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The quality of tropical fruits and vegetables and the expanding global interest in
eating healthy foods have resulted in the continual development of reliable,
quick, and cost-effective quality assurance methods. The present review
discusses the advancement of non-destructive spectral measurements for
evaluating the quality of major tropical fruits and vegetables. Fourier transform
infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral
imaging (HSI) were used to monitor the external and internal parameters of
papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect
both spectral and spatial dimensions proved its efficiency in measuring external
qualities such as grading 516 bananas, and defects in 10 mangoes and 10
avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques
effectively assessed internal characteristics such as total soluble solids (TSS),
soluble solid content (SSC), and moisture content (MC), with the exception of
NIR, which was found to have limited penetration depth for fruits and vegetables
with thick rinds or skins, including avocado, pineapple, and banana. The
appropriate selection of NIR optical geometry and wavelength range can help
to improve the prediction accuracy of these crops. The advancement of spectral
measurements combined with machine learning and deep learning technologies
have increased the efficiency of estimating the six maturity stages of papaya fruit,
from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature
concatenation of data developed by HSI and visible light. The presented findings
in the technological advancements of non-destructive spectral measurements
offer promising quality assurance for tropical fruits and vegetables.

KEYWORDS

non-destructive measurement, spectral measurements, quality parameters, tropical
fruits and vegetables, rapid measurement
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Aline et al.

1 Introduction

Tropical fruits and vegetables are agricultural crops that are
typically grown in tropical regions where the climate is warm, with
temperatures ranging from 20 to 35°C (Bahadur et al, 2020).
Tropical regions are found amidst the tropics of Cancer and
Capricorn, and encompass equatorial zones in Oceania, Asia,
Africa, Central and South America, and the Caribbean (Zakaria,
2023). Crops grown naturally in such weather conditions provide
essential minerals, water, fiber, and vitamins that contribute
significantly to the well-being of humans by safeguarding against
ailments such as diabetes, hypertension, and cancer (Emelike and
Akusu, 2019).

The agricultural revolution and the adaptation of numerous
tropical plants to regions outside of their natural range have
muddied their classification, and little is known about what
properly defines and distinguishes tropical fruits and vegetables
from their temperate counterparts (Indiarto, 2020). Fernandes et al.
(Fernandes et al., 2011) described crop classification according to
size, acidity, seed type, and bearing. Included among alkaline crops
are apples, bananas, peaches, cherries, persimmon, and litchi
(Fernandes et al,, 2011). Acidic crops include strawberry, orange,
kiwi, pineapple, lemon, star fruit, and logan, whereas sub-acidic
examples are mango, pear, blackberry, papaya, blueberry,
cherimoya, and mulberry (Fernandes et al., 2011). Chakraborty
et al. (Chakraborty et al, 2014) agreed and structured the
classification of tropical fruits based on that of Fernandes. Sarkar
etal. (Sarkar et al., 2018) reported classification system according to
maturity stage by means of ethylene gas emission and respiration
rate, including both climacteric and non-climacteric tropical
produce (Sarkar et al., 2018). Tropical climacteric produce such
as avocado, apple, pear, mango, papaya, broccoli, banana, kiwi, and
tomato undergoes maturation in correlation with an escalation in
their respiration rate and the release of ethylene gas (Indiarto,
2020), whereas tropical non-climacteric crops such as grape, berry,
citrus, litchi, strawberry, raspberry, pumpkin, watermelon,
cucumber, and pineapple do not undergo an elevation in their
respiration rate as they reach maturity (Indiarto, 2020). The
contrasting report of Retamales et al. (Retamales, 2011) centers
around the production of temperate crops worldwide. In this report,
apple, raspberry, pear, peach, kiwi, blueberry, strawberry and plum
were considered as temperate fruits (Retamales, 2011). In addition,
Benichou et al. (Benichou et al., 2018) have also classified temperate
fruits as tree (apple, plum, pear and peach), vine (grape and kiwi),
and small fruits such as raspberry, blueberry and currant (Benichou
et al., 2018).

Papaya, pineapple, avocado, mango, and banana are considered
to be major tropical fruits globally (Mukhametzyanov et al., 2022).
According to a market review prediction for the years 2013 to 2022
by the Food and Agriculture Organization of the United Nations
(FAO), the most exported tropical fruits globally from Central
America and the Caribbean, South America and Asia, Africa, and
others in millions of tons were papaya, pineapple, avocado and
mango with 3.7, 3.2, 2.3, and 2.1, respectively (Altendorf, 2019). On
the other hand, recent data have shown that global vegetable
production increased by 68% between 2000 and 2021 (FAO,
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2022). Because of the continuous and emergent demand for
tropical fruits and vegetables worldwide, the present emphasis is
on quality assurance in relation to end-user inclinations and
commercial standards (Silva and Abud, 2017). The quality of
tropical fruits and vegetables is characterized by both external
and internal parameters (Jha and Matsuoka, 2000). External
parameters namely color, defects, size and shape depend on not
only the appearance of the product, but also on the standards set
(Cubero et al., 2016), whereas internal parameters such as
nutritional value, internal defects, flavor, and texture are
subjective to physicochemical composition and climate change
(Zainalabidin et al, 2019). The quality of fruits and vegetables
influences consumer preference and is directly or indirectly linked
with further value-addition and processing technologies (James et
al,, 2010).

Several studies have identified postharvest losses as the most
prominent factor among the origins of crop quality deterioration
(Porat et al,, 2018; Etana, 2019; Ahmad et al., 2021). Adding to that,
high temperature and relative humidity are mentioned in the
biological and chemical degradation of produce freshness, which
affects sweetness, flavor, weight, turgor, and nutritional value (Elik
et al,, 2019). However, past reports indicated that low-temperature
cooling systems and edible coating materials can be used to
maintain and monitor the quality of these crops (Mendy et al,
2019; Jodhani and Nataraj, 2021). Conventional methods relying on
the quantification of different quality traits such as dry matter
content, oil content, and moisture content have also been reported
in the study of quality parameters of fruits and vegetables; however,
these methods were found to be undesirable, destructive, time-
consuming, and labor-intensive (Magwaza and Tesfay, 2015;
Kyriacou and Rouphael, 2018). Therefore, the application of non-
destructive bio-sensing methods as a promising alternative for
evaluating the value of tropical produce has been adopted
(Ndlovu et al., 2022; Okere et al., 2022).

Computer vision and popular pre-trained convolutional neural
network (CNN) models have been used as recognition systems to
sort and grade different fruits and vegetables, especially in
supermarkets, regarding their variety and species (Dubey and
Jalal, 2012). However, computer vision can only assess external
quality attributes due to the lack of spectral information (Rahman
and Cho, 2016; Bhargava and Bansal, 2021). Acoustic emission
technology involves the mechanical destruction of produce when
subjected to mechanical or thermal stimulus (Aboonajmi et al,
2015) and is not appropriate for all categories of fruits and
vegetables (Adedeji et al, 2020 ). Extensive works have been
published on the evaluation of fruits and vegetables by spectral
measurements such as Fourier transform infrared (FTIR)
spectroscopy (Egidio et al, 2009), Near-infrared (NIR), Raman
spectroscopy (Pandiselvam et al., 2022), and hyperspectral imaging
(HSI) (Wang and Zhai, 2018). Generally, these reports have
concentrated on the utilization of spectral measurements for
determining targeted quality parameters of a particular fruit or
vegetable variety. For instance, visible and near-infrared
spectroscopy was used to investigate the internal browning in
mango fruits (Gabriéls et al., 2020). Ali et al. (Ali et al.,, 2023)
investigated FTIR, NIR, and machine vision in the quality
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monitoring of pineapples. Metlenkin et al. (Metlenkin et al., 2022)
distinguished Hass avocado fruits by defects using hyperspectral
imaging (HSI). The question revolves around the practical
utilization of these approaches and the challenges associated with
improving data processing speed and in-line implementation
(Cortes et al.,, 2019; Si et al,, 2022). Quick hardware and software
are required to fulfill the demands of swift analysis for extensive
hyperspectral datasets (Xu et al, 2023) and machine learning
algorithms, especially those relying on deep learning act as black
boxes rather than using interpretability models for high-stakes
decisions (Caceres-Hernandez et al., 2023).

The present review highlights the current advances in non-
destructive spectral measurements for quality assessment,
specifically for major tropical fruits and vegetables. The quality
parameters of these tropical produces are covered first. The
discussion on each of the spectral measurements, the tropical
crops used, and the specific findings obtained from various
studies, which are summarized in Table 1, follows and can deliver
valuable information on the capabilities and efficiency of these

10.3389/fpls.2023.1240361

techniques. In addition, the merits and demerits of each of these
spectral measurements, which are presented in Table 2, will guide
future researchers in selecting the proper evaluation method when
evaluating the quality of tropical produces. To facilitate
comprehension and quick understanding of key terminologies
involved, the list of abbreviations and definitions contained in the
paper is presented in Table 3.

2 Quality inspection of Tropical fruits
and vegetables

Quality inspection is the process of evaluating specific
parameters of fruits and vegetables to ensure required quality
standards (Phey et al., 2020). The intention of quality inspection
is to detect any internal or external characteristics that can aid in
identifying both standard quality parameters and defects or non-
conformities that can affect the safety of fruits and vegetables or

TABLE 1 A comparison of the application of various non-destructive spectral measurements in the quality assessment of tropical fruits and

vegetables.
Measurement = Tropical Parameter Data Performance Reference
produce analysis (Accuracy)
FTIR, FTNIR Pineapple N PCA SD=0.17 (Egidio et al., 2009)
TA SD=0.11
PH SD=0.13
Vis-NIR, ML Mango Color PLS, ANN 80% (Gabriéls et al., 2020)
HSI Avocado Defects PCA, PLS-DA, 99.9% (Metlenkin et al., 2022)
SIMCA
NIR Mango Firmness PCA,MPLS R*~0.88 (Flores et al., 2008)
R~ 085
NIR Papaya Starch PLS R=0.90 (Purwanto et al., 2015)
SSC R=0.90
Vis-NIR Pineapple Nitrates PLSR R=0.95 (Srivichien et al., 2015)
HSI Potato SSC PLSR R2p=0.963 (Su and Sun, 2019)
FTIR Banana Maturity PLS R*~0.83 (Zhang et al., 2021)
ATR-FTIR, ML Banana Ripening PCA 96.0% (Sinanoglou et al., 2023)
NIR Avocado Moisture content PLS RPD= 2.00 (Olarewaju et al., 2016)
Dry matter RPD=2.13
NIR Mango Maturity MLR, PLS Rc=0.74 (Jha et al., 2014)
Rv=0.68
NIR Banana TSS PLS R?~0.81 (Ali et al., 2018)
PH R* 7 0.69
NIR, HSI Sweet potatoes Variety identification PLSDA R*~ 0.893 (Su et al,, 2019)
NIR Mango Firmness iPLSR R%c = 0.75 (Mishra et al., 2020)
R’p =075
Raman Cassava Starch adulteration OC-SVM/SIMCA 86.9% (Cardoso and Jesus Poppi, 2021)
Vis-NIR Pineapple Nitrate PLSR R=0.95 (Srivichien et al., 2015)
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TABLE 1 Continued

10.3389/fpls.2023.1240361

Measurement = Tropical Parameter Data Performance Reference
produce analysis (Accuracy)
HSI Banana SsC PLS/iPLS/PLSDA R* 7 0.64 (Chu et al,, 2022)
TA R*70.59
NIR-HSI Pineapple Water activity PLSR Rp=0.72 (Aozora et al., 2022)
HSI, ML, DL Papaya Maturity DCNN F1 =091 (Garillos-Manliguez and Chiang, 2021)
Raman Sweet potato Moisture and PLSR&PCA R? = 0.90(hot air) (Sebben et al., 2018)
carotenoids R*~0.88
(microwave)
Raman Potato Grading PLSDA ~100% (Morey et al.,, 2020)
HSI potato Bruises SVMM 87.88% (Ye et al., 2018)
SWIR-HSI Potato Black spot PLSDA 98.56% (Lopez-Maestresalas et al.,
2016)
Raman Mango Carotenoids - R=0.9618 (Bicanic et al., 2010)
Vis-NIR-HSI Avocado Nutrients (Fatty acids) PLSR R? ~ 0.79(flesh) (Kémper et al., 2020)
R? = 0.62(skin)
NIR-HSI Mango Defects K-NN 97.95% (Rivera et al., 2014)
HSI Banana Grading CNN/MLP 98.45% (Mesa and Chiang, 2021)

their usability in particular functions such as diets, trade, and
industrial chains (Kirezieva et al., 2013).

2.1 External quality of tropical fruits
and vegetables

The appearance of fruits and vegetables is a sensory attribute
that directly influences the perceived worth of the produce for
consumers (Zhang et al., 2014). The external quality of tropical
crops is indicated by a number of factors, including size, shape,
color, and external defects, as shown in Table 4 (Ganiron, 2014).
The size and shape are two complementary factors that differ
depending on the variety of the plant and are both assessed in
relation to market grading standards (Abbaszadeh et al., 2013). The
size is determined by measuring area, perimeter, length, and width,
which is more complex due to the morphological irregularities of
tropical crops natural state (Cubero et al., 2011). Moreda et al.
(Moreda et al., 2009) described some non-invasive systems for
assessing the size of fruits and vegetables. The systems are based on
(1) measuring the volume of the gap between the fruit and the outer
casing of an embracing gauge; (2) measuring the distance between a
radiation source and the fruit contour, where this distance is
computed from the time of flight (TOF) of the propagated waves;
(3) light obstruction by barriers or blockades of light; (4) 2D and 3D
machine vision systems (Moreda et al., 2009).

Wang et al. (Wang et al., 2017) evaluated mango size by RGB-D
(depth) imaging and time-of-flight camera imaging system. The
camera-to-fruit distance was determined using three methods for
fruit sizing from images: stereo vision camera, RGB-D camera and
a time-of-flight laser rangefinder (Wang et al., 2017). The obtained
length and width values were good with RMSE of 4.9mm and
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4.3mm respectively. It is cost-effective and simple to use; however, it
pertains non-occluded fruit only and cannot be utilized in direct
sunlight (Wang et al., 2017). Neupane et al. (Neupane et al., 2022)
replicated the work of Wang by suggesting the use of partly
occluded fruit. To obtain the linear length of the fruits, bounding
box dimensions of an instance segmentation model (Mask R-CNN)
was applied to canopy images (Neupane et al., 2022). The findings
were good with RMSE values of 4.7 mm and 5.1 mm for Honey
Gold and Keitt mango varieties, respectively (Neupane et al., 2022).
Sanchez et al. (Sanchez et al., 2020) investigated spectroscopic and
depth imaging techniques combined with machine vision to
estimate the length, width, thickness, and volume of sweet potato
and potato. When the correct size group was graded, the method
had a high accuracy of 90% (Sanchez et al., 2020).

Color is an external quality trait that depends on the maturity of
produce and is subjective to internal features such as taste,
perception, and pleasantness of fruits and vegetables (Yahaya
et al, 2017). Calorimeters evaluate color by measuring the typical
surface area of the product and detects the color space values L*, a*,
and b* which are based on the human color perception theory
(Aguilar-Hernandez et al., 2021). The capability of infrared thermal
imaging approaches was investigated in the measurement of
pineapple color. In this investigation, the L*, a*, and b* mean
values for calorimeter increased by (P < 0.05) (Ali et al., 2022). The
optical fiber sensors mounted with RGB LEDs were also used to
evaluate the color of mangoes, giving R* = 0.879 (Vahaya
et al, 2011).

External defects include the evidence of rot, bruising, crushing,
shriveling, and wilting due to water loss which impact market value
and the price of the fruits and vegetables (Raj and Suji, 2019). These
defects can be recognized and monitored through the appearance of
the crop by qualified personnel relying on subjective evaluation,
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TABLE 2 Merits and demerits of non-destructive spectral measurements in the quality control of tropical fruits and vegetables.

Technique = Merits Demerits References
FTIR No sample preparation. Single beam and double beam for scattering device. (Lan et al., 2020)
Fast and easy to perform. Difficulty in obtaining representative background.
Capability to measure many Hard to read the interferogram if the Fourier transform is not
parameters at the same time. performed first to generate the spectrum.
Good signal-to-noise ratio
Suitability for both quantitative and
qualitative analyses.
NIR Real-time analysis. Limited penetration depth. (Srivichien et al., 2015), (Arendse
et al.,, 2021)
Can evaluate multiple components Time-consuming calibration procedure.
concurrently.
Fast acquisition of spectra. Complex signal interpretation
Minimal sample preparation required.
Raman Vibrational and complementary. Weak Raman scattering. (Wang et al,, 2021), (Li et al., 2016)
Fast, Simple, sensitive, and selective Fluorescence interference.
technique.
Capability to monitor water-rich Low reproducibility.
molecules.
High spatial resolution. Redundant data set. Costly Raman system.
Detects the spatial distribution of the Relatively low operational speed
molecules.
HSI Detect both spectral and spatial details. = Costly and complex data. (Chandrasekaran et al., 2019),

Concurrent assessment of many
parameters.

Advanced hardware and software required.

Available in different algorithms.

Requires chemometrics techniques to extract relevant information.

(Rajkumar et al., 2012)

TABLE 3 List of abbreviations and acronyms used in the paper.

Abbreviation Definition Abbreviation Definition

FTIR Fourier transform infrared CNN Convolutional Neural Network

NIR Near-infrared TOF Time of flight

HSI Hyperspectral imaging TSS Total soluble solids

SSC Soluble solid content RGB-D imaging Red, Green, Blue-Depth imaging

ASC Added sugar content PLS Partial least squares

°c Degrees Celsius RMSE Root mean square error

FAO Food and Agriculture Organization YOLO You Only Look Once

R-CNN Regions with convolutional neural networks ATR Attenuated total reflectance

L*, a*, and b*. Lightness, redness or greenness, and yellowness MLR Multivariate linear regression

LED Light-emitting diode IR Infrared region

R? Determination coefficient iPLSR Interval partial least squares regression
TA Total acidity OC-SVM One-class support vector machine
Vis-NIR Visible-near-infrared spectroscopy SIMCA Soft independent modelling by class analogy
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TABLE 3 Continued
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Abbreviation Definition Abbreviation Definition

R Coefficient of correlation SERS Surface-Enhanced Raman Spectroscopy

PLSR Partial least squares regression RMSEP Root mean square error of prediction

R*P Correlation of prediction Rp Coefficient of prediction

MIR Mid-infrared DT Decision trees

FIR Far-infrared RNN Recurrent neural network

ANN Artificial neural network PLSDA Partial least square discriminant analysis

GA Genetic algorithm VGG Visual Geometry Group

FL Fuzzy logic ResNet Deep Residual Learning for Image Recognition
ANFIS Adaptive neuro-fuzzy inference system ResNeXt Aggregated Residual Transformations for Deep Neural Networks
ML Machine learning DCNN Deep convolutional neural network

DL Deep learning RPD Residual predictive deviation

LDA Linear discriminant analysis F1 scores Performance of Precision and recall

SVM Support vector machine MLP Multilayer Perception

K-NN K-nearest neighbors PCA: Principal component analysis

ELM Extreme learning machine MPLS: Modified partial least square

RMSEC Root mean square error of calibration SD: Standard deviation

Rc Correlation coefficient for calibration Rv Correlation coefficient for validation

which may result in human errors (Ali et al., 2023). Sahu et al. (Sahu
and Potdar, 2017) proposed a digital image analysis algorithm for
detecting exterior defects in mango fruit. Surface defects such as
scars and black patches were used to detect defective mango fruits,
and were recognized by extracting the contours of damaged areas
(Sahu and Potdar, 2017). The damaged area was then filled to
identify its location in the image as the basis for discrimination.
Sahu and colleagues achieved good accuracy but advocated the use
of optimal and adaptive threshold approaches for segmenting
mango fruits from image backgrounds (Sahu and Potdar, 2017).

2.2 Internal quality of tropical fruits
and vegetables

The internal qualities of fruits and vegetables are also termed
hidden qualities and are determined by texture, nutrients, internal
defects, and flavor, as presented in Table 5 (Shewfelt, 2014).
Different fruits and vegetables usually have different textures,
which are characterized by their firmness, crispness, and

TABLE 4 The external quality parameters of tropical fruits and vegetables.

Indicators

External quality

crunchiness (Fillion and Kilcast, 2002). The assessment of fruit
and vegetable firmness, a vital quality characteristic related to
texture, can be achieved through sensory measurements
(Magwaza and Opara, 2015). The texture is measured with a
penetrometer by putting a probe tip installed on the texture
analyzer into fruit tissue at a specific speed and depth so as to
exert the most force (Ali et al., 2017). Uarrota et al. (Uarrota and
Pedreschi, 2022) used a non-destructive texture analyzer to
determine the firmness of avocado under different storage
conditions. Enough data were required to construct the best
model allowing an extension to the model firmness of avocado
(Uarrota and Pedreschi, 2022). Kasim et al. (Kasim et al., 2021)
compared laboratory-based (305-1713 nm) and portable-based
(740-1070 nm) NIR spectrometers to determine mango firmness
(Kasim et al., 2021). The results showed that portable and
laboratory-based NIR instruments performed similar in respect of
R%p. Compared to the laboratory-based instrument, the RMSEP of
the portable NIR was higher (Kasim et al., 2021).

Nutritional value, such as the sugar content related with
vitamins and minerals, comprises the main constituents of soluble

References

Size Area, perimeter, length, and width

(Cubero et al., 2011), (Sanchez et al., 2020)

Shape
Color Maturity, uniformity, and intensity

External defects

Bruising, crushing, shriveling, and wilting
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Mass, volume, spherical coefficient, density, and geometric mean diameter

(Cubero et al., 2011), (Golmohammadi and Afkari-Sayyah, 2013)
(Yahaya et al, 2017), (Ali et al., 2022)

(Ali et al., 2023), (Raj and Suji, 2019)
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TABLE 5 The internal quality parameters of tropical fruits and vegetables.

Internal quality Indicator

Texture Firmness, crispness, and juiciness

Nutrients

Internal defect Internal cavity, water core, and rot

Flavor Sweetness, sourness, saltiness, and bitterness

solids content (SSC), total soluble solids (TSS), and total acidity
(TA) (Leiva-Valenzuela et al., 2013). Aziz et al. (Aziz et al., 2021)
evaluated the relationship between TSS and the capacitance of
papaya using capacitance-sensing techniques (Aziz et al., 2021). A
refractometer was used as part of a destructive technique to predict
the reference values of moisture and TSS content. Capacitive
sensing was then tested as non-destructive approach for the
evaluation of output voltage and capacitance of papaya (Aziz
et al, 2021). Aziz observed a good correlation between destructive
and non-destructive techniques, with R* of 0.9434 and 0.9177 for
moisture and TSS content, respectively (Aziz et al, 2021). The
usefulness of NIR spectroscopy was demonstrated in the
determination of starch and soluble solid contents of papaya
(Purwanto et al., 2015). Srivichien and colleagues tested the
nitrates in pineapples using Vis-NIR (600-1200 nm)
spectroscopy, yielding an R value of 0.95 (Srivichien et al., 2015).
However, due to the big size and the change in nitrate levels, many
scans were needed on different areas of pineapple (Srivichien et al.,
2015). In the study to predict starch content of sweet potatoes and
potatoes, hyperspectral imaging was applied by Su et al. (Su and
Sun, 2019). Su developed partial least squares regression (PLSR)
models at full-wavelength referring to spectral profiles and observed
reference values, resulting in a high accuracy and an R*P of 0.963
(Su and Sun, 2019).

Internal defects are detected as internal injury such as rot and
water core inside the flesh of the fruits and vegetables due to
postharvest problems(Ruiz-Altisent et al., 2010). Flavor or taste is
defined by the sugar (sweetness), acidity (sourness), bitterness, and
saltiness perceived by the tongue and nose (Zhu et al., 2020). It is,
therefore, measured subjectively through oral testing or smelling, or

Chemical compositions (vitamins, sugars, proteins, and functional properties)

10.3389/fpls.2023.1240361

References

(Fillion and Kilcast, 2002), (Magwaza and Opara, 2015)
(Leiva-Valenzuela et al., 2013), (Aziz et al., 2021)
(Yahaya et al, 2017), (Ruiz-Altisent et al., 2010)

(Yahaya et al, 2017), (Zhu et al., 2020)

by the conventional technical quantification of compounds such as
liquid and gas chromatography (Yahaya et al, 2017). Korean
universities conducted research on the taste and odor properties
of broccoli using electronic sensors (Hong et al., 2022). For
electronic tongue analysis, thermal processing boosted sourness
and umami tastes while decreasing saltiness, sweetness, and
bitterness (Hong et al., 2022). Therefore, the capability of non-
destructive spectral measurement methods to assess inside
parameters is important to maintain the flesh quality of tropical
fruits and vegetables.

3 Non-destructive spectral
measurements for the quality
evaluation of tropical fruits
and vegetables

Non-destructive techniques for quality monitoring of tropical fruits
and vegetables refer to the process of inspecting their external and
internal properties without causing damage or changing their physical
and internal status (El-Mesery et al,, 2019). The potential for employing
spectral measurement approaches in the quality control of fruits and
vegetables is growing enormously (Escarate et al., 2022). The reason is
that these approaches are non-destructive, fast and accurate, capable
for both quantitative and qualitative analysis, thereby requiring
minimal sample preparation (Cozzolino, 2022). We divided non-
destructive spectral measurements into two categories: (1) spectral-
based approaches (FTIR, NIR, and Raman spectroscopy) and (2)
imaging-based approaches (HSI), as shown in Figure 1.

[

Non-destructive spectral

)

measurements
]

| ]
Spectral based Imaging based
measurements measurement

1
| ] ]

Fourrier transform Near infrared Raman Hyperspectral
infrared (FTIR) (NIR) imaging (HSI)

FIGURE 1

The schematic diagram of commonly used non-destructive spectral measurements.
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3.1 Spectral-based approaches

Spectral measurement refers to effective techniques used to
study the quality parameters of various agricultural materials
including tropical fruits and vegetables by investigating light,
sound, or particles that are emitted, absorbed, or scattered during
measurement (Pathare and Rahman, 2022). Spectroscopic
techniques based on FTIR, NIR, and Raman have been successful
and popular in the detection of quality parameters of fruits and
vegetables (Dasenaki and Thomaidis, 2019). Various research
works have used spectral techniques focusing on fruits and
vegetables, such as in the fast determination of the sugar and acid
composition of citrus (Clark, 2016), assessment of primary sugars
and amino acids in raw potato tubers (Ayvaz et al., 2015), and
determination of nutrients and moisture content of fruits and
vegetables (Sirisomboon, 2018). Quality parameters of tropical
crops can be assessed by one of—or a sequence of—the above
complementary techniques, which are distinguished depending on
the infrared region (IR) they occupy and the molecular vibrations
they detect (Bureau et al, 2019). The infrared region of the
electromagnetic spectrum, presented in Figure 2, is separated into
three sections, namely near-infrared (NIR), mid-infrared (MIR),
and far-infrared (FIR) (Yeap and Hirasawa, 2019). Mango maturity
has been predicted using the near-infrared (NIR) spectral region of
1200-2200 nm (Jha et al., 2014). The mid-infrared (MIR) spectral
range of from 2500 to 25000 nm has been used in the prediction of
banana maturity and geographical origin by Zhang et al. (Zhang
et al,, 2021), and in the measurement of soluble solids, total acids,
and total anthocyanin in berries (Clark et al., 2018). Far-infrared
(FIR) ranges have often been reported to be between 25000 and
300000 nm (Larkin, 2017). However, FIR applications are not
clearly defined and are limited due to challenges in developing
FIR instrumentation; furthermore, the band assignments of low-
frequency vibrational modes are not straightforward (Ozaki, 2021).
These spectral ranges are based on their relationship to the visible
spectrum, which falls between 380 and 780 nm (Su and Sun, 2018).

3.1.1 Fourier transform infrared spectroscopy
FTIR is a form of vibrational spectroscopy that uses light
interference to identify the chemical composition of scanned

10.3389/fpls.2023.1240361

samples by producing infrared absorption or emission spectra
(Larkin, 2017). On the electromagnetic spectrum, FTIR operates
in the MIR region (2500 to 25000nm) and generates fruit or
vegetable chemical profile by capturing the principle vibrational
and rotational stretching modes of molecules (Lohumi et al., 2015).
FTIR spectroscopy comprises of an infrared light source,
interferometer, sample, and detector, shown in Figure 3. The
principal part is the interferometer which is made up of three
components: the beam splitter, collimator, and the two mirror
(fixed and movable mirror) (Patrizi and Cumis, 2019). When the
radiation from the light source passes through the collimator,
strikes the beam splitter which ideally divide it into two beams.
The first beam hits the static mirror, and is reflected back; while the
second hits the movable mirror where it enters through the sample
toward the detector (Blum and Harald, 2012).

The FTIR associated with attenuated total reflection (ATR-
FTIR) has recently gained importance (Chan and Kazarian, 2016).
The ATR works under the principle of total internal reflectance
where infrared light interacts with the sample of high refractive
index only at the point where infrared light is reflected (Ryu et al,
2021). Unlike transmission methods, the ATR-FTIR technique can
be used to study solid, liquid, and paste samples with minimal
sample preparation (Glassford et al., 2013).The combination of
ATR-FTIR and chemometrics was promising in the assessment of
added sugar content, (ASC), total soluble solids (TSS) and real juice
content (RJC) of fresh and commercial mango juice (Jha and
Gunasekaran, 2010). PLS and MLR models resulted into accuracy
of 0.99 and 0.98 respectively (Jha and Gunasekaran, 2010). Canteri
et al. (Canteri et al., 2019) have used ATR-FTIR to evaluate the cell
wall compositions of 29 species of fruits and vegetables as freeze-
dried powders and alcohol-insoluble solids. The results were
accurate, with determination coefficient R> > 0.9 (Canteri et al.,
2019). Recently, Sinanoglou et al. (Sinanoglou et al, 2023)
conducted the evaluation of both peel and fresh banana ripening
stage by ATR-FTIR, along with image analysis, discriminant and
statistical analysis (Sinanoglou et al., 2023). The computed features
were accurate enough to separate ripening stages; however,
monitoring of the banana ripening process was highly reliant on
the instrument employed for image analysis such as digital cameras,
smartphones, and electronic noses (Sinanoglou et al., 2023).

+— Short wavelength

FIGURE 2

Long wavelength

Modified diagram showing the infrared regions of the electromagnetic spectrum (Yeap and Hirasawa, 2019), (Aboud et al., 2019).
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Fixed mirror —

Beam splitter - Collimator

Infrared light

Banana sample

Modified diagram of FTIR spectroscopy taking banana as sample (Patrizi and Cumis, 2019).

3.1.2 Near-Infrared spectroscopy

NIR is used to rapidly ascertain the chemical constitution of
materials according to overtones and harmonic or combination
bands of specific functional groups (Kusumaningrum et al., 2018).
Those overtones and combinations of vibrational bands
characterized by C-H, O-H, and N-H are gained by NIR in the
wavelength region of 780-2500nm (Ozaki et al., 2006). Tsuchikawa
et al. (Tsuchikawa et al., 2022) described NIR as a spectroscopic
method that is suitable for samples of high water content, including
fruits and vegetables (Tsuchikawa et al., 2022). NIR spectroscopy
consists of a light source, sample accessory, monochromator
(grating), detector, and optical components such as lenses and
optical fibers, as shown in Figure 4 (Lee et al., 2011).

The illumination of NIR light to the sample occurs in three
ways: reflectance, interactance and transmittance (Wang et al.,
2014). According to Hong and colleagues, reflectance employs
high light energy, has no contact with the fruit surface, and the
source and sensor are placed at a specified angle (Hong and Chia,
2021). Specular reflectance and diffuse reflectance are two types of
reflectance measurement. Specular reflectance, which occurs when
the incident and reflected angles are same, detects nothing from the
inside part of the fruit (Hong and Chia, 2021); While the capacity of

Light source

Monochromator

\

re

Avocado sample

FIGURE 4

diffuse reflectance to constrain light dispersion into solid samples
allows the acquisition of interior fruit information (Tang et al,
2022). Mango TSS, firmness, TA, and ripeness index (RPI) were
effectively measured by NIR diftuse reflectance, with R%0f 0.9; 0.82;
0.74; and 0.8, respectively. The effect of changes in physicochemical
properties of mango during ripening, on the other hand was
highlighted (Rungpichayapichet et al., 2016). Kusumiyati et al.
(Kusumiyati and Suhandy, 2021) also evaluated TSS and Vitamin
C using the same fruit and NIR spectra acquisition mode. The
diffuse reflectance spectra were documented and found to be in
relation with TSS, vitamin C (Kusumiyati and Suhandy, 2021).
Delwiche et al. (Delwiche et al., 2008) demonstrated the use of
near infrared interactance (750-1088nm) to determine mango
ripeness, SSC and other sugars. The mango sample was placed in
contact with the probe in which the top of mango upwardly points
the probe. The R? was 0.77; 0.75; 0.67; and 0.70 for SSC, sucrose,
glucose, and fructose, respectively. Sugars such as sucrose indicates
mango sweetness, fructose and glucose increases during ripening
while acidity decreases (Delwiche et al., 2008). Transmission mode
in which the light source and sensor are opposite to each other,
employs low light intensity to reflect the inner parameters and is
performed with no contact on the fruit (Nicolai et al., 2007).

Detector (reflectance)

—— 4

Read fibers

Recorder

Detector (transmittance)

Modified diagram of NIR spectroscopy, taking avocado as sample (Chandrasekaran et al., 2019).
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Transmission might be done partially or fully. Though, the
difference between partial transmission and diffuse reflectance
remains undetermined since both evaluate the radiation that
partly enters the sample and diffusely reproduced to the sensor
(Hong and Chia, 2021). The fruit with large seed such as mango was
reported to be hard to measure in the full transmission due the low
signal to noise ratio (Greensill and Walsh, 2000). Subedi at al.
(Subedi and Walsh, 2011) detected the TSS and DM of mesocarp
tissue of banana and mango by partial transmittance. Mango DM
gave R%cv =0.75 while banana performance negatively influenced by
the thickness of the peel. The TSS results on mango was good in ripe
and poor in ripening stage with R%v > 0.75 and R*p < 0.75
respectively. The results were consistent with those of
Rungpichayapichet et al. (Rungpichayapichet et al., 2016) and
were found to be caused by the physiological factors of Mango,
banana, and other tropical fruits which can change their starch
content as they ripe (Subedi and Walsh, 2011).

Several studies have highlighted the potentials of NIR
spectroscopy to monitor the internal and external characteristics
of tropical fruits and vegetables, including the following: maturity
prediction of avocado and mango (Olarewaju et al., 2016; S. N. Jha
et al,, 2014), total soluble solids and pH of banana (Ali et al., 2018),
and variety identification in sweet potatoes (Su et al, 2019).
However, the irregular thick skin of pineapple and chemical
complexity of large seeded mango was the main difficulty to
Guthrie et al. (Guthrie and Walsh, 1997) in the measurement of
SSC by NIR reflectance (760-2500nm). The penetration depth of
NIR light into a thick-rind avocado 38 mm in diameter and 10 mm
in thickness was investigated for the maturity evaluation of avocado
using an NIR spectrometer (800-2400 nm) (Olarewaju et al., 2016).
The models for estimating oil content, were acceptable, however
were not accurate, with an RPD value of less than 1.0 and an R?
value of 0.58 (Olarewaju et al., 2016). Arendse et al. (Arendse et al.,
2018) informed the limited accuracy of NIR for internal quality
assessment of fruits and vegetables with thick rinds such as banana,
avocado and pineapple due to inadequate penetration depth
(Arendse et al,, 2018). Therefore, future studies can consider the
appropriate selection of NIR optical geometry and wavelength

10.3389/fpls.2023.1240361

range to improve the prediction accuracy of thick rind tropical
crops (Pratiwi et al., 2023).

NIR spectral data inevitably holds overlay information of
numerous organic compounds at global wavelengths, making the
use of global spectroscopic regions problematic rather than specific
wave bands (Lin and Yibin, 2009). Therefore, a combination of
algorithms and chemometrics with NIR spectroscopy is now being
used to meet this demand, balance data redundancy and
complexity, and collect spectral information (Guan et al., 2019;
Yang et al., 2021). Portable NIR spectroscopy was used to assess
mango firmness during ripening (400-1130 nm) (Mishra et al,
2020). Pre-processing was done Savitzky—-Golay filter, and iPLSR
model was found to provide better predictive modeling, with an R*p
of 0.75 and an RMSEC of 5.92 Hz’g”> compared to the standard
PLSR model, which had an R’p of 0.67 and an RMSEC of 6.88
Hz’g*"”. For the firmness in mango fruit, spectral intervals 743-770
nm and 870-905 nm were found to be the accurate predictors
(Mishra et al., 2020).

3.1.3 Raman spectroscopy

Raman is another form of vibrational spectroscopy that uses
laser beams to interact with materials and operates in the infrared
region of the electromagnetic spectrum from 2500 to 25000 nm
(Siesler et al., 2008). Though Raman and MIR spectroscopy
methods use high levels of energy to detect molecular vibrations,
Raman spectroscopy excels at equal vibrations of nonpolar sets,
while MIR spectroscopy excels at the unequal vibrations of polar
sets (Campanella et al, 2021). Raman spectroscopy consists of a
monochromatic laser, wavelength separator, and a detector, as
presented in Figure 5 (Qin et al, 2019). When the laser beam
illuminates the sample, the photons that constitute the light are
absorbed, transmitted, or scattered by the sample in different
directions before reaching the detector (Larkin, 2017). Absorption
and transmission are linked with the infrared spectra (IR), while
scattering is associated with the Raman spectra (Jones et al., 2019).
Rostron et al. (Rostron et al., 2016) defined scattered photons in two
different ways namely Rayleigh (elastic) scattering and Raman
(inelastic) scattering (Larkin, 2017). Rayleigh (elastic) scattering

Mango sample
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Modified diagram of Raman spectroscopy, taking mango as sample (Lohumi et al., 2015).
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occurs when the photons scattered are equal to those illuminated to
the sample; while Raman (inelastic) scattering is due to the transfer
of energy between photons and the sample under testing (Lu, 2017).
Raman spectroscopy is suitable for investigating carotenoids in
various plants, including carrots (Lawaetz et al., 2016), tomatoes
(Hara et al,, 2018), plant cells (Baranska et al., 2011), and mango
(Bicanic et al., 2010). Furthermore, Raman has been applied as a
clean and fast approach to assess cassava starch adulteration
(Cardoso and Jesus Poppi, 2021). Two chemometrics models,
namely one-class support vector machines (OC-SVMs) and soft
independent modelling by class analogy (SIMCA), were used and
compared statistically. The OC-SVM results outperform those of
SIMCA, with an accuracy of 86.9% (Cardoso and Jesus Poppi,
2021). Surface-enhanced Raman spectroscopy (SERS) was used as a
method that applies Raman spectroscopy in conjunction with
nanotechnology for the fast analysis of pesticide residues in
mango (Pham et al, 2022). SERS results were good indicating
that the residues in mango sample were in the suitable range (Pham
et al,, 2022). Morey et al. (Morey et al., 2020) used spatially offset
Raman spectroscopy for potato varieties quality categorization and
prediction of tuber cultivation source. This approach is fast since it
can be used directly after potato harvesting (Morey et al., 2020).

3.2 Imaging-based approaches

Spectral imaging techniques are among the most effective
detection methods because of their potential to obtain both
spectral and spatial dimensions of produce simultaneously during
measurement (Liu et al., 2017). Regarding spatial dimensions,
external attributes such as size, shape, appearance, and color can
be evaluated, while with spectral analysis, internal features such as
chemical composition can be measured (Pu et al., 2015). A number
of imaging techniques use two-dimensional geometry according to
the fusion and luminance of color maps (Lu et al., 2014), while
others involve the use of three-dimensional sensors such as RGB
and hyperspectral images (Barnea et al., 2016) to provide a high
fruit and vegetable recognition accuracy (Nyarko et al., 2018).

10.3389/fpls.2023.1240361

3.2.1 Hyperspectral imaging techniques

In agriculture and food systems, hyperspectral imaging is a
powerful system that joins two aspects of imaging and spectroscopy
to attain a three-dimensional (3D) hypercube data form and
analyzes a broad spectrum at each pixel instead of assigning only
main RGB colors (red, green, and blue) (IKhan et al., 2021). The
hypercube consists of 3D images characterized by 2D spatial and 1D
spectral dimension or wavelength (Tang et al., 2022). Hyperspectral
imaging employs more than ten contiguous wavelengths or narrow
bands in which each pixel has a full continuous spectrum (Elmasry
et al,, 2019). To take sample images, the hyperspectral imaging set
up can be in the reflectance, transmittance, and interactance which
differs in their lighting configuration during crops measurements
(Pan et al, 2017). The reflectance geometry is appropriate for
assessing the external quality of products, whereas the
transmittance performs better in measuring the internal
components in relatively translucent membranes (Li et al., 2018).
The HSI system comprises of four main components: (1) an
imaging unit, (2) illumination (light source), (3) a sample stage,
and (4) a computer, as presented in Figure 6 (Pu et al., 2015). The
light source is divided into illumination and excitation sources for
spectral imaging applications. Broadband lights are commonly used
as an illumination source for reflectance and transmittance, whereas
narrowband lights are for the excitation source (Qin et al., 2013).
The lighting devices produce light that illuminates the sample. The
camera transports chemical information as well as light from the
light source. The wavelength dispersion device, which can be a
grating or a prism, divides the light into different wavelengths and
directs the dispersed light to the sensor (Wu and Sun, 2013). Aozora
et al. (Aozora et al,, 2022) studied the efficiency of hyperspectral
imaging (935-1720 nm) in the evaluation of water activity in
dehydrated pineapple. The accuracy of the tested model showed
good accuracy, with 0.72 and 0.0054 for Rp of and RMSEP
respectively (Aozora et al., 2022).

3.2.1.1 Hyperspectral imaging Image generation modes
HSI generates image in three ways: whisk broom (point
scanner), push broom (line scanner), and tunable filter (area

Camera
Spectrograph
pectrograp HSI hypercube
Lens Y-columns z
z
S
| | | |
Illumination I”e,,e/ """""""""""""""""" ”
e,
X,
Motor | Pineapple sample e X-rows
Wavelength (nm)

FIGURE 6

Modified diagram of Hyperspectral imaging, taking pineapple as sample (Li et al., 2018).
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scanner) (ElMasry and Sun, 2010). The point scan excites only a
single spot on the object’s surface and the single pixel is recorded.
The spectrum is taken at both positions by moving the sample
symmetrically in two spatial dimensions, in order to get the full HSI
image (Qin, 2012). However, to obtain good results this technique
involves double scanning of the sample and hardware relocation
which takes a lot of time to complete the measurement (Qin, 2012).
The line scanner excites a line on the object and records the whole
line of an image using a 2D dispersing element and 2D detector
array. The object is moved line by line and the whole set of spatial-
spectral data is gained. This approach has a higher acquisition rate
but lower sectioning ability (Qin, 2010). The area scan employs
spectral scanning techniques to stimulate the broad area on the
surface of the fruit or vegetable, which is held fixed and a scan with
full spatial information is achieved consecutively across the entire
spectral range. This method is appropriate for applications where
sample mobility is not necessary (Lu et al,, 2017).

The hyperspectral imaging together with chemometrics models
is an appealing option for dealing with large sets of complex, high-
dimensional data (Lorente et al., 2012). Chu et al. (Chu et al., 2022)
confirmed the efficacy of the HSI reflectance (386-1016 nm)
wavelength region in combination with variable selection
algorithms and chemometrics for predicting green banana
maturity level and characterization of banana quality during
maturation (Chu et al, 2022). The line scanning approach was
adopted and the calibration models used were partial least squares
(PLS) and interval PLS methods (Chu et al., 2022). These models
obtained acceptable values R* = 0.64 and 0.59 for SSC and TA,
respectively, whereas the models for chlorophyll and AE* were
suitable only for sample screening with R* = 0.34 and 0.30,
respectively (Chu et al., 2022). Chu reported the inclusion of
more samples and different cultivars of banana for model
improvement (Chu et al, 2022). Kdmper et al. (Kamper et al,
2020) used Vis-NIR-HSI to measure nutrients in avocado fruit.
PLSR was used to obtain the ratio of unsaturated to saturated fatty
acids in avocado fruit with (R*> = 0.79, RPD = 2.06) and (R*> ~ 0.62,
RPD = 1.48) for flesh images and skin images respectively (Kimper
etal, 2020). The robust models for flesh images were R®~0.67;0.61;
and 0.53, of oleic-to-linoleic acid ratio, boron (B) and calcium
concentration (Ca) respectively, while for skin images was R* ~ 0.60
of boron (Kamper et al., 2020).

4 Advancement in non-destructive
spectral measurements for tropical
fruit and vegetable quality assessment

The rapid advancement of technology in the agricultural field
has resulted in the combination of artificial intelligence with non-
destructive spectral measurements for fruits and vegetables quality
measurement (Hasanzadeh et al., 2022). Artificial intelligence
models such as artificial neural networks (ANNs), genetic
algorithms (GAs), fuzzy logic (FL), and adaptive neuro-fuzzy
inference system (ANFIS) can assess multiple characteristics
simultaneously (Homayoonfal et al.,, 2022). Salehi reviewed
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development of models used in the determination of fruits and
vegetables quality (Salehi, 2020). ANNs, GAs, FL, and ANFIS
detected defects, moisture content, and chilling injury of oranges,
cherries, pomegranates, apples, peaches, avocados, button
mushrooms, tomatoes, and potatoes (Salehi, 2020). Despite the
fact that these models are typically constrained by normality,
linearity, homogeneity, and variable independence, the ANFIS
model outperforms others and can be successfully used in
relevant research (Salehi, 2020).

Machine learning (ML) is a branch of artificial intelligence and
an integral part of the development of many sensing technologies
that are responsible for information retrieval, signal processing, and
data analysis (Li et al., 2021). In recent decades, traditional
algorithms such as linear discriminant analysis (LDA), support
vector machines (SVMs), K-nearest neighbors (K-NN), naive Bayes,
extreme learning machines (ELMs), decision trees (DTs), and K-
means clustering have been deployed (Fadchar and Dela Cruz,
2020). For instance, Rivera et al. (Rivera et al., 2014) used NIR-HSI
and machine learning for the early detection of mechanical damage
in mango. LDA, K-NN, naive Bayes, ELMs, and DT's were used for
categorization. Bayes failed, however (K-NN, ELM, DT, and LDA
Title altered) results was more than 90%. The highest performance,
achieved by K-NN, was 97.9% (Rivera et al., 2014).

The evolution of deep learning (DL) as a breakthrough machine
learning method has been trending since 2017 due to the manual
feature extraction of traditional machine learning methods (Yang
and Xu, 2021) and limited performance of chemometrics models,
such as spectral variability caused by sample and spectrometer
heterogeneity, changing environmental conditions, and infrared
spectral data with high noise, which hinder feature extraction
using chemometrics models (Zhang et al., 2021). Deep learning is
a subset of machine learning that use many neural network layers to
extract complex feature representations with numerous levels of
abstraction (Lecun et al, 2015). According to Kamilaris et al.
(Kamilaris and Prenafeta-Bolda, 2018), convolutional neural
network (CNN) and recurrent neural network (RNN) have been
implemented for crop-type classification, counting produces, and
locating their placement in the image using bounding boxes
(Kamilaris and Prenafeta-Bolda, 2018). However, the RNN was
found to perform better than the CNN because it considers not only
space but also the time which helps to capture the time dimension
(Kamilaris and Prenafeta-Bold(, 2018). Deep learning and machine
learning technology-based spectral analysis has been used in the
classification of three types of fruits (apple, lemon, and mango) by
type of damage, type of goods, and whether the sample is raw in
market, supermarket, wholesaler, and retailer applications (Bobde
et al,, 2021).

Garillos-Manliguez et al. (Garillos-Manliguez and Chiang,
2021) estimated six maturity stages of papaya fruit, from the
unripe stage to the overripe stage, by feature concatenation of
data obtained from visible light and HSI imaging (Garillos-
Manliguez and Chiang, 2021). AlexNet, VGG16, VGG109,
ResNet50, ResNeXt50, MobileNet, and MobileNetV2 architectures
was then modified to apply multimodal data cubes made of RGB
and hyperspectral data (Garillos-Manliguez and Chiang, 2021).
Regarding classification of the six stages, these multimodal
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variations can reach F1 scores of up to 0.90 and a 1.45% top-2 error
rate. However, due to the small size of the images and the great
depth of the CNNs, resulting in highly tightly tuned training
variables, overfitting may arise. On the other hand, increasing
image size results in insufficient memory faults (Garillos-
Manliguez and Chiang, 2021).

Banana fruit was graded by Mesa et al. (Mesa and Chiang, 2021)
using multi-input deep learning model with RGB and HSI. These
models were able to categorize tier-based bananas by 98.45% and an
F1 score of 0.97 with only few samples (Mesa and Chiang, 2021).
However, this technique is expensive and time consuming due to
the use of two cameras. The next studies instead, should consider
the use of more improved camera systems with features that can
extract both RGB and HSI simultaneously (Mesa and Chiang,
2021). Another study by Ucat and Cruz explored the use of image
processing with a deep learning to grade banana according to their
specifications (Ucat and Dela Cruz, 2019). The trained, validated,
and test data by CNN model was more than 90% in all four classes
of bananas (). The suggested CNN grading system in the tensor flow
model can be commercially developed (Ucat and Dela Cruz, 2019).

Portable spectrometers and real-time online detection devices
have recently developed for fruits and vegetables quality assessment.
Portable devices are handheld, light weight, compact size and they
are applied for in-field measurements (Sohaib et al., 2020). The
combination of portable NIR device with MSC-PCA+LDA model
was used to evaluate pineapple quality. These models were
recommended to be developed in mobile phone while PLS
regression model provided 85% accuracy (Amuah et al, 2019).
Subedi et al. (Subedi and Walsh, 2020) evaluated three hand held
portable near infrared spectroscopy (F750, Micro NIR and Scio
v1.2) in the detection of dry matter content (DMC) in avocado fruit.
The second derivative spectra were recorded for the intact and skin
removed avocado fruit for reflectance and interactance optical
geometry. The best results of prediction obtained from the F750
instrument using the interactance mode at 720-975 nm with R”p of
0.71 and 0.88 for intact and skin removed fruits respectively (Subedi
and Walsh, 2020). Real time monitoring device was designed as
sensor which can function in all post-harvesting states to control the
shelf life of fruits and vegetables such as lettuce. The device found to
be the feasible for controlling the behavior of the crop during the
post handling chain (Torres-Sanchez et al,, 2020). Fruits and
vegetables including banana, orange and apple were well sorted
according to their external appearance by using real time online
system with artificial intelligence (Tata et al.,, 2022). For quality
categorization, machine learning models such as CNN and image
processing were performed. This real time system was created in
android and can be deployed in market robots where checking of
huge number of products is required (Tata et al., 2022).

Frontiers in Plant Science

17

10.3389/fpls.2023.1240361

5 Conclusion and future prospects

Non-destructive spectral measurement has emerged as a
prominent solution in the agricultural sector. With the
introduction of spectral measurements, there has been rapid
progress in analyzing both the internal and external
characteristics of tropical fruits and vegetables in a low-cost,
accurate, real-time, and fast manner (Ali et al., 2017). Techniques
based on FTIR, NIR, and Raman spectroscopy require simple steps
to prepare samples prior to analysis (Abbas et al., 2020). In contrast
to other imaging techniques such as computer vision, acoustic
approaches, electric noses, and fluorescence, HSI uses spectral
and spatial data to assess different parameters concurrently (Lu
et al,, 2020). The spectral measurements presented in this review
have shown potential applications for a diverse range of tropical
fruits and vegetables for the monitoring and detection of quality
attributes such as SSC, TSS, TA, color, size, defects, and texture,
which is particularly important for fruit and vegetable processors,
food safety agencies, and consumer demands.

Significant advancements in non-destructive spectral measurement
technology have occurred recently, including the development of
portable spectrometers for real-time and field applications. The
combination of spectral measurements and chemometric techniques
is a powerful tool for multivariate data analysis, mainly in the
improvement of models needed for classification and estimation of
quality. A practical case study of Metlenkin et al. (Metlenkin et al,
2022) in the identification and classification of Hass avocado defects
before and after storage by HSI and chemometrics. The PLSDA and
SIMCA were selected as chemometric methods for multivariate data
discrimination and classification. To increase the final model accuracy
the calibration was performed by selecting the region of interest. The
results revealed the high potential of SIMCA during both modelling
and test validation with 100% accuracy. Furthermore, the integration of
spectral measurements with deep learning and machine learning
technology is rapidly expanding in order to improve quality control
accuracy while overcoming the challenges associated with
chemometrics such as spectral variability, spectrometer heterogeneity,
changing environmental conditions, and infrared spectral data with
high noise. The revolution in agriculture and the adaptation of
numerous tropical plants to regions outside of their natural range
have muddied their classification, and little is known about what
properly defines and distinguishes tropical fruits and vegetables from
their temperate counterparts. Therefore, there is confusion associated
with those studies that reported the classification of tropical fruits and
vegetables as an important factor to consider when examining the
distinctive quality indicators of these crops. Taking into accounts all of
the merits and demerits of non-destructive spectral measurements for
the quality monitoring of tropical fruits and vegetables, the use of an
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adequate number of samples, different cultivars of the fruit and
increasing the quality attributes to predict can help to develop robust
models that emphasize the variability of tropical fruits and vegetables in
terms of size and shape, skin thickness, and growing conditions.
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Maize seed appearance quality
assessment based on improved
Inception-ResNet

Chang Song', Bo Peng’, Huanyue Wang, Yuhong Zhou,
Lei Sun, Xuesong Suo and Xiaofei Fan*

College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China

Current inspections of seed appearance quality are mainly performed manually,
which is time-consuming, tedious, and subjective, and creates difficulties in
meeting the needs of practical applications. For rapid and accurate identification
of seeds based on appearance quality, this study proposed a seed-quality
evaluation method that used an improved Inception-ResNet network with
corn seeds of different qualities. First, images of multiple corn seeds were
segmented to build a single seed image database. Second, the standard
convolution of the Inception-ResNet module was replaced by a depthwise
separable convolution to reduce the number of model parameters and
computational complexity of the network. In addition, an attention mechanism
was applied to improve the feature learning performance of the network model
and extract the best image information to express the appearance quality. Finally,
the feature fusion strategy was used to fuse the feature information at different
levels to prevent the loss of important information. The results showed that the
proposed method had decent comprehensive performance in detection of corn
seed appearance quality, with an average of 96.03% for detection accuracy,
96.27% for precision, 96.03% for recall rate, 96.15% for F1 value of reconciliation,
and the average detection time of an image was about 2.44 seconds. This study
realized rapid nondestructive detection of seeds and provided a theoretical basis
and technical support for construction of intelligent seed sorting equipment.

KEYWORDS

corn seed, quality assessment, depthwise separable convolution, attention mechanism,
feature fusion

1 Introduction

Maize is an essential cereal crop that is widely grown worldwide and has an increasing
production and trade volume (Ali et al., 2020). Appearance quality is an important factor
affecting the price of corn seeds, and effective identification of seed quality is critical for
ensuring food security and agricultural production safety. With the rapid advancements in
automation, machine vision technology (Huang et al., 2019; Kim et al.,, 2020; Wang and
Xiao, 2020; Ansari et al,, 20215 Lu et al., 2022) can be used to nondestructively and quickly

23 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2023.1249989/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1249989/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1249989/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1249989&domain=pdf&date_stamp=2023-08-24
mailto:leopardfxf@163.com
https://doi.org/10.3389/fpls.2023.1249989
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1249989
https://www.frontiersin.org/journals/plant-science

Song et al.

obtain seed surface feature information at a low cost and high
detection accuracy and efficiency, thereby providing potential new
methods for seed quality identification.

Machine learning (Rahmani et al., 2016; Prajapati et al., 2018;
Liang et al., 2019; Sharaff et al., 2021) is an active field of artificial
intelligence research that has advantages in terms of training small
data samples and wide applications in agricultural product
identification and defect detection. Farooqui et al. (2019) used a
gray-level co-occurrence matrix for disease feature extraction, a
support vector machine classifier for plant disease identification,
combined with advanced neural network to optimize the data to
improve the detection accuracy and demonstrated the feasibility of
this approach for plant disease diagnosis through experiments.
Effective classification of seeds is an important part of selecting
and breeding good seeds. To simplify the seed selection process, Ma
et al. (2021) proposed a peanut seed appearance quality detection
method, using peanut seed size and appearance color as the main
features and a support vector machine classification model to
complete the classification task. The experimental results showed
that the method had an accuracy of 86% for the classification of bulk
peanut seeds, which met the preliminary classification requirements
of peanut seeds in actual production. Gao et al. (2016) designed a
fresh corn quality detection classifier, which analyzed the texture
features of fresh corn images by wavelet analysis method, used the
maximum entropy function to measure the separation degree of the
texture images, and combined with the weight criterion to classify
the fresh corn of different varieties, sizes, and damage degrees, and
the effective classification rate could reach more than 99%. Zhao
et al. (2022) extracted three categories of raw coffee bean features:
contour, color, and texture to detect defective raw coffee beans by
the features of a single category or category combinations. The
findings were applied to a grid search to determine support vector
machine classification model parameters and combined with a k-
fold cross-validation test to compare support vector machine model
performances. The experimental results showed that the average
accuracy, precision, recall, and F1 values were 84.9%, 85.8%, 82.3%,
and 84.0%, respectively. This method provided a theoretical base for
the automatic detection of defective raw coffee beans. With the
requirements of strict and precise agricultural development, there is
an urgent need to explore new research methods to achieve precise
assessment of seed appearance quality and promote intelligent
agricultural development.

With the rapid development of deep learning, convolutional
neural networks are widely used in the fields of medicine, aviation,
and agriculture because of their excellent feature learning and
expression capabilities (Kamilaris and Prenafeta-Boldu, 2018;
Naranjo-Torres et al.,2020; Zhang et al., 2020; Cong and Zhou,
2022; Liu et al., 2023). Compared with traditional machine learning
techniques, convolutional neural networks are more generalizable,
faster to train, and can obtain significant information directly from
images, which eliminates the tedious steps of manually extracting
image features used in traditional methods. In applications for
agriculture, convolutional neural networks are often used in areas
such as the classification of crop pests and diseases (Wu et al., 2019;
Peng et al., 2019; Tiwari et al., 2021; Liu et al., 2022; Liu et al., 2022),
agricultural product species identification (Ajit et al., 2020; Gao
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et al., 2020; Chen et al., 2021; Laabassi et al., 2021; Sj et al.,2021),
yield estimation (Zhang et al., 2020; Tan et al., 2019; Alexandros et
al., 2023; Kavita et al,, 2023), and crop quality grading (Aniko and
Miklos, 2022; Liu et al., 2022; Li et al., 2022; Wang Z. et al., 2022;
Peng et al., 2023), in which they greatly promote the development of
agricultural intelligence. Along with the arrival of the era of big data,
the amount of image information increases exponentially, resulting
in an increase in the amount of computation and training difficulty
in the training process. This has also led researchers to pay more
attention to lightweight networks, in order to maintain the accuracy
of the premise of lightweight transformation of the network,
MobileNet, ShuffleNet and other lightweight networks came into
being, which can be better adapted to the evolving needs of the
mobile market. To effectively alleviate the large amounts of
computational resources and storage costs required for real-time
image processing, Yuan et al. (2022) constructed a high-
performance low-resolution MobileNet model, in which the
network structure was simplified by cropping and the inception
structure was used to fill the Dwise layer in a depth-separable
convolution to extract the richer low-resolution features. The
experimental results showed that the model achieved 89.38%,
71.60%, and 87.08% accuracies with the CIFAR - 10, CIFAR -
100, and CINIC - 10 datasets, respectively, and was suitable for real-
time image classification tasks in low-resolution application
scenarios. Fang et al. (2022) proposed a new network structure,
HCA-MFFNet, for maize leaf disease recognition in complex
contexts, and in order to validate the feasibility and effectiveness
of the model in complex environments, it was compared with the
existing methods, and the results proved that the model had an
average recognition accuracy of 97.75% and an F1 value of 97.03%,
which was the best overall performance. Hou et al. (2020) proposed
a damage classification algorithm for castor seeds based on a
convolutional neural network. Authors used castor seeds with
missing shells or cracks and intact castor seeds to construct a
dataset and build a network model to classify the seeds. The
experimental results showed that the average accuracy was
87.78%, with 96.67% for castor seeds without shells, 80.00% for
cracked castor seeds, and 86.67% for intact castor seeds; therefore,
this method provided a feasible solution for the online real-time
classification of castor seeds. Wang L. et al. (2022) designed a defect
detection method based on the watershed algorithm and a two-
channel convolutional neural network model, which can effectively
identify defective and non-defective seeds with an average accuracy
of 95.63%, an average recall of 95.29% and an F1 value of 95.46%.
The assay provided an effective tool for the detection of corn seed
defects. Cai et al. (2023) proposed a new grape leaf disease
identification model, which was proved to have an identification
accuracy of 93.26%, effectively providing decision-making
information for the grape leaf disease identification system in
precision agriculture. The above research results simplify the
network structure complexity to a certain extent and reduced the
requirement of hardware devices for model training. However, this
is also often accompanied by poor model recognition accuracy,
making it difficult to meet the needs of practical applications.
Therefore, additional methods must be developed to improve the
accuracy and achieve the purpose of accurate recognition.
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In this study a seed-appearance quality assessment method
based on an improved Inception-ResNet was proposed using
intact and damaged maize seeds as test samples. By replacing
depthwise separable convolution, adding an attention mechanism,
and introducing a feature fusion strategy, the Inception-ResNet
network structure was improved and optimized to obtain more
detailed feature information, with the aims of achieving accurate,
rapid, and nondestructive detections of seed appearance quality and
providing a feasible reference scheme for subsequent automatic
seed quality sorting processes.

2 Materials and methods
2.1 Experimental materials and treatment

2.1.1 Image acquisition

In this experiment, 50 groups of corn seeds with good
appearance and broken appearance were collected respectively,
with a total of 982 seeds, including 458 good seeds and 524
broken seeds. The training set and test set were divided according
to 4:1. Ten sets of maize seed image data containing both good and
defective seeds were used for verification of the final model

10.3389/fpls.2023.1249989

(Figure 1). The image acquisition platform mainly consisted of
four parts: a multispectral surface array camera from JAI Company
in Denmark, with an image resolution of 2048x1536; a bracket to
adjust the camera height; a light source on both sides of the camera;
and a shelf to place the maize seed samples. The image data
acquisition device is shown in Figure 2.

2.1.2 Image processing

The Python3.6 script language was used to segment the corn
seed images, as shown in Figure 3A. First, the original color image
was converted to grayscale, and a binary image was then obtained
using the adaptive thresholding method, whereby the seed region is
shown as white and the background region as black. White noise in
the image was removed using a morphological open operation, and
expansion was used in the foreground to distinguish the
background and foreground areas of the image. The
distanceTransform function was then used to obtain the center
region of each seed, and the expanded image was subtracted from
the central region to obtain the edge region. Finally, the watershed
algorithm was used to mark the identified central region, delineate
the seed boundary, and determine the range of each seed in the
complete image by the location coordinates for segmentation. The
segmentation effect is shown in Figure 3B.

alfbd

FIGURE 1

Corn seeds with different appearance qualities (A) Good seed grain, (B) Defective grain, (C) Both conditions.

FIGURE 2

camera

bracket

light
sources

shelf

Image acquisition platform (A) physical device diagram and (B) 3D view of the device.
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FIGURE 3

Process of watershed algorithm (A) Segmentation process and (B) Segmentation results

2.2 Basic method and test environment

2.2.1 Convolutional neural networks

A convolutional neural network (Rong et al., 2019) is a kind of
multilayer perceptron. A traditional convolutional neural network
consists of an input layer, convolutional layer, pooling layer, and
fully connected layer. A simple neural network model can be
formed by mixing different depths and stacking orders, as shown
in Figure 4, in which the term random represents the number of
times a particular layer of a structure is randomized.

The input layer represents the initial input of the entire
convolutional neural network, and in the case of image processing,
the input layer contains the pixel matrix of the input image, and the

convolutional layer is the core component of convolutional neural
network, which has the characteristics of local connection, weight
sharing and translation invariance, and realizes the feature extraction
function of the network. The pooling layer compresses the size of the
input feature map while extracting the main features, thereby reducing
the complexity of the network training process and the probability of
overfitting the network model during this process. The fully connected
layer is involved in weighting the features extracted from the
convolutional and pooling layers, transforming them into layer
vectors, and inputting one-dimensional data into the Softmax layer
through multiplication operations to obtain the image classification
results. It can be understood as a parallel, large-scale distributed
processor that is capable of storing and using empirical knowledge.

Input layer

Y

Convolutional layer

Y

Random (x)

Pooling layer

\ 4

Fully connected layer

FIGURE 4
Basic structure of convolutional neural network.
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2.2.2 Depthwise separable convolution

Depthwise separable convolution (Mamalet and Garcia, 2012) was
proposed as a typical lightweight convolution structure that has a
significantly reduced parameter number and increased training speed
compared to a standard convolution and can separate channels and
regions in the convolution operation. As shown in Figure 5, depthwise
separable convolution mainly consists of two parts, depthwise
convolution and pointwise convolution, which are used to extract
feature information. One depthwise convolution kernel is responsible
for one channel, and the number of feature maps generated by this
process equals the number of input channels. The convolution
operation is performed independently for each channel of the input
layer, which does not make full use of the feature information from
other channels in the same spatial location. Therefore, pointwise
convolution is required to combine the feature maps to generate a
new feature map, in which the number of convolution kernels
corresponds to the output feature map.

Depthwise separable convolution effectively reduces the
number of parameters required for the network model compared
to the normal convolutional approach. The N H x W x C
convolution kernels can be replaced by C H x W x 1 depthwise
and N 1 x 1 x C pointwise convolution kernels. The number of
depthwise convolution parameters is (H x W x 1) x C, and the
number of pointwise convolution parameters is (1 x 1 x C) x N.
The combined number of parameters for the depthwise separable
convolution can be calculated as follows:

Params=H x W x C+C x N (1)

The number of parameters in the ordinary convolution is H x
W x C x N, and the relationship between the two is compared as
follows:

H><W><C+C><N_1+ 1
HxWxCxN N HxW

2

2.2.3 Attention mechanism

The working principle of the attention mechanism is similar to
the selective attention of human vision. It utilizes limited
computational resources to focus on important feature
information and emphasize regions of interest in a dynamically

3 channel input Filters*3

Maps*3

/

%‘,—J

Depthwise Conv

FIGURE 5
Depthwise separable convolution.
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weighted manner, discarding irrelevant background information
and nuisance information in the input features to improve network
performance. In general, the attention mechanism involves the
process of weight assignment, in which the input feature
information is processed, the attention information is obtained
through a weight assignment, and the attention mechanism is used
to process these features. The process can be expressed as

Attention = f(g(x), x) (3)

Here, x represents the input feature information of the attention

mechanism; g(x) represents the focus on the key areas, that is, the

process of generating attention information by processing the input

features; and f(g(x), x) represents the processing of the key areas,

that is, processing of the input information using the attention
information obtained from g(x).

2.2.4 Evaluation indicators

In this study, objective evaluation criteria (Feng et al., 2022;
Wang X. et al., 2022) were used to analyze the inspection model of
the maize seed appearance quality using Accuracy(A), Precision (P),
Recall (R), and by introducing the F1 value as the average evaluation
of the reconciliation. The related formulae are as follows:

__ TPHIN 0% 4)
~ TP + TN + EN + FP ’
P2 100% (5)
TP+ EP ?
R=—2 100% (6)
“TP+EN ’
2PR
F1= % 100 % )

2.2.5 Test environment

We used a Windows 10, 64-bit operating system with a x64 based
processor, Cuda version 11.0, and the Tensorflow deep learning
framework based on the Python programming language. The
computer contained an NVIDIA GeForce RTX 3090 graphics card
with 24G video memory and a 12th Gen Intel(R) Core (TM) i7-
12700KF processor at 3.61 GHz.

Filters*4

a
o
o

Maps*4

.
Pointwise Conv
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2.3 Algorithm improvement

2.3.1 Improving the Inception-ResNet module

The traditional Inception module, shown in Figure 6A, consists
of 1 x 1,3 x 3,and 5 x 5 convolution operations of various sizes for
feature extraction using multiple-scale parallel convolution
operations. The Inception-ResNet module (Figure 6B) combined
the residual network structure of the ResNet with the separation of
the large convolutional network into two tandem small
convolutional structures to obtain the output feature maps of the
5 x 5 convolution, thereby improving the classification performance
of the model. In this study, based on the Inception-ResNet module,
the standard convolution part of the Inception-ResNet structure
was replaced by a cost-effective convolution operation by
combining the lightweight structure depthwise separable
convolution (Dinception-ResNet). This approach could reduce
the number of model parameters, increase the depth of the
network, and enhance the feature extraction capability of the
model, while preserving the feature diversity of the traditional
inception multigroup structure.

A comparison of the parameters of the improved model is
presented in Table 1. The original Inception-ResNet model used
up to 28 979 618 parameters; this number was reduced by 177 920
after the depthwise separable convolutional replacement and
the ratio of the number of trainable parameters to the total
number of parameters was improved, which favors the design of
lightweight networks.

10.3389/fpls.2023.1249989

2.3.2 Adding attention mechanism

Introducing the Efficient Channel Attention Network after the
Dinception-ResNet module effectively avoided dimensionality
reduction and captured cross-channel interactions, as shown in
Figure 7. The Efficient Channel Attention Network first transformed
the input feature map from a matrix [H, W, C] into a vector [1, 1, C]
using global averaging pooling, after which it calculated the adaptive
1D convolution kernel size based on the number of channels of the
feature map, which was then used in 1D convolution. Subsequently, the
weights of the feature maps with respect to each channel were obtained.
Finally, the normalized weights and the original input feature maps
were multiplied channel-by-channel to generate the weighted feature
maps. These maps can be used to solve the information overload
problem and improve the efficiency and accuracy of task processing by
focusing on the more critical information for the current task, reducing
the attention to other information, and using a small number of
parameters to achieve suitable results. To fully demonstrate the
effectiveness of Efficient Channel Attention Network, we conducted a
comparison experiment between it and the commonly used attention
mechanisms CBAM, SENet and CANet. By testing the relevant indexes
of the experiments, the results were shown in Table 2, which clearly
concluded that the overall detection performance of Efficient Channel
Attention Network was optimal.

2.3.3 Introducing the feature fusion mechanism
As the depth of the network model increases, important feature
information may be missed in the feature extraction process,

A B
Relu activation
Base
E 1x1 Conv
3x3
3%3 Pool 1x1 Conv 1x1 Conv 1x1 Conv
Dep Conv
J J l >
1x1 Conv 5x5 Conv 3x3 Conv Dep Conv
‘ 1%1 Conv ‘ 1%1 Conv
Concat

FIGURE 6

Relu activation

Inception module (A) Traditional Inception module and (B) Dinception-ResNet module.

TABLE 1 Parameter comparison.

Total parameters

Trainable parameters Non-trainable parameters

Inception-ResNet 28 979 618

Dinception-ResNet 28 801 698
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FIGURE 7
ECA network structure.

thereby decreasing the classification accuracy of the model.
Therefore, this study proposed feature fusion, as shown in
Figure 8, in which the output features of each module were first
pooled by global averaging to avoid overfitting. Subsequently, the
output feature maps of the three stages were feature-fused to enrich
the output feature information, enhance the generalization
performance of the model, and improve the expression ability of
the feature information.

2.3.4 Improved network model structure

The traditional convolutional neural network structure
generates a large number of parameters in the deep network. In
addition, key features are mixed with irrelevant features, and the
network is difficult to optimize; therefore, this study proposed an
improved model based on Inception-ResNet (Figure 9). Depthwise
separable convolution was used to replace the standard convolution
in the Inception-ResNet module to reduce the number of model
parameters, the network model was optimized by introducing the
Efficient Channel Attention mechanism to increase the feature
weights of key information and improve the network
performance; in addition, the output features of the low, middle
and high layers of the model were fused to improve the feature
extraction ability of the model and enrich feature information to
achieve the purpose of network optimization.

2.3.5 Ablation study

In order to validate the effectiveness of the method proposed in
this paper, separate experiments were conducted for the proposed
modules to compare with the original Inception-Resnet model. By
comparing the results of groups 1-2-3-4 in Table 3, it can be seen
that the performance of each module reference is improved to some
extent compared to the original network. Among them, the

10.3389/fpls.2023.1249989

introduction of the feature fusion module resulted in the most
obvious model performance improvement, with each performance
index improved by 3.38 - 5.55 percentage points respectively. The
average time for detecting an image was 2.62 seconds. Replacing
standard convolution with depthwise separable convolution, the
average time to detect an image was reduced by 30 milliseconds. By
comparing the results of 1-2-5-6 groups and referring modules one
by one, the model performance was improved and the effectiveness
of the modules is fully proved.

3 Results and analysis
3.1 Model optimization

Different networks apply different model parameters. By adjusting
certain parameters in the model and using test set recognition accuracy
as the evaluation index, we investigated the effects of the parameters on
the classification accuracy of the model. In the convolutional neural
network model, batch size is an important hyperparameter, and we
chose a batch size that was appropriate to train the model to converge
to the global optimum. Using a large number of parameters in a deep
convolutional neural network creates correction issues; therefore, a
suitable optimizer was selected to improve the model training speed
and accuracy. The training parameter batch sizes of the model were 16,
32, and 64, and two different optimization algorithms, Adam and SGD,
were used. The number of model iterations was set to 100 and the
learning rate was 0.001; the final test set accuracy variation curve is
shown in Figure 10. These settings ensured that when the Adam
optimizer was selected for the improved model and the bath size was
set to 32, the accuracy of the test set was the highest and the detection
performance was optimal.

TABLE 2 Comparison of detection performance of different attention mechanisms.

Attention mechanism

Average Accuracy/%

Average Precision/%

ECANet 95.96
CBAM 89.68
SENet 83.33
CANet 90.48

Frontiers in Plant Science

Average Recall/% F1/%  Detection time/s
92.46 91.26 91.86 2.68
91.33 89.68 90.50 2.65
87.34 83.33 85.29 2.67
91.89 90.47 91.17 2.66
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FIGURE 8
Network structure with added feature fusion.

3.2 Comparison of machine
learning experiments

To verify the performance of the improved model, three features
of maize seed (shape, color, and texture) were extracted using
traditional machine vision techniques, and the three types were
combined to quantify the images more effectively. The logistic
regression, k-nearest neighbor, decision tree, random forest,
gaussian naive bayes, and support vector machine models were
used for classification, and the common lightweight convolutional
neural networks DenseNet, MobileNet, ShuffleNet, and Inception,
and the original Inception-ResNet were selected for comparison. The
dataset was divided into training and test sets in a 4:1 ratio, and the
classification accuracies of the different models on the test set are
shown in Figure 11A. The highest accuracy with the test set occurred

axInception-ResNet-C H Global Average Pooling %

with the improved Inception-ResNet model, with 99.49%, which was
an increase of 2.03 percentage points over the accuracy of the original
model of 97.46% and an increase of 5.07 percentage points compared
to the LR model, which had the highest machine-learning recognition
accuracy for the test set of 94.42%. In addition, a confusion matrix
was chosen as the visual presentation tool to evaluate the quality of
the classification models, and the matrices for several models of the
test set are shown in Figure 11B. The plots showed that the original
Inception-ResNet model had an accuracy of 96.67% for the
identification of seeds with a defective appearance and 98.13% for
the identification of seeds with a good appearance. The confusion
matrix for the improved Inception-Resnet model showed the best
results, with a significant improvement and a classification accuracy
of the test set seeds of up to 100%; therefore, this model provided an
accurate identification of seed appearance quality.
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FIGURE 9
Improved model structure
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TABLE 3 Comparison of improving module performance.

10.3389/fpls.2023.1249989

Average Accu- Average Preci- Average Detection
racy/% sion/% Recall/% time/s
1 Inception-Resnet 88.10 90.26 88.10 89.17 2.59
2 Inception-Resnet (+depthwise separable convolution) 89.68 91.33 89.67 90.49 2.56
3 Inception-Resnet (+ECANet) 95.96 92.46 91.26 91.86 2.68
4 Inception-Resnet (+feature fusion) 93.65 94.28 93.65 93.96 2.62
5 Inception-Resnet (+depthwise separable convolution + 92,06 93.05 92,06 92,55 277
ECANet)
6 Improved Inception-ResNet 96.03 96.27 96.03 96.15 2.44

3.3 Comprehensive testing performance

To evaluate the effectiveness of the improved Inception-
ResNet in detecting seed appearance quality, ten sets of image
data with good and bad co-existing seeds were selected for the
final validation and performance of the six detection algorithms,
DenseNet, MobileNet, ShuffleNet, Inception, Inception-ResNet,
and improved Inception-ResNet. The models were evaluated
using the criteria of average accuracy, precision, recall and the
reconciled average evaluation F1 value. The results are shown in
Table 4, and the highest average accuracy of Inception-ResNet
after improvement reached 96.03%, which was 3.23 - 11.11
percentage points higher than those of the other models, the
average precision reached 96.27%, an improvement of 3.46 -
8.00 percentage points compared to other networks. Similarly,
the average recall was 3.22 - 11.11 percentage points greater than
the other models, with 96.03%, while the reconciled average
evaluation F1 value reached 96.15%, which was 3.34 - 9.59
percentage points higher than the other algorithms and the
average time to achieve real-time detection was 2.44 seconds
per detected image.
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o
@
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3.4 Model performance

Combined with the watershed algorithm to obtain the specific
location coordinates of the corn seeds for defect detection, the detection
results of several models are shown in Figure 12. The improved
Inception-ResNet model had a significantly greater number of cases
with target confidence levels of 1.0, with approximately 88% of the seed
identifications showing a level approaching 1.0, which is a six-
percentage point improvement over the level of the original model.
A comparison of the detection results is shown in Table 5, which shows
that the improved Inception-ResNet model had the greatest number of
correct detections and highest overall recognition accuracy, thereby
allowing for an accurate detection of the appearance quality of corn
seeds to achieve the desired results. In the actual detection process,
there are also cases of misdetection, such as the possibility of detecting
bad seed as good seed when the area of damage is small. When the
seeds are randomly placed at an inappropriate Angle or there is serious
adhesion leading to area coverage between seeds, it is possible to detect
good seeds as bad seeds. This also indicates that there is room for
model refinement and we need to follow up to explore more accurate

detection models.
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FIGURE 10
Comparison of parameters.
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Test result (A) Comparison of accuracy between different model test sets and (B) Confusion matrix of different models

4 Discussion

We proposed an improved model based on Inception-Resnet
for corn seed appearance quality detection, which can realize the
purpose of accurate and real-time detection. However, the model is
domain dependent and mainly focuses on the detection of seed
appearance quality, which makes it difficult to directly migrate the
network to other domains. This is mainly due to the fact that the
network structure modifications are performed based on seed
features, which are difficult to guarantee that they will respond
well on datasets from other domains. With the development of
agricultural digitization, it can be applied to seed intelligent sorting
equipment to guarantee the quality of seeds. We can do further
research to solve some problems, firstly, the data collection was
conducted indoors, in the future, we can try to train the model
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directly for the dataset collected in the actual outdoor environment
to improve the generalization ability of the model; secondly, we can
design a lighter network structure, which can ensure the stability of
the algorithm and efficiently deploy it on different platforms while
pursuing high performance; finally, we only study the appearance
damage of corn seeds, and in the future we can continue to explore
more specific defects on the seed surface, such as diseases and pests,
and further promote the development of the seed industry.

5 Conclusions

To improve the accuracy of seed appearance quality assessment,
this study proposed an improved Inception-ResNet model based on
the Inception-ResNet algorithm for identifying appearance defects
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TABLE 4 Comparison of detection model performances.

Average Accuracy/% Average Precision/% Average Recall/% F1/%  Detection time/s
DenseNet 84.92 88.27 84.92 86.56 2.86
MobileNet 87.30 89.75 87.30 88.51 1.81
ShuffleNet 88.87 90.24 88.88 89.55 1.91
Inception 92.80 92.81 92.81 92.81 255
Inception-ResNet 88.10 90.26 88.10 89.17 2.59
Improved Inception-ResNet 96.03 96.27 96.03 96.15 2.44
A B c

FIGURE 12
Comparison of detection results of multiple algorithms (A) DenseNet (B) MobileNet (C) ShuffleNet (D) Inception (E) Inception-ResNet (F) Improved
Inception-ResNet.

of corn seeds and obtained the following conclusions: (1) Taking  in the Inception-ResNet module reduced the large number of
advantage of the small number of depthwise separable parameters generated by overlaying the Inception-ResNet module
convolutional parameters as opposed to the standard convolution  and the requirement for hardware resources. (2) Introducing the
Efficient Channel Attention Network strengthened the ability to
learn key information and avoided the problem of excessive
TABLE 5 Comparison of test results. information storage and information overload in the model.

Simultaneously, the output feature maps were fused to obtain

Model Correct number Miss number . g ] o
richer feature information to enhance the network generalization
DenseNet 27 6 ability and improve network performance. (3) The detection effect
MobileNet 25 3 of the method proposed in this study was superior to the other
models tested, with an average accuracy of 96.03%, average
ShuffleNet 25 8 .
precision of 96.27%, average recall of 96.03%, F1 value of 96.15%,
Inception 27 6 and detection speed for a single corn seed image of approximately
Inception-ResNet 28 5 2.44 seconds. The performance index improved significantly with
) high performance stability, providing a theoretical basis for
Improved Inception-ResNet 29 4 . X
subsequent seed quality detection.
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The viability of Zea mays seed plays a critical role in determining the yield of corn.
Therefore, developing a fast and non-destructive method is essential for rapid
and large-scale seed viability detection and is of great significance for agriculture,
breeding, and germplasm preservation. In this study, hyperspectral imaging (HSI)
technology was used to obtain images and spectral information of maize seeds
with different aging stages. To reduce data input and improve model detection
speed while obtaining more stable prediction results, successive projections
algorithm (SPA) was used to extract key wavelengths that characterize seed
viability, then key wavelength images of maize seed were divided into small
blocks with 5 pixels X5 pixels and fed into a multi-scale 3D convolutional neural
network (3DCNN) for further optimizing the discrimination possibility of single-
seed viability. The final discriminant result of single-seed viability was determined
by comprehensively evaluating the result of all small blocks belonging to the
same seed with the voting algorithm. The results showed that the multi-scale
3DCNN model achieved an accuracy of 90.67% for the discrimination of single-
seed viability on the test set. Furthermore, an effort to reduce labor and avoid the
misclassification caused by human subjective factors, a YOLOvV7 model and a
Mask R-CNN model were constructed respectively for germination judgment
and bud length detection in this study, the result showed that mean average
precision (MAP) of YOLOv7 model could reach 99.7%, and the determination
coefficient of Mask R-CNN model was 0.98. Overall, this study provided a
feasible solution for detecting maize seed viability using HSI technology and
multi-scale 3DCNN, which was crucial for large-scale screening of viable seeds.
This study provided theoretical support for improving planting quality and
crop yield.

KEYWORDS

viability detection, maize seeds, hyperspectral imaging, YOLOv7 model, 3D convolution
neural network
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1 Introduction

Single-seed sowing is a crucial strategy to boost corn
production, save seeds, and reduce labor, but it demands high-
quality seeds (Li et al., 2017). On October 11th, 2020, a new
standard has been released by China, which raises the
germination rate index for single-seed sowing from 85% to 93%.
The viability is a critical indicator for evaluating the quality and
practicality of seed. Assessment of seed viability could ensure each
seed has the potential for germination and healthy growth and
promotes the popularization of single-seed sowing. This not only
facilitates mechanized sowing and reduces the laboriousness of
manual interplanting and seedling transplantation, but also
significantly reduces the amount of seed used and conserves a
considerable amount of seed production area (Liang et al., 2020).
Therefore, the determination of seed viability is of utmost
importance in reducing the cost and time loss resulting from
planting failures and conserving human resources.

Seed viability is a quality characteristic at the individual level
rather than a quantitative trait at the population level. Loss of
viability among individuals in the same population is not
synchronous, making it challenging to detect the viability of
single-seed. According to the International Seed Testing
Association (ISTA) rules (Association, 1.S.T, 1999), common
methods for seed viability detection include germination and
staining (Cheng et al,, 2023). The conventional germination
method is the most accurate, but it is time-consuming and
requires a lot of material resources. On the other hand, staining is
only suitable for a small number of samples. Therefore, it is
necessary to develop a rapid-nondestructive technique for single-
seed viability detection in large quantities.

In the field of seed quality detection, hyperspectral imaging
technology has been widely utilized. However, research on seed
viability detection is relatively limited. Jannat Yasmin et al. (2022)
presented an online detection system of watermelon seed viability
based on longwave near-infrared (LWNIR) HSI, demonstrating its
potential application in predicting seed viability. Wang et al. (2021)
developed the discrimination models of seed viability using the
feature wavelengths and full wavelengths of the visible and
shortwave near-infrared (Vis-SWNIR), the result revealed that
both models attained an accuracy rate surpassing 95%, suggesting
that the seeds with different aging stages exhibited unique spectral
features, and the characteristic wavelengths can effectively provide
the key information of Zea mays seed quality. Pang et al. (2021)
conducted a germination experiment on maize seeds with different
aging stages, a 2D convolutional neural network (2DCNN) model
was developed by combing deep learning algorithms with
hyperspectral technology. The accuracy of this model reached
99.96%, which was significantly higher than machine learning and
one-dimensional convolutional neural network (CNN). It was
worth pointing out that the model demonstrated a relatively fast
convergence speed, which highlighted the feasibility and
effectiveness of combining deep learning with hyperspectral
technology to determine the viability of single-seed. Ambrose
et al. (2016) investigated the feasibility of using HSI technology to
differentiate the viability of maize seeds. One group of maize
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samples was subjected to microwave heat treatment, while the
other group served as the control. PLS-DA was employed to
classify the heat-treated (aged) and untreated (normal) maize
seeds. The results showed that the classification model achieved
the highest classification accuracy in the LWNIR region, with
calibration set accuracy of 97.6% and prediction set accuracy of
95.6%. These studies achieve high accuracy by predicting the aging
level or treatment condition of seeds instead of the actual results of
germination experiments. And they mainly rely on overall image
information for seed viability classification. However, they overlook
the significance of local information within seeds and fail to
consider subtle variations and characteristics in different
seed regions.

