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Editorial on the Research Topic

Prevention, mitigation, and relief of compound and chained natural
hazards
s

Introduction

In the context of global climate warming and frequent earthquakes, extreme natural
disasters have become increasingly common, posing significant threats to human life
and property. Various types of natural disasters often overlap, interact, or trigger chain
reactions. As a result, these natural disasters have a wide impact, long duration, and cause
severe damage, exhibiting highly complex and interconnected characteristics.Therefore, the
prevention, mitigation, and relief of compound and chained natural hazards have become
critical issues we face today. Technological advancements are enhancing our ability to
manage natural hazards, with artificial intelligence, big data, cloud computing, and space-
based earth observation technologies providing valuable support in addressing compound
and chained natural hazards. Against this backdrop, numerous scientists are dedicated to
researching the mechanisms of natural disasters and developing technologies for disaster
prevention, mitigation, and relief, yielding many outstanding results.

To advance the field of natural disaster prevention and control and promote
communication among peers, we initiated a Research Topic titled “Prevention, Mitigation,
and Relief of Compound and Chained Natural Hazards” on 4 March 2023. The goal was
to collect both original research and review articles addressing state-of-the-art theories
and methodologies in all types of natural hazards, with a particular emphasis on studies
highlighting the compound and chained relationships between different natural hazards.
Since its launch, this Research Topic has attracted widespread attention and received
numerous submissions. Now that the Research Topic has closed, a total of nine papers
have been accepted and published, successfully fulfilling the goals of this Research Topic.
This preface provides an overview of the nine published papers, which primarily focus on
earthquakes, geological hazards, and earthquake-triggered landslides. This Research Topic
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has provided support for the advancement in the field of Prevention,
Mitigation, and Relief of Compound and Chained Natural Hazards.

The monitoring of earthquakes and
disaster assessment

Earthquakes are considered the foremost among natural
disasters, with a single event potentially causing tens of thousands of
fatalities (Xu et al., 2014; Yu et al., 2024). Research on earthquakes
and their associated hazards has always been a prominent issue.
This Research Topic publishes three papers in this field. Ahn
et al. from the Korea Meteorological Administration designed a
performance evaluation method for earthquake early warning
systems in low seismic activity areas. This method considers the
unique conditions of evaluating early warning systems in such
regions and is significant for eliminating potential discrepancies
from reviewers or nations. Efforts in earthquake early warning
systems aid in disaster response and avoidance, while emergency
shelters provide scientific reference for earthquake rescue and
post-disaster emergency evacuation. Wang et al. from the National
Institute of Natural Hazards, Ministry of Emergency Management
of China using Xichang City in Sichuan Province, China as an
example, conducted a spatial accessibility analysis of emergency
shelters. They utilized data on emergency shelters and road
networks, considering predicted strong ground motion and
potential fault rupture characteristics in an earthquake scenario.
This analysis improved the objectivity of the accessibility results for
emergency shelters.

Earthquake-induced landslides are a significant type of
earthquake disaster, especially inmountainous areas (Xu et al., 2014;
Zhao et al., 2023). The evaluation of seismic landslide hazards is a
popular research direction (Shao and Xu, 2022). Yang et al. from
the Institute of Geomechanics, Chinese Academy of Geological
Sciences, used the Newmark model to evaluate seismic landslide
hazards based on peak ground acceleration, traditional Arias
intensity, and an improved Arias intensity. They found that the
results based on the improved Arias intensity were consistent with
the spatial distribution of co-seismic landslides, indicating that
this method is suitable for rapid assessment of earthquake-induced
landslides, providing scientific support for emergency assessment of
such events.

Slope geological hazards such as
landslides and debris flows

The automatic identification of regional landslides has
become a widely studied research direction in the context of
advancements in machine learning technology (Qi et al., 2020;
Yang et al., 2022; Yu et al., 2022). Ma et al. from the Institute of
Geology and Geophysics, Chinese Academy of Sciences, proposed a
landslide identificationmethod based on a dual graph convolutional
network. Using GeoEye-1 satellite imagery with a spatial resolution
of 0.5 m, they conducted automatic landslide identification in a
mountainous area of Xinyuan County, Xinjiang, achieving an
accuracy of over 80%. Compared to traditional methods, this
approach offers the ability to identify data over a larger area with

higher efficiency, providing a reliable solution for the large-scale
identification of landslides.

Landslide relics refer to areas where landslides have occurred or
are occurring. Most landslide relics have undergone deformation,
instability, movement, and accumulation, reaching a stable state.
Some continue to deform without large-scale instability, or
experience deformation again due to external factors such as
earthquakes and rainfall after initial instability and accumulation.
Landslide relics provide the only direct information for
understanding the background of landslide development in a region.
Some researchers have conducted specialized studies on landslide
relics in various areas, revealing the background of landslide
development in those regions (Wang W. et al., 2024; Feng et al.,
2024; Sun et al., 2024; Zhang et al., 2024). Li et al. conducted a
study on landslide relic identification in the boundary area between
the Qinghai-Tibet Plateau and the Loess Plateau, specifically in
Jianzha County, Qinghai Province, China, using high-resolution
imagery from Google Earth platfrom for visual identification. They
developed a comprehensive and detailed landslide relic database,
which includes 713 landslide relics. The study analyzed the spatial
distribution characteristics and area distribution of these landslide
relics, providing support for analyzing landslide influencing factors,
hazard assessment, and disaster prevention and mitigation efforts in
the region.

Cai et al. from the Research Center of Applied Geology
of the China Geological Survey studied the accumulation and
movement patterns of potential source materials for debris flow
disasters under conditions of extreme short-term heavy rainfall
using numerical simulation methods. They revealed and analyzed
the maximum movement speed, accumulation height, impact
range, and evolution process of a debris flow in a mountainous
area in southwestern China. This research provides support
for debris flow risk assessment and disaster prevention and
mitigation in mountainous regions. Wang et al. from the Institute of
Geology andGeophysics, ChineseAcademy of Sciences, determined
the occurrence date of a historical debris flow in Qingyang
Mountain, Qinghai Province, China as July 1982, using historical
tree-ring data. They obtained the boundaries of the historical
debris flow through remote sensing imagery before and after
the event. Using a depth-integrated continuum model, they
reconstructed the process of this debris flow. This study provides a
reference for dating historical debris flows and reconstructing their
movement processes.

Liu et al. from Beijing Forestry University combined
Landsat 5 and Sentinel-2 imagery to construct a time series
of deformation for the Beishan landslide in Lijie Town,
northeastern Qinghai-Tibet Plateau, Gansu. They analyzed
the relationship between landslide deformation and rainfall,
revealing a significant correlation between recent deformation and
precipitation levels. This work integrates Landsat 5 and Sentinel-
2 imagery to trace landslide deformation over nearly 40 years,
showcasing its profound value. It establishes a reliable technical
framework for integrating comprehensive optical and radar
deformation remote sensing data, including pixel offset tracking
and InSAR techniques, for landslide deformation monitoring.
Moreover, it provides scientific support for landslide monitoring
and disaster prevention and mitigation under the backdrop
of climate change.
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Assessing landslide susceptibility and hazard based on machine
learning is an important research direction, with numerous papers
published in recent years (Zhao et al., 2021; Shao et al., 2024).
Xia et al. from the Key Laboratory of Degraded and Unused
Land Consolidation Engineering, Ministry of Natural Resources,
employed four methods including Naive Bayes, J48 decision tree,
and multilayer perceptron models to assess landslide susceptibility
in Xiaojin County, Sichuan Province, China. They achieved a high
accuracy rate of around 90%.This study serves as a beneficial case for
applying machine learning models to assess landslide susceptibility.

Conclusions and prospects

Human understanding of natural laws is boundless, and the
study of natural disasters remains an eternal topic crucial to human
survival and development (Xu andXu, 2021).The research outcomes
of this Research Topic have furthered our profound understanding
of the mechanisms and patterns of earthquakes and geological
disasters. They have also advanced the development of technologies
for disaster warning, assessment, and emergency response. This
technological support is crucial for reducing the risks and losses
associated with seismic and geological hazards. It is important to
note that the theme of our Research Topic is “Prevention, Mitigation,
and Relief of Compound and Chained Natural Hazards”. We aimed
to collect more research related to comprehensive natural hazards
and disaster chains. However, the nine papers included in this
Research Topic specifically focus on earthquakes and geological
disasters. In reality, there are many types of natural disasters, such
as meteorological events, floods, droughts, wildfires, and tsunamis.
Against the backdrop of global warming, the risks associated
with meteorological disasters and their chained interactions with
floods and geological hazards are undoubtedly increasing.Therefore,
considering this aspect, we have not concluded this topic with
the completion of this Research Topic. Instead, we have opened
Volume II of this Research Topic, samely titled “Prevention,
Mitigation, andRelief of Compound andChainedNaturalHazards II.”
For more details, please visit https://www.frontiersin.org/research-
topics/64578. We welcome continued submissions from colleagues,
especially in directions beyond earthquakes and geological disasters,
such as meteorological events, floods, droughts, wildfires, tsunamis,
and their compound and chained hazards.
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Introduction: Landslide is one of the most widespread geohazards around the
world. Therefore, it is necessary and meaningful to map regional landslide
susceptibility for landslide mitigation. In this research, landslide susceptibility
maps were produced by four models, namely, certainty factors (CF), naive
Bayes (NB), J48 decision tree (J48), and multilayer perceptron (MLP) models.

Methods: In the first step, 328 landslides were identified via historical data,
interpretation of remote sensing images, and field investigation, and they were
divided into two subsets that were assigned different uses: 70% subset for training
and 30% subset for validating. Then, twelve conditioning factors were employed,
namely, altitude, slope angle, slope aspect, plan curvature, profile curvature, TWI,
NDVI, distance to rivers, distance to roads, land use, soil, and lithology. Later, the
importance of each conditioning factor was analyzed by average merit (AM) values,
and the relationship between landslide occurrence and various factors was evaluated
using the certainty factor (CF) approach. In the next step, the landslide susceptibility
maps were produced based on four models, and the effect of the four models were
quantitatively compared by receiver operating characteristic (ROC) curves, area under
curve (AUC) values, and non-parametric tests.

Results: The results demonstrated that all the four models can reasonably assess
landslide susceptibility. Of these fourmodels, the CFmodel has the best predictive
performance for the training (AUC=0.901) and validating data (AUC=0.892).

Discussion: Theproposed approach is an innovativemethod thatmay also help other
scientists to develop landslide susceptibility maps in other areas and that could be
used for geo-environmental problems besides natural hazard assessments.

KEYWORDS

landslide susceptibility, naive bayes classifier, J48 decision tree, multilayer
perceptron, GIS

1 Introduction

Landslide is one of the most common geohazards around mountainous regions
(Moayedi et al., 2019; Sharma and Mahajan, 2019; Xiong et al., 2019). Generally, the
disaster-causing capacity of landslide hazards is particularly significant, causing enormous
losses to houses, infrastructure, land resources, and human life (Corominas et al., 2014;
Pourghasemi and Rahmati, 2018). China stands as one of the nations with a relatively high
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frequency of geological hazards. In the year 2021, a total of
4,772 geological disasters occurred in China, resulting in the
unfortunate loss of 80 lives, with 11 individuals reported missing,
and inflicting direct economic losses of 3.2 billion dollars.
Landslides, as a perilous geological hazard, prevail as the primary
disaster type across China, predominantly afflicting the northwest
and southwest regions of the country. Hence, the study and
implementation of measures for geological hazard prevention and
mitigation hold tremendous significance. Furthermore, the matter of
geological hazard prediction demands urgent attention and
resolutions.

In view of the severe consequences, the tasks of landslide
control and prevention have attracted the attention of
government organizations and scholars (An et al., 2016; Pham
et al., 2016a; Wu et al., 2017). In this respect, landslide
susceptibility assessment (LSA) is the research focus, and the
results can guide landslide prevention engineering (Polykretis
et al., 2015). Essentially, LSA is the work that is performed to
find out whether landslide occurrence is intrinsically associated
with conditioning factors, which can be used to predict the future
spatial development of landslide hazards (Magliulo et al., 2008;
Jaafari et al., 2014).

Currently, statistical models and machine learning (ML) models
are the most popular approaches to build landslide susceptibility
models (Huang and Zhao, 2018; Pourghasemi et al., 2018;
Arabameri et al., 2019a). For the former, the probability and
frequency of landslide occurrence are analyzed by conventional
statistical approaches, such as the landslide susceptibility index
model (Jamal and Mandal, 2016), frequency ratio model (Aditian
et al., 2018), and weight of evidence model (Xu et al., 2012).
However, when using conventional statistical methods, we have
to first subjectively determine the statistical model, and it is hard to
measure the relative importance among various conditioning factors
(Elith et al., 2008). For the latter, a vast variety of landslide
susceptibility models have been constructed by widely using ML
approaches in recent years, and sequences of novel ML and
ensemble learning algorithms have been proposed, for instance,
random forest (Sun et al., 2021), alternating decision tree (Wu et al.,
2020), kernel logistic regression (Chen and Chen, 2021), random
subspace (Pham et al., 2018a), rotation forest, and decision tree
(Hong et al., 2018; Pham et al., 2018b). It is considered that machine
learning approaches are more suitable for large databases and can
reveal the non-linear and complex linkage between landslide
occurrence and each conditioning factor (Zare et al., 2013).
Moreover, to acquire results with higher accuracy and a model
with better generalization ability, numerous comparative studies of
machine learning algorithms have been conducted (Akgun, 2012;
Zhu et al., 2018; Juliev et al., 2019; Lei et al., 2020a; Li et al., 2021).

As known, landslides are a very complex natural phenomenon
that cause severe loss of human lives and properties worldwide. An
accurate assessment of the occurrence of these extreme events is
needed in order to understand their spatial correlations with the
landslides. An effective method is to map the areas that are
susceptible to landslide occurrence. In recent years, various
machine learning techniques have been applied for landslide
susceptibility mapping. However, we cannot conclude which
model is the best universally. Moreover, even a small increment
of the prediction accuracy may control the resulting landslide

susceptibility zones. Therefore, many more case studies must be
performed to reach a reasonable conclusion.

In this paper, we employed the naive Bayes, J48 decision tree,
and multilayer perceptron models to predict landslide occurrence in
Xiaojin County, Sichuan Province, China. The contents of this paper
are as follows: 1) The contribution of conditioning factors to three
used ML models are investigated; 2) the CF bivariate model is
integrated with ML methods for the spatial prediction of landslides;
3) CF illuminates a superior reliable model that is far ahead of the
state-of-the-art ML in landslide susceptibility assessment; 4) the
model performance is considered based on their discrimination
capacity and reliability. The primary difference here between this
study and the literature mentioned is that the approaches in this
paper are seldom used and compared in landslide susceptibility
assessment. Another point is that four models were first applied in

FIGURE 1
Study area.
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Xiaojin County, and statistical models and machine learning models
possess superior interpretability compared to deep learning models,
and they can be trained using smaller datasets, which aim to improve
the accuracy of the results in the study area. The performance of the
models was quantitatively evaluated and comprehensively
compared, and the proposed approach is an innovative method
that may also help other scientists to develop landslide susceptibility
maps in other areas and that could be used for geo-environmental
problems other than natural hazard assessments.

2 The study area

Xiaojin County is located in Sichuan Province, China (Figure 1).
The study area is between longitude 102°01′E and 102°59′E and
latitude 30°35′N and 31°43′N. The area is dominated by a
subtropical monsoon climate. However, the climate vertical
differentiation is extremely distinct due to the dramatic changes
of altitudes. Generally, the annual average temperature is 12.2°C, and
the average annual rainfall is 613.9 mm (http://www.xiaojin.gov.cn/
). Hydrologically, the Fubian River and Xiaojin River are the main
rivers in this area. The length of these two rivers are 83 km and
150 km, respectively (Xie et al., 2021).

Xiaojin County presents a distinctive topography, with higher
elevations in the northwest and lower ones in the southeast,
characterized by a modest mountainous terrain. Historical
landslides in Xiaojin County encompass both rockslides and soil
slides, with rockslides constituting the majority and soil slides being
relatively scarce. In terms of magnitude, the study area primarily
exhibits small to medium-sized landslides, with a lesser occurrence
of large-scale landslides. Due to its location within a high
mountainous and hilly terrain, situated along the Circum-Pacific
Mediterranean Fault Zone, Xiaojin County experiences frequent and
intense tectonic movements. It represents a typical high-risk zone
for geological hazards in southwestern China, particularly
noteworthy for its proximity of a mere 100 km to Wenchuan
City in Sichuan Province. On 12 May 2008, Wenchuan City was
struck by a severe earthquake measuring over a magnitude of 8,
which severely impacted Xiaojin County as well. This event triggered
numerous slope instability incidents. Compounded by the
concentrated population and the predominant construction of
buildings and public facilities in mountainous areas, the potential
landslide risks pose a significant threat to the social security of
Xiaojin County. Furthermore, up until now, there has been a dearth
of research on landslide susceptibility specific to Xiaojin County,
which serves as the rationale for selecting it as the study area.

3 Data preparation

Through collection of historical data, satellite image
interpretation, and field investigation, 328 landslides in total were
extracted from this area. The average dimension of a landslide is
about 6.9×103 m2, and the average volume is 4.3×104 m3,
respectively. Due to the relatively diminutive size of landslide
areas within the study area, the centroid method was employed
to generate landslide points. Additionally, an equivalent number of
non-landslide points was randomly generated within regions where

the slope angle is non-zero. For establishing a landslide susceptibility
model, these landslides and non-landslides were randomly divided
into two datasets, the training dataset (accounting for 70%) and
validating dataset (accounting for 30%) (Figure 1).

Afterwards, slope angle, slope aspect, altitude, plan curvature,
profile curvature, topographic wetness index (TWI), distance to
rivers, distance to roads, normalized difference vegetation index
(NDVI), land use, soil, and lithology were selected as conditioning
factors for landslide susceptibility mapping according to the existing
literature (Althuwaynee et al., 2012; Felicísimo et al., 2013; Conforti
et al., 2014; Ada and San, 2018), and the corresponding thematic
maps were acquired (Figure 2). In the process of producing thematic
maps, the DEM image, obtained from the website http://www.
gscloud.cn/, was adopted to extract regional values of the slope
angle, slope aspect, altitude, plan curvature, profile curvature, and
TWI. The buffer zones of rivers and roads can be generated by
regional water system and traffic maps. The NDVI was obtained by
Landsat 8 OLI images (http://www.gscloud.cn/). Land use, soil, and
lithology were extracted from land use, soil, and geological maps
with scales of 1:100000, 1:1000000, and 1:500000, respectively. All
the thematic maps were rasterized with a resolution of 20 m × 20 m.
The data source is shown in Table 1.

The slope angle is a necessary conditioning factor in this task
(Eiras et al., 2021). The slope stability and failure modes usually vary
with slope angle values (Dai et al., 2001). Here, the slope angle values
were reclassified into nine categories with an interval of 10°, <10°,
10°–20°, 20°–30°, 30°–40°, 40°–50°, 50°–60°, 60°–70°, 70°–80°, and >80°.

The slope aspect has a prominent influence on temperature and
humidity around slopes (Ercanoglu and Gokceoglu, 2002).
Therefore, the slope aspect is related to the slope stability. In this
paper, the slope aspects were divided into nine directions, namely,
flat, north, northeast, east, southeast, south, southwest, west, and
northwest.

It is clear that the degree of vegetation coverage, freezing,
thawing, and moisture changes dramatically with the variety of
altitude (Ding et al., 2017). With an interval of 500 m, nine groups
were generated, namely, <2000 m, 2000–2500 m, 2500–3000 m,
3000–3500 m, 3500–4000 m, 4000–4500 m, 4500–5000 m,
5000–5500 m, and >5500 m.

Plan curvature and profile curvature are two indexes that are
employed to measure slope shapes, which always affect the stress
distribution of slopes (Aghdam et al., 2016). Moreover, the curvature
values have impacts on surface runoff (Chen et al., 2017). In this
study, curvature values were derived from DEM using the ArcGIS
toolbox (ESRI, 2014). The plan curvature values were reclassified as
(−32.95)-(−1.70) (−1.70)-(-0.65) (−0.65)-0.14, 0.14-1.19, and1.19-
34.02, while the profile curvature values were (−44.22)-(-2.24)
(−2.24)-(-0.80), (−0.80)-0.28, 0.28-1.73, and 1.73-48.04.

The topographic wetness index (TWI) is employed to
quantitatively evaluate the control function of topography on
hydrological characteristics (Moore et al., 1991). In this way, five
categories of TWI values were formed by the natural break method:
0.14-1.55, 1.55-2.26, 2.26-3.20, 3.20-4.78, and 4.78-15.12.

Rivers can affect the hydrogeology characteristics of slopes and
usually corrode the toe of a slope, which may decrease the anti-slide
force (Nsengiyumva et al., 2018). By analyzing buffer zones, eight
buffer zones of rivers were produced, namely, <200 m, 200–400 m,
400–600 m, 600–800 m, and >800 m.
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In mountainous areas, it is common that numerous
landslide hazards are triggered by road construction (Vuillez
et al., 2018). Hence, the distance to roads was regarded as a

conditioning factor in this study and reclassified into five buffer
zones: <300 m, 300–600 m, 600–900 m, 900–1200 m,
and >1200 m.

FIGURE 2
Thematic maps. (A) slope angle; (B) slope aspect; (C) altitude; (D) plan curvature; (E) profile curvature; (F) TWI; (G) distance to rivers; (H) distance to
roads; (I) NDVI; (J) land use; (K) soil; (L) lithology.
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The normalized difference vegetation index (NDVI) is used to
reflect the degree of vegetation coverage on a slope surface (Han
et al., 2019). Thus, the NDVI values of the study area were arranged
into five classes (−1.00)-(−0.16) (−0.16)-(-0.01), (−0.01)-0.01, 0.01-
0.16, and 0.16-1.00.

It has been proved that landslide occurrence is indeed
connected with land-use type (Leventhal and Kotze, 2008). In
the study area, a total of six land-use types were identified,
namely, farmland, forestland, grassland, water, construction
land, and unused land.

Soil type and lithology, which affect the physical and
mechanical texture of soil and rock mass, determine slope
stability (Yalcin et al., 2011). Based on the soil map of the
study area, thirteen soil types were classified. The outcrops in
the study area formed in several geological ages, which include
the Sinian period, Ordovician period, Silurian period, Devonian
period, Carboniferous period, Permian period, Triassic period,
and Quaternary period. The main lithologies are marble,
quartzite, phyllite, limestone, sandstone, and soil.
Correspondingly, nine lithology groups were reclassified.

4 Modeling approach

4.1 Selection of landslide conditioning
factors

It is usually considered that the selection of conditioning
factors has significant effects on the certainty and outcome of
landslide predictive models (Lei et al., 2020a). These important
instructions point to the need to take the optimal combination of
conditioning factors into consideration as part of the criteria of
raising the accuracy of landslide susceptibility models. In this
case, we compared the relative importance of various
conditioning factors by a chi-square test based on the Weka
workbench (Frank et al., 2016).

4.2 Certainty factors

The certainty factors method, which was proposed by Buchanan
and Shortliffe in 1984 (Buchanan and Shortliffe, 1984), has been
extensively represented in tasks of LSA (Kanungo et al., 2011;
Devkota et al., 2013). In this process, each conditioning factors
can generate a corresponding data layer. Then, the weights of all the
pixels in different data layers can be figured out by Eq. 1:

CF �
HHa −HHs

HHa 1 −HHs( ), HHa ≥HHs

HHa −HHs

HHs 1 −HHa( ), HHs <HHa

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1)

where HHa is the conditional probability of landslide occurrence in a
class, and HHs is the prior probability of landslide events in the
whole study area (Devkota et al., 2013).

4.3 Naive bayes

The naive Bayes classifier is based on the Bayes theorem and
independence assumption, and it has been popular in various domains
in recent decades (Lee, 2018; Sun et al., 2018; Berrar et al., 2019; He et al.,
2019). In terms of the naive Bayes algorithm, the training data are used
to calculate the prior probability of various classifications. Then, the
classification results can be determined by the posteriori probability and
conditional probability density function. Assuming that X is the vector
of new observation data, and xi denotes the ith observation value, for a
certain class cj, the conditional probability p (X|cj) can then be figured
out through the following equation:

p X
∣∣∣∣cj( ) � ∏

i�1
p

xi

cj
( ) (2)

In the tasks of landslide susceptibility, assuming that yj (i =
landslide, non-landslide) represents the classification results, the

TABLE 1 Data source.

Conditioning factors Source Resolution/scale

Slope angle Extracting from DEM image 20 m × 20 m

Slope aspect Extracting from DEM image 20 m × 20 m

Altitude Extracting from DEM image 20 m × 20 m

Plan curvature Extracting from DEM image 20 m × 20 m

Profile curvature Extracting from DEM image 20 m × 20 m

Topographic wetness index (TWI) Extracting from DEM image 20 m × 20 m

Distance to rivers Generating from regional water system maps Vector

Distance to roads Generating from regional traffic maps Vector

Normalized difference vegetation index (NDVI) Generating from Landsat 8 OLI images Vector

Land use Extracting from landuse maps 1:100000

Soil Extracting from soil maps 1:1000000

Lithology Extracting from lithology maps 1:500000

Frontiers in Earth Science frontiersin.org05

Xia et al. 10.3389/feart.2023.1187384

12

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1187384


final prediction results can be identified through the following
equation:

yj � argmaxp yj( )∏
i�1

p
xi

yj
( ) (3)

4.4 J48 decision tree

The J48 decision tree (C4.5) is a type of decision tree algorithm,
and it presents an improvement on the ID3 decision tree (Hong
et al., 2018). In terms of the J48 decision tree, the information gain
ratio is introduced to select splitting attributions, and the
information gain ratio can be calculated by Eq. 4:

Information Gain Ratio � Information Gain

−∑m
i�1

ni
N□log

ni
N( ) (4)

where the information gain is calculated by entropy or the Gini
value, m is the number of sub-nodes, and N represents the data
quantity of a parent node when ni denotes that of the ith sub-node.

When constructing a decision tree, overfitting may occur under
the effects of noisy data (Sathyadevan et al., 2015). Therefore, tree
pruning techniques are employed to avoid overfitting occurrence
and simplify the construction of a decision tree. Generally, there are
two pruning approaches, namely, prepruning and postpruning. The
postpruning approaches can be further divided into reduced error
pruning, pessimistic error pruning, cost-complexity pruning, and
error-based pruning (Sathyadevan et al., 2015).

4.5 Multilayer perceptron

Multilayer perceptron (MLP) is a typical perceptron learning
algorithm. Compared with traditional neural networks, MLP
consists of one input layer, one output layer, and multiple
hidden layers. The training data are input into MLP through the
input layer, and the mapping between the input data and output data
is established by hidden layers. Because there is no restriction on the
hidden function types and number of neurons of the output layer,
MLP is more suitable for non-linear data multi-classification
problems (Manaswi and Manaswi, 2018). In the process of MLP
training, according to the back-propagation regulation, the weights
of various hidden layers are optimized by the following loss function:

E � 1
2
∑
j?Lk

t j( ) − y
j( )

k( )2

(5)

where E is the loss, Lk represents all the neurons of the output layer,
y(j) k means the output of the jth node of Lk, and t(j) is the
corresponding label of the input data.

4.6 Receiver operating characteristic (ROC)
curve

The receiver operating characteristic (ROC) curve has been
understood as the standard method for measuring classifier

performance (Amiri et al., 2019; Arabameri et al., 2019b; Lei
et al., 2020b). Taking the “1-specificity” as the transverse axis
and the “sensitivity” as the longitudinal axis, the ROC curve can
be obtained by connecting the coordinate points, which are drawn
under various classification threshold values (Chen W. et al., 2021;
Chen et al., 2021b). Based on the ROC curve, the optimal
classification threshold value can be easily found, and the model
performance is obviously reflected by the shape of curve.
Furthermore, to quantitatively assess model performance with the
ROC curve, a higher value of area under the ROC curve (AUC)
embodies a better classification performance (Chen et al., 2021c).

5 Results and analysis

This section reports the results from an interpretative
framework of both predictors’ effects and model performance in
terms of different perspectives.

5.1 Selection of landslide conditioning
factors

The average merit (AM) values of the twelve conditioning factors
were figured out and are shown in Figure 3. Among these factors,
altitude has the highest AM value (NB and J48 of 0.329; MLP of 0.322).
The second highest AMvalue (NB of 0.307; J48 andMLP of 0.305) is for
soil type, which is followed by distance to roads (NB, J48, MLP AM =
0.272, 0.275, 0.265) and distance to rivers (NB, J48, MLP AM = 0.233,
0.232, 0.231). For the NB model, the AM values are lithology = 0.098,
slope angle = 0.091, TWI = 0.087, profile curvature = 0.07, land use =
0.066, plan curvature = 0.061, NDVI = 0.044, and slope aspect = 0.043.
For the J48 model, the AM values are lithology = 0.095, TWI = 0.084,
slope angle = 0.083, land use = 0.064, plan curvature = 0.05, profile
curvature = 0.048, NDVI = 0.036, and slope aspect = 0.031. For theMLP
model, the AM values are lithology = 0.088, slope angle = 0.082, TWI =
0.081, profile curvature = 0.063, land use = 0.055, plan curvature =
0.045, slope aspect = 0.035, and NDVI = 0.032. Moreover, it is observed
that the NB model has the greatest contribution. Therefore, the NB
model should be considered as better than the other models.

Moreover, there may exist a multicollinearity problem among the
conditioning factors, and severemulticollinearity can have an impact on
the model by increasing the variance of regression coefficients and
rendering them unstable. To assess the potential multicollinearity
problem among the conditioning factors, we verified it by
calculating the variance inflation factor (VIF) and tolerance (TOL)
of the conditioning factors. From Table 2, it can be observed that the
VIF values of all the conditioning factors are less than 10, and the TOL
values are greater than 0.1, indicating the absence of multicollinearity
among the conditioning factors. Hence, all the conditioning factors
were retained in the subsequent modeling process.

5.2 Correlation analysis using CF model

In this study, the different response relationship between the
fitting models and each conditioning factor was analyzed by the CF
model (Figure 4). In terms of the slope angle, the highest CF value
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(0.717) belongs to the class of <10°, which indicates that most
landslides occur in regions with lower slope angles. For altitude,
the regions in which altitudes are less than 3500 m have promoting
effects on landslide occurrence, and the CF value is the highest
(0.961) when altitudes are 2000 m–2500 m. For plan curvature, there
are only two positive CF values of .117 and 0.187, which belong to
the classes of (−0.65)-0.14 and 0.14-1.19, respectively. For profile
curvature, the class of 0.28–1.73 has the highest CF value of 0.190,
followed by the class of (−0.80)-0.28 (0.125). It can be observed that
the CF values significantly rise with the increase of the TWI values,
and the CF value is the highest for the class of 4.78–15.12 (0.859).
For the distance to rivers, the highest CF value is the only positive

value, which is observed for <200 m. As obvious from the results of
distance to roads, landslide occurrence density decreases with the
lengthening of the distance to roads. Thus, there is no doubt that
rivers and road construction generally trigger landslide hazards. For
NDVI, the CF value is the highest (0.350) for the class of (−0.16)-
(−0.01), followed by the class of (−0.01)-0.01 (0.263). The results
show that vegetation on a slope surface can prevent landslide
occurrence. For the influence situation of land use, construction
land, farmland, and unused land have higher CF values of 0.984,
0.810, and 0.027, respectively, indicating that human activities play a
critical role in landslide distribution. In terms of soil type, the highest
CF value of 0.866 is found in group 8, followed by group 10 (0.861).
Moreover, for lithology, group C and group I have the positive CF
values of 0.232 and 0.416, respectively.

5.3 Application of models

After determining the most effective conditioning factors, based
on the CF analysis result of correlation, LSI analyses were performed
following the formula below (Eq. 5). The factors first had to be
reclassified to calculate the landslide distribution for each class
shown in pixel amount. The final LSM was determined by the
superposition of the results of the twelve factor maps using the
Raster Calculator Module. The output values were reclassified into
five categories, namely, very low, low, moderate, high, and very high,
according to geometrical interval method (Pham et al., 2016b)
(Figure 5A).

LSICF�AltitudeCF+Slope angleCF+Slope aspectCF+Plan curvatureCF
+Profile curvatureCF+TWICF+NDVICF+Distance to riversCF
+Distance to roadsCF+LanduseCF+SoilCF+LithologyCF

(6)

It is evident that a large drawback of bivariate models, such
as the CF mode, is that they only consider a single factor, that is,

FIGURE 3
Importance of conditioning factors.

TABLE 2 Verification result of potential multicollinearity problem among the
conditioning factors.

Conditioning factors VIF Tolerances (TOL)

Altitude 1.493 0.670

Soil 1.232 0.812

Distance to roads 1.261 0.793

Distance to rivers 1.474 0.678

Lithology 1.003 0.997

Slope angle 1.525 0.656

TWI 1.178 0.849

Profile curvature 1.319 0.758

Land use 1.233 0.811

Plan curvature 1.409 0.710

NDVI 1.175 0.851

Slope aspect 1.226 0.816
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sub-factors weights. A CF and ML model coupling pattern that can
augment the result of the ML models can thus be envisaged. We
denoted landslide (328) and non-landslide (328) pixels by value 1 or

value 0 in this study using 656 input variables. Input variables must
be split into two parts: 70% training and 30% validation. After the CF
model was successfully established, these data were pretreated with

FIGURE 4
Correlation between landslides and factors by CF.
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the CF value as the input of the NB model. The NB model was
implemented in the Weka software to output the LSI value of each
pixel in the full study area. The range of output values was from 0 to
1, which reflects the probability of landslide occurrence of this pixel
position. Along these lines, all the LSI values were converted to
ArcGIS, and the spatial mapping process was performed. Similarly
to the CF classification, the NB classification model was established,
in which each category area indicates the different intensity of the
landslide. Then, the validating data were input into the trained
model to test the accuracy of the trained network. The final LSMwas
presented by the machine learning NB model (Figure 5B).

