of
YOLOv7+CA is only 81.9%. This finding suggests that YOLOv7
+CBAM excels in capturing citrus image features. Although the
model size and number of parameters of YOLOv7+CBAM
experience a slight increase compared with those of YOLOV?7, its
detection accuracy is enhanced. The frame rate of YOLOv7+CBAM
is 86 FPS, satisfying the real-time target detection requirements. We
employed the GradCAM algorithm to generate detection heat maps
for multiripeness citrus images and gain deep insights into the
suitability of the CBAM attention mechanism in citrus fruit
detection. The corresponding detection results are presented in
Figure 9. All heat maps were generated at the same layer above the
detection head of the detect network layer of the model.

Figure 9 shows that different attention mechanisms allocate
varying degrees of focus to citrus fruits, leading to differences in the
detection performance of fruits at various ripeness levels. YOLOv7
+CBAM exhibits the highest attention to citrus fruits with diverse
ripeness, surpassing the attention given by YOLOvV7, which allocates
minimal attention to citrus fruits. For green unripe citrus, YOLOv7
distributes attention across the surroundings evenly. Despite the
improvement in the model’s attention to citrus fruits with the
introduction of other attention mechanismes, it still falls short of the
performance achieved by the YOLOv7+CBAM model.

In terms of detection results, YOLOv7+CBAM and YOLOv7
exhibit no misdetections or omissions. By contrast, YOLOv7+CA
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has one omission and one misdetection in ripe citrus detection,
YOLOvV7+ECA has two omissions, and YOLOv7+SE and YOLOv7
+SimAM have one omission in ripe citrus detection. In summary,
the CBAM attention mechanism demonstrates superior
performance in detecting multiripeness citrus fruits, particularly
for unripe green citrus. Thus, it maintains high-precision results
with no false or missed detections. Therefore, the CBAM attention
mechanism proves to be well-suited for citrus fruit detection.

3.3 Ablation experiments

We conducted ablation experiments to assess comprehensively
the impact of various enhancement measures on the model’s
detection performance by incrementally introducing these
measures with YOLOV7 as the baseline. The experimental results
are presented in Table 3.

Table 3 reveals that all proposed enhancements in this study
lead to varying degrees of improvement in the model’s detection
accuracy or lightweight characteristics. Compared with the training
set without the use of the fine-tuned training set, the YOLOv7
model with the fine-tuned training set FTRAIN-A exhibits a 2.4%
improvement in P and a 0.9% improvement in mAP. Furthermore,
incorporating the lightweight backbone network EfficientNet-BO
further enhances the model’s detection accuracy and increases its
lightweight profile. Compared with YOLOv7, the model with the
EfficientNet-B0O backbone shows a 2.9% increase in P and a 0.8%
increase in mAP value whilst maintaining only 32.5% and 32.1% of
the model size and number of parameters of YOLOV7, respectively.

The introduction of the ELAN-HC module with the CBAM
attention mechanism leads to a slight increase in model size and a
decrease in frame rate. However, the P and mAP of the model show
significant improvements, reaching 85.7% and 83.1%, respectively,
representing a 3.1% and 1.8% increase compared with those of
YOLOV7. Given these improvements, the YOLOC model with
ACIoU experiences a marginal decrease in detection accuracy by
0.5% but improves in mAP and frame rate by 0.4% and 6
FPS, respectively.

The YOLOC-tiny model, derived through pruning and
retraining on top of YOLOC, excels not only in accuracy but also
in achieving an extremely compact model size. In particular, the P
and mAP of the model are 85.3% and 83.0%, respectively,
representing 2.7% and 1.7% increases compared with those of
YOLOvV7. The model size of YOLOC-tiny is 8.4 MB, with only
11.8% and 11.5% of the model size and number of parameters of
YOLOV7, respectively.

3.4 Comparison experiments of
different detectors

YOLOC-tiny was compared with the leading SOTA target
detection models. The experimental results are presented in Table 4.
Table 4 reveals that YOLOC-tiny achieves an accuracy of 85.3%
in detecting multiripeness citrus fruits. This finding indicates that
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Thermograms and detection results of models integrated with various attention mechanisms. The red arrows indicate the locations where the

detection results of different detectors are significantly different.

YOLOC-tiny outperforms most SOTA models and even surpasses
YOLOC. Additionally, YOLOC-tiny attains an 83.0% mAP, ranking
only second to YOLOC. YOLOC-tiny occupies a mere 8.4 MB of
storage space, making it significantly more lightweight than
YOLOv7x and YOLOv8x. The model’s parameter count is only
4.2 M, rendering it suitable for deployment in edge devices and
resource-limited environments. Furthermore, YOLOC-tiny
achieves a frame rate of 80 FPS, surpassing YOLOvS8I and
YOLOv8x. Thus, it is well-suited for real-time performance-
critical scenarios.

Frontiers in Plant Science

We utilized the previously mentioned model lightweight, frame
rate, and comprehensive performance indexes to analyze the
detection performance of YOLOC series models comprehensively
and thoroughly in complex environments for multiripeness and
multispecies citrus fruits. The comprehensive performance
diagrams of the aforementioned models were plotted, as shown in
Figure 10. Figure 10 shows that YOLOC and YOLOC-tiny exhibit
excellent detection performance for citrus fruits. YOLOC and
YOLOC-tiny demonstrate commendable average detection
accuracies, with YOLOC-tiny being more compact than other
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TABLE 3 Results of ablation experiments.

10.3389/fpls.2024.1415006

YOLOv7 82.6 81.3 71.3 36.5 91
YOLOv7+FTRAIN-A 85.0 82.2 71.3 36.5 90
YOLOv7+FTRAIN-A+EfficientNet-B0 85.5 82.1 232 11.7 88
YOLOv7+FTRAIN-A+EfficientNet-BO+CBAM 85.7 83.1 23.8 12.0 81
YOLOv7+FTRAIN-A+EfficientNet-BO+CBAM+ACIoU
85.2 83.5 23.8 12.0 87

+ACIoU (YOLOC)
YOL - i -

OLOv7+FTRAIN-A+EfficientNet 1.30+CBAM+ACIOU 853 830 84 4 %0
+LAMP+ACIoU+LAMP (YOLOC-tiny)

models. This compactness contributes to reduced storage
requirements on edge devices. YOLOC-tiny outperforms all other
SOTA models, including YOLOC, in terms of the total score.
Therefore, YOLOC-tiny has significant advantages in various
aspects, including detection accuracy, lightweight design, frame
rate, and overall performance. It exhibits the strongest overall
performance, making it highly suitable for target detection in
citrus orchard scenarios.

TABLE 4 Experimental results of different SOTA models.

Model  P/% Params/ | ppg

YOLOv5n 82.3 80.0 3.6 1.8 97 4.60
YOLOv5s 85.6 79.7 13.6 7.0 91 4.61
YOLOv5Sm @ 83.4 80.0 40.1 20.9 92 431
YOLOv5! 83.4 78.9 88.4 46.1 84 3.24
YOLOv5x 86.0 79.8 165.0 86.2 70 2.67
YOLOv6n 85.4 81.1 10.0 4.6 24 3.99
YOLOv6s 85.0 81.2 38.7 18.5 20 3.65
YOLOv6ém @ 85.1 82.8 72.5 34.8 23 2.93
YOLOv6] 83.1 83.0 114.0 59.5 22 2.37
ZICI;LOV’% 80.6 82.1 11.6 6.0 101 4.59
YOLOv7 82.6 81.3 71.3 36.5 91 3.54
YOLOv7x 84.6 81.8 135.0 70.8 86 2.77
YOLOv8n 81.8 81.2 5.9 3.0 114 4.61
YOLOv8s 85.4 81.5 21.4 11.1 117 4.59
YOLOv8m @ 84.3 81.8 49.5 25.8 103 4.09
YOLOvSI 85.0 81.8 83.5 43.6 79 3.35
YOLOv8x 86.0 81.1 130.0 68.1 62 2.77
YOLOC 85.2 83.5 23.8 12.0 87 4.59
ZI?YLOC- 85.3 83.0 8.4 4.2 80 4.65

3.5 Comparison experiments in
different environments

We extensively validated the YOLOC and YOLOC-tiny models
across multiple validation subsets, encompassing various scenarios,
to address varying lighting conditions and environmental
complexities. These subsets comprise the test subsets TEST-ANL
and TEST-AWL for diverse lighting conditions, along with the test
subsets TEST-ACE and TEST-ASE representing varying
environmental complexities. Table 5 presents the average
detection accuracies of different SOTA detectors on the respective
test sets.

Table 5 reveals that YOLOC-tiny exhibits notable mAP
performance across all test sets, with impressive results on TEST-
ANL and TEST-ACE. It achieves a substantial advantage on TEST-
ANL, boasting a mAP of 84.0%, slightly below YOLOC’s 84.7%.
This finding suggests that YOLOC-tiny excels in detection under

YOLOC852%

YOLOV6I: 83.1% YOLOC-tiny: 85.3%

YOLOv6m: 85.1% *

YOLOy7-tiny: 80.6%
@

0.82 YOLOv7x: 84.6%

2.6%

YOLOV6n: 85.4%
0.81 YOLOV6s: 85.0%

mAP/%

YOLOv5m: 83.4%

0.80 YOLOVSX: 86.0% YOLOVSn: 82.3%

LOvSs: 85.6%

2.5 3.0 35 4.0 45
Total Score

FIGURE 10

Detection performance charts for various SOTA models. The size of
each geometric shape corresponds to the model size, with large
shapes indicating large model sizes. The darkness of the geometric
shape color represents the model parameter score, with dark colors
indicating high parameter counts. The detection precision on the
test set is provided for each model following its respective name.
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TABLE 5 Detection accuracy of SOTA detectors in different
validation subsets.

mAP/% mAP/% mAP/% mAP/%
Model ~ (TEST-  (TEST-  (TEST-  (TEST-
ANL) AWL) ACE) ASE)
YOLOVSn 811 90.6 79.3 86.0
YOLOVSs 809 917 792 839
YOLOvV5m 81.0 89.4 79.4 835
YOLOVSI 80.1 90.1 774 834
YOLOVSx 80.4 909 79.1 835
YOLOv6n 82.1 873 82.1 82.1
YOLOV6s 822 90.8 822 822
YOLOv6m 838 85.8 838 838
YOLOv6l 839 89.0 83.9 83.9
YO;OYW’ 83.0 885 819 85.1
YOLOV? 82.0 924 81.1 845
YOLOV7x 828 90.7 816 842
YOLOV8n 819 916 80.4 848
YOLOVSs 817 91.0 80.9 839
YOLOV8m 826 91.0 814 85.0
YOLOVS! 828 90.8 813 853
YOLOV8x 815 915 80.2 846
YOLOC 84.7 913 83.9 84.7
YoLoc-
iy 84.0 90.7 826 854

regular lighting conditions. On TEST-AWL, the mAP of YOLOC-
tiny is slightly lower than that of some algorithms. However, it still
maintains a high level of performance. YOLOC-tiny achieves mAP
scores of 85.4% and 82.6% on TEST-ASE and TEST-ACE,
respectively, indicating its robustness in complex environments.
These experimental results underscore the strong adaptability and
practicality of YOLOC-tiny across various application scenarios.

3.6 Performance assessment in
practical applications

Comparative experiments for real-world applications involving
the YOLOC, YOLOC-tiny, YOLOv7, and YOLOvV7-tiny models
were conducted on ICPR, with deployment tests performed on PC3.
The necessary software for model deployment includes onnx 1.14.0,
onnxruntime-gpu 1.51.1, onnx-simplifier 0.4.33, and tensorrt
8.5.3.1. We initially exported the PyTorch models as general-
purpose network models in the ONNX format. Then, we
exported the ONNX model as a TensorRT model for ICPR
deployment. Specific parameters, such as a confidence threshold
of 0.4, an IOU threshold of 0.5, a model input image size of 640 x
640, and 32-bit floating-point precision, were set. Detection and
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labeling of images in the TEST-A dataset were performed on PC3
(Figure 11). Key metrics, including inference time, frame rate,
detection accuracy, and the number of correctly detected citrus,
were recorded. The accuracy rate was derived by sampling 29
images from the 290-image TEST-R test set for detection and
manually verifying them multiple times. The detailed results are
presented in Table 6.

Table 6 reveals that the inference times for YOLOC and
YOLOC-tiny are 27.2 and 17.1 ms, respectively. Although slightly
higher than the 12.7 ms of YOLOv7-tiny, the values mentioned are
significantly lower than the 78.1 ms of YOLOv7 (Figure 12A).
YOLOC and YOLOC-tiny achieve frame rates exceeding the 30 FPS
threshold required for the real-time detection needs of the robot,
with YOLOC-tiny reaching an impressive 59 FPS. Although
YOLOvV7 demonstrates high detection accuracy, its FPS falls far
below real-time requirements (Figure 12B). YOLOC-tiny detects
3852 citruses, outperforming the other three models (Figure 12C).
This finding indicates its ability to capture targets comprehensively.
Moreover, YOLOC-tiny exhibits superior real-time performance in
citrus fruit detection. The detection accuracies of YOLOC and
YOLOC-tiny are 92.9% and 92.8%, respectively, slightly lower
than the detection accuracy of YOLOvV7 (93.8%) but higher than
that of YOLOv7-tiny (91.5%). This finding suggests that both
models boast high detection accuracy and offer fast inference
speeds and a good balance (Figure 12D). These experimental
results further confirm the exceptional performance of the
YOLOC series in real robotics applications.

4 Discussion

Detecting and localizing fruits are crucial for the agronomic
management of fruit crops, including yield prediction and
automated harvesting (Fu et al., 2020a; Lu et al., 2023). Fruit
harvesting operations typically account for 25% of the total
production cost and 50% of the total labor force (Castro-Garcia
et al, 2019). Developing lightweight, high-precision detection
models suitable for deployment on robots with limited
computational power can ensure operational efficiency in
complex orchard environments (Liu et al., 2023; Xu et al., 2023).
This also can provide stable visual information for early yield
prediction and fruit thinning operations.

Although excellent algorithms for detecting ripe fruits such as
citrus fruits (Xu et al.,, 2023), apples (Wang and He, 2021), and
kiwifruit (Fu et al, 2021), and for detecting apples at different
growth stages (Ma et al., 2024), have been proposed, rapid detection
of multi-variety and multi-ripeness citrus fruits in complex
orchards remains challenging. Additionally, balancing detection
performance, speed, and model parameters on edge devices with
limited computational power has yet to be achieved satisfactorily.

Based on engineering experience and experimental results, we
compared and analyzed various SOTA object detectors. We selected
YOLOvV7 as the base network and implemented a series of
optimizations and improvements, including using a lightweight
backbone network and embedding the attention mechanism
CBAM. We also designed metrics to comprehensively evaluate
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FIGURE 11
Detection results of various models in dark, complex environments

the model’s detection performance on edge devices with limited
computational power (see Equations 11-14). Consequently, we
proposed the lightweight detection model YOLOC-tiny.

While YOLOC-tiny demonstrated excellent detection performance
in tasks involving multi-variety and multiripeness non-green-ripe
citrus fruits, several limitations remain. First, as shown in Figure 9 of
the revised manuscript, the model’s detection capability for citrus fruits
that are either distant or severely occluded is insufficient. Although
these fruits can be detected as the robot moves, detecting small, distant
citrus fruits and severely occluded citrus fruits requires further
attention. Second, in distinguishing between different citrus varieties
and maturities, YOLOC-tiny’s detection accuracy is lower compared to
algorithms that detect single-variety, single-maturity fruits (Fu et al,
2019; Apolo-Apolo et al., 2020a). As shown in Table 5, the mAP of
YOLOC-tiny is slightly lower than that of YOLOvV5n in simple
environments, although YOLOC-tiny outperforms YOLOvV5n in
complex orchards and varying lighting conditions.

TABLE 6 Results of robot application experiments.

Inference
. 78.1 12.7 27.2 17.1
time/ms
FPS 13 79 37 59
Accuracy/% 93.8 91.5 92.9 92.8
Number
R 3723 3801 3758 3852
of citrus

The accuracy values in the table were calculated by comparing the model’s output results with
the manual detection results.
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Moreover, in this study, we only verified the impact of adding
pure citrus image datasets on enhancing the detection performance
of citrus fruits in unstructured environments, without conducting
quantitative and qualitative research. Considering the basic
conditions of the robot’s operating environment, we used only
seven data augmentation methods. Furthermore, transformers have
proven effective in large language models and have recently been
applied to object detection tasks, suggesting promising avenues for
improving model performance (Zhu et al.,, 2022; Yang et al., 2023).
We also note the recent advancements with YOLOv9
and YOLOV10.

We will further expand the dataset, enrich the images with
various scenes and lighting conditions, or increase the image
resolution. We will explore the effectiveness of generative
adversarial networks and MixUp in robot applications in future
research. Therefore, future work will focus on enriching the
dataset and incorporating more efficient network architectures
and modules to further enhance the model’s detection
performance and lightweight characteristics. In our future
research, we plan to optimize the model structure further to
improve the detection performance of citrus fruits in low-
light environments.

To address these issues, we will expand the dataset, enhance
image diversity with various scenes and lighting conditions, and
increase the image resolution (Wang et al., 2022b). Additionally, we
will explore the effectiveness of generative adversarial networks and
MixUp in dataset augmentation. Future work will focus on
incorporating more efficient network architectures and modules
to enhance the model’s detection performance and lightweight
characteristics. We also plan to optimize the model structure to
improve the detection of citrus fruits in low-light environments.
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Detection results of different models deployed on ICPR. (A) Inference time of each model. (B) FPS of each model. (C) Number of citrus fruits

detected. (D) Accuracy of each model.

5 Conclusions

We introduce a generalized lightweight detection model,
YOLOC-tiny, tailored for large non-green-ripe citrus of different
varieties with multiripeness in complex environments by optimizing
the network structure and reducing the model size to enhance
computational efficiency. Our methodology begins with the
curation of image datasets featuring citrus fruits in various
environments and ripeness stages, encompassing navel orange,
Ehime Jelly orange, and Harumi tangerine. YOLOC-tiny utilizes
the EfficientNet-BO feature extraction backbone, streamlining
model parameters whilst augmenting feature extraction capabilities.
Furthermore, it integrates a spatial and channel hybrid attention
mechanism, CBAM, to enhance access to contextual information,
intensify focus on diverse citrus fruits, and achieve superior detection
performance. Additional parameter reduction is achieved by
implementing the LAMP strategy.

The key findings from our study include the following:
(1) Ablation experiments confirm the effectiveness of our
enhancement measures in improving network performance for
non-green-ripe citrus fruit detection. (2) Compared with

Frontiers in Plant Science

TRAIN-A, YOLOvV7 based on the F-TRAIN-A dataset exhibits a
2.4% and 0.8% improvement in P and mAP, respectively. This
finding validates the benefit of replacing citrus images in real scenes
with a small number of pure citrus images in complex environments
to enhance model detection performance. (3) Compared with other
SOTA models, such as YOLOv8, YOLOC-tiny surpasses real-time
detection requirements with an impressive frame rate. It also
demonstrates superior detection performance. YOLOC-tiny
achieves an 85.3% P and an 83.0% mAP at a frame rate of 80
FPS, with a parametric count of merely 4.2 M. (4) In a real-world
deployment with a citrus-picking robot, ICPR, YOLOC-tiny attains
92.8% accuracy at a frame rate of 59. Thus, YOLOC-tiny provides
real-time, accurate information on multiripeness and diverse citrus
fruits for orchard robots.
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Plant diseases significantly impact crop productivity and quality, posing a serious
threat to global agriculture. The process of identifying and categorizing these
diseases is often time-consuming and prone to errors. This research addresses this
issue by employing a convolutional neural network and support vector machine
(CNN-SVM) hybrid model to classify diseases in four economically important
crops: strawberries, peaches, cherries, and soybeans. The objective is to
categorize 10 classes of diseases, with six diseased classes and four healthy
classes, for these crops using the deep learning-based CNN-SVM model. Several
pre-trained models, including VGG16, VGG19, DenseNet, Inception, MobileNetV2,
MobileNet, Xception, and ShuffleNet, were also trained, achieving accuracy ranges
from 53.82% to 98.8%. The proposed model, however, achieved an average
accuracy of 99.09%. While the proposed model's accuracy is comparable to that
of the VGG16 pre-trained model, its significantly lower number of trainable
parameters makes it more efficient and distinctive. This research demonstrates
the potential of the CNN-SVM model in enhancing the accuracy and efficiency of
plant disease classification. The CNN-SVM model was selected over VGG16 and
other models due to its superior performance metrics. The proposed model
achieved a 99% Fl-score, a 99.98% Area Under the Curve (AUC), and a 99%
precision value, demonstrating its efficacy. Additionally, class activation maps were
generated using the Gradient Weighted Class Activation Mapping (Grad-CAM)
technique to provide a visual explanation of the detected diseases. A heatmap was
created to highlight the regions requiring classification, further validating the
model's accuracy and interpretability.

KEYWORDS

convolutional neural network (CNN), support vector machine (SVM), gradient-weighted
class activation mapping (GRAD-CAM), pre-trained models, plant diseases
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1 Introduction

In Bangladesh, agriculture is crucial due to a growing
population and higher food demand. Besides, the gross national
income of the country and the families of the farmers depend on the
agriculture field. Many countries rely on agricultural products and
allied businesses as their primary source of income. One of the most
basic and crucial necessities for any country is the safety and
security of agricultural products Akbar et al. (2022). As plants are
the health of agricultural development, so it is essential to increase
the production of crops by ensuring the health of plant leaves. To
boost plant yield, it’s essential to address the issue of low yield
caused by diseases from bacteria, viruses, and fungi. Moreover,
Plant leaf diseases not only impact our daily lives but also have a
terrible impact on farmers whose families depend on the production
of plants. Identifying and classifying these diseases manually is both
time-consuming and prone to errors. To address this, we suggest a
deep learning approach for accurate and efficient identification and
classification of plant leaf diseases. This method utilizes neural
networks to extract characteristics of diseased parts, enhancing the
accuracy of disease area classification. Detecting these plant diseases
can help prevent them, and deep learning methods are effective for
identification because they analyze data directly, focusing on
specific task outcomes. This paper outlines the steps in a plant
disease detection system and compares deep learning techniques for
detecting plant diseases. To identify diseases by applying deep
learning techniques, this paper introduces four kinds of crop
leaves - Cherry, Peach, Strawberry, and Soybean.

Cherries hold notable importance in human health due to their
rich nutritional profile and potential health benefits. Packed with
antioxidants, particularly anthocyanins, cherries contribute to
combating oxidative stress and inflammation, potentially
promoting heart health and reducing the risk of chronic diseases.
However, the cultivation of cherries is not without challenges, as
various diseases, such as bacterial canker, brown rot, and powdery
mildew, can pose significant drawbacks. The cherry leaves infected
by Podosphaera pannosa will suffer powdery mildew, which is a
serious disease threatening the cherry production industry Zhang
etal. (2019). Thus, identifying a cherry leaf infected by Podosphaera
pannosa only needs to identify whether the cherry leaf is healthy or
diseased. To identify the diseased cherry leaves in the early stage, a
combined technique of machine learning and deep learning have
been used.

Peaches, both delicious and nutritious, hold significant
importance in the realm of nutrition and well-being. Several
diseases can attack peaches, including Bacterial spots, also known
as Bacteriosis or shot holes. This disease also can be called peach
spot. However, Bacteriosis severely affects peach crop production.
Bacteriosis typically develops on the peach leaves first; therefore, the
leaves are the primary source for recognizing plant disease Ebrahimi
et al. (2017). The diseases reduce the yield of peaches and cause
harm to human health. Thus, it is important to find rapid and
accurate methods to identify peach diseases and further locate and
segment the areas of the lesion in earlier stages Yao et al. (2022).

In many parts of the world, soybeans are the main food crop for
people and an important source of oil for human consumption. But
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in recent years, some factors such as natural disasters, soil erosion,
and fertilizer unreasonably lead to the occurrence of crop diseases.
These diseases seriously affect soybean yield and quality in some
aspects Gui et al. (2015). Traditional diagnosis of these diseases
relies on disease symptom identification based on naked-eye
observation by pathologists, which can lead to a high rate of false
recognition. With the help of machine learning and deep learning
knowledge, this infection of leaves can be identified, and take
necessary steps in an earlier stage. This will lead to the prevention
of the infection rate of other leaves. In this proposed article, three
types of soybean diseases such as soybean sudden death, soybean
yellow mosaic, and soybean bacterial blight which are significant
threats to soybean plant production, have been classified as
providing one healthy class.

Strawberries are one of the most sensitive and important crops
in the world. Strawberries have high nutritional content and
commercial value. So, it is a major fruit for daily consumption
Skrovankova et al. (2015). Strawberries are easily infected by several
plants’ phytopathogenic fungi, bacteria, and viruses Maas (2012);
Pan et al. (2014); Husaini and Neri (2016). That's why the diseases
in strawberry leaves become the main interruption in its yield.
Strawberry diseases are manually identified by growers, which is
laborious and time-consuming. The shrinking workforce in
agricultural counties also complicates this issue, since it is harder
to accurately predict disease severity over a large scale. Therefore,
it’s urgent to develop an automatic system to identify the diseases in
strawberry leaves Xiao et al. (2020). To accomplish the automatic
identification of diseases, this article introduces a smart
identification system using an image recognition technique for
the detection of strawberry diseases using a Convolutional Neural
Network (CNN) model. The traditional pathology method involves
visually observing diseases, but it is labor-intensive, time-
consuming, and heavily dependent on plant pathologists. To
address these challenges, the Enzyme-linked Immunosorbent
Assay (ELISA) has been suggested, capable of detecting viral
protein content in plant extracts Clark and Bar-Joseph (1984).
However, it proves less effective for diagnosing fungal and
bacterial diseases. Another method, real-time polymerase chain
reaction (PCR), is employed for testing plant pathogens, offering
superior speed and accuracy compared to the aforementioned
techniques Schaad and Frederick (2002). Nevertheless, widespread
implementation is hindered by the requirement for skilled
operators and the high cost of equipment. Consequently, we
propose an image-based diagnostic method using deep learning.
This approach is characterized by high accuracy, ease of
implementation and the potential for real life implementation.
The research offers some contributions. The contributions are —

* Building a deep learning CNN-based model to extract the
most relevant features of the plant leaf images.

* Use of machine learning SVM model to classify the diseased
and healthy plant leaf images.

* Keeping the model’s parameters low, will produce a low-
size model to use comfortably on any device.

e Comparison of the proposed CNN Model with some pre-
trained model to show its acceptance and feasibility, as the
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proposed model is superior to the transfer learning models
in terms of parameters and accuracy.

» Comparison with the existing research works by providing
the model’s performance in terms of training accuracy,
validation accuracy, precision, recall, F1-score, Receiver
Operating Characteristics (ROC) curve, precision Vs
recall curve, and the number of trainable parameters.

* Use of explainable Al to visualize the diseased areas that
classify the plant leaves.

2 Related works

The early identification of the plant leaf disease is vital for
profitable harvest yield in the agricultural field. Numerous types of
research have been carried out to detect the leaf disease on the
agricultural land. To achieve this goal, Hang et al. (2019) developed
an integrated CNN-based model using squeeze and the Squeeze-
and-Excitation module to classify 10 classes of plant leaves for 3
crops - apple, cherry, and corn. To achieve a good classification
accuracy and lightweight model, the model was trained using global
average pooling layers instead of dense layers. With a dataset
containing less number of images, the proposed research work
achieved 91.7% accuracy in identifying the diseases in cherries.
Zhang et al. (2019) proposed a CNN model which was built based
on a pre-trained model named GoogleNet. The model was applied
in a binary classification with only 1200 images of cherry plant
leaves. The experiment got an accuracy of 99.6% by adopting 5-fold
cross-validation.

In order to detect bacteriosis in peach leaves, Akbar et al. (2022)
looked for a novel lightweight CNN model based on VGG-19 and
got the experimental result with 99% accuracy. The research was a
binary classification of healthy and diseased peach leaves with a
large dataset. The dataset consists of 1000 images, of which 70% are
used for training and 30% for testing the Models. The LWNet
Model uses 13 convolutional layers, the count of max-pooling is 7,
and the dropout rate is 0.5 with the ReLu activation function.
Alosaimi et al. (2021) proposed an innovative method for the binary
classification of peach leaves and fruits with 3,199 images. The novel
method consists of a CNN-based model and can also locate the
region of disease and help farmers find appropriate treatments to
protect peach crops. This innovative model got only 94% accuracy.

Soybean is another plant that needs to be identified whether it is
infected or not. Wallelign et al. (2018) designed a CNN model based
on LeNet architecture to classify four classes including a healthy
class of soybean leaf. The authors collected a huge dataset of 12,673
samples and got an impressive accuracy of 99.32%. The research
work was classified by only four classes of soybean leaves. Wu et al.
(2023) proposed a classification method based on the improved
ConvNeXt model where an attention module was used to generate
feature maps at various depths and increase the network’s focus on
discriminative features as well as reduced background noise. The
authors got an experimental accuracy of 85.42% which was
comparatively poor in terms of Al-based disease detection.
Although the research mentioned some evaluation metrics and a
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method to visualize the images, the number of model parameters
was not satisfactory, as the model was not lightweight. Moreover,
the model classified only three classes of soybean leaves including
one healthy class. Yu et al. (2022) designed a model by constructing
a residual attention layer (RAL) using attention mechanisms and
shortcut connections, which further embedded into the residual
neural network 18 (ResNet18) model to establish a new model of
RANet based on attention mechanism and idea of residuals. The
model achieved 98.49% accuracy for the recognition of three types
of soybean leaf disease without providing a healthy class. Moreover,
their proposed model was not lightweight. Jadhav et al. (2019)
presented a novel system using the support vector machine (SVM)
and K-Nearest Neighbor (KNN) classifiers used for classifying
soybean diseases using color images of diseased leaf samples. The
research was applied to the four classes of soybean leaves - blight,
brown spot, frog eye leaf spot diseases, and Healthy samples with an
accuracy of 87.3% and 83.6%. Besides, the authors didn’t mention
the lightweightness of their model and there was no method of
visualization through explainable AI in terms of detecting
strawberry diseases. The automation of agriculture and image
recognition techniques are indispensable.

Xiao et al. (2020) proposed a CNN model based on ResNet50
that achieves a classification accuracy rate of 100% for leaf blight
cases affecting the crown, leaf, and fruit; 98% for gray mold cases
and 98% for powdery mildew cases. The overall accuracy rate for
the feature images of the dataset was 99.60%. The dataset was not
augmented as the number of total images was just 1306 and the
feature images were built up manually. Moreover, the authors didn’t
use some performance evaluation metrics such as confusion
metrics, ROC curves, and PR curves to compare the experimental
results. Besides, there was no talk about visualization techniques.
With the 5 types of classes, the authors managed to get a decent
accuracy. Dhivya and Shanmugavadivu (2021) proposed a work
that was more concentrated on image pre-processing for the
reduction of noise using various filtering methods. The image
preprocessing helps to enhance the feature extraction and
classification of the leaf disease. The experimental results on the
proposed separating model have been assessed regarding PSNR and
MSE incentive to clarify and demonstrate the precision of the sifting
models by using some image filters based on gradients. Abbas et al.
(2021) worked with four pre-trained CNN models to detect the
diseases of strawberry scorch with just only 2 types including one
healthy class. All the trained CNN models were integrated with a
machine vision system for real-time image acquisition. The authors
showed an impressive comparison between the transfer learning
models and tried to implement the best one for the identification of
strawberry disease where EfficientNet-B3 achieved 92% and 97%
classification accuracy for initial and severe stage leaf scorch disease
respectively. SqueezeNet recorded the lowest disease classification
accuracy values in comparison with AlexNet, VGG-16 and
EfficientNet-B3. Shoaib et al. (2023) proposed a CNN model that
can identify four prevalent diseases: powdery mildew, rust, leaf spot,
and blight from 8000 images. The model was trained with multiple
hyperparameters, such as the learning rate, number of hidden
layers, and dropout rate, and attained a test set accuracy of
95.5%. The authors presented a comparison by changing different
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hyperparameters and displayed hyperspectral images representing
four prevalent types of plant diseases. The results demonstrate that
the proposed CNN model performed better when compared with
other machine learning image classifiers such as Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree, and
Random Forest.

Based on the literature reviews, the following gaps have
been identified:

* Many studies highlight challenges with limited dataset sizes,
impacting the model’s ability to generalize effectively. There
is a need for larger and more diverse datasets to enhance
model robustness and performance across various
environmental conditions.

* The pursuit of lightweight models is emphasized in some
studies; however, achieving both high accuracy and model
simplicity remains a challenge. Research gaps exist in the
development of efficient yet accurate lightweight models
suitable for resource-constrained environments, such as on-
field applications.

* Several studies achieve high accuracy in disease
classification but lack in explaining the affected regions
within plant images. Future research should focus on
integrating explainable AI techniques to visualize and
interpret model decisions, aiding farmers in targeted
disease management.

* Some studies fall short in providing a comprehensive set of
evaluation metrics, such as confusion matrices, ROC curves,
and PR curves. A standardized and thorough evaluation
approach is essential for comparing models and
understanding their performances.

* Many studies focus on binary or limited multiclass
classification, potentially overlooking a broader spectrum
of plant diseases. Research gaps exist in addressing
challenges associated with an increased number of disease
classes and ensuring accurate identification within diverse
plant species.

*  While several studies propose innovative models, there is
often a lack of emphasis on the lightweight nature of these
models, critical for practical on-field applications. Future
research should prioritize the development of lightweight
models without compromising accuracy.

* Certain studies lack comprehensive comparisons between
different models or hyperparameters, limiting insights into
the effectiveness of various approaches.

*  While some studies explore hyperparameters, there was no
room for more systematic investigations into the impact of
hyperparameter variations on model performance.

With the advancement of machine learning, all the traditional
techniques of observing plant diseases have been considered time-
consuming and complex. To assist farmers in increasing crop
production and identifying diseases at earlier stages, this research
proposed a CNN-based technique that combines machine learning
and deep learning models. Our research purpose is to make the
farmers familiar with the advancement of modern technology easily
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and identify plant diseases without any confusion. To achieve this
goal, different performance evaluation metrics have been added to
this research that represent the acceptance of our CNN-
SVM model.

3 Materials and methods

For the identification of four plant leaf diseases, a 2D CNN-
SVM model has been proposed in this research. The model was
trained using the Kaggle platform to get the advantages of a
Graphics Processing Unit (GPU). To implement the model,
various Python libraries like numpy, and pandas and machine
learning frameworks like tensorFlow, and keras were applied.
Additionally, an explainable AI technique Grad-CAM was used to
know the explanation of the outcome performed by the
proposed model.

3.1 Overall process of establishing the
recognition model

Firstly, a large dataset containing ten classes of four types of
crop images was collected combined from Kaggle datasets named
‘PlantVillage’ and ‘Soybean Diseased Leaf Dataset’. In the final
dataset, we collected four plants (peach, cherry, soybean, and
strawberry) healthy and diseased data. After collecting the dataset,
we did feature scaling (Normalization) to make our picture size
similar and data augmentation like rotating those pictures in
different positions to train our model correctly. So, data
augmentation is used to increase the diversity and size of a
training dataset by applying various transformations to the
existing data. By generating new samples from the original data
through transformations such as rotation, flipping, cropping,
scaling, or adding noise, data augmentation helps improve the
robustness and generalization of deep learning models. After data
augmentation and scaling, the dataset was ready to be trained by
our proposed CNN-SVM model.

As demonstrated in Figure 1, for the identification of four plant
leaf diseases, a 2D CNN-SVM model has been proposed in this
research. CNN model has the power of extracting features efficiently
which helps in the classification system. The CNN model has been
fed an enormous dataset that was also augmented to get a
generalized and reliable model. In this research, for classification,
we used a machine learning model Support Vector Machine (SVM)
that works with numerical data. Therefore, CNN works as the
collector of featured data for the SVM model. Moreover,
Convolutional Neural Networks (CNNs) have revolutionized
image analysis and pattern recognition, offering several
advantages over traditional observation methods. By
implementing the CNN, we extracted features from the dataset,
Now, we need to detect and classify key classes from those features
in this step we used SVM, a machine learning method for
classification. By implementing SVM, we successfully classified
the healthy and diseased classes of the cherry, peach, soybean,
and strawberry. After correctly classifying the healthy and disease
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Collecting cherry, peach, Data Pre-Processing Training Dataset using
soybean and strawberry 1. Data Scaling and custom 2D CNN model

Dataset 2. Data Augmentation

. Detection & Classification X

Validate Result oF Extracting Features
Disease using SVM using CNN
FIGURE 1

An overview of the whole methodology of the research.

classes, we validate the result by obtaining some performance
evaluation metrics - training and validation accuracy curve, loss
curve, ROC and confusion matrix.

3.2 Dataset description

The importance of a well-curated and representative dataset in
deep learning research cannot be overstated. A dataset serves as the
foundation upon which deep learning models are built, trained, and
evaluated. The quality, diversity, and size of the dataset directly
influence the performance, generalization, and reliability of the
models developed.

To maintain the good performance, generalization, and
reliability of the proposed model, a dataset with four types of
plant leaves was collected from the publicly available
‘PlantVillage’ dataset and public available Kaggle ‘Soybean
Diseased Leaf Dataset’. The following Table 1 shows that a total
11,504 numbers of plant leaf images were used as the dataset to feed
the proposed novel model. The merged dataset consists of four plant
leaves — Cherry, Peach, Strawberry, and Soybean. Each type of plant
includes healthy and some diseased classes. To make the model
well-trained, a total 9,220 numbers of images have been used as
training datasets, and 2,304 images for testing purposes are
organized into 10 classes (Six diseased classes and four healthy
classes). Therefore, the split ratio of the training and testing dataset

TABLE 1 Dataset details.

Plant Disease Type Training Testing
Cherry Mildew 842 210
Cherry Cherry Healthy 682 171
Peach Spot 1,838 459
Peach
cac Peach Healthy 288 72
h 222
Strawberry Strawberry Scorc 887
Strawberry Healthy 365 91
Soybean Bacterial Blight 71 17
Sovh Soybean Sudden Death 88 22
oybean
i Soybean Yellow Mosaic 88 22
Soybean Healthy 4,071 1,018
Total 9,220 2,304
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is approximately 4:1. Here, Figure 2 depicts example images from all
the classes of the dataset.

3.3 Data preprocessing

Image processing plays a pivotal role in enhancing the
effectiveness of deep learning models by facilitating the extraction
of meaningful features from visual data. In the area of computer
vision, where deep learning models are commonly employed for
image classification, object detection, and segmentation tasks, raw
images often contain an abundance of information. In this research,

for the processing of images, two steps have been followed.

3.3.1 Data scaling/resizing

Data scaling or resizing is a crucial preprocessing step in the
realm of deep learning, especially for models designed to extract
features from diverse datasets. Resizing involves adjusting the
dimensions of input data to a uniform size. By bringing input
features to a standardized scale, the optimization process becomes
more efficient. In this study, the images were resized into 120 X 120
for both the proposed 2D CNN-SVM model and the transfer
learning models. Therefore, it becomes ideal to measure the
performance of the proposed model and transfer the learning
model on a uniform scale.

3.3.2 Image augmentation

Augmentation is a useful technique to make our model more
adaptable and avoid getting too focused on specific details. We
applied augmentation to generate more images and increase the
dataset’s size. The main goal of augmentation is to add some variety
to the images quantitatively, which aids the model in avoiding
overfitting during training. Overfitting happens when the model
starts memorizing random details instead of grasping the actual
patterns in the data. Augmentation achieves this by introducing
distortions to the images. As demonstrated in Figure 3, data
augmentation includes different tricks like zooming, shearing,
rotating, shifting in height and width, and flipping horizontally or
vertically. These techniques create a diverse set of images for our
model to learn from, promoting better generalization. For this
purpose, some augmentation techniques have been applied in the
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FIGURE 2
Visual Description of the dataset — (A) Cherry Healthy Leaf (B) Cherry Mildew (C) Peach Healthy Leaf (D) Peach Spot (E) Soybean Bacterial Blight (F)
Soybean Healthy (G) Soybean Sudden Death (H) Soybean Yellow Mosaic (I) Strawberry Healthy (J) Strawberry Scorch.

FIGURE 3
Sample of some augmented leaf images — (A) Original leaf image (B) Zoomed image (C) Sheared image (D) Rotated image (E) Fill Mode image (F)
Horizontally Flipped image (G) Vertically Flipped image (H) Height Shifted image (I) Width Shifted image.
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training images so that the model can observe the dataset from
various aspects and validate the dataset from the memorized
features. After applying eight techniques of data augmentation,
our training dataset gathered a huge collection of datasets. So, a total
of 73, 760 images were achieved from the augmentation.

3.4 Proposed hybrid method of CNN
and SVM

The proposed hybrid (CNN-SVM) model is designed to
combine both CNN & SVM advantages for the good classification
of plant diseases. In this research, a simple structured 2D CNN
model has been proposed to absorb the most important features in
the plant leaf images. As CNN is a powerful tool for extracting
features and taking two-dimensional inputs, we chose the CNN
model to reach our goal. Moreover, enhancing the classification
performance of the model relies on extracting distinctive features
specific to different leaf diseases. These distinctive attributes play a
crucial role in effectively categorizing leaf diseases. The architecture
of the suggested 2D CNN model is depicted in Figure 4. The model
has been formed using four convolutional and max-pooling layers.
A max-pooling layer was added following each convolutional layer.
Each layer is followed by a batch normalization layer.

The batch normalization layer speeds up the training process of
the model. The utilization of batch normalization was implemented
to enhance and expedite the model’s performance by readjusting
and rescaling the inputs of the layers Santurkar et al. (2018).
Besides, the max-pooling layer assumes a pivotal role in the
feature extraction process within convolutional neural networks
(CNNs). Its primary function involves reducing the spatial
dimensions of input feature maps and effectively downsizing
them while preserving essential information. This downsampling
operation facilitates the identification of prominent features by
emphasizing the most significant values within local regions and
removing useless data. This process is called subsampling.

In essence, MaxPooling contributes to the extraction of
dominant features by highlighting the highest values, resulting in
a more refined and condensed representation. Another important
step used in the model is to flatten the layer. when the pooling layer
is applied and the all-important feature is mapped, the flatten layer
converts 2D arrays to 1D arrays before applying a fully connected
layer (CNN-SVM) and is followed by batch normalization. In this
context, the utilization of dropout aimed to mitigate overfitting by
intermittently excluding the training of all nodes within each layer
throughout the training process. This strategic approach led to a
notable acceleration in training speed, contributing to more efficient
model training Peyal et al. (2023). After accelerating the training
speed, it is crucial to note that the fully connected layer represents
the final layer of a neural network. In all neural networks, every
node in this layer is properly connected, and the last layer of the
model works as a machine learning classifier named Support Vector
Machine (SVM). This layer classifies our research goal using the
numerical features collected from the CNN model. This layer
ensures that the information learned and processed through the
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FIGURE 4
An overview of the whole methodology of the research.

preceding layers is synthesized to produce the final prediction or
classification output.

The following Figure 4 depicts the proposed CNN-SVM model
where the CNN model acts as the most relevant feature extractor
and the SVM model as the disease classifier. The summary of the
proposed model has been drawn in Table 2. The table also shows the
lightweightness of the model where the number of total parameters
is just only 393k which is very impressive and outperforms that of
the transfer learning models mentioned in this research.
Table 3 describes all the hyperparameters of the models including
2D CNN-SVM and transfer learning models - VGG16, VGG19,
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TABLE 2 Summary of proposed simple 2D CNN model.

Layer (type) Output Shape Parameters
L1 (Conv2D) (None, 120, 120, 16) 448
max_pooling2d (MaxPooling2D) (None, 60, 60, 16) 0
batch_normalization (None, 60, 60, 16) 64
(Batch Normalization)
L2 (Conv2D) (None, 60, 60, 32) 4640
max_pooling2d_1 (MaxPooling2D) (None, 30, 30, 32) 0
batch_normalization_1 (None, 30, 30, 32) 128
(Batch Normalization)
L3 (Conv2D) (None, 30, 30, 64) 18496
max_pooling2d_2 (MaxPooling2D) (None, 15, 15, 64) 0
batch_normalization_2 (None, 15, 15, 64) 256
(Batch Normalization)
L4 (Conv2D) (None, 15, 15, 128) 73856
max_pooling2d_3 (MaxPooling2D) (None, 8, 8, 128) 0
Flatten (Flatten) (None, 8192) 0
batch_normalization_4 (None, 8192) 32768
(Batch Normalization)
dropout (Dropout) (None, 8192) 0
dense (Dense) (None, 32) 262176
dense_1 (Dense) (None, 10) 330
Total parameters: 393674
Trainable parameter: 376810
Non-trainable parameter: 16864

DenseNet, Inception V3, MobileNet, MobileNet V2, ShuffleNet and
Xception used in this research.

To show the acceptance of the 2D CNN-SVM model, the hyper-
parameters were kept the same for the training purpose of all
transfer learning models. Overall, the experiment helped to detect
the plant leaf diseases impressively.

TABLE 3 Evaluation metrics comparison with transfer learning models.

10.3389/fpls.2024.1412988

4 Experiment and results
4.1 Experimental environment

The experimental environment for image classification using
Convolutional Neural Network (CNN) and Support Vector
Machine (SVM) involved the utilization of the Kaggle platform,
leveraging its available Nvidia P100 GPU with specifications
including 16 GB of GPU memory, a clock speed of 1.32 GHz,
and a performance capability of 9.3 TFLOPS. To enhance model
training efficiency, the input sample size for plant disease images
was adjusted to 120 x 120 pixels to match the real-world operating
conditions. The training process employed a batch size of 32 for
training samples over 350 epochs. The Rectified Linear Unit (ReLU)
activation function was applied, and batch normalization was
incorporated to normalize batch data. The RMSprop optimizer
with a learning rate of 0.001 was chosen for model optimization.
Both the proposed CNN-SVM model and transfer learning models
shared the same training and validation set sample sizes, training
batch configuration, and activation function in the experiment.

4.2 Performance metrics

A classification report serves as a comprehensive overview of
how well a model performs by highlighting crucial metrics like
precision, recall, and Fl-score for individual classes. Precision
assesses the accuracy of positive predictions, while recall measures
the model’s capability to identify all relevant instances. The F1 score
combines precision and recall, presenting a consolidated metric.
Additional metrics such as accuracy, indicating overall correctness,
and the confusion matrix, which breaks down true positives, true
negatives, false positives, and false negatives, contribute to a
thorough evaluation. Besides the Precission-Recall curve (PR),
Region of Convergence (ROC) and loss curve were also used
indicating the overall impressive function of the research. These
metrics together provide a detailed insight into a model’s strengths
and weaknesses, enabling practitioners to make well-informed
decisions regarding model improvement and selection based on

Models Accuracy Precision Recall F1-Score Parameters Model Size (MB)
DenseNet 53.82% 76% 78% 70% 7053642 2691
Inception V3 97.70% 98% 97% 97% 47521706 181.28
MobileNet V2 77.65% 97% 97% 97% 3579978 13.66
MobileNet 69.70% 949 83% 83% 3250058 12.40
ShuffleNet 98.83% 100% 100% 100% 967874 3.70
VGG 16 98.35% 96% 94% 95% 24683850 94.16
VGG 19 97.61% 97% 96% 96% 20106314 76.70
Xception 84.85% 88% 80% 82% 20881970 79.66
Proposed model 99.09% 99% 99% 99% 393674 1.50
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the specific demands of the image classification task. Thus, the
performance of the CNN models was evaluated with these different
evaluation metrics. Precision, recall, F1Score, and test accuracy
metrics were used to evaluate the performance of the
convolutional neural network models that were used in training.
Validation and test outcomes for all CNN models were adapted in
matrices of binary confusion, which are true positive (TP), false
positive (FP), true negative (TN), and false negative (FN)
Skrovankova et al. (2015). The first performance evaluation
criterion, Accuracy rate, is used to evaluate the performance of
network models. The accuracy rate refers to the proportion of the
number of corrected positive predictions to that of the whole
positive predictions Hang et al. (2019). It signifies the ratio of
accurately identified images to the total number of images and is
expressed by:

Accuracy = TP+ TN
Y= TPy TN+ FP+EN

Precision measures how accurate your model is when it predicts
positive instances. It’s calculated by taking the number of true
positive predictions and dividing it by the total number of positive
predictions (both true positives and false positives). It can be
quantified as,

TP

Precision = ——
TP + FP

The Recall measures the efficiency of the neural network in
identifying and categorizing the target, determined through the
following calculation:

TP

Recall = —
TPy EN

The Fl-score serves as the harmonic mean of precision and
recall, providing a balanced metric that considers both false
positives and false negatives. It is calculated by taking the
reciprocal of the average of precision and recall through the
following equation:
2-Precision-Recall

F, — Score = —
Precision+Recall

4.3 Multiclass classification results

4.3.1 Accuracy graphs

Accuracy is defined as the sum of correct classifications divided
by the total number of classifications. The sum of all diagonal
elements is divided by the sum of all items in the confusion metrics.
Accuracy gives the overall correctness of the predicted model. The
accuracy of the model is drawn across the number of epochs which
is called the accuracy graph. The accuracy graph contains both the
training and validation accuracy (99.15% and 99.09%) in terms of
epoch numbers. According to our research, the first adoption of the
proposed CNN-SVM model has been clear from the accuracy
graphs of our proposed CNN-SVM model which is shown

in Figure 5.
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From Table 3, it is observed that the validation accuracy of
VGG16, VGG19, Inception V3, shuffleNet, MobileNet, MobileNet
V2, DenseNet and Xception are 98.35%, 97.61%, 97.70%, 98.83%,
69.70%, 77,65%, 53.82% and 84.85% respectively. On the other
hand, we checked our model in various epochs and environments
(Table 4) and got the accuracy of 99.09%. In Figure 6, the accuracy
comparison bar graph has also been shown to observe the outcome
of various transfer learning models and the proposed model.
Therefore, it is evident that the evaluation metrics accuracy,
precision, recall, and Fl-score of the proposed model are
significantly higher than the transfer learning models which is a
very good indicator of the reliability of the proposed model’s
performance in classifying 10 categories of plant leaf diseases
from a huge dataset using CNN-SVM combined model.

4.3.2 Confusion matrix

The confusion matrix is a table that gives information about
how the test dataset performs on the trained model Sharma et al.
(2022). Various performance measures like accuracy, precision,
recall, or sensitivity and specificity of the model can be calculated
using the confusion matrix Tripathy et al. (2015). The diagonal
values of the confusion matrix represent true positives (TP). To
obtain false negatives, we have to add the values in the
corresponding row items ignoring the true positive values. The
total number of testing samples belonging to a given class can be
calculated by the sum of all items of rows corresponding to that
class (TP + FN). Similarly, the number of false positives (FP) for a
class is obtained by adding the values of the corresponding column
ignoring true positives TP for that class. The total number of true
negative TN for a certain class will be the sum of all columns and
row values ignoring that class’s column and row. However, this
study considered a 10-class problem, which consisted of four
healthy classes and six different unhealthy classes of Cherry,
Peach, Soybean and strawberry leaves. It is noticeable that out of
2304 images, only 21 images were misclassified by the proposed
CNN-SVM model. Therefore, from Figure 7, it is clear that the
proposed model can classify 10 numbers of classes accurately rather
than the existing works.

4.3.3 ROC and PR curves

The ROC curve is a graphical representation of the trade-off
between true positive rate and false positive rate at various
thresholds. It is created by plotting the true positive rate against
the false positive rate across different classification thresholds. The
area under the ROC curve (AUC-ROC) quantifies the overall
performance of the model. A higher AUC-ROC indicates better
discrimination ability. From Figure 8, it is noticeable that the AUC
score for the proposed model is almost nearly one and also it has
surpassed the other transfer learning model’s AUC. It is also known
that a model with a higher AUC-ROC generally performs better.
Besides, ROC curves provide insights into the model’s ability to
discriminate between classes. On the contrary, The PR curve
represents the trade-off between precision and recall at different
classification thresholds. Precision is the ratio of true positives to the
sum of true positives and false positives. Recall is the ratio of true
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FIGURE 5
Accuracy graph of the proposed CNN-SVM model.

positives to the sum of true positives and false negatives. From the
figure, both the ROC and PR curves show an impressive outcome of
the proposed model. In summary, both ROC and PR curves provide
valuable insights into different aspects of model performance.

4.3.4 Experimental research from
different parameters

In order to achieve a reliable and robust classification model, the
research was carried out using different optimizers such as Adam,
SGD and RMSprop. The research was done at 350 epochs but we
got our expected result within 50 epochs to train the model. In this
environment, RMSprop Optimizer has given the best outcome. So,
our proposed model gave 99.09% by using RMSprop as an
optimizer whereas the SGD and Adam optimizer were not
capable of giving this result. The following Table 5 shows the
experimental results in the case of accuracy and AUC score for
various optimizers.

From the table, it is proved that RMSprop performs better than
other optimizers. Overall, the adaptability of RMSprop’s learning
rate, its stability during training, efficient memory usage, and rapid
convergence made it a favored option across various scenarios,
especially when handling complicated deep learning models and
extensive datasets.

4.3.5 Matthews correlation coefficient

The MCC is crucial as it considers sensitivity, specificity,
precision, and negative predictive value simultaneously, providing
a holistic assessment of binary classification models. Matthews
Correlation Coefficient (MCC) can also be used in multi-class
classification problems but is typically used for binary
classification tasks. Unlike the ROC AUC, the MCC generates a

TABLE 4 Accuracy comparison in various epochs.

Epochs Callback Function Accuracy
42 Yes 99.09%
100 No ‘ 96.79%
200 No ‘ 97.98%
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high score only when the classifier performs well across all four
basic rates of the confusion matrix, ensuring a reliable evaluation.

A high MCC value always corresponds to high values for
sensitivity, specificity, precision, and negative predictive value,
making it a superior performance indicator compared to other
metrics like F1 score and accuracy Chicco and Jurman (2023). The
MCC ranges from -1 to +1, with -1 indicating perfect
misclassification and +1 indicating perfect classification, while the
DOR ranges from 0 to + Chicco et al. (2021).

