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The quality of tropical fruits and vegetables and the expanding global interest in

eating healthy foods have resulted in the continual development of reliable,

quick, and cost-effective quality assurance methods. The present review

discusses the advancement of non-destructive spectral measurements for

evaluating the quality of major tropical fruits and vegetables. Fourier transform

infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral

imaging (HSI) were used to monitor the external and internal parameters of

papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect

both spectral and spatial dimensions proved its efficiency in measuring external

qualities such as grading 516 bananas, and defects in 10 mangoes and 10

avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques

effectively assessed internal characteristics such as total soluble solids (TSS),

soluble solid content (SSC), and moisture content (MC), with the exception of

NIR, which was found to have limited penetration depth for fruits and vegetables

with thick rinds or skins, including avocado, pineapple, and banana. The

appropriate selection of NIR optical geometry and wavelength range can help

to improve the prediction accuracy of these crops. The advancement of spectral

measurements combined with machine learning and deep learning technologies

have increased the efficiency of estimating the six maturity stages of papaya fruit,

from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature

concatenation of data developed by HSI and visible light. The presented findings

in the technological advancements of non-destructive spectral measurements

offer promising quality assurance for tropical fruits and vegetables.

KEYWORDS

non-destructive measurement, spectral measurements, quality parameters, tropical
fruits and vegetables, rapid measurement
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1 Introduction

Tropical fruits and vegetables are agricultural crops that are

typically grown in tropical regions where the climate is warm, with

temperatures ranging from 20 to 350C (Bahadur et al., 2020).

Tropical regions are found amidst the tropics of Cancer and

Capricorn, and encompass equatorial zones in Oceania, Asia,

Africa, Central and South America, and the Caribbean (Zakaria,

2023). Crops grown naturally in such weather conditions provide

essential minerals, water, fiber, and vitamins that contribute

significantly to the well-being of humans by safeguarding against

ailments such as diabetes, hypertension, and cancer (Emelike and

Akusu, 2019).

The agricultural revolution and the adaptation of numerous

tropical plants to regions outside of their natural range have

muddied their classification, and little is known about what

properly defines and distinguishes tropical fruits and vegetables

from their temperate counterparts (Indiarto, 2020). Fernandes et al.

(Fernandes et al., 2011) described crop classification according to

size, acidity, seed type, and bearing. Included among alkaline crops

are apples, bananas, peaches, cherries, persimmon, and litchi

(Fernandes et al., 2011). Acidic crops include strawberry, orange,

kiwi, pineapple, lemon, star fruit, and logan, whereas sub-acidic

examples are mango, pear, blackberry, papaya, blueberry,

cherimoya, and mulberry (Fernandes et al., 2011). Chakraborty

et al. (Chakraborty et al., 2014) agreed and structured the

classification of tropical fruits based on that of Fernandes. Sarkar

et al. (Sarkar et al., 2018) reported classification system according to

maturity stage by means of ethylene gas emission and respiration

rate, including both climacteric and non-climacteric tropical

produce (Sarkar et al., 2018). Tropical climacteric produce such

as avocado, apple, pear, mango, papaya, broccoli, banana, kiwi, and

tomato undergoes maturation in correlation with an escalation in

their respiration rate and the release of ethylene gas (Indiarto,

2020), whereas tropical non-climacteric crops such as grape, berry,

citrus, litchi, strawberry, raspberry, pumpkin, watermelon,

cucumber, and pineapple do not undergo an elevation in their

respiration rate as they reach maturity (Indiarto, 2020). The

contrasting report of Retamales et al. (Retamales, 2011) centers

around the production of temperate crops worldwide. In this report,

apple, raspberry, pear, peach, kiwi, blueberry, strawberry and plum

were considered as temperate fruits (Retamales, 2011). In addition,

Benichou et al. (Benichou et al., 2018) have also classified temperate

fruits as tree (apple, plum, pear and peach), vine (grape and kiwi),

and small fruits such as raspberry, blueberry and currant (Benichou

et al., 2018).

Papaya, pineapple, avocado, mango, and banana are considered

to be major tropical fruits globally (Mukhametzyanov et al., 2022).

According to a market review prediction for the years 2013 to 2022

by the Food and Agriculture Organization of the United Nations

(FAO), the most exported tropical fruits globally from Central

America and the Caribbean, South America and Asia, Africa, and

others in millions of tons were papaya, pineapple, avocado and

mango with 3.7, 3.2, 2.3, and 2.1, respectively (Altendorf, 2019). On

the other hand, recent data have shown that global vegetable

production increased by 68% between 2000 and 2021 (FAO,
Frontiers in Plant Science 026
2022). Because of the continuous and emergent demand for

tropical fruits and vegetables worldwide, the present emphasis is

on quality assurance in relation to end-user inclinations and

commercial standards (Silva and Abud, 2017). The quality of

tropical fruits and vegetables is characterized by both external

and internal parameters (Jha and Matsuoka, 2000). External

parameters namely color, defects, size and shape depend on not

only the appearance of the product, but also on the standards set

(Cubero et al., 2016), whereas internal parameters such as

nutritional value, internal defects, flavor, and texture are

subjective to physicochemical composition and climate change

(Zainalabidin et al., 2019). The quality of fruits and vegetables

influences consumer preference and is directly or indirectly linked

with further value-addition and processing technologies (James et

al., 2010).

Several studies have identified postharvest losses as the most

prominent factor among the origins of crop quality deterioration

(Porat et al., 2018; Etana, 2019; Ahmad et al., 2021). Adding to that,

high temperature and relative humidity are mentioned in the

biological and chemical degradation of produce freshness, which

affects sweetness, flavor, weight, turgor, and nutritional value (Elik

et al., 2019). However, past reports indicated that low-temperature

cooling systems and edible coating materials can be used to

maintain and monitor the quality of these crops (Mendy et al.,

2019; Jodhani and Nataraj, 2021). Conventional methods relying on

the quantification of different quality traits such as dry matter

content, oil content, and moisture content have also been reported

in the study of quality parameters of fruits and vegetables; however,

these methods were found to be undesirable, destructive, time-

consuming, and labor-intensive (Magwaza and Tesfay, 2015;

Kyriacou and Rouphael, 2018). Therefore, the application of non-

destructive bio-sensing methods as a promising alternative for

evaluating the value of tropical produce has been adopted

(Ndlovu et al., 2022; Okere et al., 2022).

Computer vision and popular pre-trained convolutional neural

network (CNN) models have been used as recognition systems to

sort and grade different fruits and vegetables, especially in

supermarkets, regarding their variety and species (Dubey and

Jalal, 2012). However, computer vision can only assess external

quality attributes due to the lack of spectral information (Rahman

and Cho, 2016; Bhargava and Bansal, 2021). Acoustic emission

technology involves the mechanical destruction of produce when

subjected to mechanical or thermal stimulus (Aboonajmi et al.,

2015) and is not appropriate for all categories of fruits and

vegetables (Adedeji et al, 2020 ). Extensive works have been

published on the evaluation of fruits and vegetables by spectral

measurements such as Fourier transform infrared (FTIR)

spectroscopy (Egidio et al., 2009), Near-infrared (NIR), Raman

spectroscopy (Pandiselvam et al., 2022), and hyperspectral imaging

(HSI) (Wang and Zhai, 2018). Generally, these reports have

concentrated on the utilization of spectral measurements for

determining targeted quality parameters of a particular fruit or

vegetable variety. For instance, visible and near-infrared

spectroscopy was used to investigate the internal browning in

mango fruits (Gabriëls et al., 2020). Ali et al. (Ali et al., 2023)

investigated FTIR, NIR, and machine vision in the quality
frontiersin.org
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monitoring of pineapples. Metlenkin et al. (Metlenkin et al., 2022)

distinguished Hass avocado fruits by defects using hyperspectral

imaging (HSI). The question revolves around the practical

utilization of these approaches and the challenges associated with

improving data processing speed and in-line implementation

(Cortés et al., 2019; Si et al., 2022). Quick hardware and software

are required to fulfill the demands of swift analysis for extensive

hyperspectral datasets (Xu et al., 2023) and machine learning

algorithms, especially those relying on deep learning act as black

boxes rather than using interpretability models for high-stakes

decisions (Caceres-Hernandez et al., 2023).

The present review highlights the current advances in non-

destructive spectral measurements for quality assessment,

specifically for major tropical fruits and vegetables. The quality

parameters of these tropical produces are covered first. The

discussion on each of the spectral measurements, the tropical

crops used, and the specific findings obtained from various

studies, which are summarized in Table 1, follows and can deliver

valuable information on the capabilities and efficiency of these
Frontiers in Plant Science 037
techniques. In addition, the merits and demerits of each of these

spectral measurements, which are presented in Table 2, will guide

future researchers in selecting the proper evaluation method when

evaluating the quality of tropical produces. To facilitate

comprehension and quick understanding of key terminologies

involved, the list of abbreviations and definitions contained in the

paper is presented in Table 3.
2 Quality inspection of Tropical fruits
and vegetables

Quality inspection is the process of evaluating specific

parameters of fruits and vegetables to ensure required quality

standards (Phey et al., 2020). The intention of quality inspection

is to detect any internal or external characteristics that can aid in

identifying both standard quality parameters and defects or non-

conformities that can affect the safety of fruits and vegetables or
TABLE 1 A comparison of the application of various non-destructive spectral measurements in the quality assessment of tropical fruits and
vegetables.

Measurement Tropical
produce

Parameter Data
analysis

Performance
(Accuracy)

Reference

FTIR, FTNIR Pineapple SSC
TA
PH

PCA SD=0.17
SD=0.11
SD=0.13

(Egidio et al., 2009)

Vis–NIR, ML Mango Color PLS, ANN 80% (Gabriëls et al., 2020)

HSI Avocado Defects PCA, PLS-DA,
SIMCA

99.9% (Metlenkin et al., 2022)

NIR Mango Firmness PCA,MPLS R2 = 0.88
R2 = 0.85

(Flores et al., 2008)

NIR Papaya Starch
SSC

PLS R=0.90
R=0.90

(Purwanto et al., 2015)

Vis–NIR Pineapple Nitrates PLSR R=0.95 (Srivichien et al., 2015)

HSI Potato SSC PLSR R2p=0.963 (Su and Sun, 2019)

FTIR Banana Maturity PLS R2 = 0.83 (Zhang et al., 2021)

ATR-FTIR, ML Banana Ripening PCA 96.0% (Sinanoglou et al., 2023)

NIR Avocado Moisture content
Dry matter

PLS RPD= 2.00
RPD=2.13

(Olarewaju et al., 2016)

NIR Mango Maturity MLR, PLS Rc=0.74
Rv=0.68

(Jha et al., 2014)

NIR Banana TSS
PH

PLS R2 = 0.81
R2 = 0.69

(Ali et al., 2018)

NIR, HSI Sweet potatoes Variety identification PLSDA R2 = 0.893 (Su et al., 2019)

NIR Mango Firmness iPLSR R2c = 0.75
R2p = 0.75

(Mishra et al., 2020)

Raman Cassava Starch adulteration OC-SVM/SIMCA 86.9% (Cardoso and Jesus Poppi, 2021)

Vis–NIR Pineapple Nitrate PLSR R= 0.95 (Srivichien et al., 2015)

(Continued)
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their usability in particular functions such as diets, trade, and

industrial chains (Kirezieva et al., 2013).
2.1 External quality of tropical fruits
and vegetables

The appearance of fruits and vegetables is a sensory attribute

that directly influences the perceived worth of the produce for

consumers (Zhang et al., 2014). The external quality of tropical

crops is indicated by a number of factors, including size, shape,

color, and external defects, as shown in Table 4 (Ganiron, 2014).

The size and shape are two complementary factors that differ

depending on the variety of the plant and are both assessed in

relation to market grading standards (Abbaszadeh et al., 2013). The

size is determined by measuring area, perimeter, length, and width,

which is more complex due to the morphological irregularities of

tropical crops natural state (Cubero et al., 2011). Moreda et al.

(Moreda et al., 2009) described some non-invasive systems for

assessing the size of fruits and vegetables. The systems are based on

(1) measuring the volume of the gap between the fruit and the outer

casing of an embracing gauge; (2) measuring the distance between a

radiation source and the fruit contour, where this distance is

computed from the time of flight (TOF) of the propagated waves;

(3) light obstruction by barriers or blockades of light; (4) 2D and 3D

machine vision systems (Moreda et al., 2009).

Wang et al. (Wang et al., 2017) evaluated mango size by RGB–D

(depth) imaging and time-of-flight camera imaging system. The

camera-to-fruit distance was determined using three methods for

fruit sizing from images: stereo vision camera, RGB–D camera and

a time-of-flight laser rangefinder (Wang et al., 2017). The obtained

length and width values were good with RMSE of 4.9mm and
Frontiers in Plant Science 048
4.3mm respectively. It is cost-effective and simple to use; however, it

pertains non-occluded fruit only and cannot be utilized in direct

sunlight (Wang et al., 2017). Neupane et al. (Neupane et al., 2022)

replicated the work of Wang by suggesting the use of partly

occluded fruit. To obtain the linear length of the fruits, bounding

box dimensions of an instance segmentation model (Mask R-CNN)

was applied to canopy images (Neupane et al., 2022). The findings

were good with RMSE values of 4.7 mm and 5.1 mm for Honey

Gold and Keitt mango varieties, respectively (Neupane et al., 2022).

Sanchez et al. (Sanchez et al., 2020) investigated spectroscopic and

depth imaging techniques combined with machine vision to

estimate the length, width, thickness, and volume of sweet potato

and potato. When the correct size group was graded, the method

had a high accuracy of 90% (Sanchez et al., 2020).

Color is an external quality trait that depends on the maturity of

produce and is subjective to internal features such as taste,

perception, and pleasantness of fruits and vegetables (Yahaya

et al, 2017). Calorimeters evaluate color by measuring the typical

surface area of the product and detects the color space values L*, a*,

and b* which are based on the human color perception theory

(Aguilar-Hernández et al., 2021). The capability of infrared thermal

imaging approaches was investigated in the measurement of

pineapple color. In this investigation, the L*, a*, and b* mean

values for calorimeter increased by (P < 0.05) (Ali et al., 2022). The

optical fiber sensors mounted with RGB LEDs were also used to

evaluate the color of mangoes, giving R2 = 0.879 (Yahaya

et al., 2011).

External defects include the evidence of rot, bruising, crushing,

shriveling, and wilting due to water loss which impact market value

and the price of the fruits and vegetables (Raj and Suji, 2019). These

defects can be recognized and monitored through the appearance of

the crop by qualified personnel relying on subjective evaluation,
TABLE 1 Continued

Measurement Tropical
produce

Parameter Data
analysis

Performance
(Accuracy)

Reference

HSI Banana SSC
TA

PLS/iPLS/PLSDA R2 = 0.64
R2 = 0.59

(Chu et al., 2022)

NIR–HSI Pineapple Water activity PLSR Rp= 0.72 (Aozora et al., 2022)

HSI, ML, DL Papaya Maturity DCNN F1 = 0.91 (Garillos-Manliguez and Chiang, 2021)

Raman Sweet potato Moisture and
carotenoids

PLSR&PCA R2 = 0.90(hot air)
R2 = 0.88
(microwave)

(Sebben et al., 2018)

Raman Potato Grading PLSDA ≈100% (Morey et al., 2020)

HSI potato Bruises SVMM 87.88% (Ye et al., 2018)

SWIR–HSI Potato Black spot PLSDA 98.56% (López-Maestresalas et al.,
2016)

Raman Mango Carotenoids – R= 0.9618 (Bicanic et al., 2010)

Vis-NIR-HSI Avocado Nutrients (Fatty acids) PLSR R2 = 0.79(flesh)
R2 = 0.62(skin)

(Kämper et al., 2020)

NIR–HSI Mango Defects K-NN 97.95% (Rivera et al., 2014)

HSI Banana Grading CNN/MLP 98.45% (Mesa and Chiang, 2021)
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TABLE 2 Merits and demerits of non-destructive spectral measurements in the quality control of tropical fruits and vegetables.

Technique Merits Demerits References

FTIR No sample preparation. Single beam and double beam for scattering device. (Lan et al., 2020)

Fast and easy to perform. Difficulty in obtaining representative background.

Capability to measure many
parameters at the same time.

Hard to read the interferogram if the Fourier transform is not
performed first to generate the spectrum.

Good signal-to-noise ratio

Suitability for both quantitative and
qualitative analyses.

NIR Real-time analysis. Limited penetration depth. (Srivichien et al., 2015), (Arendse
et al., 2021)

Can evaluate multiple components
concurrently.

Time-consuming calibration procedure.

Fast acquisition of spectra. Complex signal interpretation

Minimal sample preparation required.

Raman Vibrational and complementary. Weak Raman scattering. (Wang et al., 2021), (Li et al., 2016)

Fast, Simple, sensitive, and selective
technique.

Fluorescence interference.

Capability to monitor water-rich
molecules.

Low reproducibility.

High spatial resolution. Redundant data set. Costly Raman system.

Detects the spatial distribution of the
molecules.

Relatively low operational speed

HSI Detect both spectral and spatial details. Costly and complex data. (Chandrasekaran et al., 2019),
(Rajkumar et al., 2012)

Concurrent assessment of many
parameters.

Advanced hardware and software required.

Available in different algorithms. Requires chemometrics techniques to extract relevant information.
F
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TABLE 3 List of abbreviations and acronyms used in the paper.

Abbreviation Definition Abbreviation Definition

FTIR Fourier transform infrared CNN Convolutional Neural Network

NIR Near-infrared TOF Time of flight

HSI Hyperspectral imaging TSS Total soluble solids

SSC Soluble solid content RGB–D imaging Red, Green, Blue–Depth imaging

ASC Added sugar content PLS Partial least squares

0C Degrees Celsius RMSE Root mean square error

FAO Food and Agriculture Organization YOLO You Only Look Once

R-CNN Regions with convolutional neural networks ATR Attenuated total reflectance

L*, a*, and b*. Lightness, redness or greenness, and yellowness MLR Multivariate linear regression

LED Light-emitting diode IR Infrared region

R2 Determination coefficient iPLSR Interval partial least squares regression

TA Total acidity OC-SVM One-class support vector machine

Vis–NIR Visible–near-infrared spectroscopy SIMCA Soft independent modelling by class analogy

(Continued)
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which may result in human errors (Ali et al., 2023). Sahu et al. (Sahu

and Potdar, 2017) proposed a digital image analysis algorithm for

detecting exterior defects in mango fruit. Surface defects such as

scars and black patches were used to detect defective mango fruits,

and were recognized by extracting the contours of damaged areas

(Sahu and Potdar, 2017). The damaged area was then filled to

identify its location in the image as the basis for discrimination.

Sahu and colleagues achieved good accuracy but advocated the use

of optimal and adaptive threshold approaches for segmenting

mango fruits from image backgrounds (Sahu and Potdar, 2017).
2.2 Internal quality of tropical fruits
and vegetables

The internal qualities of fruits and vegetables are also termed

hidden qualities and are determined by texture, nutrients, internal

defects, and flavor, as presented in Table 5 (Shewfelt, 2014).

Different fruits and vegetables usually have different textures,

which are characterized by their firmness, crispness, and
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crunchiness (Fillion and Kilcast, 2002). The assessment of fruit

and vegetable firmness, a vital quality characteristic related to

texture, can be achieved through sensory measurements

(Magwaza and Opara, 2015). The texture is measured with a

penetrometer by putting a probe tip installed on the texture

analyzer into fruit tissue at a specific speed and depth so as to

exert the most force (Ali et al., 2017). Uarrota et al. (Uarrota and

Pedreschi, 2022) used a non-destructive texture analyzer to

determine the firmness of avocado under different storage

conditions. Enough data were required to construct the best

model allowing an extension to the model firmness of avocado

(Uarrota and Pedreschi, 2022). Kasim et al. (Kasim et al., 2021)

compared laboratory-based (305-1713 nm) and portable-based

(740-1070 nm) NIR spectrometers to determine mango firmness

(Kasim et al., 2021). The results showed that portable and

laboratory-based NIR instruments performed similar in respect of

R2p. Compared to the laboratory-based instrument, the RMSEP of

the portable NIR was higher (Kasim et al., 2021).

Nutritional value, such as the sugar content related with

vitamins and minerals, comprises the main constituents of soluble
TABLE 3 Continued

Abbreviation Definition Abbreviation Definition

R Coefficient of correlation SERS Surface-Enhanced Raman Spectroscopy

PLSR Partial least squares regression RMSEP Root mean square error of prediction

R2P Correlation of prediction Rp Coefficient of prediction

MIR Mid-infrared DT Decision trees

FIR Far-infrared RNN Recurrent neural network

ANN Artificial neural network PLSDA Partial least square discriminant analysis

GA Genetic algorithm VGG Visual Geometry Group

FL Fuzzy logic ResNet Deep Residual Learning for Image Recognition

ANFIS Adaptive neuro-fuzzy inference system ResNeXt Aggregated Residual Transformations for Deep Neural Networks

ML Machine learning DCNN Deep convolutional neural network

DL Deep learning RPD Residual predictive deviation

LDA Linear discriminant analysis F1 scores Performance of Precision and recall

SVM Support vector machine MLP Multilayer Perception

K-NN K-nearest neighbors PCA: Principal component analysis

ELM Extreme learning machine MPLS: Modified partial least square

RMSEC Root mean square error of calibration SD: Standard deviation

Rc Correlation coefficient for calibration Rv Correlation coefficient for validation
TABLE 4 The external quality parameters of tropical fruits and vegetables.

External quality Indicators References

Size Area, perimeter, length, and width (Cubero et al., 2011), (Sanchez et al., 2020)

Shape Mass, volume, spherical coefficient, density, and geometric mean diameter (Cubero et al., 2011), (Golmohammadi and Afkari-Sayyah, 2013)

Color Maturity, uniformity, and intensity (Yahaya et al, 2017), (Ali et al., 2022)

External defects Bruising, crushing, shriveling, and wilting (Ali et al., 2023), (Raj and Suji, 2019)
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solids content (SSC), total soluble solids (TSS), and total acidity

(TA) (Leiva-Valenzuela et al., 2013). Aziz et al. (Aziz et al., 2021)

evaluated the relationship between TSS and the capacitance of

papaya using capacitance-sensing techniques (Aziz et al., 2021). A

refractometer was used as part of a destructive technique to predict

the reference values of moisture and TSS content. Capacitive

sensing was then tested as non-destructive approach for the

evaluation of output voltage and capacitance of papaya (Aziz

et al., 2021). Aziz observed a good correlation between destructive

and non-destructive techniques, with R2 of 0.9434 and 0.9177 for

moisture and TSS content, respectively (Aziz et al., 2021). The

usefulness of NIR spectroscopy was demonstrated in the

determination of starch and soluble solid contents of papaya

(Purwanto et al., 2015). Srivichien and colleagues tested the

nitrates in pineapples using Vis–NIR (600-1200 nm)

spectroscopy, yielding an R value of 0.95 (Srivichien et al., 2015).

However, due to the big size and the change in nitrate levels, many

scans were needed on different areas of pineapple (Srivichien et al.,

2015). In the study to predict starch content of sweet potatoes and

potatoes, hyperspectral imaging was applied by Su et al. (Su and

Sun, 2019). Su developed partial least squares regression (PLSR)

models at full-wavelength referring to spectral profiles and observed

reference values, resulting in a high accuracy and an R2P of 0.963

(Su and Sun, 2019).

Internal defects are detected as internal injury such as rot and

water core inside the flesh of the fruits and vegetables due to

postharvest problems(Ruiz-Altisent et al., 2010). Flavor or taste is

defined by the sugar (sweetness), acidity (sourness), bitterness, and

saltiness perceived by the tongue and nose (Zhu et al., 2020). It is,

therefore, measured subjectively through oral testing or smelling, or
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by the conventional technical quantification of compounds such as

liquid and gas chromatography (Yahaya et al, 2017). Korean

universities conducted research on the taste and odor properties

of broccoli using electronic sensors (Hong et al., 2022). For

electronic tongue analysis, thermal processing boosted sourness

and umami tastes while decreasing saltiness, sweetness, and

bitterness (Hong et al., 2022). Therefore, the capability of non-

destructive spectral measurement methods to assess inside

parameters is important to maintain the flesh quality of tropical

fruits and vegetables.
3 Non-destructive spectral
measurements for the quality
evaluation of tropical fruits
and vegetables

Non-destructive techniques for qualitymonitoring of tropical fruits

and vegetables refer to the process of inspecting their external and

internal properties without causing damage or changing their physical

and internal status (El-Mesery et al., 2019). The potential for employing

spectral measurement approaches in the quality control of fruits and

vegetables is growing enormously (Escárate et al., 2022). The reason is

that these approaches are non-destructive, fast and accurate, capable

for both quantitative and qualitative analysis, thereby requiring

minimal sample preparation (Cozzolino, 2022). We divided non-

destructive spectral measurements into two categories: (1) spectral-

based approaches (FTIR, NIR, and Raman spectroscopy) and (2)

imaging-based approaches (HSI), as shown in Figure 1.
Non-destructive spectral 
measurements

Spectral based 
measurements

Fourrier transform 
infrared (FTIR)

Near infrared 
(NIR) Raman

Imaging based 
measurement

Hyperspectral 
imaging (HSI)

FIGURE 1

The schematic diagram of commonly used non-destructive spectral measurements.
TABLE 5 The internal quality parameters of tropical fruits and vegetables.

Internal quality Indicator References

Texture Firmness, crispness, and juiciness (Fillion and Kilcast, 2002), (Magwaza and Opara, 2015)

Nutrients Chemical compositions (vitamins, sugars, proteins, and functional properties) (Leiva-Valenzuela et al., 2013), (Aziz et al., 2021)

Internal defect Internal cavity, water core, and rot (Yahaya et al, 2017), (Ruiz-Altisent et al., 2010)

Flavor Sweetness, sourness, saltiness, and bitterness (Yahaya et al, 2017), (Zhu et al., 2020)
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3.1 Spectral-based approaches

Spectral measurement refers to effective techniques used to

study the quality parameters of various agricultural materials

including tropical fruits and vegetables by investigating light,

sound, or particles that are emitted, absorbed, or scattered during

measurement (Pathare and Rahman, 2022). Spectroscopic

techniques based on FTIR, NIR, and Raman have been successful

and popular in the detection of quality parameters of fruits and

vegetables (Dasenaki and Thomaidis, 2019). Various research

works have used spectral techniques focusing on fruits and

vegetables, such as in the fast determination of the sugar and acid

composition of citrus (Clark, 2016), assessment of primary sugars

and amino acids in raw potato tubers (Ayvaz et al., 2015), and

determination of nutrients and moisture content of fruits and

vegetables (Sirisomboon, 2018). Quality parameters of tropical

crops can be assessed by one of—or a sequence of—the above

complementary techniques, which are distinguished depending on

the infrared region (IR) they occupy and the molecular vibrations

they detect (Bureau et al., 2019). The infrared region of the

electromagnetic spectrum, presented in Figure 2, is separated into

three sections, namely near-infrared (NIR), mid-infrared (MIR),

and far-infrared (FIR) (Yeap and Hirasawa, 2019). Mango maturity

has been predicted using the near-infrared (NIR) spectral region of

1200-2200 nm (Jha et al., 2014). The mid-infrared (MIR) spectral

range of from 2500 to 25000 nm has been used in the prediction of

banana maturity and geographical origin by Zhang et al. (Zhang

et al., 2021), and in the measurement of soluble solids, total acids,

and total anthocyanin in berries (Clark et al., 2018). Far-infrared

(FIR) ranges have often been reported to be between 25000 and

300000 nm (Larkin, 2017). However, FIR applications are not

clearly defined and are limited due to challenges in developing

FIR instrumentation; furthermore, the band assignments of low-

frequency vibrational modes are not straightforward (Ozaki, 2021).

These spectral ranges are based on their relationship to the visible

spectrum, which falls between 380 and 780 nm (Su and Sun, 2018).

3.1.1 Fourier transform infrared spectroscopy
FTIR is a form of vibrational spectroscopy that uses light

interference to identify the chemical composition of scanned
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samples by producing infrared absorption or emission spectra

(Larkin, 2017). On the electromagnetic spectrum, FTIR operates

in the MIR region (2500 to 25000nm) and generates fruit or

vegetable chemical profile by capturing the principle vibrational

and rotational stretching modes of molecules (Lohumi et al., 2015).

FTIR spectroscopy comprises of an infrared light source,

interferometer, sample, and detector, shown in Figure 3. The

principal part is the interferometer which is made up of three

components: the beam splitter, collimator, and the two mirror

(fixed and movable mirror) (Patrizi and Cumis, 2019). When the

radiation from the light source passes through the collimator,

strikes the beam splitter which ideally divide it into two beams.

The first beam hits the static mirror, and is reflected back; while the

second hits the movable mirror where it enters through the sample

toward the detector (Blum and Harald, 2012).

The FTIR associated with attenuated total reflection (ATR-

FTIR) has recently gained importance (Chan and Kazarian, 2016).

The ATR works under the principle of total internal reflectance

where infrared light interacts with the sample of high refractive

index only at the point where infrared light is reflected (Ryu et al.,

2021). Unlike transmission methods, the ATR-FTIR technique can

be used to study solid, liquid, and paste samples with minimal

sample preparation (Glassford et al., 2013).The combination of

ATR-FTIR and chemometrics was promising in the assessment of

added sugar content, (ASC), total soluble solids (TSS) and real juice

content (RJC) of fresh and commercial mango juice (Jha and

Gunasekaran, 2010). PLS and MLR models resulted into accuracy

of 0.99 and 0.98 respectively (Jha and Gunasekaran, 2010). Canteri

et al. (Canteri et al., 2019) have used ATR-FTIR to evaluate the cell

wall compositions of 29 species of fruits and vegetables as freeze-

dried powders and alcohol-insoluble solids. The results were

accurate, with determination coefficient R2 ≥ 0.9 (Canteri et al.,

2019). Recently, Sinanoglou et al. (Sinanoglou et al., 2023)

conducted the evaluation of both peel and fresh banana ripening

stage by ATR-FTIR, along with image analysis, discriminant and

statistical analysis (Sinanoglou et al., 2023). The computed features

were accurate enough to separate ripening stages; however,

monitoring of the banana ripening process was highly reliant on

the instrument employed for image analysis such as digital cameras,

smartphones, and electronic noses (Sinanoglou et al., 2023).
FIGURE 2

Modified diagram showing the infrared regions of the electromagnetic spectrum (Yeap and Hirasawa, 2019), (Aboud et al., 2019).
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3.1.2 Near-Infrared spectroscopy
NIR is used to rapidly ascertain the chemical constitution of

materials according to overtones and harmonic or combination

bands of specific functional groups (Kusumaningrum et al., 2018).

Those overtones and combinations of vibrational bands

characterized by C–H, O–H, and N–H are gained by NIR in the

wavelength region of 780-2500nm (Ozaki et al., 2006). Tsuchikawa

et al. (Tsuchikawa et al., 2022) described NIR as a spectroscopic

method that is suitable for samples of high water content, including

fruits and vegetables (Tsuchikawa et al., 2022). NIR spectroscopy

consists of a light source, sample accessory, monochromator

(grating), detector, and optical components such as lenses and

optical fibers, as shown in Figure 4 (Lee et al., 2011).

The illumination of NIR light to the sample occurs in three

ways: reflectance, interactance and transmittance (Wang et al.,

2014). According to Hong and colleagues, reflectance employs

high light energy, has no contact with the fruit surface, and the

source and sensor are placed at a specified angle (Hong and Chia,

2021). Specular reflectance and diffuse reflectance are two types of

reflectance measurement. Specular reflectance, which occurs when

the incident and reflected angles are same, detects nothing from the

inside part of the fruit (Hong and Chia, 2021); While the capacity of
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diffuse reflectance to constrain light dispersion into solid samples

allows the acquisition of interior fruit information (Tang et al.,

2022). Mango TSS, firmness, TA, and ripeness index (RPI) were

effectively measured by NIR diffuse reflectance, with R2 of 0.9; 0.82;

0.74; and 0.8, respectively. The effect of changes in physicochemical

properties of mango during ripening, on the other hand was

highlighted (Rungpichayapichet et al., 2016). Kusumiyati et al.

(Kusumiyati and Suhandy, 2021) also evaluated TSS and Vitamin

C using the same fruit and NIR spectra acquisition mode. The

diffuse reflectance spectra were documented and found to be in

relation with TSS, vitamin C (Kusumiyati and Suhandy, 2021).

Delwiche et al. (Delwiche et al., 2008) demonstrated the use of

near infrared interactance (750-1088nm) to determine mango

ripeness, SSC and other sugars. The mango sample was placed in

contact with the probe in which the top of mango upwardly points

the probe. The R2 was 0.77; 0.75; 0.67; and 0.70 for SSC, sucrose,

glucose, and fructose, respectively. Sugars such as sucrose indicates

mango sweetness, fructose and glucose increases during ripening

while acidity decreases (Delwiche et al., 2008). Transmission mode

in which the light source and sensor are opposite to each other,

employs low light intensity to reflect the inner parameters and is

performed with no contact on the fruit (Nicolaï et al., 2007).
FIGURE 4

Modified diagram of NIR spectroscopy, taking avocado as sample (Chandrasekaran et al., 2019).
FIGURE 3

Modified diagram of FTIR spectroscopy taking banana as sample (Patrizi and Cumis, 2019).
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Transmission might be done partially or fully. Though, the

difference between partial transmission and diffuse reflectance

remains undetermined since both evaluate the radiation that

partly enters the sample and diffusely reproduced to the sensor

(Hong and Chia, 2021). The fruit with large seed such as mango was

reported to be hard to measure in the full transmission due the low

signal to noise ratio (Greensill and Walsh, 2000). Subedi at al.

(Subedi and Walsh, 2011) detected the TSS and DM of mesocarp

tissue of banana and mango by partial transmittance. Mango DM

gave R2cv =0.75 while banana performance negatively influenced by

the thickness of the peel. The TSS results on mango was good in ripe

and poor in ripening stage with R2cv > 0.75 and R2p < 0.75

respectively. The results were consistent with those of

Rungpichayapichet et al. (Rungpichayapichet et al., 2016) and

were found to be caused by the physiological factors of Mango,

banana, and other tropical fruits which can change their starch

content as they ripe (Subedi and Walsh, 2011).

Several studies have highlighted the potentials of NIR

spectroscopy to monitor the internal and external characteristics

of tropical fruits and vegetables, including the following: maturity

prediction of avocado and mango (Olarewaju et al., 2016; S. N. Jha

et al., 2014), total soluble solids and pH of banana (Ali et al., 2018),

and variety identification in sweet potatoes (Su et al., 2019).

However, the irregular thick skin of pineapple and chemical

complexity of large seeded mango was the main difficulty to

Guthrie et al. (Guthrie and Walsh, 1997) in the measurement of

SSC by NIR reflectance (760-2500nm). The penetration depth of

NIR light into a thick-rind avocado 38 mm in diameter and 10 mm

in thickness was investigated for the maturity evaluation of avocado

using an NIR spectrometer (800–2400 nm) (Olarewaju et al., 2016).

The models for estimating oil content, were acceptable, however

were not accurate, with an RPD value of less than 1.0 and an R2

value of 0.58 (Olarewaju et al., 2016). Arendse et al. (Arendse et al.,

2018) informed the limited accuracy of NIR for internal quality

assessment of fruits and vegetables with thick rinds such as banana,

avocado and pineapple due to inadequate penetration depth

(Arendse et al., 2018). Therefore, future studies can consider the

appropriate selection of NIR optical geometry and wavelength
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range to improve the prediction accuracy of thick rind tropical

crops (Pratiwi et al., 2023).

NIR spectral data inevitably holds overlay information of

numerous organic compounds at global wavelengths, making the

use of global spectroscopic regions problematic rather than specific

wave bands (Lin and Yibin, 2009). Therefore, a combination of

algorithms and chemometrics with NIR spectroscopy is now being

used to meet this demand, balance data redundancy and

complexity, and collect spectral information (Guan et al., 2019;

Yang et al., 2021). Portable NIR spectroscopy was used to assess

mango firmness during ripening (400–1130 nm) (Mishra et al.,

2020). Pre-processing was done Savitzky–Golay filter, and iPLSR

model was found to provide better predictive modeling, with an R2p

of 0.75 and an RMSEC of 5.92 Hz2g2/3 compared to the standard

PLSR model, which had an R2p of 0.67 and an RMSEC of 6.88

Hz2g2/3. For the firmness in mango fruit, spectral intervals 743-770

nm and 870-905 nm were found to be the accurate predictors

(Mishra et al., 2020).

3.1.3 Raman spectroscopy
Raman is another form of vibrational spectroscopy that uses

laser beams to interact with materials and operates in the infrared

region of the electromagnetic spectrum from 2500 to 25000 nm

(Siesler et al., 2008). Though Raman and MIR spectroscopy

methods use high levels of energy to detect molecular vibrations,

Raman spectroscopy excels at equal vibrations of nonpolar sets,

while MIR spectroscopy excels at the unequal vibrations of polar

sets (Campanella et al., 2021). Raman spectroscopy consists of a

monochromatic laser, wavelength separator, and a detector, as

presented in Figure 5 (Qin et al., 2019). When the laser beam

illuminates the sample, the photons that constitute the light are

absorbed, transmitted, or scattered by the sample in different

directions before reaching the detector (Larkin, 2017). Absorption

and transmission are linked with the infrared spectra (IR), while

scattering is associated with the Raman spectra (Jones et al., 2019).

Rostron et al. (Rostron et al., 2016) defined scattered photons in two

different ways namely Rayleigh (elastic) scattering and Raman

(inelastic) scattering (Larkin, 2017). Rayleigh (elastic) scattering
FIGURE 5

Modified diagram of Raman spectroscopy, taking mango as sample (Lohumi et al., 2015).
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occurs when the photons scattered are equal to those illuminated to

the sample; while Raman (inelastic) scattering is due to the transfer

of energy between photons and the sample under testing (Lu, 2017).

Raman spectroscopy is suitable for investigating carotenoids in

various plants, including carrots (Lawaetz et al., 2016), tomatoes

(Hara et al., 2018), plant cells (Baranska et al., 2011), and mango

(Bicanic et al., 2010). Furthermore, Raman has been applied as a

clean and fast approach to assess cassava starch adulteration

(Cardoso and Jesus Poppi, 2021). Two chemometrics models,

namely one-class support vector machines (OC-SVMs) and soft

independent modelling by class analogy (SIMCA), were used and

compared statistically. The OC-SVM results outperform those of

SIMCA, with an accuracy of 86.9% (Cardoso and Jesus Poppi,

2021). Surface-enhanced Raman spectroscopy (SERS) was used as a

method that applies Raman spectroscopy in conjunction with

nanotechnology for the fast analysis of pesticide residues in

mango (Pham et al., 2022). SERS results were good indicating

that the residues in mango sample were in the suitable range (Pham

et al., 2022). Morey et al. (Morey et al., 2020) used spatially offset

Raman spectroscopy for potato varieties quality categorization and

prediction of tuber cultivation source. This approach is fast since it

can be used directly after potato harvesting (Morey et al., 2020).
3.2 Imaging-based approaches

Spectral imaging techniques are among the most effective

detection methods because of their potential to obtain both

spectral and spatial dimensions of produce simultaneously during

measurement (Liu et al., 2017). Regarding spatial dimensions,

external attributes such as size, shape, appearance, and color can

be evaluated, while with spectral analysis, internal features such as

chemical composition can be measured (Pu et al., 2015). A number

of imaging techniques use two-dimensional geometry according to

the fusion and luminance of color maps (Lu et al., 2014), while

others involve the use of three-dimensional sensors such as RGB

and hyperspectral images (Barnea et al., 2016) to provide a high

fruit and vegetable recognition accuracy (Nyarko et al., 2018).
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3.2.1 Hyperspectral imaging techniques
In agriculture and food systems, hyperspectral imaging is a

powerful system that joins two aspects of imaging and spectroscopy

to attain a three-dimensional (3D) hypercube data form and

analyzes a broad spectrum at each pixel instead of assigning only

main RGB colors (red, green, and blue) (Khan et al., 2021). The

hypercube consists of 3D images characterized by 2D spatial and 1D

spectral dimension or wavelength (Tang et al., 2022). Hyperspectral

imaging employs more than ten contiguous wavelengths or narrow

bands in which each pixel has a full continuous spectrum (Elmasry

et al., 2019). To take sample images, the hyperspectral imaging set

up can be in the reflectance, transmittance, and interactance which

differs in their lighting configuration during crops measurements

(Pan et al., 2017). The reflectance geometry is appropriate for

assessing the external quality of products, whereas the

transmittance performs better in measuring the internal

components in relatively translucent membranes (Li et al., 2018).

The HSI system comprises of four main components: (1) an

imaging unit, (2) illumination (light source), (3) a sample stage,

and (4) a computer, as presented in Figure 6 (Pu et al., 2015). The

light source is divided into illumination and excitation sources for

spectral imaging applications. Broadband lights are commonly used

as an illumination source for reflectance and transmittance, whereas

narrowband lights are for the excitation source (Qin et al., 2013).

The lighting devices produce light that illuminates the sample. The

camera transports chemical information as well as light from the

light source. The wavelength dispersion device, which can be a

grating or a prism, divides the light into different wavelengths and

directs the dispersed light to the sensor (Wu and Sun, 2013). Aozora

et al. (Aozora et al., 2022) studied the efficiency of hyperspectral

imaging (935–1720 nm) in the evaluation of water activity in

dehydrated pineapple. The accuracy of the tested model showed

good accuracy, with 0.72 and 0.0054 for Rp of and RMSEP

respectively (Aozora et al., 2022).

3.2.1.1 Hyperspectral imaging Image generation modes

HSI generates image in three ways: whisk broom (point

scanner), push broom (line scanner), and tunable filter (area
FIGURE 6

Modified diagram of Hyperspectral imaging, taking pineapple as sample (Li et al., 2018).
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scanner) (ElMasry and Sun, 2010). The point scan excites only a

single spot on the object’s surface and the single pixel is recorded.

The spectrum is taken at both positions by moving the sample

symmetrically in two spatial dimensions, in order to get the full HSI

image (Qin, 2012). However, to obtain good results this technique

involves double scanning of the sample and hardware relocation

which takes a lot of time to complete the measurement (Qin, 2012).

The line scanner excites a line on the object and records the whole

line of an image using a 2D dispersing element and 2D detector

array. The object is moved line by line and the whole set of spatial–

spectral data is gained. This approach has a higher acquisition rate

but lower sectioning ability (Qin, 2010). The area scan employs

spectral scanning techniques to stimulate the broad area on the

surface of the fruit or vegetable, which is held fixed and a scan with

full spatial information is achieved consecutively across the entire

spectral range. This method is appropriate for applications where

sample mobility is not necessary (Lu et al., 2017).

The hyperspectral imaging together with chemometrics models

is an appealing option for dealing with large sets of complex, high-

dimensional data (Lorente et al., 2012). Chu et al. (Chu et al., 2022)

confirmed the efficacy of the HSI reflectance (386-1016 nm)

wavelength region in combination with variable selection

algorithms and chemometrics for predicting green banana

maturity level and characterization of banana quality during

maturation (Chu et al., 2022). The line scanning approach was

adopted and the calibration models used were partial least squares

(PLS) and interval PLS methods (Chu et al., 2022). These models

obtained acceptable values R2 = 0.64 and 0.59 for SSC and TA,

respectively, whereas the models for chlorophyll and DE* were

suitable only for sample screening with R2 = 0.34 and 0.30,

respectively (Chu et al., 2022). Chu reported the inclusion of

more samples and different cultivars of banana for model

improvement (Chu et al., 2022). Kämper et al. (Kämper et al.,

2020) used Vis–NIR–HSI to measure nutrients in avocado fruit.

PLSR was used to obtain the ratio of unsaturated to saturated fatty

acids in avocado fruit with (R2 = 0.79, RPD = 2.06) and (R2 = 0.62,

RPD = 1.48) for flesh images and skin images respectively (Kämper

et al., 2020). The robust models for flesh images were R2 = 0.67; 0.61;

and 0.53, of oleic-to-linoleic acid ratio, boron (B) and calcium

concentration (Ca) respectively, while for skin images was R2 = 0.60

of boron (Kämper et al., 2020).
4 Advancement in non-destructive
spectral measurements for tropical
fruit and vegetable quality assessment

The rapid advancement of technology in the agricultural field

has resulted in the combination of artificial intelligence with non-

destructive spectral measurements for fruits and vegetables quality

measurement (Hasanzadeh et al., 2022). Artificial intelligence

models such as artificial neural networks (ANNs), genetic

algorithms (GAs), fuzzy logic (FL), and adaptive neuro-fuzzy

inference system (ANFIS) can assess multiple characteristics

simultaneously (Homayoonfal et al., 2022). Salehi reviewed
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development of models used in the determination of fruits and

vegetables quality (Salehi, 2020). ANNs, GAs, FL, and ANFIS

detected defects, moisture content, and chilling injury of oranges,

cherries, pomegranates, apples, peaches, avocados, button

mushrooms, tomatoes, and potatoes (Salehi, 2020). Despite the

fact that these models are typically constrained by normality,

linearity, homogeneity, and variable independence, the ANFIS

model outperforms others and can be successfully used in

relevant research (Salehi, 2020).

Machine learning (ML) is a branch of artificial intelligence and

an integral part of the development of many sensing technologies

that are responsible for information retrieval, signal processing, and

data analysis (Li et al., 2021). In recent decades, traditional

algorithms such as linear discriminant analysis (LDA), support

vector machines (SVMs), K-nearest neighbors (K-NN), naïve Bayes,

extreme learning machines (ELMs), decision trees (DTs), and K-

means clustering have been deployed (Fadchar and Dela Cruz,

2020). For instance, Rivera et al. (Rivera et al., 2014) used NIR–HSI

and machine learning for the early detection of mechanical damage

in mango. LDA, K-NN, naïve Bayes, ELMs, and DTs were used for

categorization. Bayes failed, however (K-NN, ELM, DT, and LDA

Title altered) results was more than 90%. The highest performance,

achieved by K-NN, was 97.9% (Rivera et al., 2014).

The evolution of deep learning (DL) as a breakthrough machine

learning method has been trending since 2017 due to the manual

feature extraction of traditional machine learning methods (Yang

and Xu, 2021) and limited performance of chemometrics models,

such as spectral variability caused by sample and spectrometer

heterogeneity, changing environmental conditions, and infrared

spectral data with high noise, which hinder feature extraction

using chemometrics models (Zhang et al., 2021). Deep learning is

a subset of machine learning that use many neural network layers to

extract complex feature representations with numerous levels of

abstraction (Lecun et al., 2015). According to Kamilaris et al.

(Kamilaris and Prenafeta-Boldú, 2018), convolutional neural

network (CNN) and recurrent neural network (RNN) have been

implemented for crop-type classification, counting produces, and

locating their placement in the image using bounding boxes

(Kamilaris and Prenafeta-Boldú, 2018). However, the RNN was

found to perform better than the CNN because it considers not only

space but also the time which helps to capture the time dimension

(Kamilaris and Prenafeta-Boldú, 2018). Deep learning and machine

learning technology-based spectral analysis has been used in the

classification of three types of fruits (apple, lemon, and mango) by

type of damage, type of goods, and whether the sample is raw in

market, supermarket, wholesaler, and retailer applications (Bobde

et al., 2021).

Garillos-Manliguez et al. (Garillos-Manliguez and Chiang,

2021) estimated six maturity stages of papaya fruit, from the

unripe stage to the overripe stage, by feature concatenation of

data obtained from visible light and HSI imaging (Garillos-

Manliguez and Chiang, 2021). AlexNet, VGG16, VGG19,

ResNet50, ResNeXt50, MobileNet, and MobileNetV2 architectures

was then modified to apply multimodal data cubes made of RGB

and hyperspectral data (Garillos-Manliguez and Chiang, 2021).

Regarding classification of the six stages, these multimodal
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variations can reach F1 scores of up to 0.90 and a 1.45% top-2 error

rate. However, due to the small size of the images and the great

depth of the CNNs, resulting in highly tightly tuned training

variables, overfitting may arise. On the other hand, increasing

image size results in insufficient memory faults (Garillos-

Manliguez and Chiang, 2021).

Banana fruit was graded by Mesa et al. (Mesa and Chiang, 2021)

using multi-input deep learning model with RGB and HSI. These

models were able to categorize tier-based bananas by 98.45% and an

F1 score of 0.97 with only few samples (Mesa and Chiang, 2021).

However, this technique is expensive and time consuming due to

the use of two cameras. The next studies instead, should consider

the use of more improved camera systems with features that can

extract both RGB and HSI simultaneously (Mesa and Chiang,

2021). Another study by Ucat and Cruz explored the use of image

processing with a deep learning to grade banana according to their

specifications (Ucat and Dela Cruz, 2019). The trained, validated,

and test data by CNN model was more than 90% in all four classes

of bananas (). The suggested CNN grading system in the tensor flow

model can be commercially developed (Ucat and Dela Cruz, 2019).

Portable spectrometers and real-time online detection devices

have recently developed for fruits and vegetables quality assessment.

Portable devices are handheld, light weight, compact size and they

are applied for in-field measurements (Sohaib et al., 2020). The

combination of portable NIR device with MSC-PCA+LDA model

was used to evaluate pineapple quality. These models were

recommended to be developed in mobile phone while PLS

regression model provided 85% accuracy (Amuah et al., 2019).

Subedi et al. (Subedi and Walsh, 2020) evaluated three hand held

portable near infrared spectroscopy (F750, Micro NIR and Scio

v1.2) in the detection of dry matter content (DMC) in avocado fruit.

The second derivative spectra were recorded for the intact and skin

removed avocado fruit for reflectance and interactance optical

geometry. The best results of prediction obtained from the F750

instrument using the interactance mode at 720-975 nm with R2p of

0.71 and 0.88 for intact and skin removed fruits respectively (Subedi

and Walsh, 2020). Real time monitoring device was designed as

sensor which can function in all post-harvesting states to control the

shelf life of fruits and vegetables such as lettuce. The device found to

be the feasible for controlling the behavior of the crop during the

post handling chain (Torres-Sánchez et al., 2020). Fruits and

vegetables including banana, orange and apple were well sorted

according to their external appearance by using real time online

system with artificial intelligence (Tata et al., 2022). For quality

categorization, machine learning models such as CNN and image

processing were performed. This real time system was created in

android and can be deployed in market robots where checking of

huge number of products is required (Tata et al., 2022).
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5 Conclusion and future prospects

Non-destructive spectral measurement has emerged as a

prominent solution in the agricultural sector. With the

introduction of spectral measurements, there has been rapid

progress in analyzing both the internal and external

characteristics of tropical fruits and vegetables in a low-cost,

accurate, real-time, and fast manner (Ali et al., 2017). Techniques

based on FTIR, NIR, and Raman spectroscopy require simple steps

to prepare samples prior to analysis (Abbas et al., 2020). In contrast

to other imaging techniques such as computer vision, acoustic

approaches, electric noses, and fluorescence, HSI uses spectral

and spatial data to assess different parameters concurrently (Lu

et al., 2020). The spectral measurements presented in this review

have shown potential applications for a diverse range of tropical

fruits and vegetables for the monitoring and detection of quality

attributes such as SSC, TSS, TA, color, size, defects, and texture,

which is particularly important for fruit and vegetable processors,

food safety agencies, and consumer demands.

Significant advancements in non-destructive spectral measurement

technology have occurred recently, including the development of

portable spectrometers for real-time and field applications. The

combination of spectral measurements and chemometric techniques

is a powerful tool for multivariate data analysis, mainly in the

improvement of models needed for classification and estimation of

quality. A practical case study of Metlenkin et al. (Metlenkin et al.,

2022) in the identification and classification of Hass avocado defects

before and after storage by HSI and chemometrics. The PLSDA and

SIMCA were selected as chemometric methods for multivariate data

discrimination and classification. To increase the final model accuracy

the calibration was performed by selecting the region of interest. The

results revealed the high potential of SIMCA during both modelling

and test validation with 100% accuracy. Furthermore, the integration of

spectral measurements with deep learning and machine learning

technology is rapidly expanding in order to improve quality control

accuracy while overcoming the challenges associated with

chemometrics such as spectral variability, spectrometer heterogeneity,

changing environmental conditions, and infrared spectral data with

high noise. The revolution in agriculture and the adaptation of

numerous tropical plants to regions outside of their natural range

have muddied their classification, and little is known about what

properly defines and distinguishes tropical fruits and vegetables from

their temperate counterparts. Therefore, there is confusion associated

with those studies that reported the classification of tropical fruits and

vegetables as an important factor to consider when examining the

distinctive quality indicators of these crops. Taking into accounts all of

the merits and demerits of non-destructive spectral measurements for

the quality monitoring of tropical fruits and vegetables, the use of an
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adequate number of samples, different cultivars of the fruit and

increasing the quality attributes to predict can help to develop robust

models that emphasize the variability of tropical fruits and vegetables in

terms of size and shape, skin thickness, and growing conditions.
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Maize seed appearance quality
assessment based on improved
Inception-ResNet

Chang Song †, Bo Peng †, Huanyue Wang, Yuhong Zhou,
Lei Sun, Xuesong Suo and Xiaofei Fan*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China
Current inspections of seed appearance quality are mainly performed manually,

which is time-consuming, tedious, and subjective, and creates difficulties in

meeting the needs of practical applications. For rapid and accurate identification

of seeds based on appearance quality, this study proposed a seed-quality

evaluation method that used an improved Inception-ResNet network with

corn seeds of different qualities. First, images of multiple corn seeds were

segmented to build a single seed image database. Second, the standard

convolution of the Inception-ResNet module was replaced by a depthwise

separable convolution to reduce the number of model parameters and

computational complexity of the network. In addition, an attention mechanism

was applied to improve the feature learning performance of the network model

and extract the best image information to express the appearance quality. Finally,

the feature fusion strategy was used to fuse the feature information at different

levels to prevent the loss of important information. The results showed that the

proposed method had decent comprehensive performance in detection of corn

seed appearance quality, with an average of 96.03% for detection accuracy,

96.27% for precision, 96.03% for recall rate, 96.15% for F1 value of reconciliation,

and the average detection time of an image was about 2.44 seconds. This study

realized rapid nondestructive detection of seeds and provided a theoretical basis

and technical support for construction of intelligent seed sorting equipment.

KEYWORDS

corn seed, quality assessment, depthwise separable convolution, attention mechanism,
feature fusion
1 Introduction

Maize is an essential cereal crop that is widely grown worldwide and has an increasing

production and trade volume (Ali et al., 2020). Appearance quality is an important factor

affecting the price of corn seeds, and effective identification of seed quality is critical for

ensuring food security and agricultural production safety. With the rapid advancements in

automation, machine vision technology (Huang et al., 2019; Kim et al., 2020; Wang and

Xiao, 2020; Ansari et al., 2021; Lu et al., 2022) can be used to nondestructively and quickly
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obtain seed surface feature information at a low cost and high

detection accuracy and efficiency, thereby providing potential new

methods for seed quality identification.

Machine learning (Rahmani et al., 2016; Prajapati et al., 2018;

Liang et al., 2019; Sharaff et al., 2021) is an active field of artificial

intelligence research that has advantages in terms of training small

data samples and wide applications in agricultural product

identification and defect detection. Farooqui et al. (2019) used a

gray-level co-occurrence matrix for disease feature extraction, a

support vector machine classifier for plant disease identification,

combined with advanced neural network to optimize the data to

improve the detection accuracy and demonstrated the feasibility of

this approach for plant disease diagnosis through experiments.

Effective classification of seeds is an important part of selecting

and breeding good seeds. To simplify the seed selection process, Ma

et al. (2021) proposed a peanut seed appearance quality detection

method, using peanut seed size and appearance color as the main

features and a support vector machine classification model to

complete the classification task. The experimental results showed

that the method had an accuracy of 86% for the classification of bulk

peanut seeds, which met the preliminary classification requirements

of peanut seeds in actual production. Gao et al. (2016) designed a

fresh corn quality detection classifier, which analyzed the texture

features of fresh corn images by wavelet analysis method, used the

maximum entropy function to measure the separation degree of the

texture images, and combined with the weight criterion to classify

the fresh corn of different varieties, sizes, and damage degrees, and

the effective classification rate could reach more than 99%. Zhao

et al. (2022) extracted three categories of raw coffee bean features:

contour, color, and texture to detect defective raw coffee beans by

the features of a single category or category combinations. The

findings were applied to a grid search to determine support vector

machine classification model parameters and combined with a k-

fold cross-validation test to compare support vector machine model

performances. The experimental results showed that the average

accuracy, precision, recall, and F1 values were 84.9%, 85.8%, 82.3%,

and 84.0%, respectively. This method provided a theoretical base for

the automatic detection of defective raw coffee beans. With the

requirements of strict and precise agricultural development, there is

an urgent need to explore new research methods to achieve precise

assessment of seed appearance quality and promote intelligent

agricultural development.

With the rapid development of deep learning, convolutional

neural networks are widely used in the fields of medicine, aviation,

and agriculture because of their excellent feature learning and

expression capabilities (Kamilaris and Prenafeta-Boldu, 2018;

Naranjo-Torres et al.,2020; Zhang et al., 2020; Cong and Zhou,

2022; Liu et al., 2023). Compared with traditional machine learning

techniques, convolutional neural networks are more generalizable,

faster to train, and can obtain significant information directly from

images, which eliminates the tedious steps of manually extracting

image features used in traditional methods. In applications for

agriculture, convolutional neural networks are often used in areas

such as the classification of crop pests and diseases (Wu et al., 2019;

Peng et al., 2019; Tiwari et al., 2021; Liu et al., 2022; Liu et al., 2022),

agricultural product species identification (Ajit et al., 2020; Gao
Frontiers in Plant Science 0224
et al., 2020; Chen et al., 2021; Laabassi et al., 2021; Sj et al.,2021),

yield estimation (Zhang et al., 2020; Tan et al., 2019; Alexandros et

al., 2023; Kavita et al., 2023), and crop quality grading (Anikó and

Miklós, 2022; Liu et al., 2022; Li et al., 2022; Wang Z. et al., 2022;

Peng et al., 2023), in which they greatly promote the development of

agricultural intelligence. Along with the arrival of the era of big data,

the amount of image information increases exponentially, resulting

in an increase in the amount of computation and training difficulty

in the training process. This has also led researchers to pay more

attention to lightweight networks, in order to maintain the accuracy

of the premise of lightweight transformation of the network,

MobileNet, ShuffleNet and other lightweight networks came into

being, which can be better adapted to the evolving needs of the

mobile market. To effectively alleviate the large amounts of

computational resources and storage costs required for real-time

image processing, Yuan et al. (2022) constructed a high-

performance low-resolution MobileNet model, in which the

network structure was simplified by cropping and the inception

structure was used to fill the Dwise layer in a depth-separable

convolution to extract the richer low-resolution features. The

experimental results showed that the model achieved 89.38%,

71.60%, and 87.08% accuracies with the CIFAR - 10, CIFAR -

100, and CINIC - 10 datasets, respectively, and was suitable for real-

time image classification tasks in low-resolution application

scenarios. Fang et al. (2022) proposed a new network structure,

HCA-MFFNet, for maize leaf disease recognition in complex

contexts, and in order to validate the feasibility and effectiveness

of the model in complex environments, it was compared with the

existing methods, and the results proved that the model had an

average recognition accuracy of 97.75% and an F1 value of 97.03%,

which was the best overall performance. Hou et al. (2020) proposed

a damage classification algorithm for castor seeds based on a

convolutional neural network. Authors used castor seeds with

missing shells or cracks and intact castor seeds to construct a

dataset and build a network model to classify the seeds. The

experimental results showed that the average accuracy was

87.78%, with 96.67% for castor seeds without shells, 80.00% for

cracked castor seeds, and 86.67% for intact castor seeds; therefore,

this method provided a feasible solution for the online real-time

classification of castor seeds. Wang L. et al. (2022) designed a defect

detection method based on the watershed algorithm and a two-

channel convolutional neural network model, which can effectively

identify defective and non-defective seeds with an average accuracy

of 95.63%, an average recall of 95.29% and an F1 value of 95.46%.

The assay provided an effective tool for the detection of corn seed

defects. Cai et al. (2023) proposed a new grape leaf disease

identification model, which was proved to have an identification

accuracy of 93.26%, effectively providing decision-making

information for the grape leaf disease identification system in

precision agriculture. The above research results simplify the

network structure complexity to a certain extent and reduced the

requirement of hardware devices for model training. However, this

is also often accompanied by poor model recognition accuracy,

making it difficult to meet the needs of practical applications.

Therefore, additional methods must be developed to improve the

accuracy and achieve the purpose of accurate recognition.
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In this study a seed-appearance quality assessment method

based on an improved Inception-ResNet was proposed using

intact and damaged maize seeds as test samples. By replacing

depthwise separable convolution, adding an attention mechanism,

and introducing a feature fusion strategy, the Inception-ResNet

network structure was improved and optimized to obtain more

detailed feature information, with the aims of achieving accurate,

rapid, and nondestructive detections of seed appearance quality and

providing a feasible reference scheme for subsequent automatic

seed quality sorting processes.
2 Materials and methods

2.1 Experimental materials and treatment

2.1.1 Image acquisition
In this experiment, 50 groups of corn seeds with good

appearance and broken appearance were collected respectively,

with a total of 982 seeds, including 458 good seeds and 524

broken seeds. The training set and test set were divided according

to 4:1. Ten sets of maize seed image data containing both good and

defective seeds were used for verification of the final model
Frontiers in Plant Science 0325
(Figure 1). The image acquisition platform mainly consisted of

four parts: a multispectral surface array camera from JAI Company

in Denmark, with an image resolution of 2048×1536; a bracket to

adjust the camera height; a light source on both sides of the camera;

and a shelf to place the maize seed samples. The image data

acquisition device is shown in Figure 2.

2.1.2 Image processing
The Python3.6 script language was used to segment the corn

seed images, as shown in Figure 3A. First, the original color image

was converted to grayscale, and a binary image was then obtained

using the adaptive thresholding method, whereby the seed region is

shown as white and the background region as black. White noise in

the image was removed using a morphological open operation, and

expansion was used in the foreground to distinguish the

background and foreground areas of the image. The

distanceTransform function was then used to obtain the center

region of each seed, and the expanded image was subtracted from

the central region to obtain the edge region. Finally, the watershed

algorithm was used to mark the identified central region, delineate

the seed boundary, and determine the range of each seed in the

complete image by the location coordinates for segmentation. The

segmentation effect is shown in Figure 3B.
B CA

FIGURE 1

Corn seeds with different appearance qualities (A) Good seed grain, (B) Defective grain, (C) Both conditions.
BA

FIGURE 2

Image acquisition platform (A) physical device diagram and (B) 3D view of the device.
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2.2 Basic method and test environment

2.2.1 Convolutional neural networks
A convolutional neural network (Rong et al., 2019) is a kind of

multilayer perceptron. A traditional convolutional neural network

consists of an input layer, convolutional layer, pooling layer, and

fully connected layer. A simple neural network model can be

formed by mixing different depths and stacking orders, as shown

in Figure 4, in which the term random represents the number of

times a particular layer of a structure is randomized.

The input layer represents the initial input of the entire

convolutional neural network, and in the case of image processing,

the input layer contains the pixel matrix of the input image, and the
Frontiers in Plant Science 0426
convolutional layer is the core component of convolutional neural

network, which has the characteristics of local connection, weight

sharing and translation invariance, and realizes the feature extraction

function of the network. The pooling layer compresses the size of the

input feature map while extracting the main features, thereby reducing

the complexity of the network training process and the probability of

overfitting the network model during this process. The fully connected

layer is involved in weighting the features extracted from the

convolutional and pooling layers, transforming them into layer

vectors, and inputting one-dimensional data into the Softmax layer

through multiplication operations to obtain the image classification

results. It can be understood as a parallel, large-scale distributed

processor that is capable of storing and using empirical knowledge.
BA

FIGURE 3

Process of watershed algorithm (A) Segmentation process and (B) Segmentation results.
FIGURE 4

Basic structure of convolutional neural network.
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2.2.2 Depthwise separable convolution
Depthwise separable convolution (Mamalet and Garcia, 2012) was

proposed as a typical lightweight convolution structure that has a

significantly reduced parameter number and increased training speed

compared to a standard convolution and can separate channels and

regions in the convolution operation. As shown in Figure 5, depthwise

separable convolution mainly consists of two parts, depthwise

convolution and pointwise convolution, which are used to extract

feature information. One depthwise convolution kernel is responsible

for one channel, and the number of feature maps generated by this

process equals the number of input channels. The convolution

operation is performed independently for each channel of the input

layer, which does not make full use of the feature information from

other channels in the same spatial location. Therefore, pointwise

convolution is required to combine the feature maps to generate a

new feature map, in which the number of convolution kernels

corresponds to the output feature map.

Depthwise separable convolution effectively reduces the

number of parameters required for the network model compared

to the normal convolutional approach. The N H × W × C

convolution kernels can be replaced by C H × W × 1 depthwise

and N 1 × 1 × C pointwise convolution kernels. The number of

depthwise convolution parameters is (H × W × 1) × C, and the

number of pointwise convolution parameters is (1 × 1 × C) × N.

The combined number of parameters for the depthwise separable

convolution can be calculated as follows:

Params = H �W� C + C�N (1)

The number of parameters in the ordinary convolution is H ×

W × C × N, and the relationship between the two is compared as

follows:

H �W� C + C�N
H �W� C�N

=
1
N

+
1

H �W
(2)
2.2.3 Attention mechanism
The working principle of the attention mechanism is similar to

the selective attention of human vision. It utilizes limited

computational resources to focus on important feature

information and emphasize regions of interest in a dynamically
Frontiers in Plant Science 0527
weighted manner, discarding irrelevant background information

and nuisance information in the input features to improve network

performance. In general, the attention mechanism involves the

process of weight assignment, in which the input feature

information is processed, the attention information is obtained

through a weight assignment, and the attention mechanism is used

to process these features. The process can be expressed as

Attention = f (g(x), x) (3)
Here, x represents the input feature information of the attention

mechanism; g(x) represents the focus on the key areas, that is, the

process of generating attention information by processing the input

features; and f(g(x), x) represents the processing of the key areas,

that is, processing of the input information using the attention

information obtained from g(x).

2.2.4 Evaluation indicators
In this study, objective evaluation criteria (Feng et al., 2022;

Wang X. et al., 2022) were used to analyze the inspection model of

the maize seed appearance quality using Accuracy(A), Precision (P),

Recall (R), and by introducing the F1 value as the average evaluation

of the reconciliation. The related formulae are as follows:
A =
TP + TN

TP + TN + FN + FP
� 100%  (4)

P =
TP

TP + FP
� 100% (5)

R =
TP

TP + FN
� 100% (6)

F1 =
2PR
P + R

� 100% (7)

2.2.5 Test environment
We used a Windows 10, 64-bit operating system with a x64 based

processor, Cuda version 11.0, and the Tensorflow deep learning

framework based on the Python programming language. The

computer contained an NVIDIA GeForce RTX 3090 graphics card

with 24G video memory and a 12th Gen Intel(R) Core (TM) i7-

12700KF processor at 3.61 GHz.
FIGURE 5

Depthwise separable convolution.
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2.3 Algorithm improvement

2.3.1 Improving the Inception-ResNet module
The traditional Inception module, shown in Figure 6A, consists

of 1 × 1, 3 × 3, and 5 × 5 convolution operations of various sizes for

feature extraction using multiple-scale parallel convolution

operations. The Inception-ResNet module (Figure 6B) combined

the residual network structure of the ResNet with the separation of

the large convolutional network into two tandem small

convolutional structures to obtain the output feature maps of the

5 × 5 convolution, thereby improving the classification performance

of the model. In this study, based on the Inception-ResNet module,

the standard convolution part of the Inception-ResNet structure

was replaced by a cost-effective convolution operation by

combining the lightweight structure depthwise separable

convolution (Dinception-ResNet). This approach could reduce

the number of model parameters, increase the depth of the

network, and enhance the feature extraction capability of the

model, while preserving the feature diversity of the traditional

inception multigroup structure.

A comparison of the parameters of the improved model is

presented in Table 1. The original Inception-ResNet model used

up to 28 979 618 parameters; this number was reduced by 177 920

after the depthwise separable convolutional replacement and

the ratio of the number of trainable parameters to the total

number of parameters was improved, which favors the design of

lightweight networks.
Frontiers in Plant Science 0628
2.3.2 Adding attention mechanism
Introducing the Efficient Channel Attention Network after the

Dinception-ResNet module effectively avoided dimensionality

reduction and captured cross-channel interactions, as shown in

Figure 7. The Efficient Channel Attention Network first transformed

the input feature map from a matrix [H, W, C] into a vector [1, 1, C]

using global averaging pooling, after which it calculated the adaptive

1D convolution kernel size based on the number of channels of the

featuremap, which was then used in 1D convolution. Subsequently, the

weights of the featuremaps with respect to each channel were obtained.

Finally, the normalized weights and the original input feature maps

were multiplied channel-by-channel to generate the weighted feature

maps. These maps can be used to solve the information overload

problem and improve the efficiency and accuracy of task processing by

focusing on the more critical information for the current task, reducing

the attention to other information, and using a small number of

parameters to achieve suitable results. To fully demonstrate the

effectiveness of Efficient Channel Attention Network, we conducted a

comparison experiment between it and the commonly used attention

mechanisms CBAM, SENet and CANet. By testing the relevant indexes

of the experiments, the results were shown in Table 2, which clearly

concluded that the overall detection performance of Efficient Channel

Attention Network was optimal.

2.3.3 Introducing the feature fusion mechanism
As the depth of the network model increases, important feature

information may be missed in the feature extraction process,
TABLE 1 Parameter comparison.

Model Total parameters Trainable parameters Non-trainable parameters

Inception-ResNet 28 979 618 28 947 106 32 512

Dinception-ResNet 28 801 698 28 770 338 31 360
BA

FIGURE 6

Inception module (A) Traditional Inception module and (B) Dinception-ResNet module.
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thereby decreasing the classification accuracy of the model.

Therefore, this study proposed feature fusion, as shown in

Figure 8, in which the output features of each module were first

pooled by global averaging to avoid overfitting. Subsequently, the

output feature maps of the three stages were feature-fused to enrich

the output feature information, enhance the generalization

performance of the model, and improve the expression ability of

the feature information.

2.3.4 Improved network model structure
The traditional convolutional neural network structure

generates a large number of parameters in the deep network. In

addition, key features are mixed with irrelevant features, and the

network is difficult to optimize; therefore, this study proposed an

improved model based on Inception-ResNet (Figure 9). Depthwise

separable convolution was used to replace the standard convolution

in the Inception-ResNet module to reduce the number of model

parameters, the network model was optimized by introducing the

Efficient Channel Attention mechanism to increase the feature

weights of key information and improve the network

performance; in addition, the output features of the low, middle

and high layers of the model were fused to improve the feature

extraction ability of the model and enrich feature information to

achieve the purpose of network optimization.

2.3.5 Ablation study
In order to validate the effectiveness of the method proposed in

this paper, separate experiments were conducted for the proposed

modules to compare with the original Inception-Resnet model. By

comparing the results of groups 1-2-3-4 in Table 3, it can be seen

that the performance of each module reference is improved to some

extent compared to the original network. Among them, the
Frontiers in Plant Science 0729
introduction of the feature fusion module resulted in the most

obvious model performance improvement, with each performance

index improved by 3.38 – 5.55 percentage points respectively. The

average time for detecting an image was 2.62 seconds. Replacing

standard convolution with depthwise separable convolution, the

average time to detect an image was reduced by 30 milliseconds. By

comparing the results of 1-2-5-6 groups and referring modules one

by one, the model performance was improved and the effectiveness

of the modules is fully proved.
3 Results and analysis

3.1 Model optimization

Different networks apply different model parameters. By adjusting

certain parameters in the model and using test set recognition accuracy

as the evaluation index, we investigated the effects of the parameters on

the classification accuracy of the model. In the convolutional neural

network model, batch size is an important hyperparameter, and we

chose a batch size that was appropriate to train the model to converge

to the global optimum. Using a large number of parameters in a deep

convolutional neural network creates correction issues; therefore, a

suitable optimizer was selected to improve the model training speed

and accuracy. The training parameter batch sizes of the model were 16,

32, and 64, and two different optimization algorithms, Adam and SGD,

were used. The number of model iterations was set to 100 and the

learning rate was 0.001; the final test set accuracy variation curve is

shown in Figure 10. These settings ensured that when the Adam

optimizer was selected for the improved model and the bath size was

set to 32, the accuracy of the test set was the highest and the detection

performance was optimal.
TABLE 2 Comparison of detection performance of different attention mechanisms.

Attention mechanism Average Accuracy/% Average Precision/% Average Recall/% F1/% Detection time/s

ECANet 95.96 92.46 91.26 91.86 2.68

CBAM 89.68 91.33 89.68 90.50 2.65

SENet 83.33 87.34 83.33 85.29 2.67

CANet 90.48 91.89 90.47 91.17 2.66
FIGURE 7

ECA network structure.
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3.2 Comparison of machine
learning experiments

To verify the performance of the improved model, three features

of maize seed (shape, color, and texture) were extracted using

traditional machine vision techniques, and the three types were

combined to quantify the images more effectively. The logistic

regression, k-nearest neighbor, decision tree, random forest,

gaussian naïve bayes, and support vector machine models were

used for classification, and the common lightweight convolutional

neural networks DenseNet, MobileNet, ShuffleNet, and Inception,

and the original Inception-ResNet were selected for comparison. The

dataset was divided into training and test sets in a 4:1 ratio, and the

classification accuracies of the different models on the test set are

shown in Figure 11A. The highest accuracy with the test set occurred
Frontiers in Plant Science 0830
with the improved Inception-ResNet model, with 99.49%, which was

an increase of 2.03 percentage points over the accuracy of the original

model of 97.46% and an increase of 5.07 percentage points compared

to the LRmodel, which had the highest machine-learning recognition

accuracy for the test set of 94.42%. In addition, a confusion matrix

was chosen as the visual presentation tool to evaluate the quality of

the classification models, and the matrices for several models of the

test set are shown in Figure 11B. The plots showed that the original

Inception-ResNet model had an accuracy of 96.67% for the

identification of seeds with a defective appearance and 98.13% for

the identification of seeds with a good appearance. The confusion

matrix for the improved Inception-Resnet model showed the best

results, with a significant improvement and a classification accuracy

of the test set seeds of up to 100%; therefore, this model provided an

accurate identification of seed appearance quality.
FIGURE 9

Improved model structure.
FIGURE 8

Network structure with added feature fusion.
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3.3 Comprehensive testing performance

To evaluate the effectiveness of the improved Inception-

ResNet in detecting seed appearance quality, ten sets of image

data with good and bad co-existing seeds were selected for the

final validation and performance of the six detection algorithms,

DenseNet, MobileNet, ShuffleNet, Inception, Inception-ResNet,

and improved Inception-ResNet. The models were evaluated

using the criteria of average accuracy, precision, recall and the

reconciled average evaluation F1 value. The results are shown in

Table 4, and the highest average accuracy of Inception-ResNet

after improvement reached 96.03%, which was 3.23 – 11.11

percentage points higher than those of the other models, the

average precision reached 96.27%, an improvement of 3.46 –

8.00 percentage points compared to other networks. Similarly,

the average recall was 3.22 – 11.11 percentage points greater than

the other models, with 96.03%, while the reconciled average

evaluation F1 value reached 96.15%, which was 3.34 – 9.59

percentage points higher than the other algorithms and the

average time to achieve real-time detection was 2.44 seconds

per detected image.
Frontiers in Plant Science 0931
3.4 Model performance

Combined with the watershed algorithm to obtain the specific

location coordinates of the corn seeds for defect detection, the detection

results of several models are shown in Figure 12. The improved

Inception-ResNet model had a significantly greater number of cases

with target confidence levels of 1.0, with approximately 88% of the seed

identifications showing a level approaching 1.0, which is a six-

percentage point improvement over the level of the original model.

A comparison of the detection results is shown in Table 5, which shows

that the improved Inception-ResNet model had the greatest number of

correct detections and highest overall recognition accuracy, thereby

allowing for an accurate detection of the appearance quality of corn

seeds to achieve the desired results. In the actual detection process,

there are also cases of misdetection, such as the possibility of detecting

bad seed as good seed when the area of damage is small. When the

seeds are randomly placed at an inappropriate Angle or there is serious

adhesion leading to area coverage between seeds, it is possible to detect

good seeds as bad seeds. This also indicates that there is room for

model refinement and we need to follow up to explore more accurate

detection models.
FIGURE 10

Comparison of parameters.
TABLE 3 Comparison of improving module performance.

Model Average Accu-
racy/%

Average Preci-
sion/%

Average
Recall/%

F1/
%

Detection
time/s

1 Inception-Resnet 88.10 90.26 88.10 89.17 2.59

2 Inception-Resnet (+depthwise separable convolution) 89.68 91.33 89.67 90.49 2.56

3 Inception-Resnet (+ECANet) 95.96 92.46 91.26 91.86 2.68

4 Inception-Resnet (+feature fusion) 93.65 94.28 93.65 93.96 2.62

5
Inception-Resnet (+depthwise separable convolution +

ECANet)
92.06 93.05 92.06 92.55 2.77

6 Improved Inception-ResNet 96.03 96.27 96.03 96.15 2.44
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4 Discussion

We proposed an improved model based on Inception-Resnet

for corn seed appearance quality detection, which can realize the

purpose of accurate and real-time detection. However, the model is

domain dependent and mainly focuses on the detection of seed

appearance quality, which makes it difficult to directly migrate the

network to other domains. This is mainly due to the fact that the

network structure modifications are performed based on seed

features, which are difficult to guarantee that they will respond

well on datasets from other domains. With the development of

agricultural digitization, it can be applied to seed intelligent sorting

equipment to guarantee the quality of seeds. We can do further

research to solve some problems, firstly, the data collection was

conducted indoors, in the future, we can try to train the model
Frontiers in Plant Science 1032
directly for the dataset collected in the actual outdoor environment

to improve the generalization ability of the model; secondly, we can

design a lighter network structure, which can ensure the stability of

the algorithm and efficiently deploy it on different platforms while

pursuing high performance; finally, we only study the appearance

damage of corn seeds, and in the future we can continue to explore

more specific defects on the seed surface, such as diseases and pests,

and further promote the development of the seed industry.
5 Conclusions

To improve the accuracy of seed appearance quality assessment,

this study proposed an improved Inception-ResNet model based on

the Inception-ResNet algorithm for identifying appearance defects
B

A

FIGURE 11

Test result (A) Comparison of accuracy between different model test sets and (B) Confusion matrix of different models.
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of corn seeds and obtained the following conclusions: (1) Taking

advantage of the small number of depthwise separable

convolutional parameters as opposed to the standard convolution
Frontiers in Plant Science 1133
in the Inception-ResNet module reduced the large number of

parameters generated by overlaying the Inception-ResNet module

and the requirement for hardware resources. (2) Introducing the

Efficient Channel Attention Network strengthened the ability to

learn key information and avoided the problem of excessive

information storage and information overload in the model.

Simultaneously, the output feature maps were fused to obtain

richer feature information to enhance the network generalization

ability and improve network performance. (3) The detection effect

of the method proposed in this study was superior to the other

models tested, with an average accuracy of 96.03%, average

precision of 96.27%, average recall of 96.03%, F1 value of 96.15%,

and detection speed for a single corn seed image of approximately

2.44 seconds. The performance index improved significantly with

high performance stability, providing a theoretical basis for

subsequent seed quality detection.
B C

D E F

A

FIGURE 12

Comparison of detection results of multiple algorithms (A) DenseNet (B) MobileNet (C) ShuffleNet (D) Inception (E) Inception-ResNet (F) Improved
Inception-ResNet.
TABLE 5 Comparison of test results.

Model Correct number Miss number

DenseNet 27 6

MobileNet 25 8

ShuffleNet 25 8

Inception 27 6

Inception-ResNet 28 5

Improved Inception-ResNet 29 4
TABLE 4 Comparison of detection model performances.

Model Average Accuracy/% Average Precision/% Average Recall/% F1/% Detection time/s

DenseNet 84.92 88.27 84.92 86.56 2.86

MobileNet 87.30 89.75 87.30 88.51 1.81

ShuffleNet 88.87 90.24 88.88 89.55 1.91

Inception 92.80 92.81 92.81 92.81 2.55

Inception-ResNet 88.10 90.26 88.10 89.17 2.59

Improved Inception-ResNet 96.03 96.27 96.03 96.15 2.44
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Non-destructive detection of
single-seed viability in maize
using hyperspectral imaging
technology and multi-scale 3D
convolutional neural network
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Wenqian Huang2, Zheli Wang2, Chunjiang Zhao1,2* and Xi Tian2*

1College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China,
2Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing, China
The viability of Zea mays seed plays a critical role in determining the yield of corn.

Therefore, developing a fast and non-destructive method is essential for rapid

and large-scale seed viability detection and is of great significance for agriculture,

breeding, and germplasm preservation. In this study, hyperspectral imaging (HSI)

technology was used to obtain images and spectral information of maize seeds

with different aging stages. To reduce data input and improve model detection

speed while obtaining more stable prediction results, successive projections

algorithm (SPA) was used to extract key wavelengths that characterize seed

viability, then key wavelength images of maize seed were divided into small

blocks with 5 pixels ×5 pixels and fed into a multi-scale 3D convolutional neural

network (3DCNN) for further optimizing the discrimination possibility of single-

seed viability. The final discriminant result of single-seed viability was determined

by comprehensively evaluating the result of all small blocks belonging to the

same seed with the voting algorithm. The results showed that the multi-scale

3DCNN model achieved an accuracy of 90.67% for the discrimination of single-

seed viability on the test set. Furthermore, an effort to reduce labor and avoid the

misclassification caused by human subjective factors, a YOLOv7 model and a

Mask R-CNN model were constructed respectively for germination judgment

and bud length detection in this study, the result showed that mean average

precision (mAP) of YOLOv7 model could reach 99.7%, and the determination

coefficient of Mask R-CNN model was 0.98. Overall, this study provided a

feasible solution for detecting maize seed viability using HSI technology and

multi-scale 3DCNN, which was crucial for large-scale screening of viable seeds.

This study provided theoretical support for improving planting quality and

crop yield.

KEYWORDS

viability detection, maize seeds, hyperspectral imaging, YOLOv7 model, 3D convolution
neural network
frontiersin.org0136

https://www.frontiersin.org/articles/10.3389/fpls.2023.1248598/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1248598/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1248598/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1248598/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1248598/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1248598&domain=pdf&date_stamp=2023-08-29
mailto:Zhaocj@nercita.org.cn
mailto:tianx2019@sina.com
https://doi.org/10.3389/fpls.2023.1248598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1248598
https://www.frontiersin.org/journals/plant-science


Fan et al. 10.3389/fpls.2023.1248598
1 Introduction

Single-seed sowing is a crucial strategy to boost corn

production, save seeds, and reduce labor, but it demands high-

quality seeds (Li et al., 2017). On October 11th, 2020, a new

standard has been released by China, which raises the

germination rate index for single-seed sowing from 85% to 93%.

The viability is a critical indicator for evaluating the quality and

practicality of seed. Assessment of seed viability could ensure each

seed has the potential for germination and healthy growth and

promotes the popularization of single-seed sowing. This not only

facilitates mechanized sowing and reduces the laboriousness of

manual interplanting and seedling transplantation, but also

significantly reduces the amount of seed used and conserves a

considerable amount of seed production area (Liang et al., 2020).

Therefore, the determination of seed viability is of utmost

importance in reducing the cost and time loss resulting from

planting failures and conserving human resources.

Seed viability is a quality characteristic at the individual level

rather than a quantitative trait at the population level. Loss of

viability among individuals in the same population is not

synchronous, making it challenging to detect the viability of

single-seed. According to the International Seed Testing

Association (ISTA) rules (Association, I.S.T, 1999), common

methods for seed viability detection include germination and

staining (Cheng et al., 2023). The conventional germination

method is the most accurate, but it is time-consuming and

requires a lot of material resources. On the other hand, staining is

only suitable for a small number of samples. Therefore, it is

necessary to develop a rapid-nondestructive technique for single-

seed viability detection in large quantities.

In the field of seed quality detection, hyperspectral imaging

technology has been widely utilized. However, research on seed

viability detection is relatively limited. Jannat Yasmin et al. (2022)

presented an online detection system of watermelon seed viability

based on longwave near-infrared (LWNIR) HSI, demonstrating its

potential application in predicting seed viability. Wang et al. (2021)

developed the discrimination models of seed viability using the

feature wavelengths and full wavelengths of the visible and

shortwave near-infrared (Vis-SWNIR), the result revealed that

both models attained an accuracy rate surpassing 95%, suggesting

that the seeds with different aging stages exhibited unique spectral

features, and the characteristic wavelengths can effectively provide

the key information of Zea mays seed quality. Pang et al. (2021)

conducted a germination experiment on maize seeds with different

aging stages, a 2D convolutional neural network (2DCNN) model

was developed by combing deep learning algorithms with

hyperspectral technology. The accuracy of this model reached

99.96%, which was significantly higher than machine learning and

one-dimensional convolutional neural network (CNN). It was

worth pointing out that the model demonstrated a relatively fast

convergence speed, which highlighted the feasibility and

effectiveness of combining deep learning with hyperspectral

technology to determine the viability of single-seed. Ambrose

et al. (2016) investigated the feasibility of using HSI technology to

differentiate the viability of maize seeds. One group of maize
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samples was subjected to microwave heat treatment, while the

other group served as the control. PLS-DA was employed to

classify the heat-treated (aged) and untreated (normal) maize

seeds. The results showed that the classification model achieved

the highest classification accuracy in the LWNIR region, with

calibration set accuracy of 97.6% and prediction set accuracy of

95.6%. These studies achieve high accuracy by predicting the aging

level or treatment condition of seeds instead of the actual results of

germination experiments. And they mainly rely on overall image

information for seed viability classification. However, they overlook

the significance of local information within seeds and fail to

consider subtle variations and characteristics in different

seed regions.

Generally, the evaluation of germination rate of seeds mainly

depends on manual labor, which is time-consuming and

cumbersome. Zhao et al. (2022) proposed a detection method for

the germination rate of rice seeds using deep learning models,

which took an average of 0.011 seconds for each image while

achieving a mAP of 0.9539, meeting the demands of real-time

detection, indicating that the YOLO-r model had great potential for

rapidly and precisely determining the germination status of seeds.

Bai et al. (2023) developed an improved discriminative approach for

the detection of seed germination using YOLOv5. This technique

enables the swift evaluation of parameters such as wheat seed

germination rate, germination potential, germination index, and

average germination days.

The emergence ability of seedlings is crucial for seed growth and

crop yield improvement (Cui et al., 2020). In recent studies,

significant progress has been made in correlating seed germination

ability and seedling growth through various measurement methods.

However, traditional manual measurement techniques for assessing

parameters like bud length have been found to be inefficient and

prone to errors due to the complex and twisted nature of buds. To

address this issue, Adegbuyi and Burris (1988) found there was a

significant correlation between seed germination ability and seedling

growth by measuring comprehensive growth parameters. However,

manual measurement method of bud length is inefficient and error-

prone due to their curved and twisted nature. Gaikwad et al. (2019)

developed a semi-automated tool for measuring leaf length, width,

and area. Abdelaziz Triki et al. (2021) used the Mask R-CNN

algorithm to effectively segment and measure leaf characteristics

and obtained an error rate of around 5%. An enhanced algorithm

based on the mask RCNN was introduced by Shen et al. (2023) to

recognize defective wheat kernels. The experimental outcomes

showed that this refined algorithm facilitated quicker and more

precise detection of unsound kernels, effectively tackling issues

linked to kernel adhesion. Masood et al. (2021) propose an

automated method that utilizes the Mask RCNN model to achieve

precise localization and segmentation of brain tumors. Cui et al.