In the present study, Weka software was employed to form
landslide susceptibility with the J48 model. When running the
J48 program, we chose the confidence factor as 0.25, which is the
threshold to determine whether there shall be pruning or not. The
minimum number of objects of each leave is 2, and the number of
folds is 3. The pruning scheme is a reduced error pruning approach.
Finally, the landslide susceptibility index (LSI) values were
calculated, and the corresponding landslide susceptibility map
(Figure 5C) was generated using ArcGIS software. Similarly, the
LSI values were arranged into five classes.

For the MLP algorithm, the BP learning approach and auto
hidden layer were adopted to model highly non-linear functions.
Every layer consists of a number of neurons, which independently
process information, and these neurons connect with the other
layers of neurons by the weight. Then, the output values were
imported into ArcGIS software to produce a landslide
susceptibility map (Figure 5D). Through reclassification based on
the geometrical interval method, five different susceptibility classes
were obtained.

As suggested from the four visual inspections of Figures 5A–D,
there is a similar pattern of susceptibility distribution, which exhibit
an obvious rule. All the very high categories are distributed along
national road G350 and provincial road S210 and the river and
valley. In addition, very high categories are also located in the
calcareous cinnamon soil-type area, which is the cause of highly
weathered soil damage slope stability. Different susceptibility maps
have the same total number of pixels, but the pixels for each category

of susceptibility are different. The comparison of area pixels for each
category of the four maps is shown in Figure 6, and the accuracy of
these maps shown in Figures 7, 8. Although the four models yield
high accuracy, the four LSMs highlight significant differences. CF
and NB depict reasonable patterns, whereas the very high area only
has a few pixels, and the categories of “low and very low” have the
majority of pixels. By contrast, J48 and MLP encounter an
unreasonable problem. As the very high category occupies more
pixels, some of them appear in flat areas.

5.4 Validation and comparison of models

In this section, the performance study of various models with
training data and validating data would make great progress by the
evaluation and comparison of the ROC curves, AUC values, and
non-parametric testing approaches.

In this study, the general performance of a bivariate model and
three MLmodels has been assessed by the ROC curves andAUCvalues.
For the training data (Table 3), the CF bivariate model has the best fit
quality, and the AUC value is as high as 0.901 with a correspondingly
perfect confidence interval of 0.872–0.931. In the three MLmodels, NB
is the highest reached (0.893), and the 95% confidence interval is from
0.863 to 0.923. The AUC value of the MLP model is 0.835 with a
confidence interval of 0.797–0.872. The performance of the J48model is
inferior to the other models, and the AUC value of the MLP model is
0.798 with a confidence interval of 0.754–0.843.

In the more important case of validating data (Table 4), the CF
model remains stable at first place in model performance in terms of
AUC with a value of 0.892, and NB model remains stable at first
place in the three ML models, thus presenting the best AUC with a
value of 0.887. The MLP and J48 models also exhibit good predictive
ability with AUC values of 0.831 and 0.804. In addition, the CF and
NB models possess the lowest standard errors and confidence
intervals, with standard error values of 0.023 and 0.024 and 95%
confidence intervals of 0.847–0.937 and 0.84 to 0.935, respectively.
The predictive performance of the J48 and MLP models seems poor
compared that of the other models.

FIGURE 5
Landslide susceptibility map: (A) CF model, (B) NB model, (C) J48 model, (D) MLP model.
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FIGURE 6
Percentages of landslide susceptibility classes.

FIGURE 7
ROC curves of the models using training dataset.

FIGURE 8
ROC curves of the models using validation dataset.
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Determining the effective identify among the models, whether
or not there exist significant differences, has been a critical step in
the LSA tasks. In the session, the chi-square was adopted, and the
results are listed in Table 5. It can be seen that the p values (0.481 and
0.367) exceed the significant level (0.05). Hence, it can be inferred
that the performance of CF is similar to NB statistically, and J48 is
similar to the MLP model statistically. Furthermore, in terms of the
quantitative difference of the models, it is clear seen from the
calculated chi-square values that there is no significant difference
between the CF and NB models and the MLP and J48 models as the
value does not exceed 3.841. The two sets of models have no
significant difference compared to other model sets, because both
of these values are below the threshold, and the other model sets only
have a low significance level because these values are slightly higher
than the threshold.

6 Discussion

Based on the field survey information, the CF, J48, MLP, and NB
models were implemented to produce landslide susceptibility maps
of the study area. The AUC values and a series of statistical indexes

were used to measure the accuracy of four maps. The results
obviously demonstrate that four models have excellent
performance in landslide susceptibility mapping, and a similar
outcome appears both for the training and validation subsets.
Among them, the CF and NB models have a superior effect,
while the performance of the other two models has no significant
difference. In terms of the present study, the initial data best accord
with the pre-assumptions of the CFmodels, and this model naturally
has a solid mathematical foundation. Thus, the landslide
susceptibility map generated by the CF and NB models exhibits
better accuracy and rationality. It seems preferable to select CF and
NB as the susceptibility model over the study area. It is striking that
the actual validation subset of J48 received better performance than
the training set, especially for decision trees. It is very rare that it
produces an overfit for within-sample models and loses much
predictive power when predicting an out-of-sample situation
(Schaffer, 1993), as is well known. This uncommon result may be
explained due to the randomness of the sampling. This relationship
shows that the original landslide data exhibit low internal variability,
regardless of the sampling scheme. In turn, this allows us to consider
the resulting susceptibility maps as a reliable tool to predict
landslides in Xiaojin County. In addition, the parameters of the
classifiers and the correlation among the conditioning factors
determine the classification results to some degree. It can be
believed that the comprehensive performance of the MLP and
J48 models may be further improved by parameter optimization
and conditioning factor selection. Therefore, due to the uncertainties
in landslide susceptibility modeling, there is more than one
approach to generate satisfying results, and the optimized
approach is hard to determine.

For the twelve conditioning factors mentioned above, the
importance of altitude is the highest, followed by soil type,
distance to roads, and distance to rivers. Generally, lower altitude
areas have a higher probability of landslide occurrence (Polykretis
et al., 2015; Hong et al., 2019). Landslide susceptibility delineation
depends on the selected conditioning factors and the weight of each

TABLE 3 Parameters of ROC curves using training dataset.

Models AUC Standard error 95% confidence interval P

CF 0.901 0.015 0.872 To 0.931 <0.0001

NB 0.893 0.015 0.863 To 0.923 <0.0001

J48 0.798 0.023 0.754 To 0.843 <0.0001

MLP 0.835 0.019 0.797 To 0.872 <0.0001

TABLE 4 Parameters of ROC curves using validation dataset.

Models AUC Standard error 95% confidence interval P

CF 0.892 0.023 0.847 To 0.937 <0.0001

NB 0.887 0.024 0.840 To 0.935 <0.0001

J48 0.804 0.034 0.737 To 0.870 <0.0001

MLP 0.831 0.030 0.773 To 0.890 <0.0001

TABLE 5 Pairwise comparison for the four models using the validation dataset
based on chi-square.

Pairwise comparison Chi-square p-Value Significance

CF vs. NB 0.496 0.481 No

CF vs. J48 11.670 0.000 Yes

CF vs. MLP 8.945 0.003 Yes

NB vs. J48 10.450 0.001 Yes

NB vs. MLP 7.625 0.006 Yes

J48 vs. MLP 0.816 0.367 No
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variable. If the modeling’s objective is to improve the process
performance measures rather than just surveillance and
prediction, the thorough understanding of the causes leading to
this result is of great value. Being able to show the relative
importance of the variables using different models may pique the
interest of the model utility. In the present analysis, the J48, NB,
MLP, and three ML models were used to calculate the relative
contribution of each variable to the three models themselves. A total
of 12 selected conditioning factors were tested (Figure 3), and
according to results, we can confirm that the top four
conditioning factors are the most significant in all the models.
This result is consistent with the visual inspection of the LSM
analyzed in Section 5.3. The LSM and the four most significant
factor maps obey a similar spatial pattern. Even if all four factor
maps have this feature, as can be intuitively seen, the contribution
percentage to models (in descending order) was: altitude, soil,
distance to roads, and distance to river. For the remaining eight
non-significant conditioning factors, the contribution of slope
aspect occupies the lowest percentages for the NB and
J48 models, while for the MLP model, NDVI reveals the lowest
percentages; moreover, the profile curvature factor importance value
is lower than that of land use and plan curvature for the J48 model
but not for NB and MLP. All in all, different factors have different
importance values due to different evaluation models (Tien Bui
et al., 2016). Finally, we provide a hypothesis that there may be factor
overestimation and underestimation presence.

In this study area, most landslides spread in areas in which
altitudes are less than 3000 m. The main reason is that human
activities are always more severe in lower altitude areas, which is
one of the most critical landslide-triggering factors in Xiaojin County.
Normally, areas covered by loose deposits are prone to cause
landslides (Cui et al., 2019; Huang et al., 2019; Zhang et al., 2019),
which has been proved by this study as well. Moreover, the results
showed that the density of landslide points basically decreases as the
distance to rivers and roads increases. This is because the incidence of
river erosion and road construction disturbance is usually finite (Dang
et al., 2019). In the case of the slope angle, areas with low slope angles
have a higher possibility of landslide occurrence, which does not
conform to conventional cognition. The basic reason is that areas with
gentle terrain are generally suitable for land development activities
such as farming, irrigation, and construction. The land use–landslide
susceptibility relationship also indicates that farmland and
construction land have positive effects on landslide occurrence.
Therefore, it can be inferred that landslide occurrence in Xiaojin
County has firm connections with human activities. Meanwhile, the
slope aspect is regarded as a useless conditioning factor, indicating
that the influence of this factor can be neglected to raise the computing
efficiency of classifiers. For the other conditioning factors, the
correlation between them and landslide occurrence is relatively
reasonable according to the relevant literature (Hong et al., 2017a;
Hong et al., 2017b). Considering the model construction and overall
performance, the conclusion obtained in this paper is that the CF
bivariate model proved best because it performed excellently and with
stable classification ability in predicting landslides in Xiaojin County.
This is a unique conclusion of the predictive studies: traditional
statistical computing models are far ahead of intelligent ML
models. Moreover, CF could greatly improve time efficiency as it
eliminates the lengthy modeling process of ML. Therefore, future

studies should not only pursue state-of-the-art algorithms. The final
recommendation is centered on combining data analysis with GIS
applications as framework templates so that this could become more
widely used.

7 Conclusion

In this study, the CF, NB, J48, and MLP models were applied to
evaluate landslide susceptibility in Xiaojin County, China. The
information of regional geology and landslide points was
obtained by a field survey and aerial photographs interpretation.
To establish the set of conditioning factors regarding landslide
occurrence, a total of twelve initial conditioning factors were
determined. Furthermore, the importance of various conditioning
factors was assessed using AM values, and slope aspect was removed
from the landslide susceptibility modeling process. Moreover, the
interaction between landslide occurrence and each conditioning
factor was analyzed by the CF method. As a result, it was found
that the negative synergy that forms high landslide susceptibility
consists of 0°–10° slopes, 2000–2500 m altitude, 0.14–1.19 interval in
plan curvature, 0.28–1.73 interval in profile curvature, 4.78 <
TWI <15.12, distance <200 m from rivers, distance <300 m from
roads, −0.16 <NDVI < −0.01, construction land in land use, group 8 of
soil types, and group I of lithology types. Additionally, the
comprehensive performance of the four models in landslide
susceptibility mapping was compared by statistic indexes, ROC
curves, and AUC values. It can be concluded that the CF bivariate
model has the best predictive capacity with anAUC value of 0.892 AUC,
and the NB model also has a better predictive capacity with an AUC
value of 0.887, followed by theMLPmodel (AUC=0.831) and J48model
(AUC=0.804). Based on the results of the Wilcoxon signed-rank test
(two-tailed), it is clear that the performance of NBmodel is significantly
similar to the CF model and likewise for the J48 and MLP models.
Finally, four landslide susceptibility maps were reclassified into five
categories, and all the produced landslide susceptibilitymapswere found
to have profound applicability and practical significance on landslide
prevention in Xiaojin County. The obtained landslide susceptibility map
can inform local authorities in their endeavors to undertake disaster
prevention and mitigation measures, effectively reducing the scope of
landslide investigations. In the event of a landslide occurrence, it enables
the judicious selection of appropriate refuge sites.
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Earthquake early warning (EEW) technology, designed to alert the public of
earthquake risks after initial P-wave detection but before the onset of strong
tremors, has developed rapidly. Methodologies from various fields are combined
in EEW systems to estimate earthquake locations, magnitudes, and expected
intensities based on the initial P-wave data. These systems operate automatically
because prompt responses are required. However, as no common evaluation
framework for EEW system verification exists, potentially divergent evaluations
from reviewers or countries could ensue. Moreover, evaluating EEW systems is
more complicated when the target area does not experience frequent
earthquakes. We aimed to establish a guidance review process for low-
seismicity areas to ensure reliable and stable integrated EEW system operation.
We incorporated management aspects through actual system operator
surveillance and designed an EEW assessment process based on feedback
from our surveys. Using this approach, we created a comprehensive and well-
informed evaluation process that considers the diverse perspectives of experts
involved in EEWs. Our proposed assessment method allows for a uniform and
consistent evaluation process, regardless of changes in the methods or
technologies used by EEW systems. The method aims to guide EEW system
assessments in low-seismicity areas.

KEYWORDS

warning assessment, analytic hierarchy process, earthquake early warning, lowseismicity
area, public services, seismic hazard

1 Introduction

For rapid mitigation against seismic hazards, automated alerting technology based on
seismic networks EEWs is used, with automated event estimation employed to facilitate the
issuing of timeous public alerts (Allen and Melgar, 2019; Velazquez et al., 2020). Such
systems operate at national or local government levels, as their fundamental technology
requires 24 h monitoring (Mayer et al., 2008). Several countries have implemented EEW
systems as public services, including Japan (Hoshiba and Ozaki, 2014), Republic of Korea
(Lee et al., 2022), Taiwan (Hsiao et al., 2009), and the United States (Kohler et al., 2018).
Among these countries, Republic of Korea experiences the lowest occurrence frequency of
medium-to large-scale earthquakes.

After the introduction of EEW in Republic of Korea in 2015 (KMA, 2018), public
awareness remained low until two earthquakes occurred (local magnitude [ML] = 5.8 on
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12 September 2016, and ML = 5.4 on 15 November 2017). The low
level of public awareness could be ascribed to the occurrence and
recording of only ten earthquakes exceeding ML > 5.0 since
instrumental observations started in 1980. However, the two
events of 2016–2017 were a timely reminder of the importance
of EEW, and EEW technology has since developed rapidly in the
country. Initially, a cell broadcasting service (CBS) was intended for
governmental use, but the Korea Meteorological Administration
(KMA, 2017) has extracted and applied relevant parts of the service
for earthquake, tsunami, and volcano warnings (KMA, 2018). The
network-based EEW system was optimized further to suit domestic
observation environments, estimation of magnitudes (Sheen et al.,
2018), and detection of initial P-waves (Cho et al., 2022).

KMA EEW progress relies on warning time reduction, as it is
crucial to warn people as quickly as possible in the case of an
earthquake (Bostrom et al., 2022; Ahn et al., 2023). Warning time is
a critical factor in assessing preparedness for an earthquake and a
vital consideration from a risk management perspective (Allen et al.,
2009). The evaluation of EEWs is often based on lead time, i.e., the
time between an alert is received and the arrival of tremors or
shaking (Cremen et al., 2022). A primary method to reduce EEW
lead time is decreasing the number of stations (nS) used for detecting
earthquakes in the initial analysis version of the event. However, the
likelihood of prediction errors increases when fewer stations are
involved in earthquake determination and analysis.

Although Republic of Korea has not experienced social
disruption induced by false earthquake alarms for KMA, such
incidents could cause substantial social issues. On 5 January
2018, a false alarm occurred when an EEW mistakenly identified
two small earthquakes as one large earthquake in Japan, causing
temporary public panic (BBC News, 2018). The head of the Japan
Meteorological Administration was forced to apologize publicly for
the error. Owing to a computer error, a warning of a large-scale
earthquake off the coast of California (United States) was issued on
22 June 2017, 92 years after it had actually occurred. This warning
caused widespread public confusion (BBC News, 2017). Another
notable example is a false alert issued in Mexico on 28 July 2014, by
Sky Alert, a popular smartphone application, prompting response
from numerous people. This incident triggered a social issue in
Mexico, invoking Aesop’s fable “The Boy Who Cried Wolf” (Reddy,
2020). Although SkyAlert is not a public service, the consequences of
the false alarm emphasized the importance of proper EEW
management.

While the fact that Republic of Korea experiences fewer
earthquakes and alerts may be considered a positive aspect, it has
also led to many Koreans being unaware of EEWs. According to a
2020 survey by Ahn (2021), only 84 (approximately 44%) of
192 general public respondents (i.e., non-seismologists and non-
civil engineers) were aware of EEWs. As a result of the limited
number of alert cases and the lack of public awareness, obtaining
public evaluations of these services remains a challenge.

Owing to these limitations, EEWs are generally evaluated by
experts rather than the public. Past studies have either assessed the
point source or alert accuracy. Point source assessments verify EEW
algorithms for magnitude and hypocenter accuracy (e.g., Cua et al.,
2009; Chen et al., 2015; Massin et al., 2021). Alert assessments are
performed to prevent errors during operations or simulations (e.g.,
Chen et al., 2019; Chung et al., 2019; Zuccolo et al., 2021). However,

management aspects require a comprehensive review of the overall
EEW. Cochran et al. (2018) proposed a framework for a Testing and
Certification Platform (TCP) that assesses the performance of the
overall system alerts issued by the decision module and those
generated by individual algorithms. The TCP assessment consists
of both point-source alert elements (i.e., magnitude, epicentral
location, origin time, and alert latency) and ground-motion
prediction accuracy. TCP is evaluated on the basis of alerts, and
the more earthquakes available for evaluation, the better.
Unfortunately, in countries with low earthquake frequency and
relatively few strong motions, the Cochran et al. (2018) platform
is limited.

Expert assessments vary based on the knowledge and interests
of the individual conducting the evaluation (Binger et al., 2012;
May et al., 2016). Additionally, the evaluator must make a
minimum number of decisions for the assessment, which could
be challenging. Experts tend to be cautious during decision-
making because their decisions ultimately affect the public
services provided to citizens (Meijer and Grimmelikhuijsen,
2020). For KMA EEW, the public is informed of earthquake
risks for events with ML > 3.5. However, since 2010, there have
been only five events of ML ≥ 5.0. As a result, evaluations often
include earthquakes with slight magnitudes which was events of
ML ≥ 2.5 (Cho et al., 2022). These issues raise concerns regarding
the appropriate magnitude target for assessment, review area, and
acceptable accuracy standard. Answers from the experts could
differ, i.e., it is crucial to recognize that even experts could hold
different perspectives on related issues.

The fundamental goal of an EEW is achieving promptness and
accuracy (Allen et al., 2009; Kamigaichi et al., 2009; Satriano et al.,
2011; Finazzi, 2020) However, balancing these two aspects is
challenging, and performance scores could vary depending on the
criteria and the reviewer. Therefore, as regards the decision-making
process in assessing EEW, it is essential to integrate expert opinion
with the goal of providing an effective public service, as different
people could have different values and priorities, even when working
toward a common mission. Therefore, we aimed to establish an
EEW reviewmethod that incorporates management aspects through
actual system operator surveillance. We designed an EEW
assessment process based on the feedback received from our
surveys, such as criteria for analysis, pairwise comparison, and so
on. Our approach was to create a comprehensive and well-informed
evaluation process that considers the diverse perspectives of the
experts involved in EEWs.

2 Criteria and methods

2.1 Alert criteria and EEW service

Conservative alert standards are in place in the KMA EEW
service. The Korean Peninsula is an area of low seismicity; therefore,
even a small tremor could unnerve citizens. Furthermore,
considering that the country hosts semiconductor factories, high-
speed rails, and nuclear facilities, alert services are conducted with
sensitivity preparation. In the event of an earthquake of ML ≥ 3.5,
seismic information is disseminated within 5–10 s after the initial
detection.
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The KMA EEW uses at least four stations for optimal
performance (Cho et al., 2022), aiming to make decisions on
alerts about 5 s after the first observation when an earthquake
occurs on the Korean Peninsula. In EEW, the theoretical
minimum number of stations (nS) for hypocenter determination
is three (Yamada et al., 2021), but relying on the assessment accuracy
can be challenging. Low accuracy is particularly associated with
earthquakes occurring outside the observation network. Based on
these settings, when an earthquake with ML > 3.5 (or > 4.0, if
occurring over the sea) occurs, a warning message is automatically
propagated to the public. If an earthquake with an ML > 5.0 occur,
warnings with a stronger alert sound are disseminated. These alert
criteria were designed as a policy decision in Republic of Korea.
Therefore, the EEW alert decisions might differ in other countries.

Additionally, the KMA operates a network-based EEW that
incorporates the algorithms ElarmS-3.0 (Chung et al., 2019), RTLoc
(Satriano et al., 2008), and Maxwell–Hertz electrostatic potential
theory (Sheen, 2016). These algorithms have been optimized for the
Korean Peninsula by KMA and are used simultaneously for
monitoring earthquakes. The KMA EEW is based on the mutual
interaction and automatic collaborative decision making of the
algorithms, and produces an alert when two or more algorithms
detect an earthquake. In principle, if two logically distinct algorithms
working concurrently sound an alert, the likelihood of an actual
earthquake occurrence is higher.

By combining three algorithms, we achieve analysis accuracy as
well as 24 h service stability. This approach has been instrumental in
overcoming occasional system failures experienced by the KMA,
including bugs, delays, and network issues. However, owing to the
complexity of the algorithm, which involves the integration of
multiple systems, it becomes sensitive to minor enhancements.

2.2 Disaster communications to the public

The KMA EEW alerts, determined by a combination of
technology and policy, are issued to citizens in the event of an
earthquake through the CBS. Using CBS technology, a warning is
sent to numerous users in the vicinity of base stations (Doi, 2011;
Wu et al., 2022). Alarm is transmitted to mobile phones in
approximately 3 s (Minson et al., 2018), and the public receives
messages shortly after earthquake detection. Alerts are forcibly sent
to individual mobile phones in the form of emergency text messages.
Figure 1 shows an example of earthquake warning information
delivered to the public. The message provides information on the

epicenter, event time, and magnitude of the earthquake, along with
guidelines to “drop, cover, and hold on” (DCHO) (Porter, 2016).

Following alert dissemination, evaluations from citizens
regarding the system’s effectiveness could be gathered.
Speediness, as perceived by the citizens, is the time difference
between receiving the alert and feeling the earthquake vibrations.
It is challenging for citizens to quantitatively assess promptness, as
the warning and the shaking occur within a very short time frame.
However, as regards source information (i.e., location, magnitude,
and event time), people judge the warning accuracy by comparing it
to subsequent earthquake information released through news
broadcasts. Collecting feedback is vital for understanding the
needs of the public with respect to the DCHO advice, which is a
crucial aspect of emergency preparedness. However, intermediate
and large earthquakes do not occur frequently in the Korean
Peninsula, and assessing KMA EEW might be difficult for the
general public. Consequently, only people who manage and
develop the system can evaluate the KMA EEW.

2.3 Assessment survey and design

Operator or manager assessments may vary depending on the
expertise of the reviewer (Cooke and Goossens, 2004). Here,
evaluations conducted from the perspective of a small group of
developers could lead to serious issues in the future. To address this
concern, we gathered opinions from individuals with relevant
experience and field knowledge. We surveyed 18 KMA employees
who operated EEW from July 14–16, 2021. The survey research was
designed and conducted in the following order 1) assessment
parameter selection, 2) relational questionnaire development
based on assessment parameters and pairwise analysis
questionnaires for the factors, 3) operator interviews, 4)
questionnaire criteria determination, analytic hierarchy process
(AHP) analysis, and weight function designation, and 5) EEW
operational aspect assessment.

2.3.1 Aspect-based assessment parameter
selection

To select appropriate assessment parameters for EEW, two
aspects were considered, namely, operations and management,
which are distinct but interrelated. Operation refers to the day-
to-day activities and tasks of a system (Whipple and Frankel, 2000).
In EEWs, operations focus on the reliability of alert production
(Medina-Cetina and Nadim, 2008). In contrast, management
involves EEW planning and control to achieve high performance
(Ittner and Lacker, 1997), considering alert reliability and seismic
information accuracy (Ruhl et al., 2019; Esposito et al., 2022).
Managers are responsible for overseeing objective reviews and
implementing improvements, ensuring that a balance is
maintained between safety, effectiveness, and sustainability (Too
and Weaver, 2014). Figure 2 shows the EEW algorithm analysis
process with both aspects. The assessment steps are shown in the
EEW flow, considering algorithm analysis based on simulations.

As regards the operational aspects, system behavior was
categorized into three steps. Step 1 is the evaluation preparation
stage, comprising input of the earthquake scenario and setting the
minimum targeted nS. Step 2 is the detection phase of the analysis

FIGURE 1
Warningmessages delivered to end-users in Republic of Korea to
“drop, cover, and hold on” (DCHO).
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process [i.e., short-time-average over long-time-average trigger
(Allen, 1982)] or the filter picker (Lomax et al., 2012). If the nS
condition is satisfied, it is verified to determine whether it becomes
an associated event (Cho et al., 2022). If the alarm fails to generate an
event, verification is required whether this event was alarm worthy.
Verification allows the determination of the alarm being
operationally a false alarm or normal operation. Step 3 comprises
predicting the source and assessing the alarm based on associated
event information (Weyrich et al., 2021). Alarms can be produced by
EEWs based on the predicted source information, which is termed
decision making of warning (DMW).

As regards the management aspect, it is essential to verify the
success of the alert and the source information that influenced the
decision to issue an early warning. By considering all the parameters
that impacted the final alert, it could be ensured that the algorithm
and system were free of issues. Figure 2 presents representative error
sources that could be easily identified from an administrator
viewpoint. However, various errors could occur in operations,
and this procedure is only applicable to natural earthquakes.

In the review of EEW assessment, we ignored the associate event
time, which depends on the nS. Additionally, waveform data used in

KMA seismic stations are applied only to locations that pass strict
criteria for latency, background noise, and trigger rate (KMA, 2017;
Ahn et al., 2021). Consequently, data lagging or failed equipment
rarely occur for KMA EEW in real-time operations. However, from
a management perspective, a station detection rate review within a
certain time frame could be performed separately, because of trigger
checking at the observatory.

We selected four parameters for this study based on aspects. 1)
The first parameter is “prevent missed alerts (PM)” in the system,
i.e., confirming whether a targeted earthquake alert was missed.
Alerts in normal operations are issued when the national
observation network detects a warning event using n stations.
2) The second parameter is “prevent false alerts (PF)” in the
system, which determines whether a targeted earthquake alert is
incorrect. This involves checking alarms that are normal
operations, non-earthquakes, or source errors when EEW alerts
occur. 3) The third parameter is the accuracy of magnitude (AM),
and 4) is the accuracy of location (AL). These four parameters were
reviewed from operational and administrative perspectives and
represent all the information that the public sees when an alert is
triggered.

FIGURE 2
Flowchart of assessment parameter calculation process. nS, number of stations; nT, number of trigger sensors.
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2.3.2 Assessment criteria preparation
To help respondents better understand the assessment

parameters, we provided training before conducting the research.
During the training, we introduced various existing analytical
examples, explained the unique features of the criteria, and
received approval for ethical review surveys involving human
participants. Further, we discussed the EEW technical and
theoretical limitations. These are 1) Inability to fully understand
the underground geological structure, implying that seismic
information is subject to uncertainty at source (Iervolino et al.,
2009; Tidlund et al., 2022; Murray et al., 2023; Ni et al., 2023). 2)
Detection accuracy varies depending on the observation network
because of wave propagation attenuation (Jackson and Anderson,
1970; Vipin and Sitharam, 2011; Goda et al., 2023). 3) Accuracy
limitations of source detection in coastal earthquakes (Angove et al.,
2019; Lim et al., 2020; Takabatake and Kojima, 2023), and the
difficulty of installing seismometers in the seabed (Podolskiy et al.,
2021). The system operators understood and agreed with these EEW
limitations. In addition, we emphasized understanding of the
characteristics of earthquakes in the Korean Peninsula, as well as
the psychological conditions of the public. Given the infrequent
occurrence of seismic events in the Korean Peninsula, even weak
shaking could elicit feelings of surprise and unease among the
general population (Kwon et al., 2020; Yeon et al., 2020).
Therefore, unlike other countries, the KMA issues warning
criteria from even slight magnitudes (ML 3.5 and over).

Considering KMA policy and technology characteristics, we
designed a questionnaire for the EEW assessment. In the criteria
establishment stage of the survey, we created five response items to
establish the assessment criteria. We classified the criteria between
inland areas and outside (i.e., ocean, outside the country) of the
seismic observation network. Both groups 1) within the seismic
observation network (= inside seismic network, ISN) and 2) outside
the seismic observation network (= outside seismic network, OSN)
were considered. Categorization by observation network was
included in all five questions.

The survey questions were:
Q.1: “What is the minimum magnitude of an earthquake to be

analyzed for performance assessment?” We needed to establish a
baseline progression for our evaluation, considering the margin of
error in our prediction scale. However, detecting initial waveforms
from slight magnitude earthquakes is complicated owing to their
small amplitudes and poor observation environments. The EEW
performance results could, therefore, vary depending on the criteria
and magnitude, with greater sensitivity for weaker events than
larger ones.

Q.2: “Compared with ML ≥ 5.0, how important is an earthquake
of ML < 5.0?” This item was included in the questionnaire, as the
level of ensuing damage could differ according to the magnitude of
the event. While seismic intensity is important from a damage
perspective, the basic information transmitted is magnitude and
location. Therefore, we investigated the relativity of magnitude. The
initial standard for early warnings of earthquakes in Republic of
Korea was ML > 5.

Q.3: “How important is the comparison of earthquake locations,
both inside and outside the observation network?” This question was
included because it is associated with the observation network
conditions, and the current criteria classify inland and outside

events (i.e., teleseismic or occurring outside the country). These
criteria represent the KMA strategy for considering the impact of
earthquake detection relative to the observation network. Inland
earthquakes can be detected rapidly and analyzed as they occur
between observation networks, but oceanic analysis could likely be
inaccurate in relation to the source owing to biased and sparse
observation networks.

Q.4: “What is the maximum allowable error range when
evaluating the accuracy of the magnitude?”

Q.5: “What is the maximum allowable error range when
evaluating the accuracy of the epicenter?” The fourth and fifth
questions are related to accuracy, as accuracy could affect missed
and false alarms. Additionally, if the difference between the
predicted information and precise information analyzed
afterward is significant, an operating system check could be
required.

In the criteria establishment stage of our survey, we analyzed the
results based on the five questionnaires and collected the majority
opinion regarding operational recommendations. Table 1 shows a
summary of the established criteria from the questionnaire. The
criteria in Q.1 allowed us to define the analysis object range. We
established the range for earthquakes to be considered by ISN and
OSN, i.e., 0.5 smaller than the magnitude of the alert criteria.

We set the weight for event sources based on Q.2 and Q.3. From
an operational side, all earthquakes are valued equally because the
evaluation pertains only to whether an alert should be issued. For
instance, in a point-source assessment by Cochran et al. (2018), all
earthquakes were also valued equally. However, the damage caused
by an earthquake depends on the location and magnitude of the
event. Therefore, we proposed weighing of the source effects. The
score for each earthquake event was:

Event Value EV( ) � δM × δL (1)
where EV is event value, which is the judgment of earthquakes from
a management perspective. δM is the weight for magnitude, and δL
is the weight for the source location (i.e., ISN, OSN) of the
earthquake. For example, if an earthquake of ML 5.5 occurred
inland, the event value would be 1. Conversely, if an earthquake
with magnitude ML 3.2 occurred inland near the coast, the event
value would be 0.18.

The criteria for an EEW false alarm was selected based on answers
to Q.4 and Q.5. The criteria set for a false alarm were assessed based on
the estimated source information produced by EEWs. In practice, the
results of both source location and magnitude of EEWs depend on the
nS (Lim et al., 2020). The more stations are involved in collecting
information, the better would be the accuracy of epicenter analysis.
From amanagement perspective, the criteria for a false alarm could be a
crucial factor for planning system improvements.

2.3.3 Assessment parameter scoring
Assessments of EEWsmust consider both the appropriateness of

the alerts and the accuracy of earthquake source estimates. The
source estimates in EEWs are updated rapidly as they increase
because of a higher number of nS. However, we do not
recommend reviewing all the steps that are updated over time,
because the public responds to the first warning message (Lassa,
2008; Vihalemm et al., 2012); therefore, the information at the
moment the alarm occurs is the only concern. Alert time depends on
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nS, which is the most important factor in EEW alarm decision
making. Our proposed assessment is designed to evaluate
performance according to the target nS.