In our proposed model, We have managed to acquire an
impressive outcome of Matthews Correlation Coefficient (MCC)
that is 0.987, which signifies a near-perfect classification
performance. In summary, the attainment of an MCC value of
0.98 underscores the efficacy and reliability of our model’s
classification capabilities. It provides strong evidence that our
model has learned meaningful patterns from the data and can
generalize well to unseen instances, thereby instilling confidence in
its practical utility and real-world deployment.

4.3.6 Mn/Mg deficient leaf vs. soybean
sudden death

The symptoms of Mn/Mg deficient leaves and Soybean sudden
death leaves are almost similar. These two can look alike, making it
hard to distinguish them by eye since they have almost the same
features in the images. In this case, we tried to classify them through
our proposed model and got an outcome.

To separate the two species through the model, we collected
pictures of Mn/Mg-deficient soybean leaves from Google and added
those to our dataset after augmenting them.

After adding a new class of Mn/Mg-deficient soybean leaves to
our original dataset, the proposed model was applied to the merged
dataset. Figure 9 shows that the model achieved an impressive
training accuracy of 99.11% and validation accuracy of 98.74% over
the merged dataset. From the Figure 10 of the confusion matrix, it is
seen that our model successfully classified all the images of Mn/Mg
deficiency. To make the model recognize the difference among the
soybean diseased classes, we increased the number of images in the
dataset from ‘DRYAD’ dataset which contains high quality images
of the same classes. Eventually, our model became successful in
classifying them. In summary, our model has achieved a success rate
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Bar graph of different transfer learning models for validation accuracy.

in distinguishing differences, even when they’re hard to see with the
naked eye.

4.3.7 Reusability of the proposed CNN-
SVM model

The proposed CNN-SVM model was applied to a new, more
extensive dataset comprising larger images of Soybean Rust,
Soybean Frogeye Spot, and Soybean Healthy classes, collected
from ‘SoyNet’, ‘Soybean Leaf Disease Prediction’, and ‘Roboflow’
datasets. After merging new classes to our proposed dataset, the
model was trained on it and achieved an impressive validation
accuracy of 99.04%, closely matching our original dataset’s
performance. Additionally, as shown in Figure 11, the
classification for each class was satisfactory like before,
maintaining the model’s robust performance.

FIGURE 7

In Table 6, we have evaluated the performance variations of our
proposed CNN-SVM model across different criteria. Initially, we
observed that certain classes in our proposed dataset contained
images that were relatively small in size. To address this, we replaced
those classes with new ones featuring comparatively larger images from
‘DRYAD’ dataset which contains great quality images. Additionally, we
noted potential confusion between the Mn/Mg deficient class and the
Soybean Sudden Death class. To clarify this, we replaced the Soybean
Yellow Mosaic class with the Mn/Mg deficient class in our dataset as we
wanted to keep the similar types of soybean classes together and
reassessed the model’s performance. Finally, we showed the
performance of our proposed dataset. Therefore, Table 6 represents
an analysis of using the proposed model across different criteria. This
analysis indicates the model’s robustness and effectiveness across

various datasets in the desired classification tasks.

Confusion matrix of (A) DenseNet (B) Inception-V3 (C) MobileNet-V2 (D) MobileNet (E) ShuffleNet (F) VGG16 (G) VGG19 (H) Xception (I) Proposed

CNN-SVM model.
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5 Comparative analysis

In conclusion, the proposed CNN-SVM model stands as a
pioneering solution in the realm of plant disease classification,
showcasing a unique fusion of CNN and SVM for optimal feature

TABLE 5 Comparison of various optimizers.

Optimizer

Accuracy

C Score

Adam 99% 99.96%
SGD 95% 99.87%
RMSprop 99.09% 99.98%
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extraction and classification. The model’s exceptional performance,

as evidenced by its accuracy, evaluation metrics, lightweight design,
and the incorporation of explainable AT techniques, underscores its
superiority. Notably, when compared to well-established transfer
learning models such as VGG16, VGG19, MobileNet, MobileNet-
V2, DenseNet, Inception-V3, Xception and ShuffleNet, our model
emerges as the clear frontrunner. Table 3 shows that our model

performs better than other transfer learning models in terms of

accuracy, precision, recall, F1-score, number of parameters and

model size. Even when compared to strong competitors like
VGG16, VGG19, Inception V3, and ShuffleNet, our model
outperforms them across all evaluation measures. Impressively, it
achieves superior precision, recall and Fl-score metrics, further

fro
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Accuracy graph including Mn/Mg deficiency class

validating its standard and reliability. Additionally, our model is
highly efficient. It’s half the size of the ShuffleNet pre-trained model
but still achieves almost similar accuracy. Compared to other
transfer learning models, it has the fewest parameters, with some
popular models having up to eight times more parameters and
larger sizes. This means our model runs fast, making it perfect for
various mobile devices. These results suggest that our model is not
only effective for diagnosing plant diseases but also has great
potential for use by farmers on a large scale. Therefore, its
economic feasibility and exceptional performance collectively
contribute to its greatness, making it a valuable asset for
agricultural practitioners seeking advanced yet accessible solutions.

The proposed CNN-SVM model’s significance is also evaluated
against several related research works, where it holds a notable
position. Zhang et al. (2019) aimed to develop automatic image-
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Confusion matrix including Mn/Mg deficiency class
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based diagnostic methods for identifying cherry diseases using only
two types of cherry leaves — diseased and healthy. The research
achieved a high accuracy rate, outperforming other works, and
demonstrated its superiority through ROC curves, comparing with
various machine learning models. However, they encountered
challenges in creating a lightweight model and explaining their
model’s visualization technique, such as Grad-CAM. Additionally,
they lacked some evaluation metrics like classification reports,
confusion matrix, and PR curve. Hang et al. (2019) proposed a
model which was compared with numerous transfer learning
models regarding accuracy, model size, and training time. Despite
having the same number of classes as ours, the paper aimed to
structure automatic cherry disease identification with two types of
diseased cherry classes and one healthy class. Although the authors
visualized the model’s performance, the accuracy rate fell short of
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expectations and they struggled to develop a lightweight model
efficient for farmers.

Alosaimi et al. (2021) showcased impressive results through
accuracy graphs, confusion matrices, classification reports and ROC
curves, applied to 12 types of peach diseases in a CNN model. They
have worked with several peach diseases, but they could also apply
their model for the other crops. Besides, their accuracy rate was not
as satisfactory as ours and their model lacked visualization
technique. Akbar et al. (2022) proposed a novel lightweight and
parameters-concerned model for classifying two types of peach
leaves, with noticeable experimental outcomes providing various
comparisons of performance evaluation metrics and transfer
learning models. But, while the accuracy was high, it couldn’t
maintain the same accuracy as our proposed model obtained with
ten classes. Besides, they could increase the number of peach classes
or the types of crops and explain the model by using explainable AL
To sum up, they could increase the dataset by providing more
number of classes and trying to achieve the same accuracy as before.

Xiao et al. (2020) proposed research that was conducted with
two datasets, utilizing original and feature images to detect

TABLE 6 Analysis of applying CNN-SVM over various datasets.

No of Classes Total Accuracy

Images

10 (Two new classes - Soybean Rust

11,532 99.04% 0.98
and Frogeye Spot) 0
10 (Replaced Yellow Mosaic with

11,957 98.74% 0.98
Mn/Mg deficient class) ’
10 (Proposed dataset) ‘ 11,524 ‘ 99.09% 0.98
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strawberry diseases like leaf blight, gray mold, and powdery
mildew. Their customized CNN model, based on ResNet50
achieved 99.6% accuracy, but they could have explored more
evaluation metrics instead of modifying a transfer learning model.
Moreover, they also needed to focus on the number of parameters
as ResNet50 has a higher number of parameters. In summary, they
have achieved a higher accuracy but with a heavyweight transfer
learning model as it has a higher number of parameters. Dhivya and
Shanmugavadivu (2021) showed an impressive comparison among
various CNN models where EfficientNet-B3 achieved a remarkable
outcome than others. However, they haven’t proposed their own
built model to compare with various transfer learning models.
Moreover, the research paper does not mention the use of
visualization techniques like explainable AI and the authors could
do the same research for more crops instead of only strawberries.
Besides, the authors didn’t show some performance evaluation
matrices like the ROC curve, PR curve and Confusion matrix.
Another drawback of this research is that the research did not
mention the lightweightness of the models.

Wu et al. (2023), the researchers proposed an improved
ConvNeXt model with an attention module for generating feature
maps at different depths, achieving an accuracy of 85.42% on three
types of soybean leaves. Though the number of classes was limited,
the accuracy was unsatisfactory, suggesting room for improvement.
Jadhav et al. (2019), the authors used SVM and KNN algorithms to
classify four types of soybean leaf diseases, achieving 87.3% and
83.6% accuracy, respectively. However, their accuracy value seems
to be a limitation due to the use of a small dataset and only one type
of crop. Wallelign et al. (2018) managed to achieve 99.32% accuracy
with four classes of soybean leaves using a CNN model based on the
LeNet architecture, with visualization of the model’s outcome.
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Although the dataset size was satisfactory, the limited number of
disease types was a drawback. Overall, the limitations in existing
research, particularly the absence of a combined CNN-SVM model
with the Grad-CAM visualization technique have been noticed.

In summary, the discussion highlights our proposed CNN-SVM
model having both the advancements and the remaining challenges
in automating disease identification in crops. From Table 7, our
proposed model has mitigated all the research gaps of the existing
works mentioned above and showed its acceptance for real-world-
based plant disease detection.

6 Explainable-Al application

Significant efforts are underway to enhance the interpretability
and comprehensibility of deep learning, particularly in applications
related to the imaging of plant diseases. Ensuring a clear
understanding of deep learning models is crucial in such contexts.
The Gradient Weighted Class Activation Mapping (Grad-CAM)
method, introduced by Selvaraju et al. (2017) plays a pivotal role in
elucidating deep learning models as an explainable AI application.
Grad-CAM produces a visually interpretable representation of any
intricately connected neural network, thereby aiding in model
comprehension during task detection or prediction. In the
majority of cases, Grad-CAM was primarily applied to the final
convolutional layer. Grad-CAM produces a heatmap, highlighting
essential areas within an image by leveraging gradients derived from
the target class in the last convolutional layer. The regions used for
classification become apparent when superimposing this heatmap

TABLE 7 Comparison of existing related works.

10.3389/fpls.2024.1412988

onto the original image. In this research, Grad-CAM was utilized to
asses if leaf sections in the input image significantly influence the
diagnostic process to visually depict the diagnosis. The calculation
entails evaluating the target class gradient on each feature map and
averaging them to determine the relative significance of each map.
The computation involves determining a weighted sum of
activations from each feature map, where the importance of each
is associated with the input image, resulting in the visualization.
Grad-CAM proves to be an effective technique that does not hinder
performance, as it doesn’t necessitate any additional custom
components Fujita et al. (2018). As depicted in Figure 12, the
proposed model utilized Grad-CAM for detection techniques on a
basic image received as input.

7 Conclusions

Crop diseases are a major threat to food security, but their
rapid identification remains difficult in many parts of the world
due to the lack of the necessary infrastructure. The rise in global
smartphone usage, along with advancements in computer vision
powered by deep learning, has opened doors to smartphone-
enabled disease diagnosis. To accomplish this goal, in the
proposed work, a 2D CNN-based model has been constructed to
detect the 6 disease classes and 4 healthy classes in Peach, Cherry,
Soybean, and Strawberry. The suggested 2D CNN-based
architecture has four convolutional and four max-pooling layers,
two fully connected layers, two dropout layers, and batch
normalization in each layer makeup. The suggested model uses

Reference Method Accuracy Precision Recall F1-Score Classes Plant
Zhang et al. (2019) GoogleNet 99.6% - - - 2 Cherry
Apple,
Hang et al. (2019) VGGl16 91.7% - - - 10 Cherry,
Corn
Alosaimi
CNN 94% 94% 94% 94% 12 Peach
et al. (2021)
Akbar et al. (2022) LWNet 99% 100% 99% 99% 2 Peach
Xiao et al. (2020) ResNet50 99.6% - - - 3 Strawberry
Dhivya and EfficientNet-
Shanmugavadivu B3 97% 98% 97% 97% 2 Strawberry
(2021)
Wu et al. (2023 I d
uetal. (2023) mprove 85.42% 88.35% 88.44% 88.37% 3 Soybean
ConvNeXt
SVM and
Jadhav et al. (2019) KNN 83.6%, 87.3% - - - 4 Soybean
classifiers
Wallelign
LeNet 99.32% 99% 99% 99% 4 Soybean
et al. (2018)
Peach,
herry,
Proposed model CNN-SVM 99.09% 99% 99% 99% 10 cnerry
soybean,
strawberry

Frontiers in Plant Science 126

frontiersin.org


https://doi.org/10.3389/fpls.2024.1412988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Prince et al.
A Original Heatmap  Superimposed
ﬁ“‘n‘
?
-
||
FIGURE 12

10.3389/fpls.2024.1412988

Original Heatmap Superimposed

Application of Explainable-Al for (A) Cherry Healthy Leaf (B) Cherry Mildew (C) Peach Healthy Leaf (D) Peach Spot (E) Soybean Bacterial Blight (F)
Soybean Healthy (G) Soybean Sudden Death (H) Soybean Yellow Mosaic (I) Strawberry Healthy (J) Strawberry Scorch leaves.

less storage capacity and has fewer parameters than transfer
learning models because of this kind of shallow structure, which
has surpassed heavyweight transfer learning architectures
(VGG16, VGGI19, and Inception V3) and lightweight transfer
learning architectures (MobileNet, MobileNetV2, DenseNet and
ShuffleNet) which have an average accuracy range from 54% to
97%. Along with the transfer learning models, the model’s
performance has also been evaluated using the confusion
matrix, ROC curve, AUC score, and Matthews Correlation
Coefficient. The model also showed an impressive performance
over various datasets. The outcome shows that the model has
achieved a high level of performance that will assist plant doctors
and farmers in accurately identifying a variety of diseases affecting
cherry, peach, strawberry, and soybean plants. This can help plant
doctors take appropriate action to prevent the disease and save
money for the farmers. Additionally, this can benefit the economy
of the nation. Because the suggested model has significantly fewer
parameters than transfer learning models, it requires between
three and four times less storage space than transfer learning
models. This concept can be easily applied to smartphones and

Frontiers in Plant Science

other devices due to its lightweight structure. Grad-CAM class
activation maps and a heatmap were created to visualize the
detection the trained model was able to achieve to symbolize the
area in charge of classification. However, there can be several
obstacles and limitations when implementing a model in real-
world situations. Besides, our model should have classified Mn/
Mg deficient images and Soybean sudden death images without
any misclassification although both of the classes have very similar
type of features between them. In the future, we have a plan to
increase the classification rate more and remove the collision
between those two classes. Furthermore, we are planning to
explore different hybrid models to handle upcoming
challenges better.
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Accurate detection and counting of flax plant organs are crucial for obtaining
phenotypic data and are the cornerstone of flax variety selection and
management strategies. In this study, a Flax-YOLOvV5 model is proposed for
obtaining flax plant phenotypic data. Based on the solid foundation of the original
YOLOvV5x feature extraction network, the network structure was extended to
include the BiFormer module, which seamlessly integrates bi-directional
encoders and converters, enabling it to focus on key features in an adaptive
query manner. As a result, this improves the computational performance and
efficiency of the model. In addition, we introduced the SloU function to compute
the regression loss, which effectively solves the problem of mismatch between
predicted and actual frames. The flax plants grown in Lanzhou were collected to
produce the training, validation, and test sets, and the detection results on the
validation set showed that the average accuracy (mAP@O0.5) was 99.29%. In the
test set, the correlation coefficients (R) of the model's prediction results with the
manually measured number of flax fruits, plant height, main stem length, and
number of main stem divisions were 99.59%, 99.53%, 99.05%, and 92.82%,
respectively. This study provides a stable and reliable method for the detection
and quantification of flax phenotypic characteristics. It opens up a new technical
way of selecting and breeding good varieties.

KEYWORDS

flax, YOLOVS, target detection, phenotypic data, variety breeding

1 Introduction

Flax (Linum usitatissimum) is one of the most important oil and fiber crops in the world.
Flax is mainly divided into oil flax, fiber flax, and dual-purpose oil and flax varieties according
to their uses (Zhang et al., 2011). Recently, the results of studies emphasizing the anticancer
properties of substances present in flaxseed and oil have attracted great attention (Praczyk
and Wielgusz, 2021) and are widely cultivated worldwide (Kauser et al., 2024). Selection and
breeding of flax varieties are crucial for progress in flax production (Gong et al, 2020).
Obtaining the phenotypic data required for flax breeding is the basis of breeding; only rapid
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and accurate access to flax plant phenotypic data and the breeding of
flax varieties will have a qualitative leap. The traditional acquisition of
flax phenotypic data is through manually counting the number of flax
fruits and the number of main stems divided into stems, measuring
the plant height and main stem length, and manually recording data;
this traditional method of flax production has made a significant
contribution to the progress of flax production, but with the
advancement of science and technology, these methods have
become more and more inefficient and expensive. As a result, these
traditional methods often fail to meet the stringent requirements of
modern breeding practices. To address these challenges, there is an
urgent need to explore innovative techniques that are more efficient,
cost-effective, and compatible with contemporary sub-breeding
acquisition of data.

Currently, computer vision technology is widely used in
agriculture and has made great progress in the accuracy and
efficiency of extracting plant phenotypic data. Currently, there are
two main detection methods for obtaining plant phenotypic data:
traditional target detection methods and target detection methods
based on deep learning (Zhang et al, 2023). Among them, the
traditional target detection process is more complex, requiring
multiple steps to be completed together and time-consuming,
with higher requirements for images, different algorithms for
different detection objects, and greater difficulty in extracting
different information at the same time; deep learning has a
powerful feature extraction capability, which can make up for the
shortcomings of the traditional methods, and therefore, more and
more researchers are using it for agricultural target detection.

In recent years, many scholars have begun to apply deep
learning in the field of agriculture, such as identifying plants,
pests, and diseases, to improve crop yields. Zhu et al. (2024)
proposed a CBF-YOLO network for the detection of common
soybean pests in complex environments. Pei et al. (2022)
proposed a maize field weed detection framework based on crop
row pretreatment and improved YOLOv4 in UAV images. Li et al.
(2023) proposed an apple leaf disease detection method based on
the improved YOLOv5s model. Bai et al. (2024) proposed an
improved YOLO algorithm to detect the flowers and fruits of
strawberry seedlings. Wang et al. (2024) developed a new deep
learning network, YOLO-DCAM, which effectively facilitates
single-wood detection in complex scenarios. Du et al. (2023)
proposed a method for detecting strawberry fruit planted in fields
under different shade levels. Su et al. (2023) proposed an improved
YOLOV5-SE-BiFPN model, which could more effectively detect
brown spot lesion areas in kidney beans. Zhang et al. (2024)
proposed a multi-task learning method named YOLOMS for
mango recognition and rapid location of major picking points.

YOLO series is a single-stage algorithm that ensures high
precision and faster speed, especially in the GPU environment, and
real-time detection can be realized. Due to its excellent performance,
it has achieved great results in the extraction of plant phenotype data
and the application of detection objects. Guo et al. (2022) proposed a
method to obtain phenotypic parameters of soybean plants based on
Re-YOLOVS5 and detection region search algorithms, and the results
showed that the average absolute errors of plant height, stem node
count, and soybean branch count were 2.06 cm, 1.37 cm, and 0.03 cm,
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respectively. The results were better, and a specialized black box for
filming was developed, but this is time-consuming in the face of a
large number of films to obtain phenotypic data and does not apply to
realistic breeding requirements. Chen et al. (2024) proposed an
efficient, fast, and real-time seedling counting method for cabbages,
which replaced the C2f block in the main stem network of YOLOv8n
with a Swin-conv block and added a ParNet block to both the main
stem and neck portions of the network. ParNet attention modules
were added to the neck section to accurately track cabbage seedlings
in the field and count them using an unmanned aerial vehicle (UAV),
achieving 90.3% mAP50-95, but its recognition progress needs to be
further improved. She et al. (2022) introduced the ECA attention
mechanism into the YOLOv5s model to improve the accuracy of trap
vial detection and counting, but the recognition accuracy needs to be
further improved. Gao et al. (2022) proposed the YOLOv4-tiny
network combined with the channel spatial reliability discriminant
correlation filtering (CSR-DCF) algorithm for training, and the
correlation coefficient R* between apple number prediction and
manual counting was 0.9875. The counting accuracy of the orchard
video is 91.49%, so the accuracy of fruit recognition in the video needs
to be further improved.

While deep learning has applications in acquiring plant phenotypic
data, it has received limited attention for the accurate detection of
organs in flax plants. In real-world detection scenarios, complex flax
fruit overlap and branching pose significant challenges to fruit
occlusion. This often leads to incomplete detection, as existing
models ignore occluded flax fruits. In addition, less characterization
of flax plant main stem length and main stem branching increases the
complexity of identification. In addition, the shapes of flax fruits, plant
heights, industrial lengths, and main stem meristems varied, increasing
the difficulty of designing a fusion model for identification. To solve
these problems and improve the accuracy of phenotypic information,
this study proposes a pioneering method to recognize phenotypic
organs of flax plants, and this technological breakthrough is expected to
improve the efficiency of breeding and open up a new way for precision
agriculture. The main contributions are summarized as follows.

(1) Establishing a new flax plant dataset.

(2) Deepening the original YOLOv5x network layer and
adding the BiFormer attention mechanism to its network
layer significantly improve the extraction of flax features
and reduce the risk of overfitting (Yang et al., 2023). In
addition, the SIoU loss function replaces the original CloU
loss function, which effectively solves the problem of
mismatch between the prediction and the actual
bounding box and improves the accuracy of the model
(Qian et al., 2024).

(3) After the model is fully trained, it is loaded onto the test set
for identification and compared with the manual test data
to obtain a good correlation. The model has been embedded
into PC software and put into use.

The rest of the paper is organized as follows. Section 2 discusses
the methods involved in the flax plant dataset, the improved Flax-
ylolv5, the experimental setup, and the evaluation criteria. The
conclusions are explained and discussed in Section 3. The design of
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the improved Flax-YOLOvV5 application software is presented in
Section 4. Section 5 summarizes the conclusions of the paper.

2 Materials and methods
2.1 Phenotypic dataset of flax plants

The experimental study used manually collected samples of
mature and intact plants of flax from the Lanzhou Flax Planting
Base of Gansu Provincial Academy of Agricultural Sciences. A total
of 630 flax plants were collected to ensure phenotypic diversity.
These samples were carefully selected to include a range of plant
types, such as single main-stem split-stem flax plants, multiple main
stem split-stem flax plants, flax plants with different numbers of
fruits, and plants with complex branching patterns.

Images were captured using an MV-HS2000GM/C2 industrial
camera. To eliminate potential interference from natural light,
which can lead to exposure problems and complex backgrounds,
the shoot was conducted indoors. A LED light source was used to
provide supplemental lighting during the shoot, while a black light-
absorbing cloth was used as a backdrop to simplify the test
background and minimize interference. Additionally, the
branches of the flax plants were hand-arranged to prevent
excessive fruit overlap. To ensure accurate measurement of plant
height and main stem length, the flax plant was placed horizontally
below the camera lens. The camera height was set to 140 cm, and
the image resolution was set to 5,472 pixels x 3,000 pixels to capture
high-quality images for subsequent analysis.

2.2 Labeling of phenotypic feature datasets

The image features obtained were carefully measured and
annotated for specific phenotypic traits, including the number of
flax fruits, plant height, length of the main stem, and number of
divisions within the main stem. Length measurements were made in
centimeters with accuracy maintained to one decimal place.

10.3389/fpls.2024.1404772

Considering the irregularity of traits such as number of flax fruits,
plant height, length of the main stem, and branching of the main
stem, we aimed to minimize measurement errors. Therefore, all
phenotypic traits of flax plants were labeled to represent the
average of three separate measurements. The labeling process
utilized a dedicated labeling tool to generate the dataset in text
format. The number of fruits on the flax plant, recorded as
complete fruits, was labeled as “flax”. Plant height, which
represents the vertical extension of the plant from root to tip, was
labeled as “height”. The length of the main stem, i.e., the distance
from the root to the first main branch, is labeled as “length”. In
addition, the number of divisions, representing the number of
branches emanating from the prominent main stem, was labeled
“n” (n=1,2,...), and the maximum number of main stem divisions
observed in a single plant was six.

2.3 Data expansion

A traditional data enhancement method was used to enrich the
diversity of flax plant image samples, thus enhancing the generalization
ability and robustness of the model. The enhancement process was
carried out in five different ways: downward brightness adjustment,
mirror operation, rotating the image, a combination of mirroring and
brightness reduction, and a combination of mirroring and noise
addition. Figure 1 shows an illustrative example of this data
enhancement process, which demonstrates the effectiveness of these
techniques in generating a diverse and representative sample of images
to be used for model training,

2.4 Original YOLOv5x

5

As shown in Figure 2, the original network structure of
YOLOV5x is divided into an input network, a backbone network,
a neck network, and a head network. The input integrates mosaic
data enhancement, adaptive anchoring, and adaptive image scaling

of 1.33 depth and 1.25 width. The backbone is a convolutional

FIGURE 1

Example of data enhancement: (A) original, (B) rotated, (C) mirrored, (D) reduced brightness, (E) mirrored and reduced brightness, and (F) mirrored

and added noise. The image has been cropped for ease of viewing
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Backbone

| 33

FIGURE 2
YOLOv5x model structure.

neural network that accumulates fine-grained images and generates
feature maps. It contains CBS, C3, and Spatial Pyramid Pooling
(SPPF) for feature extraction as shown in Figure 3. The YOLOvV5x
neck part uses a PANet structure for multi-scale feature fusion. The
neck network combines the feature maps collected by the backbone
network and then passes the integrated feature maps to the head
network, which generates predictions from the anchor box for
target detection (Rahman et al., 2022). The head network outputs
a vector containing the class probability of the target, the target
score, and the location of the bounding box around the target.

2.5 Improved Flax-YOLOvV5

To accurately identify the phenotypic organs of flax plants, a
Flax-YOLOvV5 network structure model with high detection
accuracy and detection speed was proposed. First, in the Flax-
YOLOV5 network shown in Figure 3, the adaptive image scaling of
Flax-YOLOVS5 is 1.0 times depth and 1.0 times width. This adjusts
the depth and width of the network to meet the needs of different
scenes and improve detection accuracy.

Second, the Flax-YOLOvV5 backbone network is improved based
on the inheritance of the YOLOv5x backbone network. In the
improvement of Flax-YOLOV5, the BiFormer module is added after
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80%80

40*40

20%20

the CBS module at layer 10 in the original YOLOv5x necking
network. The CBS module, Upsample, Concat, and C3 modules are
added at the end of the 18th layer, and the CBS, Concat, and C3
layers are added at the end of the 28th layer to improve the model’s
ability to extract target features.

Finally, the improved Flax-YOLOv5 head network in Figure 3
generates feature maps with sizes of 160 x 160, 80 x 80, 40 x 40, and
20 x 20 with different scale target detection; the improved network
model is named Flax-YOLOVS5, and its structure is shown in Figure 3.

Flax-YOLOVS5 is divided into three parts. The backbone is used
for feature extraction of input Flax plant images, the Neck is used
for feature fusion of acquired feature mappings, and the Head is
used for regression prediction. BiFormer is introduced into the
feature fusion network Neck to improve the feature extraction
capability of the model. Second, the SIoU function is introduced
into the output Head to calculate the regression loss and improve
the convergence ability of the model. Among them, the CBS module
is a basic convolutional neural network module, used to extract and
transmit image features; it is composed of Conv (CONvolution
layer), BN (Batch Normalization layer), and SiLU (activation
function) in three parts. The Conv layer is responsible for the
convolution operation of the input feature graph to extract higher-
level features. The BN layer is used to normalize the data, which
helps accelerate training and improve the performance of the
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https://doi.org/10.3389/fpls.2024.1404772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

Upsample

160*160

80*80

40%40

20%20

FIGURE 3
Flax-YOLOV5 model structure.

model. SiLU (Sigmoid-weighted Linear Unit) is an activation
function to increase the non-linearity of the model. The C3_x
module is composed of a series of multiple residual network
structures. The inner Bottleneck module can be programmed to
divide C3_x into two different structures, which are applied in the
Backbone network and Neck network. The outer layer of the C3_x
module connects to the CBS module to form a large residual edge.
These residual components enhance the feature extraction
capability of convolutional networks, and the stacking of residual
blocks solves the difficult balance between network depth and
gradient. C3_3 indicates that the C3 module has three Bottleneck
modules. The SPPF module is an improved version of the Spatial
Pyramid Pooling (SPP) module. SPP module is mainly used for
image recognition and target detection, which can extract and
encode image features at different scales, re-scale input images of
any size to a fixed size, and generate fixed-length feature vectors.
The SPPF module changes the parallel structure of SPP to a serial
structure, which significantly reduces the amount of computation
and makes the speed faster. This improvement not only maintains
the function of SPP but also significantly improves the speed.

2.5.1 BiFormer attention mechanism

In the original image, the flax fruit is a small target with fewer
features in terms of main stem length and number of main stem
branches. For better extraction of effective features, the BiFormer module
is introduced. BiFormer focuses on a small number of relevant markers
in a query-adaptive manner without distracting other irrelevant markers,
thus providing good performance and high computational efficiency.
BiFormer is used in the first stage using overlapping block embedding,
and in the second stage through the fourth stage, it uses a block merging
module to reduce the input spatial resolution while increasing the
number of channels and then uses consecutive BiFormer blocks for
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feature transformation. Note that the relative position information is
implicitly encoded at the beginning of each block using 3 x 3 deep
convolution. Subsequently, the (Bi-level routing attention, BRA) module
and the 2-layer Multi-Layer Perceptron (MLP) module with an
expansion rate of e are sequentially applied for cross-positional
relation modeling and position-by-position embedding, with the
BiFormer attention mechanism shown in Figure 4 (Kong et al.,, 2023).

2.5.2 SloU

YOLOvV5x uses the CIoU loss function, which is a traditional
loss function for target detection that relies on the aggregation of
bounding box regression metrics and does not take into account the
desired orientation mismatch between the real and predicted
frames, resulting in slower convergence and lower efficiency. To
solve this problem, the loss function SIoU is introduced in the
improved model, which considers not only the overlap region,
distance, and orientation but also the angle between the predicted
frame and the true frame. The SIoU formula is defined by Equations
1-5, where IoU is the regular regression loss, A is the distance loss,
Q is the shape loss, B denotes the prediction frame, B8 denotes the
ground truth box, @ and ¥ denote the width and height of the
ground truth box, respectively, and ® and & denote the width and
height of the prediction box. b and b* denote the centroid of the
predicted truth box and the true truth box, respectively, and b, and
b‘g, denote the horizontal and vertical coordinates of the center of
the ground truth box, respectively. b, and b, are the corresponding
coordinates of the predicted box. 6 is an adjustable parameter used
to control how much to focus on the shape cost, which is set to 4 in
this study (Zhang et al., 2024).

A+Q

(1)

Lossg,y =1 —1IoU +
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3 Improved model identification
results and analysis

3.1 Experimental process

The specific steps of the experiment are shown in Figure 5.

As shown in Figure 5, data collection was carried out first. Of the
630 images collected, 100 were selected as the test set, and the
remaining 530 images, that is, 3,180 images obtained through five
data enhancement methods, were randomly divided into the training
set and the verification set according to the ratio of 8:2, among which
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2,544 were the training set. The verification set was 636 pieces.
Second, the YOLO series model was trained on the training set.
Finally, the model weight obtained from the above model on the
training set was loaded onto the corresponding model and then tested
on the test set. The optimal model was obtained by comparing the
obtained results, and the optimal model was embedded in the
developed software for the convenience of flax breeders.

3.2 Experimental environment

All models completed training on a server configured with CPU:
Intel® Xeon® W-2123 CPU @ 3.60GHz and GPU: RTX 1080Ti with
8-GB video memory. The model training environments were PyTorch
1.10.0, python 3.8, and Cuda 10.2. The training parameters were 300
epochs (Ajayi et al., 2023); batch size was 4; the learning rate was set to
0.01, 0.937 momentum, 0.0005 weight decay, 0.2 IoU, 0.015 hue, 0.7
saturation, 0.4 lightness, 1.0 mosaic, 0.5 scale, and 0.1 translate; image
input resolution was 640 pixels x 640 pixels; other original default
parameters were used. The shooting instrument is shown in Figure 6.

3.3 Evaluation metrics
In this study, in addition to using the target detection algorithm

to evaluate the precision and recall metrics, as well as the metrics for
F1, we evaluated the Mean Average Precision (mAP) performance of
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FIGURE 5
Experimental flowchart.

the model at an Intersection over Union (IoU) threshold of 0.5. In
addition, to assess the accuracy of the phenotypic parameters
extracted from flax plants using the Flax-YOLOvV5 model, four
evaluation metrics were used: mean absolute error (MAE),
maximum absolute error (HAE), root mean square error (RMSE),
and correlation coefficient (R). The above evaluation metrics can be
defined by Equations 6-15. tP is true positive (correctly detected), FN
is false negative (not detected), FP is false positive (incorrectly
detected), F1 is the trade-off between precision and recall, mAP is
the average of all the AP values of the different categories, MAE is the
average of all the absolute errors, and HAE is the maximum absolute
error. RMSE is very sensitive to the magnitude error of a set of
measurements and gives a good indication of the precision of the
measurements. r is the degree of correlation between the manually
measured flax plant phenotypic data and the model-predicted data, N
is the number of experimental images, Ti is the manually measured

FIGURE 6

Shooting instrument. (1) Flax plant carrier table, (2) industrial camera
wide-angle lens, (3) exposure time adjustment, (4) focal length
adjustment, (5) computer data cable connection, (6) height
adjustment, and (7) removable metal tube
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ith plant phenotypic data, and mi is the model-predicted ith plant
phenotypic data. These metrics were chosen to comprehensively
evaluate the phenotypic data extraction ability of the directed
search algorithm (Abyaneh et al., 2011).

Precision = x 100 % 6)

TP
TP + FP

Recall = x 100 % (7)

TP
TP + FN

3 (o + 1)*Recall x Precision

F = 8
Recall + Pr ecision ®
2 *Recall x Precision
1= — 9)
Recall + Precision
1
AP = /) Precision gecandR (10)
N
N AP.
mAP = L (11)
N
1N
MAE:NE|m,-—T,-| (12)
1
HAE = Max(|mi — Til) (13)
L 2
RMSE = ﬁ;(ﬂ’ll— T,) (14)
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frontiersin.org


https://doi.org/10.3389/fpls.2024.1404772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

3.4 Calculate the number of flax fruits,
plant height, length of main stem, and
number of main stem divisions

(1) Number of flax fruits

The number of flax fruits is determined by the number of
“Flax” labels.

(2) Plant height and main stem length

In the same environment, Formulas 16 and 17 define the flax
plant height and main stem length: Hy,,, is the manually measured
value of plant height and main stem length of the flax plant, Hy; is the
plant height and main stem length of the pixel of the identification
frame, H,, is the ratio of the actual length of the one-dollar coin to
the length of the pixel, H,,, is the actual length of the one-dollar
coin, and H,,, is the pixel length of the one-dollar coin.

Hrrue = Hpi * Hrafe (16)
H
Hige = I—;’MGZ (17)
pi2

The actual diameter of the one-dollar coin was measured using
0.02-mm Vernier calipers, and the pixel diameter of the one-dollar
coin was calculated using digital image technology.

(3) Number of main stem divisions

The label “n” (n= 1, 2, ...) indicates that the main stem of the
flax plant is n sub-stems, from which the number of sub-stems of
the main stem is calculated.

3.5 Model identification results

The phenotypic organs of 100 flax plant images from the test set
were recognized using the improved Flax-YOLOv5 model. The
results of flax plant phenotypic organ recognition are shown in
Figure 7. In addition, Figure 8A demonstrates the case of some flax
fruits occluding each other, while Figure 85 demonstrates the case
of branches occluding flax fruits, from which it can be seen that the
model proposed in this paper has better recognition results.

10.3389/fpls.2024.1404772

The phenotypic data of 100 flax plants obtained from manual
measurements were thoroughly compared with the phenotypic
prediction data generated by the algorithm proposed in this
study. To assess the reliability and stability of the algorithm in
this paper, a correlation analysis was performed, and the results are
shown in Figure 9.

From Figure 9A, it can be seen that most of the flax plants had
between five and 40 fruits with a strong correlation and a mean
absolute error of 1.37 fruits, although the maximum absolute error
was seven fruits, but this was for very few plants with complex
branching. As can be seen in Figure 9B, the height of most plants
ranged from 50 cm to 75 cm, with a mean absolute error of 0.80 cm.
As can be seen in Figure 9C, the craft length of the majority of plants
was essentially in the range of 30 cm to 50 cm, with a mean absolute
error of 2.24 cm. It is worth noting in Figure 9D that the intensity of
the bubble color in the graphs reflects the number of main stem
divisions of the repeat frequency, the vast majority of the main stem
split number predicted accurately, with an average absolute error of
0.12. In summary, the number of fruits, plant height, main stem
length, and the number of main stem split R of flax plants was
99.59%, 99.53%, 99.05%, and 92.82%, respectively, and the results
were better and in line with the actual production needs.

3.6 Validation set test results and analysis

To evaluate the performance of the Flax-YOLOv5 model, we
performed tests on a validation set. We chose the YOLOv3-tiny
(Redmon and Farhadi, 2018), YOLOV5x (Jocher et al., 2022), YOLOv7-
tiny (Wang et al,, 2023), YOLOv7x, YOLOv8n (Lou et al,, 2023), and
YOLOvV9c (Wang et al, 2024) models for comparison. Changes in

training curves of different models mAP@0.5 are shown in Figure 10. It
can be seen from the figure that mAP@0.5 of the YOLOv3, YOLOV5x,
YOLOv7-tiny, YOLOv8n, and YOLOv9c models is significantly lower
than that of the improved model Flax-YOLOV5. Although mAP@0.5 of
the YOLOv7x model is close to that of the Flax-YOLOV5 model, it does
not exceed it, and mAP@0.5 of the Flax-YOLOv5 model tends to 1 in a
more stable trend with stronger convergence.

FIGURE 7

Results of phenotypic organ recognition in flax plants. The image has been cropped for ease of viewing.
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Recognition results of partially obscured fruits. The label “flax” in the picture stands for flax fruit; Numbers are confidence rates. (A) demonstrates the
case of some flax fruits occluding each other, while (B) demonstrates the case of branches occluding flax fruits.

The experimental results comparing the recognition accuracy of
the improved model Flax-YOLOv5 model with other models are
shown in Table 1. As can be seen from Table 2, F1 and mAP@0.5
values of YOLOv3, YOLOv5x, and YOLOv7-tiny models are lower
than 90%, which indicates that the performance is not ideal and
does not meet the requirements of actual applications. Compared
with the YOLOv7x model, the Flax-YOLOv5 model has an increase
of 0.56 percentage points on F1 and 0.22 percentage points on
mAP@0.5. However, the Flax-YOLOvV5 model is 36.22 MB less than
the YOLOv7x model. Although the YOLOv8n and YOLOv9c
models are smaller than the improved model, the F1 evaluation
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FIGURE 9

shows that the improved model has more advantages. Overall, the
improved Flax-YOLOv5 model exhibits superior performance
compared to the YOLOv3, YOLOv5x, YOLOvV7-tiny, YOLOV7x,
YOLOvV8n, and YOLOv9c models, providing a balance between
accuracy and model size.

3.7 Test set test results and analysis

In this study, four phenotypic data points for each flax plant sample
corresponding to the images in the dataset were successfully obtained

B
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Correlation analysis between manual and algorithmic measurements: (A) number of flax fruits, (B) plant height, (C) length of main stem, and (D) number

of main stem divisions.
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FIGURE 10
mAP@O0.5 change curves of different models.

TABLE 1 Results predicted by different models in the test set.

Number of flax Plant height/cm Main stem length/cm Number of main stem
fruits/pieces divisions/pieces

HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R MAE HAE RMSE R

YOLOV3- | 2116 @ 6700 | 2518  7.69 / / / / / / / / / / / /
tiny
YOLOvSx | 1876 | 6100  23.00 | 2676 201 = 584 251 | 9791 827 | 5440 1465 3741 158 | 4.00 192 | 1285
YOLOvZ- = 937 | 3900 1287 | 89.03 99.04 4540 128 | 4.00 174 | 1924
Y 140 557 178 560 5160 1221
tiny
YOLOv7x = 597 | 2400 = 860 9455 128 622 160 | 9894 440 4290 999 6378 032 | 4.00 073 | 7047
YOLOv8n = 19.14 = 6200 @ 2301 5394 201 2360 406 9276 659 5160 1365 3871 055 | 4.00 107 | 4856
YOLOv9c | 1943 | 6000 2301 7241 121 486 155 | 9915 | 374 443 925 6600 034 | 3.00 072 | 7455
Flax- 137 7.00 213 9959 99.53 99.05 | 012 | 100 035 | 92.82
080 | 247 1.05 091 | 224 112
YOLOVS

MAE, mean absolute error; HAE, maximum absolute error; RMSE, root mean square error; R, correlation coefficient.

TABLE 2 Comparison of recognition results of different models.

Model Precision (%) Recall (%) F1 (%) mAP@O0.5 (%) Model size (MB)
YOLOV3-tiny 81.90 75.92 78.80 79.73 17.15
YOLOv5x 88.01 62.68 7322 87.60 169.22
YOLOV7-tiny 92.61 6631 77.28 71.26 12.03
YOLOv7x 92.82 98.15 95.41 99.07 138.88
YOLOv8n 94,58 9131 92.92 95.75 6.14
YOLOV9c 95.51 90.77 93.08 9535 50.44
Flax-YOLOV5 93.25 98.86 95.97 99.29 102.66
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FIGURE 11
Original image.

FIGURE 12
Comparison of recognition of different models: (A) YOLOv3-tiny, (B) YOLOvV5x, (C) YOLOV7-tiny, (D) YOLOV7x, (E) YOLOV8n, (F) YOLOVOc,
and (G) Flax-YOLOV5. The image has been cropped for ease of viewing
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through rigorous testing of the test set. These phenotypic measurements
were then compared with manual measurements for validation. The results
predicted by the different models in the test set are given in Table 1.

The YOLOv3-tiny model showed limited discrimination,
recognizing only the fruits of the flax plant with a correlation
coefficient of only 7.69%, indicating a large margin of error.
Similarly, the identification results of the YOLOv5x model showed
correlation coefficients of less than 50% for the number of flax fruits,
main stem length, and number of main stem meristems, reflecting
considerable inaccuracy.

The YOLOv7-tiny, YOLOv8n, and YOLOvV9c models also
performed poorly in the identification of flax fruit number, main
stem length, and main stem branching number. The correlation
coefficient of the YOLOv7x model in identifying the main stem
length and the main stem branching number was less than 50%, and
the identification accuracy was poor, with correlation coefficients of
identifying the main stem length and the main stem branching
number being 63.78% and 70.04%, which were unsatisfactory.

The improved Flax-YOLOvV5 model, in contrast, showed better
prediction results, with correlation coefficients of 99.59%, 99.53%,
99.05%, and 92.82% for flax fruit, plant height, main stem length,
and number of main stem branches, respectively. These results were
significantly better than those of the YOLOv3-tiny, YOLOV5x,
YOLOV7-tiny, YOLOv7x, YOLOvV8n, and YOLOvV9c models.

To verify the effectiveness of the model improvement, we selected
a flax plant with multiple flax fruits and branches from the test set
and tested it using the above model and the Flax-YOLOv5 model; the
original image is shown in Figure 11, and the comparative results of
the recognition by different models are shown in Figure 12.

As can be seen in Figure 12, the YOLOv3-tiny model has limited
recognition ability and can only accurately recognize two flax fruits.
Similarly, the YOLOv7-tiny, YOLOv7x, YOLOv8n, and YOLOv9c
models were defective in recognizing the main stem length of flax
plants, accompanied by a considerable number of missing fruit
detection. The improved Flax-YOLOv5 model, in contrast, has
better recognition ability and can accurately recognize flax fruits,
plant height, main stem length, and number of main stem divisions.

3.8 Ablation experiments and analysis

To verify the effectiveness of the improved model Flax-
YOLOVS5, it is necessary to compare and analyze the models
through ablation experiments, and the results of the ablation
experiments are shown in Table 3.

As can be seen in Table 3, the correlation coefficients of flax
fruits with plant height, main stem length, and number of main
stem divisions in Model 2 are higher than the values of Model 1.
This observation emphasizes the advantages of the BiFormer
network in extracting the target features, which improves the
performance of the network in the plant detection task. Model 3
plant height correlation coefficients were significantly higher than
those of Model 2 by 34.09 percentage points, which indicates that
the integration of SIoU significantly enhanced the model fitting
ability, which led to an overall improvement in the accuracy of the

TABLE 3 Results of ablation experiments.

model recognition framework.
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MAE, mean absolute error; HAE, maximum absolute error; RMSE, root mean square error; R, correlation coefficient.
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4 Application

To facilitate researchers in selecting flax varieties, it is simple to
obtain key phenotypic indicators such as the number of fruits, plant
height, main stem length, and the number of main stem divisions of
flax plants. Using the improved Flax-YOLOv5 model, the statistical
software for flax plant phenotypic data was elaborately designed and
developed. This software system is based on PyQt5 technology,
which ensures its robustness and scalability. Deployment was
effectively accomplished using the PylInstaller toolkit.

The software has a variety of features that greatly assist in
phenotypic data analysis. Specifically, users can upload photos and
videos and turn on the camera for real-time recognition. By
entering data, the software automatically recognizes each organ of
the flax plant and provides comprehensive statistics on its
phenotypic data. This comprehensive approach ensures accurate
and efficient data collection, which is essential for accurate flax
variety selection and subsequent breeding programs.

5 Conclusion

The acquisition of flax plant phenotype data is the cornerstone
of flax breeding. The traditional method is manual technical testing,
which is not only time-consuming but also expensive. Therefore, we
propose a Flax-YOLOV5 model specifically designed to obtain Flax
phenotypic data. The experimental results show that in the
verification set, mAP@0.5 is 99.29%. In the test set, the
correlation analysis between the predicted value of the model and
the key phenotypic traits (fruit number, plant height, main stem
length, and main stem number) generated 99.59%, 99.53%, 99.05%,
and 92.82%, respectively, and their MAEs were 1.37 pieces, 0.80 cm,
0.91 cm, and 0.12 pieces, respectively, all of which were within the
acceptable range. These results show that our method can
accurately capture the phenotypic data of flax plants, which
provides convenience for the selection of flax varieties. On this
basis, a PC-based flax phenotype data collection platform was
designed and developed. The platform can efficiently collect key
phenotypic traits such as fruit number, plant height, main stem
length, and main stem number. This practical application highlights
the practicability and effectiveness of our proposed method in
supporting flax plant breeding, improves the efficiency of flax
plant phenotype data acquisition, and greatly reduces the cost of
data acquisition, which provides a solid foundation for flax breeding
to become digital. In future research, for plants with complex
branches and a large number of fruits, the recognition rate should
be further improved, the recognition effect of the number of main
stems should be more accurate, and the model parameters should be
reduced. At present, the statistics of the secondary branches of the
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S-YOLO with high accuracy
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Introduction: Efficiently and precisely identifying tomatoes amidst intricate
surroundings is essential for advancing the automation of tomato harvesting.
Current object detection algorithms are slow and have low recognition accuracy
for occluded and small tomatoes.

Methods: To enhance the detection of tomatoes in complex environments, a
lightweight greenhouse tomato object detection model named S-YOLO is
proposed, based on YOLOv8s with several key improvements: (1) A lightweight
GSConv_SlimNeck structure tailored for YOLOvV8s was innovatively constructed,
significantly reducing model parameters to optimize the model neck for lightweight
model acquisition. (2) An improved version of the a-SimSPPF structure was
designed, effectively enhancing the detection accuracy of tomatoes. (3) An
enhanced version of the B-SloU algorithm was proposed to optimize the training
process and improve the accuracy of overlapping tomato recognition. (4) The SE
attention module is integrated to enable the model to capture more representative
greenhouse tomato features, thereby enhancing detection accuracy.

Results: Experimental results demonstrate that the enhanced S-YOLO model
significantly improves detection accuracy, achieves lightweight model design,
and exhibits fast detection speeds. Experimental results demonstrate that the S-
YOLO model significantly enhances detection accuracy, achieving 96.60%
accuracy, 92.46% average precision (MmAP), and a detection speed of 74.05
FPS, which are improvements of 5.25%, 2.1%, and 3.49 FPS respectively over
the original model. With model parameters at only 9.11M, the S-YOLO
outperforms models such as CenterNet, YOLOv3, YOLOv4, YOLOv5m,
YOLOv7, and YOLOVSs, effectively addressing the low recognition accuracy of
occluded and small tomatoes.

Discussion: The lightweight characteristics of the S-YOLO model make it
suitable for the visual system of tomato-picking robots, providing technical
support for robot target recognition and harvesting operations in facility
environments based on mobile edge computing.

KEYWORDS

greenhouse tomatoes, YOLOVS8, object detection, deep learning, high accuracy, fast
detection, lightweight, computer vision
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1 Introduction

Tomatoes are one of the most extensively cultivated vegetables
in Chinese agriculture. China not only leads globally in tomato
production but also serves as a major exporter (Huo, 2016). Manual
tomato harvesting requires a significant amount of labor and time.
Mechanized harvesting not only cuts down on labor expenses but
also boosts efficiency in the harvesting process (Li et al., 2021).
Harvesting robots initially utilize computer vision systems for fruit
detection, followed by guiding mechanical arms based on the
detection results for harvesting operations. Therefore, fruit
detection stands as a pivotal aspect throughout the entire
harvesting process, with its accuracy and speed directly
influencing the efficiency of harvesting robots. However, tomato
fruits exhibit diverse growth postures, overlap with each other, and
are heavily obscured by leaves, branches, and stems, presenting
certain challenges for robot recognition. Rapid and precise
identification of tomato fruits in complex greenhouse
environments is a pressing issue in the development of tomato
harvesting robots (Liu, 2017). Moreover, deploying models with
excessively high complexity proves challenging in practical
scenarios. Thus, enhancing fruit detection accuracy, speed, and
lightweight improvements are crucial for bolstering the
performance of harvesting robots.

Traditional methods for tomato fruit recognition in greenhouse
environments rely on extracting and analyzing information based
on color and shape features. Feng et al. (2015) extracted the color
features of red ripe tomato fruits using the 2R-G-B color difference
model and identified red ripe tomato fruits using dynamic threshold
segmentation. However, this method is time-consuming and does
not consider factors such as leaf occlusion in complex environments
during tomato fruit recognition. Ma et al. (2016)) introduced a
technique for recognizing objects by combining saliency detection
with the circular random Hough transform, achieving a correct
recognition rate of 77.6% for immature tomato fruits. Despite the
achievements in feature design in the above studies, they suffer from
slow recognition speed, low detection accuracy, and poor
robustness of traditional machine vision algorithms in complex
scenes, making them difficult to meet practical requirements.
Although these studies have achieved certain success in feature
design and tomato recognition to some extent, their slow
recognition speed, low detection accuracy, and poor robustness in
complex scenes cannot meet practical requirements. Additionally,
they often depend on static color characteristics to recognize desired
fruits. This reliance can make them less adaptable to variations in
lighting and color discrepancies, resulting in reduced effectiveness
when dealing with unstable color conditions. In summary,
traditional methods for tomato fruit recognition fail to meet the
requirements of high accuracy and real-time performance.
Additionally, most of the above studies have not considered the
influencing factors in complex greenhouse environments, lack
robustness to diverse feature changes, and therefore, are unable to
meet practical requirements.
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In recent times, deep convolutional neural networks have
emerged as a pivotal domain within deep learning research,
attracting considerable interest. Their increasing utilization in
greenhouse settings for tomato recognition has offered novel
perspectives on tomato fruit identification. The detection methods
of deep convolutional neural networks can be divided into two
types: single-stage and two-stage detection. Region-based methods,
the first type, create a set of candidate boxes and subsequently
classify the targets contained within these boxes. Representative
models include RCNN (Girshick et al., 2014), Fast-RCNN
(Girshick, 2015), and Faster-RCNN (Ren et al., 2016). Although
these methods exhibit excellent recognition accuracy with relatively
low error rates and miss rates, their complex processing leads to
slow detection speeds, making it difficult to meet real-time detection
requirements. The second type is regression-based methods, where
targets are directly classified while being located. The YOLO series
networks (Redmon et al., 2016; Redmon and Farhadi, 2018; Ge
et al, 2021) are typical representatives of this category. These
methods have the advantage of fast recognition speed, meeting
real-time requirements, and achieving accuracy levels close to the
first type of methods. Given their strong real-time performance, the
second type of object detection methods is beneficial for improving
the efficiency of harvesting robots and monitoring devices, suitable
for real-time target detection in complex environments. (Su et al.
(2022)) used a lightweight YOLOv3 model in greenhouse
environments, combined with lightweight networks, successfully
applied it to classify tomato ripeness, achieving a 97.5% mAP.
However, the model still had a large volume, making deployment
challenging. Liu et al. (2020) proposed an improved tomato
detection model, YOLO-Tomato, based on YOLOV3, achieving
good performance. Nevertheless, the YOLOv3 model they used
was large. Appe et al. (2023)) introduced a tomato detection model
based on YOLOV5, which incorporates the CBAM attention
mechanism into the network architecture, effectively detecting
overlapping small tomatoes with an average precision of 88.1%.
However, this study also faced issues with low detection accuracy.
Tian et al. (2024)) proposed the TE-YOLOv5s model for detecting
tomato flowers and fruits in natural environments, replacing the
complete intersection over union (CIoU) loss with the efficient
intersection over union (EIoU) loss and incorporating the SE
attention module. Bai et al. (2024)) improved the YOLOv7 model
to accurately identify strawberry seedling flowers and fruits by
addressing issues such as small size, similar colors, and
overlapping occlusion. They also applied the GSConv structure to
optimize the model neck, achieving a 92.1% mAP with a frame rate
of 45 frames per second, meeting real-time detection requirements.
Li (Li et al., 2024) et al. proposed a lightweight improved YOLOv5s
model for detecting dragon fruit in illuminated environments
during both day and night. Meng (Meng et al., 2023) et al.
proposed a spatiotemporal convolutional neural network model
that utilizes a shifted window Transformer to integrate a regional
convolutional neural network model for detecting pineapple fruits.
Chen (Chen et al., 2024) et al. proposed a set of visual algorithms for

frontiersin.org


https://doi.org/10.3389/fpls.2024.1451018
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun

motion target estimation, real-time self-localization, and dynamic
harvesting. They also established a reliable coordination mechanism
for continuous movement and picking actions. This study, inspired
by previous research, addresses issues such as large model volumes,
low accuracy, and difficulty in deploying actual robot vision
systems. It proposes a lightweight and accurate S-YOLO model,
considering tomato recognition in complex environments.
Establishing a high-performance, lightweight target detection
model suitable for tomato harvesting robot vision systems
remains a significant challenge.