Generally, the evaluation of germination rate of seeds mainly
depends on manual labor, which is time-consuming and
cumbersome. Zhao et al. (2022) proposed a detection method for
the germination rate of rice seeds using deep learning models,
which took an average of 0.011 seconds for each image while
achieving a mAP of 0.9539, meeting the demands of real-time
detection, indicating that the YOLO-r model had great potential for
rapidly and precisely determining the germination status of seeds.
Bai et al. (2023) developed an improved discriminative approach for
the detection of seed germination using YOLOV5. This technique
enables the swift evaluation of parameters such as wheat seed
germination rate, germination potential, germination index, and
average germination days.

The emergence ability of seedlings is crucial for seed growth and
crop yield improvement (Cui et al, 2020). In recent studies,
significant progress has been made in correlating seed germination
ability and seedling growth through various measurement methods.
However, traditional manual measurement techniques for assessing
parameters like bud length have been found to be inefficient and
prone to errors due to the complex and twisted nature of buds. To
address this issue, Adegbuyi and Burris (1988) found there was a
significant correlation between seed germination ability and seedling
growth by measuring comprehensive growth parameters. However,
manual measurement method of bud length is inefficient and error-
prone due to their curved and twisted nature. Gaikwad et al. (2019)
developed a semi-automated tool for measuring leaf length, width,
and area. Abdelaziz Triki et al. (2021) used the Mask R-CNN
algorithm to effectively segment and measure leaf characteristics
and obtained an error rate of around 5%. An enhanced algorithm
based on the mask RCNN was introduced by Shen et al. (2023) to
recognize defective wheat kernels. The experimental outcomes
showed that this refined algorithm facilitated quicker and more
precise detection of unsound kernels, effectively tackling issues
linked to kernel adhesion. Masood et al. (2021) propose an
automated method that utilizes the Mask RCNN model to achieve
precise localization and segmentation of brain tumors. Cui et al.
(2022) constructed a recognition model using hyperspectral data and
feature extraction algorithms to predict maize root length, showing a
significant correlation between root length and viability. Therefore, it
is of great significance to measure and predict the seed viability using
computer technology.

The above study highlighted the significance of seed viability
determination and emphasized the need of developing rapid and
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non-destructive technology for single-seed viability detection. HSI
has been established as a useful tool for seed quality detection, and
the integration of deep learning and hyperspectral technology can
establish an effective seed viability detection model. However,
previous studies commonly used relatively simple models, and
lacking the prediction model of maize seeds viability developed
by 3DCNN and hyperspectral images. This study proposed an
improved method for identifying the viability of maize seeds
based on germination experiments. The aim of the study is to
explore the potential of using hyperspectral images and 3DCNN to
identify the viability of maize seeds. Specifically, the objectives are
to: (1) select characteristic wavelengths that represent seed viability,
(2) combine HSI with 3DCNN to establish the optimal classification
model for maize seed viability, (3) evaluate the feasibility of using
YOLOv7 model instead of the human eye to determine the seed
germination status, (4) evaluate the ability of Mask R-CNN in bud
segmentation and bud length prediction.

2 Materials and methods
2.1 Maize sample preparation

2.1.1 Aging experiment

Due to the high quality and the resistance to multiple stressors,
“Jingke 968” maize is extensively cultivated in eastern and northern
China. Therefore, it was selected as the experiment sample in this
study. To ensure the accuracy of the experiment, seeds with uniform
size and shape were manually selected, then all seeds were
disinfected by soaking them in a 0.5% sodium hypochlorite
solution for 5 minutes, followed by rinsing with distilled water
five times, and air-dried under natural conditions.

To simulate the natural aging process of seeds, the experiment
samples were artificially aged. All seeds were exposed to high
temperature and high humidity conditions (45 °C and a relative
humidity of 95%) and stirred twice a day to ensure uniform
exposure (Zhang et al, 2020). 150 maize seeds were taken out
randomly at aging 2, 4, 6, and 8 days, respectively. Additionally, 150
untreated seeds were selected as the control group (CK). Therefore,
a total of 750 maize seeds within five aging stages were obtained and
used for subsequent experimentation.

2.1.2 Hyperspectral imaging system

Two HSI systems, the Vis-SWNIR and LWNIR, have been built
in the Intelligent Detection Laboratory of the China Agricultural
Equipment Technology Research Center (Fan et al., 2018). The Vis-
SWNIR system is capable of acquiring hyperspectral images within
the wavelength range of 327-1098 nm, encompassing 1000 spectral
variables, while the LWNIR system can capture images within the
range of 930-2548 nm, containing 256 spectral variables. The Vis-
SWNIR system includes an imaging spectrometer, an electron-
multiplying charge-coupled device camera with a resolution of
502x500, a camera lens, and a spectraCube data acquisition
software. Similarly, the LWNIR system includes an imaging
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spectrometer, a charge-coupled device camera with a resolution of
320x256, a camera lens, and a spectral acquisition software (Tian et
al., 2021). And the acquisition software of both systems was
developed using LabVIEW (National Instruments Inc., Austin,
TX, USA) to facilitate the acquisition of spectral images, as well
as to manage the camera and motor operations. Both systems share
two 300-watt halogen lamps to provide stable illumination. In
addition, an electrically operated moving platform and a
computer are available for sample placement (Capable of
accommodating up to 96 samples simultaneously) and
hyperspectral image acquisition (Figure 1A) (Liu et al.,, 2022).

To ensure the accuracy and reliability of the hyperspectral
images (E,,,), calibration operation is essential to eliminate the
effects of uneven illumination of the light source and camera dark
current changes (An et al, 2022). The calibration operation
involved using a white reflection board (with a reflectance of
99%) (E,) to acquire a standard white reference image in the
same sampling environment as the sample, while turning off the
light source and covering the lens to obtain a black reference image
(with a reflectance of 0%) (E,). The calibrated image can be
calculated using the following formula:

Ec _ Emw - Ed

" Ew-Ed W

After calibration, in the Vis-SWNIR region, a subset of 347
spectral variables within the 420-1000 nm range was selected for
further analysis, considering the abundance of spectral data and the
presence of duplicate information in adjacent spectra. On the other
hand, in the near-infrared region, due to the limited number of
available bands, all spectral variables (256) were directly included in
the analysis. To separate maize seeds from the background, a mask
was applied to segment the hyperspectral image. The gray-scale
images at 801 nm and 1098 nm were selected as the mask images for
the Vis-SWNIR and LWNIR bands, respectively. The average
spectral curves were obtained by calculating the mean reflectance
under the mask. Lastly, in order to eliminate the influence of the
instrument, the Savitzky-Golay (SG) and Standard Normal Variate
(SNV) methods were utilized to preprocess the spectra.

2.1.3 Standard germination test

A transparent box measuring 25cmx25cm was used as a
germination chamber, and 75 seeds were placed in each box. A
total of 10 boxes were used in the experiment. Prior to the
germination test, the germination boxes were sterilized with 75%
ethanol (Suksungworn et al., 2021), and three layers of gauze were
placed in each germination box to provide continuous moisture for
the seeds. A black gauze was placed on the top layers as the
background for photography (Figure 2A). An equal amount of
distilled water was added to each box, and the temperature was set
to 25°C with 12-hour intervals of light and dark (Figure 2B).
Throughout the 7-day germination experiment (Long et al,
2022), the germination progress of maize seeds was monitored
daily at specific time intervals. According to the ISTA standard, the
germination rate was determined (Wang et al., 2022¢).
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2.1.4 RGB image acquisition

RGB images of maize seeds were captured using BASLER
industrial cameras (acA1920-25um/uc, BASLER AG, Germany,
2.4 MP,100 fps) during germination test (Figure 2D) (Shen et al,
2023). An adjustable camera platform was built to ensure
consistency of the images and prevent camera shake. The position
of the germination box relative to the lens was kept fixed during
each image capture. Indoor lighting was turned on and curtains
were drawn for each capture. After placing the seeds into the boxes
(Day 0), images of each box were immediately captured.
Subsequently, images were captured every 15 hours for 7
consecutive days (Figure 2C). The dataset used in this study
consisted of a total of 3000 maize seeds (All the captured RGB
images collectively contain 3000 seeds). Among them, 2250 seeds
were designated as training samples, while the remaining seeds were
allocated to the test set.

2.2 Data processing
2.2.1 Successive projections algorithm

Hyperspectral data typically consists of numerous bands, and
certain bands may exhibit high correlation or contain redundant
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information (Han et al., 2022).When training 3DCNN with full-
band data, it will lead to a significant increase in the number of
networks training parameters, resulting in a more complex model.
This phenomenon is commonly referred to as the curse of
dimensionality. (Koppen, 2000). However, band selection (Sun
and Du, 2019) allows retaining spectral bands that are closely
related to seed vigor assessment while removing irrelevant bands,
thereby enhancing the feature extraction and discriminative
capabilities of the model.

Additionally, the use of dimensionality reduction data sets can
effectively reduce the complexity of the model, mitigating the risk of
overfitting and enhancing the model’s generalization ability and
stability (Aloupogianni et al., 2023). Moreover, fewer computing
resources are required during model training and inference, leading
to a significant improvement in the computational efficiency of the
model (Xing]Jia et al., 2022).

Successive projections algorithm is a classical band selection
method that can map high-dimensional spectral data to a low-
dimensional space through multiple projections(de Almeida et al.,
2018). SPA is a forward iterative search method used for selecting
spectral information with minimal redundancy to address
collinearity issues. The steps of SPA are shown in Table 1. The
SPA is widely used in hyperspectral image processing attributed to
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its advantages of fast computation speed and easy implementation
(Chen et al,, 2023b). Therefore, the SPA was used in this study to
perform feature selection on the processed average spectra of Vis-
SWNIR and LWNIR, in order to perform dimensionality reduction
on the hyperspectral data.

2.2.2 Machine learning

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a
powerful algorithm for classification and regression that finds an
optimal hyperplane to separate data points of different classes. It
handles high-dimensional datasets, avoids overfitting, and can handle
non-linear problems using kernel functions. K-Nearest Neighbor
(KNN) (Zhang, 2022) is a basic algorithm that selects the K nearest
samples based on their feature values and uses their labels as
predictions. Subspace Discriminant Analysis (SDA) (Zhao and
Phillips, 1999) is a pattern classification method that aims to find a
low-dimensional subspace to maximize the separation between

TABLE 1 Successive projections algorithm.

Input:Dataset with features and target variable

Output:Feature subset for analysis

Step 1: For each feature in the dataset:
a. Compute projection coefficients with respect to the target variable.
b. Store the computed coefficients.

Step 2: Initialize an empty feature subset.
Step 3: Repeat until desired subset size is reached or stopping criterion met:
a. Find the feature with the maximum projection coefficient.
b. Add the selected feature to the feature subset.
c. Project out the influence of selected features on remaining features.
d. Recalculate projection coefficients of remaining features.
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different classes. In this study, the aforementioned machine
learning methods were used to classify the viability of maize seeds
at different aging stages for optimal classification accuracy.

2.2.3 Deep convolutional neural network

The CNN combines the concepts of convolutional filtering and
neural networks by utilizing local receptive fields and weight
sharing to reduce the number of network parameters and speed
up model training (Ghaderizadeh et al., 2021). Compared to the
widespread use of two-dimensional convolution, three-dimensional
convolution is less commonly used in practice. However, HSI
contain rich spectral information, and using two-dimensional
convolution may make the interband correlations of HSIs
underutilized (Ge et al., 2020). To address this issue, this study
introduced a 3DCNN, which can thoroughly extract feature
relationships across different feature channels (Figure 1C),
thereby enabling it to concurrently extract integrated spectral and
spatial features from hyperspectral imagery (Sun et al., 2022).

Before inputting hyperspectral images into the network,
standardization is performed to ensure that the data is within the
same scale and range, enabling the network to learn weights faster and
converge more easily during training. Moreover, data standardization
can help avoid the problems of gradient disappearance or explosion,
and improve the stability and generalization ability of the network. To
obtain multiple convolutional features of HSI, multi-scale convolution
is employed in the same convolutional layer, which can acquire both
global and local information. Four different convolution kernels of
3x3x3, 3x3x5, 3x5x5, and 5x5x5 were selected to extract feature
information and fused on the channel. This method can enhance the
classification accuracy of the model. As illustrated in Figure 1D, each
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convolution kernel in the first convolution module has 16 filters, each
kernel in the second convolution module has 32 filters, and each kernel
in the third convolution module has 64 filters. The activation function
in the three-dimensional convolution module uses Rectified Linear
Unit (RELU) and is compressed by the pooling layer to reduce the
amount of data and parameters, as well as alleviate the overfitting
phenomenon. To ensure that the features extracted by different
convolution kernels in the same module can be effectively connected,
different parameters need to be set according to different situations,
such as stride and padding. Finally, the output is produced through 1
fully connected layer and 1 output layer, and the output layer employs
the SoftMax activation function.

To extract features from hyperspectral images of maize seeds at
a more microscopic level and increase the amount of data, a window
size of 5x5 was selected for segmentation (Figure 1B). To eliminate
the influence of background on classification, small blocks
containing 0-pixel points were discarded. As the size of maize
seeds varies, the number of blocks obtained from different segments
of maize seeds is also inconsistent. To address this issue, this study
employed a majority principle labeling aggregation method,
as Table 2.

In this study, the germination experiment showed that 404
viable samples and 346 nonviable samples were collected from 750
seeds. Given that the hyperspectral images were collected in a
sequential manner based on the aging gradients of the seeds, it
was crucial to maintain a balanced distribution of germinated and
non-germinated samples in the test set. Therefore, a representative
test set was carefully selected, consisting of 75 seeds, including the
first seed, the 10th seed, the 20th seed, and so on. The remaining 675
seeds were allocated for the training phase. Through this meticulous
approach, it was ensured that the test set encompassed samples
from diverse categories, enabling an accurate evaluation of the
classification model’s performance.

2.2.4 Establishment of Mask R-CNN model for
bud length detection

In order to measure the length of maize seed bud, the Mask R-
CNN (He et al., 2017) (With resnet50_fpn as backbone) model was

TABLE 2 Majority principle labeling aggregation method.

Input: Segmented maize seed blocks

Output: Predicted potential for germination of
maize seeds

Step 1: Initialize:
a. Assign Label 1 to represent potential for germination.
b. Assign Label 2 to indicate maize grain block affiliation.

Step 2: For each segmented maize seed block:
a. Feed the block into the model for prediction of its potential for
germination.
b. Store the prediction result.

Step 3: For each maize seed:
a. Retrieve predictions of multiple small blocks belonging to the same maize
seed.
b. Count the number of correct predictions.
c. If more than half of the predictions are correct:
- The predicted result of the maize seed is deemed correct.
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utilized to segment the bud from single-seed image firstly, then a
skeleton extraction algorithm was applied to extract the skeleton of
the bud (Figure 3A). Next, the bud length detection algorithm was
used to remove the branches in the skeleton for obtaining the
central skeleton image. Finally, the actual bud length was calculated
by converting pixels to actual length (Figure 3B).

Mask R-CNN is a deep learning model that combines object
detection and instance segmentation. It extends Faster R-CNN by
generating binary masks for each region of interest (ROI), achieving
pixel-level segmentation. The network consists of three main
components: a backbone network, a Region Proposal Network
(RPN) responsible for generating candidate object regions, and
two parallel branches dedicated to object detection and mask
prediction. Mask R-CNN excels in instance segmentation, object
detection, and keypoint detection, making significant contributions
to computer vision advancements (Casado-Garcia et al., 2019). The
model employs a multi-task loss function, comprising classification
loss (L), bounding box loss (Lypey), and predicted mask loss
(Limask)» as represented by equations (2) to (5) (Cong et al.,, 2023).

L = Lags+ Libox + Lmasxk (2)
Lo = S-loglppi+[1-pi]i-pl]  ©

1 . .
Libox N EPI*R (ti - tiy) (4)

reg i
1 *
Lmask = - E] 2 |:Y1] IOg Yij + |:1 - Y:] log[l - YU:I:| (5)
<ij<m

L.s measures the deviation between predicted and actual values
for overall accuracy assessment. Ly, quantifies the disparity
between predicted and actual position parameters, assessing the
model’s accuracy in bud localization. L, evaluates the model’s
confidence in pixel-level classification using binary cross-entropy.
Combining these components into a multi-task loss function allows
for comprehensive evaluation across multiple tasks, resulting in
enhanced overall performance.

The skeleton extraction algorithm is a technique used to extract
the central line or skeleton of an object in a binary image (Fu et al,,
2023). By progressively shrinking connected regions within the object
contour, the algorithm produces a concise contour that provides
valuable information for image processing tasks like recognition and
matching. Various algorithms, such as Zhang-Suen, Morphological
Thinning, and Medial Axis Transform, can be employed for this
purpose. The Medial Axis Transform (MAT) algorithm, specifically,
extracts the object’s central line by iteratively dilating boundary pixels
and identifying the nearest internal pixels as skeleton pixels. This
process continues until the skeleton pixels stabilize, resulting in a
stable and versatile representation suitable for subsequent image
processing tasks. The MAT algorithm handles different object
shapes and can process grayscale information within binary images.
Seed germination images exhibit a wide range of shape features, such
as bud length, curvature, and angle. However, traditional methods for
measuring bud length rely on manual measurements, which are time-
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Diagram of the maize bud length detection process (A) Process of bud segmentation, (B) Process of bud length detection.

consuming and prone to significant subjective biases. The MAT
(Medial Axis Transform) skeleton extraction algorithm was chosen to
obtain the central line of buds. However, the resulting skeleton may
contain branches that need to be eliminated to derive the center
skeleton. The process of centerline skeleton extraction is illustrated in
the following Figure 3B.

In this study, a transparent box with a side length of 250 mm
was used as a reference to convert pixels to actual lengths in
millimeters. The calculation formula is:

Ratio = Ly, /1164 (6)

Here, Ly, represents the side length of the transparent box, and
1164 is the number of pixels corresponding to the transparent box
in the image. According to the calculation formula, it can be derived
that one pixel corresponds to 0.215 mm.

2.2.5 Establishment of YOLOv7 model for seed
germination detection

The seed quality detection methods such as germination and
staining techniques are time-consuming and rely heavily on human
intervention, which may lead to inaccurate results due to human
error. In order to develop an automated and standardized method
for detecting seed germination that is efficient, accurate, and
reliable, the YOLOv7 (Wang et al, 2022b) object detection
algorithm was selected in this study, which is one of the most
widely used algorithms for object detection since its release in 2015
(Dewi et al,, 2023). YOLOvV7 is a real-time object detection
algorithm (Soeb et al., 2023), which has evolved from YOLOv5
and has faster inference speed, improved detection accuracy, and
reduced computational complexity. The algorithm consists of three
main parts: the input layer, backbone layer, and output layer (Tang
et al., 2023), and uses either a loss function with or without an
auxiliary training head (Zhou et al., 2023).
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The loss function is used to update the gradient loss during the
training process (Cai et al., 2023). The YOLOV7 algorithm is evaluated
using various metrics such as precision, mAP, recall, and F1 score
(Zhao et al, 2023), and curves such as the F1-Confidence curve,
precision-confidence curve, recall-confidence curve, and precision-
recall curve are used to optimize the algorithm’s performance and
achieve the best balance between precision and recall.

This study utilized a self-built dataset of maize seeds, comprising
images of seeds from various angles and sizes, each with corresponding
labels in YOLO format. The data collection and preprocessing process
was conducted using the same method as Mask R-CNN. The dataset
used in this study consisted of a total of 7000 maize seeds. Among
these, 4200 seeds were designated as training samples, 1400 seeds were
allocated for the test sets, and the remaining seeds were assigned to the
validation sets. To enhance the accuracy and robustness of the model,
the YOLOv7.pt (https://github.com/WongKinYiu/yolov7) pretrained
weights provided by the official website were employed for training.
These weights were trained on a large-scale dataset, which can
significantly reduce the training time while improving the training
effect. The Adam optimizer, a widely used optimizer that can optimize
at different learning rates, was used to update the model parameters
during training. The parameters of the Adam optimizer were adjusted
based on the size of the learning rate in the training process to achieve
better training results. A batch size of 2 and a training iteration of 300
were used in this study.

3 Results and discussion
3.1 Seed germination result

The experimental results showed that the degree of seed aging
was significantly correlated with the germination rate. As shown in
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the Figure 4, on the seventh day of observation, all seeds that were
not aged can germinate, and only a few seeds that aged for 2 days
failed to do so. Most seeds that aged for 4 days still retained their
viability, with only a few seeds that aged for 6 days able to
germinate. Seeds that aged for 8 days experience almost complete
mortality. Thus, it can be inferred that seed aging leads to a decline
in the germination rate, and the more prolonged the aging process,
the more apparent the decline in the germination rate.

3.2 Average spectrum

By analyzing the spectral curve features (Figures 5A, B), it is easy to
observe that the spectral reflectance of both wavelength regions
increased with the decreasing of maize seed viability, indicating that
the light absorption capacity of maize tissue increases with the aging
degree. The spectral curves are monotonic in the Vis-SWNIR region,
with the average spectral curve gradually increasing in the 400-800 nm
region and then slowly decreasing. However, in the LWNIR region, the
spectral curve is more complex, capturing two distinct reflection peaks
located around 1100 nm and 1300 nm, respectively. The former could
potentially be associated with the presence of C-H bonds in lipids,
while the latter could be described as a combination of the first
overtone of N-H stretching along with the fundamental N-H in-
plane bending and C-N stretching with N-H in-plane bending
vibrations (Wang et al., 2022d).The spectral curve characteristics can
be used to discriminate maize seeds with different germination
potentials. As shown in Figure 6, the spectral data of maize seeds
with different viability have similar trends in the Vis-SWNIR and
LWNIR regions. However, in the Vis-SWNIR region, these curves are
basically mixed together, making it difficult to distinguish clearly. In
contrast, there are significant differences in the LWNIR region, which
may be related to the breakdown of chemicals during the aging process
of organisms. Nevertheless, some mixed situations still exist, indicating
that it is difficult to distinguish the seeds with or without viability
according to the average spectra of hyperspectral image.
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FIGURE 4
Germination levels of seeds at different aging times.
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3.3 Key wavelength selection of maize
seed viability

During the aging process of maize seeds, a series of changes
occurs in the internal chemical substances (Xin et al., 2011), with
the extent of these changes depending on the degree of seed vitality.
These chemical substances include stored energy and nutrients,
such as starch, proteins, and lipids (Xu et al., 2022). Proteins may
undergo degradation, leading to the release of amino acids and
structural damage to proteins. At the same time, the lipid content in
the seed gradually oxidizes, resulting in lipid decomposition and the
generation of free radicals, thereby affecting the seed’s metabolism
and viability. Additionally, starch gradually degrades into soluble
sugars. This difference is the main reason for spectral changes
during the aging process. After SG and SNV preprocessing, 18 and
11 characteristic bands were extracted from the Vis-SWNIR region
and LWNIR region (Figures 5C, D). These characteristic bands
were located at the peaks and valleys of the spectrum, reflecting the
changes in water content and protein levels of the seeds.

3.4 Maize seed viability detection
based on full-wavelength spectra
and machine learning

By analyzing the classification accuracy obtained from SVM
and Ensemble analysis, there was no significant difference between
Vis-SWNIR and LWNIR regions in predicting seed viability
(Table 3). However, KNN exhibited slightly higher accuracy with
LWNIR, indicating its greater universality and better performance
in detecting seed viability. However, due to the minimal differences
between seeds with adjacent aging gradients (Feng et al., 2018),
particularly those seeds that aged for 4 days and 6 days, these
distinctions may not be immediately discernible, presenting a
challenge in accurately determining the germination potential of
seeds with similar levels of aging. The germination experiment also
showed that the seeds with relatively mild aging did not have
inherent germination trends and were easily misclassified by the
prediction model. This discrepancy may arise from the fact that
maize seeds may not exhibit overt phenotypic changes across
different stages of aging (Wang et al,, 2022e). However, in
actuality, mRNA molecules associated with protein synthesis
undergo oxidation through physiological mechanisms. More
specifically, research unveiled significantly elevated expression
levels of mature enzyme genes and ribosomal protein genes in
embryonic roots and shoots as compared to other parts(Wang et al.,
2022a). This obstruction hampers protein synthesis, consequently
impeding the normal physiological functions of the seeds.

3.5 Maize seed viability detection based on
key wavelength and 3DCNN model

After 70 training epochs on the Vis-SWNIR hyperspectral

images, the accuracy of the training set has stabilized at a high
level of 100% (Figure 6B), and the accuracy of the test set has also
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TABLE 3 The classification result of maize seed viability based on full-wavelength spectra and machine learning.

Models Vis-SWNIR LWNIR
Train set Prediction set Train set Prediction set
SVM 89.3% 83.9% 84.0% 83.3%
KNN 72.0% 69% 85.3% 77.8%
Ensemble 92% 82.4% 85.3% 82.5%

reached its peak. In order to further validate the stability and
robustness of the model, the number of training epochs was
increased to 400. After 400 iterations, the accuracy of the training
set remained at around 100%, while the accuracy of the test set
remained at around 90% (Figures 6A, C).

By using 3DCNN to process the data, not only the spectral
information was considered (Wu et al., 2021), but also the image
information was integrated, making the evaluation of maize seed
quality more comprehensive and accurate (Collins et al.,, 2021).
Compared with machine learning methods that using all spectral
bands as input data, the 3DCNN method only used few
representative bands. Traditional machine learning methods tend
to lose a lot of information, while the 3DCNN method used in this
study can learn more complex features and achieved higher
accuracy with fewer bands, with an average accuracy increase of 7
percentage points (Table 4). It was worth noting that 3DCNN
performs better on the test set and converges faster, which indicated
that 3DCNN was an effective method for seed viability detection
and had advantages over machine learning classification method in
dealing with such problems.

Conventional 3DCNN and multi-scale 3DCNN exhibit
different characteristics. Traditional 3DCNN can achieve high
accuracy, but they often exhibit slower convergence compared
with multi-scale 3DCNN (Figure 6D). Multi-scale 3DCNN
incorporated convolutional layers with different-sized kernels and
pooling layers, allowing the network to process features of varying
scales simultaneously (Lin et al., 2020). This enhanced the network’s
robustness and improved its tolerance to noise, distortion, and
artifacts in the data, and ultimately led to a faster convergence. In
addition, the stability of conventional 3DCNN may not be
satisfactory and may exhibit some fluctuations and instability. In
contrast, multi-scale 3DCNN perform better, possibly due to their
utilization of multi-scale convolutional kernels, enabling them to
extract more abundant feature information (Shi et al., 2021)

(Figure 6A). Furthermore, the block-based method effectively
increased the amount of data and helped to alleviate overfitting.
In the final discrimination, this study adopted a majority principle
labeling aggregation method to improve the discrimination
accuracy (Table 4). To explore the optimal block size, several
experiments were conducted, the input images were segmented
into different block sizes, including 5 pixels x5 pixels, 10 pixels x10
pixels, and 20 pixels x 20 pixels. As shown in Table 4, the model
achieved a relatively high overall accuracy when 5 pixels x5 pixels
was used. This suggested that the small blocks with 5 pixels x5
pixels size can effectively capture more local features of the seedy
and provides more discriminative information. Conversely, larger
blocks may result in information blurring and confusion, thereby
impacting the classification accuracy. Consequently, the block-
based method with 5 pixels x5 pixels was finally selected to
enhances the detection accuracy of seed viability.

3.6 Maize seed germination detection
based on YOLOv7 model

Figure 7 shows the detection results of germinated maize seeds
using the YOLOv7 model, demonstrating its remarkable precision
and recall rates of 99.7% and 99.0%, respectively. Additionally, the
model achieves a mAP of 99% when applying an Intersection over
Union (IoU) threshold of 0.5. Furthermore, the mAP, calculated
across a range of IoU thresholds from 0.5 to 0.95, reaches a value
of 71%.

In Table 5, the YOLOv7 model exhibits an impressive F1 score
(The F1 score balances precision and recall, providing a
comprehensive evaluation of model accuracy) of 0.99 on all target
categories with a confidence threshold set at 0.663, highlighting its
exceptional detection performance. Consequently, the YOLOv7
model can achieve both high precisions, accurately identifying

TABLE 4 The classification performance of the maize seed viability based on 3DCNN.

Models

Multi-3DCNN
Vis-SWNIR

Conventional-3DCNN
Vis-SWNIR

5 pixelsx5 pixels 90.67% 90.67% 92.00% 88%
Split ‘ 10 pixelsx10 pixels 92.00% 87.33% 92.00% 85.33%
‘ 20 pixelsx20 pixels 85.33% 79.00% 86.67% 78.67%
No-split 80.80% 78.50% 79.60% 77.50%
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true positive predictions, and high recall, effectively capturing all
relevant targets during detection. With a confidence threshold set to
0.896, the YOLOv7 model achieves a perfect precision accuracy of
100% for the target categories. This noteworthy precision metric
showcases the model’s ability to correctly identify true positive
predictions among all the positive predictions made, indicating its
reliability and precision in detecting target objects. The model
impressively achieves a recall rate (The recall rate quantifies the
model’s ability to correctly identify positive targets) of 1.00 with a
confidence threshold set to 0.000, indicating that it accurately
detects all targets of all categories without any missed detections.
This ideal performance underscores the model’s high accuracy and
proficiency in target detection tasks Additionally, the model
exhibits an mAP (The mAP commonly used to evaluate object
detection algorithms’ accuracy and robustness) of 0.991 for all
target categories when applying an Intersection over Union (IoU)
threshold of 0.5. This further demonstrates the model’s superior

TABLE 5 The detection result of YOLOv7 model for maize seed germination.

detection capabilities across various categories, affirming its
exemplary performance.

R - TP )
" TP+FN
1
AP = / P(R)dR (8)
0
24PxR
Fl = = 9)
P+R
TP
P = — 10
TP + FP (10)
1 n
mAP = ;EMAP (11)

YOLOV7 Training Indicators

All classes F1-confidence F1
Precision-confidence Precision
Recall-confidence Recall

Precision-recall

0.99 Confidence 0.663
1.00 0.896
1.00 0.000

0.991 mAP@0.5
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In these formulas, True Positives (TP) represent the number of
samples where the predicted label is positive and the actual label is
also positive. T represents the total number of samples, and False
Negatives (FN) indicate the number of samples where the predicted
label is negative, but the actual label is positive. Similarly, False
Positives (FP) represent the number of samples where the predicted
label is positive, but the actual label is negative. Moreover, the area
under the precision-recall (P-R) curve, denoted as AP, provides a
measure of the model’s performance.

Figure 8A is the confusion matrix of germinated maize seed
based on YOLOv7 model, which provides a visual representation of
the classification performance, showing the counts of true positive,
true negative, false positive, and false negative predictions. The
detection accuracy was 95% for germinated seeds and 99% for
ungerminated seeds, respectively. Background FP refers to the
number when the background is erroneously predicted as a
target, fortunately there was no background area was incorrectly
classified as a target in this study. Figure 8B shows the actual
detection results of YOLOV7 for discriminating seed germination.

All indicators mean that the model can essentially replace
manual observation for determining seed germination status.
Therefore, although this method required some time and
manpower for data annotation and training, the overall cost was
much lower than manual operation, and can provide a reference for
rapid detection of seed germination in crops. On the other hand, the
algorithm suffered from the problem of duplicate detection in
practical applications (Chen et al., 2023a), resulting in some seeds
may be simultaneously labeled as germinated and non-germinated.
This phenomenon may lead to a misclassification and reduce the
practicality and reliability of the algorithm. Hence, future work will
focus on improving the algorithm to solve the duplicate
detection problem.

3.7 Maize seed bud length detection based
on Mask R-CNN

The Mask R-CNN model achieved an impressive mAP score of
0.9571, indicating its effectiveness and accuracy in detecting and

nonviable viable

Prediction

background FN

nonviable
True

viable background FP

A Confusion matrix

FIGURE 8

0.6

0.2

10.3389/fpls.2023.1248598

localizing objects. The mAP is a widely used evaluation metric for
object detection models, and a high mAP score indicates that the
model performs well in both precision and recall, making it a
reliable choice for seed germination analysis. Additionally, the loss
value during training decreased significantly, stabilizing around
0.21 from an initial value of 2.61, which is a clear indication of
the model’s ability to learn and adapt effectively.

Figure 9A showcases a successful instance of skeleton extraction
for maize seed germination, resulting in a clear main skeleton after
removing branches, which allows for accurate calculation of the bud
length. The detection results of bud length for germinated maize
seeds, depicted in Figure 9B, demonstrate Mask R-CNN’s
impressive capability to accurately segment the seedlings, even
when instances overlap or are occluded. This highlights the
superiority of the Mask R-CNN model in instance segmentation
tasks, making it a valuable tool for precise analysis of seed
germination and growth.

Figures 9C, D shows the detection result of bud length with R-
squared value of 0.98 and an RMSE of 1.64, demonstrating that the
integration of Mask R-CNN model and skeleton extraction method
could detect the bud length during seed germination accurately and
rapidly. The R-squared value, also known as the coefficient of
determination, is a statistical measure that indicates the
proportion of the variance in the dependent variable (Bud length
in this case) that can be explained by the independent variable (The
predicted bud length). Meanwhile, RMSE quantifies the average
magnitude of the differences between the predicted bud lengths and
the actual observed bud lengths. It is worth mentioning that the bud
length of germinated seeds is closely related to their viability
(Adebisi et al.,, 2014). Therefore, the bud length of seeds can be
obtained using this algorithm, and the relationship between bud
length and viability can be further explored. This not only has
important significance for agricultural production but also provides
valuable insights for research in other biological fields.
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Confusion matrix and detection results of germination maize seed based on YOLOv7 model (A) Confusion matrix, (B) Image of detection results.
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(15)

In these formulas, SSR (Sum of Squares of Residuals) refers to
the regression sum of squares, which represents the sum of squared
differences between the predicted values and the true values. On the
other hand, SST (Total Sum of Squares) stands for the total sum of
squares, representing the sum of squared differences between the
true values and their mean.Y; refers to the actual value of the i-th
observation, while Y, represents the predicted value of the i-th

observation from the regression model. And n denotes the

sample size.

The rapid and successful detection of maize seed viability was
achieved by leveraging HSI technology in combination with the
multi-scale 3DCNN method. In seed viability detection, the
3DCNN method, which utilizes a limited number of representative
spectral bands, was found to learn more complex features and achieve

Frontiers in

higher accuracy compared to using full-wavelength spectra and
machine learning methods. By introducing the multi-scale 3DCNN
model, the comprehensive consideration of both spectral and image
information enabled a more comprehensive and accurate assessment
of maize seed quality. Experimental results demonstrated that the
adoption of small block sizes (5 pixels x 5 pixels) significantly
improved the accuracy of seed viability detection. Furthermore, the
YOLOvV7 model and Mask R-CNN model were introduced for
germination judgment and bud length detection of maize seeds.
Both models exhibited outstanding performance in germination
judgment and bud length detection, demonstrating excellent
detection capabilities. Based on these exceptional detection results,
a novel solution for the rapid detection of maize seed germination
and bud length was provided. In brief, this study proposed a reliable
and effective method for the evaluation of maize seed viability,
providing valuable references for agricultural production and
germplasm resource preservation.

The raw data supporting the conclusions of this article will be
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Introduction: As the third largest food crop in the world, maize has wide varieties
with similar appearances, which makes identification difficult. To solve the
problem of identification of hybrid maize varieties, a method based on
hyperspectral image technology combined with a convolutional neural
network (CNN) is proposed to identify maize varieties.

Methods: In this study, 735 maize seeds from seven half-parent hybrid maize
varieties were regarded as the research object. The maize seed images in the
range of 900 ~ 1700nm were obtained by hyperspectral image acquisition
system. The region of interest (ROI) of the embryo surface was selected, and
the spectral reflectance of maize seeds was extracted. After Savitzky-Golay (SG)
Smoothing pretreatment, Maximum Normalization (MN) pretreatment was
performed. The 56 feature wavelengths were selected by Competitive
Adaptive Reweighting Algorithm (CARS) and Successive Projection Algorithm
(SPA). And the 56 wavelengths were mapped to high-dimensional space by high-
dimensional feature mapping and then reconstructed into three-dimensional
image features. A five-layer convolution neural network was used to identify
three-dimensional image features, and nine (SG+MN)-(CARS+SPA)-CNN maize
variety identification models were established by changing the input feature
dimension and the depth factor size of the model layer.

Results and Discussion: The results show that the maize variety classification
model works best, when the input feature dimension is 768 and the layer depth
factor d is 1.0. At this point, the model accuracy of the test set is 96.65% and the
detection frame rate is1000 Fps/s in GPU environment, which can realize the
rapid and effective non-destructive detection of maize varieties. This study
provides a new idea for the rapid and accurate identification of maize seeds
and seeds of other crops.

KEYWORDS

hyperspectral imaging technology, maize, high dimensional feature mapping,
convolution neural network, non-destructive testing
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1 Introduction

As one of the three major food crops in the world, maize has a
wide cultivation area, large yield and strong adaptability, which is of
great strategic significance to the economic development and social
stability of China (Feng et al, 2022). In the actual agricultural
production process, cultivating suitable maize varieties is the crucial
aspect to achieving high yields. Different maize seeds are easily
confused due to various sorts and similar appearance, which brings
great inconvenience to farmers in purchasing varieties and market
supervision (Tu et al., 2021). Therefore, it is of great significance
and application value to achieve rapid, accurate and efficient
identification of maize varieties.

Traditional seed identification methods mainly include manual
detection methods, chemical identification methods and so on,
which have some defects such as intense subjectivity, great
destructiveness and complex operation process. And they are
challenging to meet the requirements of modern agriculture for
non-destructive and rapid seed production (Wang et al, 2021;
Wang and Wang 2021; Huang et al,, 2022). Hyperspectral
imaging technology combines the advantages of image and
spectral technology, which can simultaneously reflect the image
information and spectral information of external characteristics,
internal physical structure and chemical composition of samples to
be tested. So hyperspectral imaging technology is widely used in
non-destructive testing research on crop seed varieties, quality and
vitality (Wu et al., 2021; Wu et al., 2022; Yang et al,, 2022). Huang
et al. (2016b) used hyperspectral imaging technology to establish a
PLS-SVM model to identify four different years of maize seeds, and
the identification accuracy rate reached 94.4%. Fu et al. (2022)
identified four maize varieties based on hyperspectral imaging
technology, and the accuracy of the SSAE-CS-SVM model test set
reached 95.81%. Wang et al. (2022) used hyperspectral imaging
technology to establish a fusion model based on dual-band ratio
image and texture features to realize efficient non-destructive
identification of maize seeds of four different years, and the
accuracy rate of prediction set was 97.5%. Chivasa et al. (2019)
developed a PLS-DA model based on multi-temporal hyperspectral
data and multivariate techniques to identify 25 maize varieties at
specific phenological stages. Tu et al. (2022) used hyperspectral
imaging technology combined with machine learning to realize
non-destructive identification of 10 related maize varieties. Huang
et al. (2016a) established the LS-SVM maize variety classification
model based on hyperspectral imaging combined with spectral
features and fusion with image features to identify 17 maize
varieties with a test accuracy of more than 90%. Wu et al. (2016)
collected hyperspectral image data of four maize varieties based on
NIR hyperspectral technology, and established the SPA-PLS-DA
classification model to realize non-destructive identification of
maize varieties. The accuracy of the modeling set and prediction
set reached 78.5% and 70.8%, respectively. Shao et al. (2019)
collected hyperspectral images of three varieties of maize based
on hyperspectral imaging system, screened characteristic bands by
Boruta algorithm, and established a random forest classification
model, with an accuracy rate of 78.30%. Sun M et al. (2022)
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modeled and analyzed wheat seeds of different seven years based
on hyperspectral imaging technology, and predicted wheat seeds of
other four years with an accuracy rate of 100%. Zhang et al. (2019)
used hyperspectral image technology to obtain hyperspectral image
spectral information of the wheat varieties mainly planted in Henan
Province, and established PCA-SVM classification model, which
identified three wheat varieties with an accuracy rate of over 95%.
Sun Y et al. (2022) modeled and analyzed spectral information of
moldy and non-moldy grains of different wheat varieties collected
by hyperspectral imaging technology, and the prediction accuracy
of SPA-SVM model for moldy grains was more than 98%.
Existing research shows that a large number of scholars at
home and abroad have carried out research on crop seed variety
identification, most of which are based on two methods:
hyperspectral image information combined with deep learning
and modeling based on spectral data. The method based on
hyperspectral image mainly applies image features to identify
seed varieties, which is suitable for identifying seed varieties
with obvious shape and texture differences. While most seeds
have no noticeable appearance differences, therefore, this method
is difficult to be widely used in the identification of crop seed
varieties in practice. The modeling methods based on spectral
information are divided into two steps: feature band extraction
and model building. The feature bands are mostly extracted by
single extraction method such as SPA or CARS, which has some
problems such as incomplete feature band extraction and lack of
effective information. In addition, traditional machine learning
models such as SVM, PLS and PCA are primarily used in
modeling methods, which have the disadvantages of low
accuracy and poor robustness. The convolutional neural
network, as a kind of forward feedback network, can
automatically learn the features in the image with higher
accuracy and efficiency. Hybrid maize varieties are similar in
appearance and not easily distinguishable, and subtle differences
in the content of internal substances cause significant differences
in yield, insect resistance, disease resistance, stress resistance and
other indicators. Based on this situation, this paper was conducted
with seven hybrid maize varieties as the research object, using SPA
and CARS mixed feature band extraction method to improve the
utilization rate of effective feature information, and building a
convolution neural network (CNN) model based on data
reshaping to achieve accurate identification of maize varieties.

2 Materials and methods
2.1 Test materials

The maize seed samples used in the experiment are all from the
experimental field of Yanshi District, Luoyang City, Henan
Province. Seven half-parent hybrid maize varieties with good
appearance, uniform color and no mechanical damage were
manually selected, marked as categories 0, 1, 2, 3, 4, 5 and 6,
respectively. As shown in Figure 1, there were 105 seeds in each
category, with a total of 735 test samples.
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Category 2

Category 0

Category 1

FIGURE 1
Maize seed sample

2.2 Instruments and equipment

The hyperspectral imaging system used in this test consists of a
hyperspectral camera (SPECIM FX17, Finland), a computer (Dell),
a mobile platform, a sample tray (40cm x 20cm) and six halogen
lamps. To eliminate the effect of ambient light, maize seed spectra
were collected in a dark box, as shown in Figure 2.

The parameters of the hyperspectral imaging system were set as
follows: wavelength range is 900 ~ 1700nm, spectral resolution is
8nm, the number of bands is 224, spatial sampling resolution is
640px/line, exposure time is 8.5 ms, the frame rate is 50Hz and
platform moving speed is 22.43 mm/s. Hyperspectral data of maize
seeds were obtained by using Lumo Scanner software. The data
analysis software is as follows: ENVI 5.3, The Unscrambler X10.4,
Excel 2019, Origin 2018, MATLAB R2018b and so on.

2.3 Hyperspectral image acquisition
and correction

Maize seed embryos are rich in nutrients such as starch and
protein, so the embryo surface image information of the sample was
collected in this experiment (Wang et al., 2019). To ensure the
accuracy of collected data and prevent maize seeds from moving on
the mobile platform, the samples were placed on sticky black paper
with their embryo face up. As shown in Figure 3, the images of 105
maize seeds of one variety were collected at a time, and a total of 735
single maize seed samples images were collected in the experiment.

Hyperspectral image is easily affected by nonlinear factors such
as uneven distribution of light sources and dark current. To
enhance the stability and reliability of the image, dark and white
reference calibration images were used to correct the original
hyperspectral image. The hyperspectral system was preheated for
30 minutes, the whiteboard (reflectivity 99%) was scanned and an

Dark box
Hyperspectral camera
Halogen lamp

Computer

Mobile platform Sample Tray

FIGURE 2
Hyperspectral image acquisition system
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all-white calibration image was recorded as I, the lens cover was
installed to collect all-black image which was recorded as I4, and
finally the original image of maize sample was photographed and
recorded as I,,,. And the corrected image I is obtained by black-
and-white correction with ENVI 5.3 software.

Iruw B Id

[=-rav—d
Iw_Id

(1)

After image correction, to reduce the influence of uneven
distribution of chemical components in seeds, the largest possible
rectangular ROI region was selected in the center of each seed
sample by ENVI 5.3 software, and the average of the spectra of all
pixel points within the ROI region was taken as the average
spectrum of the sample (Feng et al., 2012). The original spectral
average reflectance curve in the wavelength range of 935.61 ~
1720.23 nm is shown in Figure 4. Due to both ends of the
collected spectrum with low signal-to-noise ratio, the areas with
considerable noise of spectral signal are eliminated, and the spectral
data range of 949.43 ~ 1709.49 nm wavelength are selected for
analysis and modeling.

2.4 Spectral preprocessing and feature
wavelength selection

The noise, background and other useless interference
information mixed in the acquisition of spectra affected the
accuracy and stability of spectral data analysis and modeling, so it
is necessary to preprocess the data before modeling to reduce the
interference of irrelevant information and improve the modeling

FIGURE 3
Schematic diagram of maize grain placement.
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FIGURE 4
Reflectance curves of original spectrum.

accuracy. In this study, Savitzky-Golay Smoothing (SG) and
Maximum Normalization (MN) were used to preprocess the data.
Firstly, the number of smoothing points was set to 3, and the
spectral data was pretreated by SG to improve the smoothness of the
spectral curve. After that, the spectral data were mapped to the [0, 1]
interval by MN, and the data unit restriction was removed to
eliminate the errors caused by different magnitudes. The
pretreated spectral average reflectivity curves are shown in Figure 5.

The Successive projections algorithm (SPA) was used to extract
the feature bands from the pretreated spectrum, the maximum
number of wavelengths was set to 20, and five wavelength variables
were extracted, as shown in Figure 6. As can be seen from
Figure 6A, with the increase of the number of variables, the root
mean square error (RMSE) value shows a trend of sharp drop at first
and then slow down. When the number of variables is 5, the RMSE
no longer decreases significantly and the RMSE value is 1.7221 at
this time. After that, although the REMSE value decreases, too
many dependent variables will increase the computation and

e o
= )
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~
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FIGURE 5
Spectral average reflectance curves after pretreatment.
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complexity of the model, so five variables are selected as the final
characteristic wavelengths.

When using Competitive adaptive reweighted sampling (CARS)
to extract feature wavelengths, the 5-fold cross-validation method
was selected, and the number of Monte Carlo samples was set to 50,
as shown in Figure 7. Figure 7A shows that the number of CARS
extracted feature wavelengths decreases sharply at first and then
decreases slowly with the increase of sampling times, which shows
the process from coarse to fine selection of feature wavelengths
extracted by CARS. Figure 7B shows that the root mean square
error of cross-validation (RMSECV) decreases slowly at the
beginning of the iteration because the useless information bands
are eliminated. And the RMSECYV increases gradually after the 24th
sampling, which indicates that the over-selection of feature
wavelengths by CARS occurs after the 24th sampling and
sensitive wavelength variables containing valid information are
eliminated, resulting in the decrease of model prediction accuracy
and the increase of RMSECV value; Figure 7C indicates that the
RMSECYV value is the smallest at the 6th and 16th sampling, when
52 characteristic wavelengths are extracted.

To solve the problem of missing effective information in the
single extraction of feature variables by SPA and CARS, the feature
wavelengths extracted by the two methods were taken as a
concatenated set in this study, and a total of 56 feature wavelengths
were preferentially selected.

2.5 Division of training set and test set

In this experiment, 735 samples were divided into training sets
and test sets according to the ratio of 2: 1, where each category of
training sets and test sets were 70 and 35 respectively. And seven
categories of training sets and test sets were 490 and 245 respectively
to analyze and calculate the discrimination accuracy of model
training sets and test sets.

3 Model construction

3.1 Establishment of maize variety
identification model

To solve the problem that the Convolutional Neural Networks
(CNN) cannot directly process the feature band data, the maize seed
feature wavelength data was mapped to the high-dimensional
features. Then the mapped feature wavelength data was reshaped
into high-dimensional image features making the CNN processable
for the reshaped data. The overall network structure is shown
in Figure 8. The CNN model consists of three parts: data
reconstruction, convolution layer extraction and result prediction.
In the data reconstruction part, the feature bands of maize seeds are
mapped into high-dimensional features with different sizes, and
then reshaped into image shapes. Considering the dimension of
maize seed characteristic band, it is not easy to build the
convolution layers too deep to avoid overfitting and poor
robustness of the model. Therefore, a 5-layer CNN maize variety
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discrimination model was constructed to improve the model
generalization performance and reduce the redundancy effect of
the model on spatial features. The specific model parameters are
shown in Table 1. It can be seen from Table 1 that the overall maize
variety identification model is built by 3x3 standard convolution.
To improve the spatial feature extraction effect of the model on
maize seed feature bands, the sampling method of raising
dimension first and then reducing dimension is adopted to fuse
the features effectively. In order to explore the influence of model

layers depth on the sampling effect of maize seed characteristic
band, three common scaling factors (d), 1.25, 1.0 and 0.75 were used
to scale the layers of maize variety identification model to different
degrees. And the related parameters are listed in Table 1. In
addition, to explore the influence of different high-dimensional
feature resolutions on the adaptability of maize variety
identification model and find the best adaptability resolution of
the model, three different feature mapping relationships of 192, 768
and 3072 were used to generate three corresponding spatial feature

A
8 200 T T T T ]
5 E
5 8
ISR .
2 =100
EE
2% . .
§ 0 5 10 15 20 25 30 35 40 45 50
B Number of sampling runs
2 T T T T T T T T 1
>
O 1.8 .
3|
%
= 16f 1
=
14& — A L 1 1 1 1 I
0 5 10 15 20 25 30 35 40 45 50
c Number of sampling runs
k=
< 500
L @
2z 0
5.2
g)é -500
[3) 0 5 10 15 20 25 30 35 40 45 50

Number of sampling runs

FIGURE 7

Process of extracting characteristic wavelength by CARS. (A) Number of preferred characteristic wavelength variables. (B) The root mean square

error of cross-validation variation. (C) Regression coefficient path map.
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resolutions of 8x8x3, 16x16x3 and 32x32x3. For the prediction
part, adaptive maximum pooling operation and Softmax are mainly
used to output the prediction results.

3.2 Building and training of model
loss function

Because the maize variety classification model was a multi-
category model, the Cross Entropy Loss function was used to
regress training the maize variety identification model. The
specific formula is shown in formula (2). In the formula, y;
represents the unique thermal coding form corresponding to the
actual category, and o; represents the probability that the network
predicts a certain category.

q q kl
Loss = Y y;log> exp (0;) = >y;0; @)
. P

=1 =1

The classification model of maize varieties is constructed with
Pytorch framework. The hardware platform is Intel (R) Xeon (R)

TABLE 1 Parameter index of CNN model.

Silver 4210R, the main frequency is 3.5 GHz, and the memory is
32GB. The graphics card model is NIVIDIA GeForce RTX 2080Ti
GPU, and the video memory is 16GB. The software platforms are
Pycharm 2020.2, CUDNN 7.4. 1.5, Python 3.8 and Pytorch 1.2. The
training period of epoch is set to 10000, and the initial learning rate
is set to 0.01. The learning rate (Ir) is adjusted periodically by
LambdaLR algorithm, and the model parameters are optimized by
SGD optimizer in one step to improve the training effect of
the model.

3.3 Model evaluation index

To comprehensively evaluate the detection performance of
maize variety classification model, training set accuracy (Train),
test set accuracy (Test), frames per second (FPS), model weight
(Weight), model computation (Flops), model parametric number
(Params), Precision and Recall are used as evaluation indexes, and
their specific calculation formulas are as follows.

Fom Input Operator #out Stride Layer
0.75 32°x3 167x3 82x3 Conv2d 3x3 12 1

1.0 32°x3 1673 82%3 Conv2d 3x3 16 1 1
125 3273 16%x3 82%3 Conv2d 3x3 20 1

0.75 32212 16%x12 82%12 Conv2d 3x3 24 1

1.0 32216 16°x16 8’x16 Conv2d 3x3 32 1 2
1.25 327x20 162%20 82x20 Conv2d 3x3 40 1

0.75 32%%24 16°%24 82x24 Conv2d 3x3 48 2

1.0 32232 16°x32 87x32 Conv2d 3x3 64 2 3
125 322x40 16°x40 82%40 Conv2d 3x3 80 2

0.75 16°x48 87x48 42x48 Conv2d 3x3 24 1

1.0 16°x64 82x64 42%64 Conv2d 3x3 32 1 4
125 16280 82x80 42%80 Conv2d 3x3 40 1

0.75 16>x24 8%x24 42x24 Conv2d 3x3 12 1

1.0 16°x32 8x32 4x32 Conv2d 3x3 16 1 5
1.25 16>%40 82x40 4x40 Conv2d 3x3 20 1

Fom represents depth factors of different sizes between model layers, Input represents 3D spatial feature matrices of different sizes, Operator represents corresponding convolution operations, out
represents the size of feature maps output between model layers, Stride represents the step size of convolution kernel scanning, and Layer represents the names of convolution layers in

different stages.
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» TP influence of depth scaling factor of model layers. Weight, Params
Precision = ———— (3)
TP + FP and Flops of MVI,;sD; model are 2.33M, 70.35k and 286k
respectively, which are the smallest among the three model.
Recall = P @) Weight, Params and Flops of MV, ;sD; and MV, ,5D; models
TP+ FN are (4.05M, 6.25M), (90.73k, 116.86k) and (367k, 469k)
respectively. Although there are obvious differences in the
Accuracy = TP+ 1IN (5) metrics of MVI, 5Dy, MVI; ;,D; and MVI, ,5D,, the parameters
TP+ TN + FP + FN

In the formula, TP represents the number of positive samples
that the model prediction is consistent with the real label, FP
represents the number of samples that the model prediction is
inconsistent with the actual positive samples, FN represents the
number of samples that the model prediction is inconsistent with
the actual negative samples, and TN represents the number of
samples that the model prediction is consistent with the actual
negative samples.

4 Results and analysis

In this study, the maize variety identification model was trained
and tested by 3-fold cross-validation to verify the applicability of
maize variety identification model. When the characteristic
dimension is 768, the specific results of cross-validation of three
maize variety identification models, MVI, ;5 D;, MVI; o D; and
MVI, 55 Dy, are shown in Table 2. As can be seen from Table 2, the
accuracy of training set and test set of MV, ¢D; are 97.62% and
96.65% respectively, and the performance is the best. Compared
with MVI, 75 D; and MVI, »5 Dy, the accuracy of MVI,; (D; model
test set is improved by 7.2% and 1.43%. The inference speeds of
MV 75Dy, MV, oDy and MVI, 55D, are 666Fps/s, 588Fps/s and
526Fps/s respectively in CPU mode and 1000Fps/s, 1000Fps/s and
909Fps/s in graphics card environment, which shows that the three
models have real-time detection performance. Although
MVI,;sDy, MVI; (D, and MVI; ,5D; are inputted the same
spatial feature resolution the model detection results are
significantly different in Weight, Params and Flops due to the

TABLE 2 The model results of cross-validation when dimension is 768.

and calculation amount are still small and negligible compared
with the classical CNN model. Therefore, it can be concluded that
the detection effect of MVI, (D, is the best among MVI, ,sD;,
MVI, (D, and MVI, ,5sD; three maize identification models.

To explore the influence of spatial feature dimension on the
training results of maize variety identification model, the test results
of maize variety identification model with two spatial feature
dimensions 192 and 3072 were listed. The specific results are
shown in Tables 3 and 4. The comparative analysis shows that
the overall performance of the maize variety discrimination model
MVT, 55Dy is better when the dimension is192 with the same width
scaling factor d. In addition, it can be found from Table 3 that when
the width scaling factor d is 1.25, the accuracy rate of maize variety
detection model in training set and test set is the best, which can
reach 99.20% and 95.34% respectively. This reflects that when the
feature space dimension is small, the maize variety identification
model searches for effective features less effectively. Therefore,
properly adjusting the depth scaling factor is helpful to improve
the feature extraction ability and generalization performance of the
model. According to the test results in Tables 2-4, it can be found
that when the spatial feature resolution is enlarged only by
improving the input feature dimension, the performance of the
maize variety identification model is not better with a larger input
feature dimension. Appropriate adjustment of the spatial feature
dimension is helpful to improve the detection effect of the model.
The best result is obtained when the dimension is 768, and the
accuracy of maize variety identification model is improved
obviously. In addition, the reasoning speed of CPU, Weight,
Params, and Flops of maize variety identification model increased
exponentially when the size of input feature dimension was

\| Model Train/% Test/% Params Flops Weight Fpsg/s Fps./s
1 MVIo75D; 91.73 86.12 70.35k 233M 286k 0.001 0.0015
2 MVIo75D; 97.14 89.95 70.35k 233M 286k 0.001 0.0015
3 MV, 55D, 95.55 88.52 70.35k 233M 286k 0.001 0.0015
1 MVI, oD, 97.62 96.65 90.73k 405M 367k 0.001 0.0017
2 MV, oD, 99.84 95.69 90.73k 405M 367k 0.001 0.0017
3 MV, oD, 99.5 94.73 90.73k 405M 367k 0.001 0.0017
1 MVI, 55D, 98.73 92.82 116.86k 6.25M 469k 0.0011 0.0019
2 MVI, 55D, 99.84 95.22 116.86k 6.25M 469k 0.0011 0.0019
3 MVI, 25D, 99.84 93.78 116.86k 6.25M 469k 0.0011 0.0019

MVI,,,D,, represents different classification model of maize varieties. Among them, m represents the depth factor of model layer, m can be taken as 0.75, 1.0 and 1.25, n represents the input feature
dimensions of different sizes, and n can be taken as 0, 1 and 2 respectively, which respectively represent the three states that the input feature dimensions are equal to 192, 768 and 3072. Train
represents the accuracy of maize variety classification model in training set, and Test represents the accuracy of maize variety classification model in test set. Fps, represents the frame detection
speed in GPU environment, and Fps, represents the frame detection speed in CPU environment.
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TABLE 3 The model results of cross-validation when dimension is 192.

\| Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s
1 MVl,75Dg 92.69 89.47 37.52k 582.04k 158k 0.001 0.001
2 MVI,5Do 90.78 85.17 37.52k 582.04k 158k 0.001 0.001
3 MVI, 75Dy 89.83 83.73 37.52k 582.04k 158k 0.001 0.001
1 MV, 4Dy 99.68 93.78 57.9k 1.01M 239k 0.001 0.0012
2 MV, 4Dy 94.28 86.60 57.9k 1.01M 239k 0.001 0.0012
3 MV, 4Dy 95.71 90.91 57.9k 1.01M 239k 0.001 0.0012
1 MVI, 55D 98.57 92.83 84.03k 1.26M 341k 0.0011 0.0013
2 MVI, 55D 99.20 95.34 84.03k 1.26M 341k 0.0011 0.0013
3 MVI, 25D, 99.52 94.26 84.03k 1.26M 341k 0.0011 0.0013
TABLE 4 The model results of cross-validation when dimension is 3072.
\| Model Train/% Test/% Params Flops Weight Fpsg/s Fps./s
1 MVI, 75D, 81.08 75.60 201.68k 9.31M 800k 0.001 0.0026
2 MVlsD, 84.89 79.43 201.68k 9.31M 800k 0.001 0.0026
3 MVl5D, 80.45 75.60 201.68k 9.31M 800k 0.001 0.0026
1 MV, oD, 88.87 82.78 226.06k 16.29M 880k 0.001 0.0032
2 MV, oD, 86.49 83.73 226.06k 16.29M 880k 0.001 0.0032
3 MV, oD, 90.62 86.60 226.06k 16.29M 880k 0.001 0.0032
1 MVI, 25D, 98.57 91.39 248.19k 24.99M 982k 0.0011 0.0037
2 MVI, 55D, 99.20 87.56 248.19k 24.99M 982k 0.0011 0.0037
3 MV, 55D, 99.52 92.34 248.19k 24.99M 982k 0.0011 0.0037
changed, while the reasoning speed of GPU was basically stable at
1000Fps/s.
In order to further explore the influence of input feature —
. ) . . . . [ Precision
dimension and model layer depth on maize variety classification 10;)0 o n S o [ Recall
.. . . . . PP D P
model, the Recall and Precision indexes of nine maize variety 08) P T el o xS
) . SO G M
classification models were analyzed, as shown in Figure 9. It can %ol . —
. .. O o
be seen from Figure 9 that the Recall and Precision of MV, ¢D; & i
model are the highest, respectively 96.7% and 96.8%, followed by
maize variety classification models with the same characteristic 80 0
A
dimension (dimension is768) and different model layer depths. The ]
Recall and Precision of MVI,D, model are more stable than 70l
MVI,,,D,, which also proves that the depth of model layer is not
positively correlated with the performance of model classification.
Appropriate adjustment of model layer depth is helpful to improve 6o
the effective extraction of spectral features of maize variety
classification network. The variation of loss curves of nine models 50
in 10000 iteration periods is shown in Figure 10. The loss curve of NN R R A A A A
4\%"‘ OY W A\Q',\‘# 4\\~° \\'y“- “@“- 4\\-“ \\\\'}?"
MVI,,D; model converges fastest with the increase of iterations and S - $\ $ > @4 \§ UMK
the overall fluctuation is slight. The loss curve of MVI,,D, model FIGURE ©

fluctuates more than that of MVI,,D;, but the general convergence Recall and precision results of different models.

is faster. The loss curve of MVI,,D, is more divergent and the
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overall convergence is poorer with the increase of iterations,
indicating that when the input dimension is 3072, it is easy to
generate invalid feature redundancy, which is not conducive to the
extraction of effective features by maize variety classification model.

To explore the effects of MVI,;,Dy, MVI,,D; and MVI,,,D, series
of maize variety classification models on seven kinds of maize seeds,
three maize variety classification models (MVI; oDy, MVT,; (D; and
MVT, (D,) with layer depth scaling factor d=1. 0 were selected to
test the test set, and the correlation confusion matrix was drawn by
comparing the predicted results with the actual results, as shown in
Figure 11. It can be seen from Figure 11B that MVI; ¢D; is the best
in classifying seven maize seeds and there are no misidentifications
and omissions in category 1 and category 4. Although the MVI, (D,
model shows misrecognition among categories 1, 3, 5 and 6, the
misidentification rate is lower compared with the confusion matrix
results of MV, yDy and MVI, (D,, and MVI, (D, only misidentifies
category 0 without misidentification. Compared with MVI, ,D;,
MVTI, Dy, and MVT, (D, show more misidentification and the
model classifiers are unbalanced.

In this study, seven hybrid maize varieties were taken as the
research objects, and the effects of different input feature
dimensions and model layer depth on the performance of the
maize variety classification model were discussed emphatically.
The results showed that the maize variety classification model
performs better when the input feature dimension is 768 and
worse when the input feature dimension is 3072. This
phenomenon may be attributed to the redundant and invalid
features easily produced by the higher feature dimension, which

Frontiers in Plant Science

indirectly affects the classification effect of the maize variety
classification model. Therefore, changing the dimension of input
features can effectively improve the ability of extracting effective
spectral features of maize variety classification model. In addition,
the effect of model layer depth on the performance of maize variety
classification model was also discussed in this study. From the
results, it can be found that there is no positive correlation between
the performance of maize variety classification model and the layer
depth of the model. When the layer depth factor d is 1.25, the
performance of the maize variety classification model is slightly
lower than that when d is 1. 0, so it is most appropriate to set the
layer depth factor d as 1. 0. Due to the small sample size, more
sample data will be collected in the future to further validate the
maize classification model whether the method of identifying maize
varieties by mapping characteristic bands to high-dimensional
spatial features is feasible.

5 Conclusion

(1) To solve the problem of less effective feature bands and lack
of information by single feature variable extraction method,
56 feature bands are selected by combining SPA and CARS
in this study.

(2) To solve the problems of poor effect and slow speed of
traditional machine learning method in maize classification,
a high-dimensional feature mapping method is adopted to

frontiersin.org
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reshape the extracted feature bands into three-dimensional
image features after mapping them to a high-dimensional
space. And a five-layer convolution neural network is
constructed to identify three-dimensional image features.

(3) At the same time, the influence of the size of the input
feature dimension and the depth of the model layer on the
performance of the maize variety model are discussed in
this study. The test results show that when the dimension of
the input feature dimension is 768 and the depth factor of
the layer is 1.0, the performance of maize variety
classification model is the best. And the accuracy of the
test set is 96.65%, and the detection frame rate is 1000Fps/s
in GPU environment, which can realize rapid and effective

non-destructive detection of maize varieties.
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Accurate detection of tea diseases is essential for optimizing tea yield and quality,
improving production, and minimizing economic losses. In this paper, we
introduce TeaDiseaseNet, a novel disease detection method designed to
address the challenges in tea disease detection, such as variability in disease
scales and dense, obscuring disease patterns. TeaDiseaseNet utilizes a multi-
scale self-attention mechanism to enhance disease detection performance.
Specifically, it incorporates a CNN-based module for extracting features at
multiple scales, effectively capturing localized information such as texture and
edges. This approach enables a comprehensive representation of tea images.
Additionally, a self-attention module captures global dependencies among
pixels, facilitating effective interaction between global information and local
features. Furthermore, we integrate a channel attention mechanism, which
selectively weighs and combines the multi-scale features, eliminating
redundant information and enabling precise localization and recognition of tea
disease information across diverse scales and complex backgrounds. Extensive
comparative experiments and ablation studies validate the effectiveness of the
proposed method, demonstrating superior detection results in scenarios
characterized by complex backgrounds and varying disease scales. The
presented method provides valuable insights for intelligent tea disease
diagnosis, with significant potential for improving tea disease management
and production.

KEYWORDS

tea disease detection, deep learning, multi-scale feature, self-attention, convolutional
neural networks

1 Introduction

As one of the traditional cash crops, tea holds significant economic and cultural value.
However, the susceptibility of tea plants to diseases during their growth stages has a
detrimental effect on both yield and quality, leading to significant economic losses for tea
growers (Mukhopadhyay et al., 2021; Mahum et al., 2023; Sunil et al., 2023). Conventional
manual techniques for detecting tea diseases are laborious, time-consuming, and
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dependent on the expertise of the testers, leading to inefficiency and
high expenses (Drew, 2019; Abade et al., 2021). Additionally, the
complex tea plantation environment, including elements like weeds,
branches, and soil, along with factors like varying disease scales and
densely shaded areas, pose challenges for accurately detecting of tea
diseases. Therefore, there is an urgent need for research on rapid
and precise methods for early detection of tea diseases.
Implementing such methods would enable tea farmers to
promptly implement control measures, prevent disease spread,
protect the health of tea plantations, and promote the sustainable
development of the tea industry (Debnath et al., 2021; Lanjewar and
Panchbhai, 2023; Pandian et al., 2023).

Traditional machine learning models, such as support vector
machines (SVM), decision trees, K-means, and random forests,
require manual feature design specific to different disease types,
making them susceptible to environmental factors and lacking
generalization capabilities (Bhavsar et al., 2022; Zou et al., 2020;
Steven, 2021; Yu et al,, 2021; Bao et al., 2022; Prabu et al., 2022).
Conversely, deep learning, particularly in object detection, exhibits
potential in crop disease identification (Krisnandi et al., 2019; Ayan
et al., 2020; Jiang et al., 2020; Tetila et al., 2020; Xiong et al., 2020;
Hu et al, 2021b). However, existing models that solely consider
local pixel relationships at short distances struggle to incorporate
crucial global information in complex scenarios of tea disease
detection, featuring varying disease scales and complex
backgrounds, leading to limitations in detection accuracy (Li
et al., 2021).

Convolutional Neural Networks (CNNs) have demonstrated
remarkable success in automatically learning multi-level, high-
order features from disease images, surpassing the limitations of
traditional manual feature design methods (Abade et al, 2021;
Akanksha et al.,, 2021; Dhaka et al., 2021; Latha et al., 2021; Lu et al.,
2021; Wang et al,, 2021; Yogeshwari and Thailambal, 2021;
Ashwinkumar et al,, 2022). They offer significant advantages in
disease detection and have been extensively studied (Liu et al., 2022;
Kirti and Rajpal, 2023; Kirti et al., 2023; Sudhesh et al., 2023;
Tholkapiyan et al., 2023; Xu et al., 2023; Zhou et al., 2023).
Depending on their network structure, CNN-based disease
detection methods can be categorized as one-stage or two-stage
detectors (Jiao et al., 2021; Lin et al., 2023). Regarding tea disease
detection techniques, Qi et al. introduced TC-YOLO, a lightweight
deep learning architecture based on YOLO that achieves high fusion
capabilities (Qi et al., 2022). Alruwaili et al. improved the Faster R-
CNN model for disease detection and achieved better recognition
performance than other models (Alruwaili et al., 2022). By utilizing
basic convolutional layer architectures, Lee et al. achieved an
accuracy of 77.5% in detecting insect pests and diseases (Lee
et al., 2020). Hu et al. introduced an algorithm that enhances
image quality to improve detection accuracy (Hu et al, 2021a).
Chen et al. developed LeafNet, a specialized CNN model for tea
disease feature extraction (Chen et al., 2019). Xue et al. proposed
YOLO-tea, a tea disease detection model based on YOLOv5 (Xue
et al., 2023). However, CNNs overlook crucial global information
among distant pixels, which impacts detection accuracy.
Researchers are currently exploring methods to enhance the
global modeling capabilities of CNNs in these scenarios. For
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instance, Hou et al. proposed an improved two-stage Faster R-
CNN disease detection algorithm incorporating an attention
mechanism in the network (Hou et al., 2023).

Attention mechanisms have emerged as highly successful
approaches in disease detection tasks, aiming to emulate the
remarkable capabilities of the human visual system in capturing
vital information from complex scenes (Zheng et al., 2021; Hu et al.,
2023). Spatial attention, channel attention, and self-attention are
different attention mechanisms that enhance feature extraction and
model performance (Carion et al., 2020; Guo et al., 2022). Several
studies have employed attention mechanisms in disease detection
models. For instance, Liu et al. proposed the spatial attention
module (Liu et al., 2019), Wang et al. introduced both channel
and spatial attention mechanisms (Wang et al., 2020), Zha et al.
developed a lightweight network model based on a coordinate
attention mechanism (Zha et al., 2021), Zhu et al. combined
CNNs with Transformer architecture to establish (Zhu et al,
2022). Similarly, Lin et al. proposed a YOLO-based algorithm that
employs a self-attentive mechanism to enhance the model’s ability
to capture global information on tea diseases (Lin et al.,, 2023).
Borhani et al. proposed combining CNNs with Transformer
architecture to exploit the Transformer’s capability to establish
dependencies between distant features and extract global disease
features (Borhani et al., 2022). By incorporating attention
mechanisms, researchers have made considerable progress in
capturing essential information and enhancing the performance
of disease detection models (Alirezazadeh et al., 2023; Yang
et al,, 2023).

Although the studies mentioned above have made progress in
considering local disease information, it is crucial to emphasize the
value of global information, especially the interaction between distant
pixels (Sapna et al.,, 2023). Motivated by these challenges and research
gaps, we introduce a novel network named Tea Disease Network
(TeaDiseaseNet). Our proposed network integrates multi-scale
feature representation with a self-attention mechanism to enhance
performance in complex backgrounds and variable disease scales. The
primary contributions can be summarized as follows:

(1) Introducing the Multi-scale Feature Extraction Module
(MFEM), which utilizes multi-scale convolutional neural
networks (CNNs) to capture comprehensive and localized
multi-scale feature representations from disease images
effectively. This module facilitates the extraction of
comprehensive local spatial information.

(2) Devising the Scale Self-Attentive Module (SSAM) to
address scale variations and complex backgrounds. The
SSAM incorporates self-attention blocks to consolidate
local and global information on tea disease images,
facilitating effective interaction between global
information and local features.

(3) Designing the Scale-aware Feature Fusion module (SFF) to
achieve accurate and robust detection. The SFF enables
feature fusion and the network to distinguish the relative
importance of different input features. It enhances the
accuracy and robustness of tea disease detection by
facilitating multi-scale feature fusion.
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(4) Conducting extensive comparative experiments and
ablation studies on each module to demonstrate our
proposed method’s superior performance and
effectiveness. The results show significant improvements
in various scenarios, surpassing most existing methods.
These findings highlight the potential and effectiveness of
our approach in enhancing the detection of tea diseases.

The structure of this paper is as follows. Section 2 focuses on the
dataset utilized in this research and explains the enhanced modules
integrated into TeaDiseaseNet. Section 3 covers the experimental
setup, including equipment configuration, evaluation criteria, and
experimental parameters. We present the results and analysis of the
ablation experiments, visualization, and discussion. Finally, in
Section 4, we present our conclusions and discuss potential
avenues for future research.

2 Materials and methods

In this section, we outline the critical components of our
proposed TeaDiseaseNet detection method. Our method involves
two main aspects: collecting a comprehensive tea disease dataset
and developing of an accurate disease detection framework. The
dataset collection process includes acquiring disease images,
annotating the dataset, and appropriately partitioning it. The
detection model comprises three crucial functional modules: 1)
The Multi-scale Feature Extraction Module (MFEM) extracts
features from different scales to capture detailed information
about tea diseases. 2) The Scale Self-Attention Module (SSAM)
applies self-attention mechanisms to learn contextual dependencies
within the extracted features. 3) The Scale-aware Feature Fusion
(SFF) module fuses the multi-scale and self-attended features to
generate a robust representation for disease detection. Collectively,
these components contribute to the effectiveness and accuracy of
our TeaDiseaseNet detection.

2.1 Tea disease dataset construction

2.1.1 Disease images acquisition

The tea disease dataset utilized in the experiments was obtained
from Professor Jiang Zhaohui’s research group at Anhui
Agricultural University (Tholkapiyan et al, 2023). This dataset
consists of 776 samples and covers a wide range of tea diseases,
including tea exobasidium blight, tea red scab, tea cloud leaf blight,
tea cake, tea red rust, and tea algae leaf spot. Each sample image in
the dataset has a resolution of 906x600 pixels, ensuring a clear and
detailed representation of the tea diseases.

Incorporating diverse tea diseases into the dataset enables
comprehensive training and evaluation of the proposed detection
model. By including samples from different tea diseases, the dataset
offers a rich and representative collection of real-world scenarios
encountered by tea growers.

Figure 1 visualizes the dataset, displaying selected tea images
that exemplify instances of the six tea diseases above. These images
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serve as valuable references for understanding each tea disease
visual characteristics and distinguishing features. The annotated
dataset ensures accurate labeling and facilitates the development of
an effective convolutional neural network for tea disease detection.

By utilizing this meticulously collected and annotated dataset,
we aim to construct a robust and reliable detection model capable of
accurately identifying and classifying tea diseases. The dataset
serves as a crucial foundation for our research, ensuring the
validity and effectiveness of our proposed TeaDiseaseNet.

2.1.2 Data labeling

To adapt the dataset for tea disease detection tasks, we enhanced
the original samples by manually annotating the bounding boxes of
the tea disease targets. This critical step involved meticulously
labeling each sample image to indicate the precise location and
extent of the tea disease instances. The annotation process was
performed by a skilled professional using the labelimg image
labeling tool, ensuring accuracy and consistency throughout
the dataset.

By providing bounding box annotations, we enable the tea disease
detection model to identify the presence of tea diseases localize and
delineate the specific areas affected by the diseases. This level of detail
enhances the model’s ability to provide valuable insights and facilitate
targeted intervention strategies for tea growers.

The inclusion of bounding box annotations in the dataset
enhances its suitability and efficacy for tea disease detection tasks.
When used with our advanced TeaDiseaseNet algorithm, the
annotated dataset enables accurate and precise detection of
tea diseases.

2.1.3 Data augmentation and division

To enhance the model’s generalization capability and improve
its performance in real-world scenarios, data augmentation
techniques were applied to augment the tea disease dataset,
thereby expanding its size and diversity. Various methods
introduced diversity and variability into the original images,
including 90-degree clockwise and counterclockwise rotations,
random rotation, noise addition, and exposure adjustments. As a
result, a total of 7 640 augmented samples were generated, enriching
the dataset and providing a more comprehensive range of training
examples for the model.

The augmented dataset was subsequently divided into an 8:2
ratio for training and validation purposes. This division ensured a
balanced distribution of data and enabled robust model evaluation.
By training the model on a diverse augmented dataset and
validating it on separate samples, we obtained more reliable and
accurate results. The use of data augmentation techniques, along
with the appropriate dataset division, enhances the model’s ability
to accurately detect tea diseases, even when faced with previously
unseen or challenging images.

2.1.4 Characteristics of disease dataset

The dataset’s statistical analysis and ranking of scales revealed a
significant range of sizes among the tea disease targets. Around 20%
of the targets exhibited scales smaller than 0.0207, while 34% had

frontiersin.org


https://doi.org/10.3389/fpls.2023.1257212
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Sun et al.

Tea exobasidium blight

Tea cake

FIGURE 1
Representative Samples from the Tea Dataset.

scales larger than 0.345. This wide range of scales underlines the
diverse nature of the dataset and emphasizes the challenge of
accurately detecting diseases across various sizes. Understanding
these scale variations is crucial for developing a robust detection
model capable of effectively identifying tea diseases, regardless of their
size. Our goal is to enhance the performance and reliability of the
model in detecting tea diseases by addressing the scale variations.

2.2 The architecture of TeaDiseaseNet

To address the challenges posed by variable scales of tea pests
and dense, obscuring diseases, this paper presents a novel fused
multi-scale self-attentive tea disease detection network based on
improving YOLOV5 (Jocher et al,, 2022). The YOLOvV5 framework
is well-known for its remarkable object detection capabilities and
high efficiency. In our proposed model, we have harnessed the
advantages of YOLOV5 by incorporating multi-scale convolution
and multi-scale self-attention mechanisms to effectively capture
both local and global features in tea disease images. Figure 2
illustrates the network structure of our model, which comprises
three key modules: the Multi-scale Feature Extraction Module
(MFEM), the Scale-Self-Attention Module (SSAM), and the Scale-
aware Feature Fusion (SFF). These modules synergistically work to
achieve accurate and robust tea disease detection. Our approach
involves the following steps:
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Tea red scab

Step 1: Multi-scale feature extraction

We utilize the multi-scale convolutional blocks of the
MFEM as a backbone network to extract features from tea
images. This allows us to capture feature information of tea
diseases at different scales and local levels.

Step 2: Scale self-attentive mechanism

We feed the multi-scale feature maps into the SSAM
simultaneously to enable the interaction of global and local
information. This mechanism dynamically adjusts the weights
of each scale feature, improving the model’s ability to capture
the characteristics of tea diseases.

Step 3: Scale-aware feature fusion

We incorporate a channel attention mechanism to perform
a weighted fusion of features at different scales in tea leaf
images. This mechanism efficiently integrates characteristic
information of tea diseases across a wide range of scales,
enhancing the precision of disease localization and recognition.
Step 4: Prediction

The prediction module utilizes the previously extracted
feature information to efficiently localize and identify tea
disease features in complex contexts and at varying scales.

By following these steps, our approach aims to effectively extract

and integrate features to accurately detect and recognize
tea diseases.
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FIGURE 2

The framework of TeaDiseaseNet.

2.3 Multi-scale feature extraction module

Traditional image feature extraction methods often focus on
either local or global information, limiting their ability to
comprehensively capture the diversity and complexity of images.
In recent years, deep learning-based approaches, particularly Vision
Transformers (ViT) (Khan et al., 2022), have become the dominant
method for image feature extraction. ViT segments images into
patches or tokens and employs self-attentive mechanisms to extract
parameterized visual representations. However, these methods are
constrained by fixed-scale token sequences, which restrict their
ability to capture feature structures across different scales. This
limitation poses a challenge in tea disease detection due to scale
variations. Moreover, self-attentive mechanisms prioritize global
information, disregarding important local feature details and
blurring the distinction between intricate backgrounds and
foregrounds in tea disease images. Consequently, their
applicability in disease feature extraction tasks is limited.

To address these challenges, we propose two solutions. The first
solution, illustrated in Figure 3A, involves constructing serial multi-
scale token sequences by up/down sampling and expanding/reducing
token sequences within the self-attentive mechanism module. The
second solution, depicted in Figure 3B, consists of constructing parallel
multi-scale token sequences wherein images of different scales are
simultaneously fed into the self-attentive mechanism module. This
approach leverages multi-headed self-attention to capture global
contextual information across diverse scales. Compared to the first
solution, the second approach provides a simpler implementation.
Building on these observations, we propose a parallel multi-scale tea
disease feature extraction module to address the limitations of limited
local feature representation and a single scale.

As illustrated in Figure 2, our proposed method employs four
Dense blocks derived from DenseNet (Roy and Bhaduri, 2022) to
extract both the multi-scale structure and local features of tea
disease images. The tea disease image passes through the input
layer, further progressing into the dense block, and finally
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undergoing average pooling. The shallow convolutional layers in
this module aim to capture intricate features like edges and
contours, while the deeper convolutional layers encode
comprehensive semantic information. Each level of the Dense
block includes down-sampling operations, gradually reducing the
resolution of the disease images. We generate a multi-scale feature
map by preserving the outputs of the last three levels of Dense
blocks. By employing the scaled feature map sequence obtained
from the CNN as input for the self-attentive mechanism module,
the length of the token sequence is indirectly adjusted. This
modification enables each token to represent a larger region in
the original image, encompassing a broader range of spatially
localized information.

In summary, the MFEM module retrieves multi-scale features,
allowing the model to capture information at different levels of
detail. This capability is advantageous for tea disease detection tasks
as it effectively handles disease size, location, and complex
backgrounds variations. The refined multi-scale features enhance
the reliability and accuracy of the tea disease detection model.

2.4 Scale self-attention module

The SSAM enables the interaction and fusion of feature maps at
various scales using the self-attention mechanism. This allows the
tea disease detection model to effectively capture both global and
local information in disease images. More specifically, the self-
attentive block within the SSAM module takes in multi-scale feature
maps as inputs, with each scale’s feature maps obtained through
convolution. By enhancing information fusion and interaction, this
module significantly improves the model’s performance and
accuracy across various scales. The self-attention operation in
each head of the multi-head attention mechanism is computed
based on Equation (1).

T
%+B)V (1)

AAttention(Q» K, V)= SsoftMax ( \/a
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Token Sequence: 2-Scale

FIGURE 3

Token Sequence: 2-Scale

Two ldeas for Multi-scale Structures in Tea Disease Detection. (A) Constructing serial multi-scale token sequences. (B) Constructing parallel multi-

scale sequences.

where Q, K, and V represent the query, key, and value matrices,
respectively. The vector dimension is denoted as d, and B signifies
the bias matrix. The output is obtained by applying the softmax
activation function S,pnax fOr multi-classification.

In particular, the Self-Attention Block within the SSAM takes
multi-scale feature maps as input. Each scale is obtained through a
convolution operation. The configuration of the Self-Attention
Block, illustrated in Figure 4, includes a Multi-head Self-Attention
(MSA) module that employs a window-based approach and a 2-
layer Multi-layer Perceptron (MLP) module. Layer Normalization
(LN) layers are incorporated before each MSA and MLP module,
and residual connections are employed after each module. This
arrangement facilitates the calculation of output features, as shown
in Equation (2).

2" = Fy_ysa (Fv (271)) + 271

Z' = Fypp(Fin (27))

2i+1

2 = Fyyp (FLN (2141))

+2z!
() +7
+2i+1

= Fow_ysa (Fin

where W-MSA represents the window multi-head self-
attention, while SW-MSA denotes the shifted window multi-head
self-attention. The variables 2’ and z' correspond to the output
features of the (S)W-MSA and MLP modules of the i-th block,
respectively. The W-MSA module, SW-MSA module, MLP module
and LN module features are denoted as Fyy_aysas Fsw-msas Fumips
F1n» respectively.

2.5 Scale-aware feature fusion

The SFF module efficiently combines features from multiple
scales, resolving discrepancies and improving model performance.
In tea disease detection tasks, it is crucial to efficiently process
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information from multiple scales. This module is specifically
designed to address discrepancies and inconsistencies in multi-
scale features. We leverage a channel focus mechanism to enhance
the model’s performance by incorporating spatial and channel
features in the input data. This allows the model to accurately
discern and differentiate between objects or features, improving
object detection accuracy.

The channel attention mechanism enhances the inter-channel
information importance in a convolutional neural network. It
compresses the features of each channel by integrating their
spatial information and computes them using global average
pooling, as defined below:

yer Perceptron
1

Layer Normalization

FIGURE 4
Self-Attention Block.
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where z denotes the compressed feature vector, H and W denote
the feature map size of feature X. A learnable parameter w captures
the correlation between feature channels. To improve
computational efficiency, the number of channels is reduced using
the following approach:

S$= Fex(z’w) =

9(g(z,w)) = (w28(w12)) (4)

where the adaptive weight of each channel is represented by s,

and O represents the ReLU activation function, while G represents
the Sigmoid activation function. Combining the channel adaptive
weight s with the original feature z and assigning a new adaptive
weight to each existing channel, the rescaled feature is obtained
using Equation (5).

Xc= Fscule(X> 5) =X-s (5)

As shown in Figure 5, the SFF consists of Upsample, Concat,
Bottleneck CSP, and S, module operations. The BottleneckCSP
module performs a convolution operation on the fused features to
further extract feature information, and the St module introduces a
channel attention mechanism to weigh the multi-scale features for
fusion and eliminate redundant information.