The first step was to score alert appropriateness (AA). We
designed the scoring to include only events where the alert was a
normal operation under the target nS conditions. If an earthquake
required an alert but resulted in a false or missed alarm, we scored it
as zero. This allowed us to determine if the system has effective
controls for false or non-alarms. Consequently, our assessment
could result in a low score if the system failed to control alarms
for multiple cases. The formula for this is:

Prevent false alerts PF( ) � EV × AA (2)
PreventMiss alerts PM( ) � EV × AA (3)

where EV is the event value by Eq. 1, AA is scoring of alert
appropriateness (only 1 or 0). Therefore, a normal alert is 1, and
false and missed alarms are 0.

The second step is to score the accuracy of an estimated source.
By default, we designed the accuracy calculation to be based only on
positive cases (normal alerts). The basic framework is similar to that
of the Cochran et al. (2018) model. The expression is:

Accurate of magnitude AM( ) � EV × 1 − MNo −MEEW

ΔM( ) × AA

(4)
Accurate of location AL( ) � EV × 1 − LNo − LEEW

ΔL( ) × AA (5)

whereMNO and LNO are the notified magnitude and epicenter of the
earthquake according to the KMA. The notified earthquake
information is calculated through manual analysis by seismic
analysts at the KMA. The MEEW and LEEW are the calculated
source information (i.e., magnitude and epicenter) according to
the target nS in the EEW. The maximum allowable error values, ΔM
and ΔL, are based on the answers to Q.4 and Q.5. The accuracy value
is close to 1 for a small error and close to 0 for a large error.

2.3.4 Pairwise analysis and assessment parameter
weight

We assumed that different experts would place different values on
the four parameters; therefore, we performed a relative comparison of
the four parameters to obtain their values. For the weights of the four
assessment parameters, we used the Analytic Hierarchy Process (AHP)

that involves pairwise comparison, weight calculation, and consistency
verification, as described by Saaty et al. (1990). The AHP process could
be used as a rational decision-making tool for risk assessment to stratify,
simplify, and systematize multiple criteria (Wen, 2015; Thaker et al.,
2018; Providakis et al., 2022). This survey aimed to identify the most
important parameters for operators by employing relative comparability.

During the pairwise comparison process, the study assessed the
relative importance of the four assessment parameters using a nine-
point scale, as shown in Figure 3. Following this step, the results were
subjected to consistency verification to ensure their reliability. The
consistency index (CI) used to assess the reliability of the responses
was calculated through the maximum Eigenvalue operation of the
comparisonmatrix. A lower CI value indicated higher reliability. For
this study, an average weight of 11 questionnaires with a consistency
index of 0.2 or less was used for the analysis. A summary of the
results of these weights is presented in Table 2.

In pairwise analysis, the most important factor from the
perspective of managers and operators is controlling false alarms.
This factor is crucial because the issuing of a warning and the level of
the warning depend on the accuracy of magnitude and location.
Although the algorithm itself does not reveal this, operators consider
the activation of a warning without an actual earthquake a
significant problem. Therefore, false alarm control was allocated
the highest weight, followed by non-alarm control, location
accuracy, and magnitude accuracy.

To determine the assessment of the overall score (OS), we used
the weights and assessment points of the four parameters. The final
score was obtained by multiplying the score of each element by its
weight, as follows:

Overall Score OS( ) � α · PM + β · PF + γ · AM + κ · AL (6)
where PM, PF, AM, and AL refer to parameters such as prevent missed
alerts, prevent false alerts, accuracy of magnitude, and accuracy of
location, with α, β, γ, and κ as their respective weights (Table 2).

3 Results

3.1 Assessment preparation

We verified the proposed assessment of results in EEWs using
past earthquake data. We analyzed 58 domestic earthquakes that

TABLE 1 Performance assessment criteria based on questionnaire responses.

Assessment criteria Criteria

ISN OSN

(Q.1) Minimum magnitude of assessment 3.0 3.5

(Q.2) Weight of magnitude (δM) 1.0 (5.0 ≤ M) 1.0 (5.0 ≤ M)

0.7 (3.5 ≤ M < 5.0) 0.7 (4.0 ≤ M < 5.0)

0.3 (2.0 ≤ M <3.5) 0.3 (2.0 ≤ M <3.5)

(Q.3) Weight of epicenter (δL) 1.0 0.6

(Q.4) Maximum allowable magnitude error (ΔM) 0.4 0.6

(Q.5) Maximum allowable epicenter error (ΔL) 10 km 30 km
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occurred between January 2015 and August 2021, with ML ≥
3.0 and ≥ 3.5 for the ISN and OSN, respectively. The details of
the events are shown in Figure 4 and summarized in Table 3. In this
analysis, the operational decisions for checking the appropriateness
of the alerts are shown in Table 4 using the criteria of Cho et al.
(2022). However, differing from the Cho et al. (2022) study, the
current assessment imposed stricter criteria for matching source
information based on the survey result.

We assessed the performance of the initial P-wave trigger
criteria in the ElarmS-3 algorithm, which was proposed by
Chung et al. (2019) and include minPa, Range-Post Trigger (RP),

NEtoZ, and Zero-Crossing (ZC). MinPa is the criterion for the initial
P-wave, representing the minimum amplitude of acceleration
during 4 s. Noise signals (i.e., boxcars, spikes) and block S-waves
are removed using RP and NEtoZ, respectively. The validity of the
signal is determined by ZC by counting the number of samples based
on zero. Ultimately, we designed five simulation matrices based on
the study by Cho et al. (2022). The configuration of each module is
summarized in Table 5.

We assessed the effectiveness of the EEWs by simulating past
earthquake events. Although past earthquake simulations cannot
completely replicate real-time data delays, simulation analyses based

FIGURE 3
Questionnaire example for pairwise assessment parameter comparison. EEW, earthquake early warning.

TABLE 2 Weighting of four assessment parameters based on questionnaire answers received from Korean Metrological Administration (KMA).

Section PM (α) PF (β) AM (γ) AL (κ) Consistency index

SR-1 0.073 0.475 0.125 0.327 0.159

SR-2 0.264 0.527 0.123 0.087 0.05

SR-3 0.237 0.189 0.361 0.212 0.68

SR-4 0.533 0.272 0.13 0.065 0.26

SR-5 0.125 0.625 0.125 0.125 0.00

SR-6 0.351 0.351 0.109 0.189 0.00

SR-7 0.28 0.553 0.083 0.083 0.03

SR-8 0.076 0.484 0.304 0.136 0.11

SR-9 0.523 0.272 0.089 0.117 0.14

SR-10 0.056 0.546 0.159 0.239 0.09

SR-11 0.092 0.495 0.206 0.206 0.05

SR-12 0.248 0.62 0.066 0.066 0.12

SR-13 0.202 0.558 0.087 0.154 0.07

Weight 0.208 0.501 0.134 0.157

SR, survey respondents.
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on recorded data could produce reliable results similar to those of
real-time operations (Lim et al., 2020). The simulation method used
in this study does not allow for the delay of telecommunication time,
and time-related errors were not surveyed, which is a limitation of
the study. We assumed that the processing of observation data was
conducted without delay.

Figure 5 shows an instance of simulation results for an
earthquake. Here, we observed that the analysis results differed
each time the simulation was executed, despite using identical
simulation environments. The recording values of several
observatories were transmitted simultaneously to the algorithm,
and the buffer order changed owing to differences in micro-small
system time. These issues were also found in a couple of pairs of a
real-time system. However, as they do not significantly affect the
overall analysis, we decided to tolerate the problem and considered it
in this study. We conducted 20 repetitive simulations for all events
to consider any unspecified deviations that could arise during
simulation reproduction.

3.2 Performance assessment case

We conducted a performance evaluation of the actual EEW
algorithm using the OS. The accuracy of the network-based EEWs
increased along with an increase in the nS (Ruhl et al., 2019; Cho
et al., 2022), as shown in Figure 5. Accordingly, the OS should
receive higher scores as the nS increases. To verify this finding, we
examined the evaluation results for condition 1, as shown in

Figure 6. The figure shows that as the nS increased, the OS also
increased, and the deviations in the 20 simulation cases declined.

We conducted performance assessment of the actual EEW
algorithm by applying the assessment process developed for OS.
This was intended to review the suitability of the assessment process
and evaluate the algorithmic condition algorithm performance. The
simulation analysis results for five algorithmic conditions and
58 earthquakes were obtained for this performance assessment.
In this study, the five algorithmic conditions were termed A1–A5.

As four is the minimum nS for the KMA EEW, we compared the
OS under five conditions with the evaluation results shown in
Figure 7. As the proposed OS could calculate a score based on a
single earthquake, the overall results are presented in a box and
whisker plot to show the mean and median values. The results in
Figure 7 indicate that A1–2 without the RP condition was more
stable than A3–5.

We had to determine the reason for the addition of the RP
condition resulting in relatively low scores; therefore, we determined
the number of points each parameter earned. Figure 8 shows the
average scores obtained in the parameter domain. Compared with
A3–5, A1–2 exhibited a slight increase in the AM and a significant
increase in the PF. We expected that using the RP condition would
be effective for controlling false alarms; however, the results were not
satisfactory.

In the case of A1–2 without the RP condition, we found that the
analysis of A2 was more stable than that of A1. The criterion for
minPa in A2 is the optimization proposed by Cho et al. (2022).
Ultimately, the optimized amplitude criterion could secure EEW
stability. In addition, the optimization criterion proposed in the
study by Cho et al. (2022) was A5. However, in the current study,
A2 was found to ensure EEW stability. This finding indicates that
using minPa alone was more effective than using both conditions.

4 Limitation

To address earthquake hazards and establish strategies in
various countries, EEWs are currently subjected to various
research initiatives (e.g., Minson et al., 2018; Santos-Reyes, 2019;
McBride et al., 2020; Ahn, 2021; Bostrom et al., 2022; Dallo et al.,
2022; Sumy et al., 2022; Sutton et al., 2022). Similar strategies for
earthquake responses are evolving to suit the characteristics of each
country. Accordingly, the KMA needed to develop network-based
EEW assessment strategies for Republic of Korea, a low-
seismicity area.

The KMA evaluation method proposed in this study could
potentially be adopted by other countries to assess stability
during minor earthquakes. However, its applicability might vary
depending on the disparities in the network-based EEW algorithms
employed by each country and the perspectives of the network
managers.

The EEWs are not only network based but also include other
types, such as performance-based EEW (Convertito et al., 2008),
OnSite EEW, and hybrid methods (Iervolino et al., 2006). The
performance-based EEWs have focused on Intensity Measures
(IM) and damage estimation for specific structures (Iervolino
et al., 2009; Iervolino, 2011). The OnSite EEW issues an alert
based on IM in a small area. The IM-based EEW could be tied

FIGURE 4
Distribution of events based on performance assessment. ISN,
inside seismic network; OSN, outside seismic network.

Frontiers in Earth Science frontiersin.org08

Ahn et al. 10.3389/feart.2023.1268064

29

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1268064


TABLE 3 Assessment target event list.

YYMMDD (UTC) ML Location YYMMDD (UTC) ML Location

‘150108 11:15 3.5 OSN `161212 08:53 3.3 ISN

‘150803 01:11 3.7 OSN `161214 08:20 3.3 ISN

‘151221 19:31 3.9 ISN `170105 20:31 3.3 ISN

‘160106 11:39 3.0 ISN `170331 04:46 3.3 ISN

‘160210 20:57 3.1 ISN `170415 02:31 3.1 ISN

‘160602 19:53 3.0 ISN `170505 14:16 3.0 ISN

‘160705 11:33 5.0 OSN `171115 05:29 5.4 ISN

‘160912 10:44 5.1 ISN `171115 05:32 3.6 ISN

‘160912 10:48 3.1 ISN `171115 06:09 3.5 ISN

‘160912 11:10 3.1 ISN `171115 07:49 4.3 ISN

‘160912 11:32 5.8 ISN `171116 00:02 3.6 ISN

‘160912 11:34 3.6 ISN `171119 14:45 3.5 ISN

‘160912 11:36 3.4 ISN `171119 21:05 3.6 ISN

‘160912 11:38 3.0 ISN `171225 07:19 3.5 ISN

‘160912 11:39 3.0 ISN `180210 20:03 4.6 ISN

‘160912 11:40 3.0 ISN `190108 18:10 3.7 OSN

‘160912 14:18 3.0 ISN `190210 03:53 4.1 OSN

‘160912 14:52 3.1 ISN `190419 02:16 4.3 OSN

‘160912 15:37 3.1 ISN `190421 20:45 3.8 OSN

‘160912 23:24 3.2 ISN `190627 06:19 3.9 OSN

‘160913 05:31 3.0 ISN `190721 02:04 3.9 ISN

‘160913 15:48 3.0 ISN `190921 06:11 3.5 OSN

‘160919 11:33 4.5 ISN `191027 06:37 3.4 ISN

‘160921 02:53 3.5 ISN `191229 15:32 3.5 ISN

‘160928 07:34 3.1 ISN `200129 15:52 3.2 ISN

‘161002 11:53 3.0 ISN `200503 13:07 3.1 ISN

‘161010 13:59 3.3 ISN `200511 10:45 3.8 OSN

‘161105 21:26 3.5 OSN `210419 05:20 3.7 OSN

‘161113 12:52 3.5 ISN `210821 00:40 4.0 OSN

TABLE 4 Performance assessment criteria comparison.

Section Cho et al. (2022) Survey results

ISN OSN

Normal operation Δ L ≤ 100 Δ L ≤ 10 Δ L ≤ 30

Δ M ≤ 0.4 Δ M ≤ 0.6

False alert Δ L > 100 Δ L > 10 Δ L > 30

Δ M > 0.4 Δ M > 0.6

Missed alert Non-associated event (= missing earthquake)

TABLE 5 Assessment configurations of five conditions in early earthquake
warning (EEW) algorithms.

Algorithmic condition minPa RangePostTrig (RP)

log (Pa) Rv Ra

A 1 −2.5 OFF OFF

A 2 −2.7 OFF OFF

A 3 Off 0.000013 0.00074

A 4 −2.5 0.000013 0.00074

A 5 −2.7 0.000013 0.00074
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to a strategic alerting strategy to consider damage. We believe that
developing a damage-based strategic evaluation technique holds
practical significance (Iervolino et al., 2011; Papadopoulos et al.,
2023). The KMA is also engaged in the development and
experimentation of on-site EEW systems based on IM (Ahn
et al., 2023). However, these methods differ from network-
based EEWs.

The current study concentrated on alerts disseminated in the
public domain. Given the widespread use of smartphones, CBS stands
out as the most efficient means of conveying alerts to individuals.
However, to guarantee the reliability of alerts in the public sphere, this
study defined successful, false, and missed alarms from an
administrator standpoint. However, we note that this viewpoint
could contrast with the that of the public receiving the service.

5 Conclusion

We developed an assessment for EEWs based on management
aspects. While promptness is an integral factor in EEW assessment,
we considered that reducing warning time based on nS could result
in less accurate information. Therefore, the proposed performance
assessment could comprehensively review EEW services from
multiple aspects.

Surveys involving experts were conducted to establish standards
for assessment criteria consistent with KMA EEW operational
management. The proposed weights sufficiently addressed the
preferences of operators with EEW technical system knowledge
and the managers of the systems. These experts selected operational
impact factors according to their operational principles, with most
operators expressing a desire to minimize EEW false alerts.

The comprehensive review was scored by assigning weights to
each element based on the AHP analysis. Accordingly, a quantitative
assessmentmethodwas developed that could replace the conventional
method, which only considers warnings. The established assessment
equation reflected performance improvement based on accuracy.

FIGURE 5
Differences between simulation results performed with the same
system environment parameters of a magnitude 3.4 earthquake on
27 October 2019, in the Korean Peninsula.

FIGURE 6
Box and whisker plot for overall score (OS) of algorithmic
condition 1 for earthquake early warnings (EEW).

FIGURE 7
Box and whisker plot for overall score (OS) of algorithmic
condition at number of stations, (nS) = 4.

FIGURE 8
Mean score of four parameters for algorithmic condition at
number of stations (nS) = 4. PM, prevent missed alerts; PF, prevent
false alerts; AM, accuracy of magnitude; AL, accuracy of location.
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Performance assessments can be conducted with changes in
algorithms or parameters.

Our method could be appropriate for regions that are new to
EEW in low-seismicity areas. However, our study is limited in that it
only surveyed operators who were familiar with EEW technology.
They responded with answers characterized by 1) imagining end-
user satisfaction, 2) considering only technical aspects, and 3)
summarizing all perspectives. Therefore, we note that the criteria
could change depending on the survey responses, as individuals have
various perspectives, backgrounds, and types of thinking.

The proposed EEW system assessment offers a quantitative
approach that takes into account operational aspects. This
method would be also expected the quantitative values of factors
during actual operational periods, such as delays and anomalies
arising from issues at the observation stations. Given the range of
potential scenarios, it is imperative that this method undergoes
further refinements for future operations.
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Landslides are a natural disaster that exists widely in the world and poses a great
threat to human life and property, so it is of great importance to identify and locate
landslides. Traditional manual interpretation can effectively identify landslides, but
its efficiency is very low for large interpreted areas. In this sense, a landslide
recognitionmethod based on the Dual Graph Convolutional Network (DGCNet) is
proposed to identify the landslide in remote sensing images quickly and
accurately. The remote sensing image (regional remote sensing image) of the
northern mountainous area of Tuergen Township, Xinyuan County, Xinjiang
Province, was obtained by GeoEye-1 (spatial resolution: 0.5 m). Then, the
DGCNet is used to train the labeled images, which finally shows good
accuracy of landslide recognition. To show the difference with the traditional
convolutional network model, this paper adopts a convolution neural network
algorithm named GoogLeNet for image recognition to carry out a comparative
analysis, the remote sensing satellite images (single terrain image) of Xinyuan
County, Xinjiang Province is used as the data set, and the prediction accuracy is
81.25%. Compared with the GoogLeNet model, the DGCNet model has a larger
identification range, which provides a new method for landslide recognition of
large-scale regional remote sensing images, but the performance of DGCNet is
highly dependent on the quality and characteristics of the input image. If the input
data quality is poor or the image structure is unclear, the model’s performance
may decline.
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geological disaster, landslide identification, GoogLeNet model, Dual Graph
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1 Introduction

In recent years, the identification of geological disasters using
remote sensing images has become a prominent research area within

the realm of natural disasters. Landslide geological disasters are
widespread across the globe and pose a severe threat to human life
and property. In 2021, a total of 367 severe natural disasters occurred
worldwide, including 11 significant landslides. These landslides

TABLE 1 List ofmachine learning techniques practiced for landslide susceptibility analysis (Breiman, 1996;Wan, 2013; Alimohammadlou et al., 2014; Bien Bui et al.,
2016; Tien Bui et al., 2016; Wang et al., 2016; Kavzoglu et al., 2019; Du et al., 2020; Mohan et al., 2020; Chen et al., 2023).

Methods Category Purpose Advantage Disadvantage

Random Forest Tree-based Feature selection, regression, classification Limited samples can be fully applied Overfitting on some noisy problems

Advantage of versatility and accuracy

Highly adaptable

Rotation Forest - Generation of accurate and diverse
classifiers

Training is faster Sensitive to noise data

Functional Tree - To develop a decision tree for separating
two classes from the training set

Advantage of versatility and accuracy Overfitting on some noisy problems

Logistic Model
tree

- - Advantage of versatility and accuracy Overfitting on some noisy problems

Decision Tree - Description of structural pattern in data
without having relation with input variable

to objective variable

Low complexity Overmatching issues may arise

Insensitive to missing intermediate values

Can handle uncorrelated feature data

Bagging - Classification and regression Has a very high accuracy rate On certain sample sets that are relatively
noisy, the model tends to fall into overfitting

Can handle very high dimensional data
without feature selection

SVM Kernel-based Find optimal hyperplane Low generalization error rate Sensitive to parameter tuning and choice of
kernel function

Low computational overhead Raw classifiers unmodified are suitable for
dealing with two-class problems

Results are easy to interpret

Kernel Logistic
Regressor

Kernel-based Find discriminant function for separating
discriminating classes

Can be applied to continuous and categorical
independent variables

Sensitive to multicollinearity of independent
variables in the model Can be applied to
continuous and categorical independent

variables

Self-
organizing map

Neural
network

Dimensionality reduction The final clustering results produced have a
relatively high level of visualization and

interpretability

Without a defined objective function, it is not
easy to compare different clustering results

Fuzzy Clustering Fuzzy-based Arrange objects with similarity in a group Will calculate the affiliation of each sample
to all classes, has a sample classification

results reliability of the calculation method

Higher computational volume

Sample categorization is more accurate

Deep Learning - By combining low-level features to form
more abstract high-level representations of
attribute categories or features, one can

discover distributed feature representations
of the data

Highly adaptable Time-consuming training, model validation
is complex and troublesome

Strong learning ability and wide coverage Poor portability and high hardware cost

Artificial Neural
Network

- Simulating biological neural networks High accuracy; High learning ability Need a large number of parameters

Cannot observe the learning process, the
results are difficult to interpret

Long learning time

Logistic
Regression

- To develop a regression formula for
classification borders based on existing data

Computationally inexpensive Easy to underfit

Easy to understand and implement Classification accuracy may not be high

Not very complex
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impacted 12 countries or regions, predominantly in Asia and South
America, resulting in a tragic loss of 224 lives, affecting the
livelihoods of 56,600 people, and causing direct economic
damages totaling $250 million (Beijing Normal University, 2021).
Therefore, timely and accurate identification of landslide locations
and the implementation of corresponding prevention and control
measures are of paramount importance. As artificial intelligence
continues to advance, the integration of artificial intelligence with
remote sensing imagery for the identification of geological disasters
is gradually evolving. In recent years, numerous studies have been
conducted on landslides using deep learning algorithms (Hu et al.,
2019; Piralilou et al., 2019; Ye et al., 2019; Prakash et al., 2020; Yu
et al., 2020; Zhu et al., 2020). For instance, Cheng et al. (2013)
introduced a new scenario classification method for automatic
landslide detection based on remote sensing images. Danneels
et al. (2007) presented a landslide recognition method utilizing
the maximum likelihood classification (MLC) approach for
multispectral remote sensing images. Zhan et al. (2022) devised a
method for extracting landslide trails using the Fire Extinguishing
Model. Shao et al. (2021); Shao et al. (2022) proposed the Novel
Multiscale Decision Fusion approach for unsupervised change
detection in high-resolution images, as well as an unsupervised
change detection method using Fuzzy Topology-Based Majority
Voting. Fu et al. (2022) introduced the Novel Higher-Order Clique
Conditional Random Field for unsupervised change detection in
remote sensing images. Zhang et al. (2001) employed a support
vector machine (SVM) for hyperspectral data classification.
Nikoobakht et al. (2022) conducted a landslide susceptibility
assessment using convolutional neural networks, and Azarafza
et al. (2021) presented a deep learning-based approach for
landslide susceptibility mapping. Each of these AI algorithms
applied to landslide identification possesses distinct properties, as
summarized in Table 1.

A general convolutional neural network operates on an
Euclidean structure so that the data from the convolutional
operation shows a very neat matrix. However, most of the data
are irregular, such data usually do not follow obvious patterns or
rules and are characterized by diversity, complexity, and
uncertainty. The data interact with each other to form the shape
of the graph in the data structure. The Dual Graph Convolutional
Network (DGCNet) is characterized by its ability to operate on
graph-structured data, treating nodes and their connections as
fundamental elements. DGCNet employs dual graph convolution
layers, allowing it to capture both local and global structural
information efficiently. It can integrate diverse data sources,
adapt to graph data, and excel in tasks involving spatial
relationships and complex networks, making it particularly
suitable for applications such as social network analysis,
geospatial data, and recommendation systems. DGCNet offers a
powerful framework for addressing problems with graph-based
data. Zhang et al. (2019) used the model for semantic
segmentation and achieved good results.

In this study, we employed two different network models to
identify landslide geological disasters in remote sensing images from
Xinyuan County. Firstly, the regional remote sensing images of
Tuergen town (a mountainous area in Xinyuan County) are
annotated, which was trained and predicted by the DGCNet
model. To show the difference between the DGCNet model and

the traditional convolutional network model, one of the traditional
convolutional network models named GoogLeNet is used to identify
the landslide geological disaster of remote sensing image (single
terrain image) in Xinyuan County. Compared with the GoogLeNet
model, the DGCNet model has a wider recognition range. The
identification of landslides requires the consideration of various data
sources such as geographical information, topography, vegetation,
and more. DGCNet allows the integration of these diverse data
sources into a unified graph structure, making it more suitable for
this type of task. It can effectively amalgamate multi-source
information, account for spatial relationships, adapt to graph
data, and offer novel, advanced approaches for landslide
recognition. This will contribute to improving the accuracy and
timeliness of landslide identification, thereby safeguarding human
lives and property. The DGCNet model is introduced into the field
of landslide recognition, which provides a new method for landslide
recognition of large-scale regional remote sensing images.

2 Geological background and data
selection

Xinjiang province is located in the northwestern part of China,
with a vast territory of rolling mountains, wide topographic height
difference, strong neotectonic movement, and a complex and
changeable climate and natural environment. The underground
cavities formed by underground projects (underground mining
and air defense work) have led to ground collapse geological
disasters to some extent. Therefore, the geological disasters in
this region are characterized by many types, high frequency, wide
affected areas, and serious hazards. Due to the frequency and
severity of landslides, it was decided to use Xinjiang province as
the study area. The location of Xinjiang Province and the study area
of the DGCNet model are shown in Figure 1.

Geological disasters in Xinjiang Province are of significant
concern, as they have consistently posed severe threats to the
safety of towns, critical engineering facilities, and the lives and
properties of residents. A statistical analysis conducted during the
investigation of geological hazards in Xinjiang Province revealed
that out of the 90 counties (cities) examined, 81 of them have
experienced geological hazards. A total of 4791 geological disasters
have occurred in Xinjiang province, resulting in 541 deaths, and
$65 million of direct economic losses. Among the geological
disasters that occurred in this area, according to the classification
and grading standards for geological hazards issued by the China
Association of Geological Hazard Prevention and Control
Engineering (T/CAGHP 018-2016) (China Association of
Geological Hazard Prevention and Control Engineering, 2016),
there are 10 super large disasters, 9 large disasters, 79 medium
disasters, and 4693 small disasters (Xinjiang Geological
Environment Monitoring Institute, 2014).

Xinyuan County is situated at the eastern end of the Yili River
Valley in the northern region of Xinjiang Province. This area falls
within the North Temperate Continental Semi-Arid climate zone,
characterized by mild winters and cool summers, owing to the
influence of moist air currents moving from west to east. The
average annual temperature stands at 8.5°C, with the coldest
month (January) averaging −14.4°C, and the hottest month (July)
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registering an average of 27.95°C. Extreme temperature fluctuations
have been observed, ranging from a minimum of −27.7°C to a
maximum of 39.8°C. Annual precipitation ranges between 270 and
880 mm, while water evaporation levels vary from 1300 to 2000 mm.
Rainwater infiltrates through cracks at the rear edge of slopes,
causing erosion at the front edge, ultimately leading to landslide
occurrences. Different types of landslides occur under the influence
of various rock mass structures, which can be classified into the
following six types.

(1) When the upper part of the slope is the slope deposit and the
lower part is the bedrock structure type, the main groundwater
type is mainly pore water, and the deformation characteristics
are the overall surface sliding. The landslide type is shallow
sliding landslides.

(2) When the upper part of the slope is aeolian deposit loess and the
lower part is bedrock structure type, the main groundwater type
is fissure water and the deformation characteristic is the overall
surface sliding collapse. The landslide type is collapse landslide.

(3) When the upper part of the slope body is aeolian deposit loess,
the middle part is the terrace, and the lower part is bedrock
structure type, the main groundwater type is fissure water, and
the formation of cracks at the back edge of the slope. The
landslide type is a fluid landslide.

(4) When the upper part of the slope body is the terrace, and the
lower part is the bedrock structure type, the main groundwater
type is fissure water and the deformation characteristic is
collapse. The landslide type is collapse landslide.

(5) When the slope is a deep gully structure of loess, the main
groundwater type is mainly pore water, and the deformation
characteristic is slope creep, resulting in lateral diffusion or flow
landslide.

(6) In the case of high and steep fracture rock mass structures, the
main groundwater type is fissure water, and the deformation
characteristics are mainly rock fracture expansion. The
landslide type is collapse landslide.

To solve the identification problem of geological disasters in
Xinyuan County, the DGCNet model is used to identify landslides,

because it is suitable for the identification in a large area. Based on
the remote sensing image data of Tuergen Township in Xinyuan
County, three remote sensing images in the northern mountainous
area of Tuergen Township were selected for labeling and training,
and another one for testing and identification. The labeling was done
with Labelme software, which is a graphical interface image labeling
software. The first step is to import the image into the software,
select the landslide area to label as a landslide, and then save and
export the file. The remote sensing images of Tuergen Township
used are GeoEye-1 image data (spatial resolution: 0.5 m) from
Google Earth, and the location area is shown in Figure 1. The
training set is shown in Figure 2.

On the other hand, the GoogLeNet model is selected to
identify and classify landslide terrain images. A total of
102 landslides and 152 other topographic images from satellite
images were selected based on known landslides in several areas
throughout Xinyuan County. The images used are GeoEye-1
image data (spatial resolution: 0.5 m), Figure 3 and Figure 4
show some landslides and other topographic images in the
sample set respectively. The sample is divided into two parts:
the training set and the test set. 80% of the images of landslide
terrain and other terrain are selected as the training set, and the
other 20% are selected as the test set for analysis.

The process of data and model application is shown in Figure 5.

3 Model introduction

3.1 ResNet network model

The ResNet50 is used as the basic network for training. It was
proposed by four Chinese scholars, including Kaiming of Microsoft
Research Institute (He et al., 2016). By using residual units, a 50-
layer deep neural network was successfully trained with an error rate
of 3.57%. At the same time, the number of parameters is lower than
the Visual Geometry Group Network (VGGNet), and the effect is
very prominent. The structure of the ResNet 50 model can accelerate
the training of the ultra-deep neural network, and the accuracy of
the model is also greatly improved. Assuming that a shallow neural

FIGURE 1
The study area of the DGCNet model (Tuergen Township, Xinyuan County, Xinjiang province).
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network has reached the saturated accuracy, then add several
congruent mapping layers of y = x, at least the error will not
increase, that is, a deeper network should not lead to an increase
in the error on the training set. Assuming that the input of a neural
network is x and the expected output is H (x) if we directly transfer
the input x to the output as the initial result, then the goal we need to
learn is f (x) = H (x) - X. The ResNet is equivalent to changing the

learning goal. Since it is no longer learning a complete output H (x),
the difference between output and input H (x) - x, is the residual.

The residual block is implemented using a shortcut connection,
where the input and output of the block overlap with the shortcut.
This straightforward addition does not introduce additional
parameters or computational overhead to the network.
Simultaneously, it significantly enhances training speed and

FIGURE 2
Schematic diagram of training set: (a1, b1, c1) remote sensing images, (a2, b2, c2) landslide labeling, (a3, b3, c3) landslide areas.

FIGURE 3
The terrain images of landslides in the sample set.

FIGURE 4
The other terrain images of the sample set.
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improves the model’s training effectiveness. This simple structure
can effectively address the degradation problem that arises when
deepening the layers of the model. In traditional convolutional or
fully connected layers, issues like information loss can occur. ResNet
partially addresses this problem by directly bypassing input
information to the output, thus preserving the integrity of the
information. Consequently, the entire network only needs to
learn the differences between input and output, simplifying the
learning objectives and reducing complexity.

3.2 DGCNet model framework

3.2.1 Principle
The DGCNet models the global context of the input feature by

modeling two orthogonal graphs in a single framework. The first
component models spatial relationships between pixels in the image,
whilst these cond model interdependencies along the channel
dimensions of the network’s feature map. This is done efficiently
by projecting the feature into a new, lower-dimensional space where
all pairwise interactions can be modeled, before reprojecting into the
original space (Zhang et al., 2019).

It consists of two branches, each consisting of a graph
convolutional network (GCN) to model contextual information
in the spatial and channel dimensions in a convolutional feature
map. The model has the following main components, the specific
model structure explanation refers to the Reference (Zhang et al.,
2019).

3.2.1.1 Input graph data
The input to DGCNet is a graph data representation, consisting

of nodes and edges. Each node represents an element of data, and
edges indicate relationships between nodes. This forms the
foundational data structure for DGCNet.

3.2.1.2 Graph convolutional layers
DGCNet employs graph convolutional layers to process the

input graph data. These layers perform convolution operations to
capture relationships between nodes and facilitate feature
propagation.

3.2.1.3 Dual graph convolution layers
A distinguishing feature of DGCNet is the presence of dual

graph convolution layers, typically comprising two parallel graph
convolution operations. These layers simultaneously capture local
and global structural information.

3.2.1.4 Feature propagation
Within each convolutional layer, features propagate from one

node to its neighboring nodes, facilitating the capture of inter-node
relationships and information dissemination. This is crucial for
feature extraction.

3.2.1.5 Pooling layers
Pooling operations are often applied after each convolutional

layer to reduce the graph’s size and extract the most salient features.
This helps in reducing computational complexity.

3.2.1.6 Fully connected layers
Following the convolutional layers, one or more fully

connected layers can be included to map the extracted
features to the desired output space, such as classification or
regression.

3.2.1.7 Activation functions
Between layers, activation functions are commonly used to

introduce non-linearity and enhance the model’s expressive
power. Common activation functions include ReLU, Sigmoid,
and Tanh.

These components collectively form the basic structure of a
DGCNet model, enabling it to effectively handle semi-supervised
learning tasks on graph-structured data.