(2022) constructed a recognition model using hyperspectral data and

feature extraction algorithms to predict maize root length, showing a

significant correlation between root length and viability. Therefore, it

is of great significance to measure and predict the seed viability using

computer technology.

The above study highlighted the significance of seed viability

determination and emphasized the need of developing rapid and
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non-destructive technology for single-seed viability detection. HSI

has been established as a useful tool for seed quality detection, and

the integration of deep learning and hyperspectral technology can

establish an effective seed viability detection model. However,

previous studies commonly used relatively simple models, and

lacking the prediction model of maize seeds viability developed

by 3DCNN and hyperspectral images. This study proposed an

improved method for identifying the viability of maize seeds

based on germination experiments. The aim of the study is to

explore the potential of using hyperspectral images and 3DCNN to

identify the viability of maize seeds. Specifically, the objectives are

to: (1) select characteristic wavelengths that represent seed viability,

(2) combine HSI with 3DCNN to establish the optimal classification

model for maize seed viability, (3) evaluate the feasibility of using

YOLOv7 model instead of the human eye to determine the seed

germination status, (4) evaluate the ability of Mask R-CNN in bud

segmentation and bud length prediction.
2 Materials and methods

2.1 Maize sample preparation

2.1.1 Aging experiment
Due to the high quality and the resistance to multiple stressors,

“Jingke 968”maize is extensively cultivated in eastern and northern

China. Therefore, it was selected as the experiment sample in this

study. To ensure the accuracy of the experiment, seeds with uniform

size and shape were manually selected, then all seeds were

disinfected by soaking them in a 0.5% sodium hypochlorite

solution for 5 minutes, followed by rinsing with distilled water

five times, and air-dried under natural conditions.

To simulate the natural aging process of seeds, the experiment

samples were artificially aged. All seeds were exposed to high

temperature and high humidity conditions (45 °C and a relative

humidity of 95%) and stirred twice a day to ensure uniform

exposure (Zhang et al., 2020). 150 maize seeds were taken out

randomly at aging 2, 4, 6, and 8 days, respectively. Additionally, 150

untreated seeds were selected as the control group (CK). Therefore,

a total of 750 maize seeds within five aging stages were obtained and

used for subsequent experimentation.

2.1.2 Hyperspectral imaging system
Two HSI systems, the Vis-SWNIR and LWNIR, have been built

in the Intelligent Detection Laboratory of the China Agricultural

Equipment Technology Research Center (Fan et al., 2018). The Vis-

SWNIR system is capable of acquiring hyperspectral images within

the wavelength range of 327-1098 nm, encompassing 1000 spectral

variables, while the LWNIR system can capture images within the

range of 930-2548 nm, containing 256 spectral variables. The Vis-

SWNIR system includes an imaging spectrometer, an electron-

multiplying charge-coupled device camera with a resolution of

502×500, a camera lens, and a spectraCube data acquisition

software. Similarly, the LWNIR system includes an imaging
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spectrometer, a charge-coupled device camera with a resolution of

320×256, a camera lens, and a spectral acquisition software (Tian et

al., 2021). And the acquisition software of both systems was

developed using LabVIEW (National Instruments Inc., Austin,

TX, USA) to facilitate the acquisition of spectral images, as well

as to manage the camera and motor operations. Both systems share

two 300-watt halogen lamps to provide stable illumination. In

addition, an electrically operated moving platform and a

computer are available for sample placement (Capable of

accommodating up to 96 samples simultaneously) and

hyperspectral image acquisition (Figure 1A) (Liu et al., 2022).

To ensure the accuracy and reliability of the hyperspectral

images (Eraw), calibration operation is essential to eliminate the

effects of uneven illumination of the light source and camera dark

current changes (An et al., 2022). The calibration operation

involved using a white reflection board (with a reflectance of

99%) (Ew) to acquire a standard white reference image in the

same sampling environment as the sample, while turning off the

light source and covering the lens to obtain a black reference image

(with a reflectance of 0%) (Ed). The calibrated image can be

calculated using the following formula:

Ec =
Eraw − Ed
Ew − Ed

(1)

After calibration, in the Vis-SWNIR region, a subset of 347

spectral variables within the 420-1000 nm range was selected for

further analysis, considering the abundance of spectral data and the

presence of duplicate information in adjacent spectra. On the other

hand, in the near-infrared region, due to the limited number of

available bands, all spectral variables (256) were directly included in

the analysis. To separate maize seeds from the background, a mask

was applied to segment the hyperspectral image. The gray-scale

images at 801 nm and 1098 nm were selected as the mask images for

the Vis-SWNIR and LWNIR bands, respectively. The average

spectral curves were obtained by calculating the mean reflectance

under the mask. Lastly, in order to eliminate the influence of the

instrument, the Savitzky-Golay (SG) and Standard Normal Variate

(SNV) methods were utilized to preprocess the spectra.

2.1.3 Standard germination test
A transparent box measuring 25cm×25cm was used as a

germination chamber, and 75 seeds were placed in each box. A

total of 10 boxes were used in the experiment. Prior to the

germination test, the germination boxes were sterilized with 75%

ethanol (Suksungworn et al., 2021), and three layers of gauze were

placed in each germination box to provide continuous moisture for

the seeds. A black gauze was placed on the top layers as the

background for photography (Figure 2A). An equal amount of

distilled water was added to each box, and the temperature was set

to 25°C with 12-hour intervals of light and dark (Figure 2B).

Throughout the 7-day germination experiment (Long et al.,

2022), the germination progress of maize seeds was monitored

daily at specific time intervals. According to the ISTA standard, the

germination rate was determined (Wang et al., 2022c).
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2.1.4 RGB image acquisition
RGB images of maize seeds were captured using BASLER

industrial cameras (acA1920-25um/uc, BASLER AG, Germany,

2.4 MP,100 fps) during germination test (Figure 2D) (Shen et al.,

2023). An adjustable camera platform was built to ensure

consistency of the images and prevent camera shake. The position

of the germination box relative to the lens was kept fixed during

each image capture. Indoor lighting was turned on and curtains

were drawn for each capture. After placing the seeds into the boxes

(Day 0), images of each box were immediately captured.

Subsequently, images were captured every 15 hours for 7

consecutive days (Figure 2C). The dataset used in this study

consisted of a total of 3000 maize seeds (All the captured RGB

images collectively contain 3000 seeds). Among them, 2250 seeds

were designated as training samples, while the remaining seeds were

allocated to the test set.
2.2 Data processing

2.2.1 Successive projections algorithm
Hyperspectral data typically consists of numerous bands, and

certain bands may exhibit high correlation or contain redundant
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information (Han et al., 2022).When training 3DCNN with full-

band data, it will lead to a significant increase in the number of

networks training parameters, resulting in a more complex model.

This phenomenon is commonly referred to as the curse of

dimensionality. (Köppen, 2000). However, band selection (Sun

and Du, 2019) allows retaining spectral bands that are closely

related to seed vigor assessment while removing irrelevant bands,

thereby enhancing the feature extraction and discriminative

capabilities of the model.

Additionally, the use of dimensionality reduction data sets can

effectively reduce the complexity of the model, mitigating the risk of

overfitting and enhancing the model’s generalization ability and

stability (Aloupogianni et al., 2023). Moreover, fewer computing

resources are required during model training and inference, leading

to a significant improvement in the computational efficiency of the

model (XingJia et al., 2022).

Successive projections algorithm is a classical band selection

method that can map high-dimensional spectral data to a low-

dimensional space through multiple projections(de Almeida et al.,

2018). SPA is a forward iterative search method used for selecting

spectral information with minimal redundancy to address

collinearity issues. The steps of SPA are shown in Table 1. The

SPA is widely used in hyperspectral image processing attributed to
B

C

D

A

FIGURE 1

Diagram of the 3DCNN for hyperspectral image classification (A) Hyperspectral image acquisition device, (B) Regional voting, (C) Conventional
3DCNN model, (D) Multi-scale 3DCNN model.
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its advantages of fast computation speed and easy implementation

(Chen et al., 2023b). Therefore, the SPA was used in this study to

perform feature selection on the processed average spectra of Vis-

SWNIR and LWNIR, in order to perform dimensionality reduction

on the hyperspectral data.

2.2.2 Machine learning
Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a

powerful algorithm for classification and regression that finds an

optimal hyperplane to separate data points of different classes. It

handles high-dimensional datasets, avoids overfitting, and can handle

non-linear problems using kernel functions. K-Nearest Neighbor

(KNN) (Zhang, 2022) is a basic algorithm that selects the K nearest

samples based on their feature values and uses their labels as

predictions. Subspace Discriminant Analysis (SDA) (Zhao and

Phillips, 1999) is a pattern classification method that aims to find a

low-dimensional subspace to maximize the separation between
Frontiers in Plant Science 0540
different classes. In this study, the aforementioned machine

learning methods were used to classify the viability of maize seeds

at different aging stages for optimal classification accuracy.

2.2.3 Deep convolutional neural network
The CNN combines the concepts of convolutional filtering and

neural networks by utilizing local receptive fields and weight

sharing to reduce the number of network parameters and speed

up model training (Ghaderizadeh et al., 2021). Compared to the

widespread use of two-dimensional convolution, three-dimensional

convolution is less commonly used in practice. However, HSI

contain rich spectral information, and using two-dimensional

convolution may make the interband correlations of HSIs

underutilized (Ge et al., 2020). To address this issue, this study

introduced a 3DCNN, which can thoroughly extract feature

relationships across different feature channels (Figure 1C),

thereby enabling it to concurrently extract integrated spectral and

spatial features from hyperspectral imagery (Sun et al., 2022).

Before inputting hyperspectral images into the network,

standardization is performed to ensure that the data is within the

same scale and range, enabling the network to learn weights faster and

converge more easily during training. Moreover, data standardization

can help avoid the problems of gradient disappearance or explosion,

and improve the stability and generalization ability of the network. To

obtain multiple convolutional features of HSI, multi-scale convolution

is employed in the same convolutional layer, which can acquire both

global and local information. Four different convolution kernels of

3×3×3, 3×3×5, 3×5×5, and 5×5×5 were selected to extract feature

information and fused on the channel. This method can enhance the

classification accuracy of the model. As illustrated in Figure 1D, each
B

C
D

A

FIGURE 2

Diagram of the standard germination experiment (A) Corn seed samples, (B) Germination of seeds in a climate chamber, (C) Sprouted seeds, (D) RGB
iamge acquisition device.
TABLE 1 Successive projections algorithm.

Input:Dataset with features and target variable
Output:Feature subset for analysis

Step 1: For each feature in the dataset:
a. Compute projection coefficients with respect to the target variable.
b. Store the computed coefficients.

Step 2: Initialize an empty feature subset.
Step 3: Repeat until desired subset size is reached or stopping criterion met:

a. Find the feature with the maximum projection coefficient.
b. Add the selected feature to the feature subset.
c. Project out the influence of selected features on remaining features.
d. Recalculate projection coefficients of remaining features.
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convolution kernel in the first convolution module has 16 filters, each

kernel in the second convolution module has 32 filters, and each kernel

in the third convolution module has 64 filters. The activation function

in the three-dimensional convolution module uses Rectified Linear

Unit (RELU) and is compressed by the pooling layer to reduce the

amount of data and parameters, as well as alleviate the overfitting

phenomenon. To ensure that the features extracted by different

convolution kernels in the same module can be effectively connected,

different parameters need to be set according to different situations,

such as stride and padding. Finally, the output is produced through 1

fully connected layer and 1 output layer, and the output layer employs

the SoftMax activation function.

To extract features from hyperspectral images of maize seeds at

a more microscopic level and increase the amount of data, a window

size of 5×5 was selected for segmentation (Figure 1B). To eliminate

the influence of background on classification, small blocks

containing 0-pixel points were discarded. As the size of maize

seeds varies, the number of blocks obtained from different segments

of maize seeds is also inconsistent. To address this issue, this study

employed a majority principle labeling aggregation method,

as Table 2.

In this study, the germination experiment showed that 404

viable samples and 346 nonviable samples were collected from 750

seeds. Given that the hyperspectral images were collected in a

sequential manner based on the aging gradients of the seeds, it

was crucial to maintain a balanced distribution of germinated and

non-germinated samples in the test set. Therefore, a representative

test set was carefully selected, consisting of 75 seeds, including the

first seed, the 10th seed, the 20th seed, and so on. The remaining 675

seeds were allocated for the training phase. Through this meticulous

approach, it was ensured that the test set encompassed samples

from diverse categories, enabling an accurate evaluation of the

classification model’s performance.

2.2.4 Establishment of Mask R-CNN model for
bud length detection

In order to measure the length of maize seed bud, the Mask R-

CNN (He et al., 2017) (With resnet50_fpn as backbone) model was
Frontiers in Plant Science 0641
utilized to segment the bud from single-seed image firstly, then a

skeleton extraction algorithm was applied to extract the skeleton of

the bud (Figure 3A). Next, the bud length detection algorithm was

used to remove the branches in the skeleton for obtaining the

central skeleton image. Finally, the actual bud length was calculated

by converting pixels to actual length (Figure 3B).

Mask R-CNN is a deep learning model that combines object

detection and instance segmentation. It extends Faster R-CNN by

generating binary masks for each region of interest (ROI), achieving

pixel-level segmentation. The network consists of three main

components: a backbone network, a Region Proposal Network

(RPN) responsible for generating candidate object regions, and

two parallel branches dedicated to object detection and mask

prediction. Mask R-CNN excels in instance segmentation, object

detection, and keypoint detection, making significant contributions

to computer vision advancements (Casado-Garcıá et al., 2019). The

model employs a multi-task loss function, comprising classification

loss (Lcls), bounding box loss (Lbbox), and predicted mask loss

(Lmask), as represented by equations (2) to (5) (Cong et al., 2023).

L  ¼  Lcls + LLbox  + Lmask (2)

Lcls  =  o
i
− log pipi* + 1 − pi*

h i
1 − pi½ �

h i
(3)

Lbbox
1

Nreg
o
i
pi*R ðti − ti*) (4)

Lmask  =   −
1
m2 o

1≤ i, j≤ m
y*ij log yij + 1 − y*ij

h i
log 1 − yij

� �h i
(5)

Lcls measures the deviation between predicted and actual values

for overall accuracy assessment. Lbbox quantifies the disparity

between predicted and actual position parameters, assessing the

model’s accuracy in bud localization. Lmask evaluates the model’s

confidence in pixel-level classification using binary cross-entropy.

Combining these components into a multi-task loss function allows

for comprehensive evaluation across multiple tasks, resulting in

enhanced overall performance.

The skeleton extraction algorithm is a technique used to extract

the central line or skeleton of an object in a binary image (Fu et al.,

2023). By progressively shrinking connected regions within the object

contour, the algorithm produces a concise contour that provides

valuable information for image processing tasks like recognition and

matching. Various algorithms, such as Zhang-Suen, Morphological

Thinning, and Medial Axis Transform, can be employed for this

purpose. The Medial Axis Transform (MAT) algorithm, specifically,

extracts the object’s central line by iteratively dilating boundary pixels

and identifying the nearest internal pixels as skeleton pixels. This

process continues until the skeleton pixels stabilize, resulting in a

stable and versatile representation suitable for subsequent image

processing tasks. The MAT algorithm handles different object

shapes and can process grayscale information within binary images.

Seed germination images exhibit a wide range of shape features, such

as bud length, curvature, and angle. However, traditional methods for

measuring bud length rely onmanual measurements, which are time-
TABLE 2 Majority principle labeling aggregation method.

Input: Segmented maize seed blocks
Output: Predicted potential for germination of
maize seeds

Step 1: Initialize:
a. Assign Label 1 to represent potential for germination.
b. Assign Label 2 to indicate maize grain block affiliation.

Step 2: For each segmented maize seed block:
a. Feed the block into the model for prediction of its potential for
germination.

b. Store the prediction result.

Step 3: For each maize seed:
a. Retrieve predictions of multiple small blocks belonging to the same maize
seed.

b. Count the number of correct predictions.
c. If more than half of the predictions are correct:
- The predicted result of the maize seed is deemed correct.
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consuming and prone to significant subjective biases. The MAT

(Medial Axis Transform) skeleton extraction algorithm was chosen to

obtain the central line of buds. However, the resulting skeleton may

contain branches that need to be eliminated to derive the center

skeleton. The process of centerline skeleton extraction is illustrated in

the following Figure 3B.

In this study, a transparent box with a side length of 250 mm

was used as a reference to convert pixels to actual lengths in

millimeters. The calculation formula is:

Ratio  =  Lbox=1164 (6)

Here, Lbox represents the side length of the transparent box, and

1164 is the number of pixels corresponding to the transparent box

in the image. According to the calculation formula, it can be derived

that one pixel corresponds to 0.215 mm.

2.2.5 Establishment of YOLOv7 model for seed
germination detection

The seed quality detection methods such as germination and

staining techniques are time-consuming and rely heavily on human

intervention, which may lead to inaccurate results due to human

error. In order to develop an automated and standardized method

for detecting seed germination that is efficient, accurate, and

reliable, the YOLOv7 (Wang et al., 2022b) object detection

algorithm was selected in this study, which is one of the most

widely used algorithms for object detection since its release in 2015

(Dewi et al., 2023). YOLOv7 is a real-time object detection

algorithm (Soeb et al., 2023), which has evolved from YOLOv5

and has faster inference speed, improved detection accuracy, and

reduced computational complexity. The algorithm consists of three

main parts: the input layer, backbone layer, and output layer (Tang

et al., 2023), and uses either a loss function with or without an

auxiliary training head (Zhou et al., 2023).
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The loss function is used to update the gradient loss during the

training process (Cai et al., 2023). The YOLOv7 algorithm is evaluated

using various metrics such as precision, mAP, recall, and F1 score

(Zhao et al., 2023), and curves such as the F1-Confidence curve,

precision-confidence curve, recall-confidence curve, and precision-

recall curve are used to optimize the algorithm’s performance and

achieve the best balance between precision and recall.

This study utilized a self-built dataset of maize seeds, comprising

images of seeds from various angles and sizes, each with corresponding

labels in YOLO format. The data collection and preprocessing process

was conducted using the same method as Mask R-CNN. The dataset

used in this study consisted of a total of 7000 maize seeds. Among

these, 4200 seeds were designated as training samples, 1400 seeds were

allocated for the test sets, and the remaining seeds were assigned to the

validation sets. To enhance the accuracy and robustness of the model,

the YOLOv7.pt (https://github.com/WongKinYiu/yolov7) pretrained

weights provided by the official website were employed for training.

These weights were trained on a large-scale dataset, which can

significantly reduce the training time while improving the training

effect. The Adam optimizer, a widely used optimizer that can optimize

at different learning rates, was used to update the model parameters

during training. The parameters of the Adam optimizer were adjusted

based on the size of the learning rate in the training process to achieve

better training results. A batch size of 2 and a training iteration of 300

were used in this study.
3 Results and discussion

3.1 Seed germination result

The experimental results showed that the degree of seed aging

was significantly correlated with the germination rate. As shown in
BA

FIGURE 3

Diagram of the maize bud length detection process (A) Process of bud segmentation, (B) Process of bud length detection.
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the Figure 4, on the seventh day of observation, all seeds that were

not aged can germinate, and only a few seeds that aged for 2 days

failed to do so. Most seeds that aged for 4 days still retained their

viability, with only a few seeds that aged for 6 days able to

germinate. Seeds that aged for 8 days experience almost complete

mortality. Thus, it can be inferred that seed aging leads to a decline

in the germination rate, and the more prolonged the aging process,

the more apparent the decline in the germination rate.
3.2 Average spectrum

By analyzing the spectral curve features (Figures 5A, B), it is easy to

observe that the spectral reflectance of both wavelength regions

increased with the decreasing of maize seed viability, indicating that

the light absorption capacity of maize tissue increases with the aging

degree. The spectral curves are monotonic in the Vis-SWNIR region,

with the average spectral curve gradually increasing in the 400-800 nm

region and then slowly decreasing. However, in the LWNIR region, the

spectral curve is more complex, capturing two distinct reflection peaks

located around 1100 nm and 1300 nm, respectively. The former could

potentially be associated with the presence of C-H bonds in lipids,

while the latter could be described as a combination of the first

overtone of N-H stretching along with the fundamental N-H in-

plane bending and C-N stretching with N-H in-plane bending

vibrations (Wang et al., 2022d).The spectral curve characteristics can

be used to discriminate maize seeds with different germination

potentials. As shown in Figure 6, the spectral data of maize seeds

with different viability have similar trends in the Vis-SWNIR and

LWNIR regions. However, in the Vis-SWNIR region, these curves are

basically mixed together, making it difficult to distinguish clearly. In

contrast, there are significant differences in the LWNIR region, which

may be related to the breakdown of chemicals during the aging process

of organisms. Nevertheless, some mixed situations still exist, indicating

that it is difficult to distinguish the seeds with or without viability

according to the average spectra of hyperspectral image.
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3.3 Key wavelength selection of maize
seed viability

During the aging process of maize seeds, a series of changes

occurs in the internal chemical substances (Xin et al., 2011), with

the extent of these changes depending on the degree of seed vitality.

These chemical substances include stored energy and nutrients,

such as starch, proteins, and lipids (Xu et al., 2022). Proteins may

undergo degradation, leading to the release of amino acids and

structural damage to proteins. At the same time, the lipid content in

the seed gradually oxidizes, resulting in lipid decomposition and the

generation of free radicals, thereby affecting the seed’s metabolism

and viability. Additionally, starch gradually degrades into soluble

sugars. This difference is the main reason for spectral changes

during the aging process. After SG and SNV preprocessing, 18 and

11 characteristic bands were extracted from the Vis-SWNIR region

and LWNIR region (Figures 5C, D). These characteristic bands

were located at the peaks and valleys of the spectrum, reflecting the

changes in water content and protein levels of the seeds.
3.4 Maize seed viability detection
based on full-wavelength spectra
and machine learning

By analyzing the classification accuracy obtained from SVM

and Ensemble analysis, there was no significant difference between

Vis-SWNIR and LWNIR regions in predicting seed viability

(Table 3). However, KNN exhibited slightly higher accuracy with

LWNIR, indicating its greater universality and better performance

in detecting seed viability. However, due to the minimal differences

between seeds with adjacent aging gradients (Feng et al., 2018),

particularly those seeds that aged for 4 days and 6 days, these

distinctions may not be immediately discernible, presenting a

challenge in accurately determining the germination potential of

seeds with similar levels of aging. The germination experiment also

showed that the seeds with relatively mild aging did not have

inherent germination trends and were easily misclassified by the

prediction model. This discrepancy may arise from the fact that

maize seeds may not exhibit overt phenotypic changes across

different stages of aging (Wang et al., 2022e). However, in

actuality, mRNA molecules associated with protein synthesis

undergo oxidation through physiological mechanisms. More

specifically, research unveiled significantly elevated expression

levels of mature enzyme genes and ribosomal protein genes in

embryonic roots and shoots as compared to other parts(Wang et al.,

2022a). This obstruction hampers protein synthesis, consequently

impeding the normal physiological functions of the seeds.
3.5 Maize seed viability detection based on
key wavelength and 3DCNN model

After 70 training epochs on the Vis-SWNIR hyperspectral

images, the accuracy of the training set has stabilized at a high

level of 100% (Figure 6B), and the accuracy of the test set has also
FIGURE 4

Germination levels of seeds at different aging times.
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FIGURE 6

Classification accuracy curves of maize seed viability based on conventional 3DCNN models using Vis-SWNIR hyperspectral image (A) Classification
accuracy curves in test set (400 iterations), (B) Classification accuracy curves in test set (70 iterations), (C) Classification accuracy curves in train set
(400 iterations), (D) Classification accuracy curves in train set (70 iterations).
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FIGURE 5

Average spectra and the distribution of optimal bands (A) Near-infrared average spectra, (B) Visible and near-infrared average spectra. (C) Selection
of characteristic bands in near-infrared spectra, (D) Selection of characteristic bands in visible and near-infrared spectra.
Frontiers in Plant Science frontiersin.org0944

https://doi.org/10.3389/fpls.2023.1248598
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fan et al. 10.3389/fpls.2023.1248598
reached its peak. In order to further validate the stability and

robustness of the model, the number of training epochs was

increased to 400. After 400 iterations, the accuracy of the training

set remained at around 100%, while the accuracy of the test set

remained at around 90% (Figures 6A, C).

By using 3DCNN to process the data, not only the spectral

information was considered (Wu et al., 2021), but also the image

information was integrated, making the evaluation of maize seed

quality more comprehensive and accurate (Collins et al., 2021).

Compared with machine learning methods that using all spectral

bands as input data, the 3DCNN method only used few

representative bands. Traditional machine learning methods tend

to lose a lot of information, while the 3DCNN method used in this

study can learn more complex features and achieved higher

accuracy with fewer bands, with an average accuracy increase of 7

percentage points (Table 4). It was worth noting that 3DCNN

performs better on the test set and converges faster, which indicated

that 3DCNN was an effective method for seed viability detection

and had advantages over machine learning classification method in

dealing with such problems.

Conventional 3DCNN and multi-scale 3DCNN exhibit

different characteristics. Traditional 3DCNN can achieve high

accuracy, but they often exhibit slower convergence compared

with multi-scale 3DCNN (Figure 6D). Multi-scale 3DCNN

incorporated convolutional layers with different-sized kernels and

pooling layers, allowing the network to process features of varying

scales simultaneously (Lin et al., 2020). This enhanced the network’s

robustness and improved its tolerance to noise, distortion, and

artifacts in the data, and ultimately led to a faster convergence. In

addition, the stability of conventional 3DCNN may not be

satisfactory and may exhibit some fluctuations and instability. In

contrast, multi-scale 3DCNN perform better, possibly due to their

utilization of multi-scale convolutional kernels, enabling them to

extract more abundant feature information (Shi et al., 2021)
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(Figure 6A). Furthermore, the block-based method effectively

increased the amount of data and helped to alleviate overfitting.

In the final discrimination, this study adopted a majority principle

labeling aggregation method to improve the discrimination

accuracy (Table 4). To explore the optimal block size, several

experiments were conducted, the input images were segmented

into different block sizes, including 5 pixels ×5 pixels, 10 pixels ×10

pixels, and 20 pixels × 20 pixels. As shown in Table 4, the model

achieved a relatively high overall accuracy when 5 pixels ×5 pixels

was used. This suggested that the small blocks with 5 pixels ×5

pixels size can effectively capture more local features of the seedy

and provides more discriminative information. Conversely, larger

blocks may result in information blurring and confusion, thereby

impacting the classification accuracy. Consequently, the block-

based method with 5 pixels ×5 pixels was finally selected to

enhances the detection accuracy of seed viability.
3.6 Maize seed germination detection
based on YOLOv7 model

Figure 7 shows the detection results of germinated maize seeds

using the YOLOv7 model, demonstrating its remarkable precision

and recall rates of 99.7% and 99.0%, respectively. Additionally, the

model achieves a mAP of 99% when applying an Intersection over

Union (IoU) threshold of 0.5. Furthermore, the mAP, calculated

across a range of IoU thresholds from 0.5 to 0.95, reaches a value

of 71%.

In Table 5, the YOLOv7 model exhibits an impressive F1 score

(The F1 score balances precision and recall, providing a

comprehensive evaluation of model accuracy) of 0.99 on all target

categories with a confidence threshold set at 0.663, highlighting its

exceptional detection performance. Consequently, the YOLOv7

model can achieve both high precisions, accurately identifying
TABLE 3 The classification result of maize seed viability based on full-wavelength spectra and machine learning.

Models Vis-SWNIR LWNIR

Train set Prediction set Train set Prediction set

SVM 89.3% 83.9% 84.0% 83.3%

KNN 72.0% 69% 85.3% 77.8%

Ensemble 92% 82.4% 85.3% 82.5%
TABLE 4 The classification performance of the maize seed viability based on 3DCNN.

Block

Models

Multi-3DCNN Conventional-3DCNN

Vis-SWNIR SWNIR Vis-SWNIR SWNIR

5 pixels×5 pixels 90.67% 90.67% 92.00% 88%

Split 10 pixels×10 pixels 92.00% 87.33% 92.00% 85.33%

20 pixels×20 pixels 85.33% 79.00% 86.67% 78.67%

No-split 80.80% 78.50% 79.60% 77.50%
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true positive predictions, and high recall, effectively capturing all

relevant targets during detection. With a confidence threshold set to

0.896, the YOLOv7 model achieves a perfect precision accuracy of

100% for the target categories. This noteworthy precision metric

showcases the model’s ability to correctly identify true positive

predictions among all the positive predictions made, indicating its

reliability and precision in detecting target objects. The model

impressively achieves a recall rate (The recall rate quantifies the

model’s ability to correctly identify positive targets) of 1.00 with a

confidence threshold set to 0.000, indicating that it accurately

detects all targets of all categories without any missed detections.

This ideal performance underscores the model’s high accuracy and

proficiency in target detection tasks Additionally, the model

exhibits an mAP (The mAP commonly used to evaluate object

detection algorithms’ accuracy and robustness) of 0.991 for all

target categories when applying an Intersection over Union (IoU)

threshold of 0.5. This further demonstrates the model’s superior
Frontiers in Plant Science 1146
detection capabilities across various categories, affirming its

exemplary performance.

R  =
TP

TP + FN
(7)

AP  =
Z 1

0
P(R)dR (8)

F1  =  
2*P*R
P + R

(9)

P  =  
TP

TP + FP
(10)

mAP  =  
1
no

n
i=1AP (11)
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FIGURE 7

Detection performance of YOLOv7 model for maize seed germination (A) The precision of YOLOv7, (B) The recall of YOLOv7, (C) The mAP@0.5 of
YOLOv7, (D) The mAP@0.5:0.95 of YOLOv7.
TABLE 5 The detection result of YOLOv7 model for maize seed germination.

YOLOv7 Training Indicators

All classes F1-confidence F1 0.99 Confidence 0.663

Precision-confidence Precision 1.00 0.896

Recall-confidence Recall 1.00 0.000

Precision-recall 0.991 mAP@0.5
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In these formulas, True Positives (TP) represent the number of

samples where the predicted label is positive and the actual label is

also positive. T represents the total number of samples, and False

Negatives (FN) indicate the number of samples where the predicted

label is negative, but the actual label is positive. Similarly, False

Positives (FP) represent the number of samples where the predicted

label is positive, but the actual label is negative. Moreover, the area

under the precision-recall (P-R) curve, denoted as AP, provides a

measure of the model’s performance.

Figure 8A is the confusion matrix of germinated maize seed

based on YOLOv7 model, which provides a visual representation of

the classification performance, showing the counts of true positive,

true negative, false positive, and false negative predictions. The

detection accuracy was 95% for germinated seeds and 99% for

ungerminated seeds, respectively. Background FP refers to the

number when the background is erroneously predicted as a

target, fortunately there was no background area was incorrectly

classified as a target in this study. Figure 8B shows the actual

detection results of YOLOv7 for discriminating seed germination.

All indicators mean that the model can essentially replace

manual observation for determining seed germination status.

Therefore, although this method required some time and

manpower for data annotation and training, the overall cost was

much lower than manual operation, and can provide a reference for

rapid detection of seed germination in crops. On the other hand, the

algorithm suffered from the problem of duplicate detection in

practical applications (Chen et al., 2023a), resulting in some seeds

may be simultaneously labeled as germinated and non-germinated.

This phenomenon may lead to a misclassification and reduce the

practicality and reliability of the algorithm. Hence, future work will

focus on improving the algorithm to solve the duplicate

detection problem.
3.7 Maize seed bud length detection based
on Mask R-CNN

The Mask R-CNN model achieved an impressive mAP score of

0.9571, indicating its effectiveness and accuracy in detecting and
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localizing objects. The mAP is a widely used evaluation metric for

object detection models, and a high mAP score indicates that the

model performs well in both precision and recall, making it a

reliable choice for seed germination analysis. Additionally, the loss

value during training decreased significantly, stabilizing around

0.21 from an initial value of 2.61, which is a clear indication of

the model’s ability to learn and adapt effectively.

Figure 9A showcases a successful instance of skeleton extraction

for maize seed germination, resulting in a clear main skeleton after

removing branches, which allows for accurate calculation of the bud

length. The detection results of bud length for germinated maize

seeds, depicted in Figure 9B, demonstrate Mask R-CNN’s

impressive capability to accurately segment the seedlings, even

when instances overlap or are occluded. This highlights the

superiority of the Mask R-CNN model in instance segmentation

tasks, making it a valuable tool for precise analysis of seed

germination and growth.

Figures 9C, D shows the detection result of bud length with R-

squared value of 0.98 and an RMSE of 1.64, demonstrating that the

integration of Mask R-CNN model and skeleton extraction method

could detect the bud length during seed germination accurately and

rapidly. The R-squared value, also known as the coefficient of

determination, is a statistical measure that indicates the

proportion of the variance in the dependent variable (Bud length

in this case) that can be explained by the independent variable (The

predicted bud length). Meanwhile, RMSE quantifies the average

magnitude of the differences between the predicted bud lengths and

the actual observed bud lengths. It is worth mentioning that the bud

length of germinated seeds is closely related to their viability

(Adebisi et al., 2014). Therefore, the bud length of seeds can be

obtained using this algorithm, and the relationship between bud

length and viability can be further explored. This not only has

important significance for agricultural production but also provides

valuable insights for research in other biological fields.

SSR  =  on
i=1(Yi − bYi)

2   (12)

SST  =  on
i=1(Yi − �Y)2   (13)
BA

FIGURE 8

Confusion matrix and detection results of germination maize seed based on YOLOv7 model (A) Confusion matrix, (B) Image of detection results.
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RMSE  =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Yi − bYi)

2                                                          

r
(14)

R2 = 1 −
SSR
SST

(15)

In these formulas, SSR (Sum of Squares of Residuals) refers to

the regression sum of squares, which represents the sum of squared

differences between the predicted values and the true values. On the

other hand, SST (Total Sum of Squares) stands for the total sum of

squares, representing the sum of squared differences between the

true values and their mean.Yi refers to the actual value of the i-th

observation, while Ŷi represents the predicted value of the i-th

observation from the regression model. And n denotes the

sample size.
4 Conclusions

The rapid and successful detection of maize seed viability was

achieved by leveraging HSI technology in combination with the

multi-scale 3DCNN method. In seed viability detection, the

3DCNN method, which utilizes a limited number of representative

spectral bands, was found to learn more complex features and achieve
Frontiers in Plant Science 1348
higher accuracy compared to using full-wavelength spectra and

machine learning methods. By introducing the multi-scale 3DCNN

model, the comprehensive consideration of both spectral and image

information enabled a more comprehensive and accurate assessment

of maize seed quality. Experimental results demonstrated that the

adoption of small block sizes (5 pixels × 5 pixels) significantly

improved the accuracy of seed viability detection. Furthermore, the

YOLOv7 model and Mask R-CNN model were introduced for

germination judgment and bud length detection of maize seeds.

Both models exhibited outstanding performance in germination

judgment and bud length detection, demonstrating excellent

detection capabilities. Based on these exceptional detection results,

a novel solution for the rapid detection of maize seed germination

and bud length was provided. In brief, this study proposed a reliable

and effective method for the evaluation of maize seed viability,

providing valuable references for agricultural production and

germplasm resource preservation.
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FIGURE 9

The bud length detection of germinated maize seeds (A) The process of skeleton extraction, (B) Probability map of predicting maize sprouts,
(C) Prediction of maize seedling length, (D) Regression analysis of actual and predicted corn sprout length values.
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Introduction: As the third largest food crop in the world, maize has wide varieties

with similar appearances, which makes identification difficult. To solve the

problem of identification of hybrid maize varieties, a method based on

hyperspectral image technology combined with a convolutional neural

network (CNN) is proposed to identify maize varieties.

Methods: In this study, 735 maize seeds from seven half-parent hybrid maize

varieties were regarded as the research object. The maize seed images in the

range of 900 ~ 1700nm were obtained by hyperspectral image acquisition

system. The region of interest (ROI) of the embryo surface was selected, and

the spectral reflectance of maize seeds was extracted. After Savitzky-Golay (SG)

Smoothing pretreatment, Maximum Normalization (MN) pretreatment was

performed. The 56 feature wavelengths were selected by Competitive

Adaptive Reweighting Algorithm (CARS) and Successive Projection Algorithm

(SPA). And the 56 wavelengths were mapped to high-dimensional space by high-

dimensional feature mapping and then reconstructed into three-dimensional

image features. A five-layer convolution neural network was used to identify

three-dimensional image features, and nine (SG+MN)-(CARS+SPA)-CNN maize

variety identification models were established by changing the input feature

dimension and the depth factor size of the model layer.

Results and Discussion: The results show that the maize variety classification

model works best, when the input feature dimension is 768 and the layer depth

factor d is 1.0. At this point, the model accuracy of the test set is 96.65% and the

detection frame rate is1000 Fps/s in GPU environment, which can realize the

rapid and effective non-destructive detection of maize varieties. This study

provides a new idea for the rapid and accurate identification of maize seeds

and seeds of other crops.

KEYWORDS

hyperspectral imaging technology, maize, high dimensional feature mapping,
convolution neural network, non-destructive testing
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1 Introduction

As one of the three major food crops in the world, maize has a

wide cultivation area, large yield and strong adaptability, which is of

great strategic significance to the economic development and social

stability of China (Feng et al., 2022). In the actual agricultural

production process, cultivating suitable maize varieties is the crucial

aspect to achieving high yields. Different maize seeds are easily

confused due to various sorts and similar appearance, which brings

great inconvenience to farmers in purchasing varieties and market

supervision (Tu et al., 2021). Therefore, it is of great significance

and application value to achieve rapid, accurate and efficient

identification of maize varieties.

Traditional seed identification methods mainly include manual

detection methods, chemical identification methods and so on,

which have some defects such as intense subjectivity, great

destructiveness and complex operation process. And they are

challenging to meet the requirements of modern agriculture for

non-destructive and rapid seed production (Wang et al., 2021;

Wang and Wang 2021; Huang et al., 2022). Hyperspectral

imaging technology combines the advantages of image and

spectral technology, which can simultaneously reflect the image

information and spectral information of external characteristics,

internal physical structure and chemical composition of samples to

be tested. So hyperspectral imaging technology is widely used in

non-destructive testing research on crop seed varieties, quality and

vitality (Wu et al., 2021; Wu et al., 2022; Yang et al., 2022). Huang

et al. (2016b) used hyperspectral imaging technology to establish a

PLS-SVM model to identify four different years of maize seeds, and

the identification accuracy rate reached 94.4%. Fu et al. (2022)

identified four maize varieties based on hyperspectral imaging

technology, and the accuracy of the SSAE-CS-SVM model test set

reached 95.81%. Wang et al. (2022) used hyperspectral imaging

technology to establish a fusion model based on dual-band ratio

image and texture features to realize efficient non-destructive

identification of maize seeds of four different years, and the

accuracy rate of prediction set was 97.5%. Chivasa et al. (2019)

developed a PLS-DA model based on multi-temporal hyperspectral

data and multivariate techniques to identify 25 maize varieties at

specific phenological stages. Tu et al. (2022) used hyperspectral

imaging technology combined with machine learning to realize

non-destructive identification of 10 related maize varieties. Huang

et al. (2016a) established the LS-SVM maize variety classification

model based on hyperspectral imaging combined with spectral

features and fusion with image features to identify 17 maize

varieties with a test accuracy of more than 90%. Wu et al. (2016)

collected hyperspectral image data of four maize varieties based on

NIR hyperspectral technology, and established the SPA-PLS-DA

classification model to realize non-destructive identification of

maize varieties. The accuracy of the modeling set and prediction

set reached 78.5% and 70.8%, respectively. Shao et al. (2019)

collected hyperspectral images of three varieties of maize based

on hyperspectral imaging system, screened characteristic bands by

Boruta algorithm, and established a random forest classification

model, with an accuracy rate of 78.30%. Sun M et al. (2022)
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modeled and analyzed wheat seeds of different seven years based

on hyperspectral imaging technology, and predicted wheat seeds of

other four years with an accuracy rate of 100%. Zhang et al. (2019)

used hyperspectral image technology to obtain hyperspectral image

spectral information of the wheat varieties mainly planted in Henan

Province, and established PCA-SVM classification model, which

identified three wheat varieties with an accuracy rate of over 95%.

Sun Y et al. (2022) modeled and analyzed spectral information of

moldy and non-moldy grains of different wheat varieties collected

by hyperspectral imaging technology, and the prediction accuracy

of SPA-SVM model for moldy grains was more than 98%.

Existing research shows that a large number of scholars at

home and abroad have carried out research on crop seed variety

identification, most of which are based on two methods:

hyperspectral image information combined with deep learning

and modeling based on spectral data. The method based on

hyperspectral image mainly applies image features to identify

seed varieties, which is suitable for identifying seed varieties

with obvious shape and texture differences. While most seeds

have no noticeable appearance differences, therefore, this method

is difficult to be widely used in the identification of crop seed

varieties in practice. The modeling methods based on spectral

information are divided into two steps: feature band extraction

and model building. The feature bands are mostly extracted by

single extraction method such as SPA or CARS, which has some

problems such as incomplete feature band extraction and lack of

effective information. In addition, traditional machine learning

models such as SVM, PLS and PCA are primarily used in

modeling methods, which have the disadvantages of low

accuracy and poor robustness. The convolutional neural

network, as a kind of forward feedback network, can

automatically learn the features in the image with higher

accuracy and efficiency. Hybrid maize varieties are similar in

appearance and not easily distinguishable, and subtle differences

in the content of internal substances cause significant differences

in yield, insect resistance, disease resistance, stress resistance and

other indicators. Based on this situation, this paper was conducted

with seven hybrid maize varieties as the research object, using SPA

and CARS mixed feature band extraction method to improve the

utilization rate of effective feature information, and building a

convolution neural network (CNN) model based on data

reshaping to achieve accurate identification of maize varieties.
2 Materials and methods

2.1 Test materials

The maize seed samples used in the experiment are all from the

experimental field of Yanshi District, Luoyang City, Henan

Province. Seven half-parent hybrid maize varieties with good

appearance, uniform color and no mechanical damage were

manually selected, marked as categories 0, 1, 2, 3, 4, 5 and 6,

respectively. As shown in Figure 1, there were 105 seeds in each

category, with a total of 735 test samples.
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2.2 Instruments and equipment

The hyperspectral imaging system used in this test consists of a

hyperspectral camera (SPECIM FX17, Finland), a computer (Dell),

a mobile platform, a sample tray (40cm × 20cm) and six halogen

lamps. To eliminate the effect of ambient light, maize seed spectra

were collected in a dark box, as shown in Figure 2.

The parameters of the hyperspectral imaging system were set as

follows: wavelength range is 900 ~ 1700nm, spectral resolution is

8nm, the number of bands is 224, spatial sampling resolution is

640px/line, exposure time is 8.5 ms, the frame rate is 50Hz and

platform moving speed is 22.43 mm/s. Hyperspectral data of maize

seeds were obtained by using Lumo Scanner software. The data

analysis software is as follows: ENVI 5.3, The Unscrambler X10.4,

Excel 2019, Origin 2018, MATLAB R2018b and so on.
2.3 Hyperspectral image acquisition
and correction

Maize seed embryos are rich in nutrients such as starch and

protein, so the embryo surface image information of the sample was

collected in this experiment (Wang et al., 2019). To ensure the

accuracy of collected data and prevent maize seeds from moving on

the mobile platform, the samples were placed on sticky black paper

with their embryo face up. As shown in Figure 3, the images of 105

maize seeds of one variety were collected at a time, and a total of 735

single maize seed samples images were collected in the experiment.

Hyperspectral image is easily affected by nonlinear factors such

as uneven distribution of light sources and dark current. To

enhance the stability and reliability of the image, dark and white

reference calibration images were used to correct the original

hyperspectral image. The hyperspectral system was preheated for

30 minutes, the whiteboard (reflectivity 99%) was scanned and an
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all-white calibration image was recorded as Iw, the lens cover was

installed to collect all-black image which was recorded as Id, and

finally the original image of maize sample was photographed and

recorded as Iraw. And the corrected image I is obtained by black-

and-white correction with ENVI 5.3 software.

I =
Iraw − Id
Iw − Id

(1)

After image correction, to reduce the influence of uneven

distribution of chemical components in seeds, the largest possible

rectangular ROI region was selected in the center of each seed

sample by ENVI 5.3 software, and the average of the spectra of all

pixel points within the ROI region was taken as the average

spectrum of the sample (Feng et al., 2012). The original spectral

average reflectance curve in the wavelength range of 935.61 ~

1720.23 nm is shown in Figure 4. Due to both ends of the

collected spectrum with low signal-to-noise ratio, the areas with

considerable noise of spectral signal are eliminated, and the spectral

data range of 949.43 ~ 1709.49 nm wavelength are selected for

analysis and modeling.
2.4 Spectral preprocessing and feature
wavelength selection

The noise, background and other useless interference

information mixed in the acquisition of spectra affected the

accuracy and stability of spectral data analysis and modeling, so it

is necessary to preprocess the data before modeling to reduce the

interference of irrelevant information and improve the modeling
FIGURE 1

Maize seed sample.
FIGURE 2

Hyperspectral image acquisition system.

FIGURE 3

Schematic diagram of maize grain placement.
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accuracy. In this study, Savitzky-Golay Smoothing (SG) and

Maximum Normalization (MN) were used to preprocess the data.

Firstly, the number of smoothing points was set to 3, and the

spectral data was pretreated by SG to improve the smoothness of the

spectral curve. After that, the spectral data were mapped to the [0, 1]

interval by MN, and the data unit restriction was removed to

eliminate the errors caused by different magnitudes. The

pretreated spectral average reflectivity curves are shown in Figure 5.

The Successive projections algorithm (SPA) was used to extract

the feature bands from the pretreated spectrum, the maximum

number of wavelengths was set to 20, and five wavelength variables

were extracted, as shown in Figure 6. As can be seen from

Figure 6A, with the increase of the number of variables, the root

mean square error (RMSE) value shows a trend of sharp drop at first

and then slow down. When the number of variables is 5, the RMSE

no longer decreases significantly and the RMSE value is 1.7221 at

this time. After that, although the REMSE value decreases, too

many dependent variables will increase the computation and
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complexity of the model, so five variables are selected as the final

characteristic wavelengths.

When using Competitive adaptive reweighted sampling (CARS)

to extract feature wavelengths, the 5-fold cross-validation method

was selected, and the number of Monte Carlo samples was set to 50,

as shown in Figure 7. Figure 7A shows that the number of CARS

extracted feature wavelengths decreases sharply at first and then

decreases slowly with the increase of sampling times, which shows

the process from coarse to fine selection of feature wavelengths

extracted by CARS. Figure 7B shows that the root mean square

error of cross-validation (RMSECV) decreases slowly at the

beginning of the iteration because the useless information bands

are eliminated. And the RMSECV increases gradually after the 24th

sampling, which indicates that the over-selection of feature

wavelengths by CARS occurs after the 24th sampling and

sensitive wavelength variables containing valid information are

eliminated, resulting in the decrease of model prediction accuracy

and the increase of RMSECV value; Figure 7C indicates that the

RMSECV value is the smallest at the 6th and 16th sampling, when

52 characteristic wavelengths are extracted.

To solve the problem of missing effective information in the

single extraction of feature variables by SPA and CARS, the feature

wavelengths extracted by the two methods were taken as a

concatenated set in this study, and a total of 56 feature wavelengths

were preferentially selected.
2.5 Division of training set and test set

In this experiment, 735 samples were divided into training sets

and test sets according to the ratio of 2: 1, where each category of

training sets and test sets were 70 and 35 respectively. And seven

categories of training sets and test sets were 490 and 245 respectively

to analyze and calculate the discrimination accuracy of model

training sets and test sets.
3 Model construction

3.1 Establishment of maize variety
identification model

To solve the problem that the Convolutional Neural Networks

(CNN) cannot directly process the feature band data, the maize seed

feature wavelength data was mapped to the high-dimensional

features. Then the mapped feature wavelength data was reshaped

into high-dimensional image features making the CNN processable

for the reshaped data. The overall network structure is shown

in Figure 8. The CNN model consists of three parts: data

reconstruction, convolution layer extraction and result prediction.

In the data reconstruction part, the feature bands of maize seeds are

mapped into high-dimensional features with different sizes, and

then reshaped into image shapes. Considering the dimension of

maize seed characteristic band, it is not easy to build the

convolution layers too deep to avoid overfitting and poor

robustness of the model. Therefore, a 5-layer CNN maize variety
FIGURE 4

Reflectance curves of original spectrum.
FIGURE 5

Spectral average reflectance curves after pretreatment.
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discrimination model was constructed to improve the model

generalization performance and reduce the redundancy effect of

the model on spatial features. The specific model parameters are

shown in Table 1. It can be seen from Table 1 that the overall maize

variety identification model is built by 3×3 standard convolution.

To improve the spatial feature extraction effect of the model on

maize seed feature bands, the sampling method of raising

dimension first and then reducing dimension is adopted to fuse

the features effectively. In order to explore the influence of model
Frontiers in Plant Science 0555
layers depth on the sampling effect of maize seed characteristic

band, three common scaling factors (d), 1.25, 1.0 and 0.75 were used

to scale the layers of maize variety identification model to different

degrees. And the related parameters are listed in Table 1. In

addition, to explore the influence of different high-dimensional

feature resolutions on the adaptability of maize variety

identification model and find the best adaptability resolution of

the model, three different feature mapping relationships of 192, 768

and 3072 were used to generate three corresponding spatial feature
BA

FIGURE 6

Extraction of feature wavelength by SPA. (A) Number of variables. (B) Location of variables.
B

C

A

FIGURE 7

Process of extracting characteristic wavelength by CARS. (A) Number of preferred characteristic wavelength variables. (B) The root mean square
error of cross-validation variation. (C) Regression coefficient path map.
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resolutions of 8×8×3, 16×16×3 and 32×32×3. For the prediction

part, adaptive maximum pooling operation and Softmax are mainly

used to output the prediction results.
3.2 Building and training of model
loss function

Because the maize variety classification model was a multi-

category model, the Cross Entropy Loss function was used to

regress training the maize variety identification model. The

specific formula is shown in formula (2). In the formula, yj
represents the unique thermal coding form corresponding to the

actual category, and oj represents the probability that the network

predicts a certain category.

Loss =o
q

j=1
yjlogo

q

j=1
exp (oj) −o

q

j=1
yjoj (2)

The classification model of maize varieties is constructed with

Pytorch framework. The hardware platform is Intel (R) Xeon (R)
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Silver 4210R, the main frequency is 3.5 GHz, and the memory is

32GB. The graphics card model is NIVIDIA GeForce RTX 2080Ti

GPU, and the video memory is 16GB. The software platforms are

Pycharm 2020.2, CUDNN 7.4. 1.5, Python 3.8 and Pytorch 1.2. The

training period of epoch is set to 10000, and the initial learning rate

is set to 0.01. The learning rate (lr) is adjusted periodically by

LambdaLR algorithm, and the model parameters are optimized by

SGD optimizer in one step to improve the training effect of

the model.
3.3 Model evaluation index

To comprehensively evaluate the detection performance of

maize variety classification model, training set accuracy (Train),

test set accuracy (Test), frames per second (FPS), model weight

(Weight), model computation (Flops), model parametric number

(Params), Precision and Recall are used as evaluation indexes, and

their specific calculation formulas are as follows.
TABLE 1 Parameter index of CNN model.

Fom Input Operator #out Stride Layer

0.75 322×3 162×3 82×3 Conv2d 3×3 12 1

11.0 322×3 162×3 82×3 Conv2d 3×3 16 1

1.25 322×3 162×3 82×3 Conv2d 3×3 20 1

0.75 322×12 162×12 82×12 Conv2d 3×3 24 1

21.0 322×16 162×16 82×16 Conv2d 3×3 32 1

1.25 322×20 162×20 82×20 Conv2d 3×3 40 1

0.75 322×24 16²×24 82×24 Conv2d 3×3 48 2

31.0 322×32 16²×32 82×32 Conv2d 3×3 64 2

1.25 322×40 16²×40 82×40 Conv2d 3×3 80 2

0.75 16²×48 8²×48 4²×48 Conv2d 3×3 24 1

41.0 16²×64 8²×64 4²×64 Conv2d 3×3 32 1

1.25 16²×80 8²×80 4²×80 Conv2d 3×3 40 1

0.75 16²×24 8²×24 4²×24 Conv2d 3×3 12 1

51.0 16²×32 8²×32 4²×32 Conv2d 3×3 16 1

1.25 16²×40 8²×40 4²×40 Conv2d 3×3 20 1
front
Fom represents depth factors of different sizes between model layers, Input represents 3D spatial feature matrices of different sizes, Operator represents corresponding convolution operations, out
represents the size of feature maps output between model layers, Stride represents the step size of convolution kernel scanning, and Layer represents the names of convolution layers in
different stages.
FIGURE 8

Overall network structure of CNN model.
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

In the formula, TP represents the number of positive samples

that the model prediction is consistent with the real label, FP

represents the number of samples that the model prediction is

inconsistent with the actual positive samples, FN represents the

number of samples that the model prediction is inconsistent with

the actual negative samples, and TN represents the number of

samples that the model prediction is consistent with the actual

negative samples.
4 Results and analysis

In this study, the maize variety identification model was trained

and tested by 3-fold cross-validation to verify the applicability of

maize variety identification model. When the characteristic

dimension is 768, the specific results of cross-validation of three

maize variety identification models, MVI0.75 D1, MVI1.0 D1 and

MVI1.25 D1, are shown in Table 2. As can be seen from Table 2, the

accuracy of training set and test set of MVI1.0D1 are 97.62% and

96.65% respectively, and the performance is the best. Compared

with MVI0.75 D1 and MVI1.25 D1, the accuracy of MVI1.0D1 model

test set is improved by 7.2% and 1.43%. The inference speeds of

MVI0.75D1, MVI1.0D1 and MVI1.25D1 are 666Fps/s, 588Fps/s and

526Fps/s respectively in CPU mode and 1000Fps/s, 1000Fps/s and

909Fps/s in graphics card environment, which shows that the three

models have real-time detection performance. Although

MVI0.75D1, MVI1. 0D1 and MVI1. 25D1 are inputted the same

spatial feature resolution the model detection results are

significantly different in Weight, Params and Flops due to the
Frontiers in Plant Science 0757
influence of depth scaling factor of model layers. Weight, Params

and Flops of MVI0.75D1 model are 2.33M, 70.35k and 286k

respectively, which are the smallest among the three model.

Weight, Params and Flops of MVI0.75D1 and MVI1.25D1 models

are (4.05M, 6.25M), (90.73k, 116.86k) and (367k, 469k)

respectively. Although there are obvious differences in the

metrics of MVI0.75D1, MVI1.0D1 and MVI1.25D1, the parameters

and calculation amount are still small and negligible compared

with the classical CNN model. Therefore, it can be concluded that

the detection effect of MVI1.0D1 is the best among MVI0.75D1,

MVI1.0D1 and MVI1.25D1 three maize identification models.

To explore the influence of spatial feature dimension on the

training results of maize variety identification model, the test results

of maize variety identification model with two spatial feature

dimensions 192 and 3072 were listed. The specific results are

shown in Tables 3 and 4. The comparative analysis shows that

the overall performance of the maize variety discrimination model

MVI1.25D0 is better when the dimension is192 with the same width

scaling factor d. In addition, it can be found from Table 3 that when

the width scaling factor d is 1.25, the accuracy rate of maize variety

detection model in training set and test set is the best, which can

reach 99.20% and 95.34% respectively. This reflects that when the

feature space dimension is small, the maize variety identification

model searches for effective features less effectively. Therefore,

properly adjusting the depth scaling factor is helpful to improve

the feature extraction ability and generalization performance of the

model. According to the test results in Tables 2–4, it can be found

that when the spatial feature resolution is enlarged only by

improving the input feature dimension, the performance of the

maize variety identification model is not better with a larger input

feature dimension. Appropriate adjustment of the spatial feature

dimension is helpful to improve the detection effect of the model.

The best result is obtained when the dimension is 768, and the

accuracy of maize variety identification model is improved

obviously. In addition, the reasoning speed of CPU, Weight,

Params, and Flops of maize variety identification model increased

exponentially when the size of input feature dimension was
TABLE 2 The model results of cross-validation when dimension is 768.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D1 91.73 86.12 70.35k 2.33M 286k 0.001 0.0015

2 MVI0.75D1 97.14 89.95 70.35k 2.33M 286k 0.001 0.0015

3 MVI0.75D1 95.55 88.52 70.35k 2.33M 286k 0.001 0.0015

1 MVI1.0D1 97.62 96.65 90.73k 4.05M 367k 0.001 0.0017

2 MVI1.0D1 99.84 95.69 90.73k 4.05M 367k 0.001 0.0017

3 MVI1.0D1 99.5 94.73 90.73k 4.05M 367k 0.001 0.0017

1 MVI1.25D1 98.73 92.82 116.86k 6.25M 469k 0.0011 0.0019

2 MVI1.25D1 99.84 95.22 116.86k 6.25M 469k 0.0011 0.0019

3 MVI1.25D1 99.84 93.78 116.86k 6.25M 469k 0.0011 0.0019
fron
MVImDn represents different classification model of maize varieties. Among them, m represents the depth factor of model layer, m can be taken as 0.75, 1.0 and 1.25, n represents the input feature
dimensions of different sizes, and n can be taken as 0, 1 and 2 respectively, which respectively represent the three states that the input feature dimensions are equal to 192, 768 and 3072. Train
represents the accuracy of maize variety classification model in training set, and Test represents the accuracy of maize variety classification model in test set. Fpsg represents the frame detection
speed in GPU environment, and Fpsc represents the frame detection speed in CPU environment.
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changed, while the reasoning speed of GPU was basically stable at

1000Fps/s.

In order to further explore the influence of input feature

dimension and model layer depth on maize variety classification

model, the Recall and Precision indexes of nine maize variety

classification models were analyzed, as shown in Figure 9. It can

be seen from Figure 9 that the Recall and Precision of MVI1.0D1

model are the highest, respectively 96.7% and 96.8%, followed by

maize variety classification models with the same characteristic

dimension (dimension is768) and different model layer depths. The

Recall and Precision of MVImD0 model are more stable than

MVImD2, which also proves that the depth of model layer is not

positively correlated with the performance of model classification.

Appropriate adjustment of model layer depth is helpful to improve

the effective extraction of spectral features of maize variety

classification network. The variation of loss curves of nine models

in 10000 iteration periods is shown in Figure 10. The loss curve of

MVImD1 model converges fastest with the increase of iterations and

the overall fluctuation is slight. The loss curve of MVImD0 model

fluctuates more than that of MVImD1, but the general convergence

is faster. The loss curve of MVImD2 is more divergent and the
TABLE 3 The model results of cross-validation when dimension is 192.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D0 92.69 89.47 37.52k 582.04k 158k 0.001 0.001

2 MVI0.75D0 90.78 85.17 37.52k 582.04k 158k 0.001 0.001

3 MVI0.75D0 89.83 83.73 37.52k 582.04k 158k 0.001 0.001

1 MVI1.0D0 99.68 93.78 57.9k 1.01M 239k 0.001 0.0012

2 MVI1.0D0 94.28 86.60 57.9k 1.01M 239k 0.001 0.0012

3 MVI1.0D0 95.71 90.91 57.9k 1.01M 239k 0.001 0.0012

1 MVI1.25D0 98.57 92.83 84.03k 1.26M 341k 0.0011 0.0013

2 MVI1.25D0 99.20 95.34 84.03k 1.26M 341k 0.0011 0.0013

3 MVI1.25D0 99.52 94.26 84.03k 1.26M 341k 0.0011 0.0013
F
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TABLE 4 The model results of cross-validation when dimension is 3072.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D2 81.08 75.60 201.68k 9.31M 800k 0.001 0.0026

2 MVI0.75D2 84.89 79.43 201.68k 9.31M 800k 0.001 0.0026

3 MVI0.75D2 80.45 75.60 201.68k 9.31M 800k 0.001 0.0026

1 MVI1.0D2 88.87 82.78 226.06k 16.29M 880k 0.001 0.0032

2 MVI1.0D2 86.49 83.73 226.06k 16.29M 880k 0.001 0.0032

3 MVI1.0D2 90.62 86.60 226.06k 16.29M 880k 0.001 0.0032

1 MVI1.25D2 98.57 91.39 248.19k 24.99M 982k 0.0011 0.0037

2 MVI1.25D2 99.20 87.56 248.19k 24.99M 982k 0.0011 0.0037

3 MVI1.25D2 99.52 92.34 248.19k 24.99M 982k 0.0011 0.0037
FIGURE 9

Recall and precision results of different models.
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overall convergence is poorer with the increase of iterations,

indicating that when the input dimension is 3072, it is easy to

generate invalid feature redundancy, which is not conducive to the

extraction of effective features by maize variety classification model.

To explore the effects of MVImD0, MVImD1 and MVImD2 series

of maize variety classification models on seven kinds of maize seeds,

three maize variety classification models (MVI1.0D0, MVI1.0D1 and

MVI1.0D2) with layer depth scaling factor d=1. 0 were selected to

test the test set, and the correlation confusion matrix was drawn by

comparing the predicted results with the actual results, as shown in

Figure 11. It can be seen from Figure 11B that MVI1.0D1 is the best

in classifying seven maize seeds and there are no misidentifications

and omissions in category 1 and category 4. Although the MVI1.0D1

model shows misrecognition among categories 1, 3, 5 and 6, the

misidentification rate is lower compared with the confusion matrix

results of MVI1.0D0 and MVI1.0D2, and MVI1.0D1 only misidentifies

category 0 without misidentification. Compared with MVI1.0D1,

MVI1.0D0 and MVI1.0D2 show more misidentification and the

model classifiers are unbalanced.

In this study, seven hybrid maize varieties were taken as the

research objects, and the effects of different input feature

dimensions and model layer depth on the performance of the

maize variety classification model were discussed emphatically.

The results showed that the maize variety classification model

performs better when the input feature dimension is 768 and

worse when the input feature dimension is 3072. This

phenomenon may be attributed to the redundant and invalid

features easily produced by the higher feature dimension, which
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indirectly affects the classification effect of the maize variety

classification model. Therefore, changing the dimension of input

features can effectively improve the ability of extracting effective

spectral features of maize variety classification model. In addition,

the effect of model layer depth on the performance of maize variety

classification model was also discussed in this study. From the

results, it can be found that there is no positive correlation between

the performance of maize variety classification model and the layer

depth of the model. When the layer depth factor d is 1.25, the

performance of the maize variety classification model is slightly

lower than that when d is 1. 0, so it is most appropriate to set the

layer depth factor d as 1. 0. Due to the small sample size, more

sample data will be collected in the future to further validate the

maize classification model whether the method of identifying maize

varieties by mapping characteristic bands to high-dimensional

spatial features is feasible.
5 Conclusion
(1) To solve the problem of less effective feature bands and lack

of information by single feature variable extraction method,

56 feature bands are selected by combining SPA and CARS

in this study.

(2) To solve the problems of poor effect and slow speed of

traditional machine learning method in maize classification,

a high-dimensional feature mapping method is adopted to
B CA

FIGURE 10

Loss curve of different models. (A) Dimension is192. (B) Dimension is 768. (C) Dimension is 3072.
B CA

FIGURE 11

Model confusion matrix when layer depth scaling factor d is1. 0. (A) MVI1.0D0. (B) MVI1.0D1. (C) MVI1.0D2.
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reshape the extracted feature bands into three-dimensional

image features after mapping them to a high-dimensional

space. And a five-layer convolution neural network is

constructed to identify three-dimensional image features.

(3) At the same time, the influence of the size of the input

feature dimension and the depth of the model layer on the

performance of the maize variety model are discussed in

this study. The test results show that when the dimension of

the input feature dimension is 768 and the depth factor of

the layer is 1.0, the performance of maize variety

classification model is the best. And the accuracy of the

test set is 96.65%, and the detection frame rate is 1000Fps/s

in GPU environment, which can realize rapid and effective

non-destructive detection of maize varieties.
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Accurate detection of tea diseases is essential for optimizing tea yield and quality,

improving production, and minimizing economic losses. In this paper, we

introduce TeaDiseaseNet, a novel disease detection method designed to

address the challenges in tea disease detection, such as variability in disease

scales and dense, obscuring disease patterns. TeaDiseaseNet utilizes a multi-

scale self-attention mechanism to enhance disease detection performance.

Specifically, it incorporates a CNN-based module for extracting features at

multiple scales, effectively capturing localized information such as texture and

edges. This approach enables a comprehensive representation of tea images.

Additionally, a self-attention module captures global dependencies among

pixels, facilitating effective interaction between global information and local

features. Furthermore, we integrate a channel attention mechanism, which

selectively weighs and combines the multi-scale features, eliminating

redundant information and enabling precise localization and recognition of tea

disease information across diverse scales and complex backgrounds. Extensive

comparative experiments and ablation studies validate the effectiveness of the

proposed method, demonstrating superior detection results in scenarios

characterized by complex backgrounds and varying disease scales. The

presented method provides valuable insights for intelligent tea disease

diagnosis, with significant potential for improving tea disease management

and production.

KEYWORDS

tea disease detection, deep learning, multi-scale feature, self-attention, convolutional
neural networks
1 Introduction

As one of the traditional cash crops, tea holds significant economic and cultural value.

However, the susceptibility of tea plants to diseases during their growth stages has a

detrimental effect on both yield and quality, leading to significant economic losses for tea

growers (Mukhopadhyay et al., 2021; Mahum et al., 2023; Sunil et al., 2023). Conventional

manual techniques for detecting tea diseases are laborious, time-consuming, and
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dependent on the expertise of the testers, leading to inefficiency and

high expenses (Drew, 2019; Abade et al., 2021). Additionally, the

complex tea plantation environment, including elements like weeds,

branches, and soil, along with factors like varying disease scales and

densely shaded areas, pose challenges for accurately detecting of tea

diseases. Therefore, there is an urgent need for research on rapid

and precise methods for early detection of tea diseases.

Implementing such methods would enable tea farmers to

promptly implement control measures, prevent disease spread,

protect the health of tea plantations, and promote the sustainable

development of the tea industry (Debnath et al., 2021; Lanjewar and

Panchbhai, 2023; Pandian et al., 2023).

Traditional machine learning models, such as support vector

machines (SVM), decision trees, K-means, and random forests,

require manual feature design specific to different disease types,

making them susceptible to environmental factors and lacking

generalization capabilities (Bhavsar et al., 2022; Zou et al., 2020;

Steven, 2021; Yu et al., 2021; Bao et al., 2022; Prabu et al., 2022).

Conversely, deep learning, particularly in object detection, exhibits

potential in crop disease identification (Krisnandi et al., 2019; Ayan

et al., 2020; Jiang et al., 2020; Tetila et al., 2020; Xiong et al., 2020;

Hu et al., 2021b). However, existing models that solely consider

local pixel relationships at short distances struggle to incorporate

crucial global information in complex scenarios of tea disease

detection, featuring varying disease scales and complex

backgrounds, leading to limitations in detection accuracy (Li

et al., 2021).

Convolutional Neural Networks (CNNs) have demonstrated

remarkable success in automatically learning multi-level, high-

order features from disease images, surpassing the limitations of

traditional manual feature design methods (Abade et al., 2021;

Akanksha et al., 2021; Dhaka et al., 2021; Latha et al., 2021; Lu et al.,

2021; Wang et al., 2021; Yogeshwari and Thailambal, 2021;

Ashwinkumar et al., 2022). They offer significant advantages in

disease detection and have been extensively studied (Liu et al., 2022;

Kirti and Rajpal, 2023; Kirti et al., 2023; Sudhesh et al., 2023;

Tholkapiyan et al., 2023; Xu et al., 2023; Zhou et al., 2023).

Depending on their network structure, CNN-based disease

detection methods can be categorized as one-stage or two-stage

detectors (Jiao et al., 2021; Lin et al., 2023). Regarding tea disease

detection techniques, Qi et al. introduced TC-YOLO, a lightweight

deep learning architecture based on YOLO that achieves high fusion

capabilities (Qi et al., 2022). Alruwaili et al. improved the Faster R-

CNN model for disease detection and achieved better recognition

performance than other models (Alruwaili et al., 2022). By utilizing

basic convolutional layer architectures, Lee et al. achieved an

accuracy of 77.5% in detecting insect pests and diseases (Lee

et al., 2020). Hu et al. introduced an algorithm that enhances

image quality to improve detection accuracy (Hu et al., 2021a).

Chen et al. developed LeafNet, a specialized CNN model for tea

disease feature extraction (Chen et al., 2019). Xue et al. proposed

YOLO-tea, a tea disease detection model based on YOLOv5 (Xue

et al., 2023). However, CNNs overlook crucial global information

among distant pixels, which impacts detection accuracy.

Researchers are currently exploring methods to enhance the

global modeling capabilities of CNNs in these scenarios. For
Frontiers in Plant Science 0263
instance, Hou et al. proposed an improved two-stage Faster R-

CNN disease detection algorithm incorporating an attention

mechanism in the network (Hou et al., 2023).

Attention mechanisms have emerged as highly successful

approaches in disease detection tasks, aiming to emulate the

remarkable capabilities of the human visual system in capturing

vital information from complex scenes (Zheng et al., 2021; Hu et al.,

2023). Spatial attention, channel attention, and self-attention are

different attention mechanisms that enhance feature extraction and

model performance (Carion et al., 2020; Guo et al., 2022). Several

studies have employed attention mechanisms in disease detection

models. For instance, Liu et al. proposed the spatial attention

module (Liu et al., 2019), Wang et al. introduced both channel

and spatial attention mechanisms (Wang et al., 2020), Zha et al.

developed a lightweight network model based on a coordinate

attention mechanism (Zha et al., 2021), Zhu et al. combined

CNNs with Transformer architecture to establish (Zhu et al.,

2022). Similarly, Lin et al. proposed a YOLO-based algorithm that

employs a self-attentive mechanism to enhance the model’s ability

to capture global information on tea diseases (Lin et al., 2023).

Borhani et al. proposed combining CNNs with Transformer

architecture to exploit the Transformer’s capability to establish

dependencies between distant features and extract global disease

features (Borhani et al., 2022). By incorporating attention

mechanisms, researchers have made considerable progress in

capturing essential information and enhancing the performance

of disease detection models (Alirezazadeh et al., 2023; Yang

et al., 2023).

Although the studies mentioned above have made progress in

considering local disease information, it is crucial to emphasize the

value of global information, especially the interaction between distant

pixels (Sapna et al., 2023). Motivated by these challenges and research

gaps, we introduce a novel network named Tea Disease Network

(TeaDiseaseNet). Our proposed network integrates multi-scale

feature representation with a self-attention mechanism to enhance

performance in complex backgrounds and variable disease scales. The

primary contributions can be summarized as follows:
(1) Introducing the Multi-scale Feature Extraction Module

(MFEM), which utilizes multi-scale convolutional neural

networks (CNNs) to capture comprehensive and localized

multi-scale feature representations from disease images

effectively. This module facilitates the extraction of

comprehensive local spatial information.

(2) Devising the Scale Self-Attentive Module (SSAM) to

address scale variations and complex backgrounds. The

SSAM incorporates self-attention blocks to consolidate

local and global information on tea disease images,

facil itating effective interaction between global

information and local features.

(3) Designing the Scale-aware Feature Fusion module (SFF) to

achieve accurate and robust detection. The SFF enables

feature fusion and the network to distinguish the relative

importance of different input features. It enhances the

accuracy and robustness of tea disease detection by

facilitating multi-scale feature fusion.
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(4) Conducting extensive comparative experiments and

ablation studies on each module to demonstrate our

proposed method ’ s super ior per formance and

effectiveness. The results show significant improvements

in various scenarios, surpassing most existing methods.

These findings highlight the potential and effectiveness of

our approach in enhancing the detection of tea diseases.
The structure of this paper is as follows. Section 2 focuses on the

dataset utilized in this research and explains the enhanced modules

integrated into TeaDiseaseNet. Section 3 covers the experimental

setup, including equipment configuration, evaluation criteria, and

experimental parameters. We present the results and analysis of the

ablation experiments, visualization, and discussion. Finally, in

Section 4, we present our conclusions and discuss potential

avenues for future research.
2 Materials and methods

In this section, we outline the critical components of our

proposed TeaDiseaseNet detection method. Our method involves

two main aspects: collecting a comprehensive tea disease dataset

and developing of an accurate disease detection framework. The

dataset collection process includes acquiring disease images,

annotating the dataset, and appropriately partitioning it. The

detection model comprises three crucial functional modules: 1)

The Multi-scale Feature Extraction Module (MFEM) extracts

features from different scales to capture detailed information

about tea diseases. 2) The Scale Self-Attention Module (SSAM)

applies self-attention mechanisms to learn contextual dependencies

within the extracted features. 3) The Scale-aware Feature Fusion

(SFF) module fuses the multi-scale and self-attended features to

generate a robust representation for disease detection. Collectively,

these components contribute to the effectiveness and accuracy of

our TeaDiseaseNet detection.
2.1 Tea disease dataset construction

2.1.1 Disease images acquisition
The tea disease dataset utilized in the experiments was obtained

from Professor Jiang Zhaohui’s research group at Anhui

Agricultural University (Tholkapiyan et al., 2023). This dataset

consists of 776 samples and covers a wide range of tea diseases,

including tea exobasidium blight, tea red scab, tea cloud leaf blight,

tea cake, tea red rust, and tea algae leaf spot. Each sample image in

the dataset has a resolution of 906×600 pixels, ensuring a clear and

detailed representation of the tea diseases.

Incorporating diverse tea diseases into the dataset enables

comprehensive training and evaluation of the proposed detection

model. By including samples from different tea diseases, the dataset

offers a rich and representative collection of real-world scenarios

encountered by tea growers.

Figure 1 visualizes the dataset, displaying selected tea images

that exemplify instances of the six tea diseases above. These images
tiers in Plant Science 0364
serve as valuable references for understanding each tea disease

visual characteristics and distinguishing features. The annotated

dataset ensures accurate labeling and facilitates the development of

an effective convolutional neural network for tea disease detection.

By utilizing this meticulously collected and annotated dataset,

we aim to construct a robust and reliable detection model capable of

accurately identifying and classifying tea diseases. The dataset

serves as a crucial foundation for our research, ensuring the

validity and effectiveness of our proposed TeaDiseaseNet.

2.1.2 Data labeling
To adapt the dataset for tea disease detection tasks, we enhanced

the original samples by manually annotating the bounding boxes of

the tea disease targets. This critical step involved meticulously

labeling each sample image to indicate the precise location and

extent of the tea disease instances. The annotation process was

performed by a skilled professional using the labelimg image

labeling tool, ensuring accuracy and consistency throughout

the dataset.

By providing bounding box annotations, we enable the tea disease

detection model to identify the presence of tea diseases localize and

delineate the specific areas affected by the diseases. This level of detail

enhances the model’s ability to provide valuable insights and facilitate

targeted intervention strategies for tea growers.

The inclusion of bounding box annotations in the dataset

enhances its suitability and efficacy for tea disease detection tasks.

When used with our advanced TeaDiseaseNet algorithm, the

annotated dataset enables accurate and precise detection of

tea diseases.

2.1.3 Data augmentation and division
To enhance the model’s generalization capability and improve

its performance in real-world scenarios, data augmentation

techniques were applied to augment the tea disease dataset,

thereby expanding its size and diversity. Various methods

introduced diversity and variability into the original images,

including 90-degree clockwise and counterclockwise rotations,

random rotation, noise addition, and exposure adjustments. As a

result, a total of 7 640 augmented samples were generated, enriching

the dataset and providing a more comprehensive range of training

examples for the model.

The augmented dataset was subsequently divided into an 8:2

ratio for training and validation purposes. This division ensured a

balanced distribution of data and enabled robust model evaluation.

By training the model on a diverse augmented dataset and

validating it on separate samples, we obtained more reliable and

accurate results. The use of data augmentation techniques, along

with the appropriate dataset division, enhances the model’s ability

to accurately detect tea diseases, even when faced with previously

unseen or challenging images.
2.1.4 Characteristics of disease dataset
The dataset’s statistical analysis and ranking of scales revealed a

significant range of sizes among the tea disease targets. Around 20%

of the targets exhibited scales smaller than 0.0207, while 34% had
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scales larger than 0.345. This wide range of scales underlines the

diverse nature of the dataset and emphasizes the challenge of

accurately detecting diseases across various sizes. Understanding

these scale variations is crucial for developing a robust detection

model capable of effectively identifying tea diseases, regardless of their

size. Our goal is to enhance the performance and reliability of the

model in detecting tea diseases by addressing the scale variations.
2.2 The architecture of TeaDiseaseNet

To address the challenges posed by variable scales of tea pests

and dense, obscuring diseases, this paper presents a novel fused

multi-scale self-attentive tea disease detection network based on

improving YOLOv5 (Jocher et al., 2022). The YOLOv5 framework

is well-known for its remarkable object detection capabilities and

high efficiency. In our proposed model, we have harnessed the

advantages of YOLOv5 by incorporating multi-scale convolution

and multi-scale self-attention mechanisms to effectively capture

both local and global features in tea disease images. Figure 2

illustrates the network structure of our model, which comprises

three key modules: the Multi-scale Feature Extraction Module

(MFEM), the Scale-Self-Attention Module (SSAM), and the Scale-

aware Feature Fusion (SFF). These modules synergistically work to

achieve accurate and robust tea disease detection. Our approach

involves the following steps:
Frontiers in Plant Science 0465
Step 1: Multi-scale feature extraction

We utilize the multi-scale convolutional blocks of the

MFEM as a backbone network to extract features from tea

images. This allows us to capture feature information of tea

diseases at different scales and local levels.

Step 2: Scale self-attentive mechanism

We feed the multi-scale feature maps into the SSAM

simultaneously to enable the interaction of global and local

information. This mechanism dynamically adjusts the weights

of each scale feature, improving the model’s ability to capture

the characteristics of tea diseases.

Step 3: Scale-aware feature fusion

We incorporate a channel attention mechanism to perform

a weighted fusion of features at different scales in tea leaf

images. This mechanism efficiently integrates characteristic

information of tea diseases across a wide range of scales,

enhancing the precision of disease localization and recognition.

Step 4: Prediction

The prediction module utilizes the previously extracted

feature information to efficiently localize and identify tea

disease features in complex contexts and at varying scales.
By following these steps, our approach aims to effectively extract

and integrate features to accurately detect and recognize

tea diseases.
A B

D

E F

C

FIGURE 1

Representative Samples from the Tea Dataset.
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2.3 Multi-scale feature extraction module

Traditional image feature extraction methods often focus on

either local or global information, limiting their ability to

comprehensively capture the diversity and complexity of images.

In recent years, deep learning-based approaches, particularly Vision

Transformers (ViT) (Khan et al., 2022), have become the dominant

method for image feature extraction. ViT segments images into

patches or tokens and employs self-attentive mechanisms to extract

parameterized visual representations. However, these methods are

constrained by fixed-scale token sequences, which restrict their

ability to capture feature structures across different scales. This

limitation poses a challenge in tea disease detection due to scale

variations. Moreover, self-attentive mechanisms prioritize global

information, disregarding important local feature details and

blurring the distinction between intricate backgrounds and

foregrounds in tea disease images. Consequently, their

applicability in disease feature extraction tasks is limited.

To address these challenges, we propose two solutions. The first

solution, illustrated in Figure 3A, involves constructing serial multi-

scale token sequences by up/down sampling and expanding/reducing

token sequences within the self-attentive mechanism module. The

second solution, depicted in Figure 3B, consists of constructing parallel

multi-scale token sequences wherein images of different scales are

simultaneously fed into the self-attentive mechanism module. This

approach leverages multi-headed self-attention to capture global

contextual information across diverse scales. Compared to the first

solution, the second approach provides a simpler implementation.

Building on these observations, we propose a parallel multi-scale tea

disease feature extraction module to address the limitations of limited

local feature representation and a single scale.

As illustrated in Figure 2, our proposed method employs four

Dense blocks derived from DenseNet (Roy and Bhaduri, 2022) to

extract both the multi-scale structure and local features of tea

disease images. The tea disease image passes through the input

layer, further progressing into the dense block, and finally
Frontiers in Plant Science
 0566
undergoing average pooling. The shallow convolutional layers in

this module aim to capture intricate features like edges and

contours, while the deeper convolutional layers encode

comprehensive semantic information. Each level of the Dense

block includes down-sampling operations, gradually reducing the

resolution of the disease images. We generate a multi-scale feature

map by preserving the outputs of the last three levels of Dense

blocks. By employing the scaled feature map sequence obtained

from the CNN as input for the self-attentive mechanism module,

the length of the token sequence is indirectly adjusted. This

modification enables each token to represent a larger region in

the original image, encompassing a broader range of spatially

localized information.

In summary, the MFEM module retrieves multi-scale features,

allowing the model to capture information at different levels of

detail. This capability is advantageous for tea disease detection tasks

as it effectively handles disease size, location, and complex

backgrounds variations. The refined multi-scale features enhance

the reliability and accuracy of the tea disease detection model.
2.4 Scale self-attention module

The SSAM enables the interaction and fusion of feature maps at

various scales using the self-attention mechanism. This allows the

tea disease detection model to effectively capture both global and

local information in disease images. More specifically, the self-

attentive block within the SSAMmodule takes in multi-scale feature

maps as inputs, with each scale’s feature maps obtained through

convolution. By enhancing information fusion and interaction, this

module significantly improves the model’s performance and

accuracy across various scales. The self-attention operation in

each head of the multi-head attention mechanism is computed

based on Equation (1).

AAttention(Q,K ,V) = SsoftMax
QKTffiffiffi

d
p + B

� �
V (1)
FIGURE 2

The framework of TeaDiseaseNet.
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where Q, K, and V represent the query, key, and value matrices,

respectively. The vector dimension is denoted as d, and B signifies

the bias matrix. The output is obtained by applying the softmax

activation function SsoftMax for multi-classification.

In particular, the Self-Attention Block within the SSAM takes

multi-scale feature maps as input. Each scale is obtained through a

convolution operation. The configuration of the Self-Attention

Block, illustrated in Figure 4, includes a Multi-head Self-Attention

(MSA) module that employs a window-based approach and a 2-

layer Multi-layer Perceptron (MLP) module. Layer Normalization

(LN) layers are incorporated before each MSA and MLP module,

and residual connections are employed after each module. This

arrangement facilitates the calculation of output features, as shown

in Equation (2).

ẑ i = FW−MSA FLN zi−1
� �� �

+ zi−1

zi = FMLP FLN ẑ i
� �� �

+ ẑ i

ẑ i+1 = FSW−MSA FLN zi
� �� �

+ zi

zi+1 = FMLP FLN ẑ i+1
� �� �

+ ẑ i+1

8>>>>><
>>>>>:

(2)

where W-MSA represents the window multi-head self-

attention, while SW-MSA denotes the shifted window multi-head

self-attention. The variables ẑ i and zi correspond to the output

features of the (S)W-MSA and MLP modules of the i-th block,

respectively. The W-MSA module, SW-MSA module, MLP module

and LN module features are denoted as FW-MSA, FSW-MSA, FMLP,

FLN, respectively.
2.5 Scale-aware feature fusion

The SFF module efficiently combines features from multiple

scales, resolving discrepancies and improving model performance.

In tea disease detection tasks, it is crucial to efficiently process
Frontiers in Plant Science 0667
information from multiple scales. This module is specifically

designed to address discrepancies and inconsistencies in multi-

scale features. We leverage a channel focus mechanism to enhance

the model’s performance by incorporating spatial and channel

features in the input data. This allows the model to accurately

discern and differentiate between objects or features, improving

object detection accuracy.

The channel attention mechanism enhances the inter-channel

information importance in a convolutional neural network. It

compresses the features of each channel by integrating their

spatial information and computes them using global average

pooling, as defined below:
FIGURE 4

Self-Attention Block.
A

B

FIGURE 3

Two Ideas for Multi-scale Structures in Tea Disease Detection. (A) Constructing serial multi-scale token sequences. (B) Constructing parallel multi-
scale sequences.
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z = Fsq =
1

H �Wo
H

i=1
o
W

i=1
X(i, j) (3)

where z denotes the compressed feature vector,H andW denote

the feature map size of feature X. A learnable parameter w captures

the correlation between feature channels. To improve

computational efficiency, the number of channels is reduced using

the following approach:

s = Fex z,wð Þ = ∂ g z,wð Þð Þ = w2d w1zð Þð Þ (4)

where the adaptive weight of each channel is represented by s,

and d represents the ReLU activation function, while s represents

the Sigmoid activation function. Combining the channel adaptive

weight s with the original feature z and assigning a new adaptive

weight to each existing channel, the rescaled feature is obtained

using Equation (5).

Xc = Fscale(X, s) = X · s (5)

As shown in Figure 5, the SFF consists of Upsample, Concat,

Bottleneck CSP, and St module operations. The BottleneckCSP

module performs a convolution operation on the fused features to

further extract feature information, and the St module introduces a

channel attention mechanism to weigh the multi-scale features for

fusion and eliminate redundant information.

The St module utilizes global average pooling to compute

feature compression values for each channel and learns

parameters to model the correlation between channels, resulting

in adaptive weights. These weights are applied to rescaled original

features, achieving adaptive feature weighting and improving

feature representation. Through the combined operations of

Upsample, Concat, BottleneckCSP, and St, the feature fusion

network enables the interaction and fusion of multi-scale

information, enhancing the model’s performance. This addresses

inconsistencies and discrepancies between multi-scale features,

improving accuracy and robustness in tea disease detection tasks.

In general, the primary objective of the SFF module is to

integrate global and local information from multiple scales,
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enabling the generation of precise density maps to effectively

capture the spatial distribution of diseases.
2.6 Prediction module

The prediction module is responsible for locating and

identifying tea disease information at various scales. It achieves

efficient prediction by utilizing the feature fusion network’s output

and employing parallel branches. The incorporation of IoU

branches further enhances the accuracy of the prediction results.

The prediction module comprises 1×1 convolutional layers and

parallel branches. Each branch contains a Conv Block that

comprises two 3×3 convolutions. The topmost Conv Block is

dedicated to the classification task, while the bottommost Conv

Block focuses on the regression task. An additional IoU branch is

introduced to the module to enhance the accuracy of

the predictions.
2.7 Loss functions

The tea disease detection model utilizes three essential loss

functions: localization loss Lloc , classification loss Lcls, and

confidence loss Lconf , as depicted in Equation (6).

L = Lloc + Lcls + Lconf (6)

These components enhance the model’s accuracy regarding

object localization and category identification. The localization

loss minimizes bounding box coordinate discrepancies, while the

classification loss reduces errors in tea disease classification. Finally,

the confidence loss enhances the model’s precise detection and

classification estimation. The model can optimize its performance

by incorporating these loss functions and achieve more accurate

and reliable tea disease detection results.

The final localization loss Lloc is computed according to

Equation (7).
FIGURE 5

The multi-scale feature fusion module.
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Lloc =o
s2

i=1
o
B

j=0
Iobji,j (1 − CIoU) (7)

The Complete Intersection over Union (CIoU) loss is a

regression loss function considering bounding boxes’ overlapping

area, center distance, and aspect ratio consistency. When

incorporated into the model, it provides a more accurate measure

of the bounding box regression error, leading to improved accuracy

and localization performance in tea disease detection.