In actual greenhouse environments, tomato fruits often overlap
and are heavily occluded, varying in sparsity and size, posing
challenges for rapid and accurate tomato fruit recognition.
Therefore, this paper introduces a novel S-YOLO model to
address the aforementioned issues. This model can rapidly and
accurately identify greenhouse tomato fruits while maintaining
lightweight characteristics, addressing some of the limitations
faced by current research and providing new technical support
for the visual systems of tomato harvesting robots. This study
focuses on the target detection problem for automated tomato
harvesting in greenhouse environments. The core of the research
is to develop and optimize a lightweight tomato target detection
model, S-YOLO, aimed at enhancing the accuracy of tomato
detection in complex environments. The model features high
precision, a lightweight design, and rapid detection capabilities.
However, the cost-effectiveness of model deployment and its
practical impact on agricultural production require further
discussion and analysis in future research to provide more robust
support for agricultural production. This paper makes the following
key contributions:

1. Introducing a S-YOLO model suitable for complex
environment tomato detection, characterized by high
accuracy, lightweight design, and fast speed, suitable for
the visual systems of tomato harvesting robots.

2. Constructing a lightweight GSConv_SlimNeck structure
suitable for YOLOv8s to optimize the model’s neck
section, thereby improving model performance.

3. Creating an enhanced version of the o-SimSPPPF structure
to optimize the network architecture, effectively improving
detection accuracy with better performance.

4. Proposing a new enhanced version of the B-SIoU loss
function, optimizing the training process, and improving
tomato recognition accuracy.

5. Integrating the SE attention module into the network
structure for more effective tomato feature extraction.

The paper’s structure is as follows: Section 2 covers dataset
acquisition and processing. Section 3 outlines the principles of the
proposed S-YOLO network structure and details improvement
methods for each module. In Section 4, experimental setups are
explained, and the performance of each enhanced module is
thoroughly analyzed, evaluating and comparing results with other
mainstream models. Finally, Sections 5 and 6 discuss and
summarize the paper’s findings.
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2 Experimental data and
processing methods

2.1 Datasets

The dataset utilized in this research was originally obtained from
the Kaggle platform, which provides resources for developers and
data scientists to participate in machine learning competitions, host
databases, and write and share code. The tomato dataset used in this
study consists of images collected by the authors from the glass
greenhouse at the National Engineering Research Center for Facility
Agriculture in Chongming Base (Li et al., 2019). All images were
captured in real agricultural environments, not under laboratory
conditions, thus exhibiting complex backgrounds and varying
brightness. The dataset comprises a total of 895 image samples.
Example images from the tomato dataset in complex environments
are shown in Figure 1, which mainly include large tomato targets,
small tomato targets, occluded tomatoes, and clustered tomatoes.

2.2 Data preprocessing

For deep learning tasks, dataset annotation is crucial. In the case
of complex greenhouse tomato images, variations in lighting
conditions due to different weather and angles result in significant
color differences in the collected tomato fruit images. Additionally,
the diverse growth postures and severe overlapping and occlusion of
greenhouse tomato fruits make it challenging to extract shape
features. In this study, the Labellmg tool was used for manual
annotation of tomato images, and the annotation data for each
image was stored in the form of Extensible Markup Language files,
following the VOC format (Everingham et al., 2010). To meet the
training requirements of the detection model, the images were resized
to a uniform size of 640x640 pixels and converted to RGB three-
channel images. Since the YOLOV8 network incorporates online data
augmentation during the training process, including techniques such
as Mosaic and Mixup augmentation, and given that the dataset is not
particularly small, additional offline data augmentation is generally
unnecessary to save training time. Therefore, this study did not
perform additional offline data augmentation.

To facilitate subsequent model training, 80% of the original 895
tomato images were allocated to the training set, 10% to the
validation set, and 10% to the test set. The specific distribution is
shown in Table 1. Finally, these datasets were utilized for training
the network models, followed by additional Mixup and Mosaic
data augmentation.

3 Methods

3.1 Proposed S-YOLO object
detection model

Figure 2 illustrates the architecture of YOLOV8 (Reis et al,
2023). The neck and backbone parts of YOLOv8 may have drawn
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FIGURE 1

Tomato datasets. (A) Big tomatoes, (B) Small tomatoes, (C) Occlusion, (D) Clusters of tomatoes.

inspiration from the ELAN module in YOLOv7 (Wang et al., 2023).
It utilizes the C2f structure to replace the C3 structure in YOLOvV5
while adjusting the number of channels for various scale models.
This meticulous adjustment of the model structure significantly
enhances its performance. The head part adopts the current
mainstream decoupled head structure, separating the classification
and detection heads. It also transitions from Anchor-Based to
Anchor-Free. Although the YOLOv8s model shows significant
improvements, it still involves substantial computational
complexity. Moreover, accurately detecting tomato fruits in
complex environments remains a huge challenge.

This study introduces a novel lightweight network, termed S-
YOLO, which is built upon the enhancements made to the YOLOv8s
architecture. This entails a meticulous optimization of the model
architecture to strike a delicate balance between model complexity
and performance metrics. This also involves optimizing the
architecture while maximizing the model’s capability to accurately

TABLE 1 Tomato images.

Dataset Number

training 724
validation 81
test 90

total 895
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identify objects in real-time scenarios. To achieve this, four key
strategies are employed. Firstly, we utilize the GSConv_SlimNeck
structure to optimize the model’s neck section, effectively reducing
the parameter count while ensuring performance remains intact.
Secondly, we replace the original SPPF module with the newly
proposed 0.-SimSPPF module, enhancing the model’s capabilities.
Thirdly, a novel loss function, B-SIoU, is introduced to refine the
training process and enhance overall model performance. Lastly, the
integration of the SE attention module into the YOLOVSs neck
network facilitates better focus on crucial features, thereby further
improving the accuracy of tomato fruit target identification. Figure 3
illustrates the architecture of the S-YOLO model proposed in
this study.

3.2 The GSConv_SlimNeck design
for YOLOvVS8s

GSConv (Li et al., 2022) is a novel lightweight convolutional
operation designed to reduce model complexity while maintaining
accuracy. The structure of GSConv is shown in Figure 4. The
computational cost of GSConv is approximately 60% to 70% of that
of standard convolution (SC), while its contribution to model
learning ability is comparable to SC. By leveraging GSConv, we
can effectively utilize the advantages of Depthwise Separable
Convolution (DSC) while mitigating its drawbacks on the model.
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SlimNeck is a design paradigm aimed at achieving higher cost-
effectiveness for detectors. The core idea of SlimNeck is to use
GSConv in the Neck part of the detector while maintaining a
standard Backbone, which maximally reduces the impact of DSC
drawbacks on the model while maintaining high accuracy.
SlimNeck also introduces other modules, such as GSbottleneck
and VoVGSCSP, to further improve model performance.

The original Neck structure of YOLOVSs is not sufficiently
lightweight, so this paper proposes a lightweight structure,
GSConv_SlimNeck, suitable for the YOLOv8s model. The
construction process is as follows: Firstly, the conventional Conv
structure in the Neck component is substituted with the GSConv
structure. Subsequently, the terminal C2f structure within the Neck is
substituted with the VoVGSCSP structure. With these two
improvements, we successfully construct a lightweight
GSConv_SlimNeck structure suitable for YOLOv8s, making the model
more lightweight while maintaining higher detection performance.

3.3 The improved a-SimSPPF structure

SimSPPF is an improved spatial pyramid pooling method
proposed in YOLOv6 (Li et al., 2022), which is an upgraded
version of SPPF. SPPF (Spatial Pyramid Pooling Function) is a
technique used for feature map pooling, commonly employed in
Convolutional Neural Networks (CNNs), to pool features at
different scales, thereby better capturing spatial information in
images. It solves the multi-scale problem by extracting features
using pooling kernels of different sizes at different scales. The
fundamental concept behind SPPF involves parallel processing of
the input through multiple MaxPool layers of varying sizes,
followed by fusion to enhance the detector’s performance. In
YOLOVS5, SPPF is used to achieve feature-level fusion of local and
global features. SimSPPF is an improved version of SPPF.
Compared to SPPF, SimSPPF can improve the performance of
the detector without increasing computational cost. SInSPPF uses
ReLU activation function, while SPPF uses SiLU activation
function. Structurally, SimSPPF maintains the original parallel
structure of SPPF but with higher computational efficiency.

The SimSPPF structure was enhanced in this study by
substituting the Conv structure with the more lightweight

%

10.3389/fpls.2024.1451018

GSConv structure, resulting in an improved version termed o-
SimSPPF. Compared to both the SPPF structure and SimSPPF, o-
SimSPPF boasts higher detection accuracy with fewer parameters.

3.4 The enhanced B-SloU algorithm

YOLOV8 by default utilizes the CIoU (Qiu et al., 2022) loss
function, which introduces additional calculations for the distance
between center points and diagonal distances. Therefore, compared
to traditional IoU, the computational complexity increases,
potentially adding some computational cost. CloU’s computation
method is relatively complex, requiring more processing and
calculation of bounding box coordinates. Traditional methods like
CloU, DIoU (Zheng et al., 2020), etc., match IoU, center point
distance, aspect ratio, etc., between real and predicted boxes but do
not consider the mismatched orientation between them. This
inadequacy results in slow convergence and lower efficiency,
ultimately leading to poorer models.

Gevorgyan (2022) proposed the SIoU loss function, which
incorporates angle considerations and scale sensitivity,
introducing a more complex bounding box regression method to
address the limitations of previous loss functions. By integrating
these aspects, better training speed and prediction accuracy can be
achieved. The aim of the SIoU is to reduce the gap between
predicted and actual bounding boxes, accounting for variations in
shape and angle. The SIoU schematic is shown in Figure 5.

The process of angle loss calculation is as follows:

h
Anglep,s =1-2% sin’(arcsin (C—) _ E) (1)
d 4
Distancey s, = 2 — o VP _ o VPy @)
W,
“ow 3
Dx (CW) ( )
ch ,
by = (a) (4)
Y=2- AngleLass (5)

FIGURE 4
The structure of the GSConv module
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The SloU loss function (A) and the loU loss function (B).
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predicted bounding box

ANB

ground truth box

In this equation, “cw” represents the disparity in width between
the centers of the two bounding boxes, and “Ch” represents the
height of the minimum bounding rectangle of the ground truth
bounding box, while “Cw” represents the width of the minimum
bounding rectangle of the predicted bounding box. The calculation
process for shape loss is as follows:

Shapeyos = (1 - ")% + (1 - e"1)° (6)
w- wé'|

W = max(w, w8t) @)
b= hé|

Wi = max (h, h8") ®)

3

In this equation, “w”, “h”, “w&", and “h&"” respectively represent
the width and height of the predicted bounding box and the true
bounding box. 8 controls the emphasis on shape loss. To avoid
overly focusing on shape loss and thus reducing the movement of
the predicted bounding box, the authors used a genetic algorithm to
compute a value close to 4. The calculation process for IoU loss is as

follows:

©)

Where ANB represents the intersection of the predicted
bounding box and the ground truth bounding box, and AUB
represents the union of the predicted bounding box and the
ground truth bounding box. The SIoU can be expressed using the
following formula:

DistanceLoss + ShapeLoss
2

SIoUj s = 1 — IoU + (10)

He et al. (2022) proposed the o-IoU method, which enhances
bounding box regression by incorporating a power transformation
into the conventional IoU loss function. Inspired by this, to bolster
the robustness of SIoU towards bounding boxes and attain higher
accuracy in the regression of overlapping bounding boxes, this
study enhances SIoU by introducing a power of 1.5 to each of its
terms. We refer to this enhanced version as B-SIoU, and its
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effectiveness will be demonstrated through experiments in Section
4.3.5. The computation formula is shown as follows:

DistanceLoss + ShapeLoss L5

B —SloUy = 1 - IoU"™ + ( 5

(11)

3.5 SE attention module

Attention mechanisms facilitate models in comprehensively
grasping the structure and attributes of input data, thus
advancing the precision and efficiency of object detection.
Attention mechanisms empower the model to discern the
significance of diverse local details in the image, allowing it to
concentrate more effectively on crucial features and thereby
enhance the accuracy of tomato fruit detection.

The SE (Squeeze-and-Excitation) attention mechanism (Hu
et al., 2018) enhances model performance by modeling the
correlation between different channels. Channel-wise attention
assigns different weights to different channels, focusing on
channels that are crucial for recognizing specific objects. The SE
module captures channel relationships through Squeeze and
Excitation operations. In the Squeeze phase, it condenses the
output feature map from the convolutional layer into a feature
vector via global average pooling. This vector captures
comprehensive statistical data from the entire feature map.
During the Excitation phase, the SE module employs a fully
connected layer and a nonlinear activation function to determine
the significance of each channel by learning their respective weights.
By incorporating Squeeze and Excitation operations, the model
autonomously learns the weight and significance of individual
channels, enhancing the network’s expressive power and
performance. By automatically learning the weight and
significance of individual channels, the network can prioritize
crucial feature channels, enhancing overall model performance.

After comparing different attention mechanisms, this study
selected the SE attention module with the highest accuracy and
incorporated it into the model’s neck. The SE attention structure is
shown in Figure 6.
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4 Experimental design and
results analysis

4.1 Experimental environment and
parameter setting

The experiments were conducted using PyTorch as the deep
learning framework. Table 2 provides a detailed description of the
experimental setup. To optimize model training, cosine annealing
was employed to update the learning rate and network weight
parameters. The entire process comprised 300 iterations. The
momentum factor was set at 0.937 to effectively smooth gradient
updates, facilitating faster convergence and stabilizing the training
process. The weight decay was set at 0.0005 to help limit the model’s
complexity, prevent overfitting on the training data, and enhance
the model’s generalization ability to new data. The initial learning
rate was set at 0.01 to quickly reduce the loss function during the
initial training phase while avoiding excessively large steps that
could lead to an unstable training process. The SGD optimizer was
employed, which is suitable for large deep learning models. Using
the SGD optimizer simplifies the computation process, and
combined with the momentum factor, effectively speeds up
convergence. During the first 50 iterations, the training of the
backbone network was frozen, with a batch size of 8. Freezing the
backbone network’s training leverages the general features extracted
by the pretrained model. This approach helps to quickly train the
model with fewer computational resources and prevents disruption
of the existing feature extraction capabilities. Setting the batch size
to 8 improves training parallelism and efficiency within the limits of
GPU memory. In the subsequent 250 iterations, the backbone
network was unfrozen for training, and the batch size was
adjusted to 4. Unfreezing the backbone network in the later
training stage allows fine-tuning of the entire model to better
adapt to the specific task’s data distribution. Adjusting the batch
size to 4 helps maintain training stability and efficiency as the model
complexity increases. Freezing the training is also a concept in
transfer learning, as the features extracted by the neural network
backbone are general. Freezing the backbone during training can
accelerate the training process and prevent the weights from
being disrupted.

10.3389/fpls.2024.1451018

TABLE 2 Hardware and software environment.

Configuration Item Value

CPU Intel i9-12900H
GPU NVIDIA GeForce RTX 3060
CUDA 12.0
Memory 32GB
Operating system Windows11x64
Deep learning frame PyTorch

4.2 Evaluation indicators

This research selected mean Average Precision (mAP), Average
Precision (AP), precision, recall, F1 score, GFLOPs, model
parameters, and frames per second (FPS) as performance metrics
for evaluating the deep-learning model. The evaluation metrics
were calculated using the formulas below.

. TP
Precision = ———— x 100 % (12)
TP + FN
TP
Recall = ———— x 1009 13
ecall = rppp ¥ 100% (13)
2 X Precision X Recall
F1= - x 100 % (14)
Precision + Recall
1
AP = / P(R)dR (15)
0
" AP,
mAP = 2mAP (16)
n
FPS =1/T 17)

Where TP represents the number of images where tomato fruit
targets were correctly detected by the model, FP represents the
number of images where non-tomato fruit targets were incorrectly
detected by the model, and FN represents the number of images
where tomato fruit targets were missed by the model. Precision

Squeeze FC ReLU FC Excitation
— [T
GAP e

traditional
convolution

1x1xC w‘id

FIGURE 6
The structure of the SE attention.
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indicates the precision rate, while Recall represents the recall rate.
F1-score serves as a means to strike a balance between precision and
recall. Precision and recall values are utilized to construct the
precision-recall curve (PR curve), with the area under this curve
denoted as AP (Average Precision). The mAP refers to the average
AP. T denotes the detection time for a single image. FPS represents
the number of images detected per second. The model parameters
were calculated considering the input and output channel counts
along with the convolutional kernel sizes, aiding in estimating the
model’s size. GFLOPs are used to measure model complexity.

4.3 Results and analysis

4.3.1 Training and validation of the S-
YOLO algorithm

Figure 7A displays the training loss progression of the S-YOLO
algorithm. During the initial training phase, the model exhibits
relatively high learning efficiency, as indicated by the rapid decline
in the training loss curve, suggesting that the model is quickly
learning new features. As training progresses, the rate of decrease in
the loss curve gradually slows down, implying that the model is
gradually stabilizing and approaching convergence. Throughout
this process, both the training and validation set losses fluctuate
but eventually stabilize, indicating that the model has reached the
expected stable state.

In Figure 7B, the fluctuation of the mean Average Precision
(mAP) throughout each training epoch is depicted. It can be
observed that mAP rapidly increases at the beginning of training,
corresponding to the rapid decline in the training loss curve. As
training continues, the change in mAP stabilizes, indicating a
continuous improvement in the model’s accuracy. At the 150th
training epoch, mAP reaches its peak, indicating that the model is
very close to its optimal performance at this point. These two figures
together depict the training process of the model, from rapid
learning to eventual convergence, demonstrating the effectiveness
and stability of the S-YOLO model.
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val loss
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FIGURE 7
The training loss curve variation (A) and mAP training variation (B).
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4.3.2 Ablation experiments

We conducted ablation experiments on the tomato dataset to
evaluate the performance of GSConv_SlimNeck, o-SimSPPF, B-
SIoU, and SE components integrated into the model. Based on
YOLOVSs, the subsequent models progressively integrated the
improved modules. Modell optimized the model’s neck structure
using the GSConv_SlimNeck architecture. Model2 replaced the
original SPPF structure with the enhanced version of a-SimSPPF
based on Modell. Model3 introduced the proposed B-SloU loss
function on top of Model2. Ultimately, the SE attention module was
embedded within the network’s neck in Model3, leading to the
formulation of the S-YOLO model.

As shown in Table 3, based on YOLOv8s, Modell achieved
improvements in several metrics by introducing the
GSConv_SlimNeck structure. Precision, mAP@0.5, and FPS increased
by 0.86%, 0.86%, and 2.81FPS, respectively, while model complexity
and parameters decreased by 3.35G and 1.78M. The addition of the o-
SimSPPF module further improved model accuracy and mAP@0.5,
while reducing computational overhead. However, this improvement
also slightly decreased detection speed by 0.33FPS. After adding 3-SIoU
to Model2, the detection rate increased by 0.45FPS compared to
Model2 and exceeded YOLOvV8s and Modell, compensating for the
shortcomings of 0.-SimSPPF. This indicates a noticeable improvement
in model performance with the enhanced 3-SIoU loss function. The
introduction of the SE attention module further improved precision,
mAP@0.5, and FPS by 1.92%, 0.48%, and 0.56FPS, respectively,
compared to Model3, despite a slight increase of 0.04M in model
parameters. This suggests the effectiveness of the attention mechanism
in extracting features relevant to tomato detection. Figure 8 shows the
experimental curves and bar charts for different models.

In summary, the lightweight S-YOLO model surpasses the
original YOLOv8s model significantly. Not only does it achieve
model lightweighting, but it also maximizes the enhancement in
detection accuracy. The model exhibits improvements across
various metrics: precision, mAP@0.5, and FPS see increases of
5.25%, 2.1%, and 3.49FPS, respectively. Furthermore, the model
complexity (measured in GFLOPs) and parameters are reduced by

mAP@0.5]

==
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3.6G and 2.06M, respectively, showcasing its efficiency and
effectiveness in practical applications.

4.3.3 Comparison of different
lightweight modules

In constructing the lightweight structure GSConv_SlimNeck, both
GSConv and GhostConv (Han et al., 2020) modules were compared
and analyzed to validate their effectiveness. The experimental results in
Table 4 show that both GSConv and GhostConv modules contribute
equally to model lightweighting, resulting in a reduction of model
complexity and parameters by 3.35G and 1.78M, respectively.

However, utilizing the GSConv module to build the
GSConv_SlimNeck structure exhibits superior model performance
compared to using the GhostConv module. Although there is a
slight decrease in recall, precision, and F1 score experience
significant improvements. Specifically, compared to using
GhostConv, using GSConv increases precision by 0.84%, mAP by
0.12%. Overall, the GSConv_SlimNeck structure built using
GSConv demonstrates superior performance.

4.3.4 Comparison of SPPF, SimSPPF, and
o-SimSPPF

To verify the efficacy of the proposed 0.-SimSPPF structure, this
study conducted a comparative analysis involving SPPF, SimSPPF,
and o-SimSPPF. These three modules were placed at the same
position in the model and trained accordingly. Table 5 presents the
experimental results. From various metrics, it is evident that the
performance of SimSPPF is significantly lower than that of the SPPF
module. However, following the enhancement from SimSPPF to o-
SimSPPF, the model’s performance saw significant improvement. In
comparison to the SPPF module, precision increased by 0.65% and
mAP@0.5 increased by 0.48%. Additionally, the model complexity
and parameters were reduced by 0.25G and 0.32M, respectively.

10.3389/fpls.2024.1451018

Although using the a-SimSPPF structure resulted in a slight
decrease of 0.33FPS in detection speed compared to using the SPPF
structure, the accuracy and mAP@0.5 were significantly improved.
Moreover, the model complexity was lower, and the model
parameters were reduced, aligning with the research goal of this
study. o-SimSPPF demonstrated superior performance on the
dataset used in this study, with higher accuracy and lighter
model, making it more suitable for tomato fruit detection and
deployment in tomato harvesting robot visual systems.

4.3.5 Comparison of different loU loss functions

This study delved deeper into the influence of integrating the -
SIoU algorithm on the model’s performance, with a primary focus
on comparing CloU, DIoU, SIoU, and the B-SIoU algorithm. As
shown in Table 6, compared to CloU, DIoU achieved higher
precision but slightly decreased mAP@0.5, while increasing the
inference speed by 0.25FPS. SIoU resulted in varying degrees of
decrease in precision, mAP@0.5, and FPS. However, the proposed
[-SIoU algorithm demonstrated improvements across all metrics.

Among all these algorithms, Model3 stood out in multiple key
metrics, particularly in precision, mAP, and processing speed.
Compared to CloU, DIoU, and SIoU, precision increased by 1.82%,
1.25%, and 2.16%, respectively, while mAP@0.5 increased by 0.28%,
0.69%, and 1.15%, respectively. Detection speed also increased by
0.45FPS, 0.2FPS, and 2.22FPS, respectively. These improvements
significantly enhance model performance, making it suitable for
handling overlapping and densely packed tomato objects, as well as
deployment in tomato harvesting robot visual systems. Figure 9
illustrates the experimental curves for different loss functions.

In addition, this study explored the optimal loss function for the
dataset by examining different exponent values for individual terms
in SIoU. As shown in Table 7, varying the exponent values for
individual terms in SIoU had no impact on the model’s complexity.
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FIGURE 8
Experimental curves for different models.
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TABLE 3 Ablation experiments on the proposed S-YOLO algorithm.

10.3389/fpls.2024.1451018

Model SoCOM- & B-SioU SE  Precision mAP@O.5 GF(LG?PS Para(’p;ters

YOLOv8s V 91.35 90.36 28.82 11.17 70.56
Modell 9221 91.22 25.47 9.39 73.37
Model2 v v 92.86 91.70 25.22 9.07 73.04
Model3 v V «/ 94.68 91.98 25.22 9.07 73.49
$-YOLO \/ V y \/ 96.60 92.46 25.22 9.11 74.05

Bold values represent the best experimental results compared to other models.

TABLE 4 Experimental results for the lightweight modules.

o GFLOPs Parameters
Precision Recall F1-Score mAP@0.5
(©) (M)
YOLOVvS8s 91.35 81.72 0.86 90.36 28.82 11.17 70.56
YOLOVSs + 91.37 81.94 0.86 91.10 25.47 9.39 72.86
GhostConv_SlimNeck 92.21 81.51 0.87 91.22 25.47 9.39 73.37
YOLOVS8s

+ GSConv_SlimNeck

Bold values represent the best experimental results compared to other models.

When the exponent value for individual terms in SIoU was set to
1.5, precision reached 94.68%, mAP@0.5 reached 91.98%, and the
detection rate reached 73.49FPS. When each exponent in
the SIoU function is set to 1.5, the model demonstrates its
optimal performance.

4.3.6 Comparison of different attention modules
To delve deeper into the influence of the SE attention module
and its placement within the model architecture, this study explored
inserting various attention mechanisms, including ECA (Wang
et al., 2020), CBAM (Woo et al., 2018), CA (Hou et al., 2021),
SimAM (Yang et al., 2021), GAM (Liu et al., 2021), Shuffle (Zhang
and Yang, 2021), and EMA (Ouyang et al, 2023), at the same
position. Additionally, three SE attention modules were inserted

TABLE 5 Experimental results of SPPF, SimSPPF, and o.-SimSPPF.

into the backbone network after the third, fourth, and fifth
Conv structures.

As shown in Table 8, adding any attention mechanism led to an
improvement in accuracy. However, except for the SE attention
module, which increased mAP@0.5, the other attention modules
resulted in varying degrees of decrease in mAP@0.5. This suggests
that the SE attention module is most suitable for incorporation into this
model structure. The decrease in mAP@0.5 when adding other
attention mechanisms may be due to model overfitting or neglect of
certain features of tomato fruits. The SE attention module significantly
improved model performance, with accuracy and mAP@0.5 increasing
by 1.92% and 0.48%, respectively, compared to Model3. Moreover, the
detection rate increased by 0.56FPS. Compared to Model3, adding the
GAM attention module not only increased the model complexity by

. GFLOPs Parameters
Precision Recall F1-Score mAP@0.5
(©)) (M)

Model14SPPF 92.21 81.51 0.87 91.22 25.47 9.39 7337
Modell+ SimSPPF

91.35 81.72 0.86 91.14 25.47 9.39 72.77

Modell+o-
SimSPPF (Model2) 92.86 81.08 0.87 91.70 25.22 9.07 73.04

Bold values represent the best experimental results compared to other models.

TABLE 6 Comparison of different loss functions.

mAP@0.5

Precision

Parameters
(M)

Model2 + CIoU 92.86 91.70 2522 9.07 73.04
Model2 + DIoU 93.43 91.29 25.22 9.07 73.29
Model2 + SIoU 92.52 90.83 25.22 9.07 71.27
Model2 + B-SIoU(Model3) 94.68 91.98 25.22 9.07 73.49

Bold values represent the best experimental results compared to other models.
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Experimental curves for different loss functions.

15.74G and the model parameter quantity by 8.6M but also decreased
mAP®@0.5 and the detection rate by 1.36% and 21.51FPS, respectively,
severely reducing model performance. Although the EMA attention
module achieved 97.31% accuracy, both mAP@0.5 and the detection
rate were significantly lower than those with the SE attention
mechanism. In general, the SE attention module exhibited the most
impressive performance, leading to the most substantial enhancement
in the S-YOLO model’s performance.

As demonstrated in Table 9, incorporating the SE attention module
into the backbone network resulted in a decline in model evaluation
metrics. In comparison to models lacking attention mechanisms,
integrating the SE attention module into the backbone network led to
reductions of 0.14% and 2.15% in accuracy and mAP@0.5, respectively.
However, when employing the SE attention module at the model’s neck,
the accuracy and mAP@0.5 increased by 2.06% and 2.63%, respectively,
compared to inserting it into the backbone network. The performance
decrease resulting from inserting the module into the backbone network
may be attributed to the compression of spatial and channel dimensions
of the feature maps caused by introducing attention mechanisms in the
backbone network. Attention mechanisms typically selectively

TABLE 7 Experimental results for different exponential powers of SloU.

emphasize certain features, which may lead to the neglect of other
features, resulting in the loss of semantic information. This loss of
information could weaken the model’s feature extraction ability. After
inserting SE into the backbone network, the model’s detection speed
decreased by 0.06 FPS compared to Model3, and the decrease was more
significant when compared to inserting it into the neck network,
reaching 0.62 FPS. Figure 10 displays the experimental curves and bar
charts for different attention modules.

4.3.7 Comparative analysis of various object-
detection models’ performance

To further substantiate the model’s effectiveness, this study
conducted an extensive comparison between the S-YOLO model
and other prominent convolutional neural network object detection
models, including the two-stage object detection model Faster
RCNN, as well as the single-stage object detection algorithms
CenterNet (Duan et al, 2019), YOLOv3 (Tian et al., 2019),
YOLOv4 (Bochkovskiy et al., 2020), YOLOv5m (Yang et al,
2023), YOLOv7, YOLOv7x, YOLOv8m, and YOLOv8s. The
experimental results are presented in Table 10.

Exponent mAP@0.5 GFLOPs (G) Parameters (M)
0.5 91.89 2522 9.07 71.37
1.0 90.83 2522 9.07 71.27
15 91.98 25.22 9.07 73.49
Model2+SIoU
2.0 91.23 2522 9.07 72.03
25 91.29 2522 9.07 71.66
3.0 90.97 2522 9.07 72.62

Bold values represent the best experimental results compared to other models.
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TABLE 8 Comparison of different attention models’ performance.

10.3389/fpls.2024.1451018

Model Precision mAP@O0.5 GFLOPs (G) Parameters (M) FPS
Model3 94.68 91.98 2522 9.07 73.49
Model3 + ECA 96.10 90.94 2522 9.07 69.30
Model3 + CBAM 95.56 91.91 2522 9.16 69.06
Model3 + CA 95.05 90.71 2522 9.13 73.33
Model3 + SimAM 96.01 90.83 2522 9.07 73.62
Model3 + GAM 95.03 90.62 40.96 17.67 51.98
Model3 + Shuffle 96.67 87.17 2522 9.07 71.47
Model3 + EMA 97.31 88.17 2522 9.07 73.19
Model3 + SE(S-YOLO) 96.60 92.46 25.22 9.11 74.05

Bold values represent the best experimental results compared to other models.

TABLE 9 Experimental results on the effects of inserting attention modules at different positions.

Embeddin o Parameters
-ading Precision GFLOPs (Q)
position (M)

Model3 \ 94.68 25.22 9.07 91.98 73.49
Model3 + SE Backbone 94.54 25.22 9.07 89.83 73.43
Model3 + SE Neck 96.60 25.22 9.07 92.46 74.05

(S-YOLO)

Bold values represent the best experimental results compared to other models.

Faster RCNN is a typical two-stage object detection algorithm,
but its model size is large, with model complexity and parameters
much higher than other single-stage object detection algorithms. Its
detection speed is only 10.57 FPS, which is only 14.27% of S-
YOLO’s. The model complexity is as high as 370.21G, about 15
times that of S-YOLO, and the model parameters are as high as
137.10M, about 14 times that of S-YOLO. S-YOLO’s accuracy,
mAP@0.5, and FPS are 45.18%, 14.04%, and 63.48FPS higher than

99

Faster RCNN, respectively. Overall, the performance of the S-
YOLO model far exceeds that of Faster RCNN.

In comparison to other models, S-YOLO outperforms other
models across all metrics. The model accuracy, mAP@0.5, and
detection speed are 96.60%, 92.46%, and 74.05FPS, respectively, with
model complexity and parameters of only 25.22G and 9.11M.
Compared to CenterNet, the S-YOLO model shows advantages in
mAP@0.5, model complexity, model parameters, and FPS, with mAP@

r 80

Precision

FIGURE 10
Experimental curves for different attention mechanisms.
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TABLE 10 Comparison of different mainstream object detection models.

10.3389/fpls.2024.1451018

Model Precision mAP@O0.5 GFLOPs (G) Parameters (M) FPS
Faster-RCNN 51.42 78.42 370.21 137.10 10.57
CenterNet 95.88 85.14 70.22 32,67 69.77
YOLOv3 87.62 86.55 66.17 61.95 46.42
YOLOv4 66.96 72.63 60.53 64.36 36.93
YOLOv5m 88.30 86.69 51.62 2138 44.84
YOLOV7 87.20 89.61 106.47 37.62 28.39
YOLOV7x 91.56 88.84 190.58 71.34 17.94
YOLOV8m 93.19 91.69 79.32 25.90 37.57
YOLOV8s 91.35 90.36 28.82 11.17 70.56
S-YOLO 96.60 92.46 25.22 9.11 74.05

Bold values represent the best experimental results compared to other models.

0.5 7.32% higher, FPS 4.28FPS higher, and model complexity and
parameters only 35.91% and 27.88% of CenterNet, respectively.
YOLOv3 and YOLOv5m have similar model complexities and
detection speeds, but their overall performance is much lower than
S-YOLO. YOLOV4 has the lowest accuracy and mAP@0.5 among all
models. Due to the higher model complexity of YOLOv7, YOLOV7x,
and YOLOv8m, they also have a certain impact on detection speed,
which is 45.66FPS, 56.11FPS, and 36.48FPS lower than S-YOLO,

respectively, indicating that the lightweight improvements of S-
YOLO have a certain effect on improving detection speed.
Compared to the YOLOv8s model, the S-YOLO model has higher
accuracy by 5.25%, mAP@0.5 by 2.1%, and FPS by 3.49FPS, with
model complexity and parameters reduced by 3.6G and 2.06M,
respectively, indicating that the improved S-YOLO model has
improved in all indicators, and the model performance has been
significantly improved. The following Figure 8 provides a more

FIGURE 11
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intuitive illustration of the unique advantages of S-YOLO compared to
other models, achieving the optimal balance between model detection
speed, lightweight, and accuracy. Figure 11 illustrates that the S-YOLO
model excels over other models in various aspects.

In summary, the S-YOLO model performs significantly better
than current mainstream object detection models, with high
accuracy while being lightweight, providing technical references
for the deployment of tomato harvesting robot vision systems.

FIGURE 12

10.3389/fpls.2024.1451018

4.3.8 Model visualization results

The detection performance of CenterNet, YOLOv4, YOLOv5m,
YOLOv7, YOLOvV7x, YOLOVSs, and S-YOLO models is illustrated
in Figure 12. For the YOLOv4 model, there are numerous detection
errors, incorrectly identifying tomato leaves and other objects as
tomato fruits. The YOLOv5m model exhibits poor detection
performance for occluded tomatoes, resulting in missed
detections and overall poor recognition. YOLOv7x also struggles

Visual detection comparison results of different models. (A) CenterNet, (B) YOLOv4, (C) YOLOvV5m, (D) YOLOV7Z, (E) YOLOV7X, (F) YOLOVSs,

(G) S-YOLO.
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with accurately detecting occluded tomatoes. The overall detection
accuracy of CenterNet, YOLOv7, and YOLOVSs is lower than that
of the S-YOLO model, with S-YOLO achieving higher accuracy
overall. In summary, the S-YOLO model not only achieves
lightweight design but also significantly outperforms other models
in tomato fruit detection.

5 Discussion

This study investigates an improved lightweight S-YOLO model
designed for accurately detecting tomato fruits in greenhouse
environments, including occluded and small target tomatoes. It
provides a technical reference for the visual system of tomato
harvesting robots, addressing issues such as low detection
efficiency and accuracy, thus holding considerable practical value.

Previous research has shown limitations in terms of accuracy,
lightweight design, or detection speed. In this work, a lightweight
GSConv_SlimNeck structure is constructed to optimize the model’s
neck region. To enhance detection accuracy, the o-SimSPPF
structure and B-SIoU loss function are proposed. Additionally,
the incorporation of the SE attention module enhances the
accuracy of the model. By implementing these enhancements, the
proposed S-YOLO model significantly outperforms other object
detection models, achieving substantially improved accuracy in
tomato detection while maintaining lightweight characteristics.
Ultimately, the S-YOLO model achieves 96.60% accuracy, 92.46%
mAP@0.5, with a parameter count of only 9.11M and a detection
speed of 74.05FPS, demonstrating excellent detection performance.

While this study has made progress in tomato detection in
greenhouse environments, there are still limitations to address. For
instance, the proposed model may face significant limitations in
detection speed when running on low-cost devices. Considering the
cost limitations of harvesting robot hardware and the pressing need
for real-time detection, future studies should prioritize further size
reduction of the model to expedite its processing speed. This will
ensure real-time tomato detection and enhance its suitability for
integration into the visual systems of tomato harvesting robots.

6 Conclusions

This study introduces a novel model named S-YOLO,
characterized by its lightweight design and exceptional accuracy.
It effectively addresses the low accuracy in detecting occluded and
small tomatoes, providing technical guidance for the visual systems
of tomato harvesting robots. Through experimental research and
result analysis, the main contributions can be summarized
as follows:

1. Lightweight Design: A GSConv_SlimNeck structure suitable
for YOLOV8s is constructed to optimize the model’s neck
region, achieving model lightweightness.

2. Accuracy Improvement: The substitution of the SPPF
module with the upgraded o-SimSPPF structure and the
replacement of the CIoU loss function with the enhanced -
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SIoU loss function contributed to the improved accuracy of
the model’s detection capabilities.

3. Effective Feature Extraction: Additional SE attention module is
introduced to focus on crucial information, further enhancing
feature extraction for occluded and small target tomatoes.

Compared to traditional object detection algorithms, S-YOLO
demonstrates robustness, lightweight design, and outstanding
detection performance, providing technical support for efficiently
identifying tomato fruits in tomato harvesting robots. In the future,
more tomato fruit images captured in greenhouse environments
will be collected, and the model will be further improved in a more
lightweight manner to provide stronger technical support for the
visual systems of tomato robots.
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In the current agricultural landscape, a significant portion of tomato plants suffer
from leaf diseases, posing a major challenge to manual detection due to the
task’s extensive scope. Existing detection algorithms struggle to balance speed
with accuracy, especially when identifying small-scale leaf diseases across
diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-
Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an
innovative, high-precision, and lightweight detection algorithm based on RT-
DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was
developed using a carefully curated dataset of 3147 RGB images, showcasing
tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces
ResNet18 in the algorithm’s backbone network, aimed at reducing the model's
size and improving memory efficiency. Additionally, replacing the conventional
AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded
Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion
Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid
Networks) in the Efficient Hybrid Encoder significantly enhanced detection
accuracy without greatly affecting efficiency. To tackle the challenge of
identifying challenging samples, the Focaler-CloU loss function was
incorporated, refining the model's performance throughout the dataset.
Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7%
Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the
test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M
in parameters. These findings clearly demonstrate that the proposed method
improves detection accuracy and reduces computational complexity, addressing
the dual challenges of precision and efficiency in tomato leaf disease detection.

KEYWORDS

tomato leaf disease, Cascaded Group Attention, Real-Time-Detection-Transformer,
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1 Introduction

Tomatoes, rich in nutritional and medicinal value, are among
the most significant crops cultivated globally. China ranks as a
leading tomato producer globally (Coelho et al.,, 2023). In 2023,
China, leveraging its vast agricultural landscape and favorable
climate, solidified its status as the top tomato producer
worldwide, contributing 67 million tons to the global total of
approximately 190 million tons. This substantial output
underscores China’s dominance in the global tomato market
(Min, 2023). Moreover, China’s 2023 tomato production (Lu
et al,, 2023) exceeded initial forecasts, reaching 8 million tons, up
from the predicted 7.3 million tons.

However, tomatoes face threats from various leaf diseases,
including spot disease and leaf mold (Lee, 2022), caused by fungi,
bacteria, and environmental stressors (Hernandez et al., 2021).
Untimely detection and prevention can drastically reduce tomato
yield and quality, resulting in significant economic losses
for farmers.

Traditionally, tomato leaf disease detection has been manual,
presenting numerous limitations and challenges. First, it depends
on professional inspectors, leading to significant human resource
constraints (Geisseler and Horwath, 2014). Second, factors like
visual fatigue compromise the method’s accuracy. In large-scale
settings like tomato plantations, manual detection becomes labor-
intensive, increasing the risk of missed detections and false alarms
(Lambooij et al, 2009). Consequently, automating tomato leaf
detection has emerged as a key research focus to enhance
efficiency and accuracy (Azim et al., 2014).

Advancements in computer technology have facilitated the
incorporation of machine learning into agricultural research
(Pallathadka et al., 2022)’s study preprocesses images with
histogram equalization, followed by principal component analysis
for feature extraction. Support vector machines and naive Bayesian
classifiers are then employed for rice leaf disease classification.
However (Sujatha et al, 2021), notes that machine learning’s
extensive computational demands in preprocessing and feature
extraction limit its practical application. Comparative studies have
shown deep learning’s superior efficacy in plant leaf disease
recognition, with convolutional neural networks (LeCun et al,
1998) and residual structures (He et al., 2016) leading to
significant advancements in object detection algorithms, including
the evolution to one-stage approaches like DETR with transformers.
DETR (Detection Transformer) is an innovative object detection
approach that utilizes transformers, which are originally designed
for natural language processing tasks. By leveraging transformers,
DETR simplifies the object detection pipeline, eliminating the need
for hand-crafted components such as anchor generation and non-
maximum suppression, and allows for direct end-to-end object
detection with improved accuracy and efficiency.

Notably, two-stage models such as Faster RCNN (Region-based
Convolutional Neural Network) (Ren et al., 2016) and Mask RCNN
(He etal., 2017) have been typical (Teng et al., 2022). enhances pest
detection with super-resolution modules (Dong et al., 2015) and
Soft IoU (Rahman and Wang, 2016) mechanisms, achieving 67.4%
accuracy on a pest dataset (Saleem et al, 2022). optimizes weed
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detection using Faster RCNN ResNet-101, with an enhanced
anchor box method (Redmon and Farhadi, 2018) that refines
region proposals and improves accuracy. RCNN3’s Mask RCNN-
based algorithm (Wang et al., 2021) for crop images introduces path
aggregation and feature enhancements (Liu et al., 2018), increasing
edge accuracy with a micro fully connected layer (Lin et al., 2013).
Despite these improvements, the large size, numerous parameters,
and high computational costs challenge the practicality of two-
stage algorithms.

Common one-stage algorithms encompass SSD (Single Shot
MultiBox Detector) (Liu et al., 2016), YOLO v5(You-Only-Look-
Once) (Jocher et al., 2022), YOLOv7 (Wang et al., 2023), and
YOLOV9 (Wang et al, 2024) (Wang et al, 2022)’s YOLOv5
significantly enhances weed detection accuracy and speed via
data augmentation (Simard et al., 2003) and converter encoder
modules (Zhang et al., 2022). Experimental results indicate that
the improved network surpasses the baseline YOLOv5 in F1
score, AP, and mAP@0.5 by 11.8%, 11.3%, and 5.9%,
respectively (Zhang et al., 2023)’s study introduced a
lightweight agricultural pest identification method using an
enhanced Yolov5s, merged with MobileNetV3 (Howard et al,
2019), significantly lowering the network’s parameter count.
Additionally, the study integrated the ECA (Efficient Channel
Attention) attention (Wang et al., 2020) mechanism into
MobileNetV3’s shallow network to boost performance.
Experimental results reveal that compared to Yolov5s, their
model cuts parameters by 80.3% with only a 0.8% drop in
mAP, achieving a real-time detection speed of 15.2 FPS on
embedded devices, outperforming the original model by 5.7 FPS.

The aforementioned one-stage algorithms have seen substantial
optimization in speed and scale, yet their accuracy falls short of two-
stage algorithms, rendering them less suited for high-precision
applications in sectors like industry, agriculture, and emerging
technologies (Agarwal et al, 2020). introduces a deep learning
model with three convolutional layers and three max pooling
layers for tomato leaf disease detection and classification.
Outperforming established models like VGG (Visual Geometry
Group)16, InceptionV3, and MobileNet, it achieves a
classification accuracy of 91.2%. The study employs data
augmentation and hyperparameter tuning to aid farmers in
managing tomato diseases, enhancing crop yield and quality.
Additionally, the DETR algorithm has shown significant accuracy
in crop detection. The recent DETR (Carion et al., 2020) algorithm
has also demonstrated notable accuracy in crop detection (Yang
et al., 2023). introduces a DETR-based rice leaf disease detection
algorithm, leveraging an enhanced detection transformer for
diagnosis and recognition. Introducing the Neck structure and the
Dense Higher Level Composition Feature Pyramid Network (Gao
et al., 2019), based on FPN (Feature Pyramid Network), improves
small disease target detection accuracy. However, DETR’s
computational intensity, exacerbated by enhanced feature
extraction, results in less favorable detection speeds and
model parameters.

To facilitate a clearer understanding of the progress in this field,
the methods utilized in the referenced literature are summarized
in Table 1.
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TABLE 1 Summary of detection methods for tomato leaf disease.
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Method Dataset Train & Test mAP50 )
Manual detection

(Geisseler and Horwath, 2014)

Automated detection technology

(Azim et al., 2014)

Support vector machines and Naive Bayesian classifiers Rice Leaf Disease Not mentioned

(Pallathadka et al., 2022)

Inception V3 Citrus leaf disease dataset 9:1 89.2

(Sujatha et al,, 2021)

Multi-Scale Super-Resolution RCNN Capured by Chinese Intelligent 8:2 67.4

(Teng et al., 2022) Machines Institute

Enhanced Anchor Box-RCNN DeepWeeds dataset 9:1 96.2

(Saleem et al., 2022)

Segmentation and Extraction Algorithm Based on Mask Fruit 360 dataset 9:1 94.9

RCNN

(Wang et al,, 2021)

Real-time detection YOLOV5 Sugarbeet image dataset 9:1 90.0 20.8
(Wang et al,, 2022)

Lightweight detection YOLOv5 Large-scale open-source dataset IP102 9:1 98.6 15.2
(Zhang et al., 2023)

CNN disease detection Tomato leaves dataset from plantvillage 20:1 91.2

(Agarwal et al., 2020)

Dense Higher-Level Composition DETR IDADP dataset Not mentioned 93.5 244

(Yang et al., 2023)

The motivation for developing the FCHF-DETR model arises
from the serious economic losses and social impacts resulting from
global crop diseases. Many farmers depend on the yield and quality
of their crops for their livelihoods, and disease outbreaks not only
threaten their food security, but can also inflict serious damage on
the economic structure of entire regions.

In this context, the need for precise and timely disease detection
is critical. The FCHF-DETR model employs advanced deep learning
and real-time detection techniques to rapidly and precisely identify
plant diseases in the field. This capability not only enables farmers
to take timely measures to mitigate losses, but also offers a more
stable and reliable management approach for agricultural
production, thus effectively reducing the economic and social
pressures arising from diseases.

Furthermore, the lightweight design of the FCHF-DETR model
allows it to operate efficiently in resource-limited environments, critical
for resource-poor agricultural areas. This design permits unrestricted
model deployment across various hardware platforms, enabling
farmers worldwide to utilize this technology and thereby enhance the
sustainability and resilience of global agricultural production.

In summary, researchers have introduced numerous innovative
methods and technologies in the field of object detection, which
have significantly advanced the progress of plant disease
management technology. To enhance applicability in crop
production environments, this study introduces an accurate and
lightweight tomato leaf disease detection model based on RT-
DETR-R18. This model is characterized by its lightweight design,
high detection accuracy, and rapid processing speed, facilitating
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easy deployment on farm detection equipment. The main
contributions of this study include:

1. The integration of the lightweight and efficient Fasternet in
lieu of the ResNetl8 backbone network enhances the
feature extraction speed by mitigating memory access and
computational redundancy through the use of PConv
(Partial Convolution) in Fasternet. This modification not
only optimizes memory efficiency but also reduces the
overall size of the model.

2. The substitution of the Attention-based Intra-scale Feature
Interaction (AIFI) module with Cascaded Group Attention
(CGA) within the Efficient Hybrid Encoder not only
curtails computational expenditure but also enriches
attention diversity. This is achieved by layering attention
maps from different heads, facilitating a dual enhancement
in both efficiency and accuracy.

3. The replacement of the High-Level Screening-feature Fusion
Pyramid Networks (HSFPN) module with the CNN-based
Cross-scale Feature-fusion Module (CCFM) module for
inter-scale feature fusion within the Efficient Hybrid
Encoder incorporates a channel attention mechanism.
Given the dataset’s variety in terms of the types and sizes
of diseased leaves, HSFPN adeptly assimilates global features
across varying scales, synergizing with the decoder to
accurately pinpoint locations.

4. Acknowledging the dataset’s heterogeneity and the varying
levels of detection difficulty presented by diseased leaves,
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the model adopts the Focaler-IoU loss function in place of
the conventional IoU loss. This strategic alteration aims at
honing the focus on more challenging samples without
amplifying the parameter count or computational
complexity, thereby enhancing accuracy.

In the second section, we will delve into the dataset and the
overarching architecture of FCHF-DETR. Moving on to the third
section, we will undertake a series of ablation studies to dissect the
impact of different modules on FCHF-DETR’s performance,
complemented by visual illustrations. The fourth section is
dedicated to a comparative analysis, highlighting the merits of
our model vis-a-vis the prevalent RT-DETR-RI18, and discussing
prospective avenues for refinement. We will conclude by
encapsulating the essence of our model and exploring its potential
implications for practical applications.

2 Materials and methods
2.1 Data collection

To improve the model’s generalization, the dataset includes
tomato leaves photographed from multiple perspectives,
backgrounds, lighting conditions, and featuring different disease
types. A large collection of images was curated to enable accurate
detection of minor diseases. However, due to the scarcity of public
tomato leaf disease datasets, this study utilized the Tomato Leaf
Diseases Detection Computer Vision dataset (Figure 1A) and the
Tomato Disease Multiple Sources dataset (Figure 1B) from Kaggle.
Despite their usefulness, these datasets have limitations, especially
the oversimplified backgrounds with isolated leaves, which differ
from real-world scenarios.

To overcome this and enhance the model’s ability to detect
small-scale diseases, we augmented these datasets with 512
additional tomato leaf photos we collected (Figure 1C), creating a
comprehensive dataset of 3147 images for this experiment. This
carefully curated image collection features specimens of various
resolutions and sizes, taken from many angles to ensure data

10.3389/fpls.2024.1409544

diversity (Figure 1). The detailed presentation of tomato leaves
closely mirrors actual detection settings, including the effects of
natural elements like lighting and shadows. To simulate rainy-day
detection conditions, we deliberately reduced the clarity of some
images, emulating real-world challenges and enhancing the model’s
robustness and applicability.

Images in the dataset were classified into five categories using
LabelMe software: ‘Late blight leaf’, ‘Early blight leaf’, ‘Septoria leaf
spot’, ‘Mold leaf’, and Yellow virus leaf’. In the experimental setup,
the dataset was divided into training, validation, and testing sets in
an 8:1:1 ratio.

2.2 Date preprocessing

During data preprocessing, we utilized the Mosaic data
augmentation technique (Bochkovskiy et al., 2020) to combine four
unique images into one composite image. This composite image
undergoes random scaling, flipping, shifting, and color adjustments
to enhance the model’s generalization ability. This technique enriches
the dataset with extensive contextual details and various object
instances in each synthesized image, as shown in Figure 2.

In tomato leaf disease detection, the uneven distribution of
smaller target samples could hinder the model’s training efficiency.
Using the Mosaic augmentation not only increases the sample
volume but also balances the distribution of smaller targets,
improving the model’s ability to detect them. Visualizing the
disease targets and bounding boxes clarifies the spatial
distribution of label centroids, with X’ and ‘y’ axes representing
the centroids’ coordinates and color intensity indicating proximity
to the image center.

The visualization (Figure 3) highlights the distribution of target
box sizes in the dataset, showing a relatively uniform color gradient
across the image. This uniform color gradient suggests a balanced
mix of large and small targets, achieved by careful preprocessing of
the defect bounding boxes. This processing ensures fair
representation of all target sizes in the dataset, counteracting any
original bias towards larger defects. Aiming for a uniform
distribution of defect sizes enhances the model’s ability to detect

FIGURE 1

Samples of dataset, where (A) is the data from Tomato Leaf Diseases Detection Computer Vision dataset, (B) comes from Tomato Disease Multiple

Sources dataset, (C) is the data collected for this paper’s research.
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FIGURE 2
Mosaic data augmentation, randomly combining four pictures together.

anomalies at various scales. This approach reduces size-related bias
during training, enabling the model to accurately identify defects of
different sizes in real scenarios. Ultimately, this preprocessing effort
boosts the model’s generalization and balances its detection ability,
leading to enhanced overall performance.

2.3 Overall structure of FCHF-DETR

This study presents the FCHF-DETR model (Figure 4), a
streamlined yet precise detection network for various tomato leaf
diseases, based on the RT-DETR-R18 (Lv et al., 2024) framework.
The detailed structure of the proposed FCHF-DETR model is
outlined below.

RT-DETR-R18 and the newly introduced FCHF-DETR are
based on three main components: the Backbone, the Hybrid
Encoder, and the Transformer Decoder. The Backbone acts as a
feature extraction unit, effectively distilling multi-level features from
input images, especially from the last three stages, S3, S4, and S5.
These features are then fed into the Hybrid Encoder for further
processing, which includes the AIFI module focusing on S5 feature
maps to enhance precision and reduce complexity, and the CCFM

Frontiers in Plant Science

module working with S3 and S4 features, using fusion blocks for
feature amalgamation, refined by 1x1 convolutions.