3.2.2 Model structure
The model used in this paper consists of two branches:

1) The GCN of coordinate space models the spatial relationships of
pixels, enabling the network to produce continuous predictions
and consider all objects in the graph.

2) The feature space GCN captures the correlation among more
abstract features. The features of the two parts of the inference

FIGURE 5
Data and model application process.

Frontiers in Earth Science frontiersin.org06

Ma et al. 10.3389/feart.2023.1248340

40

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1248340


are mapped to the original coordinate space and added to the
original features.

The backbone of the model is a ResNet series. The ResNet
series is connected to the DGCNHead. DGCNHead consists of
coordinate branches and channel branches. The input features
are first learned in the coordinate branch, the original input
features are mapped into new dimensions and convolution
learning is carried out. Then, the feature map is combined
with some features of the channel to output the final feature
result.

As is shown in Figure 6.
The overall process is as follows:

1) Training stage: The supervision loss function of training is the
cross-entropy loss function.

2) In the training process, the results of the last round will be
verified in each training, and the relevant loss value will be
printed.

3) The trained model is used to test the accuracy of the test set.

PASCAL-VOC represents the sample dataset.
As is shown in Figure 7.

3.3 GoogLeNet model

GoogLeNet is a Convolutional Neural Network (CNN)
architecture introduced by Christian Szegedy and his team at
Google, which secured the championship in the Imagenet
competition in 2014. The GoogLeNet model consists of 22 layers
in total, featuring 9 inception structures. Despite its depth of
22 layers and 5 million parameters, the number of parameters is
significantly lower than that of both the AlexNet and VGG models.
In fact, GoogLeNet has only 1/12 of the parameters of AlexNet and
1/36 of those in VGG. Therefore, when facing limitations in memory
or CPU and GPU resources, GoogLeNet emerges as the preferable
choice.

The standout characteristic of GoogLeNet lies in its utilization of
the inceptionmodule. This module is designed to create a network with
a robust local topology. It achieves this by performing multiple
convolution and pooling operations on input images and then
combining all the output results into a deep feature map. As various
convolution and pooling operations, such as 1 × 1, 3 × 3, or 5 × 5,
capture different information from the input images, processing these
operations in parallel and merging the results yields a superior image
representation. For a detailed explanation of the specific model
structure, please refer to Reference (Szegedy et al., 2015).

FIGURE 6
Schematic diagram of the model structure.
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The model has the following characteristics.

(1) It can integrate feature information from different scales and
retain more input information. Before this, most other
commonly used convolutional neural networks improved the
performance of the network by stacking more and more
convolutional layers.

(2) A 1 × 1 convolution kernel is used for reduction and mapping
processing. Compared with AlexNet and VGGNet, there is only
one output layer.

(3) Two auxiliary classifiers are added in the middle of the network to
helpwith training, with a total of three output layers, the problemof
gradient disappearance in the training process is solved.

(4) The average pooling is used instead of the fully connected layer,
which greatly reduces the number of model parameters.

3.3.1 Inception structure
The Inception structure is a crucial component of the

GoogLeNet model, and its core idea is to approximate or directly
replace the optimized local sparse component structure with a dense
component structure. This structure retains the original Inception
design, consisting of four convolutional branches:

Branch 1 employs a 1 × 1 convolutional layer with a step size of
1. The convolution kernel does not alter the length and width of the
feature map but directly modifies its depth.

Branch 2 utilizes a 3 × 3 convolutional layer with a step size of
1 and padding of 1, aimed at extracting feature maps of varying sizes.

Branch 3 incorporates a 5 × 5 convolutional layer with a step size
of 1 and padding of 2, also intended to extract feature maps of
different sizes.

Branch 4 is a max-pooling layer with a pool core size of 3 × 3, a
step size of 1, and padding of 1. This layer suppresses non-maximal
information in the original image, replacing it with the most
significant neighborhood information while preserving the
image’s size.

When the feature matrix is input, all four branches can
simultaneously apply convolutional or pooling operations,
resulting in four parallel outputs. As the step size for all branches
is 1, the convolution or pooling dimensions remain unchanged. This
allows them to be concatenated in the same dimension to produce
the final output. Compared to the series-structured models like
AlexNet and VGGnet, GoogLeNet alters the input into a parallel
structure. It combines inputs after various operations and then
proceeds to the subsequent layers. In contrast to other
convolutional neural network architectures, where the next
convolutional layer can only process the feature map from the

preceding layer, GoogLeNet’s approach helps prevent information
loss from the earlier stages, ensuring it can still be accessed in
subsequent layers.

3.3.2 Auxiliary classification structure
The GoogLeNet model incorporates two auxiliary classifiers and

structures to facilitate training. The first level comprises a 5 ×
5 average pooling layer with a step size of 3. The second level
consists of a 1 × 1 convolutional layer with a step size of 1, featuring a
total of 128 convolution kernels. The third and fourth levels consist
of fully connected layers with 1024 and 1000 nodes, respectively. It is
important to note that the auxiliary classifier is solely utilized during
training and not during testing. It is introduced into the overall
network loss with a weight of 0.3 to counteract gradient vanishing
and provide regularization.

4 Training process and recognition
results

4.1 Recognition result of landslide by
DGCNet model

The training set consists of three remote sensing satellite images.
The verification set consists of one remote sensing image, and the
test set consists of one remote sensing image. The number of
training epochs is set to 20, the batch size is set to 8, and the
input picture size is set to 600. In the training process, the loss value
will be displayed in the window, the Excel data generated in the
training process will be saved as pictures, and the network model
generated in the training will be saved at the same time. The device
model used in this work is NVIDIA Geforce GTX 3080 GPU (8 GB
memory) on the Windows system, which applies Pycharm editor,
and uses Python for programming. The curves of training accuracy,
training loss, training precision, DSC, F1, and M-IOU are shown in
the figure. Ideally, the training loss value should decrease rapidly in
the first few epochs. When 20 epochs are trained, the accuracy of the
training set tended to the maximum, the loss rate tended to the
minimum. The results are shown in Figure 8.

Similarly, the verification accuracy, verification loss, verification
precision, and verification M-IOU curves of this work are shown in
Figure 9. As can be seen in Figure 9, the lowest value of the loss is
found at the 20 epochs, the DSC is 0.8815, the M-IOU is 0.77, the
precision is 0.82, the F1 is 0.86, and the accuracy is 0.96.

The test set results are shown in Figure 10, it can be seen from
Figure 10 that the landslide identification accuracy using this

FIGURE 7
Schematic diagram of the process.
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method is high. Large-scale landslides can be identified. The
unrecognized area is mainly the landslide boundary, and the
incorrectly identified area is mainly the exposed area on the top
of the mountain, but the area is small. Because this model training
uses fewer training sets, which may have a certain impact on the
results, the training sets can be added later to improve the accuracy
of the model.

4.2 Recognition result of landslide by
GoogLeNet model

During the process of model training, optimizing parameters to
minimize the loss function is a crucial parameter-tuning step. The
optimizer’s task is to compute the gradient of the loss function in
each epoch and consequently update the parameters. The Adam

FIGURE 8
Line chart of the DSC, M-IOU, accuracy, loss, precision, and F1 in the training data set experiment.

FIGURE 9
Line chart of the DSC, M-IOU, accuracy, loss, precision, and F1 in the validation data set experiment.
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optimizer, developed by Kingma and Ba in 2014, amalgamates the
strengths of the AdaGrad and RMSProp optimization algorithms. It
takes into account both first-moment and second-moment
estimations of the gradient to determine the update step.

An image is an array of pixels organized in a specific sequence,
with colors represented by the three primary channels of red, green,
and blue. These pixels assume values ranging from 0 to 255; for
instance, (0, 0, and 0) represents black. When employing a
convolutional neural network for image recognition, pixel values
are transformed into an array. The values within this array represent
the image’s features, and any changes in the image result in
corresponding alterations in these pixel values. Furthermore, it is
essential to preserve the spatial arrangement of images as much as
possible when feeding image features into a neural network. In the
process of identifying images of landslides and other topographic
features through convolution layers, distinct convolutional kernels
are utilized to generate corresponding output values, determining
which one best characterizes the landslide features. When a
convolution kernel yields high output values for landslide
features and low output values for non-landslide terrain, it
effectively extracts the desired features from the image. The
optimal convolution kernel is then passed through a pooling
layer after multiplication with the image’s corresponding feature
matrix. This step serves to reduce the number of trainable
parameters, retain the most pertinent landslide information from
the terrain images, and mitigate the risk of overfitting.

For the training process when the image data is small, when
there are a small number of incorrect labels in the sample, the
incorrect labels will have an impact on the accuracy of the
prediction. Therefore, label smoothing is adopted to reduce
overfitting and improve the model’s generalization ability.
Weight_ Decay can adjust the complexity of the model and

reduce the impact on the loss function. With a smaller weight,
the complexity of the network is lower, and the fitting of the data will
be better. Picture size through img = cv2 Resize [img, (224)] is scaled
to the size format of 224 pixels * 224 pixels. The parameter batch size
is 32, the optimizer is Adma, the learning rate is 0.0001, and the
weight_decay is 0.001.

During the training of the model, the loss rate and accuracy of
the training set and validation set are used to evaluate the model. A
total of 100 epochs were trained. After training 20 epochs, the curves
of the loss rate and accuracy rate of the training set tended to be flat.
After 60 epochs, the accuracy rates of the training and validation sets
become close to the peak Figure 11 and Figure 12 show the images of
the change in loss rate and accuracy of the training and validation
sets during the training process.

The loss and accuracy rates of the training set and validation set
after 100 epochs of training iteration were saved as a document file.
The accuracy of the validation set fluctuates between 78.125% and
81.25%, with the highest prediction accuracy of 81.25%.

Also, the trained optimal model was saved and applied to predict
the label of the input picture. Some prediction results are shown in
Figure 13.

The GoogLeNet model used in this paper has the highest
prediction accuracy of 81.25%, while Zhang et al. (2020)
proposed a model for seismic landslide recognition based on
deep learning, and the accuracy of this model on the validation
set is 88.15%. It is 6.9% higher than the GoogLeNet model. It can be
seen from Figure 9 that the accuracy of the DGCNet Model is also
higher than that of the GoogLeNet model. In addition, the two
models have different applicable situations, the DGCNet model can
identify and label landslides in a satellite remote sensing image that
contains dozens of slopes, while the GoogLeNet model can only
classify whether a single slope in a remote sensing satellite image is a

FIGURE 10
The test set prediction results: (A) the sample to be tested; (B) manual interpretation area; (C) model identification area; (D) identification area
distribution characteristics.
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landslide, which is relatively inefficient. Therefore, the DGCNet
model has a better recognition effect and plays a good reference role
in landslide identification, which can quickly identify large-scale
landslides and provide a basis for emergency rescue and disposal in
the later stage of landslide disasters.

5 Discussion

DGCNet typically demands some data for training to achieve
optimal performance. In the context of landslide image recognition,
when datasets are limited in size, the model may face challenges related
to overfitting or decreased performance. The effectiveness of DGCNet is
highly dependent on the choice of hyperparameters, including the
number of convolutional layers, kernel sizes, and learning rates. Fine-
tuning these parameters for different applications can be time-
consuming and computationally intensive. DGCNet may require
significant computational resources, including high-performance
GPUs, especially when dealing with large graph-based data. This can
be impractical in resource-constrained environments. DGCNet is a
deep learning model with complex internal mechanisms, making it
challenging to interpret. In applications where decision explainability is
crucial, the model’s lack of interpretability may be a limitation.

FIGURE 11
Epoch loss curve of the training set and validation set.

FIGURE 12
Epoch Accuracy curve of the training set and validation set.

FIGURE 13
Prediction results of some topographic images.
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DGCNet excels at integrating diverse data sources, such as
topography, vegetation information, etc. This capability enables a
comprehensive analysis of landslide image recognition. DGCNet
can capture spatial correlations between nodes (representing
geographical locations) within the graph, emphasizing the
importance of geographical context, thereby enhancing the
accuracy of landslide image recognition. Landslide data is often
represented as a graph, where locations and their interconnections
constitute nodes and edges. DGCNet is purpose-built for handling
graph-based data, making it well-suited for such tasks. Employing
DGCNet for landslide image recognition represents a relatively
novel approach. It offers the potential to introduce fresh research
perspectives and technological advancements to the field, ultimately
improving the efficiency and accuracy of landslide recognition
assessment.

In summary, DGCNet shows promise in landslide image recognition
but also presents certain limitations. Addressing issues related to data
requirements, hyperparameter tuning, and computational complexity,
while enhancingmodel interpretability, will facilitate its broader adoption
and utility in landslide recognition analysis.

6 Conclusion

The identification and location of landslides are of paramount
importance due to their significant threat to human life and property
worldwide. Traditional manual interpretation methods, while
effective, are inefficient for large areas. In response to this
challenge, this study introduced a landslide recognition method
based on the Dual Graph Convolutional Network for quick and
accurate identification of landslides in remote sensing images. The
results demonstrated the efficacy of the DGCNet model in accurately
identifying landslides within the regional remote sensing images of
Tuergen Township, Xinyuan County, Xinjiang Province. A
comparative analysis was conducted with the traditional
convolutional network model, GoogLeNet, using single terrain
images from Xinyuan County. The DGCNet model exhibited a
broader recognition range, making it a valuable tool for large-scale
regional remote sensing image analysis. However, it is important to
note that the performance of the DGCNet model is highly
dependent on the quality and characteristics of the input graph
data. Poor data quality or unclear graph structures can lead to a
decline in performance. Therefore, data preprocessing and quality
assurance remain essential aspects of landslide recognition using
DGCNet. In the future, other landslide databases can be used to train
the model to improve the accuracy of the model. DGCNet has
stronger learning and transmission ability than other methods and
can handle more data types. This research contributes to the

growing body of knowledge in this field, offering a new approach
to address the challenges associated with landslide recognition in
large-scale regional remote sensing images.
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A rare study on the quantitative relationship between the energetic impact of
debris flows on the intensity and duration of growth disturbances of tree rings was
carried out, partly due to a lack of feasible approaches and detailed field evidence.
In this study, we first used a dendrogeomorphic technique to determine the age of
a recent debris flow derived from historic landslide deposits at QingyangMountain
(QYM) on the northeastern Tibet plateau. We acquired the quantitative data on the
annual widths of tree rings in history and confirmed the influence of the debris
flow rather than other factors (e.g., climatic events and inset outbreaking) in
disturbing the growth of tree rings in a specific year. Using this approach, we
determined that the age of the debris flow at QYM occurred in 1982, which was
speculated to be triggered by the highmonthly precipitation registered during July
1982. Subsequently, based on the boundaries of historic debris flow identified on
remote sensing images before and after 1982 and the depth-integrated
continuum model, we reconstructed the process of the 1982 debris flow and
obtained the kinematic energy of the debris flow impacting the sampled trees.
Based on the study, we observed that two growth disturbance patterns of tree
rings influenced by the reconstructed 1982 debris flow were revealed, including
growth suppression and asymmetric growth. We obtained a raw logarithm
relationship between duration (i.e., lasting time for the disturbed tree rings to
recover the initial width) and intensity of growth disturbances (i.e., growth
suppression ratio of disturbed tree rings). We concluded that there is a
negative exponential relationship between the simulated kinematic energy of
debris flow impacting the disturbed trees and the time to recover the initial width
of corresponding tree rings.
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1 Introduction

Different kinematic energy of debris flow impacting trees can
lead to different failure characteristics and growth disturbances
(Wistuba et al., 2013). Previous studies mostly focused on the
relationships of kinematic energy of rockfall with morphological
characteristics of trees (e.g., diameter at breast height and stand
density) (Perret et al., 2004; Dorren and Berger, 2006; Woltjer et al.,
2008). A rare study on the quantitative relationship between the
impact of debris flows and the intensity and duration of growth
disturbances in tree rings was carried out. For such a study, first,
large amounts of tree ring samples disturbed by the same debris flow
event are needed, but it is difficult for many trees to remain well
preserved on-site for a long period. Second, the criterion to quantify
the growth suppression or other disturbed characteristics in tree
rings of different tree species influenced by debris flow is still limited
for clarifying such a relationship. The last and most difficult factor is
how to monitor or acquire the kinematic energy of debris flow
impacting different disturbed trees. Recent studies that focus on
dynamic process and kinematic energy of landslides and debris flow
have been carried out with the help of the development of simulation
approaches (Ouyang et al., 2019a; Ouyang et al., 2019b; Wu and
ping-Hsuan Hsieh, 2021; Bao et al., 2023a; Bao et al., 2023b). For
example, Ouyang et al. (2019a) adopted a depth-integrated
continuum method to analyze the dynamic process of two large
sequential landslides that occurred in Baige village along the Jinsha
River. The authors concluded that the evaluation of potentially
landslide-prone areas simulated by the method is feasible. Wu
and Ping-Hsuan Hsieh (2021) applied three-dimensional (3D)
numerical modeling code 3DEC to numerically model the debris
movement and deposition of the Chiu-fen-erh-shan landslide under
the impact of the Chi-Chi earthquake, showing that post-failure
configuration generated by the 3DEC simulations is similar to that
observed in the field. Focusing on the same Baige village landslide,
Bao et al., 2023a; Bao et al., 2023b) used a three-dimensional model
based on the finite-discrete element method-smoothed particle
hydrodynamics (FDEM-SPH) coupling approach to reconstruct
the dynamic process of the landslide. The results of the landslide
deposit area and the impulse wave-affected area were consistent with
the results of field investigations. In this study, considering the
characteristics of debris observed in the field and others simulated by
previous studies (Ouyang et al., 2019a; Sun et al., 2021; Bao et al.,
2023a), kinematic energy of debris flow was simulated through the
numerical approach of mass flow that was used for debris flow
dynamic propagation process modeling (Ouyang et al., 2013).

Although new geochronological methods increase the number
of dated geohazards (e.g., landslides and debris flows), absolute
dating methods (e.g., cosmic ray exposure, optically stimulated
luminescence, thermoluminescence, and uranium-series (234U/
230Th) dating) are still less developed for geohazards occurred on
the centennial or millennial timescales (Crosta and Clague, 2009;
Pánek, 2015). The dendrogeomorphic technique (tree ring-based)
has been developed to constrain the ages of geohazards that were
recorded as growth disturbances in tree rings on a centennial or
millennial scale (Butler et al., 1986; Stoffel et al., 2005; Stoffel, 2006;
Šilhán et al., 2016; Noguchi et al., 2021). Frequent geohazards impact
local trees, leading to growth disturbances in tree rings (e.g., wider or
narrower rings, and missing rings), which are used to determine the

time and frequency of geohazards (Stoffel et al., 2005; Schneuwly
and Stoffel, 2008; Lopez Saez et al., 2012; Šilhán, 2017; Zhang et al.,
2019; Šilhán, 2021). However, there are also some other factors, such
as earthquakes, temperature, precipitation, and inset outbreaking,
that lead to growth disturbances in tree rings, which hinder the
identification of landslide events (Carrara and O’Neill, 2003; Ciervo
et al., 2017; Zhang et al., 2019). Meanwhile, random events around a
tree, such as single block hitting and water flowing around tree roots,
could also disturb the growth of a tree. Until now, studies of specific
characteristics and index values of growth disturbances in tree rings
of different tree species influenced by geohazards, especially debris
flows, are still limited, impeding the timing of debris flows by
dendrogeomorphic techniques.

With the development of remote sensing, images and the Digital
Elevation Model (DEM) obtained by satellite methods, unmanned
aerial vehicles (UAV), and terrestrial lidar systems were used to
identify debris flows and to analyze the geometric characteristics of
debris flows (Loye et al., 2009; Ma et al., 2019; Wang et al., 2021).
Regional spatial distribution of geohazards has been widely mapped
using the images obtained by satellite methods (Qi et al., 2010;Wang
et al., 2021). One of the obvious merits of satellite methods is that
satellite images provide clear visible evidence of debris flows that
occurred in a location during a period. However, because of their
strict application conditions for acquiring images (e.g., available
satellite, suitable weather conditions, and acritical data acquiring
setting), time series of past global satellite images rarely continue
yearly or monthly focusing on an area, limiting the application of
satellite images for reconstructing the evolution process of
geohazards.

In a previous study, Zhang et al. (2019) reconstructed the
centennial-scale process activity of landslides at QYM using
dendrogeomorphic techniques. They mainly focused on an
approach to determine the time series of landslides. Here, we
further explore an approach to determine the age of a landslide
by combining the dendrogeomorphic technique with remote sensing
because the evidence to define the occurrence of a landslide or debris
flows solely by dendrogeomorphic technique is not sufficient due to
uncertain complex factors. More importantly, after determining the
age, we studied the specific characteristics and index values of
growth disturbance in tree rings (e.g., growth suppression ratio
and lasting time for tree rings to recover their normal width) in the
year of the debris flow. Furthermore, to reveal the kinematic energy
of debris flows impacting the disturbed trees at QYM and their rarely
studied relationship, we attempted to use numerical simulation of a
depth-integrated continuum model and remote sensing images to
reconstruct the evolution process, including spatial distribution of
kinematic energy of the dated debris flow.

2 Materials and methods

2.1 Study area and field investigation

Qingyang Mountain (QYM) is located in the northeastern
Qilian Shan range. Because of tectonic faults and long-term
weathering, landslides and rockfalls occurred frequently with
widely distributed landslide deposits on the mountains
(Figure 1). There were small landslides that occurred in the
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middle section of QYM before 1970 (Zhang et al., 2019). The
landslides were located at elevations ranging from 3,375 to
3,450 m a.s.l. (Figure 1B). Through fieldwork, we observed that
historical landslide deposits were transformed as the initiation zone
of typical debris flow, followed by the channel of propagation (with a
channel depth of ~1.9 m) and accumulation zone (Figure 1). After
the debris flow, recent smaller debris flows have been occurring on-
site since 2012 (Figure 1A), which partly verifies the dynamic
evolution of historic debris flows in the study area. The grain
size of the deposits mostly ranges from 0.001 to 0.04 m³, which
falls into the small rock blocks class according to the International
Society for Rock Mechanics (ISRM, 1979). Based on topographic
analysis and field investigation, it was estimated that the total
volume of the deposits of the accumulation zone is 4.9×104 m3,
with an average depth of 5.5 m.

The trees of Qilian junipers mostly grow on sunny slopes at
elevations from 3,000 to 3,600 m a.s.l. at QYM (Zhang et al., 2019).

The debris flow destroyed some trees that grew on the slope. Based
on the site work, we noticed that more than 20 trees were hit
(i.e., disturbed) by the debris on the accumulation zone, which was
demonstrated by tree scars, injuries on the stem, and inclined trees
on the deposit (Figure 2).

2.2 Geospatial data processing and analysis

We collected 1970 satellite images from the KH4B satellite
(number DS1108-2184DA088) with a resolution of 1.83 m
(Figure 3A), which was the oldest source of imagery with high
resolution in the study area. With the most advanced cameras on
board, the KH4A and KH4B satellites (imagery resolution of
2.74 and 1.83 m) collected global-scale, high-resolution imagery
as one important part of the CORNOA program from 1960 to
1972 (Casana, 2020). The images in 2012 (Figure 3B) and 2019

FIGURE 1
(A) Location of the landslide and debris flow in Qingyang Mountain and (B) topographic profile of I-I′ in Figure 1A.
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(Figure 1A) were obtained from Google Earth and UAV. We
obtained 476 photographs taken over an area of approximately
10 km2 byUAV in 2019, which was used to create a 0.3-m-resolution
DEM with the structure from the motion photogrammetry
technique (Johnson et al., 2014). The images and DEM were
used to analyze the temporal evolution of landslides in QYM and
to simulate the debris flow as basic data by numerical modeling.

Although the boundaries of landslides and former debris flows
occurred before 1970 (i.e., the year of the imagery obtained) on
KH4B satellite imagery were difficult to exactly check on-site, we
could still roughly verify the identification by comparing the white
color boundary on the imagery (Figure 3A) and the exposure of rock
mass on-site. In contrast, the clear image from 2012 and the
currently well-preserved boundary and characteristics of deposits
on-site helped us to easily verify the boundary of recent debris flow
(Figure 3B).

2.3 Width measurement of core samples

To collect the core samples of tree rings, we chose the trees
with obvious injuries or trees that were inclined on or near the
debris flow deposit. A total of two or three increment cores were
extracted per tree using increment borers from two directions
including the scar direction (i.e., the direction of debris flowing)
and the opposite one (Stoffel et al., 2013). If there were no
obvious scars on the trees, we collected cores in the supposed
direction of the debris flow movement (i.e., upslope and
downslope cores) (Stoffel et al., 2005). We sampled all Qilian
junipers on the deposit body with diameters at breast height

exceeding 20 cm (the highest measured 110 cm) with increment
borers. We marked the locations of the core samples on the
topographic map created from our 0.3-m-resolution DEM.
Ultimately, a total of 52 increment cores were extracted from
23 Qilian juniper trees.

In reference to previous studies (Stokes and Smiley, 1968; Stoffel
et al., 2013), we dealt with the collected samples in a lab based on
standard dendrogeomorphical techniques. First, the samples were
left to air dry, and then we used glue to attach the dried samples to
wood grooves. The firmed samples were polished using fine
sandpaper to make the cells of increment cores clear to be
observed by microscope. Finally, we measured the annual widths
of tree rings using a LINTAB™ instrument (Figure 4) whose
maximum resolution was 1/1,000 mm (http://www.rinntech.de/
content/view/16/47/lang,english/index.html). The measured data
were automatically recorded by the TSAP-Win™ software
platform for tree ring analyses (http://www.rinntech.de/content/
view/17/48/lang,english/index.htm).

After measuring the annual widths of tree rings, we used a
previously built reference chronology in the same area for precise
cross-dating and age corrections of the core samples disturbed by the
debris flow using COFECHA (Cook and Kairiukstis, 1990; Zhang
et al., 2019). The verification of cross-dating accuracy was based on
the value of the correlation coefficient between the measured annual
width of tree rings and reference chronology larger than 0.4
(Grissino-Mayer, 2001).

2.4 Numerical simulation of debris flow

The mass flow was based on the depth-integrated continuum
model, transforming the 3D description of the dynamic process of
debris flow into a simple 2D problem by integrating the
Navier–Stokes equations in the depth direction (Iverson and
Ouyang, 2015). Under the depth integral condition, Leibniz’s law
and dynamic boundary conditions were used to simplify the mass
and momentum conservation equations as follows (Ouyang et al.,
2019a; Sun et al., 2021):

∂ �ρh( )
∂t

+ ∂ �ρh�vx( )
∂x

+ ∂ �ρh�vy( )
∂y

� 0 (1)

∂ �ρh�vx( )
∂t

+ ∂ βvxvx�ρhv�
2
x( )

∂x
+
∂ βvxvy�ρh�vx�vy( )

∂y

� �ρgxh − kap�ρgzh
∂ h + zb( )

∂x
− τzx( )b (2)

∂ �ρh�vy( )
∂t

+
∂ βvxvy�ρh�vx�vy( )

∂x
+
∂ βvyvy�ρhv�

2
y( )

∂y

� �ρgyh − kap�ρgzh
∂ h + zb( )

∂y
− τzy( )

b
(3)

where ρ is the mass density; h is the flow height; t is the time; β is the
momentum distribution coefficient; vx and vy represent the
components of the velocity vector on the x and y-axes,
respectively; gx, gy, and gz represent the components of the
acceleration of gravity on the x, y, and z-axes, respectively; and
kap is the lateral Earth pressure coefficient. The calculation
expression of kap is presented in Eq. 4, dominantly controlled by

FIGURE 2
Trees disturbed by debris flowon the accumulation zone inQYM.
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the strain rate of the moving material; here, (τzy)b and (τzx)b are the
basal resistance components.

kap � 2
cos 2 φ

× 1 ±
������������������
1 − 1 + tan 2 δ( )cos 2 φ

√[ ] − 1 (4)

where φ and δ represent the internal friction angle and basal friction
angle of the moving material, respectively.

The basal friction stress of debris flow was assumed to obey the
Coulomb failure criterion (Eq. 5). For the Coulomb friction model

available in mass flow, three dominant parameters were needed for
simulation, namely, cohesion, friction angle, and pore water
pressure parameters. Usually, it is difficult or even impossible in
some cases to carry out field tests to obtain the values of parameters
used for debris flow simulation. Hence, the parameters used in mass
flow simulation are commonly obtained from back analysis of
historic events (Ouyang et al., 2013; Sun et al., 2021). Luckily,
the historic debris flow event in QYM provided us with a good
chance to back analyze the parameters by optimizing the simulated

FIGURE 3
(A) Distribution of the landslide and debris flow occurred before 1970 from imagery obtained by the KH4B satellite in 1970; (B) Distribution of the
landslide and debris flow that occurred before 2012 from imagery obtained by Google Earth in 2012.
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debris flow characteristics to fit the occurred ones (e.g., the farthest
range and depth of the debris flow deposit).

τ � c + ρgh · tan ψ( ) (5)
where c and ψ are the cohesion and friction angle of the mass,
respectively.

Based on the 1970 satellite image, we plotted the boundary of the
debris flow that occurred once or more times before 1970
(Figure 3A), which was used as the comparable characteristics
with the simulated ones for back analysis. To simulate the
dynamic propagation process of debris flow by mass flow, the
source area and its thickness should be calculated first, including
three dominant steps as follows:

(1) Build the current DEM of the calculation area. We clipped the
specific area of DEM for calculation from the whole DEM of
QYM, which was obtained before.

(2) Reconstruct the pre-slide topographic lines of the calculation
area. Based on the field investigation and the 1970 satellite
image, we adjusted the current topographic lines according to
the contour lines of the surrounding terrain to build the
approximately original topographic lines before the debris
flow in ArcMAP.

(3) Create the area and thickness files of the debris flow source area.
Using the twoDEMs of the original and current ones, we created
the source area using the tool of grid subtraction in ArcMAP.
Hence the area and thickness of the source area could be
extracted directly.

Using the source area data and given parameters, we simulated
debris flow in the mass flow platform.

3 Results

3.1 Age of debris flow

Using the satellite images from 1970 to 2012, we obtained in ArcGIS
the different boundaries of the debris flows at different stages. The

boundary in 1970 was small, indicating that a small debris flow of
approximately 6.1×103 m3 occurred at that time or before (Figure 3A).
The length and width of the debris flow presented in the image from
2012 were approximately 288 and 31m (Figure 3B), both of which were
about twice the measurement of the 1970 debris flow. Hence, a large
debris flow occurred during the period from 1970 to 2012. The
geometric features of the debris flow after 2012 do not have
significant differences (e.g., from the debris flow image from 2019 in
Figure 1A), indicating a relatively stable state of the debris flow body on
the whole in the last 10 years (i.e., from 2013 to 2022).

Considering the possibility that the debris flow occurred between
1970 and 2012 and disturbed the annual width of tree rings, we analyzed
the variation of annual widths of sampled tree rings (Figure 5). From the
trees collected on the debris flow deposit, we observed 19 trees with
synchronous growth disturbance in tree rings occurring in 1982. The
growth disturbance included two patterns. One pattern was the growth
suppression of width in tree rings in 1982, which was demonstrated by
13 trees (Figure 5A). Another pattern was the asymmetric growth of
rings in 1982, as demonstrated by 6 trees (Figure 5B). For the second
pattern, two core samples collected on opposite sides grew almost
equally before a sudden disturbance. After the disturbance, one side
grew faster or slower, while the other side did not grow synchronously.
Hence, the difference in widths on the two opposite sides became larger
and was influenced by the disturbance in the second pattern.

Two patterns of growth disturbance in tree rings, namely,
growth suppression and asymmetric growth, could be observed
not only from 19 trees, as occurring in 1982, but also from
growth disturbances in the history of a single tree. For example,
the annual widths of tree rings in samples QYG2314A and
QYG2314B revealed several significant growth disturbance events
(e.g., rockfall or landslide) in 1710 (i.e., asymmetric growth), 1860
(i.e., growth suppression), and 1982 (i.e., growth suppression)
(Figure 10A). Meanwhile, the annual widths of tree rings of
samples QYG2324A and QYG2324B revealed growth disturbance
events in different years: 1742 (i.e., asymmetric growth) and 1810
(i.e., growth suppression) besides the same year of the 1982landslide
(i.e., growth suppression) (Figure 10B). Hence, besides the
synchronous growth disturbance in tree rings by the same large
debris flow event, there were also some random growth disturbances

FIGURE 4
(A) The LINTAB™-6 instrument used for measuring the annual width of the tree rings; (B) The image of increment core observed with LINTAB™-6.
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of different trees. Meanwhile, there were random growth disturbances
in some specific tree rings rather than in all of them, as seen in Figure 5
(e.g., reduction in 2007 of QYG2303B and increment in 2000 of
QYG2707A). The missing width data of some tree rings (e.g., QYG
2322A after the year 1996, QYG2324A after the year 2000, and
QYG2324A after the year 2003) is due to artificial causes destroying
the core samples. We did not note the obvious effect of the positions of
samples on the patterns of growth disturbance.

Hence, considering the same debris flow event disturbing the
growth of trees at the same time, we attributed the synchronous
disturbance in 1982 of the width of 32 tree rings to a large debris
flow. Combining the visible evidence, provided by satellite images,
that a debris flow occurred between 1970 and 2012 with the data
revealed by the synchronous growth disturbance in 1982 in tree
rings, we determined the age of the debris flow in QYM as having
occurred in 1982.