The S; module utilizes global average pooling to compute
feature compression values for each channel and learns
parameters to model the correlation between channels, resulting
in adaptive weights. These weights are applied to rescaled original
features, achieving adaptive feature weighting and improving
feature representation. Through the combined operations of
Upsample, Concat, BottleneckCSP, and S,, the feature fusion
network enables the interaction and fusion of multi-scale
information, enhancing the model’s performance. This addresses
inconsistencies and discrepancies between multi-scale features,
improving accuracy and robustness in tea disease detection tasks.

In general, the primary objective of the SFF module is to
integrate global and local information from multiple scales,

Multi-scale feature maps
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FIGURE 5
The multi-scale feature fusion module.
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enabling the generation of precise density maps to effectively
capture the spatial distribution of diseases.

2.6 Prediction module

The prediction module is responsible for locating and
identifying tea disease information at various scales. It achieves
efficient prediction by utilizing the feature fusion network’s output
and employing parallel branches. The incorporation of IoU
branches further enhances the accuracy of the prediction results.

The prediction module comprises 1x1 convolutional layers and
parallel branches. Each branch contains a Conv Block that
comprises two 3x3 convolutions. The topmost Conv Block is
dedicated to the classification task, while the bottommost Conv
Block focuses on the regression task. An additional IoU branch is
introduced to the module to enhance the accuracy of
the predictions.

2.7 Loss functions

The tea disease detection model utilizes three essential loss
functions: localization loss Ly, classification loss L., and
confidence loss Ly, as depicted in Equation (6).

L =L+ Lgs + Lconf (6)

These components enhance the model’s accuracy regarding
object localization and category identification. The localization
loss minimizes bounding box coordinate discrepancies, while the
classification loss reduces errors in tea disease classification. Finally,
the confidence loss enhances the model’s precise detection and
classification estimation. The model can optimize its performance
by incorporating these loss functions and achieve more accurate
and reliable tea disease detection results.

The final localization loss L, is computed according to
Equation (7).
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s B
b
Lie = X317 (1 = CloU) (7)
i=1j=0
The Complete Intersection over Union (CIoU) loss is a
regression loss function considering bounding boxes’ overlapping
area, center distance, and aspect ratio consistency. When
incorporated into the model, it provides a more accurate measure
of the bounding box regression error, leading to improved accuracy
and localization performance in tea disease detection.
2
PP (b, b%)

CIoU:IoU—T—ow (8)

4 ! w2
V= F (arctanm — arctan Z)

v

o=
(1-IoU) +v

where ¢ represents the diagonal distance between the prediction
frame and the minimum enclosing area of the ground truth frame, p
denotes the Euclidean distance function, while b and b% correspond
to the centroids of the prediction frame and the actual frame,
respectively. The variable v indicates the similarity of the aspect
ratio, and o is the weighting factor. Additionally, w and / denote the
width and height of the prediction frame, respectively.

A binary cross-entropy loss function is used for the
classification loss Lj,., according to Equation (9).

s B T . . .

e 553 W) (1) (i-1)])

where S, Band I} fj have the same meaning as in the context, ¢ is
the currently identified category and classes are all the classes to be
detected, p/, and 1311 are the predicted and true probabilities that the
target in the i-th grid, j-th anchor box belongs to class ¢,
respectively. The confidence lossL.,,s is computed according to
Equation (10).

& B ST oA . . A
Ly = -2 301 [ Cl1og(]) + (1- €1 tog(1- )
i=0j=0
(10)
S o[ i 1o ( A j
ooy 2201 [Cllog () + (1= €)) log(1- ) |
i=1j=0
where, If)]-'mhj denotes the i-th grid, whether the j-th anchor box
does not have a target, no target is 1, otherwise is 0; 4,40 is a
constant coefficient, taken as 0.5, to balance the effect of positive and
negative samples on the loss function; C, and C’, are the confidence
levels of the prediction and truth boxes respectively.

3 Experimental results and analysis

The experiments were conducted using Python programming
language and the PyTorch deep learning framework (version 1.7.0).
Taking advantage of the server’s configuration, which included two
RTX 3090 GPUs, the training process efficiently utilized parallel

Frontiers in Plant Science

10.3389/fpls.2023.1257212

processing. The Adam optimizer was employed to optimize the
training process. A batch size of 8 was selected, striking a balance
between computational efficiency and model convergence. To
ensure comprehensive learning and convergence, the models were
trained for 300 epochs. This experimental setup effectively
maximized computational resources, enabling accurate and
reliable model training.

3.1 Performance comparisons

In this paper, we evaluate the performance of disease detection
models using the mean Average Precision (mAP), Precision, and
Recall as metrics. The mAP is calculated by summing the Average
Precision values for all categories and dividing it by the total
number of categories, as shown in Equation (11).

1
AP = [p(r)dr (11)
0

1.
mAP = —> AP,
niz

where n represents the class number, AP; denotes the Average
Precision values for each category. This formulation enables a
comprehensive and concise evaluation of the model’s overall
detection accuracy, capturing its performance across diverse
disease categories.

Precision provides valuable insights into the model’s capability
to accurately identify and classify target frames. It quantifies the
ratio of correctly identified frames to the total predicted frames,
providing a measure of the model’s precision and accuracy in target
detection. Equation (12) represents the mathematical expression of
Precision.

TP

P=—
TP + FP

(12)

Recall is defined as the ratio of correctly detected target frames
to the total number of target frames in the dataset, assessing the
model’s ability to identify all instances of the target without missing
any. Equation (13) represents the mathematical expression for
Recall.

P

R=—
TP + EN

(13)

This study evaluates the performance of TeaDiseaseNet by
comparing and analyzing its detection and identification results
with various classical CNN models, including SSD (Liu et al., 2016),
Faster R-CNN (Ren et al., 2015) YOLOv3 (Redmon and Farhadi,
2018), YOLOv4s (Bochkovskiy et al., 2020), YOLOV5s (Jocher et al.,
2022), YOLO-Tea (Xue et al., 2023), and AX-RetinaNet (Bao et al.,
2022). Table 1 presents these networks’ detection and recognition
experiments’ precision, recall, and mean Average Precision (mAP)
values. The results demonstrates the outstanding detection accuracy
of TeaDiseaseNet. TeaDiseaseNet achieves superior detection
accuracy compared to models that employ model scaling, such as
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YOLOv4s and YOLOvV5s. This remarkable performance can be
attributed to the utilization of DenseNet, which incorporates
dense connectivity in the network, enhancing feature reuse and
gradient flow. Moreover, TeaDiseaseNet employs effective
techniques for multi-scale feature extraction and fusion.

It is worth noting that the YOLOV3 algorithm exhibits higher
detection accuracy than YOLOv4s and YOLOV5s, potentially
because of its shallower depth and smaller feature map width.
The detection accuracy of Faster R-CNN is higher than that of
YOLOV3 by 1.9%. This performance difference arises because Faster
R-CNN is a two-stage target detection algorithm. It generates
candidate regions using a region proposal network and selects the
best candidate regions using a region classification network. In
contrast, YOLOV3 is a one-stage target detection algorithm that
predicts object locations and classes across the entire image by
taking the entire image as input. Despite requiring more
computational resources, Faster R-CNN delivers higher accuracy
and fewer false positives compared to YOLOv3. Furthermore,
TeaDiseaseNet demonstrates a slightly higher average accuracy
compared to the SSD algorithm.

In conclusion, this paper presents a significant advancement in
disease detection by employing CNN characteristics and
incorporating a self-attentiveness mechanism. TeaDiseaseNet
utilizes CNN to extract multi-scale feature maps that encompass
abundant spatial information at various levels of detail. Inspired by
human visual mechanisms, this design enhances the model’s

TABLE 1 The Comparison of different networks.

10.3389/fpls.2023.1257212

capability to effectively handle complex backgrounds and scale
variations in disease images. The incorporation of the attention
mechanism empowers TeaDiseaseNet to automatically select and
prioritize the most relevant features within an image, significantly
enhancing disease detection accuracy.

Figure 6 illustrates the average loss value curve of
TeaDiseaseNet during training iterations. The plot demonstrates
that the loss value stabilizes around 0.39 after approximately 255
iterations. The slight fluctuations observed in the loss value after
convergence can be attributed to the inherent complexity and
variability of the training data. The results indicate that
TeaDiseaseNet has successfully learned and adapted to the
training data, as evidenced by the convergence of the parameters
and satisfactory performance.

3.2 Evaluation of TeaDiseaseNet

The effectiveness of the proposed TeaDiseaseNet algorithm was
evaluated using the provided dataset. Table 2 presents the accuracy
of the model in recognizing each tea disease. The results highlight
the significant advantages of the algorithm for tea disease detection.
The algorithm achieved high accuracy rates of 92.1% and recall
rates of 92.9% for tea round red star disease, with an average
accuracy rate of 94.5%. These findings indicate accurate
identification and significant improvements in detecting this

Network Year Precision (%) Recall (%) mMAP (%)
SSD 2016 86.5 89.1 88.4
Faster R-CNN 2015 915 87.3 922
YOLOV3 2018 942 84.6 90.3
YOLOvis 2020 90.7 85.9 88.7
YOLOV5s 2020 92.3 86.5 89.4
AX-RetinaNet 2022 9.8 94 938
YOLO-Tea 2023 - - 79.3
TeaDiseaseNet 2023 95.3 97.1 93.5
6
5
4
é 3
2
1
0
0 50 100 150 200 250 300
Epoch
FIGURE 6

The Loss changing graph of TeaDiseaseNet.
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particular disease. Tea webcake disease exhibits slightly lower
accuracy and recall rates of 89.2% and 85.8%, respectively.
However, the algorithm achieves an average accuracy rate of
95.4%, surpassing the individual accuracy and recall values. This
demonstrates the algorithm’s capability to overcome challenges
related to small spot areas. The algorithm also performs
remarkably well in detecting other tea diseases, including tea
algae spots, tea cake disease, tea cloudy leaf blight, and tea red
rust algae disease. These diseases exhibit high values across all
evaluation metrics. The results demonstrate significant innovations
and benefits in multi-scale tea disease detection. The algorithm
achieves high recognition accuracy for large-scale tea redscab and
small-scale tea exobasidium blight.

The algorithm achieves high recognition accuracy for large-scale
tea redscab and small-scale tea exobasidium blight. The performance
evaluation of each network was conducted based on metrics such as
accuracy, recall, and average accuracy, and the results are presented in
Table 3. The results revealed that the DenseNet model, serving as the
backbone network, performed the best in accuracy, recall, and average
accuracy. The algorithm achieves high recognition accuracy for both
large-scale tea redscab and small-scale tea exobasidium blight.
DenseNet exhibits strong resistance to overfitting, making it
particularly suitable for scenarios with limited training data. A
notable characteristic of DenseNet is its utilization of feature reuse
through feature concatenation across channels. This enables DenseNet
to achieve superior performance compared to ResNet-101, while
utilizing fewer parameters and incurring lower computational cost.
In contrast, Darknet53 is a lightweight convolutional neural network,
however, it proves to be challenging to train. DenseNet performs
admirably in the tea disease detection task. As a result, this paper selects
DenseNet as the underlying network structure for the proposed
algorithm. The algorithm effectively resolves the scaling issue by
establishing a multi-scale feature representation and enhances overall
performance. In summary, the algorithm proposed in this study
demonstrates improved accuracy compared to other models, thereby
representing significant progress in the field of tea disease detection.

3.3 Ablation studies

To validate the effectiveness of the proposed network model,
incremental ablation experiments were conducted. Each network
module was incrementally incorporated based on the DenseNet
backbone architecture. This approach allowed for a comprehensive

TABLE 2 Performance in detecting different tea diseases.

Tea Disease P (%) R (%) mAP (%)
Tea exobasidium blight 89.2 85.8 95.4
Tea red scab 92.1 92.9 94.5
Tea algae leaf spot 94.9 88.8 93.5
Tea cake 90.0 91.4 94.7
Tea cloud leaf blight 88.5 89.5 92.0
Tea red rust 85.4 87.7 90.9

Frontiers in Plant Science

10.3389/fpls.2023.1257212

TABLE 3 Performance comparison of different backbone networks.

Backbone P (%) R (%) mAP (%)
DenseNet 95.3 97.1 ‘ 93.5
Resnet-101 91.3 902 ‘ 92.8
Darknet53 91.8 90.5 ‘ 93.2

evaluation of each module’s contribution to the overall
performance. This step-by-step approach aimed to enable a
comprehensive evaluation of the individual contribution of each
module to the overall performance.

The results of the ablation experiments conducted for each
module are presented in Table 4. Including of the MFEM+SSAM
module results in a substantial performance improvement, with a
2.2% increase in mAP compared to using the MFEM module alone.
This improvement can be attributed to utilizing the multi-head self-
attention mechanism within the MFEM+SSAM module. This
mechanism captures global contextual information from multi-
scale feature maps and facilitates the interaction between global
and local information. Assigning weights to features, such as spot
color and leaf edge, enhances the detection accuracy. Furthermore,
the new scale-aware feature fusion (SFF) module adopts a channel
attention mechanism to fuse features of different scales. It focuses
on the feature channels containing discriminative information and
assigns a higher weight distribution to them, effectively improving
the detection performance (Chen et al, 2020). The SFF module
effectively fuses information from tea disease features of various
scales, resulting in improved accuracy of localization and
identification. The introduction of the SFF module enhances the
mAP by 0.7%, indicating its contribution to improved detection
accuracy of the network.

3.4 Visualization and discussion

Representative disease images were selected to showcase the
exceptional performance of the proposed model in effectively
addressing challenges posed by continuous scale variations and
complex backgrounds. This visualization demonstrates the model’s
ability to detect diseases accurately. Figures 7 and 8 present the
original disease images on the left and the model’s detection results
on the right. Rectangular boxes indicate the identified disease types
and their corresponding confidence levels.

Figure 7 demonstrates the model’s ability to effectively identify
diseases with varying scales and address disease scenarios
characterized by continuous scale variations. This showcases the

TABLE 4 Results of ablation experiments.

Backbone (MFEM) SSAM SFF mAP (%)
V 90.6
V v ‘ 92.8
l v v ‘ 935
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FIGURE 7
Disease scenarios with continuous scale changes.

10.3389/fpls.2023.1257212

algorithm’s capacity to extract rich global contextual information at
multiple scales and accurately detect scale variations by comparing
global and local information. Figure 8 highlights the model’s
effectiveness in eliminating complex background interferences, such
as branches and fallen leaves in disease scenes. This can be attributed
to the feature extraction and fusion networks, which enable the
proposed method to accurately detect disease areas within complex
scenes by capturing dependencies between input feature scales.

Additionally, a comparison was conducted between the YOLOv3
and TeaDiseaseNet models using images of tea leaf diseases, as depicted
in Figure 9. The YOLOv3 model exhibited missed detections and
inaccurate annotation box positions, whereas TeaDiseaseNet accurately
detected and confidently annotated the diseases. The superior
performance of TeaDiseaseNet can be attributed to its multi-scale
self-attention mechanism, which enhances the acquisition of semantic
and location information in the images. This results in improved
feature extraction and detection accuracy.

The results demonstrate that TeaDiseaseNet outperforms
YOLOV3 in terms of detection accuracy and robustness, owing to
its enhanced feature extraction capabilities and multi-scale self-
attention mechanism.

FIGURE 8
Disease scenes with complex backgrounds.

4 Conclusion

This paper introduces TeaDiseaseNet, a novel tea disease
detection model that effectively addresses challenges posed by
complex backgrounds and variable scales. By incorporating a
multi-scale self-attentive mechanism, TeaDiseaseNet enables
effective interactions between global and local features across
multiple scales. This mitigates the impact of scale variations and
complex backgrounds on detection accuracy. Experimental results
demonstrate that TeaDiseaseNet surpasses state-of-the-art
methods, exhibiting exceptional accuracy and robustness in scale
variations and background interference scenarios. These findings
provide valuable insights for intelligent tea disease diagnosis,
supporting tea farmers with accurate detection capabilities and
enabling timely control measures to protect tea plantations,
improve tea quality, and enhance yields.

In addition to the benefits and contributions highlighted in the
conclusion, this study also has certain limitations that need to be
acknowledged. Firstly, the use of a limited dataset may not fully
capture the diversity of tea diseases. Including a wider range of tea
diseases would enhance the representativeness and applicability of
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Existence of missed tests

10.3389/fpls.2023.1257212

LBOTM 0.74

B TeaDiseaseNet

FIGURE 9

The results of algorithm (A) YOLOvV3 and algorithm (B) TeaDiseaNet, in the existence of missed tests and badly positioned frame scenarios, respectively.

the detection system. Secondly, biases in the training data, such as
imbalances in disease instances or variations introduced by different
image acquisition systems, could affect the performance of the tea
disease detection system. Efforts should be made to address these
biases and enhance the system’s robustness. Additionally, the study
focuses on offline detection, which may not be practical for real-
time implementation in tea plantations. Future research should
explore real-time implementation, taking into account the resource
and time constraints associated with practical deployment. Lastly,
interpreting the decision-making processes of the deep learning
model is challenging due to their complexity. Enhancing the
interpretability of the model would enhance its usefulness in
decision-making for tea farmers. Addressing these limitations can
improve the practicality and effectiveness of tea disease
detection systems.
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hyperspectral imaging

Xunlan Li, Fangfang Peng, Zhaoxin Wei,
Guohui Han* and Jianfei Liu

Research Institute of Pomology, Chongging Academy of Agricultural Sciences, Chongqing, China

Protein content is one of the most important indicators for assessing the quality
of mulberry leaves. This work is carried out for the rapid and non-destructive
detection of protein content of mulberry leaves using hyperspectral imaging
(HSI) (Specim FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland). The spectral
range of the HSI acquisition system and data processing methods (pretreatment,
feature extraction, and modeling) is compared. Hyperspectral images of three
spectral ranges in 400-1,000 nm (Spectral Range 1), 900-1,700 nm (Spectral
Range Il), and 400-1,700 nm (Spectral Range Ill) were considered. With standard
normal variate (SNV), Savitzky—Golay first-order derivation, and multiplicative
scatter correction used to preprocess the spectral data, and successive
projections algorithm (SPA), competitive adaptive reweighted sampling, and
random frog used to extract the characteristic wavelengths, regression models
are constructed by using partial least square and least squares-support vector
machine (LS-SVM). The protein content distribution of mulberry leaves is
visualized based on the best model. The results show that the best results are
obtained with the application of the model constructed by combining SNV with
SPA and LS-SVM, showing an R? of up to 0.93, an RMSE of just 0.71 g/100 g, and
an RPD of up to 3.83 based on the HSI acquisition system of 900-1700 nm. The
protein content distribution map of mulberry leaves shows that the protein of
healthy mulberry leaves distributes evenly among the mesophyll, with less
protein content in the vein of the leaves. The above results show that rapid,
non-destructive, and high-precision detection of protein content of mulberry
leaves can be achieved by applying the SWIR HSI acquisition system combined
with the SNV-SPA-LS-SVM algorithm.

KEYWORDS

hyperspectral imaging, mulberry leaf, protein content, non-destructive detection,
visible and near-infrared
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1 Introduction

Mulberry leaves are rich in a variety of bioactive ingredients
necessary for the human body, with such functions as anti-obesity
(Li et al, 2019), anti-oxidation and antibacterial (Thabti et al,
2014), and anti-diabetes (Riche et al., 2017), and thus are considered
to be beneficial in the Asian population. Compared to animal
protein, the abundant protein of mulberry leaves contains no
animal cholesterol, with an amino acid pattern similar to that of
the human body (Gryn-Rynko et al., 2016; Sun et al, 2017). In
recent years, mulberry leaves are eaten as a vegetable, and used as a
traditional source of animal feed protein as well in Asian countries
(Srivastava et al., 2003; Yu et al., 2018). The protein content is one of
the most important indicators for assessing the quality of mulberry
leaves used as an animal feed source or a fresh vegetable.

At present, the methods for determining protein content in
leaves are mainly chemical analysis methods (Ledoux and Lamy,
1986; Chromy et al, 2015; Denholm et al., 2021), such as the
Kjeldahl nitrogen determination method. Such methods require the
samples to undergo not only drying, grinding, and other destructive
treatments, but also deboiling, distillation, and titration under the
condition of concentrated sulfuric acid being added. This is a
complex process producing chemical pollution. In light of this, it
is highly necessary to introduce a non-destructive and rapid
determination of protein content of mulberry leaves.

Hyperspectral imaging (HSI) combining imaging technology
with spectral technology can provide both spectral and spatial
information of substances. With the advantages of non-
destructiveness, high efficiency, and low cost, HSI is widely used
in non-destructive detection of protein content of different farm
products, including meat products such as pork (R*p = 0.9161 and
RMSEP = 2.71 mg/g) (Ma J. et al,, 2019), lamb (R*, = 0.67 and
RMSEP = 0.41) (Pu et al, 2014), and beef (R’ = 0.86 and SEP =
0.29) (EIMasry et al., 2013), and grain products such as wheat (R*p =
0.79 and RMSEP = 0.94) (Caporaso et al., 2018), rice (R*» = 0.8011
and RMSEP = 0.52) (Ma et al,, 2021), and peanuts (R* =0.912 and
RMSEP = 0.438) (Cheng et al, 2017). There are studies showing
that N-H bonds in proteins present absorption peaks at 1,460-1,570
nm and 2,000-2,180 nm (Shenk et al., 2007; Chelladurai and Jayas,
2014), which lead to the non-destructive detection of proteins to be
conducted by mainly using the Short-Wave Infrared (SWIR) HSI
system with an acquisition wavelength range of 1,000-1,700 nm or
900-2,500 nm. There are also some other researchers using visible
near-infrared (Vis-NIR) HSI with an acquisition wavelength range
of 400-1,000 nm for non-destructive detection of proteins of meat
(Ma J. et al., 2019), rice (Onoyama et al., 2018), milk (Jin et al,,
2022), and rape leaves (Zhang et al, 2015), with good results
obtained. As the main parts of optical imaging systems, detectors
are meant for detecting and measuring the radiation reflected or
transmitted by objects. A detector made of a certain material can
only detect certain wavelength ranges, and the prices of detectors
vary greatly. Currently, silicon detectors (300-1,100 nm) are the
most widely used Vis-NIR detectors, and their prices are very low,
compared with the slightly more expensive InGaAs detectors (900-
2,500 nm) and the much more expensive HgCdTe detectors (1,000-
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2,600 nm). At present, there are only a few studies on the non-
destructive detection of proteins of mulberry leaves. Ma et al. used a
900-1,600 nm handheld near-infrared spectrometer to detect
proteins of dry mulberry leaves, and by combining with partial
least squares (PLS) regression and the wavelength optimization
method, they obtained a prediction set R* of up to 0.92 (Ma V. et al.,
2019). However, this method requires the mulberry leaves to
undergo drying and grinding, and the obtained data are single
point data, thus leading to failure to obtain the protein content of
the whole leaves. The vibrational characteristics of different
molecules and functional groups vary, resulting in differences in
sensitivity to specific wavelengths among different substances.
Therefore, we are not clear about the best detector material and
the spectral range for conducting the non-destructive detection of
protein content of mulberry leaves. As a result, it is necessary to
choose an optimal compromise.

This study aims at developing a non-destructive and rapid
method for the detection of protein content of mulberry leaves.
The main research contents are as follows: (1) analyzing the spectral
characteristics of mulberry leaves at Vis-NIR (400-1,000 nm) and
SWIR (900-1,700 nm); (2) comparing different pretreatment,
feature extraction, and modeling methods and selecting the best
optimal data processes and methods; (3) selecting the best spectral
range of HSI acquisition system for the detection of protein content
of mulberry leaves; and (4) visualizing the distribution of protein
content of mulberry leaves by using the optimal model.

2 Materials and methods

2.1 Materials

The healthy mulberry leaves, randomly collected and washed
with tap water when brought to the laboratory, undergo
hyperspectral images collection and protein content determination
after the surfaces of the leaves become dry. In this study, 193 samples
are randomly divided into the training set and the testing set at the
ratio of 7:3, with 135 and 58 samples, respectively. Among them, the
training set is used for training the model, with the 10-fold cross-
validation method applied to the training set to adjust the model
parameters and select the optimal model, while the test set is used for
assessing the final model.

2.2 Acquisition and calibration of
hyperspectral images

The HSI acquisition system consists of two hyperspectral cameras
(FX10 and FX17, Spectral Imaging Ltd., Oulu, Finland), the electric
linear platform (Spectral Imaging Ltd., Oulu, Finland), two light
sources (each light source consists of three 20-W halogen lamps),
and a laptop (Figure 1). The FX10 spectral camera (Si detector) is used
for acquiring hyperspectral images of the Vis-NIR region (400-1,000
nm). The FX17 spectral camera (InGaAs detector) is used for acquiring
hyperspectral images of the SWIR region (900-1,700 nm).
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FIGURE 1
The hyperspectral imaging system.

The two light sources are at an angle of 45° of the moving
platform, and the distance between the lens and the platform is 33
cm. When FX10 is used for hyperspectral image acquisition, the
exposure time is set to 12.5 ms, the frame rate is 49.83 Hz, the
spectral interval is 2, the spatial interval is 1, and the mobile
platform moving speed is set to 11.9 mm/s. When FX17 is used
for hyperspectral image acquisition, the exposure time is set to 6 ms,
the frame rate is 40.5 Hz, the spectral interval is 1, the spatial
interval is 1, and the moving speed of the mobile platform is set to
14.8 mm/s. The hyperspectral image acquisition is conducted after
the preheating of 20 min. The white reference image W is obtained
by screening the standard white board with a reflectance of 99%
placed in front of the sample. The dark reference image D is
obtained by screening with the lens closed. The reference images
are acquired together with the hyperspectral image of the sample.

To avoid the effect caused by uneven light source intensity
distribution and dark current during the image collecting process,
hyperspectral image calibration is conducted (Figure 2). The
following formula is used for hyperspectral image calibration.

I,-D
R, - 2~
Wy -D,

where R is the calibrated image, I is the raw image, W is the
white reference image, and Dj is the dark reference image.

2.3 Determination of protein content of
mulberry leaves

After the hyperspectral image acquisition, the mulberry leaves
underwent drying in the oven at 105°C for 15 min and then drying
at 50°C for 2 h. With the main vein removed, the leaves were
ground with a mortar and passed through a 60-mesh sieve, and the
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protein content of mulberry leaves was determined by using Kaye
nitrogen determination (Chromy et al,, 2015). The sample (0.3 g)
was weighed and transferred into a digestion tube. Then, 0.4 g of
copper sulfate, 6 g of potassium sulfate, and 20 mL of sulfuric acid
were added to the tube for digestion. Once the temperature of the
digestion furnace reached 420°C, the digestion process was
continued for 1 h. After the liquid in the digestion tube exhibited
a green and transparent appearance, the tube was carefully removed
from the furnace and allowed to cool. Once cooled, 50 mL of water
was added to the tube. In the Kjeldahl nitrogen analyzer, sodium
hydroxide solution, hydrochloric acid standard solution, and boric
acid solution containing mixed indicators were first added. Finally,
the automated Kjeldahl nitrogen analyzer was utilized to
automatically perform the processes of sample addition,
distillation, titration, and data recording. The protein content in
the mulberry leaf can then be calculated using the provided formula.

(V1 = V2)%C+0.0140+F+100

X =
m«V3/100

In the formula, X represents the measured protein content, V1
represents the volume of consumed hydrochloric acid standard
solution, V2 represents the volume of blank consumed hydrochloric
acid standard solution, V3 represents the volume of extracted
liquid. C = 0.05 mol/L represents the concentration of
hydrochloric acid standard solution. m represents the weight of
the sample taken. F represents the conversion factor of nitrogen to
protein, and F is taken as 6.25. 100 is the conversion factor.

2.4 Data processing

2.4.1 Region of interest identification and
spectrum extraction

In this study, a whole mulberry leaf is the region of interest for
spectral extraction. A gray image is obtained at 800 nm and 1,000
nm of the Vis-NIR and SWIR hyperspectral images, respectively.
The Otsu method automatically calculates the segmentation
threshold between the leaf and the background in the gray image,
from which a binary image is obtained. Then, the ROI is obtained
by conducting mask processing. Finally, the average spectral
reflectance of the whole mulberry leaf at each wavelength
is calculated.

2.4.2 Spectral pretreatment

In light of the high noises in the first and last bands of the
original spectral data, spectral data within the ranges of 423-975 nm
(Spectral Range I), 970-1,684 nm (Spectral Range II), and 423-
1,684 nm (Spectral Range III) are selected for subsequent analyses.
The raw spectra need to be pre-treated to eliminate the scattering
caused by uneven particle distribution and different particle sizes
and the influence of optical path difference on the spectral data. The
standard normal variate (SNV) (Barnes et al, 1989), Savitzky-
Golay combined first-order derivation (Savitzky and Golay, 1964),
and multiplicative scatter correction (MSC) (Isaksson and Nees,
1988) are the commonly used spectral preprocessing methods, and
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Hyperspectral image calibration. (A, C) show the raw hyperspectral image of Vis-NIR and SWIR region, respectively. (B, D) show the calibrated

hyperspectral image of Vis-NIR and SWIR region, respectively.

have been shown to be effective in eliminating or reducing
interference such as electrical noise, sample background, and
stray light during acquisition. In order to determine the best
pretreatment of spectral data, the SNV, Savitzky—Golay combined
first-order derivation, and MSC are adopted in this study.

2.4.3 Variable selection

Because of the high correlation between adjacent spectral bands,
successive projections algorithm (SPA), competitive adaptive
reweighted sampling (CARS), and random frog (RF) are
respectively used to extract characteristic wavelengths in this
study to reduce model input variables and improve model
efficiency and prediction accuracy.

Frontiers in Plant Science

SPA is a forward variable selection method, which selects a
wavelength at the beginning, calculates the projection value of the
remaining wavelength, cycles forward, selects the wavelength
corresponding to the maximum projection value, and then combines
the projection vector with the wavelength until the end of the cycle
(Aratjo et al, 2001). SPA can minimize the collinearity between
variables, extract the minimum redundant information variable
group, and reduce the number of variables required to establish the
model, thus improving the efficiency and speed of modeling.

CARS is a feature variable selection method that combines
Monte Carlo sampling with PLS model regression coefficient (Li
et al, 2009). The primary selection of the feature variables is
conducted by combining the PLS regression coefficient with
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exponential decay through adaptive weighted sampling each time.
Then, a new PLS model is constructed based on the new subset
established with the points of larger absolute weight of regression
coefficient retained and the points with smaller weight removed in
the PLS model. After multiple calculations, the wavelength in the
subset with the smallest root mean square error of the PLS model is
selected as the characteristic wavelength.

RF is a very effective algorithm, which is similar to Reversible
Jump Markov Chain Monte Carlo, proposed by Li for variable
selection of high-dimensional data (Li et al., 2012). It functions in
an iterative manner, calculating the probability of each variable
being selected in each iteration. The higher the probability, the
greater the importance of the variable. The variable with the higher
probability is preferred as the characteristic variable.

2.4.4 Model construction and assessment

In this study, PLS and least squares-support vector machine (LS-
SVM) are selected for constructing models. LS-SVM (Suykens and
Vandewalle, 1999), a machine learning algorithm based on support
vector machine, is selected for constructing a regression model by
adopting partial least squares linear system as loss function through
nonlinear mapping function. With input variables projected into a
high-dimensional feature space, and then the optimization problem
converted into equality constraint conditions, this model has good
generalization performance and nonlinear regression processing
performance. When LS-SVM is used for analysis, appropriate kernel
functions must be decided. In this study, RBF kernel function is
adopted, and two parameters of the kernel function, y and G2, are
selected by grid searching based on cross-validation. PLS (Mehmood

10.3389/fpls.2023.1275004

et al,, 2012), a multivariate statistical analysis method on the basis of
principal component analysis, reduces the dimension by projecting
independent variables and dependent variables into a new low-
dimensional space, thus being capable of being used to treat the
linear relationship between multiple independent variables and one
or more dependent variables in a high-dimensional data set.

The evaluation metrics of the model are determination coefficient
(R?), root mean square error (RMSE), and relative percent deviation
(RPD). R? reflects the stability of the model. The closer R*is to 1, the
better the stability of the model is and the higher the degree of fitting is.
RMSE is used for testing the predictive power of the model. The smaller
the RMSE is, the better the predictive power of the model is. RPD is the
ratio of sample standard deviation to RMSE. When RPD is less than 1.4,
the model fails to predict the sample. When 1.4 < RPD< 2, the model is
considered to be of average effect and can be used for rough assessment of
the samples. When RPD > 2, the model is considered to be of excellent
predictive power (Khoshnoudi-Nia and Moosavi-Nasab, 2019).

The data processing process is shown in Figure 3. The
calibration of the hyperspectral images and all the data processing
are completed on MATLAB 2022a by encoding.

3 Results and analyses

3.1 Protein and spectral characteristics of
mulberry leaves

The spectral reflection curve is drawn with the samples divided
into 3 groups according to the level of protein content (Figure 4).
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FIGURE 3

Workflow of data processing. (A) The raw hyperspectral image preprocessing and segmentation procedure. (B) The spectral processing, variable

selection, and the modeling procedure.
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The spectral reflection curves of mulberry leaf samples of different
protein levels show the characteristics of the typical reflection
spectral curve of a green plant, as follows: green peak (530-580
nm), red valley (590-670 nm), red edge (680-780 nm), high
reflective platform (750-1,300 nm) related to leaf tissue
structures, and the water absorption peak (1,450 nm) (Gates
et al.,, 1965; Gausman and Allen, 1973; Gitelson et al., 1996; Tang
et al,, 2005). Absorption peaks of protein-associated N-H bonds
have been reported at 1,020 nm and 1,510 nm in the SWIR region,
but this absorption peak is not directly shown from the spectrum of
Figure 4, which may be due to the fact that the absorption bands in
the NIR region tend to be wide and often overlap (Curran, 1989;
ElMasry et al., 2011). In addition, from Figure 4, we can see that the
higher the protein content of mulberry leaves is, the lower the
corresponding spectral reflectance is.

3.2 Results of feature
wavelength extraction

In this study, SPA, RF, and CARS are being used individually to
extract characteristic wavelengths from spectral data within three
band ranges (Figure 5). In this study, the subset of bands with the
smallest root Mean Square Error of Cross-Validation (RMSECV)
value was selected as the characteristic band determined in the
CARS and SPA algorithms. The CARS algorithm was iterated 1,000
times to ensure a comprehensive exploration. Similarly, the RF
algorithm was also iterated 1,000 times to thoroughly explore the
entire dataset, and by selecting the top 10 wavelength variables with
a high average probability from these 1,000 runs, we obtained the
characteristic wavelengths.

Analysis of the feature wavelengths extracted by using SPA, RF,
and CARS shows that there are differences in the positions and
numbers of the obtained feature wavelengths extracted from the
spectral data undergoing the same pretreatment by using the
different feature screening methods, but the extracted wavelength
positions tend to concentrate in some specific bands. There are also
differences in the positions and numbers of the obtained feature
wavelengths extracted from the spectral data undergoing different
pretreatments by using the same feature screening method, but the
extracted wavelength positions tend to concentrate in some specific
bands. The obtained feature wavelengths extracted in Spectral
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FIGURE 4
The average spectra of mulberry leaves with different protein content.
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Range I mainly concentrate in 450-700 nm and 900-1,000 nm.
The obtained feature wavelengths extracted in Spectral Range II
mainly concentrate in 1,170-1,350 nm. The obtained feature
wavelengths extracted in Spectral Range III bands mainly
concentrate in the visible light region of 450-700 nm, near 800
nm, at 950 nm, and in 1,500- 1,650 nm. It is found, that the
characteristic bands of proteins obtained in relevant studies are
highly overlapping in the positions with the characteristic
wavelengths obtained in this study. However, there are obvious
differences in the specific positions and numbers. This is speculated
to be caused by the heterogeneity of protein composition among
different species (Caporaso et al., 2018; Ma J. et al., 2019; Ma et al,,
2021; Cruz-Tirado et al, 2023). These results demonstrate the
effectiveness of the applied feature screening methods (SPA, RF,
and CARS) in extracting relevant wavelengths for protein content
detection in mulberry leaves using HSL.

3.3 Results of modeling

Prediction models for protein content is constructed on the
basis of PLS and LS-SVM, respectively, by combining three
pretreatment methods, three feature wavelength screening
methods, and full-band wavelength (Tables 1-3). In this study,
the R?, RMSE, and RPD of the test set are used to evaluate the
predictive ability of the model, and the most suitable model for
mulberry leaf content detection is selected by combining the
number of variables and the predictive ability of the model.

It can be seen in Table 1, in Spectral Range I, the results
obtained using the PLS models are better than those obtained using
the LS-SVM models, and the S.G. first-order derivation + SPA +
PLS model achieves the best performance, with an R? of 0.90, an
RMESP of 0.85, and an RPD of 2.91. It can be seen in Table 2, in
Spectral Range II, the results obtained using LS-SVM and PLS
models are not much different, and the SNV + SPA + LS-SVM
model achieves the best performance, with an R? 0f 0.93, an RMESP
of 0.71, and an RPD of 3.83. It can be seen in Table 3, in Spectral
Range 1III, the results obtained by using the PLS model are better
than those obtained by using the LS-SVM model, and the SNV +
SPA +L S-SVM model achieves the best performance, with an R of
0.93, an RMESP of 0.73, and an RPD of 3.51. The above results
show that there is no specific pretreatment method, characteristic
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The characteristic wavelength obtained after the combination of different pretreatment and variable extraction methods. (A) SNV preprocessing.
(B) Savitzky—Golay combined first-order derivation preprocessing. (C) MSC preprocessing.

wavelength, or modeling method optimal for all types of spectral
data, and it is necessary to explore the effects of different algorithm
combinations on model performance, so as to select the optimal
processing method in light of different situations. LS-SVM is
superior to linear methods in solving nonlinear problems, but it is
sensitive to noise and error in the input data, while in Spectral
Range I and III, the data used for modeling may be of poor quality
or poorly correlated with the detection of protein content spectral
data, so PLS algorithms obtain better results than LS-SVM
algorithms (Suykens et al., 2002; Wang and Hu, 2005).

As can be seen from Tables 1-3, better results are achieved by
using the models based on the feature extraction method, compared
with the full-band models, which is due to the fact that the full-band
spectral data have some redundant and interference information,
and this is an indication that the feature extraction method can
effectively reduce the redundant information between adjacent
spectral bands and improve the accuracy of models. Two
hyperspectral cameras with different wavelength ranges were
compared, and the overall performance of the predictive model
developed in the SWIR region shows better predictive power and
robustness than that established in the Vis-NIR region, which is
exactly opposite to the results of Ma et al. (Ma J. et al., 2019). They
obtained better results in detecting pork protein by using spectral
data of the Vis-NIR region. However, in many other protein
detection studies, good prediction results are obtained by using
spectral data of the SWIR region (Talens et al., 2013; Ma et al., 2021;
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He et al, 2023). In this study, compared with the models
constructed based on Spectral Range II spectral data, the model
based on Spectral Range III spectral data fails to show better
accuracy, although it obtains richer spectral information. This
may result from the spectrum of the Spectral Range III region
containing more redundant information related to the detection of
protein content of mulberry leaves. The above results show that the
SWIR region is the optimal spectral range for mulberry leaf
protein prediction.

Previous studies have explored the feasibility of HSI for the
non-destructive detection of protein content; however, few studies
have attempted to determine the optimal spectral range for
measuring proteins, especially for fresh mulberry leaves. In this
study, the best results are obtained by combining the SWIR HSI
acquisition system based on InGaAs detectors with SNV + SPA +
LS-SVM, with an R* of the test set of up to 0.93, an RMSE of only
0.71 g/100 g, and an RPD of up to 3.83. The results show that the
model is qualified for detecting and analyzing the protein content of

mulberry leaves.

3.4 Visualization of protein content of
mulberry leaves

The distribution of protein content in mulberry leaves has not
been reported. In the practical application of non-destructive
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TABLE 1 Results of models in spectral range I.

10.3389/fpls.2023.1275004

PLS LS-SVM
Pretreatment Variable selection No. of variables
PCs RMSE RPD RMSE RPD

Full bands 204 17 0.82 1.14 2.28 0.60 1.71 1.60
SPA 24 21 0.89 0.91 2.62 0.86 1.01 2.69

SNV
CARS 23 18 0.88 0.93 2.68 0.84 1.09 253
RF 10 9 0.88 0.92 2.81 0.84 1.08 2.49
Full bands 204 16 0.90 0.85 2.94 0.70 147 1.85
SPA 35 23 0.90 0.85 291 0.82 1.15 236

S.G. first-order derivation

CARS 26 11 0.66 1.57 1.63 0.69 1.51 1.80
RF 10 7 0.69 1.49 1.61 0.72 1.43 1.91
Full bands 204 16 0.86 1.01 2.59 0.60 1.71 1.59
SPA 51 18 0.90 0.87 2.87 0.76 131 2.08

MSC
CARS 39 14 0.87 0.96 1.96 0.73 1.40 1.95
RF 10 8 0.89 0.90 3.20 0.85 1.04 2,63

detection technology for mulberry leaf protein, the visualization of
the protein content of mulberry leaves can not only provide valuable
insights for merchants to classify the freshness and quality of
mulberry leaves more intuitively, but also aid researchers in
conducting plant physiology studies related to mulberry leaves. By
extracting spectral data from all pixels of the leaves, a distribution
map is generated by using the established SNV + SPA + LS-SVM
model to visualize the spatial distribution of protein content in
mulberry leaves. The level of protein content is represented by the
depth of shade, as depicted in Figure 6. It should be noted that the
variety, harvest time, and maturity significantly influence the nutrient
content of mulberry leaves. Previous studies have indicated that the

TABLE 2 Results of models in spectral range II.

protein content of mulberry leaves decreases with increasing ripeness
(Ramesh et al., 2021). In the visualization results of this study, it can
be seen that tender leaves exhibit higher protein content compared to
mature leaves, which is consistent with the above findings.
Additionally, the visualized distribution of the protein content of
mulberry leaves shows that the protein of healthy mulberry leaves is
essentially evenly distributed in the mesophyll, while the protein
content in the veins is extremely low. This is due to heterogeneity,
and the fact that the protein content varies across different locations
within the sample and the leaf vein is mainly composed of cellulose
and conductive substances with no capacity of storing energy
(Fukuda, 2004; Jiang et al., 2022).

PLS
Pretreatment Variable selection No. of variables
PCs RMSE RPD

Full bands 204 15 0.86 1.02 2.17 0.87 0.97 2.81
SPA 15 15 0.92 0.78 3.07 0.93 0.71 3.83

SNV
CARS 26 9 0.85 1.05 1.95 0.86 1.03 2.24
RF 10 8 0.81 1.19 2.15 0.80 121 2.65
Full bands 204 14 0.85 1.04 2.13 0.89 0.90 3.04
SPA 42 19 0.86 1.01 225 0.91 0.80 3.40

S.G. first-order derivation

CARS 13 7 0.85 1.05 2.12 0.88 0.94 2.91
RF 10 7 0.80 1.20 1.84 0.86 1.01 2.70
Full bands 204 14 0.88 0.94 2.36 0.87 0.98 278
SPA 45 15 0.92 0.78 3.09 0.86 1.02 2.68

MSC
CARS 26 8 0.81 1.17 1.93 0.81 1.17 234
RF 10 9 0.74 137 1.48 0.71 1.44 1.89
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TABLE 3 Results of models in spectral range Ill.

10.3389/fpls.2023.1275004

PLS LS-SVM
Pretreatment Variable selection No. of variables
PCs RMSE RPD RMSE RPD
Full bands 405 18 0.90 0.84 3.04 0.88 0.93 2.93
SPA 50 21 0.92 0.78 3.20 0.92 0.78 3.51
SNV
CARS 19 14 0.75 1.36 1.40 0.70 1.48 1.30
RF 10 10 0.67 1.54 1.78 0.39 2.10 1.84
Full bands 204 22 0.93 0.72 3.39 0.91 0.82 3.31
SPA 43 28 0.92 0.77 3.20 0.90 0.85 3.22
S.G. first-order derivation
CARS 19 7 0.87 0.97 2.49 0.85 1.04 2.62
RF 10 6 0.88 0.95 2.61 0.88 0.92 2.97
Full bands 204 16 0.90 0.86 3.00 0.87 0.97 2.80
SPA 48 19 0.93 0.73 3.51 0.86 0.99 2.75
MSC
CARS 77 16 0.92 0.76 3.39 0.87 0.99 275
RF 10 9 0.79 1.24 1.79 0.29 2.28 1.19
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FIGURE 6

Visualization of protein content in mulberry leaves. (A) A young leaf with a protein content of 45.7 g/100 g. (B) A middle mature leaf with a protein
content of 26.3 g/100 g. (C) A mature leaf with a protein content of 16.3 g/100 g.

4 Conclusion

The protein content of mulberry leaves is a crucial indicator for
assessing their quality. In this study, we aimed to develop a rapid and
non-destructive method for detecting the protein content of mulberry
leaves using HSI technology. The feasibility of using HSI technology
within the spectral range of 400-1,000 nm and 900-1,700 nm for non-
destructive detection of mulberry leaf protein content is investigated.
By comparing different spectral ranges of the HSI acquisition system
and utilizing various data processing methods, including preprocessing,
variable extraction, and modeling, prediction models for protein
content detection are constructed. The results demonstrated that the
best performance was achieved by combining the spectral data from
900-1,700 nm with SNV + SPA + LS-SVM. This approach yielded a

Frontiers in Plant Science

testing set R* value of up to 0.93, an RMSE of only 0.71 g/100 g, and an
RPD of up to 3.83. Furthermore, the visualization of the protein
content distribution in mulberry leaves based on the best model
revealed that healthy leaves exhibited an even distribution of protein
content throughout the mesophyll, with lower protein concentrations
observed in the leaf veins.

These findings show the optimal spectral range for mulberry
leaf protein prediction and highlight the potential of utilizing SWIR
HSI combined with the SNV-SPA-LS-SVM algorithm for rapid,
non-destructive, and high-precision detection of protein content in
mulberry leaves. The developed method can provide valuable
insights for assessing the quality of mulberry leaves in a non-
invasive manner, enabling efficient monitoring and optimization of
mulberry leaf quality.
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Detection of breakage and
impurity ratios for raw sugarcane
based on estimation model and
MDSC-DeeplLabv3+

Xin Li, Zhigang Zhang, Shengping Lv*, Tairan Liang,
Jianmin Zou, Taotao Ning and Chunyu Jiang

College of Engineering, South China Agricultural University, Guangzhou, China

Broken cane and impurities such as top, leaf in harvested raw sugarcane
significantly influence the yield of the sugar manufacturing process. It is crucial
to determine the breakage and impurity ratios for assessing the quality and price
of raw sugarcane in sugar refineries. However, the traditional manual sampling
approach for detecting breakage and impurity ratios suffers from subjectivity, low
efficiency, and result discrepancies. To address this problem, a novel approach
combining an estimation model and semantic segmentation method for
breakage and impurity ratios detection was developed. A machine vision-
based image acquisition platform was designed, and custom image and mass
datasets of cane, broken cane, top, and leaf were created. For cane, broken cane,
top, and leaf, normal fitting of mean surface densities based on pixel information
and measured mass was conducted. An estimation model for the mass of each
class and the breakage and impurity ratios was established using the mean
surface density and pixels. Furthermore, the MDSC-Deeplabv3+ model was
developed to accurately and efficiently segment pixels of the four classes of
objects. This model integrates improved MobileNetv2, atrous spatial pyramid
pooling with deepwise separable convolution and strip pooling module, and
coordinate attention mechanism to achieve high segmentation accuracy,
deployability, and efficiency simultaneously. Experimental results based on the
custom image and mass datasets showed that the estimation model achieved
high accuracy for breakage and impurity ratios between estimated and measured
value with R? values of 0.976 and 0.968, respectively. MDSC-Deeplabv3+
outperformed the compared models with mPA and mloU of 97.55% and
94.84%, respectively. Compared to the baseline Deeplabv3+, MDSC-
Deeplabv3+ demonstrated significant improvements in mPA and mloU and
reduced Params, FLOPs, and inference time, making it suitable for deployment
on edge devices and real-time inference. The average relative errors of breakage
and impurity ratios between estimated and measured values were 11.3% and
6.5%, respectively. Overall, this novel approach enables high-precision, efficient,
and intelligent detection of breakage and impurity ratios for raw sugarcane.
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1 Introduction

Sugarcane is an important raw material for the sugar industry
worldwide. In China, sugarcane-based sugar production reached 4.6
million tons in 2022, which is 4.3 times that of beet sugar (National
Development and Reform Commission, 2023). In recent years, the
use of machine-harvested sugarcane has been steadily increasing,
with plans to reach 30% of total sugarcane harvest in China by 2025
(Chinese government website, 2018). Machine harvesting
significantly improves efficiency and reduces labor intensity;
however, it also leads to higher ratios of broken cane and
impurities such as top, leaf, which can negatively impact the yield
of the sugar manufacturing process. As a result, the breakage and
impurity ratios are crucial indicators for assessing the quality and
pricing of raw sugarcane in practice, and determining these two
ratios is indispensable for sugar refineries. Unfortunately, the
commonly used manual sampling approach for detecting breakage
and impurity ratios brings several issues, including strong
subjectivity, low efficiency, and significant result discrepancies.

To address the aforementioned problem, an estimation model
was established, and machine vision technology was employed to
provide a more objective, efficient, accurate, and intelligent
approach for quantifying the cane, broken cane, and impurities,
as well as the ratios of breakage and impurity. This enables seamless
integration with the sugarcane harvesting and sugar processing
stages. Both cane and broken cane can be used as raw materials, but
broken cane is considered in mass deduction by sugar refineries
because it results in the loss of sugar content and impacts the quality
of the final sugar product. The sugarcane top, leaf, root, sand, gravel,
and soil and so forth are collectively referred to as impurities
(Guedes and Pereira, 2018). Adjusting the height between the
harvester’s cutting device and the ridge surface will reduce the
introduction of sand, gravel, and soil during sugarcane harvesting.
Furthermore, when the mechanical harvester operates smoothly
and adheres to specifications, it noticeably decreases the levels of
mud, stone, and cane root (Xie et al., 2018). Mechanical removal
methods, such as vibration, can often be used to screen out the sand,
gravel, and soil (Martins and Ruiz, 2020). However, the top, leaf and
cane root are unavoidable impurities as they are naturally part of
each sugarcane stem (de Mello et al., 2022). Regarding cane root,
object detection can be utilized to count its quantities. Combining
this with the average weight of the cane root helps predict the mass
of root impurity after excluding sand, gravel and soil. Based on the
quality detection practice of sugar refineries, the four categories of
cane, broken cane, top, and leaf are selected as the detection objects
in this study.

Estimation models and machine vision technology have been
widely used for the detection and monitoring of impurities in grain
crops such as rice, wheat, and corn. For example, Chen et al. (2020)
used morphological features and a decision tree for the classification
of rice grains and impurities with 76% accuracy to optimize
combine harvester parameters. Liu et al. (2023) proposed a
NAM-EfficientNetv2 lightweight segmentation approach for rapid
online detection of rice seed and impurities in harvesters, achieving
high evaluation index F1 scores of 95.26% and 93.27% for rice grain
and impurities, respectively. To improve accuracy in wheat and
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impurity recognition, Shen et al. (2019) constructed a dataset and
trained a recognition model called WheNet based on Inception_v3,
achieving a recall rate of 98% and an efficiency of 100ms per image.
Chen et al. (2022) designed a vision system based on DeepLabv3+ to
identify seeds and impurities in wheat, obtaining mean pixel
accuracy (mPA) values of 86.86% and 89.91% for grains and
impurities, and mean intersection over union (mloU) scores of
0.7186 and 0.7457, respectively. For the detection of impurities in
the corn deep-bed drying process, Li et al. (2022) employed a multi-
scale color recovery algorithm to enhance images and eliminate
noise. They used HSV color space parameter thresholds and
morphological operations for segmentation and achieved F1
scores of 83.05%, 83.87%, and 87.43% for identifying broken
corncob, broken bract, and crushed stone, respectively. Liu et al.
(2022) developed a CPU-Net semantic segmentation model based
on U-Net, incorporating the convolutional block attention module
(CBAM) and pyramid pooling modules to improve segmentation
accuracy for monitoring corn kernels and their impurities. They
established a mass-pixel linear regression model to calculate the
kernel impurity rate and experimental results demonstrated that
CPU-Net outperforms other comparative approaches with average
mloU, mPA, and inference time scores of 97.31%, 98.71%, and
158.4ms per image, respectively. The average relative error between
the impurity rate obtained by the model and manual statistics
was 4.64%.

Detection of impurities in cash crops such as soybean, cotton,
and walnut during harvesting or processing has also been
extensively studied in recent years. Momin et al. (2017) used HSI
to segment the image background of soybean with three categories
of impurities. They employed various image processing techniques,
such as median blur, morphological operations, watershed
transformation, projection area-based analysis, and circle
detection, for feature recognition of soybean and impurities. The
experimental results showed pixel accuracy of 96%, 75%, and 98%
for split bean, contaminated bean, and defective bean, and stem/
pod, respectively. Jin et al. (2022) developed an improved UNet
segmentation model to address issues of soybean sticking, stacking,
and complex semantics in images. The experimental results
demonstrated comprehensive evaluation index values of 95.50%,
91.88%, and 94.34% for complete grain, broken grain, and impurity
segmentation, respectively, with a mlIoU of 86.83%. The field
experiment indicated mean absolute errors of 0.18 and 0.10
percentage points for fragmentation and impurity rate between
the model-based value and the measured value, respectively. For
real-time detection of impurity ratio in cotton processing, Zhang
et al. (2022) utilized the enhanced Canny algorithm to segment
cotton and its impurities. They employed YOLOVS5 to identify the
segmented objects and determine their respective categories. They
also developed an estimation model for the impurity ratio based on
segmented volume and estimated mass and utilized a multithread
technique to shorten the processing time, achieving a 43.65%
reduction compared to that of a single thread. To improve the
recognition accuracy of white and near-cotton-colored impurities
in raw cotton, Xu et al. (2023) proposed a weighted feature fusion
module and a decoupled detection strategy to enhance the detection
head of YOLOv4-tiny. The proposed method decreased
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computation during the inference process, boosted the speed of
inference, and enhanced the accuracy of cotton impurity
localization. Experimental results showed a respective increase of
10.35% and 6.9% in mAP and frames per second (FPS) compared to
the baseline YOLOv4-tiny. The detection accuracy of white and
near cotton-colored impurities in raw cotton reached 98.78% and
98%, respectively. To achieve real-time segmentation of juglans
impurity, Rong et al. (2020) proposed a hybrid approach by
combining a segmentation model based on a multi-scale residual
full convolutional network and a classification method based on a
convolutional network. The proposed method accurately
segmented 99.4% and 96.5% of the object regions in the test and
validation images, respectively, with a segmentation time of within
60ms for each image. Yu L. et al. (2023) presented an improved
YOLOvV5 with lower parameters and quicker speed for walnut
kernel impurity detection by incorporating target detection layers,
CBAM, transformer-encoder, and GhostNet. The results indicated a
mAP of 88.9%, which outperformed the baseline YOLOV5 by 6.7%.

In recent years, researchers have also achieved notable progress
in the field of impurity detection in sugarcane. Guedes and Pereira
(2019) constructed an image dataset comprising 122 different
combinations of sugarcane stalk, vegetal plant part, and soil to
evaluate the impurity amount. They converted color samples into
color histograms with ten color scales and employed three
classifiers, namely soft independent modeling of class analogy,
partial least squares discriminant analysis (PLS-DA), and k
nearest neighbors (KNN), to classify cane and its impurities.
Guedes et al. (2020) further proposed an analytical method using
artificial neural networks (ANNs) combined with the ten color
histograms to predict the content of sugarcane in the presence of
impurities. The experimental results demonstrated correlation
coefficients of 0.98, 0.93, and 0.91 for the training, validation, and
test sets, respectively. Aparatana et al. (2020) employed principal
component analysis (PCA), PLS-DA, and support vector machine
(SVM) to classify and differentiate sugarcane and impurities,
including green leaf, dry leaf, stone, and soil, based on their
spectral information. The research findings indicated that PCA,
PLS-DA, and SVM achieved classification rates of 90%, 92.9%, and
98.2%, respectively. Dos Santos et al. (2021) used a similar
mechanism by combining ten color histograms and ANNs to
classify raw sugarcane. They achieved 100% accurate classification
for two ranges of raw sugarcane in the samples, from 90 to 100 wt%
and from 41 to 87 wt%. However, these studies mentioned above
recognize raw sugarcane and impurities based on their color
features, making it difficult to differentiate objects with inter-class
similarity, such as sugarcane top and leaf, which have similar color
features at the pixel level. Additionally, these methods may not be
suitable for practical situation with multiple combinations of
impurities in arbitrary proportions, which present significant
challenges in building samples with a vast combination of weight
percentages of impurities.

From the perspective of recognition tasks, the aforementioned
studies can be categorized into three types: image classification,
object detection, and semantic segmentation. Image classification-
based approaches (Momin et al., 2017; Guedes and Pereira, 2019;
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Shen et al., 2019; Aparatana et al., 2020; Chen et al., 2020; Guedes
et al., 2020; Dos Santos et al., 2021; Li et al., 2022) cannot capture
pixel-level information for subsequent construction of a mass-pixel
fitting model. Object detection can be utilized for real-time
classification and localization of crops and impurities (Zhang
et al, 2022; Xu et al, 2023; Yu J. et al, 2023), but they still
cannot support subsequent mass estimation based on pixels of
detected objects. Semantic segmentation, on the other hand, enables
pixel-wise classification of an image and facilitates the precise
determination of the number of pixels and their respective
categories in a specific region. Mass-pixel fitting models can be
established by combining the number of pixels and the actual mass
of each category of object (Rong et al., 2020; Chen et al., 2022; Jin
et al, 2022; Liu et al, 2022; Liu et al., 2023), thus supporting the
quantitative analysis of the quality of the detected objects. In order
to quantify the ratio of breakage and impurity in raw sugarcane,
semantic segmentation technology was utilized to abstract the of
raw sugarcane and impurities in this study. However, the
aforementioned approaches and findings are difficult to be
directly applied to the detection of sugarcane and impurities in
this study. Firstly, there is currently a lack of image databases that
include raw sugarcane and impurities. Secondly, the estimation
models developed in the above studies are only suitable for
relatively stable scenarios of surface density (mass/pixel) for each
detection category. However, the surface density of broken cane
varies significantly due to different degrees of breakage, and the
residual leaf at the top of the cane is scattered, resulting in a more
varied surface density. Therefore, it is necessary to establish a
corresponding image dataset and segmentation model for the
detection of raw sugarcane and impurities and build new
estimation model for quality evaluation based on segmented pixels.

Popular and widely applied deep learning (DL)-based semantic
segmentation approaches have achieved excellent results in image
processing in agriculture (Luo et al, 2023). Among these
approaches, end-to-end semantic segmentation models like FCN,
UNet, PSPNet, and DeepLabv3+ have demonstrated good
performance with simple structures. DeepLabv3+ in particular
has gained significant popularity and has been extensively
enhanced due to its exceptional segmentation accuracy, making it
a widely practiced and verified model in agricultural applications.
For instance, Wu et al. (2021) developed an enhanced version of
DeepLabv3+ to segment abnormal leaves in hydroponic lettuce.
Peng et al. (2023) constructed an RDF-DeepLabv3+ for segmenting
lychee stem. Zhu et al. (2023) proposed a two-stage DeepLabv3+
with adaptive loss for the segmentation of apple leaf disease images
in complex scenes. Wu et al. (2023) utilized Deeplabv3+ and post-
processing image analysis techniques for precise segmentation and
counting of banana bunches. Their findings indicated that
DeepLabv3+-based segmentation models can effectively perform
pixel-level segmentation of crop objects, and the segmentation
effects were superior to those of compared approaches. In this
study, DeepLabv3+ was adopted for the semantic segmentation of
raw sugarcane and impurities, and efforts were made to further
improve its segmentation accuracy, reduce parameters, and

optimize inference time.
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This study aims to address the detection of breakage and
impurity ratios in raw sugarcane. The specific research content of
this study includes: (1) Designing a machine vision-based acquisition
platform for online image collection of raw sugarcane (cane, broken
cane) and impurities (top, leaf). Custom datasets of masses and
corresponding images were constructed. (2) Establishing a normal
fitting model to determine the mean surface density of each class
based on measured masses and extracted pixels. Additionally, an
estimation model was developed to assess the ratios of breakage and
impurity using the estimated mass of each class, along with their
pixels and fitted mean surface density. (3) Developing a MDSC-
DeepLabv3+ model for accurate segmentation of raw sugarcane and
impurity pixels based on DeepLabv3+. The model was further
improved by incorporating improved MobileNetv2, atrous spatial
pyramid pooling (ASPP) with deepwise separable convolution (DSC)
and strip pooling (SP) named ASPP_DS, and coordinate attention
(CA) mechanism to enhance segmentation accuracy, reduce
parameters, and optimize inference time. (4) Conducting
experiments to verify the accuracy of the proposed estimation
model in assessing breakage and impurity ratios, and evaluate the
capability of MDSC-DeepLabv3+ in rapidly and accurately
identifying the pixels of cane, broken cane, top, and leaf.
Comprehensive experimental results show that the average relative
errors of breakage and impurity ratio between predicted values and
measured values are low. These findings have significant implications
for the development of intelligent detection and cleaning system for
sugarcane impurity.

2 Materials and methods

2.1 Raw sugarcane and impurity
dataset construction

2.1.1 Detection device design

In order to provide a stable environment and meet the
continuous image acquisition requirements that align with the
raw sugarcane convey process in the sugar refinery, a dedicated
platform for image acquisition of raw sugarcane and impurities was

Computer

Portable energy
storage

Acquisition room

Conveyor

FIGURE 1

10.3389/fpls.2023.1283230

designed, as shown in Figure 1A. The platform mainly consists of
portable energy storage, an acquisition room, a light source, an
image acquisition module, a computer, and a motion
assistance module.

The portable energy storage is used to supply power to the
platform, especially in situations where electricity supply is limited.
The interior of the image acquisition room, as depicted in Figure 1B,
is covered with black matte paper to create a diffused lighting
environment. Additionally, four magnetic base LED light bars are
strategically placed around the room to ensure consistent
illumination for the image acquisition module. The image
acquisition module comprises an industrial camera and an
industrial lens. The computer is connected to the image
acquisition module via a USB 3.0 interface, which facilitates
image storage and processing. The motion assistance module is
composed of a conveyor, a cross beam guide rail, and a pair of
vertical slider guide rails with self-locking function. The conveyor
simulates the transmission of raw sugarcane before entering the
pressing workshop. The vertical slider guide rails, equipped with
scale markings, support and allow for adjustment of the cross beam
guide rail where the camera is mounted. This feature enables easy
adjustment of the camera’s field of view and ensures the stability of
the image acquisition module.

Table 1 shows the model parameters of the main components of
the acquisition platform. The conveyor belt speed is determined
based on sugar refinery practice and is measured in meters per
second (m/s). The dimensions of the indoor acquisition room are
set according to the requirements, with horizontal (Hgoy) and
vertical (Vyoy) dimensions are set to the belt width of 450mm
and indoor length of 600mm, respectively. The selected industrial
camera has a horizontal (Hcy0s) and vertical (Vpos) size of the
image sensor as 7.6x5.7mm, and the working distance (W) is set to
490mm considering the inner height of the acquisition room. The
imaging principle of this acquisition platform is illustrated in
Figure 2. Using the imaging principle and the dimensions of
Hewmoss Vemos and Wp, the field of view can be determined using
Eq.(1).

f/Wb = Veumos/ Viov = Hemos/Hrov (1)

Industrial
camera

Industrial lens

Slider guide rail

Light source

Machine vision acquisition platform. (A) Acquisition device structure. (B) Acquisition room.
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TABLE 1 Main components of the acquisition platform.

Components Parameters

Acquisition room Indoor space 600mmx500mmx700 mm

Industry camera

Industry lens MVL-MF0828M-8MP

Light source 3600Luxx4

As a result, the focal length is determined by f= Wp x (Veaos/
Viov) = 490 x (7.6/3450) = 8.27mm, and the MVL-MF0828M-8MP
industry lens is selected.

2.1.2 Image and mass data acquisition

The image and mass acquisition of raw sugarcane and
impurities took place in the sugarcane unloading workshop of
Junshi sugar refinery in Jijia Town, Leizhou City, Guangdong
Province. The data collection period started from the middle of
February to the end of the month in 2023, coinciding with the local
sugarcane harvesting season. For this study, large-scale cultivated
sugarcane variety “Yuetang 159” was selected. The raw sugarcane
samples were randomly collected from different machine-harvested
vehicles at various time intervals throughout the day using a loader.
These samples were then manually placed on the conveyor belt of
the acquisition platform for image collection. In total, 910 RGB 8-
bit photos with jpg format and a resolution of 1624x1240 were
captured. Each image contains four categories: cane, broken cane,
top, and leaf, as shown in Figure 3. Following the image capturing
process, 300 samples of raw sugarcane and impurities were
randomly selected from the collected images. Each category of
material in these samples was weighed using a calibrated
electronic scale with a precision of 0.01g, and their masses were
measured in grams (g).

2.1.3 Image labeling and dataset augmentation

The original dataset consists of 910 images containing cane,
broken cane, top, leaf, and the background. These images were
manually labeled and colored using the image annotation tool
Labelme. The labeled regions of the five classes of objects were
used to evaluate the training loss of intersection over union (IoU)
between predicted bounding boxes and ground truth. The RGB
values for cane, broken cane, top, and leaf were set to [128,0,0],
[0,0,128], [0,128,0], and [128,128,0], respectively, while the
background was set to [0,0,0]. To ensure model performance
validation and testing, the dataset was randomly divided into
training (546 images), validation (182 images), and test sets (182
images) with a ratio of 6:2:2.

In order to improve the generalization of the model, data
augmentation techniques were applied to the training, validation,
and test sets separately. Techniques such as random rotation, affine
transformation, fogging, Gaussian noise, median filtering, and
cutout were used to enhance the original images. After
augmentation, the images were checked and corrected using
Labelme to ensure accurate labeling of each class in every image.
The annotated images were stored in the PASCAL VOC format and

Frontiers in Plant Science o1

MV-CA020-10UC with 89.1fps@1624x1240, image sensor size 7.6x5.7mm

10.3389/fpls.2023.1283230

Components Parameters

Slider guide rail SGR15N-500mmx2

Computer AMD Ryzen7 5800H GeForce GTX 1650

Portable energy storage 72000mAh/3.2V

Conveyor 2000mmx450mmx100mm,1.5m/s, <20kg

named Raw Sugarcane and Impurity (RSI). The label counting
algorithm was used to calculate the number of labels in the RSI
images, and the corresponding statistics are shown in Table 2. The
dataset demonstrates a relatively balanced distribution of samples
across each class. Examples of the original annotated images and
augmented images can be observed in Figure 4.

2.2 Estimation model establishment

2.2.1 Surface density distribution analysis

In general, previous estimation models that are based on image
pixels for assessing the mass of crops (such as wheat, corn, and
soybean) often assume that the surface density (mass/pixel) of each
crop category remains stable across different images (Chen et al,
2022; Jin et al., 2022; Liu et al., 2022). However, when it comes to
broken cane and impurities, their surface density can vary
significantly in different images. Therefore, before building the
estimation model, it is essential to analyze the surface density
distributions of cane, broken cane, top, and leaf separately. This
analysis will help to account for the variation in surface density and
ensure more accurate estimation for breakage and impurity ratios in
raw sugarcane.

Vemos  Heaos

Wo

]

T

FIGURE 2
Imaging principle in this acquisition platform.
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FIGURE 3
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Acquisition materials and segmentation classes. (A) Original image, (B) Cane, (C) Broken cane, (D) Top, (E) Leaf.

The analysis of surface density distribution was conducted using
300 samples of mass data and the corresponding images for each
category. The OpenCV threshold function was utilized to count the
number of pixels in each category. Let P¢, P, Py andP; represent
the number of pixels of cane, broken cane, top, and leaf in each
image sample, respectively, and their corresponding masses are
denoted as Mc, Mg, My and M;, respectively. The spatial
distribution of the surface density for raw sugarcane, including
cane and broken cane, as well as the top and leaf, is presented in
Figure 5. Based on the surface density distribution of raw sugarcane
in Figure 5A, it can be observed that the surface density of cane
fluctuates less and is more concentrated. The surface density of
broken cane is approximately half of that of cane, and the data is
scattered. Figures 5B, C illustrate that the surface density

TABLE 2 Statistic of Raw Sugarcane and Impurity (RSI) dataset.

Dataset Training dataset
Images 5460
Cane labels 16882
Broken cane labels 13735
Top labels 15903
Leaf labels 17234

FIGURE 4

Validation dataset

distribution of top and leaf is more scattered compared to
broken cane.

To address the scattered surface density of broken cane, top,
and leaf, a Gaussian distribution probability density function was
used to fit the frequency histograms of surface density for each
category. The mean surface density u for each category was then
obtained through the fitting process, and the results are
demonstrated in Figure 6. It can be observed that all fitting
coefficients R are greater than 0.95, indicating high fitting accuracy.

The fitting results showed that the mean surface density of cane,
broken cane, top, and leaf are . = 1.52E-3, g 7.4E-4, ur = 8.8E-4
and u; = 3E-5 with unit g/pix, respectively. Moreover, it is evident
that the mean value of cane i, is approximately twice the mean
value of broken cane i and top surface density L7, and . is more

Test dataset Complete dataset

1820 1820 9100

4151 3850 24883
3310 3410 17045
4071 4390 24364
4015 3830 25079

II \ \l“

|
b
4
i

i

i

Augmented image samples and image label. (A) Original image, (B) Ground truth, (C) Random rotation, (D) Affine transformation, (E) Fogging, (F)

Gaussian noise, (G) Median filtering, (H) Cutout.
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FIGURE 5

Spatial distribution of surface density for the 4 classes in RSI. (A) Raw
sugarcane, (B) Top, (C) Leaf.

than fifty times of ft;. The mass error of leaf has little effect on the
overall mass error. Therefore, when establishing the estimation
model, the accuracy of the estimated mass of cane should be
ensured first, followed by broken cane, top, and finally leaf. This
approach is consistent with the low deduction percentage setting (as
low as 0.2%) employed by sugar refineries for leaf impurities.

2.2.2 Fitting and estimation model establishment
On the basis of the mean values of surface density given in

Figure 6, the estimated mass of cane M’c, broken cane M’g, top M’r,

and leaf M’ based on their pixels can be expressed as follows:
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M = te x Pe = 1.52E — 3P, (1)
Mj; = g x Py =7.4E — 4Py )
MY = pyp x Py = 8.8E — 4P, (3)

Mj =y, x P, =3E — 5P, (4)

Furthermore, a linear regression of the estimated and measured
mass was conducted to validate the accuracy of the mass estimation
model defined by Eq.(1)-(4). Based on the distribution
characteristics shown in Figure 6, a total of 285 mass data of
cane, broken cane, top, and leaf within a 95% confidence interval
were selected for fitting, and the fitting results were presented in
Figure 7 and Table 3. It can be seen that the measured mass of the
cane is highly correlated with the estimated mass with an R* value of
0.983. This indicates that the linear regression model is capable of
explaining the numerical relationship between the measured mass
and the estimated mass of the cane. The R’ value for broken cane
and top are 0.894 and 0.88, respectively, demonstrating the
regression model’s good fitting capability. The R® value for the
leaf is 0.764 suggesting that the model can still adequately fit the
relationship between the measured mass and the estimated mass. In
addition, the results of ANOVA in Table 3 indicate that the
significance F<0.01 between estimated cane, broken cane, top, and
leaf and their measured values proves a high correlation.

Based on the mass of each category, the ratios of breakage (Rp)
and impurity (R;) is defined as:

Mg

Ry = 35 x 100 %
‘ (5)
_ 7.4E-4 % P,
- 1,52E—3><P£+744EE—4><PE % 100 %
_ My + M,
R] = m x 100 % (6)

_ 8.8E-4x Py + 3E-5xP;
~ 1.52E-3XP.+7.4E—4 x Pp+8.8E-4xPr + 3E-5xP

% 100 %

Where M, My, My and M is the mass of cane, broken cane,
top and leaf in an image sample. The estimated breakage and
impurity ratios R'g and R'[ can also be determined by replacing M,
Mg, Mt and My, in Eq.(5)-(6) with estimated mass M'c, M'g, M'r
and M'[. Thereby Eq.(5)-(6) can be taken as the estimation model
for breakage and impurity ratios.

2.3 Raw sugarcane and impurity
segmentation model development

2.3.1 MDSC-DeeplLabv3+ framework

In order to facilitate the M'c, M's, M', M';, R’z and R}
calculation, a segmentation model, MDSC-DeepLabv3+, was
developed for the intelligent extraction of pixels of cane Pg,
broken cane Pp, top Pr, and leaf P; in each image sample.
MDSC-DeepLabv3+ is an improvement upon the DeepLabv3+.
The DeepLabv3+ comprises two modules: an encoder and a
decoder (Chen et al, 2018). In the encoder, the Xception

frontiersin.org


https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.
A T T
704 - Cane surface density(g/pix)
p=1.52E-3.0°=6E-7.R*=0.986|
:.
=
@
=
=3
£
=
1.3E-3  14E-3  15E-3 1.6E-3 17E-3 18E-3
Surface density interval
Cc
60 Z77 Top surface density(g/pix) i
p=8.8E-4.0°=1.7E-6,R*=0.956
z.
=
@
=
=
2
=
4.0E-4 6.0E-4 B8.0E-4 1.0E-3 1.2E-3
Surface density interval
FIGURE 6

Gaussian distribution fitting of surface density. (A) Cane, (B) Broken cane, (C) Top, (D) Leaf.

10.3389/fpls.2023.1283230

B
60 77 Broken cane surface density(g/pix)[
1=7.36E-4,6"=2E-6,R*=0.935
50 k|
z 40 k|
=
E
=30 B
k4
=
=
20 4
104 .
0
4.0E-4 5.0E-4 6.0E-4 7.0E-4 8.0E-4 9.0E-4 1.0E-3 L.1E-3
Surface density interval
D T T
60 @777 Leaf surface density(g/pix) |1
p=3.1E-4,6°=8.4E-9,R*=0.965/
50+ 1
:_40 E B
£
2
330 B
-
=
204
104
1LLOE-5 2.0E-5 3.0E-5 4.0E-5 5.0E-5 6.0E-5
Surface density interval

backbone is used to extract input image features, resulting in two
effective feature maps. One of the feature map undergoes processing
through atrous spatial pyramid pooling named ASPP, and is then
using a 1x1 standardization convolution for the fused features from
ASPP. This produces high-level features that are subsequently fed
into the decoder. The other feature map directly outputs to the
decoder. The ASPP is composed of a 1x1 standardization
convolution, three 3x3 depthwise separable convolutions named
DSC with varying dilation rates (6, 12, and 18), and an average
pooling layer. These convolutions generate feature maps at four
different scales, which are stacked along the channel dimension.

In the decoder, the low-level features obtained from the
Xception backbone first undergo 1x1 convolution to reduce the
number of channels. Meanwhile, the high-level features from the
encoder are bilinearly upsampled by a factor 4 to improve the image
resolution. Afterwards, the 1x1 convoluted low-level features are
fused with the upsampled high-level features, and a 3x3 DSC is
utilized to extract information from the fused features, followed by
another bilinear upsampling by a factor 4. Previous studies have
demonstrated the effective use of DeepLabv3+ in agricultural fields,
such as fruit picking, crop disease and pest, and field road scenes
(Wu et al., 2021; Peng et al.,, 2023; Yu J. et al,, 2023).

To enhance both the accuracy and deployability of the model, as
well as reduce inference time, various improvements including
improved MobileNetv2, ASPP_DS module and CA mechanism
were introduced in this study. First, the atrous convolution was

Frontiers in Plant Science

employed to optimize the MobileNetv2, and Xception was replaced
by the improved MobileNetv2 in DeepLabv3+. In the MobileNetv2,
dilated convolution was incorporated into the last two layers by
increasing the kernel size, thus expanding the receptive field. This
enhancement allows the network to better perceive surrounding
information without significantly increasing computational
complexity or compromising the resolution of the feature maps.
Then, the dilation rates in the ASPP module were adjusted as 4, 8,
and 12, and a strip pooling layer was added parallel to DSC to build
a module named ASPP_DS. Module ASPP_DS can reduce the
model parameters and establish long-range dependencies between
regions distributed discretely, and focus on capturing local details.
ASPP employs diverse padding and compact dilation strategies to
extract receptive fields at various scales, effectively capturing
information from both multi-scale contexts and small objects.
Additionally, ASPP integrates a parallel strip pooling layer with
elongated and narrow pooling kernels to grasp local contextual
details in both horizontal and vertical spatial dimensions. This
approach helps in reducing interference from unrelated regions in
label prediction results. Finally, CA was appended to the output of
MobileNetv2 and ASPP_DS separately, that allows the model to
acquire weight information from the dimensions of feature channels
and effectively leverage positional data. This incorporation enables
the accurate capture of spatial relationships and contextual
information of the target, thereby enhancing training efficiency.
The enhanced version of DeepLabv3+ is denoted as MDSC-
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DeepLabv3+. The overall framework of MDSC-DeepLabv3+ is
depicted in Figure 8.

2.3.2 Improved MobileNetv2

The basic structure unit of MobileNetv2 is the inverted
residual block (IRB), which mainly consists of dimensionality
expansion, feature extraction and dimensionality compress three
main steps. The MobileNetv2 employs 3x3 depthwise convolution

TABLE 3 Analysis of Variance (ANOVA) of estimated and measured mass. .

(Dwise) and 1x1 convolution to construct two IRBs with s= 1, s=2
(Sandler et al,, 2018). In cases where the stride is equal to 1 and the
shape of the input feature matrix matches that of the output
feature matrix, a shortcut connection is employed, as shown in
Figure 9. In addition, the dimensionality compression process in
MobileNetv2 uses a linear activation function instead of the Relu
activation function to reduce information loss caused
by compression.

Category DF Square sums Mean square F Significance F
Regression analysis 1 2340192.15697 2340192.15697 16820.25846 4.23041E-254
Cane Residual 283 39373.61497 139.12938
Total 284 2379565.77194
Regression analysis 1 225202.9665 225202.9665 2390.43448 4.97988E-140
Broken .
Residual 283 26661.44583 94.21006
cane
Total 284 251864.41233
Regression analysis 1 656015.70993 656015.70993 2055.21929 8.58987E-132
Top Residual 283 90332.18347 319.19499
Total 284 746347.8934
Regression analysis 1 431.20971 431.20971 915.53104 1.07792E-90
Leaf Residual 283 133.29133 0.47099
Total 284 564.50104
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Framework of MDSC-Deeplabv3+

To reduce computing costs and memory usage, this study utilizes
the first 8 layers of the MobileNetv2 model. This choice is made because
starting from the 9th layer, the number of output channel increases to
1280, leading to higher computing resource consumption. To minimize
the loss of down-sampling information while increasing receptive field,
the stride of the 7th layer is modified to 1 (Meng et al., 2020).

Furthermore, dilated convolutions with a factor not exceeding 1
are utilized to replace conventional convolutions. According to
research by Wang et al. (2018), sparse concatenation of dilated
convolution may introduce grid effects, hindering the lower layers
of the network from fully leveraging features from the initial layer

Input l

Conv 1x1, Relu6

v

Dwise 3x3, Relu6

v

Conv 1x1, Linear

A

Output

FIGURE 9

and causing the loss of fine-grained details. Therefore, dilation rates
of 2 and 5 are applied in the 7th and 8th layer respectively, while the
remaining layers maintain a dilation rate of 1, aiming to expand the
receptive field and preserve edge detail information. The structure
and hyperparameter of the improved MobileNetv2 are displayed in
Table 4, in which ¢ is the expansion factor, ¢ is the output channel, n
is the number of repetitions of bottleneck, s is the first module strid,
and r is dilation rate. When dilation rate of 1 results in atrous
convolution being equivalent to a regular convolution. This design
achieves a balance between computational resource consumption
and network performance requirements.

Input l

Conv 1x1, Relu6

v

Dwise 3x3,
stride=2, Relu6

Conv 1x1, Linear

Output

Structure of inverted residual block in MobileNetv2. (A) Stride=1 block. (B) Stride=2 block.
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2.3.3 Strip pooling

To better handle the segmentation of broken cane and top with
irregular and complex shapes, a lightweight strip pooling layer was
added in parallel to DSC in the ASPP. This allows for more efficient
acquisition of information from a large receptive field, facilitating
the collection of remote contextual information from different
spatial dimensions by ASPP. Strip pooling utilizes a pooling
kernel (rectangular area) that performs pooling operations along
the horizontal and vertical dimensions. The structure of strip
pooling (Hou et al,, 2020) is shown in Figure 10, where X €
REW is the input tensor, C denotes the number of channels, H
denotes the height, and W denotes the width. First, the input X is
ROxHx1

pooled horizontally and vertically to obtain " € and y" €

REPW respectively. Then, the feature maps are expanded to the
same resolution CxHxW as the input X using a 1D convolution
with a kernel size of 3x3 to obtain the expanded y", y". Next, the

expanded feature maps are fused to obtain a final representation.

Veij = VAV p1Sc<CI<i<SHI1<jSW

Finally, after a 1 x 1 standard convolution and a sigmoid layer,
the final output Z of strip pooling is obtained by multiplying the
corresponding elements with the original input.

Z = Scale(X,0(f(y)))

TABLE 4 Hyperparameters of MobileNetv2.

10.3389/fpls.2023.1283230

where Scale (-, -) is the element-level multiplication, o is the
sigmoid function, and f is the 1x1 convolution, y is feature
fusion results.

The element of specified location in the output tensor (i,
7),1<i<H,1<j<W corresponds to the result of strip pooling of the
horizontal and the vertical pooling window in the input tensor. By
repeatedly applying the aggregation process using long and narrow
pooling kernels, the ASPP_DS module can efficiently capture
information from a wide receptive field throughout the entire
scene. Due to the design of the elongated and narrow shape of
the pooling kernel, it not only establishes remote dependency
relationships between regions distributed discretely but also
focuses on capturing local detailed features.

2.3.4 Coordinate attention

Inspired by the prominence of the region-of-interest search in the
human visual system, attention mechanisms aim to simulate this
process by dynamically adjusting the weights based on the input image
features. Attention mechanisms can be categorized into various types,
such as channel attention (e.g. SE), hybrid attention (e.g. CBAM),
temporal attention (e.g. GLTR), branch attention (e.g. SKNet), and
position attention mechanisms (e.g. CA). These attention mechanisms
have been widely applied in fields such as object detection (Yu J. et al,,
2023) and image segmentation (Zhu et al., 2023).

Input size Operator t c n s r
512x512x3 conv2d - 32 1 2 1
256x256x32 bottleneck 1 16 1 1 1
256x256x16 bottleneck 6 24 2 2 1
128x128x24 bottleneck 6 32 3 2 1
64x64x32 bottleneck 6 64 4 2 1
32x32x64 bottleneck 6 96 3 1 1
32x32x96 bottleneck 6 160 3 1 2
32x32x160 bottleneck 6 320 1 1 5
e T T T T T T T N
" z EmmmEn| i
,/ n o<tx1 | S| Expand | P \I
Q| —»
: e RO EEEEEE oo I =
CxHxW | I L . : g
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! ] | . | |z
: oW | E| Expand = ! L L=
IO —3 B |
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FIGURE 10

Structure of strip pooling.
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The CA not only models channel relationships but also utilizes
positional information to capture long-range dependencies (Hou
et al,, 2021). Therefore, CA was selected in the MDSC-DeepLabv3+
to highlight the regions of interest. The CA consists of coordinate
information embedding (CIE) and coordinate attention generation
(CAG) two main operation, as shown in Figure 11. CIE introduces
two global average pooling to encode each channel along the
horizontal and vertical coordinate on the input feature map,
respectively, hence aggregates features along the two spatial
directions. These two pairs of global average pooling operation
enable CA to capture long-range dependencies along one spatial
direction and preserve precise positional information along other
one, which allows the network to more precisely locate the objects
of interest. CAG first conducts concatenation (Concat) and Conv2d
for the feature maps obtained from CIE followed by batch
normalization and non-linear activation operation. Then, the
intermediate feature map is split into two separate tensors along
the spatial dimension. Next, 1x1 Conv2d and sigmoid activation are
utilized to separately transform the output tensors to tensors with
the same channel number as the input feature maps. Finally, the
output tensors are then expanded into elements and used as
attention weights. The final output of CA is the element-wise
multiplication of original input of CIE and the attention weights.

Introduction of CA before low feature processing and after the
features fusion of ASPP_DS is beneficial in fully utilizing positional
information. This allows the model to accurately capture the spatial
relationships and contextual information of the target, thus
improving the accuracy of sugarcane and impurity phenotype
segmentation in denser images.

3 Experiments and results
3.1 Analyzing of estimation model

The effectiveness of estimation model for breakage and impurity
ratios defined in Section 2.2.2 was validated by fitting estimated and
measured value. First, the measured mass of cane, broken cane, top,
and cane leaf M, Mp, My and M, along with the number of pixels
for each category manually labeled in the selected 285 images (95%
confidence interval of samples) were obtained. Then, estimated
masses of M'c, Mg, M'r and M’ for the four categories were

CIrx1X(W+H)

l

Concat + Conv2d
BatchNorm + Non-linear

10.3389/fpls.2023.1283230

determined based on the mean surface density uc, g, yr and g
according to Eq.(1)-(4). Next, the measured and estimated ratios of
breakage and impurity were obtained according to Eq.(5)-(6) based
on the measured and estimated masses. Finally, the measured
breakage and impurity ratios were linearly fitted with the
estimated breakage and impurity ratios, and the fitting results are
shown in Figure 12 and Table 5, respectively.