RT-DETR-R18’s original backbone, based on ResNetl8,
contained numerous convolutional modules, hindering real-time
detection and mobile deployment. Additionally, early versions of
the AIFI module did not significantly improve accuracy. To
address these challenges, this study introduces the FCHF-DETR
approach, carefully crafted for efficient and accurate tomato leaf
disease detection. Key improvements include integrating
FasterNet instead of ResNetl8 and adding PConv layers to
enhance feature extraction speed and reduce model size;
replacing the AIFI module with Cascaded Group Attention for
increased efficiency; substituting the CCFM module with HSFPN
for better feature fusion; and adopting the Focaler-IoU loss
function to improve accuracy for difficult samples without
increasing complexity.

2.3.1 Lightweight network establishment
RT-DETR-R18’s ResNet-18 backbone, filled with
convolutional modules, results in high computational needs and
a large parameter count. Targeting mobile device deployment, this
study prioritizes precise detection, faster inference, fewer

frontiersin.org
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FIGURE 3
Tomato leaf disease size quantification framework based on
target detection.

parameters, and improved device compatibility. FCHF-DETR
features a streamlined Backbone with FasterNet (Chen et al,
2023), balancing quick processing and accuracy, as depicted in
Figure 5. FasterNet’s core includes FasterNet Blocks and PConv
layers, dynamically adjusting convolution ranges based on data
relevance for efficient processing.

10.3389/fpls.2024.1409544

2.3.1.1 Partial convolution

Partial convolution, or PConv, uses a unique binary masking
technique to accurately distinguish valid from invalid data points. It
dynamically adjusts the convolution kernel’s reach according to this
distinction, focusing the convolution process on valid data. This
method greatly enhances the model’s resilience in data
incompleteness scenarios, preserving maximum information and
minimizing data gap impacts. Compared to traditional
convolutions (Figure 6A), PConv provides greater flexibility,
efficiency, and precision in processing datasets with missing
entries. Unlike Depth-Wise (Figure 6B) separable convolution
(Chollet, 2017), known for fewer parameters and efficiency,
PConv excels in managing complex imaging tasks with missing
areas (Figure 6C). This suitability makes PConv ideal for
applications like image restoration and content filling, where it
effectively addresses image voids.

Given the similarity across feature maps of different channels,
PConv efficiently performs convolution on a subset of input
channels to extract spatial features, as shown in the Figure 6C.
This method leaves the other channels unchanged. Assuming equal
channel counts for input and output feature maps, PConv’s
computational complexity, in terms of FLOPs, is significantly
reduced:

FLOPSpcy, = h x w X K X

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

¢, is the number of channels for conventional convolution.

Efficient Hybrid Encoder
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The overall architecture of FCHF-DETR, which contains Backbone,
network (HSFPN), Focaler-CloU loss function and Detection head.
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FIGURE 5

Fasternet’'s backbone leverages deep learning for efficient feature extraction and accelerated neural network computations.

In practical implementation, there is generally r = ¢,/c = 1/4,
so the FLOPs of PConv are only 1/16 of those of conventional
convolutions.

Memory access status of PConv:

MEMPConv:thX26P+kZXcﬁzhxwacp

Where:

h, w are the width and height of the feature map,

k is the size of the convolution kernel,

¢y is the number of channels for conventional convolution.

The memory access count of PConv is only 1/4 of that of regular
convolution, and the remaining (c — ¢,) channels do not participate
in the calculation, so there is no need for memory access.

RT-DETR-R18’s backbone network focuses on improving
detection accuracy with a complex structure and more parameters

for slightly enhanced capabilities. However, this approach may
impact computational and memory efficiency. In fast-processing
and resource-limited scenarios, like tomato leaf disease detection,
FasterNet’s streamlined architecture could provide a better balance
of accuracy and efficiency.

2.3.2 Cascaded group attention

The attention mechanism is pivotal in tomato leaf disease
recognition, with its primary capability being the substantial
enhancement of recognition accuracy and processing efficiency
through the focus on and emphasis of key features related to
diseases in images. In environments characterized by complex
backgrounds or varied disease manifestations, traditional image
recognition techniques can overlook important details or result in
misjudgments due to information overload. In contrast, the

(A)

Traditional Convolution

(B)

©

FIGURE 6

Depthwise Convolution

Partial Convolution

(A) Standard convolution applies filters across the entire input. (B) Depth-Wise convolution separates channels for independent processing.

(C) Partial convolution dynamically adapts to missing data areas.
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attention mechanism significantly improves the model’s
effectiveness in distinguishing between healthy and diseased
leaves through the construction of rich feature interactions and
the optimization of importance allocation. This mechanism
guarantees that the model maintains high recognition accuracy
even amidst complex backgrounds or in cases of unclear symptoms.

We've incorporated the Cascaded Group Attention (CGA)
(Chen et al.,, 2023) mechanism, shown in Figure 7, to effectively
address the computational efficiency challenges often found with
the SE attention (Hu et al.,, 2018) approach. Traditional
mechanisms such as SImAM (Yang et al., 2021) falter in complex
scenes, and CBAM’s (Woo et al,, 2018) complexity may overload
the model, slowing down inference. Unlike SE, CA, and CBAM,
CGA excels in nuanced feature processing via systematic grading
and grouping, enhancing feature differentiation. CGA highlights
inter-channel and spatial relationships and uses a cascaded
framework to enrich layers with informative attention outputs.
This progressive approach makes CGA highly adaptable and
effective in managing complex features, providing a balanced
depth and breadth in analysis.

wY

wg, p

X = Attn(X; Wi, X, Wi

K xWY)

o . p
Xy = Concat[x,»,j]jzuhwi

Where:
j-th head computes the self-attention over Xj; represents the j-th
split of the input feature X, i.e.,

X; = Xy, Xip>...o., X)) and 1 < j < h, h represents the total
number of heads,
W,?, Wé( , Wi}/ represent projection layers mapping the input

feature split into different subspaces,

10.3389/fpls.2024.1409544

W/ represents a linear layer that projects the concatenated

output features back to the dimension consistent with the input.

Using feature segmentation instead of the full feature set for each
attention head is more efficient and reduces computational cost. While
effective, this approach can be improved by enabling the Q, K, and V
layers to project richer features, thus enhancing their capabilities. A
cascading strategy for attention maps, as shown in the Figure 7,
involves incrementally adding each head’s output to the next,
enhancing feature refinement. This systematic accumulation enables
progressive refinement of feature representation:

Xj=X;j+Xi1y 1<j<h

Where:

X;j represents the addition of the j - th input split Xj; and the
(j — 1)-th head output Xj;_y).

In the self-attention computation, we redefine X,-j as the novel
input feature for the j— th attention head. Furthermore, we’ve
introduced an additional Token Interaction layer post Q-
projection, enriching the self-attention mechanism’s capability to
concurrently apprehend local and global relationships, thereby
amplifying the feature representation.

In our work, we replaced RT-DETR-R18’s original ATFI module
with the CGA approach, yielding two key advantages. Firstly, varied
feature segmentation for each head enhances attention map
diversity. This is similar to group convolution, where cascaded
group attention can save Flops and parameters by a factor of h.
Secondly, layering the attention heads deepens the network,
enhancing capacity without additional parameters. With reduced
channel dimensions for Q and K in attention map computations,
the resulting latency overhead is minimal. This refined approach
enables precise disease localization across sizes in tomato leaf
disease detection, significantly improving detection accuracy.

Head 1

Split

Head 2

Input

Head n

Self-Attention

Self-Attention

Output

Concat & Projection

Self-Attention

FIGURE 7

Cascaded Group Attention employs sequential attention layers, grouping features to focus progressively, enhancing representation by refining

attention at multiple scales for improved contextual learning.
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2.3.3 High-Level Screening-feature Fusion
Pyramid Networks

The High-Level Screening-feature Fusion Pyramid Network
(HSFPN) (Chen et al., 2024) is crafted to build hierarchical
feature pyramids attuned to scale variations, as shown in
Figure 8. This design allows HSFPN to precisely detect disease
features on tomato leaves, varying in size and shape, thus improving
detection accuracy and robustness. Furthermore, HSFPN’s layered
approach to feature fusion preserves detailed information, crucial
for identifying early-stage or subtle leaf disease indicators.
Consequently, HSFPN outperforms CCFM, particularly in
complex agricultural settings and in detecting finely
detailed objects.

2.3.3.1 Selective Feature Fusion

Selective Feature Fusion (SFF), key to HSFPN, shown in
Figure 9, crucially combines feature maps from various scales.
The SFF module uses higher-level features as weights to filter
through and selectively extract relevant information from low-
level features. This involves scaling higher-level features to match
low-level feature dimensions, using methods like transposed
convolution and bilinear interpolation. Then, these scaled
higher-level features act as attention weights to highlight
valuable insights from low-level features. This fusion strategy
effectively combines the semantic depth of high-level features
with the detailed nuances of low-level features, greatly
improving the model’s ability to handle multi-scale
data challenges.

= RC*H*W

Given a high-level feature fy;o and a low-level

CxH*W,
feature fi,, € R~

the process begins by expanding fy;e
through a transposed convolution operation. This operation
utilizes a stride of 2 and a kernel size of 3 x 3, enlarging fj,g, to a

new dimension R&¥21*2W

10.3389/fpls.2024.1409544

Following this, to reconcile the dimensions of the high-level and
low-level features, bilinear interpolation is employed to either
upscale or downscale the high-level features. This adjustment
results in a feature f,, that matches the low-level feature
dimensions in R“M*Wi| thus facilitating their subsequent

integration:

fanr = BL(T - CU”V(fhigh))

Satt = frowtCAfare) + fane

Next, use the CA module to convert advanced features into
corresponding attention weights to filter out low-level features, after
obtaining features with the same dimension. Finally, the filtered
low-level features are fused with high-level features to enhance the
feature representation of the model and obtain f,,, & RE*M*W1,

Integrating HSFPN with CCFM significantly enhances disease
detection precision in tomato leaf images, especially for size-varying
disease manifestations. HSFPN’s layered feature pyramid
architecture skillfully captures and defines features across scales,
greatly improving the model’s sensitivity and accuracy in
identifying disease stages, from small lesions to widespread areas.

HSFPN’s strategic use of multi-scale features not only strengthens
the model’s ability to detect small targets but also maintains accuracy
for larger ones. This dual strength effectively addresses traditional
challenges in detecting varying disease sizes, offering robust support for
precision agriculture’s complex requirements.

2.3.4 Focaler-CloU

Sample imbalance is a common issue in object detection,
typically appearing as simple and difficult samples, categorized by
target size. Simple samples involve easier-to-detect targets, while
difficult samples include very small targets, challenging
accurate localization.
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FIGURE 8

High-Level Screening-Feature Fusion Pyramid Networks (HSFPN) integrate multi-scale features with high-level screening for enhanced object
detection, achieving superior performance through hierarchical feature fusion.
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FIGURE 9

Selective feature fusion in High-Level Screening-Feature Fusion Pyramid Networks intelligently merges critical high-level features, enhancing object

detection by optimizing feature representation.

In tasks with mainly simple samples, focusing on bounding box
regression for these targets can significantly improve detection.
Conversely, in scenarios with prevalent difficult samples, refining
regression for these targets becomes essential. To address this
variance, the IoU loss function can be adapted using a linear
interval mapping method (Zhang and Zhang, 2024). This method
enables flexible adjustment between simple and difficult samples,
fine-tuning bounding box regression accuracy and improving
detection performance. The modified IoU loss function, designed
to address sample imbalance, is mathematically defined as follows:

IoU = M
|BU B
0, IoU<d
JoUfocaler _ bUed g < IoU < u
1, IoU >u
Where:

B represents the predicted box
B# represents the GT (goal target) box
ToU<" is the reconstructed Focaler-IoU

ToU is the original IoU value
[d,u] € [0,1]

Applying Focaler-IoU loss to existing IoU based bounding box
regression loss function CloU:

2 t
CloU :IoU—L’zbm—ow
C

v
o=
(1 -IoU)+v

t

-2 (aret tan—)?
v—p(arc anﬁ—arc anz)

Focaler
LFucalePCIaU = LCIaU + IoU - IoU

Where:
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b represents the center points of anchor box

b¥ represents the center points of GT box

p(-) represents the Euclidean distance

¢ represents the diagonal minimum distance enclosing
bounding box between b and b¥

w® represents the width of GT box

h$" represents the height of GT box

w represents the width of anchor box

h represents the height of anchor box

In the field of tomato leaf disease detection, the Focaler-CloU
loss function offers significant advantages over the loss function
originally used in RTDETR. Focaler-CIoU enhances the model’s
ability to recognize challenging samples by adjusting the loss
function to focus on samples of varying difficulty levels,
particularly for disease samples that are challenging to distinguish
or have indistinct boundaries, by assigning higher weights. This is
particularly important when dealing with lesions of varied sizes and
shapes on tomato leaves, as accurately identifying these diseases in
their early stages is often challenging. The characteristic of Focaler-
ClIoU can significantly enhance the sensitivity in detecting early or
minor lesions, lower the rate of missed detections, and thus boost
the overall detection efficiency while maintaining high accuracy. It
holds considerable importance in enhancing the early prevention
and control of tomato leaf diseases.

3 Results

This section details the experimental, hyperparameter settings,
and training strategies in Section 3.1. Section 3.2 describes the
indicators and calculation formulas employed to evaluate model
performance. Sections 3.3 and 3.4 discuss the study’s results,
utilizing ablation experiments and visual displays, respectively.

3.1 Experimental setup

The experiment utilized an OpenBayes cloud server equipped
with an Nvidia A100 80GB MIG 1g.10g graphics card, boasting
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16GB of graphics memory, and ran on a Linux operating system.
This experiment was implemented using Python 3.10
and Cudall.8.

The model training strategy entailed: For IoU-aware query
selection, the first 300 encoder features were selected to initialize
the decoder’s object query. Training employed the AdamW
optimizer, with a base learning rate of 0.0001, weight decay of
0.0001, global gradient clipping norm of 0.0001, 2000 linear warm-
up steps, and spanned 100 epochs.

3.2 Evaluation indicators

In the field of object detection, performance is primarily
evaluated by Precision (P), Recall (R), and Mean Average Precision
(mAP). Precision represents the ratio of correctly predicted positive
samples to all samples labeled as positive by the model. Recall
measures the proportion of correctly identified positive samples
among all actual positive samples. mAP denotes the mean of the
average precisions across all categories. The corresponding formulas
for Recall, Precision, and mAP are provided below:

TP
P=—
TP + EP

R TP
" TP+ FN

AP = / IP(R)dR
0

map = 2= 4P
n

TP (True Positive) refers to correctly identified positives, FN
(False Negative) to positives incorrectly labeled as negatives, and FP
(False Positive) to negatives incorrectly labeled as positives.
Precision (P) is the ratio of correctly predicted positive
observations to the total predicted positives, while Recall (R) is
the ratio of correctly predicted positive observations to all actual
positives. The area under the curve drawn through Precision (P)
and Recall (R) values on the PR graph represents the Average
Precision (AP), and the mean of AP values across all categories
yields the Mean Average Precision (mAP).

Beyond the aforementioned performance metrics, model size
and computational cost are assessed using the number of
parameters and FLOPs, to facilitate the selection of a lightweight
network for deployment on mobile devices. A reduction in
parameters and FLOPs enhances model efficiency under identical
computational resources, concurrently minimizing memory
consumption and boosting computational speed.

3.3 Ablation experiment

Each module within FCHF-DETR was evaluated through
ablation experiments to discern which modules enhance detection
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performance and which reduce computational and parameter costs.
RT-DETR-R18 served as the benchmark model, with the
introduction of the lightweight network structure, FasterNet, as
FCHE-DETR’s backbone to assess its capacity to reduce model
parameters and enhance inference speed effectively. Subsequently,
the AIFI module in the Efficient Hybrid Encoder was replaced with
Cascaded Group Attention to extract finer features. Additionally,
the CCFM module was substituted with HSFPN, capable of
capturing and expressing multi-scale features, thereby enhancing
network accuracy. Ultimately, the model’s original loss function was
optimized to the Focaler-CIoU loss function, adept at efficiently
capturing edge information of tomato leaf diseases.

Initially, we evaluated the impact of integrating lightweight
backbone networks versus not integrating them on the test set.
Comparison of the benchmark model RT-DETR-R18 with RT-
DETR FasterNet (Experiments 1 and 2) was performed. The
introduction of lightweight backbone networks led to decreases of
1.9% and 0.5% in Precision and Recall, respectively. The mAP50-95
and mAP50 values decreased by 0.6% and 0.3%, respectively, while
the number of Parameters decreased by 21%, the FPS increased by
1.8, and the FLOP decreased by 13.6%. These results suggest that
FasterNet, as the backbone network of RT-DETR-R18, effectively
reduces computational complexity and parameter count, and
significantly enhances inference speed. Although the accuracy has
marginally decreased, the improvement in efficiency renders this
loss acceptable.

A lightweight network structure significantly trims model size
and elevates detection speed, albeit at the expense of detection
accuracy. Consequently, methods that enhance accuracy without
incurring substantial computational costs are crucial.

Subsequently, employing the lightweight RT-DETR model with
FasterNet as the backbone, we examined the performance
alterations resulting from the integration of various modules.
Experiments 3, 4, and 5 involved the replacement of the AIFI
module in the original Efficient Hybrid Encoder with the SimAM,
SE, and CGA attention mechanisms, respectively, each contributing
to an improvement in accuracy. However, given the focus on
lightweight networks in this study, the CGA attention mechanism
was selected for further investigation. In Experiments 6 and 7, the
CCFM module in the Efficient Hybrid Encoder was replaced by
HSFPN without the SFF module and HSFPN with the SFF module,
respectively. Upon comparison, the HSFPN with the SFF module,
which offered greater accuracy improvements, was chosen. Building
on Experiment 7, the loss function of the benchmark RT-DETR-
R18 model was optimized, with both CIoU and Focaler-CIoU loss
functions being employed for training. Table 2 illustrates the
enhancement in detection performance attributable to the
lightweight DETR model.

e Experiments 3, 4, and 5 evaluated the integration of
SimAM, SE, and CGA attention mechanisms, respectively,
into the RT-DETR-R18 model with FasterNet as the
backbone network. Compared to Experiment 2, the
additions of SimAM, SE, and CGA resulted in increases
of 0.9%, 1.8%, and 2.3% in the mAP50-95 index,
respectively, and changes of -0.1%, 0.4%, and 0.7% in the
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TABLE 2 Ablation experiment results: comparative analysis of all modules used in FCHF-DETR.

Model P R mAP50-95 mAP50 Parameters FPS GFLOPs
1 RTDETR-RI8 94.7 93.6 83.1 962 19,880,748 219 57.0
2 RTDETR-FasterNet 92.8 93.1 825 95.9 15,792,928 237 495
3 RTDETR-FasterNet-SimAM 94.1 93.7 83.4 95.8 15,621,884 24.8 47.3
4  RTDETR-FasterNet-SE 94.9 952 843 96.3 16,882,972 217 545
5 | RTDETR-FasterNet-CGA 95.1 95.1 84.8 96.6 15,812,212 245 483
6 = RTDETR-FasterNet-CGA-HSFPN 95.8 952 85.8 96.7 16,101,128 242 478
7 | RTDETR-FasterNet-CGA-HSFPN_SFF 96.1 96.4 87.4 96.9 16,314,816 24.1 479
8 | RTDETR-FasterNet-CGA-HSFPN_SFF-CloU 95.8 96.1 873 97.0 16,307,482 24.1 478
9  RTDETR-FasterNet-CGA-HSFPN_SFF- 96.4 96.7 89.1 972 16,265,580 24.1 4738

Focaler-CloU

mAP50 index for SimAM, SE, and CGA, respectively. The
performance metrics suggest that SimAM, likely a non-
parametric attention mechanism, notably improved the
model’s size and inference speed. However, given that
SimAM only slightly improved, or even reduced,
accuracy, despite a comprehensive comparison, the CGA
attention mechanism was ultimately selected due to its
significant accuracy improvements, despite a slight
increase in model parameters. Additionally, substituting
the AIFI module with the selected attention mechanism
enhanced the accuracy of tomato leaf disease detection,
albeit with a minor reduction in inference speed and a slight
increase in model parameters, aligning with the initial
objective of replacing the ATFI module.

* Experiments 6 and 7 demonstrate that replacing the CCFM
module in the RT-DETR model with HSFPN and
HSFPN_SFF leads to significant improvements in the
detection accuracy of the model. In the test set, HSFPN
and HSFPN_SFF increased the parameter count by 0.3M
and 0.5M, respectively, and reduced inference speed by 0.3
and 0.4, respectively. In Experiment 6, incorporating the
HSFPN module yielded a 7% increase in Precision, a 1%
increase in mAP50-95, and a 0.5G reduction in FLOPs.
However, considering the increase in model parameters and
the decrease in inference speed, the improvement in
detection accuracy is deemed insufficient. In Experiment
7, the integration of the SFF module into feature fusion
resulted in increases of 1% in P, 1.3% in Recall, 2.6% in
mAP50-95, and 0.3% in mAP50. Although the model
parameters have increased slightly and the inference
speed is slower compared to FasterNet+CGA in
Experiment 5, the significant improvement in detection
accuracy relative to the benchmark network satisfies the
lightweight standard.

» In Experiments 8 and 9, the loss functions of the benchmark
network were substituted with CloU and Focaler CloU,
respectively. Although the impact on inference speed,
parameter count, and computational complexity is

Frontiers in Plant Science

minimal, the CIoU loss function fails to yield a significant
improvement in detection accuracy. However, optimization
of the Focaler CIoU loss function led to increases of 0.3% in
Precision and Recall, and 1.7% and 0.3% in mAP50-95 and
mAP50, respectively. The uneven distribution of tomato
leaf disease and the presence of small or edge targets in the
images pose challenges to the detection capabilities of the
model, which is expected. The introduction of the Focaler
CIoU loss function significantly enhances the localization
and detection of challenging targets, thereby enhancing the
accuracy and robustness of the model for small,
overlapping, and edge targets.

In conclusion, compared to RT-DETR-R18, the proposed
FCHF-DETR demonstrates a 1.7% increase in Precision, a 3.1%
increase in Recall, a 6% increase in mAP50-95, and a 1% increase in
mAP50. The number of parameters decreased by 3.6M, FPS
increased by 2.2, FLOP decreased by 9.2G, thereby significantly
improving the speed and accuracy of tomato leaf disease detection.
Therefore, FCHF-DETR is highly suitable for deployment on
terminal devices in agricultural environments, such as cameras,
offering the high detection performance necessary for real-
world applications.

3.4 Visual display

Across a test set comprising 3147 images, FCHF-DETR
precisely identified eight types of tomato leaf diseases, alongside
healthy leaves, attaining an overall mAP50-95 of 89.1% and an
mAP50 of 97.2%.

To illustrate the detection performance benefits of the proposed
method, a visual representation of the detection results for tomato
leaf diseases under various conditions is provided. Figure 10 depicts
the model’s detection capability in straightforward settings,
characterized by favorable shooting conditions, a simple
background, clearly visible affected areas on the tomato leaves,
and a minimal number of leaves in the image. Figures 10A-H
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Septoria spot Mold leaf

(A—H) demonstrate the detection of four distinct types of plant leaf diseases under controlled conditions. The bounding box within the figure

highlights the location and specific types of tomato leaf diseases

demonstrate the model’s ability to concurrently and accurately
detect four distinct tomato leaf diseases in uncomplicated
environments: late blight, early blight, Septoria spot, and mold
leaf. Given that yellow viruses typically cluster and are found in
complex settings, their detection results were not showcased in the
depiction of simple environments.

The integration of the CGA attention mechanism and HSFPN
feature fusion module endows the model with a robust capability to
extract pivotal information from images, ensuring high detection
accuracy across various tomato leaf diseases. Figure 11 illustrates
the model’s detection performance in complex scenarios, including
situations where leaves are at the image’s edge or partially obscured.
Figures 11A-D reveal that the FCHF-DETR model precisely
identifies occluded diseased leaves. Figures 111-L demonstrate
that, with the Focaler-CIoU loss function integrated, the model
enhances the detection accuracy of challenging edge targets,
mitigating the original model’s limitation in identifying partially
visible diseased leaves. In the other images, the enhanced model is
shown to effectively identify edge targets, even those obscured by
surrounding foliage.

To underscore the strengths of the proposed model in complex
scenarios, Figure 12 illustrates its detection capabilities in densely
populated environments. Given the dense distribution and potential
for small spots on tomato leaves in real-world settings, detecting
diseased leaves in such environments is paramount. Despite these
challenges, the model maintains robust performance. Figure 12
demonstrates the model’s efficacy in identifying diseased tomato leaf
areas within dense foliage, under varied conditions such as intense
illumination area A, D, shadow area B, E, or high-dense area C, F.

Acknowledging weather-related challenges at tomato
cultivation sites, pixel reduction was applied to part of the test set
data to simulate the effects of rain or dense fog on camera imagery.
Figure 13 reveals that, even with reduced pixel quality, the FCHF-
DETR model reliably detects most tomato leaf diseases, with only a
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minor impact on detection accuracy. The sustained performance in
simulated rainy and foggy conditions is credited to the Cascaded
Group Attention and HSFPN feature fusion mechanisms within the
Efficient Hybrid Encoder, capable of extracting key features from
blurred images. Additionally, the incorporation of the Focaler-
ClIoU loss function enables the detection of leaf diseases that pose
challenges for the RT-DETR-R18 model, significantly aiding
practical deployment.

The visual evidence from Figures 10-13 confirms that FCHF-
DETR adeptly addresses a range of challenges typical in real
agricultural settings for tomato leaf disease detection, effectively
resolving longstanding issues in the sector.

4 Discussion

In contemporary agricultural practices, numerous tomato
plants are afflicted by leaf diseases, making manual detection
excessively time-consuming and labor-intensive. Current
technologies frequently fail to balance processing speed with
detection accuracy, particularly when identifying small disease
spots, presenting clear drawbacks. To address this challenge, this
study introduced FCHF-DETR, a high-precision, lightweight
detection algorithm derived from the RT-DETR-R18 framework.
A dataset comprising 3147 images of tomato leaf diseases was
compiled, encompassing diverse scenes and levels of image clarity.
To streamline the model and enhance memory efficiency, the
traditional ResNetl8 was substituted with FasterNet in the
backbone network. Concurrently, within efficient hybrid encoders,
replacing the AIFI module with a cascaded group attention
mechanism and the CCFM module with HSFPN notably boosted
detection accuracy with minimal impact on speed.

Furthermore, to better identify challenging samples, the Focaler-
CIoU loss function was introduced, enhancing the model’s
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FIGURE 11

(A-D) illustrate the detection performance of the targeted leaf disease in scenarios where it is obscured by other leaves. (E-H) demonstrate the detection
performance of the targeted leaf disease when situated at the periphery of the image and simultaneously obscured by other foliage. (I-L) reveal the
detection performance of the targeted leaf disease at the image’s edge.

Intense illumination

FIGURE 12
(A, D) present the detection results of leaf disease under conditions of intense illumination. (B, E) depict the detection results of leaf disease within shaded
environments. (C, F) illustrate the detection effectiveness of leaf disease in highly dense settings.
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(A-D) and (I-L) demonstrate the detection efficacy of tomato leaf disease in standard conditions, while (E-H) and (M—P) exhibit the comparative
detection efficacy of the model on the test set following pixel reduction processing and the simulation of rainy conditions within an authentic

plantation setting.

performance across the dataset. Experimental results indicated that
FCHF-DETR achieved an mAP50-95 of 89.1% on the test set, marking
a 6% improvement, and an mAP50 of 97.2%, a 1% increase.
Concurrently, FLOPs decreased by 9.2G, and the model’s parameter
count was reduced by 3.6M. These achievements showcase the
method’s enhancement of detection accuracy and successful
reduction in the model’s computational load, illustrating an effective
balance between accuracy and efficiency.

In practical agricultural settings, particularly on diverse
farmlands, a common challenge arises: the overlapping or
obstruction of leaves from different crops, markedly impacting
tomato leaf disease detection. For instance, in fields where
tomatoes coexist with taller crops like corn or legumes, the foliage
of these crops can obscure tomato leaves, masking critical disease
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features. Under these conditions, the effectiveness of even high-
precision detection algorithms like FCHF-DETR may be markedly
limited. Leaf occlusion not only diminishes the available feature
information for algorithmic recognition but can also lead to errors,
like mistaking occluded edges or shadows for disease spots.

This issue underscores the limitations of current visual-based
object detection algorithms in navigating complex agricultural
scenes. Addressing this challenge necessitates a deeper
comprehension of crop interactions and growth patterns to
develop algorithms capable of adapting to such diversity and
complexity. Furthermore, employing multiperspective or
multimodal data acquisition techniques, like integrating aerial and
lateral imagery or additional sensor data, could mitigate these issues
and enhance lesion detection in occluded conditions.

frontiersin.org


https://doi.org/10.3389/fpls.2024.1409544
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xin and Li

Meanwhile, we also investigated that the manifestation of
tomato leaf disease may vary in different natural environments
due to various factors such as climate, soil type, and humidity,
resulting in certain types of leaf diseases being more common in
specific environments. For example, in high humidity and warm
environments, the incidence of downy mildew may be much higher
than that of early or late blight in arid environments. The impact of
these environmental factors on disease occurrence requires the
detection system to adjust the weight of various leaf disease
detection according to different natural conditions, in order to
improve the detection accuracy and efficiency in specific
environments. However, even the high-precision and high-
efficiency detection algorithm FCHF-DETR invented in this
article adopts the same detection strategy for all types of leaf
diseases, failing to fully consider the diversity of natural
environmental factors. This may lead to insufficient sensitivity of
algorithms to detecting high-risk diseases in certain specific
environments, thereby reducing overall detection efficiency
and accuracy.

In order to solve this problem, future detection algorithms
need to introduce environmental awareness mechanisms, analyze
and learn the occurrence patterns of diseases under different
natural environmental conditions, and dynamically adjust the
detection weights for different leaf diseases. This may involve
complex data collection and analysis, such as combining
meteorological data, soil conditions, and crop growth data,
using machine learning algorithms to predict the probability of
disease occurrence under different environmental conditions, and
optimizing the parameters of the detection model accordingly.
Through this approach, the detection system can adapt more
intelligently to different natural environments, improve the
detection accuracy of key diseases, and provide more reliable
technical support for agricultural production.

5 Conclusion

This study introduces FCHF-DETR, a lightweight model for
detecting tomato leaf diseases, effectively balancing accuracy and
speed. It employs data augmentation and reduction techniques to
adapt to real-world environments for detecting tomato leaf
diseases. FCHF-DETR enhances the RT-DETR-R18 framework
by integrating the lightweight FasterNet backbone, boosting
detection speed and reducing model parameters without
compromising accuracy. Additionally, it introduces the
Cascaded Group Attention mechanism, replacing the AIFI
module, and substitutes the CCFM module with HSFPN in the
original network. Despite a minor increase in computational
speed and model parameters, there’s a significant enhancement
in detection accuracy. The adoption of the Focaler-CIOU loss
function, replacing the original, further refines the accuracy for
challenging samples without altering parameters or
computational complexity. Experimental results reveal that
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FCHEF-DETR surpasses RT-DETR-R18 with a 1.7% increase in
precision, 3.1% in recall, 1% in mAP50 and 6% in mAP50-95, and
reductions in parameters, FPS, and FLOPs. This signifies not just a
notable boost in accuracy but also a substantial decrease in the
model’s parameter count, thus offering robust support for
contemporary tomato leaf disease detection.

Future research will aim to refine detection accuracy in
diverse farmlands affected by overlapping leaf occlusion. We
plan to leverage multiperspective or multimodal data to
develop more adaptive detection algorithms. Additionally, to
accommodate varying tomato leaf disease patterns across
different environments, future algorithms will incorporate
environmental awareness mechanisms. Dynamic adjustments to
the detection priorities of different diseases will enhance the
accuracy and efficiency in specific environments, broadening
the algorithm’s applicability in complex real-world scenarios.
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Accurate fruit detection is crucial for automated fruit picking. However, real-
world scenarios, influenced by complex environmental factors such as
ilumination variations, occlusion, and overlap, pose significant challenges to
accurate fruit detection. These challenges subsequently impact the
commercialization of fruit harvesting robots. A tomato detection model named
YOLO-SwinTF, based on YOLOV7, is proposed to address these challenges.
Integrating Swin Transformer (ST) blocks into the backbone network enables
the model to capture global information by modeling long-range visual
dependencies. Trident Pyramid Networks (TPN) are introduced to overcome
the limitations of PANet's focus on communication-based processing. TPN
incorporates multiple self-processing (SP) modules within existing top-down
and bottom-up architectures, allowing feature maps to generate new findings for
communication. In addition, Focaler-loU is introduced to reconstruct the original
intersection-over-union (loU) loss to allow the loss function to adjust its focus
based on the distribution of difficult and easy samples. The proposed model is
evaluated on a tomato dataset, and the experimental results demonstrated that
the proposed model's detection recall, precision, F; score, and AP reach 96.27%,
96.17%, 96.22%, and 98.67%, respectively. These represent improvements of
1.64%, 0.92%, 1.28%, and 0.88% compared to the original YOLOv7 model. When
compared to other state-of-the-art detection methods, this approach achieves
superior performance in terms of accuracy while maintaining comparable
detection speed. In addition, the proposed model exhibits strong robustness
under various lighting and occlusion conditions, demonstrating its significant
potential in tomato detection.

KEYWORDS
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1 Introduction

Fruit harvesting is a critical step in the agricultural production
process. However, traditional manual methods are costly, time-
consuming, and inefficient, complicating meeting large-scale
cultivation demands. Due to the advancement of smart
agriculture, the transition from manual labor to automated fruit
harvesting has become an inevitable trend. For fruit harvesting
robots, accurate fruit identification and localization are essential for
efficient harvesting. Therefore, it is very important to develop robust
and accurate fruit detection algorithms for the robotic
vision systems.

Opver the past few decades, numerous researchers have explored
various fruit detection methods. These approaches are generally
categorized into threshold discrimination and machine learning-
based methods. Initially, the fruit targets in images are segmented
by setting thresholds based on simple features such as color (Wei
etal., 2014), shape (Kelman and Linker, 2014), texture (Rakun et al.,
2011), or a combination of these features (Payne et al., 2014), to
complete the detection process. Although these methods yield
reasonable results, the sensitivity of the thresholds to
environmental variations limits their generalization capabilities.
The introduction of machine learning has mitigated these
limitations. Traditional techniques, which integrate handcrafted
features such as Histogram of Oriented Gradients and Haar
features with machine learning models like Support Vector
Machine (SVM) (Liu et al., 2019) and AdaBoost (Zhao et al,
2016), have been employed to locate and recognize fruits.
Following the success of deep learning in computer vision
(Krizhevsky et al., 2012), it has been applied to smart agriculture
(Saetal, 2016; Fuentes et al, 2017). Deep learning models are adept
at directly extracting features from data and facilitating end-to-end
training, significantly enhancing the models’ detection performance
and efficiency.

Despite the significant advancements in deep learning-based
fruit detection methods, several shortcomings persist. These models
are typically trained on data from controlled conditions, resulting in
reduced robustness against unconstrained factors in real-world
environments, such as illumination variations and occlusion or
overlap occurrences. In addition, the traditional IoU-based
regression loss function utilized in the YOLO model cannot
accurately predict the position of fruit targets. Due to the
limitations inherent in traditional regression methods, which
neglect the distribution of objects across different scales, they can
fail to accurately identify the location of fruit targets, particularly in
challenging scenarios.

In order to address these challenges, this study introduces a
novel YOLO-SwinTF model, designed to enhance the accuracy of
tomato detection in complex environments while maintaining high
detection efficiency. Based on the YOLOV7 architecture, the model’s
backbone, neck, and loss function are refined to improve feature
extraction and target-focusing capabilities. Specifically, Swin
Transformer blocks are incorporated into the backbone to aid the
model in capturing long-range visual dependencies while
maintaining computational efficiency, thereby enhancing the
semantic information of the features. Then, the original PANet is
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replaced with the TPN architecture by embedding multiple SP
modules between the traditional top-down and bottom-up
architectures. This modification allows the feature mapping to
generate new information for propagation. In addition, a Focaler-
IoU loss is constructed using a linear interval mapping method to
adjust its focus based on sample difficulty, improving the model’s
detection performance.
The main contributions to this study are as follows:

1. A novel network architecture, YOLO-SwinTF, is proposed,
which incorporates the Swin Transformer attention
mechanism and Trident Pyramid Network architectures
to enhance feature extraction capabilities.

2. The Focaler-IoU loss is introduced to accurately identify
tomato locations. This method enhances the detection
performance of the model by dynamically adjusting the
focus of the loss among samples of varying difficulty.

3. Extensive experiments on tomato datasets demonstrate that
the proposed YOLO-SwinTF model achieves excellent
performance compared to the current state-of-the-art
methods for tomato detection.

The remainder of this paper is organized as follows: Section 2
reviews the literature on fruit detection methods, which include
threshold-based discriminant analysis, machine learning, and deep
learning approaches. Section 3 introduces the proposed tomato
detection model. The experimental results obtained through the
proposed method are presented and discussed in Section 4. Finally,
Section 5 concludes the study.

2 Related work
2.1 Threshold-based discriminant methods

In the early days, researchers employed simple features such as
color, shape, and texture to detect fruits. Kurtulmus et al. (2011)
developed a method for detecting and counting green citrus fruits in
natural environments using color images. They introduced a novel
“eigenfruit” approach that incorporated color, circularity, and Gabor
texture analysis to identify the fruits. Then, a shifting sub-window
technique was applied at three different scales to scan the image and
localize the fruits. In their study, 73% of green fruits were correctly
identified. Ji et al. (2012) established an automatic vision recognition
system to guide apple harvesting robots. Images of the apples were
captured using a color charge-coupled device camera. An industrial
computer processed and recognized the apples. A vector median filter
removed noise from the color images of the apples, and an image
segmentation algorithm based on region and color features was
applied. The study reported an accuracy of 89% with an average
detection time of 352 ms. Chaivivatrakul and Dailey (2014)
developed a texture-based fruit detection approach. This method
utilizes interest-point feature extraction and descriptor computation.
A low-cost web camera suitable for mechanized systems evaluated 24
combinations of interest-point features and descriptors for
pineapples and bitter melons. The method achieved an accuracy of
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85% for the single-image detection of pineapples and 100% for bitter
melons. Jana and Parekh (2017) proposed a shape-based fruit
recognition approach, which included a pre-processing step that
normalizes fruit images to account for translation, rotation, and
scaling differences. This method then employed features unaffected
by variations in distance, growth phase, and surface appearance of the
fruits for detection. The proposed method was applied to a dataset of
210 images covering seven different fruit classes, achieving an overall
recognition accuracy between 88% and 95%.

Although threshold-based discriminant methods have
demonstrated reasonable effectiveness in detecting fruits, their
performance significantly depends on the appropriateness of the
selected thresholds. This dependence can result in limited model
generalization and diminish detection robustness.

2.2 Traditional machine learning-
based methods

Due to the development of machine learning, many researchers
have attempted to apply it to fruit detection. Methodologies include
Adaboost (Payne et al, 2014), Random Forests (Samajpati and
Degadwala, 2016), and SVM (Behera et al., 2020). Using machine
vision and SVM, Peng et al. (2018) conducted a study on detecting
different classes of fruit, such as apples, bananas, citruses,
carambolas, pears, and pitaya. The process involved using a
Gaussian filter and histogram equalization for image processing,
followed by segmentation with the Otsu method. To extract
features, researchers employed shape-invariant moments and
synthesized the color and shape of fruits. An SVM was then used
to classify and detect the fruits, achieving detection rates of 95% for
apples, 80% for bananas, 97.5% for citrus fruits, 86.7% for
carambola, 92.5% for pears, and 96.7% for pitaya. Jiao et al.
(2020) proposed a detection and localization method for
overlapping apples, which began with the transformation and
segmentation of apple images using the Lab color space and K-
means algorithm. Morphological processes such as erosion and
dilation were applied to delineate the apple edges. In addition, a fast
algorithm calculated the minimum distance from each interior
point to the apple outline, determining the radii by identifying
the shortest distance from the center to the edge. Zhu et al. (2021)
developed a carrot detection method by extracting deep features
from a three-layer fully connected layer of network models and
integrating these with an SVM. Their most effective model
combined ResNetl01 with an SVM, achieving an accuracy of
98.17%. Yu et al. (2021) proposed a method for identifying ripe
litchi using an RGB-D camera in natural environments. Their
approach utilized both color and depth images for litchi
detection. Initially, depth image segmentation was employed to
eliminate redundant image information outside the effective range
of the manipulator. A random forest binary classification model was
then trained using color and texture features to detect litchi fruits,
achieving detection accuracies of 89.92% for green litchis and
94.50% for red litchis.

Although machine learning has significantly advanced fruit
detection, these methods predominantly rely on handcrafted
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features and possess inherent limitations. Their capacity to
abstract features is restricted, confining them to simple scenarios
and limiting their generalization capabilities. In addition, the
models lack end-to-end learning, which diminishes
learning efficiency.

2.3 Deep learning-based methods

In recent years, deep learning-based approaches have emerged as
powerful alternatives. In particular, convolutional neural networks
(CNN) have shown remarkable success in learning discriminative
features directly from raw image data without needing handcrafted
features. CNN-based architectures such as Faster R-CNN (Ren et al.,
2015), YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;
Bochkovskiy et al., 2020; Wang et al., 2023), and SSD (Liu et al., 2016)
have been widely used for fruit detection. Bargoti and Underwood
(2017) proposed a deep model for detecting fruits in orchards, based
on Faster R-CNN (Ren et al., 2015), to detect mangoes, almonds, and
apples. This method achieved an F; score of 90% for mangoes and
apples. Ganesh et al. (2019) utilized Mask R-CNN (He et al.,, 2017) to
detect individual fruits and obtain pixel-wise masks for each detected
fruit in an image, achieving an overall F; score of approximately 89%.
Despite the advancements in two-stage methods that use separate
networks to predict bounding boxes and class probabilities from an
input image, these are not well suited for real-time applications.
Recently, YOLO algorithms have been proposed to address this
issue using a single CNN to predict and classify objects. Hernandez
et al. (2023) developed a tomato detection and classification method
based on YOLOV3-tiny (Redmon and Farhadi, 2018), achieving an F;
score of 90% for detecting ripe tomatoes. Guo et al. (2023) employed
YOLOv7 for the real-time detection of ripe tomatoes, using an
improved RepLKNet (Ding et al, 2022) to enhance the receptive
field. In addition, the head structure of YOLOvV7 was redesigned to
address the issue of low FLOPS, and FasterNet (Chen et al., 2023) was
used to optimize the structure between the Concat and CBS in the
head. ODConv (Li et al., 2022) was added to improve the feature
extraction for small tomatoes, achieving an mAP (0.5:0.95) of 56.8%
with a detection time of 0.0127 s. Zeng et al. (2023) proposed a
lightweight modified YOLOVS5 for real-time localization and ripeness
detection of tomatoes, achieving an mAP of 96.9% with a detection
speed of 42.5 ms. Mbouembe et al. (2023) developed an efficient
tomato detection method based on YOLOV4, incorporating an
improved BottleneckCSP, a modified CSP-SPP, and CARAFE into
the YOLOv4 architecture to enhance the feature expression
capabilities of the model. This method achieved an mAP of 98.5%.
Wang et al. (2024¢) developed a grape detection algorithm based on
YOLOV5s, introducing a dual-channel feature extraction attention
mechanism (Li et al, 2017) and a dynamic snake convolution
(Qi et al, 2023) in the backbone network to improve feature
extraction. The mAP (0.5:0.95) was 69.3%. Gao et al. (2024)
established an improved binocular calyx localization method based
on YOLOV5x to detect kiwifruit, achieving an mAP of 93.5% with a
detection speed of 105 ms per image.

Despite advances in deep learning-based fruit detection, several
challenges remain. Variability in fruit appearance due to uneven
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illumination, overlap, and occlusion poses a challenge for accurate
detection. In addition, the presence of similar-looking objects and
background clutter further complicates this task.

3 Materials and methods
3.1 Image acquisition

The tomato dataset for this study was collected at the
Shouguang Vegetable High-Tech Demonstration Park in
Shandong Province, China between 2017 and 2019. The
acquisition equipment utilized was a Sony digital camera (Sony
DSC-W170, Tokio, Japan) with a resolution of 3648 x 2056 pixels.
This study collected 966 tomato images under various
environmental conditions, including sunlight, shade, overlap, and
occlusion. Considering that the dataset is not large, additional
splitting could lead to a smaller training set, which is prone to
overfitting (Ashtiani et al.,, 2021). Therefore, we divided the data
into training and test sets at a ratio of 3:1, following (Liu et al., 2022;
Jia et al, 2023). The training dataset comprised 725 images
featuring 2553 tomatoes, whereas the test set included 241 images
with 912 tomatoes. Figure 1 displays a selection of example images
captured under various environmental conditions.

3.2 Image augmentation

The study applied data augmentation techniques to the
collected images to enhance the generalization capability of the
trained model and prevent overfitting. This resulted in a final set of
4350 enhanced images, achieved through horizontal flipping,
scaling and cropping, brightness transformation, color balancing
and blurring, as shown in Figure 2. For brightness transformation, a
random factor ranging from 0.6 to 1.4 was employed to modulate
pixel intensity, simulating the effects of diverse weather conditions

FIGURE 1

Tomato samples with different growing circumstances: (A) separated tomatoes,

(E) sunlight case, and (F) shade case.
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on image brightness. Scaling and cropping were performed
according to the methods described by Liu et al. (2020). During
this phase, images without labels were discarded. The Gray World
algorithm (Lam, 2005) was employed for color balancing to mitigate
the impact of lighting on color rendering. Then, random blurring
was applied to the augmented images to mimic the indistinct visuals
that can result from camera motion. Table 1 lists the total number
of resulting images after data augmentation.

3.3 YOLOV7 model

YOLOv7 (Wang et al, 2023) is an anchor-based detection
method among the widely used YOLO algorithms. Like other
iterations in the YOLO series, this version comprises three
components: a backbone network for feature extraction; a neck
network that fuses and refines the extracted features, yielding large,
medium, and small feature sets; and a head network that utilizes
these features from the neck to generate prediction outputs.

YOLOv7 developed a new backbone network called
EfficientRep, which is a redesigned and improved version of the
EfficientNet architecture (Tan and Le, 2019). This new backbone
network includes different modules: E-ELAN, MPConv, and
SPPCSPC. The E-ELAN module is an extended version of the
ELAN (Wang et al,, 2022). The original ELAN was designed to
address the problem of convergence in deep models, which can
gradually deteriorate as the models scale. E-ELAN maintains the
same gradient flow as ELAN, but increases cardinality through
group convolution. The MPConv module strikes a balance between
increasing representational capacity and maintaining
computational efficiency. The SPPCSPC module is a combination
of the SPP module (He et al., 2015) and the CSP module (Wang
et al., 2020). The SPP module captures features at different spatial
resolutions, which is beneficial for detecting objects of various sizes.
The CSP module then facilitates the flow of information between
different stages and concatenates the output of the SPP module with

(B) a cluster of tomatoes, (C) occlusion case, (D) overlap case,
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FIGURE 2

Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) brightness transformation, (E) color

balancing, and (F) image blurring.

the previous stage’s feature maps, creating a richer and more diverse
feature representation.

The neck network combines relevant feature maps from the
backbone network using the PANet architecture (Liu et al., 2018)
for feature fusion. In addition, YOLOvV7 uses the RepConv
technique (Ding et al, 2021) to address the challenges of
detecting objects at various scales by enhancing the
representability of feature maps. This technique also improves the
inference results, although it increases the training time by
introducing gradient diversity and allowing for more complex
feature representations.

The head network uses anchor boxes to predict the objects’
position, size, and class in the input image. Subsequently, a post-
processing technique known as Non-Maximum Suppression
(NMS) is employed to refine the predicted object boxes by
eliminating redundant detections, enhancing the accuracy
of YOLOV7.

3.4 The proposed YOLO-SwinTF

This study introduces the YOLO-SwinTF model, an
advancement based on YOLOV7, to enhance the accuracy and
robustness of tomato detection in complex environments. Figure 3
illustrates the architecture of the proposed YOLO-SwinTF model.
It integrates three innovative modules to enhance the feature
expression capability, improving the detection accuracy.
Initially, ST blocks were incorporated into the backbone
network, enabling the model to capture long-range
dependencies efficiently. Subsequently, the TPN architecture

TABLE 1 The number of training images after data augmentation.

Original Honrizontal Scaling

flip and cropping

transformation

replaced the original PANet in the neck network. This
replacement was achieved by embedding multiple SP modules
within the existing top-down and bottom-up architectures,
facilitating the generation and effective propagation of new
information within the feature maps. Finally, a Focaler-IoU loss
was constructed using a linear interval mapping method. This
method dynamically adjusts its focus based on the difficulty of the
samples, significantly enhancing the detection capabilities of the
model. Further details are provided in Sections 3.4.1 — 3.4.4.

3.4.1 Swin Transformer block

Although CNN networks can effectively extract local features,
they are limited in capturing global features, impacting the final
detection performance. In order to address this limitation, the
current study introduces the attention mechanism of the Swin
Transformer (Liu et al., 2021) to enhance the model’s long-range
dependencies. Unlike traditional Transformer structures, the Swin
Transformer employs a hierarchical attention mechanism. In this
structure, a sliding window performs attention computations
separately at different layers, diverging from the standard multi-
head self-attention (MSA) module. This approach not only
facilitates the extraction of global information through long-
distance modeling but also reduces the computational complexity
of the original attention method. Figure 4 indicates that a Swin
Transformer module primarily comprises a LayerNorm (LN) layer,
a window-based multi-head self-attention (W-MSA) module, a
shifted window-based multi-head self-attention (SW-MSA)
module, a two-layer multi-layer perceptron (MLP) with a GELU
non-linear activation function between layers, and a
residual connection.

Color
balancing

Brightness Blurring

No. of images 725 725 725
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FIGURE 3
The architecture of the proposed YOLO-SwinTF.

v

FIGURE 4
The Swin Transformer blocks.
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Figure 4 shows that two consecutive Swin Transformer blocks
are computed using Equations 1-4 (Liu et al., 2021):

2= W - MSAIN(Z™)) + 2! (1)
Z' = MLP(LN(zY) + 2' @)
M = SW - MSA(LN(Z)) + 2! 3)
2 = MLP(LN(z™Y)) + 21 (4)

where 2! denotes the output of the (S)W-MSA module and Z
denotes the output of the MLP module of the Ith block.

In order to enable the model to capture global information, the
first four CBS modules in YOLOv7 were replaced with four
successive ST blocks, thus expanding the network’s receptive field
and enriching contextual information, as depicted in Figure 3.

3.4.2 Trident Pyramid Network architecture

As discussed by Picron and Tuytelaars (2022), existing feature
pyramid networks (FPN, PANet, and BiFPN) primarily focus on
communication-based processing, enhancing feature fusion
through top-down and bottom-up operations. These networks
can become saturated with communication when multiple
communication-based operations are performed consecutively,
reducing efficiency. Accordingly, this study introduces the TPN
architecture to replace PANet in YOLOv7, which achieves a better
balance between communication-based processing and self-
processing by alternating top-down and bottom-up operations
and parallel self-processing mechanisms.

Specifically, the TPN architecture consists of traditional top-
down and bottom-up operations and parallel SP modules, as
illustrated in Figure 5. An SP module consists of several
consecutive base self-processing layers, each designated as a
bottleneck layer, as depicted in Figure 6.

Multiple SP modules were explicitly embedded between the
original top-down and bottom-up architectures. As shown in

10.3389/fpls.2024.1452821

Figure 3, the SP module was added after the SPPCSPC and
ELAN-W modules in the bottom-up architecture. In addition, the
SP module processed the features again after being merged into the
top-down architecture. In this manner, communication-based
processing is alternated with self-processing, enabling feature
mapping to generate new information for delivery. The TPN
architecture controls the amount of self-processing through the
hyperparameter, the number of layers in the SP module, N, which is
set to 2 in this study.

3.4.3 Focaler-loU-based regression loss

The accuracy of bounding box localization is critical to target
detection performance. However, existing studies often overlook
the impact of the distribution of difficult samples (small targets that
are difficult to accurately localize) and easy samples (targets that are
easy to detect) on bounding box regression. This oversight can
result in suboptimal performance and a lack of robustness in
challenging scenarios. To address this issue, this study introduces
Focaler-IoU (Zhang and Zhang, 2024) to enhance detector
performance in the tomato detection task by effectively focusing
on different regression samples.

Specifically, the Focaler-IoU reconstructs the original IoU loss
through a linear interval mapping method that allows the loss
function to adjust its focus according to the distribution of difficult
and easy samples. The reconstructed Focaler-ToU IoU<* is
expressed as follows (Zhang and Zhang, 2024):

0, IoU<d
ToUPeeter = { JoU=d [ < [oU < u (5)
1, IoU >u

where IoU is the original IoU value, and d and u are both in the
range of [0,1]. Adjusting the values of d and u can guide IoU™“*" to
focus on different regression samples. In this study, d and u were set
to 0.1 and 0.9, respectively. Accordingly, the Focaler-IoU loss
Lipcater—1ou 18 defined below:

BU

fn | @

Pm :K}D\

N

P, »( TD SP

1

) 4
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FIGURE 5

) 4
=~

The TPN architecture. TD, BU and SP denotes top down, bottom up and self-processing modules, respectively.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2024.1452821
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

10.3389/fpls.2024.1452821

Py

FIGURE 6

L + Pl

The architecture of a base self-processing layer. C; and Cs denote convolution operations with kernel sizes of 1 and 3, respectively.

LFacaler—IoU =1 _IOUfocaler (6)

Referring to Zhang and Zhang (2024), the Focaler-IoU loss is
applied to the original CloU-based bounding box regression loss
used in YOLOV7, resulting in a novel regression loss as follows:

Lyeg = Loy + 10U — JoUocater )

Where Lcj,yis expressed as follows (Zheng et al., 2020):

dz(b) bgt)
2

LCIDU =1-IoU + + ﬁV (8)

where d(-) denotes Euclidean distance. b and by, denote the
central points of the predicted and ground truth bounding boxes,
respectively. f represents a positive trade-off parameter and v
quantifies the consistency of the aspect ratio, as detailed below.