FIGURE 5
Tree-ring annual widths of sampled Qilian junipers demonstrating growth suppression (A) and asymmetric growth (B) in 1982 as a result of debris
flow (red dotted box).
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3.2 Index values of growth disturbance in
tree rings by the 1982 debris flow

By comparing the annual widths of tree rings in 1981 and 1982, we
calculated the index of growth suppression ratio to be equal to the width
of the disturbed tree rings in a year (i.e., 1982) divided by the width of
undisturbed tree rings on the year before (i.e., 1981) using the data with
obvious growth suppression pattern in our study (Figure 5A and
Figure 6). Meanwhile, previous studies proposed that if the width of
a tree ring in year t is reduced by more than 40% or 50% (i.e., growth
suppression ratio in our study) of the width in year t-1, and the
reduction of width lasts more than 5 years, year t is defined as the
year of debris flow (Carrara and O’Neill, 2003; Zhang et al., 2019).
Similarly, in our study, the maximum growth suppression ratio was
91% (QYG2323B), while the minimumwas 51% (QYG2303B), with an
average value of 73% (σ=0.16). The lasting time of growth suppression is
an important index to reveal the influence of debris flow on the growth

of tree rings (Van Den Eeckhaut et al., 2009). Based on our data, the
lasting time for the disturbed tree rings to recover the initial width by the
1982 debris flow in QYM ranges from 5 to 26 years, with an average of
12 (σ=0.46) years. We observed that the larger the growth suppression
ratio influenced by debris flow, the longer the lasting time for tree rings
to recover, which is consistent with previous studies (Carrara and
O’Neill, 2003; Van Den Eeckhaut et al., 2009). Meanwhile, a raw
logarithm relationship between lasting time (y) (i.e., time to recover
the initial width) and growth suppression ratio (x) (y=17.56ln(x)-
63.34,σ=0.32) was obtained in our study (Figure 6).

3.3 Effect of precipitation in triggering the
1982 debris flow

Precipitation is important in triggering geohazards, especially debris
flows (Ouyang et al., 2013; Ouyang et al., 2019a; Zhang et al., 2019). To
analyze the effect of precipitation on the 1982 debris flow in QYM, we
obtained monthly precipitation data from 1957 to 1982. We observed
that the precipitation in July was the highest in the whole year averaged
by the data of the last 25 years (Figure 7A), while the value in July 1982
(i.e., 1,299 mm) was 1.34 times that of the average value (i.e., 972 mm).
Meanwhile, themonthly precipitation in July 1982was the third highest
of the previous 26 years, followed by that of 1981 (i.e., 1,374 mm)
(Figure 7B). However, we also know that debris flows are commonly
triggered by intense short-term precipitation events, sometimes
preceded by high antecedent moisture conditions. Hence, because of
a lack of more acute hourly precipitation in QYM, we just speculated
that the high monthly precipitation observed in July 1982 played an
important role in the evolution of the 1982 debris flow.

3.4 Kinematic energy of debris flow
impacting the sampled trees

3.4.1 Parameters obtained by back analysis of the
debris flow before 1970

To calibrate the parameters, we simulated the debris flow that
occurred before 1970 for a series of scenarios with different values of

FIGURE 6
The relationship between lasting time and growth suppression
ratio of tree rings disturbed by the 1982 debris flow.

FIGURE 7
(A) Average monthly precipitation from 1957 to 1981 and monthly data in 1982 for the QYM region. (B) Monthly precipitation of July from 1957 to
1981 for the QYM region.
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coefficient, friction angle, and pore water pressure coefficients.
Meanwhile, we collected parameters by back analysis from
previous similar studies so that our results were more accurate
(Ouyang et al., 2013; Ouyang et al., 2019b; Sun et al., 2021). Based on
post-debris flow and reconstructed pre-debris flow
1x1 m topography DTMs, ~6,130 m3 of mass was estimated as
being detached from the source area (i.e., pre-occurred landslide)
before 1970. The results obtained using the cohesion of 8 kPa, the
friction coefficient of 0.43, and the pore water pressure coefficient of
0.3 showed relatively good consistency with the farthest range of the
real debris flow deposit in 1970 (Figure 8).

The deposit thickness contours of the debris flow before 1970 at
times t = 2, 4, 6, and 8 s are shown in Figure 8. Based on the
simulated results, we observed that the debris flow moved fast
forward from the source area from the beginning to the fourth
second. The debris flow material deposited more in the back and
front areas than in the middle area, forming a long-strip shape
deposit. From the fourth to the eighth second, the debris flow
extended further and finished moving during this second period,
controlled by the reduction of material supplied from the source area
and the frictional resistance of the deposited material. Eventually,
the debris flow deposited as presented in the simulation map
(Figure 9). As seen in the image, the farthest range is consistent
with the real range observed in the satellite image from 1970,
considering the effect of the resolution of the satellite image
(Figure 3A).

3.4.2 Kinematic energy of the 1982 debris flow
impacting the sampled trees

We simulated the evolution of the 1982 debris flow bymass flow,
obtaining the spatial distribution and kinematic energy of the debris
flow deposit (Figure 9). Because of large amounts of materials
detached from the source area, the debris flow was transported

farther than those before 1970. The debris flow arrived at the top of
the current dominant deposit area at the 10th second (Figure 9A).
From the 10th to the 14th second, the material started to spread to a
wider range and reached the area of the disturbed trees. From the
14th to the 18th second, the blocks involved in the debris hit the trees
(Figure 9B), causing them to become injured, fall, and be destroyed.
Lastly, the material was deposited with a final depth of 2–6 m in the
front area.

In addition to the deposit depth varying spatially, the impacts
were responsible for decreasing the kinematic energy of the debris
flow. To analyze the energy variation after impacting the disturbed
trees, three monitoring points (Figure 8 and Figure 9B) were set up
along the debris flow transport direction during the simulation. The
result shows that the kinematic energy was reduced from more than
630.3 KJ (P1) to ~503.4 KJ (P2) before hitting the trees on the debris
flow deposit. After hitting the sampled trees, the mass kinematic
energy reduced spatially along the runout path, with the largest
monitored value of 495.3 KJ located at QYG2323 and the smallest
value of 9.1 KJ located at QYG2316.

4 Discussion

4.1 Relationship between impact energy and
recovery time of disturbed tree rings

It is very important to quantitatively obtain the dynamic growth
process of trees (i.e., tree rings) disturbed by debris flows. Based on the
relationship, we could predict the possible disturbance degree of trees by
potential debris flows, which provides a reference for designing and
maintaining bioengineering in debris flow-prone areas (Brang, 2001).
Second, building the relationship provides us an additional approach to
back analyze the evolution process and kinematic energy of historically

FIGURE 8
The evolution of debris flow depositing occurred before 1970, as calculated by numerical simulation.
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occurred debris flows using the measurable growth disturbance in tree
rings. Hence, based on the data, we attempted to build a relationship
between the impact kinematic energy of debris flows and the time to
recover the initial width in tree rings.

Although there was a lack of a real record of the debris flow
process impacting the sampled trees in QYM, we used numerical
simulation to reconstruct the evolution process including the
kinematic energy of the 1982 debris flow. We observed a raw
negative exponential function (R2=0.46) between the recovery

time of disturbed tree rings (y, yr) and kinematic energy of
debris flow (x, KJ) larger than 50 KJ in QYM (Figure 10A). This
means that higher impact kinematic energy of debris flow leads to a
larger growth suppression ratio and a longer recovery time.
Meanwhile, we also noted that the growth suppression ratio
almost remained constant with increasing kinematic energy after
reaching the threshold value of ~300 KJ (Figure 10B), which was the
value inferred to the trees that were completely destroyed, with no
more records of tree rings after that energy value.

FIGURE 9
(A) The evolution of debris flow depositing and (B) kinematic energy of debris flow occurred in 1982 as calculated by numerical simulation. The
locations of monitoring points for kinematic energy of debris flow impacting the sampled trees (C) are presented in (B).
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4.2 Uncertainty analysis

It is normal for tree rings to have one random growth
disturbance pattern (growth suppression or asymmetric growth)
influenced by water flow destroying the root systems or even local
inset outbreaking (Figure 5 and Figure 11), rather than synchronous
two patterns of growth disturbance as those influenced by the
1982 debris flow (Carrara and O’Neill, 2003; Ciervo et al., 2017;
Zhang et al., 2019). Meanwhile, the influence of climatic events on
the growth disturbance in tree rings should cover all the local trees
rather than only the trees on the debris flow path. Hence, combined
with satellite images, the growth disturbance in trees on the debris
flow deposit from 1970 to 2012 was used to identify the debris flow
that occurred in 1982.

The disturbance of 19 trees in 1982 was attributed to a relatively
large debris flow. Considering several random growth disturbances
occurred in specific years (i.e., the years 1710 and 1860 in QYG2314 in
contrast to the years 1742 and 1810 in QYG2324) and their similar
characteristics with those of 1982 (Figure 4), we suggest that the hitting
of small blocks on the trees (or so-called rockfall) probably played an
important role in those random disturbances because no large debris
flow was observed around the sampled trees from the satellite image
from 1970. However, we noted that there were some other random
growth disturbances without typically identified characteristics in the
sampled trees (e.g., 32 tree rings from 1970 to 2012 in Figure 5 and some
unlabeled in Figure 11). We do not have enough confidence to attribute
all of the growth disturbance events to rockfalls or landslides, instead of
the fact possibly demonstrating that complex factors control the growth

FIGURE 10
The relationship between the recovery time of disturbed tree rings (A) and the growth suppression ratio (B) and kinematic energy of debris flow (KJ)
impacting the disturbed trees.

FIGURE 11
Tree-ring annual widths of sampledQilian junipers QYG2314 (A) andQYG2324 (B). Red arrows point to the segments with abnormal growth (growth
suppression and asymmetric growth) as a result of landslides, single block hitting, or some other factor.
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disturbance of tree rings in natural slopes (Carrara and O’Neill, 2003;
Ciervo et al., 2017; Zhang et al., 2019). Research on the characteristics of
growth disturbance controlled by different factors (e.g., geohazard,
climatic forcing, or insect outbreaks) is a worthwhile future endeavor.

Our main objective in the study of the relationship between
time to recover the initial width of disturbed tree rings and
kinematic energy was to reveal the possible pattern of the
relationship. Possible errors in the relationship dominate
uncertainties in our numerical simulation of debris flow
because we lacked precise topography data before 1982, which
significantly controls the simulation results of debris flow. We
tried to reduce the uncertainty by checking the 1970 satellite
images and adjusting the current high-resolution DEM data from
the surrounding terrains based on our previous experience (Sun
et al., 2021). In addition, the errors due to uncertainties in debris
flow simulation likely have more influence on the specific
exponent value than the relationship pattern of the negative
power function (Figure 11A). Accordingly, the degree of
uncertainty in the numerical simulation of debris flow does
not alter our conclusions about the possible coupling pattern
of growth disturbance in tree rings and the kinematic energy of
debris flow. Furthermore, because it is difficult to obtain
sufficient data on disturbed tree rings to build a more
convincing relationship, the negative power function obtained
in this study is raw. This means that the relationship is full of so-
called epistemic uncertainty compared with the real one (Wang
et al., 2014).

5 Conclusion

In this study, we applied an approach for dating debris flow by a
dendrogeomorphic technique and evidence of occurrence on remote
sensing images, which was applied to identify the debris flow in
QYM that occurred in 1982 in northeastern Tibet. Using clear
boundaries of debris flow on remote sensing images before and
after 1982 and a depth-integrated continuum model, we
reconstructed the process of the 1982 debris flow and obtained
the kinematic energy of the debris flow.

1. We observed two growth disturbance patterns in tree rings
influenced by the 1982 debris flow, including growth
suppression and asymmetric growth. By quantitative
measurement of annual widths of tree rings in 1981 and
1982 from Qilian junipers, the maximum growth suppression
ratio of tree rings influenced by the 1982 debris flow was 91%,
while the minimum was 51%, with an average value of 73%
(σ=0.16). The lasting time for disturbed tree rings by the
1982 debris flow to recover their initial width was from 5 to
26 years, with an average of 12 (σ=0.46) years.

2. Using simulated kinematic energy of the 1982 debris flow
impacting the sampled trees, we obtained a raw negative
exponential relationship between the kinematic energy of
debris flow and time to recover the initial width of disturbed
tree rings. The negative exponential relationship could be used to
roughly estimate the time for specific trees to recover their initial
state after an energy-calculated debris flow hazard.

By combining numerical simulation and remote sensing, the
present study allows us to clarify the relationship between time to
recover the initial width of disturbed tree rings and the kinematic energy
of debrisflows. However, field tests of how debris flow impacts trees and
long-termmonitoring of growth disturbance in tree rings are needed to
build a more reliable relationship and revise the conclusion in our study
in the future. Meanwhile, the monthly and annual resolution of
precipitation data does not allow for a satisfactory explanation of the
debris flow triggering conditions.More precise data on precipitation are
needed to explore the effect of precipitation on the debris flow in QYM.
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Short-term heavy rainfall often causes large-scale rainstorm debris flows in
mountainous areas of Southwest China. Aiming to investigate the
accumulation and movement of potential source material for the formation of
debris flow hazards under extreme short-term heavy rainfall, this paper takes the
Xiangbizui debris flow gully, Southwest China, as a case study. A detailed field
engineering and geological investigation was carried out on the valley
characteristics, formation conditions, provenance types, distribution range,
loose solid material reserves that can be transformed into debris flows, and
characteristics showing the variation in the grain size of the accumulated solids
along the gully to further explore the characteristics of rainstorm-induced debris
flow movement. The dynamic processes of debris flow movement and
accumulation are numerically simulated to analyze the maximum velocity,
accumulation height, range of influence, and evolutionary process based on
the theory of continuous media of the approximate Voellmy solution and a
high-precision three-dimensional model. The results indicated that rainstorms
and steep terrain are the main factors stimulating debris flows. The amount of
loose solid material in the channel is approximately 1550.61 × 104 m3, and the
dynamic material reserves are approximately 396.41 × 104 m3. The maximum flow
depth and velocity are approximately 3.5 m/s and 13 m/s, respectively, which
mainly occur in the upper and middle reaches of the channel and in the
accumulation fan at the outlet of the channel. The evolutionary process of the
debris flow includes four stages: a 0–1,500 m initial acceleration stage, a
1,500–2,200m fast forward movement stage, a 2,200–3,400m acceleration
stage in the middle and lower reaches, and a 3,400–4,300m deceleration and
end of accumulation stage. The research findings can provide a scientific basis and
strong support for risk assessment and avoidance, as well as prevention and
control of debris flows in mountainous areas with severe climate change.

KEYWORDS

rainstormdebris flow, numerical analysis, process of accumulationmovement, numerical
simulation, field investigation
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1 Introduction

Debris flows, which are sudden hazards in mountainous areas,
are characterized by a fast flow, high flow, intense energy for
carrying solid materials, and high destructive force, making them
one of the primary categories of geohazards in Southwest China and
worldwide (Tang et al., 2012; Hu et al., 2014; Ni et al., 2014; Gao and
Sang, 2017; Liu et al., 2020; Chen and Song, 2021; Chen et al., 2023;
Chen and Song, 2023). With recent global climate change, rainfall-
induced debris flow disasters feature high volumes and
concentrations of rainfall, extreme solid rainfall, a unimodal shift
in rain patterns, and short durations. Debris flow frequently lead to
severe impacts and significant losses to the economic production
and lives of residents (Chen and Song, 2021; Chen et al., 2023; Chen
and Song, 2023). Examples include the multiple outbreaks of debris
flows in the Xiangbizui gully in Southwest China on 23 October
2017, 26 June 2018, 11 July 2018, and 18 May 2019. Among these,
the larger-scale debris flow on 18 May 2019, flushed out
approximately 1.3×104 m3 of solid material at once, causing a
road blockage, a river blockage, and blockage of a road culvert
under construction, which led to direct economic loss. Thus,
analyzing debris flow hazards and predicting the debris flow
distance and flooding extent to propose prevention and control
measures are of great importance for national road access as well as
human safety in the study area (Collins, 2008; Jakob et al., 2012;
Thouret et al., 2020).

The general approach to examining debris flows is a statistical
evaluation and dynamic analysis based on data from regional
surveys of water sources, physical sources, and circulation
conditions. Such approaches have high confidence in the results
but are costly and cumbersome, and numerical simulations with
parameter correction can also provide a rational analysis (Canuti
et al., 1999; Thiebes, 2012). Utilizing a new generation of geographic
information systems (GISs) combined with theoretical modeling of
two-phase fluid analysis of debris flows to simulate the debris flow
movement and accumulation process, as well as providing critical
parameters for the later evaluation of debris flow hazard zoning and
prevention, are the current research areas and difficulties in the
theoretical study of debris flows, as well as the design of engineering
prevention and control (Xu et al., 2021; Chen et al., 2023). As a
nonhomogeneous mixed medium, debris flows have complex
physical processes and kinetic characteristics. With the
development and maturity of computer technology, numerical
algorithms, and intrinsic models, numerical simulation has been
the primary way to characterize debris flow motion (Harris et al.,
2009; Fischer-Kowalski et al., 2011; Ciurean et al., 2017). By
establishing numerical models of debris flows with numerical
analysis methods, the initiation, flow, and accumulation processes
of debris flows are simulated. The obtained results reveal the
movement process of debris flows with the help of data and
graphics, which can be used as references for debris flow disaster
prevention and planning and design of controlling measures
(Christen et al., 2010; Zhou et al., 2013; Gan and Zhang, 2019;
Zhang et al., 2019; Musumeci et al., 2021).

Dynamic modeling is one of the current research approaches to
predicting debris flow movement and accumulation; it generally
employs numerical techniques to simulate debris flow transport and
accumulation processes using energy and motion conversion laws

(Kang et al., 2022; Wang et al., 2022). For different debris flow
dynamics issues, Bao et al. (2021) compared and investigated the
Eulerian method, the CELmethod, and the FEM-SPHmethod based
on the Abaqus software in landslide barrage simulation by applying
the method of fluid-solid coupling a coupled fluid-solid coupling
(Bao et al., 2021). Liu et al. (2021a) proposed a complex fluid-
particle-structure interaction impact estimation model a coupled
fluid-particle-structure numerical model for predicting debris flow
propagation and building structural damage using the coupled SPH-
DEM-FEM method (Liu et al., 2021). Bao et al. (2023a) proposed a
new SPH integrated 3D numerical method for quantitatively
evaluating and solving the problem of 3D debris flow dynamic
simulation process (Bao et al., 2023a). Kong et al. (2022) used a
coupled physically based computational fluid dynamics (CFD) and
discrete element method (CFD-DEM) to numerically analyse the
different blocking mechanisms of flexible, slit and rigid blocking
two-phase geophysical flows (Kong et al., 2022). Bao et al. (2023b)
used a coupled finite discrete element method-smoothed particle
hydrodynamics (FDEM-SPH) approach to reconstruct a three-
dimensional model of a weir landslide and simulate its dynamic
process and proposed an evolutionary mechanism of high level flow-
like landslide-induced waves in a deep valley (Bao et al., 2023b).

The constant medium dynamic model is based on
hydrodynamics and uses the material–motion–energy dissipation
conversion equation to describe the dynamic process of a debris
flow. Therefore, the continuum model can more rationally portray
the kinematic properties of the solid material of a debris flow and is
thus widely used (Tang et al., 2023). Massflow adopts a depth
integral-based numerical analysis method of continuous medium
mechanics, which can reveal the whole process of the temporal and
spatial evolution of landslides, debris flows, flash floods, and other
mountain hazards and simplifies the three-dimensional
computational problem into two dimensions, effectively
improving the computational efficiency (Huang et al., 2022). In
particular, it has been applied in debris flow research, featuring a fast
speed, large scale, and scalability (Hungr et al., 1984; Ouyang, 2021;
Li et al., 2022). Related applications have been used in dam failure
debris flow simulation, risk assessment, and calculation of
parameters, such as the maximum rise height, impact force, flow
depth, and flow velocity, to enable debris flow simulation and
prediction of movement characteristics under complex terrain
conditions (Ouyang et al., 2015; Wu and Lan, 2020; Zhu et al., 2023).

Despite extensive research on the mechanism of debris flow
movement, fluidization and accumulation characteristics, as well as
numerical simulation, owing to the relative lack of basic geological
and research data, detailed investigations on the characteristics of
channel siltation and accumulation of material sources during the
process of debris flow movement have not been carried out.
Moreover, the simulated movement of debris flows has relatively
poor accuracy due to complicated topographic conditions at the sites
where debris flows develop and the inability to conduct large-scale
and high-precision topographic mapping in the whole basin area.
Therefore, we identify the detailed source conditions of debris flow
formation based on indoor data collection and field investigation in
this paper, including the source type, distribution range, storage of
loose solids that can be transformed into debris flows, and the
changes in the solid accumulation size of debris flows along the
channel. In addition, the 1:50,000 high-resolution topographic data
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of the Nose Mouth Gully are combined with the Voellmy numerical
analysis model to conduct numerical simulations of the movement
characteristics of a storm-type debris flow, revealing the dynamics of
the debris flow accumulation process, flooding extent, and
accumulation thickness. The research results can not only
provide a reference for debris flow disaster prevention and
control in mountainous areas affected by climate change but also
supply computational methods for in-depth research on storm-
induced debris flows in the future.

2 Background

The Xiangbizui gully is located in Pingwu County, Sichuan
Province, Southwest China. The geographic coordinates of the
mouth of the ditch are 104° 2′41.93“E, 32° 31′7.76“N (Figure 1).
The drainage area is 2.55 km2, and it is mainly 4.45 km in length,
with a maximum elevation of approximately 3,145 m and an outlet
elevation of 1,484.6 m. Intersecting the main Tiger River, the relative
height difference reaches 1,660 m, and the average slope drop of the
main ditch is 358.9‰.

The topography of the upper part of the gully is steeply inclined,
the middle and lower parts of the gully are narrow, and steep local
canyons are present. Following the characteristics showing each
stage of movement of the gully and the topography, the gully
channel mainly consists of three parts: the material source area,
circulation area, and accumulation area. The material source area

primarily comprises medium alpine landslides; the area is prone to
landslides, channel blockages during rainfall and channel scouring
due to the loose material structure. The channel of the flow area is
narrower compared to that in the source area, with a greater slope
and less vegetation on both sides of the channel, which quickly
causes undercutting of the channel and increases the scale of the
debris flow disaster. Finally, the accumulation area is located in the
outlet channel, where the debris flow washed out of the outlet and
deposited itself in the area, forming a large-scale debris flow
accumulation fan.

2.1 Geological environment

The research area lies on the eastern edge of the high
mountain–valley zone in the transition from the Qinghai-Tibet
Plateau to the Sichuan Basin; the area is doubly influenced by
the southeast and southwest monsoons and the cold air of the
Tibetan Highlands, and the climate elements are vertically
distributed according to the change in altitude. Consequently, the
precipitation is highly variable, with an average annual rainfall of
806.0 mm, and is unevenly distributed, with May to September
accounting for 80% of the annual rainfall within the region.

The central river valleys and valley slopes have widely
distributed loose accumulations of the Quaternary system. They
have experienced multiperiod glacial activities in the Quaternary
period, with glacial geomorphic relics, moraines, and ice-water

FIGURE 1
Regional location and basic developmental characteristics of the debris flow channel in Xiangbizui Gully, Southwest China (1:50,000 watershed
topographic data derived from high-resolution UAV (Phantom 4 RTK) photogrammetry. The coordinate system uses the China Geodetic Coordinate
System 2000).
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deposits. The types of Quaternary deposits in the riverbeds and
terraces of the main channel and its tributaries is complex and
include alluvial deposits, flood deposits, moraines, ice and water
deposits, and crumbling slope deposits. The most widely distributed
metamorphic rocks in the area are mainly metamorphic sandstone
and sandy slate, followed by crystalline greywacke and migmatite. In
the river valleys and valley slopes, there are loos Quaternary
accumulations caused by metamorphic rock weathering and
accumulation. The causes of Quaternary accumulations in
channels, riverbeds and terraces are complicated, and these
accumulations include alluvial and floodplain types (Figure 2).

2.2 Historical development

The debris flow ditch erupted on 23 October 2017, 26 June
2018, 11 July 2018, and 18 May 2019. On 23 October 2017, a large-
scale burst occurred as a slide, and the one-off volume of material
washed out by the debris flow was approximately 1.3×104 m3,
causing road blockage, river blockage, and under-construction
road culvert blockage, resulting in direct economic losses of
approximately 800,000 yuan. On 26 June 2018, Pingwu County,
Hu Ya Tibetan Township, experienced a heavy rainfall that lasted
approximately 4 h. Then, the debris flow ditch once again initiated
the debris flow, which washed out approximately 1.0×104 m3 of
material, resulting in the blockage of roads and river channels, and
buried roads, overwater culverts and retaining walls. As of 11 July
2018, the area again suffered from a heavy rainstorm, which
continued for approximately 6 h, and precipitation exceeded
100 mm, triggering the breakdown of a debris flow in this
debris flow channel and creating a pile-up of approximately
1.5×104 m3 material at the ditch outlet. Initiating large-scale
debris flows on 18 May 2019, the channel again flushed out
nearly 50,000 square meters of solid material, destroying high-
voltage line pylons, burying farmhouses, and washing away 600 m
of road. In addition, an extensive debris flow jammed the Tiger
River, posing a threat to the Tiger Township field town
approximately 1.5 km downstream.

3 Methods

3.1 Detailed investigation of field
engineering geology

Combining the emergency field investigation of typical debris
flow cases in Xiangbizui with relevant regional geological
background and related literature, field geological survey statistics
and unmanned aerial vehicles (UAVs) were used. The UAV
equipment model and postprocessing software were Phantom
4 RTK and PhotoScan, respectively. The specific processing flow
included image import, alignment (estimation of the camera
position and overlap position), creation of point clouds, 3D
models, DEMs, and orthophotos. To observe, record, and
describe the internal structural characteristics of the flow phase
in a typical profile of the primary channel and determine the
topographic, geomorphic and water source conditions of debris
flow formation, as well as the movement and scale of debris flows,
6 groups of particle size distribution tests on the debris flow deposit
were completed; these tests were conducted on samples from the
areas of formation, circulation, and accumulation of debris flows to
reveal the particle size distribution, superposition characteristics,
and genetic characteristics of debris flow deposits.

3.2 Numerical analysis

Based on a gridded the DEM of before and after debris flow
occurrence in Xiangbizui Gully, the modeling and numerical
analysis of debris flow movement and accumulation processes
were carried out by using the improved finite difference principal
fluid dynamics method; important characteristic parameters, such as
the fluid movement velocity, maximum accumulation thickness,
accumulation range, and evolutionary process of the thickness, were
obtained. As a result, the stages of debris flow movement in
Xiangbizui Gully were identified and divided.

In the continuum model, the debris flow fluid is assumed to be
an unstable and heterogeneous fluid that can be characterized by the

FIGURE 2
Regional stratigraphic background of the Xiangbizui debris flow gully (The coordinate system uses the China Geodetic Coordinate System 2000).
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average velocity U (x, y, t) (Savage and Hutter, 1989; Ouyang et al.,
2015):

U x, y, t( ) � Ux x, y, t( ), Uy x, y, t( )[ ]T (1)

where Ux and Uy are the velocities in the x and y directions,
respectively. T is the transpose matrix of the average velocity.
The magnitude of the speed can be defined as:

U‖ ‖ �
�������
U2

x + U2
y

√
(2)

where ‖U‖ indicates taking the absolute average of the velocity U,
which ensures that U is strictly positive in vector space, and the
direction of the fluid velocity can be defined by unit vector nu:

nu � 1
U‖ ‖ � Ux, Uy( )T (3)

The Voellmy rheological model is represented by the following
mass balance formula:

∂tH + ∂x HUx( ) + ∂y HUy( ) � Q x, y, t( ) (4)

where H (x, y, t) is the fluid height. Q (x, y, t) represents the mass
sources. When Q = 0, it means that no matter is deposited. The
average fluid depth equilibrium equation in the x and y directions
can be expressed as:

∂t HUx( ) + ∂x CxHU2
x + gzka/p

H2

2
( ) + ∂y HUxUy( ) � Sgx − Sfx

(5)
where Cx and Cy are the cross-section coefficients and gz is the
acceleration of gravity in the vertical direction. In the Voellmy

model, the vertical contact relationship can be defined as the
heterogeneous Mohr‒Coulomb relationship, and ka/p is the
coefficient of the earth pressure, which is formulated by the
following equation:

ka/p � tan 2 45° ±
φ

2
( ) (6)

where φ is the internal friction angle of the debris flow fluid.
Integrating the above equations, the Voellmy rheology equation
can be derived as:

d Uh( )
dt

� z · n( )nh − k Δh( )h − μ z · n( )h + 1
ξ
U2[ ]s (7)

where the variables are measured by length L, speed (gl)/2, and time
(L/g)/2 to obtain a unified Froude value. The gravity vector z = (0,
0, −1), and the perturbation coefficient is defined by the formula
ζ’=ξ/g and has no dimension. The detailed operations and processes
of the model are shown in Figure 3.

4 Research results

4.1 Flushing and siltation characteristics

The area of clear water in the upper reaches of Xiangbizui Gully
and its branch ditches generally has a significant slope, mostly
approximately 40°, and the longitudinal slope of valleys is steep
(generally greater than 400‰) (Figure 4A). The characteristics of the
movement of substantial uplift determine the regional crustal
movement. In addition, the catchment area is large, the branches
and shallow ditches are developed, and the channel is narrow. These

FIGURE 3
Construction and flow of the numerical simulation model of the study area.
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characteristics make sediment in this area converge rapidly under
rainfall, and the runoff that forms has a high velocity and scouring
ability of solid material. Therefore, the features created by scouring
and silting in areas where clear water converges are characterized by
scouring.

The scouring and silting characteristics of the area where clear
water converges have an overall longitudinal gradient in the
circulation area formed by the Xiangbizui debris flow of
approximately 438.24‰, with a slope of approximately 25°

(Figure 4B). Therefore, a steep–gentle–steep terrain change
appears in the channel. The terrain of the upper section of the
circulation area from 2,531 m to 215 m is also steep, with a
longitudinal gradient of more than 350‰; in this area, a large
landslide is present, and it is the primary source of the debris flow
that broke out on 18May 2019. The middle section of the circulation
area that formed lies in the middle reaches, where the terrain is
gradual and the longitudinal gradient is approximately 220‰. The
channel is bayonet-shaped, which leads to the accumulation of solid
materials, so this channel has mainly siltation characteristics. The
lower section of the flow area is narrow and steep, with a
longitudinal gradient of the channel bed of 647‰. At the same
time, multiple scarps are present in the channel, most of which are
bedrock. Consequently, this terrain is conducive to the accelerated
movement of debris flows, and this channel section has mainly
erosional characteristics.

The height difference of the area with alluvial siltation in the
accumulation area is approximately 350 m, with a 65.4 m channel
length and only a 167.8‰ specific longitudinal drop. Its
accumulation fan is developed, and much debris flow material is
accumulated in it. Thus, the alluvial characteristics of this section of
the channel are predominantly those of siltation. The debris flow

formed a large alluvial fan at the beginning of the channel. The fan is
200 m long and 200 m wide, with an average thickness of
approximately 7.0 m and a volume of approximately 28×104 m3

(Figure 4C).
The analysis of the morphology of the debris flow accumulation

fan and the characteristics of the extrusion of the main river indicate
that Xiangbizui Gully is a relatively old debris flow trench. The
topography of the debris flow accumulation area is trumpet-shaped,
with the front edge directly reaching the Tiger River. The front edge
is 150–200 m in width, and the back part is 30–50 m long, with a
vertical length of 200 m (Figure 4C). The total area of the
accumulation fan is approximately 0.04 km2, and the mound
thickness is approximately 7–10 m, accounting for approximately
28×104 m3 of mounded material. Since the survey work is focused on
the perspective of debris flow management, no special survey work
has been arranged to explore the history of debris flow formation
and development, and the changes in the mound fan structure are
complex. More intense human farming activities make studying its
mounded superposition relationship and analysis very difficult.
Hence, the present investigation is based only on the ground
survey and mapping, and some superficial speculations are
proposed based on the relationship of stacking and superposition
of the mounded fan body.

4.2 Compositional analysis of the particles in
the deposit

To examine the particle size of sediments in the channel pile, the
method is to collect soil samples from 0 to 50 cm in the surface layer
for a field sieving test and obtain the weight and percentage of

FIGURE 4
The circulation area in the upper (A) and lower (B) sections of the formation area and the accumulation fan at the outlet (C).
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particles with sizes of <5 mm, 5–20 mm, 20–50 mm, 50–100 mm,
100–150 mm, 150–200 mm, and >200 mm, as well as those in other
particle classes. Some of the sieved soil samples with particle
sizes <5 mm were then sent to the laboratory for further sieve
tests, and the results of field sieving and indoor tests were integrated
to calculate the percentages of particles of different particle sizes, as
shown in Table 1.

The chart shows that the grain size distribution of the debris flow
reflects the hydrodynamic conditions and scouring and depositional
characteristics of different gully sections, which is basically
consistent with the field investigation results; this is mainly
reflected in all the test results reflecting a large rock-to-soil ratio,
with the maximum ratio of 84.4:15.6 being the result of the particle
size analysis in the upper section of the accumulation area of
Xiangbizui channel ditch 04. The lowest value is 78.5:21.5 in the
midstream 05 region of the circulation area, with a sizeable rock-to-
soil ratio; the further downstream the ditch is, the weaker the
hydrodynamic conditions are, and the further upstream the ditch
is, the stronger the hydrodynamic conditions are.