CIoU = IoU −
r2 b, bgtð Þ

c2
− aυ (8)

n =
4
p2 arctan

wgt

hgt
− arctan

w
h

� �2

a =
υ

1 − IoUð Þ + υ

where c represents the diagonal distance between the prediction

frame and the minimum enclosing area of the ground truth frame, r
denotes the Euclidean distance function, while b and bgt correspond

to the centroids of the prediction frame and the actual frame,

respectively. The variable n indicates the similarity of the aspect

ratio, and a is the weighting factor. Additionally, w and h denote the

width and height of the prediction frame, respectively.

A binary cross-entropy loss function is used for the

classification loss Lloc , according to Equation (9).

Lcls = −o
s2

i=1
o
B

j=1
o

c∈classes

Iobji,j p̂ j
i log pji

� �
+ 1 − p̂ j

i

� �
log 1 − pji

� �h i
(9)

where S, B and Iobji,j have the same meaning as in the context, c is

the currently identified category and classes are all the classes to be

detected, pji and p̂ j
i are the predicted and true probabilities that the

target in the i-th grid, j-th anchor box belongs to class c,

respectively. The confidence lossLconf is computed according to

Equation (10).

Lconf = −o
s2

i=0
o
B

j=0
Iobji,j Ĉ j

i log Cj
i

� �
+ 1 − Ĉ j

i

� �
log 1 − Cj

i

� �h i

−lnoobjo
s2

i=1
o
B

j=0
Inoobji,j Ĉ j

i log Cj
i

� �
+ 1 − Ĉ j

i

� �
log 1 − Cj

i

� �h i (10)

where, Inoobji,j denotes the i-th grid, whether the j-th anchor box

does not have a target, no target is 1, otherwise is 0; lnoobj is a

constant coefficient, taken as 0.5, to balance the effect of positive and

negative samples on the loss function; Cj
i and Ĉ j

i are the confidence

levels of the prediction and truth boxes respectively.
3 Experimental results and analysis

The experiments were conducted using Python programming

language and the PyTorch deep learning framework (version 1.7.0).

Taking advantage of the server’s configuration, which included two

RTX 3090 GPUs, the training process efficiently utilized parallel
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processing. The Adam optimizer was employed to optimize the

training process. A batch size of 8 was selected, striking a balance

between computational efficiency and model convergence. To

ensure comprehensive learning and convergence, the models were

trained for 300 epochs. This experimental setup effectively

maximized computational resources, enabling accurate and

reliable model training.
3.1 Performance comparisons

In this paper, we evaluate the performance of disease detection

models using the mean Average Precision (mAP), Precision, and

Recall as metrics. The mAP is calculated by summing the Average

Precision values for all categories and dividing it by the total

number of categories, as shown in Equation (11).

AP = ∫
1

0
p(r)dr (11)

mAP =
1
no

n

i=1
APi

where n represents the class number, APi denotes the Average

Precision values for each category. This formulation enables a

comprehensive and concise evaluation of the model’s overall

detection accuracy, capturing its performance across diverse

disease categories.

Precision provides valuable insights into the model’s capability

to accurately identify and classify target frames. It quantifies the

ratio of correctly identified frames to the total predicted frames,

providing a measure of the model’s precision and accuracy in target

detection. Equation (12) represents the mathematical expression of

Precision.

P =
TP

TP + FP
(12)

Recall is defined as the ratio of correctly detected target frames

to the total number of target frames in the dataset, assessing the

model’s ability to identify all instances of the target without missing

any. Equation (13) represents the mathematical expression for

Recall.

R =
TP

TP + FN
(13)

This study evaluates the performance of TeaDiseaseNet by

comparing and analyzing its detection and identification results

with various classical CNN models, including SSD (Liu et al., 2016),

Faster R-CNN (Ren et al., 2015) YOLOv3 (Redmon and Farhadi,

2018), YOLOv4s (Bochkovskiy et al., 2020), YOLOv5s (Jocher et al.,

2022), YOLO-Tea (Xue et al., 2023), and AX-RetinaNet (Bao et al.,

2022). Table 1 presents these networks’ detection and recognition

experiments’ precision, recall, and mean Average Precision (mAP)

values. The results demonstrates the outstanding detection accuracy

of TeaDiseaseNet. TeaDiseaseNet achieves superior detection

accuracy compared to models that employ model scaling, such as
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YOLOv4s and YOLOv5s. This remarkable performance can be

attributed to the utilization of DenseNet, which incorporates

dense connectivity in the network, enhancing feature reuse and

gradient flow. Moreover, TeaDiseaseNet employs effective

techniques for multi-scale feature extraction and fusion.

It is worth noting that the YOLOv3 algorithm exhibits higher

detection accuracy than YOLOv4s and YOLOv5s, potentially

because of its shallower depth and smaller feature map width.

The detection accuracy of Faster R-CNN is higher than that of

YOLOv3 by 1.9%. This performance difference arises because Faster

R-CNN is a two-stage target detection algorithm. It generates

candidate regions using a region proposal network and selects the

best candidate regions using a region classification network. In

contrast, YOLOv3 is a one-stage target detection algorithm that

predicts object locations and classes across the entire image by

taking the entire image as input. Despite requiring more

computational resources, Faster R-CNN delivers higher accuracy

and fewer false positives compared to YOLOv3. Furthermore,

TeaDiseaseNet demonstrates a slightly higher average accuracy

compared to the SSD algorithm.

In conclusion, this paper presents a significant advancement in

disease detection by employing CNN characteristics and

incorporating a self-attentiveness mechanism. TeaDiseaseNet

utilizes CNN to extract multi-scale feature maps that encompass

abundant spatial information at various levels of detail. Inspired by

human visual mechanisms, this design enhances the model’s
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capability to effectively handle complex backgrounds and scale

variations in disease images. The incorporation of the attention

mechanism empowers TeaDiseaseNet to automatically select and

prioritize the most relevant features within an image, significantly

enhancing disease detection accuracy.

Figure 6 illustrates the average loss value curve of

TeaDiseaseNet during training iterations. The plot demonstrates

that the loss value stabilizes around 0.39 after approximately 255

iterations. The slight fluctuations observed in the loss value after

convergence can be attributed to the inherent complexity and

variability of the training data. The results indicate that

TeaDiseaseNet has successfully learned and adapted to the

training data, as evidenced by the convergence of the parameters

and satisfactory performance.
3.2 Evaluation of TeaDiseaseNet

The effectiveness of the proposed TeaDiseaseNet algorithm was

evaluated using the provided dataset. Table 2 presents the accuracy

of the model in recognizing each tea disease. The results highlight

the significant advantages of the algorithm for tea disease detection.

The algorithm achieved high accuracy rates of 92.1% and recall

rates of 92.9% for tea round red star disease, with an average

accuracy rate of 94.5%. These findings indicate accurate

identification and significant improvements in detecting this
TABLE 1 The Comparison of different networks.

Network Year Precision (%) Recall (%) mAP (%)

SSD 2016 86.5 89.1 88.4

Faster R-CNN 2015 91.5 87.3 92.2

YOLOv3 2018 94.2 84.6 90.3

YOLOv4s 2020 90.7 85.9 88.7

YOLOv5s 2020 92.3 86.5 89.4

AX-RetinaNet 2022 96.8 94 93.8

YOLO-Tea 2023 – – 79.3

TeaDiseaseNet 2023 95.3 97.1 93.5
fr
FIGURE 6

The Loss changing graph of TeaDiseaseNet.
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particular disease. Tea webcake disease exhibits slightly lower

accuracy and recall rates of 89.2% and 85.8%, respectively.

However, the algorithm achieves an average accuracy rate of

95.4%, surpassing the individual accuracy and recall values. This

demonstrates the algorithm’s capability to overcome challenges

related to small spot areas. The algorithm also performs

remarkably well in detecting other tea diseases, including tea

algae spots, tea cake disease, tea cloudy leaf blight, and tea red

rust algae disease. These diseases exhibit high values across all

evaluation metrics. The results demonstrate significant innovations

and benefits in multi-scale tea disease detection. The algorithm

achieves high recognition accuracy for large-scale tea redscab and

small-scale tea exobasidium blight.

The algorithm achieves high recognition accuracy for large-scale

tea redscab and small-scale tea exobasidium blight. The performance

evaluation of each network was conducted based on metrics such as

accuracy, recall, and average accuracy, and the results are presented in

Table 3. The results revealed that the DenseNet model, serving as the

backbone network, performed the best in accuracy, recall, and average

accuracy. The algorithm achieves high recognition accuracy for both

large-scale tea redscab and small-scale tea exobasidium blight.

DenseNet exhibits strong resistance to overfitting, making it

particularly suitable for scenarios with limited training data. A

notable characteristic of DenseNet is its utilization of feature reuse

through feature concatenation across channels. This enables DenseNet

to achieve superior performance compared to ResNet-101, while

utilizing fewer parameters and incurring lower computational cost.

In contrast, Darknet53 is a lightweight convolutional neural network,

however, it proves to be challenging to train. DenseNet performs

admirably in the tea disease detection task. As a result, this paper selects

DenseNet as the underlying network structure for the proposed

algorithm. The algorithm effectively resolves the scaling issue by

establishing a multi-scale feature representation and enhances overall

performance. In summary, the algorithm proposed in this study

demonstrates improved accuracy compared to other models, thereby

representing significant progress in the field of tea disease detection.
3.3 Ablation studies

To validate the effectiveness of the proposed network model,

incremental ablation experiments were conducted. Each network

module was incrementally incorporated based on the DenseNet

backbone architecture. This approach allowed for a comprehensive
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evaluation of each module’s contribution to the overall

performance. This step-by-step approach aimed to enable a

comprehensive evaluation of the individual contribution of each

module to the overall performance.

The results of the ablation experiments conducted for each

module are presented in Table 4. Including of the MFEM+SSAM

module results in a substantial performance improvement, with a

2.2% increase in mAP compared to using the MFEM module alone.

This improvement can be attributed to utilizing the multi-head self-

attention mechanism within the MFEM+SSAM module. This

mechanism captures global contextual information from multi-

scale feature maps and facilitates the interaction between global

and local information. Assigning weights to features, such as spot

color and leaf edge, enhances the detection accuracy. Furthermore,

the new scale-aware feature fusion (SFF) module adopts a channel

attention mechanism to fuse features of different scales. It focuses

on the feature channels containing discriminative information and

assigns a higher weight distribution to them, effectively improving

the detection performance (Chen et al., 2020). The SFF module

effectively fuses information from tea disease features of various

scales, resulting in improved accuracy of localization and

identification. The introduction of the SFF module enhances the

mAP by 0.7%, indicating its contribution to improved detection

accuracy of the network.
3.4 Visualization and discussion

Representative disease images were selected to showcase the

exceptional performance of the proposed model in effectively

addressing challenges posed by continuous scale variations and

complex backgrounds. This visualization demonstrates the model’s

ability to detect diseases accurately. Figures 7 and 8 present the

original disease images on the left and the model’s detection results

on the right. Rectangular boxes indicate the identified disease types

and their corresponding confidence levels.

Figure 7 demonstrates the model’s ability to effectively identify

diseases with varying scales and address disease scenarios

characterized by continuous scale variations. This showcases the
TABLE 2 Performance in detecting different tea diseases.

Tea Disease P (%) R (%) mAP (%)

Tea exobasidium blight 89.2 85.8 95.4

Tea red scab 92.1 92.9 94.5

Tea algae leaf spot 94.9 88.8 93.5

Tea cake 90.0 91.4 94.7

Tea cloud leaf blight 88.5 89.5 92.0

Tea red rust 85.4 87.7 90.9
TABLE 3 Performance comparison of different backbone networks.

Backbone P (%) R (%) mAP (%)

DenseNet 95.3 97.1 93.5

Resnet-101 91.3 90.2 92.8

Darknet53 91.8 90.5 93.2
fr
TABLE 4 Results of ablation experiments.

Backbone (MFEM) SSAM SFF mAP (%)

√ 90.6

√ √ 92.8

√ √ √ 93.5
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algorithm’s capacity to extract rich global contextual information at

multiple scales and accurately detect scale variations by comparing

global and local information. Figure 8 highlights the model’s

effectiveness in eliminating complex background interferences, such

as branches and fallen leaves in disease scenes. This can be attributed

to the feature extraction and fusion networks, which enable the

proposed method to accurately detect disease areas within complex

scenes by capturing dependencies between input feature scales.

Additionally, a comparison was conducted between the YOLOv3

and TeaDiseaseNet models using images of tea leaf diseases, as depicted

in Figure 9. The YOLOv3 model exhibited missed detections and

inaccurate annotation box positions, whereas TeaDiseaseNet accurately

detected and confidently annotated the diseases. The superior

performance of TeaDiseaseNet can be attributed to its multi-scale

self-attention mechanism, which enhances the acquisition of semantic

and location information in the images. This results in improved

feature extraction and detection accuracy.

The results demonstrate that TeaDiseaseNet outperforms

YOLOv3 in terms of detection accuracy and robustness, owing to

its enhanced feature extraction capabilities and multi-scale self-

attention mechanism.
Frontiers in Plant Science 1172
4 Conclusion

This paper introduces TeaDiseaseNet, a novel tea disease

detection model that effectively addresses challenges posed by

complex backgrounds and variable scales. By incorporating a

multi-scale self-attentive mechanism, TeaDiseaseNet enables

effective interactions between global and local features across

multiple scales. This mitigates the impact of scale variations and

complex backgrounds on detection accuracy. Experimental results

demonstrate that TeaDiseaseNet surpasses state-of-the-art

methods, exhibiting exceptional accuracy and robustness in scale

variations and background interference scenarios. These findings

provide valuable insights for intelligent tea disease diagnosis,

supporting tea farmers with accurate detection capabilities and

enabling timely control measures to protect tea plantations,

improve tea quality, and enhance yields.

In addition to the benefits and contributions highlighted in the

conclusion, this study also has certain limitations that need to be

acknowledged. Firstly, the use of a limited dataset may not fully

capture the diversity of tea diseases. Including a wider range of tea

diseases would enhance the representativeness and applicability of
FIGURE 7

Disease scenarios with continuous scale changes.
FIGURE 8

Disease scenes with complex backgrounds.
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the detection system. Secondly, biases in the training data, such as

imbalances in disease instances or variations introduced by different

image acquisition systems, could affect the performance of the tea

disease detection system. Efforts should be made to address these

biases and enhance the system’s robustness. Additionally, the study

focuses on offline detection, which may not be practical for real-

time implementation in tea plantations. Future research should

explore real-time implementation, taking into account the resource

and time constraints associated with practical deployment. Lastly,

interpreting the decision-making processes of the deep learning

model is challenging due to their complexity. Enhancing the

interpretability of the model would enhance its usefulness in

decision-making for tea farmers. Addressing these limitations can

improve the practicality and effectiveness of tea disease

detection systems.
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mulberry leaves by using
hyperspectral imaging

Xunlan Li, Fangfang Peng, Zhaoxin Wei,
Guohui Han* and Jianfei Liu

Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
Protein content is one of the most important indicators for assessing the quality

of mulberry leaves. This work is carried out for the rapid and non-destructive

detection of protein content of mulberry leaves using hyperspectral imaging

(HSI) (Specim FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland). The spectral

range of the HSI acquisition system and data processing methods (pretreatment,

feature extraction, and modeling) is compared. Hyperspectral images of three

spectral ranges in 400–1,000 nm (Spectral Range I), 900–1,700 nm (Spectral

Range II), and 400–1,700 nm (Spectral Range III) were considered. With standard

normal variate (SNV), Savitzky–Golay first-order derivation, and multiplicative

scatter correction used to preprocess the spectral data, and successive

projections algorithm (SPA), competitive adaptive reweighted sampling, and

random frog used to extract the characteristic wavelengths, regression models

are constructed by using partial least square and least squares-support vector

machine (LS-SVM). The protein content distribution of mulberry leaves is

visualized based on the best model. The results show that the best results are

obtained with the application of the model constructed by combining SNV with

SPA and LS-SVM, showing an R2 of up to 0.93, an RMSE of just 0.71 g/100 g, and

an RPD of up to 3.83 based on the HSI acquisition system of 900–1700 nm. The

protein content distribution map of mulberry leaves shows that the protein of

healthy mulberry leaves distributes evenly among the mesophyll, with less

protein content in the vein of the leaves. The above results show that rapid,

non-destructive, and high-precision detection of protein content of mulberry

leaves can be achieved by applying the SWIR HSI acquisition system combined

with the SNV-SPA-LS-SVM algorithm.

KEYWORDS

hyperspectral imaging, mulberry leaf, protein content, non-destructive detection,
visible and near-infrared
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1 Introduction

Mulberry leaves are rich in a variety of bioactive ingredients

necessary for the human body, with such functions as anti-obesity

(Li et al., 2019), anti-oxidation and antibacterial (Thabti et al.,

2014), and anti-diabetes (Riche et al., 2017), and thus are considered

to be beneficial in the Asian population. Compared to animal

protein, the abundant protein of mulberry leaves contains no

animal cholesterol, with an amino acid pattern similar to that of

the human body (Gryn-Rynko et al., 2016; Sun et al., 2017). In

recent years, mulberry leaves are eaten as a vegetable, and used as a

traditional source of animal feed protein as well in Asian countries

(Srivastava et al., 2003; Yu et al., 2018). The protein content is one of

the most important indicators for assessing the quality of mulberry

leaves used as an animal feed source or a fresh vegetable.

At present, the methods for determining protein content in

leaves are mainly chemical analysis methods (Ledoux and Lamy,

1986; Chromý et al., 2015; Denholm et al., 2021), such as the

Kjeldahl nitrogen determination method. Such methods require the

samples to undergo not only drying, grinding, and other destructive

treatments, but also deboiling, distillation, and titration under the

condition of concentrated sulfuric acid being added. This is a

complex process producing chemical pollution. In light of this, it

is highly necessary to introduce a non-destructive and rapid

determination of protein content of mulberry leaves.

Hyperspectral imaging (HSI) combining imaging technology

with spectral technology can provide both spectral and spatial

information of substances. With the advantages of non-

destructiveness, high efficiency, and low cost, HSI is widely used

in non-destructive detection of protein content of different farm

products, including meat products such as pork (R2
P = 0.9161 and

RMSEP = 2.71 mg/g) (Ma J. et al., 2019), lamb (R2
p = 0.67 and

RMSEP = 0.41) (Pu et al., 2014), and beef (R2
P = 0.86 and SEP =

0.29) (ElMasry et al., 2013), and grain products such as wheat (R2P =

0.79 and RMSEP = 0.94) (Caporaso et al., 2018), rice (R2
P = 0.8011

and RMSEP = 0.52) (Ma et al., 2021), and peanuts (R2
P = 0.912 and

RMSEP = 0.438) (Cheng et al., 2017). There are studies showing

that N-H bonds in proteins present absorption peaks at 1,460–1,570

nm and 2,000–2,180 nm (Shenk et al., 2007; Chelladurai and Jayas,

2014), which lead to the non-destructive detection of proteins to be

conducted by mainly using the Short-Wave Infrared (SWIR) HSI

system with an acquisition wavelength range of 1,000–1,700 nm or

900–2,500 nm. There are also some other researchers using visible

near-infrared (Vis-NIR) HSI with an acquisition wavelength range

of 400–1,000 nm for non-destructive detection of proteins of meat

(Ma J. et al., 2019), rice (Onoyama et al., 2018), milk (Jin et al.,

2022), and rape leaves (Zhang et al., 2015), with good results

obtained. As the main parts of optical imaging systems, detectors

are meant for detecting and measuring the radiation reflected or

transmitted by objects. A detector made of a certain material can

only detect certain wavelength ranges, and the prices of detectors

vary greatly. Currently, silicon detectors (300–1,100 nm) are the

most widely used Vis-NIR detectors, and their prices are very low,

compared with the slightly more expensive InGaAs detectors (900–

2,500 nm) and the much more expensive HgCdTe detectors (1,000–
Frontiers in Plant Science 0277
2,600 nm). At present, there are only a few studies on the non-

destructive detection of proteins of mulberry leaves. Ma et al. used a

900-1,600 nm handheld near-infrared spectrometer to detect

proteins of dry mulberry leaves, and by combining with partial

least squares (PLS) regression and the wavelength optimization

method, they obtained a prediction set R2 of up to 0.92 (Ma Y. et al.,

2019). However, this method requires the mulberry leaves to

undergo drying and grinding, and the obtained data are single

point data, thus leading to failure to obtain the protein content of

the whole leaves. The vibrational characteristics of different

molecules and functional groups vary, resulting in differences in

sensitivity to specific wavelengths among different substances.

Therefore, we are not clear about the best detector material and

the spectral range for conducting the non-destructive detection of

protein content of mulberry leaves. As a result, it is necessary to

choose an optimal compromise.

This study aims at developing a non-destructive and rapid

method for the detection of protein content of mulberry leaves.

The main research contents are as follows: (1) analyzing the spectral

characteristics of mulberry leaves at Vis-NIR (400–1,000 nm) and

SWIR (900–1,700 nm); (2) comparing different pretreatment,

feature extraction, and modeling methods and selecting the best

optimal data processes and methods; (3) selecting the best spectral

range of HSI acquisition system for the detection of protein content

of mulberry leaves; and (4) visualizing the distribution of protein

content of mulberry leaves by using the optimal model.
2 Materials and methods

2.1 Materials

The healthy mulberry leaves, randomly collected and washed

with tap water when brought to the laboratory, undergo

hyperspectral images collection and protein content determination

after the surfaces of the leaves become dry. In this study, 193 samples

are randomly divided into the training set and the testing set at the

ratio of 7:3, with 135 and 58 samples, respectively. Among them, the

training set is used for training the model, with the 10-fold cross-

validation method applied to the training set to adjust the model

parameters and select the optimal model, while the test set is used for

assessing the final model.
2.2 Acquisition and calibration of
hyperspectral images

The HSI acquisition system consists of two hyperspectral cameras

(FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland), the electric

linear platform (Spectral Imaging Ltd., Oulu, Finland), two light

sources (each light source consists of three 20-W halogen lamps),

and a laptop (Figure 1). The FX10 spectral camera (Si detector) is used

for acquiring hyperspectral images of the Vis-NIR region (400–1,000

nm). The FX17 spectral camera (InGaAs detector) is used for acquiring

hyperspectral images of the SWIR region (900–1,700 nm).
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The two light sources are at an angle of 45° of the moving

platform, and the distance between the lens and the platform is 33

cm. When FX10 is used for hyperspectral image acquisition, the

exposure time is set to 12.5 ms, the frame rate is 49.83 Hz, the

spectral interval is 2, the spatial interval is 1, and the mobile

platform moving speed is set to 11.9 mm/s. When FX17 is used

for hyperspectral image acquisition, the exposure time is set to 6 ms,

the frame rate is 40.5 Hz, the spectral interval is 1, the spatial

interval is 1, and the moving speed of the mobile platform is set to

14.8 mm/s. The hyperspectral image acquisition is conducted after

the preheating of 20 min. The white reference image W is obtained

by screening the standard white board with a reflectance of 99%

placed in front of the sample. The dark reference image D is

obtained by screening with the lens closed. The reference images

are acquired together with the hyperspectral image of the sample.

To avoid the effect caused by uneven light source intensity

distribution and dark current during the image collecting process,

hyperspectral image calibration is conducted (Figure 2). The

following formula is used for hyperspectral image calibration.

Rl =
Il − Dl
Wl − Dl

where Rl is the calibrated image, Il is the raw image, Wl is the

white reference image, and Dl is the dark reference image.
2.3 Determination of protein content of
mulberry leaves

After the hyperspectral image acquisition, the mulberry leaves

underwent drying in the oven at 105°C for 15 min and then drying

at 50°C for 2 h. With the main vein removed, the leaves were

ground with a mortar and passed through a 60-mesh sieve, and the
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protein content of mulberry leaves was determined by using Kaye

nitrogen determination (Chromý et al., 2015). The sample (0.3 g)

was weighed and transferred into a digestion tube. Then, 0.4 g of

copper sulfate, 6 g of potassium sulfate, and 20 mL of sulfuric acid

were added to the tube for digestion. Once the temperature of the

digestion furnace reached 420°C, the digestion process was

continued for 1 h. After the liquid in the digestion tube exhibited

a green and transparent appearance, the tube was carefully removed

from the furnace and allowed to cool. Once cooled, 50 mL of water

was added to the tube. In the Kjeldahl nitrogen analyzer, sodium

hydroxide solution, hydrochloric acid standard solution, and boric

acid solution containing mixed indicators were first added. Finally,

the automated Kjeldahl nitrogen analyzer was utilized to

automatically perform the processes of sample addition,

distillation, titration, and data recording. The protein content in

the mulberry leaf can then be calculated using the provided formula.

X =
(V1 − V2)*C*0:0140*F*100

m*V3=100

In the formula, X represents the measured protein content, V1

represents the volume of consumed hydrochloric acid standard

solution, V2 represents the volume of blank consumed hydrochloric

acid standard solution, V3 represents the volume of extracted

liquid. C = 0.05 mol/L represents the concentration of

hydrochloric acid standard solution. m represents the weight of

the sample taken. F represents the conversion factor of nitrogen to

protein, and F is taken as 6.25. 100 is the conversion factor.
2.4 Data processing

2.4.1 Region of interest identification and
spectrum extraction

In this study, a whole mulberry leaf is the region of interest for

spectral extraction. A gray image is obtained at 800 nm and 1,000

nm of the Vis-NIR and SWIR hyperspectral images, respectively.

The Otsu method automatically calculates the segmentation

threshold between the leaf and the background in the gray image,

from which a binary image is obtained. Then, the ROI is obtained

by conducting mask processing. Finally, the average spectral

reflectance of the whole mulberry leaf at each wavelength

is calculated.

2.4.2 Spectral pretreatment
In light of the high noises in the first and last bands of the

original spectral data, spectral data within the ranges of 423–975 nm

(Spectral Range I), 970–1,684 nm (Spectral Range II), and 423–

1,684 nm (Spectral Range III) are selected for subsequent analyses.

The raw spectra need to be pre-treated to eliminate the scattering

caused by uneven particle distribution and different particle sizes

and the influence of optical path difference on the spectral data. The

standard normal variate (SNV) (Barnes et al., 1989), Savitzky–

Golay combined first-order derivation (Savitzky and Golay, 1964),

and multiplicative scatter correction (MSC) (Isaksson and Næs,

1988) are the commonly used spectral preprocessing methods, and
FIGURE 1

The hyperspectral imaging system.
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have been shown to be effective in eliminating or reducing

interference such as electrical noise, sample background, and

stray light during acquisition. In order to determine the best

pretreatment of spectral data, the SNV, Savitzky–Golay combined

first-order derivation, and MSC are adopted in this study.

2.4.3 Variable selection
Because of the high correlation between adjacent spectral bands,

successive projections algorithm (SPA), competitive adaptive

reweighted sampling (CARS), and random frog (RF) are

respectively used to extract characteristic wavelengths in this

study to reduce model input variables and improve model

efficiency and prediction accuracy.
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SPA is a forward variable selection method, which selects a

wavelength at the beginning, calculates the projection value of the

remaining wavelength, cycles forward, selects the wavelength

corresponding to the maximum projection value, and then combines

the projection vector with the wavelength until the end of the cycle

(Araújo et al., 2001). SPA can minimize the collinearity between

variables, extract the minimum redundant information variable

group, and reduce the number of variables required to establish the

model, thus improving the efficiency and speed of modeling.

CARS is a feature variable selection method that combines

Monte Carlo sampling with PLS model regression coefficient (Li

et al., 2009). The primary selection of the feature variables is

conducted by combining the PLS regression coefficient with
B

C D

A

FIGURE 2

Hyperspectral image calibration. (A, C) show the raw hyperspectral image of Vis-NIR and SWIR region, respectively. (B, D) show the calibrated
hyperspectral image of Vis-NIR and SWIR region, respectively.
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exponential decay through adaptive weighted sampling each time.

Then, a new PLS model is constructed based on the new subset

established with the points of larger absolute weight of regression

coefficient retained and the points with smaller weight removed in

the PLS model. After multiple calculations, the wavelength in the

subset with the smallest root mean square error of the PLS model is

selected as the characteristic wavelength.

RF is a very effective algorithm, which is similar to Reversible

Jump Markov Chain Monte Carlo, proposed by Li for variable

selection of high-dimensional data (Li et al., 2012). It functions in

an iterative manner, calculating the probability of each variable

being selected in each iteration. The higher the probability, the

greater the importance of the variable. The variable with the higher

probability is preferred as the characteristic variable.

2.4.4 Model construction and assessment
In this study, PLS and least squares-support vector machine (LS-

SVM) are selected for constructing models. LS-SVM (Suykens and

Vandewalle, 1999), a machine learning algorithm based on support

vector machine, is selected for constructing a regression model by

adopting partial least squares linear system as loss function through

nonlinear mapping function. With input variables projected into a

high-dimensional feature space, and then the optimization problem

converted into equality constraint conditions, this model has good

generalization performance and nonlinear regression processing

performance. When LS-SVM is used for analysis, appropriate kernel

functions must be decided. In this study, RBF kernel function is

adopted, and two parameters of the kernel function, g and s2, are
selected by grid searching based on cross-validation. PLS (Mehmood
Frontiers in Plant Science 0580
et al., 2012), a multivariate statistical analysis method on the basis of

principal component analysis, reduces the dimension by projecting

independent variables and dependent variables into a new low-

dimensional space, thus being capable of being used to treat the

linear relationship between multiple independent variables and one

or more dependent variables in a high-dimensional data set.

The evaluation metrics of the model are determination coefficient

(R2), root mean square error (RMSE), and relative percent deviation

(RPD). R2 reflects the stability of the model. The closer R2 is to 1, the

better the stability of the model is and the higher the degree of fitting is.

RMSE is used for testing the predictive power of themodel. The smaller

the RMSE is, the better the predictive power of the model is. RPD is the

ratio of sample standard deviation to RMSE.WhenRPD is less than 1.4,

the model fails to predict the sample. When 1.4 ≤ RPD< 2, the model is

considered tobeof averageeffect andcanbeused for roughassessmentof

the samples. When RPD ≥ 2, the model is considered to be of excellent

predictive power (Khoshnoudi-Nia and Moosavi-Nasab, 2019).

The data processing process is shown in Figure 3. The

calibration of the hyperspectral images and all the data processing

are completed on MATLAB 2022a by encoding.
3 Results and analyses

3.1 Protein and spectral characteristics of
mulberry leaves

The spectral reflection curve is drawn with the samples divided

into 3 groups according to the level of protein content (Figure 4).
BA

FIGURE 3

Workflow of data processing. (A) The raw hyperspectral image preprocessing and segmentation procedure. (B) The spectral processing, variable
selection, and the modeling procedure.
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The spectral reflection curves of mulberry leaf samples of different

protein levels show the characteristics of the typical reflection

spectral curve of a green plant, as follows: green peak (530–580

nm), red valley (590–670 nm), red edge (680–780 nm), high

reflective platform (750–1,300 nm) related to leaf tissue

structures, and the water absorption peak (1,450 nm) (Gates

et al., 1965; Gausman and Allen, 1973; Gitelson et al., 1996; Tang

et al., 2005). Absorption peaks of protein-associated N-H bonds

have been reported at 1,020 nm and 1,510 nm in the SWIR region,

but this absorption peak is not directly shown from the spectrum of

Figure 4, which may be due to the fact that the absorption bands in

the NIR region tend to be wide and often overlap (Curran, 1989;

ElMasry et al., 2011). In addition, from Figure 4, we can see that the

higher the protein content of mulberry leaves is, the lower the

corresponding spectral reflectance is.
3.2 Results of feature
wavelength extraction

In this study, SPA, RF, and CARS are being used individually to

extract characteristic wavelengths from spectral data within three

band ranges (Figure 5). In this study, the subset of bands with the

smallest root Mean Square Error of Cross-Validation (RMSECV)

value was selected as the characteristic band determined in the

CARS and SPA algorithms. The CARS algorithm was iterated 1,000

times to ensure a comprehensive exploration. Similarly, the RF

algorithm was also iterated 1,000 times to thoroughly explore the

entire dataset, and by selecting the top 10 wavelength variables with

a high average probability from these 1,000 runs, we obtained the

characteristic wavelengths.

Analysis of the feature wavelengths extracted by using SPA, RF,

and CARS shows that there are differences in the positions and

numbers of the obtained feature wavelengths extracted from the

spectral data undergoing the same pretreatment by using the

different feature screening methods, but the extracted wavelength

positions tend to concentrate in some specific bands. There are also

differences in the positions and numbers of the obtained feature

wavelengths extracted from the spectral data undergoing different

pretreatments by using the same feature screening method, but the

extracted wavelength positions tend to concentrate in some specific

bands. The obtained feature wavelengths extracted in Spectral
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Range I mainly concentrate in 450–700 nm and 900–1,000 nm.

The obtained feature wavelengths extracted in Spectral Range II

mainly concentrate in 1,170–1,350 nm. The obtained feature

wavelengths extracted in Spectral Range III bands mainly

concentrate in the visible light region of 450–700 nm, near 800

nm, at 950 nm, and in 1,500– 1,650 nm. It is found, that the

characteristic bands of proteins obtained in relevant studies are

highly overlapping in the positions with the characteristic

wavelengths obtained in this study. However, there are obvious

differences in the specific positions and numbers. This is speculated

to be caused by the heterogeneity of protein composition among

different species (Caporaso et al., 2018; Ma J. et al., 2019; Ma et al.,

2021; Cruz-Tirado et al., 2023). These results demonstrate the

effectiveness of the applied feature screening methods (SPA, RF,

and CARS) in extracting relevant wavelengths for protein content

detection in mulberry leaves using HSI.
3.3 Results of modeling

Prediction models for protein content is constructed on the

basis of PLS and LS-SVM, respectively, by combining three

pretreatment methods, three feature wavelength screening

methods, and full-band wavelength (Tables 1–3). In this study,

the R2, RMSE, and RPD of the test set are used to evaluate the

predictive ability of the model, and the most suitable model for

mulberry leaf content detection is selected by combining the

number of variables and the predictive ability of the model.

It can be seen in Table 1, in Spectral Range I, the results

obtained using the PLS models are better than those obtained using

the LS-SVM models, and the S.G. first-order derivation + SPA +

PLS model achieves the best performance, with an R2 of 0.90, an

RMESP of 0.85, and an RPD of 2.91. It can be seen in Table 2, in

Spectral Range II, the results obtained using LS-SVM and PLS

models are not much different, and the SNV + SPA + LS-SVM

model achieves the best performance, with an R2 of 0.93, an RMESP

of 0.71, and an RPD of 3.83. It can be seen in Table 3, in Spectral

Range III, the results obtained by using the PLS model are better

than those obtained by using the LS-SVM model, and the SNV +

SPA +L S-SVM model achieves the best performance, with an R2 of

0.93, an RMESP of 0.73, and an RPD of 3.51. The above results

show that there is no specific pretreatment method, characteristic
FIGURE 4

The average spectra of mulberry leaves with different protein content.
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wavelength, or modeling method optimal for all types of spectral

data, and it is necessary to explore the effects of different algorithm

combinations on model performance, so as to select the optimal

processing method in light of different situations. LS-SVM is

superior to linear methods in solving nonlinear problems, but it is

sensitive to noise and error in the input data, while in Spectral

Range I and III, the data used for modeling may be of poor quality

or poorly correlated with the detection of protein content spectral

data, so PLS algorithms obtain better results than LS-SVM

algorithms (Suykens et al., 2002; Wang and Hu, 2005).

As can be seen from Tables 1–3, better results are achieved by

using the models based on the feature extraction method, compared

with the full-band models, which is due to the fact that the full-band

spectral data have some redundant and interference information,

and this is an indication that the feature extraction method can

effectively reduce the redundant information between adjacent

spectral bands and improve the accuracy of models. Two

hyperspectral cameras with different wavelength ranges were

compared, and the overall performance of the predictive model

developed in the SWIR region shows better predictive power and

robustness than that established in the Vis-NIR region, which is

exactly opposite to the results of Ma et al. (Ma J. et al., 2019). They

obtained better results in detecting pork protein by using spectral

data of the Vis-NIR region. However, in many other protein

detection studies, good prediction results are obtained by using

spectral data of the SWIR region (Talens et al., 2013; Ma et al., 2021;
Frontiers in Plant Science 0782
He et al., 2023). In this study, compared with the models

constructed based on Spectral Range II spectral data, the model

based on Spectral Range III spectral data fails to show better

accuracy, although it obtains richer spectral information. This

may result from the spectrum of the Spectral Range III region

containing more redundant information related to the detection of

protein content of mulberry leaves. The above results show that the

SWIR region is the optimal spectral range for mulberry leaf

protein prediction.

Previous studies have explored the feasibility of HSI for the

non-destructive detection of protein content; however, few studies

have attempted to determine the optimal spectral range for

measuring proteins, especially for fresh mulberry leaves. In this

study, the best results are obtained by combining the SWIR HSI

acquisition system based on InGaAs detectors with SNV + SPA +

LS-SVM, with an R2 of the test set of up to 0.93, an RMSE of only

0.71 g/100 g, and an RPD of up to 3.83. The results show that the

model is qualified for detecting and analyzing the protein content of

mulberry leaves.
3.4 Visualization of protein content of
mulberry leaves

The distribution of protein content in mulberry leaves has not

been reported. In the practical application of non-destructive
A

B

C

FIGURE 5

The characteristic wavelength obtained after the combination of different pretreatment and variable extraction methods. (A) SNV preprocessing.
(B) Savitzky–Golay combined first-order derivation preprocessing. (C) MSC preprocessing.
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detection technology for mulberry leaf protein, the visualization of

the protein content of mulberry leaves can not only provide valuable

insights for merchants to classify the freshness and quality of

mulberry leaves more intuitively, but also aid researchers in

conducting plant physiology studies related to mulberry leaves. By

extracting spectral data from all pixels of the leaves, a distribution

map is generated by using the established SNV + SPA + LS-SVM

model to visualize the spatial distribution of protein content in

mulberry leaves. The level of protein content is represented by the

depth of shade, as depicted in Figure 6. It should be noted that the

variety, harvest time, and maturity significantly influence the nutrient

content of mulberry leaves. Previous studies have indicated that the
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protein content of mulberry leaves decreases with increasing ripeness

(Ramesh et al., 2021). In the visualization results of this study, it can

be seen that tender leaves exhibit higher protein content compared to

mature leaves, which is consistent with the above findings.

Additionally, the visualized distribution of the protein content of

mulberry leaves shows that the protein of healthy mulberry leaves is

essentially evenly distributed in the mesophyll, while the protein

content in the veins is extremely low. This is due to heterogeneity,

and the fact that the protein content varies across different locations

within the sample and the leaf vein is mainly composed of cellulose

and conductive substances with no capacity of storing energy

(Fukuda, 2004; Jiang et al., 2022).
TABLE 2 Results of models in spectral range II.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 204 15 0.86 1.02 2.17 0.87 0.97 2.81

SPA 15 15 0.92 0.78 3.07 0.93 0.71 3.83

CARS 26 9 0.85 1.05 1.95 0.86 1.03 2.24

RF 10 8 0.81 1.19 2.15 0.80 1.21 2.65

S.G. first-order derivation

Full bands 204 14 0.85 1.04 2.13 0.89 0.90 3.04

SPA 42 19 0.86 1.01 2.25 0.91 0.80 3.40

CARS 13 7 0.85 1.05 2.12 0.88 0.94 2.91

RF 10 7 0.80 1.20 1.84 0.86 1.01 2.70

MSC

Full bands 204 14 0.88 0.94 2.36 0.87 0.98 2.78

SPA 45 15 0.92 0.78 3.09 0.86 1.02 2.68

CARS 26 8 0.81 1.17 1.93 0.81 1.17 2.34

RF 10 9 0.74 1.37 1.48 0.71 1.44 1.89
frontie
TABLE 1 Results of models in spectral range I.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 204 17 0.82 1.14 2.28 0.60 1.71 1.60

SPA 24 21 0.89 0.91 2.62 0.86 1.01 2.69

CARS 23 18 0.88 0.93 2.68 0.84 1.09 2.53

RF 10 9 0.88 0.92 2.81 0.84 1.08 2.49

S.G. first-order derivation

Full bands 204 16 0.90 0.85 2.94 0.70 1.47 1.85

SPA 35 23 0.90 0.85 2.91 0.82 1.15 2.36

CARS 26 11 0.66 1.57 1.63 0.69 1.51 1.80

RF 10 7 0.69 1.49 1.61 0.72 1.43 1.91

MSC

Full bands 204 16 0.86 1.01 2.59 0.60 1.71 1.59

SPA 51 18 0.90 0.87 2.87 0.76 1.31 2.08

CARS 39 14 0.87 0.96 1.96 0.73 1.40 1.95

RF 10 8 0.89 0.90 3.20 0.85 1.04 2.63
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4 Conclusion

The protein content of mulberry leaves is a crucial indicator for

assessing their quality. In this study, we aimed to develop a rapid and

non-destructive method for detecting the protein content of mulberry

leaves using HSI technology. The feasibility of using HSI technology

within the spectral range of 400–1,000 nm and 900–1,700 nm for non-

destructive detection of mulberry leaf protein content is investigated.

By comparing different spectral ranges of the HSI acquisition system

and utilizing various data processingmethods, including preprocessing,

variable extraction, and modeling, prediction models for protein

content detection are constructed. The results demonstrated that the

best performance was achieved by combining the spectral data from

900–1,700 nm with SNV + SPA + LS-SVM. This approach yielded a
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testing set R2 value of up to 0.93, an RMSE of only 0.71 g/100 g, and an

RPD of up to 3.83. Furthermore, the visualization of the protein

content distribution in mulberry leaves based on the best model

revealed that healthy leaves exhibited an even distribution of protein

content throughout the mesophyll, with lower protein concentrations

observed in the leaf veins.

These findings show the optimal spectral range for mulberry

leaf protein prediction and highlight the potential of utilizing SWIR

HSI combined with the SNV–SPA–LS-SVM algorithm for rapid,

non-destructive, and high-precision detection of protein content in

mulberry leaves. The developed method can provide valuable

insights for assessing the quality of mulberry leaves in a non-

invasive manner, enabling efficient monitoring and optimization of

mulberry leaf quality.
TABLE 3 Results of models in spectral range III.

Pretreatment Variable selection No. of variables
PLS LS-SVM

PCs R2 RMSE RPD R2 RMSE RPD

SNV

Full bands 405 18 0.90 0.84 3.04 0.88 0.93 2.93

SPA 50 21 0.92 0.78 3.20 0.92 0.78 3.51

CARS 19 14 0.75 1.36 1.40 0.70 1.48 1.30

RF 10 10 0.67 1.54 1.78 0.39 2.10 1.84

S.G. first-order derivation

Full bands 204 22 0.93 0.72 3.39 0.91 0.82 3.31

SPA 43 28 0.92 0.77 3.20 0.90 0.85 3.22

CARS 19 7 0.87 0.97 2.49 0.85 1.04 2.62

RF 10 6 0.88 0.95 2.61 0.88 0.92 2.97

MSC

Full bands 204 16 0.90 0.86 3.00 0.87 0.97 2.80

SPA 48 19 0.93 0.73 3.51 0.86 0.99 2.75

CARS 77 16 0.92 0.76 3.39 0.87 0.99 2.75

RF 10 9 0.79 1.24 1.79 0.29 2.28 1.19
frontie
FIGURE 6

Visualization of protein content in mulberry leaves. (A) A young leaf with a protein content of 45.7 g/100 g. (B) A middle mature leaf with a protein
content of 26.3 g/100 g. (C) A mature leaf with a protein content of 16.3 g/100 g.
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Detection of breakage and
impurity ratios for raw sugarcane
based on estimation model and
MDSC-DeepLabv3+

Xin Li, Zhigang Zhang, Shengping Lv*, Tairan Liang,
Jianmin Zou, Taotao Ning and Chunyu Jiang

College of Engineering, South China Agricultural University, Guangzhou, China
Broken cane and impurities such as top, leaf in harvested raw sugarcane

significantly influence the yield of the sugar manufacturing process. It is crucial

to determine the breakage and impurity ratios for assessing the quality and price

of raw sugarcane in sugar refineries. However, the traditional manual sampling

approach for detecting breakage and impurity ratios suffers from subjectivity, low

efficiency, and result discrepancies. To address this problem, a novel approach

combining an estimation model and semantic segmentation method for

breakage and impurity ratios detection was developed. A machine vision-

based image acquisition platform was designed, and custom image and mass

datasets of cane, broken cane, top, and leaf were created. For cane, broken cane,

top, and leaf, normal fitting of mean surface densities based on pixel information

and measured mass was conducted. An estimation model for the mass of each

class and the breakage and impurity ratios was established using the mean

surface density and pixels. Furthermore, the MDSC-DeepLabv3+ model was

developed to accurately and efficiently segment pixels of the four classes of

objects. This model integrates improved MobileNetv2, atrous spatial pyramid

pooling with deepwise separable convolution and strip pooling module, and

coordinate attention mechanism to achieve high segmentation accuracy,

deployability, and efficiency simultaneously. Experimental results based on the

custom image and mass datasets showed that the estimation model achieved

high accuracy for breakage and impurity ratios between estimated andmeasured

value with R2 values of 0.976 and 0.968, respectively. MDSC-DeepLabv3+

outperformed the compared models with mPA and mIoU of 97.55% and

94.84%, respectively. Compared to the baseline DeepLabv3+, MDSC-

DeepLabv3+ demonstrated significant improvements in mPA and mIoU and

reduced Params, FLOPs, and inference time, making it suitable for deployment

on edge devices and real-time inference. The average relative errors of breakage

and impurity ratios between estimated and measured values were 11.3% and

6.5%, respectively. Overall, this novel approach enables high-precision, efficient,

and intelligent detection of breakage and impurity ratios for raw sugarcane.

KEYWORDS

raw sugarcane, breakage ratio, impurity ratio, estimation model, MDSC-DeepLabv3+
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1 Introduction

Sugarcane is an important raw material for the sugar industry

worldwide. In China, sugarcane-based sugar production reached 4.6

million tons in 2022, which is 4.3 times that of beet sugar (National

Development and Reform Commission, 2023). In recent years, the

use of machine-harvested sugarcane has been steadily increasing,

with plans to reach 30% of total sugarcane harvest in China by 2025

(Chinese government website, 2018). Machine harvesting

significantly improves efficiency and reduces labor intensity;

however, it also leads to higher ratios of broken cane and

impurities such as top, leaf, which can negatively impact the yield

of the sugar manufacturing process. As a result, the breakage and

impurity ratios are crucial indicators for assessing the quality and

pricing of raw sugarcane in practice, and determining these two

ratios is indispensable for sugar refineries. Unfortunately, the

commonly used manual sampling approach for detecting breakage

and impurity ratios brings several issues, including strong

subjectivity, low efficiency, and significant result discrepancies.

To address the aforementioned problem, an estimation model

was established, and machine vision technology was employed to

provide a more objective, efficient, accurate, and intelligent

approach for quantifying the cane, broken cane, and impurities,

as well as the ratios of breakage and impurity. This enables seamless

integration with the sugarcane harvesting and sugar processing

stages. Both cane and broken cane can be used as raw materials, but

broken cane is considered in mass deduction by sugar refineries

because it results in the loss of sugar content and impacts the quality

of the final sugar product. The sugarcane top, leaf, root, sand, gravel,

and soil and so forth are collectively referred to as impurities

(Guedes and Pereira, 2018). Adjusting the height between the

harvester’s cutting device and the ridge surface will reduce the

introduction of sand, gravel, and soil during sugarcane harvesting.

Furthermore, when the mechanical harvester operates smoothly

and adheres to specifications, it noticeably decreases the levels of

mud, stone, and cane root (Xie et al., 2018). Mechanical removal

methods, such as vibration, can often be used to screen out the sand,

gravel, and soil (Martins and Ruiz, 2020). However, the top, leaf and

cane root are unavoidable impurities as they are naturally part of

each sugarcane stem (de Mello et al., 2022). Regarding cane root,

object detection can be utilized to count its quantities. Combining

this with the average weight of the cane root helps predict the mass

of root impurity after excluding sand, gravel and soil. Based on the

quality detection practice of sugar refineries, the four categories of

cane, broken cane, top, and leaf are selected as the detection objects

in this study.

Estimation models and machine vision technology have been

widely used for the detection and monitoring of impurities in grain

crops such as rice, wheat, and corn. For example, Chen et al. (2020)

used morphological features and a decision tree for the classification

of rice grains and impurities with 76% accuracy to optimize

combine harvester parameters. Liu et al. (2023) proposed a

NAM-EfficientNetv2 lightweight segmentation approach for rapid

online detection of rice seed and impurities in harvesters, achieving

high evaluation index F1 scores of 95.26% and 93.27% for rice grain

and impurities, respectively. To improve accuracy in wheat and
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impurity recognition, Shen et al. (2019) constructed a dataset and

trained a recognition model called WheNet based on Inception_v3,

achieving a recall rate of 98% and an efficiency of 100ms per image.

Chen et al. (2022) designed a vision system based on DeepLabv3+ to

identify seeds and impurities in wheat, obtaining mean pixel

accuracy (mPA) values of 86.86% and 89.91% for grains and

impurities, and mean intersection over union (mIoU) scores of

0.7186 and 0.7457, respectively. For the detection of impurities in

the corn deep-bed drying process, Li et al. (2022) employed a multi-

scale color recovery algorithm to enhance images and eliminate

noise. They used HSV color space parameter thresholds and

morphological operations for segmentation and achieved F1

scores of 83.05%, 83.87%, and 87.43% for identifying broken

corncob, broken bract, and crushed stone, respectively. Liu et al.

(2022) developed a CPU-Net semantic segmentation model based

on U-Net, incorporating the convolutional block attention module

(CBAM) and pyramid pooling modules to improve segmentation

accuracy for monitoring corn kernels and their impurities. They

established a mass-pixel linear regression model to calculate the

kernel impurity rate and experimental results demonstrated that

CPU-Net outperforms other comparative approaches with average

mIoU, mPA, and inference time scores of 97.31%, 98.71%, and

158.4ms per image, respectively. The average relative error between

the impurity rate obtained by the model and manual statistics

was 4.64%.

Detection of impurities in cash crops such as soybean, cotton,

and walnut during harvesting or processing has also been

extensively studied in recent years. Momin et al. (2017) used HSI

to segment the image background of soybean with three categories

of impurities. They employed various image processing techniques,

such as median blur, morphological operations, watershed

transformation, projection area-based analysis, and circle

detection, for feature recognition of soybean and impurities. The

experimental results showed pixel accuracy of 96%, 75%, and 98%

for split bean, contaminated bean, and defective bean, and stem/

pod, respectively. Jin et al. (2022) developed an improved UNet

segmentation model to address issues of soybean sticking, stacking,

and complex semantics in images. The experimental results

demonstrated comprehensive evaluation index values of 95.50%,

91.88%, and 94.34% for complete grain, broken grain, and impurity

segmentation, respectively, with a mIoU of 86.83%. The field

experiment indicated mean absolute errors of 0.18 and 0.10

percentage points for fragmentation and impurity rate between

the model-based value and the measured value, respectively. For

real-time detection of impurity ratio in cotton processing, Zhang

et al. (2022) utilized the enhanced Canny algorithm to segment

cotton and its impurities. They employed YOLOv5 to identify the

segmented objects and determine their respective categories. They

also developed an estimation model for the impurity ratio based on

segmented volume and estimated mass and utilized a multithread

technique to shorten the processing time, achieving a 43.65%

reduction compared to that of a single thread. To improve the

recognition accuracy of white and near-cotton-colored impurities

in raw cotton, Xu et al. (2023) proposed a weighted feature fusion

module and a decoupled detection strategy to enhance the detection

head of YOLOv4-tiny. The proposed method decreased
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computation during the inference process, boosted the speed of

inference, and enhanced the accuracy of cotton impurity

localization. Experimental results showed a respective increase of

10.35% and 6.9% in mAP and frames per second (FPS) compared to

the baseline YOLOv4-tiny. The detection accuracy of white and

near cotton-colored impurities in raw cotton reached 98.78% and

98%, respectively. To achieve real-time segmentation of juglans

impurity, Rong et al. (2020) proposed a hybrid approach by

combining a segmentation model based on a multi-scale residual

full convolutional network and a classification method based on a

convolutional network. The proposed method accurately

segmented 99.4% and 96.5% of the object regions in the test and

validation images, respectively, with a segmentation time of within

60ms for each image. Yu L. et al. (2023) presented an improved

YOLOv5 with lower parameters and quicker speed for walnut

kernel impurity detection by incorporating target detection layers,

CBAM, transformer-encoder, and GhostNet. The results indicated a

mAP of 88.9%, which outperformed the baseline YOLOv5 by 6.7%.

In recent years, researchers have also achieved notable progress

in the field of impurity detection in sugarcane. Guedes and Pereira

(2019) constructed an image dataset comprising 122 different

combinations of sugarcane stalk, vegetal plant part, and soil to

evaluate the impurity amount. They converted color samples into

color histograms with ten color scales and employed three

classifiers, namely soft independent modeling of class analogy,

partial least squares discriminant analysis (PLS-DA), and k

nearest neighbors (KNN), to classify cane and its impurities.

Guedes et al. (2020) further proposed an analytical method using

artificial neural networks (ANNs) combined with the ten color

histograms to predict the content of sugarcane in the presence of

impurities. The experimental results demonstrated correlation

coefficients of 0.98, 0.93, and 0.91 for the training, validation, and

test sets, respectively. Aparatana et al. (2020) employed principal

component analysis (PCA), PLS-DA, and support vector machine

(SVM) to classify and differentiate sugarcane and impurities,

including green leaf, dry leaf, stone, and soil, based on their

spectral information. The research findings indicated that PCA,

PLS-DA, and SVM achieved classification rates of 90%, 92.9%, and

98.2%, respectively. Dos Santos et al. (2021) used a similar

mechanism by combining ten color histograms and ANNs to

classify raw sugarcane. They achieved 100% accurate classification

for two ranges of raw sugarcane in the samples, from 90 to 100 wt%

and from 41 to 87 wt%. However, these studies mentioned above

recognize raw sugarcane and impurities based on their color

features, making it difficult to differentiate objects with inter-class

similarity, such as sugarcane top and leaf, which have similar color

features at the pixel level. Additionally, these methods may not be

suitable for practical situation with multiple combinations of

impurities in arbitrary proportions, which present significant

challenges in building samples with a vast combination of weight

percentages of impurities.

From the perspective of recognition tasks, the aforementioned

studies can be categorized into three types: image classification,

object detection, and semantic segmentation. Image classification-

based approaches (Momin et al., 2017; Guedes and Pereira, 2019;
Frontiers in Plant Science 0389
Shen et al., 2019; Aparatana et al., 2020; Chen et al., 2020; Guedes

et al., 2020; Dos Santos et al., 2021; Li et al., 2022) cannot capture

pixel-level information for subsequent construction of a mass-pixel

fitting model. Object detection can be utilized for real-time

classification and localization of crops and impurities (Zhang

et al., 2022; Xu et al., 2023; Yu J. et al., 2023), but they still

cannot support subsequent mass estimation based on pixels of

detected objects. Semantic segmentation, on the other hand, enables

pixel-wise classification of an image and facilitates the precise

determination of the number of pixels and their respective

categories in a specific region. Mass-pixel fitting models can be

established by combining the number of pixels and the actual mass

of each category of object (Rong et al., 2020; Chen et al., 2022; Jin

et al., 2022; Liu et al., 2022; Liu et al., 2023), thus supporting the

quantitative analysis of the quality of the detected objects. In order

to quantify the ratio of breakage and impurity in raw sugarcane,

semantic segmentation technology was utilized to abstract the of

raw sugarcane and impurities in this study. However, the

aforementioned approaches and findings are difficult to be

directly applied to the detection of sugarcane and impurities in

this study. Firstly, there is currently a lack of image databases that

include raw sugarcane and impurities. Secondly, the estimation

models developed in the above studies are only suitable for

relatively stable scenarios of surface density (mass/pixel) for each

detection category. However, the surface density of broken cane

varies significantly due to different degrees of breakage, and the

residual leaf at the top of the cane is scattered, resulting in a more

varied surface density. Therefore, it is necessary to establish a

corresponding image dataset and segmentation model for the

detection of raw sugarcane and impurities and build new

estimation model for quality evaluation based on segmented pixels.

Popular and widely applied deep learning (DL)-based semantic

segmentation approaches have achieved excellent results in image

processing in agriculture (Luo et al., 2023). Among these

approaches, end-to-end semantic segmentation models like FCN,

UNet, PSPNet, and DeepLabv3+ have demonstrated good

performance with simple structures. DeepLabv3+ in particular

has gained significant popularity and has been extensively

enhanced due to its exceptional segmentation accuracy, making it

a widely practiced and verified model in agricultural applications.

For instance, Wu et al. (2021) developed an enhanced version of

DeepLabv3+ to segment abnormal leaves in hydroponic lettuce.

Peng et al. (2023) constructed an RDF-DeepLabv3+ for segmenting

lychee stem. Zhu et al. (2023) proposed a two-stage DeepLabv3+

with adaptive loss for the segmentation of apple leaf disease images

in complex scenes. Wu et al. (2023) utilized Deeplabv3+ and post-

processing image analysis techniques for precise segmentation and

counting of banana bunches. Their findings indicated that

DeepLabv3+-based segmentation models can effectively perform

pixel-level segmentation of crop objects, and the segmentation

effects were superior to those of compared approaches. In this

study, DeepLabv3+ was adopted for the semantic segmentation of

raw sugarcane and impurities, and efforts were made to further

improve its segmentation accuracy, reduce parameters, and

optimize inference time.
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This study aims to address the detection of breakage and

impurity ratios in raw sugarcane. The specific research content of

this study includes: (1) Designing a machine vision-based acquisition

platform for online image collection of raw sugarcane (cane, broken

cane) and impurities (top, leaf). Custom datasets of masses and

corresponding images were constructed. (2) Establishing a normal

fitting model to determine the mean surface density of each class

based on measured masses and extracted pixels. Additionally, an

estimation model was developed to assess the ratios of breakage and

impurity using the estimated mass of each class, along with their

pixels and fitted mean surface density. (3) Developing a MDSC-

DeepLabv3+ model for accurate segmentation of raw sugarcane and

impurity pixels based on DeepLabv3+. The model was further

improved by incorporating improved MobileNetv2, atrous spatial

pyramid pooling (ASPP) with deepwise separable convolution (DSC)

and strip pooling (SP) named ASPP_DS, and coordinate attention

(CA) mechanism to enhance segmentation accuracy, reduce

parameters, and optimize inference time. (4) Conducting

experiments to verify the accuracy of the proposed estimation

model in assessing breakage and impurity ratios, and evaluate the

capability of MDSC-DeepLabv3+ in rapidly and accurately

identifying the pixels of cane, broken cane, top, and leaf.

Comprehensive experimental results show that the average relative

errors of breakage and impurity ratio between predicted values and

measured values are low. These findings have significant implications

for the development of intelligent detection and cleaning system for

sugarcane impurity.
2 Materials and methods

2.1 Raw sugarcane and impurity
dataset construction

2.1.1 Detection device design
In order to provide a stable environment and meet the

continuous image acquisition requirements that align with the

raw sugarcane convey process in the sugar refinery, a dedicated

platform for image acquisition of raw sugarcane and impurities was
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designed, as shown in Figure 1A. The platform mainly consists of

portable energy storage, an acquisition room, a light source, an

image acquisition module, a computer, and a motion

assistance module.

The portable energy storage is used to supply power to the

platform, especially in situations where electricity supply is limited.

The interior of the image acquisition room, as depicted in Figure 1B,

is covered with black matte paper to create a diffused lighting

environment. Additionally, four magnetic base LED light bars are

strategically placed around the room to ensure consistent

illumination for the image acquisition module. The image

acquisition module comprises an industrial camera and an

industrial lens. The computer is connected to the image

acquisition module via a USB 3.0 interface, which facilitates

image storage and processing. The motion assistance module is

composed of a conveyor, a cross beam guide rail, and a pair of

vertical slider guide rails with self-locking function. The conveyor

simulates the transmission of raw sugarcane before entering the

pressing workshop. The vertical slider guide rails, equipped with

scale markings, support and allow for adjustment of the cross beam

guide rail where the camera is mounted. This feature enables easy

adjustment of the camera’s field of view and ensures the stability of

the image acquisition module.

Table 1 shows the model parameters of the main components of

the acquisition platform. The conveyor belt speed is determined

based on sugar refinery practice and is measured in meters per

second (m/s). The dimensions of the indoor acquisition room are

set according to the requirements, with horizontal (HFOV) and

vertical (VFOV) dimensions are set to the belt width of 450mm

and indoor length of 600mm, respectively. The selected industrial

camera has a horizontal (HCMOS) and vertical (VCMOS) size of the

image sensor as 7.6×5.7mm, and the working distance (WD) is set to

490mm considering the inner height of the acquisition room. The

imaging principle of this acquisition platform is illustrated in

Figure 2. Using the imaging principle and the dimensions of

HCMOS, VCMOS and WD, the field of view can be determined using

Eq.(1).

f =WD = VCMOS=VFOV = HCMOS=HFOV (1)
BA

FIGURE 1

Machine vision acquisition platform. (A) Acquisition device structure. (B) Acquisition room.
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As a result, the focal length is determined by f = WD × (VCMOS/

VFOV) = 490 × (7.6/3450) = 8.27mm, and the MVL-MF0828M-8MP

industry lens is selected.

2.1.2 Image and mass data acquisition
The image and mass acquisition of raw sugarcane and

impurities took place in the sugarcane unloading workshop of

Junshi sugar refinery in Jijia Town, Leizhou City, Guangdong

Province. The data collection period started from the middle of

February to the end of the month in 2023, coinciding with the local

sugarcane harvesting season. For this study, large-scale cultivated

sugarcane variety “Yuetang 159” was selected. The raw sugarcane

samples were randomly collected from different machine-harvested

vehicles at various time intervals throughout the day using a loader.

These samples were then manually placed on the conveyor belt of

the acquisition platform for image collection. In total, 910 RGB 8-

bit photos with jpg format and a resolution of 1624×1240 were

captured. Each image contains four categories: cane, broken cane,

top, and leaf, as shown in Figure 3. Following the image capturing

process, 300 samples of raw sugarcane and impurities were

randomly selected from the collected images. Each category of

material in these samples was weighed using a calibrated

electronic scale with a precision of 0.01g, and their masses were

measured in grams (g).

2.1.3 Image labeling and dataset augmentation
The original dataset consists of 910 images containing cane,

broken cane, top, leaf, and the background. These images were

manually labeled and colored using the image annotation tool

Labelme. The labeled regions of the five classes of objects were

used to evaluate the training loss of intersection over union (IoU)

between predicted bounding boxes and ground truth. The RGB

values for cane, broken cane, top, and leaf were set to [128,0,0],

[0,0,128], [0,128,0], and [128,128,0], respectively, while the

background was set to [0,0,0]. To ensure model performance

validation and testing, the dataset was randomly divided into

training (546 images), validation (182 images), and test sets (182

images) with a ratio of 6:2:2.

In order to improve the generalization of the model, data

augmentation techniques were applied to the training, validation,

and test sets separately. Techniques such as random rotation, affine

transformation, fogging, Gaussian noise, median filtering, and

cutout were used to enhance the original images. After

augmentation, the images were checked and corrected using

Labelme to ensure accurate labeling of each class in every image.

The annotated images were stored in the PASCAL VOC format and
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named Raw Sugarcane and Impurity (RSI). The label counting

algorithm was used to calculate the number of labels in the RSI

images, and the corresponding statistics are shown in Table 2. The

dataset demonstrates a relatively balanced distribution of samples

across each class. Examples of the original annotated images and

augmented images can be observed in Figure 4.
2.2 Estimation model establishment

2.2.1 Surface density distribution analysis
In general, previous estimation models that are based on image

pixels for assessing the mass of crops (such as wheat, corn, and

soybean) often assume that the surface density (mass/pixel) of each

crop category remains stable across different images (Chen et al.,

2022; Jin et al., 2022; Liu et al., 2022). However, when it comes to

broken cane and impurities, their surface density can vary

significantly in different images. Therefore, before building the

estimation model, it is essential to analyze the surface density

distributions of cane, broken cane, top, and leaf separately. This

analysis will help to account for the variation in surface density and

ensure more accurate estimation for breakage and impurity ratios in

raw sugarcane.
TABLE 1 Main components of the acquisition platform.

Components Parameters Components Parameters

Acquisition room Indoor space 600mm×500mm×700 mm Slider guide rail SGR15N-500mm×2

Industry camera MV-CA020-10UC with 89.1fps@1624×1240, image sensor size 7.6×5.7mm Computer AMD Ryzen7 5800H GeForce GTX 1650

Industry lens MVL-MF0828M-8MP Portable energy storage 72000mAh/3.2V

Light source 3600Lux×4 Conveyor 2000mm×450mm×100mm,1.5m/s, ≤20kg
FIGURE 2

Imaging principle in this acquisition platform.
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The analysis of surface density distribution was conducted using

300 samples of mass data and the corresponding images for each

category. The OpenCV threshold function was utilized to count the

number of pixels in each category. Let PC, PB, PT andPL represent

the number of pixels of cane, broken cane, top, and leaf in each

image sample, respectively, and their corresponding masses are

denoted as MC, MB, MT and ML, respectively. The spatial

distribution of the surface density for raw sugarcane, including

cane and broken cane, as well as the top and leaf, is presented in

Figure 5. Based on the surface density distribution of raw sugarcane

in Figure 5A, it can be observed that the surface density of cane

fluctuates less and is more concentrated. The surface density of

broken cane is approximately half of that of cane, and the data is

scattered. Figures 5B, C illustrate that the surface density
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distribution of top and leaf is more scattered compared to

broken cane.

To address the scattered surface density of broken cane, top,

and leaf, a Gaussian distribution probability density function was

used to fit the frequency histograms of surface density for each

category. The mean surface density m for each category was then

obtained through the fitting process, and the results are

demonstrated in Figure 6. It can be observed that all fitting

coefficients R2 are greater than 0.95, indicating high fitting accuracy.

The fitting results showed that the mean surface density of cane,

broken cane, top, and leaf are mc = 1.52E-3, mB 7.4E-4, mT = 8.8E-4

and mL = 3E-5 with unit g/pix, respectively. Moreover, it is evident

that the mean value of cane mc is approximately twice the mean

value of broken cane mB and top surface density mT, and mc is more
B C D EA

FIGURE 3

Acquisition materials and segmentation classes. (A) Original image, (B) Cane, (C) Broken cane, (D) Top, (E) Leaf.
B C D

E F G H

A

FIGURE 4

Augmented image samples and image label. (A) Original image, (B) Ground truth, (C) Random rotation, (D) Affine transformation, (E) Fogging, (F)
Gaussian noise, (G) Median filtering, (H) Cutout.
TABLE 2 Statistic of Raw Sugarcane and Impurity (RSI) dataset.

Dataset Training dataset Validation dataset Test dataset Complete dataset

Images 5460 1820 1820 9100

Cane labels 16882 4151 3850 24883

Broken cane labels 13735 3310 3410 17045

Top labels 15903 4071 4390 24364

Leaf labels 17234 4015 3830 25079
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than fifty times of mL. The mass error of leaf has little effect on the

overall mass error. Therefore, when establishing the estimation

model, the accuracy of the estimated mass of cane should be

ensured first, followed by broken cane, top, and finally leaf. This

approach is consistent with the low deduction percentage setting (as

low as 0.2%) employed by sugar refineries for leaf impurities.
2.2.2 Fitting and estimation model establishment
On the basis of the mean values of surface density given in

Figure 6, the estimated mass of caneM’C, broken caneM’B, topM’T,

and leaf M’L based on their pixels can be expressed as follows:
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M0
C = mC � PC = 1:52E� 3PC (1)

M0
B = mB � PB = 7:4E� 4PB (2)

M0
T = mT � PT = 8:8E� 4PT (3)

M0
L = mL � PL = 3E� 5PL (4)

Furthermore, a linear regression of the estimated and measured

mass was conducted to validate the accuracy of the mass estimation

model defined by Eq.(1)-(4). Based on the distribution

characteristics shown in Figure 6, a total of 285 mass data of

cane, broken cane, top, and leaf within a 95% confidence interval

were selected for fitting, and the fitting results were presented in

Figure 7 and Table 3. It can be seen that the measured mass of the

cane is highly correlated with the estimated mass with an R2 value of

0.983. This indicates that the linear regression model is capable of

explaining the numerical relationship between the measured mass

and the estimated mass of the cane. The R2 value for broken cane

and top are 0.894 and 0.88, respectively, demonstrating the

regression model’s good fitting capability. The R2 value for the

leaf is 0.764 suggesting that the model can still adequately fit the

relationship between the measured mass and the estimated mass. In

addition, the results of ANOVA in Table 3 indicate that the

significance F<0.01 between estimated cane, broken cane, top, and

leaf and their measured values proves a high correlation.

Based on the mass of each category, the ratios of breakage (RB)

and impurity (RI) is defined as:

RB = MB
MC+MB

� 100%

= 7:4E−4 � PE
1:52E−3�Pc+7:4E−4�PE

� 100%
(5)

RI =
MT  þ ML

MC+MB+MT+ML
� 100%

= 8:8E−4�PT  þ  3E−5�PL
1:52E−3�Pc+7:4E−4 � PE+8:8E−4�PT  þ  3E−5�PL

� 100%
(6)

Where MC, MB, MT and ML is the mass of cane, broken cane,

top and leaf in an image sample. The estimated breakage and

impurity ratios R'B and R'I can also be determined by replacing MC,

MB, MT and ML in Eq.(5)-(6) with estimated mass M'C, M'B, M'T
and M'L. Thereby Eq.(5)-(6) can be taken as the estimation model

for breakage and impurity ratios.
2.3 Raw sugarcane and impurity
segmentation model development

2.3.1 MDSC-DeepLabv3+ framework
In order to facilitate the M'C, M'B, M'T, M'L, R'B and R'I

calculation, a segmentation model, MDSC-DeepLabv3+, was

developed for the intelligent extraction of pixels of cane PC,

broken cane PB, top PT, and leaf PL in each image sample.

MDSC-DeepLabv3+ is an improvement upon the DeepLabv3+.

The DeepLabv3+ comprises two modules: an encoder and a

decoder (Chen et al., 2018). In the encoder, the Xception
B

C

A

FIGURE 5

Spatial distribution of surface density for the 4 classes in RSI. (A) Raw
sugarcane, (B) Top, (C) Leaf.
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backbone is used to extract input image features, resulting in two

effective feature maps. One of the feature map undergoes processing

through atrous spatial pyramid pooling named ASPP, and is then

using a 1×1 standardization convolution for the fused features from

ASPP. This produces high-level features that are subsequently fed

into the decoder. The other feature map directly outputs to the

decoder. The ASPP is composed of a 1×1 standardization

convolution, three 3×3 depthwise separable convolutions named

DSC with varying dilation rates (6, 12, and 18), and an average

pooling layer. These convolutions generate feature maps at four

different scales, which are stacked along the channel dimension.

In the decoder, the low-level features obtained from the

Xception backbone first undergo 1×1 convolution to reduce the

number of channels. Meanwhile, the high-level features from the

encoder are bilinearly upsampled by a factor 4 to improve the image

resolution. Afterwards, the 1×1 convoluted low-level features are

fused with the upsampled high-level features, and a 3×3 DSC is

utilized to extract information from the fused features, followed by

another bilinear upsampling by a factor 4. Previous studies have

demonstrated the effective use of DeepLabv3+ in agricultural fields,

such as fruit picking, crop disease and pest, and field road scenes

(Wu et al., 2021; Peng et al., 2023; Yu J. et al., 2023).

To enhance both the accuracy and deployability of the model, as

well as reduce inference time, various improvements including

improved MobileNetv2, ASPP_DS module and CA mechanism

were introduced in this study. First, the atrous convolution was
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employed to optimize the MobileNetv2, and Xception was replaced

by the improved MobileNetv2 in DeepLabv3+. In the MobileNetv2,

dilated convolution was incorporated into the last two layers by

increasing the kernel size, thus expanding the receptive field. This

enhancement allows the network to better perceive surrounding

information without significantly increasing computational

complexity or compromising the resolution of the feature maps.

Then, the dilation rates in the ASPP module were adjusted as 4, 8,

and 12, and a strip pooling layer was added parallel to DSC to build

a module named ASPP_DS. Module ASPP_DS can reduce the

model parameters and establish long-range dependencies between

regions distributed discretely, and focus on capturing local details.

ASPP employs diverse padding and compact dilation strategies to

extract receptive fields at various scales, effectively capturing

information from both multi-scale contexts and small objects.

Additionally, ASPP integrates a parallel strip pooling layer with

elongated and narrow pooling kernels to grasp local contextual

details in both horizontal and vertical spatial dimensions. This

approach helps in reducing interference from unrelated regions in

label prediction results. Finally, CA was appended to the output of

MobileNetv2 and ASPP_DS separately, that allows the model to

acquire weight information from the dimensions of feature channels

and effectively leverage positional data. This incorporation enables

the accurate capture of spatial relationships and contextual

information of the target, thereby enhancing training efficiency.

The enhanced version of DeepLabv3+ is denoted as MDSC-
B
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FIGURE 6

Gaussian distribution fitting of surface density. (A) Cane, (B) Broken cane, (C) Top, (D) Leaf.
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DeepLabv3+. The overall framework of MDSC-DeepLabv3+ is

depicted in Figure 8.

2.3.2 Improved MobileNetv2
The basic structure unit of MobileNetv2 is the inverted

residual block (IRB), which mainly consists of dimensionality

expansion, feature extraction and dimensionality compress three

main steps. The MobileNetv2 employs 3×3 depthwise convolution
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(Dwise) and 1×1 convolution to construct two IRBs with s= 1, s=2

(Sandler et al., 2018). In cases where the stride is equal to 1 and the

shape of the input feature matrix matches that of the output

feature matrix, a shortcut connection is employed, as shown in

Figure 9. In addition, the dimensionality compression process in

MobileNetv2 uses a linear activation function instead of the Relu

activation function to reduce information loss caused

by compression.
TABLE 3 Analysis of Variance (ANOVA) of estimated and measured mass. .

Category DF Square sums Mean square F Significance F

Cane

Regression analysis 1 2340192.15697 2340192.15697 16820.25846 4.23041E-254

Residual 283 39373.61497 139.12938

Total 284 2379565.77194

Broken
cane

Regression analysis 1 225202.9665 225202.9665 2390.43448 4.97988E-140

Residual 283 26661.44583 94.21006

Total 284 251864.41233

Top

Regression analysis 1 656015.70993 656015.70993 2055.21929 8.58987E-132

Residual 283 90332.18347 319.19499

Total 284 746347.8934

Leaf

Regression analysis 1 431.20971 431.20971 915.53104 1.07792E-90

Residual 283 133.29133 0.47099

Total 284 564.50104
B
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FIGURE 7

Regression of estimated and measured mass. (A) Cane, (B) Broken cane, (C) Top, (D) Leaf.
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To reduce computing costs and memory usage, this study utilizes

the first 8 layers of theMobileNetv2model. This choice is made because

starting from the 9th layer, the number of output channel increases to

1280, leading to higher computing resource consumption. Tominimize

the loss of down-sampling information while increasing receptive field,

the stride of the 7th layer is modified to 1 (Meng et al., 2020).

Furthermore, dilated convolutions with a factor not exceeding 1

are utilized to replace conventional convolutions. According to

research by Wang et al. (2018), sparse concatenation of dilated

convolution may introduce grid effects, hindering the lower layers

of the network from fully leveraging features from the initial layer
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and causing the loss of fine-grained details. Therefore, dilation rates

of 2 and 5 are applied in the 7th and 8th layer respectively, while the

remaining layers maintain a dilation rate of 1, aiming to expand the

receptive field and preserve edge detail information. The structure

and hyperparameter of the improved MobileNetv2 are displayed in

Table 4, in which t is the expansion factor, c is the output channel, n

is the number of repetitions of bottleneck, s is the first module strid,

and r is dilation rate. When dilation rate of 1 results in atrous

convolution being equivalent to a regular convolution. This design

achieves a balance between computational resource consumption

and network performance requirements.
FIGURE 8

Framework of MDSC-DeepLabv3+.
BA

FIGURE 9

Structure of inverted residual block in MobileNetv2. (A) Stride=1 block. (B) Stride=2 block.
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2.3.3 Strip pooling
To better handle the segmentation of broken cane and top with

irregular and complex shapes, a lightweight strip pooling layer was

added in parallel to DSC in the ASPP. This allows for more efficient

acquisition of information from a large receptive field, facilitating

the collection of remote contextual information from different

spatial dimensions by ASPP. Strip pooling utilizes a pooling

kernel (rectangular area) that performs pooling operations along

the horizontal and vertical dimensions. The structure of strip

pooling (Hou et al., 2020) is shown in Figure 10, where X ϵ
RC×H×W is the input tensor, C denotes the number of channels, H

denotes the height, and W denotes the width. First, the input X is

pooled horizontally and vertically to obtain yh ϵ RC×H×1 and yv ϵ
RC×1×W, respectively. Then, the feature maps are expanded to the

same resolution C×H×W as the input X using a 1D convolution

with a kernel size of 3×3 to obtain the expanded yh, yv. Next, the

expanded feature maps are fused to obtain a final representation.

yc,i,j = yhc,i + yvc,j, 1 ≤ c ≤ C, 1 ≤ i ≤ H, 1 ≤ j ≤ W

Finally, after a 1 × 1 standard convolution and a sigmoid layer,

the final output Z of strip pooling is obtained by multiplying the

corresponding elements with the original input.

Z = Scale X,s f yð Þð Þð Þ
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where Scale (-, -) is the element-level multiplication, s is the

sigmoid function, and f is the 1×1 convolution, y is feature

fusion results.

The element of specified location in the output tensor (i,

j),1≤i≤H,1≤j≤W corresponds to the result of strip pooling of the

horizontal and the vertical pooling window in the input tensor. By

repeatedly applying the aggregation process using long and narrow

pooling kernels, the ASPP_DS module can efficiently capture

information from a wide receptive field throughout the entire

scene. Due to the design of the elongated and narrow shape of

the pooling kernel, it not only establishes remote dependency

relationships between regions distributed discretely but also

focuses on capturing local detailed features.

2.3.4 Coordinate attention
Inspired by the prominence of the region-of-interest search in the

human visual system, attention mechanisms aim to simulate this

process by dynamically adjusting the weights based on the input image

features. Attention mechanisms can be categorized into various types,

such as channel attention (e.g. SE), hybrid attention (e.g. CBAM),

temporal attention (e.g. GLTR), branch attention (e.g. SKNet), and

position attention mechanisms (e.g. CA). These attention mechanisms

have been widely applied in fields such as object detection (Yu J. et al.,

2023) and image segmentation (Zhu et al., 2023).
FIGURE 10

Structure of strip pooling.
TABLE 4 Hyperparameters of MobileNetv2.

Input size Operator t c n s r

512×512×3 conv2d – 32 1 2 1

256×256×32 bottleneck 1 16 1 1 1

256×256×16 bottleneck 6 24 2 2 1

128×128×24 bottleneck 6 32 3 2 1

64×64×32 bottleneck 6 64 4 2 1

32×32×64 bottleneck 6 96 3 1 1

32×32×96 bottleneck 6 160 3 1 2

32×32×160 bottleneck 6 320 1 1 5
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The CA not only models channel relationships but also utilizes

positional information to capture long-range dependencies (Hou

et al., 2021). Therefore, CA was selected in the MDSC-DeepLabv3+

to highlight the regions of interest. The CA consists of coordinate

information embedding (CIE) and coordinate attention generation

(CAG) two main operation, as shown in Figure 11. CIE introduces

two global average pooling to encode each channel along the

horizontal and vertical coordinate on the input feature map,

respectively, hence aggregates features along the two spatial

directions. These two pairs of global average pooling operation

enable CA to capture long-range dependencies along one spatial

direction and preserve precise positional information along other

one, which allows the network to more precisely locate the objects

of interest. CAG first conducts concatenation (Concat) and Conv2d

for the feature maps obtained from CIE followed by batch

normalization and non-linear activation operation. Then, the

intermediate feature map is split into two separate tensors along

the spatial dimension. Next, 1×1 Conv2d and sigmoid activation are

utilized to separately transform the output tensors to tensors with

the same channel number as the input feature maps. Finally, the

output tensors are then expanded into elements and used as

attention weights. The final output of CA is the element-wise

multiplication of original input of CIE and the attention weights.

Introduction of CA before low feature processing and after the

features fusion of ASPP_DS is beneficial in fully utilizing positional

information. This allows the model to accurately capture the spatial

relationships and contextual information of the target, thus

improving the accuracy of sugarcane and impurity phenotype

segmentation in denser images.
3 Experiments and results

3.1 Analyzing of estimation model

The effectiveness of estimation model for breakage and impurity

ratios defined in Section 2.2.2 was validated by fitting estimated and

measured value. First, the measured mass of cane, broken cane, top,

and cane leafMC,MB,MT andML, along with the number of pixels

for each category manually labeled in the selected 285 images (95%

confidence interval of samples) were obtained. Then, estimated

masses of M'C, M'B, M'T and M'L for the four categories were
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determined based on the mean surface density mC, mB, mT and mL
according to Eq.(1)-(4). Next, the measured and estimated ratios of

breakage and impurity were obtained according to Eq.(5)-(6) based

on the measured and estimated masses. Finally, the measured

breakage and impurity ratios were linearly fitted with the

estimated breakage and impurity ratios, and the fitting results are

shown in Figure 12 and Table 5, respectively.

It can be observed that the fitting R2 values are as high as 0.976

and 0.968, respectively. In addition, the results of the ANOVA

presented in Table 5 indicate a high correlation between the

estimated breakage and impurity ratios and their measured

values, with a significance level of F<0.01. Therefore, it is feasible

to utilize the fitted surface density to estimate mass for each

category and furthermore predict the breakage and impurity

ratios for raw sugarcane.
3.2 Analyzing of segmentation model

3.2.1 Training environment and
evaluation metrics

The semantic segmentation categories considered in this study

are background, cane, broken cane, top, and leaf. In the process of

sugarcane harvesting, raw sugarcane is primarily composed of cane,

with cane tops and leaves present as impurities to a lesser extent.

Broken cane represents the category with the lowest representation,

leading to an extreme class imbalance. Consequently, this often

leads to imbalanced positive and negative samples, along with

varying sample difficulties. Therefore, this study utilizes the Focal

Loss function as the primary loss function to address the imbalance

between easy and difficult samples, facilitating better parameter

optimization during the backpropagation process (Lin et al., 2017).

In addition, the model incorporates the multi-class Dice Loss as an

auxiliary loss function to enhance segmentation accuracy and

address class imbalance scenarios (Milletari et al., 2016). The

combination of Focal Loss and multi-class Dice Loss as the loss

function enhances the model’s predictive capability. The Focal loss

for multi-objective segmentation is defined as.

LF = −at 1 − ptð Þg log ptð Þ
Where pt is the confidence value of the sample category

prediction. g is an adjustable parameter, and the default is 2.
FIGURE 11

Structure of coordinate attention.
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The Dice loss for multi-objective segmentation is defined as.

LD = 1 −o
c

j=1

2WjoN
i=1gt j, ið Þ log pi,j

� �
oN

i=1 gt j, ið Þ2+ log pi,j
� �2� �

Where, N is the number of samples, c is the target class, and pi,j
is the softmax output of class j target class; gt(j,i) is the ground-truth

label of class j target, andWj is the weight of the objective of class j,

Wj = 1/j.

The experiments were conducted on a server in the lab with the

configuration shown in Table 6. The MDSC-DeepLabv3+ used the

Adam optimizer to compute the gradient of the loss function in

each epoch to perform parameter updates. The initial learning rate

was set to E-4. The batch size was set to 6. The training process

consists of 100 epochs. In each epoch, the image dataset was

randomly shuffled and fed into the model to ensure a different

order of dataset used in different epochs. This technique enhances

the convergence speed of the model and improves the prediction

results on the test set.

In order to comprehensively evaluate the performance of the

proposed and comparative semantic segmentation models, three

aspects of each model, namely accuracy, deployability, and

efficiency, are comprehensively evaluated. The commonly used

mIoU and mPA were utilized as accuracy evaluation metrics. And

the model deployability was evaluated using model parameter

quantity (Param) and model computation volume floating point

operations (FLOPs). Efficiency was evaluated using inference time

for each image. The metrics of IoU, mIoU and mPA which is

represented by the following Eq. (7)-(9), respectively.
Frontiers in Plant Science 1399
IoUi =
Pii

oc−1
i=0Pij +oc−1

j=0Pji − Pii
� 100% (7)

mIoU =
1
co
c−1

i=0
IoUi (8)

mPA =
1
co
c−1

i=0

pii

oc−1
j=0pij

(9)

Where c denotes the number of categories, so c=4 (cane, broken

cane, top and leaf), Pij or Pji denotes the number of category

prediction that is incorrect, while Pii denotes the number of

correct predictions made by categories.

3.2.2 Model training
The size of the input image is a crucial factor affecting the

model’s performance. Increasing the image size enhances accuracy

by preserving semantic information for small targets and

preventing information loss caused by low-resolution feature

maps. However, excessively large image sizes can lead to reduced

detection accuracy due to the limited receptive field imposed by the

fixed network structure. This, in turn, diminishes the network’s

ability to accurately predict targets of various scales (Lin et al.,

2022). In practical applications, there is a trade-off between

accuracy and speed that requires careful consideration. For this

study, the input image was resized to three different dimensions:

256×256, 512×512, and 768×768. The proposed MDSC-DeepLabv3

+ model was trained accordingly, and the results obtained are

presented in Table 7. It can be observed that reducing the input
TABLE 5 ANOVA of breakage and impurity ratios.

Ratio DF Square sums Mean square F Significance F

Breakage ratio

Regression analysis 1 2.58018 2.58018 11405.03085 1.05518E-230

Residual 283 0.06402 2.26232E-4

Total 284 2.64421

Impurity ratio

Regression analysis 1 2.41267 2.41267 8470.24579 6.21725E-213

Residual 283 0.08061 2.84841E-4

Total 284 2.49328
BA

FIGURE 12

Fitting of estimated and measured ratio. (A) Breakage ratio, (B) Impurity ratio.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1283230
image size to 512×512 achieves an optimal balance between speed

and accuracy.

The segmentation results of models using different loss

functions are displayed in Figure 13. The MDSC-DeepLabv3+

using only the Dice loss function exhibits the highest fluctuations

in mPA and mIoU, leading to inferior segmentation results.

Similarly, the MDSC-DeepLabv3+ using only Focal Loss

demonstrates notable fluctuations during the early stages of the

validation process, with slow growth in mPA and mIoU values in

later stages. In contrast, the MDSC-DeepLabv3+ which combines

Focal Loss and multi-class Dice Loss exhibits lesser sawtooth

fluctuations during the increase in mPA and mIoU values,

ultimately reaching their peak during the validation process.

Consequently, the integration of Focal Loss and multi-class Dice

Loss yields optimal outcomes in the segmentation of raw sugarcane

and impurities.

3.2.3 Ablation experiment
To verify the effectiveness of the three improvements, including

improved MobileNetv2, ASPP_DS and CA presented in Section 2.3,

the following 7 models were constructed according to the control

variable method, with a downsampling factor of 8.
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1. DeepLabv3+_base: MobileNetv2 replaced the backbone

Xception in DeepLabv3+.