It can be observed that the fitting R” values are as high as 0.976
and 0.968, respectively. In addition, the results of the ANOVA

-

presented in Table 5 indicate a high correlation between the
estimated breakage and impurity ratios and their measured
values, with a significance level of F<0.01. Therefore, it is feasible
to utilize the fitted surface density to estimate mass for each
category and furthermore predict the breakage and impurity

ratios for raw sugarcane.

3.2 Analyzing of segmentation model

3.2.1 Training environment and
evaluation metrics

The semantic segmentation categories considered in this study
are background, cane, broken cane, top, and leaf. In the process of
sugarcane harvesting, raw sugarcane is primarily composed of cane,
with cane tops and leaves present as impurities to a lesser extent.
Broken cane represents the category with the lowest representation,
leading to an extreme class imbalance. Consequently, this often
leads to imbalanced positive and negative samples, along with
varying sample difficulties. Therefore, this study utilizes the Focal
Loss function as the primary loss function to address the imbalance
between easy and difficult samples, facilitating better parameter
optimization during the backpropagation process (Lin et al., 2017).
In addition, the model incorporates the multi-class Dice Loss as an
auxiliary loss function to enhance segmentation accuracy and
address class imbalance scenarios (Milletari et al., 2016). The
combination of Focal Loss and multi-class Dice Loss as the loss
function enhances the model’s predictive capability. The Focal loss
for multi-objective segmentation is defined as.

Lp = —04(1 - p,)"log(p;)

Where p, is the confidence value of the sample category
prediction. y is an adjustable parameter, and the default is 2.
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FIGURE 11
Structure of coordinate attention.
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The Dice loss for multi-objective segmentation is defined as.

¢ 2W SN or(4,1) 1 .
LD =1- 2 - szfl.gf(j l) Og(p ,]2)
LY (gt(ﬁ i)*+log(pi;) )

Where, N is the number of samples, ¢ is the target class, and Pij

is the softmax output of class j target class; gt(j,i) is the ground-truth
label of class j target, and W; is the weight of the objective of class j,
W; = 1/j.

The experiments were conducted on a server in the lab with the
configuration shown in Table 6. The MDSC-DeepLabv3+ used the
Adam optimizer to compute the gradient of the loss function in
each epoch to perform parameter updates. The initial learning rate
was set to E-4. The batch size was set to 6. The training process
consists of 100 epochs. In each epoch, the image dataset was
randomly shuffled and fed into the model to ensure a different
order of dataset used in different epochs. This technique enhances
the convergence speed of the model and improves the prediction
results on the test set.

In order to comprehensively evaluate the performance of the
proposed and comparative semantic segmentation models, three
aspects of each model, namely accuracy, deployability, and
efficiency, are comprehensively evaluated. The commonly used
mloU and mPA were utilized as accuracy evaluation metrics. And
the model deployability was evaluated using model parameter
quantity (Param) and model computation volume floating point
operations (FLOPs). Efficiency was evaluated using inference time
for each image. The metrics of IoU, mIoU and mPA which is
represented by the following Eq. (7)-(9), respectively.

TABLE 5 ANOVA of breakage and impurity ratios.

— P;; 9
IoU; = —— _ X 100 % 7)
SicoPij+ o Pji = Pi;
1¢!
mloU = —>IoU; (8)
Cizo
1¢! .
mpA = -3 _Li__ ©)
€iz0 2uj=0Pij

Where ¢ denotes the number of categories, so c=4 (cane, broken
cane, top and leaf), P; or P; denotes the number of category
prediction that is incorrect, while P;; denotes the number of
correct predictions made by categories.

3.2.2 Model training

The size of the input image is a crucial factor affecting the
model’s performance. Increasing the image size enhances accuracy
by preserving semantic information for small targets and
preventing information loss caused by low-resolution feature
maps. However, excessively large image sizes can lead to reduced
detection accuracy due to the limited receptive field imposed by the
fixed network structure. This, in turn, diminishes the network’s
ability to accurately predict targets of various scales (Lin et al,
2022). In practical applications, there is a trade-off between
accuracy and speed that requires careful consideration. For this
study, the input image was resized to three different dimensions:
256%256, 512x512, and 768x768. The proposed MDSC-DeepLabv3
+ model was trained accordingly, and the results obtained are
presented in Table 7. It can be observed that reducing the input

Ratio DF Square sums Mean square F Significance F
Regression analysis 1 2.58018 2.58018 11405.03085 1.05518E-230
Breakage ratio Residual 283 0.06402 2.26232E-4
Total 284 2.64421
Regression analysis 1 2.41267 2.41267 8470.24579 6.21725E-213
Impurity ratio Residual 283 0.08061 2.84841E-4
Total 284 2.49328
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TABLE 6 Experimental environment.

Parameter Configuration

Operating system Ubuntu 18.04

Deep learning framework PyTorch 1.8

Programming Language Python 3.7

image size to 512x512 achieves an optimal balance between speed
and accuracy.

The segmentation results of models using different loss
functions are displayed in Figure 13. The MDSC-DeepLabv3+
using only the Dice loss function exhibits the highest fluctuations
in mPA and mloU, leading to inferior segmentation results.
Similarly, the MDSC-DeepLabv3+ using only Focal Loss
demonstrates notable fluctuations during the early stages of the
validation process, with slow growth in mPA and mloU values in
later stages. In contrast, the MDSC-DeepLabv3+ which combines
Focal Loss and multi-class Dice Loss exhibits lesser sawtooth
fluctuations during the increase in mPA and mloU values,
ultimately reaching their peak during the validation process.
Consequently, the integration of Focal Loss and multi-class Dice
Loss yields optimal outcomes in the segmentation of raw sugarcane
and impurities.

3.2.3 Ablation experiment

To verify the effectiveness of the three improvements, including
improved MobileNetv2, ASPP_DS and CA presented in Section 2.3,
the following 7 models were constructed according to the control
variable method, with a downsampling factor of 8.

TABLE 7 mPA and inference time obtained with different input image
sizes.

10.3389/fpls.2023.1283230

Parameter Configuration

Operating environment CUDA 11.2

CPU Intel(R) Xeon(R) Silver 4214 CPU @2.20GHz
GPU NVIDIA GeForce RTX 3080 12G @1260-1710MHz
1. DeepLabv3+_base: MobileNetv2 replaced the backbone

Xception in DeepLabv3+.

. M-DeepLabv3+: MobileNetv2 in DeepLabv3+_base was
enhanced with atrous convolution operation.

. MDS-DeepLabv3+: ASPP_DS replaced ASPP module in
M-DeepLabv3+.

. MC1-DeepLabv3+: CA was applied independently before
1x1 Conv of low-level features by the decoder in M-
DeepLabv3+.

. MC2-DeepLabv3+: CA was applied independently after the
fusion of ASPP in M-DeepLabv3+.

. MC-DeepLabv3+: CA was added separately before 1x1
Conv the low-level features and after the fusion of ASPP
features in M-DeepLabv3+.

. MDSC-DeepLabv3+: CA was added separately before
processing the low-level features and after the fusion of
ASPP_DS features in MDS-DeepLabv3+.

Table 8 presents the results of the ablation experiment for the
seven aforementioned models. It can be observed that the MDSC-
DeepLabv3+ outperforms the baseline DeepLabv3+_base, with an
improvement of 1.25 in mPA and 1.8 in mloU. Additionally, it
achieves a reduction of 16.42% in Params and 31.46% in FLOPs,
however, the inference time per image has slightly increased from
13.48ms to 13.85ms. These results demonstrate that the MDSC-
DeepLabv3+ surpasses the DeepLabv3+_base in terms of
segmentation accuracy and deployability metrics, while still

Resize of image/pixels = mPA/% Inference time/ms . . .
maintaining comparable efficiency. Furthermore, it can be seen
256x256 ‘ 94.68 10.69 that the MDSC-DeepLabv3+ achieves the highest segmentation
512512 ‘ 97.55 13.85 accuracy (mPA and mlIoU) compared to other models, while
exhibiting minimal differences in terms of deployability (Params,
768x768 ‘ 97.07 24.19 . . . .
FLOPs) and efficiency (inference time) metrics.
A B
0.95
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FIGURE 13
Results of mPA and mloU with different loss functions. (A) Valid mPA, (B) Valid mloU.
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In order to visually demonstrate the improvement of the
models, Grad-CAM (Selvaraju et al., 2020) was used to visualize
the channels of the feature maps of DeepLabv3+ and MDSC-
DeepLabv3+. The visualization segmentation instances of top
were illustrated in Figure 14. In group (a), the two feature maps
are extracted by the Xception in DeepLabv3+ and the enhanced
MobileNetv2 in MDSC-DeepLabv3+, respectively. In group (b), two
feature maps are the output of ASPP in DeepLabv3+ and ASPP_DS
in MDSC-DeepLabv3+, respectively. In group (c), the two feature
maps are the output of DeepLabv3+ and MDSC-DeepLabv3
+, respectively.

In Figure 14A, it can be observed that Xception in DeepLabv3+
achieves clearer pixel segmentation than that obtained by
MobileNetv2 in MDSC-DeepLabv3+. The reason is that
MobileNetv2 is a lightweight and shallow model compared to
Xception, and its depthwise convolution can lead to information
loss and limit the number of channels, thereby resulting in a lower-
level feature map with fewer information. However, the two heat
maps in group (b) indicate that there is pixels misfocus at the top-
right corner in the first line of the feature map extracted by ASPP,
while ASPP_DS results in more complete pixel segmentation,

10.3389/fpls.2023.1283230

enhances preservation of details, and eliminates the top-right
misfocus. The heat map illustrates that the introduced strip
pooling in ASPP_DS rectifies the shortage of MobileNetv2, and
the dense and compact dilation rates (4, 8, 12) improve its capability
of focusing on capturing local detailed features. Heat map of final
outputs of MDSC-DeepLabv3+ and DeepLabv3+ given in
Figure 14C demonstrates that the CA in MDSC-DeepLabv3+
further enhances the color intensity in heat map, indicating that
the inclusion of CA allows the model to focus more on the features
of the categories, thereby enhancing its distinguishability of cane,
broken cane, top and leaf.

3.2.4 Comparative experiment

To further validate the superiority of the proposed model
MDSC-DeepLabv3+, comparative experiments were conducted
using the RSI dataset under the same experimental conditions.
The compared models include UNet, PSPNet, SegFormer-B0, and
the baseline DeepLabv3+. Previous research results have shown that
UNet (Ronneberger et al., 2015) and PSPNet (Zhao et al., 2017)
perform well in terms of accuracy in segmentation tasks with
challenges like cell tracking ISBI and Cityscapes. SegFormer-B0 is

DeepLabv3+

MDSC-DeepLabv3+

FIGURE 14
(A) Backbone output. (B) Encode output. (C) Decode output.

TABLE 8 Results of ablation experiment.

Number ASPP_DS Coordinate Attention mPA/ mloU/ Param/ FLOPs/ Inference time/
% % M (€] ms
Before After ASPP
decoder (_DS)

(1) 96.3 93.04 481 69.29 13.48
2 96.67 9336 335 45.49 1213
3) V 97.16 94.37 336 4541 12.76
(4) V 96.88 93.66 355 46.83 13.51
(5) V 97.05 94.48 3.63 46.88 13.56
(6) \ v 97.22 94.57 3.68 46.88 13.67
) V V Y 97.55 94.84 4.02 47.49 13.85
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a lightweight model that combines transformers with a lightweight
multilayer perceptron decoder (Xie et al., 2021). The comparative
results are given in Table 9.

It can be seen that the accuracy of MDSC-DeepLabv3+ surpasses
that of the aforementioned four models with significant improvements.
Specifically, the mIoU of MDSC-DeepLabv3+ is higher by 0.81, 5.22,
12.47, and 0.28 compared to UNet, PSPNet, SegFormer-B0, and
DeepLabv3+, respectively. Moreover, the mPA of MDSC-DeepLabv3
+ reaches an impressive 97.55%, which outperforms UNet, PSPNet,
SegFormer-B0, and DeepLabv3+ by 0.69, 2.7, 7.76, and 0.34,
respectively. These remarkable improvements can be attributed to
the adoption of the advanced DeepLabv3+ as the basic model,
coupled with the enhancements introduced through strip pooling
and CA. Strip pooling plays a crucial role in collecting remote
contextual information from different spatial dimensions and
addressing the issue of information loss resulting from the atrous
convolution operation in DeepLabv3. On the other hand, CA efficiently
utilizes positional information, enabling accurate capturing of the
spatial relationships and contextual information of the detected cane,
broken cane, top, and leaf.

In terms of deployability, MDSC-DeepLabv3+ demonstrates
remarkable reductions in Params and FLOPs when compared to
UNet, PSPNet, and DeepLabv3+. Specifically, it reduces Params by
83.65%, 91.29%, and 90.35%, and FLOPs by 89.49%, 59.9%, and
66.37% compared to UNet, PSPNet, and DeepLabv3+ respectively.
This significant reduction in model size and computational
complexity makes MDSC-DeepLabv3+ highly efficient and
resource-friendly. Moreover, MDSC-DeepLabv3+ achieves
impressive segmentation efficiency, with a recognition speed of
only 13.85ms per image. This inference time per image is far less
than the above three models, with reductions of 48.97%, 10.18%,
and 43.31%, respectively. This indicates that MDSC-DeepLabv3+ is
able to perform fast and accurate segmentation, making it highly
suitable for real-time applications. Although SegFormer-BO may
have some advantages in terms of deployability, its accuracy is
much lower compared to MDSC-DeepLabv3+ (89.79% vs. 97.55%).
The reason for this superior performance is the utilization of the
improved lightweight MobileNetv2, which replaces Xception in
DeepLabv3+, leading to an efficient and accurate model overall.
In summary, the proposed MDSC-DeepLabv3+ outperforms the
compared four models in the task of segmenting sugarcane and
impurities, offering a winning combination of high segmentation
accuracy, deployability, and recognition speed.

TABLE 9 Test results of different recognition models.

10.3389/fpls.2023.1283230

Instances of the results obtained using the aforementioned
segmentation models are illustrated in Figure 15. In which, red
[128,0,0] represents cane, blue [0,0,128] represents broken cane,
green [0,128,0] represents top, yellow [128,128,0] represents leaf,
and black [0,0,0] represents the background. From the visualization
of test results, it is evident that all five models perform well in most
cases. However, the segmentation obtained by MDSC-DeepLabv3+
stands out as more complete, with clearer preservation of details in
general. Upon closer observation, it can be seen that UNet, PSPNet,
and SegFormer-BO misclassify their categories, for instance,
misclassifying broken cane as leaf, and vice versa. This indicates
inaccuracies in pixel differentiation for these models. Additionally,
the compared four models result in fuzzy segmentation and
ambiguous boundaries between objects. On the other hand, the
proposed MDSC-DeepLabv3+ demonstrates superior performance
in addressing the issue of detail adhesion. This can be observed in
the instances marked out in the line of MDSC-DeepLabv3+ where
the model is capable of better distinguishing object boundaries and
preserving fine details.

3.3 Analyzing of comprehensive
experiment

The breakage and impurity ratios of raw sugarcane were
estimated using the estimation model presented in Section 2.2
and the MDSC-DeepLabv3+ segmentation model presented in
Section 2.3. These estimated values were then compared with the
measured breakage and impurity ratios obtained through manual
weighing to assess the effectiveness of the proposed method.

First, a subset of 25% (70) of the images was randomly selected
from the mass dataset with 300 samples. The MDSC-DeepLabv3+
model was applied to semantically segment the selected 70 images and
determine the number of cane, broken cane, top, and leaf pixels for
each image. Then, corresponding masses were estimated using Eq.(1)-
(4), based on the mean values of the surface density for each category
obtained through normal fitting. The ratios of breakage and impurity
were calculated according to the estimation model defined in Eq.(5)-(6)
based on the estimated masses. Finally, the measured breakage and
impurity ratios were determined using the measured mass and the
relative errors between the estimated and measured results were
calculated. Tables 10. 11 document and analyze the relative errors in
the breakage ratio and impurity ratio for each sample, as well as the

Segmentation loU/% mPA Param/ FLOPs/ Inference
models M G time/ms
Background Cane Broken
cane
UNet 98.13 94.18 91.01 93.11 | 93.73 94.03 96.86 24.89 451.77 27.14
PSPNet 95.45 90.38 87.89 8648 | 87.89 89.62 94.85 46.71 11843 15.42
SegFormer-B0 95.6 82.98 72.38 8112 | 79.79 82.37 89.79 3.72 1356 1678
DeepLabv3+ 97.78 95.18 91.83 9338 | 94.62 94.56 97.21 4219 141.22 24.43
MDSC-DeepLabv3+ 97.94 95.13 91.85 94.27 95.03 94.84 97.55 4.07 47.49 13.85

Frontiers in Plant Science

102

frontiersin.org


https://doi.org/10.3389/fpls.2023.1283230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

UNet

PSPNet

SegFormer-
BO

DeepLabv3+

MDSC-
DeepLabv3+

Ground truth

Original

images

FIGURE 15
Test results of each detection model

average relative error of the overall samples. The average relative errors
were found to be 11.3% and 6.5% for breakage and impurity ratios,
respectively. These results indicated that the proposed method exhibits
strong reliability.

Additionally, the visualization of measured and estimated ratios
of the 70 samples is depicted in Figure 16. This aids in the intuitive
observation and analysis of the relationship and differences between
predicted and manual measured results. It can be observed that the
results obtained using the proposed method exhibit only slight
deviations compared to the results obtained through manual
weighing measurements, and the fluctuations are minimal. This
suggests that the estimated breakage and impurity ratios can
maintain their stability. Consequently, the proposed method
based on estimation model and MDSC-DeepLabv3+ offers an
efficient, accurate, and intelligent means of quantitatively
estimating the breakage and impurity ratios of raw sugarcane.

4 Conclusions

In practice, objective, efficient, accurate, and intelligent
detection of breakage and impurity ratios is an urgent
requirement in the sugar refinery. Therefore, this study developed

Frontiers in Plant Science
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a novel approach combining the estimation model and MDSC-
DeepLabv3+ segmentation network to tackle this problem. First, a
machine vision-based acquisition platform was designed, and
custom image and mass datasets of raw sugarcane and impurities
were constructed. Then, estimation model was built to assess the
ratios of breakage and impurity, considering the variation of surface
density for the four categories of objects. Finally, the MDSC-
DeepLabv3+ segmentation network dedicated to the detection of
cane, broken cane, top, and leaf was developed. It effectively
incorporated improved MobileNetv2, ASPP_DS, and CA based
on DeepLabv3+ to enhance segmentation accuracy, reduce
parameters and inference time. The analysis of the experimental
results leads to the following conclusions:

1. The breakage and impurity ratios obtained through
estimation model based on normal fitted surface density
exhibit high accuracy, with corresponding R* of 0.976 and
0.968, respectively.

2. The proposed MDSC-DeepLabv3+ achieved superiority
considering segmentation accuracy, deployability, and
efficiency simultaneously. The mPA and mlIoU achieved
by MDSC-DeepLabv3+ were as high as 97.55% and 94.84%,
respectively, surpassing the baseline DeepLabv3+ by 0.34
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TABLE 10 Breakage ratios of 70 samples.

Breakage ratio/%

10.3389/fpls.2023.1283230

Breakage ratio/%

Measured Estimated Relative Measured Estimated Relative
errors errors

1 0.393 0.433 0.103 36 0.163 0.146 0.103
2 0.244 0215 0.119 37 0.067 0.077 0.148
3 0.328 0319 0.027 38 0.075 0.077 0.017
4 0.122 0.096 0.218 39 0.117 0.127 0.082
5 0.259 0.272 0.049 40 0.253 0.242 0.047
6 0.486 0.562 0.156 41 0.381 0.418 0.097
7 0.319 0.290 0.090 42 0.145 0.125 0.137
8 0.165 0.174 0.057 43 0.268 0.259 0.036
9 0.173 0.201 0.162 44 0.272 0.247 0.091
10 0.298 0.269 0.097 45 0.060 0.046 0.231
11 0.389 0.416 0.069 46 0.298 0.323 0.087
12 0.235 0.284 0.208 47 0.192 0.168 0.126
13 0.225 0.222 0.012 48 0.209 0.209 0.001
14 0.102 0.131 0.282 49 0.361 0.343 0.049
15 0.105 0.141 0.340 50 0.112 0.150 0.344
16 0.152 0.163 0.077 51 0.233 0.193 0.171
17 0.403 0.340 0.157 52 0.226 0.215 0.048
18 0.144 0.154 0.071 53 0.253 0.281 0.110
19 0.108 0.124 0.150 54 0.299 0.271 0.093
20 0.273 0.267 0.025 55 0.056 0.071 0.262
21 0.388 0.404 0.042 56 0.138 0.168 0.218
22 0.371 0.387 0.045 57 0.141 0.167 0.188
23 0.456 0.480 0.052 58 0.109 0.106 0.035
24 0.264 0.247 0.064 59 0.201 0.207 0.028
25 0.348 0.330 0.053 60 0.385 0.425 0.105
26 0.257 0.240 0.065 61 0.314 0.289 0.079
27 0.170 0.136 0.198 62 0.120 0.130 0.089
28 0.184 0.149 0.191 63 0.227 0.201 0.113
29 0.353 0.337 0.044 64 0.125 0.120 0.044
30 0.351 0.343 0.023 65 0.416 0.451 0.084
31 0.296 0.255 0.138 66 0.160 0.195 0.219
32 0.356 0.342 0.039 67 0.281 0.278 0.011
33 0.214 0.233 0.088 68 0.162 0.186 0.149
34 0.215 0.277 0.286 69 0.322 0.277 0.141
35 0.172 0.150 0.132 70 0.195 0.231 0.184

Average 0.113
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TABLE 11 Impurity ratios of 70 samples.

Impurity ratio/%

10.3389/fpls.2023.1283230

Impurity ratio/%

Measured Estimated Relative Measured Estimated Relative
errors errors

1 0.473 0.499 0.055 36 0.328 0319 0.026
2 0.237 0.254 0.071 37 0313 0.322 0.032
3 0.423 0.424 0.004 38 0.091 0.104 0.142
4 0.292 0.298 0.021 39 0.217 0.240 0.103
5 0.303 0.263 0.133 40 0.380 0.381 0.001
6 0.602 0.570 0.053 41 0.241 0.240 0.005
7 0.445 0.445 0.002 42 0.369 0.369 0.000
8 0.372 0.341 0.082 43 0.292 0.282 0.035
9 0.393 0.352 0.104 44 0.328 0.337 0.026
10 0.294 0.280 0.048 45 0.146 0.167 0.148
11 0.529 0.554 0.046 46 0.274 0316 0.156
12 0.277 0.272 0.018 47 0.310 0.273 0.118
13 0.378 0.388 0.028 48 0.410 0.382 0.068
14 0.206 0.199 0.034 49 0.254 0.269 0.063
15 0.332 0314 0.055 50 0.320 0319 0.004
16 0.240 0217 0.098 51 0.343 0.386 0.124
17 0.482 0.452 0.062 52 0.328 0.325 0.009
18 0.277 0.298 0.073 53 0.385 0.355 0.077
19 0.331 0317 0.043 54 0.211 0.232 0.102
20 0.274 0.265 0.034 55 0.228 0.248 0.088
21 0.358 0.322 0.102 56 0.420 0.389 0.073
22 0.491 0.470 0.042 57 0.268 0.267 0.007
23 0.417 0.439 0.054 58 0.209 0.200 0.043
24 0.286 0318 0.110 59 0.239 0.245 0.023
25 0.273 0.241 0.119 60 0.427 0.421 0.014
26 0316 0.337 0.066 61 0.332 0.320 0.036
27 0.267 0.265 0.006 62 0.319 0315 0.011
28 0.251 0.272 0.082 63 0.253 0.239 0.054
29 0.208 0.249 0.196 64 0.313 0.339 0.082
30 0.375 0.334 0.109 65 0.500 0.483 0.034
31 0.296 0.347 0.173 66 0.418 0.378 0.095
32 0.229 0.290 0.265 67 0.297 0.320 0.077
33 0.283 0.279 0.014 68 0.299 0.337 0.128
34 0.357 0.332 0.072 69 0.475 0.465 0.021
35 0.350 0.342 0.024 70 0.301 0.302 0.002

Average 0.65
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FIGURE 16
Instances of estimation and measured breakage and impurity ratio.

and 0.28. This improvement in accuracy was accomplished
with 38.12M, 93.73G, and 10.58ms reduction in Params,
FLOPs, and inference time, respectively, making it
advantageous for deployment on edge devices and real-
time inference.

3. The estimated data obtained according to the approach
developed in this study fit the manually obtained breakage
and impurity ratios with average relative errors of 11.3% and
6.5%, respectively. The lower segmentation accuracy of broken
cane is due to their burr and ambiguous boundaries, resulting
in a higher average relative error of the breakage ratio.

The raw sugarcane not only includes top and leaf impurities but
also contains other impurities like dispersed root whiskers. The
upcoming research will emphasize mechanical cleaning of sand,
gravel, soil, and similar substances. Additionally, a pivotal aspect of
the forthcoming study will involve counting sugarcane roots and
estimating their quality through object detection.
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Introduction: Nut quality detection is of paramount importance in primary nut
processing. When striving to maintain the imperatives of rapid, efficient, and
accurate detection, the precision of identifying small-sized nuts can be
substantially compromised.

Methods: We introduced an optimized iteration of the YOLOv5s model designed
to swiftly and precisely identify both good and bad walnut nuts across multiple
targets. The M3-Net network, which is a replacement for the original C3 network
in MobileNetV3's YOLOV5s, reduces the weight of the model. We explored the
impact of incorporating the attention mechanism at various positions to enhance
model performance. Furthermore, we introduced an attentional convolutional
adaptive fusion module (Acmix) within the spatial pyramid pooling layer to
improve feature extraction. In addition, we replaced the SiLU activation
function in the original Conv module with MetaAconC from the CBM module
to enhance feature detection in walnut images across different scales.

Results: In comparative trials, the YOLOv5s_AMM model surpassed the standard
detection networks, exhibiting an average detection accuracy (mAP) of 80.78%,
an increase of 1.81%, while reducing the model size to 20.9 MB (a compression of
22.88%) and achieving a detection speed of 40.42 frames per second. In multi-
target walnut detection across various scales, the enhanced model consistently
outperformed its predecessor in terms of accuracy, model size, and detection
speed. It notably improves the ability to detect multi-target walnut situations,
both large and small, while maintaining the accuracy and efficiency.

Discussion: The results underscored the superiority of the YOLOvV5s_AMM model,
which achieved the highest average detection accuracy (mAP) of 80.78%, while
boasting the smallest model size at 20.9 MB and the highest frame rate of 40.42
FPS. Our optimized network excels in the rapid, efficient, and accurate detection of
mixed multi-target dry walnut quality, accommodating lightweight edge devices.
This research provides valuable insights for the detection of multi-target good and
bad walnuts during the walnut processing stage.

KEYWORDS

MobileNetV3, ACMIX, MetaAconC, multi-target, target detection, walnut
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1 Introduction

Walnuts (Juglans spp.) rank among the world’s top four dried
fruits, alongside almonds, cashews, and hazelnuts. Two predominant
species of walnuts, common walnuts (Juglans regia) and dark-grained
walnuts (Juglans sigillata), are extensively cultivated globally. Juglans
sigillata, also known as iron walnut or Yunnan walnut, is an endemic
species in Southwest China. It is distinguished by superior seed
quality, full kernels, high protein and fat content, and rich
nutritional value (Xie et al., 2021). After degreening, rinsing, and
drying, the evaluation of the appearance quality of walnuts plays a
vital role in bolstering their market competitiveness. Yunnan walnuts,
which are characterized by uneven kernel surfaces, non-uniform
maturity, varying harvest patterns, and irregular fruit sizes, pose
challenges during processing. Existing green walnut peeling machines
often yield unsatisfactory results, leaving behind impurities, surface
contamination, and an increased susceptibility to breakage (Su et al.,
2021). In accordance with the “Walnut Nut Quality Grade” standard
GBT20398-2021,' common external defects in walnuts encompass
fractured walnut shells, black spots, and insect holes. Black spots on
walnut endocarps typically stem from improper peeling, which leaves
a residual walnut pericarp on the surface, leading to oxidation and the
formation of black spots. In addition to detracting from the
appearance quality and grade, these black patches cause mildew
due to their moisture-absorbing properties. Furthermore, damaged
and insect-infested walnuts expose their kernels to external elements,
resulting in rapid deterioration, mould formation, and potentially
hazardous substances, such as aflatoxins, due to water infiltration
during cleaning. Consequently, there is an urgent need for a rapid
and precise method to identify these external defects during walnut
production and processing (Li et al., 2019).

Currently, two main approaches are employed to assess produce
quality: destructive and non-destructive methods. Destructive
methods are utilized to determine the physicochemical or
biochemical properties of the produce but require the complete
annihilation of the tested specimens, imposing strict technical
prerequisites. Although they provide additional phenotypic data,
their inherent delay in detection is a drawback. By contrast, non-
destructive methods offer advantages such as reduced costs,
heightened detection accuracy, and the ability to evaluate produce
without damaging it (Arunkumar et al., 2021). Both domestic and
international scholars have extensively investigated various non-
destructive testing methods for fruits and nuts, including X-ray
techniques, acoustic methods (Cobus and van Wijk, 2023), and
machine vision approaches (Chakraborty et al., 2023). However, it
is worth noting that although these methods excel in detection
accuracy, X-ray detection can be expensive, and acoustic methods
may be limited to single-target fruit detection, potentially restricting
their applicability to primary processing firms.

Deep learning, a non-destructive approach, can swiftly detect
issues in one or two phases, offering precise detection and quality
control for all types of nuts through computer vision technologies and

1 https://openstd.samr.gov.cn/bzgk/gb/newGblinfo?hcno=
11E65C73CF8BIE071CE76716628F2F80]
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robotics. The integration of deep learning technology can significantly
enhance the production efficiency and quality management within nut
processing enterprises by refining the classification and grading
processes, automating quality management procedures, and
effectively identifying nut defects and abnormalities.

In recent years, researchers have explored a two-stage deep
learning approach for fruit and nut detection. For instance, Rika
Sustika et al. (2018) investigated the impact of various deep
convolutional neural network structures (AlexNet, MobileNet,
GoogLeNet, and Xception) on the accuracy of a strawberry
grading system (appearance quality detection), with VGGNet
demonstrating the highest accuracy (Sustika et al, 2018). Costa
et al. (2021) combined machine vision techniques with the Mask-
RCNN algorithm (Costa et al,, 2021) to detect and semantically
segment pecan peel and hull. Fan et al. (2021) proposed an improved
rapid R-CNN algorithm (Fan et al., 2021) for the precise detection of
green pecans in natural environments. The enhancements included
batch normalization, an improved RPN with bilinear interpolation,
and the integration of a hybrid loss function. For robot recognition
and the picking of walnuts in complex environments, the model
achieved an accuracy of 97.71%, a recall rate of 94.58%, an F1 value
of 96.12%, and faster detection times. However, these two-stage
approaches, which are capable of high accuracy, tend to have slower
detection speeds and require lengthy training periods, making them
challenging to implement in actual industrial production settings. By
contrast, the one-stage approach, represented by the YOLO series
algorithm, offers advantages such as fast real-time detection, high
accuracy, and robustness. Hao et al. (2022) used an improved
YOLOV3 deep learning method for the real-time detection of
green walnuts in a natural environment. They pre-trained the
model network using the COCO dataset, optimized the
performance with data augmentation and K-means clustering, and
selected the MobileNetV3 backbone for high accuracy and rapid
detection. This approach achieved an average accuracy (mAP) of
86.11% and provided technical support for intelligent orchard
management and yield estimation of walnut orchards (Hao et al,
2022). Recognizing the widespread acceptance of the YOLOv5
model as a faster, more accurate, and more efficient target
detection model, Yu et al. (2023) proposed an improved walnut
kernel impurity detection model based on the YOLOvV5 network
model. Their model included a small target detection layer, a
transformer-encoder module, a convolutional block attention
module, and a GhostNet module, leading to enhanced recognition
accuracy for small and medium impurities in pecan kernels (Yu
et al, 2023). In general, the two-stage target detection algorithm
applied to pecans struggles to balance recognition accuracy and
detection speed. On the other hand, one-stage algorithm research is
tailored to green walnut recognition scenarios. These models and
methods cannot be directly applied to the recognition of good- and
bad-dried walnuts because of differences in image datasets, such as
variations in field orchard backgrounds and occlusion, lighting
conditions, or diffractive indices. Additionally, there is limited
research on target detection based on deep learning for the
classification of dried walnut quality after degreening, washing,
and drying during the initial processing stage. Detecting dried
walnuts of various target sizes within a wide field of vision
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presents a challenging task. Therefore, achieving efficient and precise
sorting of good and bad dried walnuts using deep learning models
has become an urgent matter, significantly impacting the
advancement of the entire walnut primary processing industry.
This study introduced an enhanced YOLOv5s_AMM multi-
target sorting model tailored for walnuts. (1) The M3-Net network
replaced YOLOv5s™ C3 structure with MobileNetV3. This
substitution has advantages, such as faster inference, heightened
accuracy, reduced memory usage, and improved feature
representation. Consequently, it emerges as a superior option for
target detection in devices with resource constraints. (2) The model
achieved enhanced classification accuracy, adaptive mixture
modelling, rapid training and inference, and robustness against
noise and outliers by incorporating the novel ACMIX paradigm.
ACMIX integrates convolution with self-attentiveness after an SPP
(spatial pyramid pooling) layer (He et al, 2015). (3) In the neck
layer, the CBM module replaced the activation function of the
conventional Conv2d convolution layer with MetaAconC. This
substitution results in performance enhancements, adaptive
activation, non-linear and smoothing behavior, computational
efficiency, and robustness against noise and outliers. Finally, the
improved YOLOv5s_AMM detection model, when practically
applied to differentiate between good and bad walnuts of various
sizes, achieved real-time and efficient classification. This
advancement has significant practical value for enhancing walnut
detection efficiency, quality, and market competitiveness. This is
particularly beneficial to primary processing enterprises aiming to
increase the value of their walnut products and contributes to the
growth of a more intelligent and integrated walnut industry.

2 Materials and methods
2.1 Image sample acquisition

In this study, walnuts were sourced from Fengqing County,
Lincang City, Yunnan Province, China. The RGB images used for
the analysis were collected at the Agricultural Material
Characterization Laboratory at the Kunming University of
Technology. These images were captured from 9:00 a.m. to 6:00
p.m. on December 24-26, 2022. For image acquisition, we
employed a Hikvision industrial camera (model MV-CA050-
20GC) with a 5-megapixel resolution and a CMOS Gigabit
Ethernet industrial surface array camera capable of producing
images at a resolution of 2592x2048. The images were saved in
the JPEG format. The camera was securely mounted at a height of
195 cm above the ground and positioned 95 ¢cm above the surface
level using an adjustable aluminium mount. All images were
captured under consistent conditions, including the same camera
height, uniform light source brightness, consistent background, and
roller guide profile phase. The image capture date was December 24,
2022. During the image capture process, we used an exposure time
of 4,000 us and frame rate of 1 in the continuous mode of the
camera. This setup allowed us to capture images of walnuts in their
natural state, as depicted in Figure 1, with the walnuts evenly
distributed on the moving part of the profiled roller-wheel guide.

Frontiers in Plant Science

10.3389/fpls.2023.1247156

According to the national standard classification GB/T20398-
2021 for walnut quality grades, our evaluation considered various
factors such as walnut uniformity, shell integrity, color, and suture
line tightness. Based on these criteria, we classified walnuts into two
categories: (1) good walnuts (Figure 2A), characterized by intact
shells and primarily exhibiting a yellow-white color, and (2) bad
walnuts (Figures 2B, C), including walnuts with black spots
(Figure 2B) and walnuts with broken shells (Figure 2C). In this
study, 120 original images with a resolution of 2,592x2,048 were
acquired, and multi-target walnuts with excellent walnuts and bad
walnuts (black spots and broken) were randomly inserted into
this dataset.

2.2 Dataset construction

During the data processing phase, we divided the initial dataset
of 120 images, each with a resolution of 2,592x2,048, into 2,000
images with a resolution of 640x640. We employed Labellmg
software for manual annotation, marking the location boxes, and
categorizing walnuts as either good or bad within the original
images. This annotation process produced corresponding
annotation files. Upon completing the image annotation, we
randomly divided the entire dataset into three sets: training,
validation, and test. The distribution ratio was 8:1:1, ensuring
adequate data for training and model evaluation. In statistical
terms, each image in this study contained 5-40 walnuts, resulting
in a total of 53,301 labels within the walnut dataset. Among these
labels, 25,099 were associated with good walnuts, whereas 28,208
were assigned to bad walnuts. This distribution indicates a
reasonably balanced dataset, with a ratio of approximately 0.88
between the two image categories.

Before commencing model training, we subjected the walnut
training set to a combination of offline data enhancement
techniques, including contrast adjustment, scaling, luminance
modification, pretzel noise, and Gaussian noise (Taylor and
Nitschke, 2018). These techniques were applied randomly. As
shown in Figure 3, They encompassed four specific methods; (1)

FIGURE 1
Map of the walnut image acquisition environment.
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FIGURE 2

Types of walnuts. (A—C) Good walnuts (A) and defective walnuts (black spots [B] and broken [C]).
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FIGURE 3
Schematic of the image enhancement of the walnut dataset.

random contrast enhancement within the range of 0.7 to 1.4 with a
gradient of 0.05; (2) random scaling of the training set within the
range of 0.5 to 1.5 with a gradient of 0.1; (3) random luminance
adjustment for the training set within the range of 0.6 to 1.4; and (4)
random modification of the training set’s luminance to either 50—
150% of random Gaussian noise or random pretzel noise within the
same range. As shown in Table 1, these data enhancement
procedures resulted in a 25% increase in the number of training
sets. Consequently, the walnut dataset contained a total of 2,000
image data entries after data enhancement.

2.3 YOLOV5 network model and
optimization structure

2.3.1 YOLOV5 model

The YOLO Network Series provides a rapid and efficient
solution for real-time target detection tasks, delivering high

TABLE 1 Classification of the walnut image dataset.

Dataset Original image Enhanced image
Training set 1200 1598
Validation set 150 201
Test set 150 201
Total 1500 2000
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accuracy and the capability to identify targets of various sizes. Its
versatility extends to a wide range of applications, including
autonomous vehicles, robotics, and surveillance systems.

YOLOV5 outperforms YOLOv3 and YOLOV4 in terms of rapid
and precise real-time target detection. It achieves this superiority
while maintaining a lighter, more efficient, and more easily
deployable profile on resource-constrained devices. These
improvements encompass several key aspects. (1) Enhanced
backbone network: YOLOv5 adopts the CSP-Darknet53
architecture (Bochkovskiy et al., 2020) as its backbone network.
This innovation improves feature extraction while reducing the
computational cost. (2) Innovative neck layers: The model
incorporates SPP and PAN neck layers. These layers combine
features from different layers, thereby enhancing both the accuracy
and efficiency of the model. (3) Optimized training process: YOLOv5
benefits from the optimized training process. This includes a new
hyperparameter search algorithm that efficiently tunes model
settings, a novel loss function, improved data augmentation
techniques, and AutoAugment, which automatically identifies the
optimal hyperparameters. The amalgamation of these enhancements
enables YOLOVS to deliver cutting-edge target detection performance
while maintaining a real-time processing speed.

The official code allows for the training of four distinct object
detection models with varying depths and widths. In the YOLOv5
series, YOLOV5s serves as the baseline with the smallest depth and
width. The other three networks build on this foundation, becoming
deeper and more complex. These networks incorporate additional
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convolutional layers and residual modules in the backbone and
employ more channels in the head module to enhance accuracy.
Table 2 provides a comparison of the accuracy, model size, and
detection performance across the four distinct YOLOv5 models. In
terms of detection accuracy, YOLOv5s exhibited a slightly lower
mAP than YOLOv5m (1.67% lower), YOLOV5I (3.47% lower), and
YOLOV5x (3.36% lower). However, when considering the model
size, YOLOV5s stood out because of its compact size of 27.1 MB,
which was notably smaller than YOLOv5m, offering a reduction of
53.5 MB. This size advantage makes YOLOv5s a cost-effective
choice, particularly for deployment on embedded devices, where
storage constraints are critical. In terms of detection speed,
YOLOV5s outperformed the other models, detecting 7.85 frames
per second more than YOLOv5m, 17.13 frames more than
YOLOV5], and 25.97 frames more than YOLOv5x. This superior
inference speed position of YOLOV5s is an excellent option for real-
time detection scenarios and applications demanding rapid
responses. Given the emphasis on low latency and cost-effective
deployment for lightweight multi-target kernel peach detection,
YOLOV5s presented a compelling proposition with a detection
accuracy of 78.97%, a model size of 27 MB, and a detection speed
of 47 FPS. It effectively balances accuracy, model size, and inference
speed, making it a well-suited base model for further enhancement.

2.3.2 MobileNetV3: lightweight
backbone network

The concept of a lightweight backbone pertains to neural
network architectures optimized for target detection tasks. This

TABLE 2 Comparison of the prediction results from YOLOv5 models.

10.3389/fpls.2023.1247156

optimization involves a reduction in the number of network
parameters and layers, while maintaining high accuracy in the
target detection tasks. The core objective was to curtail the
computational burden and memory requirements of the network.
The integration of lightweight backbone networks into target
detection models yields substantial advantages, including
enhanced computational efficiency, reduced memory demand,
accelerated inference speed, and increased robustness.
Consequently, they have gained popularity, particularly for
resource-constrained applications. In this context, Andrew
Howard et al. (2019) proposed the “MobileNetV3” architecture in
their research titled “Searching for MobileNetV3” (Howard et al.,
2019). Their work demonstrated that MobileNetV3 outperforms
alternatives such as ShuffleNet (Bhattacharya et al, 2006) and
MobileNetV2 (Sandler et al, 2018) in terms of accuracy,
advanced features, and efficient training. This renders
MobileNetV3 a versatile and effective option, particularly for
resource-constrained devices. Figure 4 illustrates the structure of
MobileNetV3, which includes 1x1 convolutional layers to adjust
channel numbers, deep convolutions in high-dimensional spaces,
SE attention mechanisms for feature map optimization, and 1x1
convolutional layers for channel number reduction (employing
linear activation functions). The network employs residual
connections when the step size is 1, and the input and output
feature maps have the same shape, whereas in the downsampling
stage (step size = 2), the downsampled feature maps are directly
output. MobileNetV3’s architectural contributions are primarily
grouped into the following categories:

Model mAP@0.5 (%) Parameters Model size (MB) FPS
YOLOV5s 78.97 7,276,605 271 ‘ 47.22
YOLOv5m 80.64 7,276,605 80.6 ‘ 39.37
YOLOv5L 82.44 7,276,605 178 ‘ 30.09
YOLOv5x 82.33 7,276,605 333 ‘ 21.25
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FIGURE 4

Structural diagram of the MobileNetV3 network.
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(1) MobileNetV3 leverages deeply separable convolutions and
residual blocks to reduce parameters and computations,
thereby enhancing the computational efficiency.

(2) Fewer layers are used to minimize the memory
requirements and facilitate deployment on resource-
constrained devices.

(3) MobileNetV3 incorporates an SE attention mechanism and
a hard-swish activation function to support data
representation capabilities, while maintaining a modest
parameter count and computational load.

(4) The utilization of hybrid precision training and knowledge
distillation techniques further enhances the training
effectiveness while reducing memory and computational costs.

MobileNetV3 attains state-of-the-art performance across
various tasks while retaining its lightweight and efficient nature.
This results in substantial reductions in computational and memory
costs, rendering it an ideal choice for target detection in resource-
constrained devices. This study refined the MobileNetV3 model to
enhance its suitability as a lightweight backbone network, thereby
achieving higher accuracy and improved network performance.

2.3.3 Acmix: attention-based convolutional
hybrid structure

The Acmix architecture (attention-convolution hybrid),
introduced in 2021, represents a novel neural network
architecture comprising primarily three fundamental modules: an
attention module, a convolution module, and a hybrid module.
The attention module is responsible for capturing essential features
within the input image. Both global and local attention modules
are utilized in the Acmix architecture. The global attention module
captures the image’s broader contextual information, whereas the
local attention module focuses on capturing intricate details
within the image. The primary function of the convolution
module is the feature extraction from the input image. To
achieve this, the Acmix architecture combines the conventional
convolutional layers with depth-separable convolutional layers.

10.3389/fpls.2023.1247156

This integration significantly reduces the computational cost and
memory requirements of the network, thereby enhancing its
overall efficiency. The hybrid module serves as the nexus where
the features extracted by the attention module and convolution
module converge and interact. In this context, the Acmix
architecture uses both global and local hybrid modules. The
global hybrid module harmonizes characteristics from the global
attention module and convolutional module, whereas the local
hybrid module fuses attributes from the local attention module and
convolutional module.

Figure 5 illustrates the hybrid module proposed by Acmix.
The left diagram shows the flowchart of the conventional
convolution and self-attention module. (a) The output of the
3x3 convolutional layer can be decomposed into a summation
of shifted feature maps. Each of these feature maps was generated
by applying a 1x1 convolution with kernel weights at specific
positions, denoted by s(x,y). (b) The self-attention process
involves projecting the input feature maps into queries, keys,
and values, followed by 1x1 convolution. The attention weights
computed through the query-key interaction were used to
aggregate the values. Conversely, the diagram on the right
delineates the pipeline of our module. (c) Acmix operates in
two stages. In stage one, the input feature map underwent
projection using three 1x1 convolutions. Stage two employs
intermediate features using two examples. The characteristics
extracted from both paths are fused to generate the final output.
The computational complexity of each operation block is shown
in the upper corner (Pan et al., 2022). The Acmix architecture has
demonstrated state-of-the-art performance across various
benchmark datasets for image classification tasks, while
maintaining a lightweight and efficient design. The attention and
hybrid modules within Acmix are strategically designed to capture
both global and local features within walnut images, with a
particular emphasis on identifying black spots and damaged
areas on walnuts. Consequently, the Acmix module is
introduced after the SPP module during the feature fusion
phase of the improved model to enhance its performance,
particularly on intricate datasets.
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FIGURE 5
Structure of the hybrid module network in Acmix.
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2.3.4 MetaAconC activation function

MetaAconC = (p; — p,)X6(B.(py — p2)X] + p. X, B,

H W
= SWI WZE EXc,h,w

h=1w=1

1)

In Eq. (1), X represents the input feature map, where X (c,h,w)
denotes the feature input with dimensions of C x H x W. W1 and W2
represent the computed weights; pl and p2 represent adjustable
learning parameters; [ signifies the adaptive function; and &
represents the sigmoid activation function (Nan et al, 2023).
MetaAconC (Ma et al., 2021) is a novel activation function proposed
in 2021 to address the limitations of conventional activation functions.
This is achieved by combining the Meta-AC and CAN functions,
which are known to be vulnerable to the gradient vanishing problem
and can lead to neuron inactivity. The Meta-AC function is capable of
concatenating multiple activation functions and adapting to the specific
input data distribution. The CAN function non-linearly transforms the
output generated by the Meta-AC function, enabling it to capture more
intricate and abstract features. Empirical evidence has shown the
superiority of the MetaAconC activation function over traditional
alternatives, such as ReLU and sigmoid. It offers distinct advantages,
including adaptivity, computational efficiency, and robustness against
noise and outliers. These attributes were substantiated in subsequent
ablation experiments. In the context of our enhanced model, the
original SiLU activation function was replaced by the MetaAconC
activation function. The experimental data underscore its suitability for
walnut image detection.

2.3.5 Improved Yolov5s network structure

In this study, we built upon the architecture of YOLOV5s,
version 5.0, as the foundation for model improvement. The
objective was to address issues related to accuracy, model size,
and detection speed to develop a more appropriate model for the
detection of good and bad walnut fruit targets during the primary
processing stage. The overall enhanced network structure is shown
in Figure 6. In this model refinement, we opted to replace the
original focus layer with CBH and the C3 backbone network

10.3389/fpls.2023.1247156

structure with MobileNetV3 from the M3-Net network. This
alteration was made with the aim of reducing the model size and
ensuring a lightweight and efficient design. Furthermore, we
introduced the attention convolutional hybrid (Acmix) structure
into the neck layer. This addition reduced the computational cost
and memory requirements of the network. The attention and
hybrid modules within the Acmix architecture are strategically
designed to capture both global and local image features, thereby
enhancing the model’s performance on complex datasets. Finally,
we replaced the two Conv2d modules in the neck layer with the
CBM modules. In addition, the SiLU activation function found in
the original Conv layer was substituted with the MetaAconC
activation function. This adjustment is implemented to improve
the input-specific data distribution for tuning, ultimately enhancing
the feature detection across different image scales.

Table 3 provides an overview of the replacement lightweight
backbone network used in this study, with a primary focus on the
incorporation of the M3-Net network to construct the backbone
network of the enhanced model. Table 3 presents detailed
information on various parameters and components. Specifically,
“Input” represents the features of the input layer feature matrix;
“#0ut” represents the number of channels in the output layer feature
matrix; “S” represents the step size of the DW convolution; “exp size”
represents the size of the first up-convolution; “SE” indicates whether
the attention mechanism is employed; “NL” represents the activation
function used; “HS” represents the hard-swish activation function; and
“RE” represents the ReLU activation function. Within the modified
backbone layer of M3-Net, there are primarily four types
of MobileNet_Block:

MNBI1_1: CBH + SE attention mechanism + CB
MNBI1_3: CBR + SE attention mechanism + CB
MNB2_1_1: CBH + CB + SE attention mechanism + HCB
MNB2_2_4: CBR + CBR + CB.

First, the original focus layer was replaced with the
Conv_Bn_Bswish layer, resulting in improved model accuracy,

ceH = cp W80 | (ceR = cp [0
68 = B B | [(caM = cp RSNG|

—‘|-'CBS-CBS
CBS

FIGURE 6
Overall network structure of the improved YOLOv5s-AMM model.
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TABLE 3 Backbone network with the improved model.

10.3389/fpls.2023.1247156

Input Operator Exp size #out SE NL S
640°x32 Conv_Bn_Hswish - 64 - - 1
320%x64 MobileNet_Block,3x3 64 64 3 RE 2
160%x64 MobileNet_Block,3x3 384 128 - RE 2
160°x128 MobileNet_Block,3x3 448 128 - RE 1
80°x128 MobileNet_Block,5x5 512 256 v HS 2
40%x256 MobileNet_Block,5x5 960 256 Y HS 2
40%x256 MobileNet_Block,5x5 512 512 V HS 1
20%x512 MobileNet_Block,5x5 512 512 V HS 2
20°x512 SPP - 512 - - -
20°x256 Acmix - 512 - - 1
20°x256 MobileNet_Block,5x5 512 256 V HS 1

accelerated inference, and architectural simplification. Moreover, the
Conv and C3 components of the original dark2 layer were replaced
with MNB1_3 and MNB2_2_4, while the Conv and C3 components
of the dark3 layer were replaced with two consecutive MNB2_2_4
structures. This replacement strategy employed MobileNetV3_Block
to construct a lightweight backbone network, which not only
enhanced the accuracy in identifying the walnut dataset but also
boosted the network performance efficiency, facilitating faster
convergence and superior generalization effects. Subsequently, we
introduced the Acmix structure after applying the SPP structure to
the output of the final layer. This involved a combination of standard
convolutional layers and deeply separable convolutional layers to
reduce the neocortex size. Consequently, network performance
efficiency was further enhanced, leading to faster convergence. As a
result, when the input image size was set to 640x640, the improved
backbone network generated output feature maps with dimensions of
(20 x 20x1,024), (40x40x512), and (80x80x256). The role of the
neck is to integrate the walnut characteristics extracted from the
backbone into a format suitable for object detection. This component
plays a pivotal role in improving the accuracy of the walnut target
detection model by capturing the walnut features at various scales
and combining them eftectively. This enhances the model’s ability to
detect objects of varying sizes and aspect ratios. In addition, when
replacing the corresponding conv2d module with a CBM module
after the (20x20x1024) and (40x40x512) walnut feature maps,
the MetaAconC activation function in the CBM module surpasses
the performance of the sigmoid function. It is not only adaptive but
also capable of learning based on the specific walnut data distribution.
This is in contrast with the traditional sigmoid function, which
remains fixed and unalterable during the training process. The
MetaAconC function offers high computational efficiency, leading
to an improved detection performance for walnut images at various
scales. Furthermore, it reduces the computational load and memory
usage of the network, resulting in shorter inference times and reduced
hardware requirements. Finally, the head layer produced output
feature maps with dimensions of 80x80x(3x(num_classes+5)),
40x40x(3x(num_classes+5)), and 20x20x(3x(num_classes+5)).
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Here, “num_classes” denotes the number of detected walnut object
classes in the training network, and “3” denotes the number of anchor
boxes used for walnut object detection within each grid cell.

2.3.6 Training the multi-target detection model
for walnuts (good and bad fruits)

To impart the model with more relevant and informative
features, the initial image was segmented into 640x640 pixels,
aligned with the model’s input image size of 640x640 pixels.
Building on this foundation, the model was enhanced using the
proposed improvement methodology. Subsequently, the labelled
walnut dataset was employed for training within the PyTorch deep
learning framework, whereas the validation dataset served as a
means to evaluate the effectiveness and performance of the model
training process.

Table 4 lists the experimental settings used in this study.
Initially, the dataset containing annotations in the VOC format
was converted into a format compatible with the YOLOv5 model.
Subsequently, the parameters governing the training procedure
were configured meticulously. The enhanced YOLOv5s detection
network was then subjected to training with an initial learning
rate of 0.01, eta_min at 1 x 107, last_epoch at —1, momentum

TABLE 4 Experimental settings for this study.

CPU AMD Ryzen 9 5900HX with Radeon Graphics octa-core
Memory 32 GB
Storage SSD 1024GB

Graphics card NVIDIA GeForce RTX 3080

Graphics memory 16GB

Operating System Windows11
CUDA version 11.6

PyTorch version 1.8.0
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parameter at 0.937, delay parameter at 5 x 1073, batch size at 8,
and T_max at 250. The optimization during the training
procedure was executed using an SGD optimizer. Multi-threaded
model training harnessed the computational power of the four
processors, whereas the cosine annealing learning rate was
dynamically updated for optimization during training.
Furthermore, four offline enhancement techniques, including
contrast adjustment, scaling, luminance modification, and the
introduction of pepper and Gaussian noise to the walnut image
data, enrich the contextual information for detecting walnut
objects. These augmentations enhance the perception of
distinguishing between good and bad walnut features, thereby
bolstering the model’s robustness and generalization capabilities.
Notably, the data augmentation network required approximately
6 h and 52 min to complete the training process.

The entire training process was segmented into two distinct phases,
namely, the “freezing phase” and the “thawing phase”, in alignment
with the underlying model structure. During the freezing phase, the
spine of the model remained unaltered and was held constant. No
modifications were made to the ad hoc extraction network. During this
phase, the focus was on training the weight parameters of the
prediction network until they reached a state of saturation and
convergence. Subsequently, the model entered the thawing phase,
wherein the core of the model was no longer constrained and the
weight parameters of the feature extraction network were subjected to
training to optimize the entire set of network weights.

The loss curve in target detection serves as a crucial indicator of
the training progress of the model by monitoring the value of the
LOSS function. This function is a mathematical construct that
quantifies the disparity between the model’s predicted output,
given an input image, and the actual output (i.e., the true value).
Within the context of YOLOVS5, the loss function comprises several
integral components, including localization, confidence, and class
loss. The localization loss is responsible for assessing the precision
with which the model predicts the coordinates of bounding boxes
around objects within an image, whereas the confidence loss
quantifies the level of confidence in the model’s prediction. The
class loss measures the capacity of a model to classify images.

The loss curve indicates the model’s learning progress in
generating accurate predictions after being trained on the dataset.
As the model acquires knowledge from the training data, the loss
progressively diminishes. The objective of training is to minimize
this loss, which indicates that the model makes accurate predictions
on the training data.

As depicted in Figure 7, the initial model observed a notable
reduction in the loss value during the fifth iteration. Subsequently, from
the fourth to the tenth iteration, the loss value stabilized, hovering at
approximately 0.32. Notably, there was no discernible alteration in the
thawing stage, even as the model progressed to the 50th iteration.

Following the unfreezing of the model, the loss decreased
notably between the 50th and 53rd iterations,.from 0.36 to 0.29.
Moreover, between the 60th and 210th iterations, the loss remained
consistently lower than that of the original model. Subsequently, a
comparison between the original and improved models’ loss values
from iteration 210 onwards revealed that the improved model
exhibited a swifter decline in losses between iterations 210 and
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Comparison of epochs trained using original and improved models.

300. Ultimately, the loss values of the improved model stabilized at
approximately 0.142, a reduction of 0.01 points compared with the
original model. These results highlight the superior performance of
the enhanced model in distinguishing between good and bad
walnuts during the convergence.

3 Results
3.1 Model evaluation indicators

To conduct a thorough evaluation of the model’s performance
on multi-target walnut images, we employed eight widely accepted
evaluation metrics that are commonly used in classical target
detection algorithms. These metrics included precision (P), recall
(R), F1 score, average precision (AP), average accuracy (mAP),
network parameters, model size, and detection speed. Throughout
the experimental period, an IoU value of 0.50 was used. To assess
real-time detection performance, this study employed frames per
second (FPS) as the key metric. A higher FPS indicates a higher
model detection rate. Equations (1)-(5) illustrate the specific
formulas for calculating P, R, F1, AP, and mAP.

TP
P= @)
TP + FP
TP
R=TprmN 3)
2PR
F1 — score = —— (4)
P+R
1
AP(k) = / P(R)dR (5)
0
N
o - S0 o
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where TP represents the number of correctly identified walnuts
(true positives); FP represents the instances in which the classifier
incorrectly predicted positive samples among the actual negative
samples (indicating the number of false negative samples); TN
represents the number of correctly identified negative samples;
and FN represents the number of negative samples that were
incorrectly predicted by the classifier.

The F1 value serves as a comprehensive measure of the overall
accuracy of the detection model and is calculated as the average sum
of precision and recall. AP represents a measure of the precision and
recall trade-off for a given detection model by calculating the area
under the recall curve. Higher AP values indicate a better
performance. In equation (6), “N” represents the number of
object categories, “AP (k)” is the average precision for a specific
category (in this study, k=2), and “Y” signifies the sum across all
categories. mAP consolidates accuracy and recall across multiple
object categories, offering a global assessment of the object detection
model’s performance. The scores range from 0 to 1, with higher
scores indicating superior performance. Given the need to evaluate
an integrated object detection network with multiple object
categories and the superiority of the mAP over the F1 score, we
chose to use the mAP score for our assessment.

TABLE 5 Experimental results.

10.3389/fpls.2023.1247156

3.2 Experimental results

Table 5 presents the evaluation results of the enhanced model
using the 201-objective walnut test dataset. The empirical findings
revealed that the improved YOLOv5s model achieved an overall
mAP of 80.78% on the test dataset. Additionally, it attained an F1
score of 0.77, a model size of 20.90 MB, and an average detection
rate of 40.42 frames per second, thus satisfying the real-time
detection requirements. The precision-recall gap across each
category ranged from 2.62 to 4.46%. Furthermore, the cumulative
mAP for both excellent and bad walnuts was 80.78%. In summary,
the enhanced model proposed in this study for the detection of good
and bad walnut fruits demonstrates superior accuracy, minimal
computational overhead, and rapid inference capabilities.

3.3 Effect of the detection performance of
attention mechanisms at various positions

In the context of the original YOLOv5s network, we introduced
the attentional convolutional hybrid Acmix module into both the
backbone and neck layers, as depicted in Figure 8, to explore the

mAP@O0.5 (%) Fl-score Model size
(MB)
Good 75.11 70.65 86.79 0.73
Bad 82.13 ‘ 79.51 ‘ 74.78 0.81 20.9 40.42
All 78.62 ‘ 75.08 ‘ 80.78 0.77
Backbone
| Input(640,640,32)
| Conv_Bn_Hswish(640,640,32)

}/ | MobileNet_Block(320,320,64) o T T T =~ .
! / Neck .
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| v |
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FIGURE 8

Integration of attention mechanisms at different locations in the original YOIOv5s model.
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impact of integrating the attentional mechanism at different
locations within the model. Specifically, after pyramidal pooling
in the SPP space, the final dark5 module at location 1 in the
backbone layer incorporated the Acmix module. The Acmix
module received the output feature maps from the SPP layer and
calculated the channel weights, which were subsequently applied to
the input feature maps. This process emphasized significant regions
while suppressing insignificant ones. Additionally, at position 2,
located after each upsampling and downsampling operation in the
neck layer, another Acmix module was applied.

Table 5 presents the results of comparing the effects of adding
the attention mechanism at various locations. Notably, the addition
of Acmix at location 1 improved the model’s mAP by 1.38%,
increased the model size by a mere 3.2 MB, and reduced the
detection speed by only 4.08 frames per second. However, when
added at location 2, the model’s mAP experienced a marginal
decrease of 0.07%, accompanied by a more significant reduction
in detection speed by 18.83 frames per second. This suggests that
the Acmix attention mechanism may not be universally applicable
to all layers. The reason for this discrepancy lies in the fact that
introducing too many attention mechanisms in location 2 of the
neck layer may diminish the model’s mAP. In addition, the
excessive incorporation of attention mechanisms at location 2
introduces a surplus of additional parameters, potentially
resulting in network overfitting and deterioration in network
performance. The most pronounced enhancement was observed
when Acmix was added at location 1, particularly when compared
with location 2, or when both locations received attention
mechanisms. This is due to the multifaceted scale features
generated by SPP, which aid in the detection of targets of varying
sizes but have weaker interrelationships. Adding the Acmix
attention mechanism after SPP explicitly constructs relationships
between features of different scales, enabling the network to better
leverage these features and subsequently enhance its performance.
Additionally, because SPP generates a surplus of features, some of
which may be irrelevant, the Acmix attention mechanism effectively
filters out these irrelevant features, focusing on the most pertinent
features to reduce feature redundancy. Furthermore, it enables the
learning of novel feature expressions based on the features
generated by SPP, thereby improving the overall feature
representation. Incorporating Acmix attention at position 1
effectively compensated for the limitations of SPP and resulted in
more potent feature expressions.

10.3389/fpls.2023.1247156

3.4 Effect of various attention mechanisms
on detection performance

In the context of the original YOLOv5s model, we introduced
various attention mechanisms from position 1 in Figure 8 to
investigate their impact on the performance of the target
detection model. As shown in Table 6, the addition of the Acmix
attention mechanism exhibited the most substantial improvement
in the mAP performance compared with the original model,
achieving a notable increase of 1.38%. By contrast, the ECA,
CBAM, and SE attention mechanisms displayed comparatively
less improvement in the mAP performance. This observation
underscores that merely applying an attention mechanism after
SPP does not inherently improve model accuracy; rather, its
effectiveness depends on the structural properties of the network
and characteristics of the recognition objects. In this study, we
selected the Acmix attention mechanism due to its superior
performance. Acmix possesses the unique capability of
dynamically adjusting channel weights by calculating the global
attention map for each channel. By contrast, ECA (Wang et al,
2023), CBAM (Woo et al., 2018), and SE (Hu et al., 2018) employ
fixed channel weights. This dynamic adjustment allows Acmix to
highlight critical channel information more precisely, effectively
enhancing the features of the walnut images. Additionally, Acmix
can concurrently capture a more comprehensive spatial-frequency
feature representation by combining location and channel attention
information. The introduction of location attention further
promotes channel attention, thereby enhancing the extraction of
pertinent location features from walnut images. Conversely, ECA,
CBAM, and SE consider only a single type of attention, whether it is
location, position, or channel. Moreover, although model size and
inference speed are crucial considerations, accuracy remains
paramount. As depicted in Table 6, the additional model burden
introduced by Acmix was a mere 3.2 MB, and the reduction in FPS
was a modest 4.08 frames per second. The increase in the
parameters, although present, does not overly complicate the
model. Given that the Acmix hybrid mechanism comprehensively
captures information, combining both spatial and channel
contextual insights and significantly enhancing mAP, the slight
reduction in computational efficiency and detection speed remains
acceptable. Although the task of simultaneously increasing
detection accuracy while maintaining model efficiency is
inherently challenging, the experimental findings suggest that

TABLE 6 Comparison of target detection model capabilities with the addition of various focus mechanisms.

Attention mAPO.5 (%) Parameters Model size (MB)
mechanisms
None 78.97 7,276,605 27.1 47.22
ECA 79.15 7,276,866 27.1 50.95
CBAM 78.90 7,278,751 27.1 51.88
SE 79.69 7,277,629 27.1 51.03
Acmix 80.35 8,106,537 30.3 43.14
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incorporating attention mechanisms can mitigate this challenge to
some extent. For instance, Table 6 illustrates that the inclusion of
attention modules (e.g., Acmix, ECA, etc.) can effectively improve
the mAP with minimal expansion in model size. Among these
mechanisms, Acmix attention stands out by achieving the best
accuracy improvement, driven by its ability to integrate spatial and
channel contextual information. Considering all factors related to
model accuracy, size, and detection speed, the Acmix attention
mechanism emerges as the optimal choice, striking an excellent
balance between accuracy enhancement, model size, and
detection speed.

3.5 Enhancing detection performance for
varied target sizes

The classification of good and bad walnuts was notably affected
by the degreening and drying process. Walnuts typically sold fall
within the size range of 20-50 mm, and the initial processing of
walnuts after degreening and drying significantly influences their
classification. It is particularly crucial to ensure a sufficiently large
field of view in the context of multi-target walnuts to improve
grading efficiency. Additionally, evaluating the recognition
performance of the model for multi-target walnuts in an actual
mixed forward conveying scenario represents a rigorous test of its
capabilities. To investigate the performance of the detection model
for multi-target walnuts of varying sizes in a mixed scene, as
illustrated in Figure 9, we employed 30 small target walnuts
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measuring 20-30 mm, 30 medium target walnuts ranging from
30-40 mm, and 30 large target walnuts spanning 40-50 mm. Each
size category included 10 good walnuts and 20 bad walnuts (10 with
black spots and 10 broken fruits). Additionally, we incorporated 30
walnuts ranging in size from 20 to 50 mm (10 walnuts per size),
featuring 3 good walnuts and 7 bad walnuts in each size (4 with
black spots and 3 broken walnuts). Comparing the small-target
detection results in Figures 9E, I, it becomes evident that the
improved model identified good walnuts within the small-target
category. This improvement can be attributed to the replaced
MobileNetV3 module, which effectively captures multiscale
information through depth-separable convolution, enhancing the
recognition of key features, such as the morphology of small target
walnuts. Upon comparing the target images in Figures 9F, ], the
large target images in Figures 9G, K, and the mixed target detection
images in Figures 9H, L, it becomes apparent that the original
model struggled to identify good walnuts, particularly in the case of
multiple targets, in which simultaneous identification was
problematic. By contrast, the improved model adeptly identified
each individual walnut, significantly enhancing the detection
accuracy of healthy fruits. This improvement can be attributed to
the addition of the Acmix attention mechanism after the SPP layer,
which effectively captures spatial feature information related to
walnut fruit shape and surface texture across multiple scales.
Meanwhile, the MetaAcon activation function is more effective at
expressing non-linear features than SiLU, enabling the extraction of
complex features, such as walnut fruit color, and aids in the
identification of walnuts of varying sizes. Therefore, the improved
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Comparison between the original and improved models for detecting various sizes of mixed walnuts.
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YOLOv5s_AMM model demonstrates enhanced recognition
performance in the mixed recognition of multi-target walnuts at
different scales, maintaining a high recognition count and rate.
Although a single false detection occurred in the small-target scene,
the overall false detection rate remained below 3%. Future research
efforts will address this issue by refining the structure of the model
to detect small-sized targets.

3.6 Ablation experiments

Ablation experiments were performed on the original YOLOvV5s
model to assess the impact of various enhancement strategies on the
detection performance. All improvement procedures were trained
and validated using identical training and validation datasets, and
evaluated using the same test dataset. The experimental results are
presented in Table 7. The original YOLOv5s model achieved an
mAP of 78.97% based on 201 test images. It featured a parameter
count of 7,276,605, model size of 27.1 MB, and FPS of 47.22 frames
per second, as detailed in Table 7. Notably, the three enhancements
proposed in this study yielded positive effects on multiple facets of
the original model. First, replacement of the C3 structure in
MobileNetV3’s backbone network resulted in a notable mAP
increase of 1.54%, reaching 80.51%. This enhancement also
significantly reduced the footprint of the model by 37.6%,
decreased the number of parameters by 39.6%, and boosted the
frame rate by 3.42 frames per second. Subsequently, the addition of
the Acmix module further improved the mAP and frame rate of the
model, albeit not to the same extent as the inclusion of
MobileNetV3 alone. Finally, the integration of the MetaAconc
module into the model facilitated an adaptability to specific input
data during training, culminating in an enhanced performance
across various tasks. This configuration achieved an mAP of
80.78%, featuring 5,424,971 parameters, a model size of 20.9 MB,
and a frame rate of 40.42 frames per second. Following network
optimization, the mAP experienced a 0.59% improvement, with no
changes in the total number of model parameters and detection
speed. Compared with the original YOLOv5 model, the enhanced
model demonstrated a 1.81% improvement in mAP, a substantial
22.88% reduction in model size, and a notable 25.45% decrease in

TABLE 7 Impact of various enhancement strategies on model performance.

10.3389/fpls.2023.1247156

the number of parameters. In conclusion, the method proposed in
this study delivers a rapid high-accuracy detection performance
across small and large scales. This meets the requirements for real-
time detection while maintaining a compact model size.

3.7 Comparative experiments

In this study, we retrained several conventional network models
to assess the performance differences between the improved models
and their established counterparts. We employed a control-variable
approach to ensure the accuracy of the computational results.
Subsequently, we compared the detection results of the various
network models using the same test dataset. The comparative
results are presented in Table 8, highlighting the disparities in the
mAP detection performance, model size, and detection speed. For
multi-target kernel detection, our improved model achieved the
highest recognition accuracy, surpassing the original YOLOv5s
model. Specifically, it outperformed the YOLOv4_tiny (75.47%),
EfficientNet_YOLOV3 (75.95%), MobileNetV1_YOLOvV4 (73.77%),
YOLOV3 (80.56%), and YOLOV4 (80.52%) models by 1.81%, 5.31%,
4.83%, 7.01%, 0.22%, and 0.26%, respectively. Concerning
parameter count, our improved model stood out with only
5,424,971 parameters, which was significantly lower than the
other comparison models. In terms of model size, our model’s
footprint was merely 20.9 MB, making it the most compact, in stark
contrast to the YOLOv4 model’s size of 244 MB and the YOLOv3
model’s size of 235 MB. Furthermore, our improved model
achieved a detection frame rate of 40.42 frames per second,
surpassing the YOLOv4 model by 7.77 frames per second and
EfficientNet_YOLOV3 by 8.32 frames per second. In summary, our
enhanced lightweight walnut detection model excels in recognition
accuracy, boasts a compact model size, and demonstrates superior
inference speed compared with its counterparts.

As shown in Figure 10, We selected images captured from the
actual primary processing grading equipment to represent different
sizes of walnuts, including small targets (20-30 mm), medium
targets (30-40 mm), Each size category comprised 10 good and
20 bad fruits, with 10 each of black spots and broken fruits.
Additionally, we included 30 walnuts ranging from 20 to 50 mm

Model mMAP@O.5 (%) Parameters Model size (MB) FPS

YOLOvV5s 78.97 7,276,605 27.1 47.22

+Acmix 80.35 8,106,537 30.3 43.14
+MobileNetV3 80.51 4,395,327 16.9 50.64
+MetaAconc 80.18 47,098,541 27.2 49.64
+Acmix+MobileNetV3 80.19 5,412,267 20.8 39.34
+Acmix+MetaAconc 79.90 7,908,875 30.3 42.33
+MobileNetV3+MetaAconc 79.91 4,595,039 17.7 52.26
+Acmix+MobileNetV3+MetaAconc 80.78 5,424,971 20.9 40.42
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TABLE 8 Detection results of various target detection algorithms on walnut images.

Model mAP@O0.5 (%) Parameters Model size (MB) FPS
YOLOv5s_Acmix_ 80.78 5,424,971 20.9 40.42
MobileNetV3_MetaAconc (ours)
YOLOV5s 78.97 7,276,605 27.1 47.22
YOLOv4_tiny 75.47 6,056,606 224 111.48
EfficientNet_YOLOV3 75.95 10,776,233 60 321
MobileNetV1_YOLOv4 73.77 12,692,029 51.1 57.06
YOLOV3 80.56 61,949,149 235 48.23
YOLOv4 80.52 64,363,101 244 32.65

The bold values indicate the optimal values corresponding to the four groups of data: map@0.5(%)80.78 has the highest precision and is marked with bold; The number of parameters is 5,424,971,

with the minimum marking thickness; Model size 20.9MB, minimum size; FPS11.48, the fastest detection speed.

(comprising large, medium, and small sizes of 10 each), featuring 3
good and 7 bad fruits (4 with black spots and 3 broken fruits) for
each size. Subsequently, we compared and examined the true results
for each walnut size and category (Table 9). The experimental
findings, in terms of the identification of good, bad, unchecked, and
incorrectly detected walnuts, affirm the improved YOLOv5s_AMM
model’s efficacy and precision in discerning good and bad walnuts
across large, medium, and small targets. Remarkably, there were
minimal instances of unchecked and incorrectly detected walnuts of
different sizes. Notably, the detection of small target walnuts,
characterized by a complex surface morphology and small size,
poses a significant challenge. Although the YOLOV5s,
YOLOV4_tiny, and YOLOv4 models exhibited relatively similar
recognition results to the improved model, occasional cases of non-
detection and incorrect detection were observed, underscoring the
improved model’s superiority. Comparatively, the YOLOv4_tiny
and EfficientNet_YOLOv3 models displayed slightly better results
than the improved model, but with a notable increase in false
detections and non-detections. Conversely, models such as
YOLOV3 and the original YOLOv5s demonstrated ineffectiveness
at detecting good fruits, with a significant number of non-detections
and false detections. In conclusion, the enhanced YOLOv5s_AMM
model consistently demonstrated its effectiveness and precision in
identifying good and bad walnut fruits across varying sizes, as
assessed by a composite set of criteria encompassing good and bad
fruit identification and unchecked and incorrectly detected walnuts.

4 Discussion

This study introduces a rapid non-destructive detection model
designed to enhance the performance of the original YOLOv5s
network for the detection of good and bad fruits within multi-target
samples of dried walnuts. The dataset encompassed specimens that
exhibited both desirable attributes and imperfections, including
instances of black spotting and breakage. It is worth noting that
extant research concerning walnuts predominantly centers on fresh
green walnuts or kernels obtained from orchard trees, as shown in
Table 10. Historical limitations have constrained access to extensive
repositories of high-resolution imagery depicting good and bad

Frontiers in Plant Science

121

dried walnuts, thereby constraining the scope of deep learning
investigations in this domain. Recently, there has been a prevalent
shift towards machine learning and convolutional neural networks
in the context of kernel defect detection. The datasets used in related
literature predominantly consist of single-object images captured
within controlled laboratory environments or images featuring
multiple object sets against the backdrop of orchard settings. In
the interest of equitable assessment pertaining to image
composition, network architecture, and detection efficacy within
the chosen dataset, the findings presented in Table 10 elucidate
discernible enhancements in detection performance achieved
through the deployment of various optimized network
configurations relative to the original model. Consequently, these
results underscore both the effectiveness and necessity of
augmenting the detection capabilities of networks tasked with
discerning multiple objects of diverse sizes.

In this study, we analyzed the experimental results obtained
from the improved YOLOv5s_AMM detection model. The primary
focus of this study was to address the challenge of discerning good
and bad fruit images among multi-target walnuts of varying sizes.
Moreover, we assessed the recognition performance of the
improved model across walnut images with different dimensions.
Within this analysis, we explored the impact of various attention
mechanisms (Table 11) and the influence of different positions of
improvement (Table 6) on the model’s recognition capabilities.
Notably, the enhancements made to the original YOLOv5s model
encompassed the incorporation of the Acmix structure, which
introduces convolutional mixing, following the SPP layer. In
addition, the activation function within the neck layer
convolution was replaced with the MetaAconC activation
function. These improvements were substantiated by the ablation
(Table 7) and comparative experiments (Table 8). The experimental
results presented in this study demonstrate the ability of the
enhanced YOLOv5s_AMM detection model to swiftly and
accurately identify good and bad walnuts within mixed images of
dried walnuts, encompassing multiple targets of varying sizes.
Furthermore, comparative experiments involving diverse
improved modules and different typical target detection networks
contribute to a comprehensive evaluation of the proficiency of the
model in recognizing good and bad walnut fruits.
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Detection performance of mainstream detection networks for good and defective walnuts of various sizes.

In essence, our proposed enhanced network exhibits improved
detection performance, reduced model size, and accelerated
inference speed when tasked with identifying mixed multi-target
dried walnut fruits of varying sizes. This characteristic holds a
significant promise for deployment in resource-constrained edge
devices. In future research endeavours, we plan to prioritize the
refinement of recognition accuracy and the model’s generalization
capabilities. This will entail extending its applicability to encompass
a broader spectrum of walnut variety recognitions. Subsequently,
we aim to implement an improved model within the grading
equipment used in the primary processing stages of walnuts. This
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deployment is envisaged to not only augment the value of walnut
products but also enhance the efficiency of the walnut industry’s
grading processes.

5 Conclusions and future work

This study focused on using photographs of walnuts collected
after degreening, cleaning, and drying as the research dataset. In
response to the distinctive visual attributes of walnuts within the
primary processing context, we developed and implemented a
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TABLE 9 Number of good and bad walnuts detected by mainstream target detection networks for various walnut sizes.

20mm-50mm
good/bad/
uninspected/
misinspected

40mm-50mm
good/bad/
uninspected/
misinspected

30mm-40mm
good/bad/
uninspected/
misinspected

20mm-30mm
good/bad/

uninspected/
misinspected

YOLOvV5s_Acmix_MobileNetV3_MetaAconc (ours) 10/20/0/0 10/20/0/0 9/21/0/1 8/22/0/2
YOLOV5s 9/21/0/1 5/23/2/3 2/27/1/8 3/26/1/4

YOLOVA4_tiny 13/26/1/3 10/20/0/4 8/21/1/1 8/20/2/3
EfficientNet_YOLOv3 2/8/20/0 8/16/6/0 9/20/1/3 6/14/10/3
MobileNetV1_YOLOv4 1/7122/2 2/19/9/3 1/21/8/1 1/14/15/1

YOLOv3 1/20/9/1 0/22/8/3 0/25/5/0 0/23/7/3

YOLOv4 8/22/0/2 6/23/1/3 4/24/0/5 2/27/1/5

The bold values represent the best case for each of these four sets of cases [best for good, bad, undetected, false (quantity) data in different sizes (20-30\30-40\40-50\20-50 \20-50).

TABLE 10 Recent research on target detection in walnut studies.

Objects Networks Dataset conditions mAP F1 Accuracy
Walnut foreign body Machine vision combines two Walnuts, natural foreign objects, and — — 95%
(Rong et al,, 2019) different convolutional neural artificial foreign objects
networks
Pecan abscission, shell, Machine vision combined with Abscission, shell, and embryo areas in both — 95.3% —
and embryo area (Costa Mask-RCNN small (young) and large (old) pecans at ~100%
et al., 2021) multiple growth stages
Green walnut in natural Improved and faster R-CNN Detection of green walnuts in natural 97.71% = 96.12% —
environments (Fan et al., environments (uniform light, uneven
2021) light, overlapping objects, shading, and
varying target sizes)
Green walnut in natural Improved YOLOv3 (MobileNetV3) | Green walnuts on trees in the orchard 86.11% — —
environments (Hao et al., (large targets, small targets, and
2022) backlighting conditions)
English walnut kernel Machine vision combined with a English walnut kernels with different — — “Chandler” model (88.8%),
pericarp colour (Donis- stepwise logistic regression method | coloured peels seedling model (80.4%), and
Gonzalez et al., 2020) “Howard” model (75.1%)
Walnut impurities (Yu Improved YOLOV5 (Transformer Small impurities within walnut kernels 88.9% — —
et al., 2023) and GhostNet)
Walnut fresh fruit (Zhang | Machine vision combining hybrid Identification of fresh pecan fruits under — — 92.48%
et al,, 2016) features with the least squares natural scenes, considering downlight
support vector machines backlighting and branch shading
TABLE 11 Comparison of the effects of adding the attention mechanism at different positions.
Applied position mAPO.5 (%) Parameters Model size (MB) FPS
None 78.97 7,276,605 271 47.22
Position 1 80.35 8,106,537 30.3 43.14
Position 2 78.90 7,833,645 29.2 28.39
All 79.69 8,663,577 324 26.57
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method for detecting multiple good and bad walnut fruit targets. To
support this investigation, we collected a substantial volume of
multi-target walnut images, thereby constructing a corresponding
dataset. To enhance the efficiency of the model while maintaining
its lightweight architecture, we replaced the C3 network in the
original YOLOv5s with MobileNetV3, resulting in an M3-Net
network. Subsequently, we explored the impact of various
attention mechanisms and improvement positions on the walnut
images. Notably, the Acmix structure after the SPP layer was
introduced, integrating attention and hybrid modules to capture
both global and local image features. This strategic modification
reduces network computational costs while augmenting
performance on complex datasets. Furthermore, the MetaAconC
activation function of the CBM module in the neck layer was
replaced with an SiLU activation function from the original Conv
layer. This adaptation improved the distribution of input-specific
data for fine-tuning, thereby enhancing feature detection across
various image scales. Additionally, we assessed the effectiveness of
the model across the walnut images in varying proportions. Finally,
we conducted a comprehensive examination of the different
improvement modules applied to the detection of walnut datasets
within the backbone and neck layers of the Ai model. The
performance of different target detection networks on walnut
datasets were further investigated. The results of these
experiments successfully validated the performance enhancements
achieved by our improved model.

The principal findings of this study are summarized as follows:

(1) Compared with other target detection models, our
improved model exhibited superior performance across
multiple metrics, including detection precision, model
size, parameter size, and detection speed. Notably, our
improved model achieved the highest accuracy, with an
mAP of 80.78. Moreover, it boasted the smallest model size,
measuring 20.9 MB, which was notably 11.7 times and 11.2
times smaller than the model sizes of conventional
algorithms such as YOLOv4 and YOLOV3, respectively.
Simultaneously, the model maintained a detection speed of
40.42 frames per second, aligning with the lightweight
nature of the model suitable for rapid walnut detection
scenarios and substantially outperforming the YOLOv4 and
YOLOvV3 models in terms of speed. These results
underscore the success of the improved model in
achieving greater recognition accuracy, a compact model
size, and rapid performance.

(2) In practical applications, the enhanced model was
employed to distinguish between good and bad fruits of
multi-target walnuts within the test set. Ablation
experiments were conducted to assess its performance,
which resulted in an mAP of 80.78%. Compared with the
original YOLOv5s model, our enhanced model exhibited an
increase of 1.81% in mAP, a reduction of 22.88% in model
size, and a decrease of 25.45% in parameter count, while
maintaining a negligible difference in FPS. Additionally,
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experimental results involving walnut image detection with
varying target sizes indicate improved precision and
robustness.

(3) By leveraging the capabilities of the improved
YOLOv5s_AMM model, which addresses the gap in
detecting walnuts of different sizes after peeling and
drying in the preliminary processing stage, we intend to
apply it to the preliminary processing operations of walnut
processing enterprises. Specifically, the model was
employed for the detection and grading of good and bad
walnut fruits after the peeling, washing, and drying stages.
Our model offers distinct advantages, including a high
recognition accuracy and compact model size.
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Introduction: Nondestructive detection of thin-skinned fruit bruising is one of
the main challenges in the automated grading of post-harvest fruit. The
structured-illumination reflectance imaging (SIRIl) is an emerging optical
technique with the potential for detection of bruises.

Methods: This study presented the pioneering application of low-cost visible-
LED SIRI for detecting early subcutaneous bruises in ‘Korla’ pears. Three types of
bruising degrees (mild, moderate and severe) and ten sets of spatial frequencies
(50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 cycles m™) were analyzed.
By evaluation of contrast index (CI) values, 150 cycles m™ was determined as the
optimal spatial frequency. The sinusoidal pattern images were demodulated to
get the DC, AC, and RT images without any stripe information. Based on AC and
RT images, texture features were extracted and the LS-SVM, PLS-DA and KNN
classification models combined the optimized features were developed for the
detection of ‘Korla’ pears with varying degrees of bruising.

Results and discussion: It was found that RT images consistently outperformed
AC images regardless of type of model, and LS-SVM model exhibited the highest
detection accuracy and stability. Across mild, moderate, severe and mixed bruises,
the LS-SVM model with RT images achieved classification accuracies of 98.6%,
98.9%, 98.5%, and 98.8%, respectively. This study showed that visible-LED SIRI
technique could effectively detect early bruising of 'Korla' pears, providing a
valuable reference for using low-cost visible LED SIRI to detect fruit damage.

KEYWORDS

pears, early bruise detection, classification, machine learning, visible LED
structured illumination
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1 Introduction

Bruising is the most common type of mechanical damage
(Opara and Pathare, 2014), particularly on fruit like pears which
are sensitive to mechanical damage (Celik, 2017). Bruises may occur
when the stress on the fruit surface exceeds the failure stress of fruit
tissue. It is a kind of subcutaneous tissue injury without rupture of
the skin of fruit (Opara and Pathare, 2014; Hussein et al., 2019; Mei
and Li, 2023). The formation of bruise will not only lead to
physiological changes in fruit density, moisture content, browning
degree and firmness, but also accelerate the respiration rate of fruit
and increase the production of ethylene (Khurnpoon and
Siriphanich, 2011; Polat et al.,, 2012; Bian et al, 2020), thereby
accelerating the decay process of fruit and leading to significant
economic losses. However, the non-destructive and accurate
detection of early bruised fruit is extremely challenging.