Xiangbizui Gully has abundant and reliable open source areas for
debris flows. The distribution of sources is relatively concentrated, and
they are mainly distributed in the 2,531–1,550 m section of the ditch
and both sides of the ditch. There are 13 source points that were
investigated in this research, and the source types mainly include
landslides, collapse accumulations, slope erosion sources, and trench
accumulation sources (Figure 5). Moreover, the areas where the
channel does not have large avalanches and landslides were
calculated as light erosion areas. According to the survey statistics,
the total amount of accumulated solid material in the trench is
15.22×104 m3, and the dynamic storage volume that may be

involved in debris flow activities is 4.84×104 m3. A total of
1521.81×104 m3 of loose material was obtained from the avalanche
slide, and the dynamic storage volume that may be involved in debris
flow activity was approximately 386.91×104 m3. The erosion sources
on the slope surface totaled 13.58×104 m3, and the dynamic storage
volume that may be involved in debris flow activities was 4.6×104 m3.
Therefore, 1550.61×104 m3 of loose solid material was available, and
396.41×104 m3 of dynamic storage volume may be involved in debris
flow activities.

4.3 Water source conditions

Regarding topography and geomorphology, the relative height
differences in the Xiangbizui drainage basin are significant, the terrain
is steep, and the longitudinal slope of the ditch is vast, which is
conducive to the collection of debris flow materials and resulting
disasters. For the material source conditions, the total accumulation of
more material in the ditch, which is now the open ditch that houses a
solid material amount of 439.68 × 104 m3, may be involved in debris
flow activities that fill a dynamic storage volume of 56.05 × 104 m3; this
is equivalent to 35 times the annual 20 debris flows per year; the
critical rainfall intensity of debris flows may be reduced. Therefore,
both the frequency and scale of debris flow outbreaks may increase. A
future debris flow in themain ditch will occur once every 1–5 years. In
the future, as vegetation recovers and some of the material sources
stabilize, its frequency may gradually decrease. Accordingly, it is
estimated that approximately 2 debris flow disasters may occur
within 20 years of the designed lifespan, and the amount of solid
material that washes out is approximately 4.62×104 m3.

FIGURE 5
Main source types and distribution characteristics of debris flows in Xiangbizui Gully.
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The primary water source for debris flows in Nose Mouth Gully
is atmospheric precipitation. Since debris flows occur in the rainy
season, snow and ice meltwater in spring generally do not become
water sources for debris flows. In addition, the channel area is not
enriched in groundwater; hence, it does not constitute the primary
water source for debris flows, and no reservoirs, lakes, or other
concentrated surface water bodies exist in the channel area.
Therefore, surface runoff from heavy rainfall is the primary water
source and stimulus for debris flows.

Precipitation statistics according to the 2019 rainfall data in the
district show that the rainfall in the Xiangbuzui ditch is low but
relatively concentrated, often occurring with localized
geographically defined rainstorms and hail, and precipitation is
concentrated in the rainy season (May to September) (Figure 6),
which accounts for 80% of the annual rainfall. Based on the contour
map attached to the “Manual for the Calculation of Storm Floods in
Small- and Medium-sized Watersheds in Sichuan Province”, the
average values of 1/6, 1, 6, and 24 h multiyear maximum rainfall in
the study area are 9.0, 12.5, 33, and 45 mm, respectively. Under the
condition of p=2%, the rain intensities at 1/6, 1, 6, and 24 h can reach
22.32, 26.88, 59.4, and 86.4 mm, respectively. For p=5%, the 1/6, 1, 6,
and 24 h rain intensities reach 18.27, 22.75, 52.47, and 75.15 mm,
respectively, while the latest debris flow disaster in Xiangbuzui
Gorge received 83.3 mm of rainfall, far exceeding the pre-disaster
rainfall. However, the distribution is relatively sparse despite the
seasonal snow accumulation in the upper reaches. Thus, snow and
ice meltwater are used only as water conditions for forming debris
flows, while heavy rainfall mobilizes mud. Moreover, the slopes of
the upper part of the valley and each side of the valley accelerate the
runoff and accumulation of surface precipitation, providing
favorable water conditions for the formation of Xiangbizui Gully.

4.4 Dynamic numerical simulation

4.4.1 Process of flow movement at depth
This research simulated the debris flowmovement in Xiangbizui

Gully under actual rainfall frequencies using Massflow software and

obtained the flow velocity, mud depth, and characteristics of mound
fan movement of this debris flow ditch at this frequency. Three
modes of topographic data in the Massflow model are z+h, z-h, and
z+surface, and they are used for geometric assignment; this
numerical simulation is based on the post-slide DEM of the
landslide in Nixu village. Then, the topography raster data before
the landslide are subtracted from the topography raster data after the
landslide (the size and range of both raster elements should be kept
the same) to obtain the topography raster data h within the slide
area. However, the original topographic conditions were not input
into the digital elevation model (DEM) and image data because the
Xiangbigou debris flow trench is located in a high mountain canyon
area, and many outbreaks of short-duration heavy rainfall-type
debris flows occur in the trench. Therefore, a raster interpolation
method is used to recover the undamaged terrain with a high-
precision digital elevation model that shows the flow from UAV
aerial photography. Finally, a raster image element size of 2 m*2 m is
obtained for the preslippage terrain raster data. Due to the limitation
of computational performance, the study resampled the numerical
computation grid accuracy to 7 m×7 m, the number of
computational grids ranks 335*212, giving a total of 71,020 grids,
a time interval of 50 s, and a total computation time of
approximately 6 h.

To select a suitable friction model and corresponding motion
parameters for the numerical simulation of debris flows in
Xiangbigou and to research and compare debris flow events with
similar conditions for disasters in this area, the Voellmy base friction
model and three parameters, namely, debris flow bulk density γ,
friction coefficient μ and turbulence coefficient ξ, which are the most
suitable for the actual situation, are selected. The paper used the
debris flow deposits at the five locations in Table 1 to mix the debris
flow slurry with the floodwater in the ditch, mix the slurry into the
debris slurry consistency, weigh it, and measure the volume of the
slurry on-site, and then calculating its gravity as the gravity of the
debris flow fluid according to the “Specification for Debris flow
Hazard Prevention and Control Engineering Investigation” (DZ/
T0220--2006) (Varnes, 1958; Geological and Environmental
Department of the Ministry of Land and Resources, 2006; Hungr
et al., 2014). The friction coefficient (μ) and turbulence coefficients
(ζ) were determined by preferential calibration of the model
parameters using the methodology of Luna et al. (2011) and Liu
et al. (2021) (Luna et al., 2011; Liu et al., 2021). The judgment was
based on the iterative selection of the parameters until the
simulation results matched the observed characteristics with the
velocity and height of the debris flow along the channel (Luna et al.,
2011). The debris flow γ = 1800 kg/m3, μ = 0.25, and ζ= 200 (m/s2);
the total simulation time is 2,400 s, and different mud depths, flow
intensities, and accumulation ranges of debris flows are obtained.
The simulation results show that the maximum flow depth of the
debris flow reaches 2.5 m in the first 100 s and 3 m within 300 s. The
flow velocity is fast, the flow accumulates in front of the impact fan at
the gully mouth, and then the accumulation velocity slows down.
The final accumulation thickness is approximately 3.5 m. After 600 s
of simulation, the source material is transformed into fluid, moves
downstream along the channel, and accumulation accelerates at the
accumulation fan at the groove mouth. At 900 s, the thicknesses of
some fluids in the upper reaches of the debris flow channel gradually
decrease, and the thickness of the fan accumulation gradually

FIGURE 6
Annual rainfall and rainfall in the flood season in Xiangbizui Gully.
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increases and begins to progressively diffuse. At 1,200 s, most of the
fluid accumulates in the channel mouth and slowly accumulates, and
the maximum flow depth in the channel decreases to less than 1 m.

At 2,400 s, debris flow movement ends, and the maximum flow
depth of the accumulation fan diffuses outward and is reduced
compared with that at 1,200 s. In this simulation, the maximum flow

TABLE 1 Statistical analysis of the particle composition of the deposit in Xiangbizui Gully.

Sample site Particle size range (%) (mm) Rock-to-
soil ratio

>60 60–40 40–20 20–10 10–2 2–0.5 0.5–0.25 0.25–0.075 0.075–0.005 <0
.005

Downstream of the
accumulation area

41.1 10.2 13.1 11.3 8.5 4.7 5.2 3.1 2.7 0.1 84.2:15.8

Middle section of the
accumulation area

31.7 15.2 19 10.2 7.7 5.1 4.7 3.9 2.4 0.1 83.8:16.2

Formation in the lower
section of the circulation

area

38.5 10.2 16.7 7.7 11.3 5.2 3.9 3.2 3.1 0.2 84.4:15.6

39.1 9.4 14.2 13.6 7.5 7 5.5 2.8 0.8 0.1 83.8:16.2

Middle section of the
formation circulation area

37.1 8.4 11.4 13.2 8.4 6.5 5.3 4.7 4.9 0.1 78.5:21.5

Upper section of the
formation circulation area

38 10.4 16.3 13.5 6.2 5.7 4.4 3.8 1.5 0.2 84.4:15.6

FIGURE 7
Variation in debris flow depth (m) in Xiangbizui Gully at different times.
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depth in the debris flowmovement is as high as 9. 6 m. In the process
of fluid movement, the debris flow direction is consistent with the
process of movement. From the starting point of the H03 landslide,
the source material first flows into the formation area, forming initial
accumulation area D1; from the starting point of the H02 landslide,
material flows into the gully accumulation area, creating
accumulation fan D2. After that, the material in accumulation
area D1 and the landslide at starting point H02 further meet in
the circulation–formation area in the middle of the debris flow gully,
and the debris flow depth and velocity all show an enhancement
effect based on superposition; this effect accelerates the speed (c-e)
of debris flow movement in the lower section of the gully. After
moving to the gully mouth, the open terrain causes the debris flow to
stabilize and accumulate rapidly, forming the final typical fan-
shaped accumulation area D3 (Figure 7). The measured area and
volume of the deposition fan resulting from the latest debris flow
event in Xiangbigou are compared with the numerical simulation
results under actual rainfall frequencies. The results show that the
measured area of the deposition fan is 0.04 km2, the deposition fan’s
depth and numerical simulation area are 0.377 km2, and the
simulation accuracy of the stacking depth reaches 92%.

The curve showing the evolution of the accumulated thickness in
the longitudinal section of the main gully obtained from the raster
data of the fluid depth in the debris flow gully at different times shows
that the accumulated thickness in the longitudinal section of the main
gully changesmost drastically within 0–100 s; themaximum thickness
appears at distances of 0–1.5 and 3.2–3.6 km in the gully formation
area, which occurs in the stage of rapid transformation of gravitational
potential energy into kinetic energy of the sliding body. After t = 300 s
the maximum accumulated thickness in the channel increases over
time, its speed of decline slows down obviously, and its ability tomove
forward gradually weakens, but the accumulation depth deepens.
When t=600–1200 s, the maximum accumulated thickness in the
channel is approximately 1.3 m, and the change in the accumulated
thickness in the source region of the channel decreases obviously, but
the range of change is smaller than that in the whole front edge of the
accumulation fan. When t=2,400 s, the comparison of the thickness

evolution curves shows that the residual fluid in the front edge of the
accumulation fan has stopped moving overall, the distance of
horizontal movement has reached the maximum value of 4.45 km,
and the accumulated thickness in the whole accumulation area no
longer changes, reaching the final accumulation form (Figure 8).

4.4.2 Flow speed effects along the channel
To further study and compare the velocity change when the fluid

moves to each position in the longitudinal section of the gully, the
velocities at all monitoring points in the main gully in six periods are
extracted along the main gully containing the debris flow, and the
curve showing the velocity change (Figure 9) is generated. The
results show that the overall velocities of the fluid are approximately
0–13 m/s within 0–100 s. The velocity is relatively high during the
whole flow process, and the range of distance of the sliding body
movement can be monitored at the upstream position of the
corresponding source area as 0–1,300 m. During 100–300 s, the
distribution begins to disperse and the velocity begins to decrease
due to the expansion of the range of fluid accumulation in the
channel and the synchronous expansion of the range of fluid
velocity. The region with higher velocity is the transition between
the upstream front edge of the channel and the source area, and the
maximum velocity of the sliding body remains at 0–8 m/s during
this period. From 300 to 600 s, the velocity of the fluid decreases
obviously from the leading edge to the trailing edge, and the velocity
of the leading edge decreases to approximately 5 m/s. At
600–1,200 s, the maximum velocity of the leading edge of the
sliding body drops to less than 1 m/s. When t=2,400 s, the
velocity at the stacking fan in the valley drops to zero, and only
the residual sliding body in the source region maintains a certain
flow velocity. During 300–6,000 s, the leading edge of the source
region and the flow region upstream of the channel have the longest
fluid movement time, and the peak velocities are 0–8 m/s. Moreover,
there are oscillations in velocity in the distance range of 0–1,000 m,
which may be related to the different phases of the flow of debris
flow itself, which may show some instability during the initiation
and acceleration of the debris flow.

FIGURE 8
Evolutionary process of the fluid flow depth in the channel and
response of topographic elevation during 6 monitoring periods along
the channel.

FIGURE 9
Evolutionary process of the flow velocity along the channel at
different times.
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Through the above analysis, the whole process of debris flow
movement from initiation to stoppage can be divided into four
stages: the starting and accelerating stage of the fluid body is in the
range of 0–1,500 m upstream of the main channel, and the
maximum velocity reaches 13 m/s in this period. During
1,500–22,200 m, the sliding body moves forward rapidly, the
maximum velocity of the sliding body is approximately 1 m/s,
and the horizontal movement distance reaches 700 m. At
2,200–3,400 m, the fluid accelerates to the middle and lower
reaches of the channel, and the horizontal movement distance
reaches the maximum of 1,200 m, which is the core stage of the
long-distance movement of fluid. During 3,400–4,300 m, as the flow
velocity gradually slows, the accumulated thickness in most areas of
the accumulation fan continuously accumulates to 3.5 m, and the
front edge of the debris flow stops moving and reaches the final
accumulation state.

5 Discussion

The relative height difference in the upper reaches of the
Xiangbizui Gully channel is approximately 1660.4 m, and the
average gradient of the main channel is 358.9‰. The terrain is
steep, and the longitudinal slope of the valley is large, which provides
favorable topographic conditions for the development of debris
flows. The regional structure has an area of strong uplift, and the
undercutting valley and erosion of the side are strong, which
increases the erosion of the debris flow gully. The vegetation
coverage in the basin is generally high, with an average
vegetation coverage rate of approximately 70%. The recent
(2019 debris flow) range of debris flow scouring and silting in
the valley is approximately 2 m, and the debris flow activity intensity
is high. Metamorphic sandstone, phyllite, limestone, loose
Quaternary residual slope deposits, colluvium, ice water deposits,
etc., are mainly exposed in the area. The total reserves of loose
materials along the ditch are abundant, and the average thicknesses
of loose materials in the sand-producing area are 1–55 m. The slope
of the gully bank is generally greater than 30, and the shape of the
gully valley is V-shaped, which is beneficial to the convergence of
source material and source water and the formation of debris flows.
The degree of gully blockage is average. In addition, slippage in the
area, side erosion of the gully bank, and re-transport of loose
material at the bottom provide abundant solid source conditions
for the occurrence of debris flows, while good catchment conditions
and sufficient hydrodynamic forces in the gully provide better water
source conditions for the development of debris flows, thereby
providing basic requirements for the formation of debris flows.

According to a previous investigation, four large-scale debris
flows occurred in Xiangbizui Gully on 23 October 2017, 26 June
2018, 11 July 2018, and 18 May 2019. Among them, the latest
incident had an occurrence period of once in 50 years, with a 24-h
rainfall of 83.3 mm, which caused a large-scale debris flow in the
gully. The debris flow rushed out of the gully mouth and buried the
highway for approximately 600 m, and the debris flow volume was
approximately 5 × 104 m3. The debris flow rushed into the Huya
River, which is the main river, blocking the Huya River. According to
the classification, i.e., high-frequency debris flows (multiple times a
year to once every 5 years), medium-frequency debris flows (1 time/

5–20 years), low-frequency debris flows (1 time/20–50 years), and
extremely low-frequency debris flows (>1 time/50 years), the debris
flows in this gully are classified as high-frequency debris flows. In the
debris flow formation area, loose materials, such as mud and sand,
are collected in valleys under the action of concentrated rainfall.
Because the fluid contains much sediment, has a large specific
gravity, and the relative height difference in the basin is large, the
terrain is steep, the potential energy is converted into kinetic energy
during collection, the flow velocity is fast, and the ability to impact
erosion is strong. Because of its rapid erosion, the sediment forms
the foot of the gully bank slope in the circulation area, which leads to
a large area of gully bank slippage, and the loose source material
quickly replenishes to the fluid. In addition, its downward erosion is
intense, and the loose deposits at the original gully bottom also enter
the debris flow, rapidly increasing the content of solid matter in the
fluid (Ouyang et al., 2013).

The scale of a debris flow is mainly related to the accumulation
and dynamic changes in loose solid source material in the gully and
the rainstorm causing the debris flow. When loose solid source
material accumulates more in gullies and encounters concentrated
rainstorms, large-scale debris flow disasters often occur (Nettleton
et al., 2005; Hungr and McDougall, 2009; Iverson and Ouyang,
2015; Wang et al., 2015; Wang et al., 2021). After the occurrence of
a debris flow, some solid source material that can participate in a
debris flow in the gully area are transported away by the debris
flow. According to reconnaissance of the site, there is currently a
large amount of loose solid source material that can participate in
debris flow activities in the gully area. The solid source material in
the gully area accumulates again and encounters heavy rain that
can stimulate debris flows, which causes the loose solid materials
that can participate in debris flow activities to rush into the
accumulation area again. However, the shortening of the debris
flow development and occurrence period are important factors
influencing the increase in the scale of activity and destruction
ability of Xiangbizui Gully.

6 Conclusion

This research adopts a field geological survey, low-altitude
unmanned aerial survey (UAV), numerical simulation and other
methodologies to explore the characteristics of the development
conditions, surface accumulation, and kinematics of the Xiangbizui
debris flow gully in southwestern China and mainly draws the
following three conclusions:

1) The detailed field results showed that rainstorms and topographic
conditions are the main conditions for debris flows, while the scale
of the debris flows is primarily correlated with the accumulated
volume of loose solid sourcematerial in the gully and the dynamics
of the triggering conditions. At present, there are a total of
1550.61×104 m3 of loose solid source material in Xiangbizui
Gully and 396.41×104 m3 of movable deposits that may be
involved in debris flow events; thus, a large-scale debris flow
hazard may occur in the case of heavy rainfall.

2) Numerical analysis revealed that the movement and
accumulation processes of the Xiangbizui debris flow gully are
characterized by remarkable phased flow and uneven
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accumulation in the topographic domain. The maximum debris
flow depth of approximately 3.5 m is mainly distributed in the
gully channel and the accumulation fan at the outlet, and the
maximum flow velocity of 13 m/s is concentrated in the middle
and upper reaches of the channel where the topography is
steep. The whole flow process consists of four stages: initial
acceleration, fast forward movement, acceleration, deceleration
and stopping.

3) This research was carried out to assess the geo-environmental
conditions after the outbreak of debris flows, which were
influenced by the variability of local heavy rainfall events in
the middle–high zone, and it was hypothesized that new
landslide bodies would be formed within the debris flow
source area to further replenish the source material.
Therefore, the monitoring of debris flows should be increased
in the later stage of monitoring and control project operation,
and it is necessary to supplement and update the research results
according to the specific changing characteristics.
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Investigating the response of landslide activity to climate change is crucial for
understanding the disastrous effects of climate change on high mountains.
However, the lack of long-term, spatial–temporal consistent measurement of
landslide activity prohibits the study of this relationship. In this work, we used two
methods to derive the time series of a landslide’s deformation and study its
relationship with precipitation in the northeastern Tibetan Plateau. The small
baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) method
with Sentinel-1A images is first applied to derive time series of the landslide’s
deformation from 2020 to 2021. A recently developed method to derive
cumulative deformations of optical images was used with Landsat 5 and
Sentinel-2 images to derive the long-term deformation time series from
1986 to 2023. Centimeter-scale deformations detected by using the InSAR
method are mainly located in the upper and eastern parts of the landslide,
whereas meter-scale deformations detected by using the optical method are
in the middle of the landslide. Time-series results from both methods show that
intra-annual initiations of the landslide’s deformation occurred in rainy months
(from July to October). Although there seems to be no direct relations between
inter-annual deformations and precipitation, significant displacements since
2020 occurred after exceptionally wet years from 2018 (with a record-
breaking precipitation year in 2020). With optical images, we found that the
maximum cumulative deformation of the landslide has been >35m since
1986 with major deformations (>20m) found after 2020, which may indicate
an imminent risk to the Lijie town near the toe of the landslide. With climate
change, increased precipitation is expected in future, which may trigger more
similar landslides in the vicinity of this region. This work demonstrates an
executable framework to assess landslide hazard risk under climate change.

KEYWORDS

pixel offset tracking, small baseline subset-interferometric synthetic aperture radar,
landslide deformation, climate change, landslide simulation
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1 Introduction

Landslide hazards are major threats to mountain communities
(Froude and Petley, 2018). Due to complex topography, landslides
usually act as the initiators of mountain disaster chains (Cook et al.,
2018; Qi et al., 2021). For example, the 2000 Yigong landslide in
Tibet blocked the Yigong River, forming a giant lake, the dam-
breaking flood of which affected downstream regions of hundred
kilometers (Delaney and Evans, 2015). In July 2016, another
landslide in Tibet triggered the collapse of a moraine lake, which
led to a flood disaster of the Sunkoshi River in Nepal and damaged
downstream infrastructures such as roads and hydropower plants
(Cook et al., 2018). In October and November 2018, the two Baige
landslides dammed the Jinsha River and resulted in two mega floods
in Yunnan province (Fan et al., 2019; Ouyang et al., 2019; Zhang
et al., 2020). In February 2021, the Chamoli ice–rock avalanche in
Uttarakhand, India, scraped glacial moraine, triggered a landslide-
glacial debris flow (mountain torrent) disaster chain, destroyed two
hydropower stations, and caused nearly 200 casualties (Qi et al.,
2021). With ongoing climate change and increased human activities
in mountains, similar disasters may become common phenomena.

1.1 Studying the impacts of climate change
on landslide activities is challenging

The topic of climate change’s impact on landslide activities has
long been recognized (Gruber et al., 2004; Crozier, 2010). More
landslide activities have been expected with higher temperature and
intense rainfall under climate change (Ozturk et al., 2022). Although
theories have been formulated to explain the mechanisms of
landslide due to climate change (Huggel et al., 2012; Ozturk
et al., 2022), existing works mainly rely on statistics of regional
landslide inventories of a few years (Pei et al., 2023). There are some
limitations to use these landslide inventories: 1) most landslides are
usually small in size and can only be recognized in very high spatial
resolution (VHR) optical images (finer than 1 m), which became
widely available in 2000s and not long enough to assess the impact of
climate change (Deroin et al., 2012). In addition, frequent
acquisitions (e.g., yearly) of VHR images for many years in
remote mountains are expensive and very rare, and interpreting
landslides from optical images of different spatial resolution could
not generate temporally consistent landslide inventories. 2)
Establishing regional landslide inventories is labor- and time-
consuming. 3) Mapping of landslides is rather subjective
depending on the interpreter’s’ personal experience (Galli et al.,
2008; Van Westen et al., 2008). Therefore, there is a lack of long-
term, temporally consistent observations of landslide activities that
can be used to quantify the impacts of climate change (Patton
et al., 2019).

In contrast, measurements of a slow, long-lasting, creeping
landslide’s deformation could result in more frequent, longer-
term observations. In addition, landslide deformation is simpler
to study, with all influencing variables being constant (e.g., local
slope and lithology), except for climate.

1.2 Synthetic use of optical feature tracking
and interferometric synthetic aperture radar
(InSAR) has been rarely applied for the
same landslide

Based on the principle of radar phase interference, the
interferometric synthetic aperture radar (InSAR) algorithm
can identify landslide deformation of a few millimeters to
centimeters (Meng et al., 2015; Zhang et al., 2020). However,
the radar phase interferometry method has the following
problems: 1) it is greatly affected by vegetation, and it is
difficult to find the same point in densely vegetated areas; 2)
the temporal interval between two phase-coherent synthetic
aperture radar (SAR) images cannot be too long; otherwise,
coherent imaging cannot be obtained; 3) it has difficulty in
detecting surface deformation that exceeds a single wavelength
in image pairs; 4) the monitoring accuracy is significantly
affected by atmosphere conditions, and it is necessary to find
a stable area to remove the atmospheric effect (Yang et al., 2018).
The small baseline subset (SBAS) technique with multi-SAR
images is frequently used to overcome some of the drawbacks
of InSAR and to derive time series of surface deformation
(Intrieri et al., 2018). Despite this, the deformation detected
by using the radar phase interferometry method is a one-
dimensional deformation in the radar line of sight (LOS)
direction, and it may lead to omissions in complex terrains
with single-orbit data.

The sub-pixel offset tracking (POT) of optical images is
another commonly used method to invert landslide deformation
based on the brightness information of remote sensing images (Liu
et al., 2020). POT is simpler to operate when compared to the
InSAR method. It could use image pairs of longer time intervals
and is better at extracting larger displacement deformation (Yang
et al., 2020b). The monitoring accuracy of this method is related to
the spatial resolution of the imagery used (Stumpf et al., 2017). In
recent years, high spatial resolution remote sensing data have
become easier to access, and applications of POT (such as the
Co-registration of Optically Sensed Image and Correlation (COSI-
Corr) and MicMac) have become more common (Leprince et al.,
2007; Bradley et al., 2019; Lacroix et al., 2020). A time series
inversion method has recently been proposed to reduce
background noise in optical POT results (Bontemps et al.,
2018). However, most previous works used either InSAR or
optical POT to derive landslide deformation, and few works
compared both methods.

In this work, we used SBAS-InSAR and optical POT to study the
spatial and temporal deformation of the Beishan landslide in
northeast Tibet. Synthetic use of both methods could unveil a
holistic picture of the landslide’s dynamics and its long-term
deformation history and prompt a better understanding of its
response to climate change. Our objectives are 1) to reveal and
compare the surface deformations of the landslide with SBAS-
InSAR and optical POT methods; 2) to analyze deformation
dynamics in relation to climate drivers; and 3) to simulate
potential disastrous scenarios for a nearby town.
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2 Study area

In the eastern mountains of the Qinghai–Tibet Plateau, landslide
hazards are very active because of the following reasons: 1) deep
canyons incised by major rivers are pervasive; 2) tectonic activities
are very active, and earthquakes occur frequently; and 3) local lithology
is fragmented and fragile (Zhang et al., 2021). The study area is in the
northeastern Tibetan Plateau. The study area has a monsoon climate,
and the multi-year Global Precipitation Measurement (GPM) shows
that the average annual precipitation of the study area is 598.5 mm.

The Beishan landslide in Zhouqu County, Gansu, China, is
studied. The Bailong River runs through the study area, and the
landslide occurred on the northern bank of the river. The Lijie town
is located at the foot of the landslide along the Bailong River (Figure 1).
The elevations of the landslide head and the toe are ~2,473 and
~1,582 m, respectively. The aspect of the landslide ranges from

135° to 219°, and the mean aspect is 178°. The landslide body has
three major lithologies. The upper part of the landslide is Devonian
limestone. The middle part of the landslide is Quaternary loess, and
the lower part of the landslide is the Silurian slate and phyllite
(Zhong et al., 2022). The surface of the landslide area is covered by
sparse xerocolous grass and shrubs. Landslide scarps are clearly
visible in optical images of earlier than 2017. The landslide had been
reported in previous work, but its deformation was not well-studied
(Zhong et al., 2022). The landslide has been slowly moving for a long
time. In the past 40 years, it reactivated several times and transferred
into debris flows during heavy rains in 1978, 1992, 2010, and 2018.
In 1978, reactivation of the landslide damaged many cottages, and
the local authorities displaced more than 100 threatened families
(Wang et al., 2022). Since August 2020, the landslide has partly
reactivated and caused some road collapses in Beishan village near
the landslide head.

FIGURE 1
Study area (A–C), the Beishan landslide aspect distribution (D), and the field photos (E–G).
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During 14–20 August 2022, we carried out field work in the
study area and took some photos of the Beishan landslide. By
interviewing residents, we found some people in the west part of
the Lijie town had already moved to other places in awareness of the
landslide hazard. Constructions have been implemented by the
government at the landslide head to try to stabilize the
slope since 2021.

3 Materials and methods

3.1 Rainfall data for 1986 to 2022 and the
Mann–Kendall test

In this work, three sets of precipitation data were used. The first
set of precipitation data is the GPM. It is a joint satellite mission by
the National Aeronautics and Space Administration (NASA) and
the Japanese Aerospace Exploration Agency (JAXA) to measure rain
and snow every 3 hours globally. GPM data are produced with
microwave and infrared precipitation estimates of satellite and
precipitation gauge estimates. using the Integrated Multi-satellitE
Retrievals for GPM (IMERG) algorithm (Fang et al., 2019). The
monthly GPM v6 data used in this work are downloaded from
Google Earth Engine, and the data have a spatial resolution of
11,132 m. The monthly GPM v6 data from June 2000 to September
2021 are available. Annual GPM data from 2001 to 2020 were
summed from the monthly GPM v6 data.

The second set of precipitation data is the Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS) data. It is a quasi-global
rainfall dataset from 1981 to the present day. CHIRPS combines 0.05°

resolution satellite imagery with field station data to create gridded
rainfall time series for trend analysis and seasonal drought monitoring.
The CHIRPS rainfall data are daily rainfall data, and we obtained
monthly rainfall data from 1986 to 2022 through the Google Earth
Engine (GEE). The third set of precipitation data is from a
meteorological station in the Zhouqu city, which is ~30 km east of
the landslide area. Monthly precipitation data from 1986 to
2021 measured by this station are also used as a reference.

The Mann–Kendall (M-K) test is often used to analyze long-
term, inter-annual, and seasonal trends and mutations in
meteorology and hydrology (Pei et al., 2023). In this work, we
mainly obtain the trend and p-value test of three sets of different sets
of rainfall data through the trend analysis of the M-K test.

First, we defined time-series data as X1, X2, X3, . . . , Xn, where ni
denotes the cumulative number of samples. Among them, Xj is greater
than Xi in the time series (1≤i≤j). The statistic Sk is defined as follows:

Sk � ∑k

i�1ni. (1)

Under the assumption that the time-series data are randomized
and independent, the mean and variance of the statistic are
expressed as E (Sk) and Var (Sk), respectively. They can be
represented as follows:

E Sk( ) � k k − 1( )
4

, (2)

Var Sk( ) � k k − 1( ) 2k + 5( )
72

. (3)

Then, we normalize the statistic Sk and obtain the U(Sk).

U Sk( ) � SK − E(Sk)�������
Var Sk( )√ . (4)

3.2 Surface deformation by SBAS-InSAR

We used a total of 46 scenes of Sentinel-1A single-look
complex (SLC) images under the descending orbit and
59 scenes of ascending orbit data from April 2020 to April
2022 to derive surface deformation using SBAS-InSAR (https://
search.asf.alaska.edu/), and the orbit correction is performed
through the precise orbit file (https://scihub.copernicus.eu/)
corresponding to the time. By setting a temporal baseline
threshold of 60 days and a spatial baseline threshold of 20%,
261 and 219 interferometric pairs were generated for the ascending
and descending track images, respectively. The image parameters
are shown in Table 1. Among them, the maximum spatial
thresholds in the descending track and ascending track image
pairs are 228 and 218 m, respectively. Connections of SAR images
are shown in Figure 2.

Adaptive filtering functions were used for improving interferogram
quality, and unwrapping of the phase was done by using the minimum
cost flow (MCF) algorithm (Werner et al., 2003; Pepe and Lanari, 2006).
After these processes, we used SRTM-DEM (https://dwtkns.com/) data
for terrain correction (Zhang et al., 2021).We set ground control points
(GCPs) based on the selection of a relatively stable region. To estimate
and remove the remnant constant phase, these points are used to do
refinement and reflattening. We inverse the first deformation rate to
flatten the resulting interferogram by selecting the linear model. Based
on the result of the first deformation rate, we remove atmosphere phase
delay by using a temporal high-pass filter and a spatial low-pass filter to
separate the phase components. Finally, the singular value
decomposition (SVD) method was used to obtain LOS deformation
results from the unwrapped phase (Chen et al., 2021; Berardino et al.,
2002). The SBAS-InSAR operation steps of this work are implemented
in the ENVI/SARscape package. A 1:4 multi-look operation is used for

TABLE 1 Parameters of SAR images.

Radar satellite Sentinel-1A

Wavelength (m) 0.056

Polarization mode VV

Orbital direction Ascending Descending

Path number 62 479

Frame number 55 107

Time span April 2020–April 2022

Spatial resolution (m) 5*20

Number of images 59 46

Number of composing image pairs 261 219

Heading (°) 347.07 192.92
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the range and azimuth direction, and the final output image resolution
is 20*20 m.

3.3 Deformation derived by pixel offset
tracking and time-series inversion

Sentinel-2 images with POT were first used to derive the surface
deformation of the landslide. The Multi-Spectral Instrument (MSI)
onboard Sentinel-2 images is a push-broom sensor. There are two
Sentinel-2 satellites at space, 2A and 2B, both of which are phased at
180° to each other. For each satellite, the revisit time at the equator is
10 days. The constellation of two satellites can view the equator every
5 days. At mid to low latitude, the revisit time is even shorter (<5 days).
There are 13 bands with a spatial resolution of 10, 20, and 60 m. Near-
infrared (NIR), red, green, and blue are four bands with 10 m in spatial
resolution. The 10-m red band is themost frequently used data to detect
surface deformation (Yang et al., 2020a; Qi et al., 2021).