4 w, w\?2
V= =) (arctan h—gt — arctan ﬁ) 9)
gt

14

“U-n0)+y (o

B
Combining Equations 7 and 8, we obtain the final regression
loss as follows:

dz(b) bgt)

1 - JoUfoedler 4 Z 22291 4 By (11)

L
2

reg =

This approach enables the loss function to dynamically adjust
its focus between easy and difficult samples, enhancing the
performance of the model in the detection task. Simultaneously,
the adjustment of the loss function allows the model to concentrate
more on positive samples that are difficult to classify and less on
negative samples that are easy to classify. This adjustment effectively
improves the model’s response to the imbalance between difficult
and easy samples.

3.4.4 Loss function

As in YOLOvV7 (Wang et al., 2023), the loss function of the
proposed model consists of three parts, i.e., the regression loss L,
confidence loss Ly, and classification loss L, and is expressed as
follows:

Ltatul = }\‘regLreg + }\'ameconf + }"cl:Lcl: (12)
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where X,eg, kmnf and A, were set to 5, 1, and 1, respectively, to

balance the different losses. Ly, Leons, and Ly, are expressed in

reg>
Equations 11, 13 and 14, respectively.

sxsNB

chmf = Ezlli,j[_cilog C;‘]

i=1j=1

sxsNB ~
>3-4 [-(1 - Clog (1 - C)]

i=1j=1

sxsNB

Ly = Ezli,j

i=1j=1

12 [pi(@)log pi(a) + (1 - p;(a)log (1 - p;(a))] (14)
where s x s denotes the grid cell size, and NB is the number of
bounding boxes. C; and C; represent the confidence of the predicted
box and the confidence threshold, respectively. 4;; equals 1 if the jth
bounding box falls in the ith grid cell and 0 otherwise. p; and p; denote
the predicted and ground truth class probabilities, respectively.

4 Experimental results and discussion
4.1 Experimental environment

Our experiments were conducted on a server with a 43GB Intel
(R) Xeon(R) Platinum 8255C CPU operating at 2.50GHz and an
NVIDIA GeForce RTX 3090 GPU. The server runs Ubuntu 18.04 as
its underlying operating system. The proposed model was
implemented using the PyTorch framework.

The model was trained with an input resolution of 640 x 640
pixels and a batch size of 32. The SGD optimizer was employed for
training with a momentum of 0.937 and a weight decay of 0.0005. A
cosine annealing schedule was applied to control changes in
learning rates, starting with an initial learning rate of 0.001. The
training was carried out over 160 epochs. The hyperparameters
used in this study are listed in Table 2.

4.2 Evaluation metrics
For a thorough evaluation of the performance of the proposed

method, the recall (R), precision (P), and F, score (Sa et al., 2016) were
adopted as evaluation metrics. These metrics are defined as follows.
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TABLE 2 The hyperparameter settings of YOLO-SwinTF.

Hyperparameter Value
Initial learning rate 0.001
Weight decay 0.0005
Momentum 0.937
Batch size 32
Epochs 160
P
pP=— 15
TP + FP (15)
P
R=—— 16
TP + FN (16)
2xPxR
= 17
"7 P+R 17)

where TP, FP, and FN denote true positive (correct detection),
false positive (false detection), and false negative (missing
detection), respectively.

In addition, this study employed Average Precision (AP)
(Everingham et al., 2010) to assess the overall performance of the
detection system. AP is defined as follows:

AP = E(rnﬂ - rn)Pinterp(rnﬂ) (18)

max p(7) (19)

intery(Tns1) =
pmterp n+l P

where p(7) is the measured precision at a recall level of 7.

4.3 Ablation study

This study integrated three components, ST block, TPN, and
Focaler-IoU, into the detection model to enhance its performance.
An ablation study was conducted to assess the effectiveness of each
modification within the proposed model. The results are presented
in Table 3 and Figure 7. When the ST block, TPN, and Focaler-IoU
are implemented individually, the detection performance improves

TABLE 3 Ablation study on different components of YOLO-SwinTF.

10.3389/fpls.2024.1452821

regarding recall, precision, and AP. Due to the incorporation of the
ST block, recall, precision, and AP increased by 0.49%, 0.23%, and
0.19%, respectively, compared to the original YOLOv7 model. This
improvement results from the ability to learn global contextual
features by establishing long-range dependencies. Including TPN
raised the F; score and AP by 0.45% and 0.36%, respectively.
Replacing the original IoU with Focaler-IoU led to increases in
the F; score and AP of 0.28% and 0.31%, respectively, attributed to
the effectiveness of the reconstructed regression loss in handling
difficult small targets. The simultaneous use of the ST block and
TPN in the model resulted in the F; score and AP of 95.81% and
98.33, increases of 0.51% and 0.35% over using the ST block alone,
and 0.42% and 0.18% over using TPN alone. Combining the ST
block and Focaler-IoU yielded an increase of 0.21% in both F, score
and AP compared to using the ST block alone. When the TPN
module was paired with the Focaler-IoU, the F; score and AP
reached 95.71% and 98.20%, improvements of 0.32% and 0.05%
over using TPN alone and 0.49% and 0.1% over using Focaler-IoU
alone. Ultimately, integrating all three modules simultaneously
enabled the proposed model to achieve optimal detection
performance, with F; score and AP reaching 96.22% and 98.67%,
respectively. Therefore, the effectiveness of the three enhancement
methods - ST block, TPN, and Focaler-IoU-based regression loss —
is verified.

4.4 Comparison of different models

A comparative study was conducted alongside leading detection
algorithms currently utilized in the field to assess the effectiveness of
the newly proposed YOLO-SwinTF model. This study included
sophisticated models such as Faster R-CNN (Ren et al, 2015),
CenterNet (Zhou et al., 2019), YOLOv4 (Bochkovskiy et al., 2020),
YOLO-Tomato (Liu et al., 2020), YOLOv5 (Jocher, 2020),
TomatoDet (Liu et al., 2022), YOLOv7 (Wang et al., 2023),
YOLOV8 (Jocher et al., 2023), YOLOv9 (Wang et al., 2024b), and
YOLOv10 (Wang et al., 2024a). Among these models, Faster R-
CNN belongs to the two-stage detection models, whereas the others
belong to the single-stage detection models. In addition, CenterNet
and TomatoDet are categorized as anchor-free models, while the
remaining models rely on anchors for detection. The

ST Block TPN Focaler-loU Recall (%) Precision (%) Fy1 (%) AP (%)
94.63 95.25 94.94 97.79
v 95.12 95.48 95.30 97.98
v 95.37 95.41 95.39 98.15
v 95.05 95.40 95.22 98.10
v v 95.81 95.82 95.81 98.33
v v 95.42 95.60 95.51 98.19
v v 95.72 95.70 95.71 98.20
v v v 96.27 96.17 96.22 98.67
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FIGURE 7
PR curves of the major components of YOLO-SwinTF for ablation study.

hyperparameters used for the comparative study, as specified in the
original papers (Ren et al., 2015; Zhou et al., 2019; Bochkovskiy
et al., 2020; Jocher, 2020; Liu et al., 2020, 2022; Jocher et al., 2023;
Wang et al,, 2023, 2024a, b), are listed in Table 4. Table 5 displays
the detection performance metrics for all detection models,
including recall, precision, F; score, AP, and average detection
time. Precision-recall (PR) curves are illustrated in Figure 8.
Table 5 shows that the proposed model outperforms other
methods in all detection metrics, with the exception of detection
time. In particular, the YOLO-SwinTF model excels in the F; score
and AP, outperforming the second-ranked YOLOV10 by 0.53% and

0.21%, respectively. This improvement primarily benefits from
integrating the attention mechanism, TPN architecture, and
Focaler-IoU-based loss. However, in terms of detection speed, the
YOLO-SwinTF model is 12 ms slower than YOLOVI10, primarily
due to YOLOV10’s elimination of the post-processing step involving
NMS, facilitated by the introduction of dual label assignments. This
finding paves the way for our future research. Compared to the
baseline model, YOLOv7, the YOLO-SwinTF model shows
increases of 1.64% in recall, 0.92% in precision, 1.28% in F; score,
and 0.88% in AP, demonstrating the effectiveness of the integrated
modules in YOLOv7. The average detection time of the proposed

TABLE 4 The hyperparameter settings of different algorithms for comparison.

Initial Learning rate

decay

Epochs

Models Batch size Momentum Weight
Faster 16 0.9 5% 107
R-CNN :
CenterNet 4
32 0.9 10
TomatoDet
YOLO- »
32 0.9 5% 10
Tomato
YOLOv4
YOLOVS 32 0.937 5% 107
YOLOv7 ’
YOLOVS8
YOLOV9 4
YOLOVIO 32 0.937 5% 10

learning rate  decay strategy

Divided by
10 after
90 epochs

107 120

Divided by
10 after
90 and

120 epochs

125x107* 140

Divided by
10 after
60 and

90 epochs

160

107 Cosine annealing 160

107 160

Linear decay
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TABLE 5 Tomato detection results of different algorithms.

Methods Recall Precision Fqy AP
(VA (VA] (VA] (VA
CenterNet 91.56 92.98 9226 = 9575 32
Faster 91.78 92.89 9233 | 94.37 231
R-CNN
YOLOv4 92.76 94.11 9343 | 9391 25
YOLO- 93.09 94.75 93.91 | 96.40 54
Tomato
YOLOVS 93.64 94.57 9410 | 97.79 22
TomatoDet 94.30 95.77 95.03 | 98.16 35
YOLOvV7 94.63 95.25 9494 | 97.79 15
YOLOVS8 95.06 95.59 9532 | 97.95 12
YOLOvV9 95.19 95.71 95.45 98.21 12
YOLOV10 95.55 95.84 95.69 | 98.46 9
Proposed 96.27 96.17 9622 | 98.67 21

model is 21 ms per image, fulfilling the requirements for real-time
tomato detection in complex environments.

4.5 Network visualization

The Grad-CAM technique (Selvaraju et al., 2017) was
employed to visualize the features of raw images to illustrate the
superiority of the proposed YOLO-SwinTF intuitively.
Specifically, ten images from the tomato dataset were selected,
and visual experiments were conducted, as shown in Figure 9. The

10.3389/fpls.2024.1452821

experimental results demonstrate that the image feature extractor,
enhanced by the ST block, can capture global information by
modeling long-range dependencies and extracting the most
significant descriptive content from the raw samples. This
capability is primarily attributed to the multi-head self-attention
mechanism, which excels in capturing semantic information. In
addition, the incorporation of TPN architecture facilitates a better
balance between communication-based processing and
self-processing, resulting in generating new information
for propagation.

4.6 Performance of the proposed model
under different lighting conditions

The tomato dataset used in this study was divided into
sunlight and shade groups to evaluate the detection performance
of the proposed model under different lighting conditions. Of all
the test data, 425 tomatoes were in the shade, while the remaining
487 tomatoes were under sunlight. We used the correct
identification rate (or recall), false identification rate, and
missing rate as the evaluation metrics. The falsely identified
tomatoes refer to the detected tomatoes that are actually
background, and the term ‘missed tomatoes’ denotes tomatoes
that the model did not detect. The detection results are listed in
Table 6. As shown in Table 6, under sunlight conditions, 470 out
of 487 tomatoes were correctly detected, with a detection rate of
96.51%. For the shade condition, the detection rate was 96.00%. In
addition, under sunlight conditions, some backgrounds were
incorrectly identified as tomatoes, with a total of 17 such
instances, resulting in an incorrect identification rate of 3.49%.
Under the shade condition, the false identification rate was 4.23%.

1.0
09
o 0.8 Faster R-CNN
:% —— CenterNet
8 —— YOLOvV4
= 0.7 =—— YOLO-Tomato
—— YOLOvVS
— TomatoDet
0.6 =—— YOLOv7
YOLOvV8
—— Proposed
0.5 ! !
0.5 0.6 0.7

FIGURE 8
PR curves of different detection algorithms.
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FIGURE 9
Visual features of images from the tomato dataset.

An analysis of the results indicated that these false identifications
typically occurred when the tomatoes were similar in shape and
color to the background. The above results show that the detection
performance of the proposed model is comparable under both
sunlight and shade conditions, verifying the robustness of the
model to illumination variations. The detection results are shown
in Figure 10.

4.7 Performance of the proposed model
under different occlusion conditions

This study also evaluated the detection performance of the
proposed model under different occlusion conditions, which are
common in real environments. According to the degree of
occlusion of the tomatoes by other objects, tomato data can be
categorized into slight and severe occlusion cases. Severe occlusion

10.3389/fpls.2024.1452821

is defined as the tomatoes being more than 50% occluded by
leaves, branches, or other tomatoes, and conversely, they are
recognized as slight cases, as defined by Liu et al. (2020). We
used the same performance evaluation metrics as in the
experiments under different lighting conditions. Table 7 lists the
test results for different occlusion conditions. As shown in Table 7,
588 out of 609 tomatoes were correctly identified in the slight
occlusion condition, with a detection rate of 96.55%, slightly better
than in the severe occlusion condition. The false identification
rates in the slight and severe occlusion conditions were 3.45% and
4.61%, respectively, indicating that overlap or occlusion can affect
the model’s detection performance. Almost all tomatoes can be
detected when the degree of overlap or occlusion is not very
severe. The semantic loss of images resulting from overlap or
occlusion can be compensated by the model’s attention
mechanism and the implicit contextual information mining of
hierarchical feature extraction. The model’s performance in

TABLE 6 Performance of the proposed model under different lighting conditions.

Illumination  Tomato Count Correctly Identified Falsely Identified Missed
Amount REICNVA) Amount Rate (%) Amount Rate (%)
Sunlight 487 470 96.51 17 3.49 17 3.49
Shade 425 408 96.00 18 423 17 4.00
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FIGURE 10

Some examples of the detection results under different lighting conditions: (A-C) sunlight conditions, and (D-F) shade conditions.

TABLE 7 Performance of the proposed model under different occlusion conditions.

Occlusion Tomato Count Correctly Identified
Condition
Amount REYCN )
Slight case 609 588 96.55
Severe case 303 290 95.71

Falsely Identified Missed
Amount Rate (%) Amount Rate (%)
21 3.45 21 3.45
14 ‘ 461 13 429

FIGURE 11

Some examples of detection results under different occlusion conditions: (A-C) slight cases and (D-F) severe cases.

detecting overlapping and occluded tomatoes can be further
improved by explicitly modeling the contextual environment of
tomatoes. Figure 11 shows some of the detection results.

5 Conclusion

This study proposes a YOLO-SwinTF model designed to
enhance the feature expression capabilities of YOLOV7 to achieve

Frontiers in Plant Science

accurate tomato detection in complex environments. Initially, the
backbone network of the proposed framework incorporates Swin
Transformer modules to represent global information by modeling
long-range visual dependencies. Subsequently, in the neck network,
the TPN architecture replaces the PANet to better balance
communication-based processing and self-processing, generating
new information for delivery in the feature map. Finally, a novel
regression loss based on Focaler-IoU is constructed in bounding
box regression to allow the loss function to dynamically adjust its
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focus between easy and difficult samples, enhancing the model’s
detection performance.

Extensive experiments are conducted to verify the performance
of the proposed method. The F; score and AP of the proposed
YOLO-SwinTF model reached 96.22% and 98.67%, respectively,
surpassing other state-of-the-art detectors. Ablation studies are
performed to verify the effectiveness of each modification. In
addition, the model demonstrates strong robustness in detecting
tomatoes under various illumination and occlusion conditions. The
experimental results confirm the proposed model is highly suitable
for tomato detection in complex environments.

In the future, the ripeness information of tomatoes at different
growth stages will be utilized to achieve multi-stage tomato
detection. In addition, we plan to implement explicit context
modeling for tomatoes to improve the detection performance of
overlapping and occluded tomatoes.
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Introduction: Chinese Herbal Medicine (CHM), with its deep-rooted history and
increasing global recognition, encounters significant challenges in automation for
microscopic identification. These challenges stem from limitations in traditional
microscopic methods, scarcity of publicly accessible datasets, imbalanced class
distributions, and issues with small, unevenly distributed, incomplete, or blurred
features in microscopic images.

Methods: To address these challenges, this study proposes a novel deep learning-
based approach for Chinese Herbal Medicine Microscopic Identification (CHMMI).
A segmentation-combination data augmentation strategy is employed to expand
and balance datasets, capturing comprehensive feature sets. Additionally, a
shallow-deep dual attention module enhances the model's ability to focus on
relevant features across different layers. Multi-scale inference is integrated to
process features at various scales effectively, improving the accuracy of object
detection and identification.

Results: The CHMMI approach achieved an Average Precision (AP) of 0.841, a
mean Average Precision at loU=.50 (mAP@.5) of 0.887, a mean Average Precision
at loU from .50 to .95 (mAP@.5:.95) of 0.551, and a Matthews Correlation
Coefficient of 0.898. These results demonstrate superior performance compared
to state-of-the-art methods, including YOLOV5, SSD, Faster R-CNN, and ResNet.

Discussion: The proposed CHMMI approach addresses key limitations of traditional
methods, offering a robust solution for automating CHM microscopic identification.
Its high accuracy and effective feature processing capabilities underscore its
potential to modernize and support the growth of the CHM industry.

Chinese herbal medicine, deep learning, attention mechanism, cell recognition,
data augmentation
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1 Introduction

Chinese Herbal Medicine (CHM) is a cornerstone of traditional
Eastern healthcare and has been integrated into disease treatment.
With roots deeply embedded in ancient Chinese science, CHM
symbolizes Eastern medicine’s cultural heritage and underscores a
comprehensive medical paradigm that has garnered global
recognition for its efficacy. This acknowledgement has notably
surged during the COVID-19 pandemic, highlighting the potential
of CHM in contributing to contemporary medical practices and
prompting a broader international acceptance and trust in its
remedies. The burgeoning trust in CHM has catalyzed a substantial
expansion of its market, with recent data indicating an annual output
reaching 4,555 million tons and daily testing frequencies surpassing
22 million instances. CHM includes plant, animal, and mineral
medicines, and according to the Chinese Materia Medica, there are
8,980 kinds of herbs in total. With the addition of medicines used by
ethnic minorities, the number of varieties has reached more than
28,000 so far (Li, 1999). These figures reflect the growing reliance on
CHM for healthcare purposes and underscore the potential of the fast
inspection market within this domain. However, the predominant
methodologies employed for CHM identification, particularly
through traditional manual microscopy, present numerous
challenges. These methods are labor-intensive, require extensive
expert knowledge, suffer from low throughput due to the
microscopic equipment’s limited field of view, and are prone to
human error from tester fatigue, potentially leading to misjudgments.

There are four traditional identification methods for CHM: original
plant (i, animal) identification, character identification, microscopic
identification, and physical and chemical identification. Original plant
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FIGURE 1
Challenges in Chinese herbal medicine microscopy identification.
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(i.e., animal) identification Yin et al. (2019) was performed by observing
the appearance of plants, animals, and minerals in morphological form
and classifying herbs using knowledge of taxonomy. Character
identification Thonglkhao et al. (2020) was carried out by eyes, hand,
nose, mouth taste, water test, fire test, and other simple ways to identify
medicinal materials. Microscopic identification Ichim et al. (2020) uses
microscopy to observe tissue structure, cell shape, and the features of
inclusions of medicinal herbs to determine the nature of cell walls and
cell inclusions or the distribution of active ingredients of certain species
in tissues, and finally to achieve the identification of authenticity of
herbal medicines. Physical and chemical identification Peng and Tsa
(2020) is to use certain physical, chemical, or instrumental analysis
methods to identify the authenticity, purity, and quality of traditional
Chinese medicines. Generally, the first three conventional identification
techniques rely primarily on abundant working experience, making
distinguishing similar or analogous substances difficult.

However, physical and chemical identification is a highly
advanced technique, particularly tedious, requiring specialized
equipment and high costs. The need for an advanced, reliable,
and less subjective method is evident, particularly to keep pace with
the increasing scale of CHM testing and support the industry’s
growth and modernization efforts.

The development of artificial neural networks has opened up
new avenues for image recognition, and deep learning-based
methods have shown great success in various applications Chen
et al. (2022); Jiang et al. (2022). As shown in Figure 1, several key
challenges hinder the development of automated CHM microscopic
identification systems:

1) Data collection difficulties and class imbalance: We found
no publicly available herbal microscopic image datasets after
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reviewing the literature and searching search engines. CHM image
datasets often exhibit significant class imbalance, where certain cell
types or features are underrepresented. This can lead to biased
models that perform poorly on rare classes.

2) Small and Uneven Features: CHM microscopic images
contain small and unevenly distributed features, making it
difficult for traditional object detection algorithms to locate and
classify them accurately.

3) Incomplete and Blurriness Cell Structures: The grinding
process used to prepare CHM samples can damage cell structures,
resulting in incomplete or ambiguous features that further
complicate identification.

This paper proposes a novel methodology, CHMMI, which
innovatively applies a segmentation-combination method for data
augmentation, allowing the model to capture more comprehensive
feature sets from the available microscopic images. Furthermore, by
integrating attention mechanisms, CHMMI enhances the model’s
focus on relevant features across different layers, thereby improving
the accuracy of CHM identification. Finally, features across multiple
scales and dimensions effectively detect and identify herbal
microscopic images. The contributions of this paper can be
summarized as follows:

* We propose a data augmentation strategy for generating
more datasets by random cutting and random combination
for the problem that a single image in CHM micrographs
includes many different cells, which can extend and balance
the datasets and provide a solid foundation for the training
and prediction of the actual model.

* We develop a shallow-deep dual attention module that
effectively captures valid auxiliary information from
different channels in shallow and deep layers. This
facilitates the processing of small, uneven features and
incomplete and blurry cell structures in CHM.

* In the final prediction stage, we integrate three features with
different object scales through a multi-scale inference
module to predict objects in the image.

*  We evaluate the performance of CHMMI through a series
of comparison experiments with existing state-of-the-art
approaches, such as YOLOv5 Zhu et al. (2021), SSD Liu
et al. (2016), Faster R-CNN Khan et al. (2022), and ResNet
He et al. (2016). The experimental results demonstrate that
CHMMI achieves higher accuracy than these approaches,
highlighting its potential for practical application in CHM
microscopic identification.

2 Related work

Image recognition has significantly advanced by integrating
deep learning techniques, predominantly categorized into one-
stage and two-stage detection algorithms. These methodologies
have been extensively employed across various sectors, including
healthcare, autonomous driving, and precision agriculture,
progressively encompassing microscopic image analysis for CHM.
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2.1 Deep learning-based image
recognition methods

Several image recognition approaches based on deep learning
have been proposed, including two-stage detection algorithms (e.g.,
Faster RCNN, SSD) and one-stage detection algorithms (e.g.,
RetinaNet, YOLO). These algorithms have achieved state-of-the-
art performance in various image recognition tasks, such as face
detection, object detection, and image classification. For example,
Sun et al. (2018) improved the state-of-the-art Faster RCNN
framework by combining several strategies, proposed a new face
detection scheme using Deep Learning, and achieved the state-of-
the-art detection performance on the well-known FDDB face
detection benchmark evaluation. Zhai et al. (2020) proposed an
improved SSD object detection algorithm based on Dense
Convolutional Network (DenseNet) and feature fusion; the
algorithm replaces the original backbone network VGG-16 of
SSD with DenseNet-S-32-1 to enhance the feature extraction
ability of the model. Wang et al. (2020) proposed an automatic
ship detection model based on RetinaNet, the model solves the
problem that ships have multi-scale shape features in SAR images
due to the diversity of SAR imaging patterns and the diversity of
ship shapes, resulting in poor recognition rates. Yu et al. (2021)
proposed a Deep Learning model named YOLOv4-FPM to realize
real-time detection for bridge cracks by unmanned aerial vehicles.
Yan et al. (2021) proposed an improved yolov5-based lightweight
apple target detection approach for apple picking robots to address
the problem that existing apple detection algorithms cannot
distinguish between apples obscured by tree branches and apples
obscured by other apples, leading to picking failure. Kim et al.
(2022) proposed an approach with Maritime Dataset on modified
YOLO-V5 with the SMD-Plus, the approach solves the problem of
poor recognition rates due to the presence of noisy labels and
imprecisely positioned bounding boxes in SMD.

The YOLO series of algorithms have been widely used in
various applications, including object detection, pedestrian
detection, and facial recognition. YOLOV5, in particular, has been
shown to be effective in detecting objects in images with varying

sizes, scales, and orientations.

2.2 Microscopic image recognition for
Chinese herbal medicine

In microscopic image recognition for CHM, researchers focus
on several challenges, including the uneven distribution of sample
classes and small differences between classes, stereoscopic features
of cells, and the effect of background color on recognition rate.

For the first type of problem, Wang et al. (2020b) used
techniques such as dynamic ReLU function and multi-channel
color space to use Xception with obvious classification effect as
the base network, and replaced the static ReLU in the network with
dynamic ReLU so that each small sample has a unique ReLU
parameter. For the second type of problem, Ying et al. (2012)
analyzed the differences in the characteristics of cross-sections and
powders of stems and leaves of two herbs, Buddleja albiflora Hemsl
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and Buddleja davidii Franch, which provided important criteria for
the recognition of these two herbs. Ye et al. (2014) used a method of
fusion of coaxial X-ray and micro-CT imaging techniques for three-
dimensional nondestructive in situ microscopic imaging of the
microscopic image of Amomi Rotundus Fructus and Alpiniae
Katsumadai Semen seeds. This method obtained information on
the microscopic image’s internal microstructure and different cross-
sectional orientations. For the third type of problem, Wang et al.
(2017) used MATLAB software to program the stitching of the
cross-sectional tissue images of the CHM Achyranthes bidentata
and Cyathula officinalis. The features such as texture, color, and
invariant moment of the microscopic image were extracted to
recognize the two herbs effectively. Wang et al. (2020a) used a
multi-channel and improved attention method to stitch the
microscopic image data of 34 herbal catheters with images of
different color spaces of the images themselves before inputting
them into the network, and the method effectively improved the
accuracy of recognition.

The above work mainly focuses on researching a single
problem. However, three types of problems simultaneously exist
in detecting CHM microscopic images. Our CHMMI method
shows promising results.

3 Problem statement

CHM identification relies on the microscopic examination of
herbal powders to verify their authenticity. Each herb can be
identified by specific cellular structures, termed “feature cells”, as
illustrated in Figure 2. For example, identifying Scutellaria

CHM Status

SB: Phloem fibres, Stonecells, Corkcells, Vesssels, Xylary
fibres,Starch granules.

10.3389/fpls.2024.1442968

baicalensis requires detecting six distinct feature cells in
microscopic images. We believe that the features of herbal
microscopic images have a direct relationship with the accuracy
of cell recognition. Therefore, we formulate the problem: How can
we achieve automated herbal microscopic identification on an
insufficient data-level scale and with an unbalanced distribution
of sample data?

To systematically approach the problem, we define the terms
and notations used in this study: Given the dataset of microscopic
images X and their corresponding annotations Y, the objective is to
develop a fitted model f(X) that accurately identifies and classifies
the feature cells in new, unseen microscopic images of CHM.

Let X= {X,,X,,...
microscopic images used in the dataset, where each image X; may

,Xi,....XN} represents the set of

contain one or more cell features and N is the total number of
images. Associated with each image are target bounding boxes Y =
(Y1, Y, ...,
bounding boxes indicating the location of feature cells within the

Y;,...,Yn}, where each Y; contains one or more

image X;. For each feature cell j in image X;, the bounding box is
represented as Yf = {[x{l,)lfl}, [xﬁz,yfj} and [sz:p)’{l} are the
coordinates of the upper-left and lower-right corners of the
bounding box, respectively.

4 Methods

This section presents three main modules: the Microscopic
Image Data Augmentation (MIDA) Module, the Shallow-Deep
Dual Attention (SDDA) Module, and the Multi-scale Inference
(MI) Module, as shown in Figure 3. These modules are designed to
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FIGURE 2

Quality testing process of herbal medicine by feature cells.
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improve the accuracy and reliability of microscopic image analysis
in the study of Chinese herbal medicine.

4.1 Microscopic image data
augmentation module

The MIDA module is used to augment and balance the available
dataset for training and predicting herbal microscopic images. Our
MIDA module associates some of the images with features that are
only partially or partially clear, enhancing the representation of
specific cell types or features. The detailed steps of MIDA are listed
as follows:

. Random Selection: Randomly select two images from the
original dataset, such as Figures 4A, B.

10.3389/fpls.2024.1442968

rotation. These techniques enhance the dataset’s diversity
further, enabling the model to generalize better across
unseen images during inference.

4.2 Shallow-deep dual attention module

The SDDA module addresses several prevalent issues in the
microscopic examination of CHM cells, such as the uneven
distribution of cells with distinct morphological features and
incomplete and blurry cell structures. This module integrates two
attention mechanisms: the Shallow Channel Attention Mechanism
(SCAM) and the Deep Channel Attention Mechanism (DCAM).

4.2.1 Shallow channel attention mechanism

2. Horizontal Segmentation: Each image is segmented into The core concept of SCAM is to address the problem of uneven
two halves along the horizontal axis. cell distribution in CHM cell images by assigning more weights to
3. Recombination: Two distinct segments are chosen and  cell information with significant morphological features while
stitched together to form four new images from the pool of  jgnoring unimportant feature information, thus improving the
segmented halves. This ensures that the resultant image  jmage feature recognition rate. The SCAM mechanism consists of
differs from the original images (a) and (b), thus enhancing  three main components: Squeeze, Excitation, and Scale, as shown in
feature representation and diversity. Figure 3A. The Squeeze operation performs a global average
4. Augmentation Techniques: Beyond simple recombination,  pooling on the image features to compress the features and
MIDA incorporates advanced image processing techniques  reduce the dimensionality. The Excitation operation predicts the
inspired by YOLOVS5, such as mirroring, translation, and  jmportance of each channel using a gating mechanism of the
MIDA SDDA mI Bx
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FIGURE 3

Network structure of CHMMI. MIDA is allowed to expand and balance the existing herbal microscopic image dataset. SDDA better captures cell
features in the microscopic examination of CHM cells. Ml integrates and analyzes features across multiple scales and dimensions intelligently to

make final decisions.
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Sigmoid form, which enables the network model to learn the
importance of each channel automatically. Finally, the Scale
operation outputs the resulting 1 x 1 x C real numbers with the
original feature images, where C is the number of channels. The
specific implementation of the SCAM module is given as follows:

Firstly, the input E is transformed through a series of
convolution operations to obtain the features U. Use V = [vl, vy,
...,¥¢| to denote a series of convolution kernels, where v denotes
the parameters of the cth layer convolution. That is, the output
feature U = [uy,u,, ..., uc] can be expressed as follows:

uE:vC*E:iVé*Es 1)
§-1
where * denotes the convolution operation V¢ denotes the cth
convolution kernel of the sth input, ES denotes the sth input.
Secondly, a global average pooling Zaidi et al. (2022) is
performed by the Squeeze operation in the SCAM module for the
image features U, intending to compress the image features U. The
compressed image feature becomes a one-dimensional real number
z, and z is denoted as the residual channel statistic. Suppose the
length of the output is set to ¢, Z, = [z1,2; ... ... ,z.), (x,y) denotes
the size is the feature of W s H, x is the horizontal coordinate and y
is the vertical coordinate. That is, the cth element of z can be given
by is expressed as:

1

= muc(x)}’) (2)

Zc

Immediately after, the importance of each channel is predicted
by the Excitation operation in the SCAM module using a gating
mechanism of the Sigmoid form to obtain the nonlinear
relationship between the different channels. Assuming that W, &

R, W, € R are two different fully connected layers, r is the
dimensionality reduction rate when r is small, the global
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information of the upper layer can be better preserved, but the
computational cost will be relatively increased. To balance
propagation speed and detection accuracy, refer to SENet Wang
and Yoon (2021) and set r to 16. The final output parameter of the
Excitation operation is the weight @ of each feature channel, and @
can be expressed as follows:

w = (W, x 8(W, x 2)) 3)

where, o is the Sigmoid function, é is the ReLU
activation function.

Finally, the resulting 1 x 1 x C real numbers are output with the
original feature images by the Scale operation in the SCAM module.
The formula is listed as follows:

E‘C = WU, (4)

where Ec = [¢,&),...,¢] denotes the product of the
corresponding pixel points in the channel between the image
feature u, © R and the scalar @,. The Scale operation enables
the network model to automatically learn the importance of each
channel, thus enhancing the recognition of image features.

4.2.2 Deep channel attention mechanism

The DCAM module subtly enhances the feature representation
extracted from the cells by adaptively recalibrating the channel
feature response to address the CHM’s incomplete and blurriness
cell structure. The core of DCAM lies in the clever use of the ECA
attention mechanism to function at deeper layers of the network,
especially at the level where the semantic information is becoming
progressively more abstract and where information localization is
critical in accuracy. This is particularly beneficial in the context of
the CHMMI network structure, where the fusion of features across
different dimensions is critical for achieving high
detection performance.
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In the CHMMI network, the DCAM is strategically positioned
within the ‘Neck’ layer, a critical juncture for feature fusion and
refinement. This layer utilizes architectures like the Path
Aggregation Network (PAN) and Feature Pyramid Network
(FPN) to effectively amalgamate rich locational details from
shallow layers with deeper, semantically strong features. The goal
is to enhance the upward and lateral flow of information across the
network, ensuring that each level receives a balanced mix of depth-
specific features. The specific implementation of the DCAM module
is given as follows:

The Neck layer has three different dimensional feature outputs
towards the Prediction layer, namely low (E", medium (E™), and
high (E"). Taking E" as an example, E" can be expressed as follows:

E'=E+f+g®E"+g) +d (5)

where + denotes the serial processing of features. @ denotes
tensor stitching, assigning weights to the input features at different
levels. f denotes the processing of input features by the SPPF
module, g denotes the processing of input features by the CBS
module, and d denotes the processing of input features by the
C3_1_F Zhu et al. (2021) module.

The DCAM module modifies the conventional channel
attention by implementing a three-step process—Squeeze,
Convolve, and Scale—tailored to handle multi-dimensional data
more effectively:

Firstly, the input E" is transformed through a series of
convolution operations to obtain the feature U,

Secondly, the global average pooling of the feature U” is
performed using the Squeeze operation to compress the feature
U". The feature U" is compressed into a one-dimensional real
number z. For the cth cell in z, the following is calculated:

ul'(x,y) (6)

1
zZ. =
¢ HxW
Next, to avoid dimensionality reduction, the DCAM module is
implemented by a one-dimensional convolution with a convolution
kernel size of k cross-channel information interaction. The equation
is expressed as follows.

® = 6(C1Dy(z.)) (7)

where, C1D is the one-dimensional convolution Wang et al.
(2019). k is the size of the one-dimensional convolution kernel to
represent the cross-channel range of interactions. k has a feature
mapping relationship with the number of channels ¢, which can be
calculated adaptively by the following equation.

k=w(C) = llog, (O)/y +b/¥ lloaa 8)

where, || 7 ||,44 is the closest odd number to n. Referring to the
experiments in the literature ECA Wang et al. (2019), ¥ and b are
set to 2 and 1. By mapping y; high-dimensional channels have
longer interactions, while low-dimensional channels have shorter
interactions using nonlinear mappings.

Lastly, the obtained weights and the original feature image are
output by the Scale operation in DCAM, and the final residual
features are represented as follows.
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Eb= )

Similarly, the low-dimensional residual features Ei and the
medium-dimensional residual features E¥ can be obtained

4.3 Multi-scale inference module

The MI module is a crucial component of the CHMMI network
and is responsible for effectively detecting and identifying herbal
microscopic images. It intelligently integrates and analyzes features
across multiple scales and dimensions, enabling the model to
capture local and global information from the input images. The
module consists of two main components: feature fusion and
microscopic recognition.

The feature fusion module integrates features from different
scales and channels using a feature pyramid network (FPN),
allowing the model to capture local and global information from
the input images. This is achieved by up-sampling the feature maps
and fusing them with the shallow feature maps, resulting in a richer
feature representation that facilitates accurate identification of
cellular structures.

The microscopic recognition module is responsible for
predicting the presence and location of cellular features in the
input images. This is accomplished by applying a combination of
convolutional and spatial attention mechanisms to focus on
relevant regions of the images. The module outputs a set of
bounding boxes and confidence scores for each predicted feature.
The input herbal microscopic images are meshed, and if there is a
center of the object in the mesh, the mesh is used to predict this
object. The prediction of each grid cell includes information on the
location of the three object-bounding boxes and a confidence level.
An object box corresponds to four position information (x,y,w,h)
and one confidence information. Where x and y denote the location
of the object’s center point, w and h denote the center point’s width
and height from the object’s two sides. Confidence C represents the
predicted object box contains two-fold information about the
confidence of the object and the accuracy of the prediction of this
object box, and the formula is expressed as follows:

C = P,(obj) x IOU (10)

where IOU = (AN B)/(AUB) A denotes the real box, B
denotes the predicted box, IOU,? denotes the intersection ratio of
A and B. when P, (0bj) = 1, it indicates that there is an object in the
image, when P (obj) =0, it indicates that there is no object in
the image.

We use Non-maximum Suppression (NMS) Wu et al. (2020) to
eliminate redundant prediction boxes and filter out high-quality
detection results.

4.4 Training strategy

During the training phase, a three-part loss function is used:
object loss, category loss, and confidence loss.
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The object loss measures the difference between the predicted
and ground-truth bounding boxes. It is calculated using the
following equation:

SxS N .

i=0,j=0

SV ]

i=0j=0

(11)

where S x S denotes the partitioning of the input image into S x
S mesh grids; N denotes a grid responsible for predicting number of
boxes; (x;,y;,w;,h;) denotes the position information of the real
box; (ﬁi,)?i,wi,fz,») denotes the position information of the
LY
the ith network is responsible for predicting object obj is 1,

predicted box; denotes that the jth prediction box of each of
otherwise is 0.

The category loss measures the difference between the predicted
class probabilities and the ground-truth class labels. It is calculated
using the following equation:

; _S><S obj R )
=2 Lt X ((pile) = pile)

i=0 cEclasses

(12)

where, ¢ denotes the number of categories; p;(c) denotes the
probability of the true category; p;(c) denotes the probability of the
predicted category.

The confidence loss was calculated using CIOU Zheng et al.
(2020), and the equation was expressed as follows:

SxS n obj A2 SxS n noobj A
ciou = I,] (Ct - C;) + 2’noabj Iij (Cl - Cz) (13)
i=0 j=0 i=0 j=0

l

where I;-oobj denotes 0 when the jth prediction box of the ith
network is not responsible for predicting an object and 1 otherwise.
Auoopj 18 to reduce the confidence loss of the prediction box for the
non-existent object obj. In this paper, reference paper Wang et al.
(2021) sets Ayyp0pj to 0.5.

The total loss is the weighted sum of the three components of
object loss, category loss, and confidence loss, expressed by the
following equation.

L= alobj + Bl + Vo (14)

where, o, B, v denote the weights of the three loss
components respectively.

10.3389/fpls.2024.1442968

5 Experiments

To evaluate the performance of the proposed CHMMI method
for microscopic image analysis of Chinese herbal medicines, we
conducted a series of comprehensive experiments using our
custom-built dataset. The experiments were designed to assess the
effectiveness of CHMMI for accurately identifying and classifying
different types of feature cells presented in the microscopic images
of Scutellaria Baicalensis(SB) and Magnolia Officinalis(MO).

5.1 Experiment setup

5.1.1 Datasets

Due to the lack of publicly available datasets for microscopic
images of Chinese herbal medicines, we constructed our dataset by
preparing slides of powdered SB and MO. We used a Nikon E200
electron microscope with a 40/0.65 objective and the software
Labeling to label the microscopic image of Chinese medicine
feature cells. The resulting dataset consists of 11,060 microscopic
images containing 12,840 labeled instances of nine distinct types of
feature cells. The distribution of images and labeled instances for
each feature cell type is shown in Table 1. These feature cells include
Fibers, Stone cells, and Oil cells for MO, Phloem fibers, Stone cells,
Corkeells, Vessels, Xylary fibers, and Starch granules for SB.
Figure 5 presents sample images of the nine feature cell types.

To ensure a robust evaluation of the proposed CHMMI method,
the dataset was partitioned into training and test sets following an
8:2 ratio. Furthermore, to rigorously assess the effectiveness of the
CHMMI method and its individual components, we conducted a
five-fold cross-validation experiment on the training dataset. This
involved splitting the training data into five non-overlapping
subsets. Each subset was then used in turn as a validation set
while the remaining four subsets were combined for training.
Applying each of the five trained models to the test set,
generating five sets of prediction results for every test sample.
Implementing a voting mechanism across the five predictions to
determine the final predicted label for each test sample.

5.1.2 Implementation details

We implemented the CHMMI method based on the PyTorch
deep learning framework YOLOV5, training the model on an
NVIDIA GeForce RTX 3090 GPU with 24GB memory. The
model has trained 100 epochs with the Adam optimizer, using a

TABLE 1 Statistics of Chinese medicine microscopic image annotation dataset.

MO SB
Dateset
Fibers  Stonecells Oilcells Phloem  Stonecells Corkcells Vessels Xylary Starch
Images 7555 1662 576 304 156 550 229 13 15
Boxes 9080 1726 644 353 171 580 257 13 16
Images Total 9793 1267
Boxes Total 11450 1390
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FIGURE 5
Sample images of the 9 cell types.

learning rate of 0.001 and a batch size of 16. In our implementation,
we adopted a three-scale anchor system: P3/8, P4/16, and P5/32.
Specifically, the P3/8 scale anchors are designed to detect small
targets, the P4/16 anchors are geared towards medium-sized targets,
and the P5/32 anchors aim to detect large targets. This hierarchical
structure ensures comprehensive coverage of the target size
spectrum within the microscopic images.

5.1.3 Evaluation metrics

To evaluate the CHMMI algorithm’s performance
comprehensively, we select four evaluation metrics: precision,
Recall, Average Precision (AP) curve, Mean Average Precision
(MAP), and Matthews Correlation Coefficient(MCC). These
metrics evaluate the algorithm’s ability to accurately identify and
classify the feature cells present in microscopic images.

Precision denotes the ratio of true positive cases predicted to be
true to all predicted positive cases Liu et al. (2018). It is calculated as:

precision = TP/(TP + FP) (15)

where TP denotes that the predicted value is the same as the
true value, and the predicted value is a positive sample; FP denotes
that the predicted value is different from the true value, and the
predicted value is a positive sample.

Recall denotes the ratio of true positive cases predicted to be
true to all true positive cases. It is calculated as:
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recall = TP/(TP + FN) (16)

where EN denotes that the predicted value is not the same as the
true value and the predicted value is a negative sample.

The AP curve is the area surrounded by the curve in two
dimensions: Precision and Recall. Usually, Precision is higher when
Recall is lower and lower when Recall is higher. That is, the larger
the AP curve, the better the model’s performance.

MAP is a comprehensive evaluation metric focusing on
sequence weights. It has become one of the most important
practical metrics for image recognition problems in recent years.
mAP@.5 indicates that the average AP of all images under each
category is calculated at IoU=0.5, and the higher the value of mAP,
the better the model’s performance.

MCC is an effective and comprehensive evaluation metric
widely used in tasks with unbalanced sample categories, such as
defect detection. It is particularly suitable for performance
evaluation of binary classification models because it integrates the
predictions of the model’s TP, TN, FP, and FN and is thus more
robust than other metrics in evaluating the model’s ability to
distinguish between positive and negative samples. It is calculated
as:

MCC = TP x TN — FP x FEN 17)
" (TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)
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5.2 Comparisons with state-of-the-
art methods

To assess the efficacy of our proposed CHMMI, we compared it
with several widely adopted state-of-the-art image recognition
algorithms. Specifically, we benchmarked our method against
YOLOV5 Zhu et al. (2021), SSD Liu et al. (2016), Faster R-CNN
Khan et al. (2022), ResNet He et al. (2016), FINet Zhang et al.
(2022), YOLOT Liu et al. (2024), and an improved version of
YOLOV5 (Improved_yolov5) Hu et al. (2024). These algorithms
represent diverse architectural paradigms and have demonstrated
exceptional performance across various computer vision tasks,
providing a robust baseline for comparative analysis.

Table 2 presents the quantitative results of the comparative
analysis. As the table shows, our proposed CHMMI approach
outperformed all the state-of-the-art methods across all four
evaluation metrics. Specifically, CHMMI achieved an impressive
AP of 0.841, surpassing the second-best performer, YOLOT, by a
significant margin of 0.013. Furthermore, CHMMI attained the
highest mAP@.5 of 0.887, outperforming the closest competitor,
Improved_yolov5, by 0.006. CHMMI demonstrated its superiority
in the most challenging mAP@.5:.95 metric, achieving a remarkable
score of 0.551, 0.016 higher than the second-best performer,
Improved yolov5. CHMMI performs excellently on the
comprehensive evaluation metric MCC, achieving an outstanding
score of 0.898, surpassing the second-place YOLOT by 0.011.

To provide a visual representation of the performance difference,
we plot the Receiver Operating Characteristic (ROC) curves for both
YOLOv5 and CHMM]I, using thresholds ranging from 0.1 to 1.0.
Figure 6 illustrates these curves, revealing a higher Area Under the
Curve (AUC) value for CHMMI (0.83) compared to YOLOV5 (0.74),
further confirming CHMMT’s superior performance.

In comparison to other CNN models, the CHMMI model has
several advantages. For example, the YOLOv5 model uses a single-
stage detection approach, which may not be suitable for handling
the complexity of microscopic images. The SSD model uses a multi-
scale feature fusion approach, but it may not be able to capture the
contextual information of cells as effectively as the CHMMI model.

TABLE 2 Comparisons with state-of-the-art methods.

Method AP mAP@.5 mAP@.5:95 MCC

YOLOV5 0.803 0.843 0.511 0.753
Zhu et al. (2021)

SSD Liu et al. (2016) 0.781 0.819 0.532 0.798

Faster R-CNN 0.629 0.757 0.521 0.647
Khan et al. (2022)

ResNet He et al. (2016) 0.712 0.823 0.513 0.695
FINet Zhang et al. (2022) = 0.637 0.869 0.524 0.823
YOLOT Liu et al. (2024) 0.828 0.877 0.531 0.887
Improved_yolov5 0.807 0.881 0.535 0.873
Hu et al. (2024)

CHMMI 0.841 0.887 0.551 0.898
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FIGURE 6

ROC Curves for models YOLOvV5 and CHMMI.

The Faster R-CNN model uses a two-stage detection approach, but
it may not be able to handle the issues of uneven cell distribution
and incomplete and blurry cell structures as effectively as the
CHMMI model. The ResNet model uses a residual learning
approach, but it may not be able to capture the complex
relationships between cells as effectively as the CHMMI model.
These results underscore the efficacy of our proposed approach in
accurately detecting and localizing objects under varying degrees of
occlusion and overlap.

In addition, we show the detection results of our CHMMI
model, as shown in Figure 7. As can be seen from the figure,
CHMMI can not only identify different categories of Chinese
medicine feature cells but also accurately detect incomplete and
blurriness cell structures.

5.3 Ablation studies

5.3.1 Effectiveness of different modules

To assess the impact of each proposed module, we conducted a
comprehensive set of ablation studies. Specifically, we systematically
included or excluded the Microscopic Image Data Augmentation
(MIDA), Shallow Channel Attention Module (SCAM), and Deep
Channel Attention Module (DCAM) from our model and evaluated
its performance. We employ a five-fold cross-validation strategy
during the training phase to ensure a robust evaluation and mitigate
the potential impact of data partitioning bias. The training dataset is
divided into five non-overlapping subsets. For each fold, one subset
is held out for validation, while the remaining four subsets are used
for training. This process results in five distinct sets of model
weights (M1, M2, M3, M4, and M5). During the testing phase,
each of the five trained models (M1 to M5) is independently applied
to the test set. This generates five sets of prediction results for each
test sample. To combine these predictions, we implement a voting
mechanism. The final predicted label for each test sample is
determined by selecting the category that received the most votes
across the five individual model predictions.
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FIGURE 7
Visualization of the detection results using CHMMI.

The data in Table 3 demonstrates a clear trend of increasing
model performance as more modules are incorporated. The
inclusion of all three modules (MIDA, SCAM, and DCAM)
results in the highest precision (P), recall(R), mAP@.5, and
mAP@.5:.95. This suggests a synergistic effect between data
augmentation, shallow feature attention, and deep feature
attention mechanisms. The consistent improvement across all
evaluation metrics indicates that the SDDA is vital in enhancing
object detection accuracy. Furthermore, the results show that
including MIDA alone significantly improves the model’s
performance compared to using SCAM or DCAM individually.
This highlights the importance of data augmentation in improving
the model’s ability to detect objects in microscopic images.
Integrating MIDA, SCAM, and DCAM leads to the most
significant improvement in object detection accuracy,
emphasizing the importance of combining data augmentation,
shallow feature attention, and deep feature attention mechanisms.

5.3.2 Effectiveness of microscopic image data
augmentation module

The MIDA module plays a crucial role in enhancing the
performance of our model by addressing the challenges posed by
limited and imbalanced datasets of herbal microscopic images. It is
particularly effective when dealing with images that only partially
demonstrate certain features or cell types. By enhancing the
representation of these specific attributes, we improve our data’s
overall quality and diversity.

To evaluate the effectiveness of the MIDA module, we
conducted extensive experiments by training our model with and
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without the augmented dataset generated by MIDA. The results, as
shown in Table 4, demonstrate the significant impact of MIDA on
the model’s performance metrics. As evident from the table,
including the MIDA module resulted in significant improvements
across all performance metrics. The precision and recall values
increased from 0.831 and 0.808, respectively, without MIDA to
0.854 and 0.835 with MIDA, indicating a substantial enhancement
in the model’s ability to accurately classify cell types and features
while minimizing false positives and false negatives. Moreover, the
mean Average Precision (mAP) values, which comprehensively
evaluate the model’s performance across different confidence
thresholds, also exhibited notable improvements. The mAP@.5,
which measures the average precision at an intersection-over-union
(IoU) threshold of 0.5, increased from 0.843 without MIDA to 0.855
with MIDA. Similarly, the mAP@.5:.95, which averages the
precision values across IoU thresholds ranging from 0.5 to 0.95,
improved from 0.511 to 0.522 with MIDA.

5.3.3 Effectiveness of shallow-deep dual
attention module

The SDDA module represents a significant advancement in
addressing the complex challenges inherent in the microscopic
examination of CHM cells. This module integrates the strengths of
both shallow and deep feature representations within the model. The
heatmaps in Figure 8 provide a visual representation of the impact of
the SDDA module. When only the SCAM is used, the model tends to
focus on less relevant areas, potentially discarding crucial feature
information. Conversely, when only the DCAM is used, the attention
becomes scattered, hindering the model’s ability to focus on the
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TABLE 3 Experimental results using SCAM only, DCAM only, and SCAM+DCAM.

10.3389/fpls.2024.1442968

MIDA SCAM DCAM Model P R mAP@.5 mAP@.5:.95

M1 0.874 0.789 0.834 0.507

M2 0.804 0.809 0.845 0.508

M3 0.811 0.763 0.839 0.509

M4 0.821 0.787 0.812 0.491

M5 0.793 0.830 0.844 0.511

vote 0.831 0.808 0.843 0.511

M1 0.883 0.791 0.842 0.520

M2 0.845 0.811 0.864 0.522

v M3 0.841 0.793 0.840 0.512

M4 0.833 0.801 0.818 0.497

M5 0.799 0.837 0.858 0.517

vote 0.854 0.835 0.855 0.522

M1 0.884 0.811 0.869 0.521

M2 0.821 0.809 0.863 0.518

v M3 0.828 0.849 0.859 0.516

M4 0.825 0.823 0.853 0.497

M5 0.805 0.838 0.850 0.514

vote 0.851 0.831 0.861 0.522

M1 0.875 0.811 0.841 0.509

M2 0.812 0.831 0.852 0.520

v M3 0.859 0.798 0.855 0.530

M4 0.825 0.812 0.847 0.493

M5 0.831 0.846 0.860 0.517

vote 0.856 0.835 0.868 0.528

M1 0.891 0.825 0.878 0.530

M2 0.859 0.815 0.867 0.522

v v M3 0.849 0.849 0.868 0.519

M4 0.842 0.835 0.858 0.504

M5 0.824 0.841 0.861 0.519

vote 0.876 0.844 0.881 0.532

M1 0.902 0.814 0.875 0.529

M2 0.865 0.838 0.877 0.525

v v M3 0.864 0.823 0.857 0.535

M4 0.838 0.826 0.850 0.506

M5 0.835 0.847 0.869 0.527

vote 0.868 0.845 0.879 0.537

M1 0.893 0.821 0.877 0.524

M2 0.863 0.848 0.861 0.538

v v M3 0.866 0.848 0.860 0.537
(Continued)
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TABLE 3 Continued

MIDA SCAM DCAM Model mAP@.5:.95
M4 0.858 0.839 0.849 0.518
M5 0.845 0.857 0.865 0.532
vote 0.873 0.854 0.879 0.541
M1 0917 0.838 0.885 0531
M2 0.897 0.850 0.875 0.549
v v v M3 0.874 0.856 0.883 0.546
M4 0.871 0.849 0.866 0.534
M5 0.861 0.871 0.882 0.543
vote 0.905 0.871 0.887 0.551

The symbol v indicates that the module has been selected.

TABLE 4 Experimental results with and without microscopic image data foreground regions of interest precisely. However, the simultaneous
augmentation module. .
g use of both SCAM and DCAM results in a focused and accurate

Module Name | P R mAP@.5 mAP@.5:.95 attention map, highlighting the model’s ability to detect cells with
diverse morphological features, even incomplete or blurry.

wio MIDA 0831 | 0808 0843 05t Overall, the Shallow-Deep Dual Attention module effectively
w MIDA 0.854  0.835 0.855 0.522 enhances the CHMMI model’s ability to accurately detect and
Original SCAM DCAM SDDA

2000mm

FIGURE 8
Heatmap examples using SCAM only, DCAM only, and SDDA.
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analyze CHM cells by addressing the limitations of individual
attention mechanisms. The combination of SCAM and DCAM
allows the model to focus on relevant features and handle various
challenges in microscopic cell examination, leading to improved
performance and more accurate results.