Many techniques have been used for bruising detection of pears,
including hyperspectral imaging (HSI) (Lee et al, 2014; Fu and
Wang, 2022; Tian et al., 2023), magnetic resonance imaging (MRI)
(Razavi et al., 2018; Razavi et al., 2020), X-ray computed
tomography (CT) (Azadbakht et al, 2019a; Azadbakht et al,
2019b), thermal imaging (TT) (Kim et al., 2014; Zeng et al., 2020),
Optical coherence tomography (OCT) (Zhou et al., 2019), etc. HSI
has been widely used in fruit damage detection and has been proven
effective in this regard. However, its capabilities for detection of
early-stage bruises, especially immediate post-bruise detection, still
require enhancement. Additionally, HSI is too slow and expensive
for commercial applications (Tian et al., 2021). For MRI, CT, OCT,
they can capture high contrast images but equipment cost is an
important consideration factor in practical applications. TI is a
detection technology that does not require a light source. It can
non-invasively convert the radiation of an object into a surface
temperature distribution for bruising detection (Zeng et al., 2020).
However, it has strict temperature requirements, and the fruit may
be affected by the heating/cooling process.

Traditional imaging systems (e.g. HSI, multispectral imaging
and machine vision) commonly used uniform or diffuse
illumination for fruit quality detection, making it difficult to
control light penetration and interaction with biological tissue,
which limits their performance in detecting depth-specific
information such as subsurface tissue bruising in fruit (Lu and
Lu, 2017; Lu and Lu, 2019). Structured illumination (SI) can be used
to enhance the detection of subsurface defects in fruit by varying the
spatial frequency of the illumination to control the depth of light
penetration into the tissue (Li et al., 2023; Li et al., 2024). Depending
on the purpose of the application, SI techniques can be
implemented using either inverse or forward methods. Spatial
frequency domain imaging (SFDI) based on inverse methods can
be used to obtain absorption coefficients and approximate scattering
coefficients of fruit tissue by means of inverse algorithmic diffusion
models (Sun et al., 2019). This method has also been used for bruise
detection in pears (He et al., 2018). Different from SFDI, structured-
illumination reflection imaging (SIRI) is used to enhance the
detection of subsurface damage of fruit in a simpler and faster
way. The pattern image obtained by demodulation can obtain direct
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component (DC) and alternating component (AC) images, in
which the AC image carries depth resolution information and can
be used for the detection of subsurface tissue bruising in fruit (Lu
et al.,, 2016a; Li et al,, 2023). SIRI has now been used to detect
bruises on apples (Lu et al., 2016a) and pickling cucumbers (Lu
et al,, 2021) with good results. Recently, our laboratory developed a
new SIRI system based on light-emitting diode (LED) light source
and monochromatic camera, which can realize fruit detection in
visible light band, and further reduce the cost of SIRI system while
obtaining good subcutaneous damage detection effect. The system
has been used to detect the early decay of oranges (Cai et al., 2022).

The aim of this study was to demonstrate the ability of low-cost
visible-LED SIRI to detect pear bruising at an early stage. The
specific objectives were to: (1) Acquire DC and AC images for
‘Korla’ pears with three types of bruising degrees at ten sets of
spatial frequencies using a visible-LED SIRI system to determine the
optimal spatial frequency combined with a three-phase image
demodulation scheme and contrast index analysis; (2) Extract the
texture features of AC and ratio (RT) images through the gray level
co-occurrence matrix (GLCM) and select the appropriate features
based on the random frog algorithm; (3) Develop the least squares
support vector machine (LS-SVM), partial least squares
discriminant analysis (PLS-DA), and K-nearest neighbor (KNN)
classification models combined with selected texture features to
classify sound and bruised pears; and (4) Evaluate the independent
bruising degree prediction models and mixed bruising degree
prediction model to determine the optimal one for classification
of bruised ‘Korla’ pears.

2 Materials and methods
2.1 Sample preparation

‘Korla’ pears were used in the study. ‘Korla’ pear is a
characteristic fruit in Xinjiang, China. It is famous for its fine
flesh, juicy juice and strong aroma. However, the peel of this pear is
very thin and easily damaged. The ‘Korla’ pears were purchased
from a local fruit store in Beijing, China. The ‘Korla’ pear can be
roughly divided into two distinct maturation periods, namely, the
green maturation period and the yellow maturation period. During
the green maturation period, the skin of the pear appears green,
while in the yellow maturation period, it turns fully yellow. Over the
course of storage, the color of the pear peel undergoes a transition
from green to yellow. Most of the pears sold in the fruit store are in
the green maturation period, but according to the different sales
time, the epidermis of some pears will gradually become yellow,
even full yellow, and some pears also may be reddish in color. In this
study, the color of the pears was not taken into account during the
purchasing process. For all pear samples, green samples accounted
for the majority, with a small amount of red or yellow samples. By a
simple visual inspection, 403 pears (three pears were used for spatial
frequency selection) without external defects were selected as
experimental samples. The pear size varies among them. To
replicate the real detection environment, this experiment
deliberately refrains from making any distinctions.
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The static load range of pear fruit during harvesting, storage and
transportation is 60-200 newtons (N) (Wu et al., 2013). Therefore,
this study selected 50 N, 100 N, and 150 N as the static load pressure
level to induce early bruising in pears. Four hundred pears were
randomly divided into 4 groups, with 100 in each group, which were
sound group (recorded as S0), mild bruise group (recorded as S1),
moderate bruise group (recorded as S2) and severe bruise group
(recorded as S3). The pears were balanced at room temperature
(temperature 24°C, humidity 42%) for 24 h. After that, the 100
pears in the SO group were not treated. The pears of SI, S2 and S3
were bruised by pressing presses. The pressure probe end of the
press is a cylindrical plastic with a diameter of 3 cm and is
connected to a pressure sensor with a display screen. Due to the
high curvature radius of the equatorial part of Korla’ pear, it is
more vulnerable to form bruises during sorting and packaging.
Consequently, the equatorial section of the pear is chosen and
subjected to pressure using a press to induce a static pressure bruise.
During sample preparation, the pear sample was placed
horizontally under the pressure probe of the press. The pear was
placed on a sponge-buffered fruit tray and the handle was slowly
pressed. When the pressure sensor display reached a specific
reading (50N, 100N and 150N represent S1, S2 and S3,
respectively), the pressing was stopped. After standing still for 3
seconds, the handle was slowly loosened and the sample was taken
out. Figure 1A depicts the RGB images of pears exhibiting three
distinct bruise degrees (S1, S2, S3), which also includes the control
group (S0). Figure 1B shows the preparation of bruise samples.

2.2 SIRI system and image acquisition

The SIRI system used in this experiment is mainly composed of
a digital projector (DLP4500, Texas Instruments, Dallas, TX,
United States) with visible LED lights, a monochromatic camera
(MV-CA050-10GM, Hangzhou Hikrobot Intelligent Technology
Co., Ltd., Hangzhou, China) with an adjustable focal length lens
(MVL-MF1628M-8MP, Hangzhou Hikrobot Intelligent
Technology Co., Ltd., Hangzhou, China), two polarizers (PL-D50,
RAYAN Technology Co., Ltd., Changchun, China), a long-wave
pass filter (the cut-off frequency is 450 nm) (GCC-300201, Daheng

FIGURE 1
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New Epoch Technology Inc., Beijing, China), an adjustable sample
stage (600LW-WT, Shanghai Weimu Automation Equipment Co.,
Ltd., Shanghai, China) and a computer that can perform sampling
and data processing (Cai et al., 2022). The projector and the camera
are located directly above the sample to be tested, perpendicular to
the horizontal axis. Additionally, a pair of linear polarizers is placed
in front of the projector and the camera to eliminate specular
reflection. The projector and the camera are connected to the
computer through the data line and controlled by the computer
through the binding software. The basic composition and real
system of the SIRI system is shown in Figure 2. The SIRI system
based on LED light and monochrome camera can obtain SI images
in the visible light band, which further reduces the equipment cost.

Images were collected immediately after static pressure was
applied to each pear. The sample is positioned on the imaging stage
with the bruising area facing upward toward the projector and
camera. The height of the platform is adjusted to accommodate all
sizes of pears before imaging each sample. The distances from the
pear sample to the projector and camera was set at approximately
30 cm. Three phase-shifted sinusoidal patterns (with phase offsets of
-2m/3, 0 and 27/3) in 8-bit bmp format were created in Matlab (The
Mathworks, Inc., Natick, MA, USA) and uploaded to the projector
control software on the computer, and then imported into the
projector for sample illumination. The camera is set to an exposure
time of 50 ms to obtain an 8-bit grayscale image for each pattern
projected onto the sample.

2.3 Image demodulation and processing

The pear pattern image collected from the SIRI system cannot
be directly used for bruising detection, but needs further image
demodulation processing. The image demodulation method used in
this experiment is a three-phase demodulation (TPD) method. It is
a commonly used sinusoidal image demodulation scheme. This
method requires three images with equal phase steps for image
demodulation. Through the SIRI system, three images are obtained
at each frequency, and the phase offsets are —27/3, 0 and 27/3,
respectively (Schreiber and Bruning, 2007). Typically, a two-
dimensional sinusoidal fringe pattern can be represented as follows:

(A) Typical Korla' pear samples (Unpeeled and peeled) with different degrees of bruising (SO: sound, S1: mild bruises, S2: moderate bruises, S3:

severe bruises). (B) Preparation of bruise samples.
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FIGURE 2
Schematic diagram (A) and real system (B) of the SIRI system

L,(x,y) = Ipc(x,y) + Lyc(x, y) cos (27, + 27f, + ) (1)

where Ipc(x,y) and I;c(x, y) are DC and AC, respectively. f,
and f, are the spatial frequencies along the x and y axes, respectively.
According to the experimental requirements, only the spatial
frequency in one direction is required, so f, is 0 in this
experiment. @, is the phase shift of the nth pattern image. In this
experiment, ¢, @, and @5 corresponding to the sinusoidal fringe
patterns I;(x,y), L(x,y) and L(x,y) are —2m/3, 0 and 27/3,
respectively. The DC and AC are the final results obtained by
image demodulation, which can be obtained by the following
equation (for simplicity, the coordinate symbol is omitted).

Inc= 3L +L+ 1) (2)

Lic =2/ =57 + (L LY + (5~ )’ )

The aforementioned equations (3) demonstrate that TPD
exclusively relies on straightforward pixel-by-pixel algebraic
operations, resulting in efficient computation. Moreover, the
subtraction operation effectively mitigates common noise across
the three images, enhancing its robustness. The demodulated image
DC and AC images correspond to the images acquired under
uniform diffuse illumination and the images resulted from the
sinusoidal illumination pattern, respectively. The AC image
contains depth information, which varies with the spatial
frequency of the illumination pattern. Specifically, as the spatial
frequency of the illumination patterns increased, the depth of tissue
interrogation in the AC images decreased (Lu and Lu, 2019).

Although AC image has the ability of enhanced detection, there
are still some deficiencies, such as low intensity, uneven brightness
distribution, and large noise. Since DC images also have similar
problems, the AC image can be divided by the corresponding DC
image to obtain a ratio image RT image to improve the image
quality. RT image can make the image background more uniform
and enhance the image contrast. It is defined as follows:

RT =be = 2 /I -LP+ (I, LY +(L-L? (4
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2.4 Spatial frequency selection

Since the different penetration depths of structured light at
different spatial frequencies, it is crucial to select the appropriate
frequency for accurate detection of pear bruises. Through preliminary
experiments, it was found that the detection effect of bruising was
good when the spatial frequency was between 0 and 500 cycles m™.
Therefore, the spatial frequencies of 50, 100, 150, 200, 250, 300, 350,
400, 450 and 500 cycles m™ were selected for imaging, and the optimal
frequency that can accurately detect the bruises was selected by
comparing the demodulation results. Prior to conducting the
experiment, it is essential to generate sinusoidal fringe patterns with
varying spatial frequencies on the computer. The generation formula
is presented in equation (1). The value I and I, were set to (255/2).
By adjusting the parameters f, or f, within the equation, fringe
patterns corresponding to different spatial frequencies can be
generated. These fringe patterns are visually recognizable, appearing
as densely-packed black and white stripes at higher spatial frequencies,
and sparser black and white stripes at lower spatial frequencies.

The contrast index (CI) is introduced to compare the
enhancement effect of pear bruises at each spatial frequency. CI can
quantitatively evaluate the image contrast, that is, the distinguishability
of the bruised part relative to the whole part of the fruit. It needs to
divide the pear to be detected into two parts, namely bruised tissue and
sound tissue. Afterward, the ratio of the between-class variance to the
total variance of the pixel intensity is calculated to obtain CI:

I = N, (2—2}2 +N,(7-2)*
S G-2)?

®)

where N,, N,, Nare the number of pixels in the bruised, sound
tissue and the whole region, respectively. And X, y and z are the
average strength of the bruised, sound tissue and the whole region,
respectively. The value of CI is between 0 and 1, where a higher value
indicates the better visibility and distinguishability of the bruised area.

Calculating the CI involves segmenting both bruised and sound
areas, which can be challenging to achieve in AC images depicting
mild bruises. On the contrary, RT images are more easily segmented
due to contrast enhancement. Consequently, this study opts to
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employ RT images rather than AC images to calculate CI for
optimizing the spatial frequency. After removing the background
by threshold segmentation, the Otsu threshold segmentation method
(Otsu, 1979) was used to segment the bruise area to obtain the images
of the bruised area, the sound area and the whole fruit area, and then
the CI value was calculated according to Equation (5). The CI values
under different spatial frequencies and different degrees of bruising
were compared, and the optimal spatial frequency suitable for all
degrees of bruising was selected for the next study.

2.5 Feature extraction and selection

Before using the machine learning algorithm to classify the
images of pears, it is usually necessary to extract the features of the
images, and use the extracted discriminant features to represent
the images. Texture is one of the important features used to
identify the object or region of interest in the image. Therefore, the
texture features are also often applied to image classification in the
fruit defect detection (Lu et al., 2021; Cai et al., 2022). Gray level co-
occurrence matrix (GLCM) is a commonly used statistical method for
image processing and texture analysis. It characterizes the texture of
the image by calculating the frequency of pixel pairs with specific
values and specific spatial relationships in the image to obtain GLCM,
and then extracts statistical measures from the matrix. The Haralick
features calculated based on GLCM are functions of distance and
angle. In this study, 56 Haralick features with a distance of 1 were
extracted in four directions (angles 0°, 45°, 90°135°) (Haralick et al,
1973). Therefore, 56 complete feature sets were extracted from each
picture for bruise detection.

Feature selection is the process of selecting available feature subsets
for prediction models. Feature selection serves to eliminate irrelevant or
redundant features, resulting in a reduced feature set that can enhance
model accuracy and decrease computation time. When dealing with
limited data sets, feature selection can improve the generalization
ability of machine learning models and mitigate overfitting
occurrences. The Random Frog algorithm, originally introduced for
gene selection, is a reversible jump Markov chain Monte Carlo
(MCMC)-like algorithm Yun et al. (2013). This algorithm was used
for feature selection. The process of feature selection includes feature
subset search, feature subset evaluation and feature subset verification.
Furthermore, choosing an appropriate stopping criterion can not only
optimize the feature selection process but also reduce the overall
selection time. The core idea of the random frog leaping method is
to randomly select feature subsets. In this study, the performance
evaluation and ranking of these subsets were conducted using the PLS-
DA combined with cross-validation method. The outcomes of the
feature selection were utilized to create a feature subset that will be
employed for subsequent model classification.

2.6 Bruise classification algorithm
The pears with three degrees of bruising were classified. For

each degree of bruising, the data set was randomly divided into
training set and test set according to the ratio of 7:3.
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This study developed three classification methods. LS-SVM is a
variant of the standard Support Vector Machine (SVM). Unlike the
latter, LS-SVM obtains the final decision function by solving linear
equations instead of quadratic programming problems. As a result,
it exhibits excellent generalization performance and requires lower
computational cost (Suykens and Vandewalle, 1999). In this study,
the radial basis function (RBF) kernel function was applied to the
calculation of the LS-SVM, and the regularization parameters of
the LS-SVM model were determined by ten-fold cross-validation.
The purpose was to identify the parameter values that yield the best
performance on the given dataset. PLS-DA is a supervised
classification method, which was developed using the Partial Least
Squares (PLS) algorithm initially designed for multivariate
calibration (Wold et al, 2001). When employing the PLS-DA
model for classification, it is crucial to ascertain the optimal
number of latent variables for modeling. In this study, the
number of latent variables in the PLS-DA model was determined
based on the criterion of the smallest prediction error observed in
the leave-one-out cross-validation. KNN is a widely employed
machine learning algorithm for tackling supervised classification
tasks. It functions by calculating the distance between various
feature vectors and employs cross-validation to determine the
most suitable value of K.

To address the variability introduced by data division, each of
the aforementioned training instances is replicated 30 times. Each
bruise degree and the overall samples were then modeled
independently. The training was conducted using two distinct
image inputs (AC and RT). Subsequently, a fair comparison was
made between the outcomes obtained from the different image
inputs and the three classifiers.

Three commonly used metrics are employed to assess the
effectiveness of various classification models. These metrics
include True Positive (TP), True Negative (TN), and Overall
Accuracy (ACC). The TP and TN rates are computed as the
ratios of accurately classified bruised and sound samples,
respectively, to the total samples in their respective categories.
ACC represents the proportion of all correctly classified samples
to the total number of test samples. The aforementioned
performance indicators are derived from the average values
computed across thirty randomly partitioned datasets utilized
for modeling.

The image preprocessing, feature extraction, and model training
procedures were carried out using Matlab R2017a (The Mathworks,
Inc., Natick, MA, USA).

3 Results and discussion

3.1 Performance of bruising detection
based on different spatial frequencies

Figure 3 shows the basic image processing, including three-
phase demodulation, background segmentation and frequency
domain filtering. Using the three-phase demodulation method,
the collected three SI images can be demodulated to obtain AC
images and DC images. Background segmentation mainly used the
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FIGURE 3

Three-Phase Demodulation and image processing. * Represents the dot product of Mask and DC or AC images.

threshold method to generate the pear area mask to remove the
influence of the background on the bruise detection. Here, the DC
image was used as a reference, and the mask was generated by
manual threshold segmentation. The threshold is manually adjusted
in a small increment to obtain the appropriate value, and the
morphological operation is supplemented to generate the
appropriate mask. Since the detection environment is stable,
the value is used to generate a mask for all samples to segment
the pear area from the image background. In addition, a Gaussian

Frontiers in

low-pass filter was used to denoise the AC images and enhance the
bruise detection effect of the AC images. The processed AC images
were used for the next step of image processing and classification.

displays the DC and RT images of three degrees of
bruising (S1, S2, and S3) captured at different spatial frequencies. It
should be noted that each spatial frequency produces a DC image, but
all DC images remain basically the same. Upon visual inspection, it is
observed that except for the spatial frequency of 50 cycles m™', RT
images at different spatial frequencies can effectively identify the
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RT images and DC images for the mild (S1), moderate (S2) and severe bruised (S3) ‘Korla’ pears at the spatial frequencies of 50, 100, 150, 200, 250,

300, 350, 400, 450 and 500 cycles m™, respectively.

subcutaneous bruising area of pears, while the DC image, equivalent
to the image under uniform illumination, does not show hidden
bruises. In addition, the RT image led to a more uniform image
background. Due to the curvature of the pear surface, the RT image
has a positive effect on the correction of intensity distortions, which
can greatly eliminate the influence of uneven illumination, while the
DC image obviously shows a darker background edge. As the spatial
frequency of the SI increases, the overall brightness of the RT image
decreases. At higher spatial frequencies, as the overall brightness

Frontiers in

decreases, the bruise contrast decreases significantly. The darkening
of RT images at high spatial frequencies can be attributed to the
characteristics of SI. The SI attenuation rate at high spatial frequency
is high, resulting in signal attenuation, so the AC image will be
darkened. The brightness of the DC image at different frequencies
does not change significantly, so the ratio image eventually darkens,
as shown in Equation (4). In general, RT images at all frequencies
except the lowest frequency achieved consistently good performance
in detecting different fresh bruises on pears.
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To further quantify the distinguishability of subcutaneous
bruises in pears, the CI values were calculated for different bruise
degrees at various spatial frequencies, as presented in Table 1. The
table reveals a consistent pattern across different degrees of bruising:
as the spatial frequency increases, the CI initially rises, reaching a
peak at a certain frequency, and then gradually decreases. Indeed,
except for the CI at spatial frequency of 50 cycles m™, bruises at low
spatial frequencies are more distinguishable, which is in line with
the visual observations.

Among them, S1 and S2 samples achieve the maximum CI at
the spatial frequency of 150 cycles m™, whereas S3 samples reaches
its highest CI at 100 cycles m™'. Considering that mild bruises are
more difficult to be detected, it is necessary to focus on the
detectability of bruises in S1 and S2 samples. Moreover, it can be
seen from the table that the CI values at 100 and 150 cycle m™ in S3
are still at a high level. Hence, this study selected 150 cycle m™ as
the final spatial frequency for the subsequent bruise detection of
all samples.

10.3389/fpls.2023.1324152

3.2 Image demodulation results

Figure 5 shows typical samples of three different degrees of
bruising, all of which were detected immediately after the bruising
occurred. These pears underwent varying degrees of bruising when
exposed to different levels of static pressure. With naked eyes
observation, bruises on pears are readily discernible in AC and
RT images, whereas they are almost imperceptible in RGB and DC
images. The bruised area appears as a darker region in the image.
Nevertheless, it is impractical to determine the extent of bruising by
relying solely on the grayscale values in this region. This limitation
arises from the lack of discernible differences in intensity among the
three distinct levels of bruising, particularly in RT image. The RT
image clearly demonstrates effective image enhancement achieved
by the ratio of AC to DC image. The contrast in the RT image is
noticeably higher compared to the AC image, and it successfully
eliminates artifacts resulting from the pear’s surface color and
irregular shape.

TABLE 1 Contrast indexes (Cls) obtained under for different spatial frequencies (cycles m™) three bruise degrees.

T R T

0.205 0.486 0.501 0.478 0.438 0.400 0.359 0.312 0.275 0.235

S2 0.382 0.611 0.625 0.536 0.486 0.433 0.384 0.343 0.309 0.276

S3 0.340 0.592 0.544 0.458 0.393 0.346 0.309 0.280 0.251 0.231
FIGURE 5

Typical RGB, DC, AC, RT images of mild (S1), moderate (S2) and severe (S3) bruise of ‘Korla’ pears.
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It can be seen from the Figure 5 that pears at two maturity stages
(green maturation period and yellow maturation period) can obtain
good detection results. In addition, although some pears have red
stripes, they have no effect on the final detection results including
DC, AC and RT images. However, the irregular shape of pears does
affect the detection results, mainly in DC and AC images, while RT
images completely eliminate this negative influence.

3.3 Bruise classification

The classification outcomes of three classification models (LS-
SVM, PLS-DA and KNN) when AC and RT images were employed
as inputs for independent data were shown in Figures 6, 7,
respectively. The diagrams illustrated that it was viable to employ
visible LED SIRI technique to immediately detect the bruising on
‘Korla’ pears, resulting in a commendable level of detection
accuracy. The detection accuracy of RT images under each
classification model surpasses that of AC images, aligning with
the observations made by visual inspection. The LS-SVM model
exhibits both the highest detection accuracy and the greatest model
stability. When compared to the PLS-DA and KNN models, LS-
SVM demonstrates superior detection outcomes across three bruise
severity levels and two image inputs. When AC images were used as
input, the classification accuracy and stability of the LS-SVM model
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elevate as the degree of pear bruising. Notably, an overall
classification accuracy exceeding 90% can still be achieved in the
identification of mild bruising. From the perspective of ACC, the
classification accuracy of LS-SVM, PLS-DA and KNN models
increased with the increase of pear bruise degree. Among them,
the accuracy of PLS-DA in detecting samples with severe bruise
degree was close to that of LS-SVM model, but its stability was still
not as good as the latter. The KNN model also achieved 92.3% ACC,
but its stability is far less than the former two. In actual production,
the degree of bruising of pears is not the same, which is related to
the environment of pears in production and transportation.
Therefore, the overall detection accuracy of different degrees of
bruising may be more in line with the actual situation. Although the
LS-SVM model achieves high accuracy and stability in the detection
of samples with a single degree of bruising, it’s not very outstanding
in the detection of bruises in mixed samples with three degrees of
bruising due to only 85.6% of sound fruit recognition accuracy.
Therefore, AC images may not be suitable for bruise detection of
pears in commercial production.

When RT images were used as input, the three classification
models show excellent performance in bruise detection accuracy,
and were superior to AC images in terms of detection accuracy and
model stability. Moreover, according to the error bar, the stability of
the LS-SVM model is still higher than that of the other two models.
For individual and combined samples with different degrees of
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Classification results for bruise detection by using three classification models with AC images. (A) Classification results of mild bruises (S1).
(B) Classification results of moderate bruises (S2). (C) Classification results of severe bruises (S3). (D) Overall classification results of the three levels
of bruising. Error bars on the chart signifies the corresponding standard errors of the evaluation index derived from 30 modeling instances.
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Classification results for bruise detection by using three classification models with RT images. (A) Classification results of mild bruises (S1).
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bruising, the three evaluation indexes (TP, TN and ACC) of the LS-
SVM model all exceeded 98%. Notably, when the classification
model was employed for identifying bruises in RT images, it
consistently maintains a high level of accuracy in detecting
bruises of varying severities, with little fluctuation. This shows
that compared with AC images, the detection effect of RT images
is less correlated with the degree of pear bruising. The detection
accuracy of RT images in each degree of bruise was greater than the
best result of AC images in detecting bruises (severe bruises).
Therefore, it is a better choice to use RT images as the basis for
pear bruising detection. Especially, the detection performance is still
very good when the RT image performs mixed detection of pears
with different bruising degrees. Hence, RT image was proved to be a
more favorable option for detecting bruises on pears with varying
degrees. It is feasible to use RT images for bruising detection of
‘Korla’ pears in practice.

In feature selection, different feature subsets will be generated
according to the different division of sample sets. In this study,
based on the random frog feature selection algorithm, the optimal
ten features were selected as feature subsets. With the division of
each data set, the number of times each feature is selected as a
feature subset is counted, as shown in Figure 8. Ten features with
the most selected times are selected to establish a new feature subset.
It can be seen from the figure that the feature subsets of different
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degrees of bruising are not the same, and the feature subsets of AC
images and RT images are also quite different. Among them, the
feature subsets of AC images with different degrees of bruising are
quite different, and there are few common features, while there are
many common features for RT images, which further proves that
the stability of RT image for detection of bruising is higher than that
of AC image. In addition, for the mixed data sets of three bruising
degrees, the feature subset of the AC image only contains the most
frequently selected features in the independent data sets of different
bruising degrees, while the RT image contains many common
features, which indicates that it is easier to obtain the best subset
of features from the feature set of the RT image to achieve the
highest classification accuracy. From the perspective of detection
accuracy, the accuracy of the classification model with AC image as
input will increase with the increase of the degree of bruising, while
the classification model with RT image as input has little difference
in accuracy, which is consistent with the results of feature selection.

Table 2 summarizes the classification accuracy of bruised pears
by three kinds of models established based on ten features. These
features were selected based on the above highest frequency. It can
be noted that different models have varying classification accuracy
for inputs with different degrees of bruising and AC/RT images. The
classification accuracy of the model with RT image as input is still
higher than that of AC image regardless of type of model, and the
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The feature selection results of independent data set and mixed data set of AC image and RT image with mild (S1), moderate (S2) and severe (S3) bruises.
The first ten most discriminative features are selected by the random frog feature selection algorithm, and the frequency of each feature selected when
the data set is randomly divided for thirty times is counted. The top ten features according to selected frequency are highlighted in red.

LS-SVM model is the optimal classification model. The overall
detection accuracies of slight, moderate, severe and mixed degree of
bruising were 99%, 98.11%, 98.44% and 98.64%, respectively. By
using the feature subset with the highest frequency, the LS-SVM
model improved the effect of detecting mild bruises when RT image
was used as input. Further examining the ten selected texture
features, it is found that they mainly come from the Angular
Second Momen, sum entropy, entropy, and maximum correlation
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coefficient in different directions, indicating they, combined with
RT image, are important for detecting ‘Korla’ pear bruises.

4 Conclusion

This study successfully demonstrated the feasibility of low-cost
visible-LED SIRI technique for the early detection of varying
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TABLE 2 The classification accuracy (%) of bruised pears by three kinds of models established based on ten features with the highest frequency of
selection.

S1 89.33 92.33 90.83 84.78 88.78 86.78 77.33 89.89 83.61
S2 92.22 94.00 93.11 85.78 89.22 87.50 85.78 90.89 88.33
e S3 96.11 98.56 97.33 94.56 90.00 92.28 89.67 96.44 93.06
ALL 96.59 88.00 94.44 90.04 94.33 91.11 93.41 79.67 89.97
S1 99.00 99.00 99.00 93.44 92.56 93.00 95.67 97.44 96.56
S2 97.33 98.89 98.11 88.44 93.56 91.00 98.44 98.44 98.44
o S3 98.00 98.89 98.44 99.44 98.89 99.17 96.44 95.78 96.11
ALL 99.11 97.22 98.64 92.26 92.89 92.42 96.78 85.44 93.94

ALL refers to a collection of mild (S1), moderate (S2) and severe (S3) bruising samples.

degrees of subcutaneous bruising in ‘Korla’ pears. The 150 cycles m”
! was determined as the optimal structural illumination spatial
frequency. For detection of three degrees of bruised pears, RT and
AC images were significantly superior to DC images, and RT image
was best due to the ability of enhanced image contrast and
brightness unevenness correction. Texture features can serve as
important features for classifying bruised and sound pears and
random frog was an effective texture feature optimization
algorithm. Among three types of texture feature models (LS-
SVM, PLS-DA and KNN models), the LS-SVM model exhibited
superior detection performance with the highest detection accuracy
and stability, regardless of single bruising degree classification or
mixed bruising degree classification. The LS-SVM model
established using ten appropriate features extracted from RT
images achieved classification accuracies of 98.6%, 98.9%, 98.5%,
and 98.8% for mild, moderate, severe and mixed bruises,
respectively, indicating the outstanding ability of the proposed
methodology in detecting the bruising of pear fruit in this study.
Subsequent study should improve the hardware system and
algorithms so that this low-cost SIRI technique can be
implemented for online detection of pear bruising. Furthermore,
the capacity for the early bruising detection of other thin-skinned
fruit (e.g. apple and peach) should be also assessed to expand the
application of this technology.
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Introduction: Tannin content and postharvest quality characteristics of
persimmon fruit are often determined by the destructive analysis that
consumes time, does not allow the acquisition of data from the same fruit
continuously, and requires expensive high-performance equipment. This
research was done to investigate the potential for non-destructive
estimation of astringency and quality parameters in persimmon fruit based
on visible/near-infrared (VNIR) spectra.

Methods: VNIR spectra readings, the reference tannin content, and quality
parameters were measured from fruits of “Cheongdo-Bansi” and "Daebong”
persimmon cultivars at harvest and throughout the ripening/deastringency
period. The spectra readings from half of the total fruit were utilized for the
calibration set, while the other half readings were used for the prediction set.
To develop models correlating the spectra data to the measured reference
parameters data, the partial least square regression (PLSR) method
was utilized.

Results and discussion: In the case of '‘Daebong’, the coefficients of
determination (R?) between VNIR spectra and the actual measured values
of TSS, firmness, simple sugars, and tannin content were (0.95, 0.94, 0.96,
and 0.96) and (0.93, 0.89, 0.96, and 0.93), for the calibration and prediction
sets, respectively. Similarly, the R2-values of (0.86, 0.93, 0.79, and 0.81) and
(0.83, 0.91, 0.75, and 0.75) were recorded in ‘Cheongdo-Bansi’ for the
calibration and prediction sets, respectively. Additionally, the acquired data
were divided into two sets in a 3:1 ratio to develop predictive models and to
validate the models in multiple regressions. PLSR models were developed in
multiple regression to estimate the tannin content of both cultivars from
firmness and simple sugars with R%-values of 0.83 and 0.79 in ‘Cheongdo-
Bansi’ for the calibration and prediction sets, respectively, whereas, R2-values
of 0.80 and 0.84 were recorded in ‘Daebong’ for the calibration and
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prediction sets, respectively. The overall findings of this study showed the
possibility of using VNIR spectra for the prediction of postharvest quality and
tannin contents from intact persimmon fruit with quick, chemical-free, and
low-cost assessment methods. Also, the multiple regression using
physicochemical parameters could fairly predict the tannin content in
persimmon fruit though destructively but save time and low-cost.
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1 Introduction

Persimmon (Diospyros kaki Thunb.) probably originated in
China and has been mainly grown in China, Korea, and Japan as
a relevant food source from prehistoric times (Parfitt et al., 2015). In
2021, China, the Republic of Korea, and Japan contributed 96% of
the world’s persimmon production (FAOSTAT, 2021). According
to FAOSTAT (2021), persimmon production in the Republic of
Korea was 200,610 tons from the total Asia and world production of
4.16 and 4.33 million tons, respectively. Persimmon fruit classifies
as either astringent or non-astringent, and it is a delicious and
healthy fruit rich in vitamins, minerals, and antioxidants which are
associated with numerous health benefits (Park et al., 2017; Das and
Eun, 2021). ‘Cheongdo-Bansi’ and ‘Daebong’ are commercially
important astringent persimmon cultivars that are commonly
grown in the Republic of Korea due to their adaptability to the
environment and excellent taste and texture (Park et al., 2017; Park
et al., 2019). Tannins are polyphenol compounds with a high
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molecular weight that cause astringency due to their large
hydroxyl phenolic groups (Cortés et al, 2017). The soluble
tannins gradually turn into insoluble tannins as the fruit ripens
and the fruit become less astringent (Noypitak et al., 2015; Cortes
et al, 2017). In non-astringent persimmon, soluble tannin is
reduced naturally during ripening, while in astringent
persimmon, a high level of soluble tannin is maintained when it
is not fully ripe and fruits cannot be eaten during the commercial
harvest stage because of their higher levels of soluble tannins
(Yamada et al, 2002; Akagi et al, 2009; Das and Eun, 2021).
Fruits of both ‘Cheongdo-Bansi’ and ‘Daebong’ cultivars,
however, undergo rapid softening after harvest, and by the time
astringency is low enough to be palatable, the fruits become too soft.
Conversely, firm textured fruits which are suitable for distribution
are astringent. This astringency can cause a dry or puckering
sensation in the mouth that can be unpleasant (Das and Eun,
2021). Hence, it requires rapid ripening or removing the
astringency from persimmons for agreeable palatability.
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However, many studies were reported to achieve fast removal of
astringency from persimmon including ethylene (Park et al., 2017;
Park et al., 2019), high concentrations of CO, (Arnal and Del Rio,
2003; Salvador et al., 2007), ethanol (Ortiz et al,, 2005), high (Ben-
Arie and Sonego, 1993) and freezing (Das and Eun, 2021)
temperatures treatments. Treatments with ethylene and high
concentration of CO, (high CO,) are the most widely used
commercial techniques that promote fast ripening and
astringency removal, respectively (Cortes et al., 2017; Park et al,
2017). Ethylene treatment causes rapid expression of ripening-
related genes (Park et al., 2017; Park et al, 2019), and exposing
the fruit to a high CO, promotes the accumulation of acetaldehyde
due to anaerobic respiration in the fruit. The soluble tannins
become insoluble as they react with the acetaldehyde and the
astringency is thus eliminated (Cortes et al., 2017).

Firmness is the main difference between the persimmon fruit
deastringed by the treatment with ethylene and the high CO,. Fruit
treated with ethylene becomes softer, and acquires a jelly-like
consistency which is difficult to distribute. Yet, some consumers
prefer the taste and store it in a deep freezer for future use after fully
ripens. On the other hand, the firm texture of the fruit is maintained
during deastringency with the high CO,, appreciated by the
industry and consumers in its suitability for distribution (Munera
et al., 2017a). Therefore, optimum ripening and astringency
removal are required to avoid loss of fruit quality caused by high
concentration or long treatment and residual astringency due to low
concentration or short treatment of ethylene or high CO, (Arnal
et al., 2008; Novillo et al., 2014; Park et al.,, 2017). Hence, it is
important to measure tannin contents during the treatment periods
to ensure optimum ripening and deastringency.

The common methods used to measure the changes in tannin
contents during ripening and astringency removal are usually
destructive and thus the same fruit cannot be monitored
continuously. The analysis also requires expensive high-
performance equipment and consumes time. Therefore, having a
reliable, low-cost, fast, and easy-to-implement method for tannin
determination in persimmons is a useful tool for astringency
management during postharvest handling and distribution.
Predictive models developed by using visible and near-infrared
(VNIR) spectroscopy and color variables are among the most
common techniques currently used for the prediction of
secondary metabolites such as lycopene and B-carotene in
tomatoes and o-solanine and o-chaconine in potatoes (Tilahun
et al,, 2018; Tilahun et al.,, 2020). The interaction between VNIR
range spectra and the organic molecules that make up a compound
helps to obtain qualitative and quantitative information from the
spectra (Pasquini, 2003; Tilahun et al., 2020).

Cortes et al. (2016) predicted the internal quality (combination
of total soluble solids (TSS), firmness, and flesh color) of mango
with VNIR reflection spectroscopy. Noypitak et al. (2015) also
developed PLSR models to evaluate tannin content in astringent
‘Xichu’ persimmon and recommended NIR interactance
spectroscopy for optimal prediction of soluble tannin content. In
addition, Cortes et al. (2017) also reported the possibility of
determining astringency through reflectance VNIR spectra at
selected points in intact and half-cut ‘Rojo Brillante’ persimmon
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fruit. Similarly, Son et al. (2009) predicted sugar contents in a sweet
persimmon using reflectance spectra. Most of the previous works if
not all, used CO, treatment to remove the astringency of
persimmon during nondestructive estimations. However, more
samples at different levels of astringency and softening are needed
to ascertain the prediction power of astringency and ripening
quality to fulfill the demands of both consumers and the industry.
Thus, this study included the treatment with ethylene or high CO,
and untreated control of the intact ‘Daebong’ and ‘Cheongdo-Bansi’
persimmon fruits. This work determines the possibility of
nondestructive estimation of astringency and quality parameters
including TSS, firmness, and simple sugars by using VNIR
spectroscopy in transmittance mode, in combination with a
multivariate analysis technique, to predict the changes in quality
and tannin content of persimmon fruits during ripening
and deastringency.

2 Materials and methods

2.1 Plant material, treatments and storage
at ambient condition

Astringent persimmon fruits (Diospyros kaki Thunb. ‘Cheongdo-
Bansi’ and ‘Daebong’) were harvested from Jeollanamdo, Yeoungham,
Korea on 28 Sept. 2022. After harvest, 150 uniform fruits free of
external damage were selected from each cultivar. Within 12 hours of
harvest, the fruits were then brought to the postharvest laboratory at
the Department of Horticultural Sciences, Kangwon National
University, Korea. After keeping at ambient condition for 3 hours to
remove field heat, uniform fruits free of defects were carefully
reselected and divided into three groups (control, ethylene
treatment, and high CO, treatment, 40 fruits each) for both
cultivars. So, 120 fruits of each cultivar were used for the
experiment. The treatment groups were treated separately with 100
mg kg’1 ethylene (Park et al., 2017) and 95% CO, (Arnal et al., 2008)
for 24 h in a sealed 62 L container at 22°C. The control fruits were
treated under similar conditions without ethylene and CO, treatment.
The fruits were characterized as 117.8 + 1.96 and 271.5 + 1.73 g of
fresh weight, 20.29 + 0.8 and 19.26 + 0.9 N of firmness, 16.93 + 0.5 and
17.48 + 0.4% of TSS, and 4.68 + 0.2 and 4.98 + 0.3 g kg'' of soluble
tannin at harvest for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively.
To include different levels of astringency, data for the destructively
collected parameters (tannin content, firmness, TSS, and simple
sugars) and spectroscopic measurements of the intact fruits were
acquired at harvest, on the first day after harvest, and at 3-day intervals
afterward until the fruit attain the end of their shelf life (Figure 1). The
number of fruits at each measurement day was started with five fruits
at the beginning of the storage and decided afterward to 5-10 fruits
based on the fruit status.

2.2 VNIR spectral acquisition and analysis

In accordance with Tilahun et al. (2020; Tilahun et al., 2018),
each individual intact fruit of the ‘Cheongdo-Bansi’ and ‘Daebong’
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FIGURE 1

Changes in firmness and soluble tannin content of the control and ethylene or high CO, treated ‘Cheongdo-Bansi’ (A, C) and ‘Daebong’ (B, D)
persimmon fruit during storage at 22°C. Each data point indicates 5-10 fruits. The number of fruit at each measurement day was started with five
fruits at the beginning of the storage and decided afterward to 5-10 fruits for each measurement based on the fruit status.

cultivars were scanned in the transmittance mode in the spectral
region of 500-1100 nm using three (12 V/100 W) halogen lamps as
a source of VNIR light. Fruit holder was used to keeping the fruit
right above the detector (Figure 1B). The integration time was set to
100 ms and the measurement was done 12 times from different
directions. The fruit was placed on the fruit holder to prevent it
from falling, and the fruit holder was rotated above the detector to
avoid the interference of scanning by human hand (4 positions on
stem-end plane, middle plane, and stylar-end plane (Noypitak et al.,
2015) per fruit) to introduce variability within the fruit samples. For
each measurement, a total of 3500 data points was captured at 0.2
nm sampling intervals. The VNIR spectrometer was linked to a
computer to transfer data. A total of 1440 spectra readings from 120
fruits for ‘Cheongdo-Bansi’ and 1440 spectra readings from 120
fruits for ‘Daebong’ were acquired from the intact persimmon fruit
throughout the ripening/deastringency period. After removing
outliers, a total of 1200 spectra readings (10 readings per fruit)
were chosen for analysis from each ‘Cheongdo-Bansi’ and
‘Daebong’ (Figure 2). For each cultivar, the spectra readings from
half of the total fruit (600 readings from 60 fruits) were utilized for
the calibration set, while the other half readings (600 readings from
60 fruits) were used for the prediction set using the leave one sample
out procedure to separate the sample sets. The original spectra were
transformed by multiplicative scattering correction (MSC), first
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derivatives, the Hanning window, and standard normal variate
(SNV) to remove undesired information and reduce systematic
noise. The prediction was based on the lowest predicted residual
error sum of squares (PRESS) value, which was used to determine
the ideal number of latent variables for the partial least squares
regression (PLSR) model. To determine a linear relationship
between measured references and spectral data, MATLAB R2012b
(Version 8.0.0.783, The Math Works, Inc., Natick, MA, USA) was
used to conduct PLSR regression analysis. RMSEC (root mean
square of standard error in calibration), RMSEP (root mean square
of standard error in prediction), coefficient of determination for
calibration (Rc?) and prediction (sz) were used to evaluate the
performance of the developed PLSR models. A predictive model
with higher sz, small bias values and lower RMSEP is considered
as a reliable prediction model.

2.3 Measurements of fruit quality
parameters and analysis

The measurements for firmness, TSS, soluble tannin content,
fructose and glucose content were made from each whole fruit
according to the methodology implemented in our laboratory and
described by Park et al. (2017). A Rheo meter (Sun Scientific Co.
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Transmittance energy spectra curves obtained from and ‘Cheongdo-Bansi’ (A) and ‘Daebong’ (B) persimmon fruit by using VNIR spectrometer.

Ltd., Tokyo, Japan) with a 10 kgf maximum force of penetration
and a 3 mm round, flat-ended stainless-steel probe was utilized to
measure the firmness of the intact persimmon fruit with a probe
speed of 1 mm/s around equatorial area of each fruit. TSS was
measured by utilizing a digital refractometer (Atago Co. Ld., Tokyo,
Japan) and 5 g of homogenized persimmon pulp juice from each
whole fruit. Glucose and fructose contents were measured in
accordance with the method employed by Park et al. (2016); 5 g
of each whole fruit’s frozen pulp sample was added to 50 mL of
distilled water, homogenized, and then the juice was centrifuged
(Mega-17R, Hanil Science Industrial, Korea) at 12,578 x g for
10 min and the supernatant was filtered through 0.45 pum
membrane filter (Advantec, Tokyo, Japan). The analysis was
carried out using HPLC with a RI detector (Waters 410
Differential Refractometer, Waters, MA, USA) and a Sugar-Pak
™ column (6.5 x 300 mm, Waters, USA) with an injection volume
of 10 uL. Soluble tannin content was measured with the modified
Folin-Dennis method (Park et al., 2017). Samples of 5 g from whole
fruit were added directly into a solution of 25 mL of 80% methanol.
Then, 6 mL of distilled water was added to 1 mL of filtered
supernatant sample solution. The mixture was then vortexed after
0.25 mL of 2 N Folin-Ciacalteau reagent had been added. Saturated
Na,COj; (1 mL) and distilled water (1.5 mL) were added after 3 min.
Following a 1 h incubation period at 25°C, the absorbance of mixed
sample was measured with a spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) at 725 nm, and the results were
reported as g kg ' on a fresh weight basis.

To perform PLSR models using the above spectra readings (10
readings per fruit) obtained from different directions of a fruit,
measured data for reference parameters (tannin, firmness, SSC,
glucose, and fructose) were collected from a total of 240 fruit
samples. These samples comprised 120 fruit from each of
‘Cheongdo-Bansi’ and ‘Daebong’, with 8 replications per fruit
sample, and the mean value of each 4 replicates was used as the
fifth value for each parameter to make 10 replicates per fruit to get a
one to one fit with the spectra readings.

To examine the effectiveness of multivariate regression models
to estimate tannin content (astringency), the values of the collected
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parameters were divided into calibration and prediction sets using
the leave one sample out procedure to separate the four sample sets.
Fruit quality parameters were collected from both cultivars
throughout the storage period, and the data were divided in to
3:1 ratio. 80 fruit samples were used for calibration, and 40 fruit
samples were used for prediction. A total of 240 fruit samples
(‘Cheongdo-Bansi’ and ‘Daebong’, 120 each) were used for the
experiment in 8 replications per fruit sample and the mean value
was calculated for analysis. The measured reference parameters
(tannin, firmness, SSC, glucose and fructose) were organized in
excel, where the rows represented the number of samples (the total
of 120 averaged value from 120 persimmons for each cultivar), and
the columns represented the number of variables (X and Y
variables). The X-variables, or predictors, were the values of
measured firmness, SSC, glucose and fructose values associated
with each sample. The Y-variables, or response, were the measured
tannin values associated with each sample. Multivariate PLSR
models were developed from calibration data set and the
measured reference data of each parameter were compared to the
predicted data obtained by PLSR models in both the calibration and
prediction data sets. A predictive model with higher Rp?, lower
RMSEP, and higher ratio of prediction to deviation (RPD) is
thought to be a good prediction model. RPD is calculated by the
ratio of SD to RMSEC/P, where SD is the standard deviation of the
observed parameters. If the RPD value is less than 1.5, the
calibration is not usable. When the RPD is between 1.5 and 2.0, it
becomes able to distinguish between high and low values, but when
it is between 2.0 and 2.5, it becomes possible to make approximate
quantitative predictions (Cortes et al., 2016).

3 Results

31 Firmness and soluble tannin content of
persimmon during ripening/deastringency

Figure 1 shows the changes in firmness and soluble tannin
contents of the control and ethylene or high CO, treated
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‘Cheongdo-Bansi’ and ‘Daebong’ persimmon fruit during storage at
22°C. The firmness and soluble tannin data showed significant
differences between the treatments starting from the first day.
Ethylene treated fruits ripened faster, became softer, and acquired
a jelly-like consistency which reduced their storage life up to 13 and
7 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively, compared to
the controls that reached 19 and 16 d for ‘Cheongdo-Bansi’ and
‘Daebong’, respectively. Conversely, high CO, treatment hastened
deastringency and maintained firmness and stored up to 19 and
10 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively. Ethylene
treatment hastens softening in both cultivars while high CO,
maintained firmness and prolonged the storability of both
cultivars, and its effect was distinctly higher in the case of
‘Cheongdo-Bansi’ (Figure 1).

FIGURE 3

10.3389/fpls.2023.1260644

32 VNIR spectra vs. reference analysis

In this study, transmittance energy spectra of ‘Cheongdo-Bansi’
and ‘Daebong’ intact astringent persimmon fruit were recorded by
VNIR spectrometer (Figures 3A, B) in the wavelength of 500-1000
nm as shown in Figures 2A, B. As indicated in Figure 2, differences
were observed in the raw transmitted spectra characteristics of the
two cultivars. More scattered spectra were observed in ‘Cheongdo-
Bansi’ than ‘Daebong’.

In addition to the PLSR models for the estimation of tannin
contents to determine astringency levels of the two persimmon
cultivars, PLSR models were also developed to predict postharvest
quality parameters such as firmness, TSS, and simple sugars
(glucose and fructose). Table 1 shows the essential data for VNIR

Light source

Light source Light source

dy O %

Detector

VNIR spectrometer (A) and measurement system (B) during transmittance spectra measurement of intact persimmon fruits.

TABLE 1 Firmness, TSS, simple sugars and soluble tannin content data used for VNIR modeling and multiple regressions.

Storage duration (days)

Cultivars Parameters Treatments
7 10
Control 20.29 20.14 19.27 18.79 15.48 13.88 11.87 10.83
+0.79 +0.47 + 1.02 +0.79 +0.72 +1.49 +0.84 +0.45
20.29 18.12 17.08 16.38 14.54 14.41 12.02 11.34
Firmness (N) High-CO,
+0.79 +0.90 + 1.29 +0.68 +0.42 +0.75 +0.33 +0.39
20.29 11.18 6.10 4.24 3.68
Ethylene 4.5+ 0.69 - -
+0.79 +0.39 +0.35 +0.87 +0.87
16.93 17.15 17.48 19.41 19.43 18.55 20.04 19.39
Cheongdo- Control
Bansi + 1.12 +0.79 +0.45 +0.37 +0.24 +0.34 +0.42 + 0.56
ansi
16.93 15.25 15.02 15.83 16.69 16.31 17.10 18.30
TSS (%) High-CO,
+1.12 +0.43 +0.15 +0.59 +0.18 +0.34 +0.51 +0.70
16.93 15.55 16.90 16.98 17.96 20.11 21.08
Ethylene B
+ 1.12 +0.29 +0.32 +0.55 +0.36 +0.86 +0.63
Gl Control 5822.23 6269.41 6030.09 7558.36 7833.15 7969.14 8618.81 8760.82
ucose
-1
(mg kg™) High-CO, 5822.23 5202.74 5585.59 6070.89 6297.67 6564.06 6630.25 6404.56
(Continued)
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TABLE 1 Continued

10.3389/fpls.2023.1260644

Storage duration (days)

Cultivars Parameters Treatments
7 10
Ethylene 582223 5808.23 604838 6044.46 6534.75 6678.41 6448.98 -
Control 5865.22 6178.98 5891.16 7146.67 7328.13 7461.81 7944.08 7986.70
Fructose .
(mg kg™ High-CO, 5865.22 450256 | 475130 5146.50 5366.50 5523.44 5357.71 5139.43
Ethylene 5865.22 5300.90 5506.17 5412.71 6110.06 6303.45 5996.22 -
468 469 5.53 5.23 478 528 5.14 5.37
Control
+0.09 +0.03 +0.01 +0.01 +0.07 +0.09 +0.01 +021
Soluble tannin HiehCO 468 3.16 275 1.80 3.19 2.89 272 221
(gkg" gn-2 +0.09 +007 +0.05 +0.15 + 001 +004 +026 +0.01
468 480 517 488 459 3.82 353
Ethylene _
+0.09 +001 +0.00 +0.01 +0.04 +0.01 +0.09
19.26 18.89 17.13 17.15 14.79 9.65 8.79
Control _
+0.59 + 111 +0.60 +0.86 +0.80 +0.62 +0.17
19.26 15.44 13.90 7.24 623
Firmness (N) High-CO, - - -
+0.59 +0.71 +1.06 +131 +2.04
19.26 1037 2.92 2,05
Ethylene - - - -
+0.59 +041 +0.17 + 006
17.48 18.60 18.25 19.76 18.61 1731 15.20
Control _
+0.73 +041 +0.40 +0.59 +220 +0.89 +1.01
17.48 15.69 14.65 16.40 15.89
TSS (%) High-CO, - - -
+0.73 +028 +041 +0.39 +045
17.48 1548 1481 16.03
Ethylene - - - -
+0.73 +0.59 +0.57 +033
Dacbong Control 493313 5108.14 5006.48 5371.05 5858.40 5499.64 5861.58 -
al
reose High-CO, 4933.13 4979.20 422452 521059 5369.60 - - -
(mgkg™)
Ethylene 4933.13 452383 5006.09 5515.52 - - - -
Control 4032.12 4162.41 4097.25 435354 | 4727.80 445336 475139 -
Fruct
ructose High-CO, 14032.12 378834 3242.84 3817.81 401023 - - -
(mg kg™)
Ethylene 4032.12 3558.48 3919.92 417434 - - - -
497 479 5.09 523 479 5.00 5.10
Control -
+0.03 +0.02 +0.02 +0.02 +0.07 +0.03 +0.10
Soluble tanni 497 3.60 3.46 3.12 2.52
oluble innln ngh_(:02 _ B _
(gkg™) +0.03 +0.23 +0.20 +031 +0.02
497 476 2.32 212
Ethyl - - - -
thylene +0.03 +005 +0.01 +0.03

Ethylene treated fruits ripened faster, became softer, and acquired a jelly-like consistency which reduced their storage life up to 13 and 7 d for ‘Cheongdo-Bansi’ and ‘Daebong’, respectively. The

number of fruits at each measurement day was started with five fruits at the beginning of the storage and decided afterward to 5-10 fruits for each measurement based on the fruit status.

modeling and multiple regressions. Promising results were recorded
for both cultivars with higher predictive models in ‘Daebong’ than
‘Cheongdo-Bansi’. In ‘Cheongdo-Bansi’, Rc®> and RMSEC for
measured vs. VNIR values of tannin in the calibration set were
0.81 and 0.83 g kg™, respectively. Similarly, Rp*> and RMSEP for
measured vs. VNIR values of tannin in the prediction set were 0.75
and 0.52 g kg’l, respectively (Figures 4A, B). On the other hand, in
‘Daebong), Rc? and RMSEC for measured vs. VNIR values of tannin
in the calibration set were 0.96 and 0.21 g kg, respectively, while
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Rp” and RMSEP for measured vs. VNIR values of tannin in the
prediction set were 0.93 and 0.27 g kg'', respectively
(Figures 4C, D).

The same trends of higher predictive models were also observed in
‘Daebong’ than ‘Cheongdo-Bansi’ for measured vs. VNIR values of
firmness, TSS and simple sugars. In case of firmness, Rc? and RMSEC
were 094 and 131 N, and 0.93 and 1.35 N in ‘Daebong’ and
‘Cheongdo-Banst, respectively (Figures 5A, C). Correspondingly, Rp*
and RMSEP were 0.89 and 1.83 N, and 0.91 and 1.49 N for ‘Daebong’

frontiersin.org


https://doi.org/10.3389/fpls.2023.1260644
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

10.3389/fpls.2023.1260644

Baek et al.
A Calibration for PLS model B Prediction for PLS model
8 8
7 7
-
w
§ o R e
Qs E
g =5 s
g 3 E
= 3 )y
8 4 R2=0.8127 4 R =0.7480
6 SEC = 0.8328 g kg'! ’ SEP=0.5215 g kg'!
3 Factor # =21 3 Bias =-0.0251 g kg'!
2 2
2 3 4 5 6 7 8 2 3 4 5 6 7 8
NIR Value NIR Value
C - D -
Calibration for PLS model Prediction for PLS model
o5 _— os e
6 6
55 55
5 5 -
gﬁ Q45 v 45 ,
K] 3
22 L .
Q 3 E] .o
C 35 G35
A< R2 = 0.9606 < R2=0.9297
3 L
SEC =0.2083 g kg'! 3 SEP=0.2735 g kg'!
25 Factor # = 21 25 [ Bias = 0.0086 g kg
2 2 -
15 15
15 2 25 3 35 4 45 5 55 6 65 15 2 25 3 35 4 45 5 55 6 65
NIR Value NIR Value
FIGURE 4

Measured vs. predicted values of tannin content (g kg™) in ‘Cheongdo-Bansi' for calibration (A) and prediction (B), and '‘Daebong’ for calibration (C)
and prediction (D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted value of
tannin content and the y axis represents the measured value by the PLS models.

and ‘Cheongdo-Banst, respectively (Figures 5B, D). Rc* and RMSEC
for measured vs. VNIR values of TSS were 0.95 and 0.51%, and 0.86
and 0.83%, whereas sz and RMSEP were 0.93 and 0.55%, and 0.83
and 0.91% in ‘Daebong’ and ‘Cheongdo-Bansi’, respectively
(Figures 6A-D). Regarding the simple sugars (glucose and fructose),
higher predictive models of 0.96 and 0.02 mg kg™, and 0.96 and 0.02
mg kg for Rc> and RMSEC, and Rp” and RMSEP, respectively, were
observed in ‘Daebong’ (Figures 7C, D). In ‘Cheongdo-Bansi, Rc* and
RMSEC, and sz and RMSEP were 0.79 and 0.09 mg kg'l, and 0.75
and 0.10 mg kg™, respectively (Figures 7A, B).

33 Multivariate PLSR models using the
reference data

Table 2 shows the means and ranges of reference (measured)
tannin content in the calibration and prediction data sets that
acquired by the destructive analysis. Meanwhile, tannin content
that estimated by multivariate PLSR model using firmness, glucose
and fructose in the calibration and prediction data sets are also
presented in Table 2. For ‘Cheongdo-Bansi’, Rc?, RMSEC and RPD
values of the calibration data set were 0.83, 0.27 g kg’1 and 0.36,
respectively. In the prediction data set, the corresponding values
were 0.79, 0.42 g kg™ and 0.22, respectively for Rp?, RMSEP and
RPD (Table 2). Similarly, Rc’, RMSEC and RPD values of the
calibration data set were 0.79, 0.50 g kg™ and 0.38, respectively for
‘Daebong’. The corresponding values were 0.84, 0.53 g kg™ and
0.43, respectively for Rp?, RMSEP and RPD in the prediction data
set (Table 2).

Frontiers in Plant Science

Following the predictive analysis in multiple regression,
firmness, glucose and fructose values were found to have high
predictive p-values in the prediction of tannin from the measured
reference postharvest quality parameters. The following equations
were found to be the best equations.

Tannin (g kg") = 3.36 — 0.06 (firmness) — 19.67(fructose)

+ 24.54(glucose) — ‘Cheongdo — Bansi’

Tannin (gkg™') =2.1 + 0.06 (firmness) — 35.21(fructose)
+47.74(glucose) — ‘Daebong’

The calibration and prediction set with multivariate PLSR
models had shown encouraging results to utilize the models based
on the measured reference vs. predicted scores of both cultivars. For
the prediction data set, a multivariate PLSR model had the highest
coefficient of correlation (0.84) for ‘Daebong’ and (0.79) for
‘Cheongdo-Bansi’ (Table 2; Figure 8).

4 Discussion

Rapid ripening, deastringency, and softening in ethylene treated
persimmon fruit could be due to rapid expression of ripening-
related genes (Park et al., 2017; Park et al., 2019). On the other hand,
the deastringency of firm persimmon fruit by high CO, treatment
could be due to the accumulation of acetaldehyde in the fruit by
anaerobic respiration, and the soluble tannins become insoluble as
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they react with the acetaldehyde (Cortes et al., 2017). Firmer fruit in

high CO, treated fruit can be explained by the reduction of

respiration rate which in turn inhibit the effect of internal
ripening hormone, ethylene (Tilahun et al., 2022).

The introduction of environmentally friendly nondestructive
technology like VNIR spectroscopy, which has achieved widespread
recognition for assessing food quality, is necessary to meet the
present demand for high-quality products (Tilahun et al., 2020).
More scattered spectra in ‘Cheongdo-Bansi’ than ‘Daebong’ could
be attributed to the relatively more sample variation in ‘Cheongdo-
Bansi’ during the extended storage period up to 16, 19, and 19 days
for ethylene, high CO,, and control, respectively. In contrast,
‘Daebong’ had a shorter storage period of only 7, 10, and 16 days
for ethylene, high CO,, and control, respectively.

From the results of this study, the performance of PLSR models
for the prediction of tannin content in intact persimmon fruit was
cultivar dependent. Noypitak et al. (2015) evaluated tannin content
in high CO, treated and control intact Xichu’ persimmon fruits
using NIR and reported PLSR models with 0.94 and 0.95 Rp” in
transmittance and interactance modes, respectively. They suggested

to use reflected light than transmitted light due to the variation of

soluble tannin content in the flesh close to the skin and at the core.
Cortées et al. (2017) also reported PLSR models using the data

10.3389/fpls.2023.1260644

obtained from high CO, treated intact fruits of ‘Rojo Brillante’
persimmon at six measurement points in reflectance mode with Rp*
of 0.90 and 0.91 with all and selected wavelengths, respectively.
Nevertheless, our results of this study revealed the possible
application of VNIR spectra in transmittance mode to predict
tannin content in intact persimmon fruit with higher predictive
models in ‘Daebong’ than ‘Cheongdo-Bansi’. Previous studies by
Tilahun et al. (2020, Tilahun et al., 2018) on tomatoes and potatoes
also support the use of spectra in transmittance mode to predict
lycopene, -carotene, and glycoalkaloids. Moreover, the novelty of
this study lies in its incorporation of both deastringency and
ripening treatments, encompassing persimmon fruits exhibiting
varying degrees of astringency and firmness.

Munera et al. (2017b) reported the potential of hyperspectral
imaging to predict firmness with Rp” of 0.80 in ‘Rojo Brillante’
persimmon fruit. Cortes et al. (2016) also predicted internal quality
(combination of TSS, firmness and flesh color) of mango with
VNIR reflection spectroscopy and reported Rp* between 0.83-0.88
using full spectral range. Similarly, Ar et al. (2019) demonstrated the
possibility of using NIR spectroscopy to predict TSS and firmness
with Rp® of 0.86 and 0.94, respectively, in astringent ‘Rendeu’
persimmon fruit, while there was low accuracy in predicting
vitamin C and total acid due to their low contents in persimmon.
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prediction (D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted values of
firmness and the y axis represents the measured value by the PLS models.
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It is important to note that, in addition to estimating astringency,
the developed PLSR models in the current work can be used as the
better nondestructive tools for the assessment of the firmness and
TSS in both cultivars. Similar to our present study, Liu et al. (2006)
reported best models for the prediction of simple sugars in intact
apples using Fourier transform near-infrared (FT-NIR)
spectroscopy. Taken together, the feasibility of using VNIR to
predict all dependent variables (quality parameters and
astringency level in terms of tannin content) of persimmon fruit
were indicated by lower RMSEC/P values and higher Rp> between
0.89-0.96 and 0.75-0.91 for ‘Daebong’ and ‘Cheongdo-Bansi’,
respectively. The wide range of NIR values in the developed PLSR
models could be due to ten spectra readings obtained from different
directions from one fruit, whereas eight reference measured values
were collected per fruit. In addition, the variation in the nature of
the astringency treatments (control, high CO,, and ethylene) has led
to variations in fruit characteristics. Notably, tannin content
decreased in both high CO, and ethylene treatments, contributing
to a narrower range of actual tannin content values.

In our previous works, the multivariate PLSR models were
developed to predict lycopene and [-carotene in tomatoes and
glycoalkaloids in potatoes from Hunter’s color values (Tilahun
et al,, 2018; Tilahun et al., 2020). Measurements of postharvest
quality parameters such as color values, firmness, TSS, and simple

10.3389/fpls.2023.1260644

sugars (glucose and fructose) were taken during the experiment.
However, in this study, the PLSR models for color values and TSS in
the calibration data set had lower R* and the p-values were higher
than 0.15 for both ‘Cheongdo-Bansi’ and ‘Daebong’. Hence, color
values and TSS were not included in multivariate PLSR model
development. Instead, we included simple sugars (glucose and
fructose) data for PLSR model development. The above indicated
multivariate PLSR models could not be claimed as nondestructive
estimation method as they utilize the destructively acquired data for
model development. However, astringency levels can be estimated
from firmness and simple sugars without the extra analysis of
tannin content. This in turn, reduce time, cost of skilled man
power and solvents, and does not require expensive high-
performance equipment. As the present study incorporated only
two cultivars, further studies are needed on various cultivars to
develop more robust multivariate PLSR models.

5 Conclusions

The present study indicates attempts to predict tannin content
and quality parameters in intact persimmon fruit with chemical-
free, fast and cheap VNIR spectra. Multivariate PLSR models were
also developed from the reference measured parameters including
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Measured vs. predicted values of TSS (%) in ‘Cheongdo-Bansi’ for calibration (A) and prediction (B), and ‘Daebong’ for calibration (C) and prediction
(D) sets with PLS models. The scatter plot depicts the prediction accuracy of the model. The x axis represents the predicted value of TSS and the y

axis represents the measured value by the PLS models.
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TABLE 2 Statistics for multivariate calibration and prediction of tannin content in ‘Cheongdo-Bansi’ and ‘Daebong’ persimmon fruit.

: Fruit Total Rc/ RMSEC/
Cultivar Set Parameters Mean Range SD 2
number samples o] P
Reference
. 4.49 2.80-544 | 0.84
Calibration | tannin content 80 640
Multivariate 438 235-545 | 0.78 0.83 0.36 23
Cheongdo-
Bansi Reference
. 419 2.73-544 | 1.07
Prediction | {Annin content 40 320
Multivariate 424 2.58-5.44 | 0.94 0.79 0.49 22
Reference
. 4.10 230-529 | 1.05
Calibration | tnmin content 80 640
Multivariate 3.95 2.20-540  0.96 0.79 0.50 2.1
Daebong
Reference
. 4.03 230-529 | 120
Prediction = [Anmin content 40 320
Multivariate 420 242-537 | 0.97 0.84 0.53 23

SD, standard deviation; RMSEC, root mean square error of calibration; RMSEP, root mean square error of prediction; RPD, residual prediction deviation (SD/RMSEC/P); Rc?, coefficient of
determination in calibration; sz, coefficient of determination in prediction data set.
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Measured vs. predicted scores of tannin content (g kg™) for ‘Cheongdo-Bansi’ (A) and ‘Daebong’ (B) in the calibration (blue) and prediction (red) sets
with multivariate PLS models using firmness and simple sugars values. The scatter plot depicts the prediction accuracy of the model. The x axis
represents the predicted value of tannin content and the y axis represents the measured value by the multivariate PLS models.

firmness, TSS, and simple sugars. Prediction of tannin content,
firmness, TSS, and simple sugars was promising in both cultivars,
and relatively better predictive models were developed in ‘Daebong’
than ‘Cheongdo-Bansi’ with both VNIR and multivariate-based
techniques. Our models could be promising alternative tools to the
costly and time-consuming destructive analysis. The developed
models could benefit both the industry and consumers through
their use in the agricultural processing and distribution centers to
sort fruits on a conveyor belt at different levels of astringency and
ripening stages with a VNIR spectrometer. In addition, astringency
levels can be estimated from firmness and simple sugars by the
developed multivariate PLSR models without the extra analysis of
tannin content. Further investigation on different cultivars at
different levels of astringency and softening to evaluate tannin
content and ripening quality of intact persimmon fruit could help
to develop more robust models.
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resolved spectroscopy in
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Agriculture is the primary source of human survival, which provides the most
basic living and survival conditions for human beings. As living standards continue
to improve, people are also paying more attention to the quality and safety of
agricultural products. Therefore, the detection of agricultural product quality is
very necessary. In the past decades, the spectroscopy technique has been widely
used because of its excellent results in agricultural quality detection. However,
traditional spectral inspection methods cannot accurately describe the internal
information of agricultural products. With the continuous research and
development of optical properties, it has been found that the internal quality of
an object can be better reflected by separating the properties of light, such as its
absorption and scattering properties. In recent years, spatially resolved
spectroscopy has been increasingly used in the field of agricultural product
inspection due to its simple compositional structure, low-value cost, ease of
operation, efficient detection speed, and outstanding ability to obtain
information about agricultural products at different depths. It can also separate
optical properties based on the transmission equation of optics, which allows for
more accurate detection of the internal quality of agricultural products. This
review focuses on the principles of spatially resolved spectroscopy, detection
equipment, analytical methods, and specific applications in agricultural quality
detection. Additionally, the optical properties methods and direct analysis
methods of spatially resolved spectroscopy analysis methods are also reported
in this paper.

KEYWORDS

spatially resolved spectroscopy, optical properties, quality inspection, agriculture,
hyperspectral imaging
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1 Introduction

With the improvement of living standards, people have higher
and higher requirements for the quality and safety of agricultural
products (Rejeb et al., 2022). Nondestructive testing techniques for
the quality of agricultural products have also become more and
more widespread in recent years (Tian et al., 2023). With the
development of optical technology, some efficient and mature
optical nondestructive detection techniques have emerged (Mei
and Li, 2023; Mohd Ali et al, 2023), such as visible and near-
infrared (Vis-NIR) spectroscopy (Guo et al, 2023) and
hyperspectral imaging (HSI) (Chen et al,, 2021; Tian et al,, 2021;
Zhang et al., 2022; Zhao et al., 2023), which have been widely used
in nondestructive quantities for physical and chemical
characterization of agricultural products. These optical inspection
techniques can be mainly used to measure the spectral information
of agricultural products to obtain the diffuse reflectance (or
transmittance) of the samples and then combine this spectral
information with existing chemometrics algorithms to establish a
prediction model for the quality of agricultural products. Although
existing intelligent information processing techniques are more
mature, such as deep learning and machine learning (Audu and
Aremu, 2021; Dhanya et al., 2022; Ryo, 2022), these methods have
been widely developed and can further enhance the ability to detect
the quality of agricultural products. Nevertheless, the spectral
information which has already been obtained, can be only
analyzed by these methods, and if the spectral information
obtained is better, then the quality of agricultural products will be
more accurately detected. When light enters the surface of an object,
a series of optical phenomena such as scattering and absorption will
occur, and this optical information is very important for the
detection of the quality of the spectrum. The common spectral
acquisition methods often produce significant errors and cannot
accurately describe the absorption and scattering information of the
light. In order to describe more accurately the laws of propagation
of light in the organization of an object as well as more specific
properties, special studies have been made on optical
properties (OP).

When light enters a turbid medium, a series of optical
phenomena occur, such as reflection, refraction, absorption, and
scattering. Absorption and scattering of light are the most dominant
OP of light in biological tissues. The absorption coefficient (4,,) and
the reduced scattering coefficient (y;’) are specific descriptions of
the absorption and scattering properties of light. The y, is mainly
related to the chemical composition of the biological tissue, while
the p,” is closely associated with the structural and physical
properties of the sample tissue. Conventional optical inspection
techniques can only detect the total effect of light absorption and
scattering, but it is not easy to measure the specific parameters of
these OP accurately. Researchers have made great efforts to
distinguish between scattering and light absorption effects in
tissues. Currently, indirect measurement techniques for optical
parameters, represented by time-resolved (TR) (Cubeddu et al,
2001; Zude et al,, 2011; Vanolia et al., 2020), spatial-resolved (SR)
(Ma et al., 2021b; Huang et al., 2022), frequency-domain (FD) (Hu
et al,, 2020a), spatial-frequency domain imaging (SFDI) (Hu et al,
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2018; Sun Z. et al,, 2021) and integrating sphere (IS), are used by
measuring intact or partial tissue via obtaining certain specific
parameters (such as diffuse reflectance R, diffuse transmittance T,
and collimated transmittance T, etc.) of intact tissue or slices and
combining them with specific optical transmission models and
inversion algorithms, the optical parameters of the sample can be
obtained indirectly, and the absorption and scattering properties of
tissues from light can be separated or obtained simultaneously, thus
the chemical and physical information of sample can be eventually
reflected. Compared with other detection techniques towards
optical properties, spatially resolved spectroscopy (SRS) is simple,
low cost, and is widely used and relatively mature in nondestructive
testing of agricultural products.

SRS was initially used in the medical field to determine the
absorption and scattering properties of light in blood with two
parallel optical fibers (Reynolds et al, 1976). This technique is
mainly used to measure the diffuse reflection of light at different
distances from the sample surface via a point light source and to
calculate the absorption and reduced scattering coefficients of light
in biological tissues by combining the diffuse reflection equation of
light. It has a banana-shaped transmission path, as shown in
Figure 1. As the distance between the light source and the
detector increases, the SRS method can detect deeper, which can
obtain more information about the interior of the corresponding
tissue and facilitate the detection of features inside biological tissues.
In summary, SRS is a convenient tool for obtaining spectral
information at different locations. Since SRS integrates spatial and
spectral information, it can help researchers to explore its
correlation with the chemical composition, physical structure and
OP of the samples to be measured, and to build corresponding
prediction models for the purpose of product quality prediction,
which has resulted in a wider application of this technology in more
fields. For example, agriculture (Huang et al., 2022), forestry (Ma
et al., 2021c), industrial construction (Wang et al., 2022), physical
and chemical materials (Bao et al., 2021; Liu et al., 2022),
astronomical observation (Bao et al, 2021; Comerford et al,
2022), gas detection (Li et al., 2021), biomedicine (Niwayama and
Unno, 2021; De Man et al., 2023) and other fields, providing people
with crucial scientific basis and reliable data support. In the field of
biomedicine, SRS is widely used in human hemoglobin detection,

Light source Detector

Sample

FIGURE 1
Transmission paths of light.
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skin pathology detection, and so on. It can help doctors to more
accurately identify hemoglobin levels and the human condition so
that they can precisely analyze the cause of the patient illness
(Zaytsev et al., 2022; Zhang et al, 2023). It can also be used to
identify blood species to enhance wildlife protection and preserve
national resource information (Zhang et al., 2021). In the field of
agriculture, SRS technology is more advantageous than traditional
spectral detection technology, and the prediction model established
by this technology can improve the prediction ability of the quality
for agricultural products, which is currently mainly applied in the
quality detection of SSC (Soluble Solids Content), firmness, pH,
bruise detection, etc. (Huang et al., 2018b). It can be seen that SRS
has a very wide range of utilization in detection with a broad
application prospect.

Traditional detection can only obtain the spectrum of a certain
place in the sample without gaining more information, and it
often collects the total effect of absorption and scattering of light,
which may lead to inaccurate prediction results. In contrast, the
SRS method can detect spectra at different distances to obtain
more spectral information. Moreover, the technique has the
advantage of separating the optical properties to analyze the
quality of the sample in a targeted manner. Currently, there are
many studies based on SRS in the quality inspection of agricultural
products, such as the inspection of fruits, meat products, and milk.
Since its detection methods establish models that can predict the
quality of agricultural products more accurately, it has been widely
used in the field of agriculture. There are fewer researchers who
have summarized the principles, development, and applications of
SRS in agriculture. Therefore, the main objective of this paper is to
provide a systematic introduction to different SRS systems and to
review the fundamentals, recent developments, and applications
of SRS in agricultural quality inspection. In addition, although SRS
has been relatively mature in agriculture, it is still faced with many
challenges and difficulties presently. The development status and
development trend of SRS techniques in agriculture are
also reported.

2 Spatially resolved spectral
detection systems

With the development of SRS technology, the application field
has become more widespread. When using this technique to detect
different kinds of samples, people find that some traditional test
samples are difficult to meet the needs of different varying detection
samples. Not only are there irregularities in the tested models, but
modern developments are also demanding faster, more convenient,
and more efficient detection configurations or systems, as well as
higher detection accuracy and lower device costs. Therefore,
researchers are constantly researching and developing more
appropriate spatially resolved related detection systems. The
following are the existing spatially resolved spectral detection
systems at this stage, which mainly include single-fiber, fiber-
array, charge-coupled device (CCD) line-scan, hyperspectral line-
scan, and multi-channel hyperspectral detection systems.
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2.1 Single fiber system

The earliest form of spatially resolved spectral detection was to
detect spectral information from different distances by two parallel
optical fibers in contact with the object under test (Reynolds et al.,
1976). This approach is known as the single fiber system. Only two
optical fibers are needed; one is connected to a light source to
provide a stable optical signal, and another is connected to a
spectrometer to receive the signal. The two fibers follow a certain
distance to obtain spatially resolved spectra. This type of format is
the simplest, but a large error still exists; it is hard to ensure that the
light source-detector distance (SDD) is accurate as well as stable
when the fiber is moving, and the two fibers also must be as close as
possible to the object under test, so as to avoid the impact of stray
light on the quality of the spectral information.

To avoid the impact of manual detection on the experiment, Xia
et al. fixed the light source fiber and the detection fiber by a
mechanical device (Xia et al., 2007), as shown in Figure 2, which
used a 20 W halogen lamp (HL-2000-FHSA-HP, Ocean Optics Inc.,
Dunedin, USA) as the light source. It is connected to an optical fiber
and illuminates the sample surface at an incidence angle of 40°. The
detection fiber, connected to the spectrometer, is perpendicular to
the sample surface. The position of the detection fiber is moved by a
translation device to detect the spectral information at different
distances. Both the source and detection fibers have a core diameter
of 400 pm, and the closest distance between the two fibers is 1.5 mm
to avoid fiber collisions.

For more portability and ease of operation, Ye et al. developed a
slidable ring device consisting of a halogen lamp LA-150ue-A
(Hayashi Co., Japan), a removable detection fiber ring

f

MicHient (e Collection fiber

Scanning stage /

FIGURE 2
Single fiber optic inspection device (Xia et al., 2007)

frontiersin.org


https://doi.org/10.3389/fpls.2023.1324881
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xia et al.

illuminator, and a Mini-Spectrometer BLACK-Comet-SR100
(StellarNet Inc., USA) (Ye et al, 2021), as shown in Figure 3A.
Measuring with the ring illuminator close to the surface of the fruit
(Figure 3B). Figure 3C shows a schematic diagram of the ring
illuminator. A halogen light source enters the ring illuminator
through an optical fiber to form a ring beam, as shown in
Figure 3D. As the device inside and outside the machine have the
effect of shading to reduce the reflection of light from the sample
surface, the spectrum is received only through the small hole in the
middle of the signal to reduce the impact of mixed spectral
information. The detector and light source are in contact with the
sample, and the spectral information is detected by moving the
position of the detection fiber in the center of the ring.

The single fiber moving detection form is simple in structure,
easy to operate, low cost, and flexible. It can select the optimal
detection SDD so that the collected information is more
representative. However, this method is easily affected by many
factors, such as the accuracy and stability of the moving platform,
the strength of the light source fiber and the acquisition fiber fixed,
the extent of contact between the measured sample irregularities
and the acquisition fiber, all of which can make the system have a
significant error. In addition, the single fiber detection form has a
high demand on the fiber diameter, which requires the fiber
diameter to be as thin as possible so that the light SDD can be
closer. Xia et al. reduced the light SDD because of the limitation of
the fiber diameter adjusted, thereby adjusting the incident light
angle (Xia et al., 2007). Furthermore, the time required for single
fiber detection is long. Therefore, the use of a single fiber detection

10.3389/fpls.2023.1324881

format is not friendly for collecting a large number of samples, and a
faster and more efficient detection system needs to be developed.

2.2 Fiber array type system

Due to the significant error of a single fiber optic collection
system, the acquisition process of each distance can only follow the
sequence to collect, which is time-consuming and laborious, and
there will be a phenomenon of missed collection, so the researchers
have developed a form of detection based on fiber optic arrays to
achieve the simultaneous acquisition of multiple distances. Zhou
et al. evaluated the OP of turbid media utilizing a multi-fiber
detection format (Zhou et al., 2015), as shown in Figure 4. The
system was used to collect spatially resolved diffuse reflections at
633 nm with a light source (HL-2000, Ocean Optics, USA), an
illumination fiber, six detection fibers, and a spectrometer
(QE65pro, Ocean Optics, USA). All the acquisition fibers are
connected to a multiplexer, and the spectral signal is transmitted
to the spectrometer through the multiplexer.

Spectral information for every distance can be read by a fiber
array device connected to the multiplexer. Nevertheless, the
sequential reading of each spectral information needs to be set
up, and the setup is complicated with a longer reading time. Nguyen
Do Trong et al. investigated a new SRS fiber array device (Nguyen
Do Trong et al., 2011), shown in Figure 5, which consists of a
halogen light source (AvaLight-DHc, Avantes, Netherlands), an
illumination fiber and five detection fibers, a spectrometer, a CCD

Halogen light source

Mini spectroscope
(190~1070nm)

Light source fiber Ring illuminator

& detector

B
Height adjuster ¢ Detector
fiber
Ring illuminator Halogen light
& detector source fiber
Apple

2
1

678910
345 11y,

Adjustable

Incident light

Specified positions

Detector fiber

FIGURE 3

Removable probe fiber optic ring device (Ye et al., 2021). (A) Slideable ring inspection system. (B) Inspection demonstration image. (C) Ring

illuminator object diagram. (D) Ring illuminator schematic diagram.
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Collection Fibers\(
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FIGURE 4
Fiber optic array type inspection device (Zhou et al., 2015).

camera, data acquisition, and control equipment. Spectral data were
collected at intervals of 0.15 mm between the detection fiber and the
illumination fiber over a range of 0.3-1.2 mm. The setup could split
the diffuse light into multiple wavelengths in the range of 500-1000
nm by means of a spectrometer and project them onto different
areas of a CCD camera (S7031-1008S, Hamamatsu, Japan). Finally,

Data
7 device
Optical switch
Light source
Computer

FIGURE 5
Novel fiber optic array device (Nguyen Do Trong et al.,, 2011).
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a data acquisition card and a customized LabView program
(LabView 8.5, National Instruments, USA) were used to collect
spatially resolved information.

In order to collect spectral information at more distances, Ma
et al. designed a Vis-NIR SRS system (Ma et al., 2021b), as shown in
Figure 6, which consists of a 5 W halogen light source, a Vis-NIR
HSI camera and 30 silica fibers (core diameter: 100 um, cladding:
110 pum), with five groups of fibers, each consisting of six fibers, 1, 2,
3,4 and 5 mm away from the light source, respectively. The 30 silica
fibers installed in this SRS acquisition device including both
horizontal and vertical spatial-spectral information of the sample
under test, which could increase the exploration of the spatially
resolved spectral information.

These fiber optic array-type devices are mainly arranged in the
form of linear arrays (Nichols et al., 1997; Doornbos et al., 1999;
Bogomolov et al, 2017) and circular arrays (Dam et al, 2001;
Nguyen Do Trong et al,, 2011; Bridger et al., 2021). Their
arrangement can be designed according to the sample’s shape and
structure’s size. Since the designed fiber array structure is fixed to
detect the spectral information at once, it can save the measurement
time as well as avoid the spectral error caused by the inaccuracy of
the distance during the measurement. However, custom-designed
fibers are more costly and require testing and calibration of the fiber
arrays. The fiber optic array is only suitable for detecting samples
with a flat surface for most agricultural products due to the
irregularity of the sample detection fiber probe not well fitted to
the sample surface. In addition, this system requires contact with
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FIGURE 6

Vis-NIR SRS system (Ma et al,, 2021b). (A) SRS detection systems. (B) Internal structure diagram of the fixator.

the sample surface during the inspection process and is not friendly
to liquids, easily polluted and vulnerable samples, so it needs to be
continuously improved and developed.

2.3 CCD line scan type system

The fiber optic array detection method is suitable for measuring
liquid samples because the integrated array probe can make good
contact with the liquid surface. In addition, it is also well suitable for
flat sample pieces, such as dried apples or tablets (Igne et al., 2015),
etc.,, but it is easy to contaminate the sample with this contact
detection method, so it needs to be cleaned frequently. In order to
achieve a non-contact measurement method while detecting the
spatially resolved information of the sample, researchers have

CCD ca

ra

laser

specular

Sample

FIGURE 7
CCD line scan spatial resolution system (Kienle et al., 1996).

Frontiers in Plant Science

157

developed a spatially resolved detection system based on the CCD
line scan method.

The spatially resolved system of CCD line-scan type is also
called monochromatic imaging spatially resolved system, which is
available for detecting the OP of a sample at a single wavelength. As
shown in Figure 7, Kienle et al. (1996) used this approach for
inspection. The system mainly consists of a laser diode as a light
source, which is illuminated by a mirror at an angle of incidence of
5-10° on the object to be measured and detected by a CCD camera,
and then the detected data are read out and processed by
a computer.

Since laser diodes can only emit a single wavelength, this is not
very friendly for analyzing multiple wavelengths. Therefore,
researchers have pooled diodes at several different wavelengths
for detection, which was used by Lorente et al. to detect the early

Controller Computer
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7S

FIGURE 8

Laser diode-based optical properties device (Lorente et al., 2013).

ripeness of citrus fruits (Lorente et al., 2013). As shown in Figure 8,
the system consists of a CCD camera, five solid-state laser diodes
emitting at different wavelengths (532, 660, 785, 830, and 1060 nm),
and a computer. In the acquisition process, the laser diodes are not
integrated together for the acquisition, but the alternating form of
replacing the diode of the corresponding wavelength each time to be
used as a light source, so as to achieve the acquisition of spectral
information at different wavelengths.

Conventional CCD imaging systems do not contain
spectroscopic components inherently, and the acquired images
are ordinary RGB images. Due to the theory of optics, only lasers
or laser diodes can be used as light sources for CCD cameras. This
limits the system to detecting the optical properties of the sample at
a single wavelength. Although, at this stage, there is a way to detect
spectral information in multiple wavelengths using diode module
integration, it is still far from sufficient for analyzing continuous

10.3389/fpls.2023.1324881

wavelengths. Moreover, the saturation of pixels occurs close to the
light source point, so this area cannot be used for data analysis, and
to avoid saturation, it is usually necessary to limit the exposure time
(Kienle et al., 1996). This makes the CCD line-scan type system not
well suited to the needs of the application, so a more optimized
spatially resolved detection system is urgently needed.