2. M-DeepLabv3+: MobileNetv2 in DeepLabv3+_base was

enhanced with atrous convolution operation.

3. MDS-DeepLabv3+: ASPP_DS replaced ASPP module in

M-DeepLabv3+.

4. MC1-DeepLabv3+: CA was applied independently before

1×1 Conv of low-level features by the decoder in M-

DeepLabv3+.

5. MC2-DeepLabv3+: CA was applied independently after the

fusion of ASPP in M-DeepLabv3+.

6. MC-DeepLabv3+: CA was added separately before 1×1

Conv the low-level features and after the fusion of ASPP

features in M-DeepLabv3+.

7. MDSC-DeepLabv3+: CA was added separately before

processing the low-level features and after the fusion of

ASPP_DS features in MDS-DeepLabv3+.
Table 8 presents the results of the ablation experiment for the

seven aforementioned models. It can be observed that the MDSC-

DeepLabv3+ outperforms the baseline DeepLabv3+_base, with an

improvement of 1.25 in mPA and 1.8 in mIoU. Additionally, it

achieves a reduction of 16.42% in Params and 31.46% in FLOPs,

however, the inference time per image has slightly increased from

13.48ms to 13.85ms. These results demonstrate that the MDSC-

DeepLabv3+ surpasses the DeepLabv3+_base in terms of

segmentation accuracy and deployability metrics, while still

maintaining comparable efficiency. Furthermore, it can be seen

that the MDSC-DeepLabv3+ achieves the highest segmentation

accuracy (mPA and mIoU) compared to other models, while

exhibiting minimal differences in terms of deployability (Params,

FLOPs) and efficiency (inference time) metrics.
TABLE 6 Experimental environment.

Parameter Configuration Parameter Configuration

Operating system Ubuntu 18.04 Operating environment CUDA 11.2

Deep learning framework PyTorch 1.8 CPU Intel(R) Xeon(R) Silver 4214 CPU @2.20GHz

Programming Language Python 3.7 GPU NVIDIA GeForce RTX 3080 12G @1260-1710MHz
TABLE 7 mPA and inference time obtained with different input image
sizes.

Resize of image/pixels mPA/% Inference time/ms

256×256 94.68 10.69

512×512 97.55 13.85

768×768 97.07 24.19
BA

FIGURE 13

Results of mPA and mIoU with different loss functions. (A) Valid mPA, (B) Valid mIoU.
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In order to visually demonstrate the improvement of the

models, Grad-CAM (Selvaraju et al., 2020) was used to visualize

the channels of the feature maps of DeepLabv3+ and MDSC-

DeepLabv3+. The visualization segmentation instances of top

were illustrated in Figure 14. In group (a), the two feature maps

are extracted by the Xception in DeepLabv3+ and the enhanced

MobileNetv2 in MDSC-DeepLabv3+, respectively. In group (b), two

feature maps are the output of ASPP in DeepLabv3+ and ASPP_DS

in MDSC-DeepLabv3+, respectively. In group (c), the two feature

maps are the output of DeepLabv3+ and MDSC-DeepLabv3

+, respectively.

In Figure 14A, it can be observed that Xception in DeepLabv3+

achieves clearer pixel segmentation than that obtained by

MobileNetv2 in MDSC-DeepLabv3+. The reason is that

MobileNetv2 is a lightweight and shallow model compared to

Xception, and its depthwise convolution can lead to information

loss and limit the number of channels, thereby resulting in a lower-

level feature map with fewer information. However, the two heat

maps in group (b) indicate that there is pixels misfocus at the top-

right corner in the first line of the feature map extracted by ASPP,

while ASPP_DS results in more complete pixel segmentation,
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enhances preservation of details, and eliminates the top-right

misfocus. The heat map illustrates that the introduced strip

pooling in ASPP_DS rectifies the shortage of MobileNetv2, and

the dense and compact dilation rates (4, 8, 12) improve its capability

of focusing on capturing local detailed features. Heat map of final

outputs of MDSC-DeepLabv3+ and DeepLabv3+ given in

Figure 14C demonstrates that the CA in MDSC-DeepLabv3+

further enhances the color intensity in heat map, indicating that

the inclusion of CA allows the model to focus more on the features

of the categories, thereby enhancing its distinguishability of cane,

broken cane, top and leaf.

3.2.4 Comparative experiment
To further validate the superiority of the proposed model

MDSC-DeepLabv3+, comparative experiments were conducted

using the RSI dataset under the same experimental conditions.

The compared models include UNet, PSPNet, SegFormer-B0, and

the baseline DeepLabv3+. Previous research results have shown that

UNet (Ronneberger et al., 2015) and PSPNet (Zhao et al., 2017)

perform well in terms of accuracy in segmentation tasks with

challenges like cell tracking ISBI and Cityscapes. SegFormer-B0 is
B CA

FIGURE 14

(A) Backbone output. (B) Encode output. (C) Decode output.
TABLE 8 Results of ablation experiment.

Number ASPP_DS Coordinate Attention mPA/
%

mIoU/
%

Param/
M

FLOPs/
G

Inference time/
ms

Before
decoder

After ASPP
(_DS)

(1) 96.3 93.04 4.81 69.29 13.48

(2) 96.67 93.36 3.35 45.49 12.13

(3) √ 97.16 94.37 3.36 45.41 12.76

(4) √ 96.88 93.66 3.55 46.83 13.51

(5) √ 97.05 94.48 3.63 46.88 13.56

(6) √ √ 97.22 94.57 3.68 46.88 13.67

(7) √ √ √ 97.55 94.84 4.02 47.49 13.85
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a lightweight model that combines transformers with a lightweight

multilayer perceptron decoder (Xie et al., 2021). The comparative

results are given in Table 9.

It can be seen that the accuracy of MDSC-DeepLabv3+ surpasses

that of the aforementioned four models with significant improvements.

Specifically, the mIoU of MDSC-DeepLabv3+ is higher by 0.81, 5.22,

12.47, and 0.28 compared to UNet, PSPNet, SegFormer-B0, and

DeepLabv3+, respectively. Moreover, the mPA of MDSC-DeepLabv3

+ reaches an impressive 97.55%, which outperforms UNet, PSPNet,

SegFormer-B0, and DeepLabv3+ by 0.69, 2.7, 7.76, and 0.34,

respectively. These remarkable improvements can be attributed to

the adoption of the advanced DeepLabv3+ as the basic model,

coupled with the enhancements introduced through strip pooling

and CA. Strip pooling plays a crucial role in collecting remote

contextual information from different spatial dimensions and

addressing the issue of information loss resulting from the atrous

convolution operation in DeepLabv3. On the other hand, CA efficiently

utilizes positional information, enabling accurate capturing of the

spatial relationships and contextual information of the detected cane,

broken cane, top, and leaf.

In terms of deployability, MDSC-DeepLabv3+ demonstrates

remarkable reductions in Params and FLOPs when compared to

UNet, PSPNet, and DeepLabv3+. Specifically, it reduces Params by

83.65%, 91.29%, and 90.35%, and FLOPs by 89.49%, 59.9%, and

66.37% compared to UNet, PSPNet, and DeepLabv3+ respectively.

This significant reduction in model size and computational

complexity makes MDSC-DeepLabv3+ highly efficient and

resource-friendly. Moreover, MDSC-DeepLabv3+ achieves

impressive segmentation efficiency, with a recognition speed of

only 13.85ms per image. This inference time per image is far less

than the above three models, with reductions of 48.97%, 10.18%,

and 43.31%, respectively. This indicates that MDSC-DeepLabv3+ is

able to perform fast and accurate segmentation, making it highly

suitable for real-time applications. Although SegFormer-B0 may

have some advantages in terms of deployability, its accuracy is

much lower compared to MDSC-DeepLabv3+ (89.79% vs. 97.55%).

The reason for this superior performance is the utilization of the

improved lightweight MobileNetv2, which replaces Xception in

DeepLabv3+, leading to an efficient and accurate model overall.

In summary, the proposed MDSC-DeepLabv3+ outperforms the

compared four models in the task of segmenting sugarcane and

impurities, offering a winning combination of high segmentation

accuracy, deployability, and recognition speed.
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Instances of the results obtained using the aforementioned

segmentation models are illustrated in Figure 15. In which, red

[128,0,0] represents cane, blue [0,0,128] represents broken cane,

green [0,128,0] represents top, yellow [128,128,0] represents leaf,

and black [0,0,0] represents the background. From the visualization

of test results, it is evident that all five models perform well in most

cases. However, the segmentation obtained by MDSC-DeepLabv3+

stands out as more complete, with clearer preservation of details in

general. Upon closer observation, it can be seen that UNet, PSPNet,

and SegFormer-B0 misclassify their categories, for instance,

misclassifying broken cane as leaf, and vice versa. This indicates

inaccuracies in pixel differentiation for these models. Additionally,

the compared four models result in fuzzy segmentation and

ambiguous boundaries between objects. On the other hand, the

proposed MDSC-DeepLabv3+ demonstrates superior performance

in addressing the issue of detail adhesion. This can be observed in

the instances marked out in the line of MDSC-DeepLabv3+ where

the model is capable of better distinguishing object boundaries and

preserving fine details.
3.3 Analyzing of comprehensive
experiment

The breakage and impurity ratios of raw sugarcane were

estimated using the estimation model presented in Section 2.2

and the MDSC-DeepLabv3+ segmentation model presented in

Section 2.3. These estimated values were then compared with the

measured breakage and impurity ratios obtained through manual

weighing to assess the effectiveness of the proposed method.

First, a subset of 25% (70) of the images was randomly selected

from the mass dataset with 300 samples. The MDSC-DeepLabv3+

model was applied to semantically segment the selected 70 images and

determine the number of cane, broken cane, top, and leaf pixels for

each image. Then, corresponding masses were estimated using Eq.(1)-

(4), based on the mean values of the surface density for each category

obtained through normal fitting. The ratios of breakage and impurity

were calculated according to the estimationmodel defined in Eq.(5)-(6)

based on the estimated masses. Finally, the measured breakage and

impurity ratios were determined using the measured mass and the

relative errors between the estimated and measured results were

calculated. Tables 10. 11 document and analyze the relative errors in

the breakage ratio and impurity ratio for each sample, as well as the
TABLE 9 Test results of different recognition models.

Segmentation
models

IoU/% mIoU/
%

mPA
%

Param/
M

FLOPs/
G

Inference
time/ms

Background Cane Broken
cane

Top Leaf

UNet 98.13 94.18 91.01 93.11 93.73 94.03 96.86 24.89 451.77 27.14

PSPNet 95.45 90.38 87.89 86.48 87.89 89.62 94.85 46.71 118.43 15.42

SegFormer-B0 95.6 82.98 72.38 81.12 79.79 82.37 89.79 3.72 13.56 16.78

DeepLabv3+ 97.78 95.18 91.83 93.38 94.62 94.56 97.21 42.19 141.22 24.43

MDSC-DeepLabv3+ 97.94 95.13 91.85 94.27 95.03 94.84 97.55 4.07 47.49 13.85
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average relative error of the overall samples. The average relative errors

were found to be 11.3% and 6.5% for breakage and impurity ratios,

respectively. These results indicated that the proposed method exhibits

strong reliability.

Additionally, the visualization of measured and estimated ratios

of the 70 samples is depicted in Figure 16. This aids in the intuitive

observation and analysis of the relationship and differences between

predicted and manual measured results. It can be observed that the

results obtained using the proposed method exhibit only slight

deviations compared to the results obtained through manual

weighing measurements, and the fluctuations are minimal. This

suggests that the estimated breakage and impurity ratios can

maintain their stability. Consequently, the proposed method

based on estimation model and MDSC-DeepLabv3+ offers an

efficient, accurate, and intelligent means of quantitatively

estimating the breakage and impurity ratios of raw sugarcane.
4 Conclusions

In practice, objective, efficient, accurate, and intelligent

detection of breakage and impurity ratios is an urgent

requirement in the sugar refinery. Therefore, this study developed
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a novel approach combining the estimation model and MDSC-

DeepLabv3+ segmentation network to tackle this problem. First, a

machine vision-based acquisition platform was designed, and

custom image and mass datasets of raw sugarcane and impurities

were constructed. Then, estimation model was built to assess the

ratios of breakage and impurity, considering the variation of surface

density for the four categories of objects. Finally, the MDSC-

DeepLabv3+ segmentation network dedicated to the detection of

cane, broken cane, top, and leaf was developed. It effectively

incorporated improved MobileNetv2, ASPP_DS, and CA based

on DeepLabv3+ to enhance segmentation accuracy, reduce

parameters and inference time. The analysis of the experimental

results leads to the following conclusions:
1. The breakage and impurity ratios obtained through

estimation model based on normal fitted surface density

exhibit high accuracy, with corresponding R2 of 0.976 and

0.968, respectively.

2. The proposed MDSC-DeepLabv3+ achieved superiority

considering segmentation accuracy, deployability, and

efficiency simultaneously. The mPA and mIoU achieved

byMDSC-DeepLabv3+ were as high as 97.55% and 94.84%,

respectively, surpassing the baseline DeepLabv3+ by 0.34
FIGURE 15

Test results of each detection model.
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TABLE 10 Breakage ratios of 70 samples.

Sample
number

Breakage ratio/% Sample
number

Breakage ratio/%

Measured Estimated Relative
errors

Measured Estimated Relative
errors

1 0.393 0.433 0.103 36 0.163 0.146 0.103

2 0.244 0.215 0.119 37 0.067 0.077 0.148

3 0.328 0.319 0.027 38 0.075 0.077 0.017

4 0.122 0.096 0.218 39 0.117 0.127 0.082

5 0.259 0.272 0.049 40 0.253 0.242 0.047

6 0.486 0.562 0.156 41 0.381 0.418 0.097

7 0.319 0.290 0.090 42 0.145 0.125 0.137

8 0.165 0.174 0.057 43 0.268 0.259 0.036

9 0.173 0.201 0.162 44 0.272 0.247 0.091

10 0.298 0.269 0.097 45 0.060 0.046 0.231

11 0.389 0.416 0.069 46 0.298 0.323 0.087

12 0.235 0.284 0.208 47 0.192 0.168 0.126

13 0.225 0.222 0.012 48 0.209 0.209 0.001

14 0.102 0.131 0.282 49 0.361 0.343 0.049

15 0.105 0.141 0.340 50 0.112 0.150 0.344

16 0.152 0.163 0.077 51 0.233 0.193 0.171

17 0.403 0.340 0.157 52 0.226 0.215 0.048

18 0.144 0.154 0.071 53 0.253 0.281 0.110

19 0.108 0.124 0.150 54 0.299 0.271 0.093

20 0.273 0.267 0.025 55 0.056 0.071 0.262

21 0.388 0.404 0.042 56 0.138 0.168 0.218

22 0.371 0.387 0.045 57 0.141 0.167 0.188

23 0.456 0.480 0.052 58 0.109 0.106 0.035

24 0.264 0.247 0.064 59 0.201 0.207 0.028

25 0.348 0.330 0.053 60 0.385 0.425 0.105

26 0.257 0.240 0.065 61 0.314 0.289 0.079

27 0.170 0.136 0.198 62 0.120 0.130 0.089

28 0.184 0.149 0.191 63 0.227 0.201 0.113

29 0.353 0.337 0.044 64 0.125 0.120 0.044

30 0.351 0.343 0.023 65 0.416 0.451 0.084

31 0.296 0.255 0.138 66 0.160 0.195 0.219

32 0.356 0.342 0.039 67 0.281 0.278 0.011

33 0.214 0.233 0.088 68 0.162 0.186 0.149

34 0.215 0.277 0.286 69 0.322 0.277 0.141

35 0.172 0.150 0.132 70 0.195 0.231 0.184

Average 0.113
F
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TABLE 11 Impurity ratios of 70 samples.

Sample
number

Impurity ratio/% Sample
number

Impurity ratio/%

Measured Estimated Relative
errors

Measured Estimated Relative
errors

1 0.473 0.499 0.055 36 0.328 0.319 0.026

2 0.237 0.254 0.071 37 0.313 0.322 0.032

3 0.423 0.424 0.004 38 0.091 0.104 0.142

4 0.292 0.298 0.021 39 0.217 0.240 0.103

5 0.303 0.263 0.133 40 0.380 0.381 0.001

6 0.602 0.570 0.053 41 0.241 0.240 0.005

7 0.445 0.445 0.002 42 0.369 0.369 0.000

8 0.372 0.341 0.082 43 0.292 0.282 0.035

9 0.393 0.352 0.104 44 0.328 0.337 0.026

10 0.294 0.280 0.048 45 0.146 0.167 0.148

11 0.529 0.554 0.046 46 0.274 0.316 0.156

12 0.277 0.272 0.018 47 0.310 0.273 0.118

13 0.378 0.388 0.028 48 0.410 0.382 0.068

14 0.206 0.199 0.034 49 0.254 0.269 0.063

15 0.332 0.314 0.055 50 0.320 0.319 0.004

16 0.240 0.217 0.098 51 0.343 0.386 0.124

17 0.482 0.452 0.062 52 0.328 0.325 0.009

18 0.277 0.298 0.073 53 0.385 0.355 0.077

19 0.331 0.317 0.043 54 0.211 0.232 0.102

20 0.274 0.265 0.034 55 0.228 0.248 0.088

21 0.358 0.322 0.102 56 0.420 0.389 0.073

22 0.491 0.470 0.042 57 0.268 0.267 0.007

23 0.417 0.439 0.054 58 0.209 0.200 0.043

24 0.286 0.318 0.110 59 0.239 0.245 0.023

25 0.273 0.241 0.119 60 0.427 0.421 0.014

26 0.316 0.337 0.066 61 0.332 0.320 0.036

27 0.267 0.265 0.006 62 0.319 0.315 0.011

28 0.251 0.272 0.082 63 0.253 0.239 0.054

29 0.208 0.249 0.196 64 0.313 0.339 0.082

30 0.375 0.334 0.109 65 0.500 0.483 0.034

31 0.296 0.347 0.173 66 0.418 0.378 0.095

32 0.229 0.290 0.265 67 0.297 0.320 0.077

33 0.283 0.279 0.014 68 0.299 0.337 0.128

34 0.357 0.332 0.072 69 0.475 0.465 0.021

35 0.350 0.342 0.024 70 0.301 0.302 0.002

Average 0.65
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Fron
and 0.28. This improvement in accuracy was accomplished

with 38.12M, 93.73G, and 10.58ms reduction in Params,

FLOPs, and inference time, respectively, making it

advantageous for deployment on edge devices and real-

time inference.

3. The estimated data obtained according to the approach

developed in this study fit the manually obtained breakage

and impurity ratios with average relative errors of 11.3% and

6.5%, respectively. The lower segmentation accuracy of broken

cane is due to their burr and ambiguous boundaries, resulting

in a higher average relative error of the breakage ratio.
The raw sugarcane not only includes top and leaf impurities but

also contains other impurities like dispersed root whiskers. The

upcoming research will emphasize mechanical cleaning of sand,

gravel, soil, and similar substances. Additionally, a pivotal aspect of

the forthcoming study will involve counting sugarcane roots and

estimating their quality through object detection.
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Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China, 269223
Troops, People’s Liberation Army, Aksu, Xinjiang Uygur Autonomous Region, China, 3Project
Management Division, Yunnan Provincial Forestry and Grassland Technology Extension Station,
Kunming, Yunnan, China
Introduction: Nut quality detection is of paramount importance in primary nut

processing. When striving to maintain the imperatives of rapid, efficient, and

accurate detection, the precision of identifying small-sized nuts can be

substantially compromised.

Methods:We introduced an optimized iteration of the YOLOv5s model designed

to swiftly and precisely identify both good and bad walnut nuts across multiple

targets. The M3-Net network, which is a replacement for the original C3 network

in MobileNetV3’s YOLOv5s, reduces the weight of the model. We explored the

impact of incorporating the attentionmechanism at various positions to enhance

model performance. Furthermore, we introduced an attentional convolutional

adaptive fusion module (Acmix) within the spatial pyramid pooling layer to

improve feature extraction. In addition, we replaced the SiLU activation

function in the original Conv module with MetaAconC from the CBM module

to enhance feature detection in walnut images across different scales.

Results: In comparative trials, the YOLOv5s_AMMmodel surpassed the standard

detection networks, exhibiting an average detection accuracy (mAP) of 80.78%,

an increase of 1.81%, while reducing themodel size to 20.9 MB (a compression of

22.88%) and achieving a detection speed of 40.42 frames per second. In multi-

target walnut detection across various scales, the enhanced model consistently

outperformed its predecessor in terms of accuracy, model size, and detection

speed. It notably improves the ability to detect multi-target walnut situations,

both large and small, while maintaining the accuracy and efficiency.

Discussion: The results underscored the superiority of the YOLOv5s_AMMmodel,

which achieved the highest average detection accuracy (mAP) of 80.78%, while

boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42

FPS. Our optimized network excels in the rapid, efficient, and accurate detection of

mixed multi-target dry walnut quality, accommodating lightweight edge devices.

This research provides valuable insights for the detection of multi-target good and

bad walnuts during the walnut processing stage.

KEYWORDS

MobileNetV3, ACMIX, MetaAconC, multi-target, target detection, walnut
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1 Introduction

Walnuts (Juglans spp.) rank among the world’s top four dried

fruits, alongside almonds, cashews, and hazelnuts. Two predominant

species of walnuts, common walnuts (Juglans regia) and dark-grained

walnuts (Juglans sigillata), are extensively cultivated globally. Juglans

sigillata, also known as iron walnut or Yunnan walnut, is an endemic

species in Southwest China. It is distinguished by superior seed

quality, full kernels, high protein and fat content, and rich

nutritional value (Xie et al., 2021). After degreening, rinsing, and

drying, the evaluation of the appearance quality of walnuts plays a

vital role in bolstering their market competitiveness. Yunnan walnuts,

which are characterized by uneven kernel surfaces, non-uniform

maturity, varying harvest patterns, and irregular fruit sizes, pose

challenges during processing. Existing green walnut peeling machines

often yield unsatisfactory results, leaving behind impurities, surface

contamination, and an increased susceptibility to breakage (Su et al.,

2021). In accordance with the “Walnut Nut Quality Grade” standard

GBT20398-2021,1 common external defects in walnuts encompass

fractured walnut shells, black spots, and insect holes. Black spots on

walnut endocarps typically stem from improper peeling, which leaves

a residual walnut pericarp on the surface, leading to oxidation and the

formation of black spots. In addition to detracting from the

appearance quality and grade, these black patches cause mildew

due to their moisture-absorbing properties. Furthermore, damaged

and insect-infested walnuts expose their kernels to external elements,

resulting in rapid deterioration, mould formation, and potentially

hazardous substances, such as aflatoxins, due to water infiltration

during cleaning. Consequently, there is an urgent need for a rapid

and precise method to identify these external defects during walnut

production and processing (Li et al., 2019).

Currently, two main approaches are employed to assess produce

quality: destructive and non-destructive methods. Destructive

methods are utilized to determine the physicochemical or

biochemical properties of the produce but require the complete

annihilation of the tested specimens, imposing strict technical

prerequisites. Although they provide additional phenotypic data,

their inherent delay in detection is a drawback. By contrast, non-

destructive methods offer advantages such as reduced costs,

heightened detection accuracy, and the ability to evaluate produce

without damaging it (Arunkumar et al., 2021). Both domestic and

international scholars have extensively investigated various non-

destructive testing methods for fruits and nuts, including X-ray

techniques, acoustic methods (Cobus and van Wijk, 2023), and

machine vision approaches (Chakraborty et al., 2023). However, it

is worth noting that although these methods excel in detection

accuracy, X-ray detection can be expensive, and acoustic methods

may be limited to single-target fruit detection, potentially restricting

their applicability to primary processing firms.

Deep learning, a non-destructive approach, can swiftly detect

issues in one or two phases, offering precise detection and quality

control for all types of nuts through computer vision technologies and
1 h t t p s : / /opens td . s amr .gov . cn /bzgk /gb /newGb In fo?hcno=

11E65C73CF8B9E071CE76716628F2F80]
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robotics. The integration of deep learning technology can significantly

enhance the production efficiency and qualitymanagement within nut

processing enterprises by refining the classification and grading

processes, automating quality management procedures, and

effectively identifying nut defects and abnormalities.

In recent years, researchers have explored a two-stage deep

learning approach for fruit and nut detection. For instance, Rika

Sustika et al. (2018) investigated the impact of various deep

convolutional neural network structures (AlexNet, MobileNet,

GoogLeNet, and Xception) on the accuracy of a strawberry

grading system (appearance quality detection), with VGGNet

demonstrating the highest accuracy (Sustika et al., 2018). Costa

et al. (2021) combined machine vision techniques with the Mask-

RCNN algorithm (Costa et al., 2021) to detect and semantically

segment pecan peel and hull. Fan et al. (2021) proposed an improved

rapid R-CNN algorithm (Fan et al., 2021) for the precise detection of

green pecans in natural environments. The enhancements included

batch normalization, an improved RPN with bilinear interpolation,

and the integration of a hybrid loss function. For robot recognition

and the picking of walnuts in complex environments, the model

achieved an accuracy of 97.71%, a recall rate of 94.58%, an F1 value

of 96.12%, and faster detection times. However, these two-stage

approaches, which are capable of high accuracy, tend to have slower

detection speeds and require lengthy training periods, making them

challenging to implement in actual industrial production settings. By

contrast, the one-stage approach, represented by the YOLO series

algorithm, offers advantages such as fast real-time detection, high

accuracy, and robustness. Hao et al. (2022) used an improved

YOLOv3 deep learning method for the real-time detection of

green walnuts in a natural environment. They pre-trained the

model network using the COCO dataset, optimized the

performance with data augmentation and K-means clustering, and

selected the MobileNetV3 backbone for high accuracy and rapid

detection. This approach achieved an average accuracy (mAP) of

86.11% and provided technical support for intelligent orchard

management and yield estimation of walnut orchards (Hao et al.,

2022). Recognizing the widespread acceptance of the YOLOv5

model as a faster, more accurate, and more efficient target

detection model, Yu et al. (2023) proposed an improved walnut

kernel impurity detection model based on the YOLOv5 network

model. Their model included a small target detection layer, a

transformer-encoder module, a convolutional block attention

module, and a GhostNet module, leading to enhanced recognition

accuracy for small and medium impurities in pecan kernels (Yu

et al., 2023). In general, the two-stage target detection algorithm

applied to pecans struggles to balance recognition accuracy and

detection speed. On the other hand, one-stage algorithm research is

tailored to green walnut recognition scenarios. These models and

methods cannot be directly applied to the recognition of good- and

bad-dried walnuts because of differences in image datasets, such as

variations in field orchard backgrounds and occlusion, lighting

conditions, or diffractive indices. Additionally, there is limited

research on target detection based on deep learning for the

classification of dried walnut quality after degreening, washing,

and drying during the initial processing stage. Detecting dried

walnuts of various target sizes within a wide field of vision
frontiersin.org

https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=11E65C73CF8B9E071CE76716628F2F80]
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=11E65C73CF8B9E071CE76716628F2F80]
https://doi.org/10.3389/fpls.2023.1247156
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhan et al. 10.3389/fpls.2023.1247156
presents a challenging task. Therefore, achieving efficient and precise

sorting of good and bad dried walnuts using deep learning models

has become an urgent matter, significantly impacting the

advancement of the entire walnut primary processing industry.

This study introduced an enhanced YOLOv5s_AMM multi-

target sorting model tailored for walnuts. (1) The M3-Net network

replaced YOLOv5s’ C3 structure with MobileNetV3. This

substitution has advantages, such as faster inference, heightened

accuracy, reduced memory usage, and improved feature

representation. Consequently, it emerges as a superior option for

target detection in devices with resource constraints. (2) The model

achieved enhanced classification accuracy, adaptive mixture

modelling, rapid training and inference, and robustness against

noise and outliers by incorporating the novel ACMIX paradigm.

ACMIX integrates convolution with self-attentiveness after an SPP

(spatial pyramid pooling) layer (He et al., 2015). (3) In the neck

layer, the CBM module replaced the activation function of the

conventional Conv2d convolution layer with MetaAconC. This

substitution results in performance enhancements, adaptive

activation, non-linear and smoothing behavior, computational

efficiency, and robustness against noise and outliers. Finally, the

improved YOLOv5s_AMM detection model, when practically

applied to differentiate between good and bad walnuts of various

sizes, achieved real-time and efficient classification. This

advancement has significant practical value for enhancing walnut

detection efficiency, quality, and market competitiveness. This is

particularly beneficial to primary processing enterprises aiming to

increase the value of their walnut products and contributes to the

growth of a more intelligent and integrated walnut industry.
2 Materials and methods

2.1 Image sample acquisition

In this study, walnuts were sourced from Fengqing County,

Lincang City, Yunnan Province, China. The RGB images used for

the analysis were collected at the Agricultural Material

Characterization Laboratory at the Kunming University of

Technology. These images were captured from 9:00 a.m. to 6:00

p.m. on December 24–26, 2022. For image acquisition, we

employed a Hikvision industrial camera (model MV-CA050-

20GC) with a 5-megapixel resolution and a CMOS Gigabit

Ethernet industrial surface array camera capable of producing

images at a resolution of 2592×2048. The images were saved in

the JPEG format. The camera was securely mounted at a height of

195 cm above the ground and positioned 95 cm above the surface

level using an adjustable aluminium mount. All images were

captured under consistent conditions, including the same camera

height, uniform light source brightness, consistent background, and

roller guide profile phase. The image capture date was December 24,

2022. During the image capture process, we used an exposure time

of 4,000 μs and frame rate of 1 in the continuous mode of the

camera. This setup allowed us to capture images of walnuts in their

natural state, as depicted in Figure 1, with the walnuts evenly

distributed on the moving part of the profiled roller-wheel guide.
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According to the national standard classification GB/T20398-

2021 for walnut quality grades, our evaluation considered various

factors such as walnut uniformity, shell integrity, color, and suture

line tightness. Based on these criteria, we classified walnuts into two

categories: (1) good walnuts (Figure 2A), characterized by intact

shells and primarily exhibiting a yellow-white color, and (2) bad

walnuts (Figures 2B, C), including walnuts with black spots

(Figure 2B) and walnuts with broken shells (Figure 2C). In this

study, 120 original images with a resolution of 2,592×2,048 were

acquired, and multi-target walnuts with excellent walnuts and bad

walnuts (black spots and broken) were randomly inserted into

this dataset.
2.2 Dataset construction

During the data processing phase, we divided the initial dataset

of 120 images, each with a resolution of 2,592×2,048, into 2,000

images with a resolution of 640×640. We employed LabelImg

software for manual annotation, marking the location boxes, and

categorizing walnuts as either good or bad within the original

images. This annotation process produced corresponding

annotation files. Upon completing the image annotation, we

randomly divided the entire dataset into three sets: training,

validation, and test. The distribution ratio was 8:1:1, ensuring

adequate data for training and model evaluation. In statistical

terms, each image in this study contained 5–40 walnuts, resulting

in a total of 53,301 labels within the walnut dataset. Among these

labels, 25,099 were associated with good walnuts, whereas 28,208

were assigned to bad walnuts. This distribution indicates a

reasonably balanced dataset, with a ratio of approximately 0.88

between the two image categories.

Before commencing model training, we subjected the walnut

training set to a combination of offline data enhancement

techniques, including contrast adjustment, scaling, luminance

modification, pretzel noise, and Gaussian noise (Taylor and

Nitschke, 2018). These techniques were applied randomly. As

shown in Figure 3, They encompassed four specific methods; (1)
FIGURE 1

Map of the walnut image acquisition environment.
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random contrast enhancement within the range of 0.7 to 1.4 with a

gradient of 0.05; (2) random scaling of the training set within the

range of 0.5 to 1.5 with a gradient of 0.1; (3) random luminance

adjustment for the training set within the range of 0.6 to 1.4; and (4)

random modification of the training set’s luminance to either 50–

150% of random Gaussian noise or random pretzel noise within the

same range. As shown in Table 1, these data enhancement

procedures resulted in a 25% increase in the number of training

sets. Consequently, the walnut dataset contained a total of 2,000

image data entries after data enhancement.
2.3 YOLOv5 network model and
optimization structure

2.3.1 YOLOv5 model
The YOLO Network Series provides a rapid and efficient

solution for real-time target detection tasks, delivering high
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accuracy and the capability to identify targets of various sizes. Its

versatility extends to a wide range of applications, including

autonomous vehicles, robotics, and surveillance systems.

YOLOv5 outperforms YOLOv3 and YOLOv4 in terms of rapid

and precise real-time target detection. It achieves this superiority

while maintaining a lighter, more efficient, and more easily

deployable profile on resource-constrained devices. These

improvements encompass several key aspects. (1) Enhanced

backbone network: YOLOv5 adopts the CSP-Darknet53

architecture (Bochkovskiy et al., 2020) as its backbone network.

This innovation improves feature extraction while reducing the

computational cost. (2) Innovative neck layers: The model

incorporates SPP and PAN neck layers. These layers combine

features from different layers, thereby enhancing both the accuracy

and efficiency of the model. (3) Optimized training process: YOLOv5

benefits from the optimized training process. This includes a new

hyperparameter search algorithm that efficiently tunes model

settings, a novel loss function, improved data augmentation

techniques, and AutoAugment, which automatically identifies the

optimal hyperparameters. The amalgamation of these enhancements

enables YOLOv5 to deliver cutting-edge target detection performance

while maintaining a real-time processing speed.

The official code allows for the training of four distinct object

detection models with varying depths and widths. In the YOLOv5

series, YOLOv5s serves as the baseline with the smallest depth and

width. The other three networks build on this foundation, becoming

deeper and more complex. These networks incorporate additional
FIGURE 2

Types of walnuts. (A–C) Good walnuts (A) and defective walnuts (black spots [B] and broken [C]).
FIGURE 3

Schematic of the image enhancement of the walnut dataset.
TABLE 1 Classification of the walnut image dataset.

Dataset Original image Enhanced image

Training set 1200 1598

Validation set 150 201

Test set 150 201

Total 1500 2000
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convolutional layers and residual modules in the backbone and

employ more channels in the head module to enhance accuracy.

Table 2 provides a comparison of the accuracy, model size, and

detection performance across the four distinct YOLOv5 models. In

terms of detection accuracy, YOLOv5s exhibited a slightly lower

mAP than YOLOv5m (1.67% lower), YOLOv5l (3.47% lower), and

YOLOv5x (3.36% lower). However, when considering the model

size, YOLOv5s stood out because of its compact size of 27.1 MB,

which was notably smaller than YOLOv5m, offering a reduction of

53.5 MB. This size advantage makes YOLOv5s a cost-effective

choice, particularly for deployment on embedded devices, where

storage constraints are critical. In terms of detection speed,

YOLOv5s outperformed the other models, detecting 7.85 frames

per second more than YOLOv5m, 17.13 frames more than

YOLOv5l, and 25.97 frames more than YOLOv5x. This superior

inference speed position of YOLOv5s is an excellent option for real-

time detection scenarios and applications demanding rapid

responses. Given the emphasis on low latency and cost-effective

deployment for lightweight multi-target kernel peach detection,

YOLOv5s presented a compelling proposition with a detection

accuracy of 78.97%, a model size of 27 MB, and a detection speed

of 47 FPS. It effectively balances accuracy, model size, and inference

speed, making it a well-suited base model for further enhancement.

2.3.2 MobileNetV3: lightweight
backbone network

The concept of a lightweight backbone pertains to neural

network architectures optimized for target detection tasks. This
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optimization involves a reduction in the number of network

parameters and layers, while maintaining high accuracy in the

target detection tasks. The core objective was to curtail the

computational burden and memory requirements of the network.

The integration of lightweight backbone networks into target

detection models yields substantial advantages, including

enhanced computational efficiency, reduced memory demand,

accelerated inference speed, and increased robustness.

Consequently, they have gained popularity, particularly for

resource-constrained applications. In this context, Andrew

Howard et al. (2019) proposed the “MobileNetV3” architecture in

their research titled “Searching for MobileNetV3” (Howard et al.,

2019). Their work demonstrated that MobileNetV3 outperforms

alternatives such as ShuffleNet (Bhattacharya et al., 2006) and

MobileNetV2 (Sandler et al., 2018) in terms of accuracy,

advanced features, and efficient training. This renders

MobileNetV3 a versatile and effective option, particularly for

resource-constrained devices. Figure 4 illustrates the structure of

MobileNetV3, which includes 1×1 convolutional layers to adjust

channel numbers, deep convolutions in high-dimensional spaces,

SE attention mechanisms for feature map optimization, and 1×1

convolutional layers for channel number reduction (employing

linear activation functions). The network employs residual

connections when the step size is 1, and the input and output

feature maps have the same shape, whereas in the downsampling

stage (step size = 2), the downsampled feature maps are directly

output. MobileNetV3’s architectural contributions are primarily

grouped into the following categories:
FIGURE 4

Structural diagram of the MobileNetV3 network.
TABLE 2 Comparison of the prediction results from YOLOv5 models.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s 78.97 7,276,605 27.1 47.22

YOLOv5m 80.64 7,276,605 80.6 39.37

YOLOv5l 82.44 7,276,605 178 30.09

YOLOv5x 82.33 7,276,605 333 21.25
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Fron
(1) MobileNetV3 leverages deeply separable convolutions and

residual blocks to reduce parameters and computations,

thereby enhancing the computational efficiency.

(2) Fewer layers are used to minimize the memory

requirements and facilitate deployment on resource-

constrained devices.

(3) MobileNetV3 incorporates an SE attention mechanism and

a hard-swish activation function to support data

representation capabilities, while maintaining a modest

parameter count and computational load.

(4) The utilization of hybrid precision training and knowledge

distillation techniques further enhances the training

effectiveness while reducing memory and computational costs.
MobileNetV3 attains state-of-the-art performance across

various tasks while retaining its lightweight and efficient nature.

This results in substantial reductions in computational and memory

costs, rendering it an ideal choice for target detection in resource-

constrained devices. This study refined the MobileNetV3 model to

enhance its suitability as a lightweight backbone network, thereby

achieving higher accuracy and improved network performance.
2.3.3 Acmix: attention-based convolutional
hybrid structure

The Acmix architecture (attention-convolution hybrid),

introduced in 2021, represents a novel neural network

architecture comprising primarily three fundamental modules: an

attention module, a convolution module, and a hybrid module.

The attention module is responsible for capturing essential features

within the input image. Both global and local attention modules

are utilized in the Acmix architecture. The global attention module

captures the image’s broader contextual information, whereas the

local attention module focuses on capturing intricate details

within the image. The primary function of the convolution

module is the feature extraction from the input image. To

achieve this, the Acmix architecture combines the conventional

convolutional layers with depth-separable convolutional layers.
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This integration significantly reduces the computational cost and

memory requirements of the network, thereby enhancing its

overall efficiency. The hybrid module serves as the nexus where

the features extracted by the attention module and convolution

module converge and interact. In this context, the Acmix

architecture uses both global and local hybrid modules. The

global hybrid module harmonizes characteristics from the global

attention module and convolutional module, whereas the local

hybrid module fuses attributes from the local attention module and

convolutional module.

Figure 5 illustrates the hybrid module proposed by Acmix.

The left diagram shows the flowchart of the conventional

convolution and self-attention module. (a) The output of the

3×3 convolutional layer can be decomposed into a summation

of shifted feature maps. Each of these feature maps was generated

by applying a 1×1 convolution with kernel weights at specific

positions, denoted by s(x,y). (b) The self-attention process

involves projecting the input feature maps into queries, keys,

and values, followed by 1×1 convolution. The attention weights

computed through the query-key interaction were used to

aggregate the values. Conversely, the diagram on the right

delineates the pipeline of our module. (c) Acmix operates in

two stages. In stage one, the input feature map underwent

projection using three 1×1 convolutions. Stage two employs

intermediate features using two examples. The characteristics

extracted from both paths are fused to generate the final output.

The computational complexity of each operation block is shown

in the upper corner (Pan et al., 2022). The Acmix architecture has

demonstrated state-of-the-art performance across various

benchmark datasets for image classification tasks, while

maintaining a lightweight and efficient design. The attention and

hybrid modules within Acmix are strategically designed to capture

both global and local features within walnut images, with a

particular emphasis on identifying black spots and damaged

areas on walnuts. Consequently, the Acmix module is

introduced after the SPP module during the feature fusion

phase of the improved model to enhance its performance,

particularly on intricate datasets.
B C

A

FIGURE 5

Structure of the hybrid module network in Acmix.
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2.3.4 MetaAconC activation function

MetaAconC = (p1 − p2)Xd b c(p1 − p2)X½ � + p2X, bc

= dW1W2o
H

h=1
o
W

w=1
Xc,h,w (1)

In Eq. (1), X represents the input feature map, where X (c,h,w)

denotes the feature input with dimensions of C × H ×W. W1 andW2

represent the computed weights; p1 and p2 represent adjustable

learning parameters; b signifies the adaptive function; and d
represents the sigmoid activation function (Nan et al., 2023).

MetaAconC (Ma et al., 2021) is a novel activation function proposed

in 2021 to address the limitations of conventional activation functions.

This is achieved by combining the Meta-AC and CAN functions,

which are known to be vulnerable to the gradient vanishing problem

and can lead to neuron inactivity. The Meta-AC function is capable of

concatenatingmultiple activation functions and adapting to the specific

input data distribution. The CAN function non-linearly transforms the

output generated by theMeta-AC function, enabling it to capture more

intricate and abstract features. Empirical evidence has shown the

superiority of the MetaAconC activation function over traditional

alternatives, such as ReLU and sigmoid. It offers distinct advantages,

including adaptivity, computational efficiency, and robustness against

noise and outliers. These attributes were substantiated in subsequent

ablation experiments. In the context of our enhanced model, the

original SiLU activation function was replaced by the MetaAconC

activation function. The experimental data underscore its suitability for

walnut image detection.

2.3.5 Improved Yolov5s network structure
In this study, we built upon the architecture of YOLOv5s,

version 5.0, as the foundation for model improvement. The

objective was to address issues related to accuracy, model size,

and detection speed to develop a more appropriate model for the

detection of good and bad walnut fruit targets during the primary

processing stage. The overall enhanced network structure is shown

in Figure 6. In this model refinement, we opted to replace the

original focus layer with CBH and the C3 backbone network
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structure with MobileNetV3 from the M3-Net network. This

alteration was made with the aim of reducing the model size and

ensuring a lightweight and efficient design. Furthermore, we

introduced the attention convolutional hybrid (Acmix) structure

into the neck layer. This addition reduced the computational cost

and memory requirements of the network. The attention and

hybrid modules within the Acmix architecture are strategically

designed to capture both global and local image features, thereby

enhancing the model’s performance on complex datasets. Finally,

we replaced the two Conv2d modules in the neck layer with the

CBM modules. In addition, the SiLU activation function found in

the original Conv layer was substituted with the MetaAconC

activation function. This adjustment is implemented to improve

the input-specific data distribution for tuning, ultimately enhancing

the feature detection across different image scales.

Table 3 provides an overview of the replacement lightweight

backbone network used in this study, with a primary focus on the

incorporation of the M3-Net network to construct the backbone

network of the enhanced model. Table 3 presents detailed

information on various parameters and components. Specifically,

“Input” represents the features of the input layer feature matrix;

“#Out” represents the number of channels in the output layer feature

matrix; “S” represents the step size of the DW convolution; “exp size”

represents the size of the first up-convolution; “SE” indicates whether

the attention mechanism is employed; “NL” represents the activation

function used; “HS” represents the hard-swish activation function; and

“RE” represents the ReLU activation function. Within the modified

backbone layer of M3-Net, there are primarily four types

of MobileNet_Block:
MNB1_1: CBH + SE attention mechanism + CB

MNB1_3: CBR + SE attention mechanism + CB

MNB2_1_1: CBH + CB + SE attention mechanism + HCB

MNB2_2_4: CBR + CBR + CB.
First, the original focus layer was replaced with the

Conv_Bn_Bswish layer, resulting in improved model accuracy,
FIGURE 6

Overall network structure of the improved YOLOv5s-AMM model.
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accelerated inference, and architectural simplification. Moreover, the

Conv and C3 components of the original dark2 layer were replaced

with MNB1_3 and MNB2_2_4, while the Conv and C3 components

of the dark3 layer were replaced with two consecutive MNB2_2_4

structures. This replacement strategy employed MobileNetV3_Block

to construct a lightweight backbone network, which not only

enhanced the accuracy in identifying the walnut dataset but also

boosted the network performance efficiency, facilitating faster

convergence and superior generalization effects. Subsequently, we

introduced the Acmix structure after applying the SPP structure to

the output of the final layer. This involved a combination of standard

convolutional layers and deeply separable convolutional layers to

reduce the neocortex size. Consequently, network performance

efficiency was further enhanced, leading to faster convergence. As a

result, when the input image size was set to 640×640, the improved

backbone network generated output feature maps with dimensions of

(20 × 20×1,024), (40×40×512), and (80×80×256). The role of the

neck is to integrate the walnut characteristics extracted from the

backbone into a format suitable for object detection. This component

plays a pivotal role in improving the accuracy of the walnut target

detection model by capturing the walnut features at various scales

and combining them effectively. This enhances the model’s ability to

detect objects of varying sizes and aspect ratios. In addition, when

replacing the corresponding conv2d module with a CBM module

after the (20×20×1024) and (40×40×512) walnut feature maps,

the MetaAconC activation function in the CBM module surpasses

the performance of the sigmoid function. It is not only adaptive but

also capable of learning based on the specific walnut data distribution.

This is in contrast with the traditional sigmoid function, which

remains fixed and unalterable during the training process. The

MetaAconC function offers high computational efficiency, leading

to an improved detection performance for walnut images at various

scales. Furthermore, it reduces the computational load and memory

usage of the network, resulting in shorter inference times and reduced

hardware requirements. Finally, the head layer produced output

feature maps with dimensions of 80×80×(3×(num_classes+5)),

40×40×(3×(num_classes+5)), and 20×20×(3×(num_classes+5)).
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Here, “num_classes” denotes the number of detected walnut object

classes in the training network, and “3” denotes the number of anchor

boxes used for walnut object detection within each grid cell.

2.3.6 Training the multi-target detection model
for walnuts (good and bad fruits)

To impart the model with more relevant and informative

features, the initial image was segmented into 640×640 pixels,

aligned with the model’s input image size of 640×640 pixels.

Building on this foundation, the model was enhanced using the

proposed improvement methodology. Subsequently, the labelled

walnut dataset was employed for training within the PyTorch deep

learning framework, whereas the validation dataset served as a

means to evaluate the effectiveness and performance of the model

training process.

Table 4 lists the experimental settings used in this study.

Initially, the dataset containing annotations in the VOC format

was converted into a format compatible with the YOLOv5 model.

Subsequently, the parameters governing the training procedure

were configured meticulously. The enhanced YOLOv5s detection

network was then subjected to training with an initial learning

rate of 0.01, eta_min at 1 × 10-4, last_epoch at −1, momentum
TABLE 3 Backbone network with the improved model.

Input Operator Exp size #out SE NL S

6402×32 Conv_Bn_Hswish – 64 – – 1

3202×64 MobileNet_Block,3×3 64 64 √ RE 2

1602×64 MobileNet_Block,3×3 384 128 – RE 2

1602×128 MobileNet_Block,3×3 448 128 – RE 1

802×128 MobileNet_Block,5×5 512 256 √ HS 2

402×256 MobileNet_Block,5×5 960 256 √ HS 2

402×256 MobileNet_Block,5×5 512 512 √ HS 1

202×512 MobileNet_Block,5×5 512 512 √ HS 2

202×512 SPP – 512 – – –

202×256 Acmix – 512 – – 1

202×256 MobileNet_Block,5×5 512 256 √ HS 1
TABLE 4 Experimental settings for this study.

Name Value

CPU AMD Ryzen 9 5900HX with Radeon Graphics octa-core

Memory 32 GB

Storage SSD 1024GB

Graphics card NVIDIA GeForce RTX 3080

Graphics memory 16GB

Operating System Windows11

CUDA version 11.6

PyTorch version 1.8.0
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parameter at 0.937, delay parameter at 5 × 10-3, batch size at 8,

and T_max at 250. The optimization during the training

procedure was executed using an SGD optimizer. Multi-threaded

model training harnessed the computational power of the four

processors, whereas the cosine annealing learning rate was

dynamically updated for optimization during training.

Furthermore, four offline enhancement techniques, including

contrast adjustment, scaling, luminance modification, and the

introduction of pepper and Gaussian noise to the walnut image

data, enrich the contextual information for detecting walnut

objects. These augmentations enhance the perception of

distinguishing between good and bad walnut features, thereby

bolstering the model’s robustness and generalization capabilities.

Notably, the data augmentation network required approximately

6 h and 52 min to complete the training process.

The entire training process was segmented into two distinct phases,

namely, the “freezing phase” and the “thawing phase”, in alignment

with the underlying model structure. During the freezing phase, the

spine of the model remained unaltered and was held constant. No

modifications were made to the ad hoc extraction network. During this

phase, the focus was on training the weight parameters of the

prediction network until they reached a state of saturation and

convergence. Subsequently, the model entered the thawing phase,

wherein the core of the model was no longer constrained and the

weight parameters of the feature extraction network were subjected to

training to optimize the entire set of network weights.

The loss curve in target detection serves as a crucial indicator of

the training progress of the model by monitoring the value of the

LOSS function. This function is a mathematical construct that

quantifies the disparity between the model’s predicted output,

given an input image, and the actual output (i.e., the true value).

Within the context of YOLOv5, the loss function comprises several

integral components, including localization, confidence, and class

loss. The localization loss is responsible for assessing the precision

with which the model predicts the coordinates of bounding boxes

around objects within an image, whereas the confidence loss

quantifies the level of confidence in the model’s prediction. The

class loss measures the capacity of a model to classify images.

The loss curve indicates the model’s learning progress in

generating accurate predictions after being trained on the dataset.

As the model acquires knowledge from the training data, the loss

progressively diminishes. The objective of training is to minimize

this loss, which indicates that the model makes accurate predictions

on the training data.

As depicted in Figure 7, the initial model observed a notable

reduction in the loss value during the fifth iteration. Subsequently, from

the fourth to the tenth iteration, the loss value stabilized, hovering at

approximately 0.32. Notably, there was no discernible alteration in the

thawing stage, even as the model progressed to the 50th iteration.

Following the unfreezing of the model, the loss decreased

notably between the 50th and 53rd iterations,.from 0.36 to 0.29.

Moreover, between the 60th and 210th iterations, the loss remained

consistently lower than that of the original model. Subsequently, a

comparison between the original and improved models’ loss values

from iteration 210 onwards revealed that the improved model

exhibited a swifter decline in losses between iterations 210 and
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300. Ultimately, the loss values of the improved model stabilized at

approximately 0.142, a reduction of 0.01 points compared with the

original model. These results highlight the superior performance of

the enhanced model in distinguishing between good and bad

walnuts during the convergence.
3 Results

3.1 Model evaluation indicators

To conduct a thorough evaluation of the model’s performance

on multi-target walnut images, we employed eight widely accepted

evaluation metrics that are commonly used in classical target

detection algorithms. These metrics included precision (P), recall

(R), F1 score, average precision (AP), average accuracy (mAP),

network parameters, model size, and detection speed. Throughout

the experimental period, an IoU value of 0.50 was used. To assess

real-time detection performance, this study employed frames per

second (FPS) as the key metric. A higher FPS indicates a higher

model detection rate. Equations (1)–(5) illustrate the specific

formulas for calculating P, R, F1, AP, and mAP.

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 −  score  =
2PR
P + R

(4)

AP(k) =
Z 1

0
P(R)dR (5)

mAP = o
N
1 AP(k)

N
(6)
FIGURE 7

Comparison of epochs trained using original and improved models.
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where TP represents the number of correctly identified walnuts

(true positives); FP represents the instances in which the classifier

incorrectly predicted positive samples among the actual negative

samples (indicating the number of false negative samples); TN

represents the number of correctly identified negative samples;

and FN represents the number of negative samples that were

incorrectly predicted by the classifier.

The F1 value serves as a comprehensive measure of the overall

accuracy of the detection model and is calculated as the average sum

of precision and recall. AP represents a measure of the precision and

recall trade-off for a given detection model by calculating the area

under the recall curve. Higher AP values indicate a better

performance. In equation (6), “N” represents the number of

object categories, “AP (k)” is the average precision for a specific

category (in this study, k=2), and “∑” signifies the sum across all

categories. mAP consolidates accuracy and recall across multiple

object categories, offering a global assessment of the object detection

model’s performance. The scores range from 0 to 1, with higher

scores indicating superior performance. Given the need to evaluate

an integrated object detection network with multiple object

categories and the superiority of the mAP over the F1 score, we

chose to use the mAP score for our assessment.
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3.2 Experimental results

Table 5 presents the evaluation results of the enhanced model

using the 201-objective walnut test dataset. The empirical findings

revealed that the improved YOLOv5s model achieved an overall

mAP of 80.78% on the test dataset. Additionally, it attained an F1

score of 0.77, a model size of 20.90 MB, and an average detection

rate of 40.42 frames per second, thus satisfying the real-time

detection requirements. The precision-recall gap across each

category ranged from 2.62 to 4.46%. Furthermore, the cumulative

mAP for both excellent and bad walnuts was 80.78%. In summary,

the enhanced model proposed in this study for the detection of good

and bad walnut fruits demonstrates superior accuracy, minimal

computational overhead, and rapid inference capabilities.
3.3 Effect of the detection performance of
attention mechanisms at various positions

In the context of the original YOLOv5s network, we introduced

the attentional convolutional hybrid Acmix module into both the

backbone and neck layers, as depicted in Figure 8, to explore the
TABLE 5 Experimental results.

Class P/% R/% mAP@0.5 (%) F1-score Model size
(MB)

FPS

Good 75.11 70.65 86.79 0.73

20.9 40.42Bad 82.13 79.51 74.78 0.81

All 78.62 75.08 80.78 0.77
FIGURE 8

Integration of attention mechanisms at different locations in the original YOlOv5s model.
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impact of integrating the attentional mechanism at different

locations within the model. Specifically, after pyramidal pooling

in the SPP space, the final dark5 module at location 1 in the

backbone layer incorporated the Acmix module. The Acmix

module received the output feature maps from the SPP layer and

calculated the channel weights, which were subsequently applied to

the input feature maps. This process emphasized significant regions

while suppressing insignificant ones. Additionally, at position 2,

located after each upsampling and downsampling operation in the

neck layer, another Acmix module was applied.

Table 5 presents the results of comparing the effects of adding

the attention mechanism at various locations. Notably, the addition

of Acmix at location 1 improved the model’s mAP by 1.38%,

increased the model size by a mere 3.2 MB, and reduced the

detection speed by only 4.08 frames per second. However, when

added at location 2, the model’s mAP experienced a marginal

decrease of 0.07%, accompanied by a more significant reduction

in detection speed by 18.83 frames per second. This suggests that

the Acmix attention mechanism may not be universally applicable

to all layers. The reason for this discrepancy lies in the fact that

introducing too many attention mechanisms in location 2 of the

neck layer may diminish the model’s mAP. In addition, the

excessive incorporation of attention mechanisms at location 2

introduces a surplus of additional parameters, potentially

resulting in network overfitting and deterioration in network

performance. The most pronounced enhancement was observed

when Acmix was added at location 1, particularly when compared

with location 2, or when both locations received attention

mechanisms. This is due to the multifaceted scale features

generated by SPP, which aid in the detection of targets of varying

sizes but have weaker interrelationships. Adding the Acmix

attention mechanism after SPP explicitly constructs relationships

between features of different scales, enabling the network to better

leverage these features and subsequently enhance its performance.

Additionally, because SPP generates a surplus of features, some of

which may be irrelevant, the Acmix attention mechanism effectively

filters out these irrelevant features, focusing on the most pertinent

features to reduce feature redundancy. Furthermore, it enables the

learning of novel feature expressions based on the features

generated by SPP, thereby improving the overall feature

representation. Incorporating Acmix attention at position 1

effectively compensated for the limitations of SPP and resulted in

more potent feature expressions.
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3.4 Effect of various attention mechanisms
on detection performance

In the context of the original YOLOv5s model, we introduced

various attention mechanisms from position 1 in Figure 8 to

investigate their impact on the performance of the target

detection model. As shown in Table 6, the addition of the Acmix

attention mechanism exhibited the most substantial improvement

in the mAP performance compared with the original model,

achieving a notable increase of 1.38%. By contrast, the ECA,

CBAM, and SE attention mechanisms displayed comparatively

less improvement in the mAP performance. This observation

underscores that merely applying an attention mechanism after

SPP does not inherently improve model accuracy; rather, its

effectiveness depends on the structural properties of the network

and characteristics of the recognition objects. In this study, we

selected the Acmix attention mechanism due to its superior

performance. Acmix possesses the unique capability of

dynamically adjusting channel weights by calculating the global

attention map for each channel. By contrast, ECA (Wang et al.,

2023), CBAM (Woo et al., 2018), and SE (Hu et al., 2018) employ

fixed channel weights. This dynamic adjustment allows Acmix to

highlight critical channel information more precisely, effectively

enhancing the features of the walnut images. Additionally, Acmix

can concurrently capture a more comprehensive spatial-frequency

feature representation by combining location and channel attention

information. The introduction of location attention further

promotes channel attention, thereby enhancing the extraction of

pertinent location features from walnut images. Conversely, ECA,

CBAM, and SE consider only a single type of attention, whether it is

location, position, or channel. Moreover, although model size and

inference speed are crucial considerations, accuracy remains

paramount. As depicted in Table 6, the additional model burden

introduced by Acmix was a mere 3.2 MB, and the reduction in FPS

was a modest 4.08 frames per second. The increase in the

parameters, although present, does not overly complicate the

model. Given that the Acmix hybrid mechanism comprehensively

captures information, combining both spatial and channel

contextual insights and significantly enhancing mAP, the slight

reduction in computational efficiency and detection speed remains

acceptable. Although the task of simultaneously increasing

detection accuracy while maintaining model efficiency is

inherently challenging, the experimental findings suggest that
TABLE 6 Comparison of target detection model capabilities with the addition of various focus mechanisms.

Attention
mechanisms

mAP0.5 (%) Parameters Model size (MB) FPS

None 78.97 7,276,605 27.1 47.22

ECA 79.15 7,276,866 27.1 50.95

CBAM 78.90 7,278,751 27.1 51.88

SE 79.69 7,277,629 27.1 51.03

Acmix 80.35 8,106,537 30.3 43.14
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incorporating attention mechanisms can mitigate this challenge to

some extent. For instance, Table 6 illustrates that the inclusion of

attention modules (e.g., Acmix, ECA, etc.) can effectively improve

the mAP with minimal expansion in model size. Among these

mechanisms, Acmix attention stands out by achieving the best

accuracy improvement, driven by its ability to integrate spatial and

channel contextual information. Considering all factors related to

model accuracy, size, and detection speed, the Acmix attention

mechanism emerges as the optimal choice, striking an excellent

balance between accuracy enhancement, model size, and

detection speed.
3.5 Enhancing detection performance for
varied target sizes

The classification of good and bad walnuts was notably affected

by the degreening and drying process. Walnuts typically sold fall

within the size range of 20–50 mm, and the initial processing of

walnuts after degreening and drying significantly influences their

classification. It is particularly crucial to ensure a sufficiently large

field of view in the context of multi-target walnuts to improve

grading efficiency. Additionally, evaluating the recognition

performance of the model for multi-target walnuts in an actual

mixed forward conveying scenario represents a rigorous test of its

capabilities. To investigate the performance of the detection model

for multi-target walnuts of varying sizes in a mixed scene, as

illustrated in Figure 9, we employed 30 small target walnuts
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measuring 20–30 mm, 30 medium target walnuts ranging from

30–40 mm, and 30 large target walnuts spanning 40–50 mm. Each

size category included 10 good walnuts and 20 bad walnuts (10 with

black spots and 10 broken fruits). Additionally, we incorporated 30

walnuts ranging in size from 20 to 50 mm (10 walnuts per size),

featuring 3 good walnuts and 7 bad walnuts in each size (4 with

black spots and 3 broken walnuts). Comparing the small-target

detection results in Figures 9E, I, it becomes evident that the

improved model identified good walnuts within the small-target

category. This improvement can be attributed to the replaced

MobileNetV3 module, which effectively captures multiscale

information through depth-separable convolution, enhancing the

recognition of key features, such as the morphology of small target

walnuts. Upon comparing the target images in Figures 9F, J, the

large target images in Figures 9G, K, and the mixed target detection

images in Figures 9H, L, it becomes apparent that the original

model struggled to identify good walnuts, particularly in the case of

multiple targets, in which simultaneous identification was

problematic. By contrast, the improved model adeptly identified

each individual walnut, significantly enhancing the detection

accuracy of healthy fruits. This improvement can be attributed to

the addition of the Acmix attention mechanism after the SPP layer,

which effectively captures spatial feature information related to

walnut fruit shape and surface texture across multiple scales.

Meanwhile, the MetaAcon activation function is more effective at

expressing non-linear features than SiLU, enabling the extraction of

complex features, such as walnut fruit color, and aids in the

identification of walnuts of varying sizes. Therefore, the improved
B C D

E F G H
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A

FIGURE 9

Comparison between the original and improved models for detecting various sizes of mixed walnuts.
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YOLOv5s_AMM model demonstrates enhanced recognition

performance in the mixed recognition of multi-target walnuts at

different scales, maintaining a high recognition count and rate.

Although a single false detection occurred in the small-target scene,

the overall false detection rate remained below 3%. Future research

efforts will address this issue by refining the structure of the model

to detect small-sized targets.
3.6 Ablation experiments

Ablation experiments were performed on the original YOLOv5s

model to assess the impact of various enhancement strategies on the

detection performance. All improvement procedures were trained

and validated using identical training and validation datasets, and

evaluated using the same test dataset. The experimental results are

presented in Table 7. The original YOLOv5s model achieved an

mAP of 78.97% based on 201 test images. It featured a parameter

count of 7,276,605, model size of 27.1 MB, and FPS of 47.22 frames

per second, as detailed in Table 7. Notably, the three enhancements

proposed in this study yielded positive effects on multiple facets of

the original model. First, replacement of the C3 structure in

MobileNetV3’s backbone network resulted in a notable mAP

increase of 1.54%, reaching 80.51%. This enhancement also

significantly reduced the footprint of the model by 37.6%,

decreased the number of parameters by 39.6%, and boosted the

frame rate by 3.42 frames per second. Subsequently, the addition of

the Acmix module further improved the mAP and frame rate of the

model, albeit not to the same extent as the inclusion of

MobileNetV3 alone. Finally, the integration of the MetaAconc

module into the model facilitated an adaptability to specific input

data during training, culminating in an enhanced performance

across various tasks. This configuration achieved an mAP of

80.78%, featuring 5,424,971 parameters, a model size of 20.9 MB,

and a frame rate of 40.42 frames per second. Following network

optimization, the mAP experienced a 0.59% improvement, with no

changes in the total number of model parameters and detection

speed. Compared with the original YOLOv5 model, the enhanced

model demonstrated a 1.81% improvement in mAP, a substantial

22.88% reduction in model size, and a notable 25.45% decrease in
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the number of parameters. In conclusion, the method proposed in

this study delivers a rapid high-accuracy detection performance

across small and large scales. This meets the requirements for real-

time detection while maintaining a compact model size.
3.7 Comparative experiments

In this study, we retrained several conventional network models

to assess the performance differences between the improved models

and their established counterparts. We employed a control-variable

approach to ensure the accuracy of the computational results.

Subsequently, we compared the detection results of the various

network models using the same test dataset. The comparative

results are presented in Table 8, highlighting the disparities in the

mAP detection performance, model size, and detection speed. For

multi-target kernel detection, our improved model achieved the

highest recognition accuracy, surpassing the original YOLOv5s

model. Specifically, it outperformed the YOLOv4_tiny (75.47%),

EfficientNet_YOLOv3 (75.95%), MobileNetV1_YOLOv4 (73.77%),

YOLOv3 (80.56%), and YOLOv4 (80.52%) models by 1.81%, 5.31%,

4.83%, 7.01%, 0.22%, and 0.26%, respectively. Concerning

parameter count, our improved model stood out with only

5,424,971 parameters, which was significantly lower than the

other comparison models. In terms of model size, our model’s

footprint was merely 20.9 MB, making it the most compact, in stark

contrast to the YOLOv4 model’s size of 244 MB and the YOLOv3

model’s size of 235 MB. Furthermore, our improved model

achieved a detection frame rate of 40.42 frames per second,

surpassing the YOLOv4 model by 7.77 frames per second and

EfficientNet_YOLOV3 by 8.32 frames per second. In summary, our

enhanced lightweight walnut detection model excels in recognition

accuracy, boasts a compact model size, and demonstrates superior

inference speed compared with its counterparts.

As shown in Figure 10, We selected images captured from the

actual primary processing grading equipment to represent different

sizes of walnuts, including small targets (20–30 mm), medium

targets (30–40 mm), Each size category comprised 10 good and

20 bad fruits, with 10 each of black spots and broken fruits.

Additionally, we included 30 walnuts ranging from 20 to 50 mm
TABLE 7 Impact of various enhancement strategies on model performance.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s 78.97 7,276,605 27.1 47.22

+Acmix 80.35 8,106,537 30.3 43.14

+MobileNetV3 80.51 4,395,327 16.9 50.64

+MetaAconc 80.18 47,098,541 27.2 49.64

+Acmix+MobileNetV3 80.19 5,412,267 20.8 39.34

+Acmix+MetaAconc 79.90 7,908,875 30.3 42.33

+MobileNetV3+MetaAconc 79.91 4,595,039 17.7 52.26

+Acmix+MobileNetV3+MetaAconc 80.78 5,424,971 20.9 40.42
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(comprising large, medium, and small sizes of 10 each), featuring 3

good and 7 bad fruits (4 with black spots and 3 broken fruits) for

each size. Subsequently, we compared and examined the true results

for each walnut size and category (Table 9). The experimental

findings, in terms of the identification of good, bad, unchecked, and

incorrectly detected walnuts, affirm the improved YOLOv5s_AMM

model’s efficacy and precision in discerning good and bad walnuts

across large, medium, and small targets. Remarkably, there were

minimal instances of unchecked and incorrectly detected walnuts of

different sizes. Notably, the detection of small target walnuts,

characterized by a complex surface morphology and small size,

poses a significant challenge. Although the YOLOv5s,

YOLOv4_tiny, and YOLOv4 models exhibited relatively similar

recognition results to the improved model, occasional cases of non-

detection and incorrect detection were observed, underscoring the

improved model’s superiority. Comparatively, the YOLOv4_tiny

and EfficientNet_YOLOv3 models displayed slightly better results

than the improved model, but with a notable increase in false

detections and non-detections. Conversely, models such as

YOLOv3 and the original YOLOv5s demonstrated ineffectiveness

at detecting good fruits, with a significant number of non-detections

and false detections. In conclusion, the enhanced YOLOv5s_AMM

model consistently demonstrated its effectiveness and precision in

identifying good and bad walnut fruits across varying sizes, as

assessed by a composite set of criteria encompassing good and bad

fruit identification and unchecked and incorrectly detected walnuts.
4 Discussion

This study introduces a rapid non-destructive detection model

designed to enhance the performance of the original YOLOv5s

network for the detection of good and bad fruits within multi-target

samples of dried walnuts. The dataset encompassed specimens that

exhibited both desirable attributes and imperfections, including

instances of black spotting and breakage. It is worth noting that

extant research concerning walnuts predominantly centers on fresh

green walnuts or kernels obtained from orchard trees, as shown in

Table 10. Historical limitations have constrained access to extensive

repositories of high-resolution imagery depicting good and bad
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dried walnuts, thereby constraining the scope of deep learning

investigations in this domain. Recently, there has been a prevalent

shift towards machine learning and convolutional neural networks

in the context of kernel defect detection. The datasets used in related

literature predominantly consist of single-object images captured

within controlled laboratory environments or images featuring

multiple object sets against the backdrop of orchard settings. In

the interest of equitable assessment pertaining to image

composition, network architecture, and detection efficacy within

the chosen dataset, the findings presented in Table 10 elucidate

discernible enhancements in detection performance achieved

through the deployment of various optimized network

configurations relative to the original model. Consequently, these

results underscore both the effectiveness and necessity of

augmenting the detection capabilities of networks tasked with

discerning multiple objects of diverse sizes.

In this study, we analyzed the experimental results obtained

from the improved YOLOv5s_AMM detection model. The primary

focus of this study was to address the challenge of discerning good

and bad fruit images among multi-target walnuts of varying sizes.

Moreover, we assessed the recognition performance of the

improved model across walnut images with different dimensions.

Within this analysis, we explored the impact of various attention

mechanisms (Table 11) and the influence of different positions of

improvement (Table 6) on the model’s recognition capabilities.

Notably, the enhancements made to the original YOLOv5s model

encompassed the incorporation of the Acmix structure, which

introduces convolutional mixing, following the SPP layer. In

addition, the activation function within the neck layer

convolution was replaced with the MetaAconC activation

function. These improvements were substantiated by the ablation

(Table 7) and comparative experiments (Table 8). The experimental

results presented in this study demonstrate the ability of the

enhanced YOLOv5s_AMM detection model to swiftly and

accurately identify good and bad walnuts within mixed images of

dried walnuts, encompassing multiple targets of varying sizes.

Furthermore, comparative experiments involving diverse

improved modules and different typical target detection networks

contribute to a comprehensive evaluation of the proficiency of the

model in recognizing good and bad walnut fruits.
TABLE 8 Detection results of various target detection algorithms on walnut images.

Model mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s_Acmix_
MobileNetV3_MetaAconc (ours)

80.78 5,424,971 20.9 40.42

YOLOv5s 78.97 7,276,605 27.1 47.22

YOLOv4_tiny 75.47 6,056,606 22.4 111.48

EfficientNet_YOLOv3 75.95 10,776,233 60 32.1

MobileNetV1_YOLOv4 73.77 12,692,029 51.1 57.06

YOLOv3 80.56 61,949,149 235 48.23

YOLOv4 80.52 64,363,101 244 32.65
The bold values indicate the optimal values corresponding to the four groups of data: map@0.5(%)80.78 has the highest precision and is marked with bold; The number of parameters is 5,424,971,
with the minimum marking thickness; Model size 20.9MB, minimum size; FPS11.48, the fastest detection speed.
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In essence, our proposed enhanced network exhibits improved

detection performance, reduced model size, and accelerated

inference speed when tasked with identifying mixed multi-target

dried walnut fruits of varying sizes. This characteristic holds a

significant promise for deployment in resource-constrained edge

devices. In future research endeavours, we plan to prioritize the

refinement of recognition accuracy and the model’s generalization

capabilities. This will entail extending its applicability to encompass

a broader spectrum of walnut variety recognitions. Subsequently,

we aim to implement an improved model within the grading

equipment used in the primary processing stages of walnuts. This
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deployment is envisaged to not only augment the value of walnut

products but also enhance the efficiency of the walnut industry’s

grading processes.
5 Conclusions and future work

This study focused on using photographs of walnuts collected

after degreening, cleaning, and drying as the research dataset. In

response to the distinctive visual attributes of walnuts within the

primary processing context, we developed and implemented a
FIGURE 10

Detection performance of mainstream detection networks for good and defective walnuts of various sizes.
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TABLE 9 Number of good and bad walnuts detected by mainstream target detection networks for various walnut sizes.

Model 20mm–30mm
good/bad/

uninspected/
misinspected

30mm–40mm
good/bad/

uninspected/
misinspected

40mm–50mm
good/bad/

uninspected/
misinspected

20mm–50mm
good/bad/

uninspected/
misinspected

YOLOv5s_Acmix_MobileNetV3_MetaAconc (ours) 10/20/0/0 10/20/0/0 9/21/0/1 8/22/0/2

YOLOv5s 9/21/0/1 5/23/2/3 2/27/1/8 3/26/1/4

YOLOv4_tiny 13/26/1/3 10/20/0/4 8/21/1/1 8/20/2/3

EfficientNet_YOLOv3 2/8/20/0 8/16/6/0 9/20/1/3 6/14/10/3

MobileNetV1_YOLOv4 1/7/22/2 2/19/9/3 1/21/8/1 1/14/15/1

YOLOv3 1/20/9/1 0/22/8/3 0/25/5/0 0/23/7/3

YOLOv4 8/22/0/2 6/23/1/3 4/24/0/5 2/27/1/5
F
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The bold values represent the best case for each of these four sets of cases [best for good, bad, undetected, false (quantity) data in different sizes (20-30\30-40\40-50\20-50 \20-50).
TABLE 10 Recent research on target detection in walnut studies.

Objects Networks Dataset conditions mAP F1 Accuracy

Walnut foreign body
(Rong et al., 2019)

Machine vision combines two
different convolutional neural
networks

Walnuts, natural foreign objects, and
artificial foreign objects

— — 95%

Pecan abscission, shell,
and embryo area (Costa
et al., 2021)

Machine vision combined with
Mask-RCNN

Abscission, shell, and embryo areas in both
small (young) and large (old) pecans at
multiple growth stages

— 95.3%
~100%

—

Green walnut in natural
environments (Fan et al.,
2021)

Improved and faster R-CNN Detection of green walnuts in natural
environments (uniform light, uneven
light, overlapping objects, shading, and
varying target sizes)

97.71% 96.12% —

Green walnut in natural
environments (Hao et al.,
2022)

Improved YOLOv3 (MobileNetV3) Green walnuts on trees in the orchard
(large targets, small targets, and
backlighting conditions)

86.11% — —

English walnut kernel
pericarp colour (Donis-
Gonzalez et al., 2020)

Machine vision combined with a
stepwise logistic regression method

English walnut kernels with different
coloured peels

— — “Chandler” model (88.8%),
seedling model (80.4%), and
“Howard” model (75.1%)

Walnut impurities (Yu
et al., 2023)

Improved YOLOv5 (Transformer
and GhostNet)

Small impurities within walnut kernels 88.9% — —

Walnut fresh fruit (Zhang
et al., 2016)

Machine vision combining hybrid
features with the least squares
support vector machines

Identification of fresh pecan fruits under
natural scenes, considering downlight
backlighting and branch shading

— — 92.48%
TABLE 11 Comparison of the effects of adding the attention mechanism at different positions.

Applied position mAP0.5 (%) Parameters Model size (MB) FPS

None 78.97 7,276,605 27.1 47.22

Position 1 80.35 8,106,537 30.3 43.14

Position 2 78.90 7,833,645 29.2 28.39

All 79.69 8,663,577 32.4 26.57
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method for detecting multiple good and bad walnut fruit targets. To

support this investigation, we collected a substantial volume of

multi-target walnut images, thereby constructing a corresponding

dataset. To enhance the efficiency of the model while maintaining

its lightweight architecture, we replaced the C3 network in the

original YOLOv5s with MobileNetV3, resulting in an M3-Net

network. Subsequently, we explored the impact of various

attention mechanisms and improvement positions on the walnut

images. Notably, the Acmix structure after the SPP layer was

introduced, integrating attention and hybrid modules to capture

both global and local image features. This strategic modification

reduces network computational costs while augmenting

performance on complex datasets. Furthermore, the MetaAconC

activation function of the CBM module in the neck layer was

replaced with an SiLU activation function from the original Conv

layer. This adaptation improved the distribution of input-specific

data for fine-tuning, thereby enhancing feature detection across

various image scales. Additionally, we assessed the effectiveness of

the model across the walnut images in varying proportions. Finally,

we conducted a comprehensive examination of the different

improvement modules applied to the detection of walnut datasets

within the backbone and neck layers of the Ai model. The

performance of different target detection networks on walnut

datasets were further investigated. The results of these

experiments successfully validated the performance enhancements

achieved by our improved model.

The principal findings of this study are summarized as follows:
Fron
(1) Compared with other target detection models, our

improved model exhibited superior performance across

multiple metrics, including detection precision, model

size, parameter size, and detection speed. Notably, our

improved model achieved the highest accuracy, with an

mAP of 80.78. Moreover, it boasted the smallest model size,

measuring 20.9 MB, which was notably 11.7 times and 11.2

times smaller than the model sizes of conventional

algorithms such as YOLOv4 and YOLOv3, respectively.

Simultaneously, the model maintained a detection speed of

40.42 frames per second, aligning with the lightweight

nature of the model suitable for rapid walnut detection

scenarios and substantially outperforming the YOLOv4 and

YOLOv3 models in terms of speed. These results

underscore the success of the improved model in

achieving greater recognition accuracy, a compact model

size, and rapid performance.

(2) In practical applications, the enhanced model was

employed to distinguish between good and bad fruits of

multi-target walnuts within the test set. Ablation

experiments were conducted to assess its performance,

which resulted in an mAP of 80.78%. Compared with the

original YOLOv5s model, our enhanced model exhibited an

increase of 1.81% in mAP, a reduction of 22.88% in model

size, and a decrease of 25.45% in parameter count, while

maintaining a negligible difference in FPS. Additionally,
tiers in Plant Science 17124
experimental results involving walnut image detection with

varying target sizes indicate improved precision and

robustness.

(3) By leveraging the capabilities of the improved

YOLOv5s_AMM model, which addresses the gap in

detecting walnuts of different sizes after peeling and

drying in the preliminary processing stage, we intend to

apply it to the preliminary processing operations of walnut

processing enterprises. Specifically, the model was

employed for the detection and grading of good and bad

walnut fruits after the peeling, washing, and drying stages.

Our model offers distinct advantages, including a high

recognition accuracy and compact model size.
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5Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
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Introduction: Nondestructive detection of thin-skinned fruit bruising is one of

the main challenges in the automated grading of post-harvest fruit. The

structured-illumination reflectance imaging (SIRI) is an emerging optical

technique with the potential for detection of bruises.

Methods: This study presented the pioneering application of low-cost visible-

LED SIRI for detecting early subcutaneous bruises in ‘Korla’ pears. Three types of

bruising degrees (mild, moderate and severe) and ten sets of spatial frequencies

(50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 cycles m-1) were analyzed.

By evaluation of contrast index (CI) values, 150 cycles m-1 was determined as the

optimal spatial frequency. The sinusoidal pattern images were demodulated to

get the DC, AC, and RT images without any stripe information. Based on AC and

RT images, texture features were extracted and the LS-SVM, PLS-DA and KNN

classification models combined the optimized features were developed for the

detection of ‘Korla’ pears with varying degrees of bruising.

Results and discussion: It was found that RT images consistently outperformed

AC images regardless of type of model, and LS-SVM model exhibited the highest

detection accuracy and stability. Across mild, moderate, severe andmixed bruises,

the LS-SVM model with RT images achieved classification accuracies of 98.6%,

98.9%, 98.5%, and 98.8%, respectively. This study showed that visible-LED SIRI

technique could effectively detect early bruising of ‘Korla’ pears, providing a

valuable reference for using low-cost visible LED SIRI to detect fruit damage.

KEYWORDS

pears, early bruise detection, classification, machine learning, visible LED
structured illumination
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1 Introduction

Bruising is the most common type of mechanical damage

(Opara and Pathare, 2014), particularly on fruit like pears which

are sensitive to mechanical damage (Celik, 2017). Bruises may occur

when the stress on the fruit surface exceeds the failure stress of fruit

tissue. It is a kind of subcutaneous tissue injury without rupture of

the skin of fruit (Opara and Pathare, 2014; Hussein et al., 2019; Mei

and Li, 2023). The formation of bruise will not only lead to

physiological changes in fruit density, moisture content, browning

degree and firmness, but also accelerate the respiration rate of fruit

and increase the production of ethylene (Khurnpoon and

Siriphanich, 2011; Polat et al., 2012; Bian et al., 2020), thereby

accelerating the decay process of fruit and leading to significant

economic losses. However, the non-destructive and accurate

detection of early bruised fruit is extremely challenging.

Many techniques have been used for bruising detection of pears,

including hyperspectral imaging (HSI) (Lee et al., 2014; Fu and

Wang, 2022; Tian et al., 2023), magnetic resonance imaging (MRI)

(Razavi et al., 2018; Razavi et al., 2020), X-ray computed

tomography (CT) (Azadbakht et al., 2019a; Azadbakht et al.,

2019b), thermal imaging (TI) (Kim et al., 2014; Zeng et al., 2020),

Optical coherence tomography (OCT) (Zhou et al., 2019), etc. HSI

has been widely used in fruit damage detection and has been proven

effective in this regard. However, its capabilities for detection of

early-stage bruises, especially immediate post-bruise detection, still

require enhancement. Additionally, HSI is too slow and expensive

for commercial applications (Tian et al., 2021). For MRI, CT, OCT,

they can capture high contrast images but equipment cost is an

important consideration factor in practical applications. TI is a

detection technology that does not require a light source. It can

non-invasively convert the radiation of an object into a surface

temperature distribution for bruising detection (Zeng et al., 2020).

However, it has strict temperature requirements, and the fruit may

be affected by the heating/cooling process.

Traditional imaging systems (e.g. HSI, multispectral imaging

and machine vision) commonly used uniform or diffuse

illumination for fruit quality detection, making it difficult to

control light penetration and interaction with biological tissue,

which limits their performance in detecting depth-specific

information such as subsurface tissue bruising in fruit (Lu and

Lu, 2017; Lu and Lu, 2019). Structured illumination (SI) can be used

to enhance the detection of subsurface defects in fruit by varying the

spatial frequency of the illumination to control the depth of light

penetration into the tissue (Li et al., 2023; Li et al., 2024). Depending

on the purpose of the application, SI techniques can be

implemented using either inverse or forward methods. Spatial

frequency domain imaging (SFDI) based on inverse methods can

be used to obtain absorption coefficients and approximate scattering

coefficients of fruit tissue by means of inverse algorithmic diffusion

models (Sun et al., 2019). This method has also been used for bruise

detection in pears (He et al., 2018). Different from SFDI, structured-

illumination reflection imaging (SIRI) is used to enhance the

detection of subsurface damage of fruit in a simpler and faster

way. The pattern image obtained by demodulation can obtain direct
Frontiers in Plant Science 02127
component (DC) and alternating component (AC) images, in

which the AC image carries depth resolution information and can

be used for the detection of subsurface tissue bruising in fruit (Lu

et al., 2016a; Li et al., 2023). SIRI has now been used to detect

bruises on apples (Lu et al., 2016a) and pickling cucumbers (Lu

et al., 2021) with good results. Recently, our laboratory developed a

new SIRI system based on light-emitting diode (LED) light source

and monochromatic camera, which can realize fruit detection in

visible light band, and further reduce the cost of SIRI system while

obtaining good subcutaneous damage detection effect. The system

has been used to detect the early decay of oranges (Cai et al., 2022).

The aim of this study was to demonstrate the ability of low-cost

visible-LED SIRI to detect pear bruising at an early stage. The

specific objectives were to: (1) Acquire DC and AC images for

‘Korla’ pears with three types of bruising degrees at ten sets of

spatial frequencies using a visible-LED SIRI system to determine the

optimal spatial frequency combined with a three-phase image

demodulation scheme and contrast index analysis; (2) Extract the

texture features of AC and ratio (RT) images through the gray level

co-occurrence matrix (GLCM) and select the appropriate features

based on the random frog algorithm; (3) Develop the least squares

support vector machine (LS-SVM), partial least squares

discriminant analysis (PLS-DA), and K-nearest neighbor (KNN)

classification models combined with selected texture features to

classify sound and bruised pears; and (4) Evaluate the independent

bruising degree prediction models and mixed bruising degree

prediction model to determine the optimal one for classification

of bruised ‘Korla’ pears.

2 Materials and methods

2.1 Sample preparation

‘Korla’ pears were used in the study. ‘Korla’ pear is a

characteristic fruit in Xinjiang, China. It is famous for its fine

flesh, juicy juice and strong aroma. However, the peel of this pear is

very thin and easily damaged. The ‘Korla’ pears were purchased

from a local fruit store in Beijing, China. The ‘Korla’ pear can be

roughly divided into two distinct maturation periods, namely, the

green maturation period and the yellow maturation period. During

the green maturation period, the skin of the pear appears green,

while in the yellow maturation period, it turns fully yellow. Over the

course of storage, the color of the pear peel undergoes a transition

from green to yellow. Most of the pears sold in the fruit store are in

the green maturation period, but according to the different sales

time, the epidermis of some pears will gradually become yellow,

even full yellow, and some pears also may be reddish in color. In this

study, the color of the pears was not taken into account during the

purchasing process. For all pear samples, green samples accounted

for the majority, with a small amount of red or yellow samples. By a

simple visual inspection, 403 pears (three pears were used for spatial

frequency selection) without external defects were selected as

experimental samples. The pear size varies among them. To

replicate the real detection environment, this experiment

deliberately refrains from making any distinctions.
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The static load range of pear fruit during harvesting, storage and

transportation is 60-200 newtons (N) (Wu et al., 2013). Therefore,

this study selected 50 N, 100 N, and 150 N as the static load pressure

level to induce early bruising in pears. Four hundred pears were

randomly divided into 4 groups, with 100 in each group, which were

sound group (recorded as S0), mild bruise group (recorded as S1),

moderate bruise group (recorded as S2) and severe bruise group

(recorded as S3). The pears were balanced at room temperature

(temperature 24°C, humidity 42%) for 24 h. After that, the 100

pears in the S0 group were not treated. The pears of S1, S2 and S3

were bruised by pressing presses. The pressure probe end of the

press is a cylindrical plastic with a diameter of 3 cm and is

connected to a pressure sensor with a display screen. Due to the

high curvature radius of the equatorial part of ‘Korla’ pear, it is

more vulnerable to form bruises during sorting and packaging.

Consequently, the equatorial section of the pear is chosen and

subjected to pressure using a press to induce a static pressure bruise.

During sample preparation, the pear sample was placed

horizontally under the pressure probe of the press. The pear was

placed on a sponge-buffered fruit tray and the handle was slowly

pressed. When the pressure sensor display reached a specific

reading (50N, 100N and 150N represent S1, S2 and S3,

respectively), the pressing was stopped. After standing still for 3

seconds, the handle was slowly loosened and the sample was taken

out. Figure 1A depicts the RGB images of pears exhibiting three

distinct bruise degrees (S1, S2, S3), which also includes the control

group (S0). Figure 1B shows the preparation of bruise samples.
2.2 SIRI system and image acquisition

The SIRI system used in this experiment is mainly composed of

a digital projector (DLP4500, Texas Instruments, Dallas, TX,

United States) with visible LED lights, a monochromatic camera

(MV-CA050-10GM, Hangzhou Hikrobot Intelligent Technology

Co., Ltd., Hangzhou, China) with an adjustable focal length lens

(MVL-MF1628M-8MP, Hangzhou Hikrobot Intell igent

Technology Co., Ltd., Hangzhou, China), two polarizers (PL-D50,

RAYAN Technology Co., Ltd., Changchun, China), a long-wave

pass filter (the cut-off frequency is 450 nm) (GCC-300201, Daheng
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New Epoch Technology Inc., Beijing, China), an adjustable sample

stage (600LW-WT, Shanghai Weimu Automation Equipment Co.,

Ltd., Shanghai, China) and a computer that can perform sampling

and data processing (Cai et al., 2022). The projector and the camera

are located directly above the sample to be tested, perpendicular to

the horizontal axis. Additionally, a pair of linear polarizers is placed

in front of the projector and the camera to eliminate specular

reflection. The projector and the camera are connected to the

computer through the data line and controlled by the computer

through the binding software. The basic composition and real

system of the SIRI system is shown in Figure 2. The SIRI system

based on LED light and monochrome camera can obtain SI images

in the visible light band, which further reduces the equipment cost.