6 Conclusion

Traditional Chinese Herbal Medicine (CHM) identification
methodologies, such as original plant identification, character
identification, microscopic identification, and physical and
chemical identification, have long been relied upon but present
significant challenges regarding labor intensity, subjectivity, and
limitations in distinguishing similar substances. The rapid growth
of the CHM market and the need for modernization call for more
advanced and reliable identification techniques. Developing deep
learning-based methods, particularly artificial neural networks,
offers a promising solution to automate CHM microscopic
identification. Our proposed methodology, CHMMI, addresses
key challenges in automated CHM identification by combining
segmentation methods with data augmentation and integrating
attention mechanisms to enhance feature recognition and model
accuracy. By effectively capturing small and uneven features and
addressing issues with incomplete and blurry cell structures in
CHM samples, CHMMI outperforms existing state-of-the-art
approaches in experimental comparisons. CHMMI can be
integrated into the quality control processes of CHM
manufacturers. Automating the identification of herbal
components can ensure consistency in raw material selection,
detect adulterants or contaminants, and maintain the purity of
herbal preparations. This application could significantly improve
product quality and safety, potentially reducing the risk of adverse
reactions due to misidentified or contaminated herbs. CHMMI can
accelerate the discovery of new bioactive compounds from
traditional herbal medicines in pharmaceutical research. By
quickly and accurately identifying cellular structures, researchers
can more efficiently screen large numbers of herbal samples,
potentially leading to the development of novel drugs or therapies.

While CHMMI shows superior performance, understanding
why certain features are prioritized over others could be beneficial.
Future research will focus on developing or integrating explainable
Al techniques to provide insights into the model’s decision-making
process, enhancing trust and acceptance in clinical and
regulatory settings.
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DFMA: an improved DeeplLabv3+
based on FasterNet, multi-
receptive field, and attention
mechanism for high-throughput
phenotyping of seedlings
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With the rapid advancement of plant phenotyping research, understanding plant
genetic information and growth trends has become crucial. Measuring seedling
length is a key criterion for assessing seed viability, but traditional ruler-based
methods are time-consuming and labor-intensive. To address these limitations,
we propose an efficient deep learning approach to enhance plant seedling
phenotyping analysis. We improved the DeeplLabv3+ model, naming it DFMA,
and introduced a novel ASPP structure, PSPA-ASPP. On our self-constructed rice
seedling dataset, the model achieved a mean Intersection over Union (mloU) of
81.72%. On publicly available datasets, including Arabidopsis thaliana,
Brachypodium distachyon, and Sinapis alba, detection scores reached 87.69%,
91.07%, and 66.44%, respectively, outperforming existing models. The model
generates detailed segmentation masks, capturing structures such as the
embryonic shoot, axis, and root, while a seedling length measurement
algorithm provides precise parameters for component development. This
approach offers a comprehensive, automated solution, improving phenotyping
analysis efficiency and addressing the challenges of traditional methods.

KEYWORDS

plant seedlings, deep learning, plant seedling phenotyping analysis, DeepLabv3+, DFMA

1 Introduction

“High-Throughput Phenotyping” is a method for rapidly and automatically acquiring
and analyzing large volumes of phenotypic data from plant or biological samples. This
approach utilizes imaging technology, sensors, computer vision, and machine learning to
collect extensive data without disrupting sample growth, thus revealing growth
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characteristics, health status, and physiological changes of the
organisms. This technique is particularly applicable in agriculture
and plant sciences, enabling efficient evaluation of different
genotypes under various environmental conditions, and providing
essential data to support crop improvement and breeding programs.
In recent years, plant phenotyping has emerged as a rapidly
advancing, data-intensive field (Zhao et al, 2019; Yang et al,
2020). Studying plant phenotypes allows for a deeper
understanding of genetic information (Richard et al., 2015;
Holman et al., 2016) and the growth trends of plants. When it
comes to monitoring the growth of plant seedlings, phenotypic
analysis of seedlings becomes particularly crucial. Assessing various
aspects of seedling development often requires the measurement of
specific physical dimensions, with the length of the hypocotyl being
a key phenotypic trait for monitoring and quantifying different
responses (Dobos et al,, 2019). Hypocotyl cells are formed during
embryogenesis and undergo several rounds of cell division to
develop. During seedling growth, the length of the hypocotyl is
no longer determined by cell division but rather by the elongation of
hypocotyl cells (Gendreau et al., 1997). Phenotypic analysis of the
root system, known as Root System Architecture (RSA), is also a
vital indicator for assessing seedling development. RSA refers to the
spatial arrangement of the root system and its components (Lynch,
1995), and its functions include water and nutrient absorption,
storage, as well as anchoring and facilitation of plant-microbe
interactions, such as nodule formation in nitrogen-fixing crops.
Although these features may not be readily apparent during plant
growth, they have a crucial impact on overall plant performance,
particularly for non-tuberous or rhizomatous crops (York et al,
2015). Root system architecture is closely related to a plant’s
competitive advantage in the environment, including nutrient
acquisition (Lynch, 1995; MansChadi et al., 2014), drought
tolerance (Ribaut, 2006; Comas et al., 2013; Fenta et al., 2014;
Wade et al., 2015), waterlogging tolerance (VanToai et al., 2001),
and lodging resistance (Guingo et al., 1998).

In the field of seedling phenotypic analysis, seed viability
testing, and seed germination experiments, parameters such as
germination rate, seedling length, and growth rate are frequently
measured. For instance, Wang Binbin et al. (Wang and Wu, 2022)
conducted a study on the impact of extracellular polysaccharides
from lactic acid bacteria on the germination and stress tolerance of
japonica rice seeds. They performed statistical analysis on
parameters such as germination potential, germination rate, root
length, and shoot length of japonica rice seeds incubated in different
culture solutions at a constant temperature for 7 days. However, this
process required a significant amount of manual measurements.
Similarly, Jiang Yuting et al. (Jiang et al., 2022) investigated the
effects of different particle sizes and concentrations of polystyrene
microplastics (PS-MPs) on the germination and seedling growth of
sorghum seeds to understand the material’s impact on plants. These
experiments also necessitated accurate measurements of
germination, root length, and shoot length. Nevertheless,
traditional manual measurement methods are no longer adequate
to meet the demands of modern agriculture for efficient, precise,
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and automated measurements. Particularly in seed germination
experiments, accurately measuring shoot length has become an
urgent issue. Currently, there is a relatively limited body of research
on methods for measuring shoot length during the seed
germination stage, and there is no widely accepted automated
detection method for measuring root or shoot length during
seed germination.

In recent years, with the continuous progress of artificial
intelligence, computer vision, and other technologies, more and
more researchers have begun to explore how to utilize advanced
technologies such as deep learning to solve problems in the field of
agricultural detection. These studies have proposed a series of deep
learning-based methods for image semantic segmentation and
target detection to address the needs of modern agriculture. For
example, Marset et al. (Marset et al., 2021) proposed a grape bud
detection method based on the Fully Convolutional Network
Mobile Network architecture (FCN-MN), which achieved
improvements in segmentation, correspondence recognition, and
localization, and realized the detection of the number of grape buds,
bud area, and internode length. On the other hand, Yaying Shi et al.
(Shi et al., 2022) achieved significant performance based on the
YOLOV5 family of networks trained on a barley seed dataset, with
the trained YOLOv5x6 model achieving a mean accuracy (mAP) of
97.5% in the recognition of barley seeds of different varieties. The
development and application of these techniques provide new ideas
and solutions to address automated seedling phenotyping, which is
expected to play an important role in modern agriculture.

Considering the need for non-destructive, efficient, accurate,
and consistent measurements for phenotyping rice seedlings,
DeepLabv3+ (Chen et al, 2017) was used in this study as a
baseline model for pixel-level segmentation of seedling images to
extract the seedling’s shoot, radicle, and seed parts. Subsequently,
the shoot and root lengths of the seeds were analyzed in depth by
further length measurement analysis methods. In the field of image
segmentation, the DeepLab family is one of the widely used and
excellent models. DeepLabv3+ has achieved 89.0% and 82.1% test
performance on PASCAL VOC 2012 and Cityscapes datasets,
respectively (Chen et al., 2017), which is accurate enough for
high-precision image segmentation tasks. However, the main
backbone network of this model, Xception, has a large number of
parameters, which consumes a significant amount of GPU memory.
Additionally, the model’s memory footprint is substantial. As a
result, it fails to meet the efficiency requirements for bud growth
detection. To achieve fast and efficient detection, we optimized and
improved the DeepLabv3+ model. We chose the FasterNet (Chen
et al., 2023) network module with PConv as the backbone network
to reduce the computational complexity. At the same time, we
introduced the PSPA-ASPP structure and applied the EMA
attention mechanism (Ouyang et al, 2023) to the network to
improve the network operation speed and segmentation accuracy.
This enables us to realize image segmentation in terms of efficiency
and accuracy and significantly extends the applicability of the
algorithm in practical applications. With this improvement, we
can quickly and accurately recognize sprout root targets on the
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germination plate. After obtaining the target contour, we used a
length recognition algorithm and performed skeleton extraction
based on the sprout-root contour, thus obtaining a high-precision
skeleton of the seed germination and realizing the automated
detection of sprout length and root length.

The goal of this study is to perform detailed phenotyping of rice
seed germination and seedling stages based on deep learning
techniques and high-throughput plant phenotyping methods. By
deeply investigating the phenotypic changes in these critical growth
stages, we can better understand the mechanisms of plant growth,
development, and adaptation to the environment, and provide
strong support for plant breeding and crop improvement.
Meanwhile, this study is also expected to reveal the dynamic
changes in root system structure during plant seed germination
and seedling growth, thus providing new strategies and directions
for improving crop yield and adapting to planting under different
environmental conditions.

The contributions or innovations of this paper are mainly
the following:

(1) A deep-learning-based high-throughput phenotyping tool
for hypocotyls is presented, which is fully automated and
achieves the accuracy of a human expert in length
measurement tasks across various plant species.

(2) Using a germination plate to simulate the growth
environment of rice seeds, images of rice seedlings were
collected under the germination plate. Three common
phenotypic targets—shoots, roots, and seeds—were
selected to produce the dataset.

(3) An efficient plant phenotype segmentation method is
provided, which can achieve efficient segmentation of
crop images at the pixel level.

(4) The FasterNet-DeepLabv3+ (DFMA) semantic
segmentation model is proposed, which reduces the
computational complexity of the network and the impact
of hollow convolutional meshing. It improves detection
efficiency and accuracy, and addresses the problem of
frequent memory accesses and inefficiency caused by
using depth-separable convolution in the original network.

10.3389/fpls.2024.1457360

2 Materials and methods

2.1 Image acquisition and data preparation

The dataset is divided into two parts. The first part is a
homemade rice seedling dataset for training and testing the
model. The second part is the publicly available dataset used to
validate the generalization of the proposed model.

The construction of the self-made rice seedling dataset involves
two main stages, beginning with the setup of the growth
environment. To simulate the natural growth environment of rice
and ensure sample consistency, a custom-designed germination
board was developed for this experiment. Seeds were laid flat on a
black velvet cloth, then gently clamped between two acrylic sheets,
which secured both the cloth and seeds without disrupting the
normal growth process or disturbing their stable positions. The
germination board was placed vertically in an incubator set to a
temperature of 28°C, thus controlling the temperature to provide
optimal conditions for germination. To maintain a moist
environment, water was evenly sprayed onto the seed surface
every 12 hours using a spray bottle. This controlled environment
minimized external disturbances, creating consistent experimental
conditions. The experiment spanned the critical 7- to 14-day
growth period for rice seedlings, during which there are
significant morphological changes, from germination to the
preliminary formation of plant structure, capturing key
characteristics of each growth stage. Consequently, the dataset
contains images of seedlings from various growth stages,
establishing a foundational resource for model development to
recognize growth stage characteristics. A germination board
seedling image is illustrated in Figure 1A.

During the germination and image capture phase, the
experiment ensured stable seedling growth on the germination
board under constant temperature and humidity conditions.
Images were taken using various mobile devices to increase
dataset diversity. All images were captured perpendicular to the
germination board to minimize viewpoint deviation, while the well-
lit laboratory environment ensured high-quality image sources. The
use of different devices introduced natural device noise, attributed

(A)

FIGURE 1

(B)

Homemade dataset germination plate pictures, (A) raw images, (B) mask images
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to sensor variations or light reflections, enhancing both the dataset’s
diversity and its robustness in real-world applications. To ensure
data quality, all images were meticulously reviewed by botanical
experts. A total of 115 healthy rice seedling samples were collected,
spanning the 7- to 14-day growth period, thereby ensuring both
representativeness and diversity in the dataset. In this study,
Labelme open-source annotation software was used for manual
image segmentation of images. The image was divided into four
categories including shoots, roots, seeds and background. In the
segmentation process, the parts of rice seedlings were separated
from the background. For the fluff and secondary roots on the roots,
they were treated as background. In this way, a homemade labeled
dataset with the file suffix “,json” was obtained. Processed by the
program, 115 sets of images were finally obtained. The sample
image is shown in Figure 1B.

The public dataset was created using the Plant Segmentation
Dataset, which was made public on the Kaggle platform by Orsolya
Dobos et al. (https://www.kaggle.com/tivadardanka/plant-
segmentation) in 2019. This dataset contains images of three
seedlings, including Arabidopsis thaliana, Brachypodium
distachyon, and Sinapis alba. The authors manually placed
seedlings of these three plants on the surface of 1% agar plates
and collected images using an EPSON PERFECTION V30 scanner.
Images were saved in “.tif” or “.jpg” format using 800 dpi and 24-bit
color settings. After collection, hypocotyls, cotyledons, seed coats,
and roots were labeled using FIJI and used to create masks to train
the segmentation algorithm. A sample of the dataset is shown
in Figure 2.

2.2 Seedling phenotyping method

2.2.1 FasterNet network model

Some common network models, such as MobileNet (Howard
et al,, 2017), ShuffleNet (Zhang et al., 2017), and GhostNet (Han
et al, 2020), widely utilize Depth-wise Separable Convolution
(DWConv) and Group Convolution (GConv) to extract spatial
features. Depth-wise Separable Convolution is favored for its
advantage in reducing the number of parameters. However,
replacing 2D convolution with Depth-wise Separable Convolution

10.3389/fpls.2024.1457360

may result in a drop in model performance, yielding suboptimal
models. Furthermore, Depth-wise Separable Convolution places
higher demands on memory access, leading to slower
computation speeds on GPUs, lower FLOPs, and higher latency.
Similarly, Group Convolution can reduce the number of
parameters, but the limited interaction between channels within
the group may result in the loss of global channel information.
During the process of reducing parameters and FLOPs, the
computational operators often experience the side effect of
increased memory access. These networks are often accompanied
by additional data operations, such as concatenation, shuffling, and
pooling, and the runtime latency of these operations is crucial for
small-scale models. The formula for calculating latency is as follows:

FLOPs

Latency = 175ps

(1)

One of them, FLOPS (floating point operations per second), is
widely used to evaluate the effectiveness of computational speed.
Although there are many approaches aimed at reducing FLOPs, few
of them also consider low-latency optimization. To address this
issue, the authors (Chen et al,, 2023) introduced PConv and
proposed FasterNet. as a new family of net-works with lower
latency, on a variety of devices, FasterNet not only provides state-
of-the-art performance, but also enables lower latency and
higher throughput.

The overall architecture of FasterNet has four layers, each
containing respectively 11, and 12, 13, and 14 individual FasterNet
blocks, which are preceded by an embedding or merging layer. The
last layer is used for feature classification. In each FasterNet block,
there is one PConv and two PWConv layers, corresponding to the two
Conv 1x1 layers shown in the bottom-right corner of Figure 3. The
resulting feature maps are convolved 1x1 after data normalization and
ReLU activation function to preserve the complexity of the feature
maps and to achieve lower latency. where PConv is a convolution
operator that reduces computational redundancy and memory access.
Figure 3, bottom left, illustrates how PConv works. It simply applies
regular Conv to a portion of the input channel for spatial feature
extraction while keeping the rest of the channel unchanged. For
consecutive or regular memory accesses, the first or last consecutive
channel is computed by considering the first or last consecutive
channel as a representation of the entire feature map. The input

(A)

FIGURE 2

(B) ©

Plant segmentation public datasets. (A) Arabidopsis thaliana (B) Brachypodium dis-tachyon (C) Sinapis alba.
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Overall architecture of FasterNet.

and output feature maps are considered to have the same number
of channels without loss of generality. As a result, PConv reduces
the FLOPs from h x w x 2¢ + k> x ¢ = h x w x 2¢' down to the
number of channels in the & x w x k* x 612,.

2.2.2 EMA attention mechanisms module

Attention mechanism modules are employed in neural
networks to improve the selection and integration of information
from image data, thereby enhancing model performance and
accuracy. Examples include SE (Squeeze-and-Excitation) (Hu
et al,, 2020), CBAM (Convolutional Block Attention Module)
(Woo et al., 2018), and CA (Channel Attention) (Hou et al.,
2021). The SE attention mechanism focuses solely on channel-
level attention and is suitable for scenarios with a higher number of
channels but performs poorly when channels are limited. CBAM
requires more computational resources, increasing computational
complexity and FLOPs. CA also incurs additional computational
overhead as it computes attention weights for the entire feature
map, and it cannot capture long-range dependencies.

To further improve the performance of DeepLabv3+ network in
extracting global information, we introduce a new efficient multi-
scale attention module, EMA (Efficient Multiscale Attention)
(Ouyang et al,, 2023). EMA aims to preserve the information in
each channel and reduce the computational overhead to achieve the
goal of simultaneously preserving rich information and reducing
the goal of computational cost. It achieves the effect of uniformly
distributing spatial semantic features in each feature group by
reconstructing some of the channels into batch dimensions and
grouping the channel dimensions into multiple sub-features. The
specific structure of EMA is shown in Figure 4.

A parallel substructure is used in the EMA module, which is
applied in the attention mechanism to help the network avoid more
parameters and greater depth, and the large local receptive fields of
the neurons enable the neurons to collect multiscale spatial
information. Therefore, EMA utilizes three parallel routes to
extract the attention weight descriptors for the grouped feature

Frontiers in Plant Science 212

maps. Two of the parallel routes are 1x1 branches and the third
route is 3x3 branches. Cross-channel information interactions are
also modeled in the channel direction. More specifically two 1D
global average pooling operations are employed in the 1x1 branch
to encode the channel along the two spatial directions respectively,
while only one 3x3 kernel is stacked in the 3x3 branch for capturing
multi-scale feature representations. Based on such a structure, EMA
not only encodes the inter-channel information to adjust the
importance of different channels, but also preserves the precise
spatial structure information.

Input | CxHxW
Groups |S/GxHxW
ups | G 1xw cnG{ux1 CIGAHx W
| X Avg Pool | Y Avg Pool | | Conv(3x3) |
l C/G x 1 x (W+H)
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FIGURE 4
EMA self-attention module.
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2.2.3 PSPA-ASPP spatial pooling pyramid layer
Inspired by Spatial Pyramid Pooling (SPP) (He et al,, 2014),
DeepLabv2 (Chen et al, 2017) introduced a novel module for
semantic segmentation known as Atrous Spatial Pyramid Pooling
(ASPP). The ASPP module’s design is primarily based on the
concept of dilated convolution. Traditional image segmentation
algorithms often use pooling and convolution layers to increase the
receptive fleld while simultaneously reducing the feature map size.
However, when it becomes necessary to upsample or restore the size
of feature maps from downsample and pooled layers, it can lead to a
loss in the accuracy of image features and potential loss of semantic
information from the original image. To address this issue, a
method is needed that can increase the receptive field while
keeping the feature map size unchanged, thus replacing
upsampling and downsampling operations. Dilated convolution is
precisely designed to meet this requirement. Dilated convolution
extends the receptive field of convolutional operations by
introducing holes (gaps) in the convolution kernel without
changing the kernel’s size. Specifically, dilated convolution
introduces some virtual zero-value pixels in the convolution
operation, allowing the expansion of the convolution kernel’s
receptive field without altering the feature map size. Figure 5A
represents regular convolution, while (Figure 5B) represents dilated
convolution with a dilation rate of 2, providing a comparison of the
changes in receptive field between the two. ASPP’s design represents
a typical application of dilated convolution, achieving multiscale
target information by parallelizing three dilated convolutions with

@
/

@

\

Stride=1
Kernel size=3
Dilated=2

Stride=1
Kernel size=3

(A) (B)

FIGURE 5

Visualization of the receptive field after the introduction of the null
rate. (A) Represents regular convolution and (B) represents

dilated convolution.
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different dilation rates, along with a standard convolution and a
pooling operation.

Although introducing dilated convolutions can increase the
receptive field, it also suffers from two significant drawbacks.
Firstly, dilated convolutions can lead to the problem of sparse
sampling. While dilated convolutions excel in extracting global
information, they may lack some semantic information when
dealing with small targets. This is because larger dilation rates can
result in excessive gaps between sampled points, making it
challenging to capture fine details of small objects. Secondly,
dilated convolutions exhibit the grid effect issue. When the same
dilation rate is used or there exists a common divisor greater than 1,
during the process of feature map stacking, it may lead to the loss of
local detailed information in image features, resulting in a pixelated
grid-like effect in the im-ages. This occurs because the same dilation
rate or common divisor causes multiple sampled points to form a
regular grid structure on the feature map, preventing the recovery
of certain local information. Figure 6 illustrates the gridding effect
of feature maps. When three consecutive convolution operations
with a dilation rate of 2 and a kernel size of 3x3 are applied to a
feature map, not all pixels on the feature map participate in
the computation.

2.2.4 CARAFE up-sampling operator

The operator for feature upsampling is essential for increasing
the resolution of low-resolution feature maps to match the size of
high-resolution feature maps, and the design of an effective
upsampling operator is of paramount importance (Mazzini, 2018;
Chen et al,, 2021; Dai et al., 2021). Among the widely used feature
upsampling operators, nearest-neighbor interpolation and bilinear
interpolation only consider sub-pixel neighborhoods, failing to
capture the rich semantic information required for dense
prediction tasks. The Transposed Convolution (Dumoulin and
Visin, 2016), serving as the inverse operator of convolutional
layers, employs convolution kernels of the same size throughout
the entire image, thereby neglecting local information variations
and leading to a significant increase in parameter count.

Wang et al. (Wang et al, 2019) introduced the CARAFE
(Content-Aware ReAssembly of Features) feature re-sampling
operator, which adaptively aggregates information within larger
receptive fields, while maintaining remarkable computational
efficiency. CARAFE generates weights in a content-aware manner
by combining features within predefined regions near the central
position. Multiple sets of such upsampling weights are computed
for each central position, and the resulting features are rearranged
into spatial blocks to complete the feature upsampling process. To
validate the effectiveness of the CARAFE operator, the original
authors conducted extensive experiments on Faster RCNN (Ren
etal,, 2015), employing various operators for upsampling within the
Feature Pyramid Network (FPN). The results, as shown in Table 1,
included cases denoted as “nearest neighbor + convolution” (N.C.)
and “bilinear + convolution” (B.C.), where an additional 3x3
convolution layer was added after the corresponding upsampling.
The comparative experiments also included three typical
upsampling methods: deconvolution (Deconv), pixel shuffle (P.S.),
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FIGURE 6

Mapping of gridding effects. From left to right, the dilation rates are 2, 2, and 2, respectively. Following the approach outlined by Shi et al (Shi and
Bao, 2023), our research team devised a novel ASPP (Atrous Spatial Pyramid Pooling) structure known as PSPA-ASPP. Firstly, we replaced the original
ASPP's first branch layer's 1x1 convolution with a 3x3 Pconv convolution to broaden the receptive field of the first layer while avoiding redundant
learning. Secondly, we employed two 3x3 dilated convolutions with dilation rates of 2 and 3, each with 128 convolution kernels, which is half of the
original ASPP's individual branch, and concatenated them in the channel dimension. Subsequently, we applied two additional 3x3 dilated
convolutions with dilation rates of 5 and 7 in a similar concatenated manner. This design allows the network to capture features from different scales
while substantially reducing the grid effect and making more effective use of feature layer information. The final layer still employs average pooling
to capture global features of the feature map. Figure 7 illustrates the overall network architecture of PSPA-ASPP.

and guided upsampling (GUM), as well as spatial attention (S.A.).
CARAFE exhibited the highest average precision (AP) among all
upsampling operators while maintaining lower FLOPs and
parameter counts, indicating its efficiency in enhancing detail
recovery and excelling in model lightweighting. Results for N.C.
and B.C. suggested that additional parameters did not yield
significant gains, whereas Deconv, P.S.,, GUM, and S.A. all
exhibited inferior performance compared to CARAFE.

As shown in Figure 8, CARAFE, as an upsampling operator
with a content-aware kernel, consists of two steps. The first step is to
predict the reassembly kernel for each target position based on its
content (i.e., the Kernel Prediction Module in Figure 8). The second
step is to use the predicted kernel to reassemble the features (i.e., the
Content-aware Reassembly Module in Figure 8). In the first step, a
feature map X’ of size C x W x H is upsampled by a factor of o,
resulting in a new feature map of size CxGHXGW. Assuming an
upsample kernel size of k,,, X k,, if different upsample kernels are
desired for each position in the output feature map, the predicted

TABLE 1 Comparison of the performance of sampling operators
on CARAFE.

Method AP FLOPs ETET
Nearest 36.5 0 0
Bilinear 36.7 8k 0

N.C 36.6 4.7M 590K
B.C 36.6 47M 590K
Deconv 36.4 1.2M 590K
PS 36.5 4.7M 24M
GUM 36.9 1.1M 132K
S.A 36.9 28K 2.3K
CARAFE 37.8 199K 74K
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upsample kernel should have a shape of 0H x oW x k,;, X k.
To compress the input feature map, a convolution layer with a
kernel size of Kencoder X Kencoder 18 used to predict the upsample
kernel, with an input channel number of C,, and an output channel
number of O'Zkip, resulting in an upsample kernel of shape cH x
oW x kip. In the second step, for each position in the output
feature map, it is mapped back to the input feature map, and a k,, x
k,p region centered on that point is extracted. The dot product is
then computed between the extracted region and the predicted
upsample kernel for that point to obtain the output value. Different
channels at the same position share the same upsample kernel.

In the improved Deeplab v3+ network, as illustrated in
Equation 2, the kernel prediction module y predicts the position
for each location based on the learned weights Wy in the first step.
Subsequently, as described in Equation 3, the content-aware
recombination module ¢ recombines the features X} with the
kernel Wy in the second step. To reduce the parameter count of
upsampling operators and enhance efficiency, an 8-fold upsampling
CARAFE module is introduced after the ASPP module, which
restores the size of the feature maps from 256 x 16 x 16 to 256 x
128 x 128. Following feature fusion, a 4-fold upsampling operation
is applied to restore the final feature map to 4 x 512 x 512
dimensions.

Wl’ = W(N(Xb kencoder)) (2)

Xl’ = ¢(N(Xl’ kup)’ WI’) (3)

2.2.5 DFMA overall network structure

The DFMA model integrates the FasterNet backbone with the
SPA-ASPP module enhanced by an EMA attention mechanism,
aimed at improving feature extraction and segmentation accuracy
for plant seedling images while being optimized for mobile
deployment. Initially, the input RGB image undergoes feature
extraction via the FasterNet backbone. FasterNet leverages a
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hybrid structure combining Pconv, PWconv, and standard
convolution to efficiently extract both low-level and high-level
features, overcoming the limitations of depthwise separable
convolution. To ensure the participation of shallow features in
subsequent processing, the model retains shallow feature maps
downsampled four times within the backbone network. Following
this, DFMA introduces an EMA (attention mechanism) module
that enhances the fusion capability of high-level features. The EMA
mechanism dynamically reweights features from different layers,
enabling the network to focus on key parts of the image when
extracting high-level features, thus boosting overall performance.

During the multi-scale feature extraction stage, DFMA employs
the SPA-ASPP module with EMA attention. This module captures
high-level semantic information across multiple scales through
several branches, effectively avoiding grid effects common in
traditional methods. The EMA attention mechanism further
strengthens the representation capacity of these branches,
allowing the model to concentrate on crucial features within plant
seedling images.

In the decoding stage, the multi-scale feature information is
merged and upsampled using the CARAFER operator, aligning the
high-level feature map dimensions with the low-level feature map for
subsequent fusion. DFMA applies a 1x1 convolution on the shallow
feature map to match channel dimensions with the upsampled deep
feature map, preparing it for concatenation. The concatenated feature
map then undergoes partial convolution and additional upsampling,
ultimately generating the model’s prediction. This integrated design
combines the strengths of FasterNet and the SPA-ASPP module,
enhancing the model’s feature extraction capacity while ensuring
efficiency and accuracy for mobile deployment. The DFMA model
structure is shown in Figure 9.
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2.3 Seedling length detection method

Through training the DEMA network model, we can easily input
seedling images for analysis and obtain corresponding masks. These
masks accurately represent the different positions of seeds within the
images, allowing researchers to observe the developmental details of
seed germination, embryonic axis, and root structure clearly. In
certain studies, it is not only necessary to conduct in-depth analysis
of the development of various plant parts but also to acquire precise
parameters for these developmental aspects. Therefore, we introduce
a seedling length measurement algorithm, which not only provides
accurate segmentation masks for the images but also enables us to
obtain exact parameters for the development of different plant parts.

In this seedling length detection, we divided into two main
steps. First, we skeletonize the image using the Hilditch algorithm to
obtain the median length of the segmented image. Secondly, we
utilize Hough Transform to obtain the transformation relationship
between the true length of the seedling detection site and the pixels.

The Hough Transform is an early image processing algorithm that
employs a voting-based approach for shape fitting. Its objective is to
mathematically describe certain edges in an image to enhance
information extraction. Unlike alternative techniques such as least
squares, robust estimation, and RANSAC, the Hough Transform
excels in simultaneously fitting multiple objects. The detection process
in the Hough Transform involves iterating through all non-zero points,
accumulating votes for each point’s center, and assigning scores. For
each point along a circle, its center lies on the vector perpendicular to
the point and passing through the point’s location. The intersection
point of these center vectors corresponds to the desired circle center
position. In this experiment, coins serve as a real-world scale for
converting lengths to pixels, enabling the detection of coin diameters.
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Improvement of the overall architecture of FasterNet-Deeplab v3+.
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Within the Hough Transform, fitting circles requires three parameters -
(x, y, 1), where x and y denote coordinates, and r represents the circle’s
radius. These parameters are determined using the following formula:

X-a)+ (Y -y =1 4)

The Hough Gradient method optimizes the standard Hough Circle
Transform by eliminating the need to draw complete circles in
parameter space for voting. Instead, it calculates the gradient vectors
at contour points and casts votes along the gradient direction, at a
distance of R in both directions from the contour point, effectively
conducting one vote on each side. Ultimately, the circle center’s position
is determined based on the voting results as depicted in Figure 10.

As shown in the diagram, assuming that the gradient directions
of the contour points ACDE all pass through point B, they will each
cast a vote for point B. Within a search radius of R, votes are cast on
both sides of the contour points at a distance of R based on the
gradient direction. Ultimately, the center position is determined
based on the voting results. Compared to the parameter space
voting method for determining the center, this approach offers
better resistance to interference. Even if other points also cast votes,
their voting results are too dispersed, and their interference with the
overall voting result can be almost negligible.

For this experiment we use coins as a scale between real and
pixel values, and the actual value of the sprout length can be
calculated based on the coin diameter. A dollar coin as a circle
with a diameter of 25mm, get how many pixels it occupies in the
figure, it can get the number of pixels per metric (pixel Per Metric),
and then calculate the pixels occupied by other objects n, it can get
the actual length (n x pixel Per Metric).

3 Experiments and results
3.1 Model evaluation criteria

In this network model of bud root region segmentation, the
deep learning network mainly adopts Mean Intersection over

FIGURE 10
Hough gradient method.
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Union (mlIoU) as the evaluation index of the model, and mean
intersection over union refers to the ratio of intersection and
concatenation values between the true and predicted values of
each classification, and then averages over multiple classifications.
In the field of scientific research and data analysis, True Positive
(TP)is defined as the portion where both the actual value and the
predicted value are true. True Negative (TN)corresponds to cases
where both the actual value and the predicted value are false. False
Positive (FP)refers to instances where the actual value is false, but
the predicted value is true. False Negative (FN) denotes situations
where the actual value is true, but the predicted value is false.

TP
MIoU =~

k
1
—_ 5
"“i:EOFN+FP+TP ®)

In addition to mIoU, precision (Pre), recall (Rec), and accuracy
(Acc) are also used as evaluation metrics for the algorithm. Precision
(Pre) is used to measure the proportion of predictions that are
correct in the samples that the model predicts as positive examples,
with the formula shown in Equation 6:

precision =P (6)
Recall (Rec) is the proportion of all positive cases that the model
predicts correctly, as shown in Equation 7:

TP (7)

recall = —p =

Accuracy (Acc) is the number of samples with all correct
predictions as a percentage of all samples. The higher its value,
the better the model. As shown in Equation 8:

— TP+TN
Accuracy = gpon pprEN (@)

3.2 Data augmentation settings in the
training phase

In this study, we employed online data augmentation
techniques to enhance the robustness and generalization
capability of the model. The data augmentation operations
included random scaling (with a scale range of 0.25 to 2 times),
aspect ratio distortion, horizontal flipping (with a probability of
50%), gray padding (pixel value of 128), random adjustments to
hue, saturation, and brightness in the HSV color space, as well as
random cropping and shifting. These augmentation methods were
dynamically applied to the training data’s images and labels during
each training iteration, thereby expanding the original data
distribution, simulating target variations under different scenarios
and conditions, and significantly improving the model’s
adaptability to changes in lighting, orientation, and target shapes.
Moreover, dynamic augmentation reduced the need for storing pre-
augmented data while significantly increasing data diversity,
thereby improving training effectiveness. It is important to note
that data augmentation was only applied during the training phase
and not during the validation phase to ensure that the validation
results objectively reflect the true performance of the model. The
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experimental results demonstrate the effectiveness of the proposed
method in reducing overfitting and improving model performance.

3.3 Experimental platform and
parameter design

The network is implemented based on the PyTorch library and
trained on a single Nvidia RTX 3060 GPU, with a 12th Gen Intel(R)
Core(TM) i5 - 12400F processor. The initial batch size is set to 10,
and the initial learning rate is 0.05. Stochastic Gradient Descent
(SGD) is adopted as the optimization method, and both Dice loss
and cross - entropy loss are utilized as the objective functions. L2
regularization is applied for model regularization. We use online
data augmentation techniques, such as rotation (by 90, 180, and 270
degrees), horizontal flipping, and random adjustments to hue,
saturation, and brightness in the HSV color space. The original
dataset contains 115 images, which are split into a training set of 92
images and a validation set of 23 images following an 8:2 ratio.
Through these online augmentation operations, each original
training image can generate multiple variants during each
training iteration. To estimate the approximate quantity of the
augmented training data, considering that each image has 7
different augmented forms on average (3 rotations + 1 horizontal

TABLE 2 Training parameters.

Parameter Value

Initial learning rate 0.005
End Lr 0.0001
Momentum 0.937
Batch size 8
Lr policy Adam
Lr decay cos
epoch 500

TABLE 3 Results of ablation experiments.

10.3389/fpls.2024.1457360

flip + 3 color space adjustments), the total number of augmented
training images is about 644. During training, the batch size is
adjusted to 8. The training process will automatically stop when the
loss function output of the validation set does not decrease for 20
consecutive epochs, with a maximum of 500 epochs permitted. The
segmentation performance is evaluated on the validation set using
the Mean Intersection over Union (mIoU) metric (Table 2).

3.4 Evaluation of the results of the seedling
phenotype segmentation experiment

According to the analysis results in Table 3, it is evident that
FasterNet exhibits significant advantages in network backbone
selection. Moreover, during the experimental phase, we observed
that FasterNet’s training process is notably faster, which may be
attributed to the frequent memory access associated with depth-
wise separable convolutions and pointwise convolutions used in
Xception and MobileNet. In our proposed PSPA-ASPP structure,
when the backbone networks are the same, the combination of
FasterNet with ASPP achieves an mIoU of 79.84, whereas when
combined with PSPA-ASPP, it reaches 81.36. It is noteworthy that
FasterNet+PSPA-ASPP also boasts lower GFLOPs, indicating its
competitiveness in terms of computational efficiency. The final
experimental results demonstrate that the FasterNet+EMA
+PSPA-ASPP+CARAFE combination exhibits the best
performance, further substantiating its outstanding performance
in image segmentation tasks.

The primary objective of this experiment is to achieve more
precise phenotypic analysis; therefore, when differences in other
metrics are minimal, this study prioritizes model accuracy. The
improved FasterNet-DeepLab V3+ achieves the highest mIoU while
significantly reducing GFLOPs. By simplifying the branches with
the PSPA-ASPP module, the GFLOPs are reduced by approximately
2.161 G, effectively enhancing the model’s learning capacity.

In accordance with Figure 11, we conducted a comparative
experimental analysis of prediction results using the DeepLabv3+
semantic segmentation model with MobileNet and Xception as

Xception MobileNetV2 FasterNet CA N EMA PSPA_ASPP CARAFE MIoU/% GFLOPs/G

v 67.09 167.00
v 74.21 53.03

v 79.84 138.70

v v 78.79 138.71

v v v 81.32 141.52

v v v 81.35 139.45

v v 81.36 13523

v v 81.63 139.83

v 81.58 137.29

v v 81.72 137.67

Bold value represents the highest mIoU achieved by our model in the tests.
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(B) © D  (E)

(A)

FIGURE 11

Phenotypic recognition results for homemade datasets. (A) Original
figure. (B) DFMA. (C) deeplLab v3+-MobileNet. (D) deeplLab v3
+-Xception. (E) UNet-VGG.

backbone networks, the Unet-VGG segmentation model, and our
improved DFMA network in our research. As evident from the
results in Figure 11D, the segmentation performance is the poorest
in this case, with issues of coherence in the regions covered by
masks for rice seedling shoots and root areas, resulting in
suboptimal segmentation. In contrast, our proposed DFMA
network model exhibits the best performance, accurately
segmenting each region.

On the public dataset, the DFMA was compared with networks
such as UNet (a network provided by the original authors of the
public dataset), MobileNetV2, and Xception in terms of
equalization and concurrency results, as shown in the Table 4.

Based on the analysis results presented in Table 4 and illustrated
in Figure 12, it is evident that our proposed DFMA model
demonstrates exceptional performance on publicly available
datasets, outperforming other models. Across three distinct plant
datasets, namely short-stalked grass, white Sinapis alba, and
Arabidopsis thaliana, the DFMA model achieves average
intersection over union (mlIoU) ratios of 87.69%, 91.07%, and
66.44%, respectively, surpassing the other two models by at least
2 percentage points. Furthermore, as depicted in Figure 12, during
the training process, it is apparent that the DFMA network model
converges more swiftly and maintains a lower loss function value,
providing additional evidence of its superior performance
and efficiency.

TABLE 4 MIoU results (%) of different network trainings on
public dataset.

Model Brachypodium Sinapis = Arabidopsis
distachyon alba thaliana
DEMA 87.69 91.07 66.44
MobileNetV2 84.84 87.21 63.39
Xception 78.78 68.75 56.22
UNet-VGG 80.10 85.65 62.82
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FIGURE 12
Loss curves of different models on two-spike phragmites
picture dataset.

In accordance with Table 5, our proposed DFMA network
achieves the best segmentation performance on publicly available
datasets. Due to the limitations of depth-wise separable convolution,
the MobileNet network exhibits poor mask recognition in the bud
apex region. Conversely, due to its restricted network depth, UNet
produces relatively coarse results in fine detail recognition.

The DFMA model outperforms other models in plant
phenotyping analysis, largely due to its design tailored to address
the unique challenges of seedling segmentation tasks. Plant
phenotyping often requires accurate identification of intricate and
complex structures. Seedling images commonly contain multi-scale,
fine structural features, such as leaf edges and stems, which demand
high segmentation precision. Additionally, the execution
environment for seedling segmentation tasks is typically resource-
limited, such as mobile devices or automated equipment, imposing
strict requirements for model efficiency and lightweight design.

The DFMA model utilizes FasterNet as its backbone network,
known for its efficient spatial feature extraction without relying on
depthwise separable convolutions. While depthwise separable
convolutions offer a lightweight solution, they may fall short in
efficiently capturing details within complex structural images.
FasterNet’s design, incorporating a combination of Pconv,
PWconv, and standard convolution, achieves a balance between
lightweight operation and efficiency, making it well-suited for
deployment in resource-constrained environments.

Furthermore, DFMA integrates an SPA-ASPP module with
EMA (Attention Mechanism), enabling detailed feature capture
across multi-scale branches and mitigating the grid effect
commonly seen in traditional ASPP modules. The grid effect can
lead to feature loss or blurred image boundaries, but the EMA
attention mechanism allows the model to focus precisely on key
areas of seedlings, such as leaves and stems, resulting in outstanding
performance in detail-rich scenarios. This capability is critical for
fine-grained segmentation in plant phenotyping, as capturing
details aids researchers in better understanding plant growth
conditions and morphological characteristics.
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TABLE 5 Plant phenotype segmentation results for different networks of the open dataset.

Improvement of

. . Deeplab
original figure FasterNet-Deeplab y . UNet-VGG
V3t V3+-MobileNet
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FIGURE 13
Scatterplot of identifying rice seedlings (A) Adam optimizer detects bud length (B) SGD optimizer detects bud length (C) Adam optimizer detects
root length (D) The SGD optimizer detects root length.
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3.5 Evaluation of the results of the seedling analysis results obtained through both manual detection and the
phenotype segmentation experiment experimental method described in this paper. In these
visualizations, the horizontal axis represents the manually

The skeleton extraction algorithm was employed to identify the =~ measured values, while the vertical axis represents the
central axis of the mask, enabling the computation of the seedling  corresponding measurements obtained from seedling images
shoot and root length. Figure 13 and Table 6 depict the image  using the method outlined in this study. Statistical analysis in

TABLE 6 Relative errors of different algorithms for length recognition of rice seedling images.

Improvement (%)

NEIEL Maximum absolute = Minimum absolute @ Mean absolute
number error (cm) error (cm) error (cm) Vs. Vs.
DeeplLabV3+ Unet-VGG

Original Deeplab bud 0.583 0.028 0.386
V3+ model radical 0.506 0.016 0.724
bud 0.876 0.034 0.410
UNet-VGG _ _
radical 1467 0.074 0.862
bud 0.384 0.007 0.146 +62.20 +64.44
DEMA
radical 0.393 0.006 0.231 +68.09 +73.20
FIGURE 14

Results of batch testing of rice shoot root lengths.
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Table 6 is conducted by grouping every 5 seedlings together
for assessment.

The measured values obtained by the algorithm used in this paper
and the manual measurement values are highly consistent, and the
improved DeepLabv3+ network yields better results than the original
DeepLabv3+ network. However, there is still a small error. Possible
reasons for the error include the skeleton extraction step after filling
the interior of the contour, which causes the algorithm to use the
centerline instead of the main root. Additionally, there is an offset in
the refinement process, resulting in inconsistent calculated lengths.

Compared to the original DeepLabv3+ model, the improved
model reduced the mean absolute errors in measuring shoots and
roots by 62.20% and 68.09%, respectively. Compared with the
UNet-VGG model, it achieved improvements of 64.44% and
73.20%, respectively, and demonstrated a more significant
detection advantage in terms of maximum and minimum
absolute errors.

In this study, based on the improved DeepLabv3+ target
segmentation network combined with the length detection
algorithm, the sprout target is recognized and segmented, and the
sprout length is ultimately obtained. The recognition results are
shown in Figure 14 below. The model in this study demonstrates
superior recognition of the target, accurately segments the outline
and key parts of the target, and simultaneously avoids confusion
between the target and the background. It provides more accurate
length detection results and is capable of batch detection.

4 Discussion

This study proposes a high-throughput plant phenotyping
method based on deep learning, highlighting its broad application
potential and significance across multiple fields. Through a non-
destructive, efficient, accurate, and consistent measurement
approach, we achieved phenotypic analysis of rice seedlings at
early growth stages, significantly improving research efficiency
and broadening future applications. In line with specific
experimental tasks, we selected datasets from four species, three
from public Kaggle datasets and one collected independently. This
choice allowed us to test the model’s performance under relatively
consistent environmental conditions, minimizing external factors
and yielding clearer experimental results. However, we recognize
that the current datasets are limited in species and environmental
diversity, and expanding this diversity is necessary to further
enhance the model’s robustness and generalizability. Future
research will therefore introduce more samples from diverse
species and environmental conditions to improve the model’s
adaptability and applicability in complex, dynamic scenarios.

Although the improved DeepLabv3+ and the newly introduced
DFMA semantic segmentation model perform excellently in
segmentation efficiency and accuracy, they still face limitations in
lighting adaptability, cross-crop transferability, and multi-species
analysis. To enhance the model’s broad applicability, future work
will focus on further strengthening the model’s robustness to
varying lighting conditions and exploring ways to adjust feature
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extraction and attention modules to better accommodate plants
with diverse morphological features. As research progresses, we also
plan to expand this technology to other crops and plant species,
further uncovering growth and developmental characteristics. This
will provide scientific support for crop improvement and
cultivation, and advance ecological research, helping scientists
better understand plant responses to environmental changes.

The application prospects of this technology extend beyond
plant phenotyping, with potential in fields such as medical image
analysis and autonomous driving, demonstrating deep learning’s
immense potential for automation and precision in image
processing. This technology holds significant value for research in
biology and botany. In the future, we plan to open-source a
WeChat-based plant phenotyping mini-program to promote
practical applications of this research and facilitate further
developments. This will provide innovative tools and directions
for plant breeding and crop improvement.

5 Conclusion

In summary, our study addresses a critical need in the rapidly
evolving field of plant phenotypic research. Accurate seedling
length measurement is essential for evaluating seed viability and
growth status. We have developed an efficient and versatile deep
learning approach, named DFMA, which incorporates the
innovative PSPA-ASPP structure. Our model consistently
outperforms traditional methods and other models, achieving
remarkable segmentation and detection results across various
plant species. DFMA generates precise segmentation masks that
highlight detailed developmental aspects of seedling components,
such as cotyledons, hypocotyls, and roots. Furthermore, we
introduce a novel seedling length measurement algorithm,
providing precise parameters for a comprehensive plant
phenotypic analysis. Our research holds great promise for offering
more efficient tools and data support to advance the field of plant
biology, enhancing our understanding of plant genetics and growth
trends in the top-tier scientific community.
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Hyperspectral images are rich in spectral and spatial information, providing a
detailed and comprehensive description of objects, which makes hyperspectral
image analysis technology essential in intelligent agriculture. With various corn
seed varieties exhibiting significant internal structural differences, accurate
classification is crucial for planting, monitoring, and consumption. However,
due to the large volume and complex features of hyperspectral corn image data,
existing methods often fall short in feature extraction and utilization, leading to
low classification accuracy. To address these issues, this paper proposes a
spectral-spatial attention transformer network (SSATNet) for hyperspectral
corn image classification. Specifically, SSATNet utilizes 3D and 2D convolutions
to effectively extract local spatial, spectral, and textural features from the data
while incorporating spectral and spatial morphological structures to understand
the internal structure of the data better. Additionally, a transformer encoder with
cross-attention extracts and refines feature information from a global
perspective. Finally, a classifier generates the prediction results. Compared to
existing state-of-the-art classification methods, our model performs better on
the hyperspectral corn image dataset, demonstrating its effectiveness.

KEYWORDS

corn identification, hyperspectral image classification, deep learning, morphology,
image classification

1 Introduction

Hyperspectral imaging technology comprehensively measures an object’s spectral
properties by recording its absorption and reflection across various spectral bands (Li
et al, 2024¢; Zhang et al,, 2024b; Li et al., 2024a). The resulting hyperspectral images,
composed of multiple consecutive bands, are rich in feature information and can
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thoroughly reveal the nature of the object. This technology advances
intelligent agriculture by utilizing the detailed feature information
in hyperspectral images, thereby avoiding the destructive methods
of traditional seed identification. Hyperspectral imaging has
gradually been applied to intelligent agriculture, geological
exploration, and medical treatment, offering new development
opportunities and technical capabilities.

The increasing variety of corn seeds available in the market
presents a significant challenge to the cereal farming industry,
making the accurate identification of corn varieties especially
crucial. Recently, researchers have been investigating hyperspectral
image classification techniques using machine learning and deep
learning approaches (Zhang et al., 2023¢c; Wu et al., 2022). Ahmad
et al. (Ahmad et al, 2019). utilized a self-encoder paired with a
multilayer extreme learning machine to mitigate high computational
overhead and the Thuesian phenomenon in hyperspectral images,
which improved the accuracy of hyperspectral image classification.
Okwuashi et al. (Okwuashi and Ndehedehe, 2020) introduced a deep
support vector machine algorithm incorporating four kernel functions
and demonstrated its effectiveness in hyperspectral image
classification using publicly available datasets. Zhang et al. (Zhang
etal, 2020) employed a deep forest model with hyperspectral imaging
to classify rice seeds with different levels of frost damage in small
sample datasets. Su et al. (Su et al., 2022) introduced a new semi-
supervised method for hyperspectral image classification that
integrates normalized spectral clustering with kernel learning,
effectively addressing the issues of relevant features appearing in
non-adjacent regions and the lack of non-Euclidean spatial
correlation. Jin et al. (Jin et al., 2023) developed a cost-sensitive K-
neighborhood algorithm to reduce noise interference, enhance spatial
information utilization, and achieve robust performance in
hyperspectral wheat image classification. Farmonov et al.
(Farmonov et al., 2023) employed wavelet transform for feature
extraction, combined with random forests and support vector
machine algorithms, to localize crops in farmland and classify crop
hyperspectral images, playing a significant role in crop growth
monitoring and harvest prediction. Sim et al. (Sim et al, 2024)
combined machine learning algorithms with hyperspectral imaging
for fast, non-destructive detection of coffee origin without sample
processing. Wang et al. (Wang et al., 2024b) proposed a cross-domain
few-shot learning strategy utilizing a two-branch domain adaptation
technique to mitigate distortion caused by enforcing different domain
alignments, achieving effective cross-domain transfer learning for low/
high spatial resolution data. Although machine learning methods have
demonstrated exemplary performance in hyperspectral image
classification, their reliance on manual or semi-automatic feature
extraction limits their potential. The emergence of deep learning
methods has enabled the automatic extraction of spectral, spatial
and spatial-spectral features from hyperspectral images, leading to
significant advancements in this field.

Zhang et al. (Zhang et al, 2019) created a straightforward 1D
convolutional capsule network to tackle the high dimensionality and
limited labeled samples in hyperspectral images, achieving effective
feature extraction and classification. Wang et al. (Wang et al., 2020)
developed an end-to-end cubic convolutional neural network that
integrates Principal Component Analysis with 1D convolution for
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efficient extraction of spatial and spectral features. Roy et al.
(Roy et al, 2020) proposed an improved residual network using an
adaptive spatial-spectral kernel with attention mechanisms, utilizing 3D
convolutional kernels to simultaneously extract spatial and spectral
features, achieving excellent classification results. Cui et al.
(Cui et al, 2021) introduced a lightweight deep network using 3D
deep convolution to classify hyperspectral images with fewer parameters
and lower computational costs. Ortac et al. (Ortac and Ozcan, 2021)
evaluated the performance of 1D, 2D, and 3D convolutions in
hyperspectral image classification, demonstrating that 3D convolution
offers superior feature extraction capabilities. Ghaderizadeh et al.
(Ghaderizadeh et al., 2021) employed depth-separable and fast
convolutional blocks in combination with 2D convolutional neural
networks to effectively tackle data noise and insufficient training
samples. Paoletti et al. (Paoletti et al, 2023a) proposed a channel
attention mechanism to automatically design and optimize
convolutional neural networks, reducing the computational burden in
feature extraction while obtaining effective classification outcomes. Sun
et al. (Sun et al,, 2023) introduced an extensive kernel spatial-spectral
attention network designed to efficiently leverage 3D spatial-spectral
features, maintaining the 3D structure of hyperspectral images. Jia et al.
(Jia et al,, 2023) developed a structure-adaptive CNN for hyperspectral
image classification, which employs structure-adaptive convolution and
mean pooling to extract deep spectral, spatial, and geometric features
from a uniform hyperpixel region. Gao et al. (Gao et al., 2023) designed a
lightweight 3D-2D multigroup feature extraction module for
hyperspectral image classification, which mitigates the loss of crucial
details in single-scale feature extraction and the high computational
expense of multiscale extraction. Zhang et al. (Zhang et al, 2023b)
introduced a method combining 3D and 2D convolution to fully utilize
the spatial, texture and spectral features of hyperspectral data for the task
of identifying wheat varieties. In conclusion, while 2D and 3D
convolutions effectively capture spectral and spatial features from
hyperspectral data, traditional convolutional neural networks are
limited by high computational complexity and insufficient feature
utilization, impacting their classification performance.