We downloaded 135 Sentinel-2 red band images (t0, t1, . . . t134)
from 27November 2015 to 24May 2023 (Table 2) and 94 Landsat-5 red
band images from 1986 to 2011 (Table 3). For this work, we selected
images that were least affected by clouds. We used the COSI-Corr
software, which was developed by a team in the California Institute of
Technology (Leprince et al., 2007) and is a frequently used sub-pixel
offset tracking method to derive surface deformation in Sentinel-2
images (Bontemps et al., 2018; Lacroix et al., 2018; 2020; Yang et al.,
2020a; Qi et al., 2021). To derive surface deformation with the software,
we must compose a pair of two images acquired at different dates. The
principle of the COSI-Corr is to use sliding windows to find the
difference between the earlier or the master image and the later
image, also known as the slavery image. By taking the image of
Sentinel-2 as an example, we composed 2069 image pairs with
these 135 images.

A �

1 0 . . .
0 0 /

0 0 0
0 0 0

/ / /
0 0 /
0 0 /

/ / /
−1 0 1
0 −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Matrix A is a two-dimensional matrix. It has 2069 rows and
135 columns.

The rank of A is 135, which is the same as that of
unknown variables.

X � x0−1 x0−2 x0−3/x0−44 x0−142[ ]. (6)

Vector X is a one-dimensional vector. It has 135 rows and one
column. Elements in X, such as x0−j (j=1, 2, . . . 134), represent the
cumulative displacement from the date of the first image (t0). The
vector X is the target of the function.

b � b0−1 b0−2 b0−3/b0−143[ ]. (7)
AX � b. (8)

As we have 2069 equations and 135 unknowns, we used the singular
value decomposition (SVD) method to find a solution. Because A is
not a square matrix, it can be decomposed into three other matrices.

A � USVT, (9)
where U and V are square matrices. The columns of U are the
eigenvectors of AAT, and the columns of V are the eigenvectors of
ATA. S is a diagonal matrix with singular values of A
([diag (σ1, σ1, . . . , σn)]).

A−1 � V diag σ−11 , σ−1
2 , . . . , σ−1

n( )[ ]UT. (10)

We also processed the inversion twice with a similar form of
weights (Bontemps et al., 2018). In the first SVD inversion, we took
the surface deformations within the stable area and calculated the
reciprocal of the standard deviation as the weight. In the second
inversion, we used the reciprocal of the residual error from the first
SVD inversion as the weight.

3.4 Landslide simulation by MassFlow

MassFlow is a two-dimensional finite difference scheme
developed to model mass movements in mountainous regions
(Ouyang et al., 2013). The software has been used to simulate the
collapse of the Beishan landslide (Zhong et al., 2020). In this work,

FIGURE 2
Descending (A) and ascending (B) InSAR pairs used in this work.
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TABLE 2 Dates of all 135 Sentinel-2 optical images used in this work.
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20160126 20171221 20181201 20190704 20200224 20201110 20210330 20211130 20220708 20221230
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we used MassFlow to model the potential collapses of the main
deformation area. The spatial extents of the simulated landslide were
from displacement >5 m by POT. To better meet the conditions of
field hydrogeology and other conditions, we used the same
simulation parameters as in the previous paper (Zhong et al.,
2020). The simulation parameters used in this paper are a
friction coefficient of 0.65 and cohesion of 6 Kpa. The shear
shrinkage effect of the sliding soil and the fragmentation of
particles caused by shearing make the pores of the sliding soil
smaller, generating pore water pressure, and the shear strength
completely or partially disappears. The pore water pressure
coefficient in this work (used by Zhong et al. (2020)) is 0.05.
However, they were simulated during January 2021 (dry
wintertime), when the pore water pressure coefficient was at its
lowest condition, which means that the same value of the parameter
cannot represent the situations throughout the year, especially in
rainy months. So we set up three gradients (0.05, 0.1, and 0.15) for
this parameter to simulate three scenarios for the landslide.

4 Results

4.1 Deformation results derived from optical
POT and SBAS-InSAR

The optical POT method was used to inverse the deformation
results of the slope for nearly 8 years from November 2015 to May
2023. It was found that the deformation in the middle part of the
landslide has the largest deformation (Figure 3A). Maximum
deformation of this part of the landslide is >15 m during the
studied period. The white border represents the deformation area
greater than 5 m, which has an area of ~196,094 m2, accounting for
31% of the entire landslide (Figure 3C). Figure 3B shows the
directions of landslide movement. The dominant moving
directions of the landslide are from northeast to southwest along
the slope.

Figures 4A, B show the spatial pattern of the surface
deformation in the LOS direction of landslides monitored by
SBAS-InSAR under the descending and ascending orbits. From
the SBAS-InSAR results of the descending orbit, discernible larger
surface deformations (<-20 mm ± 4.06 mm) are found to the east
and upper parts of the landslide (Figure 4A). From the results of
the ascending orbit, large surface deformations (<-20 mm ±
3.61 mm) are only discerned on the upper part of the landslide
(Figure 4B). The maximum deformation in the LOS direction
detected by the descending and ascending tracks is of the same
magnitude (close to 50 ± 4 mm). In the detected deformation, the
uncertainty of these displacements was assessed using standard
deviations of the InSAR and POT displacement results in the
stable area.

4.2 Relations between precipitation and
deformations of the Beishan landslide

Figure 5 shows the deformation time series of three points on the
middle (P1), upper (P2), and east (P3) parts of the landslide (P1, P2,
and P3 are shown in Figures 3 and 4) derived from optical POT andT
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ascending/descending InSAR from April 2020 to April 2022. The
two vertical black dashed lines represent accelerated deformations of
the landslide in the rainy months of 2020 and 2021. Figure 5A shows
the cumulative deformation of P1 at the middle part of the landslide.
For this point, only deformations measured by optical POT are valid
because deformations of P1 derived from ascending/descending

SBAS-InSAR are non-monotonic. Time series of its deformation
increased rapidly by 4.76 m within 3 months from 8 July 2020 to
21 October 2020, with a deformation rate of 0.04 m/d, which is
immediately after the rainy months of the year.

Deformation time series of P2 is valid for both ascending and
descending SBAS-InSAR, but not for the optical POT. For the

FIGURE 3
Derived displacement between 27 November 2015 and 24 May 2023 (A), the directions of landslide movement derived from POT (B), and the
histogram of deformation distribution (C).

FIGURE 4
Slope deformation derived from descending and ascending SBAS-InSAR methods (A, B). Selected points from the middle (P1), upper (P2), and east
sides (P3) of the landslide.
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descending result, the deformation rate from August to October
2021 reached nearly 0.3 mm/d, far exceeding the annual average
deformation rate of 0.07 mm/d. Figure 5C shows that the
deformation of P3 is valid only in the descending InSAR result.
The deformation velocities from August to October in 2020 and

2021 are 0.14 mm/d and 0.15 mm/d, respectively, much larger than
the annual average deformation velocity of 0.07 mm/d from April
2020 to April 2022. The fast-moving deformations for both
ascending and descending SBAS-InSAR also occurred
immediately after rainy months.

FIGURE 5
Optical POT- and SBAS-InSAR-derived cumulative displacements for P1 (A), P2 (B), and P3 (C) (labeled in Figures 3 and 4) and monthly rainfall from
CHIRPS (D). The shaded area is the standard deviation of the deformation monitored using the optical POT and InSAR methods within the stable zone. In
Figure 6, the title of the figure was changed to: The deformation time-series in 35 years (1986–2023) (A), precipitation change and distribution in 42 years
(1981–2022) from three datasets, and the shadings are 95% confidence intervals for the linear models (B).
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Figure 6A shows the deformation time-series curve from 1986 to
2023. It can be found that the displacement velocities in 1986–2011
(phase 1) and November 2015–July 2020 (phase 2) are 0.59 m/year
and 0.96 m/year, respectively. The slope of the two-stage fitting
curve is equivalent. It shows that the displacement velocities in the
two phases are roughly the same, and the deformation is stable. After
July 2020, the deformation suddenly accelerated. The displacement
velocity of phase 3 (July 2020–May 2023) is 6.3 m/year, nearly
10 times that of the previous stages (phase 1 and phase 2).

To explore the relationship between the trend of deformation
and rainfall, we fitted the trend graphs of three sets of rainfall data
(Figure 6B). Different rainfall data show that the annual rainfall in
the past 20–30 years has an upward trend (except for the weather
station data, the p-values of all other data after Mk testing are less
than 0.05). Although the rainfall data of the weather station are
approximately 150 mm lower than those of the satellite rainfall
(GPM and CHIRPS) on average, the rainfall trend of the two is
consistent. This may be caused by differences in the locations of
weather stations and monitoring methods. The two sets of satellite
rainfall data (GPM and CHIRPS) agree well with each other in the
20 years from 2001 to 2021. In addition, all three datasets show that
the rainfall increased sharply after 2018 and peaked in 2020, which is

very likely to be the reason for the sudden accelerated deformation in
summer 2020.

4.3 Potential risks of the Beishan landslide

We simulated the collapse of the pore water pressure at three
different intensities. The houses and buildings in the Lijie town
(the white area is the interpreted building area) will be possibly
damaged with landslide collapse. The collapse of the landslide
gradually increases with the increase in the pore water pressure
(Figure 7). When the pore water pressure is 0.05, the collapse of the
landslide has a less impact on the built-up area (Figure 7A). When
the pore water pressure is 0.1, the collapsed material of the
landslide begins to affect the northwest part of the urban
area (Figure 7B).

When the pore water pressure is 0.15, the buried area of the
landslide accumulation core is the largest (partial area>20 m). The
buried area above 1 m reaches 39,664 m2, accounting for 18% of the
construction area (the total construction area of the north and south
areas of the river reaches 224,503 m2). In addition, the average
buried depth of this area reaches 9.54 m (Figure 7C).

FIGURE 6
The deformation time-series in 35 years (1986–2023) (Figure 6A), precipitation change and distribution in 42 years (1981–2022) from three datasets,
and the shadings are 95% confidence intervals for the linear models.
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5 Discussion

5.1 What are the differences between SBAS-
InSAR and optical POT in measuring
landslide deformation?

The SBAS-InSAR and optical POT techniques are two
commonly used remote sensing methods to extract regional
landslide deformation (Hu et al., 2018; Handwerger et al.,
2019). Although one recent work compared InSAR and optical
POT results, they did not derive time series of landslide
deformation (Kuang et al., 2023). The recently developed time-
series inversion model can significantly remove spatial noises and
is indispensable to uncover landslide dynamics over time
(Bontemps et al., 2018). Our work is the first to compare time
series of deformations between SBAS-InSAR and optical POT for
the same landslide.

Our results show that spatial deformation patterns of both
methods are distinct from each other (Figures 3 and 4). This is
because the POT is excellent in detecting larger deformations (>1 m)
in the horizontal direction (Yang et al., 2021), whereas InSAR is
better in detecting smaller deformations (centimeter scale) in the
LOS direction of the satellite (Zhang et al., 2020). The smallest
deformation that POT can detect relies upon the spatial resolution of
the used optical images (Stumpf et al., 2017; Bontemps et al., 2018).
With time series of POT results from 10-m resolution images, we are
confident to say that we detected deformation signals of >1 m. These

distinct results from both methods indicate that the onefold use of
either InSAR or optical POT would underestimate the extent of the
landslide’s spatial deformation. The spatial pattern of a landslide’s
deformation is an important reference to assess the magnitude (e.g.,
detaching volume, moving speed, potential deposition area, and
depositing depth) of a landslide hazard, which is the most important
part for quantifying landslide risks. The complete spatial pattern of
the landslide’s deformation unveiled by integration of both methods
is also crucial for assessing the risks of other similar slow-moving
landslides.

In this work, the maximum deformation detected by SBAS-
InSAR is ~50 mm, whereas the POT-derived deformation is >20 m.
This is consistent with the findings of previous works that POT is
excellent in detecting larger deformation (>1 m) in the horizontal
direction (Yang et al., 2021) and InSAR is better in detecting smaller
deformation (centimeter scale) (Zhang et al., 2020). In addition,
InSAR detects deformation in the LOS direction (Zhang et al., 2020),
which explains different performances between the ascending and
descending track results shown in Figure 4. Deforming slopes with
the west and east aspects are easier to detect by Sentinel-1A SAR
images of ascending and descending orbits, respectively. The InSAR
method is sensitive to the vertical deformation but not sensitive to
the north–south deformation (Chen et al., 2023; Tian et al., 2023). In
theory, InSAR cannot detect moving slopes with aspects to SAR
tracks. This may have caused the SBAS-InSAR method to fail to
effectively monitor the deformation in the central part of
the landslide.

FIGURE 7
Collapse simulations for the main deformation area of the Beishan landslide.
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5.2 How dangerous is the Beishan landslide?

Deformations of a landslide can be used to help issue early
warnings. Laboratory experiments and numerical models show that
there are three creeping regimes before the collapse of a landslide:
primary creep with decreasing velocity, secondary creep with
constant slow velocity, and tertiary creep with accelerations
(Main, 2000; Amitrano and Helmstetter, 2006). The last two
schemes are frequently reported before paroxysmal collapses of
some famous landslides (Intrieri et al., 2018; Liu et al., 2020).
Our results of the deformation time series from 1981 to
2023 seem to follow those of the secondary creep and early stage
of the tertiary creep. The landslide seems to be deforming with
constant velocity, whereas accelerations were observed since 2020.
Although the deforming velocity in 2022 is slower than that in
2020 and 2021, it is still larger than velocities before 2019. Similar to
the famous Baige landslide (Liu et al., 2020), long-term deformation
time series indicates that the middle part of this landslide is highly
active and that it could be susceptible to collapse in the future.

A previous work simulated the collapse of the landslide and
found that it had little influence on the nearby Lijie town (Zhong
et al., 2022). However, their model used the pore water pressure
parameter in wintertime, during which it was at its lowest level. Our

results show that major deformations of the landslide occur in rainy
months when pore water pressure is at its maximum. The most
conservative scenarios in this work serve a baseline for the
landslide’s impact. Our modeling indicates that collapse of the
middle part of the landslide may cause destructions to the Lijie town.

5.3 What is the relationship between
landslide deformation and precipitation?

Our results that deformation time series from both methods of
SBAS-InSAR and Sentinel-2 POT shows accelerations in rainy
months indicate that precipitation is likely to be the major driver
for intra-annual landslide dynamics. Although measurements of
Landsat 5 are very coarse and sparse with high uncertainties, it is
possible that intra-annual landslide deformations from 1986 to
2011 also followed similar temporal patterns. During our study
period, there is no seismicity with Modified Mercalli Intensity
(MMI) larger than IV, and the deformation correlates well with
precipitation. Consistent with others, these findings indicate that
intra-annual acceleration of this landslide is initiated by
precipitation (Handwerger et al., 2022; Liu et al., 2022). As the
slope continues to slide down, the threshold to accelerate the moving
of the slope may continue to decrease.

On an inter-annual time scale, our findings indicate that the
relation between the landslide’s deformations and annual
precipitation since 1986 has been complex. All precipitation data
show that annual precipitations are among the highest in record
from 2018 to 2020, overlying with significant acceleration of the
landslide in 2020. These abnormally high precipitation years may
cause the transition of the landslide from the second creep regime to
the tertiary creep regime, indicating the impact of climate warming
on landslide stability.

To investigate the correlation between rainfall and deformation,
we conducted analysis of daily rainfall spanning from 1 November
2016 to 30 August 2023. During this period, we identified the

TABLE 4 The 10 days with the highest daily rainfall (CHIRPS) from
1 November 2016 to 30 August 2023.

Date Precipitation
(mm)

Date Precipitation
(mm)

20190728 75.899 20210709 48.028

20170607 75.006 20200713 46.077

20180710 56.075 20180701 44.748

20210725 55.475 20170505 42.333

20190721 54.556 20200710 41.39

FIGURE 8
Deformation time series from 27 November 2015 to 24 May 2023 obtained by Sentinel-2 inversion and dates of the 10 wettest days from
1 November 2016 to 30 August 2023.
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10 days with the highest recorded rainfall. Notably, a significant
majority of these extreme rainfall events were observed in the month
of July each year, constituting 80% of the total dates under
consideration (Table 4). In July 2020, there were 2 days of
extremely intense rainfall, which is highly likely to be associated
with the substantial deformation observed during the summer of
2020 (Figure 8). An escalation in the occurrence of extreme rainfall
events in alpine regions can intensify the occurrence of landslides
(Shah et al., 2023). Beyond the direct erosive impact of rainfall,
extreme precipitation can also induce landslides by influencing the
hydrology of the watershed (Zhu et al., 2021).

Most landslides in this part of the plateau are triggered by
rainfall (Li et al., 2023; Peng et al., 2015). Based on the >40 years
(1981–2022) of annual precipitation record, the climate in this
region found getting wetter. In addition, as estimated in Coupled
Model Intercomparison Project Phase 6, precipitation in this region
will continue to increase with more extremity (Thackeray et al.,
2022). Increasing annual precipitations may lead to more landslide
activities in this part of the plateau in future. With ongoing climate
change, there may be more similar landslides as this area becomes
unstable. Frequent landslides will provide erosive loose materials in
this semi-arid region of poor vegetation cover, potentially feeding
more debris flows during extreme precipitations.

6 Conclusion

In this work, we studied deformations of a landslide in
northeast Tibetan Plateau with SBAS-InSAR and optical POT.
Deformations detected using both the methods are very different.
Optical POT is sensitive to meter-scale deformations in the
middle part of the landslide, where SBAS-InSAR is invalid.
From 1986 to 2023, the middle part of the landslide
moved >35 m. In contrast, SBAS-InSAR is more sensitive to
centimeter-scale deformations in upper and east parts of the
landslide, which is ineffective for optical POT to monitor. It is
possible that sections of landslides with centimeter-scale
deformations may be at its earlier stage toward meter-scale
deformations in future. Based on theoretical landslide
deformation regime and previous collapsing landslides, we
speculate that the landslide may be at its final tertiary creep
regime, meaning a partial collapse is susceptible in future.

Time series of deformations from both SBAS-InSAR and POT
with Sentinel-2 images can detect seasonal deformation signals
related to rainy months every year. However, inter-annual
landslide deformation is not directly related to multiyear
precipitations. The significant acceleration of the middle part of
the landslide in 2020 may be related to the extraordinary wetting
years from 2018 to 2020. With climate change, precipitation in this
region will continue to increase, potentially posing more slopes
unstable in future.
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Seismic landslide hazard assessment plays a very important guiding role during
urgent earthquake relief. In August 2017, an Ms 7.0 earthquake in Jiuzhaigou
County, Sichuan Province, China, triggered thousands of landslides. Based on
the analysis of geological settings and coseismic landslide characteristics, the
Newmark model is used to complete the seismic landslide hazard assessment.
Three seismic motion parameters, namely, peak ground acceleration (PGA),
traditional Arias intensity (Arias_P), and improved Arias intensity (Arias_C), are
adopted. A publicly published coseismic landslide catalog is used as the
validation samples. The results show that the coseismic landslides are mainly
distributed in the deep gullies and steep mountainous slopes on the north
and south sides of the epicenter. The seismic landslide hazard accuracy based
on Arias_C is the best, followed by that based on PGA and Arias_P. The
spatial distribution of seismic landslide hazards based on Arias_C shows an
almost standard elliptical ring and is in good agreement with that of coseismic
landslides. These results fully reflect the combined influence of the epicenter
and seismogenic fault on landslide development. The middle seismic landslide
hazard and over are mainly located at areas with seismic intensity of VII degree
and above. The Arias intensity is very suitable for rapid seismic landslide hazard
assessment in emergency situations. The study results can provide scientific and
technological support for rapid earthquake relief and have reference significance
for future seismic landslide hazard assessment.

KEYWORDS

seismic landslide, Jiuzhaigou earthquake, landslide hazard assessment, Newmark
model, peak ground acceleration and Arias

Introduction

Theseismic landslide is one of the important geo-hazard types, which seriously enhances
the damaging effect of earthquake-induced disasters.The spatial distribution characteristics,
formation mechanism, and causative factor sensitivity of a lot of seismic landslide cases
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have been analyzed in depth. Many valuable methods and models
have been established and widely used in the seismic landslide
hazard assessment at a regional scale, such as the multi-criteria
evaluation method (Kamp et al., 2008), artificial neural network
(Yilmaz, 2010; Nayek and Gade, 2022), support vector machine
(Yao et al., 2008), Bayesian network (Song et al., 2012), logistic
regression (Nefeslioglu et al., 2006), and transfer learning (Ai et al.,
2022). Based on the limit equilibrium theory of infinite slope,
the Newmark displacement model was developed to conduct
seismic landslide hazard assessment (Wilson and Keefer, 1983;
Miles and Ho, 1999). Based on many research results of the
statistical laws of seismic landslides, the simplified regression-based
Newmark displacement model (Jibson, 2007; Chousianitis et al.,
2014; Pareek et al., 2014; Gade et al., 2021; Nayek and Gade, 2022;
Cheng et al., 2023) and various statistical probabilitymodels (Rathje
and Saygili, 2008; Du and Wang, 2014; Nowicki et al., 2014; Du
and Wang, 2016) were established. The simplified regression-based
Newmark displacementmodel is applicable and can quickly conduct
the seismic landslide hazard assessment at a regional scale, and has
been widely used all over the world (Liu et al., 2018; Ma and Xu,
2019; Nayek and Gade, 2021; Zeng et al., 2023).

On 8 August 2017, an Ms 7.0 earthquake occurred in Jiuzhaigou
County, Sichuan Province, China, with the epicenter at E103.82°
and N33.20° and a focal depth of 20 km. The maximum seismic
intensity was IX degree. The area with seismic intensity of
VII degree and above covers approximately 4,294.81 km2, and
the major axis of the isoseismal line generally shows an NW
direction. As of 14 August 2017, a total of 3,704 aftershocks
were recorded, which included three aftershocks with magnitudes
4.0–4.9 and 27 aftershocks with magnitudes 3.0–3.9. The largest
aftershock with magnitude 4.8 occurred in Jiuzhaigou County
on 9 August 2017 (National Earthquake Data Center, https://
data.earthquake.cn/gxdt/info/2017/39880.html). The Jiuzhaigou
earthquake had triggered thousands of collapses and landslides
(Li et al., 2019; Ling et al., 2021; Cai et al., 2022), which resulted
in heavy casualties and damage to transportation, power,
communications, buildings, and other infrastructures. After the
earthquake, studies on landslide investigation and assessment
were carried out in time (Fan et al., 2018; Tian et al., 2019), which
effectively guided the emergency relief and reduced earthquake
disaster losses.

In the existing studies on deterministic seismic landslide hazard
assessment using Newmark displacement, the adopted seismic
motion parameters rarely consider the influence of seismogenic
faults (Nayek and Gade, 2021; Zeng et al., 2023), and it only
has fewer applications in probabilistic seismic landslide hazard
assessment (Zhang et al., 2017; Liu et al., 2018). However, the
seismogenic fault has a significant control effect on coseismic
landslide development (Gorum and Carranza, 2015; Fan et al.,
2018). So, taking the Jiuzhaigou earthquake as a typical example,
the simplified regression-based Newmark displacement model and
three kinds of seismic motion parameters are used to carry
out the seismic landslide hazard assessment. The assessment
results are validated by taking the coseismic landslide as test
samples. The result accuracy based on three kinds of seismic
motion parameters [peak ground acceleration (PGA), traditional
Arias intensity (Arias_P), and improved Arias intensity (Arias_
C)] is compared and analyzed to elaborate the significant effect

of the seismogenic fault on seismic landslide development. The
study ideas and results have significant reference for promoting
rapid seismic landslide hazard assessment during emergency
earthquake relief.

Study area

The eastern margin of the Qinghai–Tibet Plateau is
characterized by strong tectonic and fault activities, extremely
complex stress fields, and frequent strong earthquakes, such as
the Ms 8.0 Wenchuan earthquake in 2008 (Dai et al., 2011), the
Ms 7.0 Lushan earthquake in 2013 (Zhang et al., 2013), and the
Ms 6.8 Luding earthquake in 2023 (Dai et al., 2023). These strong
earthquakes have triggeredmany landslides and their chain hazards.
The Jiuzhaigou earthquake occurred in the northeast margin of
the Bayankela block and the middle of the famous North–South
(NS) seismic tectonic belt, where the developed active faults mainly
include the Minjiang fault, Tazang fault, and Huya fault (Figures 1,
2). The Minjiang fault is a Quaternary thrust and strike-slip fault
with a total length of approximately 170 km, with a general NS trend
and NW dip direction (Deng et al., 1994). It has been highly active
since the late Pleistocene, with a strike-slip rate of approximately
1 mm/y. The Zhenjiangguan–Lianghekou section of the Minjiang
fault is the most active since the late Quaternary and even the
Holocene, where the most recent event was the Ms 7.5 Diexi
earthquake in 1933. The Tazang fault is the east branch of the East
Kunlun fault zone, with a total length of 170 km and a general
NW trend, and is the northeast boundary of the Bayankela block.
The late Quaternary activities of the Tazang fault are segmented
and multiphase, with dominated horizontal shear movement in the
west section and gradually decreasing strike-slip movement and
an increasing vertical component in the east section (Ren et al.,
2013). The Huya fault is a Quaternary thrust and left strike-
slip fault, with a general NNW trend and a vertical slip rate of
approximately 0.5 mm/y and left strike-slip rate of approximately
1.4 mm/y (Qi et al., 2018). There have been many strong historical
earthquakes in the Huya fault zone, such as the Ms 6¾ Xiaohe
earthquake in 1630 and the Ms 7.2 earthquake between Songpan
County and Pingwu County in 1976.

The seismogenic fault of the Jiuzhaigou earthquake is the
northern section of the Huya fault. The direction of the maximum
principal stress around the Jiuzhaigou earthquake is NWW-SEE,
which is consistent with the direction of the regional stress field,
indicating that the Jiuzhaigou earthquake is mainly controlled by
regional stress (Sun et al., 2018). The Jiuzhaigou earthquake is in
the Pingwu potential seismic-prone area in western China, which
has the seismic geological conditions for the occurrence of large
earthquakes, with the upper limit of magnitude 7.5. The Jiuzhaigou
earthquake is in the transition zone from the Sichuan Basin to west
Sichuan Plateau, which belongs to the middle–high mountainous
erosion landform. Its regional terrain is high in the northwest
and low in the southeast, with an average altitude of more than
4,000 m.

Here, the Jiuzhaigou earthquake area mainly includes areas with
seismic intensity of VI and above (Figure 2), which extends to the
Diebu County in the north, Pingwu County in the south, Wenxian
County in the east, and Ruoergai County in the west. The black
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FIGURE 1
Schematic diagram of regional major active structures in the eastern Qinghai–Tibet Plateau. The black dashed rectangular box is the scope of Figure 2.
DKL is the Dongkunlun fault zone, ZQ is the Zhouqu fault zone, MJ is the Minjiang fault zone, XSH is the Xianshuihe fault zone, LMS is the
Longmenshan fault zone, and ANH is the Anninghe fault zone. The fault data are obtained from the 1:500,000 geological maps.

dashed rectangular box shown in Figure 2 was selected as the main
assessment area to conduct seismic landslide hazard assessment,
which is the scope of Figures 5–13 and extends to the Yuwa town
in the north, Huanglong town in the south, Shuanghe town in the
east, and the Baozuo town in the west.

Data and methods

Basic data such as seismic motion parameters, geology,
topography, and coseismic landslides and the simplified Newmark

model are used to carry out the landslide hazard assessment for the
Jiuzhaigou earthquake.

Data

The geographical, geological, and surveying data are used
to realize the presented study work. The regional tectonic
and active fault data are obtained from the geological cloud
website of the China Geological Survey (https://geocloud.cgs.
gov.cn/#/home). The regional historical earthquake data and
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FIGURE 2
Seismic intensity, epicenter, and coseismic landslides of the Ms 7.0 Jiuzhaigou earthquake. The black dashed rectangular box indicates the main
assessment area and is the scope of Figures 5–13. The fault data are obtained from the 1:200,000 geological maps.

Jiuzhaigou earthquake parameters (epicenter, seismic intensity,
and aftershock) are obtained from the National Earthquake Data
Center (https://data.earthquake.cn/index.html). The stratigraphic
lithology data used to divide the engineering geological units
are obtained from the 1:200,000 geological maps. The PGA
data of the Jiuzhaigou earthquake are obtained from the
Strong Motion Observation Data Subcenter of the National
Earthquake Data Center and related references (Yue et al., 2018).
The terrain elevation data [digital elevation model (DEM)]
adopt the ASTER GDEM V3 with a spatial resolution of

30 m (https://search.asf.alaska.edu/#/), from which the terrain
slope data can be calculated. The publicly published coseismic
landslide data triggered by the Jiuzhaigou earthquake are
obtained from Tian et al. (2019), whose acquisition methods are
mainly remote sensing interpretation and field verification. The
vector data (such as polygon data) are converted into raster
data for use in the algebraic calculations of the spatial layer,
and the resolution of the raster data is 30 m. All vector and
raster data operations and calculations are implemented on the
ArcGIS Platform.
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FIGURE 3
Spatial distribution of coseismic landslides triggered by the Ms 7.0 Jiuzhaigou earthquake. Landslide data are obtained from Tian et al. (2019).

Methods

The Newmark model can predict seismic landslide hazards
by calculating the slope displacement under seismic loading
(Newmark, 1965). Its theoretical basis is the limit equilibrium theory
of infinite slope. The Newmark model regards the sliding body
as a rigid body and mainly considers the critical acceleration and
safety factor of the sliding body itself. When the external force
is greater than the critical acceleration, the finite displacement
of the sliding body occurs, which accumulates continuously to
produce permanent displacement (Jibson, 1993; Roberto, 2000).
Based on many statistical analysis results of seismic landslides, a
simplified Newmark displacement model based on statistical laws
was developed (Miles andHo, 1999; Jibson et al., 2000) and has been
widely used in seismic landslide hazard assessment at the regional

scale (Maharjan et al., 2021). Referring to the existing study results,
the general calculation steps of the simplified Newmark model
are sorted out.

Firstly, the static safety factor is calculated.The static safety factor
represents the safety situation of a slope body without internal and
external dynamic effects, which can be calculated by the traditional
slope stability factor formula (Eq. 1) based on the limit equilibrium
theory (Miles and Ho, 1999; Jibson et al., 2000). In Eq. 1, Fs is the
slope static safety factor, c′ is the effective cohesion of rock and soil
mass (kPa), φ′ is the effective internal friction angle of rock and soil
mass (°), γ is the unit weight of rock and soil mass (kN/m3), γw is
the unit weight of groundwater (kN/m3), t is the thickness of the
potential sliding body (m), α is the inclination angle of the potential
sliding surface (°), and m is the proportion of the saturated part of
the total potential sliding body.
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FIGURE 4
Typical landslides triggered by the Ms 7.0 Jiuzhaigou earthquake. Landslide figures are obtained from the web and from Fan et al. (2018) and Ling et al.
(2021).

Fs =
c′

γt sin α
+

tan φ′

tan α
−
mγw tan φ′

γ tan α
= c′

γt sin α
+(1−

mγw
γ
)×

tan φ′

tan α
.

(1)

Secondly, the critical acceleration is calculated. The slope
critical acceleration refers to the seismic motion acceleration
corresponding to the sliding force of the slider equal to the
anti-sliding force. The calculation formula (Eq. 2) of the slope
critical acceleration was derived from the limit equilibrium state
equation of the potential slider (Wilson and Keefer, 1983). In
Eq. 2, ac is the critical acceleration (m/s2), g is the gravity
acceleration (m/s2), and α is the inclination angle of the sliding
surface (°).

ac = (Fs − 1)g sin α. (2)

Finally, the seismic slope displacement and seismic landslide
hazard are calculated. The seismic slope displacement can be
calculated by the slope critical acceleration and PGA (Eq. 3)
proposed by Jibson (2007). Based on the statistical analysis of a large
number of existing study results, the seismic slope displacement
can also be expressed as a functional relationship between the slope
critical acceleration and the Arias intensity (Eq. 4) (Jibson et al.,

2000; Jibson, 2007). The seismic slope displacement is positively
correlated with the PGA and Arias intensity and negatively
correlated with the slope critical acceleration. There are no precise
conditions for using either the PGA or Arias intensity. The seismic
motion parameters can be selected based on their accessibility. In
Eqs 3, 4, Dn is the slope displacement, amax is the PGA, and Ia is the
Arias intensity.

log Dn = 0.215+ log[(1−
ac
amax
)

2.341
(

ac
amax
)
−1.438
]± 0.510, (3)

lg Dn = 2.401 lg Ia − 3.481 lg ac − 3.230. (4)

The slope displacement does not mean that there will
be a significant landslide. Only when the slope displacement
accumulates to a certain extent, do the slope masses lose
their stability and slide along the sliding surface to cause a
landslide. Therefore, the landslide occurrence is a probability
problem. The seismic landslide probability can be calculated
using the statistical relationship formula (Eq. 5) proposed by
Jibson et al. (2000). In Eq. 5, P( f ) is the seismic landslide
probability.

P( f) = 0.335[1− exp(−0.048D1.565
n )]. (5)
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TABLE 1 Physical and mechanical parameters of engineering geological units in the main assessment area.