Images were collected immediately after static pressure was

applied to each pear. The sample is positioned on the imaging stage

with the bruising area facing upward toward the projector and

camera. The height of the platform is adjusted to accommodate all

sizes of pears before imaging each sample. The distances from the

pear sample to the projector and camera was set at approximately

30 cm. Three phase-shifted sinusoidal patterns (with phase offsets of

-2p/3, 0 and 2p/3) in 8-bit bmp format were created in Matlab (The

Mathworks, Inc., Natick, MA, USA) and uploaded to the projector

control software on the computer, and then imported into the

projector for sample illumination. The camera is set to an exposure

time of 50 ms to obtain an 8-bit grayscale image for each pattern

projected onto the sample.
2.3 Image demodulation and processing

The pear pattern image collected from the SIRI system cannot

be directly used for bruising detection, but needs further image

demodulation processing. The image demodulation method used in

this experiment is a three-phase demodulation (TPD) method. It is

a commonly used sinusoidal image demodulation scheme. This

method requires three images with equal phase steps for image

demodulation. Through the SIRI system, three images are obtained

at each frequency, and the phase offsets are − 2p=3, 0 and 2p=3,
respectively (Schreiber and Bruning, 2007). Typically, a two-

dimensional sinusoidal fringe pattern can be represented as follows:
BA

FIGURE 1

(A) Typical ‘Korla’ pear samples (Unpeeled and peeled) with different degrees of bruising (S0: sound, S1: mild bruises, S2: moderate bruises, S3:
severe bruises). (B) Preparation of bruise samples.
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In(x, y) = IDC(x, y) + IAC(x, y) cos (2p fx + 2p fy + jn) (1)

where IDC(x, y) and IAC(x, y) are DC and AC, respectively. fx
and fy are the spatial frequencies along the x and y axes, respectively.

According to the experimental requirements, only the spatial

frequency in one direction is required, so fy is 0 in this

experiment. jn is the phase shift of the nth pattern image. In this

experiment, j1, j2 and j3 corresponding to the sinusoidal fringe

patterns I1(x, y), I2(x, y) and I3(x, y) are − 2p=3, 0 and 2p=3,
respectively. The DC and AC are the final results obtained by

image demodulation, which can be obtained by the following

equation (for simplicity, the coordinate symbol is omitted).

IDC =   13 (I1 + I2 + I3) (2)

IAC =
ffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
p

(3)

The aforementioned equations (3) demonstrate that TPD

exclusively relies on straightforward pixel-by-pixel algebraic

operations, resulting in efficient computation. Moreover, the

subtraction operation effectively mitigates common noise across

the three images, enhancing its robustness. The demodulated image

DC and AC images correspond to the images acquired under

uniform diffuse illumination and the images resulted from the

sinusoidal illumination pattern, respectively. The AC image

contains depth information, which varies with the spatial

frequency of the illumination pattern. Specifically, as the spatial

frequency of the illumination patterns increased, the depth of tissue

interrogation in the AC images decreased (Lu and Lu, 2019).

Although AC image has the ability of enhanced detection, there

are still some deficiencies, such as low intensity, uneven brightness

distribution, and large noise. Since DC images also have similar

problems, the AC image can be divided by the corresponding DC

image to obtain a ratio image RT image to improve the image

quality. RT image can make the image background more uniform

and enhance the image contrast. It is defined as follows:

RT = IAC
IDC

=
ffiffi
2

p
I1+I2+I3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
p

(4)
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2.4 Spatial frequency selection

Since the different penetration depths of structured light at

different spatial frequencies, it is crucial to select the appropriate

frequency for accurate detection of pear bruises. Through preliminary

experiments, it was found that the detection effect of bruising was

good when the spatial frequency was between 0 and 500 cycles m-1.

Therefore, the spatial frequencies of 50, 100, 150, 200, 250, 300, 350,

400, 450 and 500 cycles m-1 were selected for imaging, and the optimal

frequency that can accurately detect the bruises was selected by

comparing the demodulation results. Prior to conducting the

experiment, it is essential to generate sinusoidal fringe patterns with

varying spatial frequencies on the computer. The generation formula

is presented in equation (1). The value IDC and IAC were set to (255/2).

By adjusting the parameters fx or fy within the equation, fringe

patterns corresponding to different spatial frequencies can be

generated. These fringe patterns are visually recognizable, appearing

as densely-packed black and white stripes at higher spatial frequencies,

and sparser black and white stripes at lower spatial frequencies.

The contrast index (CI) is introduced to compare the

enhancement effect of pear bruises at each spatial frequency. CI can

quantitatively evaluate the image contrast, that is, the distinguishability

of the bruised part relative to the whole part of the fruit. It needs to

divide the pear to be detected into two parts, namely bruised tissue and

sound tissue. Afterward, the ratio of the between-class variance to the

total variance of the pixel intensity is calculated to obtain CI:

CI =
Nx(�x−�z)

2+Ny(�y−�z)
2

o
Nz
i=1(zi−�z)

2 (5)

where Nx , Ny , Nzare the number of pixels in the bruised, sound

tissue and the whole region, respectively. And �x, �y and �z are the

average strength of the bruised, sound tissue and the whole region,

respectively. The value of CI is between 0 and 1, where a higher value

indicates the better visibility and distinguishability of the bruised area.

Calculating the CI involves segmenting both bruised and sound

areas, which can be challenging to achieve in AC images depicting

mild bruises. On the contrary, RT images are more easily segmented

due to contrast enhancement. Consequently, this study opts to
BA

FIGURE 2

Schematic diagram (A) and real system (B) of the SIRI system.
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employ RT images rather than AC images to calculate CI for

optimizing the spatial frequency. After removing the background

by threshold segmentation, the Otsu threshold segmentation method

(Otsu, 1979) was used to segment the bruise area to obtain the images

of the bruised area, the sound area and the whole fruit area, and then

the CI value was calculated according to Equation (5). The CI values

under different spatial frequencies and different degrees of bruising

were compared, and the optimal spatial frequency suitable for all

degrees of bruising was selected for the next study.
2.5 Feature extraction and selection

Before using the machine learning algorithm to classify the

images of pears, it is usually necessary to extract the features of the

images, and use the extracted discriminant features to represent

the images. Texture is one of the important features used to

identify the object or region of interest in the image. Therefore, the

texture features are also often applied to image classification in the

fruit defect detection (Lu et al., 2021; Cai et al., 2022). Gray level co-

occurrence matrix (GLCM) is a commonly used statistical method for

image processing and texture analysis. It characterizes the texture of

the image by calculating the frequency of pixel pairs with specific

values and specific spatial relationships in the image to obtain GLCM,

and then extracts statistical measures from the matrix. The Haralick

features calculated based on GLCM are functions of distance and

angle. In this study, 56 Haralick features with a distance of 1 were

extracted in four directions (angles 0°, 45°, 90°135°) (Haralick et al.,

1973). Therefore, 56 complete feature sets were extracted from each

picture for bruise detection.

Feature selection is the process of selecting available feature subsets

for predictionmodels. Feature selection serves to eliminate irrelevant or

redundant features, resulting in a reduced feature set that can enhance

model accuracy and decrease computation time. When dealing with

limited data sets, feature selection can improve the generalization

ability of machine learning models and mitigate overfitting

occurrences. The Random Frog algorithm, originally introduced for

gene selection, is a reversible jump Markov chain Monte Carlo

(MCMC)-like algorithm Yun et al. (2013). This algorithm was used

for feature selection. The process of feature selection includes feature

subset search, feature subset evaluation and feature subset verification.

Furthermore, choosing an appropriate stopping criterion can not only

optimize the feature selection process but also reduce the overall

selection time. The core idea of the random frog leaping method is

to randomly select feature subsets. In this study, the performance

evaluation and ranking of these subsets were conducted using the PLS-

DA combined with cross-validation method. The outcomes of the

feature selection were utilized to create a feature subset that will be

employed for subsequent model classification.
2.6 Bruise classification algorithm

The pears with three degrees of bruising were classified. For

each degree of bruising, the data set was randomly divided into

training set and test set according to the ratio of 7:3.
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This study developed three classification methods. LS-SVM is a

variant of the standard Support Vector Machine (SVM). Unlike the

latter, LS-SVM obtains the final decision function by solving linear

equations instead of quadratic programming problems. As a result,

it exhibits excellent generalization performance and requires lower

computational cost (Suykens and Vandewalle, 1999). In this study,

the radial basis function (RBF) kernel function was applied to the

calculation of the LS-SVM, and the regularization parameters of

the LS-SVM model were determined by ten-fold cross-validation.

The purpose was to identify the parameter values that yield the best

performance on the given dataset. PLS-DA is a supervised

classification method, which was developed using the Partial Least

Squares (PLS) algorithm initially designed for multivariate

calibration (Wold et al., 2001). When employing the PLS-DA

model for classification, it is crucial to ascertain the optimal

number of latent variables for modeling. In this study, the

number of latent variables in the PLS-DA model was determined

based on the criterion of the smallest prediction error observed in

the leave-one-out cross-validation. KNN is a widely employed

machine learning algorithm for tackling supervised classification

tasks. It functions by calculating the distance between various

feature vectors and employs cross-validation to determine the

most suitable value of K.

To address the variability introduced by data division, each of

the aforementioned training instances is replicated 30 times. Each

bruise degree and the overall samples were then modeled

independently. The training was conducted using two distinct

image inputs (AC and RT). Subsequently, a fair comparison was

made between the outcomes obtained from the different image

inputs and the three classifiers.

Three commonly used metrics are employed to assess the

effectiveness of various classification models. These metrics

include True Positive (TP), True Negative (TN), and Overall

Accuracy (ACC). The TP and TN rates are computed as the

ratios of accurately classified bruised and sound samples,

respectively, to the total samples in their respective categories.

ACC represents the proportion of all correctly classified samples

to the total number of test samples. The aforementioned

performance indicators are derived from the average values

computed across thirty randomly partitioned datasets utilized

for modeling.

The image preprocessing, feature extraction, and model training

procedures were carried out using Matlab R2017a (The Mathworks,

Inc., Natick, MA, USA).
3 Results and discussion

3.1 Performance of bruising detection
based on different spatial frequencies

Figure 3 shows the basic image processing, including three-

phase demodulation, background segmentation and frequency

domain filtering. Using the three-phase demodulation method,

the collected three SI images can be demodulated to obtain AC

images and DC images. Background segmentation mainly used the
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threshold method to generate the pear area mask to remove the

influence of the background on the bruise detection. Here, the DC

image was used as a reference, and the mask was generated by

manual threshold segmentation. The threshold is manually adjusted

in a small increment to obtain the appropriate value, and the

morphological operation is supplemented to generate the

appropriate mask. Since the detection environment is stable,

the value is used to generate a mask for all samples to segment

the pear area from the image background. In addition, a Gaussian
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low-pass filter was used to denoise the AC images and enhance the

bruise detection effect of the AC images. The processed AC images

were used for the next step of image processing and classification.

Figure 4 displays the DC and RT images of three degrees of

bruising (S1, S2, and S3) captured at different spatial frequencies. It

should be noted that each spatial frequency produces a DC image, but

all DC images remain basically the same. Upon visual inspection, it is

observed that except for the spatial frequency of 50 cycles m-1, RT

images at different spatial frequencies can effectively identify the
FIGURE 3

Three-Phase Demodulation and image processing. * Represents the dot product of Mask and DC or AC images.
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subcutaneous bruising area of pears, while the DC image, equivalent

to the image under uniform illumination, does not show hidden

bruises. In addition, the RT image led to a more uniform image

background. Due to the curvature of the pear surface, the RT image

has a positive effect on the correction of intensity distortions, which

can greatly eliminate the influence of uneven illumination, while the

DC image obviously shows a darker background edge. As the spatial

frequency of the SI increases, the overall brightness of the RT image

decreases. At higher spatial frequencies, as the overall brightness
Frontiers in Plant Science 07132
decreases, the bruise contrast decreases significantly. The darkening

of RT images at high spatial frequencies can be attributed to the

characteristics of SI. The SI attenuation rate at high spatial frequency

is high, resulting in signal attenuation, so the AC image will be

darkened. The brightness of the DC image at different frequencies

does not change significantly, so the ratio image eventually darkens,

as shown in Equation (4). In general, RT images at all frequencies

except the lowest frequency achieved consistently good performance

in detecting different fresh bruises on pears.
FIGURE 4

RT images and DC images for the mild (S1), moderate (S2) and severe bruised (S3) ‘Korla’ pears at the spatial frequencies of 50, 100, 150, 200, 250,
300, 350, 400, 450 and 500 cycles m-1, respectively.
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To further quantify the distinguishability of subcutaneous

bruises in pears, the CI values were calculated for different bruise

degrees at various spatial frequencies, as presented in Table 1. The

table reveals a consistent pattern across different degrees of bruising:

as the spatial frequency increases, the CI initially rises, reaching a

peak at a certain frequency, and then gradually decreases. Indeed,

except for the CI at spatial frequency of 50 cycles m-1, bruises at low

spatial frequencies are more distinguishable, which is in line with

the visual observations.

Among them, S1 and S2 samples achieve the maximum CI at

the spatial frequency of 150 cycles m-1, whereas S3 samples reaches

its highest CI at 100 cycles m-1. Considering that mild bruises are

more difficult to be detected, it is necessary to focus on the

detectability of bruises in S1 and S2 samples. Moreover, it can be

seen from the table that the CI values at 100 and 150 cycle m-1 in S3

are still at a high level. Hence, this study selected 150 cycle m-1 as

the final spatial frequency for the subsequent bruise detection of

all samples.
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3.2 Image demodulation results

Figure 5 shows typical samples of three different degrees of

bruising, all of which were detected immediately after the bruising

occurred. These pears underwent varying degrees of bruising when

exposed to different levels of static pressure. With naked eyes

observation, bruises on pears are readily discernible in AC and

RT images, whereas they are almost imperceptible in RGB and DC

images. The bruised area appears as a darker region in the image.

Nevertheless, it is impractical to determine the extent of bruising by

relying solely on the grayscale values in this region. This limitation

arises from the lack of discernible differences in intensity among the

three distinct levels of bruising, particularly in RT image. The RT

image clearly demonstrates effective image enhancement achieved

by the ratio of AC to DC image. The contrast in the RT image is

noticeably higher compared to the AC image, and it successfully

eliminates artifacts resulting from the pear’s surface color and

irregular shape.
TABLE 1 Contrast indexes (CIs) obtained under for different spatial frequencies (cycles m-1) three bruise degrees.

Bruise degree 50 100 150 200 250 300 350 400 450 500

S1 0.205 0.486 0.501 0.478 0.438 0.400 0.359 0.312 0.275 0.235

S2 0.382 0.611 0.625 0.536 0.486 0.433 0.384 0.343 0.309 0.276

S3 0.340 0.592 0.544 0.458 0.393 0.346 0.309 0.280 0.251 0.231
frontier
FIGURE 5

Typical RGB, DC, AC, RT images of mild (S1), moderate (S2) and severe (S3) bruise of ‘Korla’ pears.
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It can be seen from the Figure 5 that pears at two maturity stages

(green maturation period and yellow maturation period) can obtain

good detection results. In addition, although some pears have red

stripes, they have no effect on the final detection results including

DC, AC and RT images. However, the irregular shape of pears does

affect the detection results, mainly in DC and AC images, while RT

images completely eliminate this negative influence.
3.3 Bruise classification

The classification outcomes of three classification models (LS-

SVM, PLS-DA and KNN) when AC and RT images were employed

as inputs for independent data were shown in Figures 6, 7,

respectively. The diagrams illustrated that it was viable to employ

visible LED SIRI technique to immediately detect the bruising on

‘Korla’ pears, resulting in a commendable level of detection

accuracy. The detection accuracy of RT images under each

classification model surpasses that of AC images, aligning with

the observations made by visual inspection. The LS-SVM model

exhibits both the highest detection accuracy and the greatest model

stability. When compared to the PLS-DA and KNN models, LS-

SVM demonstrates superior detection outcomes across three bruise

severity levels and two image inputs. When AC images were used as

input, the classification accuracy and stability of the LS-SVM model
Frontiers in Plant Science 09134
elevate as the degree of pear bruising. Notably, an overall

classification accuracy exceeding 90% can still be achieved in the

identification of mild bruising. From the perspective of ACC, the

classification accuracy of LS-SVM, PLS-DA and KNN models

increased with the increase of pear bruise degree. Among them,

the accuracy of PLS-DA in detecting samples with severe bruise

degree was close to that of LS-SVM model, but its stability was still

not as good as the latter. The KNNmodel also achieved 92.3% ACC,

but its stability is far less than the former two. In actual production,

the degree of bruising of pears is not the same, which is related to

the environment of pears in production and transportation.

Therefore, the overall detection accuracy of different degrees of

bruising may be more in line with the actual situation. Although the

LS-SVMmodel achieves high accuracy and stability in the detection

of samples with a single degree of bruising, it’s not very outstanding

in the detection of bruises in mixed samples with three degrees of

bruising due to only 85.6% of sound fruit recognition accuracy.

Therefore, AC images may not be suitable for bruise detection of

pears in commercial production.

When RT images were used as input, the three classification

models show excellent performance in bruise detection accuracy,

and were superior to AC images in terms of detection accuracy and

model stability. Moreover, according to the error bar, the stability of

the LS-SVM model is still higher than that of the other two models.

For individual and combined samples with different degrees of
B
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A

FIGURE 6

Classification results for bruise detection by using three classification models with AC images. (A) Classification results of mild bruises (S1).
(B) Classification results of moderate bruises (S2). (C) Classification results of severe bruises (S3). (D) Overall classification results of the three levels
of bruising. Error bars on the chart signifies the corresponding standard errors of the evaluation index derived from 30 modeling instances.
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bruising, the three evaluation indexes (TP, TN and ACC) of the LS-

SVM model all exceeded 98%. Notably, when the classification

model was employed for identifying bruises in RT images, it

consistently maintains a high level of accuracy in detecting

bruises of varying severities, with little fluctuation. This shows

that compared with AC images, the detection effect of RT images

is less correlated with the degree of pear bruising. The detection

accuracy of RT images in each degree of bruise was greater than the

best result of AC images in detecting bruises (severe bruises).

Therefore, it is a better choice to use RT images as the basis for

pear bruising detection. Especially, the detection performance is still

very good when the RT image performs mixed detection of pears

with different bruising degrees. Hence, RT image was proved to be a

more favorable option for detecting bruises on pears with varying

degrees. It is feasible to use RT images for bruising detection of

‘Korla’ pears in practice.

In feature selection, different feature subsets will be generated

according to the different division of sample sets. In this study,

based on the random frog feature selection algorithm, the optimal

ten features were selected as feature subsets. With the division of

each data set, the number of times each feature is selected as a

feature subset is counted, as shown in Figure 8. Ten features with

the most selected times are selected to establish a new feature subset.

It can be seen from the figure that the feature subsets of different
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degrees of bruising are not the same, and the feature subsets of AC

images and RT images are also quite different. Among them, the

feature subsets of AC images with different degrees of bruising are

quite different, and there are few common features, while there are

many common features for RT images, which further proves that

the stability of RT image for detection of bruising is higher than that

of AC image. In addition, for the mixed data sets of three bruising

degrees, the feature subset of the AC image only contains the most

frequently selected features in the independent data sets of different

bruising degrees, while the RT image contains many common

features, which indicates that it is easier to obtain the best subset

of features from the feature set of the RT image to achieve the

highest classification accuracy. From the perspective of detection

accuracy, the accuracy of the classification model with AC image as

input will increase with the increase of the degree of bruising, while

the classification model with RT image as input has little difference

in accuracy, which is consistent with the results of feature selection.

Table 2 summarizes the classification accuracy of bruised pears

by three kinds of models established based on ten features. These

features were selected based on the above highest frequency. It can

be noted that different models have varying classification accuracy

for inputs with different degrees of bruising and AC/RT images. The

classification accuracy of the model with RT image as input is still

higher than that of AC image regardless of type of model, and the
B
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FIGURE 7

Classification results for bruise detection by using three classification models with RT images. (A) Classification results of mild bruises (S1).
(B) Classification results of moderate bruises (S2). (C) Classification results of severe bruises (S3). (D) Overall classification results of the three levels
of bruising. Error bars on the chart signifies the corresponding standard errors of the evaluation index derived from 30 modeling instances.
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LS-SVM model is the optimal classification model. The overall

detection accuracies of slight, moderate, severe and mixed degree of

bruising were 99%, 98.11%, 98.44% and 98.64%, respectively. By

using the feature subset with the highest frequency, the LS-SVM

model improved the effect of detecting mild bruises when RT image

was used as input. Further examining the ten selected texture

features, it is found that they mainly come from the Angular

Second Momen, sum entropy, entropy, and maximum correlation
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coefficient in different directions, indicating they, combined with

RT image, are important for detecting ‘Korla’ pear bruises.
4 Conclusion

This study successfully demonstrated the feasibility of low-cost

visible-LED SIRI technique for the early detection of varying
FIGURE 8

The feature selection results of independent data set and mixed data set of AC image and RT image with mild (S1), moderate (S2) and severe (S3) bruises.
The first ten most discriminative features are selected by the random frog feature selection algorithm, and the frequency of each feature selected when
the data set is randomly divided for thirty times is counted. The top ten features according to selected frequency are highlighted in red.
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degrees of subcutaneous bruising in ‘Korla’ pears. The 150 cycles m-

1 was determined as the optimal structural illumination spatial

frequency. For detection of three degrees of bruised pears, RT and

AC images were significantly superior to DC images, and RT image

was best due to the ability of enhanced image contrast and

brightness unevenness correction. Texture features can serve as

important features for classifying bruised and sound pears and

random frog was an effective texture feature optimization

algorithm. Among three types of texture feature models (LS-

SVM, PLS-DA and KNN models), the LS-SVM model exhibited

superior detection performance with the highest detection accuracy

and stability, regardless of single bruising degree classification or

mixed bruising degree classification. The LS-SVM model

established using ten appropriate features extracted from RT

images achieved classification accuracies of 98.6%, 98.9%, 98.5%,

and 98.8% for mild, moderate, severe and mixed bruises,

respectively, indicating the outstanding ability of the proposed

methodology in detecting the bruising of pear fruit in this study.

Subsequent study should improve the hardware system and

algorithms so that this low-cost SIRI technique can be

implemented for online detection of pear bruising. Furthermore,

the capacity for the early bruising detection of other thin-skinned

fruit (e.g. apple and peach) should be also assessed to expand the

application of this technology.
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TABLE 2 The classification accuracy (%) of bruised pears by three kinds of models established based on ten features with the highest frequency of
selection.

Input Degree
LS-SVM PLS-DA KNN

TP TN ACC TP TN ACC TP TN ACC

AC

S1 89.33 92.33 90.83 84.78 88.78 86.78 77.33 89.89 83.61

S2 92.22 94.00 93.11 85.78 89.22 87.50 85.78 90.89 88.33

S3 96.11 98.56 97.33 94.56 90.00 92.28 89.67 96.44 93.06

ALL 96.59 88.00 94.44 90.04 94.33 91.11 93.41 79.67 89.97

RT

S1 99.00 99.00 99.00 93.44 92.56 93.00 95.67 97.44 96.56

S2 97.33 98.89 98.11 88.44 93.56 91.00 98.44 98.44 98.44

S3 98.00 98.89 98.44 99.44 98.89 99.17 96.44 95.78 96.11

ALL 99.11 97.22 98.64 92.26 92.89 92.42 96.78 85.44 93.94
frontie
ALL refers to a collection of mild (S1), moderate (S2) and severe (S3) bruising samples.
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Introduction: Tannin content and postharvest quality characteristics of

persimmon fruit are often determined by the destructive analysis that

consumes time, does not allow the acquisition of data from the same fruit

continuously, and requires expensive high-performance equipment. This

research was done to investigate the potential for non-destructive

estimation of astringency and quality parameters in persimmon fruit based

on visible/near-infrared (VNIR) spectra.

Methods: VNIR spectra readings, the reference tannin content, and quality

parameters were measured from fruits of “Cheongdo-Bansi” and “Daebong”

persimmon cultivars at harvest and throughout the ripening/deastringency

period. The spectra readings from half of the total fruit were utilized for the

calibration set, while the other half readings were used for the prediction set.

To develop models correlating the spectra data to the measured reference

parameters data, the partial least square regression (PLSR) method

was utilized.

Results and discussion: In the case of ‘Daebong’, the coefficients of

determination (R2) between VNIR spectra and the actual measured values

of TSS, firmness, simple sugars, and tannin content were (0.95, 0.94, 0.96,

and 0.96) and (0.93, 0.89, 0.96, and 0.93), for the calibration and prediction

sets, respectively. Similarly, the R2-values of (0.86, 0.93, 0.79, and 0.81) and

(0.83, 0.91, 0.75, and 0.75) were recorded in ‘Cheongdo-Bansi’ for the

calibration and prediction sets, respectively. Additionally, the acquired data

were divided into two sets in a 3:1 ratio to develop predictive models and to

validate the models in multiple regressions. PLSR models were developed in

multiple regression to estimate the tannin content of both cultivars from

firmness and simple sugars with R2-values of 0.83 and 0.79 in ‘Cheongdo-

Bansi’ for the calibration and prediction sets, respectively, whereas, R2-values

of 0.80 and 0.84 were recorded in ‘Daebong’ for the calibration and
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prediction sets, respectively. The overall findings of this study showed the

possibility of using VNIR spectra for the prediction of postharvest quality and

tannin contents from intact persimmon fruit with quick, chemical-free, and

low-cost assessment methods. Also, the multiple regression using

physicochemical parameters could fairly predict the tannin content in

persimmon fruit though destructively but save time and low-cost.
KEYWORDS

persimmon, astringency, tannin, non-destructive PLS model, Vis/NIR spectra
GRAPHICAL ABSTRACT
1 Introduction

Persimmon (Diospyros kaki Thunb.) probably originated in

China and has been mainly grown in China, Korea, and Japan as

a relevant food source from prehistoric times (Parfitt et al., 2015). In

2021, China, the Republic of Korea, and Japan contributed 96% of

the world’s persimmon production (FAOSTAT, 2021). According

to FAOSTAT (2021), persimmon production in the Republic of

Korea was 200,610 tons from the total Asia and world production of

4.16 and 4.33 million tons, respectively. Persimmon fruit classifies

as either astringent or non-astringent, and it is a delicious and

healthy fruit rich in vitamins, minerals, and antioxidants which are

associated with numerous health benefits (Park et al., 2017; Das and

Eun, 2021). ‘Cheongdo-Bansi’ and ‘Daebong’ are commercially

important astringent persimmon cultivars that are commonly

grown in the Republic of Korea due to their adaptability to the

environment and excellent taste and texture (Park et al., 2017; Park

et al., 2019). Tannins are polyphenol compounds with a high
02140
molecular weight that cause astringency due to their large

hydroxyl phenolic groups (Cortés et al., 2017). The soluble

tannins gradually turn into insoluble tannins as the fruit ripens

and the fruit become less astringent (Noypitak et al., 2015; Cortés

et al., 2017). In non-astringent persimmon, soluble tannin is

reduced naturally during ripening, while in astringent

persimmon, a high level of soluble tannin is maintained when it

is not fully ripe and fruits cannot be eaten during the commercial

harvest stage because of their higher levels of soluble tannins

(Yamada et al., 2002; Akagi et al., 2009; Das and Eun, 2021).

Fruits of both ‘Cheongdo-Bansi’ and ‘Daebong’ cultivars,

however, undergo rapid softening after harvest, and by the time

astringency is low enough to be palatable, the fruits become too soft.

Conversely, firm textured fruits which are suitable for distribution

are astringent. This astringency can cause a dry or puckering

sensation in the mouth that can be unpleasant (Das and Eun,

2021). Hence, it requires rapid ripening or removing the

astringency from persimmons for agreeable palatability.
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However, many studies were reported to achieve fast removal of

astringency from persimmon including ethylene (Park et al., 2017;

Park et al., 2019), high concentrations of CO2 (Arnal and Del Rıó,

2003; Salvador et al., 2007), ethanol (Ortiz et al., 2005), high (Ben-

Arie and Sonego, 1993) and freezing (Das and Eun, 2021)

temperatures treatments. Treatments with ethylene and high

concentration of CO2 (high CO2) are the most widely used

commercial techniques that promote fast ripening and

astringency removal, respectively (Cortés et al., 2017; Park et al.,

2017). Ethylene treatment causes rapid expression of ripening-

related genes (Park et al., 2017; Park et al., 2019), and exposing

the fruit to a high CO2 promotes the accumulation of acetaldehyde

due to anaerobic respiration in the fruit. The soluble tannins

become insoluble as they react with the acetaldehyde and the

astringency is thus eliminated (Cortés et al., 2017).

Firmness is the main difference between the persimmon fruit

deastringed by the treatment with ethylene and the high CO2. Fruit

treated with ethylene becomes softer, and acquires a jelly-like

consistency which is difficult to distribute. Yet, some consumers

prefer the taste and store it in a deep freezer for future use after fully

ripens. On the other hand, the firm texture of the fruit is maintained

during deastringency with the high CO2, appreciated by the

industry and consumers in its suitability for distribution (Munera

et al., 2017a). Therefore, optimum ripening and astringency

removal are required to avoid loss of fruit quality caused by high

concentration or long treatment and residual astringency due to low

concentration or short treatment of ethylene or high CO2 (Arnal

et al., 2008; Novillo et al., 2014; Park et al., 2017). Hence, it is

important to measure tannin contents during the treatment periods

to ensure optimum ripening and deastringency.

The common methods used to measure the changes in tannin

contents during ripening and astringency removal are usually

destructive and thus the same fruit cannot be monitored

continuously. The analysis also requires expensive high-

performance equipment and consumes time. Therefore, having a

reliable, low-cost, fast, and easy-to-implement method for tannin

determination in persimmons is a useful tool for astringency

management during postharvest handling and distribution.

Predictive models developed by using visible and near-infrared

(VNIR) spectroscopy and color variables are among the most

common techniques currently used for the prediction of

secondary metabolites such as lycopene and b-carotene in

tomatoes and a-solanine and a-chaconine in potatoes (Tilahun

et al., 2018; Tilahun et al., 2020). The interaction between VNIR

range spectra and the organic molecules that make up a compound

helps to obtain qualitative and quantitative information from the

spectra (Pasquini, 2003; Tilahun et al., 2020).

Cortés et al. (2016) predicted the internal quality (combination

of total soluble solids (TSS), firmness, and flesh color) of mango

with VNIR reflection spectroscopy. Noypitak et al. (2015) also

developed PLSR models to evaluate tannin content in astringent

‘Xichu ’ persimmon and recommended NIR interactance

spectroscopy for optimal prediction of soluble tannin content. In

addition, Cortés et al. (2017) also reported the possibility of

determining astringency through reflectance VNIR spectra at

selected points in intact and half-cut ‘Rojo Brillante’ persimmon
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fruit. Similarly, Son et al. (2009) predicted sugar contents in a sweet

persimmon using reflectance spectra. Most of the previous works if

not all, used CO2 treatment to remove the astringency of

persimmon during nondestructive estimations. However, more

samples at different levels of astringency and softening are needed

to ascertain the prediction power of astringency and ripening

quality to fulfill the demands of both consumers and the industry.

Thus, this study included the treatment with ethylene or high CO2

and untreated control of the intact ‘Daebong’ and ‘Cheongdo-Bansi’

persimmon fruits. This work determines the possibility of

nondestructive estimation of astringency and quality parameters

including TSS, firmness, and simple sugars by using VNIR

spectroscopy in transmittance mode, in combination with a

multivariate analysis technique, to predict the changes in quality

and tannin content of persimmon fruits during ripening

and deastringency.
2 Materials and methods

2.1 Plant material, treatments and storage
at ambient condition

Astringent persimmon fruits (Diospyros kaki Thunb. ‘Cheongdo-

Bansi’ and ‘Daebong’) were harvested from Jeollanamdo, Yeoungham,

Korea on 28 Sept. 2022. After harvest, 150 uniform fruits free of

external damage were selected from each cultivar. Within 12 hours of

harvest, the fruits were then brought to the postharvest laboratory at

the Department of Horticultural Sciences, Kangwon National

University, Korea. After keeping at ambient condition for 3 hours to

remove field heat, uniform fruits free of defects were carefully

reselected and divided into three groups (control, ethylene

treatment, and high CO2 treatment, 40 fruits each) for both

cultivars. So, 120 fruits of each cultivar were used for the

experiment. The treatment groups were treated separately with 100

mg kg-1 ethylene (Park et al., 2017) and 95% CO2 (Arnal et al., 2008)

for 24 h in a sealed 62 L container at 22°C. The control fruits were

treated under similar conditions without ethylene and CO2 treatment.

The fruits were characterized as 117.8 ± 1.96 and 271.5 ± 1.73 g of

fresh weight, 20.29 ± 0.8 and 19.26 ± 0.9 N offirmness, 16.93 ± 0.5 and

17.48 ± 0.4% of TSS, and 4.68 ± 0.2 and 4.98 ± 0.3 g kg-1 of soluble

tannin at harvest for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively.

To include different levels of astringency, data for the destructively

collected parameters (tannin content, firmness, TSS, and simple

sugars) and spectroscopic measurements of the intact fruits were

acquired at harvest, on the first day after harvest, and at 3-day intervals

afterward until the fruit attain the end of their shelf life (Figure 1). The

number of fruits at each measurement day was started with five fruits

at the beginning of the storage and decided afterward to 5-10 fruits

based on the fruit status.
2.2 VNIR spectral acquisition and analysis

In accordance with Tilahun et al. (2020; Tilahun et al., 2018),

each individual intact fruit of the ‘Cheongdo-Bansi’ and ‘Daebong’
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cultivars were scanned in the transmittance mode in the spectral

region of 500-1100 nm using three (12 V/100 W) halogen lamps as

a source of VNIR light. Fruit holder was used to keeping the fruit

right above the detector (Figure 1B). The integration time was set to

100 ms and the measurement was done 12 times from different

directions. The fruit was placed on the fruit holder to prevent it

from falling, and the fruit holder was rotated above the detector to

avoid the interference of scanning by human hand (4 positions on

stem-end plane, middle plane, and stylar-end plane (Noypitak et al.,

2015) per fruit) to introduce variability within the fruit samples. For

each measurement, a total of 3500 data points was captured at 0.2

nm sampling intervals. The VNIR spectrometer was linked to a

computer to transfer data. A total of 1440 spectra readings from 120

fruits for ‘Cheongdo-Bansi’ and 1440 spectra readings from 120

fruits for ‘Daebong’ were acquired from the intact persimmon fruit

throughout the ripening/deastringency period. After removing

outliers, a total of 1200 spectra readings (10 readings per fruit)

were chosen for analysis from each ‘Cheongdo-Bansi’ and

‘Daebong’ (Figure 2). For each cultivar, the spectra readings from

half of the total fruit (600 readings from 60 fruits) were utilized for

the calibration set, while the other half readings (600 readings from

60 fruits) were used for the prediction set using the leave one sample

out procedure to separate the sample sets. The original spectra were

transformed by multiplicative scattering correction (MSC), first
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derivatives, the Hanning window, and standard normal variate

(SNV) to remove undesired information and reduce systematic

noise. The prediction was based on the lowest predicted residual

error sum of squares (PRESS) value, which was used to determine

the ideal number of latent variables for the partial least squares

regression (PLSR) model. To determine a linear relationship

between measured references and spectral data, MATLAB R2012b

(Version 8.0.0.783, The Math Works, Inc., Natick, MA, USA) was

used to conduct PLSR regression analysis. RMSEC (root mean

square of standard error in calibration), RMSEP (root mean square

of standard error in prediction), coefficient of determination for

calibration (Rc2) and prediction (Rp2) were used to evaluate the

performance of the developed PLSR models. A predictive model

with higher Rp2, small bias values and lower RMSEP is considered

as a reliable prediction model.
2.3 Measurements of fruit quality
parameters and analysis

The measurements for firmness, TSS, soluble tannin content,

fructose and glucose content were made from each whole fruit

according to the methodology implemented in our laboratory and

described by Park et al. (2017). A Rheo meter (Sun Scientific Co.
A B

DC

FIGURE 1

Changes in firmness and soluble tannin content of the control and ethylene or high CO2 treated ‘Cheongdo-Bansi’ (A, C) and ‘Daebong’ (B, D)
persimmon fruit during storage at 22°C. Each data point indicates 5-10 fruits. The number of fruit at each measurement day was started with five
fruits at the beginning of the storage and decided afterward to 5-10 fruits for each measurement based on the fruit status.
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Ltd., Tokyo, Japan) with a 10 kgf maximum force of penetration

and a 3 mm round, flat-ended stainless-steel probe was utilized to

measure the firmness of the intact persimmon fruit with a probe

speed of 1 mm/s around equatorial area of each fruit. TSS was

measured by utilizing a digital refractometer (Atago Co. Ld., Tokyo,

Japan) and 5 g of homogenized persimmon pulp juice from each

whole fruit. Glucose and fructose contents were measured in

accordance with the method employed by Park et al. (2016); 5 g

of each whole fruit’s frozen pulp sample was added to 50 mL of

distilled water, homogenized, and then the juice was centrifuged

(Mega-17R, Hanil Science Industrial, Korea) at 12,578 × g for

10 min and the supernatant was filtered through 0.45 mm
membrane filter (Advantec, Tokyo, Japan). The analysis was

carried out using HPLC with a RI detector (Waters 410

Differential Refractometer, Waters, MA, USA) and a Sugar-Pak
™ column (6.5 × 300 mm, Waters, USA) with an injection volume

of 10 mL. Soluble tannin content was measured with the modified

Folin-Dennis method (Park et al., 2017). Samples of 5 g from whole

fruit were added directly into a solution of 25 mL of 80% methanol.

Then, 6 mL of distilled water was added to 1 mL of filtered

supernatant sample solution. The mixture was then vortexed after

0.25 mL of 2 N Folin-Ciacalteau reagent had been added. Saturated

Na2CO3 (1 mL) and distilled water (1.5 mL) were added after 3 min.

Following a 1 h incubation period at 25°C, the absorbance of mixed

sample was measured with a spectrometer (Thermo Fisher

Scientific, Waltham, MA, USA) at 725 nm, and the results were

reported as g kg−1 on a fresh weight basis.

To perform PLSR models using the above spectra readings (10

readings per fruit) obtained from different directions of a fruit,

measured data for reference parameters (tannin, firmness, SSC,

glucose, and fructose) were collected from a total of 240 fruit

samples. These samples comprised 120 fruit from each of

‘Cheongdo-Bansi’ and ‘Daebong’, with 8 replications per fruit

sample, and the mean value of each 4 replicates was used as the

fifth value for each parameter to make 10 replicates per fruit to get a

one to one fit with the spectra readings.

To examine the effectiveness of multivariate regression models

to estimate tannin content (astringency), the values of the collected
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parameters were divided into calibration and prediction sets using

the leave one sample out procedure to separate the four sample sets.

Fruit quality parameters were collected from both cultivars

throughout the storage period, and the data were divided in to

3:1 ratio. 80 fruit samples were used for calibration, and 40 fruit

samples were used for prediction. A total of 240 fruit samples

(‘Cheongdo-Bansi’ and ‘Daebong’, 120 each) were used for the

experiment in 8 replications per fruit sample and the mean value

was calculated for analysis. The measured reference parameters

(tannin, firmness, SSC, glucose and fructose) were organized in

excel, where the rows represented the number of samples (the total

of 120 averaged value from 120 persimmons for each cultivar), and

the columns represented the number of variables (X and Y

variables). The X-variables, or predictors, were the values of

measured firmness, SSC, glucose and fructose values associated

with each sample. The Y-variables, or response, were the measured

tannin values associated with each sample. Multivariate PLSR

models were developed from calibration data set and the

measured reference data of each parameter were compared to the

predicted data obtained by PLSR models in both the calibration and

prediction data sets. A predictive model with higher Rp2, lower

RMSEP, and higher ratio of prediction to deviation (RPD) is

thought to be a good prediction model. RPD is calculated by the

ratio of SD to RMSEC/P, where SD is the standard deviation of the

observed parameters. If the RPD value is less than 1.5, the

calibration is not usable. When the RPD is between 1.5 and 2.0, it

becomes able to distinguish between high and low values, but when

it is between 2.0 and 2.5, it becomes possible to make approximate

quantitative predictions (Cortés et al., 2016).
3 Results

31 Firmness and soluble tannin content of
persimmon during ripening/deastringency

Figure 1 shows the changes in firmness and soluble tannin

contents of the control and ethylene or high CO2 treated
A B

FIGURE 2

Transmittance energy spectra curves obtained from and ‘Cheongdo-Bansi’ (A) and ‘Daebong’ (B) persimmon fruit by using VNIR spectrometer.
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‘Cheongdo-Bansi’ and ‘Daebong’ persimmon fruit during storage at

22°C. The firmness and soluble tannin data showed significant

differences between the treatments starting from the first day.

Ethylene treated fruits ripened faster, became softer, and acquired

a jelly-like consistency which reduced their storage life up to 13 and

7 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively, compared to

the controls that reached 19 and 16 d for ‘Cheongdo-Bansi’ and

‘Daebong’, respectively. Conversely, high CO2 treatment hastened

deastringency and maintained firmness and stored up to 19 and

10 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively. Ethylene

treatment hastens softening in both cultivars while high CO2

maintained firmness and prolonged the storability of both

cultivars, and its effect was distinctly higher in the case of

‘Cheongdo-Bansi’ (Figure 1).
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32 VNIR spectra vs. reference analysis

In this study, transmittance energy spectra of ‘Cheongdo-Bansi’

and ‘Daebong’ intact astringent persimmon fruit were recorded by

VNIR spectrometer (Figures 3A, B) in the wavelength of 500-1000

nm as shown in Figures 2A, B. As indicated in Figure 2, differences

were observed in the raw transmitted spectra characteristics of the

two cultivars. More scattered spectra were observed in ‘Cheongdo-

Bansi’ than ‘Daebong’.

In addition to the PLSR models for the estimation of tannin

contents to determine astringency levels of the two persimmon

cultivars, PLSR models were also developed to predict postharvest

quality parameters such as firmness, TSS, and simple sugars

(glucose and fructose). Table 1 shows the essential data for VNIR
A B

FIGURE 3

VNIR spectrometer (A) and measurement system (B) during transmittance spectra measurement of intact persimmon fruits.
TABLE 1 Firmness, TSS, simple sugars and soluble tannin content data used for VNIR modeling and multiple regressions.

Cultivars Parameters Treatments
Storage duration (days)

0 1 4 7 10 13 16 19

Cheongdo-
Bansi

Firmness (N)

Control
20.29
± 0.79

20.14
± 0.47

19.27
± 1.02

18.79
± 0.79

15.48
± 0.72

13.88
± 1.49

11.87
± 0.84

10.83
± 0.45

High-CO2
20.29
± 0.79

18.12
± 0.90

17.08
± 1.29

16.38
± 0.68

14.54
± 0.42

14.41
± 0.75

12.02
± 0.33

11.34
± 0.39

Ethylene
20.29
± 0.79

11.18
± 0.39

6.10
± 0.35

4.5 ± 0.69
4.24
± 0.87

3.68
± 0.87

– –

TSS (%)

Control
16.93
± 1.12

17.15
± 0.79

17.48
± 0.45

19.41
± 0.37

19.43
± 0.24

18.55
± 0.34

20.04
± 0.42

19.39
± 0.56

High-CO2
16.93
± 1.12

15.25
± 0.43

15.02
± 0.15

15.83
± 0.59

16.69
± 0.18

16.31
± 0.34

17.10
± 0.51

18.30
± 0.70

Ethylene
16.93
± 1.12

15.55
± 0.29

16.90
± 0.32

16.98
± 0.55

17.96
± 0.36

20.11
± 0.86

21.08
± 0.63

–

Glucose
(mg kg-1)

Control 5822.23 6269.41 6030.09 7558.36 7833.15 7969.14 8618.81 8760.82

High-CO2 5822.23 5202.74 5585.59 6070.89 6297.67 6564.06 6630.25 6404.56

(Continued)
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modeling and multiple regressions. Promising results were recorded

for both cultivars with higher predictive models in ‘Daebong’ than

‘Cheongdo-Bansi’. In ‘Cheongdo-Bansi’, Rc2 and RMSEC for

measured vs. VNIR values of tannin in the calibration set were

0.81 and 0.83 g kg-1, respectively. Similarly, Rp2 and RMSEP for

measured vs. VNIR values of tannin in the prediction set were 0.75

and 0.52 g kg-1, respectively (Figures 4A, B). On the other hand, in

‘Daebong’, Rc2 and RMSEC for measured vs. VNIR values of tannin

in the calibration set were 0.96 and 0.21 g kg-1, respectively, while
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Rp2 and RMSEP for measured vs. VNIR values of tannin in the

prediction set were 0.93 and 0.27 g kg-1, respectively

(Figures 4C, D).

The same trends of higher predictive models were also observed in

‘Daebong’ than ‘Cheongdo-Bansi’ for measured vs. VNIR values of

firmness, TSS and simple sugars. In case of firmness, Rc2 and RMSEC

were 0.94 and 1.31 N, and 0.93 and 1.35 N in ‘Daebong’ and

‘Cheongdo-Bansi’, respectively (Figures 5A, C). Correspondingly, Rp2

and RMSEP were 0.89 and 1.83 N, and 0.91 and 1.49 N for ‘Daebong’
TABLE 1 Continued

Cultivars Parameters Treatments
Storage duration (days)

0 1 4 7 10 13 16 19

Ethylene 5822.23 5808.23 6048.38 6044.46 6534.75 6678.41 6448.98 –

Fructose
(mg kg-1)

Control 5865.22 6178.98 5891.16 7146.67 7328.13 7461.81 7944.08 7986.70

High-CO2 5865.22 4502.56 4751.30 5146.50 5366.50 5523.44 5357.71 5139.43

Ethylene 5865.22 5300.90 5506.17 5412.71 6110.06 6303.45 5996.22 –

Soluble tannin
(g kg-1)

Control
4.68
± 0.09

4.69
± 0.03

5.53
± 0.01

5.23
± 0.01

4.78
± 0.07

5.28
± 0.09

5.14
± 0.01

5.37
± 0.21

High-CO2
4.68
± 0.09

3.16
± 0.07

2.75
± 0.05

1.80
± 0.15

3.19
± 0.01

2.89
± 0.04

2.72
± 0.26

2.21
± 0.01

Ethylene
4.68
± 0.09

4.80
± 0.01

5.17
± 0.00

4.88
± 0.01

4.59
± 0.04

3.82
± 0.01

3.53
± 0.09

–

Daebong

Firmness (N)

Control
19.26
± 0.59

18.89
± 1.11

17.13
± 0.60

17.15
± 0.86

14.79
± 0.80

9.65
± 0.62

8.79
± 0.17

–

High-CO2
19.26
± 0.59

15.44
± 0.71

13.90
± 1.06

7.24
± 1.31

6.23
± 2.04

– – –

Ethylene
19.26
± 0.59

10.37
± 0.41

2.92
± 0.17

2.05
± 0.06

– – – –

TSS (%)

Control
17.48
± 0.73

18.60
± 0.41

18.25
± 0.40

19.76
± 0.59

18.61
± 2.20

17.31
± 0.89

15.20
± 1.01

–

High-CO2
17.48
± 0.73

15.69
± 0.28

14.65
± 0.41

16.40
± 0.39

15.89
± 0.45

– – –

Ethylene
17.48
± 0.73

15.48
± 0.59

14.81
± 0.57

16.03
± 0.33

– – – –

Glucose
(mg kg-1)

Control 4933.13 5108.14 5006.48 5371.05 5858.40 5499.64 5861.58 –

High-CO2 4933.13 4979.20 4224.52 5210.59 5369.60 – – –

Ethylene 4933.13 4523.83 5006.09 5515.52 – – – –

Fructose
(mg kg-1)

Control 4032.12 4162.41 4097.25 4353.54 4727.80 4453.36 4751.39 –

High-CO2 4032.12 3788.34 3242.84 3817.81 4010.23 – – –

Ethylene 4032.12 3558.48 3919.92 4174.34 – – – –

Soluble tannin
(g kg-1)

Control
4.97
± 0.03

4.79
± 0.02

5.09
± 0.02

5.23
± 0.02

4.79
± 0.07

5.00
± 0.03

5.10
± 0.10

–

High-CO2
4.97
± 0.03

3.60
± 0.23

3.46
± 0.20

3.12
± 0.31

2.52
± 0.02

– – –

Ethylene
4.97
± 0.03

4.76
± 0.05

2.32
± 0.01

2.12
± 0.03

– – – –
fro
Ethylene treated fruits ripened faster, became softer, and acquired a jelly-like consistency which reduced their storage life up to 13 and 7 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively. The
number of fruits at each measurement day was started with five fruits at the beginning of the storage and decided afterward to 5-10 fruits for each measurement based on the fruit status.
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and ‘Cheongdo-Bansi’, respectively (Figures 5B, D). Rc2 and RMSEC

for measured vs. VNIR values of TSS were 0.95 and 0.51%, and 0.86

and 0.83%, whereas Rp2 and RMSEP were 0.93 and 0.55%, and 0.83

and 0.91% in ‘Daebong’ and ‘Cheongdo-Bansi’, respectively

(Figures 6A–D). Regarding the simple sugars (glucose and fructose),

higher predictive models of 0.96 and 0.02 mg kg-1, and 0.96 and 0.02

mg kg-1 for Rc2 and RMSEC, and Rp2 and RMSEP, respectively, were

observed in ‘Daebong’ (Figures 7C, D). In ‘Cheongdo-Bansi’, Rc2 and

RMSEC, and Rp2 and RMSEP were 0.79 and 0.09 mg kg-1, and 0.75

and 0.10 mg kg-1, respectively (Figures 7A, B).
33 Multivariate PLSR models using the
reference data

Table 2 shows the means and ranges of reference (measured)

tannin content in the calibration and prediction data sets that

acquired by the destructive analysis. Meanwhile, tannin content

that estimated by multivariate PLSR model using firmness, glucose

and fructose in the calibration and prediction data sets are also

presented in Table 2. For ‘Cheongdo-Bansi’, Rc2, RMSEC and RPD

values of the calibration data set were 0.83, 0.27 g kg-1 and 0.36,

respectively. In the prediction data set, the corresponding values

were 0.79, 0.42 g kg-1 and 0.22, respectively for Rp2, RMSEP and

RPD (Table 2). Similarly, Rc2, RMSEC and RPD values of the

calibration data set were 0.79, 0.50 g kg-1 and 0.38, respectively for

‘Daebong’. The corresponding values were 0.84, 0.53 g kg-1 and

0.43, respectively for Rp2, RMSEP and RPD in the prediction data

set (Table 2).
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Following the predictive analysis in multiple regression,

firmness, glucose and fructose values were found to have high

predictive p-values in the prediction of tannin from the measured

reference postharvest quality parameters. The following equations

were found to be the best equations.

Tannin (g kg−1)  = 3:36 − 0:06 (firmness) − 19:67(fructose) 

+ 24:54(glucose) − ‘Cheongdo� Bansi’

Tannin (g kg−1)  = 2:1   +   0:06 (firmness) − 35:21(fructose) 

+ 47:74(glucose) − ‘Daebong’

The calibration and prediction set with multivariate PLSR

models had shown encouraging results to utilize the models based

on the measured reference vs. predicted scores of both cultivars. For

the prediction data set, a multivariate PLSR model had the highest

coefficient of correlation (0.84) for ‘Daebong’ and (0.79) for

‘Cheongdo-Bansi’ (Table 2; Figure 8).
4 Discussion

Rapid ripening, deastringency, and softening in ethylene treated

persimmon fruit could be due to rapid expression of ripening-

related genes (Park et al., 2017; Park et al., 2019). On the other hand,

the deastringency of firm persimmon fruit by high CO2 treatment

could be due to the accumulation of acetaldehyde in the fruit by

anaerobic respiration, and the soluble tannins become insoluble as
A B

DC

FIGURE 4

Measured vs. predicted values of tannin content (g kg-1) in ‘Cheongdo-Bansi’ for calibration (A) and prediction (B), and ‘Daebong’ for calibration (C)
and prediction (D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted value of
tannin content and the y axis represents the measured value by the PLS models.
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they react with the acetaldehyde (Cortés et al., 2017). Firmer fruit in

high CO2 treated fruit can be explained by the reduction of

respiration rate which in turn inhibit the effect of internal

ripening hormone, ethylene (Tilahun et al., 2022).

The introduction of environmentally friendly nondestructive

technology like VNIR spectroscopy, which has achieved widespread

recognition for assessing food quality, is necessary to meet the

present demand for high-quality products (Tilahun et al., 2020).

More scattered spectra in ‘Cheongdo-Bansi’ than ‘Daebong’ could

be attributed to the relatively more sample variation in ‘Cheongdo-

Bansi’ during the extended storage period up to 16, 19, and 19 days

for ethylene, high CO2, and control, respectively. In contrast,

‘Daebong’ had a shorter storage period of only 7, 10, and 16 days

for ethylene, high CO2, and control, respectively.

From the results of this study, the performance of PLSR models

for the prediction of tannin content in intact persimmon fruit was

cultivar dependent. Noypitak et al. (2015) evaluated tannin content

in high CO2 treated and control intact ‘Xichu’ persimmon fruits

using NIR and reported PLSR models with 0.94 and 0.95 Rp2 in

transmittance and interactance modes, respectively. They suggested

to use reflected light than transmitted light due to the variation of

soluble tannin content in the flesh close to the skin and at the core.

Cortés et al. (2017) also reported PLSR models using the data
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obtained from high CO2 treated intact fruits of ‘Rojo Brillante’

persimmon at six measurement points in reflectance mode with Rp2

of 0.90 and 0.91 with all and selected wavelengths, respectively.

Nevertheless, our results of this study revealed the possible

application of VNIR spectra in transmittance mode to predict

tannin content in intact persimmon fruit with higher predictive

models in ‘Daebong’ than ‘Cheongdo-Bansi’. Previous studies by

Tilahun et al. (2020, Tilahun et al., 2018) on tomatoes and potatoes

also support the use of spectra in transmittance mode to predict

lycopene, b-carotene, and glycoalkaloids. Moreover, the novelty of

this study lies in its incorporation of both deastringency and

ripening treatments, encompassing persimmon fruits exhibiting

varying degrees of astringency and firmness.

Munera et al. (2017b) reported the potential of hyperspectral

imaging to predict firmness with Rp2 of 0.80 in ‘Rojo Brillante’

persimmon fruit. Cortés et al. (2016) also predicted internal quality

(combination of TSS, firmness and flesh color) of mango with

VNIR reflection spectroscopy and reported Rp2 between 0.83–0.88

using full spectral range. Similarly, Ar et al. (2019) demonstrated the

possibility of using NIR spectroscopy to predict TSS and firmness

with Rp2 of 0.86 and 0.94, respectively, in astringent ‘Rendeu’

persimmon fruit, while there was low accuracy in predicting

vitamin C and total acid due to their low contents in persimmon.
A B

DC

FIGURE 5

Measured vs. predicted values of firmness (N) in ‘Cheongdo-Bansi’ for calibration (A) and prediction (B), and ‘Daebong’ for calibration (C) and
prediction (D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted values of
firmness and the y axis represents the measured value by the PLS models.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1260644
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Baek et al. 10.3389/fpls.2023.1260644
It is important to note that, in addition to estimating astringency,

the developed PLSR models in the current work can be used as the

better nondestructive tools for the assessment of the firmness and

TSS in both cultivars. Similar to our present study, Liu et al. (2006)

reported best models for the prediction of simple sugars in intact

apples using Fourier transform near-infrared (FT-NIR)

spectroscopy. Taken together, the feasibility of using VNIR to

predict all dependent variables (quality parameters and

astringency level in terms of tannin content) of persimmon fruit

were indicated by lower RMSEC/P values and higher Rp2 between

0.89-0.96 and 0.75-0.91 for ‘Daebong’ and ‘Cheongdo-Bansi’,

respectively. The wide range of NIR values in the developed PLSR

models could be due to ten spectra readings obtained from different

directions from one fruit, whereas eight reference measured values

were collected per fruit. In addition, the variation in the nature of

the astringency treatments (control, high CO2, and ethylene) has led

to variations in fruit characteristics. Notably, tannin content

decreased in both high CO2 and ethylene treatments, contributing

to a narrower range of actual tannin content values.

In our previous works, the multivariate PLSR models were

developed to predict lycopene and b-carotene in tomatoes and

glycoalkaloids in potatoes from Hunter’s color values (Tilahun

et al., 2018; Tilahun et al., 2020). Measurements of postharvest

quality parameters such as color values, firmness, TSS, and simple
Frontiers in Plant Science 10148
sugars (glucose and fructose) were taken during the experiment.

However, in this study, the PLSR models for color values and TSS in

the calibration data set had lower R2 and the p-values were higher

than 0.15 for both ‘Cheongdo-Bansi’ and ‘Daebong’. Hence, color

values and TSS were not included in multivariate PLSR model

development. Instead, we included simple sugars (glucose and

fructose) data for PLSR model development. The above indicated

multivariate PLSR models could not be claimed as nondestructive

estimation method as they utilize the destructively acquired data for

model development. However, astringency levels can be estimated

from firmness and simple sugars without the extra analysis of

tannin content. This in turn, reduce time, cost of skilled man

power and solvents, and does not require expensive high-

performance equipment. As the present study incorporated only

two cultivars, further studies are needed on various cultivars to

develop more robust multivariate PLSR models.
5 Conclusions

The present study indicates attempts to predict tannin content

and quality parameters in intact persimmon fruit with chemical-

free, fast and cheap VNIR spectra. Multivariate PLSR models were

also developed from the reference measured parameters including
A B

DC

FIGURE 6

Measured vs. predicted values of TSS (%) in ‘Cheongdo-Bansi’ for calibration (A) and prediction (B), and ‘Daebong’ for calibration (C) and prediction
(D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted value of TSS and the y
axis represents the measured value by the PLS models.
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A B

DC

FIGURE 7

Measured vs. predicted values of simple sugars (fructose and glucose (mg kg-1)) in ‘Cheongdo-Bansi’ for calibration (A) and prediction (B), and
‘Daebong’ for calibration (C) and prediction (D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis
represents the predicted value of simple sugars and the y axis represents the measured value by the PLS models.
TABLE 2 Statistics for multivariate calibration and prediction of tannin content in ‘Cheongdo-Bansi’ and ‘Daebong’ persimmon fruit.

Cultivar Set Parameters
Fruit

number
Total

samples
Mean Range SD

Rc/
p2

RMSEC/
P

RPD

Cheongdo-
Bansi

Calibration

Reference
tannin content 80 640

4.49 2.80-5.44 0.84

Multivariate 4.38 2.35-5.45 0.78 0.83 0.36 2.3

Prediction

Reference
tannin content 40 320

4.19 2.73-5.44 1.07

Multivariate 4.24 2.58-5.44 0.94 0.79 0.49 2.2

Daebong

Calibration

Reference
tannin content 80 640

4.10 2.30-5.29 1.05

Multivariate 3.95 2.20-5.40 0.96 0.79 0.50 2.1

Prediction

Reference
tannin content 40 320

4.03 2.30-5.29 1.20

Multivariate 4.20 2.42-5.37 0.97 0.84 0.53 2.3
F
rontiers in Plant
 Science
 11149
 frontie
SD, standard deviation; RMSEC, root mean square error of calibration; RMSEP, root mean square error of prediction; RPD, residual prediction deviation (SD/RMSEC/P); Rc2, coefficient of
determination in calibration; Rp2, coefficient of determination in prediction data set.
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firmness, TSS, and simple sugars. Prediction of tannin content,

firmness, TSS, and simple sugars was promising in both cultivars,

and relatively better predictive models were developed in ‘Daebong’

than ‘Cheongdo-Bansi’ with both VNIR and multivariate-based

techniques. Our models could be promising alternative tools to the

costly and time-consuming destructive analysis. The developed

models could benefit both the industry and consumers through

their use in the agricultural processing and distribution centers to

sort fruits on a conveyor belt at different levels of astringency and

ripening stages with a VNIR spectrometer. In addition, astringency

levels can be estimated from firmness and simple sugars by the

developed multivariate PLSR models without the extra analysis of

tannin content. Further investigation on different cultivars at

different levels of astringency and softening to evaluate tannin

content and ripening quality of intact persimmon fruit could help

to develop more robust models.
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Agriculture is the primary source of human survival, which provides the most

basic living and survival conditions for human beings. As living standards continue

to improve, people are also paying more attention to the quality and safety of

agricultural products. Therefore, the detection of agricultural product quality is

very necessary. In the past decades, the spectroscopy technique has been widely

used because of its excellent results in agricultural quality detection. However,

traditional spectral inspection methods cannot accurately describe the internal

information of agricultural products. With the continuous research and

development of optical properties, it has been found that the internal quality of

an object can be better reflected by separating the properties of light, such as its

absorption and scattering properties. In recent years, spatially resolved

spectroscopy has been increasingly used in the field of agricultural product

inspection due to its simple compositional structure, low-value cost, ease of

operation, efficient detection speed, and outstanding ability to obtain

information about agricultural products at different depths. It can also separate

optical properties based on the transmission equation of optics, which allows for

more accurate detection of the internal quality of agricultural products. This

review focuses on the principles of spatially resolved spectroscopy, detection

equipment, analytical methods, and specific applications in agricultural quality

detection. Additionally, the optical properties methods and direct analysis

methods of spatially resolved spectroscopy analysis methods are also reported

in this paper.
KEYWORDS

spatially resolved spectroscopy, optical properties, quality inspection, agriculture,
hyperspectral imaging
frontiersin.org01152

https://www.frontiersin.org/articles/10.3389/fpls.2023.1324881/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1324881/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1324881/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1324881/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1324881&domain=pdf&date_stamp=2024-01-10
mailto:zhangfan67@126.com
mailto:wtang906@163.com
https://doi.org/10.3389/fpls.2023.1324881
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1324881
https://www.frontiersin.org/journals/plant-science


Xia et al. 10.3389/fpls.2023.1324881
1 Introduction

With the improvement of living standards, people have higher

and higher requirements for the quality and safety of agricultural

products (Rejeb et al., 2022). Nondestructive testing techniques for

the quality of agricultural products have also become more and

more widespread in recent years (Tian et al., 2023). With the

development of optical technology, some efficient and mature

optical nondestructive detection techniques have emerged (Mei

and Li, 2023; Mohd Ali et al., 2023), such as visible and near-

infrared (Vis-NIR) spectroscopy (Guo et al., 2023) and

hyperspectral imaging (HSI) (Chen et al., 2021; Tian et al., 2021;

Zhang et al., 2022; Zhao et al., 2023), which have been widely used

in nondestructive quantities for physical and chemical

characterization of agricultural products. These optical inspection

techniques can be mainly used to measure the spectral information

of agricultural products to obtain the diffuse reflectance (or

transmittance) of the samples and then combine this spectral

information with existing chemometrics algorithms to establish a

prediction model for the quality of agricultural products. Although

existing intelligent information processing techniques are more

mature, such as deep learning and machine learning (Audu and

Aremu, 2021; Dhanya et al., 2022; Ryo, 2022), these methods have

been widely developed and can further enhance the ability to detect

the quality of agricultural products. Nevertheless, the spectral

information which has already been obtained, can be only

analyzed by these methods, and if the spectral information

obtained is better, then the quality of agricultural products will be

more accurately detected. When light enters the surface of an object,

a series of optical phenomena such as scattering and absorption will

occur, and this optical information is very important for the

detection of the quality of the spectrum. The common spectral

acquisition methods often produce significant errors and cannot

accurately describe the absorption and scattering information of the

light. In order to describe more accurately the laws of propagation

of light in the organization of an object as well as more specific

properties, special studies have been made on optical

properties (OP).

When light enters a turbid medium, a series of optical

phenomena occur, such as reflection, refraction, absorption, and

scattering. Absorption and scattering of light are the most dominant

OP of light in biological tissues. The absorption coefficient (µa) and

the reduced scattering coefficient (µs’) are specific descriptions of

the absorption and scattering properties of light. The µa is mainly

related to the chemical composition of the biological tissue, while

the µs’ is closely associated with the structural and physical

properties of the sample tissue. Conventional optical inspection

techniques can only detect the total effect of light absorption and

scattering, but it is not easy to measure the specific parameters of

these OP accurately. Researchers have made great efforts to

distinguish between scattering and light absorption effects in

tissues. Currently, indirect measurement techniques for optical

parameters, represented by time-resolved (TR) (Cubeddu et al.,

2001; Zude et al., 2011; Vanolia et al., 2020), spatial-resolved (SR)

(Ma et al., 2021b; Huang et al., 2022), frequency-domain (FD) (Hu

et al., 2020a), spatial-frequency domain imaging (SFDI) (Hu et al.,
Frontiers in Plant Science 02153
2018; Sun Z. et al., 2021) and integrating sphere (IS), are used by

measuring intact or partial tissue via obtaining certain specific

parameters (such as diffuse reflectance R, diffuse transmittance T,

and collimated transmittance Tc, etc.) of intact tissue or slices and

combining them with specific optical transmission models and

inversion algorithms, the optical parameters of the sample can be

obtained indirectly, and the absorption and scattering properties of

tissues from light can be separated or obtained simultaneously, thus

the chemical and physical information of sample can be eventually

reflected. Compared with other detection techniques towards

optical properties, spatially resolved spectroscopy (SRS) is simple,

low cost, and is widely used and relatively mature in nondestructive

testing of agricultural products.

SRS was initially used in the medical field to determine the

absorption and scattering properties of light in blood with two

parallel optical fibers (Reynolds et al., 1976). This technique is

mainly used to measure the diffuse reflection of light at different

distances from the sample surface via a point light source and to

calculate the absorption and reduced scattering coefficients of light

in biological tissues by combining the diffuse reflection equation of

light. It has a banana-shaped transmission path, as shown in

Figure 1. As the distance between the light source and the

detector increases, the SRS method can detect deeper, which can

obtain more information about the interior of the corresponding

tissue and facilitate the detection of features inside biological tissues.

In summary, SRS is a convenient tool for obtaining spectral

information at different locations. Since SRS integrates spatial and

spectral information, it can help researchers to explore its

correlation with the chemical composition, physical structure and

OP of the samples to be measured, and to build corresponding

prediction models for the purpose of product quality prediction,

which has resulted in a wider application of this technology in more

fields. For example, agriculture (Huang et al., 2022), forestry (Ma

et al., 2021c), industrial construction (Wang et al., 2022), physical

and chemical materials (Bao et al., 2021; Liu et al., 2022),

astronomical observation (Bao et al., 2021; Comerford et al.,

2022), gas detection (Li et al., 2021), biomedicine (Niwayama and

Unno, 2021; De Man et al., 2023) and other fields, providing people

with crucial scientific basis and reliable data support. In the field of

biomedicine, SRS is widely used in human hemoglobin detection,
FIGURE 1

Transmission paths of light.
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skin pathology detection, and so on. It can help doctors to more

accurately identify hemoglobin levels and the human condition so

that they can precisely analyze the cause of the patient illness

(Zaytsev et al., 2022; Zhang et al., 2023). It can also be used to

identify blood species to enhance wildlife protection and preserve

national resource information (Zhang et al., 2021). In the field of

agriculture, SRS technology is more advantageous than traditional

spectral detection technology, and the prediction model established

by this technology can improve the prediction ability of the quality

for agricultural products, which is currently mainly applied in the

quality detection of SSC (Soluble Solids Content), firmness, pH,

bruise detection, etc. (Huang et al., 2018b). It can be seen that SRS

has a very wide range of utilization in detection with a broad

application prospect.

Traditional detection can only obtain the spectrum of a certain

place in the sample without gaining more information, and it

often collects the total effect of absorption and scattering of light,

which may lead to inaccurate prediction results. In contrast, the

SRS method can detect spectra at different distances to obtain

more spectral information. Moreover, the technique has the

advantage of separating the optical properties to analyze the

quality of the sample in a targeted manner. Currently, there are

many studies based on SRS in the quality inspection of agricultural

products, such as the inspection of fruits, meat products, and milk.

Since its detection methods establish models that can predict the

quality of agricultural products more accurately, it has been widely

used in the field of agriculture. There are fewer researchers who

have summarized the principles, development, and applications of

SRS in agriculture. Therefore, the main objective of this paper is to

provide a systematic introduction to different SRS systems and to

review the fundamentals, recent developments, and applications

of SRS in agricultural quality inspection. In addition, although SRS

has been relatively mature in agriculture, it is still faced with many

challenges and difficulties presently. The development status and

development trend of SRS techniques in agriculture are

also reported.
2 Spatially resolved spectral
detection systems

With the development of SRS technology, the application field

has become more widespread. When using this technique to detect

different kinds of samples, people find that some traditional test

samples are difficult to meet the needs of different varying detection

samples. Not only are there irregularities in the tested models, but

modern developments are also demanding faster, more convenient,

and more efficient detection configurations or systems, as well as

higher detection accuracy and lower device costs. Therefore,

researchers are constantly researching and developing more

appropriate spatially resolved related detection systems. The

following are the existing spatially resolved spectral detection

systems at this stage, which mainly include single-fiber, fiber-

array, charge-coupled device (CCD) line-scan, hyperspectral line-

scan, and multi-channel hyperspectral detection systems.
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2.1 Single fiber system

The earliest form of spatially resolved spectral detection was to

detect spectral information from different distances by two parallel

optical fibers in contact with the object under test (Reynolds et al.,

1976). This approach is known as the single fiber system. Only two

optical fibers are needed; one is connected to a light source to

provide a stable optical signal, and another is connected to a

spectrometer to receive the signal. The two fibers follow a certain

distance to obtain spatially resolved spectra. This type of format is

the simplest, but a large error still exists; it is hard to ensure that the

light source-detector distance (SDD) is accurate as well as stable

when the fiber is moving, and the two fibers also must be as close as

possible to the object under test, so as to avoid the impact of stray

light on the quality of the spectral information.

To avoid the impact of manual detection on the experiment, Xia

et al. fixed the light source fiber and the detection fiber by a

mechanical device (Xia et al., 2007), as shown in Figure 2, which

used a 20W halogen lamp (HL-2000-FHSA-HP, Ocean Optics Inc.,

Dunedin, USA) as the light source. It is connected to an optical fiber

and illuminates the sample surface at an incidence angle of 40°. The

detection fiber, connected to the spectrometer, is perpendicular to

the sample surface. The position of the detection fiber is moved by a

translation device to detect the spectral information at different

distances. Both the source and detection fibers have a core diameter

of 400 μm, and the closest distance between the two fibers is 1.5 mm

to avoid fiber collisions.

For more portability and ease of operation, Ye et al. developed a

slidable ring device consisting of a halogen lamp LA-150ue-A

(Hayashi Co., Japan), a removable detection fiber ring
FIGURE 2

Single fiber optic inspection device (Xia et al., 2007).
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illuminator, and a Mini-Spectrometer BLACK-Comet-SR100

(StellarNet Inc., USA) (Ye et al., 2021), as shown in Figure 3A.

Measuring with the ring illuminator close to the surface of the fruit

(Figure 3B). Figure 3C shows a schematic diagram of the ring

illuminator. A halogen light source enters the ring illuminator

through an optical fiber to form a ring beam, as shown in

Figure 3D. As the device inside and outside the machine have the

effect of shading to reduce the reflection of light from the sample

surface, the spectrum is received only through the small hole in the

middle of the signal to reduce the impact of mixed spectral

information. The detector and light source are in contact with the

sample, and the spectral information is detected by moving the

position of the detection fiber in the center of the ring.

The single fiber moving detection form is simple in structure,

easy to operate, low cost, and flexible. It can select the optimal

detection SDD so that the collected information is more

representative. However, this method is easily affected by many

factors, such as the accuracy and stability of the moving platform,

the strength of the light source fiber and the acquisition fiber fixed,

the extent of contact between the measured sample irregularities

and the acquisition fiber, all of which can make the system have a

significant error. In addition, the single fiber detection form has a

high demand on the fiber diameter, which requires the fiber

diameter to be as thin as possible so that the light SDD can be

closer. Xia et al. reduced the light SDD because of the limitation of

the fiber diameter adjusted, thereby adjusting the incident light

angle (Xia et al., 2007). Furthermore, the time required for single

fiber detection is long. Therefore, the use of a single fiber detection
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format is not friendly for collecting a large number of samples, and a

faster and more efficient detection system needs to be developed.
2.2 Fiber array type system

Due to the significant error of a single fiber optic collection

system, the acquisition process of each distance can only follow the

sequence to collect, which is time-consuming and laborious, and

there will be a phenomenon of missed collection, so the researchers

have developed a form of detection based on fiber optic arrays to

achieve the simultaneous acquisition of multiple distances. Zhou

et al. evaluated the OP of turbid media utilizing a multi-fiber

detection format (Zhou et al., 2015), as shown in Figure 4. The

system was used to collect spatially resolved diffuse reflections at

633 nm with a light source (HL-2000, Ocean Optics, USA), an

illumination fiber, six detection fibers, and a spectrometer

(QE65pro, Ocean Optics, USA). All the acquisition fibers are

connected to a multiplexer, and the spectral signal is transmitted

to the spectrometer through the multiplexer.

Spectral information for every distance can be read by a fiber

array device connected to the multiplexer. Nevertheless, the

sequential reading of each spectral information needs to be set

up, and the setup is complicated with a longer reading time. Nguyen

Do Trong et al. investigated a new SRS fiber array device (Nguyen

Do Trong et al., 2011), shown in Figure 5, which consists of a

halogen light source (AvaLight-DHc, Avantes, Netherlands), an

illumination fiber and five detection fibers, a spectrometer, a CCD
A B

C D

FIGURE 3

Removable probe fiber optic ring device (Ye et al., 2021). (A) Slideable ring inspection system. (B) Inspection demonstration image. (C) Ring
illuminator object diagram. (D) Ring illuminator schematic diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1324881
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xia et al. 10.3389/fpls.2023.1324881
camera, data acquisition, and control equipment. Spectral data were

collected at intervals of 0.15 mm between the detection fiber and the

illumination fiber over a range of 0.3-1.2 mm. The setup could split

the diffuse light into multiple wavelengths in the range of 500-1000

nm by means of a spectrometer and project them onto different

areas of a CCD camera (S7031-1008S, Hamamatsu, Japan). Finally,
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a data acquisition card and a customized LabView program

(LabView 8.5, National Instruments, USA) were used to collect

spatially resolved information.

In order to collect spectral information at more distances, Ma

et al. designed a Vis-NIR SRS system (Ma et al., 2021b), as shown in

Figure 6, which consists of a 5 W halogen light source, a Vis-NIR

HSI camera and 30 silica fibers (core diameter: 100 μm, cladding:

110 μm), with five groups of fibers, each consisting of six fibers, 1, 2,

3, 4 and 5 mm away from the light source, respectively. The 30 silica

fibers installed in this SRS acquisition device including both

horizontal and vertical spatial-spectral information of the sample

under test, which could increase the exploration of the spatially

resolved spectral information.

These fiber optic array-type devices are mainly arranged in the

form of linear arrays (Nichols et al., 1997; Doornbos et al., 1999;

Bogomolov et al., 2017) and circular arrays (Dam et al., 2001;

Nguyen Do Trong et al., 2011; Bridger et al., 2021). Their

arrangement can be designed according to the sample’s shape and

structure’s size. Since the designed fiber array structure is fixed to

detect the spectral information at once, it can save the measurement

time as well as avoid the spectral error caused by the inaccuracy of

the distance during the measurement. However, custom-designed

fibers are more costly and require testing and calibration of the fiber

arrays. The fiber optic array is only suitable for detecting samples

with a flat surface for most agricultural products due to the

irregularity of the sample detection fiber probe not well fitted to

the sample surface. In addition, this system requires contact with
FIGURE 5

Novel fiber optic array device (Nguyen Do Trong et al., 2011).
FIGURE 4

Fiber optic array type inspection device (Zhou et al., 2015).
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the sample surface during the inspection process and is not friendly

to liquids, easily polluted and vulnerable samples, so it needs to be

continuously improved and developed.
2.3 CCD line scan type system

The fiber optic array detection method is suitable for measuring

liquid samples because the integrated array probe can make good

contact with the liquid surface. In addition, it is also well suitable for

flat sample pieces, such as dried apples or tablets (Igne et al., 2015),

etc., but it is easy to contaminate the sample with this contact

detection method, so it needs to be cleaned frequently. In order to

achieve a non-contact measurement method while detecting the

spatially resolved information of the sample, researchers have
Frontiers in Plant Science 06157
developed a spatially resolved detection system based on the CCD

line scan method.

The spatially resolved system of CCD line-scan type is also

called monochromatic imaging spatially resolved system, which is

available for detecting the OP of a sample at a single wavelength. As

shown in Figure 7, Kienle et al. (1996) used this approach for

inspection. The system mainly consists of a laser diode as a light

source, which is illuminated by a mirror at an angle of incidence of

5-10° on the object to be measured and detected by a CCD camera,

and then the detected data are read out and processed by

a computer.

Since laser diodes can only emit a single wavelength, this is not

very friendly for analyzing multiple wavelengths. Therefore,

researchers have pooled diodes at several different wavelengths

for detection, which was used by Lorente et al. to detect the early
A B

FIGURE 6

Vis-NIR SRS system (Ma et al., 2021b). (A) SRS detection systems. (B) Internal structure diagram of the fixator.
FIGURE 7

CCD line scan spatial resolution system (Kienle et al., 1996).
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ripeness of citrus fruits (Lorente et al., 2013). As shown in Figure 8,

the system consists of a CCD camera, five solid-state laser diodes

emitting at different wavelengths (532, 660, 785, 830, and 1060 nm),

and a computer. In the acquisition process, the laser diodes are not

integrated together for the acquisition, but the alternating form of

replacing the diode of the corresponding wavelength each time to be

used as a light source, so as to achieve the acquisition of spectral

information at different wavelengths.

Conventional CCD imaging systems do not contain

spectroscopic components inherently, and the acquired images

are ordinary RGB images. Due to the theory of optics, only lasers

or laser diodes can be used as light sources for CCD cameras. This

limits the system to detecting the optical properties of the sample at

a single wavelength. Although, at this stage, there is a way to detect

spectral information in multiple wavelengths using diode module

integration, it is still far from sufficient for analyzing continuous
Frontiers in Plant Science 07158
wavelengths. Moreover, the saturation of pixels occurs close to the

light source point, so this area cannot be used for data analysis, and

to avoid saturation, it is usually necessary to limit the exposure time

(Kienle et al., 1996). This makes the CCD line-scan type system not

well suited to the needs of the application, so a more optimized

spatially resolved detection system is urgently needed.
2.4 Hyperspectral line-scan system

For SRS, the more continuous wavelength bands the collected

information contains, the more advantageous it is likely to be for

subsequent data analysis and processing. In pursuit of acquiring

spatially resolved spectral information in continuous bands in a

non-contact system, researchers have combined hyperspectral

imaging (HSI) techniques with SRS, and they have been widely

developed and applied. As shown in Figure 9, Peng and Lu (Peng

and Lu, 2008) used a spatially resolved line-scan system, which

mainly consists of a back-illuminated camera (C4880-21,

Hamamatsu Photonics, Hamamatsu Corp., Japan), a control unit,

an imaging spectrometer (ImSpector V9, Spectral Imaging Ltd.,

Oulu, Finland), a quartz tungsten halogen lamp (Oriel Instruments,

Stratford, CT, USA) and a circular open sample holder with a

diameter of 30 mm. The light source is a 1.5 mm circular beam, and

the hyperspectral imaging system line scan is 1.6 mm from the light

source to avoid oversaturation of the CCD detector pixels.

To make it easier to detect the OP of SRS, as shown in Figure 10.

Cen and Lu (Cen et al., 2011) developed the Optical Property

Analyzer (OPA), which consists of three main hardware

components that are imaging, illumination, and sample

positioning units. The imaging device mainly consists of an

electron-multiplying CCD (EMCCD) camera (LucaEM R604,

ANDORTM Technology, USA), an imaging spectrometer

(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland), and a
FIGURE 9

Hyperspectral imaging system for acquiring spectral scattering images (Peng and Lu, 2008).
FIGURE 8

Laser diode-based optical properties device (Lorente et al., 2013).
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master lens (Xenoplan 1.9/35, Schneider Optics, Hauppauge, USA).

An optical fiber connected to the focusing lens can be used to emit a

point light source. The sample fixation device consists of a

motorized horizontal stage (Twintrac, TSZ8020, US23T22104-

8LS, US Automation, USA) with a maximum speed of 203 mm/s

and a positioning accuracy of 0.0006 mm/mm, a vertically

adjustable stage, and a holder for sample positioning. The

integrated software program for OPA is developed in Microsoft

Visual C#. It can control the light source, camera, and sample

mounting platform for spectral and image data acquisition and also

analyze and display the acquired information in real time to obtain

the final scattering profile, absorption spectrum, reduced scattering

coefficient, etc. Due to the powerful and convenient functions of

this software, the workload of spectral data acquisition and analysis

can be greatly reduced, and the efficiency of the sample acquisition

and analysis can be improved.

Mendoza et al. (2011) developed an online hyperspectral

imaging system (OHIS) based on a hyperspectral line-scan type

(Figure 11), which consists of a back-illuminated EMCCD camera,

an imaging spectrometer (ImSpector V10E, Spectral Imaging Ltd.,

Oulu, Finland) covering a spectral region of 400-1000 nm. A near-

infrared enhancement lens and a halogen light source (Oriel

Instruments, USA). The computer is equipped with an image

acquisition card and a camera acquisition program written in C+

+, through which the camera can be controlled for image

acquisition. In order to capture the samples in real time and to

increase the efficiency of the test, the device also uses a conveyor belt

that can hold the samples. The imaging system of this OHIS

operates at a rate of approximately one in two seconds. This

system is the first to combine spatially resolved line sweep with

online inspection. Although the system has good predictions, it is

costly and still has some errors for curved samples.

While hyperspectral imaging inspection methods can realize the

advantages of contactless, efficient, and high-resolution acquisition,

they also have significant drawbacks. However, it is only suitable for

detecting samples with flat surfaces or objects of considerable size,
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and if the surface curvature of the sample is large, the detected

information will have a large error, so the detection device of SRS

needs to be improved continuously.
2.5 Multi-channel hyperspectral imaging
detection system

The current device is only suitable for detecting samples with

relatively flat surfaces, and the detection probes cannot fit closely for

most agricultural products. When the detection sample is too large,

the existing fiber array system makes it difficult to meet the

requirements of the number of detection fibers and detection

distance due to the limitations of the instrument. Although

hyperspectral detection has excellent advantages, it has a narrow

detection wavelength range and lacks flexibility for curved samples,

which can cause significant errors. Therefore, Huang et al. (2017)

designed a multichannel hyperspectral imaging detection device, as

shown in Figure 12, which was based on a multichannel

hyperspectral imager (Headwall Photonics, Inc., USA). The

multichannel probe consists of a point source and 30 fibers of

three sizes (i.e., 50 μm, 105 μm, and 200 μm). The light source fiber

is connected to a 250 W halogen lamp, and the 30 fibers are

permanently mounted on two sizes of aluminum cubes, giving the

probe the flexibility to measure samples of different sizes and flat or

curved surfaces at distances of 1.5-36 mm.

In general, the proposed SRS detection devices have their own

advantages and disadvantages as well as applicable detection

samples. The characteristics of these detectors are described in

Table 1. Although the single fiber detection system is simple in

structure, lowest cost, and flexible in collection, there will be a large

measurement error and time-consuming, so it is not suitable for a

large number of sample collections. Fiber array type system can
FIGURE 11

Online hyperspectral imaging system (OHIS) (Mendoza et al., 2011).
FIGURE 10

The Optical Property Analyzer (OPA) (Cen et al., 2011).
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A B

FIGURE 12

Multichannel hyperspectral imaging detection device (Huang et al., 2017). (A) Schematic of spatially resolved spectral acquisition. (B) Schematic of
fiber arrangement.
TABLE 1 Summary of studies on the types of detection devices for agricultural products.

Detection
systems

Objects Wavelength(nm)
Detection
distance
(mm)

Characteristics References

SF Beef 490-950 Incident fiber
Left: 9.0-6.5
Right: 4.0-7.0

Detection flexibility allows the selection of the
optimal distance

(Xia et al., 2007)

Apple 190-1070 2, 4, 6, 8, 10,
12, 14, 16

Easy operation, reduce error (Ye et al., 2021)

Pear 500-1000 -0.15, -0.1,
-0.05, 0,

0.05, 0.1, 0.15

– (Hu et al., 2017)

Onion 710-950 – The laser system has a slightly better optimal
single point ratio than the NIRS system

(Sun J. et al., 2020)

Rabbit 350-1000 5, 10, 15 Detecting distance slidable (Yuan et al., 2022)

FA Milk 550-1690 1-2.5 Optimal combination of minimum fiber counts (Watte et al., 2016)

Milk 400-995 0.28-1.96 Full-spectrum analysis replaced by two
wavelength-specific sensor measurements

(Bogomolov et al., 2017)

Pork 600-1100 6, 9, 12, 15 Improve detection efficiency (Wen et al., 2010; Zhang et al., 2010)

Pork 600-1100 6, 9, 12, 15 Efficient, low cost (Wang J. et al., 2017)

Apple 500-1000 0.3-1.2 Efficient (Nguyen Do Trong et al., 2014a;
Nguyen Do Trong et al., 2014b)

Apple 600-1100 1, 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2021b)

Kiwifruit 660-1000 1, 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2022)

Wood 600-1100 2, 3, 4, 5 Portable, high efficiency (Ma et al., 2021c)

Cattle 500-900 0.5, 1.0, 1.5,
2.0, 2.5

Fiber integration, high efficiency (Palendeng et al., 2020)

(Continued)
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achieve once-time acquisition at different distances to improve

detection efficiency and accuracy, but the cost is higher than

single-fiber detection systems with the need to detect samples as

smoothly as possible, and contact measurements are prone to

sample contamination, so the scope of use is also very limited.