Inspired by (Vaswani et al., 2017), researchers have suggested a
Transformer-based network model for image classification (Zhang
et al, 2024a). Hong et al. (Hong et al., 2021) effectively classified
hyperspectral remote sensing images by leveraging spectral local
sequence information from neighboring bands, considering the
temporal properties, and designing cross-layer skipping
connections combined with the Transformer structure. Roy et al.
(Roy et al, 2021) introduced an innovative end-to-end deep
learning framework, using spectral and spatial morphological
blocks for nonlinear transformations in feature extraction. Yang
et al. (Yang et al., 2022) integrated convolutional operations into
the Transformer structure to capture local spatial context and
subtle spectral differences, fully utilizing the sequence attributes of
spectral features. Sun et al. (Sun et al., 2022b) developed a spatial-
spectral feature tokenization converter to capture both spectral-
spatial and high-level semantic features, achieving hyperspectral
image classification through a feature transformation module, a
feature extraction module, and a sample label learning module.
Kumar et al. (Kumar et al.,, 2022) developed a novel morphology-
expanding convolutional neural network that connects the
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morphological feature domain with the original hyperspectral data,
reducing computational complexity and achieving good
classification results. Peng et al. (Peng et al., 2022) developed a
two-branch spectral-spatial converter with cross-attention, using
spatial sequences to extract spectral features and capture deep
spatial information to establish interrelationships among spectral
sequences. Tang et al. (Tang et al, 2023) introduced a dual-
attention Transformer encoder based on the Transformer
backbone network for hyperspectral image classification,
effectively extracting global dependencies and local spatial
information between spectral bands. Qi et al. (Qi et al., 2023a)
embedded 3D convolution in a two-branch Transformer structure
to capture globally and locally correlated spectral-spatial domain
features, demonstrating good performance for hyperspectral image
classification through validation. Qiu et al. (Qiu et al, 2023)
proposed a cross-channel dynamic spectral-spatial fusion
Transformer capable of extracting multi-channel and multi-scale
features, using multi-head self-attention to extract cross-channel
global features and enhancing spatial-spectral joint features for
hyperspectral image classification. Sun et al. (Sun et al., 2024)
converted the spatial-spectral features into a memory marker
storing a priori knowledge into an in-memory tagger, using a
memory-enhanced Transformer encoder for the hyperspectral
image classification task. Ahmad et al. (Ahmad et al., 2024)
designed a Transformer-based network for hyperspectral image
classification by combining wavelet transform with downsampling.
The wavelet transform performs reversible downsampling,
enabling attentional learning while preserving data integrity.
Based on these studies, we propose utilizing a combination of
2D-3D convolution and Transformer, leveraging spectral-spatial
morphological features to identify hyperspectral corn seed
varieties. The contributions of this paper can be summarized
as follows:

*  We developed a 3D-2D convolutional cascade structure that
autonomously extracts contextual features, reduces data
complexity and efficiently captures high-level abstract
features for integration into the Transformer architecture.

*  We introduced a spectral-spatial morphology structure that
employs expansion and erosion operations for spectral-spatial
morphology convolution, enhancing the understanding of the
data’s intrinsic properties.

*  We employed a Transformer Encoder with CrossAttention
to comprehensively extract and refine feature information
from hyperspectral corn images on a global scale using the
attention mechanism.

2 Related works

Currently, researchers have proposed a variety of methods for
classifying hyperspectral remote sensing images and hyperspectral seed
images. We classify these approaches into deep learning methods,
machine learning methods and traditional methods. The deep learning
methods are further divided into hybrid CNN-Transformer methods,
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Transformer-based methods, and CNN-based methods. Next, we
overview and summarize these research outcomes.

Traditional methods for hyperspectral image classification
primarily rely on analyzing physical and statistical features. These
methods typically include spectral feature extraction, pixel-based
classification, and target-based classification. For example, Cui et al.
(Cui et al., 2020) introduced a super-pixel and multi-classifier
fusion approach to tackle the challenges of limited labeled
samples and substantial spectral variations. Similarly, Chen et al.
(Chen et al., 2021a) introduced a feature extraction means that
combines PCA and LBP, optimized using the Gray Wolf
optimization algorithm for hyperspectral image classification.
While these methods perform well for simpler classification tasks,
their effectiveness diminishes when faced with complex
backgrounds and highly mixed pixels.

Machine learning methods effectively classify hyperspectral
images by learning the features of sample data. With the
advancement of machine learning technology, researchers
increasingly utilize machine learning algorithms for hyperspectral
image classification. For example, Pham et al. (Pham and Liou,
2022) developed a push-sweep hyperspectral system using a support
vector machine to date surface defects, addressing the problem of
insufficient accuracy and speed in detecting date skin defects with
traditional methods. Sun et al. (Sun et al., 2022a) constructed a
network integrating multi-feature and multi-scale extraction with a
swift and efficient kernel-extreme learning machine for rapid
classification, significantly enhancing hyperspectral image
classification accuracy. Wang et al. (Wang et al., 2023b) proposed
a capsule vector neural network that combines capsule
representation of vector neurons with an underlying fully
convolutional network, achieving good classification performance
with insufficient labeled samples. Compared to traditional methods,
machine learning approaches handle high-dimensional data more
effectively and achieve higher classification accuracy. However,
these methods still rely on human-designed feature extraction
and selection, preventing them from fully utilizing all the
information in hyperspectral data.

Deep learning methods excel in hyperspectral image
classification due to their automatic feature extraction and end-
to-end learning capability (Zhang et al., 2024¢; Hong et al., 2023).
These methods can be categorized into hybrid CNN-Transformer
methods, Transformer-based methods, and CNN-based methods.

CNN-based methods are designed to capture spectral and spatial
features through convolutional layers specifically tailored for
hyperspectral data, significantly improving classification performance
(Wu et al, 2021). Yang et al. (Yang et al., 2021) introduced a spatial-
spectral cross-attention network that suppresses redundant data bands
and achieves robust, accurate classification. Yu et al. (Yu et al., 2021)
developed a spectral-spatial dense convolutional neural network
framework with a feedback attention mechanism to tackle issues of
high complexity, information redundancy, and inefficient description,
thereby improving classification efficiency and accuracy. Zheng et al.
(Zheng et al, 2022) developed a rotationally invariant attention
network for pixel feature class recognition, leveraging spectral
features and spatial information. Paoletti et al. (Paoletti et al., 2023b)
created a channel attention mechanism to automatically design and
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optimize a CNN, integrating 1D and spectral-spatial (3D) classifiers to
process data from various perspectives while reducing computational
overhead. Guo et al. (Guo et al,, 2023) introduced a dual-view global
spatial and spectral feature fusion network that efficiently extracts
spectral-spatial features from hyperspectral images, accounting for
global and local information.

Transformer-based methods excel at capturing long-range
dependencies and complex features in hyperspectral images
through a self-attention mechanism. Huang et al. (Huang et al,
2022) introduced a 3D swin transformer that captures rich spatial-
spectral information, learns semantic representations from
unlabeled data, and overcomes traditional methods’ limitations
regarding receptive fields and labeling requirements. Yu et al. (Yu
et al., 2022) proposed a multilevel spatial-spectral transformer
network that processes hyperspectral images into sequences,
addressing issues faced by CNN-based methods such as limited
receptive fields, information loss in downsampling layers, and high
computational resource consumption. Zhang et al. (Zhang et al,
2023d) developed a location-lightweight multi-head self-attention
module and a channel-lightweight multi-head self-attention
module, allowing each channel or pixel to associate with global
information while reducing memory and computational burdens.
Zhao et al. (Zhao et al., 2023) proposed an active learning
hyperspectral image classification framework using an adaptive
super-pixel segmentation and multi-attention transformer,
achieving good classification performance with small sample sizes.
Wang et al. (Wang et al,, 2023a) introduced a trispectral image
generation channel that converts hyperspectral images into high-
quality trispectral images, mitigating the spatial variability problem
caused by complex imaging conditions. Compared to CNNs,
transformers have significant advantages in processing global and
multi-scale features, allowing for better handling of global
information in hyperspectral images.

Methods that hybrid CNN and Transformer aim to utilize the
strengths of both to enhance hyperspectral image classification
performance. These hybrid methods typically employ
Transformers to capture global dependencies and CNNs to
extract local spatial features. Zhang et al. (Zhang et al., 2022a)
designed a dual-branch structure combining Transformer and CNN
branches, effectively extracting both global hyperspectral features
and local spectral-spatial features, resulting in high classification
accuracy. Zhang et al. (Zhang et al., 2023a) proposed a network that
integrates Transformer and multiple attention mechanisms,
utilizing spatial and channel attention to focus on salient
information, thereby enhancing spatial-spectral feature extraction
and semantic understanding. Qi et al. (Qi et al., 2023b) introduced a
global-local 3D convolutional Transformer network, embedding a
dual-branch Transformer in 3D convolution to simultaneously
capture global-local correlations across spatial and spectral
domains, addressing the restricted receptive field issue of
traditional CNNs. Xu et al. (Xu et al, 2024) proposed a two-
branch convolutional Transformer network based on 3D CNN
and an improved Transformer encoder, integrating spatial and
local-global spectral features with lower computational
complexity. Chen et al. (Chen et al., 2024) developed the TCCU-
Net, a two-stream collaborative network that learns spatial, spectral,
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local and global information end-to-end for effective hyperspectral
unmixing. This integration enables the model to leverage both
spectral and spatial information from hyperspectral images more
comprehensively, enhancing classification robustness and accuracy.

3 Methodology

The network flowchart of our proposed Spectral-Spatial
Attention Transformer for hyperspectral corn image classification
is shown in Figure 1. It contains 3D-2D Convolutional Module,
Spectral-Spatial Morphology, Transformer Encoder with
CrossAttention, and Classifier.

3.1 Motivation

With the development of intelligent agriculture, the integration of
hyperspectral imaging technology and deep learning has gained
widespread application in crop research, particularly in seed
classification and identification. As a globally important food crop,
the classification of corn seeds is significant for improving agricultural
productivity and preserving crop genetic resources. Hyperspectral
images can capture reflectance features at different wavelengths,
providing researchers with rich spectral information for more precise
seed classification and quality assessment (Chang et al., 2024).

In recent years, transformer models have emerged as popular in
computer vision due to their powerful feature extraction and
representation capabilities (Han et al., 2023; Li et al., 2024b).
Compared to traditional convolutional neural networks,
transformers are better at handling high-dimensional data and
capturing long-range dependencies, which are crucial for
extracting complex features from hyperspectral images.
Additionally, the self-attention mechanism of Transformers
enables the model to flexibly focus on important areas within the
image, thereby enhancing classification accuracy. Consequently,
choosing Transformer-based methods allows for more effective
utilization of hyperspectral data, providing more reliable support
for corn seed classification.

3.2 3D-2D convolution module

In hyperspectral image classification, effective feature extraction
is vital for improving accuracy. Both 3D and 2D convolutions are
widely used in this domain due to their unique advantages. 3D
convolution simultaneously operates in spectral and spatial
dimensions, capturing their correlation. Unlike traditional 2D or
1D convolutions, 3D convolution provides richer feature
descriptions and retains more original spectral and spatial
information, thus enhancing classification accuracy. It fully
leverages the three-dimensional data structure of hyperspectral
images, avoiding information loss or oversimplification. However,
as network depth and input data size increase, the computational
complexity and memory requirements of 3D convolution rise
significantly, demanding higher hardware resources and more
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training time. 2D convolution, on the other hand, has lower
computational complexity and high efficiency, as it operates on
two-dimensional space (width and height). It effectively utilizes
spatial and texture information, making it suitable for handling
local features and texture details in hyperspectral images.
Combining 3D and 2D convolutions can efficiently leverage the
strengths to extract features from hyperspectral corn images. 3D
convolution captures complex spectral-spatial relationships, while
2D convolution extracts local spatial features and texture
information, maintaining computational efficiency. This
combination optimizes feature extraction, leading to improved
classification performance.

3D convolution is mainly used for three-dimensional data
processing, extracting features by sliding a convolution kernel
across the three dimensions of the input data. Suppose the input
data is IP™*W*C \where C is the number of channels, W is the
width, H is the height, and D is the depth (spectral dimension).The
dimensions of the 3D convolution kernel are K; x K}, x K, x C x
N, where N is the number of output channels (i.e., the number of
convolution kernels), C is the number of input channels, K,, is the
size in the width direction, K, is the size in the height direction, and
K} is the size of the convolution kernel in the depth direction. For
an input tensor I and a convolution kernel W, the output tensor Y of
the 3D convolution can be expressed as

C-1K-1K;-1K,,~1

Y(mdhw)= 3 S S S Hed+kgh+k,w+k,)

=0 k=0 k,=0 k,,=0

x W(n, ¢, kg, kp, k,,) + b(n) (1)

where I(c,d + kg, h + ky, w + k) is the value of the input tensor
I at channel ¢ and position (d + kg, h + ky, w + k). W(n, ¢, kg, ky,
k,) represents the weight of the convolution kernel W at output
channel #n and input channel ¢, positioned at (ky, ky,, k,,). b(n) is the
bias term for each output channel 7 in the convolutional layers. It is
initialized with random values (typically small values close to zero)
and then adjusted during training via backpropagation. The
gradient of the loss with respect to the bias is computed and used
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to update b(n), just like the weights of the convolutional filters. This
adjustment allows the model to shift the activations of each channel,
enabling the network to adapt to various patterns in the data and
improve its representation of features.

2D convolution is applied to 2D data processing, extracting features
by sliding a convolution kernel (filter) across the two dimensions of the
input data. Assuming the input data is ™", the 2D convolution
kernel has dimensions K x K,, x C x N, with the parameter
presentation consistent with that of 3D convolution. For an input
tensor I and a convolution kernel W, the output tensor Y of the 2D
convolution can be expressed as

C-1K,-1K,,~1

Y(n, 1)]) = 2 E 2 I(C) i+ khaj + kw) X W(n) C, kh: kw)
c=0 k;,=0 k,,=0

+ b(n) ()

where I(c,i+ ky,,j + k,,) is the value at position (i + kj,,j + k,,) in
the input tensor I at channel c. W(n, ¢, k;, k,,) represents the weight
of the convolutional kernel W at position (k,k,) for output
channel n and input channel c.

3.3 Spectral-spatial morphology module

Hyperspectral images contain abundant textural, spatial, and
spectral information. Morphology, a nonlinear image processing
technique, is mainly used to analyze and manipulate the shape and
structure of images. In hyperspectral image processing,
morphological methods can effectively extract spatial and spectral
features, enhancing the robustness and accuracy of image
classification. Building on this, we integrate morphology with 2D
convolution to locally manipulate images using structural elements,
which can highlight or suppress specific shape features.

Spatial features can be extracted from each spectral band of a
hyperspectral corn image through morphological operations like
dilation and erosion. The dilation operation can emphasize the
bright areas in the image and expand the edges of the target object,
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making the morphological features of the corn seed more
pronounced. The computational expression for dilation is as

DUI)=1®B=U,c3(I+b) (3)

where I denotes the input image, B is the structural element (a
small template used to detect the morphological features of the
image), @ stands for the dilation operation, U vep() represents the
union of all structural element positions to take the maximum value,
and + denotes the pixel displacement operation. b influences the
dilation and erosion operations. These operations involve shifting
and adjusting the shape of features within the image, where b helps
control the degree of expansion (dilation) or contraction (erosion).
Like the convolutional biases, the values of b in these operations are
also learned during training, refining the model’s ability to capture
spatial relationships and remove irrelevant details in the data.
Conversely, the erosion operation removes noise and small bright
spots, resulting in a smoother and more uniform target area. The
computational expression for erosion is as

E(I) =1©B = Nyep(I - b) (4)

where © denotes the erosion operation, N vep() represents the
intersection operation to take the minimum value for all structural
element positions, and — indicates the negative displacement
operation of pixels. Performing these operations on each spectral
band extracts subtle spatial variations and enhances the
representation of spatial features. Subsequently, these spatial
features are combined with spectral features to fully utilize the
spectral and spatial information in hyperspectral images.
Specifically, we apply morphological operations to each spectral
band to extract spatial features. These spatial features are merged
with the original spectral information to construct high-dimensional
feature vectors. This method preserves the spectral information of the
hyperspectral image while enhancing the representation of spatial
structure information. The feature extraction and classification
effectiveness is further improved by integrating these morphological
operations with 2D convolution. 2D convolution extracts local spatial
features within each spectral band and enhances the representation of
spatial information. These two convolutional operations complement
each other, allowing the features, preprocessed through
morphological operations, to be input into the convolutional neural
network for more accurate classification.

The bias b in these equations plays a crucial role in adjusting the
output activations, improving the feature extraction process. In the
convolutional operations (Equations 1, 2), it allows the network to
adapt to various activation patterns, enhancing the model’s ability
to learn more complex relationships in the data. In the
morphological operations (Equations 3, 4), it enhances spatial
feature representation by refining the shapes and structures in the
image. This combination of accurate feature extraction and
refinement leads to better corn seeds classification performance.

By integrating morphological and convolutional techniques, we
substantially enhance hyperspectral corn image classification
accuracy and robustness. This combined approach boosts
classification performance and improves resilience against
complex backgrounds and noise.
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3.4 Transformer encoder with
CrossAttention module

The Transformer encoder enhances input data representation
through a sophisticated attention module that captures
dependencies among different parts of the input sequence.
Figure 2 depicts the detailed structure of this attention module,
consisting of two primary components: multi-head self-attention
and scaled dot-product attention.

Originally, the Transformer architecture was designed for
natural language processing, particularly for handling sequence
data, and it excels in this domain due to its multiple self-attention
core blocks. Unlike conventional Convolutional Neural Networks
and Recurrent Neural Networks, the Transformer exclusively
utilizes the attention mechanism, enabling efficient capture of
global dependencies in sequential data. The input sequence is
initially converted into a fixed-dimensional vector representation
via an embedding layer, with positional information preserved
through positional encoding, which is generated by sine and
cosine functions.

Each encoder layer includes multiple self-attention heads,
each independently processing the input sequence to generate an
attention representation, which is then concatenated and
integrated through a linear transformation. The multi-head
self-attention mechanism enables the model to attend to
multiple parts of the input sequence simultaneously.
Specifically, the input sequence is represented as a key (K),
query (Q), and value (V). Multiple sets of Q, K, and V are
created through the linear projection of a learned weight
matrix. Each set of Q, K, and V is passed to the scaled dot-
product attention mechanism, where attention scores are
calculated and applied to the values. The Q is multiplied by the
transposed key K' to obtain the raw attention score, which is
then divided by the square root of the key’s dimension, +/dj, to
maintain gradient stability. The computational process of self-
attention can be summarized as

\

X[\HScaled Dot-Product Attention
n
A

/ A A A
Linear Linear Linear
Q K \%

Scaled Dot-Product Attention Multi-Head Attention

FIGURE 2
Diagram illustrating the structure of the multi-head attention
mechanism and scaled dot-product attention.
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. QK"
SA = Attention (Q, K, V) = softmax 1% (5)

Ve

Through its unique multi-head self-attention mechanism and
feed-forward neural network, the Transformer structure efficiently
captures global dependencies and improves the classification
accuracy of hyperspectral corn images.

3.5 Loss function

In this paper, we propose a method that combines spectral-spatial
morphology with a 3D-2D convolutional Transformer network to
classify hyperspectral corn images. This approach fully utilizes the
spatial and spectral features of hyperspectral images. To optimize
model performance, we employ the CrossEntropyLoss function.

The CrossEntropyLoss function is commonly used in
classification tasks, especially for multi-class classification
problems. It measures the discrepancy between the true category
distribution and the predicted probability distribution by
computing the negative log-likelihood between the actual labels
and the predicted probabilities. This function ensures numerical
stability by converting the output into a probability distribution
using the Softmax function. Additionally, the gradient of the
CrossEntropyLoss function is relatively easy to compute,
facilitating the implementation of the back-propagation algorithm
and model optimization. By directly quantifying the alignment
between predicted probabilities and actual labels, it accurately
reflects the performance of the classification model.
Consequently, we apply the CrossEntropyLoss function to the
hyperspectral corn image classification task. Its computational
expression is as

N
CrossEntropyLoss = —>' y; log () (6)
i=0
where y; represents the true label of the sample, N is the total
number of samples, and y; is the predicted probability from the
model. The network model converts the output to a probability
distribution using the Softmax function

&

yi= W %

where z; represents the linear output of the model. For a given

category ¢, the true label y. = 1 while the labels for all other

categories are 0. The predicted probability y; corresponding to

the true label y; is substituted into Equation 6, and the loss value for
each sample is

Loss = —2 y;log (5;) (®)

By measuring the difference between actual and predicted labels
and updating the model parameters through the backpropagation
algorithm to minimize the loss, this approach effectively guides the
model in learning to handle complex hyperspectral corn image
features. Consequently, it improves both the classification accuracy
and robustness.
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4 Experiment and analysis

In this section, we will first discuss the dataset used, detail the
specific implementation of SSATNet, and then present the
evaluation metrics, multi-classification results, and ablation study.

4.1 Experimental dataset

To verify the effectiveness of the SSATNet, we utilized the
hyperspectral corn image dataset from SSTNet (Zhang et al,
2022b). This dataset contains 10 corn varieties, each with 120
samples. The collected images cover a spectral range from 400 to
1000 nm, encompassing 128 bands. To reduce computational
overhead and focus on retaining only the core area of the corn
seeds, the collected raw data resolution of 696 x 520 was reduced to
210 x 200 for feature extraction. The corn seed images were sourced
from planting areas in Henan Province, including varieties such as
FengDa601, BaiYu9284, BaiYu8317, BaiYu918, BaiYu897,
BaiYu879, BaiYu833, BaiYu818, BaiYu808, and BaiYu607.
Figure 3 shows different spectral band maps of a sample
randomly selected from FengDa601, BaiYu818, and BaiYu833.
This corn image dataset was obtained by contacting the authors.

4.2 Implementation details

The hyperspectral corn image dataset includes 10 varieties,
totaling 1200 samples, divide into training and test sets in a 4:1
ratio. We conducted our experiments on a Windows 10 PC with an
Intel® Xeon® Gold 5218 CPU @ 2.30GHz x64, an NVIDIA
GeForce RTX 3090*2 graphics card, and 256 GB RAM. The
Batch size is set to 16 for the training and 8 for the testing. We
used Adamax as the optimizer with a learning rate of 0.01, an
exponential decay rate of 0.9, a gradient squared moving average
rate of 0.999, and 250 iterations. Additionally, we implemented a
Dropout mechanism that randomly deactivates 10% of nodes,
effectively preventing overfitting.

4.3 Evaluation metrics

To thoroughly assess the performance of our SSATNet in
classifying hyperspectral corn images, we employ four standard
evaluation metrics: F1-Score, Recall, Precision, and the Kappa
coefficient(K,). Precision assesses the accuracy of the
classification model by evaluating the proportion of instances
predicted to be positive that are actually positive. There exists a
trade-off between Precision and Recall; increasing Precision may
lead to a decrease in Recall and vice versa. Therefore, the F1-Score,
derived as the harmonic mean of Precision and Recall, is often used
for a more balanced evaluation of model performance, and its
calculation expression is shown in Equation 9. The K, is a
consistency test metric that evaluates the agreement between the
classified image and the reference image in hyperspectral remote
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Randomly select a sample from three corn varieties, FengDa601 (A-D), BaiYu818 (E-H), and BaiYu833 (I-L), and display their partial spectral bands.

sensing classification tasks, providing a more comprehensive
reflection of the overall classification accuracy. Higher scores in
these four evaluation metrics indicate better model performance.
Figure 4 shows the confusion matrix of our model’s classification
results for hyperspectral corn images and the results of one of the
training and testing sessions.

Precision « Recall

F1 — Score = 2 9)

Precision + Recall

4.4 Multi-classification results

Extensive experiments were performed to thoroughly test the
generalization and effectiveness of our model for hyperspectral corn
image classification. The comparison methods include KNN (Kumbure
et al, 2020), SGD (Lei and Tang, 2021), RFA (Chen et al, 2021b),
HybridNet (Roy et al,, 2019), SSTNet (Zhang et al., 2022b), CTMixer
(Zhang et al., 2022a), MSTNet (Yu et al,, 2022), MATNet (Zhang et al,,
2023a), and 3DCT (Wang et al, 2024a). The experimental results are
presented in Table 1. The source code and parameters for the
comparison methods were acquired from the original authors.

The results presented in Table I demonstrate the performance of
various methods on the hyperspectral corn images dataset. Traditional
machine learning models such as KNN (Kumbure et al,, 2020), RFA
(Chen et al, 2021b), and SGD (Lei and Tang, 2021) show subpar
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performance across all evaluation metrics, with RFA (Chen et al., 2021b)
performing the worst across all metrics. These traditional models, lacking
nonlinear activation mechanisms, struggle to extract deep spectral-spatial
features effectively. In contrast, HybridNet (Roy et al,, 2019), SSTNet
(Zhang et al,, 2022b), and 3DCT (Wang et al., 2024a), which integrate
3D convolution, demonstrate superior results due to their ability to
capture spectral and spatial features simultaneously. Models like
CTMixer (Zhang et al., 2022a), MSTNet (Yu et al, 2022), and
MATNet (Zhang et al., 2023a) further leverage the Transformer
architecture to address the complex relationships inherent in
hyperspectral data. Our proposed model, which combines
convolutional networks with Transformers and incorporates a novel
spectral-spatial attention mechanism, achieves the best overall
performance across all metrics. The integration of local and global
feature extraction methods allows our model to substantially improve
Precision, Recall, F1-Score, and K,, surpassing existing state-of-the-art
methods. These results validate the effectiveness of our design in
capturing the complex spectral-spatial features of hyperspectral corn
images and its superior ability to generalize to high-dimensional datasets.

4.5 Ablation study

To further evaluate the contribution of each module in SSATNet
to the classification performance of hyperspectral corn seed images, we
conducted ablation experiments on the dataset introduced by SSTNet

frontiersin.org


https://doi.org/10.3389/fpls.2024.1458978
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al. 10.3389/fpls.2024.1458978
1 0 0 .
test accuracy train loss
210 0 0
3[o o 0 0 r 4
24 00 0 0o of 8
=5(0 0 0 o 00 3
£ 60
23
26[0 0 0 0 0 0 ’ ’
3 2
710 0 0 o0 0 0 40
80 o0 0 o 0 0 0
20 !
9{0 0o 0 o (1} 0
101 0 0 0 0 0 Epoch 0 “ﬂh“jj“““u | . Epoch,
1 2 3 4 5 6 7 8 9 10 0 50 100 150 200 0 50 100 150 200
True class
(@) (b) ()
FIGURE 4

(A) The confusion matrix of our SSATNet classification results. (B) The results of one of the testing. (C) The results of one of the training.

TABLE 1 Test results of various methods on the hyperspectral corn images dataset.

Models
Precision

Hyperspectral Corn images

Recall F1-Score

KNN (Kumbure et al., 2020) 96.12 + 0.35 95.72 £ 0.32 95.90 + 0.24 0.9675 + 0.011
SGD (Lei and Tang, 2021) 96.98 + 0.28 96.50 + 0.18 96.70 + 0.21 0.9721 + 0.008
RFA (Chen et al., 2021b) 94.50 + 0.40 94.10 + 0.38 94.22 + 0.39 0.9519 + 0.009
HybridNet (Roy et al., 2019) 96.72 + 0.30 96.44 + 0.28 96.34 + 0.21 0.9772 + 0.007
SSTNet (Zhang et al., 2022b) 98.12 + 0.18 97.78 £ 0.15 97.95 + 0.17 0.9887 + 0.005
CTMixer (Zhang et al., 2022a) 97.38 + 0.33 97.75 + 0.30 97.20 + 0.32 0.9827 + 0.008
MSTNet (Yu et al., 2022) 97.00 + 0.38 96.95 + 0.35 96.80 + 0.36 0.9802 + 0.009
MATNet (Zhang et al., 2023a) 98.27 + 0.16 98.34 + 0.14 98.25 + 0.15 0.9930 + 0.004
3DCT (Wang et al., 2024a) 98.30 + 0.28 98.12 + 0.25 98.19 + 0.27 0.9928 + 0.004
Our 98.65 + 0.18 98.57 £ 0.15 98.60 + 0.17 0.9965 + 0.003

Optimal, bolded; Suboptimal, blue.

(Zhang et al., 2022b). In these experiments, we systematically removed
individual components of the network while retaining the remaining
modules unchanged. Specifically, we excluded the following
components: 1) the 3D convolution module (-w/o 3DConv); 2) the
2D convolution module (-w/o 2DConv); 3) the spectral morphology
structure (-w/o SpectralMorph); and 4) the spatial morphology
structure (-w/o SpatialMorph). The Table 2 below illustrates the

TABLE 2 Quantitative test results of ablation experiments.

quantitative analysis metrics for each ablation experiment. The
results demonstrate that the removal of the 3D convolution module
leads to the most significant degradation in performance,
underscoring its crucial role in capturing both spectral and spatial
features in hyperspectral corn seed images. Without 3D convolution,
the model’s ability to integrate spatial-spectral correlations is
substantially weakened. Similarly, the removal of the 2D

Module Precision Recall F1-Score Ka
-w/o 3DConv 86.42 + 031 87.33 + 0.29 87.05 + 0.36 0.8768 + 0.006
-w/o 2DConv 89.51 + 0.25 9035 + 0.25 9052 + 0.29 0.9117 + 0.004
-w/o SpectralMorph 93.65 + 0.22 93.27 + 0.19 93.86 + 0.25 0.9408 + 0.004
-w/o SpatialMorph 92.59 + 0.20 92.69 + 0.21 9231 + 021 0.9332 + 0.005
SSATNet (full model) 98.65 + 0.18 98.57 + 0.15 98.60 + 0.17 0.9965 + 0.003

Optimal, bolded.
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convolution module also causes a noticeable decline in performance,
although to a lesser extent compared to the absence of 3D convolution.
This is because 2D convolution primarily focuses on extracting local
spatial features and refining feature representations. The exclusion of
the spectral morphology structure results in performance degradation,
highlighting its importance in enhancing spectral feature
representation and managing the complex spectral relationships
inherent in hyperspectral data. Likewise, the spatial morphology
structure significantly contributes to the model’s performance by
extracting and enhancing spatial features, enabling more accurate
classification of corn seed images.

In summary, each module is crucial to the overall performance
of SSATNet. The 3D convolution module provides the most
significant enhancement to classification performance, followed
by the spectral morphology structure and the spatial morphology
structure. The 2D convolution module also provides substantial
support in refining feature representation. Through the synergy of
these modules, SSATNet excels in the hyperspectral corn seed
classification task, demonstrating the effectiveness of its design.

5 Conclusion

In this paper, we propose the SSATNet method for non-
destructive identification of hyperspectral corn varieties. First, we
design a 3D-2D cascade structure to reduce image data complexity
and effectively extract local feature information, facilitating the
Transformer structure’s processing. Additionally, we introduce a
spectral-spatial morphology structure combined with 2D
convolution to perform expansion and erosion operations on the
data, providing a deeper understanding of the data’s nature. Finally,
we employ the Transformer structure to extract global feature
information from hyperspectral corn images through the self-
attention mechanism, achieving efficient capture of global
dependencies between corn spectra. Ablation experiments highlight
the effectiveness of each component of SSATNet in extracting
features and classifying hyperspectral corn images. This method
offers a new approach to non-destructive corn variety identification
and significantly promotes the development of intelligent agriculture.
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on ECA attention mechanism
ResNet50 network

Lanting Li* and Yingding Zhao

School of Software, Jiangxi Agricultural University, Nanchang, China

Addressing the challenge of identifying tea plant diseases against the complex
background of tea gardens, this study proposes the ECA-ResNet50 model. By
optimizing the ResNet50 architecture, adopting a multi-layer small convolution
kernel strategy to enhance feature extraction capabilities, and introducing the
ECA attention mechanism to focus on key features, the model achieves a 93.06%
accuracy rate in tea disease identification, representing a 3.18% improvement
over the original model, demonstrating industry-leading performance
advantages. This model not only accurately identifies tea diseases in gardens
but also possesses excellent generalization capabilities, performing
outstandingly on datasets of other plant categories. These results indicate that
ECA-ResNet50 can effectively mitigate the interference of complex backgrounds
and precisely recognize tea disease targets.

tea plant diseases, ECA attention mechanism, ResNet50, deep learning, leave

1 Introduction

The tea industry in China has undergone years of development and continues to grow
steadily, occupying an important position in the domestic market and enjoying a strong
reputation internationally. However, throughout the cultivation process, tea plants
inevitably face various diseases and pests, which not only severely affect tea yields but
also pose a serious threat to the quality of the tea. To effectively address this challenge, it is
essential to actively introduce and apply emerging technologies such as artificial
intelligence, enabling precise and rapid detection and effective control of tea diseases,
thereby ensuring the sustainable and healthy development of the tea industry.

Computer vision, as an important branch of artificial intelligence technology, aims to
enable machines to possess visual perception capabilities similar to those of humans (Yu et al.,
2023). Currently, many countries are actively exploring the practical applications of computer
vision in the agricultural sector, achieving significant research results. Among these,
employing deep learning technology for crop disease recognition, followed by the
application of effective control strategies, has emerged as a pivotal trend shaping
agricultural progress. The application of this technology not only allows computers to
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provide rapid and accurate diagnostic results but also significantly
enhances the quality and overall yield of crops while reducing
additional labor costs and time consumption, thereby providing
strong support for the sustainable development of agriculture
(Dhanya et al., 2022).

In 2016, Li (2017) designed a tobacco disease diagnosis system
based on a six-layer convolutional neural network model. This system
utilizes deep learning techniques to identify tobacco diseases and
provides convenient diagnosis and prevention services for growers
through web design. The research further delved into the impacts of
varying iteration numbers and resolutions on the training efficiency
and classification capabilities of the network model. In 2017, Sun et al.
(2017) and his team introduced a convolutional neural network
framework incorporating batch normalization and global pooling
methodologies. After adjusting the network structure and
parameters, this model greatly improved the accuracy, efficiency,
and stability of plant disease identification. Optimizations resulted
in the best model significantly outpacing traditional convolutional
neural networks in convergence speed, achieving an accuracy rate
exceeding 90% after just three training iterations. Furthermore, this
proposed model necessitates minimal computational demands,
featuring a parameter memory of merely 2.6 MB, and attained a
remarkable average testing recognition accuracy of 99.56%, with
comprehensive performance for recall and precision reaching
99.41%. These improvements enable the model to deliver efficient
and accurate performance in the field of plant disease identification. In
2018, Lu et al. (2018) and colleagues proposed a deep learning-based
recognition method for rice leaf disease images. They constructed a
rice disease image database and employed PCA (Principal Component
Analysis) for dimensionality reduction. Utilizing the Caffe deep
learning framework, they crafted a profound network architecture
encompassing four convolutional tiers, three pooling stages, and a
solitary fully connected layer. Training and simulation with 2,000 rice
disease images, combined with ten-fold cross-validation testing,
verified that the designed deep learning structure and learning
algorithm achieved an average recognition rate of 96.9% for
common diseases such as rice blast and sheath blight in northern
cold region rice. The experimental results thoroughly demonstrated
the effectiveness of this method in identifying major rice leaf diseases,
providing strong technical support for accurate recognition and
prevention of rice diseases. In 2019, Wu (2019) proposed a tomato
leaf disease recognition technology based on a deep residual network.
This technology automatically adjusts the key hyperparameters in the
network using a Bayesian optimization algorithm, streamlining the
training procedure for the deep learning network. By incorporating
residual units into the traditional neural network structure, it
mitigated potential concerns related to gradient vanishing and
explosion phenomena within deep networks significantly enhancing
the performance of the network model and allowing for precise
extraction of high-dimensional features from tomato leaf images.
These features were then used for accurate disease identification.
Experiments showed that the deep residual network model in this
study achieved recognition accuracy exceeding 95% for common
tomato leaf diseases such as powdery mildew, early blight, late
blight, and leaf mold on public datasets. This study offers a
noteworthy reference for swiftly and precisely identifying tomato

Frontiers in Plant Science 238

10.3389/fpls.2025.1489655

leaf diseases. In 2020, Ji et al. (2020) and colleagues adopted a
convolutional neural network based on an improved residual
network, using publicly available plant image datasets for training.
Comparative experiments with the Xception and VGG-16 network
models showed that the improved neural network model achieved an
accuracy rate of 98.6%, significantly surpassing Xceptions 93% and
VGG-16’s 95%, demonstrating its efficiency and accuracy. In 2021,
Wang et al. (2021) and colleagues proposed an improved CenterNet-
SPP model for potato leaf diseases. This model first precisely locates
the central points of the targets using a feature extraction network, and
then accurately obtains key image information such as center point
offset and target size through center point regression techniques. The
experiments demonstrated that the model attained a mean average
precision (mAP) score of 90.03% on the validation dataset. In 2022,
Sun and Lin (2022) and colleagues introduced a novel approach for
detecting apple leaf diseases, leveraging ensemble learning techniques.
This method integrates the YOLOv5 and EfficientDet models,
achieving model integration through a non-maximum suppression
algorithm. Testing showed that the new method effectively improved
the detection performance of three common apple leaf diseases
without sacrificing detection speed, with average precision rising to
73.4%. Compared to the individual use of YOLOV5 and EfficientDet,
the new method improved accuracy by 3.0% and 4.8%, respectively. In
2023, Li et al. (2023) and colleagues constructed an alfalfa disease
recognition model using an improved AlexNet deep learning
convolutional neural network, trained on a dataset of 13 common
alfalfa diseases. After comparing different image input resolutions,
they found that the optimal model achieved the highest recognition
accuracy with an input size of 512 pixels x 512 pixels, reaching an
overall recognition accuracy of 72%. After further excluding low-
accuracy samples, the recognition accuracy for five key alfalfa diseases
significantly increased to 92%. In 2024, Qiu et al. (2024) and colleagues
developed an algorithm called CBAM-YOLOV5! based on an
improved YOLOV5. Through experiments, they confirmed that the
method enhanced detection accuracy without compromising on the
swiftness of the detection process. The algorithm achieved an overall
average precision of 96.52% on the validation set, with an average
detection time of 27.52 ms, demonstrating significant advantages in
detection accuracy compared to other object detection algorithms like
YOLOv4, YOLOv4-Tiny, and Faster R-CNN.

Currently, investigations into recognizing plant leaf diseases
and pests with convolutional neural networks predominantly
depend on conventional frameworks devoid of an attention
weighting mechanism. This can lead to a misalignment of the
model’s focus, subsequently affecting recognition accuracy.
Moreover, the aforementioned studies have not applied the
improved models to the recognition of diseases and pests in other
crop leaves, making it impossible to comprehensively validate their
generalization capabilities. To tackle these challenges, this research
introduces the ECA-ResNet50 model, which integrates the ECA
attention mechanism with the ResNet50 network framework. This
model focuses on various tea leaf diseases, such as algal leaf disease,
anthracnose, and bird’s eye spot disease, as well as healthy tea
leaves. Through comparative experiments with traditional
convolutional neural networks, the effectiveness of ResNet-ECA
in tea disease recognition was validated. Additionally, to further
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assess the generalization performance of the improved model, it was
applied to train and validate datasets of disease and pest leaves from
other crops, including corn, apples, and potatoes.

2 Research and implementation
of algorithm

2.1 Dataset construction

2.1.1 Data acquisition for dataset

According to statistical data analysis of the system, China’s tea
plants suffer from a wide variety of diseases, totaling approximately
over 140 types, which are widely distributed across various parts of
the tea plants, including leaves, stems, roots, and flowers (Chen,
2022). Given the limitations of experimental conditions, this study
collected a total of 885 images of tea diseases through search engines
(https://www.kaggle.com/datasets/shashwatwork/identifying-
disease-in-tea-leafs). After meticulous identification and
classification by authoritative experts, these images were
categorized into seven distinct types of leaf diseases, as well as
healthy leaves. The seven disease types are algae leaf spot,
anthracnose, bird’s eye spot, cloud blotch, gray spot, red leaf spot,
and white spot disease. Some images of tea disease leaves are shown
in Figure 1.

10.3389/fpls.2025.1489655

2.1.2 Dataset processing

During the training phase of a Convolutional Neural Network
(CNN) model, ensuring a large-scale and diverse dataset plays a
decisive role in enhancing the model’s performance. However,
acquiring a sufficient number of images that cover various types
of tea plant disease under current conditions is a formidable
challenge. To address this issue, this research employs data
augmentation strategies to efficiently augment the training dataset
thereby improving the model’s generalization capability and
recognition accuracy for tea plant disease images. Firstly, the
original dataset is expanded through a series of data
augmentation techniques, including flipping, rotation, cropping,
color transformation, and blurring, with each method expanding
the dataset to 1000 images. Some examples of the augmented
images are shown in Figure 2. Subsequently, the expanded dataset
is divided into a training set and a test set at an 8:2 ratio. During the
data preprocessing stage, to ensure data consistency and
compatibility with the model’s input requirements, all images are
resized to a uniform dimension of 224x224 pixels. Furthermore,
through padding and random shuffling, we aim to fully utilize the
data information and enhance the model’s training effectiveness.

2.2 ECA mechanism

The ECA (Wang et al., 2020) module is an optimized version of
the SE (Hu et al,, 2019) attention module that significantly enhances

A

(1) algae leaf spot (2) anthracnose

(3) bird's eye spot (4) cloud blotch

(6) healthy

(5) gray spot

FIGURE 1
Images of tea diseases.
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Original images

FIGURE 2
Image enhancement examples.

performance despite having fewer parameters. When performing
global average pooling, it ingeniously avoids compressing the
channels of the input feature map, aiming to mitigate the adverse
effects of learning inter-channel dependencies. Within the ECA
module, the extent of local cross-channel interaction is defined as
k, meaning each channel and its adjacent k channels are considered.
By utilizing a one-dimensional fast convolution tailored to the k
value, the module efficiently accomplishes local cross-channel
interaction, capturing the relationships among channels. Finally,
the weights, post-processed via a Sigmoid function, are scaled with
the corresponding entries in the input feature map to yield the
output. Its structural diagram is shown in Figure 3. The distinctive
architecture of the ECA module enables the model to prioritize the
feature information pertaining to smaller objects, ensuring both
efficiency and computational effectiveness. Since the k value is
proportional to the number of channels, to avoid cross-validation,
the k value can be obtained through Equation 1:

|

16C +b
Y

oY)

odd

Enhance brightness

X

1X1XcC

10.3389/fpls.2025.1489655

Color transformation

In the equation, C denotes the channel count in the input
feature map, while b and y are conventionally initialized as 1 and 2,
respectively, respectively, to adjust the ratio between the dimensions
of the convolutional kernel and the value of C. The notation odd
indicates that K should be the odd number closest to the
function’s value.

2.3 ResNet50

ResNet50 (He et al., 2016) is a deep convolutional neural network-
based algorithm designed for image classification tasks, proposed by
Kaiming He and his colleagues at Microsoft Research in 2015. As an
important member of the ResNet family, ResNet50 addresses the issue
of gradient vanishing during the training of deep networks by
introducing residual connections, effectively enhancing the
model’s performance.

The ResNet50 architecture comprises numerous residual
blocks, which include additional layers such as pooling layers and
fully connected layers. The overall structure of the network is very

Lo oD

1X1XC

©

@ Global Average Pooling
FIGURE 3

ECA architecture diagram.
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deep, employing 50 convolutional layers, hence the name ResNet50.
These convolutional layers extract features from images at different
sizes and depths, enabling the model to capture features at various
levels. The configuration of a residual block is depicted in Figure 4.

Each residual block is linked to each other by residual
connections. This direct connection mitigates the issue of
vanishing gradients by enabling the seamless flow of information
across network layers. In ResNet50, each residual block consists of
two convolutional layers, called the main path and the hop
connection, respectively. By adding the input to the output of the
main path, the residual learning of the information is realized. The
formula for each residual element is as follows:

2

X

+1 =X+ F (x]: VV])

where x;, x;,; denotes both the input and output information
of the layer network, respectively, and represents the learnable
parameters within that layer. Perform a recursive operation on
Equation 2 to obtain the relational expression of any deep J and

shallow J:

Xy = X+ S0 Floe, W) 3)

According to the chain derivative used in the backpropagation
algorithm, the gradient of backpropagation can be expressed as:

de de de deg d
=2 _Z° [1 +a_xj2ijF(xi’Wi)} (4)

a_xj N x5 dx; N dx;

Because all a%jzisz(x,-, W;) in Equation 4 may be equal to -1,

this unit effectively mitigates the issue of information loss during
the learning phase.

BURJZ
Weight layer

f(x) |

BOE
Weight layer

f(x)+x

FIGURE 4
Residual block structure diagram.
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2.4 Network architecture based on ECA
attention mechanism and ResNet50

The ECA-ResNet50 model is optimized and improved on top of
the ResNet-50 infrastructure. Firstly, the 7x7 convolution kernel of
the first layer of ResNet-50 was replaced by three 3x3 convolution
kernels. In the traditional ResNet50, the 7x7 convolution kernel is
designed to capture a wider range of spatial context information in
the input image, however, in the tea disease identification scenario,
the disease characteristics are often complex and subtle, and the
affected area is comparatively minute. In view of this, the strategy of
using multi-layer small convolutional kernel not only refines the
granularity of feature extraction and improves the accuracy of
disease identification, but also enhances the learning ability and
complexity of the model by reducing the total number of
parameters and increasing the network depth, and significantly
optimizes the performance. Moreover, to enhance the model’s
sensitivity and recognition efficiency towards tea disease
characteristics even further, ECA-ResNet50 integrates the ECA
attention mechanism into the first residual module of ResNet-50.
Although ResNet-50 itself can effectively alleviate the gradient
problem in deep network training, relying solely on numerical
transfer may not be enough to accurately capture the key features
when dealing with tea diseases with similar characteristics, which
will affect the recognition accuracy and generalization ability. By
introducing the ECA attention mechanism, the model can focus on
more discriminative feature information in the image, which
effectively enhances the learning and recognition ability of tea
disease characteristics, which is a key measure to improve the
overall performance of the model, Figure 5 is the structure
diagram of ECA-ResNet50.

2.5 Experimental parameters and
evaluation metrics

Precision, recall, accuracy, and Fl-score were employed to
assess the network model’s performance in identifying tea
diseases. The formulas for calculating these evaluation metrics are
outlined below:

» TP )

recision = ————

prec TP + FP

TP
= ——— 6
Tt = TP FN ©
: TP + TN 7
ACCUTAY = Tp { EN + FP+ TN

S (8)

" 2TP+FP+FN

Here, TP denotes the count of samples accurately labeled as
positive by the model, TN represents the count of samples correctly
identified as negative. FP signifies the number of negative samples
mistakenly predicted as positive, while FN represents the number of
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FIGURE 5
Structure diagram of ECA-ResNet50

positive samples incorrectly labeled as negative. Accuracy gauges the
fraction of samples correctly predicted by the model among all test
samples, calculated as the total number of correctly predicted samples
divided by the total test samples. Precision focuses on the ratio of
samples predicted as positive by the model that are actually positive,
computed as the number of correctly predicted positive samples
divided by the total number of samples predicted as positive. Recall,
also known as the true positive rate, assesses the proportion of actual
positive samples accurately identified by the model, calculated as the
number of correctly predicted positive samples divided by the total
number of positive samples. F1 score serves as a comprehensive
metric, balancing the significance of precision and recall by
computing their harmonic mean. A higher F1 score signifies
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superior performance in both precision and recall, making it a
frequently utilized evaluation metric for classification models.

3 Results and discussion
3.1 Experimental environment

This investigation is conducted utilizing the TensorFlow
platform of the Python programming language, encompassing
two distinct phases: model training and testing. In terms of
hardware environment, IT uses an intel(R) Xeon(R) Silver 4112
processor with a frequency of 2.6 GHz. 16 GB of memory space;
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NVIDIA Quadro RTX5000 graphics card. In terms of software
environment configuration, CUDAToolkit 10.0, CUDNN 10.1 and
TensorFlow 2.2 are selected as the deep learning framework, and the
operating system is Windows 10.

3.2 Activation function
comparison experiment

In neural network models, activation functions play a very
important role, which greatly enhances the network’s ability to
process complex data and function mapping by giving the network
nonlinear ability, adjusting the output range, and promoting sparse
expression (Bahdanau et al,, 2014). To enhance the efficiency and
effectiveness of the model, optimization efforts are undertaken,
three activation functions, ReLU (Xu et al, 2016), LeakyReLU
(Technicolor T. et al,, 2019) and ELU, were selected for training
and comparison, so as to select the activation function strategy that
is most consistent with the model. The experimental results are
shown in Table 1, as evident from the tabular data, the ReLU
activation function exhibits favorable performance in terms of
accuracy, recall, and Fl-score, and its accuracy is 1.68% and 7.5%
higher than that of LeakyReLU and ELU, respectively. The above
data show the superiority and applicability of the ReLU activation
function in the ECA-ResNet50 model adopted in this study, and it
can give full play to the potential of the model and achieve better
performance than the other two activation functions.

3.3 Comparative experiments on
attention mechanisms

Within the framework of neural network designs, the attention
mechanism module plays a pivotal role, as an additional component
of the neural network, can selectively focus on a specific part of the
input, or effectively filter the information by assigning differentiated
weights to different elements of the input. In recent times, due to its
substantial contribution to enhancing model performance, this
mechanism has garnered widespread adoption and implementation

TABLE 1 Activation function comparison experiment.

10.3389/fpls.2025.1489655

across diverse fields. In this study, three mainstream attention
mechanisms, ECA, SE, and CABM (Fe et al., 2017), were selected
to test and evaluate their respective effects in enhancing model
performance. Table 2 shows the performance comparison results
achieved after introducing these three attention mechanisms into the
model. Based on an examination of the experimental data, under the
same experimental environment settings and conditions, the ECA
attention mechanism has the best effect among the three attention
mechanisms, showing the best performance, with an accuracy of
93.06%, exhibiting a 3.5% increase in comparison to the SE attention
mechanism within the model and 1.81% more accurate than the
CBAM attention mechanism. These results show that the ECA
attention mechanism can more effectively enhance the recognition
ability and robustness of the model in this experimental model.

3.4 Ablation experiments

To validate the efficacy of the ECA attention mechanism
module alongside three 3x3 convolutional kernel modules,
ablation experiments were performed on the tea dataset, utilizing
ResNet50 as the foundation network. The qualitative comparative
outcomes are presented in Table 3. As can be seen from the data
analysis in Table 3, the recognition accuracy of the model is
significantly improved by 1.82% after the ECA attention
mechanism is integrated into the ResNet50 model. The notable
enhancement stems from the integration of the attention
mechanism, empowering the model to precisely concentrate on
the pivotal distinguishing characteristics within the image, thereby
enhancing the recognition and learning efficiency of tea disease
features, and improving the overall performance of the model. In
addition, the replacement of three 3x3 convolution kernels with one
7x7 convolution kernel also brings a slight improvement in
recognition accuracy. This improvement is due to the refinement
of feature extraction brought about by the multi-layer small
convolutional kernel design, which not only reduces the total
number of model parameters, additionally, it enhances the
intricacy and learning capacity of the model by augmenting
the depth of the network, thereby promoting the improvement of

Activate the function = The number of iterations Precision% Recall% Accuracy”%
ReLU 200 93.09 93.06 93.07 93.06
LeakyReLu 200 91.43 91.38 91.40 ‘ 91.38
ELu 200 87.71 85.56 86.62 ‘ 85.56

TABLE 2 Comparative experiments on attention mechanisms.

Attention mechanisms = Batch size The number of iterations = Activate the function = Accuracy%
Join ECA 64 200 ReLu 93.06 23,569,869
Join SE ‘ 64 200 ReLu 90.56 23,585,736
Join CBAM ‘ 64 200 ReLu 91.25 23,585,834
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TABLE 3 Ablation experiments.

10.3389/fpls.2025.1489655

Join ECA Replace the 3x3 Accuracy”% Precision% Recall%
convolution
kernel
x x 89.88 89.90 89.88 88.89
y X 925 92.61 925 92.55
x V 90.68 90.69 90.69 90.69
y Y 93.06 93.09 93.06 93.07

x is not added, \ is added.

the accuracy of tea disease identification. Figures 6, 7 are ECA-
ResNet50 and ResNet50 confusion matrices, respectively.

3.5 Comparative experiments with
other datasets

To ascertain the versatility and generalizability of the model
introduced in this research, extending beyond tea disease
identification, we sourced disease image exemplars of apple and
corn crops from the publicly accessible PlantVillage dataset
(github.com/spMohanty/PlantVillage-Dataset), and each crop
contained three different disease types, including 3000 apple
disease images and 3192 maize disease images. The image data is
divided into 80% training set and 20% test set. The ECA-ResNet50
model was then trained and tested with the original ResNet50
model, and the outcomes, presented in Table 4, indicate that the
ECA-ResNet50 model demonstrates exceptional performance in the
recognition of apple and maize diseases, and its accuracy is

significantly improved compared with the unimproved ResNet50
model, which is 9.43% higher in apple disease identification and
4.17% higher in maize disease identification. This experimental
endeavor conclusively establishes that the model presented in this
research transcends the confines of solely tea disease identification,
but also has a wide range of applicability, and can be effectively
applied to the disease detection of other crops.

3.6 Other models than experiments

To assess the performance of the model introduced in this
research in an unbiased manner, eight classical network models,
including AlexNet (Huang et al., 2024), MobileNet (Sandler et al.,
2018), and VGGI16 (Zhao et al, 2024), were used to test and
compare on the tea disease dataset, and the specific comparison
results are shown in Table 5. The tabular data underscores the
notable superiority of the ECA-ResNet50 model in the realm of tea
disease identification, and its accuracy exceeds that of AlexNet
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Confusion matrix diagram of ECA-ResNet50.
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Confusion matrix diagram of ECA-ResNet50.

(2.68%), MobileNet (7.18%), VGG16 (1.81%), ResNet34 (2.43%),
ResNet50 (3.18%) and ResNet101 (2.62%). Only slightly lower than
InceptionResnetv2 model (0.57% lower) and lower than
Transformer (1.43% lower). Nonetheless, it is pertinent to
mention that the InceptionResnetv2 model and Transformer
model exhibits a considerably higher level of complexity in
comparison to ECA-ResNet50. In summary, the ECA-ResNet50
model not only performs well in tea disease identification, but also
has high robustness, which is a relatively lightweight model with

superior performance.

TABLE 4 Comparative experiments with other datasets.

4 Conclusion

To address the challenge posed by the difficulty in identifying
tea diseases amidst the intricate backdrop of tea gardens, a tea
disease identification model based on ECA attention mechanism
and ResNet50 network was proposed, namely ECA-ResNet50. In
this study, utilizing ResNet50 as the fundamental network structure
enhances the model’s capability to discern tea disease traits within
the intricate environment of tea gardens. Using three 3x3
convolutional kernels to replace the 7x7 convolutional kernels of

Model Plant species = Type of disease Precision% Recall% F1% Accuracy%
ResNet50 Apple Scab 79.60 97.50 87.65 89.39
Black rot 97.50 99.50 98.49
Red Star Disease 100 71.20 83.18
Corn Gray spot disease 88.00 92.50 90.19 93.55
rust 99.60 98.70 99.15
Big spot disease 92.10 88.40 90.21
ECA-ResNet50 Apple Scab 100 96.50 98.22 98.82
Black rot 98.00 100 98.99
Red Star Disease 98.50 100 99.24
Corn Gray spot disease 89.50 94.50 91.94 94.65
rust 99.60 99.60 99.60
Big spot disease 94.10 88.90 9143
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TABLE 5 Comparative experiments with other models.