2.4 Hyperspectral line-scan system

For SRS, the more continuous wavelength bands the collected
information contains, the more advantageous it is likely to be for
subsequent data analysis and processing. In pursuit of acquiring
spatially resolved spectral information in continuous bands in a
non-contact system, researchers have combined hyperspectral
imaging (HSI) techniques with SRS, and they have been widely
developed and applied. As shown in Figure 9, Peng and Lu (Peng
and Lu, 2008) used a spatially resolved line-scan system, which
mainly consists of a back-illuminated camera (C4880-21,
Hamamatsu Photonics, Hamamatsu Corp., Japan), a control unit,
an imaging spectrometer (ImSpector V9, Spectral Imaging Ltd.,
Ouluy, Finland), a quartz tungsten halogen lamp (Oriel Instruments,
Stratford, CT, USA) and a circular open sample holder with a
diameter of 30 mm. The light source is a 1.5 mm circular beam, and
the hyperspectral imaging system line scan is 1.6 mm from the light
source to avoid oversaturation of the CCD detector pixels.

To make it easier to detect the OP of SRS, as shown in Figure 10.
Cen and Lu (Cen et al, 2011) developed the Optical Property
Analyzer (OPA), which consists of three main hardware
components that are imaging, illumination, and sample
positioning units. The imaging device mainly consists of an
electron-multiplying CCD (EMCCD) camera (LucaEM R604,
ANDORTM Technology, USA), an imaging spectrometer
(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland), and a

CCD Camera
Camera controller
Optic fiber
Hyperspectral
imaging
spectrograph
Focusing 7 I
lens oom lens
ﬁ» Lamp
housin
& Computer

= O

Light controller

FIGURE 9

Hyperspectral imaging system for acquiring spectral scattering images (Peng and Lu, 2008).
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FIGURE 10
The Optical Property Analyzer (OPA) (Cen et al., 2011).

master lens (Xenoplan 1.9/35, Schneider Optics, Hauppauge, USA).
An optical fiber connected to the focusing lens can be used to emit a
point light source. The sample fixation device consists of a
motorized horizontal stage (Twintrac, TSZ8020, US23T22104-
8LS, US Automation, USA) with a maximum speed of 203 mm/s
and a positioning accuracy of 0.0006 mm/mm, a vertically
adjustable stage, and a holder for sample positioning. The
integrated software program for OPA is developed in Microsoft
Visual C#. It can control the light source, camera, and sample
mounting platform for spectral and image data acquisition and also
analyze and display the acquired information in real time to obtain
the final scattering profile, absorption spectrum, reduced scattering
coefficient, etc. Due to the powerful and convenient functions of
this software, the workload of spectral data acquisition and analysis
can be greatly reduced, and the efficiency of the sample acquisition
and analysis can be improved.

Mendoza et al. (2011) developed an online hyperspectral
imaging system (OHIS) based on a hyperspectral line-scan type
(Figure 11), which consists of a back-illuminated EMCCD camera,
an imaging spectrometer (ImSpector V10E, Spectral Imaging Ltd.,
Oulu, Finland) covering a spectral region of 400-1000 nm. A near-
infrared enhancement lens and a halogen light source (Oriel
Instruments, USA). The computer is equipped with an image
acquisition card and a camera acquisition program written in C+
+, through which the camera can be controlled for image
acquisition. In order to capture the samples in real time and to
increase the efficiency of the test, the device also uses a conveyor belt
that can hold the samples. The imaging system of this OHIS
operates at a rate of approximately one in two seconds. This
system is the first to combine spatially resolved line sweep with
online inspection. Although the system has good predictions, it is
costly and still has some errors for curved samples.

While hyperspectral imaging inspection methods can realize the
advantages of contactless, efficient, and high-resolution acquisition,
they also have significant drawbacks. However, it is only suitable for
detecting samples with flat surfaces or objects of considerable size,
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FIGURE 11
Online hyperspectral imaging system (OHIS) (Mendoza et al., 2011).

and if the surface curvature of the sample is large, the detected
information will have a large error, so the detection device of SRS
needs to be improved continuously.

2.5 Multi-channel hyperspectral imaging
detection system

The current device is only suitable for detecting samples with
relatively flat surfaces, and the detection probes cannot fit closely for
most agricultural products. When the detection sample is too large,
the existing fiber array system makes it difficult to meet the
requirements of the number of detection fibers and detection
distance due to the limitations of the instrument. Although
hyperspectral detection has excellent advantages, it has a narrow
detection wavelength range and lacks flexibility for curved samples,
which can cause significant errors. Therefore, Huang et al. (2017)
designed a multichannel hyperspectral imaging detection device, as
shown in Figure 12, which was based on a multichannel
hyperspectral imager (Headwall Photonics, Inc., USA). The
multichannel probe consists of a point source and 30 fibers of
three sizes (i.e., 50 um, 105 pm, and 200 um). The light source fiber
is connected to a 250 W halogen lamp, and the 30 fibers are
permanently mounted on two sizes of aluminum cubes, giving the
probe the flexibility to measure samples of different sizes and flat or
curved surfaces at distances of 1.5-36 mm.

In general, the proposed SRS detection devices have their own
advantages and disadvantages as well as applicable detection
samples. The characteristics of these detectors are described in
Table 1. Although the single fiber detection system is simple in
structure, lowest cost, and flexible in collection, there will be a large
measurement error and time-consuming, so it is not suitable for a
large number of sample collections. Fiber array type system can
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FIGURE 12
Multichannel hyperspectral imaging detection device (Huang et al., 2017). (A) Schematic of spatially resolved spectral acquisition. (B) Schematic of
fiber arrangement.

TABLE 1 Summary of studies on the types of detection devices for agricultural products.

. Detection
Detection : s o
Objects Wavelength(nm) distance Characteristics References
systems
(mm)
SF Beef 490-950 Incident fiber Detection flexibility allows the selection of the (Xia et al., 2007)
Left: 9.0-6.5 optimal distance
Right: 4.0-7.0
Apple 190-1070 2,4, 6,8, 10, Easy operation, reduce error (Ye et al,, 2021)
12, 14, 16
Pear 500-1000 -0.15, -0.1, - (Hu et al,, 2017)
-0.05, 0,
0.05, 0.1, 0.15
Onion 710-950 - The laser system has a slightly better optimal (Sun J. et al., 2020)

single point ratio than the NIRS system

Rabbit 350-1000 5,10, 15 Detecting distance slidable (Yuan et al., 2022)
FA Milk 550-1690 1-2.5 Optimal combination of minimum fiber counts (Watte et al., 2016)
Milk 400-995 0.28-1.96 Full-spectrum analysis replaced by two (Bogomolov et al., 2017)

wavelength-specific sensor measurements

Pork 600-1100 6,9,12, 15 Improve detection efficiency (Wen et al., 2010; Zhang et al., 2010)

Pork 600-1100 6,9, 12,15 Efficient, low cost (Wang J. et al,, 2017)

Apple 500-1000 0.3-1.2 Efficient (Nguyen Do Trong et al., 2014a;
Nguyen Do Trong et al., 2014b)

Apple 600-1100 1,2,3,4,5 Portable, high efficiency (Ma et al., 2021b)

Kiwifruit 660-1000 1,2,3,4,5 Portable, high efficiency (Ma et al., 2022)

‘Wood 600-1100 2,3,4,5 Portable, high efficiency (Ma et al., 2021c)

Cattle 500-900 0.5, 1.0, 1.5, Fiber integration, high efficiency (Palendeng et al., 2020)

2.0,25

(Continued)
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TABLE 1 Continued
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. Detection
Detection ’ o
Wavelength(nm) distance Characteristics References
systems
(mm)
CL Milk 800-1065 - Fast, portable and inexpensive (Kalinin et al., 2013)
Apple 650-980 - Detecting distance slidable (Mollazade and Arefi, 2017)
Banana 532, 660, 785, 830, 1060 - Specific wavelength, non-contact (Adebayo et al., 2016)
Citrus 532, 660, 785, 830, 1060 - Specific wavelength, non-contact (Lorente et al., 2013)
Wood 808 Dry: Parallel: Non-contact (Kienle et al., 2008)
20
Perpendicular:
10
Wet: Parallel:
25
Perpendicular:
15
HL Milk 530-900 1.6-20 Non-contact, easy operation (Qin and Lu, 2007)
Apple 500-1000 1.6-9 Easy to operate (Qin et al.,, 2007; Qin et al., 2009; Lu
et al., 2010)
Apple 450-1000 - Easy to operate (Peng and Lu, 2008)
Apple 600-1000 - Easy to operate (Huang and Lu, 2010)
Apple 500-1000 0-9 Easy to operate, with analysis software (Cen et al., 2012b; Cen et al., 2013)
Apple 450-1050 (Scatter) 460- - Realized hyperspectral online detection (Mendoza et al., 2014)
1100 (Vis/SWNIR)
Apple 500-1000 20 Easy to operate, with analysis software (Zhu et al,, 2016)
Peach 550-1650 1-9 Easy to operate, with analysis software (Cen et al., 2011; Cen et al., 2012a)
Peach 550-1000 1-9 Easy to operate, with analysis software (Sun Y. et al,, 2020; Sun Y.
et al., 2021)
Cucumber 700-1000 37-55 Easy to operate, with analysis software (Lu et al., 2011)
Tomato 500-950 0-10 Easy to operate, with analysis software (Zhu et al., 2015)
Wood 1000-1600 1,3,5 Non-contact methods, push-broom manner (Ma et al., 2018; Ma et al., 2019b)
(Thicknesses)
Wood 1002-2130 - Non-contact methods, push-broom manner (Ma et al., 2019a)
Tea 967.11-1700 - Non-contact methods, push-broom manner (Mishra et al., 2019)
MHI Apple 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2020b)
Peach 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al,, 2022)
Tomato 550-1300 1.5-36 Detects longer distances and higher accuracy (Huang et al., 2018b)
(Huang and Chen, 2018)
Tomato 550-1650 1.5-36 Detects longer distances and higher accuracy (Huang et al,, 2018¢; Huang
et al., 2020a)

SF, Single fiber system; FA, Fiber array type system; CL, CCD line-scan type system; HL, Hyperspectral line-scan system; MHI, Multi-channel hyperspectral imaging detection system.

achieve once-time acquisition at different distances to improve
detection efficiency and accuracy, but the cost is higher than
single-fiber detection systems with the need to detect samples as
smoothly as possible, and contact measurements are prone to
sample contamination, so the scope of use is also very limited.
CCD line scan type system can realize non-contact measurements
but cannot collect SRS in the continuous wavelength band. The
hyperspectral line-scan system can acquire spectral information in
continuous wavelength bands and are well suited for the detection
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of a large number of samples, while they are less friendly to the
detection of samples with curvature, such as apples, peaches,
oranges, etc. Multi-channel hyperspectral imaging detection
system can detect the spectra of some curvature samples, but the
cost is the highest, and there is still a large error for some samples
with large curvature. In general, although these systems have
detected the spatially resolved information of samples to a great
extent, they are still not friendly enough for the detection of
irregular objects because of their detection limitations, so there is
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still a huge space that could be developed and innovated for the
detection systems of SRS.

3 Development of spatially resolved
spectral analysis methods

SRS collects spectral information at different distances and then
needs to be processed. In most cases, the optical properties are
obtained based on SRS techniques, and then the association
between sample properties and optical properties is analyzed on
the basis of absorption coefficients and reduced scattering
coefficients. Direct analysis is also used to detect the properties by
processing the spectral information at different distances. At this
stage, researchers have done a lot of work on the basis of optical
properties and direct analysis, which provides powerful and
effective support for the development of SRS in the future.

3.1 Optical properties methods

Among the methods of measuring OP in biological tissues,
there are currently two ways: direct and indirect measurement,
respectively. In the direct measurement method, Beer-Lambert’s
Law is used to calculate the OP within the tissue. In this method, the
optical properties of the tissue are calculated by measuring
parameters, such as complete attenuation transmission and
collimated transmission of a slice sample. Although the direct
analysis calculation method is simpler, its detection process is
more complex, requiring slicing and strict requirements for the
thickness of the slice (Cheong et al., 1990). The indirect
measurement method is mainly used to solve the OP by
inversion. Generally, researchers classify indirect measurements
into non-iterative and iterative approaches according to whether
the inversion process includes a parameter iteration step. The non-
iterative approach can be used to solve the optical properties of the
optical transmission model directly from the measured values. One
of the more commonly used methods is the Kubelka-Munk method
(Kubelka, 1948), but the accuracy of its measurements is not high,
requiring assumptions on various conditions. The iterative
approach is to evaluate the OP by inverting the parametric
equations for several iterations so that the measured values are
within the specified error range. Although this method is more
complicated, the measured optical properties are more accurate
than other methods. Spatially resolved techniques are also usually
applied by using indirect iterations to find the OP within the
sample tissue.

For the transmission of light in biological tissues, a series of
complex optical phenomena occurred, such as absorption, scattering,
reflection, refraction, interference, and diffraction of light. Although
Maxwell’s set of equations based on electromagnetic theory can
describe the light propagation process in tissues mathematically
(Yang et al, 2021; Katsumata, 2022), the equations cannot be
solved directly due to the complexity of biological tissues. In order
to study only the particle properties, such as absorption and
scattering of light, the fluctuating properties of light, such as
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interference, diffraction, and polarization, can be ignored.
Researchers have proposed the Radiative Transfer Equation (RTE),
which is more accurate in describing the transport properties of light
in tissues (Martelli et al.,, 2021; Hank et al., 2023), but the model is still
complex and has many parameters. Therefore, researchers usually
have used simplified transport model methods as well as numerical
methods to solve the optical properties (Lu et al., 2020). The
commonly used transport models are the diffusion approximation
and the P3 approximation, which is the theoretical model to describe
the spatially resolved diffuse reflection near the light source. The P3
approximation model is a third-order form of the radiative transfer
model. Since the P3 approximation is more accurate, it can be used in
place of the diffusion approximation (Wang, 2020; Wang, 2022). In
addition, numerical methods include Monte Carlo (MC) simulation
(Chong and Pramanik, 2023; Colas et al., 2023; Lan et al., 2023),
Adding-Doubling model (Xie and Guo, 2020; Sun et al., 2022) and
finite element methods (Morimoto et al., 2020).

The diffuse approximation equation is a simplified form of the
radiative transfer equation, which has the ability to be simplified by
satisfying two assumptions. 1) The medium is a strongly scattering
medium, i.e. tt;" > 11,. 2) The SDD is greater than the mfp’ (mean
free path), i.e. r>mfp’. In addition, the incident light scattering step
in the tissue is considered to be isotropic radiation. The diffuse
approximation equation can be expressed as:

% + U, D7 t) -V - [DVD(7,t)] = S(7. t)
where c is the spreading speed of light through the medium, is the
radiation fluence {ellte, 7= (x,7,2) is a point within the medium,
)
homogeneous light source. This equation can be used to describe

is the diffusion coefficient, S(7,t) is each

the transmission of light through some objects with geometric
shapes, such as semi-infinite, flat, cylindrical, spherical, etc.
(Farrell et al., 1992; Kienle et al., 1998), which provides a good
application for detection of OP of most samples. Depending on
different illumination methods such as steady-state point
illumination, pulsed point illumination, frequency-modulated
point illumination, and spatially modulated area illumination, OP
techniques have also evolved into spatially resolved techniques,
time-resolved techniques, frequency domain resolved techniques,
and spatial frequency domain techniques (Lu et al., 2020).

Based on the theory of diffuse approximation equations, Farrell
et al. proposed a diffusion-theoretic model for SR steady-state
diftuse reflection in the study of nondestructive determination of
OP in humans (Farrell et al., 1992). The model can be used to
describe the directional dependence of light diffuse reflection in
biological tissues when irradiated by an infinitesimal amount of
light. By comparing the predictions of the model with MC
simulations and with tissue simulation models, it was found that
the model can accurately describe the reflectance at radial distances
as small as 0.5 mm. Thus, the model can provide an effective
method and basis for later researchers to calculate and separate the
OP. In this model, the diffuse reflection of the medium is computed
as a boundary flow from a single isotropic point source located at
the mfp’ depth of the medium transport. The model is applied to
surfaces with matched or unmatched refractive indices. The

frontiersin.org


https://doi.org/10.3389/fpls.2023.1324881
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Xia et al.

equations of this diffusion model are as follows:

_d |1 1 exp(Heprt)
k)= am | Ky ('ueff ! "1> ri '

1 44 1\ exp(Hepsts)
(G (1 o2, =2

where r is the source-detector distance, 1| = (z(z, + r)l/ ® is the real

distance from the detector to the light source, r, =
((z0 + 22h)2+r2)1/ % is the length frolm2 the mirror light source to
the detector. ,u; = |3u, (uu +,u;)}
factor, a’ = ,LL; /U + /.L; is an albedo of tranf{nission, ,u; = U, +

is the effective reduction

i, is the overall decays value, z; = <,uu + ,u;) is the mfp’, z;, =
2AD, A is the object’s internal reflection coefficient, A=1 when the
tissue and surrounding media boundaries match, and A=0.2190
when the relative refractive indices of the tissues n=1.35. While
refractive index is known to be wavelength dependent, most reports
assume that the » is constant, an assumption that is subject to
potential uncertainty, such as for many fruits and foods n=1.35.

Later, Kienle and Patterson (1997) introduced radiant energy
flow rate following Haskell et al. (1994). The diffuse reflectance is
expressed through the brilliant energy flow rate and luminous flux,
which better minimizes errors and thus more precisely characterizes
the transmission of light in biological tissues. This equation can be
expressed as:

oy L [exp(peyr) exp(-Heyra)
D(r,z=0)=—— -

4nD r T
The diffusive approximation equation can be organized as

follows:

_ ¢ |ep(pgyn)  exp(-Hyyra)
R(f’) - ﬁ |: ry - ) +

C exP(—ﬂeff' ) exP(—ﬂef/' )
= L{ (#eff +%) o (i + 22;,) (Neff + %) —a

where C =4 /[I—Rfres(e)cosedw] and G =2 /

.27[ .271'
[1 - Rges (6)cos® 6dw| are coefficients generated by the refractive
index of the medium and Ry, (6) is the Fresnel coefficient. When
rate of refraction #n=1.35, C1 and C2 are 0.1277 and 0.3269, respectively
(Cen and Lu, 2010). This solution is considered to be more accurate in
describing the light propagation process, therefore it is widely used
(Cen et al.,, 2010).

At present, these two are the most commonly used mathematical
fitting models for spatially resolved spectra, and their analytical
solutions are obtained under extrapolation boundary conditions
(EBC). The source is assumed to be each homogeneous radiation
source at one mfp’ below the sample surface. Therefore, the precision
of OP parameter inversion is not only related to the precision of
instrumental measurements but also depends on the precision of
parameter inversion algorithms. Cen and Lu further optimized the
curve fitting algorithm by using the nonlinear least squares method as
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the Trust-region-reflective least squares method, and the raw data
were logarithmically and integrally transformed and relatively
weighted before fitting to improve the OP predictions (Cen et al,
2010). The prediction of the OP was enhanced by using logarithmic
and integral transformations of the original data and relative
weighting before fitting.

However, many factors affect the accuracy and error in the
acquisition and processing of the spectra and the inversion of the
parameter equations. Usually, normalization is required before
curve fitting. However, the standard normalization method
directly divides the first value of the spatially resolved diffuse
reflectance spectrum, which contains considerable noise and
acquisition errors. It has a great impact on the inversion of the
later parametric equations. The diffuse approximation equation is
invalid when it is close to the light source, i.e. (r<1 mfp’), and the
reflection signal is weaker, and the signal-to-noise ratio (SNR) is
lower when the acquisition is farther away, which is not conducive
to the inversion of the optical parameters. Therefore, an effective
interval selection for the acquired spatially resolved spectra is also
needed before curve fitting. Farrell et al. suggested that the SDD
should be greater than one mfp’ (Farrell et al., 1992), and Nichols
et al. recommended minimum and maximum distances of SDD are
0.75-1 mfp’ and 10-20 mfp’, respectively (Nichols et al, 1997).
Nevertheless, for most of the unknown samples with unknown OP,
it is impossible to calculate the mfp’ directly. So Wang and Lu et al.
proposed a mean normalization method to optimize the
normalization along with a method to optimize the diffuse
reflectance spectral interval for the inversion of OP based on the
relative error contour (Wang A. et al., 2017).

The inversion of the parametric equations is performed by
fitting the diffuse reflectance spectral data to an analytical solution
of the diffuse reflectance approximation equations to calculate the
absorption coefficients and the reduced scattering coefficients. Cen
and Lu used the spectral SNR to optimize the endpoint of the
spectrum (Cen and Lu, 2010), but the starting point of the spectrum
is fixed at 1.5 mm for systematic reasons, which still leads to large
measurement errors for samples with mfp’ greater than 1.5 mm
measurement error. Therefore, to further solve the problems of
fitting, Wang and Lu proposed the step-by-step parameter
inversion method (Wang A. et al., 2017), which is based on the
OP and the mfp’ obtained by the one-step fitting method, and then
re-determine the better spectral interval based on the optimized
starting point and end point before the second fitting to obtain the
better OP. The method is effective in improving the optical
parameters. This method can significantly improve the inversion
accuracy of optical parameters.

However, in the process of inversion, the traditional inversion
algorithm does not meet the requirements due to the single-layer
and double-layer tissues of the sample under test. The traditional
inversion algorithm is to equate the outer tissue of the sample with
the inner tissue as a layer. For samples with a thin outer skin, the
effect of having a thickness less than the mfp’ will not be significant,
but for pieces with a thicker outer skin, the effect will be more
meaningful if they are equated to a monolayer of tissue. There are
already diffuse reflection equations for light transmission in single-
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and double-layer tissue that can be used as an approximate solution
(Kienle et al., 1998; Cen and Lu, 2009), but the light transmission in
double-layer tissue is a more complex transmission model involves
more parameters, the accuracy of the fitted parameters will be
increasingly poor. Accordingly, the inversion of parametric
equations for multilayer tissues still needs to be continuously
explored and studied by researchers.

The most commonly used method in numerical calculation
methods is MC, which is a statistical method with random
sampling and has been widely used to simulate the propagation
of light (Tarasov et al., 2021; Sassaroli et al., 2022). This method
can simulate the light transmission process by tracking the
trajectory of a massive photon through the tissue and finally
calculate the optical parameters we need. The advantages of MC
are low cost, high accuracy, and high flexibility. However, it also
has obvious drawbacks, which are computationally intensive,
time-consuming, and not conducive to rapid detection, so the
method is often used to test the accuracy of other calculation
methods. When the MC method simulates the light transmission
law in tissues, it mainly simulates the particle properties of light,
i.e., the absorption and scattering of light and other properties. Its
typical simulation specifically includes the processes of photon
generation, initialization, migration, absorption, scattering,
boundary condition processing, and extinction judgment (Wang
et al,, 1995). Currently, the program developed by Wang and
Jacques (1992) based on C language can be used for multilayer
organization, which consists of two subroutines, Monte Carlo
Multi-Layered (MCML) and Convolution (CONV), where MCML
is used to simulate the transmission of light beams in the
organization. CONV is used to convolve the simulated data of
MCML and output the results. Based on the disadvantages of MC
time consumption, Hu et al. (2020b) optimized it and accelerated
its simulation. Sun et al. used the Monte Carlo multilayer
(MCML) technique to simulate the propagation of light through
the fruit by comparing it with the diffuse reflection curve, thus
confirming the accuracy of the MC simulation of the OP (Sun C.
et al., 2021).

Although MC is usually used as a reference method and is more
accurate, it needs a huge number of photons to be simulated at a
time, which is computationally intensive and cannot meet the rapid
detection of OP of biological tissues despite the fact that its speed
has been improved. The finite element method (FEM) is also one of
the commonly used numerical methods, which is more flexible and
fast based on accuracy (Vasudevan and Narayanan Unni, 2021). Lee
etal. (2004) used the FEM method to study the propagation of light
in a double-layer medium and found that the accuracy of the
method and MC were almost the same by comparison. Wang
et al. (2016) investigated the optimal computational results of
finite elements under three boundary conditions and
demonstrated that the finite element approach can be used to
improve the measurement of OP for spatially resolved techniques.
Whereas, at this stage, there are few analytical methods using finite
elements in the study of calculating the OP of spatially resolved
spectra, which is a promising method for the numerical calculation
of OP.
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3.2 Direct analysis methods

While analysis methods based on OP can find absorption
coefficients and approximate scattering coefficients more
accurately, they are labor-intensive, algorithmically complex, and
have large accuracy errors. In order to directly and accurately
analyze spatially resolved (SR) spectra as well as to simplify the
analysis steps, the researchers proposed a direct analysis method.

Huang and Chen (2018) proposed an analytical method of
spectral combination when employing a multichannel SRS system
to detect tomatoes by creating a Partial Least Squares Discriminant
Analysis (PLSDA) model of each of the 15 single SR spectra
combinations to determine the best single SR combination for
classification. Next, the best SR combination was combined with
the remaining 14 SR combinations to select the best two-spectrum
combination, then the best spectrum was combined with the
remaining 13 single SR combinations to create the best tri-
spectral combination, and so on until the accuracy of the
combined SRS for classification is not further improved.

As for quality detection of peach, Huang et al. (2022) proposed
a spectral difference technique to deal with spatially resolved
spectral information. The method initially collects 30 relative
spatial spectra for each sample at different SDD scales, which are
calculated as follows:

Ri) = 2= LeD)

L,(i) - D,(i)

where R is the relative spectrum, I is the spectral information of the
sample, D is the blackboard, i is for single fiber, i = 1, 2, 3,..., 30, and
the subscripts r and s represent the white Teflon and the sample,
respectively. Since the device has detection fibers arranged
symmetrically, each symmetrical pair of SR spectra is averaged
over the same SDD, resulting in 15 SR spectra whose distances
range from 1.5-36 mm. The difference spectrum is obtained by
differencing the spatially resolved spectrum of the first position
(SR1) with the spatially resolved spectra of the other SDDs with the
following calculation equation:

D(i) = R(i) - R(1), i=2,3,4,5,-,15

where R(I) is the SR spectrum at the first SDD of 1.5 mm, and D is
the subtraction spectrum, after that, it is referred to as the
differential reflectance (DR) spectrum, and the final 14 DR
spectra contain different spatial resolution information compared
to the SRS.

Ma et al. (2021b) proposed a method for reference-free
reflectance calculation in assessing apple quality by averaging the
light centers at distances of d mm and d+A mm for the diffuse
reflected light intensity (i) collected by the optical fibers and named
iz and iy, 5, respectively. When the intensity of the spatially resolved
spectrum is i, the spectral difference between fibers at different
distances can be expressed as:

ig, i
Agigy = —logyo < : ;\) - <—10g10 (ﬁ))
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where A 44is the difference in absorption spectra. The equation can
be simplified as:

i
Agiff = —10g10< ZA)

In this way, the calculation formula of the spectrum can be
simplified, and the black-and-white correction of the spectrum can
be canceled, which makes the spectral inspection more efficient and
convenient. The ratio of diffuse light intensity (Rgg,) is calculated
as follows:

Rpatio = ld_+A
ta

Finally, smoothing of the spectral data using Savitzky-Golay
filters enables the spectra to achieve better results in
modeling analysis.

The direct analysis method of SRS simplifies the analysis steps,
and although it is not more accurate than the OP method, it has the
same good prediction effect for the quality detection of agricultural
products. There are few direct analysis methods used so far. If a
better direct analysis method can be proposed to predict the quality
of products, not only the analysis method is simple and fast, but also
the quality prediction accuracy is more accurate, then the detection
efficiency of SRS will be significantly improved.

4 Application of spatially resolved
spectroscopy in agricultural products

Although SRS has been widely adopted in the biomedical field,
its application in the agricultural field is still relatively limited. At
present, the application of spatially resolved technology is mainly
concentrated in the field of edible agricultural products, such as
meat, dairy, fruits, and vegetables, and less application in other
areas, such as forestry, animal husbandry, etc. The technology of
detecting the quality or classification of agricultural products by SRS
is more mature. In the subsequent sections, the latest research and
specific applications of SRS in agriculture were presented and
summarized in detail.

4.1 Applications of dairy field

In the field of dairy products, SRS is more widely used in the
detection of milk. Because milk is rich in nutrients such as protein,
fat, vitamins, and minerals, it is very easy to be absorbed by the
human body, so it is very popular among human beings. To ensure
the quality of raw milk or to prevent adulteration during the sale
process, it is necessary to test the quality of raw milk. Watte et al.
developed a global optimizer that can calculate the optimal
configuration of fibers, by which the number of detected fibers
can be minimized while maintaining the validity of the OP
evaluation, making the detection optimal with cost savings. The
design achieved good results for the evaluation of the OP of milk,
with a root mean square error of the prediction (RMSEP) of 0.382
cm™ and R? = 0.996 for the reduced scattering coefficient values
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(Watte et al., 2016). Kalinin et al. used a dual-channel short-wave
near-infrared spectrometer as a detection device. The results
showed that the RMSEP of proteins using a combination of
scattering and transmission spectroscopy could reach 0.25% wt.
(Kalinin et al,, 2013). Bogomolov et al. developed and utilized a
fiber-optic array-based detection device with eight channels of
probes to analyze the quality of milk and improve the accuracy of
fat and protein detection, The root mean square errors (RMSE) for
the different validation methods were less than 0.10% for fat content
and less than 0.08% for total protein content, respectively.
(Bogomolov et al., 2017). The optimal sensor configuration was
proposed to replace the full spectrum analysis with LED in specific
wavelength bands, which provided a faster and more mature
application for milk detection. Qin and Lu used a hyperspectral
line-scan detection device to analyze the fat content in milk. They
found that the absorption coefficient and the reduced scattering
coefficient at 600 nm were closely correlated with the fat content of
milk, while the R* were 0.995 and 0.998, respectively, which verified
the feasibility of HSI in detecting the milk content (Qin and
Lu, 2007).

As shown in Tables 1 and 2 in dairy product testing, researchers
have used different spatially resolved detection systems to detect
milk’s fat and protein content to achieve good prediction results.
However, more milk is currently detected, and the approach will
definitely be developed toward a broader range of dairy products in
future applications.

4.2 Applications of meat products field

In the detection of meat products, Xia et al. applied the SRS
technique to the detection of meat products for the first time. They
measured the SRS of beef samples with a single-fiber detection,
obtained the absorption coefficient and scattering coefficient of beef
through the diffuse reflectance equation, and established a
correlation analysis between beef shear force and scattering
coefficient, with a coefficient of determination (Rz) of 0.59, which
verified the feasibility of SRS in detecting beef tenderness (Xia et al,
2007; Xia et al., 2008). Zhang et al. studied the tenderness of pork
using multi-channel SRS and predicted the tenderness of pork by
decreasing the scattering coefficient, which was R* = 0.8349 for fresh
meat shear, through which the tenderness of pork can be directly
predicted to realize fast and non-destructive detection (Zhang et al.,
2010). Wen et al. investigated myoglobin content in pork and found
that SRS in the short wave range was a feasible method for detecting
myoglobin content with a significant correlation R* = 0.955 (Wen
et al,, 2010). Wang et al. determined the moisture content of the
complete pork using SRS and found that the steady-state SRS was
capable of significantly forecasting the moisture content of the pork
compared to the conventional Y-fiber, with an R? 0f 0.8078 for their
model. (Wang J. et al,, 2017).

In summary, SRS is currently applied to detect tenderness,
myoglobin and moisture content of meat products. Moreover, this
technique can improve the accuracy of meat quality prediction to a
great extent. Table 2 summarizes in detail the results of research on
meat product quality testing. While relatively few meat products
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TABLE 2 Summary of studies about the quality detection of agricultural products.

10.3389/fpls.2023.1324881

Products Species  Applications Methods Accuracy References
RMSEP; < 0.08%
Dairy Milk Fat and protein contents PLS RM: SEP:,:O.ZI % ’ (Kalinin et al., 2013)
LR? = 0.965
Milk Fat and protein contents GA k Y (Watte et al., 2016)
1R? = 0.996
. . RMSEP<0.10% (Bogomolov
Milk F PLSR, JVSP
at and protein contents SR, JVSPO RMSEP,<0.08% et al, 2017)
CR2 =
Milk Fat content PLS Ha: Rz 0995 (Qin and Lu, 2007)
1y R? = 0.998
Meat Beef Tenderness - p<0.0001, R? =0.59 (Xia et al., 2007)
Pork Tenderness - [T} R? = 0.8349 (Zhang et al., 2010)
Pork myoglobin - R* = 0.955 (Wen et al., 2010)
Pork moisture content SPA, PLSR R? =0.8078 (Wang J. et al,, 2017)
F: r=0.88, SEP=5.66N
Fruit Appls Fi d SSC MLR, LCV in et al., 2007
rui pple irmness an SSC: 1=0.82, SEP=0.75% (Qin et a )
Firmness: R=0.894,
SEP=6.14 N;
Appl Fi d SSC MLR, MLD Peng and Lu, 2008
pple irmness an SSC: R=0.883, (Peng and Lu, )
SEP=0.73%
Firmness: R=0.844
Appl Fi d MLR, LCV in et al., 2009
pple irmness and SSC C SSC: Re0.864 (Qin et a )
Apple Bruise detection - - (Lu et al,, 2010)
i (Huang and
Appl Meal PLS-DA A 939
pple ealiness ccuracy>93% Lu, 2010)
E: =0.892, =0.863
Apple Firmness and SSC PLSR fop RO (Cen et al,, 2012b)
SSC: 16p=0.892, rpp=0.863
Acoustic/impact firmness
Mechanical and GD: r=0.870-0.948
Apple . ANOVA, LSD GS: 1=0.334-0.993 Young’s modulus (Cen et al,, 2013)
structural properties
GD:r=0.585-0.947
GS: r=0.292-0.694
Scattering technique Fi : 77.9%-98.2%
Quality grades: firmness, cattering tec nlque. 1rmness 0_ ? (Mendoza
Apple LDA SSC: 62.0%-91.7% Vis/SWNIR technique
SSC X et al., 2014)
Firmness: 87.3-97.6% SSC: 77.10-92.3%
Apple Microstructu‘re, B - (Nguyen Do Trong
textural quality et al,, 2014b)
Firmness: R” = 0.71, RMSEP=9.68N (Nguyen Do Trong
Appls Fi PL
ppie irmness and SSC S SSC: R? = 0.81, RMSEP=0.69% et al, 2014a)
Rp=0.848-0.919,
Apple Bruise detection PLS Ri/l SEP=32.4-50.7 (Zhu et al., 2016)
Non-mealy: 76%
PCR, PLSR, Mealt: 82% (Mollazade and
Appl Meali lassificati
ppie ealiness classification ANN Fresh: 88% Arefi, 2017)
Semi-mealy: 59%
Classificati
Apple Varieties PLSDA assthication (Huang et al., 2020b)
accuracies=0.994,
Firmness: R* = 0.96, RMSE,=0.37N,
Apple Firmness and SSC CARS, PLSR SSC: R? = 0.87, (Ma et al., 2021b)
RMSE,,;=0.7IN
Skin: R*>0.95,
Apple Anthocyanins PLS " (Ye et al,, 2021)

Whole flesh R* = 0.74
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TABLE 2 Continued

10.3389/fpls.2023.1324881

Products Species  Applications Methods Accuracy References
Firmness: 0.794,
PLS, PCA, SSC: 0.504, (Cen et al., 2011;
Peach Maturity/quali t
eac atarity/quality assessment - ¢ oy Skin lightness: 0.898, Cen et al., 2012a)
Flesh lightness: 0.741
Tissue structural and . N
Peach . . . SPA, PCA Membrane permeability 1=-0.962-0.743 (Sun Y. et al., 2020)
biochemical properties
ANOVA, LSD W.=76.25%,
SVM, $=76.25%,
Peach Bruise detection PLSDA, taxus’:84-o75 %, (Sun Y. et al,, 2021)
C-SVC Uea=84.5%
Firmness: 0.853,
Peach Fi d PL H t al., 2022
eac] irmness and SSC S SSC: 0.839 (Huang et a )
760nm: R* = 0.66
Peach i ANOVA h et al., 2023
eac pear porosity 835nm: R = 0.57 (Joseph et al )
Firmness: R* = 0.37,
Kiwifruit Firmness, SSC, pH PLSR SSC: R* = 0.81, (Ma et al., 2022)
pH: R? = 0.59
Optical lysi =0.10-0.61cm™
Pear ptical property analysis Ha’ o (Hu et al., 2017)
(Mo 115) ps'=12.5-9.5cm
CH: R=0.9768-0.9807,
EL: R=0.9553-0.9759,
hlorophyll, elasticity, Adebz
Banana Chlorophyll, elasticity ANN SSC: R=0.9640-0.9801, (Adebayo
SSC, ripeness X R et al., 2016)
RI: classification,
accuracy=97.53%
Citrus Early decay detection GL, LDA Classification accuracy=96.1% (Lorente et al., 2013)
Vegetables Cucumber Defect detection - - (Lu et al, 2011)
Onion Detecting internal rots PLSDA - (Sun J. et al., 2020)
Classificati Huang and
Tomato Maturity classification PLSDA, SVMDA asstfication (Huang an
accuracy=81.3-96.3% Chen, 2018)
SSC: r,=0.800,
Tomato SSC, pH PLS D rl:=0.819 (Huang et al., 2018a)
Firmness: R=0.835,
Tomato Firmness, SSC, pH PLS SSC: R=0.623, (Huang et al., 2018b)
pH: R=0.769
Firmness, puncture F: 0.859,
Tomato wness, p PLS PME: 0.917, (Huang et al., 2018¢)
maximum force, slope
SL: 0.948
Tomato Maturity stages SVMDA Total classification accuracy=98.3% (Huang et al., 2020a)
Classificati
Tomato Ripeness PLS-DA asstication (Zhu et al., 2015)
accuracy=_88.4%
Dry: 11,=0.0048mm ",
0.0042mm’’,
Softwood J=1.8mm™, 13 mm™,
Wood ottwoo Dry, wet MC #s =550, 53 mim (Kienle et al., 2008)
silver fir Wet: 41,=0.0045mm ",
0.0038mm’’,
'=0.6mm’, 2.0mm™
Various densities, grain 3mm: R=0.953,
D fi PCR, PLS Ma et al., 2018
ouglas fir directions, thicknesses 5mm: R=0.987 (Ma cta )
Five
softwood L
SW) Classification PCA, QDA QDA=94.0% (Ma et al., 2019a)
ten
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TABLE 2 Continued

10.3389/fpls.2023.1324881

Products Species  Applications Methods Accuracy References
hardwood
(HW)
GPR: R” = 0.98,
Hinoki Thr'ee—dlmenswna.l GPR, LRA RMSE:ZZ.Z (Ma et al,, 2019b)
cypress grain angle LRA: R™>0.90,
RMSE<3.8°
. . R* = 0.86,
Wood Tensile strain measurement PCA, PLSR (Ma et al., 2021c)
RMSE=279.86
Five-fold -validation=98.6%,
Wood Classification PCA, SVM we-to cr'oss 'val ation=98.6% (Ma et al., 2021a)
Test set validation=91.2%
Animal Palendeng
nm Cattle Age PLS, GA, RLT ARMSEP=2.0 years, R* = 0.63 (Palendeng
Husbandry et al., 2020)
Validation set
Sensitivity=93.18%,
I o
PLS-DA, CARS, SPA, SPA, ipmﬁmy 9934;;@
racy=93.88%,
Rabbit Early pregnancy diagnosis SVM, KNN, Naive couracy ? (Yuan et al,, 2022

Bayes

Prediction set
Sensitivity=86.96%,
Specificity=90.00%,
Accuracy=90.69%

JVSPO, Joint variable selection and preprocessing optimization method; MLD, Modified Lorentzian distribution; GD, ‘Golden Delicious’; RD, ‘Delicious’ (RD) apples; ANOVA, Analysis of

variance; LSD, Least significant difference; LDA, Linear discriminant analysis; C-SVC, C-Support Vector Classification algorithm; GL, Gaussian-Lorentzian cross product; Tps Correlation
coefficient of prediction; PCR, Principal component regression; PLS, Partial least squares regression analysis; GPR, Gaussian process regression; RMSE, Root mean square error; LRA, Linear
regression analysis; PCA, Principal component analysis; QDA, Quadratic discriminant analysis; PLS, Partial least squares regression; GA, Genetic algorithm; RLT, Repeated learning-training
method; ARMSEP, Average root mean square error of prediction; MC, Monte Carlo simulations; PLS-DA, Partial least squares-discriminant analysis; CARS, Competitive adaptive reweighted
sampling; SPA, Successive projection algorithm; SVM, Support vector machine; KNN, K-Nearest Neighbor.

can be tested by this method, SRS has excellent potential for future
applications in meat quality testing.

4.3 Applications of fruit and vegetable field

SRS is widely applied in fruit inspection, mainly for apples,
pears, peaches, kiwifruit, bananas, and citrus. In the detection
process of apples, spatially resolved hyperspectral imaging was to
measure apple OP and relate them to fruit firmness and SSC,
showing that the y, and y;’ data gave the best predictions for the
fruit firmness and SSC, with correlation coefficients (r) of 0.82 and
0.80 for firmness, and 0.7 and 0.59 for SSC respectively. This
provides a fresh approach to detecting the internal quality of
fruits (Qin et al, 2007). Peng and Lu refined the hyperspectral
scattering technique for fruit quantity testing by fitting spectral
scattering curves at each wavelength with ten different forms of
modified Lorentzian distribution functions and comparing the
predictions of fruit firmness and SSC by ten modified Lorentzian
distribution functions using multiple linear regression and cross-
validation methods. The predicted correlation coefficients were
0.894 and 0.883, respectively, which verified the advantages of the
technique in fruit quality testing (Peng and Lu, 2008). Lu et al. used
the absorption scattering properties of apple tissue to predict
bruising of the fruit. The measurement of enhanced scattering
properties was found to be feasible for bruise detection in apples
(Lu et al, 2010). Huang et al. detected the mealiness of apples,
modeled the classification of apple mealiness classes by the partial
least squares (PLS) method, and found that the accuracy of
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establishing a two-level classification was 293%. Thus, it validated
the advantages of hyperspectral scattering technology in the
nondestructive detection of the mealiness of apples (Huang and
Lu, 2010). Cen et al. analyzed the physical and structural properties
of apple pulp using a newly developed OPA (Cen et al., 2012b) and
the correlation coefficients of firmness, r=0.870-0.948, and Young’s
modulus, 7=0.585-0.947, were obtained for Golden Delicious (GD)
apples, which demonstrated that spatially resolved techniques can
be used to predict internal fruit quality by combining OP (Cen et al,
2013). Mendoza et al. used short-wave NIR spectroscopy and
scattering to classify apple quality with accuracies ranging from
87.3-97.6% for firmness and 77.1-92.3% for SSC, which validated
the capability of organizing and grading apples by firmness and SSC
(Mendoza et al., 2014). Nguyen Do Trong obtained the scattering
and absorption coefficients of apple slices air-dried under various
conditions pretreated by spatially resolved diffuse reflectance
spectroscopy. Finally, it was found that SRS could detect the
microstructure and quality relationship of air-dried apple slices
without loss (Nguyen Do Trong et al., 2014b). The spatially resolved
diffuse reflectance device (Nguyen Do Trong et al., 2013) was used
to detect the OP of apples (Nguyen Do Trong et al., 2014a). The u,
spectrum was found to be superior to 4’ by comparison, and the
coefficients of determination R” for firmness and SSC were 0.71 and
0.81, respectively. The results showed that the detection of diffuse
reflectance spectra of optical fibers cannot significantly improve the
prediction performance of SSC. Still, it can be used to better predict
the firmness and SSC of apples by separating the absorption
coefficients and reducing the scattering coefficients. Zhu et al.
utilized hyperspectral scattering to expected damage to apples
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with predictive correlation coefficients R,=0.848-0.919. The
research revealed that hyperspectral scattering can be used to
assess the bruise susceptibility of apples, which is beneficial for
post-harvest inspection of fruits (Zhu et al., 2016). Mollazade et al.
found a way to classify apple fruits using spatial resolving technique,
which was verified by 76% and 82% accuracy for non-mealy and
mealy apples, respectively (Mollazade and Arefi, 2017). Huang et al.
used a multichannel HSI to classify apple varieties with 99.4%
accuracy using the best spectral classification. They verified the
potential of multichannel hyperspectral imaging systems for apple
variety detection (Huang et al, 2020b). Ma and Xia et al. used a
multi-fiber, spatially resolved measurement system that assessed the
SSC and firmness of apples with an optimal R* of 0.97 and 0.96,
respectively, validating the technique’s ability to detect apple quality
in a low-cost and portable method accurately (Ma et al., 2021b). Ye
et al. obtained spatially resolved interaction spectra at eight different
source-detector distances (SDDs) on the fruit surface and verified
that the optimal SD could be selected to detect the extent of red
color in the flesh at a specific depth by a model developed for
anthocyanin content estimation (Ve et al., 2021).

In the inspection of peaches, Cen et al. (2011; 2012a) measured
the absorption and reduced scattering coefficients based on the SR
method of HSI to assess peach ripeness and quality, with 7 of 0.749
and 0.504 for firmness and SSC, respectively. The results suggested
that spatially resolved techniques had good potential for
application. Research by Sun et al. measured the OP of peaches
during quality damage, determined the relationship between optical
parameters and specific structural and biochemical factors, and
found a good correlation at 675 nm (Sun Y. et al., 2020). This study
facilitated the early detection of peach diseases. Sun et al. also
measured the OP of peaches at different ripeness levels using the SR
technique (Sun Y. et al., 2021), with classification accuracies of 85%
and 76.25%, respectively, and these results found that this optical
property was effective in detecting damage in peaches. Huang et al.
evaluated the firmness and SSC of peaches using SRS (Huang et al.,
2022) and improved the prediction of peach quality by
incorporating spectral disparity techniques, with the best r of
peach firmness and SSC being 0.853 and 0.839, respectively.
Joseph et al. used the SRS technique to study the relationship
between peach porosity and light scattering characteristics, and the
results showed that the reduced scattering coefficients at 760 nm
and 835 nm were linearly correlated with the spatially averaged
porosity by R* of 0.66 and 0.57, respectively, which verified that the
method could realize non-destructive pear porosity assessment
(Joseph et al., 2023).

In addition, Ma et al. verified the feasibility of SRS for the
detection of kiwifruit quality with coefficients of determination R
of 0.81 and 0.59 for SSC and pH, respectively (Ma et al., 2022). The
OP of the pear was analyzed by Hu et al. (2017). They measured p,
between 0.1-0.61 cm ™}, while s’ decreased with wavelength between
12.5-9.5 cm™. In this study, it was demonstrated that the OP of
pears is associated with the wavelength and that establishing
standardized slices of the samples helps to enhance the precision
of the measurement of the OP. Adebayo et al. combined OP with
chlorophyll, modulus of elasticity, SSC, and banana ripeness to
develop predictive models. The correlation coefficients of
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chlorophyll, elastic modulus, and SSC were 0.9768-0.9807,
0.9553-0.9759, and 0.9640-0.9801, respectively, and the
classification accuracy of banana ripeness reached 97.53%. This
indicates that bananas with different ripeness levels can be predicted
and categorized by OP, which provides a good and effective method
for nondestructive testing of banana quality (Adebayo et al., 2016).
Lorente et al. predicted early decay in citrus fruits with a
classification accuracy of 96.1%, validating that this technique has
great potential for grading citrus fruits (Lorente et al., 2013).

In the detection of vegetables, Lu et al. used the spatially
resolved technique of hyperspectral imaging to test for defective
pickling cucumbers (Lu et al., 2011). They found that effective
defect detection could be achieved by enhanced scattering
characteristic measurements through analysis of the OP of
cucumbers. Sun et al. developed the SR transmission spectroscopy
system for detecting internal rot onions, and the presence of high
area under curve (AUC) values (0.96 + 0.02) and Kappa values (0.77
+0.05) at the stem end of the onion validated the advantages of the
system in detecting onion decay (Sun J. et al., 2020). Huang et al.
designed a multichannel SRS detection device and used it to detect
firmness, SSC, pH with correlation coefficients of 0.835, 0.623, and
0.769, respectively (Huang et al., 2018a; Huang et al., 2018b), The
classification accuracy in tomato maturity assessment was able to
reach 98.3% (Huang et al., 2020a; Huang et al, 2020b), which
verified that OP based on SRS can reasonably predict the quality
of tomato.

Table 2 shows the details of the studies on the detection of
product quality of fruits and vegetables. It shows that SRS has been
widely used in the field of fruits and vegetables, mainly for the
detection of quality characteristics such as firmness, pH, SSC,
maturity, mealiness and bruise, as well as the biochemical
properties of the internal tissues. In the future, the application of
SRS in fruit and vegetable detection will be more mature, the types
of detection will be more abundant, and the accuracy will be higher.

4.4 Applications of forestry field

In the field of forestry industry, SRS is mainly used in the
detection of wood in recent years. Kienle et al. used a spatially and
time resolved approach to study the mechanism of light
propagation in dry and moist softwoods and put forward a
theoretical model for the description of light propagation in
wood, which is supported by the microstructure of softwood
(Kienle et al., 2008). Ma et al. used spatially resolved
hyperspectral detection to examine the OP, grain direction, and
thickness of Douglas-fir at different densities. Correlation
coefficients for 3 mm and 5 mm samples were 0.953 and 0.987,
respectively (Ma et al., 2018). Meanwhile, the device classified
softwoods and hardwoods with an accuracy of 94.1%, which
shows that SRS is highly predictive in wood inspection (Ma et al.,
2019a). In addition, the SRS device was optimized to achieve 91.2%
accuracy in the test set of 15 wood classifications (Ma et al., 2021a).
Moreover, the R? of the tensile strain of the wood was measured to
be 0.86 using the optimized equipment, which verified the
suitability of SRS for the detection of wood (Ma et al., 2021c).
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Table 2 summarizes in detail the current status of product
quality testing in forestry. It can be found that SRS detection
technology is emerging in the application of forestry quality
testing, and with the progress of technology, this method will be
more widely used in forestry-related testing.

4.5 Applications of animal husbandry field

In the field of animal husbandry, Palendeng et al. used a
spatially resolved method to detect the age of cattle (Palendeng
et al., 2020). The feasibility of the SR technique for estimating the
age of cattle was validated by using the SR diffuse reflectance
spectrometer based on a fiber optic probe to collect skin samples
from the neck of the cattle and assessing the age of the cattle by the
developed PLS model with the lowest average root mean square
error of prediction (ARMSEP) of 2.0 years and R* = 0.63. Yuan et al.
used SRS to diagnose the possibility of pregnancy in female rabbits
by collecting spectral information at different distances with a
movable distance-type detection fiber (Yuan et al, 2022). The
results showed that the SRS detection method can distinguish
whether a female rabbit is pregnant or not, and the accuracy of
the validation set can reach 90.69%.

From Table 2, it can be found that the application of SRS
technology in animal husbandry-related fields is still rare, and it is
currently only applied to a few animal husbandry tests, mainly for
age and pregnancy detection of animals. However, this technique
shows a strong predictive ability in livestock detection. Therefore,
the method is expected to be widely applied to the detection of other
characteristics of animal husbandry and more livestock animals in
future development.

Generally, SRS technology has been widely used in the field of
agriculture. In the field of dairy this technique is mainly applied to
the detection of protein, fat and other nutrients in milk with better
predicted results. But at present the technique is less used for the
detection of other types of dairy products such as goat milk, camel
milk, etc., and some dairy products such as milk powder, cream,
cheese, etc. Hence there is a good prospect for development in this
field. In the detection of meat products, researchers mainly focus on
the detection of fresh beef and pork, and the qualities detected are
meat tenderness, myoglobin and moisture content. Nevertheless,
the quality of some meat products such as jerky, dried meat, bacon,
sausage, etc. was less tested. In the future, other types of meat can
also be detected, such as lamb, fish, shrimp, etc., through the
detection of its nutrient content to predict the quality of meat
products, which is conducive to providing human beings with more
healthy and nutritious food. SRS has been most used and developed
for fruits and vegetables. Currently, the fruits and vegetables
inspected include apples, pears, kiwifruits, bananas, citrus,
cucumbers, onions, and tomatoes. The main detection of their
SSC, hardness, pH, damage, ripeness, chlorophyll content, etc.
Thus, SRS is expected to achieve more efficient and accurate
quality detection in this field. In the field of forestry, researchers
mainly apply SRS to the classification, moisture, texture, and
thickness detection of wood. In future development, it is expected
to realize the detection of hardness, oiliness, density and damage of
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wood, which has a lot of space for development. In the field of
animal husbandry, the current research is mainly focused on the age
of cows and the pregnancy of rabbits, but in the future, it is expected
to detect more animals and their health level. Overall, SRS has been
more widely used in the field of agriculture at present but still has a
lot of advantages for development. Since this technique can not only
directly analyze the correlation through spatial spectral
information, but also extract specific optical properties to further
explore the relationship between the quality of agricultural products
and OP. Therefore, it is expected that this technology will have
much more effective application potential in future quality
detection in the field of agriculture.

5 Challenges and future trends

SRS has been widely used in agriculture so far due to its stable
performance, low cost, ease of use, and continuous algorithmic
improvement. Importantly, this is mainly because that detection
method can well reflect the characteristics of agricultural products.
Although five different types of SRS, including single fiber, fiber
array type, CCD line scan type, hyperspectral line-scan, and multi-
channel hyperspectral imaging detection system, are relatively
widely used in agricultural products for quality inspection
currently, this technology still faces many challenges and difficulties.

The challenges are mainly in the SRS devices and calculation
methods. In terms of devices, for example, there is no specific
standard for the selection of light sources, and the selection of high-
power light sources can easily damage the external and internal
tissue structure of organisms. In contrast, the selection of low-
power light sources has limited detection distance and cannot
collect satisfactory distant spectral information. To meet the
requirement of detection, the light source should satisfy the
appropriate intensity meanwhile its diameter is often small
enough, especially for small samples such as corn kernels, wheat
seeds, cherries, grapes, and other agricultural products, so that it can
be equivalent to a point light source and reduce the error of solving
the OP of the calculation. The practical arrangement and selection
of optical fiber is also a problematic issue in the device. For single
fiber and fiber array detection devices, the selection of optical fiber is
significant, which not only requires the fiber to be as small as
possible but also the arrangement of the detection distance as
accurately as possible. Besides, for irregular detection objects, the
detection fibers often cannot fit closely due to the curvature of the
sample surface. Although Huang et al. designed a multi-channel
detection device, the approach is only suitable for larger objects with
micro-curvature. Some irregular-shaped and curvature-changed
objects or smaller objects still cannot be detected satisfactorily.
Therefore, how to design a detection fiber that can meet irregular
objects is still an essential and inevitable challenge.

In addition, the stability and precision of the mechanical device
enable more accurate acquisition of spatially resolved spectral
information. Therefore, the design of the mechanics of the SRS is
of great significance. During the spectra acquisition process, the
detection device needs to hold the fiber and the sample firmly in
place. Manual detection often lacks accuracy, which is prone to
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jitter, and has many instabilities. These can undoubtedly have a
negative impact on the spectral quality. As a result, more stable
mechanical devices are needed to replace manual fixation to
improve the stability of the detection system. However, the
mechanical device has different requirements for the detection
fiber, light source, and sample. As for optical fiber detection, it is
not only required that the fiber closely fits the sample but also that
the fiber is moved in a more precise position. However, because of
the irregularity of the measured object and the curvature of the
surface, it is easy for the optical fibers to move without close contact,
and can also damage the surface of the agricultural product if it is
moved too aggressively. In the case of the light source, it is necessary
that the light source is also close-fitting the measured object surface
to avoid too much diffuse light on the spectral information. As for
the sample, the mechanical device should be fixed steadily so that
the collected sample cannot move easily, and it should not be fixed
too tightly to avoid damage or deformation to the sample. So, there
are many difficulties in the design of the mechanical device.

Moreover, the detection accuracy has a great impact on the
subsequent analysis of the spectra. Trying to minimize the impact of
some controllable factors on the accuracy is beneficial to improving the
spectral detection quality. The detection accuracy is affected by various
factors, which are reflected in all aspects of the detection device. For
example, the resolution of the detection instrument, the stability of the
light source, the loss of the detection fiber, and the stability of the
mechanical device might have a negative impact on the accuracy.
Therefore, the designed SRS equipment requires calibration to
guarantee the stability and accuracy of the equipment. Last but not
least, the design cost of SRS is also a problem because the
manufacturing and maintenance costs of SRS detection devices are
very high and usually require the use of expensive optical and
mechanical components. How to improve the detection accuracy of
SRS while reducing the cost is also a demanding challenge to be solved.

At the present stage, direct analysis and OP are mainly used to
deal with spatially resolved spectra in terms of computational
methods. The direct analysis method is simple and efficient, but
this method is less used. Therefore, it is a promising trend and a good
development direction to study the simple and efficient direct analysis
method. In addition, the OP method is complex, but the prediction
accuracy is relatively high. The current OP methods are based on the
diffuse equation theory to separate out the optical characteristics. In
the process of extracting the OP, because of the complexity of the
diffuse equation, the solved values are often not accurate enough and
the computation is huge. The future development of simpler and
more accurate optical equations to extract OP based on the current
research is also an emerging research prevailing trend.

6 Conclusion

Agricultural products, including dairy, meat, fruit and
vegetable, forestry products, and animal husbandry products, are
of great importance to people’s daily lives, depending on their
external and internal quality. Compared with traditional detection
methods, SRS not only provides more spatial information but also
separates out optical properties, so it can be widely used in the field
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of agriculture. SRS detection systems, including single fiber, fiber
array type, CCD line scan type, hyperspectral line-scan, and multi-
channel hyperspectral imaging detection system, have been
increasingly used for inspecting quality in replacement of manual
grading as they can provide a simple structure, easy to operate, low
cost and non-destructive assessment. With the continuous
development of this technology, many successful applications
have proved that SRS detection systems are powerful and
scientific tools for stable and accurate quality inspection of
agricultural products. This paper reviews the principles,
development, and applications of five various SRS detection
systems for agricultural product quality inspections. Despite the
problems and challenges of this technique, it promises to achieve
online detection with a more simple, portable, and easy to operate
configuration for further widespread application in quality
inspection of agricultural fields.
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Introduction: Hyperspectral imaging (HSI) and deep learning techniques have
been widely applied to predict postharvest quality and shelf life in multiple
horticultural crops such as vegetables, mushrooms, and fruits; however, few
studies show the application of these techniques to evaluate the quality issues
of cut flowers. Therefore, in this study, we developed a non-contact and rapid
detection technique for the emergence of gray mold disease (GMD) and the
potential longevity of cut roses using deep learning techniques based on
HSI data.

Methods: Cut flowers of two rose cultivars (‘All For Love' and ‘White Beauty’)
underwent either dry transport (thus impaired cut flower hydration), ethylene
exposure, or Botrytis cinerea inoculation, in order to identify the characteristic
light wavelengths that are closely correlated with plant physiological states based
on HSI. The flower bud of cut roses was selected for HSI measurement and the
development of a vase life prediction model utilizing YOLOVS.

Results and discussion: The HSI results revealed that spectral reflectance
between 470 to 680 nm was strongly correlated with gray mold disease
(GMD), whereas those between 700 to 900 nm were strongly correlated with
flower wilting or vase life. To develop a YOLOV5 prediction model that can be
used to anticipate flower longevity, the vase life of cut roses was classed into two
categories as over 5 d (+5D) and under 5 d (-5D), based on scoring a grading
standard on the flower quality. A total of 3000 images from HSI were forwarded
to the YOLOV5 model for training and prediction of GMD and vase life of cut
flowers. Validation of the prediction model using independent data confirmed its
high predictive accuracy in evaluating the vase life of both ‘All For Love' (r? = 0.86)
and ‘White Beauty' (r? = 0.83) cut flowers. The YOLOV5 model also accurately
detected and classified GMD in the cut rose flowers based on the image data. Our
results demonstrate that the combination of HSI and deep learning is a reliable
method for detecting early GMD infection and evaluating the longevity of
cut roses.
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1 Introduction

Recently consumer interest and use of floricultural products
have been growing, especially through online markets, resulting
from an increase in flower sale for home use in the COVID-19 era
(Bulgari et al., 2021; Gabellini and Scaramuzzi, 2022). As a large
portion of floricultural plants is utilized as cut flowers, long
postharvest longevity is the primary quality by which flower sales
can be promoted (Vehniwal and Abbey, 2019). Although cut flower
longevity cannot be readily assessed, estimates of shorter vase life
commonly reduce the value of cut flowers that are shipped to
international markets. The vase life of cut flowers is determined by
morphological and physiological attributes, which are shaped by the
interaction of preharvest conditions and genetic traits (Fanourakis
et al,, 2013; In and Lim, 2018). Although rose is not an ethylene-
sensitive species, in some cultivars adverse effects of ethylene
exposure have been reported (Macnish et al., 2010; In et al,
2017). Ethylene is a plant hormone that regulates various
physiological processes, including fruit ripening and flower
senescence (Wang et al., 2002). Ethylene is also produced as a
product of certain agricultural commodities and industrial
activities. Cut rose flowers can be exposed to increased ethylene
concentrations in various situations such as storage or transport
with ethylene-producing agricultural commodities (fruits or flowers
that naturally produce ethylene), storage in or near industrial areas
where there is high emission of the ethylene-producing substances,
and the improper ventilation of the storage or transport facilities
(Cape, 2003; Chang and Bleecker, 2004; Martinez-Romero et al.,
2009). Dry transport is the main method employed commercially
for trade because of a reduction in space (thus cheaper) and in
flower bud opening (thus maturity stage is little affected) (Macnish
et al,, 2009). However, cut flower hydration during dry transport is
reduced owing to transpiration losses, which are not compensated.
In addition, some environments such as high humidity and wet
conditions are characterized by increased B. cinerea spore density
(Williamson et al., 2007; Friedman et al., 2010). This increased
spore density is not apparent at harvest, but later on,
problems appear.

Therefore, the vase life of cut roses commonly ends during the
early stages of flowers” development, and reliably predicting their
lifespan has not been possible. Consequently, consumers are
dissatisfied and flower utilization is reduced (Reid et al.,, 1996;
Vehniwal and Abbey, 2019). Thus, the development of longevity
prediction techniques is a high priority to assure the ornamental
period of cut flowers for the customers, as this can be incorporated
into the existing system for quality grading of cut flowers.
Moreover, the vase life prediction system can improve efficiency
in flower supply chains as well as provide consumers with relevant
flower products according to their use. For instance, different
batches of cut flowers can be sorted based on the vase life
potential in the packaging house. The flower batches with short
vase life are priced lower and traded shortly, whereas the batches
with long vase life are priced higher in the markets and can be
stored for longer time before the distribution. Furthermore, the vase
life prediction model in cut flowers offers benefits ranging from
quality assurance and supply chain optimization to environmental
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sustainability and economic efficiency. It aligns with the boarder
goals of the floral industry, aiming to deliver high quality products
while minimizing waste and environmental impact.

Few attempts had so far been made to devise effective methods
to predict and guarantee postharvest longevity of cut flowers. Staby
and Cunningham (1980) reported a method to estimate the vase life
of cut carnation based on the ethylene level using gas
chromatography. However, vase life prediction using this method
is not suitable in ethylene-insensitive flowers and might be less
accurate in the early stage of postharvest. Tromp et al. (2012)
developed a method to predict the remaining vase life of cut roses
using the degree-days model during storage and transportation at a
constant. However, this method may be of limited use if the
biological variance is high or the temperature of storage and
transportation is outside the optimum range (2-6 °C).

We developed previously artificial neural network models to
predict and assure the vase life of three rose cultivars based on
thermal image analysis. Although the prediction accuracy of the
models was quite high, the application of this method was limited
because the cut roses used for the prediction model did not undergo
various postharvest conditions that influence the vase life of cut
flowers, such as dry transport, exposure to ethylene, or high density
of mold spore during storage and transport (In et al., 2009; In et al.,
2016a). Thus, to enhance the model performance for practical
application in the vase life guarantee, it is further necessary to
detect plant status rapidly and to use extensive data processing for
complex data, such as artificial intelligence or machine learning.

Recently, a non-destructive method such as hyperspectral
imaging (HSI) has been widely used to evaluate various factors
related to plant physiology and stress conditions in multiple
horticultural crops (Behmann et al, 2014; Liu et al., 2015; Lowe
et al,, 2017; Veys et al.,, 2019; Ramamoorthy et al., 2022; Wieme
et al., 2022). HSI uses a hyperspectral camera to capture images of
plants in a wide range of light wavelengths (Lowe et al., 2017; Lay
et al., 2023). By analyzing the reflectance of horticultural products
in different wavelengths, HSI can extract detailed information about
the morphological and physiological properties of plants, including
disease infection, nutritional deficiencies, ripeness, and defects of
fruits and vegetables, etc (Liu et al., 2015; Wieme et al., 2022). The
development of spectral imaging techniques has required suitable
regression models to analyze spectral data. Machine learning
techniques based on algorithms have been applied to construct
classification and regression models for HSI to predict and evaluate
the quality of vegetables and fruits (Zhang et al., 2016; Rahman
et al, 2017; Ji et al, 2019). However, the machine learning
algorithms only performed a screening process on the spectral
bands (Zhang et al., 2016). In recent years, deep learning, a subset
of machine learning, has been widely used in agriculture, industry,
and medics because it can learn features automatically from a large
dataset of images (Guo et al., 2016; Tian et al., 2020). This technique
was used in building hyperspectral imaging correction models for
prediction and classification. Convolutional neural networks
(CNNs), a type of deep learning algorithm, can rapidly and
accurately classify the quality of agricultural products and identify
potential factors affecting their appearance or shelf life without
being influenced by personal biases or subjective opinions (LeCun
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et al., 2015; Kamilaris and Prenafeta-Boldu, 2018; Cravero et al,,
2022). In the last decade, CNNs have been increasing employed in
plant phenotyping community. They have been very effective in
modeling complicated concepts, owing to their ability of
distinguishing patterns and extracting regularities from data
(Nasiri et al,, 2021; Taheri-Garavand et al., 2021). You Only Look
Once version 5 (YOLOV5), a type of CNN, is a state-of-the-art deep
learning algorithm that was used to classify agricultural products
with high accuracy even when source images are poor quality or
contain multiple features (Yao et al., 2021; Ahmad et al., 2022). To
classify agricultural products by using YOLOVS5, the algorithm must
first be trained on a large dataset of labeled images (Redmon et al.,
20165 Yao et al., 2021). YOLOvV5 can also perform real-time
classification, which is important for rapidly classifying large
quantities of horticultural products (Zhang et al., 2021; Li et al,
2022). HSI and deep learning techniques have been widely applied
to predict postharvest quality and shelf life in multiple horticultural
crops such as vegetables, fruits, and mushrooms (Taghizadeh et al.,
2011; Mo et al., 2015; Susic et al., 2018; Sun ] et al.,, 2021; Wieme
et al, 2022; Xiang et al, 2022); however, there are few studies
showed the application of these techniques to evaluate the quality
issues of cut flowers (Stead et al, 2018; Sun X et al, 2021).
Therefore, this study aimed to develop a rapid and effective
method to predict the longevity of cut roses based on HSI and
deep learning algorithms. To identify light wavelengths that are
closely correlated with plant physiological states (GMD and petal
wilting) using HSI, cut flowers underwent either water stress,
ethylene exposure, or B. cinerea inoculation before storage.
YOLOV5 was adopted for processing the extensive image data by
HSI in order to develop vase life prediction models for cut flowers.
In the present study, the flower bud of cut roses was chosen for HSI
measurement and the development of the vase life prediction
model. This selection allows for imaging from the top of entire
batches of cut flowers. Furthermore, the results obtained in this
study are not confined solely to hydration status; they also
contribute to the vase life prediction for cut rose flowers.

2 Materials and methods
2.1 Plant materials

Cut roses ‘All For Love’ and “White Beauty’(Rosa hybrida L.)
were cultivated and harvested in a commercial greenhouse in
Guksong, Jeollanam-do, South Korea. Rose plants were
dripirrigated with a liquid nutrient solution containing NH,NO;
(4493 , L"), Ca(NO;), 4H,0 (1747 g L"), KNO; (1.63 4 L),
KH,PO, (12.04 4 L"), MgSO4 7H,O (27.04 g L"), and a small
volume of other trace substances. The symptomless rose flowers
were collected and harvested at the commercial stage (outer petals
bent out) (Harkema et al., 2013). After harvest, cut flowers were
either wet transported (WT) in tap water or dry transported (DT)
without the water to the laboratory within 4 h. At the laboratory, all
cut roses were placed in a controlled environment room at 23 + 1 °C
and at a relative humidity (RH) of 50 + 2% for HSI analysis. After
the HSI, the cut flowers were exposed to ethylene or inoculated with

Frontiers in Plant Science

10.3389/fpls.2023.1296473

B. cinerea and followed by storage at 10 + 1 °C and RH of 50 + 5%
under dark conditions for 3 d for transport treatments (In
et al., 2016b).

2.2 Ethylene exposure

Cut flowers in WT were held in distilled water and those in DT
were placed in buckets without water and enclosed in the treatment
chamber (462 L) at 23 + 1 °C under dark conditions. Distilled water
was used, though less common from practical stand point, since the
tap water composition largely depends on the season, and the
location (Amadi-Majd et al,, 2021). Ethylene (10%) was injected
into the chamber to achieve a final concentration of 2 uL L', Three
beakers containing 200 mL of 1M NaOH were placed in the
treatment chamber to neutralize CO, released by the flower
respiration during the ethylene treatment. After every 12 h of
ethylene exposure, the treatment chamber was opened for 2-3 h
for HSI and then closed and re-injected with 2 uL L' ethylene.
Three days after the transport treatments, cut flowers were taken
out from the chamber for vase life evaluation and HSI.

2.3 B. cinerea inoculation in cut roses

B. cinerea (KACC40573) was isolated from infected rose flowers
in the Korean Agricultural Culture Collection (KACC), National
Institute of Agricultural Sciences. For a pure culture, B. cinerea
conidia were grown in potato dextrose agar (PDA, Difo
Laboratories, Detroit, MI, USA) at 25 + 1 °C for 14 days. B. cinerea
conidial suspension was obtained by dropping 10 mL of distilled
water into a culture petri dish and then gently sweeping the fungal
colony surface with a sterile loop. The conidial clumps were removed
from the obtained suspension by gently filtering with sterile gauze.
Afterward, the concentration of conidia suspension was adjusted to
10° conidia mL™ with sterile water for the experiment.

WT and DT flowers were inoculated by spraying with 30 mL of
the conidial suspension (10°> conidia mL™"). Non-inoculated cut
roses were sprayed with sterile water (30 mL). After inoculation of
B. cinerea, the rose flowers were then placed in the storage chamber
(at temperature 10 + 1 °C and RH of 50 + 5%) under dark
conditions for 3 d to simulate export conditions. After the
transport treatments, cut flowers were set up for vase life and
disease progression evaluation and HSI.

2.4 Evaluation of vase life and gray
mold disease

After three days of the export simulation, twenty-five cut roses
in each treatment were trimmed to a length of 45 cm with three
upper leaves. Each cut flower was placed into a glass jar containing
distilled water (450 mL) and maintained at the temperature (23 £ 1
°C), RH of 50 + 2%, and light intensity at 20 ymol m™ s (a
photoperiod of 12 h) supplied by fluorescence tubes for GMD
progression and vase life assessment.
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Changes in the postharvest quality of cut roses were determined
by measuring relative fresh weight and water uptake daily at 10:30
am. Water balance (WB) of cut flowers was calculated from changes
in fresh weight, water uptake, and daily transpiration. The vase life
of cut roses was evaluated daily by the assessment criteria for Rosa
(VBN, 2014). Cut roses were considered to have reached the end of
their postharvest life when flowers showed at least one or more of
the following senescence symptoms: pedicel bending (neck angle
greater than 45°), petal drying (= 50% of petals show dryness);
wilting of petal and leaf (> 50% of petals or leaves loss their turgor),
petal abscission (a drop of three or more petals), leaf abscission and
yellowing (= 50% leaf drop and yellowing), bluing (= 50% blue
petals) (Fanourakis et al., 2015; Fanourakis et al., 2016). In addition,
the vase life of cut roses was considered to end when cut flowers
showed severe GMD symptoms in the petals. The progression of
GMD by B. cinerea was evaluated based on the disease index as
described in the previous study (Ha et al., 2022).

2.5 Fungal biomass and gene
expression analysis

Fungal genomic DNA (gDNA) was extracted from the gray
mold mycelia collected from infected petals by using i-genomic BYF
DNA Extraction Mini Kit (INTRON Biotechnology Inc., Gyeonggi-
do, South Korea). Total RNA was isolated from 200 mg of rose
petals by using the GeneJET plant RNA purification Mini Kit
(Thermo Fisher Scientific Baltics, Vilnius, Lithuania). cDNA was
synthesized from 1 pg of total RNA using XENO-cDNA Synthesis
Kit (CELL TO BIO, Gyeonggi-do, South Korea) and performed in a
Bio-Rad PTC-100 Programmable Thermal Controller (M] Research
Inc., Hercules, CA, USA) as per the instruction manual. Then,
fungal biomass (evaluated by Bc3 from gDNA) and the transcript
levels of the ethylene biosynthesis gene (RhACOI), aquaporin-
related gene (RhTIPI), and senescence-induced gene (RASIG) in
petals of cut roses were analyzed using the BIO-RAD CFX Connect
Real-Time System (Life Science, Hercules, CA, USA). B. cinerea
actin A (BcactA) and Rosa hybrida actin 1 (RhACTI) genes were
used as an internal control. The primer sequences used for
quantitative real-time PCR (qQRT-PCR) are listed in Table 1. The
qRT-PCR reaction setting and conditions for gene expression
analyses have been indicated previously (Ha et al., 2022).

TABLE 1 List of genes and primers used for qRT-PCR analysis in this study.

Gene
(accession humber/reference)

Forward primer

Bc3 (Suarez et al., 2005)
BcactA (Chague et al., 2006)

RhACOI (AF441282.1)

5-GCTGTAATTTCAATGTGCAGAATCC-3

5-CCCAATCAACCCAAAGCTCAACAG-3’

5'CGTTCTACAACCCAGGCAAT-3’

10.3389/fpls.2023.1296473

2.6 Hyperspectral image acquisition

The visible/near-infrared (VIS-NIR) hyperspectral camera
system was set with an IMEC SNAPSCAN camera (3650x2048
pixel) (IMEC, Leuven, Belgium, www.imec-int.com) with 150
spectral bands and a spectral range of 470-900 nm. This system
was connected to a computer (Intel (R) Core (TM) 17-1165G7 CPU
@ 2.8 GHz). Images of cut roses were acquired using the HSI in
reflection mode and were constructed under a controlled
environment room (23 + 1 °C and RH of 50 + 2%). The VNIR
light source was provided by 4 halogen Osram lamps with 20W HT
spot and color temperature of 2800 K (OSRAM, Munich, Germany).
The halogen lamps provide 350-2500 nm light with a power of 20 W.
The distance between the cut rose flowers and the lens was set to 50
cm, and the angle between the lamps and camera was set at 45° to
provide enough light to the imaging area for image acquisition. The
exposure time of the hyperspectral camera shooting was set to 2
milliseconds. The halogen lamps were run for 15 min to reach a stable
state temperature and then a 95% reflection standard was calibrated
before conducting reflection measurements of the cut roses. Data
acquisition and extraction were performed using the IMEC HSI
Snapscan software version 1.8.1.1 (IMEC, Leuven, Belgium).

2.7 Image processing model

A dataset of images of cut roses was used to process disease
detection and vase life prediction by using deep learning system
YOLOV5 version 6.2 (GitHub, San Francisco, USA). The dataset
consisted of 3000 images collected from the hyperspectral system,
with 1500 disease-infected cut roses and 1500 non-disease-infected
cut roses. The images were resized to 640x640 pixels and the
disease-infected areas in the images were annotated with
bounding boxes using MAKE SENSE (Figures 1A-C). The
annotation process was done by a trained 1 annotator is familiar
with disease-infected cut roses to ensure consistency and accuracy.
The YOLOVS5 architecture implemented in Python using the
PyTorch library was used for object detection. The YOLOv5x
model was implemented using the GitHub library and was
trained on a computer with a CUDA-enabled GeForce RTX 3080
graphics card for 50 epochs. To evaluate the performance of gray
mold disease detection in cut roses, metrics including precision (P),
recall (R), mean average precision (mAP), and Fl-score (F1) were

Reverse primer

5-GGAGCAACAATTAATCGCATTTC-3’
5’-CCACCGCTCTCAAGACCCAAGA-3'

5-TTGAGGCCTGCATAGAGCTT-3’

RHTIPI (KF985188.1)
RASIG (S80863.1)

RhACTI (KC514918.1)
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5-TCTCTCCTACGTGGCATCCT-3

5-CCGACACAAGAACCTTGGAT-3’

5'-GTTCCCAGGAATCGCTGATA-3'

178

5-GACCACCTCTGCTTTTGCTC-3
5-TCTTCCGTGTACACCACCAA-3

5-ATCCTCCGATCCAAACACTG-3’
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Development of flower opening and gray mold disease (GMD) in ‘White Beauty' cut roses during transport and vase life (A, B). The cut flowers were
untreated (none treatment) or sprayed with B. cinerea conidia suspension (inoculation) and the images of flowers were taken on days 1-3 of
transport (T1-T3) and days 1-2 (D1-D2) of vase period. The green and pink boxes indicate the annotation of the GMD emergence spots by bounding
boxes for deep learning analysis (B). Detection of GMD and petal wilting in ‘White Beauty' (a) and ‘All For Love’ (b—e) by YOLOV5 (C). The arrows and
numbers in the flower images indicate the GMD spots and the probability (%) of GMD calculated by YOLOV5 (a, b). The bounding boxes in purple,
green, and red generated by annotation tool MAKE SENSE indicate petal wilting and opening levels of the flowers at TO, T3, and D1. The percentage
numbers in the images indicate the probability of the specific wilting and opening stages, as calculated by YOLOV5 (c—e).

used in the present study. The target confidence threshold was 0.5
and the Intersection over Union (IOU) at the time of testing was
0.5. The P, R, mAP, and IOU are calculated as follows:

TP
p=——
TP + FP
R e TP
" TP+FN
k
AP
map - 2=4Pi
k
Px R
Fl1=2x
P+R

Area of Overlap

IOU = -
Area of Union

Where TP, FP, and FN are the numbers of true positive cases,
false positive cases, and false negative cases. The specific network
structure of YOLOV5x is shown in Figure 2.

To identify the most appropriate image processing model, we also
evaluated the performance of two more object detection models:
Faster R-CNN and Single Shot Muli-Box Detector (SSD). We utilized
the cut rose image dataset, which includes 588 images across 21
categories, showcasing various senescence symptoms. The dataset
was partitioned into 70% for training, 15% for validation, and 15% for
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testing. We tailored the input image sizes to meet the requirements of
each model: 640x640 pixels for Faster R-CNN and 512x512 pixels for
SSD. All models were implemented using the PyTorch open-source
deep learning framework. Each model underwent training with
identical hyperparameter settings, including a learning rate set to
0.001, a batch size of 16, and training for a total of 50 epochs.

To identify initial disease symptoms and wounded spots, we
used an image region extraction pre-processing step using the
YOLOV5 object detection algorithm. The flower objects within
the images were identified and boxed with a rectangular frame.
The objects in the bounding boxes were then precisely cropped and
the small spots were detected from the images by the image pre-
processing system as shown in Figure 3.

A random forest classification model using the object values detected
by the YOLOv5x was used to predict the vase life of cut roses. We used a
dataset of 200 cut roses corresponding with vase life labels ranging from 1
to 8 d. To optimize the performance of the random forest model, the
object values were grouped into feature sets of 1 to 12, based on the
importance ranking of the 12 features. The feature sets were constructed
by iteratively adding the next most important feature to the previous set
until 12 features were included. The dataset was split into training and
testing sets using an 80:20 ratio, with stratified sampling to ensure that
both sets have a similar distribution of the vase life labels. The random
forest model was trained using the training set, with hyperparameters
optimized using grid search and cross-validation. The optimized
hyperparameters included 100 trees, a maximum depth of 10, and
minimum samples required to split a node of 2.
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FIGURE 2

The YOLOV5 network model structure schematic used in this study. The image dataset is first pre-processed, annotated, and undergoes data
augmentation to enhance its quality and quantity. The prepared image data is then forwarded to the backbone, the neck, and the head of the model
for training and prediction of disease and vase life. Finally, the prediction performance of the models was estimated based on the object-detection
values by YOLOVS system.
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FIGURE 3

The GMD detection image region extraction pre-processing diagram of the YOLOVS5. (A), original HSI with a resolution of 2048 pixels in width and
height; (B), the original image was resized to 640x640 pixels, and convolution operations were performed to extract features. (C), detect the object
and the bounding box information surrounding the object (x, y, w, h, n) was extracted, x and y: position of the bounding box, w: width, h: height,
and n: identification number of the object. (D), bud image is the extracted image of the detected object region, image size is the width and height of
the bounding box; (E), resized of 640x640 pixels to standard the input size and additional feature extraction; and (F), red boxes in indicate the
detection of disease and wounded spots
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The output of the vase life was classed into two categories as over 5 d
(>5d) and under 5 d (< 5 d) based on the total scores evaluated by gray
mold disease (GMD) severity, GMD development weighted value, petal
wilting level, and flower opening as shown in Table 2 and Supplementary
Figure 1. The scores of quality factors used to predict the vase life of cut
roses in Table 2 were calculated based on the incidence of the vase life
terminated factors and GMD disease (Supplementary Figure 2). The
GMD development weighted value was determined by the growth speed
of the disease in petals. The GMD development speed was accelerated by
B. cinerea inoculation and ethylene treatment and also increased in
‘White Beauty’ compared to ‘All For Love’ (Supplementary Figure 3).
This evaluation was based on the previous findings showing that ethylene
and water stress influenced the progression of GMD in cut roses during
transport (Harkema et al,, 2013; Ha et al,, 2022).

2.8 Experimental design and
statistical analysis

Twenty-five cut roses were used for each treatment. Experiments on
vase life and disease evaluation were performed with 10 replicates (one
cut flower per replicate). HSI analyses were performed with 6 cut flowers.
The remaining 9 cut flowers were used for fungal biomass and gene
expression analysis. qRT-PCR analysis was conducted with 3 biological
replicates. Data were subjected to analysis of variance (ANOVA) or
simple linear regression analysis at p< 0.05 using SPSS version 22.0 (IBM,
Somers, NY, USA). Data are presented as the mean + standard error
(SE). The experiments were performed twice in both rose cultivars.

3 Results

3.1 Transport treatments influence vase
life, water status, disease infection, and
total reflectance of cut roses

WT treatment extended the vase life of cut roses compared to other
treatments (Figures 4A, B). WT yielded the longest vase life in both ‘All For

10.3389/fpls.2023.1296473

Love’ (5.3 d) and ‘White Beauty’ (5.2 d) varieties of cut roses (Figures 4A,
B). Conversely, DT, ethylene, and B. cinerea treatments significantly
reduced the vase life of both cultivars (Figures 4A, B). Similarly, changes
in both cultivars’ capacity to maintain WB mirrored the changes in vase life
in response to the different transport treatments. (Figures 4C, D).

The first visual symptoms of gray mold disease (GMD) were
observed on day 1 (T1) of transport in WT+E and WT+B flowers in
both rose cultivars (Figures 4E, F). WT+E and WT+B treatments
most increased GMD severity in the flower petals during vase
periods (Figures 4E, F). Although DT reduced the vase life of cut
roses, due to water stress caused by an early disruption of water
balance, this transport method delayed GMD growth in the flower
petals (Figures 4E, F). In particular, ‘All For Love’ DT flowers
showed no GMD symptoms after transport treatment (Figure 4E).

Mean spectral reflectance curves of the cut roses in the wavelength
range 470-900 nm obtained using the HSI on the first day (D1) of the vase
period are shown in Figures 41, G. The size and shape of flower buds did
not influence the reflectance of wavelength in cut rose flowers
(Supplementary Figure 4). The overall spectral patterns induced by the
two treatments were similar for both cultivars. The reflectance of
wavelength (RW) in WT flowers was higher than those of other flowers
(Figures 4H, G), whereas that of DT, DT+E, DT+B, WT+E, and WT+B
flowers was relatively low and corresponded with the decline in both vase
life and capacity to maintain water balance, as well as and the increase in
GMD index (Figures 4H, G). The distinct differences in RW in the 470-680
nm range (RW 470/680) in both rose cultivars perhaps show the relation of
the spectrums to the susceptibility to the gray mold of the cut flowers
(Figures 4H, G). Conversely, the differences in RW in the 700-900 nm
range (RW 700/900) in both rose cultivars may be correlated with the
flower responses to water stress and ethylene (Figures 4H, G).

3.2 Changes in spectrum curves, fungal

growth, and relative expression of genes
involved in ethylene biosynthesis, water

stress, and senescence of cut roses

Changes in spectral reflectance of cut roses in each treatment
group (solid lines) were analyzed throughout the transport and vase

TABLE 2 The scores of quality factors used for to predict the vase life of cut roses using YOLOVS.

GMD severity* GMD weighted value” Petal wilting® Vase life"
Level Score Treatment/cultivar Score Level Score Total score Output
1 0 None 0 1 0 > 60 >5D
2 20 B. cinerea 20 2 20
<61 <5D
3 40 Ethylene 20 3 40
‘All For Love’ 0
4 100 Culti-var 4 100 < 100 Exclusion
‘White Beauty’ 20

Total score = 100 - (GMD severity + GMD weighted value + Petal wilting)

“GMD, gray mold disease.

The severity of GMD was evaluated by the area (%) of the disease symptom in rose petals as follows: 1, none; 2, < 3%; 3, 3-10%; and 4, 11-50%.
YThe weighted value of GMD is the disease developmental speed in rose petals influenced by the treatments and cultivars.
“Petal wilting was influenced by water stress and flower opening. It was calculated using four levels as follows: 1, none; 2, slight wilting; 3, moderate wilting; 4, severe wilting.