CCD line scan type system can realize non-contact measurements

but cannot collect SRS in the continuous wavelength band. The

hyperspectral line-scan system can acquire spectral information in

continuous wavelength bands and are well suited for the detection
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of a large number of samples, while they are less friendly to the

detection of samples with curvature, such as apples, peaches,

oranges, etc. Multi-channel hyperspectral imaging detection

system can detect the spectra of some curvature samples, but the

cost is the highest, and there is still a large error for some samples

with large curvature. In general, although these systems have

detected the spatially resolved information of samples to a great

extent, they are still not friendly enough for the detection of

irregular objects because of their detection limitations, so there is
TABLE 1 Continued

Detection
systems

Objects Wavelength(nm)
Detection
distance
(mm)

Characteristics References

CL Milk 800-1065 – Fast, portable and inexpensive (Kalinin et al., 2013)

Apple 650-980 – Detecting distance slidable (Mollazade and Arefi, 2017)

Banana 532, 660, 785, 830, 1060 – Specific wavelength, non-contact (Adebayo et al., 2016)

Citrus 532, 660, 785, 830, 1060 – Specific wavelength, non-contact (Lorente et al., 2013)

Wood 808 Dry: Parallel:
20

Perpendicular:
10

Wet: Parallel:
25

Perpendicular:
15

Non-contact (Kienle et al., 2008)

HL Milk 530-900 1.6-20 Non-contact, easy operation (Qin and Lu, 2007)

Apple 500-1000 1.6-9 Easy to operate (Qin et al., 2007; Qin et al., 2009; Lu
et al., 2010)

Apple 450-1000 – Easy to operate (Peng and Lu, 2008)

Apple 600-1000 – Easy to operate (Huang and Lu, 2010)

Apple 500-1000 0-9 Easy to operate, with analysis software (Cen et al., 2012b; Cen et al., 2013)

Apple 450-1050 (Scatter) 460-
1100 (Vis/SWNIR)

– Realized hyperspectral online detection (Mendoza et al., 2014)

Apple 500-1000 20 Easy to operate, with analysis software (Zhu et al., 2016)

Peach 550-1650 1-9 Easy to operate, with analysis software (Cen et al., 2011; Cen et al., 2012a)

Peach 550-1000 1-9 Easy to operate, with analysis software (Sun Y. et al., 2020; Sun Y.
et al., 2021)

Cucumber 700-1000 37-55 Easy to operate, with analysis software (Lu et al., 2011)

Tomato 500-950 0-10 Easy to operate, with analysis software (Zhu et al., 2015)

Wood 1000-1600 1, 3, 5
(Thicknesses)

Non-contact methods, push-broom manner (Ma et al., 2018; Ma et al., 2019b)

Wood 1002-2130 – Non-contact methods, push-broom manner (Ma et al., 2019a)

Tea 967.11-1700 – Non-contact methods, push-broom manner (Mishra et al., 2019)

MHI Apple 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2020b)

Peach 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2022)

Tomato 550-1300 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2018b)
(Huang and Chen, 2018)

Tomato 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2018c; Huang
et al., 2020a)
SF, Single fiber system; FA, Fiber array type system; CL, CCD line-scan type system; HL, Hyperspectral line-scan system; MHI, Multi-channel hyperspectral imaging detection system.
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still a huge space that could be developed and innovated for the

detection systems of SRS.
3 Development of spatially resolved
spectral analysis methods

SRS collects spectral information at different distances and then

needs to be processed. In most cases, the optical properties are

obtained based on SRS techniques, and then the association

between sample properties and optical properties is analyzed on

the basis of absorption coefficients and reduced scattering

coefficients. Direct analysis is also used to detect the properties by

processing the spectral information at different distances. At this

stage, researchers have done a lot of work on the basis of optical

properties and direct analysis, which provides powerful and

effective support for the development of SRS in the future.
3.1 Optical properties methods

Among the methods of measuring OP in biological tissues,

there are currently two ways: direct and indirect measurement,

respectively. In the direct measurement method, Beer-Lambert’s

Law is used to calculate the OP within the tissue. In this method, the

optical properties of the tissue are calculated by measuring

parameters, such as complete attenuation transmission and

collimated transmission of a slice sample. Although the direct

analysis calculation method is simpler, its detection process is

more complex, requiring slicing and strict requirements for the

thickness of the slice (Cheong et al., 1990). The indirect

measurement method is mainly used to solve the OP by

inversion. Generally, researchers classify indirect measurements

into non-iterative and iterative approaches according to whether

the inversion process includes a parameter iteration step. The non-

iterative approach can be used to solve the optical properties of the

optical transmission model directly from the measured values. One

of the more commonly used methods is the Kubelka-Munk method

(Kubelka, 1948), but the accuracy of its measurements is not high,

requiring assumptions on various conditions. The iterative

approach is to evaluate the OP by inverting the parametric

equations for several iterations so that the measured values are

within the specified error range. Although this method is more

complicated, the measured optical properties are more accurate

than other methods. Spatially resolved techniques are also usually

applied by using indirect iterations to find the OP within the

sample tissue.

For the transmission of light in biological tissues, a series of

complex optical phenomena occurred, such as absorption, scattering,

reflection, refraction, interference, and diffraction of light. Although

Maxwell’s set of equations based on electromagnetic theory can

describe the light propagation process in tissues mathematically

(Yang et al., 2021; Katsumata, 2022), the equations cannot be

solved directly due to the complexity of biological tissues. In order

to study only the particle properties, such as absorption and

scattering of light, the fluctuating properties of light, such as
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interference, diffraction, and polarization, can be ignored.

Researchers have proposed the Radiative Transfer Equation (RTE),

which is more accurate in describing the transport properties of light

in tissues (Martelli et al., 2021; Hank et al., 2023), but the model is still

complex and has many parameters. Therefore, researchers usually

have used simplified transport model methods as well as numerical

methods to solve the optical properties (Lu et al., 2020). The

commonly used transport models are the diffusion approximation

and the P3 approximation, which is the theoretical model to describe

the spatially resolved diffuse reflection near the light source. The P3

approximation model is a third-order form of the radiative transfer

model. Since the P3 approximation is more accurate, it can be used in

place of the diffusion approximation (Wang, 2020; Wang, 2022). In

addition, numerical methods include Monte Carlo (MC) simulation

(Chong and Pramanik, 2023; Colas et al., 2023; Lan et al., 2023),

Adding-Doubling model (Xie and Guo, 2020; Sun et al., 2022) and

finite element methods (Morimoto et al., 2020).

The diffuse approximation equation is a simplified form of the

radiative transfer equation, which has the ability to be simplified by

satisfying two assumptions. 1) The medium is a strongly scattering

medium, i.e. ms
0 ≫ ma. 2) The SDD is greater than the mfp’ (mean

free path), i.e. r>mfp’. In addition, the incident light scattering step

in the tissue is considered to be isotropic radiation. The diffuse

approximation equation can be expressed as:

∂F ~r, tð Þ
c ∂ t

+ maF ~r, tð Þ − ∇ · D∇F ~r, tð Þ½ � = S ~r, tð Þ

where c is the spreading speed of light through the medium, is the

radiation fluence rate, ~r = x, y, zð Þ is a point within the medium,

D = 3 ma + m
0
s

� �h i−1
is the diffusion coefficient, S ~r, tð Þ is each

homogeneous light source. This equation can be used to describe

the transmission of light through some objects with geometric

shapes, such as semi-infinite, flat, cylindrical, spherical, etc.

(Farrell et al., 1992; Kienle et al., 1998), which provides a good

application for detection of OP of most samples. Depending on

different illumination methods such as steady-state point

illumination, pulsed point illumination, frequency-modulated

point illumination, and spatially modulated area illumination, OP

techniques have also evolved into spatially resolved techniques,

time-resolved techniques, frequency domain resolved techniques,

and spatial frequency domain techniques (Lu et al., 2020).

Based on the theory of diffuse approximation equations, Farrell

et al. proposed a diffusion-theoretic model for SR steady-state

diffuse reflection in the study of nondestructive determination of

OP in humans (Farrell et al., 1992). The model can be used to

describe the directional dependence of light diffuse reflection in

biological tissues when irradiated by an infinitesimal amount of

light. By comparing the predictions of the model with MC

simulations and with tissue simulation models, it was found that

the model can accurately describe the reflectance at radial distances

as small as 0.5 mm. Thus, the model can provide an effective

method and basis for later researchers to calculate and separate the

OP. In this model, the diffuse reflection of the medium is computed

as a boundary flow from a single isotropic point source located at

the mfp’ depth of the medium transport. The model is applied to

surfaces with matched or unmatched refractive indices. The
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equations of this diffusion model are as follows:

R(r) =
a0

4p
1
mt

mef f +
1
r1

� �
exp −mef f r1
� �
r21

+

1
mt

+
4A

3m 0
t

� �
mef f +

1
r2

� �
exp −mef f r2
� �
r22

2
666666664

3
777777775

where r is the source-detector distance, r1 = z20 + r
� �1=2 is the real

dis tance from the detector to the l ight source , r2 =

z0 + 2zbð Þ2+r2� �1=2
is the length from the mirror light source to

the detector. m
0
eff = 3ma ua + m

0
s

� �h i1=2
is the effective reduction

factor, a0 = m
0
s= ma + m

0
s

� �
is an albedo of transmission, m

0
t = ma +

m}
s , is the overall decays value, z0 = ma + m

0
s

� �−1
is the mfp’, zb =

2AD, A is the object’s internal reflection coefficient, A=1 when the

tissue and surrounding media boundaries match, and A=0.2190

when the relative refractive indices of the tissues n=1.35. While

refractive index is known to be wavelength dependent, most reports

assume that the n is constant, an assumption that is subject to

potential uncertainty, such as for many fruits and foods n=1.35.

Later, Kienle and Patterson (1997) introduced radiant energy

flow rate following Haskell et al. (1994). The diffuse reflectance is

expressed through the brilliant energy flow rate and luminous flux,

which better minimizes errors and thus more precisely characterizes

the transmission of light in biological tissues. This equation can be

expressed as:

F(r, z = 0) =
1

4pD
exp −mef f r1
� �
r1

−
exp −mef f r2
� �
r2

� 	

The diffusive approximation equation can be organized as

follows:

R(r) = C1
4pD

exp −mef f r1ð Þ
r1

−
exp −mef f r2ð Þ

r2

� 	
+

C2
4p

1
m0
t

mef f +
1
r1

� �
exp −mef f r1ð Þ

r21
+ 1

m0
t

+ 2zb

� �
mef f +

1
r2

� �
exp −mef f r2ð Þ

r22

� 	

w h e r e C1 =
1
4p

Z
2p

1 − Rfres  qð Þcosqdw½ � a n d C2 =
3
4p

Z
2p
1 − Rfres  qð Þcos2qdw
 �
are coefficients generated by the refractive

index of the medium and Rfres  qð Þ is the Fresnel coefficient. When

rate of refraction n=1.35, C1 and C2 are 0.1277 and 0.3269, respectively

(Cen and Lu, 2010). This solution is considered to be more accurate in

describing the light propagation process, therefore it is widely used

(Cen et al., 2010).

At present, these two are the most commonly used mathematical

fitting models for spatially resolved spectra, and their analytical

solutions are obtained under extrapolation boundary conditions

(EBC). The source is assumed to be each homogeneous radiation

source at one mfp’ below the sample surface. Therefore, the precision

of OP parameter inversion is not only related to the precision of

instrumental measurements but also depends on the precision of

parameter inversion algorithms. Cen and Lu further optimized the

curve fitting algorithm by using the nonlinear least squares method as
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the Trust-region-reflective least squares method, and the raw data

were logarithmically and integrally transformed and relatively

weighted before fitting to improve the OP predictions (Cen et al.,

2010). The prediction of the OP was enhanced by using logarithmic

and integral transformations of the original data and relative

weighting before fitting.

However, many factors affect the accuracy and error in the

acquisition and processing of the spectra and the inversion of the

parameter equations. Usually, normalization is required before

curve fitting. However, the standard normalization method

directly divides the first value of the spatially resolved diffuse

reflectance spectrum, which contains considerable noise and

acquisition errors. It has a great impact on the inversion of the

later parametric equations. The diffuse approximation equation is

invalid when it is close to the light source, i.e. (r<1 mfp’), and the

reflection signal is weaker, and the signal-to-noise ratio (SNR) is

lower when the acquisition is farther away, which is not conducive

to the inversion of the optical parameters. Therefore, an effective

interval selection for the acquired spatially resolved spectra is also

needed before curve fitting. Farrell et al. suggested that the SDD

should be greater than one mfp’ (Farrell et al., 1992), and Nichols

et al. recommended minimum and maximum distances of SDD are

0.75-1 mfp’ and 10-20 mfp’, respectively (Nichols et al., 1997).

Nevertheless, for most of the unknown samples with unknown OP,

it is impossible to calculate the mfp’ directly. So Wang and Lu et al.

proposed a mean normalization method to optimize the

normalization along with a method to optimize the diffuse

reflectance spectral interval for the inversion of OP based on the

relative error contour (Wang A. et al., 2017).

The inversion of the parametric equations is performed by

fitting the diffuse reflectance spectral data to an analytical solution

of the diffuse reflectance approximation equations to calculate the

absorption coefficients and the reduced scattering coefficients. Cen

and Lu used the spectral SNR to optimize the endpoint of the

spectrum (Cen and Lu, 2010), but the starting point of the spectrum

is fixed at 1.5 mm for systematic reasons, which still leads to large

measurement errors for samples with mfp’ greater than 1.5 mm

measurement error. Therefore, to further solve the problems of

fitting, Wang and Lu proposed the step-by-step parameter

inversion method (Wang A. et al., 2017), which is based on the

OP and the mfp’ obtained by the one-step fitting method, and then

re-determine the better spectral interval based on the optimized

starting point and end point before the second fitting to obtain the

better OP. The method is effective in improving the optical

parameters. This method can significantly improve the inversion

accuracy of optical parameters.

However, in the process of inversion, the traditional inversion

algorithm does not meet the requirements due to the single-layer

and double-layer tissues of the sample under test. The traditional

inversion algorithm is to equate the outer tissue of the sample with

the inner tissue as a layer. For samples with a thin outer skin, the

effect of having a thickness less than the mfp’ will not be significant,

but for pieces with a thicker outer skin, the effect will be more

meaningful if they are equated to a monolayer of tissue. There are

already diffuse reflection equations for light transmission in single-
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and double-layer tissue that can be used as an approximate solution

(Kienle et al., 1998; Cen and Lu, 2009), but the light transmission in

double-layer tissue is a more complex transmission model involves

more parameters, the accuracy of the fitted parameters will be

increasingly poor. Accordingly, the inversion of parametric

equations for multilayer tissues still needs to be continuously

explored and studied by researchers.

The most commonly used method in numerical calculation

methods is MC, which is a statistical method with random

sampling and has been widely used to simulate the propagation

of light (Tarasov et al., 2021; Sassaroli et al., 2022). This method

can simulate the light transmission process by tracking the

trajectory of a massive photon through the tissue and finally

calculate the optical parameters we need. The advantages of MC

are low cost, high accuracy, and high flexibility. However, it also

has obvious drawbacks, which are computationally intensive,

time-consuming, and not conducive to rapid detection, so the

method is often used to test the accuracy of other calculation

methods. When the MC method simulates the light transmission

law in tissues, it mainly simulates the particle properties of light,

i.e., the absorption and scattering of light and other properties. Its

typical simulation specifically includes the processes of photon

generation, initialization, migration, absorption, scattering,

boundary condition processing, and extinction judgment (Wang

et al., 1995). Currently, the program developed by Wang and

Jacques (1992) based on C language can be used for multilayer

organization, which consists of two subroutines, Monte Carlo

Multi-Layered (MCML) and Convolution (CONV), where MCML

is used to simulate the transmission of light beams in the

organization. CONV is used to convolve the simulated data of

MCML and output the results. Based on the disadvantages of MC

time consumption, Hu et al. (2020b) optimized it and accelerated

its simulation. Sun et al. used the Monte Carlo multilayer

(MCML) technique to simulate the propagation of light through

the fruit by comparing it with the diffuse reflection curve, thus

confirming the accuracy of the MC simulation of the OP (Sun C.

et al., 2021).

Although MC is usually used as a reference method and is more

accurate, it needs a huge number of photons to be simulated at a

time, which is computationally intensive and cannot meet the rapid

detection of OP of biological tissues despite the fact that its speed

has been improved. The finite element method (FEM) is also one of

the commonly used numerical methods, which is more flexible and

fast based on accuracy (Vasudevan and Narayanan Unni, 2021). Lee

et al. (2004) used the FEM method to study the propagation of light

in a double-layer medium and found that the accuracy of the

method and MC were almost the same by comparison. Wang

et al. (2016) investigated the optimal computational results of

finite elements under three boundary conditions and

demonstrated that the finite element approach can be used to

improve the measurement of OP for spatially resolved techniques.

Whereas, at this stage, there are few analytical methods using finite

elements in the study of calculating the OP of spatially resolved

spectra, which is a promising method for the numerical calculation

of OP.
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3.2 Direct analysis methods

While analysis methods based on OP can find absorption

coefficients and approximate scattering coefficients more

accurately, they are labor-intensive, algorithmically complex, and

have large accuracy errors. In order to directly and accurately

analyze spatially resolved (SR) spectra as well as to simplify the

analysis steps, the researchers proposed a direct analysis method.

Huang and Chen (2018) proposed an analytical method of

spectral combination when employing a multichannel SRS system

to detect tomatoes by creating a Partial Least Squares Discriminant

Analysis (PLSDA) model of each of the 15 single SR spectra

combinations to determine the best single SR combination for

classification. Next, the best SR combination was combined with

the remaining 14 SR combinations to select the best two-spectrum

combination, then the best spectrum was combined with the

remaining 13 single SR combinations to create the best tri-

spectral combination, and so on until the accuracy of the

combined SRS for classification is not further improved.

As for quality detection of peach, Huang et al. (2022) proposed

a spectral difference technique to deal with spatially resolved

spectral information. The method initially collects 30 relative

spatial spectra for each sample at different SDD scales, which are

calculated as follows:

R(i) =
Is ið Þ − Ds ið Þ
Ir ið Þ − Dr ið Þ

where R is the relative spectrum, I is the spectral information of the

sample, D is the blackboard, i is for single fiber, i = 1, 2, 3,…, 30, and

the subscripts r and s represent the white Teflon and the sample,

respectively. Since the device has detection fibers arranged

symmetrically, each symmetrical pair of SR spectra is averaged

over the same SDD, resulting in 15 SR spectra whose distances

range from 1.5-36 mm. The difference spectrum is obtained by

differencing the spatially resolved spectrum of the first position

(SR1) with the spatially resolved spectra of the other SDDs with the

following calculation equation:

D ið Þ = R ið Þ − R 1ð Þ,   i = 2, 3, 4, 5,⋯, 15

where R(1) is the SR spectrum at the first SDD of 1.5 mm, and D is

the subtraction spectrum, after that, it is referred to as the

differential reflectance (DR) spectrum, and the final 14 DR

spectra contain different spatial resolution information compared

to the SRS.

Ma et al. (2021b) proposed a method for reference-free

reflectance calculation in assessing apple quality by averaging the

light centers at distances of d mm and d+D mm for the diffuse

reflected light intensity (i) collected by the optical fibers and named

id and id+D, respectively. When the intensity of the spatially resolved

spectrum is iref, the spectral difference between fibers at different

distances can be expressed as:

Adif f = −log10
id+D
iref

 !
− −log10

id
iref

 ! !
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where Adiff is the difference in absorption spectra. The equation can

be simplified as:

Adif f = −log10
id+D
id

� �

In this way, the calculation formula of the spectrum can be

simplified, and the black-and-white correction of the spectrum can

be canceled, which makes the spectral inspection more efficient and

convenient. The ratio of diffuse light intensity (RRatio) is calculated

as follows:

RRatio  =
id+D
id

Finally, smoothing of the spectral data using Savitzky-Golay

filters enables the spectra to achieve better results in

modeling analysis.

The direct analysis method of SRS simplifies the analysis steps,

and although it is not more accurate than the OP method, it has the

same good prediction effect for the quality detection of agricultural

products. There are few direct analysis methods used so far. If a

better direct analysis method can be proposed to predict the quality

of products, not only the analysis method is simple and fast, but also

the quality prediction accuracy is more accurate, then the detection

efficiency of SRS will be significantly improved.
4 Application of spatially resolved
spectroscopy in agricultural products

Although SRS has been widely adopted in the biomedical field,

its application in the agricultural field is still relatively limited. At

present, the application of spatially resolved technology is mainly

concentrated in the field of edible agricultural products, such as

meat, dairy, fruits, and vegetables, and less application in other

areas, such as forestry, animal husbandry, etc. The technology of

detecting the quality or classification of agricultural products by SRS

is more mature. In the subsequent sections, the latest research and

specific applications of SRS in agriculture were presented and

summarized in detail.
4.1 Applications of dairy field

In the field of dairy products, SRS is more widely used in the

detection of milk. Because milk is rich in nutrients such as protein,

fat, vitamins, and minerals, it is very easy to be absorbed by the

human body, so it is very popular among human beings. To ensure

the quality of raw milk or to prevent adulteration during the sale

process, it is necessary to test the quality of raw milk. Watte et al.

developed a global optimizer that can calculate the optimal

configuration of fibers, by which the number of detected fibers

can be minimized while maintaining the validity of the OP

evaluation, making the detection optimal with cost savings. The

design achieved good results for the evaluation of the OP of milk,

with a root mean square error of the prediction (RMSEP) of 0.382

cm-1 and R2 = 0.996 for the reduced scattering coefficient values
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(Watte et al., 2016). Kalinin et al. used a dual-channel short-wave

near-infrared spectrometer as a detection device. The results

showed that the RMSEP of proteins using a combination of

scattering and transmission spectroscopy could reach 0.25% wt.

(Kalinin et al., 2013). Bogomolov et al. developed and utilized a

fiber-optic array-based detection device with eight channels of

probes to analyze the quality of milk and improve the accuracy of

fat and protein detection, The root mean square errors (RMSE) for

the different validation methods were less than 0.10% for fat content

and less than 0.08% for total protein content, respectively.

(Bogomolov et al., 2017). The optimal sensor configuration was

proposed to replace the full spectrum analysis with LED in specific

wavelength bands, which provided a faster and more mature

application for milk detection. Qin and Lu used a hyperspectral

line-scan detection device to analyze the fat content in milk. They

found that the absorption coefficient and the reduced scattering

coefficient at 600 nm were closely correlated with the fat content of

milk, while the R2 were 0.995 and 0.998, respectively, which verified

the feasibility of HSI in detecting the milk content (Qin and

Lu, 2007).

As shown in Tables 1 and 2 in dairy product testing, researchers

have used different spatially resolved detection systems to detect

milk’s fat and protein content to achieve good prediction results.

However, more milk is currently detected, and the approach will

definitely be developed toward a broader range of dairy products in

future applications.
4.2 Applications of meat products field

In the detection of meat products, Xia et al. applied the SRS

technique to the detection of meat products for the first time. They

measured the SRS of beef samples with a single-fiber detection,

obtained the absorption coefficient and scattering coefficient of beef

through the diffuse reflectance equation, and established a

correlation analysis between beef shear force and scattering

coefficient, with a coefficient of determination (R2) of 0.59, which

verified the feasibility of SRS in detecting beef tenderness (Xia et al.,

2007; Xia et al., 2008). Zhang et al. studied the tenderness of pork

using multi-channel SRS and predicted the tenderness of pork by

decreasing the scattering coefficient, which was R2 = 0.8349 for fresh

meat shear, through which the tenderness of pork can be directly

predicted to realize fast and non-destructive detection (Zhang et al.,

2010). Wen et al. investigated myoglobin content in pork and found

that SRS in the short wave range was a feasible method for detecting

myoglobin content with a significant correlation R2 = 0.955 (Wen

et al., 2010). Wang et al. determined the moisture content of the

complete pork using SRS and found that the steady-state SRS was

capable of significantly forecasting the moisture content of the pork

compared to the conventional Y-fiber, with an R2 of 0.8078 for their

model. (Wang J. et al., 2017).

In summary, SRS is currently applied to detect tenderness,

myoglobin and moisture content of meat products. Moreover, this

technique can improve the accuracy of meat quality prediction to a

great extent. Table 2 summarizes in detail the results of research on

meat product quality testing. While relatively few meat products
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TABLE 2 Summary of studies about the quality detection of agricultural products.

Products Species Applications Methods Accuracy References

Dairy Milk Fat and protein contents PLS
RMSEPf ≤ 0.08%
RMSEPp=0.21%

(Kalinin et al., 2013)

Milk Fat and protein contents GA
μa:R

2 = 0.965
μs’:R

2 = 0.996
(Watte et al., 2016)

Milk Fat and protein contents PLSR, JVSPO
RMSEPf<0.10%
RMSEPp<0.08%

(Bogomolov
et al., 2017)

Milk Fat content PLS
μa: R

2 = 0.995
μs’: R

2 = 0.998
(Qin and Lu, 2007)

Meat Beef Tenderness – p<0.0001, R2 = 0.59 (Xia et al., 2007)

Pork Tenderness – μs’: R
2 = 0.8349 (Zhang et al., 2010)

Pork myoglobin – R2 = 0.955 (Wen et al., 2010)

Pork moisture content SPA, PLSR R2 = 0.8078 (Wang J. et al., 2017)

Fruit Apple Firmness and SSC MLR, LCV
F: r=0.88, SEP=5.66N
SSC: r=0.82, SEP=0.75%

(Qin et al., 2007)

Apple Firmness and SSC MLR, MLD

Firmness: R=0.894,
SEP=6.14 N;
SSC: R=0.883,
SEP=0.73%

(Peng and Lu, 2008)

Apple Firmness and SSC MLR, LCV
Firmness: R=0.844
SSC: R=0.864

(Qin et al., 2009)

Apple Bruise detection – – (Lu et al., 2010)

Apple Mealiness PLS-DA Accuracy>93%
(Huang and
Lu, 2010)

Apple Firmness and SSC PLSR
F: rGD=0.892, rRD=0.863
SSC: rGD=0.892, rRD=0.863

(Cen et al., 2012b)

Apple
Mechanical and
structural properties

ANOVA, LSD

Acoustic/impact firmness
GD: r=0.870–0.948
GS: r=0.334–0.993 Young’s modulus
GD:r=0.585–0.947
GS: r=0.292–0.694

(Cen et al., 2013)

Apple
Quality grades: firmness,
SSC

LDA
Scattering technique Firmness: 77.9%-98.2%
SSC: 62.0%-91.7% Vis/SWNIR technique
Firmness: 87.3-97.6% SSC: 77.10-92.3%

(Mendoza
et al., 2014)

Apple
Microstructure,
textural quality

– –
(Nguyen Do Trong
et al., 2014b)

Apple Firmness and SSC PLS
Firmness: R2 = 0.71, RMSEP=9.68N
SSC: R2 = 0.81, RMSEP=0.69%

(Nguyen Do Trong
et al., 2014a)

Apple Bruise detection PLS
Rp=0.848-0.919,
RMSEP=32.4-50.7

(Zhu et al., 2016)

Apple Mealiness classification
PCR, PLSR,
ANN

Non-mealy: 76%
Mealt: 82%
Fresh: 88%
Semi-mealy: 59%

(Mollazade and
Arefi, 2017)

Apple Varieties PLSDA
Classification
accuracies=0.994,

(Huang et al., 2020b)

Apple Firmness and SSC CARS, PLSR
Firmness: R2 = 0.96, RMSEcal=0.37N,
SSC: R2 = 0.87,
RMSEcal=0.71N

(Ma et al., 2021b)

Apple Anthocyanins PLS
Skin: R2>0.95,
Whole flesh R2 = 0.74

(Ye et al., 2021)
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TABLE 2 Continued

Products Species Applications Methods Accuracy References

Peach Maturity/quality assessment
PLS, PCA,
LS-SVM

Firmness: 0.794,
SSC: 0.504,
Skin lightness: 0.898,
Flesh lightness: 0.741

(Cen et al., 2011;
Cen et al., 2012a)

Peach
Tissue structural and
biochemical properties

SPA, PCA Membrane permeability μs’=-0.962-0.743 (Sun Y. et al., 2020)

Peach Bruise detection

ANOVA, LSD
SVM,
PLSDA,
C-SVC

μa=76.25%,
ms’=76.25%,
μa×ms’=84.75%,
μeff=84.5%

(Sun Y. et al., 2021)

Peach Firmness and SSC PLS
Firmness: 0.853,
SSC: 0.839

(Huang et al., 2022)

Peach pear porosity ANOVA
760nm: R2 = 0.66
835nm: R2 = 0.57

(Joseph et al., 2023)

Kiwifruit Firmness, SSC, pH PLSR
Firmness: R2 = 0.37,
SSC: R2 = 0.81,
pH: R2 = 0.59

(Ma et al., 2022)

Pear
Optical property analysis
(μa, ms′)

–
μa=0.10-0.61cm

-1

μs’=12.5-9.5cm
-1 (Hu et al., 2017)

Banana
Chlorophyll, elasticity,
SSC, ripeness

ANN

CH: R=0.9768-0.9807,
EL: R=0.9553-0.9759,
SSC: R=0.9640-0.9801,
RI: classification,
accuracy=97.53%

(Adebayo
et al., 2016)

Citrus Early decay detection GL, LDA Classification accuracy=96.1% (Lorente et al., 2013)

Vegetables Cucumber Defect detection – – (Lu et al., 2011)

Onion Detecting internal rots PLSDA – (Sun J. et al., 2020)

Tomato Maturity classification PLSDA, SVMDA
Classification
accuracy=81.3–96.3%

(Huang and
Chen, 2018)

Tomato SSC, pH PLS
SSC: rp=0.800,
pH: rp=0.819

(Huang et al., 2018a)

Tomato Firmness, SSC, pH PLS
Firmness: R=0.835,
SSC: R=0.623,
pH: R=0.769

(Huang et al., 2018b)

Tomato
Firmness, puncture
maximum force, slope

PLS
F: 0.859,
PMF: 0.917,
SL: 0.948

(Huang et al., 2018c)

Tomato Maturity stages SVMDA Total classification accuracy=98.3% (Huang et al., 2020a)

Tomato Ripeness PLS-DA
Classification
accuracy=88.4%

(Zhu et al., 2015)

Wood
Softwood
silver fir

Dry, wet MC

Dry: μa=0.0048mm-1,
0.0042mm-1,
μs’=1.8mm-1, 13 mm-1,
Wet: μa=0.0045mm-1,
0.0038mm-1,
μs’=0.6mm-1, 2.0mm-1

(Kienle et al., 2008)

Douglas fir
Various densities, grain
directions, thicknesses

PCR, PLS
3mm: R=0.953,
5mm: R=0.987

(Ma et al., 2018)

Five
softwood
(SW)
ten

Classification PCA, QDA QDA=94.0% (Ma et al., 2019a)

(Continued)
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can be tested by this method, SRS has excellent potential for future

applications in meat quality testing.
4.3 Applications of fruit and vegetable field

SRS is widely applied in fruit inspection, mainly for apples,

pears, peaches, kiwifruit, bananas, and citrus. In the detection

process of apples, spatially resolved hyperspectral imaging was to

measure apple OP and relate them to fruit firmness and SSC,

showing that the µa and µs’ data gave the best predictions for the

fruit firmness and SSC, with correlation coefficients (r) of 0.82 and

0.80 for firmness, and 0.7 and 0.59 for SSC respectively. This

provides a fresh approach to detecting the internal quality of

fruits (Qin et al., 2007). Peng and Lu refined the hyperspectral

scattering technique for fruit quantity testing by fitting spectral

scattering curves at each wavelength with ten different forms of

modified Lorentzian distribution functions and comparing the

predictions of fruit firmness and SSC by ten modified Lorentzian

distribution functions using multiple linear regression and cross-

validation methods. The predicted correlation coefficients were

0.894 and 0.883, respectively, which verified the advantages of the

technique in fruit quality testing (Peng and Lu, 2008). Lu et al. used

the absorption scattering properties of apple tissue to predict

bruising of the fruit. The measurement of enhanced scattering

properties was found to be feasible for bruise detection in apples

(Lu et al., 2010). Huang et al. detected the mealiness of apples,

modeled the classification of apple mealiness classes by the partial

least squares (PLS) method, and found that the accuracy of
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establishing a two-level classification was ≥93%. Thus, it validated

the advantages of hyperspectral scattering technology in the

nondestructive detection of the mealiness of apples (Huang and

Lu, 2010). Cen et al. analyzed the physical and structural properties

of apple pulp using a newly developed OPA (Cen et al., 2012b) and

the correlation coefficients of firmness, r=0.870-0.948, and Young’s

modulus, r=0.585-0.947, were obtained for Golden Delicious (GD)

apples, which demonstrated that spatially resolved techniques can

be used to predict internal fruit quality by combining OP (Cen et al.,

2013). Mendoza et al. used short-wave NIR spectroscopy and

scattering to classify apple quality with accuracies ranging from

87.3-97.6% for firmness and 77.1-92.3% for SSC, which validated

the capability of organizing and grading apples by firmness and SSC

(Mendoza et al., 2014). Nguyen Do Trong obtained the scattering

and absorption coefficients of apple slices air-dried under various

conditions pretreated by spatially resolved diffuse reflectance

spectroscopy. Finally, it was found that SRS could detect the

microstructure and quality relationship of air-dried apple slices

without loss (Nguyen Do Trong et al., 2014b). The spatially resolved

diffuse reflectance device (Nguyen Do Trong et al., 2013) was used

to detect the OP of apples (Nguyen Do Trong et al., 2014a). The ma
spectrum was found to be superior to ms’ by comparison, and the

coefficients of determination R2 for firmness and SSC were 0.71 and

0.81, respectively. The results showed that the detection of diffuse

reflectance spectra of optical fibers cannot significantly improve the

prediction performance of SSC. Still, it can be used to better predict

the firmness and SSC of apples by separating the absorption

coefficients and reducing the scattering coefficients. Zhu et al.

utilized hyperspectral scattering to expected damage to apples
TABLE 2 Continued

Products Species Applications Methods Accuracy References

hardwood
(HW)

Hinoki
cypress

Three-dimensional
grain angle

GPR, LRA

GPR: R2 = 0.98,
RMSE=2.2°
LRA: R2>0.90,
RMSE<3.8°

(Ma et al., 2019b)

Wood Tensile strain measurement PCA, PLSR
R2 = 0.86,
RMSE=279.86

(Ma et al., 2021c)

Wood Classification PCA, SVM
Five-fold cross-validation=98.6%,
Test set validation=91.2%

(Ma et al., 2021a)

Animal
Husbandry

Cattle Age PLS, GA, RLT ARMSEP=2.0 years, R2 = 0.63
(Palendeng
et al., 2020)

Rabbit Early pregnancy diagnosis
PLS-DA, CARS, SPA, SPA,
SVM, KNN, Naïve
Bayes

Validation set
Sensitivity=93.18%,
Specificity=94.44%,
Accuracy=93.88%,
Prediction set
Sensitivity=86.96%,
Specificity=90.00%,
Accuracy=90.69%

(Yuan et al., 2022)
JVSPO, Joint variable selection and preprocessing optimization method; MLD, Modified Lorentzian distribution; GD, ‘Golden Delicious’; RD, ‘Delicious’ (RD) apples; ANOVA, Analysis of
variance; LSD, Least significant difference; LDA, Linear discriminant analysis; C-SVC, C-Support Vector Classification algorithm; GL, Gaussian-Lorentzian cross product; rp, Correlation
coefficient of prediction; PCR, Principal component regression; PLS, Partial least squares regression analysis; GPR, Gaussian process regression; RMSE, Root mean square error; LRA, Linear
regression analysis; PCA, Principal component analysis; QDA, Quadratic discriminant analysis; PLS, Partial least squares regression; GA, Genetic algorithm; RLT, Repeated learning-training
method; ARMSEP, Average root mean square error of prediction; MC, Monte Carlo simulations; PLS-DA, Partial least squares-discriminant analysis; CARS, Competitive adaptive reweighted
sampling; SPA, Successive projection algorithm; SVM, Support vector machine; KNN, K-Nearest Neighbor.
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with predictive correlation coefficients Rp=0.848-0.919. The

research revealed that hyperspectral scattering can be used to

assess the bruise susceptibility of apples, which is beneficial for

post-harvest inspection of fruits (Zhu et al., 2016). Mollazade et al.

found a way to classify apple fruits using spatial resolving technique,

which was verified by 76% and 82% accuracy for non-mealy and

mealy apples, respectively (Mollazade and Arefi, 2017). Huang et al.

used a multichannel HSI to classify apple varieties with 99.4%

accuracy using the best spectral classification. They verified the

potential of multichannel hyperspectral imaging systems for apple

variety detection (Huang et al., 2020b). Ma and Xia et al. used a

multi-fiber, spatially resolved measurement system that assessed the

SSC and firmness of apples with an optimal R2 of 0.97 and 0.96,

respectively, validating the technique’s ability to detect apple quality

in a low-cost and portable method accurately (Ma et al., 2021b). Ye

et al. obtained spatially resolved interaction spectra at eight different

source-detector distances (SDDs) on the fruit surface and verified

that the optimal SD could be selected to detect the extent of red

color in the flesh at a specific depth by a model developed for

anthocyanin content estimation (Ye et al., 2021).

In the inspection of peaches, Cen et al. (2011; 2012a) measured

the absorption and reduced scattering coefficients based on the SR

method of HSI to assess peach ripeness and quality, with r of 0.749

and 0.504 for firmness and SSC, respectively. The results suggested

that spatially resolved techniques had good potential for

application. Research by Sun et al. measured the OP of peaches

during quality damage, determined the relationship between optical

parameters and specific structural and biochemical factors, and

found a good correlation at 675 nm (Sun Y. et al., 2020). This study

facilitated the early detection of peach diseases. Sun et al. also

measured the OP of peaches at different ripeness levels using the SR

technique (Sun Y. et al., 2021), with classification accuracies of 85%

and 76.25%, respectively, and these results found that this optical

property was effective in detecting damage in peaches. Huang et al.

evaluated the firmness and SSC of peaches using SRS (Huang et al.,

2022) and improved the prediction of peach quality by

incorporating spectral disparity techniques, with the best r of

peach firmness and SSC being 0.853 and 0.839, respectively.

Joseph et al. used the SRS technique to study the relationship

between peach porosity and light scattering characteristics, and the

results showed that the reduced scattering coefficients at 760 nm

and 835 nm were linearly correlated with the spatially averaged

porosity by R2 of 0.66 and 0.57, respectively, which verified that the

method could realize non-destructive pear porosity assessment

(Joseph et al., 2023).

In addition, Ma et al. verified the feasibility of SRS for the

detection of kiwifruit quality with coefficients of determination R2

of 0.81 and 0.59 for SSC and pH, respectively (Ma et al., 2022). The

OP of the pear was analyzed by Hu et al. (2017). They measured ma
between 0.1-0.61 cm-1, while ms’ decreased with wavelength between
12.5-9.5 cm-1. In this study, it was demonstrated that the OP of

pears is associated with the wavelength and that establishing

standardized slices of the samples helps to enhance the precision

of the measurement of the OP. Adebayo et al. combined OP with

chlorophyll, modulus of elasticity, SSC, and banana ripeness to

develop predictive models. The correlation coefficients of
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chlorophyll, elastic modulus, and SSC were 0.9768-0.9807,

0.9553-0.9759, and 0.9640-0.9801, respectively, and the

classification accuracy of banana ripeness reached 97.53%. This

indicates that bananas with different ripeness levels can be predicted

and categorized by OP, which provides a good and effective method

for nondestructive testing of banana quality (Adebayo et al., 2016).

Lorente et al. predicted early decay in citrus fruits with a

classification accuracy of 96.1%, validating that this technique has

great potential for grading citrus fruits (Lorente et al., 2013).

In the detection of vegetables, Lu et al. used the spatially

resolved technique of hyperspectral imaging to test for defective

pickling cucumbers (Lu et al., 2011). They found that effective

defect detection could be achieved by enhanced scattering

characteristic measurements through analysis of the OP of

cucumbers. Sun et al. developed the SR transmission spectroscopy

system for detecting internal rot onions, and the presence of high

area under curve (AUC) values (0.96 ± 0.02) and Kappa values (0.77

± 0.05) at the stem end of the onion validated the advantages of the

system in detecting onion decay (Sun J. et al., 2020). Huang et al.

designed a multichannel SRS detection device and used it to detect

firmness, SSC, pH with correlation coefficients of 0.835, 0.623, and

0.769, respectively (Huang et al., 2018a; Huang et al., 2018b), The

classification accuracy in tomato maturity assessment was able to

reach 98.3% (Huang et al., 2020a; Huang et al., 2020b), which

verified that OP based on SRS can reasonably predict the quality

of tomato.

Table 2 shows the details of the studies on the detection of

product quality of fruits and vegetables. It shows that SRS has been

widely used in the field of fruits and vegetables, mainly for the

detection of quality characteristics such as firmness, pH, SSC,

maturity, mealiness and bruise, as well as the biochemical

properties of the internal tissues. In the future, the application of

SRS in fruit and vegetable detection will be more mature, the types

of detection will be more abundant, and the accuracy will be higher.
4.4 Applications of forestry field

In the field of forestry industry, SRS is mainly used in the

detection of wood in recent years. Kienle et al. used a spatially and

time resolved approach to study the mechanism of light

propagation in dry and moist softwoods and put forward a

theoretical model for the description of light propagation in

wood, which is supported by the microstructure of softwood

(Kienle et al., 2008). Ma et al. used spatially resolved

hyperspectral detection to examine the OP, grain direction, and

thickness of Douglas-fir at different densities. Correlation

coefficients for 3 mm and 5 mm samples were 0.953 and 0.987,

respectively (Ma et al., 2018). Meanwhile, the device classified

softwoods and hardwoods with an accuracy of 94.1%, which

shows that SRS is highly predictive in wood inspection (Ma et al.,

2019a). In addition, the SRS device was optimized to achieve 91.2%

accuracy in the test set of 15 wood classifications (Ma et al., 2021a).

Moreover, the R2 of the tensile strain of the wood was measured to

be 0.86 using the optimized equipment, which verified the

suitability of SRS for the detection of wood (Ma et al., 2021c).
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Table 2 summarizes in detail the current status of product

quality testing in forestry. It can be found that SRS detection

technology is emerging in the application of forestry quality

testing, and with the progress of technology, this method will be

more widely used in forestry-related testing.
4.5 Applications of animal husbandry field

In the field of animal husbandry, Palendeng et al. used a

spatially resolved method to detect the age of cattle (Palendeng

et al., 2020). The feasibility of the SR technique for estimating the

age of cattle was validated by using the SR diffuse reflectance

spectrometer based on a fiber optic probe to collect skin samples

from the neck of the cattle and assessing the age of the cattle by the

developed PLS model with the lowest average root mean square

error of prediction (ARMSEP) of 2.0 years and R2 = 0.63. Yuan et al.

used SRS to diagnose the possibility of pregnancy in female rabbits

by collecting spectral information at different distances with a

movable distance-type detection fiber (Yuan et al., 2022). The

results showed that the SRS detection method can distinguish

whether a female rabbit is pregnant or not, and the accuracy of

the validation set can reach 90.69%.

From Table 2, it can be found that the application of SRS

technology in animal husbandry-related fields is still rare, and it is

currently only applied to a few animal husbandry tests, mainly for

age and pregnancy detection of animals. However, this technique

shows a strong predictive ability in livestock detection. Therefore,

the method is expected to be widely applied to the detection of other

characteristics of animal husbandry and more livestock animals in

future development.

Generally, SRS technology has been widely used in the field of

agriculture. In the field of dairy this technique is mainly applied to

the detection of protein, fat and other nutrients in milk with better

predicted results. But at present the technique is less used for the

detection of other types of dairy products such as goat milk, camel

milk, etc., and some dairy products such as milk powder, cream,

cheese, etc. Hence there is a good prospect for development in this

field. In the detection of meat products, researchers mainly focus on

the detection of fresh beef and pork, and the qualities detected are

meat tenderness, myoglobin and moisture content. Nevertheless,

the quality of some meat products such as jerky, dried meat, bacon,

sausage, etc. was less tested. In the future, other types of meat can

also be detected, such as lamb, fish, shrimp, etc., through the

detection of its nutrient content to predict the quality of meat

products, which is conducive to providing human beings with more

healthy and nutritious food. SRS has been most used and developed

for fruits and vegetables. Currently, the fruits and vegetables

inspected include apples, pears, kiwifruits, bananas, citrus,

cucumbers, onions, and tomatoes. The main detection of their

SSC, hardness, pH, damage, ripeness, chlorophyll content, etc.

Thus, SRS is expected to achieve more efficient and accurate

quality detection in this field. In the field of forestry, researchers

mainly apply SRS to the classification, moisture, texture, and

thickness detection of wood. In future development, it is expected

to realize the detection of hardness, oiliness, density and damage of
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wood, which has a lot of space for development. In the field of

animal husbandry, the current research is mainly focused on the age

of cows and the pregnancy of rabbits, but in the future, it is expected

to detect more animals and their health level. Overall, SRS has been

more widely used in the field of agriculture at present but still has a

lot of advantages for development. Since this technique can not only

directly analyze the correlation through spatial spectral

information, but also extract specific optical properties to further

explore the relationship between the quality of agricultural products

and OP. Therefore, it is expected that this technology will have

much more effective application potential in future quality

detection in the field of agriculture.
5 Challenges and future trends

SRS has been widely used in agriculture so far due to its stable

performance, low cost, ease of use, and continuous algorithmic

improvement. Importantly, this is mainly because that detection

method can well reflect the characteristics of agricultural products.

Although five different types of SRS, including single fiber, fiber

array type, CCD line scan type, hyperspectral line-scan, and multi-

channel hyperspectral imaging detection system, are relatively

widely used in agricultural products for quality inspection

currently, this technology still faces many challenges and difficulties.

The challenges are mainly in the SRS devices and calculation

methods. In terms of devices, for example, there is no specific

standard for the selection of light sources, and the selection of high-

power light sources can easily damage the external and internal

tissue structure of organisms. In contrast, the selection of low-

power light sources has limited detection distance and cannot

collect satisfactory distant spectral information. To meet the

requirement of detection, the light source should satisfy the

appropriate intensity meanwhile its diameter is often small

enough, especially for small samples such as corn kernels, wheat

seeds, cherries, grapes, and other agricultural products, so that it can

be equivalent to a point light source and reduce the error of solving

the OP of the calculation. The practical arrangement and selection

of optical fiber is also a problematic issue in the device. For single

fiber and fiber array detection devices, the selection of optical fiber is

significant, which not only requires the fiber to be as small as

possible but also the arrangement of the detection distance as

accurately as possible. Besides, for irregular detection objects, the

detection fibers often cannot fit closely due to the curvature of the

sample surface. Although Huang et al. designed a multi-channel

detection device, the approach is only suitable for larger objects with

micro-curvature. Some irregular-shaped and curvature-changed

objects or smaller objects still cannot be detected satisfactorily.

Therefore, how to design a detection fiber that can meet irregular

objects is still an essential and inevitable challenge.

In addition, the stability and precision of the mechanical device

enable more accurate acquisition of spatially resolved spectral

information. Therefore, the design of the mechanics of the SRS is

of great significance. During the spectra acquisition process, the

detection device needs to hold the fiber and the sample firmly in

place. Manual detection often lacks accuracy, which is prone to
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jitter, and has many instabilities. These can undoubtedly have a

negative impact on the spectral quality. As a result, more stable

mechanical devices are needed to replace manual fixation to

improve the stability of the detection system. However, the

mechanical device has different requirements for the detection

fiber, light source, and sample. As for optical fiber detection, it is

not only required that the fiber closely fits the sample but also that

the fiber is moved in a more precise position. However, because of

the irregularity of the measured object and the curvature of the

surface, it is easy for the optical fibers to move without close contact,

and can also damage the surface of the agricultural product if it is

moved too aggressively. In the case of the light source, it is necessary

that the light source is also close-fitting the measured object surface

to avoid too much diffuse light on the spectral information. As for

the sample, the mechanical device should be fixed steadily so that

the collected sample cannot move easily, and it should not be fixed

too tightly to avoid damage or deformation to the sample. So, there

are many difficulties in the design of the mechanical device.

Moreover, the detection accuracy has a great impact on the

subsequent analysis of the spectra. Trying to minimize the impact of

some controllable factors on the accuracy is beneficial to improving the

spectral detection quality. The detection accuracy is affected by various

factors, which are reflected in all aspects of the detection device. For

example, the resolution of the detection instrument, the stability of the

light source, the loss of the detection fiber, and the stability of the

mechanical device might have a negative impact on the accuracy.

Therefore, the designed SRS equipment requires calibration to

guarantee the stability and accuracy of the equipment. Last but not

least, the design cost of SRS is also a problem because the

manufacturing and maintenance costs of SRS detection devices are

very high and usually require the use of expensive optical and

mechanical components. How to improve the detection accuracy of

SRS while reducing the cost is also a demanding challenge to be solved.

At the present stage, direct analysis and OP are mainly used to

deal with spatially resolved spectra in terms of computational

methods. The direct analysis method is simple and efficient, but

this method is less used. Therefore, it is a promising trend and a good

development direction to study the simple and efficient direct analysis

method. In addition, the OP method is complex, but the prediction

accuracy is relatively high. The current OP methods are based on the

diffuse equation theory to separate out the optical characteristics. In

the process of extracting the OP, because of the complexity of the

diffuse equation, the solved values are often not accurate enough and

the computation is huge. The future development of simpler and

more accurate optical equations to extract OP based on the current

research is also an emerging research prevailing trend.
6 Conclusion

Agricultural products, including dairy, meat, fruit and

vegetable, forestry products, and animal husbandry products, are

of great importance to people’s daily lives, depending on their

external and internal quality. Compared with traditional detection

methods, SRS not only provides more spatial information but also

separates out optical properties, so it can be widely used in the field
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of agriculture. SRS detection systems, including single fiber, fiber

array type, CCD line scan type, hyperspectral line-scan, and multi-

channel hyperspectral imaging detection system, have been

increasingly used for inspecting quality in replacement of manual

grading as they can provide a simple structure, easy to operate, low

cost and non-destructive assessment. With the continuous

development of this technology, many successful applications

have proved that SRS detection systems are powerful and

scientific tools for stable and accurate quality inspection of

agricultural products. This paper reviews the principles,

development, and applications of five various SRS detection

systems for agricultural product quality inspections. Despite the

problems and challenges of this technique, it promises to achieve

online detection with a more simple, portable, and easy to operate

configuration for further widespread application in quality

inspection of agricultural fields.
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Early decay detection in citrus fruit using laser-light backscattering imaging.
Postharvest Biol. Technol. 86, 424–430. doi: 10.1016/j.postharvbio.2013.07.021

Lu, R., Ariana, D. P., and Cen, H. (2011). Optical absorption and scattering
properties of normal and defective pickling cucumbers for 700–1000 nm. Sens.
Instrument. Food Qual. Saf. 5, 51–56. doi: 10.1007/s11694-011-9108-6

Lu, R., Cen, H., Huang, M., and Ariana, D.P.J.T.O.T.A. (2010). Spectral absorption
and scattering properties of normal and bruised apple tissue. Trans. ASABE 53, 263–
269. doi: 10.13031/2013.29491

Lu, R., Van Beers, R., Saeys, W., Li, C., and Cen, H. (2020). Measurement of optical
properties of fruits and vegetables: A review. Postharvest Biol. Technol. 159, 111003.
doi: 10.1016/j.postharvbio.2019.111003

Ma, T., Inagaki, T., Ban, M., and Tsuchikawa, S. (2019a). Rapid identification of
wood species by near-infrared spatially resolved spectroscopy (NIR-SRS) based on
hyperspectral imaging (HSI). Holzforschung 73, 323–330. doi: 10.1515/hf-2018-0128

Ma, T., Inagaki, T., and Tsuchikawa, S. (2019b). Three-dimensional grain angle
measurement of softwood (Hinoki cypress) using near infrared spatially and spectrally
resolved imaging (NIR-SSRI). Holzforschung 73, 817–826. doi: 10.1515/hf-2018-0273

Ma, T., Inagaki, T., and Tsuchikawa, S. (2021a). Demonstration of the applicability of
visible and near-infrared spatially resolved spectroscopy for rapid and nondestructive
wood classification. Holzforschung 75, 419–427. doi: 10.1515/hf-2020-0074

Ma, T., Inagaki, T., Yoshida, M., Ichino, M., and Tsuchikawa, S. (2021c). Measuring
the tensile strain of wood by visible and near-infrared spatially resolved spectroscopy.
Cellulose 28, 10787–10801. doi: 10.1007/s10570-021-04239-1

Ma, T., Schajer, G., Inagaki, T., Pirouz, Z., and Tsuchikawa, S. (2018). Optical
characteristics of Douglas fir at various densities, grain directions and thicknesses
investigated by near-infrared spatially resolved spectroscopy (NIR-SRS). Holzforschung
72, 789–796. doi: 10.1515/hf-2017-0213

Ma, T., Xia, Y., Inagaki, T., and Tsuchikawa, S. (2021b). Rapid and nondestructive
evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR
spatially resolved spectroscopy. Postharvest Biol. Technol. 173, 111417. doi: 10.1016/
j.postharvbio.2020.111417

Ma, T., Zhao, J., Inagaki, T., Su, Y., and Tsuchikawa, S. (2022). Rapid and
nondestructive prediction of firmness, soluble solids content, and pH in kiwifruit
using Vis–NIR spatially resolved spectroscopy. Postharvest Biol. Technol. 186, 111841.
doi: 10.1016/j.postharvbio.2022.111841

Martelli, F., Tommasi, F., Fini, L., Cortese, L., Sassaroli, A., and Cavalieri, S. (2021).
Invariance properties of exact solutions of the radiative transfer equation. J. Quant.
Spectrosc. Radiat. Transf. 276, 107887. doi: 10.1016/j.jqsrt.2021.107887

Mei, M., and Li, J. (2023). An overview on optical non-destructive detection of
bruises in fruit: Technology, method, application, challenge and trend. Comput.
Electron. Agric. 213, 108195. doi: 10.1016/j.compag.2023.108195

Mendoza, F., Lu, R., Ariana, D., Cen, H., and Bailey, B. (2011). Integrated spectral
and image analysis of hyperspectral scattering data for prediction of apple fruit
firmness and soluble solids content. Postharvest Biol. Technol. 62, 149–160.
doi: 10.1016/j.postharvbio.2011.05.009

Mendoza, F., Lu, R., and Cen, H. (2014). Grading of apples based on firmness and
soluble solids content using Vis/SWNIR spectroscopy and spectral scattering
techniques. J. Food Eng. 125, 59–68. doi: 10.1016/j.jfoodeng.2013.10.022

Mishra, P., Nordon, A., Mohd Asaari, M. S., Lian, G., and Redfern, S. (2019). Fusing
spectral and textural information in near-infrared hyperspectral imaging to improve green
tea classification modelling. J. Food Eng. 249, 40–47. doi: 10.1016/j.jfoodeng.2019.01.009
Frontiers in Plant Science 22173
Mohd Ali, M., Hashim, N., Bejo, S. K., Jahari, M., and Shahabudin, N. A. (2023).
Innovative non-destructive technologies for quality monitoring of pineapples: Recent
advances and applications. Trends Food Sci. Technol. 133, 176–188. doi: 10.1016/
j.tifs.2023.02.005

Mollazade, K., and Arefi, A. (2017). Optical analysis using monochromatic imaging-
based spatially-resolved technique capable of detecting mealiness in apple fruit. Scientia
Hortic. 225, 589–598. doi: 10.1016/j.scienta.2017.08.005

Morimoto, K., Iguchi, A., and Tsuji, Y. (2020). Propagation operator based boundary
condition for finite element analysis. IEEE Photonics J. 12, 1–13. doi: 10.1109/
JPHOT.2020.3015498

Nguyen Do Trong, N., Erkinbaev, C., Nicolaï, B. M., Saeys, W., Tsuta, M., and De
Baerdemaeker, J. (2013). Spatially resolved spectroscopy for nondestructive quality
measurements of Braeburn apples cultivated in sub-fertilization condition, in
Proceedings of SPIE 8881, Sensing Technologies for Biomaterial, Food, and
Agriculture. (Bellingham, USA: 88810L, Society of Photo-optical Instrumentation
Engineers). doi: 10.1117/12.2030407

Nguyen Do Trong, N., Erkinbaev, C., Tsuta, M., De Baerdemaeker, J., Nicolaï,
B., and Saeys, W. (2014a). Spatially resolved diffuse reflectance in the visible and
near-infrared wavelength range for non-destructive quality assessment of
‘Braeburn ’ apples. Postharvest Biol. Technol. 91, 39–48. doi: 10.1016/
j.postharvbio.2013.12.004

Nguyen Do Trong, N., Rizzolo, A., Herremans, E., Vanoli, M., Cortellino, G.,
Erkinbaev, C., et al. (2014b). Optical properties–microstructure–texture relationships
of dried apple slices: Spatially resolved diffuse reflectance spectroscopy as a novel
technique for analysis and process control. Innovative Food Sci. Emerg. Technol. 21,
160–168. doi: 10.1016/j.ifset.2013.09.014
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Development of a longevity
prediction model for cut roses
using hyperspectral imaging and
a convolutional neural network
Yong-Tae Kim, Suong Tuyet Thi Ha and Byung-Chun In*

Department of Smart Horticultural Science, Andong National University, Andong, Republic of Korea
Introduction: Hyperspectral imaging (HSI) and deep learning techniques have

been widely applied to predict postharvest quality and shelf life in multiple

horticultural crops such as vegetables, mushrooms, and fruits; however, few

studies show the application of these techniques to evaluate the quality issues

of cut flowers. Therefore, in this study, we developed a non-contact and rapid

detection technique for the emergence of gray mold disease (GMD) and the

potential longevity of cut roses using deep learning techniques based on

HSI data.

Methods: Cut flowers of two rose cultivars (‘All For Love’ and ‘White Beauty’)

underwent either dry transport (thus impaired cut flower hydration), ethylene

exposure, or Botrytis cinerea inoculation, in order to identify the characteristic

light wavelengths that are closely correlated with plant physiological states based

on HSI. The flower bud of cut roses was selected for HSI measurement and the

development of a vase life prediction model utilizing YOLOv5.

Results and discussion: The HSI results revealed that spectral reflectance

between 470 to 680 nm was strongly correlated with gray mold disease

(GMD), whereas those between 700 to 900 nm were strongly correlated with

flower wilting or vase life. To develop a YOLOv5 prediction model that can be

used to anticipate flower longevity, the vase life of cut roses was classed into two

categories as over 5 d (+5D) and under 5 d (-5D), based on scoring a grading

standard on the flower quality. A total of 3000 images from HSI were forwarded

to the YOLOv5 model for training and prediction of GMD and vase life of cut

flowers. Validation of the prediction model using independent data confirmed its

high predictive accuracy in evaluating the vase life of both ‘All For Love’ (r2 = 0.86)

and ‘White Beauty’ (r2 = 0.83) cut flowers. The YOLOv5 model also accurately

detected and classified GMD in the cut rose flowers based on the image data. Our

results demonstrate that the combination of HSI and deep learning is a reliable

method for detecting early GMD infection and evaluating the longevity of

cut roses.
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cut roses, deep learning, gray mold disease, hyperspectral imaging, prediction, vase life
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1 Introduction

Recently consumer interest and use of floricultural products

have been growing, especially through online markets, resulting

from an increase in flower sale for home use in the COVID-19 era

(Bulgari et al., 2021; Gabellini and Scaramuzzi, 2022). As a large

portion of floricultural plants is utilized as cut flowers, long

postharvest longevity is the primary quality by which flower sales

can be promoted (Vehniwal and Abbey, 2019). Although cut flower

longevity cannot be readily assessed, estimates of shorter vase life

commonly reduce the value of cut flowers that are shipped to

international markets. The vase life of cut flowers is determined by

morphological and physiological attributes, which are shaped by the

interaction of preharvest conditions and genetic traits (Fanourakis

et al., 2013; In and Lim, 2018). Although rose is not an ethylene-

sensitive species, in some cultivars adverse effects of ethylene

exposure have been reported (Macnish et al., 2010; In et al.,

2017). Ethylene is a plant hormone that regulates various

physiological processes, including fruit ripening and flower

senescence (Wang et al., 2002). Ethylene is also produced as a

product of certain agricultural commodities and industrial

activities. Cut rose flowers can be exposed to increased ethylene

concentrations in various situations such as storage or transport

with ethylene-producing agricultural commodities (fruits or flowers

that naturally produce ethylene), storage in or near industrial areas

where there is high emission of the ethylene-producing substances,

and the improper ventilation of the storage or transport facilities

(Cape, 2003; Chang and Bleecker, 2004; Martıńez-Romero et al.,

2009). Dry transport is the main method employed commercially

for trade because of a reduction in space (thus cheaper) and in

flower bud opening (thus maturity stage is little affected) (Macnish

et al., 2009). However, cut flower hydration during dry transport is

reduced owing to transpiration losses, which are not compensated.

In addition, some environments such as high humidity and wet

conditions are characterized by increased B. cinerea spore density

(Williamson et al., 2007; Friedman et al., 2010). This increased

spore density is not apparent at harvest, but later on,

problems appear.

Therefore, the vase life of cut roses commonly ends during the

early stages of flowers’ development, and reliably predicting their

lifespan has not been possible. Consequently, consumers are

dissatisfied and flower utilization is reduced (Reid et al., 1996;

Vehniwal and Abbey, 2019). Thus, the development of longevity

prediction techniques is a high priority to assure the ornamental

period of cut flowers for the customers, as this can be incorporated

into the existing system for quality grading of cut flowers.

Moreover, the vase life prediction system can improve efficiency

in flower supply chains as well as provide consumers with relevant

flower products according to their use. For instance, different

batches of cut flowers can be sorted based on the vase life

potential in the packaging house. The flower batches with short

vase life are priced lower and traded shortly, whereas the batches

with long vase life are priced higher in the markets and can be

stored for longer time before the distribution. Furthermore, the vase

life prediction model in cut flowers offers benefits ranging from

quality assurance and supply chain optimization to environmental
Frontiers in Plant Science 02176
sustainability and economic efficiency. It aligns with the boarder

goals of the floral industry, aiming to deliver high quality products

while minimizing waste and environmental impact.

Few attempts had so far been made to devise effective methods

to predict and guarantee postharvest longevity of cut flowers. Staby

and Cunningham (1980) reported a method to estimate the vase life

of cut carnation based on the ethylene level using gas

chromatography. However, vase life prediction using this method

is not suitable in ethylene-insensitive flowers and might be less

accurate in the early stage of postharvest. Tromp et al. (2012)

developed a method to predict the remaining vase life of cut roses

using the degree-days model during storage and transportation at a

constant. However, this method may be of limited use if the

biological variance is high or the temperature of storage and

transportation is outside the optimum range (2-6 °C).

We developed previously artificial neural network models to

predict and assure the vase life of three rose cultivars based on

thermal image analysis. Although the prediction accuracy of the

models was quite high, the application of this method was limited

because the cut roses used for the prediction model did not undergo

various postharvest conditions that influence the vase life of cut

flowers, such as dry transport, exposure to ethylene, or high density

of mold spore during storage and transport (In et al., 2009; In et al.,

2016a). Thus, to enhance the model performance for practical

application in the vase life guarantee, it is further necessary to

detect plant status rapidly and to use extensive data processing for

complex data, such as artificial intelligence or machine learning.

Recently, a non-destructive method such as hyperspectral

imaging (HSI) has been widely used to evaluate various factors

related to plant physiology and stress conditions in multiple

horticultural crops (Behmann et al., 2014; Liu et al., 2015; Lowe

et al., 2017; Veys et al., 2019; Ramamoorthy et al., 2022; Wieme

et al., 2022). HSI uses a hyperspectral camera to capture images of

plants in a wide range of light wavelengths (Lowe et al., 2017; Lay

et al., 2023). By analyzing the reflectance of horticultural products

in different wavelengths, HSI can extract detailed information about

the morphological and physiological properties of plants, including

disease infection, nutritional deficiencies, ripeness, and defects of

fruits and vegetables, etc (Liu et al., 2015; Wieme et al., 2022). The

development of spectral imaging techniques has required suitable

regression models to analyze spectral data. Machine learning

techniques based on algorithms have been applied to construct

classification and regression models for HSI to predict and evaluate

the quality of vegetables and fruits (Zhang et al., 2016; Rahman

et al., 2017; Ji et al., 2019). However, the machine learning

algorithms only performed a screening process on the spectral

bands (Zhang et al., 2016). In recent years, deep learning, a subset

of machine learning, has been widely used in agriculture, industry,

and medics because it can learn features automatically from a large

dataset of images (Guo et al., 2016; Tian et al., 2020). This technique

was used in building hyperspectral imaging correction models for

prediction and classification. Convolutional neural networks

(CNNs), a type of deep learning algorithm, can rapidly and

accurately classify the quality of agricultural products and identify

potential factors affecting their appearance or shelf life without

being influenced by personal biases or subjective opinions (LeCun
frontiersin.org
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et al., 2015; Kamilaris and Prenafeta-Boldú, 2018; Cravero et al.,

2022). In the last decade, CNNs have been increasing employed in

plant phenotyping community. They have been very effective in

modeling complicated concepts, owing to their ability of

distinguishing patterns and extracting regularities from data

(Nasiri et al., 2021; Taheri-Garavand et al., 2021). You Only Look

Once version 5 (YOLOv5), a type of CNN, is a state-of-the-art deep

learning algorithm that was used to classify agricultural products

with high accuracy even when source images are poor quality or

contain multiple features (Yao et al., 2021; Ahmad et al., 2022). To

classify agricultural products by using YOLOv5, the algorithm must

first be trained on a large dataset of labeled images (Redmon et al.,

2016; Yao et al., 2021). YOLOv5 can also perform real-time

classification, which is important for rapidly classifying large

quantities of horticultural products (Zhang et al., 2021; Li et al.,

2022). HSI and deep learning techniques have been widely applied

to predict postharvest quality and shelf life in multiple horticultural

crops such as vegetables, fruits, and mushrooms (Taghizadeh et al.,

2011; Mo et al., 2015; Susič et al., 2018; Sun J et al., 2021; Wieme

et al., 2022; Xiang et al., 2022); however, there are few studies

showed the application of these techniques to evaluate the quality

issues of cut flowers (Stead et al., 2018; Sun X et al., 2021).

Therefore, this study aimed to develop a rapid and effective

method to predict the longevity of cut roses based on HSI and

deep learning algorithms. To identify light wavelengths that are

closely correlated with plant physiological states (GMD and petal

wilting) using HSI, cut flowers underwent either water stress,

ethylene exposure, or B. cinerea inoculation before storage.

YOLOv5 was adopted for processing the extensive image data by

HSI in order to develop vase life prediction models for cut flowers.

In the present study, the flower bud of cut roses was chosen for HSI

measurement and the development of the vase life prediction

model. This selection allows for imaging from the top of entire

batches of cut flowers. Furthermore, the results obtained in this

study are not confined solely to hydration status; they also

contribute to the vase life prediction for cut rose flowers.
2 Materials and methods

2.1 Plant materials

Cut roses ‘All For Love’ and ‘White Beauty’(Rosa hybrida L.)

were cultivated and harvested in a commercial greenhouse in

Guksong, Jeollanam-do, South Korea. Rose plants were

dripirrigated with a liquid nutrient solution containing NH4NO3

(44.93 g L-1), Ca(NO3)2 4H2O (17.47 g L-1), KNO3 (1.63 g L-1),

KH2PO4 (12.04 g L-1), MgSO4 7H2O (27.04 g L-1), and a small

volume of other trace substances. The symptomless rose flowers

were collected and harvested at the commercial stage (outer petals

bent out) (Harkema et al., 2013). After harvest, cut flowers were

either wet transported (WT) in tap water or dry transported (DT)

without the water to the laboratory within 4 h. At the laboratory, all

cut roses were placed in a controlled environment room at 23 ± 1 °C

and at a relative humidity (RH) of 50 ± 2% for HSI analysis. After

the HSI, the cut flowers were exposed to ethylene or inoculated with
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B. cinerea and followed by storage at 10 ± 1 °C and RH of 50 ± 5%

under dark conditions for 3 d for transport treatments (In

et al., 2016b).
2.2 Ethylene exposure

Cut flowers in WT were held in distilled water and those in DT

were placed in buckets without water and enclosed in the treatment

chamber (462 L) at 23 ± 1 °C under dark conditions. Distilled water

was used, though less common from practical stand point, since the

tap water composition largely depends on the season, and the

location (Amadi-Majd et al., 2021). Ethylene (10%) was injected

into the chamber to achieve a final concentration of 2 μL L-1. Three

beakers containing 200 mL of 1M NaOH were placed in the

treatment chamber to neutralize CO2 released by the flower

respiration during the ethylene treatment. After every 12 h of

ethylene exposure, the treatment chamber was opened for 2–3 h

for HSI and then closed and re-injected with 2 μL L-1 ethylene.

Three days after the transport treatments, cut flowers were taken

out from the chamber for vase life evaluation and HSI.
2.3 B. cinerea inoculation in cut roses

B. cinerea (KACC40573) was isolated from infected rose flowers

in the Korean Agricultural Culture Collection (KACC), National

Institute of Agricultural Sciences. For a pure culture, B. cinerea

conidia were grown in potato dextrose agar (PDA, Difo

Laboratories, Detroit, MI, USA) at 25 ± 1 °C for 14 days. B. cinerea

conidial suspension was obtained by dropping 10 mL of distilled

water into a culture petri dish and then gently sweeping the fungal

colony surface with a sterile loop. The conidial clumps were removed

from the obtained suspension by gently filtering with sterile gauze.

Afterward, the concentration of conidia suspension was adjusted to

105 conidia mL-1 with sterile water for the experiment.

WT and DT flowers were inoculated by spraying with 30 mL of

the conidial suspension (105 conidia mL-1). Non-inoculated cut

roses were sprayed with sterile water (30 mL). After inoculation of

B. cinerea, the rose flowers were then placed in the storage chamber

(at temperature 10 ± 1 °C and RH of 50 ± 5%) under dark

conditions for 3 d to simulate export conditions. After the

transport treatments, cut flowers were set up for vase life and

disease progression evaluation and HSI.
2.4 Evaluation of vase life and gray
mold disease

After three days of the export simulation, twenty-five cut roses

in each treatment were trimmed to a length of 45 cm with three

upper leaves. Each cut flower was placed into a glass jar containing

distilled water (450 mL) and maintained at the temperature (23 ± 1

°C), RH of 50 ± 2%, and light intensity at 20 μmol m-2 s-1 (a

photoperiod of 12 h) supplied by fluorescence tubes for GMD

progression and vase life assessment.
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Changes in the postharvest quality of cut roses were determined

by measuring relative fresh weight and water uptake daily at 10:30

am. Water balance (WB) of cut flowers was calculated from changes

in fresh weight, water uptake, and daily transpiration. The vase life

of cut roses was evaluated daily by the assessment criteria for Rosa

(VBN, 2014). Cut roses were considered to have reached the end of

their postharvest life when flowers showed at least one or more of

the following senescence symptoms: pedicel bending (neck angle

greater than 45°), petal drying (≥ 50% of petals show dryness);

wilting of petal and leaf (≥ 50% of petals or leaves loss their turgor),

petal abscission (a drop of three or more petals), leaf abscission and

yellowing (≥ 50% leaf drop and yellowing), bluing (≥ 50% blue

petals) (Fanourakis et al., 2015; Fanourakis et al., 2016). In addition,

the vase life of cut roses was considered to end when cut flowers

showed severe GMD symptoms in the petals. The progression of

GMD by B. cinerea was evaluated based on the disease index as

described in the previous study (Ha et al., 2022).
2.5 Fungal biomass and gene
expression analysis

Fungal genomic DNA (gDNA) was extracted from the gray

mold mycelia collected from infected petals by using i-genomic BYF

DNA Extraction Mini Kit (INTRON Biotechnology Inc., Gyeonggi-

do, South Korea). Total RNA was isolated from 200 mg of rose

petals by using the GeneJET plant RNA purification Mini Kit

(Thermo Fisher Scientific Baltics, Vilnius, Lithuania). cDNA was

synthesized from 1 μg of total RNA using XENO-cDNA Synthesis

Kit (CELL TO BIO, Gyeonggi-do, South Korea) and performed in a

Bio-Rad PTC-100 Programmable Thermal Controller (MJ Research

Inc., Hercules, CA, USA) as per the instruction manual. Then,

fungal biomass (evaluated by Bc3 from gDNA) and the transcript

levels of the ethylene biosynthesis gene (RhACO1), aquaporin-

related gene (RhTIP1), and senescence-induced gene (RhSIG) in

petals of cut roses were analyzed using the BIO-RAD CFX Connect

Real-Time System (Life Science, Hercules, CA, USA). B. cinerea

actin A (BcactA) and Rosa hybrida actin 1 (RhACT1) genes were

used as an internal control. The primer sequences used for

quantitative real-time PCR (qRT-PCR) are listed in Table 1. The

qRT-PCR reaction setting and conditions for gene expression

analyses have been indicated previously (Ha et al., 2022).
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2.6 Hyperspectral image acquisition

The visible/near-infrared (VIS-NIR) hyperspectral camera

system was set with an IMEC SNAPSCAN camera (3650x2048

pixel) (IMEC, Leuven, Belgium, www.imec-int.com) with 150

spectral bands and a spectral range of 470–900 nm. This system

was connected to a computer (Intel (R) Core (TM) I7-1165G7 CPU

@ 2.8 GHz). Images of cut roses were acquired using the HSI in

reflection mode and were constructed under a controlled

environment room (23 ± 1 °C and RH of 50 ± 2%). The VNIR

light source was provided by 4 halogen Osram lamps with 20W HT

spot and color temperature of 2800 K (OSRAM, Munich, Germany).

The halogen lamps provide 350-2500 nm light with a power of 20W.

The distance between the cut rose flowers and the lens was set to 50

cm, and the angle between the lamps and camera was set at 45° to

provide enough light to the imaging area for image acquisition. The

exposure time of the hyperspectral camera shooting was set to 2

milliseconds. The halogen lamps were run for 15 min to reach a stable

state temperature and then a 95% reflection standard was calibrated

before conducting reflection measurements of the cut roses. Data

acquisition and extraction were performed using the IMEC HSI

Snapscan software version 1.8.1.1 (IMEC, Leuven, Belgium).
2.7 Image processing model

A dataset of images of cut roses was used to process disease

detection and vase life prediction by using deep learning system

YOLOv5 version 6.2 (GitHub, San Francisco, USA). The dataset

consisted of 3000 images collected from the hyperspectral system,

with 1500 disease-infected cut roses and 1500 non-disease-infected

cut roses. The images were resized to 640x640 pixels and the

disease-infected areas in the images were annotated with

bounding boxes using MAKE SENSE (Figures 1A–C). The

annotation process was done by a trained 1 annotator is familiar

with disease-infected cut roses to ensure consistency and accuracy.

The YOLOv5 architecture implemented in Python using the

PyTorch library was used for object detection. The YOLOv5x

model was implemented using the GitHub library and was

trained on a computer with a CUDA-enabled GeForce RTX 3080

graphics card for 50 epochs. To evaluate the performance of gray

mold disease detection in cut roses, metrics including precision (P),

recall (R), mean average precision (mAP), and F1-score (F1) were
TABLE 1 List of genes and primers used for qRT-PCR analysis in this study.

Gene
(accession number/reference)

Forward primer Reverse primer

Bc3 (Suarez et al., 2005) 5’-GCTGTAATTTCAATGTGCAGAATCC-3’ 5’-GGAGCAACAATTAATCGCATTTC-3’

BcactA (Chagué et al., 2006) 5′-CCCAATCAACCCAAAGCTCAACAG-3′ 5′-CCACCGCTCTCAAGACCCAAGA-3′

RhACO1 (AF441282.1) 5′CGTTCTACAACCCAGGCAAT-3′ 5′-TTGAGGCCTGCATAGAGCTT-3′

RhTIP1 (KF985188.1) 5’-TCTCTCCTACGTGGCATCCT-3’ 5’-GACCACCTCTGCTTTTGCTC-3’

RhSIG (S80863.1) 5’-CCGACACAAGAACCTTGGAT-3’ 5’-TCTTCCGTGTACACCACCAA-3’

RhACT1 (KC514918.1) 5′-GTTCCCAGGAATCGCTGATA-3′ 5′-ATCCTCCGATCCAAACACTG-3′
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used in the present study. The target confidence threshold was 0.5

and the Intersection over Union (IOU) at the time of testing was

0.5. The P, R, mAP, and IOU are calculated as follows:

P =
TP

TP + FP

R =
TP

TP + FN

mAP = o
k
i=1APi
k

F1 = 2�  P �  R
P + R

IOU =
Area   of  Overlap
Area of Union

Where TP, FP, and FN are the numbers of true positive cases,

false positive cases, and false negative cases. The specific network

structure of YOLOv5x is shown in Figure 2.

To identify the most appropriate image processingmodel, we also

evaluated the performance of two more object detection models:

Faster R-CNN and Single Shot Muli-Box Detector (SSD). We utilized

the cut rose image dataset, which includes 588 images across 21

categories, showcasing various senescence symptoms. The dataset

was partitioned into 70% for training, 15% for validation, and 15% for
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testing. We tailored the input image sizes to meet the requirements of

each model: 640x640 pixels for Faster R-CNN and 512x512 pixels for

SSD. All models were implemented using the PyTorch open-source

deep learning framework. Each model underwent training with

identical hyperparameter settings, including a learning rate set to

0.001, a batch size of 16, and training for a total of 50 epochs.

To identify initial disease symptoms and wounded spots, we

used an image region extraction pre-processing step using the

YOLOv5 object detection algorithm. The flower objects within

the images were identified and boxed with a rectangular frame.

The objects in the bounding boxes were then precisely cropped and

the small spots were detected from the images by the image pre-

processing system as shown in Figure 3.

A random forest classificationmodel using the object values detected

by the YOLOv5x was used to predict the vase life of cut roses. We used a

dataset of 200 cut roses corresponding with vase life labels ranging from 1

to 8 d. To optimize the performance of the random forest model, the

object values were grouped into feature sets of 1 to 12, based on the

importance ranking of the 12 features. The feature sets were constructed

by iteratively adding the next most important feature to the previous set

until 12 features were included. The dataset was split into training and

testing sets using an 80:20 ratio, with stratified sampling to ensure that

both sets have a similar distribution of the vase life labels. The random

forest model was trained using the training set, with hyperparameters

optimized using grid search and cross-validation. The optimized

hyperparameters included 100 trees, a maximum depth of 10, and

minimum samples required to split a node of 2.
A

B

C

FIGURE 1

Development of flower opening and gray mold disease (GMD) in ‘White Beauty’ cut roses during transport and vase life (A, B). The cut flowers were
untreated (none treatment) or sprayed with B. cinerea conidia suspension (inoculation) and the images of flowers were taken on days 1-3 of
transport (T1-T3) and days 1-2 (D1-D2) of vase period. The green and pink boxes indicate the annotation of the GMD emergence spots by bounding
boxes for deep learning analysis (B). Detection of GMD and petal wilting in ‘White Beauty’ (a) and ‘All For Love’ (b–e) by YOLOv5 (C). The arrows and
numbers in the flower images indicate the GMD spots and the probability (%) of GMD calculated by YOLOv5 (a, b). The bounding boxes in purple,
green, and red generated by annotation tool MAKE SENSE indicate petal wilting and opening levels of the flowers at T0, T3, and D1. The percentage
numbers in the images indicate the probability of the specific wilting and opening stages, as calculated by YOLOv5 (c–e).
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A B

D E F

C

FIGURE 3

The GMD detection image region extraction pre-processing diagram of the YOLOv5. (A), original HSI with a resolution of 2048 pixels in width and
height; (B), the original image was resized to 640x640 pixels, and convolution operations were performed to extract features. (C), detect the object
and the bounding box information surrounding the object (x, y, w, h, n) was extracted, x and y: position of the bounding box, w: width, h: height,
and n: identification number of the object. (D), bud image is the extracted image of the detected object region, image size is the width and height of
the bounding box; (E), resized of 640x640 pixels to standard the input size and additional feature extraction; and (F), red boxes in indicate the
detection of disease and wounded spots.
FIGURE 2

The YOLOv5 network model structure schematic used in this study. The image dataset is first pre-processed, annotated, and undergoes data
augmentation to enhance its quality and quantity. The prepared image data is then forwarded to the backbone, the neck, and the head of the model
for training and prediction of disease and vase life. Finally, the prediction performance of the models was estimated based on the object-detection
values by YOLOv5 system.
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The output of the vase life was classed into two categories as over 5 d

(> 5 d) and under 5 d (≤ 5 d) based on the total scores evaluated by gray

mold disease (GMD) severity, GMD development weighted value, petal

wilting level, and flower opening as shown in Table 2 and Supplementary

Figure 1. The scores of quality factors used to predict the vase life of cut

roses in Table 2 were calculated based on the incidence of the vase life

terminated factors and GMD disease (Supplementary Figure 2). The

GMD development weighted value was determined by the growth speed

of the disease in petals. The GMD development speed was accelerated by

B. cinerea inoculation and ethylene treatment and also increased in

‘White Beauty’ compared to ‘All For Love’ (Supplementary Figure 3).

This evaluationwas based on the previous findings showing that ethylene

and water stress influenced the progression of GMD in cut roses during

transport (Harkema et al., 2013; Ha et al., 2022).
2.8 Experimental design and
statistical analysis

Twenty-five cut roses were used for each treatment. Experiments on

vase life and disease evaluation were performed with 10 replicates (one

cut flower per replicate). HSI analyses were performed with 6 cut flowers.

The remaining 9 cut flowers were used for fungal biomass and gene

expression analysis. qRT-PCR analysis was conducted with 3 biological

replicates. Data were subjected to analysis of variance (ANOVA) or

simple linear regression analysis at p< 0.05 using SPSS version 22.0 (IBM,

Somers, NY, USA). Data are presented as the mean ± standard error

(SE). The experiments were performed twice in both rose cultivars.
3 Results

3.1 Transport treatments influence vase
life, water status, disease infection, and
total reflectance of cut roses

WT treatment extended the vase life of cut roses compared to other

treatments (Figures 4A, B).WT yielded the longest vase life in both ‘All For
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Love’ (5.3 d) and ‘White Beauty’ (5.2 d) varieties of cut roses (Figures 4A,

B). Conversely, DT, ethylene, and B. cinerea treatments significantly

reduced the vase life of both cultivars (Figures 4A, B). Similarly, changes

in both cultivars’ capacity tomaintainWBmirrored the changes in vase life

in response to the different transport treatments. (Figures 4C, D).

The first visual symptoms of gray mold disease (GMD) were

observed on day 1 (T1) of transport in WT+E andWT+B flowers in

both rose cultivars (Figures 4E, F). WT+E and WT+B treatments

most increased GMD severity in the flower petals during vase

periods (Figures 4E, F). Although DT reduced the vase life of cut

roses, due to water stress caused by an early disruption of water

balance, this transport method delayed GMD growth in the flower

petals (Figures 4E, F). In particular, ‘All For Love’ DT flowers

showed no GMD symptoms after transport treatment (Figure 4E).

Mean spectral reflectance curves of the cut roses in the wavelength

range 470-900 nm obtained using the HSI on the first day (D1) of the vase

period are shown in Figures 4H, G. The size and shape offlower buds did

not influence the reflectance of wavelength in cut rose flowers

(Supplementary Figure 4). The overall spectral patterns induced by the

two treatments were similar for both cultivars. The reflectance of

wavelength (RW) in WT flowers was higher than those of other flowers

(Figures 4H, G), whereas that of DT, DT+E, DT+B, WT+E, and WT+B

flowers was relatively low and corresponded with the decline in both vase

life and capacity to maintain water balance, as well as and the increase in

GMD index (Figures 4H,G). The distinct differences in RW in the 470-680

nm range (RW470/680) in both rose cultivars perhaps show the relation of

the spectrums to the susceptibility to the gray mold of the cut flowers

(Figures 4H, G). Conversely, the differences in RW in the 700-900 nm

range (RW 700/900) in both rose cultivars may be correlated with the

flower responses to water stress and ethylene (Figures 4H, G).

3.2 Changes in spectrum curves, fungal
growth, and relative expression of genes
involved in ethylene biosynthesis, water
stress, and senescence of cut roses

Changes in spectral reflectance of cut roses in each treatment

group (solid lines) were analyzed throughout the transport and vase
TABLE 2 The scores of quality factors used for to predict the vase life of cut roses using YOLOv5.

GMD severityx GMD weighted valuey Petal wiltingz Vase lifew

Level Score Treatment/cultivar Score Level Score Total score Output

1 0 None 0 1 0 > 60 ≥ 5 D

2 20 B. cinerea 20 2 20
< 61 < 5 D

3 40 Ethylene 20 3 40

4 100 Culti-var
‘All For Love’ 0

4 100 < 100 Exclusion
‘White Beauty’ 20

Total score = 100 – (GMD severity + GMD weighted value + Petal wilting)
fro
xGMD, gray mold disease.
The severity of GMD was evaluated by the area (%) of the disease symptom in rose petals as follows: 1, none; 2, ≤ 3%; 3, 3-10%; and 4, 11-50%.
yThe weighted value of GMD is the disease developmental speed in rose petals influenced by the treatments and cultivars.
zPetal wilting was influenced by water stress and flower opening. It was calculated using four levels as follows: 1, none; 2, slight wilting; 3, moderate wilting; 4, severe wilting.
wThe total score of vase life was the sum of the scores graded by the quality factors. Vase life of cut roses was classified in two categories: over 5 d (+5D) and under 5 d (-5D) based on the total
score. If the total score was ≥ 100, the cut flowers were excluded from the vase life evaluation and classified into the defective group.
ntiersin.org

https://doi.org/10.3389/fpls.2023.1296473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2023.1296473
periods, and the corresponding changes in GMD growth (Bc3 level)

and the relative expression of genes related to ethylene biosynthesis

(RhACO1), water stress (RhTIP1), and senescence induction

(RhSIG) were also detected in the petals (bar charts) (Figure 5).

The changes in total spectral reflectance in both rose cultivars

after transport treatments are shown in Supplementary Figure 5. In

the various treatment groups of ‘All For Love’ roses, RW 470/680

during transport (T0) varied in correlation with the level of fungal
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biomass in petals (Figure 5A). Ethylene, B. cinerea inoculation, and

WT induced high Bc3 levels rapidly in cut roses while DT reduced

Bc3 levels in rose petals (Figure 5A). Thus, RW470/480 in DT+E,

DT+B, WT, WT+E, and WT+B flowers rapidly decreased due to B.

cinerea growth after transport treatments (Figure 5A). In contrast,

RW 470/480 in DT roses changed only slightly during vase periods

(Figure 5A). In the case of the ‘White Beauty’, these flowers are

particularly susceptible to GMD; thus, the fungal biomass (Bc3
A B

D

E F
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C

FIGURE 4

Changes in physiological characteristics of cut roses during transport and vase period. (A, B), vase life; (C, D), maintenance of water balance;
(E, F), gray mold disease (GMD) index; (G, H), reflectance of wavelength (RW) in cut roses. DT, dry transport; DT+E, ethylene exposure before DT;
DT+B, B. cinerea inoculation before DT; WT, wet transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. GMD
was evaluated on days 1-3 of transport (T1–T3) and days 1-5 (D1–D5) of vase period. GMD index was classified into five levels as 1, none; 2, slight
symptoms (≤ 3%); 3, moderate symptoms (3-10%); 4, severe symptoms (11-50%); and 5, death of plants (> 50%). RW was detected in cut roses on
the first day (D1) of vase period. RW 470/680 and 700/900 indicate the wavelengths from 470 to 680 nm and 700 to 900 nm, respectively. Data are
shown as means ± SE (n = 20). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on
Duncan’s multiple range test.
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level) emerged in the petals of all cut roses early at D1 (1st day of the

vase period). Consequently, the reduction in RW 470/680 was

similar in all flowers (Figure 6A).

Ethylene exposure induces higher mRNA levels of the ethylene

biosynthesis-related gene RhACO1 in rose petals (In et al., 2017).

Moreover, both ethylene and water stress reduced the expression

levels of RhTIP1, an aquaporin-related gene (Xue et al., 2009; Ha

et al., 2021). These changes induced early senescence symptoms in

cut roses by stimulating the expression of senescence-induced genes

(Figures 5B–D, 6B–D). In all flowers, a decrease in RW 700/900
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corresponded to increased mRNA levels of RhACO1 and RhSIG (a

senescence-induced gene) and a decrease in RhTIP1 expression in

petals (Figures 5B–D, 6B–D). At the later stage of the vase period

(D4), the death of petal tissues due to GMD or senescence caused a

decline in the spectral reflectance of all cut flowers (Figures 5A–D,

6A–D).