Model Accuracy% Precision% Recall%s F1%
AlexNet 90.38 90.75 90.38 90.56
MobileNet 85.88 85.30 85.88 85.59
VGGI16 91.25 91.41 91.25 91.33
ResNet34 90.63 90.70 90.63 90.66
ResNet50 89.88 89.90 89.88 88.89
ResNet101 90.44 90.54 90.44 90.49
InceptionResnetv2 93.63 93.78 93.63 93.71
ECA-ResNet50 93.06 93.09 93.06 93.07
Transformer 94.49 94.38 94.10 94.20

the first layer of ResNet50, the strategy of using multi-layer small
convolutional kernels can not only refine the granularity of feature
extraction and improve the accuracy of disease identification,
moreover, it augments the model’s learning prowess and intricacy
while optimizing performance through parameter reduction and
network depth enhancement. The incorporation of the ECA
attention mechanism fosters the model’s ability to prioritize
salient feature details within the imagery, which effectively
enhanced the learning and recognition ability of tea disease
characteristics and improved the overall performance of the
model. Compared with the original ResNet50 model, the
identification accuracy of ECA-ResNet50 on the tea disease
dataset was improved by 3.18%. At the same time, its
performance is also better than that of six other commonly used
network models (such as AlexNet, MobileNet, VGG16, etc.). In
addition, the ECA-ResNet50 model has also achieved good results
in other plant datasets, which fully demonstrates the effectiveness
and generalization of the model.

In this study, the tea disease identification model based on the
ECA attention mechanism and ResNet50 network realized the
accurate and efficient identification of seven tea diseases and one
healthy leaf in the complex background of tea garden, which has
certain significance for the prevention and control of tea garden
diseases. However, the number of tea diseases in the dataset used in
this study was relatively small, and some of the diseases were similar
in color and characteristics, and may even appear in the same leaf,
presenting a complex disease combination. In subsequent studies,
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Optimized classification of
potato leaf disease using
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diverse environments
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Introduction: Potatoes are a vital global product, and prompt identification of
foliar diseases is imperative for sustaining healthy yields. Computer vision is
essential in precision agriculture, facilitating automated disease diagnosis and
decision-making through real-time data. Inconsistent data in uncontrolled
contexts undermines classic image classification techniques, hindering precise
illness detection.

Methods: We present a novel model that integrates EfficientNet-LITE for
enhanced feature extraction with KE-SVM Optimization for effective
classification. KE-SVM Optimization cross-references misclassified instances
with correct classifications across kernels, iteratively refining the confusion
matrix to improve accuracy across all classes. EfficientNet-LITE improves the
model's emphasis on pertinent features through Channel Attention (CA) and 1-D
Local Binary Pattern (LBP), while preserving computational economy with a
reduced model size of 12.46 MB, fewer parameters at 3.11M, and a diminished
FLOP count of 359.69 MFLOPs.

Results: Before optimization, the SVM classifier attained an accuracy of 79.38%
on uncontrolled data and 99.07% on laboratory-controlled data. Following the
implementation of KE-SVM Optimization, accuracy increased to 87.82% for
uncontrolled data and 99.54% for laboratory-controlled data.

Discussion: The model's efficiency and improved accuracy render it especially
appropriate for settings with constrained computational resources, such as
mobile or edge devices, offering substantial practical advantages for
precision agriculture.

KEYWORDS

EfficientNet-LITE, KE-SVM optimization, channel attention, 1-D local binary pattern,
Sobel edge augmentation, uncontrolled environment data, potato leaf disease
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1 Introduction

Crop and plant diseases lead to substantial revenue drops,
incurring elevated disease management expenses and financial
losses for farmers globally. Potatoes serve as a fundamental food
source in India, which ranks as the second-largest producer
globally, contributing over 15% to worldwide potato production.
In India, potatoes are grown on around 2 million hectares, yielding
56 million tons (Mishra et al., 2024), thereby playing a crucial role
in food security and the economy of agriculture. Potato crops
experience yield losses of 5% to 15% owing to leaf diseases
(Mishra et al., 2024), necessitating the implementation of effective
disease management methods. Precisely diagnosing and
categorizing diseases under diverse conditions is important for
effective disease management. Conventional methods (Singla
et al, 2024) necessitated manual field scouting, resulting in
delayed disease diagnosis. These approaches are both inefficient
and subjective, depending on visual evaluations conducted by
trained plant pathologists. Computer vision-based image analysis
(Gulame et al., 2023; Tholkapiyan et al., 2023) has been developed
to address these constraints, enabling rapid and precise disease
identification. However, initial solutions primarily focused on
feature engineering to define particular attributes for each illness,
which is unfeasible for the extensive variety of plant species and
diseases. This has concluded in increased dependency on deep
learning (DL) to provide more generalized and scalable options.

In recent years, deep learning has gained prominence because to
developments in Graphics Processing Units (GPUs), increased
storage space, and the availability of vast datasets. Convolutional
Neural Networks (CNNs) (Huang et al., 2023) have become highly
favored for the recognition and classification of plant diseases owing
to their capacity to independently extract and learn optimal features
from images. Although they perform well in controlled settings,
numerous models fail to reproduce these outcomes with field data
acquired under uncontrolled conditions (Shabrina et al., 2024). To
mitigate this deficiency, the EfficientNet-LITE model, based on
Convolutional Neural Networks (CNN) (Haque et al., 2022;
Khamparia et al., 2020; Nagaraju and Chawla, 2022; Thakur et al.,
2022), was utilized to extract pertinent and advanced features from
images, facilitated by the incorporation of Channel Attention (CA)
(Chen et al,, 2021) and 1-D Local Binary Pattern (LBP) (Rachmad
et al., 2022) features. The incorporation of 1-D LBP for texture
analysis from feature maps is a distinctive method that markedly
improved the model’s capacity to identify complex patterns in
uncontrolled settings. Additionally, Sobel edge-detected samples
were incorporated into the improved dataset, providing an
innovative method to improve edge information during training.
Furthermore, KE-SVM Optimization (Deepti, 2023; Shrivastava et
al., 2023) was employed to enhance classification by optimizing
(Sorensen and Nielsen, 2018) SVM kernels and producing superior
prediction data. This integrated methodology attained elevated
precision in both regulated laboratory settings and demanding
outdoor environments. The primary contributions of the paper
are outlined below.
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e The EfficientNet-LITE model, with the innovative
incorporation of Channel Attention and the original
utilization of 1-D Local Binary Pattern features,
substantially enhanced the accuracy of plant disease
classification, especially in severe uncontrolled situations.
This distinctive integration enabled the model to
concentrate more efficiently on pertinent image attributes.

* The incorporation of Sobel edge-detected samples into the
supplemented dataset greatly enhanced the model’s
capacity to capture and leverage edge information,
consequently raising classification performance.

* The KE-SVM Optimization utilized a kernel ensemble and
presented an innovative method to enhance the confusion
matrix by revisiting misclassified samples and accurately
categorizing them with other kernels. This novel approach
successfully reduced the constraints of conventional SVMs,
resulting in enhanced classification efficiency across
various datasets.

* The integration of EfficientNet-LITE with KE-SVM
Optimization demonstrated a revolutionary methodology
that attained higher accuracy and resilience. The model
effectively generalized over both controlled and
uncontrolled datasets.

e This research introduced an innovative, rapid, precise, and
dependable approach for classifying plant diseases, thereby
enhancing agricultural disease management, potentially
reducing yield losses, and enabling informed decision-
making for farmers.

Effective management of plant diseases requires timely and
precise identification and classification. Development in artificial
intelligence and machine learning has resulted in substantial
enhancements in automated disease detection. This review
examines contemporary methodologies and technologies,
concentrating on image processing and deep learning models
applied to various crops, with the objective of summarizing
current achievements and pinpointing research opportunities.

Nabila Husna Shabrina et al. revealed shortcomings in the
PlantVillage dataset for the diagnosis of potato leaf diseases in
real-world scenarios. To resolve this, they presented a novel dataset
of 3,076 pictures obtained in uncontrolled settings, encompassing
seven disease varieties. This dataset offers a more precise depiction
of potato leaf conditions. Testing EfficientNetV2B3 (Shabrina et al.,
2024) resulted in 73.63% accuracy on the new dataset, in contrast to
98.15% on PlantVillage.

Aanis Ahmad et al. investigated (Ahmad et al, 2023) the
generalization capacity of deep learning (DL) models for
diagnosing corn diseases in field conditions using many datasets,
including PlantVillage, PlantDoc, Digipathos, NLB, and a
proprietary CD&S dataset. Five deep learning architectures—
InceptionV3, ResNet50, VGG16, DenseNet169, and Xception—
were trained utilizing diverse dataset pairings. DenseNet169
exhibited enhanced performance, achieving an accuracy of
81.60% using RGBA images from the CD&S dataset after
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background removal. Furthermore, the amalgamation of field-
acquired and laboratory data, encompassing sources from
PlantVillage and CD&S, yielded an accuracy range of 77.50% to
80.33%, hence improving model generalization for field application.

Penghui Gui et al. tackled the issue of identifying plant diseases
in uncontrolled field environments. They proposed an enhanced
CNN model for field plant (Gui et al., 2021) disease identification
(FPDR), incorporating strategies such as backdrop substitution and
leaf resizing to optimize data augmentation. To improve feature
differentiation, they employed a channel orthogonal constraint and
utilized species categorization as a supplementary task. Utilizing the
proprietary Field-PlantVillage (Field-PV) dataset, comprising 665
field photos, the model attained an accuracy of 72.03%, representing
a substantial enhancement from 41.81%, despite being exclusively
trained on the PlantVillage dataset.

A. Ubaidillah et al. sought to improve the categorizing of corn
diseases using Random Forest, Neural Network, and Naive Bayes
(Ubaidillah et al., 2022) techniques. The study utilized a
compilation of corn leaf photographs obtained from agricultural
regions in the Madura Region, concentrating on four classifications:
healthy, gray leaf spot, blight, and common rust. The Neural
Network technique outperformed the alternatives, with an AUC
of 90.09%, a classification accuracy of 74.44%, an Fl-score of
72.01%, precision of 74.14%, and recall of 74.43%, so establishing
it as the most effective model for detecting maize diseases.

Priyanka Sahu and associates proposed a Deep-Dream (DD)
architecture (Sahu et al.,, 2023) for Crop Leaf Disease Detection
(CLDD), amalgamating deep learning (DL) with machine learning
(ML) techniques. The study utilized the tomato crop dataset from
PlantVillage and created 24 Hybrid Deep Neural (HDN) models,
utilizing EfficientNet (B0-B7) as a feature extractor in conjunction
with classifiers such as Random Forest (RF), AdaBoost (ADB), and
Stochastic Gradient Boosting (SGB). The DD-EffiNet-B4-ADB
model achieved optimal accuracy, ranging from 84% to 96%.

Hieu Phan et al. presented a deep learning approach utilizing
Simple Linear Iterative Clustering (SLIC) segmentation (Phan et al.,
2022) to identify diseased regions on corn leaves. The study
employed five pre-trained models—VGG16, ResNet50,
DenseNet121, Xception, and InceptionV3—on the PlantVillage
and CD&S datasets, concentrating on super-pixel classes like
northern leaf blight, gray leaf spot, and common rust. One
hundred models were trained using diverse segments and split
ratios. DenseNet121 achieved a peak accuracy of 97.77% on the
CD&S dataset, employing five segments per image and an 80:20
split. Web and mobile applications were developed for disease
identification, demonstrating the effectiveness of automated
disease tracking relative to manual monitoring.

Mohit Agarwal et al. devised an efficient CNN model of 8
hidden layers (Agarwal et al., 2020) for the identification of tomato
illnesses, therefore alleviating the computational demands linked to
pre-trained models. Their approach, assessed with the PlantVillage
dataset, achieved an accuracy of 98.4%, surpassing traditional
machine learning methods (94.9% with k-NN) and pre-trained
models like VGG16 (93.5%). The research employed image pre-
processing techniques to enhance efficiency, achieving an accuracy
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of 98.7% on additional datasets. This study highlights the
effectiveness and efficiency of lightweight (Zhu et al., 2023) CNN
(Dai et al., 2023) models for disease detection in tomato crops.

Hasibul Islam Peyal and associates developed a lightweight 2D
CNN model employing deep learning for the categorization of
diseases in tomato and cotton plants. The algorithm, incorporated
into an Android application named “Plant Disease Classifier,”
(Peyal et al, 2023) proficiently categorized 14 classifications,
consisting of 12 diseased and 2 healthy categories. Despite having
fewer variables than pre-trained models like VGG16, VGGI19, and
InceptionV3, it achieved an impressive average accuracy of 97.36%,
with precision, recall, and F1-scores around at 97%, and an Area
under Curve (AUC) score of 99.9%. The utilization of Grad-CAM
for visual interpretations and the model’s rapid classification time of
around 4.84ms highlight its efficiency and effectiveness in
disease detection.

Qiang Dai et al. created DATFGAN, a generative adversarial
network that employs dual-attention and topology-fusion
techniques to enhance the identification of agricultural disease
photos. DATFGAN (Dai et al., 2020) improves image clarity and
resolution, alleviating issues related to unclear images that hinder
identification accuracy. The network’s weight-sharing approach
reduces the parameter count, and actual evidence demonstrates
that DATFGAN produces visually superior results and significantly
outperforms existing methods in practical identification tasks.

Junde Chen et al. developed the Crop Disease Recognition
Model (CDRM), including the Location-wise Soft Attention
mechanism (Ubaidillah et al., 2022) into a pre-trained MobileNet-
V2 to enhance the detection of subtle lesion features. This model
addresses challenges associated with chaotic backgrounds and
variable lighting in crop disease images. The study’s experimental
results demonstrated an average accuracy of 99.71% on an open-
source dataset, with a 99.13% accuracy in challenging conditions.
The proposed method outperforms prior dominant techniques,
showcasing its effectiveness and robustness in detecting
agricultural illnesses.

Rabbia Mahum et al. proposed an enhanced deep learning
technique for the diagnosis and categorization of potato leaf
diseases. Unlike existing methods that categorize potato leaves
into two groups utilizing the Plant Village dataset, their approach
classifies leaves into five separate categories: Potato Late Blight
(PLB), Potato Early Blight (Feng et al., 2023) (PEB), Potato Leaf Roll
(PLR), Potato Verticillium Wilt (PVw), and Healthy (PH). Their
model achieved an accuracy of 97.2% by utilizing a pre-trained
Efficient DenseNet (Mahum et al., 2022) model, integrating an
additional transition layer, and implementing a reweighted cross-
entropy loss function. This method effectively tackles class
imbalance and overfitting, offering a robust solution for
comprehensive disease classification in potato leaves.

Zubair Saeed and associates developed a deep learning system
focused on computer vision for the early detection and classification
of potato leaf diseases. Utilizing deep convolutional neural networks
(Saced et al., 2021), specifically ResNet-152 and InceptionV3,
trained on the Kaggle potato dataset, their methodology achieved
accuracies of 98.34% and 95.24%, respectively, with a learning rate
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of 0.0005. The method precisely classifies potato leaves into three
categories: healthy, early blight, and late blight. This method aims to
mitigate economic losses by enabling the prompt detection of
disease outbreaks through accurate image-based categorization.

Kashif Shaheed et al. developed EfficientRMT-Net, a novel
model that combines Vision Transformer (ViT) with ResNet-50
(Shaheed et al., 2023) for the automated detection and classification
of potato leaf diseases. This technology addresses the limitations of
traditional methods, such as labor-intensive procedures and
inadequate illness detection. EfficientRMT-Net utilizes CNN for
feature extraction, depth-wise convolution to reduce processing
demands, and a stage block architecture to enhance scalability and
sensitivity. The model, trained on bespoke datasets, achieved
accuracies of 97.65% on a generic dataset and 99.12% on a
tailored potato leaf dataset. EfficientRMT-Net offers a dependable
approach for accurate disease classification, consequently
improving crop yield and resource efficiency.

Mingjie Lv and associates devised a maize leaf disease
recognition method to tackle challenges including variable
lighting and complexities in feature extraction. Their
methodology integrates a maize leaf enhancement framework and
the DMS-Robust AlexNet, an advanced neural network (Lv et al.,
2020) based on AlexNet. This network incorporates dilated and
multi-scale convolutions to improve feature extraction. It utilizes
batch normalization to reduce overfitting, with the PReLU
activation function and Adabound optimizer to improve
convergence and precision. Experimental results demonstrate that
this technique significantly enhances disease identification in
complex scenarios, providing a dependable alternative for
advanced plant disease diagnostics.

Hatice Catal Reis and Veysel Turk developed the Multi-head
Attention Mechanism Depthwise Separable Convolution Inception
Reduction Network (MDSCIRNet) for the early identification of
potato leaf diseases. This deep convolutional neural network utilizes
depthwise separable convolutions and a multi-head attention
mechanism to enhance classification accuracy. MDSCIRNet (Reis
and Turk, 2024) achieved an accuracy of 99.33% by combining deep
learning with SVM, outperforming contemporary algorithms such
as Xception and MobileNet, as well as traditional methods like SVM
and Random Forest. The study highlights the effectiveness of
MDSCIRNet in improving early disease detection and reducing
financial losses for agricultural producers.

Xiangpeng Fan and Zhibin Guan address critical challenges in
maize disease identification with their proposed VGNet, a system that
employs a pretrained VGG16 model. VGNet incorporates batch
normalizing, global average pooling, and 1.2 normalization to enhance
performance. Utilizing transfer learning and the Adam optimizer, the
model achieves an accuracy of 98.3% with a learning rate of 0.001,
exhibiting remarkable precision and recall for nine maize diseases.
VGNet's small architecture (Fan and Guan, 2023), requiring only 79.5
MB, enables efficient processing, demonstrating effective disease
recognition with a testing duration of 75.21 seconds for 230 images.

The reviewed literature demonstrates significant advancements
in plant disease classification learning models, (Saritha and
Thangaraja, 2023; Shahoveisi et al., 2023) using deep learning and
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machine learning models, yet several limitations persist. Many
studies rely heavily on the PlantVillage dataset, which, while
comprehensive, is collected in controlled environments and lacks
diversity for real-world applications. For instance, Nabila Husna
Shabrina et al. and Penghui Gui et al. highlighted the challenges of
generalization in uncontrolled settings. Additionally, while methods
such as DenseNet and EfficientNet have been explored, the absence
of innovative feature extraction techniques, such as attention
mechanisms and edge detection, limits their performance in
detecting fine-grained features. Furthermore, traditional classifiers
like SVMs, as used by A. Ubaidillah et al., often suffer from
limitations in handling misclassified samples, reducing overall
efficiency. Despite efforts to enhance accuracy, many studies fail
to effectively combine lightweight models with robust optimization
techniques for scalable and practical applications.

The proposed methods address these gaps by introducing
EfficientNet-LITE with Channel Attention (Haider et al., 2024;
Kumar et al,, 2023; Navrozidis et al., 2018) and 1-D Local Binary
Pattern (LBP) features, enabling precise focus on critical attributes
even in uncontrolled environments. The inclusion of Sobel edge-
detected samples enhances fine-detail recognition, while KE-SVM
Optimization revisits and corrects misclassified samples,
significantly improving classification efficiency. This integrated
approach achieves superior generalization across diverse datasets,
offering a fast, accurate, and reliable solution for real-world
agricultural disease management, ultimately empowering farmers
to reduce yield losses.

The remainder of the article is organized as follows: Section 2
outlines the structure of the feature extraction and classification
model. Section 3 examines the experimental findings and analysis,
while Section 4 presents the conclusions and future directions.

2 Materials and methods

The proposed approach initiates with image augmentation and
Sobel edge identification to improve and diversity the dataset. Figure 1
illustrates the application of an attention-based EfficientNet-LITE
model for feature extraction to identify essential leaf attributes,
succeeded by KE-SVM optimization for precise classification of
potato leaf diseases across diverse environments.

2.1 Dataset collection

This work utilized two datasets for the detection of potato leaf
diseases: one from an uncontrolled environment (Shabrina et al.,
2024) in Indonesia and the PlantVillage Dataset (Potato Species)
(Shaheed et al., 2023) from a controlled laboratory setting. The first
dataset, acquired from a Kaggle source, was compiled from multiple
potato farms throughout Java Island by teams from Universitas
Multimedia Nusantara and Universitas Gadjah Mada. It comprises
3,076 photos categorized into seven disease types: Figure 2 (a). virus,
(b). phytophthora, (c). nematode, (d). fungal, (e). bacteria, (f). pest,
and (g). healthy, taken under various settings. Figure 2 presents the
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FIGURE 1
Proposed methodology for potato leaf disease classification.

g) Healthy

FIGURE 2

Samples of the seven categories in the potato leaf disease dataset: (a) Virus, (b) Phytophthora, (c) Nematode, (d) Fungal, (e) Bacteria, (f) Pest, and
(g) Healthy.
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sample photographs for each class. Each image possesses a
resolution of 1500 x 1500 pixels and is stored in.jpg format for
accessibility and compatibility with image-processing software.

The second dataset, PlantVillage (potato species), has 2,152
photos categorized into three classes: Healthy, Potato Late Blight,
and Potato Early Blight, captured under uniform lighting
circumstances with a resolution of 256 x 256 pixels. Both datasets
provide a significant contrast between real-world and controlled
settings for assessing model efficacy in disease diagnosis.

2.2 Preprocessing

Use bilinear interpolation (cv2.INTER_LINEAR) (Shabrina et al.,
2024) to resize 1500x1500 potato leaf disease images to 224x224
pixels for machine learning models. This scaling was necessary to
match image dimensions to models. We picked bilinear interpolation
because it smoothed images while maintaining crucial characteristics
and particulars from the high-resolution originals. Preprocessing the
potato leaf disease images reduced computational effort and memory
utilization, optimizing model performance and preparing the dataset
for training and evaluation.

2.3 Data augmentation strategy

A complete data augmentation technique was applied to expand
the training dataset of potato leaf disease image and improve the
performance and resilience of the machine learning model. The

a) Original Image

f) Sobel zoom

e) Sobel edge sample

FIGURE 3

10.3389/fpls.2025.1499909

initial dataset consisted of 3,076 pictures, with 2,460 allocated for
training and 616 left aside for testing. Various augmentation
strategies were employed to generate a more diverse and
comprehensive training dataset, substantially enhancing the
quantity of training samples.

Multiple fundamental augmentation methods were employed
(Shabrina et al., 2024) to synthetically enlarge the training dataset.
Rotation within a 20-degree range was implemented to imitate
diverse viewing angles, enhancing the model’s capacity to generalize
across multiple orientations. Width and height adjustments of up to
20% of the image dimensions were executed to simulate differences
in image positioning. Furthermore, shear transformations with a
magnitude of 0.2 were implemented to produce tilting effects,
facilitating the model’s ability to manage images with perspective
deviations. Zoom changes, with modifications of up to 20%,
emulated various focal lengths and scales. Horizontal flips were
utilized to mirror pictures and augment the model’s resilience to
variations in orientation.

Sobel edge detection was employed to enhance the edges and
transitions in the potato leaf disease images. Employing the
OpenCV library, Sobel filters calculated gradients in both the x
and y directions, yielding edge-detected representations of the
source images. This technique enhanced texture and boundary
information, which was integrated into the training dataset. The
edge-detected images were merged with the augmented versions
generated through fundamental changes, enhancing the dataset
with intricate edge information.

The enhancing method was efficiently performed by processing
images of potato leaf disease in phases. Each image in a batch was

g) Sobel Flip h) Zoom

Sample images demonstrating original and augmented versions using various techniques: (a) Original Image, (b) Rotate, (c) Flip, (d) Left Shift, (e)

Sobel Edge Sample, (f) Sobel Zoom, (g) Sobel Flip, and (h) Zoom.
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initially converted to float32 format and augmented to incorporate
a batch dimension. Six specific augmentations were done to each
image with Keras’s ImageDataGenerator class, enabling
transformations including rotation, shifting, shearing, zooming,
and flipping. Furthermore, Sobel edge detection was executed to
produce further variations. Figures 3a-h illustrates the modified
photos, accompanied by their respective labels, image names, and
class names, which were subsequently gathered and preserved for
model training.

This augmentation method led to a significant increase in the
quantity of training samples. The initial training dataset of 2,460 photos
was enlarged to 14,760 augmented samples (Xiong et al, 2020),
incorporating those enhanced by Sobel edge detection. The quantity
of original testing samples stayed at 616 and was not increased. The
augmentation of the training dataset yielded a more varied collection of
images, markedly improving the model’s capacity to generalize and

excel in multiple circumstances.

2.4 Feature extraction

EfficientNet-LITE is an enhanced version of the basic
EfficientNetB0 (Upadhyay et al., 2024) design, specifically
engineered to improve feature extraction through the strategic
integration of a Channel Attention (CA) mechanism and 1-D
Local Binary Pattern (LBP) for features. The improvements
implemented post-Global Average Pooling layer are designed to

10.3389/fpls.2025.1499909

augment the model’s capacity to concentrate on pertinent features
in images of diseased potato leaves, thus improving performance
while preserving computational efficiency.

EfficientNet-LITE preserves the key principles of
EfficientNetB0, which optimizes network depth, width, and
resolution for enhanced accuracy with reduced parameters and
FLOPs, while incorporating an attention mechanism for more
targeted feature extraction. Figure 4 (Reproduced from
(Upadhyay et al., 2024)) shows the combination of EfficientNetB0
with Channel Attention mechanism. In contrast to EfficientNetBO,
which depends exclusively on convolutional processes and
depthwise separable convolutions (Reis and Turk, 2024),
EfficientNet-LITE’s incorporation of Channel Attention and 1-D
LBP enables the network to dynamically emphasize significant
features. This produces a model that is both efficient and
proficient at identifying nuanced patterns and details in potato
leaf images, rendering it especially suitable for jobs demanding high
accuracy with constrained computational resources.

The incorporation of the Channel Attention mechanism with 1-
Dimensional LBP in EfficientNet-LITE tackles certain issues in
feature extraction.

2.4.1 Channel Attention (CA)

Channel Attention operates by initially condensing the spatial
dimensions of the input tensor into a channel descriptor by global
average pooling. This description encapsulates the overall context
for each channel, succinctly conveying its significance.

Pretrained EfficientNetB0
= Attention Module
Input Images E i, = c
- o o
5 o 2 &
z 3 5 &
= S
g |||z 2l lal |a z ;
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FIGURE 4

The architecture of EfficientNet-LITE Model with channel attention mechanism.
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In Equation 1, z.the global average is pooled value for channel c,
Xpchw is the value of the input tensor at batch b, channel ¢, height h,
and width w.

The two completely connected layers subsequently convert this
description into a series of attention weights. The initial fully
connected layer diminishes the descriptor’s dimensionality,
whereas the subsequent fully connected layer reverts it to the
original channel dimension. The ReLU activation introduces non-
linearity, while the sigmoid activation guarantees that attention
weights remain constrained between 0 and 1.

The vector z is then passed through two fully connected (FC)
layers to generate channel attention weights:

First FC Layer:  y; = ReLU(W;z + b;) (2)

In Equation 2, W; is the weight matrix of the first fully
connected layer, b; is the bias vector of the first fully connected
layer, ReLU is the Rectified Linear Unit activation function.

Second FC Layer:  y, = W,y + b, (3)

In Equation 3, W, is the weight matrix of the second fully
connected layer, b, is the bias vector of the second fully
connected layer.

Apply a sigmoid activation function to obtain the channel
attention weights:

ac = 0(y,) (4)

In Equation 4, o is the sigmoid function, a, is the attention
weight of channel c.

Ultimately, these attention weights are employed to scale the
original input tensor, accentuating channels with greater weights
and reducing the influence of channels with lesser weights. This
approach allows the model to concentrate on the most pertinent
aspects, enhancing its capacity to derive significant information
from the incoming data.

2.4.2 1-D Local Binary Pattern (1D LBP):

1-D Local Binary Pattern (1-D LBP) is a method for identifying
textural features from one-dimensional data, such sequential signals
or feature vectors obtained from photographs. It operates by
juxtaposing each data point with its adjacent counterparts to
produce a binary pattern, subsequently transformed into a
decimal code. The codes are compiled into a histogram that
illustrates the distribution of local textures within the data points.
This approach is resilient to periodic changes and effectively
identifies critical local structures, including edges and peaks. The
1-D LBP (Algorithm 1) histogram offers a concise and distinctive
feature descriptor that is efficient for signal classification and texture
analysis tasks.
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Input: 1D signal X = {Xy,X», .., X,}, Number of neighbors P
Output: LBP codes for each point in the signal

1 Step 1: Initialize Parameters

2 P« Number of neighbors;

3 Step 2: Compute LBP Codes for Each Point in the Signal;
4 for each point i fromP+ 1 toN - Pdo

5 LBP; <« ©;

6 for each neighbor j from 1 to 2P do
7 if j <P then

8 Xj < Xip +j-1;

9 else

10 Xj — Xisjop;

11 if X; = X; then

12 S (Xi, X3) —1;

13 else

14 S (Xi, Xj) <« 0;

15 LBP; « LBP; +S (X1, X3) = 277";

16 Step 3: Return LBP Codes ;
Output: LBP; for each i

Algorithm 1. 1-D Local Binary Pattern (1-D LBP).

2.4.3 Model Structure:
The
EfficientNet-LITE, detailing the input and output shapes at each

Table 1 below summarizes the modified structure of

stage, along with the expansion factors, repeat times, and strides.

The proposed EfficientNet-LITE model was meticulously
engineered with a systematic arrangement of layers to attain a
compromise between computing efficiency and performance. The
input layer received potato leaf pictures measuring 224x224x3,
which were subsequently processed through a Conv2D layer that
downsampled the input to 112x112x32 with a stride of 2, thus
diminishing the spatial dimensions while augmenting the channel
depth. Batch Normalization and Swish Activation are utilized to
stabilize and non-linearly activate the refined feature maps, priming
them for the ensuing MBConv blocks.

The Swish activation function is defined Equation 5 as:

Swish(x) = x - o(x) (5)

where o(x) is the sigmoid function, given by Equation 6:

o(x) = (6)

The MBConv layers facilitate effective feature extraction by
gradually diminishing spatial dimensions while augmenting the
amount of channels, culminating in a dense and compact feature
representation. The model subsequently employed a 1x1 convolution
to refine the features, followed by global pooling and a Channel
Attention mechanism, which improved the model’s capacity to
concentrate on the most pertinent channels. This was succeeded by
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TABLE 1 Structure of the proposed model.

10.3389/fpls.2025.1499909

Operators (modules) Input shapes Expansion factor Output shapes Repeat times Strides
Input Layer 224 x 224 x 3 - 224 x 224 x 3 1 -
Conv2d 224 x 224 x 3 - 112 x 112 x 32 1 2
BatchNorm 112 x 112 x 32 - 112 x 112 x 32 1 -
Swish Activation 112 x 112 x 32 - 112 x 112 x 32 1 -
MBConvl 112 x 112 x 32 1 112 x 112 x 16 1 1
MBConv6 112 x 112 x 16 6 56 x 56 x 24 2 2
MBConv6 56 X 56 x 24 6 28 x 28 x 40 2 2
MBConvé 28 x 28 x 40 6 14 x 14 x 80 3 2
MBConv6 14 x 14 x 80 6 14 x 14 x 112 3 1
MBConv6 14 x 14 x 112 6 7 x7 %192 4 2
MBConv6 7 x7 %192 6 7 x 7 %320 1 1
Conv2d 1 x 1 7 x 7 x 320 - 7 x 7 x 1280 1 1
Globalpool 7 x 7 x 1280 - 1 x 1280 1 -
Channel Attention 1 x 1280 1 x 1280 1 -
1-D LBP 1 x 1280 1 x 1290 1

Dropout 1290 - 1290 1 -
Output Layer 1290 - num_classes 1 -

a 1-D Local Binary Pattern (LBP) layer that expanded the feature
vector to 1290 dimensions by integrating texture features.

2.4.4 Performance Comparison: EfficientNet-LITE
vs EfficientNet-BO

In deep learning, determines like Floating Point Operations
(FLOPs), parameter count, model size, and depth are essential for
evaluating the performance and efficiency of neural network
models. FLOPs measure a model’s computational complexity,
whereas the parameter count reflects its ability to learn and
express intricate aspects. The model’s size pertains to storage
demands, whereas depth frequently associates with the model’s
capacity to discern complex patterns within the data.

EfficientNet-LITE had 359.69 MFLOPs, somewhat less than
EfficientNet-B0’s 390. EfficientNet-LITE required fewer
computational resources due to its lower FLOPs, making it ideal
for mobile or edge devices. Despite adding Channel Attention and
1-D LBP features, EfficientNet-LITE maintained a computational
efficiency similar to EfficientNet-BO, demonstrating its design
efficiency. There are 3.11 million parameters in EfficientNet-LITE,
compared to 5.3 million in BO. EfficientNet-LITE’s reduced
parameters indicate a more streamlined architecture for memory-
constrained applications. EfficientNet-LITE’s 12.46 MB model size
was lower than EfficientNet-B0’s 20 MB due to fewer parameters.
The compactness of EfficientNet-LITE accelerated model loading,
memory usage, and inference times, making it better for real-time
applications. Table 2 shows the size of pre-trained network model.
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Also important is model depth, as deeper models can learn
complex representations. EfficientNet-LITE had 27 layers,
compared to 24 for EfficientNet-B0. This increased depth
suggested that EfficientNet-LITE could capture more complex
data characteristics, improving performance in sophisticated
feature extraction tasks. The comparable FLOPs show that the
extra depth did not reduce computing efficiency. EfficientNet-
LITE balanced computational efficiency with model capacity.
EfficientNet-LITE was ideal for mobile or embedded systems with
limited computational resources because to its low FLOPs,
parameter count, and model size. Despite being smaller, the
model’s depth let it accomplish complex tasks well.

Finally, EfficientNet-LITE has fewer parameters (3.11 million)
and a smaller model (12.46 MB vs. 20 MB) (Ubaidillah et al., 2022)
than EfficientNet-B0. It has more layers (27 vs. 24) but fewer FLOPs
(359.69 vs. 390), requiring fewer computations. EfficientNet-LITE
was more resource-efficient and performed well.

2.5 KE-SVM optimization (kernel ensemble
SVM optimization)

SVMs were widely employed in image classification and
machine learning to define class boundaries. By translating input
information into high-dimensional spaces, SVM classifiers
(Sorensen and Nielsen, 2018) accurately handled complex and
non-linear patterns in many applications.
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TABLE 2 The model size of the main networks.

Networks Model size = Parameters Depth
VGG16 528 MB 138 million 23
Inception V3 92 MB 23.8 million 159
ResNet50 98 MB 25.6 million -
DenseNet121 33 MB 8.1 million 121
MobileNet-V1 16 MB 4.2 million 88
MobileNet-V2 14 MB 3.5 million 88
NASNetMobile 23 MB 5.2 million -
EfficientNet-B0 20 MB 5.3 million 24
EfficientNet-LITE 12.46 MB 3.11 million 27

Bold values indicate the best performance.

However, datasets from uncontrolled environments with
different backdrops, perspectives, and lighting conditions were
difficult. Inconsistencies in image acquisition caused SVM kernels
to struggle. Ensemble approaches (Sorensen and Nielsen, 2018) in
machine learning improve performance by combining different
models. This helped classify potato leaf diseases, where the
dataset’s unpredictability required a more robust technique.

Kernel-Ensemble SVM (KE-SVM) Optimization used Linear,
Polynomial, Radial Basis Function (RBF), and Sigmoid SVM
kernels to address these issues. KE-SVM Optimization enhanced
classification accuracy and discussed dataset variability by capturing
different data features and integrating their predictions. KE-SVM
Optimization improves classification by combining SVM kernel
strengths. Figures 5, 6 shows the work flow of KE-SVM method.
This method compares misclassified instances in one kernel against
proper classifications in others. The optimum confusion matrix is
iteratively adjusted using this ensemble technique to optimize
classification accuracy across all classes.

10.3389/fpls.2025.1499909

The novelty of this work lies in the application of Kernel-
Ensemble SVM (KE-SVM) Optimization (Algorithm 2) to
substantially improve classification efficacy by harnessing the
advantages of several SVM kernels. Misclassified samples from
the kernel exhibiting the highest accuracy were verified against
predictions from alternative kernels, with those accurately classified
by other kernels deemed as True Positives. The iterative
modification process persisted until all classes were sufficiently
addressed, resulting in significant enhancements in
classification performance.

The potato leaf disease dataset, obtained from uncontrolled
conditions, demonstrated that the SVM RBF kernel initially gave
the highest performance among the kernels, attaining an accuracy
of 79.38%. The Linear kernel achieved an accuracy of 72.89%,
followed by the Polynomial kernel at 71.27%, and the Sigmoid
kernel at 64.12%. The classification metrics and confusion matrix
indicated a necessity for enhancement owing to the dataset’s
heterogeneity, including differing backdrops and
lighting conditions.

1 Result: Optimized confusion matrix and evaluation
metrics (accuracy, precision, recall, F1 score)

2 initialization;

3 confusion matrices « [];

4 csv files «— [];

5 kernels < {'linear’, 'poly’, ' rbf’, 'sigmoid’};

6 while each kernel k € kernels do

7 svm classifier « SVC (kernel = k, probability =

True);
8 svm classifier.fit (Xtrain resampied, Ytrain resampled) ;
9 ypred « svm classifier.predict (Xtest features) |

10 predictions df <« {Xtest features, Class Name, True
Label, Predicted Label};
11 csv filename « base path + ‘predicted labels' + k +

‘ ,

.CSv
Max Accuracy

(Kernel) Prediction
SVM Kernels Correctly
Linear Kernel ified Samples Updated and Optimized

Prediction Tables

Poly Kernel Samples Correctly Classified
Samples

Rbf Kernel

Sigmoid Kernel

Other (Kernels)
Prediction Tables

rrectly
C ed Samples

Misclassified

Samples

Misclassified
Samples

Re-Evaluate the Misclassified
Samples with other kernels

FIGURE 5
Block diagram of KE-SVM optimization.
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12  save (predictions df, csv filename) ;

13 csv files.append (csv filename) ;

14 Evaluate the Model ;

15 accuracy « accuracy score (Yeest, Ypred) ;

16 precision « precision score (Yiest,
Ypred, weighted');

17 recall « recall score (Vtest, Ypred, Weighted');
18 1« f1score (Ytest, Ypred, Weighted');

19 cm«— confusionmatrix (Yeest, Ypred) ;

20 confusion matrices.append (cm);

21 end while

22 Determine the best kernel ;

23 best index « argmax ({accuracy (cm) for each cm €
confusion matrices});

24 best matrix « confusion matrices [best index] ;

25 optimized matrix < copy (best matrix);

26 while each sample with (true label = best pred label)
incsv files [best index]do

10.3389/fpls.2025.1499909

33
34 end while
35 Compute and print optimized metrics;

end for

36 (accuracy, precision, recall, fl-score) « calculate
metrics (optimized matrix);

37 print (optimized matrix);

38 print (accuracy, precision, recall, fl-score);

Algorithm 2. KE-SVM Optimization.

The SVM classifiers with different kernels attained good
accuracy on the lab-controlled dataset from PlantVillage (potato
species). The Polynomial kernel attained the maximum accuracy of
99.07%, succeeded by the RBF kernel at 98.84%, the Linear kernel at
98.38%, and the Sigmoid kernel at 96.06%. The classification report
indicated an exceptional performance, with an overall accuracy of
1.00. The precision, recall, and F1-scores were remarkably elevated

27 for each i = best index in csv files do across all categories, indicating the consistent conditions of the
28 if other preds [i] = true label for sample then dataset. The confusion matrix revealed minimal misclassifications,
29 optimized matrix [true label, best pred illustrating the effectiveness of the SVM Polynomial kernel in
label] controlled laboratory circumstances.

— optimizedmatrix [true label, best pred The EfficientNet-LITE + SVM model demonstrated
label]l - 1; higher performance on datasets from both controlled
30 optimized matrix [true label, true label] and uncontrolled settings. Following KE-SVM optimization, the

« optimized matrix [true label, true accuracy on the PlantVillage dataset rises to 99.54%, while on the
label] +1; uncontrolled environment dataset, it dramatically climbs to 87.82%,
31 break : showing the model’'s improved capacity to manage intricate,
32 end if uncontrolled conditions.

By uzing KE-5VM =

Optimization to
updates the Optimized
Confosion Matrix
q %
Optimized Accuracy, Precision, Recall, F1-Score

FIGURE 6
Misclassified samples re-evaluate with other kernels.
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TABLE 3 Shows the results of both datasets before optimization.

Model Dataset Accuracy Precision Recall Fl-score
EfficientNet-LITE + SVM Potato Leaf Disease in Uncontrolled Environment ‘ 79.38% 80% 79% 79%
EfficientNet-LITE + SVM PlantVillage (Potato Species) ‘ 99.07% 99% 99% 99%

3 Result and discussions n-_ P
Reca 9)
TP + FN
This study’s results are structured into three primary stages: (1) - I
results before augmentation, (2) results before optimization, and (3) F1 Score = M (10)

results after KE-SVM optimization. These stages comprehensively Precision + Recall

illustrate the progression in performance of the SVM classifiers Accuracy evaluated overall correctness, whereas precision and
when applied to controlled (PlantVillage) and uncontrolled  recall examined the management of false positives and negatives.
environment datasets for diagnosing potato leaf diseases. The = The Fl-score offered a comprehensive assessment of the model’s
evaluation metrics employed include accuracy, precision, recall,  classification performance, as illustrated in Table 3 below.

Fl-score, and other relevant measures to validate the model’s The initial experiments were conducted using the raw dataset
effectiveness. Equation 7, Equation 8, Equation 9, Equation 10  without applying Sobel edge filtering or augmentation techniques.
employed to calculate these measures were included to clarify the ~ The SVM classifier’s performance in uncontrolled and controlled
evaluation procedure. environments revealed significant room for improvement. In the

uncontrolled environment dataset, the accuracy was 75.62%, while
TP+ TN

A -
Uy = Tp { TN + FP + FN

7) in the lab-controlled dataset, the accuracy was 98.62%. These results
underscore the challenges posed by the inherent variability in the
uncontrolled environment dataset.

Precision = % (8) The lab—'c01.1t'rolled data.set demon?trated high accurac?l duevto
reduced variability and noise. Following data augmentation with
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
0 |117| 5 1 0 1 2 8 01107 4 | 1 | 1 1|18 0(113) 6 | 1 | 1| 3 8
111 (112 4 | 0 [ 15|13 | 7 1(1 (96| 3|0 |23|11]18 1(1 (88 |3|29|19]| 8
2|1 01| 4|30]| 0 0|0 21 1[0 (28(/0(|4)|0]|2 2100 (29(0( 4 0 2
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416 |23(10| 2 |S8( 4 |17 413 (1211 0 |66| 7 |21 416 |17(22| 1|48 | 12 | 14
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FIGURE 7
Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (RBF). (a) Linear, (b) Polynomial, (c)
Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) RBF.
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Sobel edge filtering to enhance feature extraction, the performance
of the SVM classifiers was evaluated before applying the KE-SVM
optimization technique. The augmented samples contributed to
improved classification, particularly in uncontrolled environments.

A comprehensive examination of the SVM model was
performed on the uncontrolled environment dataset utilizing four
distinct kernels: Linear (Figure 7a), Polynomial (Figure 7b), RBF
(Figure 7f), and Sigmoid (Figure 7c). Confusion matrices were
produced for each kernel, offering insights into the model’s
classification proficiency across diverse categories: 0: Virus, 1:
Phytophthora, 2: Nematode, 3: Fungi, 4: Bacteria, 5: Pest, 6:
Healthy. Visual representations of these matrices are provided to
illustrate the model’s performance.

10.3389/fpls.2025.1499909

The overall effectiveness was evaluated by plotting the AUC-
ROC curve (Figure 7d) and learning curves (Figure 7e) for the
kernel exhibiting the highest accuracy. These visuals facilitated
awareness of the model’s capacity to generalize to unfamiliar data.
To test the model’s dependability, 5-fold cross-validation was
employed. Table 4 results demonstrated constant performance
across the folds, signifying the resilience of the SVM with RBF
kernel, which attained the best accuracy.

The SVM model utilizing the RBF kernel exhibited robust
performance, attaining an average training accuracy of 99.32 and
a validation accuracy of 96.94. The minor discrepancy between
these metrics signified effective generalization throughout the
sample. The uniformity of results over the five folds further

TABLE 4 5-Fold cross validation for potato leaf disease in uncontrolled environment dataset.

Fold Training Accuracy Validation Accuracy Training Loss Validation Loss
Fold 1 0.993 0.9656 0.0796 04502

Fold 2 09932 0.969 0.0726 03942

Fold 3 09933 0.9736 0.0705 0.302

Fold 4 0.9936 0.9702 0.0626 03604

Fold 5 0993 0.9686 0.0757 03837
Average 0.9932 0.9694 0.0722 0.3781

Bold values indicate the best performance.
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Confusion matrices of SVM kernels, AUC-ROC curve, and learning curve for the kernel with maximum accuracy (Polynomial). (a) Linear, (b) RBF, (c)

Sigmoid, (d) AUC-ROC Curve, (e) Learning Curve, (f) Polynomial.

Frontiers in Plant Science

260

frontiersin.org


https://doi.org/10.3389/fpls.2025.1499909
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sangar and Rajasekar

TABLE 5 5-Fold cross validation for PlantVillage dataset (potato species).

10.3389/fpls.2025.1499909

Validation Loss

Training Accuracy

Validation Accuracy

Training Loss

Fold 1 0.9996 1.0000 0.0004 0.000
Fold 2 0.9997 0.9972 0.0003 0.0028
Fold 3 0.9997 0.9986 0.0003 0.0024
Fold 4 0.9996 0.9979 0.0004 0.0031
Fold 5 0.9996 0.9983 0.0004 0.0038
Average 0.9996 0.9984 0.0004 0.0024

Bold values indicate the best performance.

emphasized the model’s resilience, even in an uncontrolled setting.
The RBF kernel effectively captured intricate correlations within the
data, demonstrating its appropriateness for the dataset’s inherent
unpredictability. The model’s excellent accuracy underscored its
efficacy in classifying leaf diseases.

In the lab-controlled dataset, identical SVM kernels were
utilized, and confusion matrices were produced for each kernel:
Linear (Figure 8a), Polynomial (Figure 8f), RBF (Figure 8b), and
Sigmoid (Figure 8c). It offers insights into the model’s
categorization proficiency across different categories: 0: Early
Blight, 1: Healthy, 2: Late Blight. The findings from this dataset
exhibited remarkably high accuracy owing to the controlled
environment, which minimized data fluctuation.

The model’s performance was additionally assessed by plotting
the AUC-ROC curve (Figure 8d) and the learning curve (Figure 8e)
for the optimal kernel. These curves demonstrated nearly flawless
generalization. Consistent with the uncontrolled dataset, 5-fold
cross-validation validated the model’s reliability, with Table 5
indicating minimal variance among the folds.

The SVM model utilizing a polynomial kernel was assessed on
laboratory-controlled data, demonstrating superior performance
across all five folds. The model attained an average training
accuracy of 99.96 and a validation accuracy of 99.84. The training

loss of 0.0004 and validation loss of 0.0024 signify little error and
robust generalization in a regulated environment. The results
highlight the efficacy of the polynomial kernel in managing clean,
organized data, exhibiting little variability relative to
uncontrolled contexts.

3.1 After optimization

After implementing KE-SVM Optimization, the model’s
performance on the uncontrolled environment dataset shown
significant enhancement. The optimal accuracy increased to
87.82%, accompanied by enhancements in precision to 86.77%,

TABLE 6 Optimized results for both lab and uncontrolled dataset.

No. of
Model Dataset Accuracy
Classes
EfficientNet- Potato Leaf Disease in 07 87.82%
LITE + SVM Uncontrolled Environment oo
EfficientNet-
. . o
LITE + SVM PlantVillage(Potato Species) 03 99.54%

0 1 2 3 4 5 6
of130] 3]ofo] o] o1
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(b)

Optimized confusion matrices for both datasets: (a) Uncontrolled data and (b) Laboratory-controlled data.
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TABLE 7 To compare the results with existing state-of-art-methods for
uncontrolled dataset.

Model Name Accuracy
Penghui Gui,
cngn CNN Field-PV 72.03%
et al., 2021
A Ubaidillah, ANN C(?tton Disease 74.44%
et al., 2022 (Field Data)
AANIS
AHMAD, DenseNet169(RGBA) | Field-PV 77.50%
et al., 2023
EfficientNetV2B3 73.63%
MobileNetV3-Large 72.03%
. ) Potato Leaf Disease
Shabrina, .
VGG-16 in Uncontrolled 59.81%
et al.,, 2024 .
Environment
ResNet50 68.17%
DenseNet121 59.16%
EfficientNet-LITE Potato Leaf Disease
Proposed .
Model (Before in Uncontrolled 79.38%
Optimization) Environment
Potato Leaf Di
Proposed EfficientNet-LITE inoljr:’co;?roll;ease 87.82%
Model (After Optimization) . Rl
Environment

Bold values indicate the best performance.

recall to 88.18%, and F1-score to 87.19%. The lab-controlled dataset
has been somewhat enhanced to 99.54%. (Figure 9a) presents the
optimized confusion matrix for uncontrolled data, while (Figure 9b)
displays the matrix for the laboratory-controlled dataset.

The optimization approach improved classification by cross-
validating misclassified examples from the most effective kernel
with predictions from other kernels, resulting in a more precise and
balanced confusion matrix. Table 6 presents the optimal outcomes
of the KE-SVM optimization technique.

3.2 Comparative performance

The proposed model (EfficientNet-LITE + KE-SVM
Optimization) exhibited substantial enhancements in accuracy
relative to previous models utilized on comparable datasets. Prior
to optimization, the model attained an accuracy of 79.38%, which
rose to 87.82% post-optimization. This performance surpassed
those of models like DenseNet121, ResNet50, and MobileNetV3-
Large, which exhibited accuracies between 59.16% and 73.63%. This
significant enhancement can be ascribed to the ensemble SVM
kernel methodology and improved feature extraction with
EfficientNet-LITE.

In the lab-controlled PlantVillage dataset, the suggested model
attained nearly flawless accuracy both prior to and subsequent to
KE-SVM Optimization. The model initially achieved an accuracy of
99.07%, which then increased to 99.54% during optimization. This
performance surpassed other prominent models, including
ResNet152, InceptionV3, and VGNet, which exhibited accuracies
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TABLE 8 To compare the results with existing state-of-art-methods
with PlantVillage(Potato) dataset.

Model Name Accuracy
Saeed Z ResNet152 PlantVillage 98.34%
et al., 2021 InceptionV'3 (Potato) 95.24%
Rabia M PlantVillage
ResNet-202 97.2%
et al., 2022 (Potato)
Shabrina PlantVill
FPIIE EfficientNetV2B3 AMEVITEE  98.15%
et al,, 2024 (Potato)
ai PlantVill
Jain J EfficientNetB0 AMVIEE 9905
et al., 2024 (Potato)
Proposed EfficientNet-LITE PlantVillage 99.07%
Model (Before Optimization) (Potato) R
Proposed EfficientNet-LITE PlantVillage 99.54%
Model (After Optimization) (Potato) o

Bold values indicate the best performance.

between 95.24% and 98.34%. The substantial enhancement upon
optimization is attributable to the improved feature extraction and
the strong classification capabilities of KE-SVM.

An optimized version of EfficientNetB0, EfficientNet-LITE,
integrated Channel Attention (CA) and 1D Local Binary Pattern
(LBP) features to increase feature extraction. This model prioritized
potato leaf traits while being computationally efficient, making it
ideal for resource-constrained mobile devices. KE-SVM
Optimization used linear, polynomial, RBF, and sigmoid kernels
to overcome typical SVM constraints. With SMOTE and confusion
matrix optimization, classification accuracy improved, handling
class imbalance and data variability.

The strengths of EfficientNet-LITE and KE-SVM Optimization
were combined. EfficientNet-LITE’s superior feature extraction and
KE-SVM Optimization’s classification created a model that could
handle complex datasets. This collaboration produced high
accuracy and reliable performance in all settings. The combined
model exceeded expectations in early illness identification and
uncontrolled environment management to satisfy research
objectives. The results confirmed the model’s efficacy and
versatility in solving research problems.

Tables 7 and 8 highlight the superior performance of our
proposed EfficientNet-LITE + KE-SVM Optimization model
compared to existing methods. Notably, the model achieved an
accuracy of 87.82% on uncontrolled datasets and 99.54% on the
PlantVillage dataset, surpassing models such as DenseNet121 and
ResNet50. These results underscore the robustness of our approach
in handling variability and improving classification accuracy. The
enhanced classification accuracy of our model has significant
implications for agricultural diagnostics. By addressing challenges
posed by uncontrolled environments, our model paves the way for
reliable and resource-efficient solutions applicable in real-world
farming scenarios. This contributes to the broader goal of
precision agriculture and early disease detection.
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4 Conclusion

In conclusion, our research revealed the effectiveness of
combining EfficientNet-LITE with KE-SVM Optimization for the
classification of potato leaf diseases. Initially, SVM classifiers
demonstrated disparate performance, with the RBF kernel
achieving 79.38% accuracy on uncontrolled data and the sigmoid
kernel reaching 99.07% accuracy on laboratory-controlled data.
Subsequent to KE-SVM Optimization, the accuracy on the
uncontrolled dataset markedly increased to 0.8782, with precision
at 86.77%, recall at 88.18%, and F1-score at 87.19%. Conversely, the
accuracy on the lab-controlled dataset exhibited a minor
enhancement to 99.54%. This integrated model adeptly tackles
issues associated with early disease classification, dataset
variability, and model robustness, demonstrating its versatility
and dependability across many settings. Future work could
explore integrating more comprehensive datasets that combine
image data with clinical parameters such as plant height, size,
irrigation schedules, and expert farmer insights. Additionally,
leveraging generative Al techniques could provide holistic
solutions for farmers, enhancing decision-making and improving
crop management practices.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
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