“The total score of vase life was the sum of the scores graded by the quality factors. Vase life of cut roses was classified in two categories: over 5 d (+5D) and under 5 d (-5D) based on the total
score. If the total score was > 100, the cut flowers were excluded from the vase life evaluation and classified into the defective group.
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Changes in physiological characteristics of cut roses during transport and vase period. (A, B), vase life; (C, D), maintenance of water balance;

(E, F), gray mold disease (GMD) index; (G, H), reflectance of wavelength (RW) in cut roses. DT, dry transport; DT+E, ethylene exposure before DT;
DT+B, B. cinerea inoculation before DT; WT, wet transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. GMD
was evaluated on days 1-3 of transport (T1-T3) and days 1-5 (D1-D5) of vase period. GMD index was classified into five levels as 1, none; 2, slight
symptoms (< 3%); 3, moderate symptoms (3-10%); 4, severe symptoms (11-50%); and 5, death of plants (> 50%). RW was detected in cut roses on
the first day (D1) of vase period. RW 470/680 and 700/900 indicate the wavelengths from 470 to 680 nm and 700 to 900 nm, respectively. Data are
shown as means + SE (n = 20). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on

Duncan’s multiple range test.

periods, and the corresponding changes in GMD growth (Bc3 level)
and the relative expression of genes related to ethylene biosynthesis
(RRACOI1), water stress (RhTIP1), and senescence induction
(RKSIG) were also detected in the petals (bar charts) (Figure 5).
The changes in total spectral reflectance in both rose cultivars
after transport treatments are shown in Supplementary Figure 5. In
the various treatment groups of ‘All For Love’ roses, RW 470/680
during transport (T0) varied in correlation with the level of fungal
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biomass in petals (Figure 5A). Ethylene, B. cinerea inoculation, and
WT induced high Bc3 levels rapidly in cut roses while DT reduced
Bc3 levels in rose petals (Figure 5A). Thus, RW470/480 in DT+E,
DT+B, WT, WT+E, and WT+B flowers rapidly decreased due to B.
cinerea growth after transport treatments (Figure 5A). In contrast,
RW 470/480 in DT roses changed only slightly during vase periods
(Figure 5A). In the case of the ‘White Beauty’, these flowers are
particularly susceptible to GMD; thus, the fungal biomass (Bc3
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level) emerged in the petals of all cut roses early at D1 (1** day of the
vase period). Consequently, the reduction in RW 470/680 was
similar in all flowers (Figure 6A).

Ethylene exposure induces higher mRNA levels of the ethylene
biosynthesis-related gene REACOI in rose petals (In et al., 2017).
Moreover, both ethylene and water stress reduced the expression
levels of RhTIP1, an aquaporin-related gene (Xue et al., 2009; Ha
et al,, 2021). These changes induced early senescence symptoms in
cut roses by stimulating the expression of senescence-induced genes
(Figures 5B-D, 6B-D). In all flowers, a decrease in RW 700/900
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corresponded to increased mRNA levels of RhACOI and RASIG (a
senescence-induced gene) and a decrease in RhTIPI expression in
petals (Figures 5B-D, 6B-D). At the later stage of the vase period
(D4), the death of petal tissues due to GMD or senescence caused a
decline in the spectral reflectance of all cut flowers (Figures 5A-D,
6A-D).

To confirm the above results, we extracted the RW 470/680 and
RW 700/900 from petals based on GMD index differences
(Figures 7A, C) and petal wilting level due to water stress or
ethylene exposure (Figures 7B, D). Subsequently analysis,
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Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in "All For Love’ cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed on day O of transport (TO) and on days 1
(D1) and 4 (D4) of the vase period. DT, dry transport; DT+E, ethylene exposure before DT; DT+B, B. cinerea inoculation before DT; WT, wet
transport; WT+E, ethylene exposure before WT; WT+B, B. cinerea inoculation before WT. The solid line represents the average reflectance of
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based on Duncan’s multiple range test.

Frontiers in Plant Science

183

frontiersin.org


https://doi.org/10.3389/fpls.2023.1296473
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Kim et al.

Bce3 RhACO1

25 0.6 0.8

0.6
04

04

DT
Bc3 level
RW 470/680

0.2
a 0.2

0.0 0.0

0.6 0.8
0.6
0.4
0.4

DT+E
Bc3 level
RW 470/680

02
0.2

0.0 0.0

06 0.8

0.6
04
0.4

DT+B
Bc3 level
RW 470/680

0.2
0.2

0.0

0.6

04
0.4

WT
Bc3 level
a
RW 470/680

0.2
0.2

0 0.0 0 0.0

0.6 08

0.6
0.4

expression

04

WT+E
Bc3 level

e o 3 & 8 &
dlo o
o
M ®

° ° °

9 2 s

RW 470/680

Relati p

o 4 N w &

RW 470/680

0.2
0.2

0.0 0.0

08

0.6

0.4

WT+B
Bc3 level

o
o

0.2

0.0 0.0
Time

FIGURE 6

RW 700/900 RW 700/900 RW 700/900 RW 700/900 RW 700/900

RW 700/900

10.3389/fpls.2023.1296473

C D
RATIP1 RhSIG
08 10 08
4
06 S ¢ 06 S
5 3 \ g . \ g
o o
2 04 =~ 0.4 ;
S > 4
(3 N (3
1 02 T = b 0.2
a b 0
L = o
0 0.0 0 0.0
5
08 10 0.8
4
06 S ¢ 2 06 S
s 3 \ 2 5, 2
S =3
2 04 ; 0.4 ;
4
x 4
1 02 e 2 b 0.2
0 a [: b
b
o Ml v v |, ° 00
5
08 H 10 08
4 2
o @8 o
—_— 06 g @ —_— 08 S
3
> s ) §
" s~ 0 0.4 ;
s 24
4 [
1 02 5 b b 0.2
a
0 b "
0 L o b 0.0 0 0.0
5
08 10 08
4
o 8 =3
06 S 06 ©
-3
} g i \ g
2 04 ~ 2 04 ;
= > 4
4 4
1 N b 02 3 2 02
0
0 N b
0 0.0 0 0.0
5
c 08 c 10 0.8
94 o
@ o o 8 o
g R 06 8 g 06 g
=3 =3
3 g 5° e
R 04 =~ 04 =
: s 24 2
< a ? 02 ® a 02 &
1 - 2 -
0 0
m ;”_-_L
0 0.0 0 L 0.0
5
08 10 08
4 a
06 ¢ N 06
3 3 g 2 o g
o o
2 04 ; 04 &
4 ]
® i a 3
1 b 02 % 3 02
0 0
c b b
0 0.0 [ 0.0
To D1 D4 To D1 D4
Time Time

Effect of transport treatments on changes in B. cinerea infection level, relative expression of genes related to flower longevity, and average
reflectance of wavelength (RW) in ‘White Beauty’' cut roses. RW 470/680 and 700/900 indicate the wavelengths of 470 to 680 nm and 700 to 900
nm, respectively. Bc3, fungal biomass in rose petals (A); RhACO1, ethylene biosynthesis gene (B); RhTIP1, aquaporin-related gene (C); and RhSIG,
senescence-induced gene (D). RW, fungal biomass, and gene expression level in cut roses were analyzed at day O of transport (TO) and at days 1 (D1)
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for gene expression data). Different letters above bars indicate statistically significant differences among treatments at p = 0.05 based on Duncan'’s

multiple range test.

employing a one-way ANOVA test for each RW, identified RW
600-680 nm in ‘All For Love’ and at RW 500-650 nm in ‘White
Beauty’, with notably high p-values, closely related to GMD
symptom severity (Figures 7A, C). Additionally, high p-values at
RW 700-900 nm indicated distinctions in petal wilting (Figures 7B,
D). Whereas, p-values were low at RW 700/900 and RW 470/680,
which are related to GMD severity (Figures 7A, C) and petal wilting
levels (Figures 7B, D). These results indicate that RW 470/680 and
RW 700/900 are closely correlated to GMD and other stress
conditions respectively in cut rose flowers.
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3.3 Object detection for GMD
using YOLOVS

Among the methods employed for object detection, the
YOLOvV5 model demonstrated superior accuracy (mAP, precision,
and recall) in comparison to the Faster R-CNN and SSD models
(Supplementary Figure 6). Consequently, the YOLOv5 was chosen
for object detection of GMD in cut roses in the present study. The
object detection for GMD in cut roses was carried out by YOLOv5x
models and the performance of the model was evaluated. The HSI
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ethylene exposure.

of cut roses was fed into the YOLOv5x model which was trained to
identify the presence of GMD in petals. The model effectively
detected small instances of GMD in rose petals (Figure 1C),
demonstrating that YOLOv5x can predict the disease emergence
at the early stages of the disease infection. The mAP represents the
evaluation index of disease detection accuracy. In this study, mAP
value was relatively high (82.1%) in ‘All For Love’ flowers
(Figure 8A). The precision (86.2%) and recall (77.5%) values
achieved by the model were also high in ‘All For Love” flowers
(Figure 8A). Whereas, the performance of the YOLOvV5 model for
‘White Beauty’ flowers was slightly lower (mAP, 81.6%; precision,

'All For Love'
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85.1%; and recall, 78.4%) (Figure 8B). Nevertheless, these values
were enough high and better than those of the prediction based on
petal wilting levels (Supplementary Figure 7).

3.4 Prediction of vase life of cut roses
using YOLOV5

The classification for vase life in cut roses was carried out by
random forest models and the performance of the model was
evaluated. The vase life of cut roses was trained into two

'White Beauty'

mAP Precision Recall

FIGURE 8

mAP Precision Recall

Detection and prediction of gray mold disease in cut roses ‘All For Love’ (A) and ‘"White Beauty’ (B). The performance of the prediction models by
YOLOVS was evaluated mAP, precision, and recall. mAP, the evaluation index of the detection accuracy; precision, the percentage of true positives
(correctly detected objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the

objects that exist in the dataset.
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categories as under 5 d (-5D) and over 5 d (+5D) based on the
scores graded by the quality factors presented in Table 2. In this
study, we evaluated the classification performance of the random
forest algorithm in both cultivars. In ‘All For Love’ rose flowers, in
the -5D case, the model displayed an F1 score of 89%, precision of
87%, and recall of 91% (Figure 9A). In contrast, in the +5D case, the
performance was slightly lower (F1, 87%; precision, 85%; and
Recall, 93%) (Figure 9C). In ‘White Beauty” rose flowers, in the
-5D case, the model yielded an F1 score of 85%, precision of 81%,
and recall of 87% (Figure 9B). However, in the +5D case, the
performance was slightly higher, with an F1 score of 88%, precision
of 91%, and recall of 85% (Figure 9D).

The vase life prediction model was developed using YOLOv5x
based on the detection of petal conditions (Figures 9E, F). As a
result, the scatter plots showed a strong correlation between the
predicted value and the observed value of the vase life evaluation
(r* = 0.86 in ‘All For Love’ and 0.83 in ‘White Beauty’) (Figures 9E,

'All For Love'

10.3389/fpls.2023.1296473

F). This result indicates that the YOLOv5 model achieves a strong
capacity for the vase life prediction of cut flowers by analyzing the
large size of the complicated data obtained HSI.

4 Discussion

Postharvest conditions, such as dry transport, ethylene or high
density of mold spores have been observed to decrease the longevity
of the cut roses (Harkema et al,, 2013; Ha et al,, 2021; Ha et al,,
2022). In this study, dry transport, ethylene exposure, and increased
B. cinerea spore (induced by ethylene exposure and fungal conidial
inoculation during transport simulation) significantly reduced vase
life and positive water balance of cut roses. Dry transport, a practice
involving storing cut flowers without water to facilitate
transportation or control B. cinerea growth, can lead to
dehydration and reduced vase life of cut flowers (Macnish et al.,

'White Beauty'
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Prediction of vase life of cut roses ‘All For Love’ (A, C) and ‘White Beauty’ (B, D). The performance of the prediction model by random forest was
evaluated F1-score, precision, and recall. F1-score, the harmonic mean of precision; precision, the percentage of true positives (correctly detected
objects) out of all the objects that is detected; recall, the percentage of true positives (correctly detected objects) out of all the objects that exist in
the dataset. The accuracy of vase life prediction (E, F) by YOLOV5 and random forest. The vase life of cut roses were classed into two categories as
over 5d (+5D) and under 5 d (-5D) based on the scores graded by the quality factors in Table 2. The negative (-1.0-0) and positive (0.0-1.0) values
by the linear regression analysis respectively indicate the probability that the vase life is -5D or +5D. Asterisk (*) represents a significant difference at

p = 0.05 (n = 40).
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2009; Harkema et al, 2013; Fanourakis et al, 2022). Ethylene
exposure accelerates the senescence process of cut roses, leading
to premature wilting, petal abscission, and overall reduced vase life
(Macnish et al,, 2010; In et al., 2017). During transportation, contact
with B. cinerea spores or storage in conditions conductive to fungal
growth can lead to infection, resulting in necrotic lesions and decay,
ultimately reducing vase life of cut flowers (Ha et al.,, 2022).

Hyperspectral imaging is a non-contact method that analyses a
wide range of light spectrums by scanning objects with
hyperspectral cameras (Lowe et al., 2017; Cao et al,, 2022; Xiang
et al, 2022). The reflectance of light from plants at different
wavelengths can be used to obtain information about various
plant statuses and conditions (Sun | et al., 2021; Sukhova and
Yudina, 2022). In this study, HSI of cut roses was used to observe
distinct wavelength ranges of plants in various physiological states,
such as GMD infection, water stress response, and senescence
induction. The spectral reflectance at 470-680 nm was found to
be strongly related to B. cinerea infection in the rose petals. The
reflectance in this wavelength range is mainly affected by the
absorption spectra of pigments in the leaves or petals of the
plants (Rolfe and Scholes, 2010). B. cinerea infection would
change the content and distribution of the pigment in the petals
leading to changes in the spectral reflectance (Lopez-Lopez et al.,
2016). While water stress causes changes in the water content of
plant tissues which in turn affects the reflectance of light in the
wavelength range of 700-900 nm (Elvanidi et al., 2018). Similarly,
the reflectance at 700-900 nm was highly correlated to the petal
wilting levels due to water stress after dry-transport or ethylene in
cut flowers. Our results are consistent with those of previous studies
showing that the reflectance at 400-680 nm is related to disease
infection and the reflectance at higher 700 nm is sensitive to
vegetation stress or water stress (Thenkabail et al., 2004; Koksal,
2011; Cao et al., 2022).

The YLOLv5x model was established to predict the potential
incidence rate of GMD and the vase life of cut roses based on HSI
data. We used the mAP@0.5 indicator to measure the prediction
model’s overall performance on the training test. The resulting
mAP@0.5 value of the YOLOv5x model was approximately 80% in
‘All For Love’ roses, indicating that the model has a high prediction
accuracy and can detect even small traces of fungal at early stages of
disease development in rose petals. In previous studies, a similar
detection performance was observed when YOLOv5 was used to
predict powdery mildew disease and anthracnose in rubber plants
(Chen et al, 2022). Our results also showed that the precision
(78.6%) and recall (80.5%) values achieved from the model were
also relatively high for ‘All For Love’ flowers, indicating that the
model has a low chance of wrong detection (Qi et al., 2022).
However, the disease detection performance was slightly lower for
‘White Beauty’ cultivar, possibly due to color similarity between
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white petals and GMD symptoms (Del Valle et al., 2018; Kasajima,
2019; Jiang et al., 2021).

Previously, the vase life prediction models in cut roses were
developed by using the combination of machine learning and
thermal imaging based on the different temperatures of petals
among flower blooming stages (Choi and Lee, 2020). Evaluation
of the flower quality of cut roses using a four-dimensional deep
learning method was also studied based on the flower maturing
status (Sun X et al., 2021). Despite the relatively good prediction
accuracy of the models, an application of these techniques is difficult
because the performance of the models is suitable only in limited
conditions. In this study, the YOLOv5x models performed the vase
life prediction well based on the detection of the flower states under
different stress conditions and transportation methods. The results
revealed that the models developed here are outstanding in the
accuracy of the vase life prediction, consequently, applicability to
the flower industry.

However, our model was developed using only two rose
cultivars, thus further validation of the model with a larger
dataset from various cultivars and environmental conditions is
required to establish its general applicability. Furthermore,
optimization of the YOLOv5 model, considering factors such as
dataset size (Fang et al., 2021; Doherty et al., 2022) and
computational resources (Junior and Ulson, 20215 Li et al., 2022),
is crucial for improved performance and broader applicability.

5 Conclusion

In conclusion, our results have demonstrated the potential use
of deep learning algorithms for detecting GMD and predicting the
vase life of cut roses based on hyperspectral images of flower bud
states. The finding from this study revealed that the spectral
reflectance of 470 to 680 nm and 700 to 900 nm was closely
related to GMD and plant physiological conditions, respectively
in cut roses. The YOLOv5 model precisely detected and classified B.
cinerea infection with high precision. The model also showed high
predictive accuracy in evaluating the vase life of cut roses based on
extensive image processing. With some modifications, the vase life
prediction models developed in this study could be effective tools
for constructing a flower longevity guarantee system for the
flower industry.
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The composition of Pseudostellaria heterophylla (Tai-Zi-Shen, TZS) is greatly
influenced by the growing area of the plants, making it significant to distinguish
the origins of TZS. However, traditional methods for TZS origin identification are
time-consuming, laborious, and destructive. To address this, two or three TZS
accessions were selected from four different regions of China, with each of these
resources including distinct quality grades of TZS samples. The visible near-
infrared (Vis/NIR) and short-wave infrared (SWIR) hyperspectral information from
these samples were then collected. Fast and high-precision methods to identify
the origins of TZS were developed by combining various preprocessing
algorithms, feature band extraction algorithms (CARS and SPA), traditional two-
stage machine learning classifiers (PLS-DA, SVM, and RF), and an end-to-end
deep learning classifier (DCNN). Specifically, SWIR hyperspectral information
outperformed Vis/NIR hyperspectral information in detecting geographic
origins of TZS. The SPA algorithm proved particularly effective in extracting
SWIR information that was highly correlated with the origins of TZS. The
corresponding FD-SPA-SVM model reduced the number of bands by 77.2%
and improved the model accuracy from 97.6% to 98.1% compared to the full-
band FD-SVM model. Overall, two sets of fast and high-precision models, SWIR-
FD-SPA-SVM and SWIR-FD-DCNN, were established, achieving accuracies of
98.1% and 98.7% respectively. This work provides a potentially efficient
alternative for rapidly detecting the origins of TZS during actual production.

KEYWORDS

Pseudostellaria heterophylla, geographical origin, hyperspectral imaging, machine
learning, deep learning
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1 Introduction

Pseudostellaria heterophylla (Miq.) Pax, also known as Tai-zi-
shen (TZS), is a perennial herbaceous plant belonging to the
Caryophyllaceae family (Li et al, 2016). Its roots have a long
history of use as medicinal and edible plants in Asian countries,
including China and Korea. This plant is renowned for its safety and
its content of polysaccharides, saponins, cyclopeptides, sterols, oils,
and other volatile oily substances, which contribute to enhancing the
human immune system (Wong et al, 1994). TZS is commonly
employed as a substitute for ginseng and American ginseng,
addressing issues such as loss of appetite and serving as a potent
tonic. Wild TZS resources are widely distributed in various provinces
of China, such as Fujian, Guizhou, Jiangsu, and Anhui. However, the
composition of TZS varies among different geographical origins. To
evaluate TZS quality based on polysaccharide and saponin content, it
is crucial to consider cultivated plants from specific regions, such as
Jiangsu Province and Fujian Province (Shi et al., 2013). Therefore,
distinguishing the origins of TZS is significant.

Most traditional methods used to identify the origins and grades
of herbs rely on external characteristics such as shape, color,
microstructure, and odor. However, the similarity of the external
features of TZS makes it difficult to detect their origins and grades,
especially after processing (Wu et al., 2018). Currently, the
identification of TZS is conducted through techniques like High-
Performance Liquid Chromatography, Gas Chromatography-Mass
Spectrometry, ninhydrin color, and other analytical methods that
aim to detect specific active components (Lin et al., 2011). However,
these methods are time-consuming, labor-intensive, expensive, and
require the use of large quantities of organic solvents, which can
potentially harm the environment. Thus, there is an urgent need for
a rapid and accurate analytical method to determine the origins
of TZS.

Today, hyperspectral imaging (HSI) is widely utilized in agri-
food product quality and safety control (Lu et al., 2020; Tian et al.,
2023). The HSI combines conventional imaging and spectroscopic
techniques to present a hypercube with one spectral dimension and
two spatial dimensions. This allows it to provide both spatial and
spectral information about the sample (Zareef et al., 2021). This
information is closely related to the chemical composition and
physical properties of the sample (Delwiche and Kim, 2000).
Therefore, the HSI technique has attracted considerable attention
in distinguishing between similar groups of biological materials
such as maize (Wang et al., 2022), wheat (Zhang et al., 2018; Zhang
et al., 2022b), wolfberries (Zhang et al., 2020a; Dong et al., 2022).

Artificial intelligence technology has assumed a crucial role in
numerous global domains. Machine learning (ML) is an essential
approach in studying artificial intelligence. In recent years, the ML
field has experienced a significant transformation owing to the
development of novel deep learning (DL) classifiers. DL, with its
capacity to comprehend intricate and representative patterns from
vast datasets, has found applications across diverse domains.
Shallow Convolutional Neural Networks (CNN), representative
algorithms for DL, have been proven by previous studies to be
ideal for analyzing and processing HSI data (Liu et al., 2020; Zhang
et al, 2022a). The complexity of traditional neural networks is
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reduced by a simple network structure. The “end-to-end” design
concept, coupled with the hidden-neuron network structure,
empowers us to autonomously extract relevant data features and
optimize large datasets for accurate target classification (Fu et al,
2018). To the best of the researcher’s knowledge, the combination of
HSI and DL algorithms to recognize the geographical origins and
quality grades of TZS has not been reported yet.

Therefore, in this study, we utilized HIS combined with DL and
ML techniques for the evaluation of the geographical origins of
Pseudostellaria heterophylla (Miq.) Pax (TZS). The successive
projection algorithm (SPA) and competitive adaptive weighted
sampling (CARS) were employed to extract spectral information
that is highly correlated with the origins of TZS. ML methods, such
as partial least squares discriminant analysis (PLS-DA), random
forests (RF), and support vector machines (SVMs), were also
compared as modeling approaches alongside deep convolutional
neural network (DCNN) architectures.

2 Materials and methods
2.1 Sample preparation

The TZS samples utilized in this study were collected from four
distinct geographical regions in China, including Guizhou, Fujian,
Jiangsu, and Anhui Provinces. To improve the applicability of the
model, we attempted to increase the complexity of the sample
composition. Two or three germplasm resources for each
geographical region were selected for this reason, encompassing
different quality grades of TZS (Table 1). We randomly selected
3249 samples from the TZS accessions, covering all three quality
grades. The quality grades of TZS samples were determined
according to the commercial grades for Chinese materia medica-
PSEUDOSTELLARIAE RADIX (T/CACM 1021.127-2018).
Specifically, the first-grade samples were characterized by roughly
straight shapes, with diameters of the thickened root section greater
than or equal to 0.4 cm and individual weights greater than or equal
to 0.4 g. Similarly, the second-grade samples also had roughly
straight shapes, with diameters of the thickened root section greater
than or equal to 0.3 cm and individual weights greater than or equal
to 0.2 g. In contrast, the third-grade samples were classified as bent,
with diameters of the thickened root section below 0.3 cm and
individual weights below 0.2 g. Additionally, to capture
comprehensive spectral information of the TZS, both sides of
each sample were scanned using visible and near-infrared (Vis/
NIR) as well as shortwave infrared (SWIR) hyperspectral
instruments. Consequently, a total of 12996 hyperspectral images
of the TZS samples were obtained. Typical TZS images from
different origins and quality grades are shown in Figure 1.

2.2 Hyperspectral image acquisition
and correction

The hyperspectral imaging (HSI) system comprised
instruments for both Vis/NIR and SWIR spectral ranges. The Vis/
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TABLE 1 The geographical origins and quality grades of TZS.

Geographical origins

10.3389/fpls.2023.1342970

Zheshen 1 2022
Fujian province Zheshen 4 2022
Landrace 1 2023
Guishen 1 2023
Guizhou province Landrace 1 2023
Landrace 2 2023
Landrace 1 2023

Jiangsu province
Landrace 2 2023
Xuanshen 1 2023
Anhui province Xuanshen 2 2023
Xuanshen 3 2023

NIR instrument consists of a GaiaField Pro-V10E spectrometer
(Specim, Spectral Imaging Ltd., Finland), a high-resolution camera
(Sichuan Dualix Spectral Imaging Technology Co., Ltd., China),
and two 150 W halogen light sources. The SWIR instrument is
composed of a GaiaField Pro-N17E-HR spectrometer (Specim,
Spectral Imaging Ltd., Finland), a shortwave infrared high-

96 82 80
82 84 84
104 104 102
92 92 92
96 88 90
81 90 92
132 132 132
132 136 134
92 90 92
92 90 90
92 90 92

resolution camera (Sichuan Dualix Spectral Imaging Technology
Co., Ltd., China), and two 150 W tungsten halogen lamps. These
two instruments employed a sample stage that was electrically
positioned and controlled by a stepper motor. A computer
equipped with SpecView Software (Sichuan Dualix Spectral
Imaging Technology Co., Ltd., China) was provided. The

FIGURE 1

Typical TZS samples from Guizhou (GZ), Jiangsu (JS), Anhui (AH) and Fujian (FJ) Provinces. The numbers "1, 2, 3" on the left represent the different

quality levels of TZS
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instruments mentioned above were enclosed within a box featuring
a black inner surface, thus constituting the HSI system.

To eliminate errors like baseline drift, the HSI system should be
preheated by powering it on for 30 minutes before image collection.
Subsequently, non-deformed three-dimensional hyperspectral
images (x, y, A), commonly known as “hypercubes”, were
obtained by placing the TZS samples on the platform. To obtain
high-quality hyperspectral reflectance images of the TZS samples,
the Vis/NIR-HSI image acquisition parameters of motor speed,
exposure time, and object distance were set at 1.18 cm/s, 7.2 ms, and
25 c¢m through several attempts. Similarly, the SWIR-HSI image
acquisition parameters of motor speed, exposure time, and object
distance were adjusted to 1.5 cm/s, 4.5 ms, and 25 c¢m after several
attempts. Hyperspectral image correction was then conducted by
using white and black references according to the method depicted
in Zhang et al. (2020b).

2.3 Spectral data extraction

Each TZS sample was then considered as a region of interest
(ROI) and was segmented from the black background by threshold
segmentation. The difference between the sample and the
background reflectance was maximum at the 801.05 nm band
(Vis/NIR) and 1005.67 nm band (SWIR), so every sample was
segmented at these bands separately. The spectra of pixels belonging
to the same TZS sample were averaged to derive average spectra,
which were then utilized for discrimination analysis purposes. The
head and tail bands were eliminated from the spectra to minimize
the effects of instability stemming from random noise.
Consequently, 673 bands from 400.20 nm to 999.75 nm for the
Vis/NIR and 482 bands from 900.96 nm to 1700.43 nm for the
SWIR hypercubes were utilized for future analysis.

2.4 Spectral data preprocessing

To minimize the potential effects of overlapping or light noise
across different spectral wavelengths (Alchanatis et al., 2005), as
well as to assess the impact of various pre-processing methods on
the classification of TZS origins, several spectral pre-processing
techniques were investigated and applied to the raw spectra. The
evaluated pre-processing techniques included standard normal
variate (SNV) (Barnes et al., 1989), Detrend (DT), and Savitzky-
Golay first derivative (FD) (Zhang et al., 2020b).

2.5 Multivariate data analysis

In this study, various machine learning algorithms were
employed, including traditional two-stage methods such as partial
least squares discriminant analysis (PLS-DA), support vector
machine (SVM), and random forest (RF), as well as an end-to-
end deep learning algorithm known as the deep convolutional
neural network (DCNN). The purpose of these algorithms was to
distinguish TZS samples into different origin groups.
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2.5.1 Traditional two-stage machine
learning algorithms

PLS-DA is a widely practiced classifier that is considered a
supervised technique that maximizes the distinction between
different groups of samples (Nie et al., 2019). RF is an ensemble
learning algorithm developed by Leo Breiman, inspired by the earlier
work of Amit and Geman (Breiman, 2001). RF offers several
advantages, including fast training speed, few tuning parameters,
and the ability to handle high-dimensional data effectively. At its core,
RF is a collection of decision trees that work together to make
predictions (Tian et al, 2021). SVM is a non-probabilistic, linear,
binary classifier used to classify linear and nonlinear data by learning
a hyperplane. In nonlinear classification, SVM uses a kernel function
to map original data to high-dimensional data and build hyperplanes
to optimally classify the closest training samples in different classes
(Burges and discovery, 1998; Wang et al., 2023). In this study, the
radial basis function (RBF) kernel was selected for the SVM algorithm
and the penalty coefficient ¢ and kernel parameter g were optimized
by a grid search procedure in the range of 27%-2% through five-fold
cross-validation.

2.5.2 Deep learning algorithms

The DCNN is a widely recognized deep learning architecture
that is inspired by the visual perception mechanisms found in living
organisms (Zhang et al., 2019). A one-dimensional DCNN was
developed as the primary classifier to process the data from each
source. The DCNN architecture consisted of three convolutional
blocks, one flattening layer, and five fully-connected layers. Each
convolutional block comprised convolutional, batch normalization,
maximum pooling, and dropout layers. To extract local features
from the spectral information effectively, while reducing its
dimensions and enhancing non-linearity, we utilized 1x3
convolution kernels with a stride and padding of 1 (Yu et al,
2021). The first and second convolutional layers were configured
with 32, 64, and 128 filters, respectively.

Utilizing rectified linear units (ReLUs) in the DCNN resulted in
faster training and helped mitigate model overfitting compared to
networks using older units (Nie et al., 2019). To facilitate learning and
reduce the emphasis on initialization, batch normalization was
applied before each dense layer and after each convolutional layer
(loffe and Szegedy, 2015). The fully connected (Fc) layers were
composed of 512, 128, 64, 32, and 4 neurons, respectively. To
convert the DCNN output into probabilities for each category, a
softmax function was introduced to the activation function of Fc5
(Kumar et al,, 2022). The categorical cross-entropy loss function was
employed to measure the distance between the probability
distribution of the DCNN output values and the true values. To
minimize the loss function, we utilized an adaptive moment
estimation algorithm with a learning rate of 0.001, beta_1 of 0.9,
and beta_2 of 0.99 (Yu et al., 2021).

2.6 Model implementation and evaluation

The sample data were randomly divided into training and
validation sets in a ratio of 7: 3. The classification accuracy, which
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was used to evaluate the performance of the models, was
determined by calculating the ratio of correctly classified samples
to the total number of samples. The diagrams were developed using
Origin Pro 9.0 (Origin Lab Corporation, Northampton, MA, USA).
MATLAB R2019b (The MathWorks, Natick, MA, USA) was
utilized for spectrum extraction, spectrum preprocessing, and ML
model development. The DCNN model was built using Keras, a
renowned deep-learning framework (https://keras.io/zh/).

3 Results and discussions

3.1 Reflectance spectral characteristics of
the samples

The raw reflectance spectra of all the TZS samples from
different origins were presented in Figure 2, covering the
spectral ranges of 400-1000 nm and 1000-2000 nm. For the
same spectral range, the TZS from different origins exhibited
similar trends in general. This was similar to the previous
researches conducted on discriminating maize varieties,
determining the geographical origin of wolfberries, and
assessing the quality of potatoes (Lopez-Maestresalas et al,
2016; Dong et al,, 2022). Although the spectral curves exhibited
similar trends across various origins, there were variations in
reflectance intensities. This discrepancy suggested that while the
types of internal substances were similar, their concentrations
differed among the different origins.
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3.2 Preliminary principal component
analysis to explore natural clustering of
TZS samples

Two Principal Component Analysis (PCA) models were
initially developed using the Vis/NIR and SWIR spectra of the
TZS samples with the aim of observing the initial structure of the
data from different geographically originated samples and detecting
any anomalies among the samples. Three principal components
(PCs) were selected for the Vis/NIR range, which accounted for
98.4% of the total variance (Figure 3A). Similarly, three PCs were
chosen for the SWIR range, explaining 99.0% of the total variance
(Figure 3B). According to the analysis, significant overlap between
samples from different origins was observed in both spectral
regions. It was worth noting that the distribution patterns of
samples from different origins between the two spectral regions
varied to some extent. In the Vis/NIR range, the samples of TZS
from Jiangsu origin were slightly separated from the samples of
other origins. Yet, this was not observed in the SWIR region. These
differences provided a theoretical basis for further in-depth mining
of the data in the two spectral regions separately.

3.3 Classification models based on
full wavelengths

The PLS-DA, RF, SVM, and DCNN classification models were
constructed by combining the SNV, DT and FD algorithms based

Reflectance
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Wavelength (nm)
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Raw and average spectra of TZS samples in the range of Vis/NIR and SWIR. (A) Raw spectra and (C) average spectra of TZS samples in the range of
Vis/NIR; (B) Raw spectra and (D) average spectra of TZS samples in the range of SWIR.
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FIGURE 3

Scores scatter plots of Vis/NIR and SWIR spectra of TZS from four geographical origins. (A) Vis/NIR spectra; (B) SWIR spectra.

on the spectral data from the Vis/NIR and SWIR regions as the
input matrices, respectively (Table 2). The loss and accuracy curves
for the optimal model were depicted in Figure 4. The loss value of
the discriminative model continuously decreased as the number of
iterations increased. Still, the precision increased and ultimately
stabilized, indicating that the FD-DCNN model converged
properly. In all cases, the discriminative performance of the
models using SWIR spectra was superior to those using Vis/NIR
spectra. The prediction accuracies of the models in the Vis/NIR

10.3389/fpls.2023.1342970
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region were lower than 91.4%, while the SWIR models could reach
98.7% accuracies. The selection of sensor type (information source),
pretreatment methods, and classifier collectively influence the
discrimination accuracy of the models to varying extents.
Compared to the SNV and DT algorithms, the FD algorithm
exhibited superior preprocessing performance in both the visible
and near-infrared regions. This suggested that FD might be an ideal
preprocessing method to improve the signal-to-noise ratio of
spectra associated with the origin of TZS. Additionally, in the

TABLE 2 Results of classification models based on individual spectral region datasets.

Classification accuracy (%)

Models Treatments Parameters
Training set Validation set
Raw LV: 12 88.6 86.1
SNV LV: 9 84.3 82.9
PLS-DA
DT LV: 6 66.6 66.7
FD LV: 10 88.3 85.7
Raw T: 2005 L: 1 100.0 71.1
SNV T: 200; L: 1 100.0 81.6
RF
DT T: 200; L: 1 100.0 79.1
FD T: 200; L: 1 100.0 85.1
C: 1000000.0,
Raw 98.0 56.2
Vis/NIR gamma: 0.0001
SNV €: 100000, 98.1 805
gamma: 0.0001
SVM
C: 1000000.0,
DT o 98.0 73.7
gamma: le
01 .0,
FD €: 100000 ,‘3]6 96.1 90.0
gamma: le
Raw — 68.9 68.5
SNV — 64.7 634
DCNN
DT — 70.5 69.4
FD — 94.8 91.4
(Continued)
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TABLE 2 Continued

10.3389/fpls.2023.1342970

Classification accuracy (%)

Treatments RETEINEIETS
Training set Validation set
Raw Lv:7 86.6 87.8
SNV LV:8 88.6 90.9
PLS-DA
DT LV:8 88.7 90.8
FD LV:8 88.2 88.7
Raw T: 200; L: 1 100.0 79.4
SNV T: 200; L: 1 100.0 91.5
RF
DT T: 200; L: 1 100.0 90.9
FD T:200; L: 1 100.0 96.8
C: 464158.8,
Raw s 97.1 76.1
SWIR gamma: le
C: 100000.0,
SNV 98.9 68.8
gamma: 0.0001
SVM
01 .0,
DT ¢ 000000(,)02 98.3 95.0
gamma: le
C: 10000.0,
FD o5 98.3 97.6
gamma: le
Raw — 68.3 67.6
SNV — 93.0 93.4
DCNN
DT — 94.9 94.1
FD — 99.6 98.7

SWIR range, the model built with DCNN combined with FD
pretreatment algorithm exhibited the highest precision, achieving
98.7% discrimination accuracy for the four origins of the TZS
samples. Interestingly, the FD-SVM and FD-RF models also
obtained satisfactory classification accuracies with validation sets
of 97.6% and 96.8%, respectively. The confusion matrices of the
models for the SWIR region were illustrated in Figure 5, which
revealed that the FD-SVM and FD-DCNN models not only
achieved desirable accuracies in terms of total correctness, but
their accuracies were still high (>95.6%) for each origin category.
With regard to the application of the model, we sought to reduce
both the associated equipment costs and the time required for
model prediction. Consequently, further research was carried out to
extract a smaller number of feature bands from the SWIR spectra to
establish a more efficient discrimination method.

3.4 Selection of effective wavelengths

An appropriate wavelength selection method is crucial as it not
only reduces the number of wavebands but also helps eliminate
irrelevant, noisy, or collinear variables, thereby improving the
modeling precision (Liu et al., 2022). Moreover, different
wavelength selection methods are based on different algorithm
principles, which can lead to varying modeling results when
applied to different types of datasets. It is important to carefully
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consider the characteristics of the dataset and choose a wavelength
selection method that best suits the specific needs. In this study,
CARS and SPA were utilized to select the effective wavelengths
(EWs) from the SWIR spectra that would potentially contain the
most valuable information regarding the geographical origins of
TZS samples.

The randomness of the Monte Carlo sampling resulted in
inconsistent results for every operation of the CARS approach
and the optimal results after 10 CARS selections were chosen to
obtain a relatively optimal combination of bands (Figure 6). Under
the exponential decay function, the number of bands decreases
rapidly at the beginning of the sampling, but with the sampling
number increasing, the rate of decrease of the band number slows
down gradually (Figure 6A). As shown in Figure 6B, the RMSECV
values showed an overall trend of decreasing and then increasing
with the sampling times, and the RMSECV values were the lowest
when the number of sampling times reached 47. Combined with
Figure 6C, it was observed that the RMSECV value was the smallest
at the 47th sampling (* denotes), meaning that the subset
containing 32 variables selected for this sampling was the key to
determining the origins of TZS. The SPA method establishes a
multiple linear regression model for different subsets of bands one
by one and calculates the RMSEP values when selecting the optimal
bands, where the subset corresponding to the smallest value is the
optimal subset of bands. As shown in Figure 6D, the RMSEP values
show an overall decreasing trend with the increase in the number of
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The loss and accuracy curves of the FD-DCNN model based on the SWIR.

bands. When the number of bands reaches 110, the RMSEP value
minimizes to 0.444 and then slightly increases. The specific
descriptions of the EWs screened with the CARS and SPA
algorithms are listed in Table 3.

3.5 Classification models based on EWs

After applying the CARS and SPA algorithms to select the
essential wavelengths (EWs), simplified PLS-DA, RF and SVM
models were developed to determine the geographic origins of
TZS (Table 4 and Figure 7). The models exhibited different
performances, indicating that the choice of wavelength selection
method had varying effects on the discriminative models of TZS
origins. The performance of the CARS-RF and SPA-RF models
exhibited a slight degradation compared to the full-band FD-RF
model. Additionally, both SVM and RF models based on the CARS
method performed worse than the SPA-based SVM and RF models.
This discrepancy might be attributed to the limited number of EW's
selected by CARS, leading to the elimination of some EWs
containing crucial information about the TZS origins.
Remarkably, the SPA-SVM model based on 110 EWs obtained
the optimal discriminative accuracy with 98.4% for the training set
and 98.1% for the validation set. Although it was slightly worse than
the full-band FD-DCNN model (training set of 99.6% and
validation set of 98.7%), it outperformed the full-band FD-SVM
model (training set of 98.3% and validation set of 97.6%). These
results indicated that compared to CARS, the SPA algorithm is
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preferable for extracting the SWIR information that is highly
correlated with the TZS origins.

An additional analysis was performed on the extracted EWs
from SPA, as shown in Table 3. This analysis revealed that most of
the EWs were concentrated in specific regions of the spectra,
indicating a potential relationship between the origin and
chemical composition of TZS. The wavebands around 970 nm are
associated with O-H second overtone stretching vibration and C-H
stretching third overtone, which are related to sugar and cellulose,
respectively (Theanjumpol et al., 2013). The bands between 1050
nm and 1200 nm, as well as 1300 nm and 1500 nm, are the main
characteristic spectral regions that represent the 20 amino acids
found in proteins. The 1050-1200 nm region primarily consists of
the second overtone of C-H, while the 1300-1500 nm region is
mainly composed of the combined frequency of C-H, reflecting the
differences in amino acid composition among different samples
(Weinstock et al., 2006; Jin et al., 2022).

3.6 Optimal model validation
and visualization

Apart from the 3249 TZS samples used for modeling, an additional
320 samples (80 TZS per origin) were selected for external validation
and visualization of the optimal model (FD-DCNN). The visualization
of the validation results is shown in Figure 8. The origin of TZS was
marked with different colors, with red representing TZS identified by
the model as originating from Guizhou (GZ) Province, pink
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representing TZS identified by the model as originating from Jiangsu
(JS) Province, purple representing TZS identified as originating from
Anhui (AH) Province, and blue indicating TZS identified as originating
from Fujian (FJ) Province. It can be seen that all TZS from Guizhou,
Jiangsu, and Fujian provinces were correctly recognized (100%). One
sample in the Anhui group was incorrectly identified as TZS from
Guizhou Province with a precision of 98.8%. The results of this external
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validation were consistent with the results of the FD-DCNN model,
indicating that the discrimination model developed in this study for
TZS had excellent robustness.

Previous studies on the discrimination of the origin of TZS are
based on only one variety from one origin (Wu et al., 2018;
Pan et al, 2020), overlooking the disturbances caused by the
genetic background and grade differences, which leads to the
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variation with CARS; (C) Regression coefficient path map with CARS; (D) Extraction of EWs with SPA.

limited application of the model. Our methodology considered the
representativeness of the samples and the applicability of the
approach by selecting two or three germplasm resources for each
geographical region. Furthermore, each germplasm resource
included different quality grades of TZS (Table 1), enhancing the
comprehensiveness of the analysis.

In the analysis of the two spectral ranges used in this study, the
models within the range of 900.96~1700.43 nm demonstrated superior

TABLE 3 Specific description of the selected EWs by SPA and CARS.
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performance compared to the models within the 400.20~999.75 nm
range. The correct classification rates for the prediction set ranged from
67.6% to 98.1% for the 900.96~1700.43 nm range (Tables 2, 4), while
they ranged from 56.2% to 91.4% for the 400.20~999.75 nm range
(Table 2). This difference in accuracy can be attributed to the fact that
the spectra in the 900.96~1700.43 nm range provide information about
the stretching vibrations of C-H, O-H, and N-H, which are caused by
starch, protein, cellulose, and water in the TZS. On the other hand, the

Methods [\[o} EWs
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TABLE 4 Results of simplified classification models based on SWIR spectra.
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Models EWs selection methods Number of EWs Parameters
Training set Validation set
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The confusion matrices of the simplified PLS-DA, SVM and RF models on the prediction set.
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wavelengths between 400.20 and 999.75 nm primarily reflect the color
and pigment information in the TZS. conducted an
analysis of the chemical compositions in P. heterophylla from different
origins using UPLC-Triple TOF-MS/MS. The study identified 21
distinct chemical components, including maltotriose, sucrose,
thyronine, inosine triphosphate, pseudostellarin A, pseudostellarin B,
pseudostellarin D, pseudostellarin F, heterophyllin A and sphinganine.
Compared with other origins, the levels of pseudostellarin D,
pseudostellarin E, pesudostellarin A, heterophyllin A, pseudostellarin
F, isobutyrylglycine in P. heterophylla from Fujian were higher. Sucrose,
ferulic acid, canthaxanthin, maltotriose, pseudostellarin D in P.
heterophylla from Guizhou were richer than those of other origins
( ). Hence, it is reasonable to hypothesize that spectral
differences resulting from variations in chemical composition, rather
than color and pigmentation information, may play a crucial role in
studying the traceability of the origin of Pseudostellaria heterophylla.
Notably, our work takes a novel approach by using hyperspectral
imaging (HSI) in conjunction with deep learning (DL) techniques to
highlighted
the efficiency of using Raman spectroscopy combined with MSC-SG-
CARS-PLS-DA to discriminate P. heterophylla from different regions.
Similarly, demonstrated that NIR spectroscopy in
combination with Row-center-SG-CARS-PLS-DA could be effective
in distinguishing the P. heterophylla from different regions. Further to

assess the geographical origins of TZS.

this, this research conducted a comparison between two feature band
extraction algorithms, namely CARS and SPA. The results showed
that the SPA algorithm was preferable for extracting SWIR
information, which was highly correlated with the TZS origins
( and ). Furthermore, we compared the traditional
two-stage machine learning algorithms (PLS-DA, SVM, and RF) with
the end-to-end deep learning algorithm (DCNN). Our findings
demonstrated that both SVM and DCNN classifiers outperformed
PLS-DA and RF classifiers in terms of origin identification of TZS
( and
nonlinear models, such as SVM, were superior to linear models in

). Several previous studies indicated that

solving the seed classifications ( H ;

Frontiers in

). For the first time, our work further argued this on
geographic origin recognition in TZS.

In this study, the visible near-infrared (Vis/NIR) and short-
wave infrared (SWIR) hyperspectral information from different
origins of TZS samples were collected. By combining various
preprocessing algorithms, feature band extraction algorithms,
traditional two-stage machine learning, and end-to-end deep
learning classifiers, we developed fast and high-precision
identification methods to discriminate TZS origins. The specific
conclusions drawn from this study are as follows:

1) The model accuracy based on SWIR HSI for identifying the
geographical origins of TZS was higher compared to that
based on Vis/NIR HSI. The best model accuracy using Vis/
NIR HSI was 91.4%, while the optimal model accuracy
using SWIR HSI could reach up to 98.7%.

The SPA algorithm was suitable for extracting SWIR
information, which was highly correlated with the origins
of TZS. The corresponding FD-SPA-SVM model not only
reduced the number of bands by 77.2% but also improved

2

~

the model accuracy from 97.6% to 98.1% compared to the
full-band FD-SVM model.

3) Two sets of fast and high-precision methods were developed
to distinguish between different geographic origins of TZS.
The traditional two-stage machine learning classifier
achieves optimal performance by employing the SVM
model with FD pretreatment and the variable selection
method of SPA. In contrast, the end-to-end deep learning
classifier achieves optimal discrimination by solely applying
FD preprocessing combined with DCNN. The total
accuracies of the SWIR-FD-SPA-SVM model and the
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SWIR-FD-DCNN model for identifying TZS origins were
98.1% and 98.7%, respectively.

This work provides a potentially perfect tool for herbal
companies and market regulators to widely identify the origins of
TZS across various genetic backgrounds and quality grades.
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Introduction: Soluble solids content (SSC) is a pivotal parameter for assessing tomato
quality. Traditional measurement methods are both destructive and time-consuming.

Methods: To enhance accuracy and efficiency in SSC assessment, this study
employs full transmission visible and near-infrared (Vis-NIR) spectroscopy and
multi-point spectral data collection techniques to quantitatively analyze SSC in
two tomato varieties (‘Provence’ and ‘Jingcai No.8' tomatoes). Preprocessing of
the multi-point spectra is carried out using a weighted averaging approach,
aimed at noise reduction, signal-to-noise ratio improvement, and overall data
quality enhancement. Taking into account the potential influence of various
detection orientations and preprocessing methods on model outcomes, we
investigate the combination of partial least squares regression (PLSR) with two
orientations (O1 and O2) and two preprocessing techniques (Savitzky-Golay
smoothing (SG) and Standard Normal Variate transformation (SNV)) in the
development of SSC prediction models.

Results: The model achieved the best results in the O2 orientation and SNV
pretreatment as follows: '‘Provence’ tomato (Rp = 0.81, RMSEP = 0.69°Brix) and
‘Jingcai No.8' tomatoes (Rp = 0.84, RMSEP = 0.64°Brix). To further optimize the
model, characteristic wavelength selection is introduced through Least Angle
Regression (LARS) with L1 and L2 regularization. Notably, when A=0.004, LARS-
L1 produces superior results (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°Brix;
‘Jingcai No.8" tomato: Rp = 0.96, RMSEP = 0.33°Brix).

Discussion: This study underscores the effectiveness of full transmission Vis-NIR
spectroscopy in predicting SSC in different tomato varieties, offering a viable
method for accurate and swift SSC assessment in tomatoes.

KEYWORDS

tomato, soluble solids content, online detection, full transmission, quantitative
analysis model
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1 Introduction

Tomatoes, ubiquitous in global agricultural production,
exhibit noteworthy nutritional significance (Passam et al., 2007). As
an esteemed vegetable within the realm of human dietary practices,
tomatoes assume a pivotal role (Zhu et al,, 2015). They bestow a
diverse complement of indispensable organic compounds, thus
exerting a multifaceted influence encompassing pigmentation
modulation, retardation of aging processes, lipid and blood
pressure reduction, safeguarding of prostatic health, as well as
reinforcement of gastric and hepatic functions (Perveen et al,
2015; Youssef and Eissa, 2017; Salehi et al., 2019). By virtue of
their unique attributes, encompassing edibility, health-enhancing
properties, and therapeutic potential, tomatoes and their derivative
products occupy a prominent and indispensable position within the
global landscape of agricultural production and trade (Guan et al,
2018; Ali et al., 2020). Soluble solids content (SSC) represents a
pivotal constituent of tomato flavor, holding the potential to
align closely with consumers’ perception of intrinsic quality
attributes in tomatoes (Ponce-Valadez et al., 2016). Nevertheless,
the conventional analytical methodologies employed for
quantifying this quality parameter are beset with challenges
related to protracted analysis durations, substantial costs, and
environmental contamination (Skolik et al., 2019). The imperative
for the tomato production and distribution industry, therefore,
resides in the development of expeditious, facile, cost-effective,
environmentally benign, and non-invasive techniques for batch
quality control assessment, with the ability to extend precision
down to the level of individual fruits (Najjar and Abu-Khalaf, 2021).

In the past few decades, many non-destructive testing
techniques have been used to detect tomato SSC (Mei and Li,
2023). Gomez et al. (2008) used PEN 2 electronic nose (E-nose) to
detect tomatoes with different storage time. The correlation between
the measured value and the predicted value showed that the effect of
using E-nose sensor signal to predict tomato SSC was poor.
Nikbakht et al. (2011) used raman spectroscopy to determine the
SSC of tomato. The root mean square error of predictions (RMSEP)
of SSC measured by partial least squares regression (PLSR) and
principal component regression (PCR) models were 0.30 and 0.38,
respectively. In order to explore the possibility of mid-infrared
spectroscopy for tomato quality detection, Scibisz et al. (2011) used
the attenuated total reflection accessory of the fourier transform
spectrometer to scan the tomato samples in the wavenumber region
of 4000 to 400 cm™'. The PLSR model has a reasonable ability to
estimate the SSC of tomatoes, with a high determination coefficient
(0.98) and a small prediction error (3%). Mollazade et al. (2015)
used backscattering and multispectral imaging techniques to predict
the quality factors of tomato fruit during storage. The correlation
coefficients between the prediction results of SSC correction model
established by artificial neural network and the reference
measurement results of multispectral and backscatter imaging are
0.736 and 0.561, respectively. Rahman et al. (2017) established a
non-destructive method for the determination of SSC in intact
tomatoes using hyperspectral imaging technology in the range of
1000-1550 nm. The PLSR model based on smoothing pretreatment
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spectrum has a good prediction effect on SSC of intact tomatoes,
with a correlation coefficient of prediction (Rp) of 0.74 and a
RMSEP of 0.33%.

While the aforementioned methods enable non-destructive
testing, their inherent time-consuming nature and elevated cost
factors constrain their utility when catering to the rigorous
industrial testing requisites characteristic of large-scale tomato
production. In stark contrast, the visible and near-infrared (Vis-
NIR) spectroscopy technique emerges as an expedient solution (a
non-destructive, expeditious, real-time, and cost-effective
approach) to effectuate internal quality appraisal within the
domain of agricultural product evaluation. Torres et al. (2015)
used NIR reflectance spectroscopy to determine the SSC of Raf
tomato based on modified PLSR (coefficient of determination for
cross-validation is 0.75; standard error of prediction is 0.65%).
Acharya etal. (2017) conducted a practical evaluation in the context
of the non-destructive determination of the dry matter content of
intact tomatoes (an indicator of the final mature SSC) using a
handheld visible-short-wave NIR spectrophotometer. By using
populations with different harvest dates or growth conditions for
calibration and prediction, the dry matter prediction coefficient of
determination (R?) is 0.86-0.92, and the deviation is 0.14-0.03%. At
different maturity stages of specific tomato varieties, Zhang et al.
(2021) reported the acceptable prediction results of SSC evaluation
by the self-developed Vis-NIR portable system (Rp = 0.70,
RMSEP = 0.26%) and NIR integrating sphere system (Rp = 0.82,
RMSEP = 0.21%). Aiming at the characteristics of tomato internal
heterogeneous structure, in order to obtain more internal
information of tomato as much as possible, Wang et al. (2018)
built a tomato Vis-NIR diffuse transmission detection system to
detect the SSC of cherry tomato, showing good prediction results
(Rp = 0.93, RMSEP = 0.36%). However, the typical Vis-NIR
spectroscopy is limited to a small area of measurement, and the
spatial information of the sample obtained by single point
measurement is limited. Liu et al. (2019) developed a dynamic
online sorting system based on Vis-NIR diffuse transmission, and
the sorting accuracy of SSC reached 91%. Yang Y. et al. (2022) based
on the Vis-NIR diffuse transmission system, optimized the
detection settings such as light path and light intensity, and
compensated the model according to the height and weight
physiological traits of tomato samples, and achieved good results
(Rp = 0.91, RMSEP = 0.17%). The limitations of traditional single-
point Vis-NIR measurement technology can be overcome by using
on-line full transmission measurement and continuous data
acquisition. Compared with the diffuse transmission mode, the
full transmission mode and tomato multi-point spectral
measurement acquisition can achieve a comprehensive
characterization of the entire tomato information.

The main purpose of this study is to determine the best model
for SSC prediction of tomato based on full transmission Vis-NIR
spectroscopy detection technology. The specific purposes are as
follows: (1) Collecting Vis-NIR spectral data of all tomato samples
using full transmission Vis-NIR online detection equipment; (2)
Processing continuous multi-point spectral data using the weighted
average method; (3) Establishing a PLSR model based on full-
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spectrum data, comparing the model’s performance, and selecting
the optimal preprocessing method and the best detection
orientation; (4) Applying the least angle regression method to
extract characteristic wavelengths in tomato SSC detection, and
determining the optimal prediction model by combining prediction
accuracy and stability.

2 Materials and methods
2.1 Experimental samples

In this study, we focused on two prominent tomato varieties,
namely ‘Provence’ and ‘Jingcai No.8’ tomatoes, both of which enjoy
substantial popularity in China. The ‘Provence’ tomato exhibits a thin
skin, with succulent flesh, and attains a rich ruddy hue when reaching
maturity. On the other hand, Jingcai No.8’ tomato often referred to
as strawberry tomato, features an orange-red or red peel with green
shoulder, and its skin possesses a slight thickness. A comprehensive
set of tomato samples encompassing various stages of maturity was
meticulously collected to bolster the robustness of our predictive
model for tomato SSC. These tomatoes were harvested from a farm
located in the Fangshan District of Beijing, China. Tomato samples
were collected from three maturity stages of half-ripe, hard-ripe and
full-ripe, with a ratio of 1: 1: 1. The representative tomato samples
obtained during this collection process are visually depicted in
Figure 1. Moreover, in order to mitigate potential temperature-
induced fluctuations that could influence the precision of our
prediction model, the harvested tomatoes were transported to our
laboratory facility and placed for a 24-hour period at a temperature of
20°C, with a relative humidity level of 60%, prior to the acquisition of
spectral and SSC data (Yang X. et al., 2022).

To ensure the rigor and objectivity of our predictive model, we
employed a systematic approach to partition all collected samples

Provence

FIGURE 1
Tomato samples and cross sections.
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into two distinct subsets: a calibration set and a prediction set. This
division was executed following a consistent ratio of 7:3, wherein
70% of the samples were allocated to the calibration set, responsible
for the construction of the prediction model, while the remaining
30% constituted the prediction set, serving as an independent
dataset for the assessment of model performance. And in order to
mitigate the influence of random variability in sample partitioning
and to provide a robust evaluation of our predictive model’s efficacy,
we undertook a systematic randomization process. Specifically, we
repeated the sample division procedure 100 times, each time
generating a new partition of samples. Subsequently, we
constructed a predictive model based on the results of each of
these 100 divisions. The culmination of these 100 modeling
outcomes was then leveraged to derive an average, which serves
as the foundational basis for evaluating the overall performance of
our predictive model (Tian et al., 2022). This approach ensures a
comprehensive and reliable assessment of the model’s
predictive capabilities.

2.2 Full transmission spectrum and real
SSC acquisition

The full transmission Vis-NIR detection system, developed by
the Intelligent Equipment Research Center of Beijing Academy of
Agriculture and Forestry Sciences (Beijing, China), was used to
acquire spectral data for all samples. This system, as depicted in
Figure 2A, primarily comprises a highly sensitive spectrometer
covering a wavelength range from 560 to 1072 nm and offering a
spectral resolution of 0.5 nm. Furthermore, it is equipped with a
conveyor platform featuring adjustable speed, a position sensor, and
an illumination device consisting of a reflective halogen lamp (FUJI,
JCR, 150W, 15V, Tokyo, Japan) with a focusing lens. The system is
fortified with a shielding mechanism to prevent stray light
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(A) Online full transmission spectroscopy and (B) detection orientations

interference and is under the control of a computer-based system.
Both the illumination device and the spectrometer are positioned
on opposite sides of the conveyor belt.

To assess the influence of spectral measurement orientation on
the accuracy of online SSC detection in tomatoes, spectral data for
all tomato samples were collected in two orientations known as O1
and O2. In the O1 orientation, the tested tomato’s stem-calyx axis
was oriented perpendicular to the conveyor belt, with the stem
facing upward. The sample received illumination from a halogen
lamp at the equatorial position and was detected by the
spectrometer on the opposite side. Conversely, in the O2
orientation, the stem-calyx axis of the tested tomato was parallel
to the conveyor belt, with the stem directed towards the
spectrometer. Schematic representations of these two detection
orientations can be seen in Figure 2B. During each spectral
measurement, the tomato sample was initially positioned on a
fruit tray and moved at a consistent speed of 0.8 m/s. After the
tomato sample passes through the sensor and the specified delay
time, the spectrometer (integration time is 5ms) begins to
continuously collect the spectral signals at each position on the
sample. The multi-point spectra of each sample are roughly:
‘Provence’ tomato: 17-31 spectral curves; ‘Jingcai No.8’ tomato:
20-29 spectral curves.

Tomato SSC determination reference NY/T 2637-2014, using
refractometer method, measuring instrument for digital Abbe
refractometer. SSC measurements were performed immediately
using the traditional method of destruction. Each complete
tomato sample was first cut into pieces and squeezed into
tomato juice in a wall-breaking machine. Then filter the tomato
juice with gauze and squeeze into the beaker. After full shaking,
the tomato juice was dropped on a hand-held digital
refractometer, and the SSC value was manually recorded. Each
measurement was repeated three times, and the average value was
taken as the experimental value.
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2.3 Data pre-processing

2.3.1 Multi-point spectrum weighted average

When the online full transmission mode collects the spectral
signal of the sample, the incomplete signal is collected at both ends,
so they are first eliminated before further data processing. The use
of a weighting method signifies an effective strategy for spectral
analysis (Somers et al.,, 2011; Zhu et al., 2019). In this study, distinct
weights are assigned to individual data acquisition locations based
on either the signal-to-noise ratio (SNR) (quality assessment
metric). The spectrometer is placed in an environment without
the sample to be tested, and the spectral signal in the environment is
recorded to obtain the background. The operational process can be
outlined as follows:

Firstly, an evaluation of the SNR is performed, enabling the
quantitative characterization of SNR for each data acquisition point.
SNR serves as a quantitative metric for signal quality assessment.
Following this, weight factors are calculated, with each data
acquisition point being assigned a weight based on the SNR, also
referred to as the quality assessment metric. This study employs an
inverse relationship where the weight factor increases with a higher
quality assessment metric. In conclusion, a weighted average is
carried out, involving the multiplication of spectral data associated
with each acquisition point by its respective weight factor. This
shows the derivation process of the final effective spectral
representation. Through the application of the weighting method,
high-quality spectral data significantly impacts the final effective
spectrum, while the influence of low-quality spectral data
is minimized.

2.3.2 Pretreatment of spectral data

To improve the correlation between tomato transmittance
spectra and SSC and reduce the impact of unwanted signals and
noise, it is customary to conduct preprocessing on the raw spectra.
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Among the common preprocessing methods, the application of
Savitzky-Golay smoothing (SG) is instrumental in making spectral
curves more conducive to the recognition of features and
localization of peaks, thus enhancing precision (Zhao et al., 2022).
Furthermore, the use of standard normal variable transformation
(SNV) serves to emphasize the positions of spectral peaks,
streamlining the analysis of both spectral shape and peak
locations (Bazar et al., 2016). In this study’s context, two specific
preprocessing techniques, a 13-point SG and SNV, have been
implemented to refine the spectral data.

2.4 Prediction model and evaluation

An effective method for multivariate data analysis frequently
employed in spectral analysis is PLSR. In this research, we
constructed a PLSR model to delineate the quantitative relationship
between the spectral matrix (X) and the matrix of SSC values in
tomatoes (Y). To evaluate the mathematical approach’s performance,
we utilized metrics such as the calibration correlation coefficient (Rc),
root mean square error of calibration (RMSEC), prediction correlation
coefficient (Rp), and root mean square error of prediction (RMSEP).
The specific calculation formula can be seen in Equations 1, 2. A
robust model demonstrates correlation coefficients approaching 1 and
lower root mean square error values (Li L. et al., 2022; Tian et al,
2023). In the process of model development, the optimal number of
latent variables (LV's) is a critical consideration to prevent underfitting
or overfitting issues (Diniz et al,, 2015). To address this concern, we
adopted a 5-fold cross-validation approach to determine the ideal
number of LVs based on the minimum root mean square error of
cross-validation (Li et al., 2023). The model was constructed using
Matlab 2022b (Mathworks, Natick, MA).

2?:1()’1‘ —)71')2
S -7

n 2
RMSEC , RMSEP = , |1 3'(y, - 7)) ©)
i=1

In this context, y; and y; denote the measured value and the

RC ,RP = (1)

predicted value for the ith tomato sample within either
the calibration or prediction dataset. Additionally, ¥ represents
the mean value of the measured values for samples within the
calibration or prediction dataset, and 7 signifies the total number of
samples in either the calibration or prediction dataset.

2.5 Wavelength selection methods

Within the domain of full spectrum modeling, a total of
2047 wavelengths are present, including a substantial number
of irrelevant and collinear variables. These extraneous
wavelengths, in addition to complicating the model, have the
potential to introduce interference, which could result in a
reduction in model accuracy (Luo et al., 2022). Thus, to address
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this, the least angle regression (LARS) technique was
implemented for the purpose of identifying and selecting
pertinent wavelengths.

Efron et al. (2004) introduced the LARS algorithm, a method
that functions as a feature selection technique applicable to both
linear regression and sparse regression. Its primary aim is to
pinpoint features with strong correlations to the response
variables (SSC) and to retain only these essential features within
the model. This approach effectively simplifies the model, thus
enhancing its capacity for generalization. LARS proceeds by
incrementally integrating features and moving along the gradient
direction of these features in each step. What sets LARS apart is its
utilization of the regression coefficient path, allowing the
simultaneous addition of multiple features. At the core of LARS is
the consistent alignment with the prevailing gradient direction at
each step, coupled with the allocation of suitable step sizes between
features. This approach enables LARS to promptly and reliably
identify characteristic wavelengths highly correlated with SSC.
Nonetheless, LARS may face efficiency challenges when handling
extensive feature sets. To tackle this limitation, the present study
introduces regularization terms in the form of the L1 norm (Lasso
penalty) and L2 norm (Ridge penalty). The L1 norm penalty
streamlines feature selection by reducing coefficients of irrelevant
features to zero, resulting in the construction of a sparse model. This
feature is particularly advantageous when dealing with high-
dimensional data and problems involving the selection of
essential wavelengths for SSC analysis. Conversely, the L2 norm
penalty trims model parameters to prevent overfitting and enhance
model generalization. Differing from L1 regularization, L2
regularization refrains from entirely zeroing out parameters,
offering controlled adjustment of model complexity. This feature
proves beneficial in addressing issues related to collinearity and
augmenting model stability.

In this study, the specific regularization term is denoted by A. A
range of A values is systematically selected, typically starting with a
smaller value and gradually increasing it. Model performance is
monitored, and an appropriate A value is selected accordingly.
Characteristic wavelength selection was carried out using Matlab
2022b (Mathworks, Natick, MA).

3 Results and discussion
3.1 SSC values of all samples

In this experiment, tomato samples with different maturity were
collected to establish SSC prediction model. The SSC values of all
samples measured are shown in Table 1. The SSC range of ‘Provence’
tomato is 3.8-8.7°Brix, and that of ‘Jingcai No.8’ tomato is 4.5-9.8°
Brix. The standard deviations (SD) were 1.1 and 1.2°Brix,
respectively. SSC has a wide range of distribution. Combined with
the characteristics of different maturity samples, a more
comprehensive and accurate SSC prediction model can be
established. This method can enhance the robustness of the model
and improve the accuracy of the prediction results (Li Y. et al., 2022).
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TABLE 1 SSC values (°Brix) of tomato samples.

10.3389/fpls.2024.1324753

Variety Range No. of samples Mean SD
Provence 3.8-8.7 92 5.8 1.1
Jingcai NO.8 4.5-9.8 96 7.4 1.2

The SSC values (°Brix) were measured by refractometer.

At the same time, it can also better cope with the different maturity of
tomato samples that may occur in practical applications.

3.2 Analysis of tomato spectral feature

Figure 3A shows that the multi-point spectral curves collected
by each sample have problems such as low SNR and intensity
supersaturation due to the acquisition method of online full
transmission measurement, which may be caused by the texture
color characteristics of tomatoes and the online acquisition
method of spectrum. According to the spectral contribution of
different parts, we can see the curve shown in Figure 3B. After the
weighted average method, the noise in the data is effectively
reduced, the SNR is improved, and the characteristic peak is
enhanced, which is more conducive to the establishment of the
subsequent prediction model. In Figure 3C, we can observe that
the spectral curve characteristics of the same variety in different
directions are basically similar. The main difference is the
intensity, which may be due to the influence of the internal
cavity structure of the sample on the propagation light path.
Because the optical path of O2 orientation is simpler, the optical
path distance is shorter, and the flesh tissue is less penetrated, the
spectral curves of both varieties show that the intensity of O2
orientation is higher than that of O1.

3.3 Prediction of tomato SSC with
full spectra

Table 2 presents the outcomes derived from PLSR modeling
applied to spectral data with the utilization of diverse preprocessing
techniques. Notably, whether considering the ‘Provence’ tomato or
Jingcai No.8’ tomato, the results consistently manifest superior O2
performance as opposed to Ol. This intriguing phenomenon is
likely attributed to the inherent simplicity of the optical propagation
pathway or the shortened propagation distance in the O2 direction.
Conversely, the trajectory of incident light in the O1 direction
necessitates traversal through discrete cavities, often yielding a more
intricate optical pathway and extended propagation distances. In
this study, the application of the SG method yields results
marginally less favorable than the unprocessed data. This
discrepancy could be ascribed to the potential obfuscation of
essential spectral features by the SG method. Enhanced results are
attainable through the adoption of preprocessing methodologies
such as SNV. SNV preprocessing methods adeptly ameliorate
scattering influences within the spectra, thereby endowing the
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data with increased stability, consistency, and diminished
variability, consequently yielding a positive influence on modeling
and quantitative analytical outcomes. The findings indicate that,
subsequent to optimal preprocessing, the samples exhibit Rp = 0.81,
RMSEP = 0.69°Brix (‘Provence’ tomato) and Rp = 0.84, RMSEP =
0.64°Brix (‘Jingcai No.8" tomato). Obviously, the SNV
preprocessing process magnifies the spectral attributes, making
the spectrum clearer, more consistent and more prominent,
thereby improving the quality of the spectral data set. In
summary, this study established a robust PLSR model for SSC
prediction. The model is founded on the determination of the
optimal detection orientation (O2) in synergy with the
implementation of the most effective preprocessing method (SNV).

3.4 Determination of the optimal model

While the full-spectrum PLSR model can effectively predict SSC
quantitatively, most full-spectrum models exhibit instability due to
notable disparities between Rc and Rp. Given that an excessive
number of spectral variables employed in modeling can lead to
overfitting, this study implemented characteristic wavelength
selection to optimize the model. Through the selection of
wavelengths, superfluous features are reduced, rendering the
model more concise and efficient. Since O2 represents the optimal
detection orientation, and SNV serves as the most effective
preprocessing method, variable selection was exclusively based on
the spectral data acquired in the O2 orientation and after
preprocessing using SNV.

During the deployment of the LARS method for characteristic
wavelength selection, initialization is initiated at the outset. The
model begins by not selecting any characteristic wavelengths, with
all coefficients set to zero. Subsequently, in each step, the
system identifies the characteristic wavelength displaying the
highest correlation with SSC and calculates the absolute value of
this correlation. The selection of characteristic wavelengths follows
a path along the minimum angle. Then, the coefficients are
updated, with the coefficient of the selected characteristic
wavelength gradually increasing until its correlation with another
characteristic wavelength equals it. The regularization parameter A
is then progressively adjusted to achieve a balance between
characteristic wavelength selection and model sparsity. Ultimately,
the steps following the initializations are reiterated until the
selection outcome converges.

A series of selected A values and the corresponding Rp
relationship are shown in Figure 4. It can be seen that LARS-L1
and LARS-12 are significantly different in the selection range of A,
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Spectral curve from (A) multi-point raw data, (B) weighted average and (C) two detection orientations.

TABLE 2 Prediction results of SSC of two varieties of tomatoes based on PLSR model established using full-spectrum data combined with different

detection orientations and preprocessing methods.

Varieties Orientations Methods LVs Rc RMSEC Rp RMSEP
Provence 01 RAW 11 0.91 0.44 0.66 0.89
SG 11 0.88 0.51 0.65 0.88
SNV 9 0.95 0.31 0.70 0.84
02 RAW 10 0.89 0.50 0.73 0.82
SG 11 0.88 0.52 0.74 0.80
SNV 9 0.94 0.36 0.81 0.69

(Continued)
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TABLE 2 Continued

10.3389/fpls.2024.1324753

Varieties Orientations Methods
Jingcai NO.8 o1 RAW 9 0.94 039 0.62 1.04
SG 11 0.89 0.53 0.62 1.10
SNV 10 0.98 025 0.79 0.73
02 RAW 10 0.91 0.47 0.74 0.81
SG 10 0.88 055 0.74 0.81
SNV 9 0.96 0.31 0.84 0.64

which may be due to the encouragement of L1 regularization to
sparsity: L1 regularization encourages sparsity by punishing the
absolute value of the coefficient, that is, encouraging the model to
reduce the coefficient of most features to zero, so as to select the
most important features, which usually requires a relatively small A
to achieve. L2 regularization encourages smoothness: L2
regularization reduces the magnitude of the coefficients by
penalizing the square of the coefficients, thereby encouraging the
coefficients of the feature to be evenly distributed, but it does not
compress the coefficients to zero. Therefore, in order to achieve an
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effective L2 regularization effect, a relatively large A is usually
required. Although there are some fluctuations in the model Rp
results obtained under different A values, the changes are also
around 0.01-0.03, and the results are relatively good (Rp > 0.90).
In the prediction model results of LARS-L1 method, the Rp of
‘Provence’ tomato and Jingcai No.8” tomato were both above 0.93.
When the regularization parameter A = 0.004, the effect was the best
(‘Provence’ tomato: Rc = 0.98, RMSEC = 0.23°Brix, Rp = 0.95,
RMSEP = 0.35°Brix; ‘Jingcai No.8’ tomato: Rc = 0.98, RMSEC =
0.20°Brix, Rp = 0.96, RMSEP = 0.33°Brix). L1 regularization tends
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The process of Rp changing with A in the process of characteristic wavelength selection.
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to generate sparse solutions, so that some weights are zero, and a
small number of characteristic wavelengths that have a significant
impact on SSC prediction can be selected to filter out wavelengths
that are not important for prediction. The best performance of the
LARS-L1 method is due to its sparseness of L1 regularization and
better capture of the correlation between wavelength and SSC.
LARS-L2 obtained the best effect of ‘Provence’ tomato at A = 0.1
(Rc = 0.97, RMSEC = 0.26°Brix, Rp = 0.93, RMSEP = 0.42°Brix).
‘Jingcai No.8” tomato achieved the best results at A = 0.9 (Rc = 0.97,
RMSEC = 0.28°Brix, Rp = 0.93, RMSEP = 0.45°Brix). The penalty of
L2 regularization on feature weights is balanced, and the weight of
ownership is relatively evenly reduced without deleting some
features too much. When there are some relatively weak
wavelengths in the data that still contribute to the prediction, L2
regularization preserves these wavelengths. This may be the reason
that the performance of LARS-L2 is slightly lower than that of
LARS-L1. The LARS-L1 and LARS-L2 methods have less influence

10.3389/fpls.2024.1324753

on the correlation of features because they constrain the feature
weights through regularization and exhibit a degree of stability.
The best results of the two characteristic wavelength selection
methods for the two varieties were placed in Table 3.

In practical applications, aside from predictive accuracy, model
stability is also a crucial consideration. Figure 5 illustrates the error
bar chart for the prediction results of SSC for two tomato varieties
based on 100 modeling iterations, incorporating the optimal feature
wavelength selection from two methods. Each data point in the
figure is associated with an error bar, and the central mark denotes
the mean value, reflecting the data’s central tendency. These error
bars signify the data’s dispersion or uncertainty. It is evident that the
results of both methods align with the trends depicted in Figure 4.
The LARS-LI method exhibits the highest mean Rp value, consistent
with the central tendency of the data, and features shorter error bars,
indicative of lower dispersion. Therefore, overall, the model
demonstrates a heightened level of stability.

TABLE 3 SSC prediction results obtained by characteristic wavelength PLSR models.

Varieties Wavelength selection methods No. of variables
Provence LARS-L1 0.004 9 29 0.98 0.23 0.95 ‘ 0.35
LARS-12 0.1 10 53 0.97 0.26 0.93 ‘ 0.42
Jingcai NO.8 LARS-L1 0.004 9 63 0.98 0.20 0.96 ‘ 0.33
LARS-12 0.9 11 45 0.97 0.28 0.93 ‘ 045
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The error bar graph of 100 iterations under optimal A.
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4 Conclusions

In this study, the SSC of tomato was successfully determined using
the full transmission Vis-NIR spectroscopy online detection equipment.
The results show that the weighted average method can improve the
spectral quality of multi-point spectral data. The prediction
performance of O2 is better than that of Ol in the detection
orientation, and the prediction performance of the full-spectrum
PLSR model constructed after SNV pretreatment is significantly
improved. For the samples in the prediction set, the results of the two
varieties of tomatoes were ‘Provence’ tomato: Rp = 0.81, RMSEP = 0.69°
Brix; Jingcai No.8’ tomato: Rp = 0.84, RMSEP = 0.64°Brix. In addition,
in order to reduce the number of variables involved in modeling, the
LARS method combined with L1 and L2 regularization is used to select
the characteristic wavelengths to construct the PLSR model. The results
show that the prediction accuracy of the characteristic wavelength
selection model is better than that of the full spectrum model. When
A was set to 0.004, the characteristic wavelengths selected by the LARS-
L1 method achieved the best results on the SSC prediction models of the
two varieties of tomatoes (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°
Brix; Jingcai No.8” tomato: Rp = 0.96, RMSEP = 0.33°Brix). Under the
condition of optimal A, 100 modeling calculations were carried out to
further verify the stability of the model. Finally, O2-SNV-LARS-L1-
PLSR was determined as the best model for quantitative detection of
tomato SSC, and it showed that this method combined with full
transmission Vis-NIR spectroscopy had the potential for non-
destructive detection of SSC in tomato.
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The maturity of kiwifruit is widely gauged by its soluble solids content (SSC), with
accurate assessment being essential to guarantee the fruit's quality. Hyperspectral
imaging offers a non-destructive alternative to traditional destructive methods for
SSC evaluation, though its efficacy is often hindered by the redundancy and
external disturbances of spectral images. This study aims to enhance the
accuracy of SSC predictions by employing feature engineering to meticulously
select optimal spectral features and mitigate disturbance effects. We conducted a
comprehensive investigation of four spectral pre-processing and nine spectral
feature selection methods, as components of feature engineering, to determine
their influence on the performance of a linear regression model based on ordinary
least squares (OLS). Additionally, the stacking generalization technique was
employed to amalgamate the strengths of the two most effective models
derived from feature engineering. Our findings demonstrate a considerable
improvement in SSC prediction accuracy post feature engineering. The most
effective model, when considering both feature engineering and stacking
generalization, achieved an RMSE,, of 0.721, a MAPE, of 0.046, and an RPD,, of
1.394 in the prediction set. The study confirms that feature engineering, especially
the careful selection of spectral features, and the stacking generalization technique
are instrumental in bolstering SSC prediction in kiwifruit. This advancement
enhances the application of hyperspectral imaging for quality assessment,
offering benefits that extend across the agricultural industry.
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1 Introduction

Kiwifruit (Actinidia deliciosa) is a popular fruit known for its
unique flavor and nutritional benefits. As a typical climacteric fruit, it
continues ripening even after being harvested. This post-harvest
ripening process makes kiwifruit highly perishable and requires
careful handling and storage to maintain its quality. The
assessment of its quality and maturity commonly relies on the
measurement of soluble solids content (SSC). On the one hand,
SSC serves as an indicator of the sugar content in kiwifruit, for sugars
constituting approximately 81% of the total SSC (Tian et al., 2022).
On the other hand, SSC exhibits a consistent pattern of variation over
time in storage. Throughout the storage period, as time goes by, the
starch and pectin present in the kiwifruit undergo hydrolysis, leading
to a gradual increase in SSC. Therefore, monitoring the SSC of
kiwifruit is effective for evaluating its quality and maturity. However,
the determination of SSC, being an internal attribute of fruit, often
involves destructive techniques like refractometry, which requires the
extraction of juice or pulp from fruit. These methods are time-
consuming, labor-intensive and cause damage to the fruit, preventing
the repeated utilization of samples. Consequently, there is an
increasing demand for non-destructive and expeditious techniques
that can precisely estimate the SSC of kiwifruit.

Hyperspectral imaging has emerged as a promising non-
destructive method for assessing the quality of various agricultural
products (Yao et al, 2013; Huang et al., 2018). This technique
enables the measurement of spectral reflectance across a broad
range of wavelengths, providing detailed insights into the chemical
and physical properties of samples. In the case of kiwifruit, the
visible near-infrared (Vis-NIR) spectral range contains valuable
information related to the absorption of O-H, N-H, and C-H
vibrations (Guo et al,, 2017; Xu et al., 2023). These vibrational
modes facilitate the identification and quantification of key
chemical constituents associated with SSC, such as sugars and
other organic compounds. Through the employment of regression
models, relevant information can be extracted from spectral
reflectance, leading to the establishment of a strong relationship
between the observed spectral features and SSC measurements.
Once the regression model is constructed, predicting SSC
becomes a straightforward process, allowing for the non-
destructive estimation of SSC values (Nicolai et al., 2007).

Various well-designed regression models, such as partial least
squares regression (PLSR) (Lee et al., 2022), support vector machine
regression (SVR) (Ma et al, 2018), and artificial neural network
(ANN) (Pullanagari and Li, 2021) have been developed to establish
the relationship between observed spectral features and SSC
measurements. However, the high-dimensional nature of spectral
features can pose challenges to regression models. These features
often contain redundant information and are influenced by various
disturbances (e.g., sample differences, environmental noise, and
baseline drift). Excessive redundant information for regression
models not only results in prolonged hardware and software

Frontiers in Plant Science

217

10.3389/fpls.2024.1292365

runtime but also compromises the regression performance,
leading to unreliable estimations of SSC values (Xiaobo et al., 2010).

Unlike previous research that focuses on refining regression or
machine learning models, our study intentionally emphasizes the
importance of eliminating redundancies and disturbances in the
initial phase of model development to enhance SSC prediction for
kiwifruit—a crucial yet frequently underestimated step in
existing studies.

The quality and suitability of input features significantly
influence the performance of regression models. Carefully selected
features provide more relevant information, resulting in simpler
models and improved results. Conversely, the inclusion of irrelevant
features can negatively impact the model’s ability to generalize. In
contrast to complex models, which may present challenges in
interpretation and fine-tuning, simpler models with more effective
features tend to yield more reliable results (Xiaobo et al., 2010).
Hence, it is essential to pay meticulous attention to the pre-
processing and selection of these features. These tasks, involving
data converting and filtering before model building, are collectively
referred to as feature engineering. In general, feature engineering
involves spectral pre-processing and selection to effectively mitigate
the impact of various disturbances, eliminate irrelevant features,
and identify the most informative ones. Its ultimate goal is to
generate enhanced features that are well-suited for integration into
regression models. By prioritizing the use of more effective features
and employing simple models, we can strike a balance between
model complexity and performance, thus leading to more accurate
and interpretable regression results.

In this study, we focus on investigating the effectiveness of
feature engineering in enhancing the performance of SSC
prediction in kiwifruit using hyperspectral imaging. To achieve
this goal, we employed a linear regression model based on ordinary
least squares (OLS) due to its simplicity and interpretability.
Subsequently, we conducted a systematic evaluation and
comparison of the variations in the regression performance under
different combinations of four spectral pre-processing methods and
nine spectral feature selection methods (details will be provided in
section 2.3~2.5). Through this comprehensive analysis, our study
not only demonstrates the positive impact of feature engineering
but also identifies the optimal condition that yields the best
regression performance. Additionally, we introduce the stacking
generalization technique to integrate the strengths of two best-
performing models which are achieved through above feature
engineering, thus effectively addressing overfitting issues, and
further improving the regression performance. This study
highlights the potential of feature engineering and the stacking
generalization technique in SSC prediction for kiwifruit, providing
practical insights for quality assessment in the kiwifruit industry.
The application of these techniques holds promise for more efficient
and reliable SSC prediction, benefiting the kiwifruit industry and
potentially extending to other agricultural produce quality
assessment domains.
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2 Materials and methods
2.1 Preparation of kiwifruit samples

In June 2023, a substantial number of kiwifruit samples were
obtained from an agricultural plantation situated in Shaanxi
Province, China. Following the removal of unqualified samples
such as unripe, overripe, or mechanically damaged ones, a total of
116 kiwifruit samples with intact skin were selected for utilization in
this experiment.

Prior to conducting the spectral acquisition step, a meticulous
wiping procedure was carried out using soft tissue paper to
eliminate any lint present on the surface of kiwifruit samples.
This step was taken to mitigate the potential influence of lint on
the spectral acquisition step.

Immediately following the spectral acquisition step, the sample
preparation for the SSC measurement was conducted under the
guidelines of the NY/T 2637-2014 standard. This sample
preparation entails peeling the samples along their equators,
removing the pulp, and extracting the juice through pressing. The
kiwifruit juice will be introduced into the detection tank of one
refractometer for subsequent SSC measurement.

2.2 Spectral acquisition and
SSC measurement

A custom-built hyperspectral imaging system is specifically
developed to capture spectral images of the kiwifruit samples,
consisting of four main components: a spectral imaging camera
(Specim FX10, Konica Minolta, Inc., Japan), a motorized
positioning sample platform, two halogen area light sources, and a
computer installed with suitable data acquisition software (see
Figure 1). Among them, the Specim FX10 spectral imaging camera
provides a spectral resolution of 400 ~ 1000 nm (due to the low
signal-to-noise ratio in the lower wavelength regions, only data from
wavelengths above 450 nm were exclusively utilized in this study) and

10.3389/fpls.2024.1292365

works in a push-broom mode, thus necessitating a motorized
positioning sample platform. To ensure an accurate aspect ratio in
the captured spectral images, it is crucial to carefully adjust the
advancing speed of the platform and the exposure time of the spectral
imaging camera to match each other. The two light sources were
positioned symmetrically to uniformly illuminate the camera’s field
of view. This arrangement aims to ensure consistent spectral response
across different positions within the imaged area. For stable and
accurate measurements, a one-hour warm-up and black and white
calibration procedure should be performed before the initial use of
the system. Besides, the whole procedure of spectral acquisition was
performed in a dark room to avoid the interference of stray light.

A digital refractometer with a resolution of 0.1% Brix (PAL-1,
ATAGO Inc., Japan) was utilized to measure the SSC of kiwifruit
samples. First, the prepared kiwifruit juice was carefully dropped
into the detection tank. Then, the SSC physicochemical values of
SSC were recorded once the display data stabilized. It is worth
noting that before measuring the SSC of each sample, it is essential
to calibrate the refractometer reading by setting it to zero using
distilled water. This calibration step was crucial to ensure the
accuracy and reliability of the SSC measurements by accounting
for any potential offset or drift in the refractometer readings.

2.3 Feature engineering

Feature engineering involves two key aspects: spectral pre-
processing methods and spectral feature selection methods. Spectral
pre-processing refines spectral reflectance by mitigating disturbances,
while spectral feature selection eliminates redundancy, pinpointing
crucial informative attributes for modeling. This duality is essential
for extracting meaningful patterns from raw data and is imperative
for developing robust regression models.