To confirm the above results, we extracted the RW 470/680 and

RW 700/900 from petals based on GMD index differences

(Figures 7A, C) and petal wilting level due to water stress or

ethylene exposure (Figures 7B, D). Subsequently analysis,
A B DC

FIGURE 5

Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in ‘All For Love’ cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed on day 0 of transport (T0) and on days 1
(D1) and 4 (D4) of the vase period. DT, dry transport; DT+E, ethylene exposure before DT; DT+B, B. cinerea inoculation before DT; WT, wet
transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. The solid line represents the average reflectance of
wavelength. The bar charts represent the Bc3 level, and relative expression of genes related to flower longevity. Data are shown as means ± SE (n =
20 for RW data, 6 for gene expression data). Different letters above bars indicate statistically significant differences among treatments at p = 0.05
based on Duncan’s multiple range test.
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employing a one-way ANOVA test for each RW, identified RW

600-680 nm in ‘All For Love’ and at RW 500-650 nm in ‘White

Beauty’, with notably high p-values, closely related to GMD

symptom severity (Figures 7A, C). Additionally, high p-values at

RW 700-900 nm indicated distinctions in petal wilting (Figures 7B,

D). Whereas, p-values were low at RW 700/900 and RW 470/680,

which are related to GMD severity (Figures 7A, C) and petal wilting

levels (Figures 7B, D). These results indicate that RW 470/680 and

RW 700/900 are closely correlated to GMD and other stress

conditions respectively in cut rose flowers.
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3.3 Object detection for GMD
using YOLOv5

Among the methods employed for object detection, the

YOLOv5 model demonstrated superior accuracy (mAP, precision,

and recall) in comparison to the Faster R-CNN and SSD models

(Supplementary Figure 6). Consequently, the YOLOv5 was chosen

for object detection of GMD in cut roses in the present study. The

object detection for GMD in cut roses was carried out by YOLOv5x

models and the performance of the model was evaluated. The HSI
A B DC

FIGURE 6

Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in ‘White Beauty’ cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP1, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed at day 0 of transport (T0) and at days 1 (D1)
and 4 (D4) of the vase period. DT, dry transport; DT+E, ethylene exposure before DT; DT+B, B. cinerea inoculation before DT; WT, wet transport;
WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. The solid line represents the average reflectance of wavelength. The
bar charts represent the Bc3 level, and relative expression of genes related to flower longevity. Data are shown as means ± SE (n = 20 for RW data, 6
for gene expression data). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on Duncan’s
multiple range test.
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of cut roses was fed into the YOLOv5x model which was trained to

identify the presence of GMD in petals. The model effectively

detected small instances of GMD in rose petals (Figure 1C),

demonstrating that YOLOv5x can predict the disease emergence

at the early stages of the disease infection. The mAP represents the

evaluation index of disease detection accuracy. In this study, mAP

value was relatively high (82.1%) in ‘All For Love’ flowers

(Figure 8A). The precision (86.2%) and recall (77.5%) values

achieved by the model were also high in ‘All For Love’ flowers

(Figure 8A). Whereas, the performance of the YOLOv5 model for

‘White Beauty’ flowers was slightly lower (mAP, 81.6%; precision,
Frontiers in Plant Science 11185
85.1%; and recall, 78.4%) (Figure 8B). Nevertheless, these values

were enough high and better than those of the prediction based on

petal wilting levels (Supplementary Figure 7).
3.4 Prediction of vase life of cut roses
using YOLOv5

The classification for vase life in cut roses was carried out by

random forest models and the performance of the model was

evaluated. The vase life of cut roses was trained into two
A B

FIGURE 8

Detection and prediction of gray mold disease in cut roses ‘All For Love’ (A) and ‘White Beauty’ (B). The performance of the prediction models by
YOLOv5 was evaluated mAP, precision, and recall. mAP, the evaluation index of the detection accuracy; precision, the percentage of true positives
(correctly detected objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the
objects that exist in the dataset.
A B

DC

FIGURE 7

Average reflectance of wavelength (RW) of cut roses based on gray mold disease (GMD) index (A, C) and petal wilting level due to water stress or
ethylene (B, C), and p-values of a one-way ANOVA per RW (A–D). GMD index was classified into five levels as 1, none; 2, slight symptoms (≤ 3%); 3,
moderate symptoms (3-10%); 4, severe symptoms (11-50%); and 5, death of plants (> 50%). WT, wet transport; DT, dry transport; and E,
ethylene exposure.
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categories as under 5 d (-5D) and over 5 d (+5D) based on the

scores graded by the quality factors presented in Table 2. In this

study, we evaluated the classification performance of the random

forest algorithm in both cultivars. In ‘All For Love’ rose flowers, in

the -5D case, the model displayed an F1 score of 89%, precision of

87%, and recall of 91% (Figure 9A). In contrast, in the +5D case, the

performance was slightly lower (F1, 87%; precision, 85%; and

Recall, 93%) (Figure 9C). In ‘White Beauty’ rose flowers, in the

-5D case, the model yielded an F1 score of 85%, precision of 81%,

and recall of 87% (Figure 9B). However, in the +5D case, the

performance was slightly higher, with an F1 score of 88%, precision

of 91%, and recall of 85% (Figure 9D).

The vase life prediction model was developed using YOLOv5x

based on the detection of petal conditions (Figures 9E, F). As a

result, the scatter plots showed a strong correlation between the

predicted value and the observed value of the vase life evaluation

(r2 = 0.86 in ‘All For Love’ and 0.83 in ‘White Beauty’) (Figures 9E,
Frontiers in Plant Science 12186
F). This result indicates that the YOLOv5 model achieves a strong

capacity for the vase life prediction of cut flowers by analyzing the

large size of the complicated data obtained HSI.
4 Discussion

Postharvest conditions, such as dry transport, ethylene or high

density of mold spores have been observed to decrease the longevity

of the cut roses (Harkema et al., 2013; Ha et al., 2021; Ha et al.,

2022). In this study, dry transport, ethylene exposure, and increased

B. cinerea spore (induced by ethylene exposure and fungal conidial

inoculation during transport simulation) significantly reduced vase

life and positive water balance of cut roses. Dry transport, a practice

involving storing cut flowers without water to facilitate

transportation or control B. cinerea growth, can lead to

dehydration and reduced vase life of cut flowers (Macnish et al.,
A B

D

E F

C

FIGURE 9

Prediction of vase life of cut roses ‘All For Love’ (A, C) and ‘White Beauty’ (B, D). The performance of the prediction model by random forest was
evaluated F1-score, precision, and recall. F1-score, the harmonic mean of precision; precision, the percentage of true positives (correctly detected
objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the objects that exist in
the dataset. The accuracy of vase life prediction (E, F) by YOLOv5 and random forest. The vase life of cut roses were classed into two categories as
over 5 d (+5D) and under 5 d (-5D) based on the scores graded by the quality factors in Table 2. The negative (-1.0-0) and positive (0.0-1.0) values
by the linear regression analysis respectively indicate the probability that the vase life is -5D or +5D. Asterisk (*) represents a significant difference at
p = 0.05 (n = 40).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1296473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2023.1296473
2009; Harkema et al., 2013; Fanourakis et al., 2022). Ethylene

exposure accelerates the senescence process of cut roses, leading

to premature wilting, petal abscission, and overall reduced vase life

(Macnish et al., 2010; In et al., 2017). During transportation, contact

with B. cinerea spores or storage in conditions conductive to fungal

growth can lead to infection, resulting in necrotic lesions and decay,

ultimately reducing vase life of cut flowers (Ha et al., 2022).

Hyperspectral imaging is a non-contact method that analyses a

wide range of light spectrums by scanning objects with

hyperspectral cameras (Lowe et al., 2017; Cao et al., 2022; Xiang

et al., 2022). The reflectance of light from plants at different

wavelengths can be used to obtain information about various

plant statuses and conditions (Sun J et al., 2021; Sukhova and

Yudina, 2022). In this study, HSI of cut roses was used to observe

distinct wavelength ranges of plants in various physiological states,

such as GMD infection, water stress response, and senescence

induction. The spectral reflectance at 470-680 nm was found to

be strongly related to B. cinerea infection in the rose petals. The

reflectance in this wavelength range is mainly affected by the

absorption spectra of pigments in the leaves or petals of the

plants (Rolfe and Scholes, 2010). B. cinerea infection would

change the content and distribution of the pigment in the petals

leading to changes in the spectral reflectance (López-López et al.,

2016). While water stress causes changes in the water content of

plant tissues which in turn affects the reflectance of light in the

wavelength range of 700-900 nm (Elvanidi et al., 2018). Similarly,

the reflectance at 700-900 nm was highly correlated to the petal

wilting levels due to water stress after dry-transport or ethylene in

cut flowers. Our results are consistent with those of previous studies

showing that the reflectance at 400-680 nm is related to disease

infection and the reflectance at higher 700 nm is sensitive to

vegetation stress or water stress (Thenkabail et al., 2004; Köksal,

2011; Cao et al., 2022).

The YLOLv5x model was established to predict the potential

incidence rate of GMD and the vase life of cut roses based on HSI

data. We used the mAP@0.5 indicator to measure the prediction

model’s overall performance on the training test. The resulting

mAP@0.5 value of the YOLOv5x model was approximately 80% in

‘All For Love’ roses, indicating that the model has a high prediction

accuracy and can detect even small traces of fungal at early stages of

disease development in rose petals. In previous studies, a similar

detection performance was observed when YOLOv5 was used to

predict powdery mildew disease and anthracnose in rubber plants

(Chen et al., 2022). Our results also showed that the precision

(78.6%) and recall (80.5%) values achieved from the model were

also relatively high for ‘All For Love’ flowers, indicating that the

model has a low chance of wrong detection (Qi et al., 2022).

However, the disease detection performance was slightly lower for

‘White Beauty’ cultivar, possibly due to color similarity between
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white petals and GMD symptoms (Del Valle et al., 2018; Kasajima,

2019; Jiang et al., 2021).

Previously, the vase life prediction models in cut roses were

developed by using the combination of machine learning and

thermal imaging based on the different temperatures of petals

among flower blooming stages (Choi and Lee, 2020). Evaluation

of the flower quality of cut roses using a four-dimensional deep

learning method was also studied based on the flower maturing

status (Sun X et al., 2021). Despite the relatively good prediction

accuracy of the models, an application of these techniques is difficult

because the performance of the models is suitable only in limited

conditions. In this study, the YOLOv5x models performed the vase

life prediction well based on the detection of the flower states under

different stress conditions and transportation methods. The results

revealed that the models developed here are outstanding in the

accuracy of the vase life prediction, consequently, applicability to

the flower industry.

However, our model was developed using only two rose

cultivars, thus further validation of the model with a larger

dataset from various cultivars and environmental conditions is

required to establish its general applicability. Furthermore,

optimization of the YOLOv5 model, considering factors such as

dataset size (Fang et al., 2021; Doherty et al., 2022) and

computational resources (Junior and Ulson, 2021; Li et al., 2022),

is crucial for improved performance and broader applicability.
5 Conclusion

In conclusion, our results have demonstrated the potential use

of deep learning algorithms for detecting GMD and predicting the

vase life of cut roses based on hyperspectral images of flower bud

states. The finding from this study revealed that the spectral

reflectance of 470 to 680 nm and 700 to 900 nm was closely

related to GMD and plant physiological conditions, respectively

in cut roses. The YOLOv5 model precisely detected and classified B.

cinerea infection with high precision. The model also showed high

predictive accuracy in evaluating the vase life of cut roses based on

extensive image processing. With some modifications, the vase life

prediction models developed in this study could be effective tools

for constructing a flower longevity guarantee system for the

flower industry.
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SWIR hyperspectral
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Jing Li1, Jiduan Yuan3, Yuquan Lin4, Xingren Shi4, Mingjie Li1,2,
Xiaotan Yuan3, Zhongyi Zhang1,2, Rensen Zeng1,2,
Yuanyuan Song1,2* and Li Gu1,2*

1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops,
College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China, 2Key Laboratory of
Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian
Agriculture and Forestry University, Fuzhou, China, 3Pharmaceutical Development Board of Zherong
County, Ningde, China, 4Huzhou Wuxing Jinnong Ecological Agriculture Development Co., Ltd,
Huzhou, China
The composition of Pseudostellaria heterophylla (Tai-Zi-Shen, TZS) is greatly

influenced by the growing area of the plants, making it significant to distinguish

the origins of TZS. However, traditional methods for TZS origin identification are

time-consuming, laborious, and destructive. To address this, two or three TZS

accessions were selected from four different regions of China, with each of these

resources including distinct quality grades of TZS samples. The visible near-

infrared (Vis/NIR) and short-wave infrared (SWIR) hyperspectral information from

these samples were then collected. Fast and high-precision methods to identify

the origins of TZS were developed by combining various preprocessing

algorithms, feature band extraction algorithms (CARS and SPA), traditional two-

stage machine learning classifiers (PLS-DA, SVM, and RF), and an end-to-end

deep learning classifier (DCNN). Specifically, SWIR hyperspectral information

outperformed Vis/NIR hyperspectral information in detecting geographic

origins of TZS. The SPA algorithm proved particularly effective in extracting

SWIR information that was highly correlated with the origins of TZS. The

corresponding FD-SPA-SVM model reduced the number of bands by 77.2%

and improved the model accuracy from 97.6% to 98.1% compared to the full-

band FD-SVM model. Overall, two sets of fast and high-precision models, SWIR-

FD-SPA-SVM and SWIR-FD-DCNN, were established, achieving accuracies of

98.1% and 98.7% respectively. This work provides a potentially efficient

alternative for rapidly detecting the origins of TZS during actual production.
KEYWORDS

Pseudostellaria heterophylla, geographical origin, hyperspectral imaging, machine
learning, deep learning
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1 Introduction

Pseudostellaria heterophylla (Miq.) Pax, also known as Tai-zi-

shen (TZS), is a perennial herbaceous plant belonging to the

Caryophyllaceae family (Li et al., 2016). Its roots have a long

history of use as medicinal and edible plants in Asian countries,

including China and Korea. This plant is renowned for its safety and

its content of polysaccharides, saponins, cyclopeptides, sterols, oils,

and other volatile oily substances, which contribute to enhancing the

human immune system (Wong et al., 1994). TZS is commonly

employed as a substitute for ginseng and American ginseng,

addressing issues such as loss of appetite and serving as a potent

tonic. Wild TZS resources are widely distributed in various provinces

of China, such as Fujian, Guizhou, Jiangsu, and Anhui. However, the

composition of TZS varies among different geographical origins. To

evaluate TZS quality based on polysaccharide and saponin content, it

is crucial to consider cultivated plants from specific regions, such as

Jiangsu Province and Fujian Province (Shi et al., 2013). Therefore,

distinguishing the origins of TZS is significant.

Most traditional methods used to identify the origins and grades

of herbs rely on external characteristics such as shape, color,

microstructure, and odor. However, the similarity of the external

features of TZS makes it difficult to detect their origins and grades,

especially after processing (Wu et al., 2018). Currently, the

identification of TZS is conducted through techniques like High-

Performance Liquid Chromatography, Gas Chromatography-Mass

Spectrometry, ninhydrin color, and other analytical methods that

aim to detect specific active components (Lin et al., 2011). However,

these methods are time-consuming, labor-intensive, expensive, and

require the use of large quantities of organic solvents, which can

potentially harm the environment. Thus, there is an urgent need for

a rapid and accurate analytical method to determine the origins

of TZS.

Today, hyperspectral imaging (HSI) is widely utilized in agri-

food product quality and safety control (Lu et al., 2020; Tian et al.,

2023). The HSI combines conventional imaging and spectroscopic

techniques to present a hypercube with one spectral dimension and

two spatial dimensions. This allows it to provide both spatial and

spectral information about the sample (Zareef et al., 2021). This

information is closely related to the chemical composition and

physical properties of the sample (Delwiche and Kim, 2000).

Therefore, the HSI technique has attracted considerable attention

in distinguishing between similar groups of biological materials

such as maize (Wang et al., 2022), wheat (Zhang et al., 2018; Zhang

et al., 2022b), wolfberries (Zhang et al., 2020a; Dong et al., 2022).

Artificial intelligence technology has assumed a crucial role in

numerous global domains. Machine learning (ML) is an essential

approach in studying artificial intelligence. In recent years, the ML

field has experienced a significant transformation owing to the

development of novel deep learning (DL) classifiers. DL, with its

capacity to comprehend intricate and representative patterns from

vast datasets, has found applications across diverse domains.

Shallow Convolutional Neural Networks (CNN), representative

algorithms for DL, have been proven by previous studies to be

ideal for analyzing and processing HSI data (Liu et al., 2020; Zhang

et al., 2022a). The complexity of traditional neural networks is
Frontiers in Plant Science 02192
reduced by a simple network structure. The “end-to-end” design

concept, coupled with the hidden-neuron network structure,

empowers us to autonomously extract relevant data features and

optimize large datasets for accurate target classification (Fu et al.,

2018). To the best of the researcher’s knowledge, the combination of

HSI and DL algorithms to recognize the geographical origins and

quality grades of TZS has not been reported yet.

Therefore, in this study, we utilized HIS combined with DL and

ML techniques for the evaluation of the geographical origins of

Pseudostellaria heterophylla (Miq.) Pax (TZS). The successive

projection algorithm (SPA) and competitive adaptive weighted

sampling (CARS) were employed to extract spectral information

that is highly correlated with the origins of TZS. ML methods, such

as partial least squares discriminant analysis (PLS-DA), random

forests (RF), and support vector machines (SVMs), were also

compared as modeling approaches alongside deep convolutional

neural network (DCNN) architectures.
2 Materials and methods

2.1 Sample preparation

The TZS samples utilized in this study were collected from four

distinct geographical regions in China, including Guizhou, Fujian,

Jiangsu, and Anhui Provinces. To improve the applicability of the

model, we attempted to increase the complexity of the sample

composition. Two or three germplasm resources for each

geographical region were selected for this reason, encompassing

different quality grades of TZS (Table 1). We randomly selected

3249 samples from the TZS accessions, covering all three quality

grades. The quality grades of TZS samples were determined

according to the commercial grades for Chinese materia medica-

PSEUDOSTELLARIAE RADIX (T/CACM 1021.127-2018).

Specifically, the first-grade samples were characterized by roughly

straight shapes, with diameters of the thickened root section greater

than or equal to 0.4 cm and individual weights greater than or equal

to 0.4 g. Similarly, the second-grade samples also had roughly

straight shapes, with diameters of the thickened root section greater

than or equal to 0.3 cm and individual weights greater than or equal

to 0.2 g. In contrast, the third-grade samples were classified as bent,

with diameters of the thickened root section below 0.3 cm and

individual weights below 0.2 g. Additionally, to capture

comprehensive spectral information of the TZS, both sides of

each sample were scanned using visible and near-infrared (Vis/

NIR) as well as shortwave infrared (SWIR) hyperspectral

instruments. Consequently, a total of 12996 hyperspectral images

of the TZS samples were obtained. Typical TZS images from

different origins and quality grades are shown in Figure 1.
2.2 Hyperspectral image acquisition
and correction

The hyperspectral imaging (HSI) system comprised

instruments for both Vis/NIR and SWIR spectral ranges. The Vis/
frontiersin.org
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NIR instrument consists of a GaiaField Pro-V10E spectrometer

(Specim, Spectral Imaging Ltd., Finland), a high-resolution camera

(Sichuan Dualix Spectral Imaging Technology Co., Ltd., China),

and two 150 W halogen light sources. The SWIR instrument is

composed of a GaiaField Pro-N17E-HR spectrometer (Specim,

Spectral Imaging Ltd., Finland), a shortwave infrared high-
Frontiers in Plant Science 03193
resolution camera (Sichuan Dualix Spectral Imaging Technology

Co., Ltd., China), and two 150 W tungsten halogen lamps. These

two instruments employed a sample stage that was electrically

positioned and controlled by a stepper motor. A computer

equipped with SpecView Software (Sichuan Dualix Spectral

Imaging Technology Co., Ltd., China) was provided. The
FIGURE 1

Typical TZS samples from Guizhou (GZ), Jiangsu (JS), Anhui (AH) and Fujian (FJ) Provinces. The numbers “1, 2, 3” on the left represent the different
quality levels of TZS.
TABLE 1 The geographical origins and quality grades of TZS.

Geographical origins Name Year
Number of samples in different quality grades

1 2 3

Fujian province

Zheshen 1 2022 96 82 80

Zheshen 4 2022 82 84 84

Landrace 1 2023 104 104 102

Guizhou province

Guishen 1 2023 92 92 92

Landrace 1 2023 96 88 90

Landrace 2 2023 81 90 92

Jiangsu province
Landrace 1 2023 132 132 132

Landrace 2 2023 132 136 134

Anhui province

Xuanshen 1 2023 92 90 92

Xuanshen 2 2023 92 90 90

Xuanshen 3 2023 92 90 92
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instruments mentioned above were enclosed within a box featuring

a black inner surface, thus constituting the HSI system.

To eliminate errors like baseline drift, the HSI system should be

preheated by powering it on for 30 minutes before image collection.

Subsequently, non-deformed three-dimensional hyperspectral

images (x, y, l), commonly known as “hypercubes”, were

obtained by placing the TZS samples on the platform. To obtain

high-quality hyperspectral reflectance images of the TZS samples,

the Vis/NIR-HSI image acquisition parameters of motor speed,

exposure time, and object distance were set at 1.18 cm/s, 7.2 ms, and

25 cm through several attempts. Similarly, the SWIR-HSI image

acquisition parameters of motor speed, exposure time, and object

distance were adjusted to 1.5 cm/s, 4.5 ms, and 25 cm after several

attempts. Hyperspectral image correction was then conducted by

using white and black references according to the method depicted

in Zhang et al. (2020b).
2.3 Spectral data extraction

Each TZS sample was then considered as a region of interest

(ROI) and was segmented from the black background by threshold

segmentation. The difference between the sample and the

background reflectance was maximum at the 801.05 nm band

(Vis/NIR) and 1005.67 nm band (SWIR), so every sample was

segmented at these bands separately. The spectra of pixels belonging

to the same TZS sample were averaged to derive average spectra,

which were then utilized for discrimination analysis purposes. The

head and tail bands were eliminated from the spectra to minimize

the effects of instability stemming from random noise.

Consequently, 673 bands from 400.20 nm to 999.75 nm for the

Vis/NIR and 482 bands from 900.96 nm to 1700.43 nm for the

SWIR hypercubes were utilized for future analysis.
2.4 Spectral data preprocessing

To minimize the potential effects of overlapping or light noise

across different spectral wavelengths (Alchanatis et al., 2005), as

well as to assess the impact of various pre-processing methods on

the classification of TZS origins, several spectral pre-processing

techniques were investigated and applied to the raw spectra. The

evaluated pre-processing techniques included standard normal

variate (SNV) (Barnes et al., 1989), Detrend (DT), and Savitzky–

Golay first derivative (FD) (Zhang et al., 2020b).
2.5 Multivariate data analysis

In this study, various machine learning algorithms were

employed, including traditional two-stage methods such as partial

least squares discriminant analysis (PLS-DA), support vector

machine (SVM), and random forest (RF), as well as an end-to-

end deep learning algorithm known as the deep convolutional

neural network (DCNN). The purpose of these algorithms was to

distinguish TZS samples into different origin groups.
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2.5.1 Traditional two-stage machine
learning algorithms

PLS-DA is a widely practiced classifier that is considered a

supervised technique that maximizes the distinction between

different groups of samples (Nie et al., 2019). RF is an ensemble

learning algorithm developed by Leo Breiman, inspired by the earlier

work of Amit and Geman (Breiman, 2001). RF offers several

advantages, including fast training speed, few tuning parameters,

and the ability to handle high-dimensional data effectively. At its core,

RF is a collection of decision trees that work together to make

predictions (Tian et al., 2021). SVM is a non-probabilistic, linear,

binary classifier used to classify linear and nonlinear data by learning

a hyperplane. In nonlinear classification, SVM uses a kernel function

to map original data to high-dimensional data and build hyperplanes

to optimally classify the closest training samples in different classes

(Burges and discovery, 1998; Wang et al., 2023). In this study, the

radial basis function (RBF) kernel was selected for the SVM algorithm

and the penalty coefficient c and kernel parameter g were optimized

by a grid search procedure in the range of 2−8–28 through five-fold

cross-validation.

2.5.2 Deep learning algorithms
The DCNN is a widely recognized deep learning architecture

that is inspired by the visual perception mechanisms found in living

organisms (Zhang et al., 2019). A one-dimensional DCNN was

developed as the primary classifier to process the data from each

source. The DCNN architecture consisted of three convolutional

blocks, one flattening layer, and five fully-connected layers. Each

convolutional block comprised convolutional, batch normalization,

maximum pooling, and dropout layers. To extract local features

from the spectral information effectively, while reducing its

dimensions and enhancing non-linearity, we utilized 1×3

convolution kernels with a stride and padding of 1 (Yu et al.,

2021). The first and second convolutional layers were configured

with 32, 64, and 128 filters, respectively.

Utilizing rectified linear units (ReLUs) in the DCNN resulted in

faster training and helped mitigate model overfitting compared to

networks using older units (Nie et al., 2019). To facilitate learning and

reduce the emphasis on initialization, batch normalization was

applied before each dense layer and after each convolutional layer

(Ioffe and Szegedy, 2015). The fully connected (Fc) layers were

composed of 512, 128, 64, 32, and 4 neurons, respectively. To

convert the DCNN output into probabilities for each category, a

softmax function was introduced to the activation function of Fc5

(Kumar et al., 2022). The categorical cross-entropy loss function was

employed to measure the distance between the probability

distribution of the DCNN output values and the true values. To

minimize the loss function, we utilized an adaptive moment

estimation algorithm with a learning rate of 0.001, beta_1 of 0.9,

and beta_2 of 0.99 (Yu et al., 2021).
2.6 Model implementation and evaluation

The sample data were randomly divided into training and

validation sets in a ratio of 7: 3. The classification accuracy, which
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was used to evaluate the performance of the models, was

determined by calculating the ratio of correctly classified samples

to the total number of samples. The diagrams were developed using

Origin Pro 9.0 (Origin Lab Corporation, Northampton, MA, USA).

MATLAB R2019b (The MathWorks, Natick, MA, USA) was

utilized for spectrum extraction, spectrum preprocessing, and ML

model development. The DCNN model was built using Keras, a

renowned deep-learning framework (https://keras.io/zh/).
3 Results and discussions

3.1 Reflectance spectral characteristics of
the samples

The raw reflectance spectra of all the TZS samples from

different origins were presented in Figure 2, covering the

spectral ranges of 400-1000 nm and 1000-2000 nm. For the

same spectral range, the TZS from different origins exhibited

similar trends in general. This was similar to the previous

researches conducted on discriminating maize varieties,

determining the geographical origin of wolfberries, and

assessing the quality of potatoes (López-Maestresalas et al.,

2016; Dong et al., 2022). Although the spectral curves exhibited

similar trends across various origins, there were variations in

reflectance intensities. This discrepancy suggested that while the

types of internal substances were similar, their concentrations

differed among the different origins.
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3.2 Preliminary principal component
analysis to explore natural clustering of
TZS samples

Two Principal Component Analysis (PCA) models were

initially developed using the Vis/NIR and SWIR spectra of the

TZS samples with the aim of observing the initial structure of the

data from different geographically originated samples and detecting

any anomalies among the samples. Three principal components

(PCs) were selected for the Vis/NIR range, which accounted for

98.4% of the total variance (Figure 3A). Similarly, three PCs were

chosen for the SWIR range, explaining 99.0% of the total variance

(Figure 3B). According to the analysis, significant overlap between

samples from different origins was observed in both spectral

regions. It was worth noting that the distribution patterns of

samples from different origins between the two spectral regions

varied to some extent. In the Vis/NIR range, the samples of TZS

from Jiangsu origin were slightly separated from the samples of

other origins. Yet, this was not observed in the SWIR region. These

differences provided a theoretical basis for further in-depth mining

of the data in the two spectral regions separately.
3.3 Classification models based on
full wavelengths

The PLS-DA, RF, SVM, and DCNN classification models were

constructed by combining the SNV, DT and FD algorithms based
B

C D

A

FIGURE 2

Raw and average spectra of TZS samples in the range of Vis/NIR and SWIR. (A) Raw spectra and (C) average spectra of TZS samples in the range of
Vis/NIR; (B) Raw spectra and (D) average spectra of TZS samples in the range of SWIR.
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on the spectral data from the Vis/NIR and SWIR regions as the

input matrices, respectively (Table 2). The loss and accuracy curves

for the optimal model were depicted in Figure 4. The loss value of

the discriminative model continuously decreased as the number of

iterations increased. Still, the precision increased and ultimately

stabilized, indicating that the FD-DCNN model converged

properly. In all cases, the discriminative performance of the

models using SWIR spectra was superior to those using Vis/NIR

spectra. The prediction accuracies of the models in the Vis/NIR
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region were lower than 91.4%, while the SWIR models could reach

98.7% accuracies. The selection of sensor type (information source),

pretreatment methods, and classifier collectively influence the

discrimination accuracy of the models to varying extents.

Compared to the SNV and DT algorithms, the FD algorithm

exhibited superior preprocessing performance in both the visible

and near-infrared regions. This suggested that FD might be an ideal

preprocessing method to improve the signal-to-noise ratio of

spectra associated with the origin of TZS. Additionally, in the
BA

FIGURE 3

Scores scatter plots of Vis/NIR and SWIR spectra of TZS from four geographical origins. (A) Vis/NIR spectra; (B) SWIR spectra.
TABLE 2 Results of classification models based on individual spectral region datasets.

Ranges Models Treatments Parameters
Classification accuracy (%)

Training set Validation set

Vis/NIR

PLS-DA

Raw LV: 12 88.6 86.1

SNV LV: 9 84.3 82.9

DT LV: 6 66.6 66.7

FD LV: 10 88.3 85.7

RF

Raw T: 200; L: 1 100.0 71.1

SNV T: 200; L: 1 100.0 81.6

DT T: 200; L: 1 100.0 79.1

FD T: 200; L: 1 100.0 85.1

SVM

Raw
C: 1000000.0,
gamma: 0.0001

98.0 56.2

SNV
C: 100000.0,

gamma: 0.0001
98.1 80.5

DT
C: 1000000.0,
gamma: 1e-05

98.0 73.7

FD
C: 100000.0,
gamma: 1e-06

96.1 90.0

DCNN

Raw — 68.9 68.5

SNV — 64.7 63.4

DT — 70.5 69.4

FD — 94.8 91.4

(Continued)
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SWIR range, the model built with DCNN combined with FD

pretreatment algorithm exhibited the highest precision, achieving

98.7% discrimination accuracy for the four origins of the TZS

samples. Interestingly, the FD-SVM and FD-RF models also

obtained satisfactory classification accuracies with validation sets

of 97.6% and 96.8%, respectively. The confusion matrices of the

models for the SWIR region were illustrated in Figure 5, which

revealed that the FD-SVM and FD-DCNN models not only

achieved desirable accuracies in terms of total correctness, but

their accuracies were still high (>95.6%) for each origin category.

With regard to the application of the model, we sought to reduce

both the associated equipment costs and the time required for

model prediction. Consequently, further research was carried out to

extract a smaller number of feature bands from the SWIR spectra to

establish a more efficient discrimination method.
3.4 Selection of effective wavelengths

An appropriate wavelength selection method is crucial as it not

only reduces the number of wavebands but also helps eliminate

irrelevant, noisy, or collinear variables, thereby improving the

modeling precision (Liu et al., 2022). Moreover, different

wavelength selection methods are based on different algorithm

principles, which can lead to varying modeling results when

applied to different types of datasets. It is important to carefully
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consider the characteristics of the dataset and choose a wavelength

selection method that best suits the specific needs. In this study,

CARS and SPA were utilized to select the effective wavelengths

(EWs) from the SWIR spectra that would potentially contain the

most valuable information regarding the geographical origins of

TZS samples.

The randomness of the Monte Carlo sampling resulted in

inconsistent results for every operation of the CARS approach

and the optimal results after 10 CARS selections were chosen to

obtain a relatively optimal combination of bands (Figure 6). Under

the exponential decay function, the number of bands decreases

rapidly at the beginning of the sampling, but with the sampling

number increasing, the rate of decrease of the band number slows

down gradually (Figure 6A). As shown in Figure 6B, the RMSECV

values showed an overall trend of decreasing and then increasing

with the sampling times, and the RMSECV values were the lowest

when the number of sampling times reached 47. Combined with

Figure 6C, it was observed that the RMSECV value was the smallest

at the 47th sampling (* denotes), meaning that the subset

containing 32 variables selected for this sampling was the key to

determining the origins of TZS. The SPA method establishes a

multiple linear regression model for different subsets of bands one

by one and calculates the RMSEP values when selecting the optimal

bands, where the subset corresponding to the smallest value is the

optimal subset of bands. As shown in Figure 6D, the RMSEP values

show an overall decreasing trend with the increase in the number of
TABLE 2 Continued

Ranges Models Treatments Parameters
Classification accuracy (%)

Training set Validation set

SWIR

PLS-DA

Raw LV: 7 86.6 87.8

SNV LV: 8 88.6 90.9

DT LV: 8 88.7 90.8

FD LV: 8 88.2 88.7

RF

Raw T: 200; L: 1 100.0 79.4

SNV T: 200; L: 1 100.0 91.5

DT T: 200; L: 1 100.0 90.9

FD T: 200; L: 1 100.0 96.8

SVM

Raw
C: 464158.8,
gamma: 1e-05

97.1 76.1

SNV
C: 100000.0,

gamma: 0.0001
98.9 68.8

DT
C: 10000000.0,
gamma: 1e-06

98.3 95.0

FD
C: 10000.0,
gamma: 1e-05

98.3 97.6

DCNN

Raw — 68.3 67.6

SNV — 93.0 93.4

DT — 94.9 94.1

FD — 99.6 98.7
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bands. When the number of bands reaches 110, the RMSEP value

minimizes to 0.444 and then slightly increases. The specific

descriptions of the EWs screened with the CARS and SPA

algorithms are listed in Table 3.
3.5 Classification models based on EWs

After applying the CARS and SPA algorithms to select the

essential wavelengths (EWs), simplified PLS-DA, RF and SVM

models were developed to determine the geographic origins of

TZS (Table 4 and Figure 7). The models exhibited different

performances, indicating that the choice of wavelength selection

method had varying effects on the discriminative models of TZS

origins. The performance of the CARS-RF and SPA-RF models

exhibited a slight degradation compared to the full-band FD-RF

model. Additionally, both SVM and RF models based on the CARS

method performed worse than the SPA-based SVM and RF models.

This discrepancy might be attributed to the limited number of EWs

selected by CARS, leading to the elimination of some EWs

containing crucial information about the TZS origins.

Remarkably, the SPA-SVM model based on 110 EWs obtained

the optimal discriminative accuracy with 98.4% for the training set

and 98.1% for the validation set. Although it was slightly worse than

the full-band FD-DCNN model (training set of 99.6% and

validation set of 98.7%), it outperformed the full-band FD-SVM

model (training set of 98.3% and validation set of 97.6%). These

results indicated that compared to CARS, the SPA algorithm is
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preferable for extracting the SWIR information that is highly

correlated with the TZS origins.

An additional analysis was performed on the extracted EWs

from SPA, as shown in Table 3. This analysis revealed that most of

the EWs were concentrated in specific regions of the spectra,

indicating a potential relationship between the origin and

chemical composition of TZS. The wavebands around 970 nm are

associated with O-H second overtone stretching vibration and C-H

stretching third overtone, which are related to sugar and cellulose,

respectively (Theanjumpol et al., 2013). The bands between 1050

nm and 1200 nm, as well as 1300 nm and 1500 nm, are the main

characteristic spectral regions that represent the 20 amino acids

found in proteins. The 1050-1200 nm region primarily consists of

the second overtone of C-H, while the 1300-1500 nm region is

mainly composed of the combined frequency of C-H, reflecting the

differences in amino acid composition among different samples

(Weinstock et al., 2006; Jin et al., 2022).
3.6 Optimal model validation
and visualization

Apart from the 3249 TZS samples used for modeling, an additional

320 samples (80 TZS per origin) were selected for external validation

and visualization of the optimal model (FD-DCNN). The visualization

of the validation results is shown in Figure 8. The origin of TZS was

marked with different colors, with red representing TZS identified by

the model as originating from Guizhou (GZ) Province, pink
FIGURE 4

The loss and accuracy curves of the FD-DCNN model based on the SWIR.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1342970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1342970
representing TZS identified by the model as originating from Jiangsu

(JS) Province, purple representing TZS identified as originating from

Anhui (AH) Province, and blue indicating TZS identified as originating

from Fujian (FJ) Province. It can be seen that all TZS from Guizhou,

Jiangsu, and Fujian provinces were correctly recognized (100%). One

sample in the Anhui group was incorrectly identified as TZS from

Guizhou Province with a precision of 98.8%. The results of this external
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validation were consistent with the results of the FD-DCNN model,

indicating that the discrimination model developed in this study for

TZS had excellent robustness.

Previous studies on the discrimination of the origin of TZS are

based on only one variety from one origin (Wu et al., 2018;

Pan et al., 2020), overlooking the disturbances caused by the

genetic background and grade differences, which leads to the
FIGURE 5

The confusion matrices of the PLS-DA, SVM, RF and DCNN models on the prediction set using different preprocessed SWIR spectra.
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limited application of the model. Our methodology considered the

representativeness of the samples and the applicability of the

approach by selecting two or three germplasm resources for each

geographical region. Furthermore, each germplasm resource

included different quality grades of TZS (Table 1), enhancing the

comprehensiveness of the analysis.

In the analysis of the two spectral ranges used in this study, the

models within the range of 900.96~1700.43 nm demonstrated superior
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performance compared to the models within the 400.20~999.75 nm

range. The correct classification rates for the prediction set ranged from

67.6% to 98.1% for the 900.96~1700.43 nm range (Tables 2, 4), while

they ranged from 56.2% to 91.4% for the 400.20~999.75 nm range

(Table 2). This difference in accuracy can be attributed to the fact that

the spectra in the 900.96~1700.43 nm range provide information about

the stretching vibrations of C-H, O-H, and N-H, which are caused by

starch, protein, cellulose, and water in the TZS. On the other hand, the
TABLE 3 Specific description of the selected EWs by SPA and CARS.

Methods No. EWs

CARS 32

919.24 930.88 934.2 935.86 959.13 969.11 975.75 1117.03

1130.33 1131.99 1143.63 1148.61 1150.28 1168.56 1175.21 1245.02

1286.57 1341.42 1377.98 1381.31 1382.97 1384.63 1391.28 1407.9

1409.56 1417.88 1421.2 1434.5 1574.11 1632.29 1635.61 1640.6

SPA 110

907.61 909.27 910.93 922.57 924.23 929.21 934.2 940.85

945.84 947.5 949.16 954.15 955.81 959.13 965.78 969.11

987.39 989.05 990.71 1002.35 1004.01 1005.67 1007.33 1012.32

1017.31 1018.97 1020.63 1025.62 1027.28 1032.27 1033.93 1035.59

1043.9 1048.89 1050.55 1058.86 1062.18 1063.85 1065.51 1078.8

1080.47 1092.1 1093.76 1095.43 1105.4 1108.72 1110.38 1113.71

1115.37 1118.7 1120.36 1128.67 1131.99 1138.64 1145.29 1151.94

1158.59 1188.5 1213.44 1215.1 1218.42 1228.39 1230.06 1240.03

1241.69 1245.02 1256.65 1283.24 1284.91 1311.5 1313.16 1328.12

1329.78 1333.11 1341.42 1346.4 1349.73 1361.36 1364.69 1366.35

1369.67 1376.32 1377.98 1384.63 1391.28 1407.9 1414.55 1419.54

1431.17 1432.83 1436.16 1437.82 1446.13 1487.68 1489.35 1491.01

1492.67 1495.99 1502.64 1504.3 1505.97 1509.29 1510.95 1584.09

1600.71 1628.96 1638.94 1643.92 1645.58 1648.91
fr
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FIGURE 6

The process of extracting EWs with CARS and SPA. (A) Number of preferred EWs with CARS; (B) The root mean square error of cross-validation
variation with CARS; (C) Regression coefficient path map with CARS; (D) Extraction of EWs with SPA.
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TABLE 4 Results of simplified classification models based on SWIR spectra.

Models EWs selection methods Number of EWs Parameters
Classification accuracy (%)

Training set Validation set

PLS-DA
CARS 32 LV: 7 86.1 87.9

SPA 110 LV: 9 89.2 90.9

RF
CARS 32 T: 50; L: 1 100.0 95.8

SPA 110 T: 50; L: 1 99.9 97.0

SVM

CARS 32
C:10000000.0,
gamma: 1e-06

97.6 84.7

SPA 110
C:10000.0,

gamma: 0.0001
98.4 98.1
F
rontiers in Plant Sc
ience
 11201
FIGURE 7

The confusion matrices of the simplified PLS-DA, SVM and RF models on the prediction set.
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wavelengths between 400.20 and 999.75 nm primarily reflect the color

and pigment information in the TZS. Hou et al. (2015) conducted an

analysis of the chemical compositions in P. heterophylla from different

origins using UPLC-Triple TOF-MS/MS. The study identified 21

distinct chemical components, including maltotriose, sucrose,

thyronine, inosine triphosphate, pseudostellarin A, pseudostellarin B,

pseudostellarin D, pseudostellarin F, heterophyllin A and sphinganine.

Compared with other origins, the levels of pseudostellarin D,

pseudostellarin E, pesudostellarin A, heterophyllin A, pseudostellarin

F, isobutyrylglycine in P. heterophylla from Fujian were higher. Sucrose,

ferulic acid, canthaxanthin, maltotriose, pseudostellarin D in P.

heterophylla from Guizhou were richer than those of other origins

(Sha et al., 2023). Hence, it is reasonable to hypothesize that spectral

differences resulting from variations in chemical composition, rather

than color and pigmentation information, may play a crucial role in

studying the traceability of the origin of Pseudostellaria heterophylla.

Notably, our work takes a novel approach by using hyperspectral

imaging (HSI) in conjunction with deep learning (DL) techniques to

assess the geographical origins of TZS. Wu et al. (2018) highlighted

the efficiency of using Raman spectroscopy combined with MSC-SG-

CARS-PLS-DA to discriminate P. heterophylla from different regions.

Similarly, Pan et al. (2020) demonstrated that NIR spectroscopy in

combination with Row-center-SG-CARS-PLS-DA could be effective

in distinguishing the P. heterophylla from different regions. Further to

this, this research conducted a comparison between two feature band

extraction algorithms, namely CARS and SPA. The results showed

that the SPA algorithm was preferable for extracting SWIR

information, which was highly correlated with the TZS origins

(Table 3 and Table 4). Furthermore, we compared the traditional

two-stage machine learning algorithms (PLS-DA, SVM, and RF) with

the end-to-end deep learning algorithm (DCNN). Our findings

demonstrated that both SVM and DCNN classifiers outperformed

PLS-DA and RF classifiers in terms of origin identification of TZS

(Table 2 and Figure 5). Several previous studies indicated that

nonlinear models, such as SVM, were superior to linear models in

solving the seed classifications (Qiu et al., 2018; Wakholi et al., 2018;
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Zhao et al., 2018). For the first time, our work further argued this on

geographic origin recognition in TZS.
4 Conclusion
In this study, the visible near-infrared (Vis/NIR) and short-

wave infrared (SWIR) hyperspectral information from different

origins of TZS samples were collected. By combining various

preprocessing algorithms, feature band extraction algorithms,

traditional two-stage machine learning, and end-to-end deep

learning classifiers, we developed fast and high-precision

identification methods to discriminate TZS origins. The specific

conclusions drawn from this study are as follows:
1) The model accuracy based on SWIR HSI for identifying the

geographical origins of TZS was higher compared to that

based on Vis/NIR HSI. The best model accuracy using Vis/

NIR HSI was 91.4%, while the optimal model accuracy

using SWIR HSI could reach up to 98.7%.

2) The SPA algorithm was suitable for extracting SWIR

information, which was highly correlated with the origins

of TZS. The corresponding FD-SPA-SVM model not only

reduced the number of bands by 77.2% but also improved

the model accuracy from 97.6% to 98.1% compared to the

full-band FD-SVM model.

3) Two sets of fast and high-precision methods were developed

to distinguish between different geographic origins of TZS.

The traditional two-stage machine learning classifier

achieves optimal performance by employing the SVM

model with FD pretreatment and the variable selection

method of SPA. In contrast, the end-to-end deep learning

classifier achieves optimal discrimination by solely applying

FD preprocessing combined with DCNN. The total

accuracies of the SWIR-FD-SPA-SVM model and the
FIGURE 8

Detection visualization of TZS samples from Guizhou (GZ), Jiangsu (JS), Anhui (AH) and Fujian (FJ) Provinces.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1342970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1342970

Fron
SWIR-FD-DCNN model for identifying TZS origins were

98.1% and 98.7%, respectively.
This work provides a potentially perfect tool for herbal

companies and market regulators to widely identify the origins of

TZS across various genetic backgrounds and quality grades.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding authors.

Author contributions

TZ: Conceptualization, Methodology, Supervision, Visualization,

Writing – original draft, Writing – review & editing. LL: Data curation,

Formal analysis, Writing – review & editing. YS: Data curation,

Writing – original draft. MY: Writing – review & editing. JL:

Writing – review & editing. JY: Writing – review & editing.

YL: Writing – review & editing. XS: Writing – review & editing.

ML: Writing – review & editing. XY: Writing – review & editing.

ZZ: Writing – review & editing. RZ: Writing – review & editing. YuS:

Funding acquisition, Supervision, Writing – review & editing. LG:

Funding acquisition, Supervision, Writing – review & editing.
tiers in Plant Science 13203
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was supported by the National Natural Science Foundation of China

(82373994 and 32371588), the China agriculture research system of

MOF and MARA (CARS-21), the Natural Science Foundation of

Fujian Province, China (2021J02024).
Conflict of interest

Authors YL and XS were employed by the company Huzhou

Wuxing Jinnong Ecological Agriculture Development Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Alchanatis, V., Schmilovitch, Z., and Meron, M. (2005). In-field assessment of single
leaf nitrogen status by spectral reflectance measurements. Precis. Agric. 6, 25–39. doi:
10.1007/s11119-005-0682-7

Barnes, R., Dhanoa, M. S., and Lister, S. J. (1989). Standard normal variate
transformation and de-trending of near-infrared diffuse reflectance spectra. Appl.
Spectrosc. 43, 772–777. doi: 10.1366/0003702894202201

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
A:1010933404324

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discovery 2, 121–167. doi: 10.1023/A:1009715923555

Delwiche, S. R., and Kim, M. S. (2000). Hyperspectral imaging for detection of scab in
wheat. Biol. Qual. Precis. Agric. II. 4203, 13–20. doi: 10.1117/12.411752

Dong, F., Hao, J., Luo, R., Zhang, Z., Wang, S., Wu, K., et al. (2022). Identification of
the proximate geographical origin of wolfberries by two-dimensional correlation
spectroscopy combined with deep learning. Comput. Electron. Agric. 198, 107027.
doi: 10.1016/j.compag.2022.107027

Fu, L., Feng, Y., Majeed, Y., Zhang, X., Zhang, J., Karkee, M., et al. (2018). Kiwifruit
detection in field images using Faster R-CNN with ZFNet. IFAC-PapersOnLine 51, 45–
50. doi: 10.1016/j.ifacol.2018.08.059

Hou, Y., Ma, Y., Zou, L., Liu, X., Liu, X., Luo, Y., et al. (2015). Difference of chemical
compositions in Pseudostellariae Radix from different origins by UPLC-Triple TOF–
MS/MS. J. Chin. Mass Spectrom. Soc 36, 359–366. doi: 10.7538/zpxb.youxian.2015.0019

Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. Int. Conf. Mach. Learn. 37, 448–456.
doi: 10.48550/arXiv.1502.03167

Jin, B., Zhang, C., Jia, L., Tang, Q., Gao, L., Zhao, G., et al. (2022). Identification of
rice seed varieties based on near-infrared hyperspectral imaging technology combined
with deep learning. ACS omega. 7 (6), 4735–4749. doi: 10.1021/acsomega.1c04102

Kumar, T. B., Prashar, D., Vaidya, G., Kumar, V., Kumar, S., and Sammy, F. (2022).
A novel model to detect and classify fresh and damaged fruits to reduce food waste
using a deep learning technique. J. Food Qual. 2022. doi: 10.1155/2022/4661108
Li, J., Zhen, W., Long, D., Ding, L., Gong, A., Xiao, C., et al. (2016). De novo
sequencing and assembly analysis of the Pseudostellaria heterophylla transcriptome.
PLoS One 11, e0164235. doi: 10.1371/journal.pone.0164235

Lin, H., Zhao, J., Chen, Q., Zhou, F., and Sun, L. (2011). Discrimination of Radix
Pseudostellariae according to geographical origins using NIR spectroscopy and support
vector data description. Spectrochim. Acta AMol. Biomol. Spectrosc. 79, 1381–1385. doi:
10.1016/j.saa.2011.04.072

Liu, Z., Jiang, J., Qiao, X., Qi, X., Pan, Y., and Pan, X. (2020). Using convolution
neural network and hyperspectral image to identify moldy peanut kernels. LWT 132,
109815. doi: 10.1016/j.lwt.2020.109815

Liu, C., Wang, Q., Lin, W., and Yu, C. (2022). Origins classification of egg with
different storage durations using FT-NIR: A characteristic wavelength selection
approach based on information entropy. Biosyst. Eng. 222, 82–92. doi: 10.1016/
j.biosystemseng.2022.07.016
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Determination of soluble solids
content of multiple varieties of
tomatoes by full transmission
visible-near
infrared spectroscopy
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Xuhai Yang1,3,4,5* and Qian Zhang1,3,4,5*

1College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2Intelligent
Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,
3Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery,
Shihezi, China, 4Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural
Affairs, Shihezi, China, 5Engineering Research Center for Production Mechanization of Oasis
Characteristic Cash Crop, Ministry of Education, Shihezi, China
Introduction: Soluble solids content (SSC) is a pivotal parameter for assessing tomato

quality. Traditional measurement methods are both destructive and time-consuming.

Methods: To enhance accuracy and efficiency in SSC assessment, this study

employs full transmission visible and near-infrared (Vis-NIR) spectroscopy and

multi-point spectral data collection techniques to quantitatively analyze SSC in

two tomato varieties (‘Provence’ and ‘Jingcai No.8’ tomatoes). Preprocessing of

the multi-point spectra is carried out using a weighted averaging approach,

aimed at noise reduction, signal-to-noise ratio improvement, and overall data

quality enhancement. Taking into account the potential influence of various

detection orientations and preprocessing methods on model outcomes, we

investigate the combination of partial least squares regression (PLSR) with two

orientations (O1 and O2) and two preprocessing techniques (Savitzky-Golay

smoothing (SG) and Standard Normal Variate transformation (SNV)) in the

development of SSC prediction models.

Results: The model achieved the best results in the O2 orientation and SNV

pretreatment as follows: ‘Provence’ tomato (Rp = 0.81, RMSEP = 0.69°Brix) and

‘Jingcai No.8’ tomatoes (Rp = 0.84, RMSEP = 0.64°Brix). To further optimize the

model, characteristic wavelength selection is introduced through Least Angle

Regression (LARS) with L1 and L2 regularization. Notably, when l=0.004, LARS-
L1 produces superior results (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°Brix;

‘Jingcai No.8’ tomato: Rp = 0.96, RMSEP = 0.33°Brix).

Discussion: This study underscores the effectiveness of full transmission Vis-NIR

spectroscopy in predicting SSC in different tomato varieties, offering a viable

method for accurate and swift SSC assessment in tomatoes.
KEYWORDS

tomato, soluble solids content, online detection, full transmission, quantitative
analysis model
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1 Introduction

Tomatoes, ubiquitous in global agricultural production,

exhibit noteworthy nutritional significance (Passam et al., 2007). As

an esteemed vegetable within the realm of human dietary practices,

tomatoes assume a pivotal role (Zhu et al., 2015). They bestow a

diverse complement of indispensable organic compounds, thus

exerting a multifaceted influence encompassing pigmentation

modulation, retardation of aging processes, lipid and blood

pressure reduction, safeguarding of prostatic health, as well as

reinforcement of gastric and hepatic functions (Perveen et al.,

2015; Youssef and Eissa, 2017; Salehi et al., 2019). By virtue of

their unique attributes, encompassing edibility, health-enhancing

properties, and therapeutic potential, tomatoes and their derivative

products occupy a prominent and indispensable position within the

global landscape of agricultural production and trade (Guan et al.,

2018; Ali et al., 2020). Soluble solids content (SSC) represents a

pivotal constituent of tomato flavor, holding the potential to

align closely with consumers’ perception of intrinsic quality

attributes in tomatoes (Ponce-Valadez et al., 2016). Nevertheless,

the conventional analytical methodologies employed for

quantifying this quality parameter are beset with challenges

related to protracted analysis durations, substantial costs, and

environmental contamination (Skolik et al., 2019). The imperative

for the tomato production and distribution industry, therefore,

resides in the development of expeditious, facile, cost-effective,

environmentally benign, and non-invasive techniques for batch

quality control assessment, with the ability to extend precision

down to the level of individual fruits (Najjar and Abu-Khalaf, 2021).

In the past few decades, many non-destructive testing

techniques have been used to detect tomato SSC (Mei and Li,

2023). Gómez et al. (2008) used PEN 2 electronic nose (E-nose) to

detect tomatoes with different storage time. The correlation between

the measured value and the predicted value showed that the effect of

using E-nose sensor signal to predict tomato SSC was poor.

Nikbakht et al. (2011) used raman spectroscopy to determine the

SSC of tomato. The root mean square error of predictions (RMSEP)

of SSC measured by partial least squares regression (PLSR) and

principal component regression (PCR) models were 0.30 and 0.38,

respectively. In order to explore the possibility of mid-infrared

spectroscopy for tomato quality detection, Ścibisz et al. (2011) used

the attenuated total reflection accessory of the fourier transform

spectrometer to scan the tomato samples in the wavenumber region

of 4000 to 400 cm-1. The PLSR model has a reasonable ability to

estimate the SSC of tomatoes, with a high determination coefficient

(0.98) and a small prediction error (3%). Mollazade et al. (2015)

used backscattering and multispectral imaging techniques to predict

the quality factors of tomato fruit during storage. The correlation

coefficients between the prediction results of SSC correction model

established by artificial neural network and the reference

measurement results of multispectral and backscatter imaging are

0.736 and 0.561, respectively. Rahman et al. (2017) established a

non-destructive method for the determination of SSC in intact

tomatoes using hyperspectral imaging technology in the range of

1000-1550 nm. The PLSR model based on smoothing pretreatment
Frontiers in Plant Science 02206
spectrum has a good prediction effect on SSC of intact tomatoes,

with a correlation coefficient of prediction (Rp) of 0.74 and a

RMSEP of 0.33%.

While the aforementioned methods enable non-destructive

testing, their inherent time-consuming nature and elevated cost

factors constrain their utility when catering to the rigorous

industrial testing requisites characteristic of large-scale tomato

production. In stark contrast, the visible and near-infrared (Vis-

NIR) spectroscopy technique emerges as an expedient solution (a

non-destructive, expeditious, real-time, and cost-effective

approach) to effectuate internal quality appraisal within the

domain of agricultural product evaluation. Torres et al. (2015)

used NIR reflectance spectroscopy to determine the SSC of Raf

tomato based on modified PLSR (coefficient of determination for

cross-validation is 0.75; standard error of prediction is 0.65%).

Acharya et al. (2017) conducted a practical evaluation in the context

of the non-destructive determination of the dry matter content of

intact tomatoes (an indicator of the final mature SSC) using a

handheld visible-short-wave NIR spectrophotometer. By using

populations with different harvest dates or growth conditions for

calibration and prediction, the dry matter prediction coefficient of

determination (R2) is 0.86-0.92, and the deviation is 0.14-0.03%. At

different maturity stages of specific tomato varieties, Zhang et al.

(2021) reported the acceptable prediction results of SSC evaluation

by the self-developed Vis-NIR portable system (Rp = 0.70,

RMSEP = 0.26%) and NIR integrating sphere system (Rp = 0.82,

RMSEP = 0.21%). Aiming at the characteristics of tomato internal

heterogeneous structure, in order to obtain more internal

information of tomato as much as possible, Wang et al. (2018)

built a tomato Vis-NIR diffuse transmission detection system to

detect the SSC of cherry tomato, showing good prediction results

(Rp = 0.93, RMSEP = 0.36%). However, the typical Vis-NIR

spectroscopy is limited to a small area of measurement, and the

spatial information of the sample obtained by single point

measurement is limited. Liu et al. (2019) developed a dynamic

online sorting system based on Vis-NIR diffuse transmission, and

the sorting accuracy of SSC reached 91%. Yang Y. et al. (2022) based

on the Vis-NIR diffuse transmission system, optimized the

detection settings such as light path and light intensity, and

compensated the model according to the height and weight

physiological traits of tomato samples, and achieved good results

(Rp = 0.91, RMSEP = 0.17%). The limitations of traditional single-

point Vis-NIR measurement technology can be overcome by using

on-line full transmission measurement and continuous data

acquisition. Compared with the diffuse transmission mode, the

full transmission mode and tomato multi-point spectral

measurement acquisition can achieve a comprehensive

characterization of the entire tomato information.

The main purpose of this study is to determine the best model

for SSC prediction of tomato based on full transmission Vis-NIR

spectroscopy detection technology. The specific purposes are as

follows: (1) Collecting Vis-NIR spectral data of all tomato samples

using full transmission Vis-NIR online detection equipment; (2)

Processing continuous multi-point spectral data using the weighted

average method; (3) Establishing a PLSR model based on full-
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spectrum data, comparing the model’s performance, and selecting

the optimal preprocessing method and the best detection

orientation; (4) Applying the least angle regression method to

extract characteristic wavelengths in tomato SSC detection, and

determining the optimal prediction model by combining prediction

accuracy and stability.
2 Materials and methods

2.1 Experimental samples

In this study, we focused on two prominent tomato varieties,

namely ‘Provence’ and ‘Jingcai No.8’ tomatoes, both of which enjoy

substantial popularity in China. The ‘Provence’ tomato exhibits a thin

skin, with succulent flesh, and attains a rich ruddy hue when reaching

maturity. On the other hand, ‘Jingcai No.8’ tomato often referred to

as strawberry tomato, features an orange-red or red peel with green

shoulder, and its skin possesses a slight thickness. A comprehensive

set of tomato samples encompassing various stages of maturity was

meticulously collected to bolster the robustness of our predictive

model for tomato SSC. These tomatoes were harvested from a farm

located in the Fangshan District of Beijing, China. Tomato samples

were collected from three maturity stages of half-ripe, hard-ripe and

full-ripe, with a ratio of 1: 1: 1. The representative tomato samples

obtained during this collection process are visually depicted in

Figure 1. Moreover, in order to mitigate potential temperature-

induced fluctuations that could influence the precision of our

prediction model, the harvested tomatoes were transported to our

laboratory facility and placed for a 24-hour period at a temperature of

20°C, with a relative humidity level of 60%, prior to the acquisition of

spectral and SSC data (Yang X. et al., 2022).

To ensure the rigor and objectivity of our predictive model, we

employed a systematic approach to partition all collected samples
Frontiers in Plant Science 03207
into two distinct subsets: a calibration set and a prediction set. This

division was executed following a consistent ratio of 7:3, wherein

70% of the samples were allocated to the calibration set, responsible

for the construction of the prediction model, while the remaining

30% constituted the prediction set, serving as an independent

dataset for the assessment of model performance. And in order to

mitigate the influence of random variability in sample partitioning

and to provide a robust evaluation of our predictive model’s efficacy,

we undertook a systematic randomization process. Specifically, we

repeated the sample division procedure 100 times, each time

generating a new partition of samples. Subsequently, we

constructed a predictive model based on the results of each of

these 100 divisions. The culmination of these 100 modeling

outcomes was then leveraged to derive an average, which serves

as the foundational basis for evaluating the overall performance of

our predictive model (Tian et al., 2022). This approach ensures a

comprehensive and reliable assessment of the model’s

predictive capabilities.
2.2 Full transmission spectrum and real
SSC acquisition

The full transmission Vis-NIR detection system, developed by

the Intelligent Equipment Research Center of Beijing Academy of

Agriculture and Forestry Sciences (Beijing, China), was used to

acquire spectral data for all samples. This system, as depicted in

Figure 2A, primarily comprises a highly sensitive spectrometer

covering a wavelength range from 560 to 1072 nm and offering a

spectral resolution of 0.5 nm. Furthermore, it is equipped with a

conveyor platform featuring adjustable speed, a position sensor, and

an illumination device consisting of a reflective halogen lamp (FUJI,

JCR, 150W, 15V, Tokyo, Japan) with a focusing lens. The system is

fortified with a shielding mechanism to prevent stray light
FIGURE 1

Tomato samples and cross sections.
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interference and is under the control of a computer-based system.

Both the illumination device and the spectrometer are positioned

on opposite sides of the conveyor belt.

To assess the influence of spectral measurement orientation on

the accuracy of online SSC detection in tomatoes, spectral data for

all tomato samples were collected in two orientations known as O1

and O2. In the O1 orientation, the tested tomato’s stem-calyx axis

was oriented perpendicular to the conveyor belt, with the stem

facing upward. The sample received illumination from a halogen

lamp at the equatorial position and was detected by the

spectrometer on the opposite side. Conversely, in the O2

orientation, the stem-calyx axis of the tested tomato was parallel

to the conveyor belt, with the stem directed towards the

spectrometer. Schematic representations of these two detection

orientations can be seen in Figure 2B. During each spectral

measurement, the tomato sample was initially positioned on a

fruit tray and moved at a consistent speed of 0.8 m/s. After the

tomato sample passes through the sensor and the specified delay

time, the spectrometer (integration time is 5ms) begins to

continuously collect the spectral signals at each position on the

sample. The multi-point spectra of each sample are roughly:

‘Provence’ tomato: 17-31 spectral curves; ‘Jingcai No.8’ tomato:

20-29 spectral curves.

Tomato SSC determination reference NY/T 2637-2014, using

refractometer method, measuring instrument for digital Abbe

refractometer. SSC measurements were performed immediately

using the traditional method of destruction. Each complete

tomato sample was first cut into pieces and squeezed into

tomato juice in a wall-breaking machine. Then filter the tomato

juice with gauze and squeeze into the beaker. After full shaking,

the tomato juice was dropped on a hand-held digital

refractometer, and the SSC value was manually recorded. Each

measurement was repeated three times, and the average value was

taken as the experimental value.
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2.3 Data pre-processing

2.3.1 Multi-point spectrum weighted average
When the online full transmission mode collects the spectral

signal of the sample, the incomplete signal is collected at both ends,

so they are first eliminated before further data processing. The use

of a weighting method signifies an effective strategy for spectral

analysis (Somers et al., 2011; Zhu et al., 2019). In this study, distinct

weights are assigned to individual data acquisition locations based

on either the signal-to-noise ratio (SNR) (quality assessment

metric). The spectrometer is placed in an environment without

the sample to be tested, and the spectral signal in the environment is

recorded to obtain the background. The operational process can be

outlined as follows:

Firstly, an evaluation of the SNR is performed, enabling the

quantitative characterization of SNR for each data acquisition point.

SNR serves as a quantitative metric for signal quality assessment.

Following this, weight factors are calculated, with each data

acquisition point being assigned a weight based on the SNR, also

referred to as the quality assessment metric. This study employs an

inverse relationship where the weight factor increases with a higher

quality assessment metric. In conclusion, a weighted average is

carried out, involving the multiplication of spectral data associated

with each acquisition point by its respective weight factor. This

shows the derivation process of the final effective spectral

representation. Through the application of the weighting method,

high-quality spectral data significantly impacts the final effective

spectrum, while the influence of low-quality spectral data

is minimized.

2.3.2 Pretreatment of spectral data
To improve the correlation between tomato transmittance

spectra and SSC and reduce the impact of unwanted signals and

noise, it is customary to conduct preprocessing on the raw spectra.
A

B

FIGURE 2

(A) Online full transmission spectroscopy and (B) detection orientations.
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Among the common preprocessing methods, the application of

Savitzky-Golay smoothing (SG) is instrumental in making spectral

curves more conducive to the recognition of features and

localization of peaks, thus enhancing precision (Zhao et al., 2022).

Furthermore, the use of standard normal variable transformation

(SNV) serves to emphasize the positions of spectral peaks,

streamlining the analysis of both spectral shape and peak

locations (Bázár et al., 2016). In this study’s context, two specific

preprocessing techniques, a 13-point SG and SNV, have been

implemented to refine the spectral data.
2.4 Prediction model and evaluation

An effective method for multivariate data analysis frequently

employed in spectral analysis is PLSR. In this research, we

constructed a PLSR model to delineate the quantitative relationship

between the spectral matrix (X) and the matrix of SSC values in

tomatoes (Y). To evaluate the mathematical approach’s performance,

we utilized metrics such as the calibration correlation coefficient (Rc),

root mean square error of calibration (RMSEC), prediction correlation

coefficient (Rp), and root mean square error of prediction (RMSEP).

The specific calculation formula can be seen in Equations 1, 2. A

robust model demonstrates correlation coefficients approaching 1 and

lower root mean square error values (Li L. et al., 2022; Tian et al.,

2023). In the process of model development, the optimal number of

latent variables (LVs) is a critical consideration to prevent underfitting

or overfitting issues (Diniz et al., 2015). To address this concern, we

adopted a 5-fold cross-validation approach to determine the ideal

number of LVs based on the minimum root mean square error of

cross-validation (Li et al., 2023). The model was constructed using

Matlab 2022b (Mathworks, Natick, MA).

RC , RP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

n
i=1(yi − by i)

2

on
i=1(yi − yi)

2

s
(1)

RMSEC , RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − by i)

2
s

(2)

In this context, yi and ŷ i denote the measured value and the

predicted value for the ith tomato sample within either

the calibration or prediction dataset. Additionally, y represents

the mean value of the measured values for samples within the

calibration or prediction dataset, and n signifies the total number of

samples in either the calibration or prediction dataset.
2.5 Wavelength selection methods

Within the domain of full spectrum modeling, a total of

2047 wavelengths are present, including a substantial number

of irrelevant and collinear variables. These extraneous

wavelengths, in addition to complicating the model, have the

potential to introduce interference, which could result in a

reduction in model accuracy (Luo et al., 2022). Thus, to address
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this, the least angle regression (LARS) technique was

implemented for the purpose of identifying and selecting

pertinent wavelengths.

Efron et al. (2004) introduced the LARS algorithm, a method

that functions as a feature selection technique applicable to both

linear regression and sparse regression. Its primary aim is to

pinpoint features with strong correlations to the response

variables (SSC) and to retain only these essential features within

the model. This approach effectively simplifies the model, thus

enhancing its capacity for generalization. LARS proceeds by

incrementally integrating features and moving along the gradient

direction of these features in each step. What sets LARS apart is its

utilization of the regression coefficient path, allowing the

simultaneous addition of multiple features. At the core of LARS is

the consistent alignment with the prevailing gradient direction at

each step, coupled with the allocation of suitable step sizes between

features. This approach enables LARS to promptly and reliably

identify characteristic wavelengths highly correlated with SSC.

Nonetheless, LARS may face efficiency challenges when handling

extensive feature sets. To tackle this limitation, the present study

introduces regularization terms in the form of the L1 norm (Lasso

penalty) and L2 norm (Ridge penalty). The L1 norm penalty

streamlines feature selection by reducing coefficients of irrelevant

features to zero, resulting in the construction of a sparse model. This

feature is particularly advantageous when dealing with high-

dimensional data and problems involving the selection of

essential wavelengths for SSC analysis. Conversely, the L2 norm

penalty trims model parameters to prevent overfitting and enhance

model generalization. Differing from L1 regularization, L2

regularization refrains from entirely zeroing out parameters,

offering controlled adjustment of model complexity. This feature

proves beneficial in addressing issues related to collinearity and

augmenting model stability.

In this study, the specific regularization term is denoted by l. A
range of l values is systematically selected, typically starting with a

smaller value and gradually increasing it. Model performance is

monitored, and an appropriate l value is selected accordingly.

Characteristic wavelength selection was carried out using Matlab

2022b (Mathworks, Natick, MA).
3 Results and discussion

3.1 SSC values of all samples

In this experiment, tomato samples with different maturity were

collected to establish SSC prediction model. The SSC values of all

samples measured are shown in Table 1. The SSC range of ‘Provence’

tomato is 3.8-8.7°Brix, and that of ‘Jingcai No.8’ tomato is 4.5-9.8°

Brix. The standard deviations (SD) were 1.1 and 1.2°Brix,

respectively. SSC has a wide range of distribution. Combined with

the characteristics of different maturity samples, a more

comprehensive and accurate SSC prediction model can be

established. This method can enhance the robustness of the model

and improve the accuracy of the prediction results (Li Y. et al., 2022).
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At the same time, it can also better cope with the different maturity of

tomato samples that may occur in practical applications.
3.2 Analysis of tomato spectral feature

Figure 3A shows that the multi-point spectral curves collected

by each sample have problems such as low SNR and intensity

supersaturation due to the acquisition method of online full

transmission measurement, which may be caused by the texture

color characteristics of tomatoes and the online acquisition

method of spectrum. According to the spectral contribution of

different parts, we can see the curve shown in Figure 3B. After the

weighted average method, the noise in the data is effectively

reduced, the SNR is improved, and the characteristic peak is

enhanced, which is more conducive to the establishment of the

subsequent prediction model. In Figure 3C, we can observe that

the spectral curve characteristics of the same variety in different

directions are basically similar. The main difference is the

intensity, which may be due to the influence of the internal

cavity structure of the sample on the propagation light path.

Because the optical path of O2 orientation is simpler, the optical

path distance is shorter, and the flesh tissue is less penetrated, the

spectral curves of both varieties show that the intensity of O2

orientation is higher than that of O1.
3.3 Prediction of tomato SSC with
full spectra

Table 2 presents the outcomes derived from PLSR modeling

applied to spectral data with the utilization of diverse preprocessing

techniques. Notably, whether considering the ‘Provence’ tomato or

‘Jingcai No.8’ tomato, the results consistently manifest superior O2

performance as opposed to O1. This intriguing phenomenon is

likely attributed to the inherent simplicity of the optical propagation

pathway or the shortened propagation distance in the O2 direction.

Conversely, the trajectory of incident light in the O1 direction

necessitates traversal through discrete cavities, often yielding a more

intricate optical pathway and extended propagation distances. In

this study, the application of the SG method yields results

marginally less favorable than the unprocessed data. This

discrepancy could be ascribed to the potential obfuscation of

essential spectral features by the SG method. Enhanced results are

attainable through the adoption of preprocessing methodologies

such as SNV. SNV preprocessing methods adeptly ameliorate

scattering influences within the spectra, thereby endowing the
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data with increased stability, consistency, and diminished

variability, consequently yielding a positive influence on modeling

and quantitative analytical outcomes. The findings indicate that,

subsequent to optimal preprocessing, the samples exhibit Rp = 0.81,

RMSEP = 0.69°Brix (‘Provence’ tomato) and Rp = 0.84, RMSEP =

0.64°Brix ( ‘Jingcai No.8 ’ tomato). Obviously, the SNV

preprocessing process magnifies the spectral attributes, making

the spectrum clearer, more consistent and more prominent,

thereby improving the quality of the spectral data set. In

summary, this study established a robust PLSR model for SSC

prediction. The model is founded on the determination of the

optimal detection orientation (O2) in synergy with the

implementation of the most effective preprocessing method (SNV).
3.4 Determination of the optimal model

While the full-spectrum PLSR model can effectively predict SSC

quantitatively, most full-spectrum models exhibit instability due to

notable disparities between Rc and Rp. Given that an excessive

number of spectral variables employed in modeling can lead to

overfitting, this study implemented characteristic wavelength

selection to optimize the model. Through the selection of

wavelengths, superfluous features are reduced, rendering the

model more concise and efficient. Since O2 represents the optimal

detection orientation, and SNV serves as the most effective

preprocessing method, variable selection was exclusively based on

the spectral data acquired in the O2 orientation and after

preprocessing using SNV.

During the deployment of the LARS method for characteristic

wavelength selection, initialization is initiated at the outset. The

model begins by not selecting any characteristic wavelengths, with

all coefficients set to zero. Subsequently, in each step, the

system identifies the characteristic wavelength displaying the

highest correlation with SSC and calculates the absolute value of

this correlation. The selection of characteristic wavelengths follows

a path along the minimum angle. Then, the coefficients are

updated, with the coefficient of the selected characteristic

wavelength gradually increasing until its correlation with another

characteristic wavelength equals it. The regularization parameter l
is then progressively adjusted to achieve a balance between

characteristic wavelength selection and model sparsity. Ultimately,

the steps following the initializations are reiterated until the

selection outcome converges.

A series of selected l values and the corresponding Rp

relationship are shown in Figure 4. It can be seen that LARS-L1

and LARS-L2 are significantly different in the selection range of l,
TABLE 1 SSC values (°Brix) of tomato samples.

Variety Range No. of samples Mean SD

Provence 3.8-8.7 92 5.8 1.1

Jingcai NO.8 4.5-9.8 96 7.4 1.2
The SSC values (°Brix) were measured by refractometer.
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TABLE 2 Prediction results of SSC of two varieties of tomatoes based on PLSR model established using full-spectrum data combined with different
detection orientations and preprocessing methods.

Varieties Orientations Methods LVs Rc RMSEC Rp RMSEP

Provence O1 RAW 11 0.91 0.44 0.66 0.89

SG 11 0.88 0.51 0.65 0.88

SNV 9 0.95 0.31 0.70 0.84

O2 RAW 10 0.89 0.50 0.73 0.82

SG 11 0.88 0.52 0.74 0.80

SNV 9 0.94 0.36 0.81 0.69

(Continued)
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FIGURE 3

Spectral curve from (A) multi-point raw data, (B) weighted average and (C) two detection orientations.
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which may be due to the encouragement of L1 regularization to

sparsity: L1 regularization encourages sparsity by punishing the

absolute value of the coefficient, that is, encouraging the model to

reduce the coefficient of most features to zero, so as to select the

most important features, which usually requires a relatively small l
to achieve. L2 regularization encourages smoothness: L2

regularization reduces the magnitude of the coefficients by

penalizing the square of the coefficients, thereby encouraging the

coefficients of the feature to be evenly distributed, but it does not

compress the coefficients to zero. Therefore, in order to achieve an
Frontiers in Plant Science 08212
effective L2 regularization effect, a relatively large l is usually

required. Although there are some fluctuations in the model Rp

results obtained under different l values, the changes are also

around 0.01-0.03, and the results are relatively good (Rp > 0.90).

In the prediction model results of LARS-L1 method, the Rp of

‘Provence’ tomato and ‘Jingcai No.8’ tomato were both above 0.93.

When the regularization parameter l = 0.004, the effect was the best

(‘Provence’ tomato: Rc = 0.98, RMSEC = 0.23°Brix, Rp = 0.95,

RMSEP = 0.35°Brix; ‘Jingcai No.8’ tomato: Rc = 0.98, RMSEC =

0.20°Brix, Rp = 0.96, RMSEP = 0.33°Brix). L1 regularization tends
TABLE 2 Continued

Varieties Orientations Methods LVs Rc RMSEC Rp RMSEP

Jingcai NO.8 O1 RAW 9 0.94 0.39 0.62 1.04

SG 11 0.89 0.53 0.62 1.10

SNV 10 0.98 0.25 0.79 0.73

O2 RAW 10 0.91 0.47 0.74 0.81

SG 10 0.88 0.55 0.74 0.81

SNV 9 0.96 0.31 0.84 0.64
fro
FIGURE 4

The process of Rp changing with l in the process of characteristic wavelength selection.
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to generate sparse solutions, so that some weights are zero, and a

small number of characteristic wavelengths that have a significant

impact on SSC prediction can be selected to filter out wavelengths

that are not important for prediction. The best performance of the

LARS-L1 method is due to its sparseness of L1 regularization and

better capture of the correlation between wavelength and SSC.

LARS-L2 obtained the best effect of ‘Provence’ tomato at l = 0.1

(Rc = 0.97, RMSEC = 0.26°Brix, Rp = 0.93, RMSEP = 0.42°Brix).

‘Jingcai No.8’ tomato achieved the best results at l = 0.9 (Rc = 0.97,

RMSEC = 0.28°Brix, Rp = 0.93, RMSEP = 0.45°Brix). The penalty of

L2 regularization on feature weights is balanced, and the weight of

ownership is relatively evenly reduced without deleting some

features too much. When there are some relatively weak

wavelengths in the data that still contribute to the prediction, L2

regularization preserves these wavelengths. This may be the reason

that the performance of LARS-L2 is slightly lower than that of

LARS-L1. The LARS-L1 and LARS-L2 methods have less influence
Frontiers in Plant Science 09213
on the correlation of features because they constrain the feature

weights through regularization and exhibit a degree of stability.

The best results of the two characteristic wavelength selection

methods for the two varieties were placed in Table 3.

In practical applications, aside from predictive accuracy, model

stability is also a crucial consideration. Figure 5 illustrates the error

bar chart for the prediction results of SSC for two tomato varieties

based on 100 modeling iterations, incorporating the optimal feature

wavelength selection from two methods. Each data point in the

figure is associated with an error bar, and the central mark denotes

the mean value, reflecting the data’s central tendency. These error

bars signify the data’s dispersion or uncertainty. It is evident that the

results of both methods align with the trends depicted in Figure 4.

The LARS-L1 method exhibits the highest mean Rp value, consistent

with the central tendency of the data, and features shorter error bars,

indicative of lower dispersion. Therefore, overall, the model

demonstrates a heightened level of stability.
TABLE 3 SSC prediction results obtained by characteristic wavelength PLSR models.

Varieties Wavelength selection methods l LVs No. of variables Rc RMSEC Rp RMSEP

Provence LARS-L1 0.004 9 29 0.98 0.23 0.95 0.35

LARS-L2 0.1 10 53 0.97 0.26 0.93 0.42

Jingcai NO.8 LARS-L1 0.004 9 63 0.98 0.20 0.96 0.33

LARS-L2 0.9 11 45 0.97 0.28 0.93 0.45
fro
0.94735 0.92523 0.96145 0.93018
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FIGURE 5

The error bar graph of 100 iterations under optimal l.
ntiersin.org

https://doi.org/10.3389/fpls.2024.1324753
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1324753
4 Conclusions

In this study, the SSC of tomato was successfully determined using

the full transmission Vis-NIR spectroscopy online detection equipment.

The results show that the weighted average method can improve the

spectral quality of multi-point spectral data. The prediction

performance of O2 is better than that of O1 in the detection

orientation, and the prediction performance of the full-spectrum

PLSR model constructed after SNV pretreatment is significantly

improved. For the samples in the prediction set, the results of the two

varieties of tomatoes were ‘Provence’ tomato: Rp = 0.81, RMSEP = 0.69°

Brix; ‘Jingcai No.8’ tomato: Rp = 0.84, RMSEP = 0.64°Brix. In addition,

in order to reduce the number of variables involved in modeling, the

LARS method combined with L1 and L2 regularization is used to select

the characteristic wavelengths to construct the PLSR model. The results

show that the prediction accuracy of the characteristic wavelength

selection model is better than that of the full spectrum model. When

l was set to 0.004, the characteristic wavelengths selected by the LARS-

L1method achieved the best results on the SSC predictionmodels of the

two varieties of tomatoes (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°

Brix; ‘Jingcai No.8’ tomato: Rp = 0.96, RMSEP = 0.33°Brix). Under the

condition of optimal l, 100 modeling calculations were carried out to

further verify the stability of the model. Finally, O2-SNV-LARS-L1-

PLSR was determined as the best model for quantitative detection of

tomato SSC, and it showed that this method combined with full

transmission Vis-NIR spectroscopy had the potential for non-

destructive detection of SSC in tomato.
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The maturity of kiwifruit is widely gauged by its soluble solids content (SSC), with

accurate assessment being essential to guarantee the fruit’s quality. Hyperspectral

imaging offers a non-destructive alternative to traditional destructive methods for

SSC evaluation, though its efficacy is often hindered by the redundancy and

external disturbances of spectral images. This study aims to enhance the

accuracy of SSC predictions by employing feature engineering to meticulously

select optimal spectral features and mitigate disturbance effects. We conducted a

comprehensive investigation of four spectral pre-processing and nine spectral

feature selection methods, as components of feature engineering, to determine

their influence on the performance of a linear regression model based on ordinary

least squares (OLS). Additionally, the stacking generalization technique was

employed to amalgamate the strengths of the two most effective models

derived from feature engineering. Our findings demonstrate a considerable

improvement in SSC prediction accuracy post feature engineering. The most

effective model, when considering both feature engineering and stacking

generalization, achieved an RMSEp of 0.721, a MAPEp of 0.046, and an RPDp of

1.394 in the prediction set. The study confirms that feature engineering, especially

the careful selection of spectral features, and the stacking generalization technique

are instrumental in bolstering SSC prediction in kiwifruit. This advancement

enhances the application of hyperspectral imaging for quality assessment,

offering benefits that extend across the agricultural industry.
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kiwifruit, soluble solids content, feature engineering, stacking generalization, spectral imaging
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1 Introduction

Kiwifruit (Actinidia deliciosa) is a popular fruit known for its

unique flavor and nutritional benefits. As a typical climacteric fruit, it

continues ripening even after being harvested. This post-harvest

ripening process makes kiwifruit highly perishable and requires

careful handling and storage to maintain its quality. The

assessment of its quality and maturity commonly relies on the

measurement of soluble solids content (SSC). On the one hand,

SSC serves as an indicator of the sugar content in kiwifruit, for sugars

constituting approximately 81% of the total SSC (Tian et al., 2022).

On the other hand, SSC exhibits a consistent pattern of variation over

time in storage. Throughout the storage period, as time goes by, the

starch and pectin present in the kiwifruit undergo hydrolysis, leading

to a gradual increase in SSC. Therefore, monitoring the SSC of

kiwifruit is effective for evaluating its quality and maturity. However,

the determination of SSC, being an internal attribute of fruit, often

involves destructive techniques like refractometry, which requires the

extraction of juice or pulp from fruit. These methods are time-

consuming, labor-intensive and cause damage to the fruit, preventing

the repeated utilization of samples. Consequently, there is an

increasing demand for non-destructive and expeditious techniques

that can precisely estimate the SSC of kiwifruit.

Hyperspectral imaging has emerged as a promising non-

destructive method for assessing the quality of various agricultural

products (Yao et al., 2013; Huang et al., 2018). This technique

enables the measurement of spectral reflectance across a broad

range of wavelengths, providing detailed insights into the chemical

and physical properties of samples. In the case of kiwifruit, the

visible near-infrared (Vis-NIR) spectral range contains valuable

information related to the absorption of O–H, N–H, and C–H

vibrations (Guo et al., 2017; Xu et al., 2023). These vibrational

modes facilitate the identification and quantification of key

chemical constituents associated with SSC, such as sugars and

other organic compounds. Through the employment of regression

models, relevant information can be extracted from spectral

reflectance, leading to the establishment of a strong relationship

between the observed spectral features and SSC measurements.

Once the regression model is constructed, predicting SSC

becomes a straightforward process, allowing for the non-

destructive estimation of SSC values (Nicolaï et al., 2007).

Various well-designed regression models, such as partial least

squares regression (PLSR) (Lee et al., 2022), support vector machine

regression (SVR) (Ma et al., 2018), and artificial neural network

(ANN) (Pullanagari and Li, 2021) have been developed to establish

the relationship between observed spectral features and SSC

measurements. However, the high-dimensional nature of spectral

features can pose challenges to regression models. These features

often contain redundant information and are influenced by various

disturbances (e.g., sample differences, environmental noise, and

baseline drift). Excessive redundant information for regression

models not only results in prolonged hardware and software
Frontiers in Plant Science 02217
runtime but also compromises the regression performance,

leading to unreliable estimations of SSC values (Xiaobo et al., 2010).

Unlike previous research that focuses on refining regression or

machine learning models, our study intentionally emphasizes the

importance of eliminating redundancies and disturbances in the

initial phase of model development to enhance SSC prediction for

kiwifruit—a crucial yet frequently underestimated step in

existing studies.

The quality and suitability of input features significantly

influence the performance of regression models. Carefully selected

features provide more relevant information, resulting in simpler

models and improved results. Conversely, the inclusion of irrelevant

features can negatively impact the model’s ability to generalize. In

contrast to complex models, which may present challenges in

interpretation and fine-tuning, simpler models with more effective

features tend to yield more reliable results (Xiaobo et al., 2010).

Hence, it is essential to pay meticulous attention to the pre-

processing and selection of these features. These tasks, involving

data converting and filtering before model building, are collectively

referred to as feature engineering. In general, feature engineering

involves spectral pre-processing and selection to effectively mitigate

the impact of various disturbances, eliminate irrelevant features,

and identify the most informative ones. Its ultimate goal is to

generate enhanced features that are well-suited for integration into

regression models. By prioritizing the use of more effective features

and employing simple models, we can strike a balance between

model complexity and performance, thus leading to more accurate

and interpretable regression results.

In this study, we focus on investigating the effectiveness of

feature engineering in enhancing the performance of SSC

prediction in kiwifruit using hyperspectral imaging. To achieve

this goal, we employed a linear regression model based on ordinary

least squares (OLS) due to its simplicity and interpretability.

Subsequently, we conducted a systematic evaluation and

comparison of the variations in the regression performance under

different combinations of four spectral pre-processing methods and

nine spectral feature selection methods (details will be provided in

section 2.3~2.5). Through this comprehensive analysis, our study

not only demonstrates the positive impact of feature engineering

but also identifies the optimal condition that yields the best

regression performance. Additionally, we introduce the stacking

generalization technique to integrate the strengths of two best-

performing models which are achieved through above feature

engineering, thus effectively addressing overfitting issues, and

further improving the regression performance. This study

highlights the potential of feature engineering and the stacking

generalization technique in SSC prediction for kiwifruit, providing

practical insights for quality assessment in the kiwifruit industry.

The application of these techniques holds promise for more efficient

and reliable SSC prediction, benefiting the kiwifruit industry and

potentially extending to other agricultural produce quality

assessment domains.
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2 Materials and methods

2.1 Preparation of kiwifruit samples

In June 2023, a substantial number of kiwifruit samples were

obtained from an agricultural plantation situated in Shaanxi

Province, China. Following the removal of unqualified samples

such as unripe, overripe, or mechanically damaged ones, a total of

116 kiwifruit samples with intact skin were selected for utilization in

this experiment.

Prior to conducting the spectral acquisition step, a meticulous

wiping procedure was carried out using soft tissue paper to

eliminate any lint present on the surface of kiwifruit samples.

This step was taken to mitigate the potential influence of lint on

the spectral acquisition step.

Immediately following the spectral acquisition step, the sample

preparation for the SSC measurement was conducted under the

guidelines of the NY/T 2637-2014 standard. This sample

preparation entails peeling the samples along their equators,

removing the pulp, and extracting the juice through pressing. The

kiwifruit juice will be introduced into the detection tank of one

refractometer for subsequent SSC measurement.
2.2 Spectral acquisition and
SSC measurement

A custom-built hyperspectral imaging system is specifically

developed to capture spectral images of the kiwifruit samples,

consisting of four main components: a spectral imaging camera

(Specim FX10, Konica Minolta, Inc., Japan), a motorized

positioning sample platform, two halogen area light sources, and a

computer installed with suitable data acquisition software (see

Figure 1). Among them, the Specim FX10 spectral imaging camera

provides a spectral resolution of 400 ~ 1000 nm (due to the low

signal-to-noise ratio in the lower wavelength regions, only data from

wavelengths above 450 nmwere exclusively utilized in this study) and
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works in a push-broom mode, thus necessitating a motorized

positioning sample platform. To ensure an accurate aspect ratio in

the captured spectral images, it is crucial to carefully adjust the

advancing speed of the platform and the exposure time of the spectral

imaging camera to match each other. The two light sources were

positioned symmetrically to uniformly illuminate the camera’s field

of view. This arrangement aims to ensure consistent spectral response

across different positions within the imaged area. For stable and

accurate measurements, a one-hour warm-up and black and white

calibration procedure should be performed before the initial use of

the system. Besides, the whole procedure of spectral acquisition was

performed in a dark room to avoid the interference of stray light.