Recognizing that feature quality significantly influences model
success, we implement an orthogonal experimental design for
feature engineering. This methodical approach ensures
experimentation and validation tailored to our specific modeling

Hyperspectral Imaging Camera

Halogen Area
Light Source

Halogen Area
Light Source

Motorized Positioning Sample Platform

FIGURE 1
The custom-built hyperspectral imaging system.
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context, enabling a structured assessment of diverse feature
engineering strategies’ effects on model accuracy. We rigorously
investigate four spectral pre-processing and nine spectral feature
selection techniques, assessing their individual and combined
effects. The ensuing sections, 2.4 and 2.5, will delineate these
techniques, underscoring their roles in data refinement and
feature optimization, ultimately contributing to the improved
accuracy of our model.

2.4 Spectral pre-processing methods

During the spectral acquisition step, various disturbances, such
as sample differences, environmental noise, and baseline drift, can
affect the final captured spectral image (Xu et al., 2023). To mitigate
these variations in spectral reflectance and emphasize the features
related to SSC, a spectral pre-processing procedure is conducted. It
is a critical step in feature engineering (Lee et al, 2022) and
primarily aims to refine and cleanse the data by removing
unwanted noise, correcting baseline drift, and addressing other
disturbances. To tackle the specific variations encountered in
spectral pre-processing, a wide array of algorithms has been
developed, each possessing unique characteristics and catering to
various aspects of the process. In the following content, we will
provide a brief description of several widely used spectral pre-
processing methods that will be utilized in this study later.

Firstly, the Standard Normal Variant transform (SNV) (Dong
et al,, 2022; Liu et al,, 2022) is a notable method that is meticulously
designed to address the detrimental effects of scattering and
concentration-related influences. It achieves this by normalizing
spectral reflectance across the entire wavelength range, effectively
mitigating deviations, and nullifying the impact of extraneous factors.
Secondly, the Direct Orthogonal Signal Correction (DOSC)
(Westerhuis et al, 2001) method disentangles spectral reflectance
into correlated and uncorrelated components. By leveraging the
principles of multivariate statistics, it discriminates between valuable
signal information and intrusive background perturbations. In
addition, the Detrend Correction (DC) (Ai et al, 2022) method
adeptly attenuates the disruptive interference of external noise. It
accomplishes this by subtracting the trend-fitting lines, enabling a
refined and noise-free characterization of intrinsic spectral attributes.
Lastly, the Savitzky-Golay (SG) (Savitzky and Golay, 1964) convolution
smoothing method emerges as an exemplary technique for spectral
refinement. By utilizing weighted polynomial regression within moving
windows, it effectively suppresses high-frequency noise while
preserving essential spectral features.

2.5 Spectral feature selection methods

Spectroscopy instruments typically exhibit highly correlated
spectral responses, particularly in adjacent wavelength regions,
leading to redundant data. Additionally, not all wavelengths are
relevant to the problem at hand, potentially impacting the accuracy
and precision of results. Therefore, discriminative feature selection
becomes critical to enhance model performance. A range of spectral
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feature selection methods was investigated to address these issues,
which are integral to feature engineering. These methods aim to
identify and retain informative features, reduce the feature space,
improve computational efficiency, and prevent multicollinearity
and overfitting. Nine distinct spectral feature selection methods
were identified and classified into three categories: basis-vectors-
based, statistical-measures-based, and iterations-based methods.
Each category offers unique approaches to feature selection and is
briefly described below.

2.5.1 Based on basis vectors

Dimensionality reduction techniques such as Principal
Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) and
Singular Value Decomposition (SVD) (Smithies, 1938) use linear
combinations of basis vectors to simplify high-dimensional data.
PCA prioritizes components based on explained variance, while
SVD utilizes singular values. Additionally, Kernel Principal
Component Analysis (KPCA) (Scholkopf et al., 1997) extends
PCA by capturing nonlinear patterns through a higher-
dimensional kernel-based feature space, providing greater
flexibility in representing high-dimensional data and extracting
nonlinear features. By selecting a subset of basis vectors and
transforming, these dimensionality reduction methods effectively
reduce the dimensionality of the data while endeavoring to preserve
as much information as possible.

2.5.2 Based on statistical measures

Individual wavelength features can also be evaluated using
statistical measures. The F-test assesses the significance of feature
differences between classes. Features with high F-values indicate
greater relevance. Thus, one can rank the features based on their F-
values and select the top n features for further analysis or
dimensionality reduction. Similarly, the Pearson product-moment
correlation coefficient (PPMCC) measures linear correlations, while
Mutual Information (MI) detects both linear and non-
linear dependencies.

2.5.3 Based on iterations

Iterative feature selection methods systematically search the
feature space to identify the most relevant features for a specific
problem. These methods, through a process of selection and
elimination, adaptively integrate criteria, performance metrics, or
domain knowledge. The Recursive Feature Elimination (RFE)
(Aratjo et al,, 2001) is one such method that employs a backward
elimination technique to prune irrelevant features from a regression
model. Starting with all features, RFE trains the model, ranks
features by their impact on model performance, and iteratively
discards the weakest until a targeted feature set size or stopping
condition is reached. The Successive Projection Algorithm (SPA)
(Soares et al., 2013) selects features by projecting data onto
orthogonal hyperplanes, treating spectral feature selection as a
constrained combinatorial optimization problem. SPA minimizes
multicollinearity, thereby reducing redundancy and addressing ill-
conditioning by preventing the propagation of superfluous features
during calibration. The Competitive Adaptive Reweighted
Sampling (CARS) (Li et al.,, 2009; Zhang et al., 2019) focuses on
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discarding features with minor regression coefficients in the PLSR
model, using adaptive reweighting and cross-validation to fine-tune
feature selection. CARS’ adaptability allows it to dynamically
capture dataset characteristics, which may result in varying
feature selections across iterations.

2.6 Experiment settings

2.6.1 Sample division

The Sample Set Partitioning Based on Joint X-Y Distances (SPXY)
(Wang et al., 2022) method was employed to divide the entire dataset of
116 kiwifruit samples into a calibration set and a prediction set, with a
ratio of 3:1. This hold-out partitioning technique ensures a
representative distribution of samples across both sets, allowing for
the evaluation of model performance on unseen data.

Furthermore, the number of selected features in the spectral
feature selection methods was determined using 5-fold cross-
validation on the calibration set. This approach optimizes the
feature selection process by iteratively evaluating the performance
of different feature subsets across various subsets of the calibration
set. By employing cross-validation, the optimal number of selected
features is achieved while mitigating the risk of overfitting and
ensuring the robustness of the model’s performance.

2.6.2 Evaluation metrics

Three metrics, namely the Root Mean Square Error (RMSE), the
Mean Absolute Percentage Error (MAPE), and the Residual
Prediction Deviation (RPD) were employed to evaluate the impact
of feature engineering on the regression model. These evaluation
metrics are calculated using the following Equations 1-3.

RMSE =, |x > (i -9 (1)
i=1
MAPE= 1% i —_y,\ 2
i=1 yr
RPD = 35 ©)

Calibration Set
Training Folds ~ Validation Folds

15¢ Tteration D:D:D — metric,
274 Jteration D:I:Dj — metric,
5" Tteration EED:D — metricg

FIGURE 2
The details of the sample division and metrics calculation
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where j; is the predicted value of the i sample, y; is the
measured value of the i sample, and N is the total number of
samples in the prediction set. Additionally, SD is the standard
deviation of the measured value of the N samples. It is important to
note that the metrics calculated for the validation set (RMSE,, MA
PE, and RPD,) represent the mean values obtained from cross-
validation. Conversely, the metrics calculated for the prediction set
(RMSE,, MAPE, and RPD,) represent the mean values obtained
from a single prediction. The details of the sample division and
metrics calculation can be found in Figure 2.

2.6.3 The regression model

To comprehensively evaluate the effectiveness of feature
engineering, a linear regression model based on OLS was
established using an orthogonal experimental design. The OLS
model, known for its ability to minimize the sum of squared
residuals, is a widely-used regression method and a suitable
choice for modeling the relationship between the input features
and the SSC values. Its simplicity and interpretability make it a solid
foundation for analyzing and comparing the effects of feature
engineering on the regression model’s performance. Meanwhile,
those orthogonal experiments allow for a thorough examination of
the individual effects of spectral pre-processing methods and
spectral feature selection methods, as well as the exploration of
potential interactions between them. By systematically varying and
controlling these factors, researchers can gain valuable insights into
the impact of different feature engineering techniques on the overall
performance of the regression model.

3 Results and discussion

3.1 Distribution of the spectral reflectance
and SSC

The distribution range of spectral reflectance in different
wavelength regions were shown in Figure 3. Notably, the
distribution range below 500 nm appears narrower, indicating
lower variance and suggesting that this region contains less
information. Conversely, the distribution range above 750 nm is
broader, indicating higher variability in spectral reflectance within

Prediction Set

l

metricy
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this wavelength region. This observation suggests that features of
higher wavelength regions may contain more valuable information
for the analysis and prediction of SSC values.

The SSC values for the complete dataset of 116 kiwifruit
samples exhibit a mean value of 13.148 and a standard deviation
of 1.025. The distribution of these values approximately follows a
normal distribution, as evidenced by the Lilliefors test with a p-
value of 0.0642. A visual representation of the frequency histogram
depicting the specific distribution can be found in Figure 3. The
calibration set of 87 samples presents a mean SSC of 13.165 and a
standard deviation of 1.031, while the prediction set of 29 samples
has a mean of 13.093 and a standard deviation of 1.022, indicating
similar distribution parameters. Such comparability between
calibration and prediction sets is vital to the reliability of our
model’s performance evaluation.

3.2 Regression performances

The performances of the OLS model under all conditions were
summarized in Tables 1-5, grouped by spectral pre-processing

10.3389/fpls.2024.1292365

methods, with the best scores highlighted in bold (due to
rounding of specific metric values, some values that appear to be
the same may still have minor differences). For a clearer comparison
of outcomes among different spectral selection methods, we
underline the results that fall below the baseline performance (i.e.,
without employing any spectral selection method) under identical
spectral preprocessing conditions. The number of selected features
of the corresponding spectral selection method is briefly
represented by n.

These tables provide an exhaustive overview of the evaluation
metrics, such as RMSE, MAPE, and RPD, enabling easy comparison
and identification of the top-performing models within each feature
preprocessing group. As shown in Tables 1-5, the superior
performance of the OLS model utilizing feature engineering
becomes evident when comparing it to the model without feature
engineering. Within each spectral pre-processing method,
employing a spectral feature selection method consistently
enhanced performance across all metrics for both the calibration
and validation sets (except for the minor anomaly of the MAPE,
metric for the DC-CARS-OLS model).
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FIGURE 3
Distribution of the (A) spectral reflectance and (B) SSC.
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TABLE 1 Regression performances using various spectral selection methods under no spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE, MAPE_ RPD. RMSE, MAPE, RPD,

None / 1.279 0.078 0.811 1161 0.071 0.865

PCA 5 0.953 0.062 1.061 0.780 0.053 1.288

KPCA 5 0.947 0.062 1.068 0.780 0.053 1.287

SVD 4 0.959 0.063 1.055 0.807 0.055 1.244

F-test 10 0.966 0.061 1.050 0.943 0.059 1.064

None

PPMCC 2 1.014 0.067 0.997 1.021 0.063 0.984

MI 6 0.937 0.058 1.086 0.883 0.060 1.137

RFE 6 0.994 0.065 1.017 0.773 0.050 1.299

SPA 2 0.970 0.063 1.044 0.854 0.055 1.176

CARS 8 0.912 0.058 1.118 0.771 0.048 1.302

The best scores are highlighted in bold.
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TABLE 2 Regression results using various spectral selection methods under SNV spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE_ MAPE, RPD. RMSE,, MAPE, RPD,

None / 1.795 0.109 0593 1.535 0.098 0.654

PCA 4 0.958 0.063 1.056 0.840 0.056 1.195

KPCA 7 0.953 0.063 1.061 0.740 0.048 1.358

SVD 4 0.958 0.063 1.056 0.840 0.056 1.195

F-test 10 0.960 0.061 1.058 0.988 0.058 1.016

SNV

PPMCC 2 1.018 0.067 0.995 1.030 0.064 0.975

MI 4 1.001 0.064 1.019 0.948 0.061 1.059

RFE 5 0.978 0.065 1.036 0.880 0.058 1.142

SPA 8 0.928 0.059 1.101 0.795 0.049 1.263

CARS 8 1.025 0.065 0.999 0.982 0.062 1.023

The best scores are highlighted in bold.

This conclusion, however, does not extend to spectral pre-
processing methods. For the sake of simplicity, the performance
outcomes of the OLS model under just a few selected spectral feature
selection methods are succinctly summarized in Table 6. It is
apparent that spectral pre-processing methods do not always lead
to performance enhancements. Nevertheless, a judicious synergy
between spectral pre-processing and feature selection methods may
facilitate further amelioration of model performance. It is imperative
for scholars to meticulously assess these variations when constructing
an optimal feature engineering for their specific application.

These findings underscore the effectiveness of feature
engineering in enhancing the regression model’s predictive
capabilities. In the calibration set, the DC-CARS-OLS model
consistently demonstrates the best performance across all

evaluation metrics (RMSE, = 0.760, MAPE, = 0.047 and RPD, =
1.372), indicating that the combination of the DC spectral
preprocessing method, the CARS spectral feature selection
method, and the OLS regression model yields the most accurate
and reliable predictions in this particular dataset. However, the
performance differs in the validation set, where the SG-CARS-OLS
model outperforms the other models, achieving the best scores in all
evaluation metrics (RMSE,, = 0.740, MAPE,, = 0.046 and RPD, =
1.358). This suggests that the combination of the SG spectral
preprocessing method, the CARS spectral feature selection
method, and the OLS regression model performs exceptionally
well on unseen data. These findings emphasize the importance of
evaluating model performance in both the calibration set and
validation set to ensure the generalizability of the results.

TABLE 3 Regression results using various spectral selection methods under DOSC spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE. MAPE_ RPD. RMSE,, MAPE, RPD,

None / / / / / / /
PCA 4 0.974 0.064 1.038 0.809 0.052 1.242
KPCA 4 0.974 0.064 1.038 0.809 0.052 1.242
SVD 3 0.984 0.065 1.029 0.845 0.055 1.188
F-test 5 0.953 0.062 1.061 0.812 0.052 1.236

DOSC

PPMCC 5 0.953 0.062 1.061 0.812 0.052 1.236
MI 2 0.980 0.064 1.033 0.864 0.054 1.162
RFE 3 1.003 0.066 1.010 0.891 0.058 1.127
SPA 13 0.970 0.061 1.053 0.879 0.057 1.142
CARS 12 0.888 0.053 1.173 0.978 0.058 1.026

The best scores are highlighted in bold.
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TABLE 4 Regression results using various spectral selection methods under DC spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE, MAPE_ RPD. RMSE, MAPE, RPD,

None / 1.303 0.081 0.785 1238 0.076 0.811

PCA 31 0.934 0.058 1.119 0.802 0.047 1.252

KPCA 9 0.957 0.060 1.069 0.754 0.051 1332

SVD 15 0.942 0.059 1.099 0.759 0.049 1324

F-test 1 0.964 0.063 1.050 0.831 0.053 1.208

DC

PPMCC 1 0.964 0.063 1.050 0.831 0.053 1.208

MI 7 0.982 0.062 1.043 0.810 0.053 1.239

RFE 5 1.004 0.066 1.011 0.810 0.053 1.240

SPA 4 0.968 0.064 1.048 0.780 0.049 1.287

CARS 18 0.760 0.047 1.372 1.189 0.077 0.844

The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.

It further demonstrates that the optimal combination of
feature preprocessing methods and spectral feature selection
methods may vary depending on the dataset and the specific
task concerned. Researchers should carefully consider these
variations when designing the most suitable combination of
feature engineering.

The frequency with which the OLS model achieves the best
performance for each metric under every condition is summarized
in Table 7. Among the spectral pre-processing methods, all exhibit
an equal frequency of best performance. However, when
considering spectral feature selection methods, it is noteworthy
that the CARS method stands out with a significantly higher
frequency of best performance compared to the other methods.
This observation raises the possibility that greater attention should
be directed toward spectral feature selection methods during the
design of feature engineering and suggests that CARS is particularly

effective in selecting informative features for enhancing the
performance of the regression model.

3.3 Selected optimal features

The distribution of the features selected by the DC-CARS and
SG-CARS methods are shown in Figure 4. The features extracted by
the DC-CARS method show a more dispersed distribution across
different wavelengths. In contrast, the features extracted by the SG-
CARS method exhibit a relatively concentrated distribution,
particularly around 600 nm and 850 nm. Both methods display a
concentration of selected features above 750 nm, but there is also a
smaller distribution near 600-700 nm. These findings align with the
distribution range of spectral reflectance in different wavelength
regions, as depicted in Figure 3A.

TABLE 5 Regression results using various spectral selection methods under SG spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE, MAPE, RPD. RMSE,, MAPE, RPD,
None / 1.553 0.096 0.662 1.425 0.091 0.704
PCA 5 0.953 0.062 1.061 0.780 0.053 1.287
KPCA 5 0.948 0.062 1.068 0.780 0.053 1.287
SVD 4 0.959 0.063 1.055 0.807 0.055 1.244
F-test 8 0.989 0.063 1.029 0.924 0.059 1.087
SG PPMCC 5 1.015 0.065 1.006 0.903 0.057 1112
MI 12 0.980 0.062 1.037 0.793 0.053 1.267
RFE 6 0.963 0.063 1.049 0.774 0.052 1.298
SPA 2 0.970 0.063 1.044 0.853 0.055 1.178
CARS 13 0.895 0.053 1.139 0.740 0.046 1.358

The best scores are highlighted in bold.
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TABLE 6 Regression results using various spectral pre-processing methods under no and CARS spectral pre-processing.

Calibration (Cross-Validation) Validation
Pre-processing Feature Selection

RMSE. MAPE_ RPD. RMSE, MAPE, RPD
None / 1.279 0.078 0.811 1.161 0.071 0.865
SNV / 1.795 0.109 0.593 1.535 0.098 0.654

DOSC None / / / / / / /
DC / 1.303 0.081 0.785 1.238 0.076 0.811
SG / 1.553 0.096 0.662 1.425 0.091 0.704
None 8 0912 0.058 1.118 0.771 0.048 1.302
SNV 8 1.025 0.065 0.999 0.982 0.062 1.023
DOSC CARS 12 0.888 0.053 1.173 0.978 0.058 1.026
DC 18 0.760 0.047 1.372 1.189 0.077 0.844
SG 13 0.895 0.053 1.139 0.740 0.046 1.358

The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.

3.4 The stacking gene ralization may have overfit the calibration set and may not generalize well to
unseen data. Conversely, the SG-CARS-OLS model achieved the

We observed that the DC-CARS-OLS model, despite achieving  best performance in the validation set but performed lower than the
the best performance in the calibration set, did not perform as well ~ DC-CARS-OLS model in the calibration set, indicating that there is
in the validation set. This suggests that the DC-CARS-OLS model  still room for improvement in its fitting ability.

TABLE 7 Statistics of the frequency of best performance for each metric under every condition.

None PCA KPCA SVD F-test PPMCC MI RFE SPA CARS SUM
None 0 0 0 0 0 0 0 0 0 6 6
SNV 0 0 3 0 0 0 0 0 3 0 6
DOSC 0 3 0 0 0 0 0 0 0 3 6
DC 0 1 2 0 0 0 0 0 0 3 6
SG 0 0 0 0 0 0 0 0 0 6 6
SUM 0 4 5 0 0 0 0 0 3 18 /

The best scores are highlighted in bold.
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FIGURE 4
Distribution of the features selected by the DC-CARS and SG-CARS methods.
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To leverage the strengths of both models and address these
limitations, we introduced the stacking generalization technique
(Wolpert, 1992). The stacking generalization technique is a
powerful method that combines outputs of multiple base models
to improve the final predictive performance. It involves constructing
a meta-model that takes the predictions of base models as input, thus
addressing the limitations of individual models and harnessing their
complementary strengths. Specifically, the base models are trained
on the same calibration dataset but with different methods or
settings. The meta-model then learns to combine the outputs of
base models in an optimal way to produce the final prediction. In
this study, we utilized stacking generalization technique to combine
the outputs of the DC-CARS-OLS model and SG-CARS-OLS model,
aiming to leverage their respective strengths and enhance the final
predictive capability and generalization performance of the
regression model. The specific structure and computational flow
of the stacking generalization model utilized in this study can be
found in Figure 5, providing a visual representation of how the
stacking generalization process is implemented.

The performance of the base models as well as the stacking
generalization model is presented in Table 8. The performance of
the stacking generalization model on the calibration set showed a
decrease compared to the DC-CARS-OLS model. Besides, its

10.3389/fpls.2024.1292365

performance has improved compared to the SG-CARS-OLS
model on both the calibration and validation sets. These findings
suggest that the stacking generalization model effectively addresses
the overfitting issue observed in the DC-CARS-OLS model and
further enhances the model’s fitting ability based on the SG-CARS-
OLS model. By combining the strengths of both base models, the
stacking technique successfully achieves improved overall
performance and enhanced generalization ability.

The comparison between the experimentally measured and
stacking generalization model-predicted values of SSC is shown in
Figure 6. The close alignment of predicted SSC distributions across
both calibration and prediction datasets underscores the model’s
robustness, reflecting its capability to generalize well without
succumbing to overfitting within the calibration phase.

This study’s approach is benchmarked against established
methods in the field, with comparative results detailed in Table 9.
Moen et al. (Moen et al.,, 2021) explored the link between kiwifruit
spectral data and SSC using various machine learning approaches
and determined that the optimal prediction was achieved by UVE-
PLS model, yielding an RMSE,, of 1.047. Zhou et al. (Zhou, 2022)
also investigated this relationship and discovered that SVR model
offered the best predictive accuracy with an RMSE, of 1.309.
Meanwhile, Benelli et al. (Benelli et al., 2022) applied a PLS

Spectral Reflectance

Stacking Generalization Model

FIGURE 5

The specific structure and computational flow of the stacking generalization model.

TABLE 8 Regression results of the base models as well as the stacking generalization model.

Calibration (Cross-Validation) Validation
Regression model
RMSE. MAPE_ RPD. MAPE,, RPD,,
DC-CARS-OLS 0.760 0.047 1372 1.189 0.077 0.844
SG-CARS-OLS 0.895 0.053 1.139 0.740 0.046 1.358
Stacking Generalization 0.782 0.047 1.331 0.721 0.046 1.394

The best scores are highlighted in bold.
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FIGURE 6
Comparison of the measured and predicted SSC.

TABLE 9 Comparison of the prediction results with the other methods.

Calibration .
Literature  Method  (Cross-Validation) Validation
RMSE, RMSE,

Moen

UVE-PLS / 1.047
et al., 2021

Zhou, 2022 SVR / 1.309

Benelli
et al. 2022 PLS 0.810 0.730
This study Stacking 0.782 0.721

generalization

The best scores are highlighted in bold.

model leveraging hyperspectral imaging to assess kiwifruit maturity,
attaining RMSE, and RMSE, values of 0.81 and 0.73, respectively. In
our research, cross-validation within the calibration set was utilized
to robustly detect overfitting, resulting in the most accurate
predictions characterized by the lowest RMSE, in the validation set.

4 Conclusion

In conclusion, our investigation reveals that feature engineering,
particularly the application of the CARS method for feature
selection, significantly enhances SSC prediction accuracy in
kiwifruit using hyperspectral imaging. Through rigorous
comparative analysis, we established that the DC-CARS-OLS
model delivers the most accurate results in calibration, while the
SG-CARS-OLS model excels in validation scenarios. These
outcomes specifically highlight the critical nature of spectral
feature selection in constructing effective predictive models.
Additionally, the introduction of the stacking generalization
technique has proven instrumental in amalgamating the
predictive strengths of individual models, thereby mitigating
overfitting, and refining overall regression accuracy. Our findings
not only bolster the methodological framework for non-destructive

Frontiers in Plant Science

SSC estimation in kiwifruit but also suggest a template for broader
application in agricultural quality assessment. The practical upshot
of our study is a robust, non-invasive approach that promotes the
kiwifruit industry’s capability to ensure product quality, optimize
resource use, and minimize waste. Ultimately, this research
underlines the transformative potential of targeted feature
engineering and advanced ensemble techniques in enhancing the
precision of agricultural produce quality prediction models.
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Protein, oil content, linoleic acid, and lignan are several key indicators for
evaluating the quality of flaxseed. In order to optimize the testing methods for
flaxseed's nutritional quality and enhance the efficiency of screening high-quality
flax germplasm resources, we selected 30 flaxseed species widely cultivated in
Northwest China as the subjects of our study. Firstly, we gathered hyperspectral
information regarding the seeds, along with data on protein, oil content, linoleic
acid, and lignan, and utilized the SPXY algorithm to classify the sample set.
Subsequently, the spectral data underwent seven distinct preprocessing
methods, revealing that the PLSR model exhibited superior performance after
being processed with the SG smoothing method. Feature wavelength extraction
was carried out using the Successive Projections Algorithm (SPA) and the
Competitive Adaptive Reweighted Sampling (CARS). Finally, four quantitative
analysis models, namely Partial Least Squares Regression (PLSR), Support
Vector Regression (SVR), Multiple Linear Regression (MLR), and Principal
Component Regression (PCR), were individually established. Experimental
results demonstrated that among all the models for predicting protein content,
the SG-CARS-MLR model predicted the best, with and of 0.9563 and 0.9336,
with the corresponding Root Mean Square Error Correction (RMSEC) and Root
Mean Square Error Prediction (RMSEP) of 0.4892 and 0.5616, respectively. In the
optimal prediction models for oil content, linoleic acid and lignan, the Rﬁ was
0.8565, 0.8028, 0.9343, and the RMSEP was 0.8682, 0.5404, 0.5384,
respectively. The study results show that hyperspectral imaging technology has
excellent potential for application in the detection of quality characteristics of
flaxseed and provides a new option for the future non-destructive testing of the
nutritional quality of flaxseed.
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1 Introduction

Flax (Linum usitatissimum) occupies an important position in oil
and fiber crops (Oomah, 2001). According to its application scope, it
is divided into fiber, oil, and fiber oil three (Zhang et al, 2011).
Flaxseed is rich in essential omega-3 fatty acids, o-linolenic acid, and
linoleic acid is recognized as a major source of high-quality proteins,
lignan, lipids, and dietary fiber (Katare et al., 2012; Goyal et al., 2014),
has a positive effect on the human diet and health, and its processed
products in the world have a wide range of demand, belonging to the
typical functional crops.

Currently, protein content in flaxseed is primarily determined
through chemical analytical methods, like Kjeldahl nitrogen
determination (Mueller et al., 2010; Yao et al., 2022). This
method first requires drying and grinding of the sample, adding
chemical reagents and heating, followed by distillation, titration
treatment with a standard hydrochloric acid solution, and finally, a
comprehensive calculation of the protein content results based on
the values obtained from each process. Other methods for
determining oil content often involve organic solvent extraction,
while the quantification of linoleic acid and lignan is typically
carried out using high-performance liquid chromatography
(Meng et al., 2001; Feng et al., 2016). These traditional
biochemical determinations of flaxseed nutrient content must be
operated by professionals to complete the handling and operation
process, which is both complex and professional, not only time-
consuming and labor-intensive but also destructive to the sample
and incidentally produces chemical pollution. To enhance the
efficiency of screening high-quality flax germplasm resources, it is
imperative to identify an accurate, rapid, and non-destructive
method for assessing protein, oil content, linoleic acid, and
lignan content.

HSI technology simultaneously captures the target’s spatial
characteristics and spectral information, effectively combining
image and spectral data (Xiang et al,, 2022). The spectral properties
of an object are closely related to its intrinsic physicochemical
properties, and the differences in the composition and structure of
substances result in the selective absorption and emission of photons
of different wavelengths within the substance. Presently, HSI serves as
a non-destructive and expeditious analytical tool across various
domains, including medical diagnosis (Bjorgan and Randeberg,
2015), food industry (Ma et al, 2019), fruit damage and disease
detection (Tian et al., 2020; Yadav et al.,, 2022; Jiang et al., 2023), and
plant seed analysis (Zhu et al., 2019). HSI has proven to be an effective
technique for non-destructive seed quality testing by many scholars.
For instance, Tu et al. (Tu et al., 2022) used HSI to detect similar
maize authenticity. Zou et al. (Zou et al., 2023) employed HSI to
gauge peanut seed vigor. In addition, Yoo et al. (Yoosefzadeh-
Najafabadi et al., 2021) used HSI for soybean yield prediction.
Zhang et al. (Zhang et al., 2022) Used HSI to detect hybrid wheat
seed purity. Lu et al. (Lu et al., 2022) ingeniously combined HSI with
deep convolutional generative adversarial networks to predict the oil
content of individual corn kernels. Yu et al. (Yu et al., 2016) effectively
measured fat content in peanuts (R%, = (.84 and SEP = 1.88) and Ma
et al. (Ma et al.,, 2021) further devised a streamlined model for the
non-destructive assessment of protein content in rice, achieving
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notable success (RlzJ = 0.8011 and RMSEP = 0.52). All of these
studies demonstrated the feasibility of detecting seed quality based
on HSI. However, few studies have been reported on HSI detection of
the internal quality of flaxseed. Leomara Floriano Ribeiro et al.
employed infrared reflectance spectroscopy and multivariate
correction to predict linolenic and linoleic acid content in flaxseed,
achieving prediction sets with Rj values as high as 0.90 and 0.86
(Ribeiro et al., 2013). While this method achieves high accuracy, it is
limited to determining the content of linolenic and linoleic acids in
only two types of flaxseed. Currently, with over 5,000 flax varieties in
commercial cultivation, each exhibiting significant variations in
nutrient composition, the method lacks generalizability and
stability, rendering it ineffective for the determination of other
species. Party Zhao et al. used near infrared analysis technology to
determine the quality of flax germplasm resources, and Ye Jiali et al.
used non-destructive near infrared spectroscopy to quantitatively
analyze the content of flax seed protein, linolenic acid, and lignan
(Dang and Zhao, 2008; Ye et al, 2021). The above three non-
destructive tests on the nutritional quality of flaxseed are used in
the infrared spectrometer wavelength range of 1100-2500 nm, 900-
1700 nm, and 1000-2499 nm. The wavelength range of the imaging
instrument, although high precision, the cost is expensive; the
processing and operation of the process are both complex and
professional, and it is not only not applicable to field operations
but also general scientific researchers and flax planting researchers
cannot be realized. In addition, these methods might not completely
capture the internal features of the specimen, and they are solely
employed to acquire spectral details from a solitary point source. The
uniformity of the sample distribution consistently influences this and
may not be the optimal selection. (Ozaki, 2021; Hu et al., 2023).
This project is dedicated to studying the 400-1000nm spectral
range of flaxseed nutritional quality detection to fill the existing
band range of research gaps. The spectral range of imaging
instruments is relatively common and inexpensive. General
researchers and flax planting researchers can easily buy and use.
This study simultaneously analyzed the flaxseed protein, oil
content, linoleic acid, and lignans’ 4 nutrient content. Common
reports of up to 3 nutrients have been analyzed in the literature.
From the results of the literature available from multiple sources, it
is the first time that the content of four nutrients was analyzed
simultaneously. Additionally, comprehensively detecting multiple
indicators of flaxseed allows for a more integrated assessment of its
quality. Various nutrients in flaxseed are interconnected; therefore,
solely predicting a single nutritional indicator is insufficient for
quality measurement. Practical significance is achieved only
through a simultaneous and comprehensive evaluation of several
indicators. This integrated research approach contributes to a more
thorough, systematic understanding and utilization of the potential
value of flaxseed. Thus, this study seeks to establish a non-
destructive and expeditious method utilizing HSI for detecting
protein content, oil content, linoleic acid, and lignan in flaxseed.
The primary research objectives encompass: (1) establish a PLSR
prediction model of flaxseed protein content based on raw and
preprocessed spectra and determine the optimal preprocessing
method through model evaluation; (2) construct prediction
models for flaxseed protein, oil content, linoleic acid, and lignan
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based on distinctive wavelengths extracted by SPA and CARS, using
PLSR, PCR, SVR, and MLR. The selection of the optimal prediction
model for flaxseed protein, oil content, linoleic acid, and lignan
relies on R} and RMSEP values to achieve swift, non-destructive,
and precise nutritional quality prediction; (3) identifying
characteristic spectral bands pertinent to protein, oil content,
linoleic acid, and lignan in flaxseed based on the most
effective model.

2 Materials and methods
2.1 Experimental materials

As shown in Table 1, thirty flaxseed varieties, extensively
cultivated in Northwest China, were selected for the study. Seed
samples were obtained from the Gansu Academy of Agriculture’s
Crop Institute. All the varieties were harvested in 2022 from the
experimental field of Lanzhou New District, Gansu Province,
China, situated at an altitude of 1520 m above sea level (103°
72’E,36°03’N). To limit water absorption, the flaxseeds were stored
in sealed paper bags. Every sampling session involved collecting fifty
intact and undamaged flaxseeds from each variety. Following
acquiring hyperspectral images, they were immediately dispatched
to the Gansu Academy of Agricultural Sciences in China to analyze
protein, oil content, linoleic acid, and lignan for each variety.

2.2 Hyperspectral image capture

2.2.1 Hyperspectral imaging system

The Gaia Field portable hyperspectral system (Sichuan Dualix
Spectral Imaging Technology Co., Ltd) is shown in Figure 1, which
includes GaiaField-V10E hyperspectral camera, 2048x2048 pixels
imaging lens, HSI-CT-150x150 standard whiteboard (PTFE),
HSIA-DB indoor imaging dark box, four groups of shadowless

TABLE 1 Flaxseed varieties.

No. Variety \[e}
1 Onyc 11
2 Shuang You Ma 1 12
3 Shuang Ya 12 13
4 Shuang Ya 14 14
5 Shuang Ya 15 15
6 Zhang Ya 3 16
7 Ba6 17
8 Bas 18
9 Ba 4 19
10 Ba3 20
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lamp light source, HSIA-TP-L-A tripod rocker set, and
hyperspectral data acquisition software Spec View. The spectral
range is 380-1018 nm, spectral bands are 320, spectral resolution is
2.8 nm, the numerical aperture is F/2.4, slit size is 30 umx 14.2 um,
the detector is SCMOS, and the imaging mode is built-in push-scan,
autofocus, and dynamic range is 14 bits. The core components of the
hyperspectral equipment include a standardized light source, a
spectral camera, an electronically controlled mobile platform, a
computer, and control software. The working principle is that the
system adopts the push-scan imaging mode, the surface array detector
and the imaging spectrometer are combined, and under the drive of
the scanning control electric moving platform, the slit of the imaging
spectrometer and the focal plane of the imaging lens undergoes
relative motion, the detector collects real-time information relative
to the line target, and finally splices into a complete cube of data.

2.2.2 Image acquisition and calibration

Enact the hyperspectral instrument switch and the dark box
light source before image acquisition. Allow a 30-minute warm-up
period, then configure the instrument parameters, setting the
camera exposure time to 49ms, gain to 2, frame rate to
18.0018Hz, and forward speed to 0.00643cm/s. We have selected
a total of 30 varieties of flaxseed; for each variety of hyperspectral
images were collected a total of three times, each time from the
corresponding varieties of randomly selected 50 seeds placed in the
dark box on the mobile platform, as shown in Figure 1, and then
these 50 seeds as the same RO, to get an average spectral curve of
these 50 seeds. After one acquisition for each variety, the sample
under test was re-poured into the sample bag and shaken manually.
Then, 50 seeds were randomly taken out for the subsequent image
acquisition of that variety, repeated three times to get three average
spectral curves and a total of 150 seeds were scanned. Ninety
acquisitions were made for 30 varieties, with 4,500 seeds scanned,
and 90 average spectral curves were obtained. After completing the
acquisition, the original hyperspectral images underwent black-
and-white correction to eliminate dark current noise introduced

Variety No. Variety
Hua Ya 5 21 YiYa3
Hua Ya 6 22 Ba Ya 18
Ding Ya 17 23 Ba 14
Hei Ya 2 24 901 Ba Ya 15
Ning Ya 10 25 139 Ba Ya 17
Ba 9 26 Hua Ya 1
Ball 27 Hua Ya 2
Gan Ya 3 28 Hua Ya 3
Yan Za 10 29 Hua Ya 4
Jin Ya 7 30 Ba2
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FIGURE 1
The hyperspectral imaging system

by the camera. (Wang et al., 2022). The black-and-white correction

formula is shown in Equation (1):

L= Tiaw = Laark )
Lnite = Ldark

Where 1., is the raw image, Iyp;e is the white reference image,
Tgark 18 the dark reference image, and I, is the calibrated image.

In order to extract the spectral information from the corrected
hyperspectral image, the 50 flax seed region in a single image was
used as the region of interest, and the spectral information was
extracted, as shown in Figure 2. Firstly, the regions of interest (ROIs)
of flax seeds and background were created separately in ENVI5.3
software, and then according to the different ROISs, the flax seeds and
background were classified using support vector machine (SVM) in
supervised classification and transformed into vectors, followed by
masking process and transformed into mask images. Applying the
mask image to the original hyperspectral image separates the

10.3389/fpls.2024.1344143

Computer

hyperspectral image of all the flaxseed sample regions from the
background to get the region of interest for the whole sample.
Finally, it calculates the average of the spectra of all the flaxseeds
on the hyperspectral image as the spectrum of that sample.

2.3 Sample Content Determination
and Segmentation

The protein, oil content, linoleic acid, and lignan contents of 30
varieties of flaxseed were determined by the Gansu Academy of
Agricultural Sciences in China. Sample set partitioning based on
joint X - Y distances (SPXY) (Liu et al,, 2011) was employed to
allocate flaxseed protein, oil content, linoleic acid, and lignan into
modeling and prediction sets at a 2:1 ratio. The reasonableness of
the sample division was assessed by calculating the samples’
maximum, minimum, average, and standard deviation in the

Reflectance

400 500 600 700 800 900 1000
Wavelength(nm)

FIGURE 2
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Sample hyperspectral image classification mask and spectral extraction flowchart. (A) Hyperspectral image; (B) Classification image; (C) Mask image;
(D) Application mask image; (E) Region of interest image; (F) Average spectral curve.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2024.1344143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhu et al.

training and prediction sets (Shao et al., 2020). The results are
shown in Table 2. The maximum and minimum values of the
training set for protein, oil content, and lignan included the
prediction set, and the minimum values of the training set for
linoleic acid and the prediction set were almost the same. Therefore,
the overall division of the sample set is deemed reasonable.

2.4 Spectral preprocessing methods

During the acquisition of raw spectral data, it is often subject to
various noise interferences, such as instrumental noise and
environmental interference. In order to improve the quality and
analyzability of the data, the extracted spectral information better
reflects the changes in the sample curves to ensure that accurate and
reliable results are obtained when building predictive models or
conducting analyses. Therefore, it is necessary to pre-process the
raw spectra to eliminate the noise as much as possible or reduce the
influence of other environmental factors on the spectral
information. The study employed various preprocessing
techniques (Savitzky-Golay (SG) smoothing, normalization,
baseline, standard normal variable correction (SNV), moving
average (MA), multiple scattering correction (MSC), and first-
order derivative (1st Der)) on the raw flaxseed spectra (Aulia
et al,, 2023). SG is mainly used to achieve the effect of smoothing
curves and reducing noise by fitting local polynomials to
the original spectra using a sliding window; Normalize can
normalizes the spectral data to the same scale, which usually
scales the value of each wavelength to a value between 0 and 1. It
is mainly used to eliminate intensity differences due to differences in
spectral measurement instruments, measurement conditions, and
other factors; Baseline is based on the principle of removing baseline
fluctuations in the spectrum due to instrumental drift, background
changes, and other reasons, and can be used to improve the
accuracy of the data; SNV is standardized by calculating the ratio
of the spectral value at each wavelength to the mean and standard
deviation of all spectral values at that wavelength; The aim is to
reduce the intensity differences in the spectra and highlight the
chemical information; MA focuses on averaging the spectral data
over a sliding window to reduce high-frequency noise and smooth
the spectral curves; MSC is based on the principle of correcting for
multiple scattering by comparing the spectral data with a selected
reference spectrum. This includes fitting each spectrum to the mean

10.3389/fpls.2024.1344143

using least squares regression and calculating the preprocessed data
by decomposing the slope and intercept of the regression. The aim
is to reduce the effect of multiple scattering and emphasize the
chemical information to improve the accuracy of quantitative
analysis; 1st Der is to perform first-order derivative operations on
the spectral data to highlight the rate of change of the spectral lines,
enhance the peaks and valleys in the spectra, and highlight spectral
line features. Subsequently, a PLSR prediction model for the
protein content of flaxseed was established based on the raw and
pretreatment spectra, and the optimal pretreatment method was
determined by model evaluation.

2.5 Feature band extraction methods

Various sources frequently disrupt raw spectral data
acquisition. Since the full spectrum contains 320 wavelength
variables, not all wavelengths are useful for the analysis task.
Extracting characteristic wavelengths reduces data dimensions,
eliminates redundancy, and enhances modeling efficiency and
performance. This study employs the successive projections
algorithm (SPA) and the competitive adaptive reweighted
sampling (CARS) algorithm for wavelength feature extraction.
SPA algorithm is a forward looping feature variable selection
method, which is a method of selecting feature wavelengths by
calculating the correlation between each wavelength and the target
variable, which is capable of filtering out the invalid information
and greatly reducing the influence of covariance among the data.
SPA has intuition and simplicity for the downscaling and feature
selection of spectral data, which makes the model easier to interpret
and understand (Li et al.,, 2023). CARS is an innovative variable
selection algorithm proposed by Li (Li et al.,, 2009). At the same
time, CARS is also a commonly used method for selecting the
characteristic wavelengths, which firstly utilizes the PLS model to
screen the wavelengths with large regression coefficients and then
optimally selects the wavelengths with the smallest root-mean-
square error through ten-fold cross-validation A subset of
wavelengths is selected through ten-fold cross-validation, and the
most critical variable for the prediction target is selected as the
wavelength. The CARS algorithm is more flexible and adaptive than
the traditional weighting methods, which helps to retain more
useful information. In addition, CARS can more fully consider
the correlation between wavelengths, thus better reflecting the

TABLE 2 Flaxseed protein, oil content, linoleic acid, and lignan sample set contents.

Protein Oil content Linoleic acid
Sample set
Cal Cal Pre Cal Pre

Number of samples 60 30 60 30 60 30 60 30
Maximum (%) 28.46 27.76 40.9 40.5 13.81 13.58 11.06 8.39
Minimum (%) 23.01 23.07 33.38 34.65 9.93 9.92 4.79 567
Average (%) 25.1 2521 36.5 36.4 11.96 11.93 8.14 7.38
Standard deviation 1.54 1.28 1.62 1.5 0.86 0.82 1.49 0.71
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characteristics of the data. In hyperspectral data, the CARS
algorithm helps select representative characteristic wavelengths
more comprehensively, considering that there may be complex
relationships between wavelengths (Xu et al., 2022).

2.6 Modeling methods

Partial least squares regression (PLSR) is a multivariate
statistical method (Wang et al., 2019). PLSR models the spectral
data by minimizing the covariance between the spectral data and
the target variable. It achieves data downscaling by introducing
latent variables and then regressing these latent variables on the
target variables.

Support vector regression (SVR) can fit data quickly (Xiang
et al, 2022), and it deals with nonlinear relationships by mapping
the data into a high-dimensional space and then constructing a
linear regression model in that space.

Principal component regression (PCR) models spectral data by
downscaling them into principal components to explain the
variance of the spectral data and predict the target variable
(Mahesh et al., 2015).

Multiple linear regression (MLR) is a conventional linear
regression method that establishes the relationship between
multiple independent variables and the dependent variable. In
MLR, each wavelength is treated as a predictor variable, and the
model tries to find a linear combination between these variables to
fit the target variable best. However, MLR modeling only applies
when the number of variables is less than the number of samples.

10.3389/fpls.2024.1344143

Consequently, in this study, only wavelengths extracted by CARS
and SPA algorithms were used for modeling (Rajkumar et al., 2012).

2.7 Software and model assessment

Besides using Spec view software for hyperspectral image
acquisition and ENVI 5.3 for spectrum extraction, we utilized 3ds
Max to construct a 3D model of the HSI system. Unscrambler X
handled spectrum preprocessing and model building, while
MATLAB R2021b extracted the featured wavelengths and plotted
the waveforms. This paper assesses the model’s performance using
various evaluation metrics, including the cross-validation correlation
coefficient (R%,) and root mean square error (RMSECV), the
calibration set correlation coefficient (R?) and root mean square
error (RMSEC), and the prediction set correlation coefficient (Rf,)
and root mean square error (RMSEP) (Zhang and Guo, 2020). The
calculation process is detailed in Equation (2) and Equation (3). A
well-performing model is characterized by high R, RZ, or R, values
and low RMSECV, RMSEC, or RMSEP values. These metrics gauge
the model’s fitting and prediction capabilities, ensuring it excels in
data fitting and new data prediction. The processing of the whole
experiment is shown in Figure 3.

RE=1- 20 _)Ei)z ©)
i -y
RMSE = [ ,04 -5, ®

Optimal Modeling

Hyperspectral imaging
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Hyperspectral image

Extraction of ROI

l
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|
Mean spectra of all | I
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FIGURE 3
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Experimental procedure. (A) Process of raw hyperspectral image acquisition and ROI extraction. (B) Spectral preprocessing, feature extraction, and

modeling processes.
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3 Results and analyses

3.1 Spectral characterization and selection
of optimal preprocessing

Figure 4 shows the average spectra of 30 different flaxseed varieties
and the average spectra of 7 pre-treatments containing a total of 4,500
samples. As evident from Figure 4A, the average spectral profiles of
various flaxseed varieties exhibit a consistent trend. However, notable
deviations appear in the 450-800nm range, likely attributable to
variations between flaxseed varieties. Further studies revealed that the

10.3389/fpls.2024.1344143

average spectral profile of flaxseed has a significant reflectance peak at
420 nm, which is mainly caused by carotenoids (Yang et al, 2021). In
addition, the spectral profile shows a clear upward trend in the range of
600-750 nm, which is attributed to the fact that this wavelength
corresponds to the vibration of the N-H chemical bond of amino
acids in the seeds (Xu et al,, 2022). The absorption peak near 980 nm
originates from the O-H stretching vibration, which is related to the
structure of water molecules (Yu et al., 2014).

To minimize the influence of noise and irrelevant information
in spectral data, preprocessing of raw spectral information is
essential. The Partial Least Squares Regression (PLSR) model

Raw spectral curve

Reflectance

600 700 800 200 1000

Wavelength(nm)

¢ Normalize preprocess spectral curve

Reflectance

600 800 90 1000
Wavelength(nm)

400 500

SNV preprocess spectral curve

Reflectance

600 800 1000
Wavelength(nm)

MSC preprocess spectral curve

Reflectance

900 1000

800
Wavelength(nm)

400 500 600

FIGURE 4

SG preprocess spectral curve

Reflectance

500 00 200 1000

600 700 8
Wavelength(nm)

D Baseline preprocess spectral curve

06

Reflectance

600 800 1000

Wavelength(nm)

900

MA preprocess spectral curve

Reflectance

60 700 80 %0 1000
Wavelength(nm)

400 500

H 1stDer preprocess spectral curve
0.02 ™ - . . -

Reflectance

600 800 900 1000
Wavelength(nm)

400 500

Flaxseed spectral reflectance curves. (A) Raw spectral curve of flaxseed; (B) SG preprocess spectral curve of flaxseed; (C) Normalize preprocess
spectral curve of flaxseed; (D) Baseline preprocess spectral curve of flaxseed; (E) SNV preprocess spectral curve of flaxseed; (F) MA preprocess
spectral curve of flaxseed; (G) MSC preprocess spectral curve; (H) 1stDer preprocess spectral curve.
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comprehensively addresses the relationship between independent
and dependent variables, even in scenarios of significant
multicollinearity. The PLSR model for predicting flaxseed
protein content identifies the best preprocessing method using
stochastic cross-validation, employing Cross-validation set RZ,
and RMSECV as model evaluation metrics. Figure 5 illustrates
that, among the PLSR models predicting flaxseed protein content
without pretreatment and with seven different pretreatment
methods, the SG-PLSR model offered superior results, displaying
a R, value of 0.8394 and an RMSECYV value of 0.6010. Thus, the
SG pretreatment method was adopted for further feature
extraction in predicting oil content, linoleic acid, and
lignan content.

10.3389/fpls.2024.1344143

3.2 Results of feature extraction

Figures 6A, B shows the wavelength distribution of flaxseed
protein characteristics selected by the SPA algorithm, specifying the
number of variables N = 1 to 30. When the variable is 14, the RMSE
value is the smallest. Therefore, the final number of wavelengths
selected is 14, accounting for 4.3% of the total number of
wavelengths. These wavelengths, displayed in Figure 6B,
correspond to the variables 391, 394, 405, 408, 424, 440, 465, 491,
640, 793, 842, 902, 990 nm and 1014 nm, respectively.

Figure 7 shows the process of selecting the characteristic
wavelengths of flaxseed proteins by the CARS algorithm, which
includes the relationship between the number of sampling runs and
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Final number of selected variables: 14 (RMSE = 0.56424)
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the number of selected wavelength variables, the relationship
between the RMSECV values and the relationship between the
regression coefficients path. This figure illustrates that the efficiency
of feature variable selection significantly improves from rough to
fine screening with the increased number of sampling runs.
Moreover, when the number of runs reached 21, RMSECV
minimized, selecting 33 characteristic wavelengths crucial for
predicting protein content. These wavelengths include 405, 408,

424, 438, 441, 465, 468, 494, 497, 501, 517, 519, 529, 569, 571, 574,
576, 593, 595, 598, 772, 844, 846, 880, 910, 931, 933, 958, 960, 986,
988, 1009 nm and 1014 nm, amounting to 10.3% of the total
wavelength. This process indicates removing substantial irrelevant
hyperspectral data and flaxseed protein content prediction in runs 1
to 20. The SPA and CARS methods were also used for characteristic
wavelength extraction in subsequent oil content, linoleic acid, and
lignan prediction modeling.
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FIGURE 7
The process of extracting feature variables by CARS.
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3.3 Results of modeling

3.3.1 Modeling of hyperspectral prediction of
protein content in flaxseed

After determining the protein content of 30 flaxseed varieties,
the original spectral data and the seven preprocessed data were
combined with the actual protein content data to establish the PLSR
prediction model of flaxseed protein. The cross-validation set RZ,
and RMSECYV were used as evaluation indexes to determine the best
preprocessing method. It was found that the model prediction of the
data model after SG preprocessing was the best; therefore, the SG
preprocessing method was used for the original spectral data to be
preprocessed. Subsequently, we utilized both feature bands and full-
band data extracted from the raw bands through SPA and CARS.
These data were then input into regression models, including PLSR,
SVR, PCR, and MLR, to predict flaxseed protein content. The
results of these predictions are presented in Table 3. An analysis
of the results in Table 3 indicates that the PLSR, SVR, and PCR
models, employing feature wavelengths extracted by the CARS
algorithm, outperformed the models relying on full-band spectra.
Specifically, they showed increased R; and decreased RMSEP
values. Conversely, the SPA algorithm did not enhance the
predictive performance and, in some cases, even reduced it. This
observation suggests that SPA trims information redundancy but
may also eliminate valuable information for accurate model
predictions. In summary, different algorithms extracting distinct
feature wavelengths significantly influence the effectiveness of the

TABLE 3 Protein prediction result table.

10.3389/fpls.2024.1344143

prediction models. The optimal model, SG-CARS-MLR, exhibited a
training set R? 0f 0.9563, an RMSEC value of 0.4892%, a prediction
set R} of 0.9336, and an RMSEP value of 0.5616%. The results for
flaxseed protein content prediction in both the training and
prediction sets are illustrated in Figure 8A. The other two models,
SG-CARS-PLSR and SG-CARS-PCR (Figures 8B, C), also provided
reasonably accurate protein content predictions, with R} values of
0.8930 and 0.8671, and RMSEP values of 0.4189% and 0.4670%,
respectively. These findings confirm that the combination of
HSI and the SG-CARS-MLR model delivers strong predictive
performance for different flaxseed varieties’ protein content.
Finally, characteristic bands associated with significant protein
influence were identified using the SG-CARS-MLR model
(Figure 9). Generally, when the absolute t-value surpasses a
specific threshold (usually 2.0), it indicates the significant impact
of a corresponding independent variable on the dependent variable.
In this context, Figure 8 shows that the bands at 595 and 772 nm
exceed this threshold, signifying their substantial influence on the
MLR model for protein content prediction.

3.3.2 Hyperspectral prediction modeling of oil
content, linoleic acid and lignan in flaxseed

The prediction results for oil content, linoleic acid, and lignan
content of flaxseed are presented in Table 4. The MLR model
performs better than the PLSR, PCR, and SVR models. The Rlz,
values of PLSR, PCR, and SVR regression algorithms are all less
than 0.8, indicating these models aren’t suitable for predicting the

Number
. Feature
Maodeling extraction of
method feature
method .
variables
Protein
Non 320 0.9376 0.3848 0.7950 0.5800
PLSR SPA 14 0.8933 0.5032 0.8197 0.5438
CARS 33 0.9357 0.3907 0.8930 0.4189
Non 320 0.9546 0.3193 0.6366 0.9233
SVR SPA 14 0.9546 0.3193 0.6639 0.8845
CARS 33 0.8632 0.6024 0.8061 0.7091
Non 320 0.6188 0.9512 0.4605 0.9408
PCR SPA 14 0.5479 1.0359 0.4282 0.9686
CARS 33 0.9206 0.4340 0.8671 0.4670
Non 320 * * * *
MLR SPA 14 0.9010 0.5597 0.9329 0.5642
CARS 33 0.9563 0.4892 0.9336 0.5616

Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values

indicate optimal model metrics.
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FIGURE 9
Significance map of MLR model for CARS extracted feature bands.

TABLE 4 Oil content, Linoleic acid, and lignan prediction result table.

Modeling Feature Number of
method el feature variables 2
method R
Qil content
Non 320 0.7401 0.826 0.6864 0.8397
PLSR SPA 20 0.5218 1.1205 0.6058 0.9413
CARS 10 0.6678 0.9339 0.6438 0.8948
Non 320 0.94 0.3952 0.5884 1.0305
SVR SPA 20 0.9399 0.3953 0.5884 1.0305
CARS 10 0.94 0.3953 0.5884 1.0306
Non 320 0.5835 1.0458 0.6002 0.9481
PCR SPA 20 0.5917 1.0353 0.6077 0.939
CARS 10 0.6866 0.9071 0.6572 0.8779
Non 320 * * * *
MLR SPA 20 0.7675 0.9691 0.8565 0.8682
CARS 10 0.6876 1.0022 0.8532 0.8779
Linoleic acid
Non 320 0.7204 0.4550 0.5502 0.5497
PLSR SPA 20 0.6871 0.4813 0.5490 0.5504
CARS 16 0.6404 0.5160 0.4495 0.6081
Non 320 0.9461 0.1977 0.7363 0.4516
SVR SPA 20 0.9462 0.1977 0.7362 0.4516
CARS 16 0.9462 0.1977 0.7362 0.4516
Non 320 0.6474 0.5110 0.5381 0.557
PCR SPA 20 0.4604 0.6320 0.3418 0.6649
CARS 16 0.6564 0.5043 0.4381 0.6143
MLR Non 320 * * * *
(Continued)
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TABLE 4 Continued

10.3389/fpls.2024.1344143

Modeling Feat“.re Number of
method el feature variables
method
SPA 20 0.7489 0.5728 0.8028 0.5404
CARS 16 0.6740 05803 0.7286 0.6340
Lignan
Non 320 0.8597 0.5562 0.6626 0.8057
PLSR SPA 29 0.5404 1.0067 0.5103 0.9707
CARS 24 0.6362 0.8957 0.5475 0.9331
Non 320 0.9761 0.2688 0.6136 0.9082
SVR SPA 29 0.8464 0.6738 05177 1.0478
CARS 24 0.9400 0.3953 0.5884 1.0306
Non 320 0.3959 1.1542 0.5105 0.9705
PCR SPA 29 0.5387 1.0086 0.4346 1.0430
CARS 24 0.6249 0.9094 0.4880 0.9926
Non 320 * * * *
MLR SPA 29 0.9024 0.6562 0.9343 0.5384
CARS 24 0.7635 0.9455 0.8285 0.8697

Represents that MLR modeling under 320 bands was not performed because MLR modeling is only applicable when the number of variables is less than the number of samples. Bold values

indicate optimal model metrics.

aforementioned contents in flaxseed. The extraction of feature
wavelengths by SPA and CARS algorithms appears applicable to
the MLR model. Specifically, the SG-SPA-MLR models perform
better than SG-CARS-MLR in predicting oil content, linoleic acid,
and lignan. For instance, the R]2J and RMSEP for oil content are
0.8565 and 0.8682%, and for linoleic acid are 0.8028 and 0.5404%,
respectively. In contrast, the best model in literature predicting oil
content for rapeseed seeds had an Rlz, and RMSEP of 0.868 and
1.0698% (Li et al., 2023), respectively. Furthermore, lignan content
was predicted with Rlz, and RMSEP of 0.9343 and 0.5834%,
respectively. Studies suggest that feature wavelengths derived
from SPA and CARS algorithms enhance the predictive
performance of MLR models, as observed in the prediction of
moisture content of tobacco leaves (Sun et al., 2016) and the use
of hyperspectral image technology for egg freshness detection
(Wang et al, 2015). The scatter plots for the three types of
flaxseed nutritional quality in both training and prediction sets
are depicted in Figure 10, indicating the superior predictive
performance of the SG-SPA-MLR model. Even though the R} for
linoleic acid in the prediction set is 0.8028, the RMSEP is 0.5404%,
affirming the model’s aptness for prediction. Finally, Figure 11
highlights the importance of SPA-extracted feature bands in the
MLR model. Figures 11A, C underscore the significance of these
bands in predicting oil and lignin content. Notably, in Figure 11C,
the MLR model predicts 18 feature bands with t-values greater than
2.0 in lignin content. These bands primarily appear around 470 nm
(related to nitrogen content) (Li et al., 2022) and 800 nm (related to
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oxygen content) (Yuan et al, 2021), demonstrating the SG-SPA-
MLR model’s superior prediction of lignan content.

This project employs HSI technology within the 380-1018nm
spectral range to gather data from flax seeds. The PLSR model
cross-validation is then utilized to select the optimal pre-processing
method, SG. Subsequently, characteristic wavelengths are extracted
employing SPA and CARS algorithms. Finally, the spectral data
corresponding to these characteristic wavelengths are combined
with the protein, oil content, linoleic acid, and lignan acquired from
the flax seeds through biochemical methods. This integration
constructs four nutritional quality prediction models (SG-CARS/
SPA-MLR) for rapid and non-destructive testing. The models
achieve a prediction accuracy exceeding 0.93 for protein and
lignan content, surpassing 0.85 for oil content. Although the
linoleic acid content prediction accuracy is slightly lower, it still
exceeds 0.80. These results fully address the requirements of
practical production for rapid, non-destructive detecting of the
nutritional quality of flaxseed grain.

4 Conclusions

The protein, oil content, linoleic acid, and lignan are
crucial indicators for evaluating the quality of flaxseed. This
study aimed to construct a model for the rapid and non-
destructive detection of these components in flaxseed using
HSI technology. Through experimental comparisons of various
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FIGURE 10
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Predicted results of oil content, linoleic acid, and lignan content based on the optimal model SG-SPA-MLR. (A) Oil content prediction results.
(B) Results of linoleic acid content prediction. (C) Prediction results of lignan content.
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Significance map of MLR model for CARS extracted feature bands. (A) Significance map of the characteristic band of oil content; (B) Significance
map of the characteristic band of linoleic acid; (C) Significance map of the characteristic band of lignan.

spectral image preprocessing methods and feature wavelength
extraction algorithms, the preferred model achieved swift and
non-destructive detection of protein, oil content, linoleic acid,
and lignan in flaxseed grains, yielding better results. This
research introduces a novel method for the future investigation
of rapid, non-destructive, and high-precision detection of
nutritional quality in different flaxseed varieties, enhancing the
efficiency of screening and evaluating flax germplasm resources.
The study’s results hold positive practical significance for the
sustainable development of the flax industry and the selection
and breeding of high-quality flax varieties.
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Introduction: The micronutrient deficiency of iron and boron is a common issue
affecting the growth of rapeseed (Brassica napus). In this study, a non-destructive
diagnosis method for iron and boron deficiency in Brassica napus (genotype:
Zhongshuang 11) using hyperspectral imaging technology was established.

Methods: The recognition accuracy was compared using the Fisher Linear
Discriminant Analysis (LDA) and Support Vector Machine (SVM) recognition
models. Recognition results showed that Multiple Scattering Correction (MSC)
could be applied for the full band hyperspectral data processing, while the LDA
models presented better performance on establishing the leaf iron and boron
deficiency symptom recognition than the SVM models.

Results: The recognition accuracy of the training set reached 96.67%, and the
recognition rate of the prediction set could be 91.67%. To improve the model
accuracy, the Competitive Adaptive Reweighted Sampling algorithm (CARS) was
added to construct the MSC-CARS-LDA model. 33 featured wavelengths were
selected via CARS. The recognition accuracy of the MSC-CARS-LDA training set
was 100%, while the recognition accuracy of the MSC-CARS-LDA prediction set
was 95.00%.

Discussion: This study indicates that, it is capable to identify the iron and boron
deficiency in rapeseed using hyperspectral imaging technology.

KEYWORDS

deficiency identification, rapeseed, iron and boron, hyperspectral imaging, MSC-
CARS-LDA
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1 Introduction

Rapeseed, rich in oil and protein, is an important oil crop and
industrial raw material, as well as a potential bioenergy crop overall
the world (Liu et al., 2019). According to the Rapeseed Explorer of
USDA, the global production of rapeseed has reached 87.103
million metric tons, which producing 31.8 million metric
rapeseed oil (USDA, 2024). With various useful compounds of
fatty acids, vitamins and proteins, rapeseed oil ranks as the third
most popular vegetable oil after oil palm and soybean (Friedt et al.,
2018). To better manage the fertilizer supply during rapeseed
cultivation, it is essential to monitoring the micronutrients status
of the plants.

Appropriate application content of fertilizers will not only
benefit the absorption and utilization of nutrients by the
crop plants, but also contribute to plants stress tolerance
(Hasanuzzaman et al,, 2018; Thor, 2019). On the contrary,
lacking essential nutrients could inhibit the growth of the plants,
which would directly lead to the negative effect on rapeseed quality
oryield (Agren et al., 2012; Johnson et al., 2022). Real-time, fast, and
accurate monitoring of nutrient content would provide guidance for
reasonable fertilization to increase the crop quality and production
in any specific regions (Brown et al., 2022; Tian et al, 2024).
Therefore, monitoring the nutrient content of plants is an
important aspect in crop cultivation and management.

As two of the essential micronutrients, boron and iron play
important roles in the growth and reproduction of rapeseed,
especially in the southwestern region of China. Boron participates
in promoting the transport of carbohydrates in vivo plants which
will accelerate the growth of apical shoots and meristem. It is also
conducive to the development of plant flower organs (Kalaji et al,
2018; Li et al.,, 2020). When the rapeseed plant is in deficiency of
boron, the transportation of assimilation products in vivo plant
could be interrupted. As a result, a large amount of starch would
accumulate in the leaves and petioles. Furtherly, the greatly increase
of phenolic compounds content would lead to necrosis of plant
apical buds. Thus, the main manifestation of boron deficiency in
rapeseed is the inhibition of apical buds, which would interrupt the
growth of roots and shoots, ultimately leading to the issue of
“blooming but not setting fruit” of rapeseed plants. Iron acts as
an activator of some enzymes or enzyme cofactors in the synthesis
of chlorophyll. It would indirectly affect the production process of
chlorophyll, while playing an important role in electron transfer
chain in various biochemical reactions in vivo plants (Takano et al.,
2008; Pavlovic et al., 2021). The main manifestation of iron
deficiency in rapeseed is the chlorosis and yellowing between leaf
veins while the leaf veins themselves remain green, especially in the
top fresh leaves (Takano et al., 2008; Merchant, 2010).

Phenotyping technology with optical sensors such as RGB
camera, chlorophyll fluorescence sensors, and particularly the
spectral imaging system, has been widely applied in monitoring
various biotic stresses for crops. With UAV-based RGB and multi-
spectral sensors, salinity stress phenotyping has been realized in
tomato and quinoa plants (Johansen et al., 2019; Jiang et al., 2022).
The study results provided insight into the effects of salt stress on
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plant area, growth and condition. Optical information like
chlorophyll fluorescence can also be measured for photosystem
status evaluation such as investigating herbicide stresses in soybean
plants (Li et al, 2018). Meanwhile, phenotyping of stresses from
over or deficient macronutrients such as nitrogen, phosphorus, and
potassium have also been successfully tested in many studies using
hyperspectral imaging technology (Jiang et al., 2015; Tmusic et al.,
2020). However, at present, the deficiency of the micronutrients
iron and boron in crops is mainly evaluated using artificial vision
and empirical morphological diagnostic methods which could only
be made when obvious stress symptoms have appeared, and the
specific fertilization may be missed for the suitable application
time window.

The objectives of this study were to, (1) investigate if it was
possible to differentiate the iron and boron deficiency symptoms in
rapeseed from healthy plants at early growth stage using spectral
imaging technology; (2) optimize the spectral diagnostic model for a
high classification accuracy. The results will provide support for the
nutritional diagnosis of iron and boron content in rapeseed fields
using UAV-based sensing systems and even for the potential
detection of vegetation deficiency symptoms via the space-based
remote sensing satellites.

2 Materials and methods
2.1 Plant materials

The cultivar of tested rapeseed (Brassica napus L.) in this study
is Zhongshuang 11 (ZS11, Beijing, Chinese Academy of
Agricultural Sciences), which is widely grown in the Yangtze
River basin. The plants were grown in 380 mmx300 mm pots
with soilless hydroponic incubator with six plants per pot. All the
plants were cultivated in a greenhouse of Southwest University in
Chonggqing, China.

The nutrient deficient plants were cultivated as the methodology
described by Han et al. (2016), in which the ZS11 genotype was also
cultivated as the tested plants. The rapeseed seeds were germinated in
distilled water. After germination, the seedlings were transferred to a
plastic net floating on the half strength modified Hoagland solution
(Table 1). Normally growth seedlings were selected for next
cultivation steps of the tests. Seedlings for control treatment were
kept in the half strength modified Hoagland solution with boron
concentration of 20 wmol L™ (H3;BO;) and iron concentration of 80
umol L™ (C,oH;,FeN,NaOg, EDTA-Fe), which were dramatically
lower than the element concentration in the Chinese State Standard
of foliar microelement fertilizer (State Administration for Marker
Regulation of the People’s Republic of China & Standardization
Administration of the People’s Republic of China, 2020). The
seedlings for nutrient deficiency treatments were then transferred
to solution with iron or boron in lower concentration. Boron
deficiency plants was transferred to the solution with boron
concentration of 0.5 umol L™, while the iron deficiency plants were
treated with iron concentration of 1 pmol L. The other nutrients of
both micronutrients deficient solution were kept in same
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TABLE 1 Modified 1/2 Hoagland complete nutrient solution formula.

Chemical Molecular Weight Concentration

(10— mol LY
Ca(NOs),-4H,0 236.15 2500
KNO; 101.1 2500
NH,NO; 80.04 1000
K,S04 174.26 250
MgSO,7H,0 246.47 1000
KH,PO, 136.09 500
DETA-Fe 376.05 80
H;BO; 61.83 20
MnCI,-4H,0 197.91 45
ZnS0,7H,0 287.54 03
CuS0,-5H,0 249.68 0.16
(NH4)gMo,0,,-4H,0 1235.86 0.16

concentration as the half strength modified Hoagland solution. The
solution in all treatments was replaced every two days.
Germination treatment was applied to full and consistent ZS11
seeds. The seeds were soaked in distilled water for 20 minutes and
disinfected with 5% NaClO solution for 20 minutes. After rinsed with
distilled water repeatedly for 5-6 times, the seeds were put on gauze
soaked in 1/4 strength Hoagland solution for seedling cultivation.
Seedlings with uniform growth stage were selected for
transplant. The plants were transferred to plastic hydroponic
tanks containing nutrient solutions (1/4 strength Hoagland
solution was used for cultivation in the first week after
transplanting, half strength Hoagland solution was used for
cultivation since the second week after transplanting, solution for
nutrient deficiency treatments were applied since the third week
after transplanting). Four biological replicates were applied for each
treatment with 72 plants in total. The plants were set with a
Randomized Block Design. The experiment was repeated twice in
3" March to 14" June and 7' September to 12" December in 2023.

2.2 Hyperspectral imaging system

The physical and architectural diagrams of the hyperspectral
imaging system are shown in Figures 1A, B, respectively. The main
hardware includes a hyperspectral camera (Raptor EM285CL,
Raptor Photonics Led., UK), a spectrometer (Impector V10E,
Measuring wavelength range 364~1025 nm, Spectral resolution
2.8 nm, Specim, Spectral Imaging Ltd., Finland), a zoom lens, a
150 W halogen adjustable light source, a linear photoconductor, a
stepping motor mobile platform, a computer, etc. The whole set of
devices is placed in the black box except the computer. The main
software installed on the computer includes Spectral image, an
image acquisition software provided by Wuling Optics (Taiwan,
China), and HIS Analyzer, an image analysis software.
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This device was fixed on the top of a black box in a darkroom.
Each plant was moved to the measuring platform out from the
hydroponic incubator. The window of the black box was closed
during measurement.

2.3 Data collection and calibration

After 28 days of transplanting, hyperspectral images of rapeseed
leaves were collected uniformly. To ensure the representativeness of the
collected data, all samples were placed horizontally under the same
conditions for imaging. After pre-testing, it was ultimately determined
that the exposure time of the hyperspectral imaging system camera was
48 ms, the working distance from the lens to the sample was 480 mm,
and the moving platform speed was 1.12 mm s™.

Black and white board correction was performed on the
hyperspectral image data of each sample in the image analysis
software HIS Analyzer. The correction formula is as follows:

R = (RS - RD)/(RW - RD)

where, R is the relative reflection density of the leaves, R; is the
reflection density of the original image of the sample, R, is the
reflection density of all the white calibration image, and Ry, is the
reflection density of the all black calibration image. Black and white
correction is used to eliminate the influence of camera dark current,
while converting the spectral values of the original hyperspectral
image into reflectance.

2.4 Data preprocessing

Due to the influence of instruments, image acquisition
background, environmental lighting conditions, and other factors,
there would be noise, spectral baseline drift, and translation in the
obtained spectral data. To eliminate these adverse effects on
classification modeling, preprocessing of spectral data is necessary.
After preliminary experiments, normalization, SG convolutional
smoothing, spectral differentiation, and Multiple Scattering
Correction (MSC) were selected for the spectra preprocess of the
leaf samples after smoothing. The preprocessing procedure is shown
in Figure 2. Four types of the spectral data obtained after
preprocessing are spectral sample sets 1-4, which are abbreviated
as RAW, Ist Der, MSC, and 2nd Der in the following text.

Figure 3 shows four spectral samples obtained from the pre-
processed spectral data of some healthy rapeseed leaves.

2.5 Band screening

Hyperspectral data often has hundreds or even thousands of
wavelength points, which not only provides rich information about
samples but also poses challenges for computer storage,
transmission, and data processing (Arnon and Hoagland, 1938).
When extracting spectral dimension information from
hyperspectral data for modeling, using full band spectral
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FIGURE 1

Hyperspectral imaging system (A) physical drawing; (B) architecture diagram.

information to establish the model will bring various negative
impacts to the model due to the presence of uninformative
variables in the data (Gruber et al.,, 2013). The dimension
reduction algorithm can select the wavelength variables that are
more meaningful to the classification results from the full
wavelength range and eliminate redundant wavelengths. It could
improve the prediction accuracy and modeling calculation
efficiency of the model, as well as reducing the overfitting of the
model and improve the generalization ability of the model (Arnon
and Hoagland, 1938; Gruber et al., 2013; Khan et al., 2018).

2.5.1 Continuous projection algorithm

Successive Projections Algorithm (SPA) is a forward variable
selection algorithm, which uses vector projection analysis to select
the combination of many variables with the smallest collinearity. In
some studies on plant spectral feature classification and regression
models, continuous projection algorithms are often applied in the
dimensionality reduction process of hyperspectral data, which can
play a good role in improving model operation efficiency and
recognition accuracy (Belgiu and Dragut, 2016).

2.5.2 Competitive adaptive reweighting algorithm

The Competitive Adaptive Reweighted Sampling (CARS)
algorithm has also been widely applied in the recognition of plant
spectral features. CARS uses the Monte Carlo sampling principle to
select sample subsets for modeling, and to evaluate the importance of
variables through the regression coefficients of the sub models. In each

Sample set 2

) <
N &
o« A%
66
2 nd Der
Raw spectral data'—»lSample set 1 | —> [ Sample set 3
So

Sample set 4

FIGURE 2
Flow chart of spectral data preprocessing.
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iteration, dimensionality reduction is achieved by removing variables
with smaller mean regression coefficients through Exponential
Decreasing Function (EDF) and Adaptive Reweighted Sampling
(ARS) (Lorente et al., 2012).

2.6 Classification model

Linear Discriminant Analysis (LDA), also known as Fisher
linear discriminant analysis, is a classic algorithm for pattern
recognition and is widely used in multi class classification
problems. Using LDA can maximize the inter class scatter matrix
of the projected pattern samples and minimize the intra class scatter
matrix, ensuring that the projected pattern samples have the
minimum intra class distance and maximum inter class distance
in a new space. Its essence lies in finding a subspace. It enables
better separation of various categories in this subspace, which
means that patterns have the best separability in that space
(Zhang et al., 2022).

Support Vector Machine (SVM) is a supervised pattern
recognition method. The original spectral data is mapped to a
high-dimensional feature space, and an optimal classification
hyperplane is constructed to maximize the distance between the
support vectors of various samples and this hyperplane. SVM can be
used for linear and nonlinear multivariate analysis problems, and
the support vector can be solved by using linear equations instead of
Quadratic programming. By selecting appropriate kernel functions
to ensure the speed and efficiency of modeling while implementing
nonlinear mapping (Yuan et al., 2020), this experiment uses Radial
Basis Function (RBF) as kernel functions.

3 Results

3.1 Spectral features of nutrient
deficient leaves

From the average spectra of the collected leaves of rapeseed
plants (Figure 4), it presented that overall waveform of the spectral
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Four spectral samples obtained from preprocessing spectral data of some healthy rapeseed leaves. (A) Sample set 1. RAW; (B) Sample set 2: 1st Der;
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reflection curve in the wavelength range of 400-1000 nm was
similar between normal plants and iron or boron deficient plants.

3.2 Deficiency recognition and
classification model based on full
band information

After preprocessing the 400-1000 nm full band spectral data
using three preprocessing methods, known as spectral first order
differential, spectral second order differential and MSC. LDA
discriminative model and SVM discriminative model for
identifying iron deficiency, boron deficiency and normal leaves
were established respectively. LDA discriminative model is a typical
Fisher linear discriminant analysis in Matlab Toolbox. When using
SVM to build a discriminative model, the kernel function used
when using SVM to build a discriminative model is the radial basis
function (RBF) kernel function:

K(X;, X)) = exp(= 7 | X; = X; [)?

In the SVM modeling, the Penalty coefficient y was set as 100,
and the kernel width ¢ was set as 0.1. The discrimination results of
each model were shown in Table 2.

Comparing the discrimination accuracy of the two models, it
presented that the LDA model had better overall discrimination
performance than the SVM model. However, when using the LDA
model to model the rapeseed leaf spectral dataset, the most suitable
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preprocessing method was MSC. When using the SVM model, the
two preprocessing methods MSC and 2nd Der had better results.
By analyzing the confusion matrix of the modeling set
(Figure 5) and the test set (Figure 6) based on the SVM model, it
presented that the SVM model had a good spectral recognition
effect for healthy and nutrient deficient rape leaves, with an
accuracy rate of more than 90%. The recognition effect of iron

0.7

Fe Deficiency
—— B Deficiency

0.6 Normal

Reflectance

0.3

0.2

0.0 1 1 1 1 1 1 1
400 500 600 700 800 900 1000

Wavelength/nm

FIGURE 4
Comparison of average spectra between normal leaves and iron and
boron deficient in Brassica napus leaves.
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TABLE 2 Discrimination results of LDA and SVM discrimination models under different spectral pretreatment.

Preprocessing method Training set Testing set
Nc/Nt Accuracy Nc/Nt Accuracy

SVM RAW 81/90 90.00% 47/60 78.33%
Lst Der 78/90 86.67% 39/60 65.00%

MSC 84/90 93.33% 52/60 86.67%

2nd Der 83/90 92.22% 51/60 85.00%

LDA RAW 79/90 87.77% 49/60 81.66%
Lst Der 81/90 90.00% 46/60 76.67%

MSC 87/90 96.67% 55/60 91.67%

2nd Der 84/90 93.33% 47/60 78.33%

“Nc” represents the correct discriminant number of the tested samples; “Nt” represents the total number of tested samples.

and boron deficient rapeseed leaves is average, with the 1st Der data
having the worst effect, with an accuracy rate of only 55%. The
accuracy rates of RAW, MSC, and 2nd Der data are all between 70%
and 85%.

Experiments also shown that SVM models based on full band
spectral data can effectively identify healthy rapeseed leaves and
rapeseed leaves lacking iron and boron elements. However, the
recognition accuracy between iron deficient and boron deficient
leaves still needed to be improved.
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Predicted Labels

True Labels

FIGURE 5

The analysis of the confusion matrix of the modeling set
(Figure 7) and the test set (Figure 8) based on the LDA model
showed that the LDA model was superior to the SVM model in
spectral recognition of healthy and nutrient deficient rapeseed leave.
Its accuracy in the test set is more than 95%. In the recognition of
iron and boron deficient rapeseed leaves, MSC data showed
significantly better performance than RAW, 1st Der, and 2nd Der
data, with average accuracy exceeding 90% in both training and
testing sets.
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Discrimination results based on SVM model under different spectral pretreatments (Test set) for iron and boron deficiency in Brassica napus. (A)

RAW, (B) 1st Der, (C) MSC, (D) 2nd Der.

Further analysis of the discrimination results of the MSC-LDA
model showed that both the modeling and prediction sets had a 100%
accuracy in discriminating normal samples. In general, the
discrimination accuracy of samples with boron deficiency was
higher than that of samples with iron deficiency. From the
confusion matrix, two samples with boron deficiency in the
modeling set were wrongly identified as samples with iron
deficiency symptoms, while one sample with iron deficiency
symptoms was wrongly identified as samples with boron deficiency,
and two samples are wrongly identified as healthy samples. The
prediction set discrimination results also showed that one sample
with boron deficiency was wrongly identified as samples with iron
deficiency symptoms, and four samples with iron deficiency
symptoms were wrongly identified as samples with iron deficiency.

The results of this experiment indicate that the MSC-LDA model
achieved the highest accuracy in the combination of data preprocessing
and modeling methods for Brassica napus iron and boron. The overall
discrimination accuracy of the modeling set reached 96.67%, and the
overall discrimination accuracy of the prediction set reached 91.67%.

3.3 Feature band screening results

Figure 9A shows the process of reducing the number of bands
involved in modeling through 50 Monte Carlo sampling (MC) of

Frontiers in Plant Science

the sample data. Figure 9B shows the cross-validation error curve of
the PLS model using the Leave on One Out (LOO) method as the
number of bands involved in modeling decreases. From the above
two curves, it could be seen that as the number of bands involved in
modeling gradually decreases, the Root Mean Square Error of Cross
Validation (RMSECV) of the model first shows a slow decreasing
trend. It indicated that there is indeed a lot of redundant
information in the spectral raw data containing more than 600
bands. Screening out certain band data could not only reduce
computational complexity, but also improve the accuracy of the
model to a certain extent. When the sampling frequency starts from
24, the RMSECV of the model in the training set gradually
increased as the number of modeling bands decreases, indicating
that some band data useful for classification modeling begins to
be eliminated.

The above phenomenon indicates that there is indeed a large
amount of redundant information in the original spectrum that is
useless for the classification and recognition of iron and boron
stress in rapeseed. It is meaningful to reduce the dimensionality of
the original spectral data.

SPA and CARS were used to reduce the dimensionality of
rapeseed leaf spectral data, as shown in Table 3. A total of 18
characteristic wavelengths were selected by SPA and defined as
subset 1. CARS screened a total of 33 wavelengths and defined them
as subset 2.
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Discrimination results based on LDA models under different spectral pretreatments (Modeling set) for iron and boron deficiency in Brassica napus.
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3.4 Establishment of a deficiency
recognition and classification model based
on feature band information

Since the MSC-LDA model is superior to other discriminative
model when full band spectral information modeling is used, the
MSC-SPA-LDA and MSC-CARS-LDA modeling and
discrimination are conducted using two characteristic wavelength
subsets screened according to SPA and CARS. The prediction
results are shown in Table 4, and the confusion matrix is shown
in Figure 10 (MSC-SPA-LDA) and Figure 11 (MSC-CARS-LDA).

Analysis of the discrimination results of the MSC-SPA-LDA
model showed that the accuracy of the MSC-SPA-LDA model based
on SPA feature bands is 94.44% on the training set and 91.67% on
the test set, which is slightly lower than the MSC-LDA model based
on full band. However, due to its significant reduction in the
number of input variables in the model, the running speed of the
model is significantly improved, and the accuracy is within an
acceptable range, so the MSC-SPA-LDA model has better
applicability than the MSC-LDA model.

By analyzing the discrimination results of the MSC-CARS-LDA
model, it could be concluded that the MSC-CARS-LDA model
based on CARS feature bands achieved 100% and 95% accuracy on
the training and testing sets, respectively, making it the model with
the highest recognition accuracy in this experiment.

The feature wavelengths of subset 2 selected based on the CARS
algorithm were mainly concentrated between the regions of 400-
450 nm and 800-1000 nm, especially in the blue-violet light region

TABLE 3 Selected characteristic wavebands by SPA and CARS.

Data Wavelength(nm)
name
Dataset 410, 411, 416, 421, 426, 429, 434, 437, 441, 442, 672, 691, 722, 737,

1 981, 990, 997

Dataset 401, 402, 405, 406, 408, 411, 412, 414, 417, 418, 422, 426, 427, 429,
2 430, 434, 438, 445, 446, 449, 453, 455, 674, 688, 812, 864, 882, 919,
955, 973, 977, 980, 992
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of 400-450 nm, which is not the green peak region with the greatest
difference in the 500-650 nm spectral curve. This indicates that the
degree of leaf chlorosis is not the only basis for discrimination in
this recognition system.

4 Discussion

The deficiency of iron and boron could lead to a decrease in
chlorophyll content in the leaves, weakening their absorption of solar
radiation, and causing an overall increase in the spectral reflectance of
the leaves in the wavelength range of 400-700 nm, resulting in a “blue
shift” phenomenon at the “red edge” position. This was consistent
with previous research results (Yang et al, 2018). Considering the
“green peak” at 550 nm, the spectral reflectance difference was the
largest. The increase in green peak caused by iron deficiency was
more intense than that caused by boron deficiency, indicating that the
level of plant nutrient element content was closely related to spectral
characteristics. When the plants were in deficiency of iron or boron,
the total chlorophyll content of their leaves might reduce. That would
lead to weak absorption of solar radiation and an increase in the
reflectance and transmittance of incident light, which has been
proven in crops like sorghum and sugar beet (Teixeira et al., 2020;
Wu et al,, 2021). The symptoms of nutrient deficiency in rapeseed
leaves appeared because of the decrease of chlorophyll content, which
might cause corresponding spectral responses such as an increase in
green peaks. This provides a basis for conducting spectral recognition
and identification.

The spectral reflectance of plant leaves in the range of 400-1000
nm indicated spectral responses to various factors such as plant
metabolites, chlorophyll, water content, internal structure of leaf
surfaces, and physical properties of plant leaves. The correlation
between spectral reflectance of different bands and the abundance or
deficiency of iron and boron elements in rapeseed plants was
comprehensive responses of the rapeseed plants to the nutrients
status and environment, rather than the direct correlation between
spectral values and iron and boron content. Therefore, machine
learning algorithms was employed in this study for further analysis.
Two pattern recognition methods, LDA and SVM, were used to
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TABLE 4 MSC-LDA discrimination model based on characteristic wavelength.

10.3389/fpls.2024.1351301

Training Set Test Set
Accuracy Accuracy
MSC-SPA-LDA 85/90 94.44% 55/60 91.67%
MSC-CARS-LDA 90/90 100.00% 57/60 95.00%
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identify different deficiency symptoms. The LDA algorithm achieves
better recognition results, and the CARS algorithm performs better
than the SPA algorithm in feature wavelength screening. Through the
analysis of confusion matrix, it presented that the recognition rate of
the recognition model established in this study for healthy rape leaves
was always higher than 90%. The recognition of iron deficient leaves
and boron deficient leaves presented some confusion of samples.
From Figure 5, it could also be seen that the green peak increase
response caused by iron deficiency was stronger than that caused by
boron deficiency. It might suggest that the physiological response to
spectral properties from iron deficiency was more sensitive than that
from boron deficiency in rapeseed plants (Sarafi et al., 2018).
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5 Conclusion

The spectral response of normal, iron deficient, and boron deficient
rapeseed plants was investigated using hyperspectral imaging
technology in this study. Thus, it could conclude that, (1) with
employing spectral imaging technology, it is capable to identify the
iron and boron deficiency symptoms in rapeseed from healthy plants at
early growth stage based on full band and featured band; (2) the LDA
discriminative model established by screening characteristic wavelengths
could be optimized using CARS for further field application with lower
data consumption and faster calculation, and the recognition accuracy
of its modeling set and prediction set could be 92.22% and 86.67%.
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