A digital refractometer with a resolution of 0.1% Brix (PAL-1,

ATAGO Inc., Japan) was utilized to measure the SSC of kiwifruit

samples. First, the prepared kiwifruit juice was carefully dropped

into the detection tank. Then, the SSC physicochemical values of

SSC were recorded once the display data stabilized. It is worth

noting that before measuring the SSC of each sample, it is essential

to calibrate the refractometer reading by setting it to zero using

distilled water. This calibration step was crucial to ensure the

accuracy and reliability of the SSC measurements by accounting

for any potential offset or drift in the refractometer readings.
2.3 Feature engineering

Feature engineering involves two key aspects: spectral pre-

processing methods and spectral feature selection methods. Spectral

pre-processing refines spectral reflectance by mitigating disturbances,

while spectral feature selection eliminates redundancy, pinpointing

crucial informative attributes for modeling. This duality is essential

for extracting meaningful patterns from raw data and is imperative

for developing robust regression models.

Recognizing that feature quality significantly influences model

success, we implement an orthogonal experimental design for

feature engineering. This methodical approach ensures

experimentation and validation tailored to our specific modeling
FIGURE 1

The custom-built hyperspectral imaging system.
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context, enabling a structured assessment of diverse feature

engineering strategies’ effects on model accuracy. We rigorously

investigate four spectral pre-processing and nine spectral feature

selection techniques, assessing their individual and combined

effects. The ensuing sections, 2.4 and 2.5, will delineate these

techniques, underscoring their roles in data refinement and

feature optimization, ultimately contributing to the improved

accuracy of our model.
2.4 Spectral pre-processing methods

During the spectral acquisition step, various disturbances, such

as sample differences, environmental noise, and baseline drift, can

affect the final captured spectral image (Xu et al., 2023). To mitigate

these variations in spectral reflectance and emphasize the features

related to SSC, a spectral pre-processing procedure is conducted. It

is a critical step in feature engineering (Lee et al., 2022) and

primarily aims to refine and cleanse the data by removing

unwanted noise, correcting baseline drift, and addressing other

disturbances. To tackle the specific variations encountered in

spectral pre-processing, a wide array of algorithms has been

developed, each possessing unique characteristics and catering to

various aspects of the process. In the following content, we will

provide a brief description of several widely used spectral pre-

processing methods that will be utilized in this study later.

Firstly, the Standard Normal Variant transform (SNV) (Dong

et al., 2022; Liu et al., 2022) is a notable method that is meticulously

designed to address the detrimental effects of scattering and

concentration-related influences. It achieves this by normalizing

spectral reflectance across the entire wavelength range, effectively

mitigating deviations, and nullifying the impact of extraneous factors.

Secondly, the Direct Orthogonal Signal Correction (DOSC)

(Westerhuis et al., 2001) method disentangles spectral reflectance

into correlated and uncorrelated components. By leveraging the

principles of multivariate statistics, it discriminates between valuable

signal information and intrusive background perturbations. In

addition, the Detrend Correction (DC) (Ai et al., 2022) method

adeptly attenuates the disruptive interference of external noise. It

accomplishes this by subtracting the trend-fitting lines, enabling a

refined and noise-free characterization of intrinsic spectral attributes.

Lastly, the Savitzky-Golay (SG) (Savitzky and Golay, 1964) convolution

smoothing method emerges as an exemplary technique for spectral

refinement. By utilizing weighted polynomial regression within moving

windows, it effectively suppresses high-frequency noise while

preserving essential spectral features.
2.5 Spectral feature selection methods

Spectroscopy instruments typically exhibit highly correlated

spectral responses, particularly in adjacent wavelength regions,

leading to redundant data. Additionally, not all wavelengths are

relevant to the problem at hand, potentially impacting the accuracy

and precision of results. Therefore, discriminative feature selection

becomes critical to enhance model performance. A range of spectral
Frontiers in Plant Science 04219
feature selection methods was investigated to address these issues,

which are integral to feature engineering. These methods aim to

identify and retain informative features, reduce the feature space,

improve computational efficiency, and prevent multicollinearity

and overfitting. Nine distinct spectral feature selection methods

were identified and classified into three categories: basis-vectors-

based, statistical-measures-based, and iterations-based methods.

Each category offers unique approaches to feature selection and is

briefly described below.

2.5.1 Based on basis vectors
Dimensionality reduction techniques such as Principal

Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) and

Singular Value Decomposition (SVD) (Smithies, 1938) use linear

combinations of basis vectors to simplify high-dimensional data.

PCA prioritizes components based on explained variance, while

SVD utilizes singular values. Additionally, Kernel Principal

Component Analysis (KPCA) (Schölkopf et al., 1997) extends

PCA by capturing nonlinear patterns through a higher-

dimensional kernel-based feature space, providing greater

flexibility in representing high-dimensional data and extracting

nonlinear features. By selecting a subset of basis vectors and

transforming, these dimensionality reduction methods effectively

reduce the dimensionality of the data while endeavoring to preserve

as much information as possible.

2.5.2 Based on statistical measures
Individual wavelength features can also be evaluated using

statistical measures. The F-test assesses the significance of feature

differences between classes. Features with high F-values indicate

greater relevance. Thus, one can rank the features based on their F-

values and select the top n features for further analysis or

dimensionality reduction. Similarly, the Pearson product-moment

correlation coefficient (PPMCC) measures linear correlations, while

Mutual Information (MI) detects both linear and non-

linear dependencies.

2.5.3 Based on iterations
Iterative feature selection methods systematically search the

feature space to identify the most relevant features for a specific

problem. These methods, through a process of selection and

elimination, adaptively integrate criteria, performance metrics, or

domain knowledge. The Recursive Feature Elimination (RFE)

(Araújo et al., 2001) is one such method that employs a backward

elimination technique to prune irrelevant features from a regression

model. Starting with all features, RFE trains the model, ranks

features by their impact on model performance, and iteratively

discards the weakest until a targeted feature set size or stopping

condition is reached. The Successive Projection Algorithm (SPA)

(Soares et al., 2013) selects features by projecting data onto

orthogonal hyperplanes, treating spectral feature selection as a

constrained combinatorial optimization problem. SPA minimizes

multicollinearity, thereby reducing redundancy and addressing ill-

conditioning by preventing the propagation of superfluous features

during calibration. The Competitive Adaptive Reweighted

Sampling (CARS) (Li et al., 2009; Zhang et al., 2019) focuses on
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discarding features with minor regression coefficients in the PLSR

model, using adaptive reweighting and cross-validation to fine-tune

feature selection. CARS’ adaptability allows it to dynamically

capture dataset characteristics, which may result in varying

feature selections across iterations.
2.6 Experiment settings

2.6.1 Sample division
The Sample Set Partitioning Based on Joint X-Y Distances (SPXY)

(Wang et al., 2022)method was employed to divide the entire dataset of

116 kiwifruit samples into a calibration set and a prediction set, with a

ratio of 3:1. This hold-out partitioning technique ensures a

representative distribution of samples across both sets, allowing for

the evaluation of model performance on unseen data.

Furthermore, the number of selected features in the spectral

feature selection methods was determined using 5-fold cross-

validation on the calibration set. This approach optimizes the

feature selection process by iteratively evaluating the performance

of different feature subsets across various subsets of the calibration

set. By employing cross-validation, the optimal number of selected

features is achieved while mitigating the risk of overfitting and

ensuring the robustness of the model’s performance.
2.6.2 Evaluation metrics
Three metrics, namely the Root Mean Square Error (RMSE), the

Mean Absolute Percentage Error (MAPE), and the Residual

Prediction Deviation (RPD) were employed to evaluate the impact

of feature engineering on the regression model. These evaluation

metrics are calculated using the following Equations 1–3.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
(yi − ŷi)

2

s
(1)

MAPE = 1
No

n

i=1

yi − ŷ ij j
yi

(2)

RPD = SD
RMSE (3)
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where ŷi is the predicted value of the ith sample, yi is the

measured value of the ith sample, and N is the total number of

samples in the prediction set. Additionally, SD is the standard

deviation of the measured value of the N samples. It is important to

note that the metrics calculated for the validation set (RMSEv , MA

PEv and RPDv) represent the mean values obtained from cross-

validation. Conversely, the metrics calculated for the prediction set

(RMSEp, MAPEp and RPDp) represent the mean values obtained

from a single prediction. The details of the sample division and

metrics calculation can be found in Figure 2.

2.6.3 The regression model
To comprehensively evaluate the effectiveness of feature

engineering, a linear regression model based on OLS was

established using an orthogonal experimental design. The OLS

model, known for its ability to minimize the sum of squared

residuals, is a widely-used regression method and a suitable

choice for modeling the relationship between the input features

and the SSC values. Its simplicity and interpretability make it a solid

foundation for analyzing and comparing the effects of feature

engineering on the regression model’s performance. Meanwhile,

those orthogonal experiments allow for a thorough examination of

the individual effects of spectral pre-processing methods and

spectral feature selection methods, as well as the exploration of

potential interactions between them. By systematically varying and

controlling these factors, researchers can gain valuable insights into

the impact of different feature engineering techniques on the overall

performance of the regression model.
3 Results and discussion

3.1 Distribution of the spectral reflectance
and SSC

The distribution range of spectral reflectance in different

wavelength regions were shown in Figure 3. Notably, the

distribution range below 500 nm appears narrower, indicating

lower variance and suggesting that this region contains less

information. Conversely, the distribution range above 750 nm is

broader, indicating higher variability in spectral reflectance within
FIGURE 2

The details of the sample division and metrics calculation.
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this wavelength region. This observation suggests that features of

higher wavelength regions may contain more valuable information

for the analysis and prediction of SSC values.

The SSC values for the complete dataset of 116 kiwifruit

samples exhibit a mean value of 13.148 and a standard deviation

of 1.025. The distribution of these values approximately follows a

normal distribution, as evidenced by the Lilliefors test with a p-

value of 0.0642. A visual representation of the frequency histogram

depicting the specific distribution can be found in Figure 3. The

calibration set of 87 samples presents a mean SSC of 13.165 and a

standard deviation of 1.031, while the prediction set of 29 samples

has a mean of 13.093 and a standard deviation of 1.022, indicating

similar distribution parameters. Such comparability between

calibration and prediction sets is vital to the reliability of our

model’s performance evaluation.

3.2 Regression performances

The performances of the OLS model under all conditions were

summarized in Tables 1–5, grouped by spectral pre-processing
Frontiers in Plant Science 06221
methods, with the best scores highlighted in bold (due to

rounding of specific metric values, some values that appear to be

the same may still have minor differences). For a clearer comparison

of outcomes among different spectral selection methods, we

underline the results that fall below the baseline performance (i.e.,

without employing any spectral selection method) under identical

spectral preprocessing conditions. The number of selected features

of the corresponding spectral selection method is briefly

represented by n.

These tables provide an exhaustive overview of the evaluation

metrics, such as RMSE, MAPE, and RPD, enabling easy comparison

and identification of the top-performing models within each feature

preprocessing group. As shown in Tables 1–5, the superior

performance of the OLS model utilizing feature engineering

becomes evident when comparing it to the model without feature

engineering. Within each spectral pre-processing method,

employing a spectral feature selection method consistently

enhanced performance across all metrics for both the calibration

and validation sets (except for the minor anomaly of the MAPEp
metric for the DC-CARS-OLS model).
A B

FIGURE 3

Distribution of the (A) spectral reflectance and (B) SSC.
TABLE 1 Regression performances using various spectral selection methods under no spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

None

None / 1.279 0.078 0.811 1.161 0.071 0.865

PCA 5 0.953 0.062 1.061 0.780 0.053 1.288

KPCA 5 0.947 0.062 1.068 0.780 0.053 1.287

SVD 4 0.959 0.063 1.055 0.807 0.055 1.244

F-test 10 0.966 0.061 1.050 0.943 0.059 1.064

PPMCC 2 1.014 0.067 0.997 1.021 0.063 0.984

MI 6 0.937 0.058 1.086 0.883 0.060 1.137

RFE 6 0.994 0.065 1.017 0.773 0.050 1.299

SPA 2 0.970 0.063 1.044 0.854 0.055 1.176

CARS 8 0.912 0.058 1.118 0.771 0.048 1.302
front
The best scores are highlighted in bold.
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This conclusion, however, does not extend to spectral pre-

processing methods. For the sake of simplicity, the performance

outcomes of the OLS model under just a few selected spectral feature

selection methods are succinctly summarized in Table 6. It is

apparent that spectral pre-processing methods do not always lead

to performance enhancements. Nevertheless, a judicious synergy

between spectral pre-processing and feature selection methods may

facilitate further amelioration of model performance. It is imperative

for scholars to meticulously assess these variations when constructing

an optimal feature engineering for their specific application.

These findings underscore the effectiveness of feature

engineering in enhancing the regression model’s predictive

capabilities. In the calibration set, the DC-CARS-OLS model

consistently demonstrates the best performance across all
Frontiers in Plant Science 07222
evaluation metrics (RMSEv = 0:760, MAPEv = 0:047 and RPDv =

1:372), indicating that the combination of the DC spectral

preprocessing method, the CARS spectral feature selection

method, and the OLS regression model yields the most accurate

and reliable predictions in this particular dataset. However, the

performance differs in the validation set, where the SG-CARS-OLS

model outperforms the other models, achieving the best scores in all

evaluation metrics (RMSEp = 0:740, MAPEp = 0:046 and RPDp =

1:358). This suggests that the combination of the SG spectral

preprocessing method, the CARS spectral feature selection

method, and the OLS regression model performs exceptionally

well on unseen data. These findings emphasize the importance of

evaluating model performance in both the calibration set and

validation set to ensure the generalizability of the results.
TABLE 2 Regression results using various spectral selection methods under SNV spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

SNV

None / 1.795 0.109 0.593 1.535 0.098 0.654

PCA 4 0.958 0.063 1.056 0.840 0.056 1.195

KPCA 7 0.953 0.063 1.061 0.740 0.048 1.358

SVD 4 0.958 0.063 1.056 0.840 0.056 1.195

F-test 10 0.960 0.061 1.058 0.988 0.058 1.016

PPMCC 2 1.018 0.067 0.995 1.030 0.064 0.975

MI 4 1.001 0.064 1.019 0.948 0.061 1.059

RFE 5 0.978 0.065 1.036 0.880 0.058 1.142

SPA 8 0.928 0.059 1.101 0.795 0.049 1.263

CARS 8 1.025 0.065 0.999 0.982 0.062 1.023
front
The best scores are highlighted in bold.
TABLE 3 Regression results using various spectral selection methods under DOSC spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DOSC

None / / / / / / /

PCA 4 0.974 0.064 1.038 0.809 0.052 1.242

KPCA 4 0.974 0.064 1.038 0.809 0.052 1.242

SVD 3 0.984 0.065 1.029 0.845 0.055 1.188

F-test 5 0.953 0.062 1.061 0.812 0.052 1.236

PPMCC 5 0.953 0.062 1.061 0.812 0.052 1.236

MI 2 0.980 0.064 1.033 0.864 0.054 1.162

RFE 3 1.003 0.066 1.010 0.891 0.058 1.127

SPA 13 0.970 0.061 1.053 0.879 0.057 1.142

CARS 12 0.888 0.053 1.173 0.978 0.058 1.026
The best scores are highlighted in bold.
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It further demonstrates that the optimal combination of

feature preprocessing methods and spectral feature selection

methods may vary depending on the dataset and the specific

task concerned. Researchers should carefully consider these

variations when designing the most suitable combination of

feature engineering.

The frequency with which the OLS model achieves the best

performance for each metric under every condition is summarized

in Table 7. Among the spectral pre-processing methods, all exhibit

an equal frequency of best performance. However, when

considering spectral feature selection methods, it is noteworthy

that the CARS method stands out with a significantly higher

frequency of best performance compared to the other methods.

This observation raises the possibility that greater attention should

be directed toward spectral feature selection methods during the

design of feature engineering and suggests that CARS is particularly
Frontiers in Plant Science 08223
effective in selecting informative features for enhancing the

performance of the regression model.
3.3 Selected optimal features

The distribution of the features selected by the DC-CARS and

SG-CARS methods are shown in Figure 4. The features extracted by

the DC-CARS method show a more dispersed distribution across

different wavelengths. In contrast, the features extracted by the SG-

CARS method exhibit a relatively concentrated distribution,

particularly around 600 nm and 850 nm. Both methods display a

concentration of selected features above 750 nm, but there is also a

smaller distribution near 600-700 nm. These findings align with the

distribution range of spectral reflectance in different wavelength

regions, as depicted in Figure 3A.
TABLE 5 Regression results using various spectral selection methods under SG spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

SG

None / 1.553 0.096 0.662 1.425 0.091 0.704

PCA 5 0.953 0.062 1.061 0.780 0.053 1.287

KPCA 5 0.948 0.062 1.068 0.780 0.053 1.287

SVD 4 0.959 0.063 1.055 0.807 0.055 1.244

F-test 8 0.989 0.063 1.029 0.924 0.059 1.087

PPMCC 5 1.015 0.065 1.006 0.903 0.057 1.112

MI 12 0.980 0.062 1.037 0.793 0.053 1.267

RFE 6 0.963 0.063 1.049 0.774 0.052 1.298

SPA 2 0.970 0.063 1.044 0.853 0.055 1.178

CARS 13 0.895 0.053 1.139 0.740 0.046 1.358
front
The best scores are highlighted in bold.
TABLE 4 Regression results using various spectral selection methods under DC spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DC

None / 1.303 0.081 0.785 1.238 0.076 0.811

PCA 31 0.934 0.058 1.119 0.802 0.047 1.252

KPCA 9 0.957 0.060 1.069 0.754 0.051 1.332

SVD 15 0.942 0.059 1.099 0.759 0.049 1.324

F-test 1 0.964 0.063 1.050 0.831 0.053 1.208

PPMCC 1 0.964 0.063 1.050 0.831 0.053 1.208

MI 7 0.982 0.062 1.043 0.810 0.053 1.239

RFE 5 1.004 0.066 1.011 0.810 0.053 1.240

SPA 4 0.968 0.064 1.048 0.780 0.049 1.287

CARS 18 0.760 0.047 1.372 1.189 0.077 0.844
The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.
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3.4 The stacking generalization

We observed that the DC-CARS-OLS model, despite achieving

the best performance in the calibration set, did not perform as well

in the validation set. This suggests that the DC-CARS-OLS model
Frontiers in Plant Science 09224
may have overfit the calibration set and may not generalize well to

unseen data. Conversely, the SG-CARS-OLS model achieved the

best performance in the validation set but performed lower than the

DC-CARS-OLS model in the calibration set, indicating that there is

still room for improvement in its fitting ability.
TABLE 7 Statistics of the frequency of best performance for each metric under every condition.

None PCA KPCA SVD F-test PPMCC MI RFE SPA CARS SUM

None 0 0 0 0 0 0 0 0 0 6 6

SNV 0 0 3 0 0 0 0 0 3 0 6

DOSC 0 3 0 0 0 0 0 0 0 3 6

DC 0 1 2 0 0 0 0 0 0 3 6

SG 0 0 0 0 0 0 0 0 0 6 6

SUM 0 4 5 0 0 0 0 0 3 18 /
frontie
The best scores are highlighted in bold.
FIGURE 4

Distribution of the features selected by the DC-CARS and SG-CARS methods.
TABLE 6 Regression results using various spectral pre-processing methods under no and CARS spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

None

None

/ 1.279 0.078 0.811 1.161 0.071 0.865

SNV / 1.795 0.109 0.593 1.535 0.098 0.654

DOSC / / / / / / /

DC / 1.303 0.081 0.785 1.238 0.076 0.811

SG / 1.553 0.096 0.662 1.425 0.091 0.704

None

CARS

8 0.912 0.058 1.118 0.771 0.048 1.302

SNV 8 1.025 0.065 0.999 0.982 0.062 1.023

DOSC 12 0.888 0.053 1.173 0.978 0.058 1.026

DC 18 0.760 0.047 1.372 1.189 0.077 0.844

SG 13 0.895 0.053 1.139 0.740 0.046 1.358
The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.
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To leverage the strengths of both models and address these

limitations, we introduced the stacking generalization technique

(Wolpert, 1992). The stacking generalization technique is a

powerful method that combines outputs of multiple base models

to improve the final predictive performance. It involves constructing

a meta-model that takes the predictions of base models as input, thus

addressing the limitations of individual models and harnessing their

complementary strengths. Specifically, the base models are trained

on the same calibration dataset but with different methods or

settings. The meta-model then learns to combine the outputs of

base models in an optimal way to produce the final prediction. In

this study, we utilized stacking generalization technique to combine

the outputs of the DC-CARS-OLS model and SG-CARS-OLSmodel,

aiming to leverage their respective strengths and enhance the final

predictive capability and generalization performance of the

regression model. The specific structure and computational flow

of the stacking generalization model utilized in this study can be

found in Figure 5, providing a visual representation of how the

stacking generalization process is implemented.

The performance of the base models as well as the stacking

generalization model is presented in Table 8. The performance of

the stacking generalization model on the calibration set showed a

decrease compared to the DC-CARS-OLS model. Besides, its
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performance has improved compared to the SG-CARS-OLS

model on both the calibration and validation sets. These findings

suggest that the stacking generalization model effectively addresses

the overfitting issue observed in the DC-CARS-OLS model and

further enhances the model’s fitting ability based on the SG-CARS-

OLS model. By combining the strengths of both base models, the

stacking technique successfully achieves improved overall

performance and enhanced generalization ability.

The comparison between the experimentally measured and

stacking generalization model-predicted values of SSC is shown in

Figure 6. The close alignment of predicted SSC distributions across

both calibration and prediction datasets underscores the model’s

robustness, reflecting its capability to generalize well without

succumbing to overfitting within the calibration phase.

This study’s approach is benchmarked against established

methods in the field, with comparative results detailed in Table 9.

Moen et al. (Moen et al., 2021) explored the link between kiwifruit

spectral data and SSC using various machine learning approaches

and determined that the optimal prediction was achieved by UVE-

PLS model, yielding an RMSEp of 1.047. Zhou et al. (Zhou, 2022)

also investigated this relationship and discovered that SVR model

offered the best predictive accuracy with an RMSEp of 1.309.

Meanwhile, Benelli et al. (Benelli et al., 2022) applied a PLS
FIGURE 5

The specific structure and computational flow of the stacking generalization model.
TABLE 8 Regression results of the base models as well as the stacking generalization model.

Regression model
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DC-CARS-OLS 0.760 0.047 1.372 1.189 0.077 0.844

SG-CARS-OLS 0.895 0.053 1.139 0.740 0.046 1.358

Stacking Generalization 0.782 0.047 1.331 0.721 0.046 1.394
front
The best scores are highlighted in bold.
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model leveraging hyperspectral imaging to assess kiwifruit maturity,

attaining RMSEc and RMSEp values of 0.81 and 0.73, respectively. In

our research, cross-validation within the calibration set was utilized

to robustly detect overfitting, resulting in the most accurate

predictions characterized by the lowest RMSEp in the validation set.
4 Conclusion

In conclusion, our investigation reveals that feature engineering,

particularly the application of the CARS method for feature

selection, significantly enhances SSC prediction accuracy in

kiwifruit using hyperspectral imaging. Through rigorous

comparative analysis, we established that the DC-CARS-OLS

model delivers the most accurate results in calibration, while the

SG-CARS-OLS model excels in validation scenarios. These

outcomes specifically highlight the critical nature of spectral

feature selection in constructing effective predictive models.

Additionally, the introduction of the stacking generalization

technique has proven instrumental in amalgamating the

predictive strengths of individual models, thereby mitigating

overfitting, and refining overall regression accuracy. Our findings

not only bolster the methodological framework for non-destructive
Frontiers in Plant Science 11226
SSC estimation in kiwifruit but also suggest a template for broader

application in agricultural quality assessment. The practical upshot

of our study is a robust, non-invasive approach that promotes the

kiwifruit industry’s capability to ensure product quality, optimize

resource use, and minimize waste. Ultimately, this research

underlines the transformative potential of targeted feature

engineering and advanced ensemble techniques in enhancing the

precision of agricultural produce quality prediction models.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

WX: Data curation, Formal analysis, Investigation, Methodology,

Writing – original draft. LW: Conceptualization, Investigation,

Writing – review & editing. WC: Data curation, Writing – review

& editing. XY: Visualization, Writing – review & editing. YL:

Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research is founded by National Key R&D Program of China

(Project No.2021YFB3202500).
Acknowledgments

We express our sincere gratitude to the laboratory of Fulllight

for generously providing the necessary instrumentation support,

which was instrumental in the successful execution of this

experiment. Additionally, we extend our heartfelt thanks to Licai
FIGURE 6

Comparison of the measured and predicted SSC.
TABLE 9 Comparison of the prediction results with the other methods.

Literature Method

Calibration
(Cross-Validation) Validation

RMSEc RMSEp

Moen
et al., 2021

UVE-PLS / 1.047

Zhou, 2022 SVR / 1.309

Benelli
et al., 2022

PLS 0.810 0.730

This study
Stacking

generalization
0.782 0.721
The best scores are highlighted in bold.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1292365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1292365
Xiao and Jun Song for their invaluable guidance and assistance in

conducting the measurements.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 12227
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Ai, W., Liu, S., Liao, H., Du, J., Cai, Y., Liao, C., et al. (2022). Application of
hyperspectral imaging technology in the rapid identification of microplastics in
farmland soil. Sci. Total Environ. 807, 151030. doi: 10.1016/j.scitotenv.2021.151030
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Modeling of flaxseed protein, oil
content, linoleic acid, and lignan
content prediction based on
hyperspectral imaging
Dongyu Zhu1, Junying Han1*, Chengzhong Liu1,
Jianping Zhang2 and Yanni Qi2

1College of Information Science and Technology, Gansu Agricultural University, Lanzhou, China,
2Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
Protein, oil content, linoleic acid, and lignan are several key indicators for

evaluating the quality of flaxseed. In order to optimize the testing methods for

flaxseed’s nutritional quality and enhance the efficiency of screening high-quality

flax germplasm resources, we selected 30 flaxseed species widely cultivated in

Northwest China as the subjects of our study. Firstly, we gathered hyperspectral

information regarding the seeds, along with data on protein, oil content, linoleic

acid, and lignan, and utilized the SPXY algorithm to classify the sample set.

Subsequently, the spectral data underwent seven distinct preprocessing

methods, revealing that the PLSR model exhibited superior performance after

being processed with the SG smoothing method. Feature wavelength extraction

was carried out using the Successive Projections Algorithm (SPA) and the

Competitive Adaptive Reweighted Sampling (CARS). Finally, four quantitative

analysis models, namely Partial Least Squares Regression (PLSR), Support

Vector Regression (SVR), Multiple Linear Regression (MLR), and Principal

Component Regression (PCR), were individually established. Experimental

results demonstrated that among all the models for predicting protein content,

the SG-CARS-MLR model predicted the best, with and of 0.9563 and 0.9336,

with the corresponding Root Mean Square Error Correction (RMSEC) and Root

Mean Square Error Prediction (RMSEP) of 0.4892 and 0.5616, respectively. In the

optimal prediction models for oil content, linoleic acid and lignan, the R2
p was

0.8565, 0.8028, 0.9343, and the RMSEP was 0.8682, 0.5404, 0.5384,

respectively. The study results show that hyperspectral imaging technology has

excellent potential for application in the detection of quality characteristics of

flaxseed and provides a new option for the future non-destructive testing of the

nutritional quality of flaxseed.
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1 Introduction

Flax (Linum usitatissimum) occupies an important position in oil

and fiber crops (Oomah, 2001). According to its application scope, it

is divided into fiber, oil, and fiber oil three (Zhang et al., 2011).

Flaxseed is rich in essential omega-3 fatty acids, a-linolenic acid, and
linoleic acid is recognized as a major source of high-quality proteins,

lignan, lipids, and dietary fiber (Katare et al., 2012; Goyal et al., 2014),

has a positive effect on the human diet and health, and its processed

products in the world have a wide range of demand, belonging to the

typical functional crops.

Currently, protein content in flaxseed is primarily determined

through chemical analytical methods, like Kjeldahl nitrogen

determination (Mueller et al., 2010; Yao et al., 2022). This

method first requires drying and grinding of the sample, adding

chemical reagents and heating, followed by distillation, titration

treatment with a standard hydrochloric acid solution, and finally, a

comprehensive calculation of the protein content results based on

the values obtained from each process. Other methods for

determining oil content often involve organic solvent extraction,

while the quantification of linoleic acid and lignan is typically

carried out using high-performance liquid chromatography

(Meng et al., 2001; Feng et al., 2016). These traditional

biochemical determinations of flaxseed nutrient content must be

operated by professionals to complete the handling and operation

process, which is both complex and professional, not only time-

consuming and labor-intensive but also destructive to the sample

and incidentally produces chemical pollution. To enhance the

efficiency of screening high-quality flax germplasm resources, it is

imperative to identify an accurate, rapid, and non-destructive

method for assessing protein, oil content, linoleic acid, and

lignan content.

HSI technology simultaneously captures the target’s spatial

characteristics and spectral information, effectively combining

image and spectral data (Xiang et al., 2022). The spectral properties

of an object are closely related to its intrinsic physicochemical

properties, and the differences in the composition and structure of

substances result in the selective absorption and emission of photons

of different wavelengths within the substance. Presently, HSI serves as

a non-destructive and expeditious analytical tool across various

domains, including medical diagnosis (Bjorgan and Randeberg,

2015), food industry (Ma et al., 2019), fruit damage and disease

detection (Tian et al., 2020; Yadav et al., 2022; Jiang et al., 2023), and

plant seed analysis (Zhu et al., 2019). HSI has proven to be an effective

technique for non-destructive seed quality testing by many scholars.

For instance, Tu et al. (Tu et al., 2022) used HSI to detect similar

maize authenticity. Zou et al. (Zou et al., 2023) employed HSI to

gauge peanut seed vigor. In addition, Yoo et al. (Yoosefzadeh-

Najafabadi et al., 2021) used HSI for soybean yield prediction.

Zhang et al. (Zhang et al., 2022) Used HSI to detect hybrid wheat

seed purity. Lu et al. (Lu et al., 2022) ingeniously combined HSI with

deep convolutional generative adversarial networks to predict the oil

content of individual corn kernels. Yu et al. (Yu et al., 2016) effectively

measured fat content in peanuts (R2
p = 0.84 and SEP = 1.88) and Ma

et al. (Ma et al., 2021) further devised a streamlined model for the

non-destructive assessment of protein content in rice, achieving
Frontiers in Plant Science 02229
notable success (R2
p = 0.8011 and RMSEP = 0.52). All of these

studies demonstrated the feasibility of detecting seed quality based

on HSI. However, few studies have been reported on HSI detection of

the internal quality of flaxseed. Leomara Floriano Ribeiro et al.

employed infrared reflectance spectroscopy and multivariate

correction to predict linolenic and linoleic acid content in flaxseed,

achieving prediction sets with R2
p values as high as 0.90 and 0.86

(Ribeiro et al., 2013). While this method achieves high accuracy, it is

limited to determining the content of linolenic and linoleic acids in

only two types of flaxseed. Currently, with over 5,000 flax varieties in

commercial cultivation, each exhibiting significant variations in

nutrient composition, the method lacks generalizability and

stability, rendering it ineffective for the determination of other

species. Party Zhao et al. used near infrared analysis technology to

determine the quality of flax germplasm resources, and Ye Jiali et al.

used non-destructive near infrared spectroscopy to quantitatively

analyze the content of flax seed protein, linolenic acid, and lignan

(Dang and Zhao, 2008; Ye et al., 2021). The above three non-

destructive tests on the nutritional quality of flaxseed are used in

the infrared spectrometer wavelength range of 1100-2500 nm, 900-

1700 nm, and 1000-2499 nm. The wavelength range of the imaging

instrument, although high precision, the cost is expensive; the

processing and operation of the process are both complex and

professional, and it is not only not applicable to field operations

but also general scientific researchers and flax planting researchers

cannot be realized. In addition, these methods might not completely

capture the internal features of the specimen, and they are solely

employed to acquire spectral details from a solitary point source. The

uniformity of the sample distribution consistently influences this and

may not be the optimal selection. (Ozaki, 2021; Hu et al., 2023).

This project is dedicated to studying the 400-1000nm spectral

range of flaxseed nutritional quality detection to fill the existing

band range of research gaps. The spectral range of imaging

instruments is relatively common and inexpensive. General

researchers and flax planting researchers can easily buy and use.

This study simultaneously analyzed the flaxseed protein, oil

content, linoleic acid, and lignans’ 4 nutrient content. Common

reports of up to 3 nutrients have been analyzed in the literature.

From the results of the literature available from multiple sources, it

is the first time that the content of four nutrients was analyzed

simultaneously. Additionally, comprehensively detecting multiple

indicators of flaxseed allows for a more integrated assessment of its

quality. Various nutrients in flaxseed are interconnected; therefore,

solely predicting a single nutritional indicator is insufficient for

quality measurement. Practical significance is achieved only

through a simultaneous and comprehensive evaluation of several

indicators. This integrated research approach contributes to a more

thorough, systematic understanding and utilization of the potential

value of flaxseed. Thus, this study seeks to establish a non-

destructive and expeditious method utilizing HSI for detecting

protein content, oil content, linoleic acid, and lignan in flaxseed.

The primary research objectives encompass: (1) establish a PLSR

prediction model of flaxseed protein content based on raw and

preprocessed spectra and determine the optimal preprocessing

method through model evaluation; (2) construct prediction

models for flaxseed protein, oil content, linoleic acid, and lignan
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based on distinctive wavelengths extracted by SPA and CARS, using

PLSR, PCR, SVR, and MLR. The selection of the optimal prediction

model for flaxseed protein, oil content, linoleic acid, and lignan

relies on R2
p and RMSEP values to achieve swift, non-destructive,

and precise nutritional quality prediction; (3) identifying

characteristic spectral bands pertinent to protein, oil content,

linoleic acid, and lignan in flaxseed based on the most

effective model.
2 Materials and methods

2.1 Experimental materials

As shown in Table 1, thirty flaxseed varieties, extensively

cultivated in Northwest China, were selected for the study. Seed

samples were obtained from the Gansu Academy of Agriculture’s

Crop Institute. All the varieties were harvested in 2022 from the

experimental field of Lanzhou New District, Gansu Province,

China, situated at an altitude of 1520 m above sea level (103°

72’E,36°03’N). To limit water absorption, the flaxseeds were stored

in sealed paper bags. Every sampling session involved collecting fifty

intact and undamaged flaxseeds from each variety. Following

acquiring hyperspectral images, they were immediately dispatched

to the Gansu Academy of Agricultural Sciences in China to analyze

protein, oil content, linoleic acid, and lignan for each variety.
2.2 Hyperspectral image capture

2.2.1 Hyperspectral imaging system
The Gaia Field portable hyperspectral system (Sichuan Dualix

Spectral Imaging Technology Co., Ltd) is shown in Figure 1, which

includes GaiaField-V10E hyperspectral camera, 2048×2048 pixels

imaging lens, HSI-CT-150×150 standard whiteboard (PTFE),

HSIA-DB indoor imaging dark box, four groups of shadowless
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lamp light source, HSIA-TP-L-A tripod rocker set, and

hyperspectral data acquisition software Spec View. The spectral

range is 380-1018 nm, spectral bands are 320, spectral resolution is

2.8 nm, the numerical aperture is F/2.4, slit size is 30 mm× 14.2 mm,

the detector is SCMOS, and the imaging mode is built-in push-scan,

autofocus, and dynamic range is 14 bits. The core components of the

hyperspectral equipment include a standardized light source, a

spectral camera, an electronically controlled mobile platform, a

computer, and control software. The working principle is that the

system adopts the push-scan imaging mode, the surface array detector

and the imaging spectrometer are combined, and under the drive of

the scanning control electric moving platform, the slit of the imaging

spectrometer and the focal plane of the imaging lens undergoes

relative motion, the detector collects real-time information relative

to the line target, and finally splices into a complete cube of data.

2.2.2 Image acquisition and calibration
Enact the hyperspectral instrument switch and the dark box

light source before image acquisition. Allow a 30-minute warm-up

period, then configure the instrument parameters, setting the

camera exposure time to 49ms, gain to 2, frame rate to

18.0018Hz, and forward speed to 0.00643cm/s. We have selected

a total of 30 varieties of flaxseed; for each variety of hyperspectral

images were collected a total of three times, each time from the

corresponding varieties of randomly selected 50 seeds placed in the

dark box on the mobile platform, as shown in Figure 1, and then

these 50 seeds as the same ROI, to get an average spectral curve of

these 50 seeds. After one acquisition for each variety, the sample

under test was re-poured into the sample bag and shaken manually.

Then, 50 seeds were randomly taken out for the subsequent image

acquisition of that variety, repeated three times to get three average

spectral curves and a total of 150 seeds were scanned. Ninety

acquisitions were made for 30 varieties, with 4,500 seeds scanned,

and 90 average spectral curves were obtained. After completing the

acquisition, the original hyperspectral images underwent black-

and-white correction to eliminate dark current noise introduced
TABLE 1 Flaxseed varieties.

No. Variety No. Variety No. Variety

1 Onyc 11 Hua Ya 5 21 Yi Ya 3

2 Shuang You Ma 1 12 Hua Ya 6 22 Ba Ya 18

3 Shuang Ya 12 13 Ding Ya 17 23 Ba 14

4 Shuang Ya 14 14 Hei Ya 2 24 901 Ba Ya 15

5 Shuang Ya 15 15 Ning Ya 10 25 139 Ba Ya 17

6 Zhang Ya 3 16 Ba 9 26 Hua Ya 1

7 Ba 6 17 Ba 11 27 Hua Ya 2

8 Ba 5 18 Gan Ya 3 28 Hua Ya 3

9 Ba 4 19 Yan Za 10 29 Hua Ya 4

10 Ba 3 20 Jin Ya 7 30 Ba 2
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by the camera. (Wang et al., 2022). The black-and-white correction

formula is shown in Equation (1):

Ic =
Iraw − Idark
Iwhite − Idark

(1)

Where Iraw is the raw image, Iwhite is the white reference image,

Idark is the dark reference image, and Ic is the calibrated image.

In order to extract the spectral information from the corrected

hyperspectral image, the 50 flax seed region in a single image was

used as the region of interest, and the spectral information was

extracted, as shown in Figure 2. Firstly, the regions of interest (ROIs)

of flax seeds and background were created separately in ENVI5.3

software, and then according to the different ROIs, the flax seeds and

background were classified using support vector machine (SVM) in

supervised classification and transformed into vectors, followed by

masking process and transformed into mask images. Applying the

mask image to the original hyperspectral image separates the
Frontiers in Plant Science 04231
hyperspectral image of all the flaxseed sample regions from the

background to get the region of interest for the whole sample.

Finally, it calculates the average of the spectra of all the flaxseeds

on the hyperspectral image as the spectrum of that sample.
2.3 Sample Content Determination
and Segmentation

The protein, oil content, linoleic acid, and lignan contents of 30

varieties of flaxseed were determined by the Gansu Academy of

Agricultural Sciences in China. Sample set partitioning based on

joint X - Y distances (SPXY) (Liu et al., 2011) was employed to

allocate flaxseed protein, oil content, linoleic acid, and lignan into

modeling and prediction sets at a 2:1 ratio. The reasonableness of

the sample division was assessed by calculating the samples’

maximum, minimum, average, and standard deviation in the
A B

DEF

C

FIGURE 2

Sample hyperspectral image classification mask and spectral extraction flowchart. (A) Hyperspectral image; (B) Classification image; (C) Mask image;
(D) Application mask image; (E) Region of interest image; (F) Average spectral curve.
FIGURE 1

The hyperspectral imaging system.
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training and prediction sets (Shao et al., 2020). The results are

shown in Table 2. The maximum and minimum values of the

training set for protein, oil content, and lignan included the

prediction set, and the minimum values of the training set for

linoleic acid and the prediction set were almost the same. Therefore,

the overall division of the sample set is deemed reasonable.
2.4 Spectral preprocessing methods

During the acquisition of raw spectral data, it is often subject to

various noise interferences, such as instrumental noise and

environmental interference. In order to improve the quality and

analyzability of the data, the extracted spectral information better

reflects the changes in the sample curves to ensure that accurate and

reliable results are obtained when building predictive models or

conducting analyses. Therefore, it is necessary to pre-process the

raw spectra to eliminate the noise as much as possible or reduce the

influence of other environmental factors on the spectral

information. The study employed various preprocessing

techniques (Savitzky-Golay (SG) smoothing, normalization,

baseline, standard normal variable correction (SNV), moving

average (MA), multiple scattering correction (MSC), and first-

order derivative (1st Der)) on the raw flaxseed spectra (Aulia

et al., 2023). SG is mainly used to achieve the effect of smoothing

curves and reducing noise by fitting local polynomials to

the original spectra using a sliding window; Normalize can

normalizes the spectral data to the same scale, which usually

scales the value of each wavelength to a value between 0 and 1. It

is mainly used to eliminate intensity differences due to differences in

spectral measurement instruments, measurement conditions, and

other factors; Baseline is based on the principle of removing baseline

fluctuations in the spectrum due to instrumental drift, background

changes, and other reasons, and can be used to improve the

accuracy of the data; SNV is standardized by calculating the ratio

of the spectral value at each wavelength to the mean and standard

deviation of all spectral values at that wavelength; The aim is to

reduce the intensity differences in the spectra and highlight the

chemical information; MA focuses on averaging the spectral data

over a sliding window to reduce high-frequency noise and smooth

the spectral curves; MSC is based on the principle of correcting for

multiple scattering by comparing the spectral data with a selected

reference spectrum. This includes fitting each spectrum to the mean
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using least squares regression and calculating the preprocessed data

by decomposing the slope and intercept of the regression. The aim

is to reduce the effect of multiple scattering and emphasize the

chemical information to improve the accuracy of quantitative

analysis; 1st Der is to perform first-order derivative operations on

the spectral data to highlight the rate of change of the spectral lines,

enhance the peaks and valleys in the spectra, and highlight spectral

line features. Subsequently, a PLSR prediction model for the

protein content of flaxseed was established based on the raw and

pretreatment spectra, and the optimal pretreatment method was

determined by model evaluation.
2.5 Feature band extraction methods

Various sources frequently disrupt raw spectral data

acquisition. Since the full spectrum contains 320 wavelength

variables, not all wavelengths are useful for the analysis task.

Extracting characteristic wavelengths reduces data dimensions,

eliminates redundancy, and enhances modeling efficiency and

performance. This study employs the successive projections

algorithm (SPA) and the competitive adaptive reweighted

sampling (CARS) algorithm for wavelength feature extraction.

SPA algorithm is a forward looping feature variable selection

method, which is a method of selecting feature wavelengths by

calculating the correlation between each wavelength and the target

variable, which is capable of filtering out the invalid information

and greatly reducing the influence of covariance among the data.

SPA has intuition and simplicity for the downscaling and feature

selection of spectral data, which makes the model easier to interpret

and understand (Li et al., 2023). CARS is an innovative variable

selection algorithm proposed by Li (Li et al., 2009). At the same

time, CARS is also a commonly used method for selecting the

characteristic wavelengths, which firstly utilizes the PLS model to

screen the wavelengths with large regression coefficients and then

optimally selects the wavelengths with the smallest root-mean-

square error through ten-fold cross-validation A subset of

wavelengths is selected through ten-fold cross-validation, and the

most critical variable for the prediction target is selected as the

wavelength. The CARS algorithm is more flexible and adaptive than

the traditional weighting methods, which helps to retain more

useful information. In addition, CARS can more fully consider

the correlation between wavelengths, thus better reflecting the
TABLE 2 Flaxseed protein, oil content, linoleic acid, and lignan sample set contents.

Sample set
Protein Oil content Linoleic acid Lignan

Cal Pre Cal Pre Cal Pre Cal Pre

Number of samples 60 30 60 30 60 30 60 30

Maximum (%) 28.46 27.76 40.9 40.5 13.81 13.58 11.06 8.39

Minimum (%) 23.01 23.07 33.38 34.65 9.93 9.92 4.79 5.67

Average (%) 25.1 25.21 36.5 36.4 11.96 11.93 8.14 7.38

Standard deviation 1.54 1.28 1.62 1.5 0.86 0.82 1.49 0.71
fr
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characteristics of the data. In hyperspectral data, the CARS

algorithm helps select representative characteristic wavelengths

more comprehensively, considering that there may be complex

relationships between wavelengths (Xu et al., 2022).
2.6 Modeling methods

Partial least squares regression (PLSR) is a multivariate

statistical method (Wang et al., 2019). PLSR models the spectral

data by minimizing the covariance between the spectral data and

the target variable. It achieves data downscaling by introducing

latent variables and then regressing these latent variables on the

target variables.

Support vector regression (SVR) can fit data quickly (Xiang

et al., 2022), and it deals with nonlinear relationships by mapping

the data into a high-dimensional space and then constructing a

linear regression model in that space.

Principal component regression (PCR) models spectral data by

downscaling them into principal components to explain the

variance of the spectral data and predict the target variable

(Mahesh et al., 2015).

Multiple linear regression (MLR) is a conventional linear

regression method that establishes the relationship between

multiple independent variables and the dependent variable. In

MLR, each wavelength is treated as a predictor variable, and the

model tries to find a linear combination between these variables to

fit the target variable best. However, MLR modeling only applies

when the number of variables is less than the number of samples.
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Consequently, in this study, only wavelengths extracted by CARS

and SPA algorithms were used for modeling (Rajkumar et al., 2012).
2.7 Software and model assessment

Besides using Spec view software for hyperspectral image

acquisition and ENVI 5.3 for spectrum extraction, we utilized 3ds

Max to construct a 3D model of the HSI system. Unscrambler X

handled spectrum preprocessing and model building, while

MATLAB R2021b extracted the featured wavelengths and plotted

the waveforms. This paper assesses the model’s performance using

various evaluation metrics, including the cross-validation correlation

coefficient (R2
cv) and root mean square error (RMSECV), the

calibration set correlation coefficient (R2
c) and root mean square

error (RMSEC), and the prediction set correlation coefficient (R2
p)

and root mean square error (RMSEP) (Zhang and Guo, 2020). The

calculation process is detailed in Equation (2) and Equation (3). A

well-performing model is characterized by high R2
cv, R

2
c , or R

2
p values

and low RMSECV, RMSEC, or RMSEP values. These metrics gauge

the model’s fitting and prediction capabilities, ensuring it excels in

data fitting and new data prediction. The processing of the whole

experiment is shown in Figure 3.

R2 = 1 −o
n
i−1(yi − ŷ i)

2

on
i−1(yi − y

−

i)
2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i−1(yi − ŷ i)

2

r
(3)
A B

FIGURE 3

Experimental procedure. (A) Process of raw hyperspectral image acquisition and ROI extraction. (B) Spectral preprocessing, feature extraction, and
modeling processes.
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3 Results and analyses

3.1 Spectral characterization and selection
of optimal preprocessing

Figure 4 shows the average spectra of 30 different flaxseed varieties

and the average spectra of 7 pre-treatments containing a total of 4,500

samples. As evident from Figure 4A, the average spectral profiles of

various flaxseed varieties exhibit a consistent trend. However, notable

deviations appear in the 450-800nm range, likely attributable to

variations between flaxseed varieties. Further studies revealed that the
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average spectral profile of flaxseed has a significant reflectance peak at

420 nm, which is mainly caused by carotenoids (Yang et al., 2021). In

addition, the spectral profile shows a clear upward trend in the range of

600-750 nm, which is attributed to the fact that this wavelength

corresponds to the vibration of the N-H chemical bond of amino

acids in the seeds (Xu et al., 2022). The absorption peak near 980 nm

originates from the O-H stretching vibration, which is related to the

structure of water molecules (Yu et al., 2014).

To minimize the influence of noise and irrelevant information

in spectral data, preprocessing of raw spectral information is

essential. The Partial Least Squares Regression (PLSR) model
A B

D

E F

G H

C

FIGURE 4

Flaxseed spectral reflectance curves. (A) Raw spectral curve of flaxseed; (B) SG preprocess spectral curve of flaxseed; (C) Normalize preprocess
spectral curve of flaxseed; (D) Baseline preprocess spectral curve of flaxseed; (E) SNV preprocess spectral curve of flaxseed; (F) MA preprocess
spectral curve of flaxseed; (G) MSC preprocess spectral curve; (H) 1stDer preprocess spectral curve.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2024.1344143
comprehensively addresses the relationship between independent

and dependent variables, even in scenarios of significant

multicollinearity. The PLSR model for predicting flaxseed

protein content identifies the best preprocessing method using

stochastic cross-validation, employing Cross-validation set R2
cv

and RMSECV as model evaluation metrics. Figure 5 illustrates

that, among the PLSR models predicting flaxseed protein content

without pretreatment and with seven different pretreatment

methods, the SG-PLSR model offered superior results, displaying

a R2
cv value of 0.8394 and an RMSECV value of 0.6010. Thus, the

SG pretreatment method was adopted for further feature

extraction in predicting oil content, linoleic acid, and

lignan content.
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3.2 Results of feature extraction

Figures 6A, B shows the wavelength distribution of flaxseed

protein characteristics selected by the SPA algorithm, specifying the

number of variables N = 1 to 30. When the variable is 14, the RMSE

value is the smallest. Therefore, the final number of wavelengths

selected is 14, accounting for 4.3% of the total number of

wavelengths. These wavelengths, displayed in Figure 6B,

correspond to the variables 391, 394, 405, 408, 424, 440, 465, 491,

640, 793, 842, 902, 990 nm and 1014 nm, respectively.

Figure 7 shows the process of selecting the characteristic

wavelengths of flaxseed proteins by the CARS algorithm, which

includes the relationship between the number of sampling runs and
A B

D

E F

G H

C

FIGURE 5

Protein content prediction results of the PLSR model based on different preprocesses. (A) Raw-PLSR; (B) SG-PLSR; (C) Normalize-PLSR; (D)
Baseline-PLSR; (E) SNV-PLSR; (F) MA-PLSR; (G) MSC-PLSR; (H) 1stDer-PLSR.
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the number of selected wavelength variables, the relationship

between the RMSECV values and the relationship between the

regression coefficients path. This figure illustrates that the efficiency

of feature variable selection significantly improves from rough to

fine screening with the increased number of sampling runs.

Moreover, when the number of runs reached 21, RMSECV

minimized, selecting 33 characteristic wavelengths crucial for

predicting protein content. These wavelengths include 405, 408,
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424, 438, 441, 465, 468, 494, 497, 501, 517, 519, 529, 569, 571, 574,

576, 593, 595, 598, 772, 844, 846, 880, 910, 931, 933, 958, 960, 986,

988, 1009 nm and 1014 nm, amounting to 10.3% of the total

wavelength. This process indicates removing substantial irrelevant

hyperspectral data and flaxseed protein content prediction in runs 1

to 20. The SPA and CARS methods were also used for characteristic

wavelength extraction in subsequent oil content, linoleic acid, and

lignan prediction modeling.
A B

FIGURE 6

SPA extraction of feature variables. (A) Trend of RMSE with feature variables, (B) Distribution of preferred feature variables.
FIGURE 7

The process of extracting feature variables by CARS.
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3.3 Results of modeling

3.3.1 Modeling of hyperspectral prediction of
protein content in flaxseed

After determining the protein content of 30 flaxseed varieties,

the original spectral data and the seven preprocessed data were

combined with the actual protein content data to establish the PLSR

prediction model of flaxseed protein. The cross-validation set R2
cv

and RMSECV were used as evaluation indexes to determine the best

preprocessing method. It was found that the model prediction of the

data model after SG preprocessing was the best; therefore, the SG

preprocessing method was used for the original spectral data to be

preprocessed. Subsequently, we utilized both feature bands and full-

band data extracted from the raw bands through SPA and CARS.

These data were then input into regression models, including PLSR,

SVR, PCR, and MLR, to predict flaxseed protein content. The

results of these predictions are presented in Table 3. An analysis

of the results in Table 3 indicates that the PLSR, SVR, and PCR

models, employing feature wavelengths extracted by the CARS

algorithm, outperformed the models relying on full-band spectra.

Specifically, they showed increased R2
p and decreased RMSEP

values. Conversely, the SPA algorithm did not enhance the

predictive performance and, in some cases, even reduced it. This

observation suggests that SPA trims information redundancy but

may also eliminate valuable information for accurate model

predictions. In summary, different algorithms extracting distinct

feature wavelengths significantly influence the effectiveness of the
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prediction models. The optimal model, SG-CARS-MLR, exhibited a

training set R2
c of 0.9563, an RMSEC value of 0.4892%, a prediction

set R2
p of 0.9336, and an RMSEP value of 0.5616%. The results for

flaxseed protein content prediction in both the training and

prediction sets are illustrated in Figure 8A. The other two models,

SG-CARS-PLSR and SG-CARS-PCR (Figures 8B, C), also provided

reasonably accurate protein content predictions, with R2
p values of

0.8930 and 0.8671, and RMSEP values of 0.4189% and 0.4670%,

respectively. These findings confirm that the combination of

HSI and the SG-CARS-MLR model delivers strong predictive

performance for different flaxseed varieties’ protein content.

Finally, characteristic bands associated with significant protein

influence were identified using the SG-CARS-MLR model

(Figure 9). Generally, when the absolute t-value surpasses a

specific threshold (usually 2.0), it indicates the significant impact

of a corresponding independent variable on the dependent variable.

In this context, Figure 8 shows that the bands at 595 and 772 nm

exceed this threshold, signifying their substantial influence on the

MLR model for protein content prediction.

3.3.2 Hyperspectral prediction modeling of oil
content, linoleic acid and lignan in flaxseed

The prediction results for oil content, linoleic acid, and lignan

content of flaxseed are presented in Table 4. The MLR model

performs better than the PLSR, PCR, and SVR models. The R2
p

values of PLSR, PCR, and SVR regression algorithms are all less

than 0.8, indicating these models aren’t suitable for predicting the
TABLE 3 Protein prediction result table.

Modeling
method

Feature
extraction
method

Number
of
feature
variables

Cal Pre

R2 RMSEC R2 RMSEP

Protein

PLSR

Non 320 0.9376 0.3848 0.7950 0.5800

SPA 14 0.8933 0.5032 0.8197 0.5438

CARS 33 0.9357 0.3907 0.8930 0.4189

SVR

Non 320 0.9546 0.3193 0.6366 0.9233

SPA 14 0.9546 0.3193 0.6639 0.8845

CARS 33 0.8632 0.6024 0.8061 0.7091

PCR

Non 320 0.6188 0.9512 0.4605 0.9408

SPA 14 0.5479 1.0359 0.4282 0.9686

CARS 33 0.9206 0.4340 0.8671 0.4670

MLR

Non 320 * * * *

SPA 14 0.9010 0.5597 0.9329 0.5642

CARS 33 0.9563 0.4892 0.9336 0.5616
fro
Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values
indicate optimal model metrics.
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FIGURE 8

The optimal prediction of proteins based on (A) MLR, (B) PLSR, and (C) PCR models.
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TABLE 4 Oil content, Linoleic acid, and lignan prediction result table.

Modeling
method

Feature
extraction
method

Number of
feature variables

Cal Pre

R2 RMSEC R2 RMSEP

Oil content

PLSR

Non 320 0.7401 0.826 0.6864 0.8397

SPA 20 0.5218 1.1205 0.6058 0.9413

CARS 10 0.6678 0.9339 0.6438 0.8948

SVR

Non 320 0.94 0.3952 0.5884 1.0305

SPA 20 0.9399 0.3953 0.5884 1.0305

CARS 10 0.94 0.3953 0.5884 1.0306

PCR

Non 320 0.5835 1.0458 0.6002 0.9481

SPA 20 0.5917 1.0353 0.6077 0.939

CARS 10 0.6866 0.9071 0.6572 0.8779

MLR

Non 320 * * * *

SPA 20 0.7675 0.9691 0.8565 0.8682

CARS 10 0.6876 1.0022 0.8532 0.8779

Linoleic acid

PLSR

Non 320 0.7204 0.4550 0.5502 0.5497

SPA 20 0.6871 0.4813 0.5490 0.5504

CARS 16 0.6404 0.5160 0.4495 0.6081

SVR

Non 320 0.9461 0.1977 0.7363 0.4516

SPA 20 0.9462 0.1977 0.7362 0.4516

CARS 16 0.9462 0.1977 0.7362 0.4516

PCR

Non 320 0.6474 0.5110 0.5381 0.557

SPA 20 0.4604 0.6320 0.3418 0.6649

CARS 16 0.6564 0.5043 0.4381 0.6143

MLR Non 320 * * * *

(Continued)
F
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FIGURE 9

Significance map of MLR model for CARS extracted feature bands.
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aforementioned contents in flaxseed. The extraction of feature

wavelengths by SPA and CARS algorithms appears applicable to

the MLR model. Specifically, the SG-SPA-MLR models perform

better than SG-CARS-MLR in predicting oil content, linoleic acid,

and lignan. For instance, the R2
p and RMSEP for oil content are

0.8565 and 0.8682%, and for linoleic acid are 0.8028 and 0.5404%,

respectively. In contrast, the best model in literature predicting oil

content for rapeseed seeds had an R2
p and RMSEP of 0.868 and

1.0698% (Li et al., 2023), respectively. Furthermore, lignan content

was predicted with R2
p and RMSEP of 0.9343 and 0.5834%,

respectively. Studies suggest that feature wavelengths derived

from SPA and CARS algorithms enhance the predictive

performance of MLR models, as observed in the prediction of

moisture content of tobacco leaves (Sun et al., 2016) and the use

of hyperspectral image technology for egg freshness detection

(Wang et al., 2015). The scatter plots for the three types of

flaxseed nutritional quality in both training and prediction sets

are depicted in Figure 10, indicating the superior predictive

performance of the SG-SPA-MLR model. Even though the R2
p for

linoleic acid in the prediction set is 0.8028, the RMSEP is 0.5404%,

affirming the model’s aptness for prediction. Finally, Figure 11

highlights the importance of SPA-extracted feature bands in the

MLR model. Figures 11A, C underscore the significance of these

bands in predicting oil and lignin content. Notably, in Figure 11C,

the MLR model predicts 18 feature bands with t-values greater than

2.0 in lignin content. These bands primarily appear around 470 nm

(related to nitrogen content) (Li et al., 2022) and 800 nm (related to
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oxygen content) (Yuan et al., 2021), demonstrating the SG-SPA-

MLR model’s superior prediction of lignan content.

This project employs HSI technology within the 380-1018nm

spectral range to gather data from flax seeds. The PLSR model

cross-validation is then utilized to select the optimal pre-processing

method, SG. Subsequently, characteristic wavelengths are extracted

employing SPA and CARS algorithms. Finally, the spectral data

corresponding to these characteristic wavelengths are combined

with the protein, oil content, linoleic acid, and lignan acquired from

the flax seeds through biochemical methods. This integration

constructs four nutritional quality prediction models (SG-CARS/

SPA-MLR) for rapid and non-destructive testing. The models

achieve a prediction accuracy exceeding 0.93 for protein and

lignan content, surpassing 0.85 for oil content. Although the

linoleic acid content prediction accuracy is slightly lower, it still

exceeds 0.80. These results fully address the requirements of

practical production for rapid, non-destructive detecting of the

nutritional quality of flaxseed grain.
4 Conclusions

The protein, oil content, linoleic acid, and lignan are

crucial indicators for evaluating the quality of flaxseed. This

study aimed to construct a model for the rapid and non-

destructive detection of these components in flaxseed using

HSI technology. Through experimental comparisons of various
TABLE 4 Continued

Modeling
method

Feature
extraction
method

Number of
feature variables

Cal Pre

R2 RMSEC R2 RMSEP

SPA 20 0.7489 0.5728 0.8028 0.5404

CARS 16 0.6740 0.5803 0.7286 0.6340

Lignan

PLSR

Non 320 0.8597 0.5562 0.6626 0.8057

SPA 29 0.5404 1.0067 0.5103 0.9707

CARS 24 0.6362 0.8957 0.5475 0.9331

SVR

Non 320 0.9761 0.2688 0.6136 0.9082

SPA 29 0.8464 0.6738 0.5177 1.0478

CARS 24 0.9400 0.3953 0.5884 1.0306

PCR

Non 320 0.3959 1.1542 0.5105 0.9705

SPA 29 0.5387 1.0086 0.4346 1.0430

CARS 24 0.6249 0.9094 0.4880 0.9926

MLR

Non 320 * * * *

SPA 29 0.9024 0.6562 0.9343 0.5384

CARS 24 0.7635 0.9455 0.8285 0.8697
fro
Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values
indicate optimal model metrics.
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FIGURE 10

Predicted results of oil content, linoleic acid, and lignan content based on the optimal model SG-SPA-MLR. (A) Oil content prediction results.
(B) Results of linoleic acid content prediction. (C) Prediction results of lignan content.
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spectral image preprocessing methods and feature wavelength

extraction algorithms, the preferred model achieved swift and

non-destructive detection of protein, oil content, linoleic acid,

and lignan in flaxseed grains, yielding better results. This

research introduces a novel method for the future investigation

of rapid, non-destructive, and high-precision detection of

nutritional quality in different flaxseed varieties, enhancing the

efficiency of screening and evaluating flax germplasm resources.

The study’s results hold positive practical significance for the

sustainable development of the flax industry and the selection

and breeding of high-quality flax varieties.
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Introduction: The micronutrient deficiency of iron and boron is a common issue

affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive

diagnosis method for iron and boron deficiency in Brassica napus (genotype:

Zhongshuang 11) using hyperspectral imaging technology was established.

Methods: The recognition accuracy was compared using the Fisher Linear

Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition

models. Recognition results showed that Multiple Scattering Correction (MSC)

could be applied for the full band hyperspectral data processing, while the LDA

models presented better performance on establishing the leaf iron and boron

deficiency symptom recognition than the SVM models.

Results: The recognition accuracy of the training set reached 96.67%, and the

recognition rate of the prediction set could be 91.67%. To improve the model

accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was

added to construct the MSC-CARS-LDA model. 33 featured wavelengths were

selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set

was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set

was 95.00%.

Discussion: This study indicates that, it is capable to identify the iron and boron

deficiency in rapeseed using hyperspectral imaging technology.
KEYWORDS

deficiency identification, rapeseed, iron and boron, hyperspectral imaging, MSC-
CARS-LDA
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1 Introduction

Rapeseed, rich in oil and protein, is an important oil crop and

industrial raw material, as well as a potential bioenergy crop overall

the world (Liu et al., 2019). According to the Rapeseed Explorer of

USDA, the global production of rapeseed has reached 87.103

million metric tons, which producing 31.8 million metric

rapeseed oil (USDA, 2024). With various useful compounds of

fatty acids, vitamins and proteins, rapeseed oil ranks as the third

most popular vegetable oil after oil palm and soybean (Friedt et al.,

2018). To better manage the fertilizer supply during rapeseed

cultivation, it is essential to monitoring the micronutrients status

of the plants.

Appropriate application content of fertilizers will not only

benefit the absorption and utilization of nutrients by the

crop plants, but also contribute to plants stress tolerance

(Hasanuzzaman et al., 2018; Thor, 2019). On the contrary,

lacking essential nutrients could inhibit the growth of the plants,

which would directly lead to the negative effect on rapeseed quality

or yield (Agren et al., 2012; Johnson et al., 2022). Real-time, fast, and

accurate monitoring of nutrient content would provide guidance for

reasonable fertilization to increase the crop quality and production

in any specific regions (Brown et al., 2022; Tian et al., 2024).

Therefore, monitoring the nutrient content of plants is an

important aspect in crop cultivation and management.

As two of the essential micronutrients, boron and iron play

important roles in the growth and reproduction of rapeseed,

especially in the southwestern region of China. Boron participates

in promoting the transport of carbohydrates in vivo plants which

will accelerate the growth of apical shoots and meristem. It is also

conducive to the development of plant flower organs (Kalaji et al.,

2018; Li et al., 2020). When the rapeseed plant is in deficiency of

boron, the transportation of assimilation products in vivo plant

could be interrupted. As a result, a large amount of starch would

accumulate in the leaves and petioles. Furtherly, the greatly increase

of phenolic compounds content would lead to necrosis of plant

apical buds. Thus, the main manifestation of boron deficiency in

rapeseed is the inhibition of apical buds, which would interrupt the

growth of roots and shoots, ultimately leading to the issue of

“blooming but not setting fruit” of rapeseed plants. Iron acts as

an activator of some enzymes or enzyme cofactors in the synthesis

of chlorophyll. It would indirectly affect the production process of

chlorophyll, while playing an important role in electron transfer

chain in various biochemical reactions in vivo plants (Takano et al.,

2008; Pavlovic et al., 2021). The main manifestation of iron

deficiency in rapeseed is the chlorosis and yellowing between leaf

veins while the leaf veins themselves remain green, especially in the

top fresh leaves (Takano et al., 2008; Merchant, 2010).

Phenotyping technology with optical sensors such as RGB

camera, chlorophyll fluorescence sensors, and particularly the

spectral imaging system, has been widely applied in monitoring

various biotic stresses for crops. With UAV-based RGB and multi-

spectral sensors, salinity stress phenotyping has been realized in

tomato and quinoa plants (Johansen et al., 2019; Jiang et al., 2022).

The study results provided insight into the effects of salt stress on
Frontiers in Plant Science 02246
plant area, growth and condition. Optical information like

chlorophyll fluorescence can also be measured for photosystem

status evaluation such as investigating herbicide stresses in soybean

plants (Li et al., 2018). Meanwhile, phenotyping of stresses from

over or deficient macronutrients such as nitrogen, phosphorus, and

potassium have also been successfully tested in many studies using

hyperspectral imaging technology (Jiang et al., 2015; Tmusǐć et al.,

2020). However, at present, the deficiency of the micronutrients

iron and boron in crops is mainly evaluated using artificial vision

and empirical morphological diagnostic methods which could only

be made when obvious stress symptoms have appeared, and the

specific fertilization may be missed for the suitable application

time window.

The objectives of this study were to, (1) investigate if it was

possible to differentiate the iron and boron deficiency symptoms in

rapeseed from healthy plants at early growth stage using spectral

imaging technology; (2) optimize the spectral diagnostic model for a

high classification accuracy. The results will provide support for the

nutritional diagnosis of iron and boron content in rapeseed fields

using UAV-based sensing systems and even for the potential

detection of vegetation deficiency symptoms via the space-based

remote sensing satellites.
2 Materials and methods

2.1 Plant materials

The cultivar of tested rapeseed (Brassica napus L.) in this study

is Zhongshuang 11 (ZS11, Beijing, Chinese Academy of

Agricultural Sciences), which is widely grown in the Yangtze

River basin. The plants were grown in 380 mm×300 mm pots

with soilless hydroponic incubator with six plants per pot. All the

plants were cultivated in a greenhouse of Southwest University in

Chongqing, China.

The nutrient deficient plants were cultivated as the methodology

described by Han et al. (2016), in which the ZS11 genotype was also

cultivated as the tested plants. The rapeseed seeds were germinated in

distilled water. After germination, the seedlings were transferred to a

plastic net floating on the half strength modified Hoagland solution

(Table 1). Normally growth seedlings were selected for next

cultivation steps of the tests. Seedlings for control treatment were

kept in the half strength modified Hoagland solution with boron

concentration of 20 mmol L-1 (H3BO3) and iron concentration of 80

mmol L-1 (C10H12FeN2NaO8, EDTA-Fe), which were dramatically

lower than the element concentration in the Chinese State Standard

of foliar microelement fertilizer (State Administration for Marker

Regulation of the People’s Republic of China & Standardization

Administration of the People’s Republic of China, 2020). The

seedlings for nutrient deficiency treatments were then transferred

to solution with iron or boron in lower concentration. Boron

deficiency plants was transferred to the solution with boron

concentration of 0.5 mmol L-1, while the iron deficiency plants were

treated with iron concentration of 1 mmol L-1. The other nutrients of

both micronutrients deficient solution were kept in same
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concentration as the half strength modified Hoagland solution. The

solution in all treatments was replaced every two days.

Germination treatment was applied to full and consistent ZS11

seeds. The seeds were soaked in distilled water for 20 minutes and

disinfected with 5% NaClO solution for 20 minutes. After rinsed with

distilled water repeatedly for 5–6 times, the seeds were put on gauze

soaked in 1/4 strength Hoagland solution for seedling cultivation.

Seedlings with uniform growth stage were selected for

transplant. The plants were transferred to plastic hydroponic

tanks containing nutrient solutions (1/4 strength Hoagland

solution was used for cultivation in the first week after

transplanting, half strength Hoagland solution was used for

cultivation since the second week after transplanting, solution for

nutrient deficiency treatments were applied since the third week

after transplanting). Four biological replicates were applied for each

treatment with 72 plants in total. The plants were set with a

Randomized Block Design. The experiment was repeated twice in

3rd March to 14th June and 7th September to 12th December in 2023.
2.2 Hyperspectral imaging system

The physical and architectural diagrams of the hyperspectral

imaging system are shown in Figures 1A, B, respectively. The main

hardware includes a hyperspectral camera (Raptor EM285CL,

Raptor Photonics Led., UK), a spectrometer (Impector V10E,

Measuring wavelength range 364~1025 nm, Spectral resolution

2.8 nm, Specim, Spectral Imaging Ltd., Finland), a zoom lens, a

150 W halogen adjustable light source, a linear photoconductor, a

stepping motor mobile platform, a computer, etc. The whole set of

devices is placed in the black box except the computer. The main

software installed on the computer includes Spectral image, an

image acquisition software provided by Wuling Optics (Taiwan,

China), and HIS Analyzer, an image analysis software.
Frontiers in Plant Science 03247
This device was fixed on the top of a black box in a darkroom.

Each plant was moved to the measuring platform out from the

hydroponic incubator. The window of the black box was closed

during measurement.
2.3 Data collection and calibration

After 28 days of transplanting, hyperspectral images of rapeseed

leaves were collected uniformly. To ensure the representativeness of the

collected data, all samples were placed horizontally under the same

conditions for imaging. After pre-testing, it was ultimately determined

that the exposure time of the hyperspectral imaging system camera was

48 ms, the working distance from the lens to the sample was 480 mm,

and the moving platform speed was 1.12 mm s-1.

Black and white board correction was performed on the

hyperspectral image data of each sample in the image analysis

software HIS Analyzer. The correction formula is as follows:

R = (Rs − RD)=(Rw − RD)

where, R is the relative reflection density of the leaves, Rs is the

reflection density of the original image of the sample, Rw is the

reflection density of all the white calibration image, and RD is the

reflection density of the all black calibration image. Black and white

correction is used to eliminate the influence of camera dark current,

while converting the spectral values of the original hyperspectral

image into reflectance.
2.4 Data preprocessing

Due to the influence of instruments, image acquisition

background, environmental lighting conditions, and other factors,

there would be noise, spectral baseline drift, and translation in the

obtained spectral data. To eliminate these adverse effects on

classification modeling, preprocessing of spectral data is necessary.

After preliminary experiments, normalization, SG convolutional

smoothing, spectral differentiation, and Multiple Scattering

Correction (MSC) were selected for the spectra preprocess of the

leaf samples after smoothing. The preprocessing procedure is shown

in Figure 2. Four types of the spectral data obtained after

preprocessing are spectral sample sets 1–4, which are abbreviated

as RAW, 1st Der, MSC, and 2nd Der in the following text.

Figure 3 shows four spectral samples obtained from the pre-

processed spectral data of some healthy rapeseed leaves.
2.5 Band screening

Hyperspectral data often has hundreds or even thousands of

wavelength points, which not only provides rich information about

samples but also poses challenges for computer storage,

transmission, and data processing (Arnon and Hoagland, 1938).

When extracting spectral dimension information from

hyperspectral data for modeling, using full band spectral
TABLE 1 Modified 1/2 Hoagland complete nutrient solution formula.

Chemical Molecular Weight Concentration
(10–3 mol L-1)

Ca(NO3)2·4H2O 236.15 2500

KNO3 101.1 2500

NH4NO3 80.04 1000

K2SO4 174.26 250

MgSO4·7H2O 246.47 1000

KH2PO4 136.09 500

DETA-Fe 376.05 80

H3BO3 61.83 20

MnCI2·4H2O 197.91 4.5

ZnSO4·7H2O 287.54 0.3

CuSO4·5H2O 249.68 0.16

(NH4)6Mo7O24·4H2O 1235.86 0.16
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information to establish the model will bring various negative

impacts to the model due to the presence of uninformative

variables in the data (Gruber et al., 2013). The dimension

reduction algorithm can select the wavelength variables that are

more meaningful to the classification results from the full

wavelength range and eliminate redundant wavelengths. It could

improve the prediction accuracy and modeling calculation

efficiency of the model, as well as reducing the overfitting of the

model and improve the generalization ability of the model (Arnon

and Hoagland, 1938; Gruber et al., 2013; Khan et al., 2018).

2.5.1 Continuous projection algorithm
Successive Projections Algorithm (SPA) is a forward variable

selection algorithm, which uses vector projection analysis to select

the combination of many variables with the smallest collinearity. In

some studies on plant spectral feature classification and regression

models, continuous projection algorithms are often applied in the

dimensionality reduction process of hyperspectral data, which can

play a good role in improving model operation efficiency and

recognition accuracy (Belgiu and Drăgut,̧ 2016).

2.5.2 Competitive adaptive reweighting algorithm
The Competitive Adaptive Reweighted Sampling (CARS)

algorithm has also been widely applied in the recognition of plant

spectral features. CARS uses the Monte Carlo sampling principle to

select sample subsets for modeling, and to evaluate the importance of

variables through the regression coefficients of the sub models. In each
Frontiers in Plant Science 04248
iteration, dimensionality reduction is achieved by removing variables

with smaller mean regression coefficients through Exponential

Decreasing Function (EDF) and Adaptive Reweighted Sampling

(ARS) (Lorente et al., 2012).
2.6 Classification model

Linear Discriminant Analysis (LDA), also known as Fisher

linear discriminant analysis, is a classic algorithm for pattern

recognition and is widely used in multi class classification

problems. Using LDA can maximize the inter class scatter matrix

of the projected pattern samples and minimize the intra class scatter

matrix, ensuring that the projected pattern samples have the

minimum intra class distance and maximum inter class distance

in a new space. Its essence lies in finding a subspace. It enables

better separation of various categories in this subspace, which

means that patterns have the best separability in that space

(Zhang et al., 2022).

Support Vector Machine (SVM) is a supervised pattern

recognition method. The original spectral data is mapped to a

high-dimensional feature space, and an optimal classification

hyperplane is constructed to maximize the distance between the

support vectors of various samples and this hyperplane. SVM can be

used for linear and nonlinear multivariate analysis problems, and

the support vector can be solved by using linear equations instead of

Quadratic programming. By selecting appropriate kernel functions

to ensure the speed and efficiency of modeling while implementing

nonlinear mapping (Yuan et al., 2020), this experiment uses Radial

Basis Function (RBF) as kernel functions.
3 Results

3.1 Spectral features of nutrient
deficient leaves

From the average spectra of the collected leaves of rapeseed

plants (Figure 4), it presented that overall waveform of the spectral
FIGURE 2

Flow chart of spectral data preprocessing.
BA

FIGURE 1

Hyperspectral imaging system (A) physical drawing; (B) architecture diagram.
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reflection curve in the wavelength range of 400–1000 nm was

similar between normal plants and iron or boron deficient plants.
3.2 Deficiency recognition and
classification model based on full
band information

After preprocessing the 400–1000 nm full band spectral data

using three preprocessing methods, known as spectral first order

differential, spectral second order differential and MSC. LDA

discriminative model and SVM discriminative model for

identifying iron deficiency, boron deficiency and normal leaves

were established respectively. LDA discriminative model is a typical

Fisher linear discriminant analysis in Matlab Toolbox. When using

SVM to build a discriminative model, the kernel function used

when using SVM to build a discriminative model is the radial basis

function (RBF) kernel function:

K(Xi,Xj) = exp(− g ∥Xi − Xj ∥)
2

In the SVM modeling, the Penalty coefficient y was set as 100,

and the kernel width s was set as 0.1. The discrimination results of

each model were shown in Table 2.

Comparing the discrimination accuracy of the two models, it

presented that the LDA model had better overall discrimination

performance than the SVM model. However, when using the LDA

model to model the rapeseed leaf spectral dataset, the most suitable
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preprocessing method was MSC. When using the SVM model, the

two preprocessing methods MSC and 2nd Der had better results.

By analyzing the confusion matrix of the modeling set

(Figure 5) and the test set (Figure 6) based on the SVM model, it

presented that the SVM model had a good spectral recognition

effect for healthy and nutrient deficient rape leaves, with an

accuracy rate of more than 90%. The recognition effect of iron
B

C D

A

FIGURE 3

Four spectral samples obtained from preprocessing spectral data of some healthy rapeseed leaves. (A) Sample set 1: RAW; (B) Sample set 2: 1st Der;
(C) Sample set 3: MSC; (D) Sample set 4: 2nd Der.
FIGURE 4

Comparison of average spectra between normal leaves and iron and
boron deficient in Brassica napus leaves.
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and boron deficient rapeseed leaves is average, with the 1st Der data

having the worst effect, with an accuracy rate of only 55%. The

accuracy rates of RAW, MSC, and 2nd Der data are all between 70%

and 85%.

Experiments also shown that SVM models based on full band

spectral data can effectively identify healthy rapeseed leaves and

rapeseed leaves lacking iron and boron elements. However, the

recognition accuracy between iron deficient and boron deficient

leaves still needed to be improved.
Frontiers in Plant Science 06250
The analysis of the confusion matrix of the modeling set

(Figure 7) and the test set (Figure 8) based on the LDA model

showed that the LDA model was superior to the SVM model in

spectral recognition of healthy and nutrient deficient rapeseed leave.

Its accuracy in the test set is more than 95%. In the recognition of

iron and boron deficient rapeseed leaves, MSC data showed

significantly better performance than RAW, 1st Der, and 2nd Der

data, with average accuracy exceeding 90% in both training and

testing sets.
TABLE 2 Discrimination results of LDA and SVM discrimination models under different spectral pretreatment.

Model Preprocessing method Training set Testing set

Nc/Nt Accuracy Nc/Nt Accuracy

SVM RAW 81/90 90.00% 47/60 78.33%

1st Der 78/90 86.67% 39/60 65.00%

MSC 84/90 93.33% 52/60 86.67%

2nd Der 83/90 92.22% 51/60 85.00%

LDA RAW 79/90 87.77% 49/60 81.66%

1st Der 81/90 90.00% 46/60 76.67%

MSC 87/90 96.67% 55/60 91.67%

2nd Der 84/90 93.33% 47/60 78.33%
“Nc” represents the correct discriminant number of the tested samples; “Nt” represents the total number of tested samples.
B

C D
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FIGURE 5

Discrimination results based on SVM models under different spectral pretreatments (Modeling set) for iron and boron deficiency in Brassica napus.
(A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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Further analysis of the discrimination results of the MSC-LDA

model showed that both the modeling and prediction sets had a 100%

accuracy in discriminating normal samples. In general, the

discrimination accuracy of samples with boron deficiency was

higher than that of samples with iron deficiency. From the

confusion matrix, two samples with boron deficiency in the

modeling set were wrongly identified as samples with iron

deficiency symptoms, while one sample with iron deficiency

symptoms was wrongly identified as samples with boron deficiency,

and two samples are wrongly identified as healthy samples. The

prediction set discrimination results also showed that one sample

with boron deficiency was wrongly identified as samples with iron

deficiency symptoms, and four samples with iron deficiency

symptoms were wrongly identified as samples with iron deficiency.

The results of this experiment indicate that the MSC-LDA model

achieved the highest accuracy in the combination of data preprocessing

and modeling methods for Brassica napus iron and boron. The overall

discrimination accuracy of the modeling set reached 96.67%, and the

overall discrimination accuracy of the prediction set reached 91.67%.
3.3 Feature band screening results

Figure 9A shows the process of reducing the number of bands

involved in modeling through 50 Monte Carlo sampling (MC) of
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the sample data. Figure 9B shows the cross-validation error curve of

the PLS model using the Leave on One Out (LOO) method as the

number of bands involved in modeling decreases. From the above

two curves, it could be seen that as the number of bands involved in

modeling gradually decreases, the Root Mean Square Error of Cross

Validation (RMSECV) of the model first shows a slow decreasing

trend. It indicated that there is indeed a lot of redundant

information in the spectral raw data containing more than 600

bands. Screening out certain band data could not only reduce

computational complexity, but also improve the accuracy of the

model to a certain extent. When the sampling frequency starts from

24, the RMSECV of the model in the training set gradually

increased as the number of modeling bands decreases, indicating

that some band data useful for classification modeling begins to

be eliminated.

The above phenomenon indicates that there is indeed a large

amount of redundant information in the original spectrum that is

useless for the classification and recognition of iron and boron

stress in rapeseed. It is meaningful to reduce the dimensionality of

the original spectral data.

SPA and CARS were used to reduce the dimensionality of

rapeseed leaf spectral data, as shown in Table 3. A total of 18

characteristic wavelengths were selected by SPA and defined as

subset 1. CARS screened a total of 33 wavelengths and defined them

as subset 2.
B

C D
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FIGURE 6

Discrimination results based on SVM model under different spectral pretreatments (Test set) for iron and boron deficiency in Brassica napus. (A)
RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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FIGURE 7

Discrimination results based on LDA models under different spectral pretreatments (Modeling set) for iron and boron deficiency in Brassica napus.
(A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
B
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FIGURE 8

Discrimination results based on LDA model under different spectral pretreatment (test set). (A) RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.
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3.4 Establishment of a deficiency
recognition and classification model based
on feature band information

Since the MSC-LDA model is superior to other discriminative

model when full band spectral information modeling is used, the

MSC-SPA-LDA and MSC-CARS-LDA mode l ing and

discrimination are conducted using two characteristic wavelength

subsets screened according to SPA and CARS. The prediction

results are shown in Table 4, and the confusion matrix is shown

in Figure 10 (MSC-SPA-LDA) and Figure 11 (MSC-CARS-LDA).

Analysis of the discrimination results of the MSC-SPA-LDA

model showed that the accuracy of the MSC-SPA-LDAmodel based

on SPA feature bands is 94.44% on the training set and 91.67% on

the test set, which is slightly lower than the MSC-LDA model based

on full band. However, due to its significant reduction in the

number of input variables in the model, the running speed of the

model is significantly improved, and the accuracy is within an

acceptable range, so the MSC-SPA-LDA model has better

applicability than the MSC-LDA model.

By analyzing the discrimination results of the MSC-CARS-LDA

model, it could be concluded that the MSC-CARS-LDA model

based on CARS feature bands achieved 100% and 95% accuracy on

the training and testing sets, respectively, making it the model with

the highest recognition accuracy in this experiment.

The feature wavelengths of subset 2 selected based on the CARS

algorithm were mainly concentrated between the regions of 400–

450 nm and 800–1000 nm, especially in the blue-violet light region
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of 400–450 nm, which is not the green peak region with the greatest

difference in the 500–650 nm spectral curve. This indicates that the

degree of leaf chlorosis is not the only basis for discrimination in

this recognition system.
4 Discussion

The deficiency of iron and boron could lead to a decrease in

chlorophyll content in the leaves, weakening their absorption of solar

radiation, and causing an overall increase in the spectral reflectance of

the leaves in the wavelength range of 400–700 nm, resulting in a “blue

shift” phenomenon at the “red edge” position. This was consistent

with previous research results (Yang et al., 2018). Considering the

“green peak” at 550 nm, the spectral reflectance difference was the

largest. The increase in green peak caused by iron deficiency was

more intense than that caused by boron deficiency, indicating that the

level of plant nutrient element content was closely related to spectral

characteristics. When the plants were in deficiency of iron or boron,

the total chlorophyll content of their leaves might reduce. That would

lead to weak absorption of solar radiation and an increase in the

reflectance and transmittance of incident light, which has been

proven in crops like sorghum and sugar beet (Teixeira et al., 2020;

Wu et al., 2021). The symptoms of nutrient deficiency in rapeseed

leaves appeared because of the decrease of chlorophyll content, which

might cause corresponding spectral responses such as an increase in

green peaks. This provides a basis for conducting spectral recognition

and identification.

The spectral reflectance of plant leaves in the range of 400–1000

nm indicated spectral responses to various factors such as plant

metabolites, chlorophyll, water content, internal structure of leaf

surfaces, and physical properties of plant leaves. The correlation

between spectral reflectance of different bands and the abundance or

deficiency of iron and boron elements in rapeseed plants was

comprehensive responses of the rapeseed plants to the nutrients

status and environment, rather than the direct correlation between

spectral values and iron and boron content. Therefore, machine

learning algorithms was employed in this study for further analysis.

Two pattern recognition methods, LDA and SVM, were used to
TABLE 3 Selected characteristic wavebands by SPA and CARS.

Data
name

Wavelength(nm)

Dataset
1

410, 411, 416, 421, 426, 429, 434, 437, 441, 442, 672, 691, 722, 737,
981, 990, 997

Dataset
2

401, 402, 405, 406, 408, 411, 412, 414, 417, 418, 422, 426, 427, 429,
430, 434, 438, 445, 446, 449, 453, 455, 674, 688, 812, 864, 882, 919,
955, 973, 977, 980, 992
BA

FIGURE 9

Impact of the number of bands involved in modeling on model accuracy. (A) Change trend of band number; (B) Model RMSECV change trend.
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identify different deficiency symptoms. The LDA algorithm achieves

better recognition results, and the CARS algorithm performs better

than the SPA algorithm in feature wavelength screening. Through the

analysis of confusion matrix, it presented that the recognition rate of

the recognition model established in this study for healthy rape leaves

was always higher than 90%. The recognition of iron deficient leaves

and boron deficient leaves presented some confusion of samples.

From Figure 5, it could also be seen that the green peak increase

response caused by iron deficiency was stronger than that caused by

boron deficiency. It might suggest that the physiological response to

spectral properties from iron deficiency was more sensitive than that

from boron deficiency in rapeseed plants (Sarafi et al., 2018).
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5 Conclusion

The spectral response of normal, iron deficient, and boron deficient

rapeseed plants was investigated using hyperspectral imaging

technology in this study. Thus, it could conclude that, (1) with

employing spectral imaging technology, it is capable to identify the

iron and boron deficiency symptoms in rapeseed from healthy plants at

early growth stage based on full band and featured band; (2) the LDA

discriminativemodel established by screening characteristic wavelengths

could be optimized using CARS for further field application with lower

data consumption and faster calculation, and the recognition accuracy

of its modeling set and prediction set could be 92.22% and 86.67%.
BA

FIGURE 10

MSC-SPA-LDA model discrimination result confusion matrix. (A) training set, (B) test set.
BA

FIGURE 11

MSC-CARS-LDA model discrimination result confusion matrix. (A) training set, (B) test set.
TABLE 4 MSC-LDA discrimination model based on characteristic wavelength.

Model Training Set Test Set

Nc/Nt Accuracy Nc/Nt Accuracy

MSC-SPA-LDA 85/90 94.44% 55/60 91.67%

MSC-CARS-LDA 90/90 100.00% 57/60 95.00%
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