ID Engineering
geological units

c′ (KPa) φ′ (°) γ (KN/m3)

1 Relatively hard to hard,
medium-thick-bedded
sandstone interbedded with
conglomerate, mudstone, and
slate

35 36 23

2 Alternate of soft and hard,
medium-thick-bedded
sandstone and mudstone
interbedded with limestone

32 34 21

3 Soft to relatively hard and
thin-bedded to
medium-thick-bedded
sandstone and mudstone

31 33 20

4 Soft thin-bedded mudstone
and shale

30 32 18

5 Hard medium-thick-bedded
limestone and dolomite

35 37 25

6 Relatively hard, thin-bedded to
medium-thick-bedded
limestone and argillaceous
limestone

34 36 23

7 Alternate of soft and hard,
medium-thick-bedded
limestone and dolomite
interbedded with sandstone
and mudstone

32 34 20

8 Relatively hard to hard,
thin-bedded to
medium-thick-bedded slate,
phyllite, and metamorphic
sandstone

30 33 19

9 Soft to relatively hard,
thin-bedded to
medium-thick-bedded phyllite
and schist interbedded
limestone, sandstone, and
volcanic rocks

29 32 18

10 Hard blocky granite, andesite,
and diorite

36 38 28

11 Soft loose sediments and
deposits

27 30 16

Note: ID is the corresponding number of engineering geological units in Figure 5, c′ is the effective internal cohesion, φ′ is the effective internal friction angle, and γ is the weight of rock masses.

Seismic landslide characteristics

Remote sensing interpretation and field investigation reveal that
there are 4,834 coseismic landslides in the Jiuzhaigou earthquake
area (Figures 2, 3). The total landslide area is 9.64 km2, and the
largest landslide area is 0.24 km2 (Tian et al., 2019). The coseismic
landslides are mainly distributed in areas with seismic intensity of
VII degree and above. These landslides are mainly composed of

small- and medium-sized shallow fractured landslides, collapses,
rockfalls, and rock/debris slides (Figure 4). Many shallow coseismic
landslides are mostly developed in the Quaternary deposits such as
residual slope deposits. The instability of rock masses occurs at the
slope shoulders, forming the landslide–debris flow disaster chain.
The coseismic landslides mainly develop along roads and gullies.
The landslide density is relatively high in the two NE-SW-oriented
valleys close to the epicenter (Fan et al., 2018; Tian et al., 2019). The
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FIGURE 5
Engineering geological units in the main assessment area. The number
of engineering geological units in the legend corresponds to ID in
Table 1.

FIGURE 6
Slope static safety factor in the main assessment area.

highest coseismic landslide density was found at special locations
where the valley shape evolves from the U-shape to V-shape,
with an inclination between 20° and 50° (Chang et al., 2021). The

FIGURE 7
Slope critical acceleration in the main assessment area.

coseismic landslides are mainly distributed in a strip area with NW-
SE trending. The spatial distribution pattern of coseismic landslides
has revealed that a previously unknown blind fault segment (which
is possibly the north-western extension of the Huya fault) is the
plausible seismogenic fault (Fan et al., 2018). The inferred result
of the seismogenic fault suggests that seismic energy is released
concentratedly near the epicenter and along the fault.

Results and analysis

Based on the presented data, model, and seismic landslide
characteristics, the seismic landslide hazard can be calculated,
validated, and analyzed.

Result calculation

The seismic motion parameters such as the PGA and two types
of Arias intensity are obtained to calculate seismic landslide hazard
in the main assessment area.

Static safety factor

The physical and mechanical parameters of the rock and soil
mass and terrain parameters are crucial for calculating the slop static
safety factor. Comprehensively considering the geological structure,
stratigraphic lithology, rock and soil type, and rockmass weathering
degree, the engineering geological units in the main assessment area
were divided into 11 types (Figure 5; Table 1). With reference to
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FIGURE 8
Peak ground acceleration in the main assessment area. The black dashed rectangular box in (A) is the scope of (B).

the existing literature (Jibson et al., 2000; Jibson, 2007; Hua et al.,
2018; Yang et al., 2023), the physical and mechanical parameters for
all engineering geological units were carefully initialized (Table 1).
The terrain slope angle (α) was calculated from the DEM data. The
thickness of the potential sliding body (t) was approximately set
to 3 m for shallow landslides. The parameter γw was approximately
10 kN/m3. Considering the local climate and geological conditions,
as well as the existing research results on seismic landslide hazards in
the Xianshuihe fault zone (Zhang et al., 2017), the parameterm was
approximately 0.3.The slope static safety factorwas finally calculated
using Eq. 1, as shown in Figure 6. The slope static safety factor in the
western plateau region with a relatively flat terrain is larger, while
it is smaller in the central and eastern mountainous regions with a
relatively large topographic relief.

Critical acceleration

The critical acceleration can represent the landslide sensitivity,
and the smaller the static safety factor, the greater the landslide
sensitivity. According to the slope static safety factor and terrain
slope angle obtained above, the slope critical acceleration in
the Jiuzhaigou earthquake area is calculated using Eq. 2, as
shown in Figure 7. The smaller the slope static safety factor is,
the smaller is the critical acceleration and the more unstable
is the slope.

Seismic motion parameters

The Newmark model is compatible with a variety of seismic
motion parameters (Jibson et al., 2000; Jibson, 2007; Zeng et al.,
2023). The seismic motion parameters should be comprehensively
selected according to seismic geological settings and seismogenic
mechanisms. Here, the PGA and two types of Arias intensity
parameters are adopted.

During the Jiuzhaigou earthquake, the China Earthquake
Administration recorded the strong motion observation data. For
example, the Baihe strongmotion station in the Jiuzhaigou county is
30.5 km away from the epicenter, and its maximum PGA values in
the east–west, north–south, and vertical directions are 129.5, 185.0,
and 124.7 cm/s2, respectively (National Earthquake Data Center,
https://data.earthquake.cn/). Using these valuable strong motion
observation data, the PGAcontour of the Jiuzhaigou earthquake area
is fitted (Figure 8) (Yue et al., 2018).

The Arias intensity (Ia) is a meaningful physical quantity to
measure seismic intensity, which is determined by integrating the
square of seismic acceleration within the duration of a strong
earthquake and multiplying by a constant (Arias, 1970). At the
regional scale, several complex empirical attenuation equations are
developed to calculate the Arias intensity with the rupture distance
parameter (Travasarou et al., 2003; Fulser-Piggott and Stafford,
2012). However, these equations require complex conditions and
parameters, such as fictitious hypocentral depth, indicator variables

Frontiers in Earth Science 09 frontiersin.org96

https://doi.org/10.3389/feart.2024.1302553
https://data.earthquake.cn/
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Yang et al. 10.3389/feart.2024.1302553

FIGURE 9
Arias intensity in the main assessment area (point focal source). The black dashed rectangular box in (A) is the scope of (B).

for the soil types, indicator variables for the fault types, and average
shear wave velocity. It is difficult to obtain these complex parameters
in the process of urgent and rapid coseismic landslide hazard
assessment. Here, the simplest empirical equation (Eq. 6) based on
statistical laws is adopted, which only requires the seismic moment
magnitude (Mw) and focal distance (R) (Wilson and Keefer, 1985).
The focal distance is the closest distance from a particular site to the
seismic source. The seismic moment magnitude can be obtained by
converting the surface wave magnitude (Ms) (Eq. 7).

lg Ia =
{
{
{

Mw − 2 lg R− 4.1   Mw ≤ 7.0

0.75Mw − 2 lg R− 2.35 Mw > 7.0
, (6)

Mw = 0.884Ms + 0.951. (7)

The epicenter of the Jiuzhaigou earthquake is used as the
point focal source to calculate the focal distance using the
buffer analysis method. The surface wave magnitude of the
Jiuzhaigou earthquake is Ms 7.0, so the corresponding moment
magnitude is Mw 6.9 using Eq. 7. The traditional Arias intensity
with a point focal source (abbreviated as Arias_P) is calculated
using Eq. 6, which is distributed in a circular shape in space
(Figure 9). The seismic intensity, PGA, and landslides of the
Jiuzhaigou earthquake all show a NW trending distribution.
So, it can be inferred that the macroscopic seismic action is
determined by both the epicenter and seismogenic fault. The
existing study results suggest that the seismogenic fault of the

Jiuzhaigou earthquake is the northern section of the Huya fault
with left-lateral strike-slip characteristics. The rupture length of
the seismogenic fault is approximately 33–35 km, and the rupture
depth is approximately 23–26 km (Qi et al., 2018; Wang and
Mao, 2022). The ground projection of the seismogenic fault is
used as the linear focal source (Figure 10). The comprehensive
focal distance, a kind of virtual focal distance that considers
the combined influence of the point focal source (epicenter)
and linear focal source (seismogenic fault), can be calculated by
Eq. 8 (Zhang et al., 2017). In Eq. 8, R is the comprehensive focal
distance, Rp is the point focal distance, and Rl is the linear focal
distance. The Arias intensity with a comprehensive focal source
(abbreviated as Arias_C) is calculated using the comprehensive
focal distance (Figure 10), showing a NW trending elliptical
distribution in space.

R =
Rl(Rp + 1)Rl min

(Rl(Rp + 1))max

. (8)

Seismic landslide hazard

The seismic landslide hazard can be represented by seismic
landslide probability. The seismic slope displacement was calculated
using the slope critical acceleration (Figure 7) and PGA (Figure 8)
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FIGURE 10
Arias intensity in the main assessment area (comprehensive focal source). The black dashed rectangular box in (A) is the scope of (B).

in the main assessment area. Similarly, the slope critical acceleration
(Figure 7), Arias_P (Figure 9), and Arias_C (Figure 10) were used
to calculate the seismic slope displacement in the main assessment
area. Then, the seismic landslide probability was calculated
according to the seismic slope displacement. The natural break
method in the ArcGIS and field experiences are used to divide
the seismic landslide hazard into 5 grades: very high (seismic
landslide probability ≥25%), high (seismic landslide probability
15%–25%), middle (seismic landslide probability 5%–15%), low
(seismic landslide probability 1%–5%), and very low (seismic
landslide probability <1%) (Figures 11–13).

Result validation

The receiver operating characteristic (ROC) curve method and
the coseismic landslide samples (Figure 3) are adopted to validate
the results of seismic landslide hazards. The area under the curve
(AUC) is used to characterize the accuracy of the mathematical
model (Yilmaz, 2010; Guo et al., 2015). It is generally believed that
the closer the AUC is to 1, the better the model accuracy is. When
the AUC is 0.5–0.7, the model accuracy is poor; when the AUC is
0.7–0.9, the model accuracy is good; and when the AUC is above
0.9, the model accuracy is excellent.

Based on the spatial statistical correlation between seismic
landslide hazards and coseismic landslide samples, the seismic

FIGURE 11
Seismic landslide hazard using peak ground acceleration (PGA) in the
main assessment area.
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FIGURE 12
Seismic landslide hazard using the Arias intensity in the main
assessment area (point focal source).

landslide hazard indexes were arranged in the descending order
and divided into 50 bins. The accumulative area percentage
with respect to 50 bins (as the horizontal coordinate) and their
corresponding accumulative area percentage of coseismic landslide
samples (as the vertical coordinate) were calculated. These values
of the accumulative area percentage were used to draw the desired
ROC curve and calculate the AUC (Figure 14) (Chung and Fabbri,
1999). With the increase in the accumulative area percentage, the
corresponding accumulative area percentage of coseismic landslides
increased rapidly at a faster rate, then increased slowly, and
finally reached 100%. The accuracies of seismic landslide hazard
results based on the PGA, Arias_P, and Arias_C are 0.79, 0.73,
and 0.82, respectively. The accuracy of seismic landslide hazard
results based on Arias_C is the highest, followed by that based on
PGA and Arias_P.

Result analysis

By analyzing the spatial distribution characteristics of seismic
landslide hazards, it can be found that the seismic landslide
hazard based on the PGA presents an approximate elliptical ring
distribution.The seismic landslide hazard based onArias_P presents
a circular ring distribution. The seismic landslide hazard based on
Arias_C presents an almost standard elliptical ring distribution with
amajor axis in the NW trend, which is more significantly affected by
the seismogenic fault.

The coseismic landslides are mainly distributed in the area
with seismic intensity of VII degree and above. The number of
coseismic landslides with seismic intensity of VII, VIII, and IX is 47,

FIGURE 13
Seismic landslide hazard using the Arias intensity in the main
assessment area (comprehensive focal source).

FIGURE 14
Receiver operating characteristic (ROC) curve of the seismic landslide
hazard in the main assessment area (Arias_P indicates the Arias
intensity with point focal source, and Arias_C indicates the Arias
intensity with comprehensive focal source).

3,612, and 1,175, respectively. In this area, the spatial distribution
characteristics of seismic landslide hazards are statistically analyzed
(Table 2; Figure 15). Areas with very high and high seismic landslide
hazards based onArias_C, PGA, andArias_P are 323 km2, 317 km2,
and 586 km2, accounting for 7.51%, 7.38%, and 13.64% of the
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TABLE 2 Result analysis of seismic landslide hazard in the Jiuzhaigou earthquake area.

Seismic landslide hazard Very high High Middle Low Very low

Arias_C

Area (km2) 177 146 148 300 3,525

Area percentage (%) 4.11 3.40 3.44 6.98 82.07

Landslide percentage (%) 71.37 18.82 6.19 2.77 0.84

PGA

Area (km2) 120 197 251 719 3,008

Area percentage (%) 2.80 4.58 5.84 16.75 70.03

Landslide percentage (%) 44.43 36.00 13.71 5.09 0.77

Arias_P

Area (km2) 253 332 442 952 2,315

Area percentage (%) 5.90 7.74 10.28 22.18 53.90

Landslide percentage (%) 37.46 26.61 17.22 11.19 7.52

FIGURE 15
Statistical area proportion of the seismic landslide hazard zone in the
main assessment area.

total area, respectively. In these areas, the corresponding coseismic
landslide proportion is 90.19%, 80.43%, and 64.07%, respectively.
The results show that the seismic landslide hazard zone can be
well identified based on the presented Arias_C parameter. The
middle seismic landslide hazard and over are mainly located at
areas with seismic intensity of VII degree and above, which is also
the concentrated area of the coseismic landslides. The coseismic
landslides are mainly distributed in the deep gullies and steep
mountainous slopes on the north and south sides of the epicenter.
The spatial distribution of seismic landslide hazards is in good
agreement with that of the coseismic landslides.

Discussion

The accuracy of seismic landslide hazard assessment is
significantly affected by various factors such as seismic geological

data, modeling methods, and landslide data set size and type
(Comert, 2021). Many studies on seismic landslide hazard
assessment have been carried out in the 2017 Jiuzhaigou earthquake
area (Yue et al., 2018; Ai et al., 2022), the 2008 Wenchuan
earthquake area (Li et al., 2013; Wang et al., 2016), and the 2005
Kashmir earthquake area (Kamp et al., 2008). In these studies, the
Newmark model mostly used the PGA parameter and traditional
point focal source, while the fault parameter (such as distance
to the fault) has often been used in statistical models, such as in
the transfer learning and logistic regression model (Li et al., 2013;
Ai et al., 2022). Most of these results have an accuracy of above
0.80, indicating that the fault is an important parameter for seismic
landslide hazard assessment (Li et al., 2013; Ai et al., 2022). It also
shows the effectiveness of the proposed calculation method of the
comprehensive focal distance.

The seismic energy is released concentratedly near the epicenter
and along the plausible seismogenic fault, which has seriously
affected the spatial distribution characteristics of coseismic
landslides, that is, the elliptic distribution in the NW-SE direction.
Where the fault passes through, valleys, gullies, and summit
landforms are often formed, which are geographical environments
prone to landslides. In particular, the coseismic landslide intensity
is relatively high in the intersection area of the seismogenic
fault and the Minjiang fault in the northwest of the epicenter.
Among the three presented seismic motion parameters, the
spatial distribution characteristics of Arias_C are more similar
to those of coseismic landslides, followed by those of PGA
and Arias_P. So, the newly proposed Arias intensity showed
better results.

The Jiuzhaigou earthquake area presents mountainous and
canyon landforms, and the number of seismic stations deployed is
limited, which does not completely cover the seismic area, especially
the zones along the seismogenic fault. Therefore, the simulated
PGA results based on the seismic station data are biased. The
PGA requires a certain number of seismic stations and simulation
analyses, and so takes a long time after strong earthquakes.
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However, the Arias intensity can be calculated only by knowing
the focal location and magnitude parameters so that the general
seismic landslide hazard situation can be obtained more quickly,
and it is very suitable for emergency seismic landslide hazard
assessment.

The slope displacement does not necessarily mean landslide
occurrence, and there is a probability problem between them.
This work adopts the worldwide formula between slope
displacement and landslide probability, which are obtained
from the statistical analyses of many seismic landslide data
(Jibson et al., 2000). However, for different seismic areas, there
exit many differences in complicated geological environmental
conditions such as landforms, stratigraphic lithology, and
hydrogeology. So, it is necessary to further analyze coseismic
landslide samples and propose a new formula between slope
displacement and landslide probability, which is more suitable
for the geological environmental settings in the Jiuzhaigou
earthquake area.

The high and steep mountain has an obvious topographic
amplification effect on seismic ground motion, and it is more
significant at the mountain top. Here, the seismic landslide hazard
assessment is carried out on a regional scale, and the topographic
amplification effect of seismic ground motion is not considered.
So, from this aspect, the current presented results are relatively
conservative.

After strong earthquakes, the trend of increasing landslide
development intensity lasts for several decades (Wasowski et al.,
2011; Fan et al., 2019; Wu et al., 2019; Tanyas et al., 2021).This work
only completes a preliminary study on the Jiuzhaigou coseismic
landslide hazard. It is necessary to analyze the duration period
of increasing landslide development intensity. Moreover, the long-
term seismic influence should be carefully considered for the post-
earthquake rainfall-triggered landslide hazard.

Conclusion

The 2017 Ms 7.0 Jiuzhaigou earthquake in the Tibetan Plateau
is a valuable case because of its complex topography, landform,
geological settings, and developed coseismic landslides. Based on
the analysis of the geological settings and coseismic landslide
development characteristics, the simplified Newmark model is
used to complete the seismic landslide hazard assessment in the
Jiuzhaigou earthquake area, which effectively enriches the valuable
case study of seismic landslide hazard assessment.

Considering the combined effect of the point focal source
(epicenter) and linear focal source (seismogenic fault), the improved
calculation method is used to determine the Arias_C parameter
under the constraint of seismogenic fault. A better seismic landslide
hazard result has been obtained using the new Arias_C parameter.
It embodies the advanced nature, precision, and practicability of the
seismic landslide hazard assessment model. The Arias intensity is
very suitable for rapid seismic landslide hazard assessment under
emergency situations.

The seismic landslide hazard based on the Arias_C parameter
shows a spatial distribution pattern with a clear elliptical ring,

which indicates a significant impact of the seismogenic fault on
seismic landslide development and can better identify seismic
landslide hazard areas. The high and very high seismic landslide
hazard is mainly distributed in the areas with seismic intensity
of VIII degree. The spatial distribution pattern of seismic
landslide hazards is highly consistent with that of coseismic
landslides.
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The upper reaches of the Yellow River in China, influenced by erosion of
the Yellow River and tectonic activities, are prone to landslides. Therefore,
it is necessary to investigate the existing landslide traces. Based on
visual interpretation on high-resolution satellite images and terrain data,
supplemented and validated by existing landslide records, this paper prepared
the most complete and detailed landslide traces inventory in Jianzha County,
Huangnan Tibetan Autonomous Prefecture, Qinghai Province, to date. The
results indicate that within the study area of 1714 km2, there are at least
713 landslide traces, ranging in scale from 3,556 m2 to 11.13 km2, with a
total area of 134.46 km2. The total landslide area excluding the overlap area
is 126.30 km2. The overall landslide point density and area density in the
study area are 0.42 km-2 and 7.37% respectively. The maximum point density
and maximum area density of landslide traces in the area are as high as
5.69 km-2 and 98.0% respectively. The landslides are primarily distributed in
the relatively low-elevation northeastern part of Jianzha County, characterized
mainly by large-scale loess landslides, with 14 landslides exceeding 1×106 m2.
This inventory not only supplements the landslide trace data in the transition
zone between theQinghai-Tibet Plateau and the Loess Plateau, but also provides
an important basis for subsequent landslide risk zoning, response to climate
change, and landscape evolution. Additionally, it holds significant reference
value for compiling landslide inventories in similar geological environments.

KEYWORDS

landslide traces inventory, upper reaches of the yellow river, loess landslides, Jianzha
County, visual interpretation

1 Introduction

Worldwide, mass movements such as landslides are prevalent geological
hazards, causing heavy casualties (Petley, 2012; Froude and Petley, 2018). As far
as landslide hazards are concerned, China ranks among the regions with the
very frequency of landslide hazards globally (Kirschbaum et al., 2015; Xu and
Xu, 2021). According to statistics from 2004 to 2016, China experienced 463
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fatal landslides not induced by earthquakes, resulting in 4,718
deaths and causing economic losses exceeding 900 million dollars
(Zhang and Huang, 2018). Therefore, the prevention and control
of landslide hazards is crucial for people’s lives. As a key step
in hazard prevention and mitigation, including the analysis of
regional landslide distribution patterns, hazard assessments, and
risk assessment, the construction of a regional landslide inventory
is fundamental and essential. A complete and accurate inventory
ensures the objectivity and precision of subsequent work (Xu, 2015;
Piacentini et al., 2018).

In the construction of China’s landslide traces inventory, many
scholars have carried out a lot of work and made certain progress
(Chen et al., 2016; Qiu et al., 2019; Zhao et al., 2019; Zhang et al.,
2020). In northwestern China, Huang et al. (2022) compiled a
landslide traces inventory for Hualong County, Qinghai Province,
consisting of 3,517 landslides through visual interpretation of high-
resolution optical images. Furthermore, an in-depth study on the
spatial distribution patterns of landslides was conducted based
on this inventory. In central China, Li et al. (2022a) primarily
utilized visual interpretation, supplemented by existing literature
and hazard records, to improve and supplement the landslide
traces inventory for Baoji City, Shaanxi Province. The inventory
contains a total of 3,422 landslides, providing foundational data for
subsequent exploration of the distribution characteristics of large-
scale landslides in the region. In the western part of the Qinghai-
Tibet Plateau, Cui et al. (2023) employed the Google Earth platform
and visual interpretation method to identify landslide traces in the
Western Himalayan Syntaxis. They established a landslide traces
inventory containing 7,947 landslides. This inventory serves as
a support for subsequent landslide hazard assessments. Wu et al.
(2016) collected landslide data based on aerial photographs at
a scale of 1:50,000 under the conditions of existing data and
field survey. They mapped 328 landslides in Gangu County,
Gansu Province, providing a crucial foundation for subsequent
research. Lan et al. (2004) combined aerial photographs, previous
landslide investigation data, and on-site verification to compile a
landslide inventory for the Xiaojiang River Basin, including 574
landslide records. They conducted spatial analysis and prediction
of landslide based on this inventory. The landslide data sets
constructed by these studies, supported by various methods,
demonstrate the ability to facilitate subsequent study on landslide
in terms of accuracy and completeness. Nevertheless, accurate
and complete landslide trace data are still lacking for the entire
region of China.

In studies covering Jianzha County, many scholars have carried
out identification work on regional landslides, or conducted
research on landslide failure patterns, InSAR deformation analysis,
geomorphic effects, and other aspects based on landslide data
(Ma et al., 2008; Guo et al., 2020a; Wang et al., 2022; Tu et al., 2023).
Yin et al. (2014) primarily utilized visual interpretation to identify
508 landslides from Sigou Gorge to Lagan Gorge in the upper
reaches of the Yellow River, with many landslides distributed in
Jianzha County. Tu et al. (2023) conducted landslide detection in
the upper reaches of the Yellow River based on InSAR technology,
and carried out detailed deformation analysis of the Lijia Gorge
landslides group in Jianzha County. Du et al. (2023) combined
InSAR deformation monitoring and optical images to identify 597
landslides in the upper reaches of the Yellow River. Landslides are

mainly distributed in Jianzha County and its surrounding areas.
Wang et al. (2022) conducted deformation analysis on the Simencun
landslide in Jianzha County to explore the relationship between the
failure patterns before and after the landslide occurrence. Currently,
although many studies have been carried out in Jianzha County
based on landslide data. However, the landslide inventory maps
produced do not cover the entire Jianzha County, or the landslide
data are not complete and detailed enough.Therefore, by combining
the visual interpretation of high-resolution optical images with
the comparison of existing literature, this study compiled a
landslide traces inventory for Jianzha County, Qinghai Province.
Additionally, a spatial analysis was performed on the inventory.
Finally, the completeness and importance of the landslide inventory
are discussed.

2 Study area

Jianzha County has a total area of approximately 1714 km2

and is located in the transitional zone from the upper reaches of
the Yellow River on the northeastern edge of the Qinghai-Tibet
Plateau to the Loess Plateau (Figure 1) (Ma et al., 2008). For a long
time, the landscape evolution of this region has been influenced
by the northeastward compression of the Qinghai-Tibet Plateau,
resulting in the formation of basin and mountainous topography
(Guo et al., 2020a; Peng et al., 2020). The overall terrain in the
region is high in the southwest and low in the northeast. The
northeastern part is the Qunke-Jianzha Basin, characterized by
relatively low elevations and crossed by the main trunk of the
Yellow River. On either side, there are two basins, namely, the
Guide Basin and the Xunhua Basin. The Yellow River and its
tributaries exert strong erosion and incision along the edges of
the basins, with cutting depths exceeding 500 m. This has resulted
in the formation of numerous erosion and accumulation terraces,
as well as steep and rugged slopes, providing favorable conditions
for landslide occurrence (Craddock et al., 2010; Guo et al., 2020a;
Du et al., 2023).

The study area exhibits undulating and rugged topography
with well-developed valleys and gullies. The surrounding active
tectonics are developed, with the north part of the area having
the Lajishanbeiyuan Fault (LJSBYF) and the Lijishannanyuan
Fault (LJSNYF). The NWW-SEE trending Daotanghe-Linxia Fault
(DTH-LXF) and NNW-SSE trending Riyueshan Fault (RYSF) pass
through the study area. Tectonic activity and climate change
contribute to the frequent geological hazards (Yin et al., 2014).
The large, extra-large, and giant landslides in the region are
typical and representative in China (Guo et al., 2020b; Yin et al.,
2021). Some studies suggest that the tectonic uplift of the
Qinghai-Tibet Plateau, as an internal dynamic factor, has led
to the episodic incision of the Yellow River main and tributary
channels, serving as the underlying cause for the formation of
giant landslides (Li et al., 2011). As shown in Figure 1, there are
several historical earthquakes with Ms greater than 5.0 around
Jianzha County. The occurrence of landslides may be related to
seismic activity or may be the result of landscape evolution, such
as river erosion and high groundwater levels (Guo et al., 2016;
Guo et al., 2018).
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FIGURE 1
Location of the study area. Surface wave magnitude (Ms) is a measure of the strength of an earthquake, calculated from surface wave. The larger the
value, the stronger the earthquake. Active fault data from Deng (2007).

3 Methods

With the advancement of remote sensing technology and
improved transportation accessibility, the main methods for
compiling regional landslide inventories currently include field
investigation, visual interpretation of satellite images combined
with computer, and automatic identification technology. Table 1
summarizes the advantages and disadvantages of the three
landslide identification methods. Detailed field investigation
can ensure high accuracy for landslide investigations in small-
scale areas (Huangfu et al., 2021). However, for large-scale
regional landslide investigations, the feasibility of extensive field
investigation decreases. This is primarily due to the substantial
cost and time required (Peng et al., 2016), as well as the difficulty
in accessing rugged landslide sites. With the development of
automatic identification technology, it has a significant advantage in
quickly obtaining regional landslide data. However, its accuracy
may be not very good (Fayne et al., 2019; Zhang et al., 2020;
Piralilou et al., 2021; Vecchiotti et al., 2021; Milledge et al., 2022).
Combining the strengths of both approaches, the human-computer
interaction visual interpretation of satellite images has gradually
become an important method for constructing landslide inventory
(Xu et al., 2015; Shao et al., 2020; Li et al., 2021; Cui et al., 2022a).
This approach requires interpreters to have certain professional
background knowledge. Compared to detailed field survey, it

sacrifices a small portion of accuracy but significantly improves
the efficiency of constructing landslide inventory (Xu et al., 2014b;
Cui et al., 2022b; Cui et al., 2022c).

This article primarily employed high-resolution optical images
overlayed on terrain data for human-computer interactive visual
interpretation, and combined existing landslide records in literature
for validation and supplementation to construct a landslide traces
inventory for Jianzha County. Google Earth Pro platform integrates
a vast amount of high-resolution optical satellite image data and
allows for the three-dimensional, multi-angle display of landscape
by overlaying terrain data (Crosby et al., 2012; Rabby and Li,
2019). This provides extremely convenient conditions for landslide
identification. Focusing on the Jianzha County, the image quality
is exceptionally high, with 100% satellite image coverage and 0%
cloud coverage. Therefore, we performed repetitive basic work
on landslide interpretation based on the Google Earth Pro for
inventory construction. First of all, the shape and boundary of
the landslide can be easily determined based on the differences
between the texture, tone, shadow and vegetation development on
the satellite images and the surrounding environment, combined
with terrain differences and multi-angle observation. Secondly,
many existing literature findings on landslides in the region will
be conducted to check and supplement the inventory for ensuring
the completeness and objectivity. Because different landslides have
different topographic and geomorphic characteristics, there is no

Frontiers in Earth Science 03 frontiersin.org106

https://doi.org/10.3389/feart.2024.1370992
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2024.1370992

TABLE 1 Advantages and disadvantages of three landslide
identification methods.

Methods Advantages Disadvantages Scope of
application

Detailed field
investigation

Precision,
accurate
landslide
parameter

measurement

High cost, high time
consumption,

difficult to access in
rugged terrain

High-precision
landslide

investigation in a
small area with

convenient
transportation

Automatic
identification
technology

Low cost, less
time

consumption,
rapid mapping,

emergency
response

Low accuracy, prone
to omissions

Emergency
response to
landslides
induced by

earthquake or
rainfall

human-
computer
interactive

visual
interpretation

Balancing
efficiency and
quality, high
accuracy

Professional
background required

Construction of
inventories for

large area
event-based

landslides and
landslide traces

uniform standard applicable to the interpretation of all landslide
traces. Here, some common landslide features used in landslide
interpretation are listed: 1) Having an obvious armchair-shaped
back wall and the phenomenon of double grooves homologous;
2) Depression in the source area, prominent topography in the
accumulation area, accompanied by a distinct landslide boundary;
3) Obvious displacement between the landslide body and the
surrounding environment, accompanied by cracks or differences
in elevation; 4) The source area shows a brighter color, and the
accumulation has transverse fissures and appears tongue-shaped; 5)
Irregular stepped appearance in the accumulation body, with the
terraces possibly transformed into residential areas or farmland.

4 Results and analysis

4.1 Landslide traces inventory

The landslide inventory serves as a crucial foundation for
regional landslide risk assessment and prevention. Many scholars
have conducted regional or individual landslide studies in Jianzha
County (Yin et al., 2014; Guo et al., 2020b; Du et al., 2023; Tu et al.,
2023). Although the study areas of these studies cover or partially
cover Jianzha County, most have not established a complete
landslide traces inventory that fully encompasses Jianzha County.
Table 2 presents selected existing landslide records in Jianzha
County. After objectively supplemented and validated by these
records, the landslide inventory constructed in this study contains
a total of 713 landslide traces (Figure 2). The total area of these
landslides is 134.46 km2. The total landslide area excluding the
overlap area is 126.30 km2, accounting for 7.37% of the study
area. The average landslide area is approximately 0.19 km2, with
a minimum of 3,556 m2 and a maximum of 11.13 km2. It can be

TABLE 2 Selected recorded landslides in Jianzha County.

No. Name Longitude Latitude Citation

1 Simencun
Landslide

101.94° 36.04° Wang et al.
(2022)

2 Xiazangtan
landslide

102.00° 35.98° Guo et al.
(2020b)

3 Lijia Gorge
landslide
group

101.75° 36.14° Tu et al.
(2023)

4 Kangyang
landslide

101.96° 36.00° Yin et al.
(2013a)

5 Lannitan
landslide

101.98° 36.00° Yin et al.
(2013a)

6 Tangse
landslide

101.82° 36.09° Yin et al.
(2013b)

7 Quhetankou
landslide

101.94° 36.01° Yin et al.
(2013b)

8 Gurisi
landslide

102.02° 35.97° Ma et al.
(2008)

found that landslidesmainly occur on the slopes of the relatively low-
elevation ridges in the northeastern part of Jianzha County. These
landslides are widely distributed in towns such as Kanbula, Jiajia,
Cuozhou, Maketang, and Angla, with a predominance of large-scale
landslides. In the southwest, where the altitude is relatively high,
landslides are sparsely distributed.

4.2 Typical landslide display

In order to more intuitively display the landslides, several
typical landslides were selected within the study area for display
(Figure 3). It can be found that the predominant landslide type is
loess landslide. The landslide boundary is easily identified based on
the discontinuity in texture and shape between the deposits and the
surrounding environment. The material movement along the slope
is evident. The displacement between the landslide deposits and
the boundary visually demonstrates the movement direction and
shape of the landslide. Over time, traces of human activity become
visible on the deposits. After reconstruction, roads and buildings
of various sizes are distributed across the deposits. These typical
landslide examples can clearly capture the landslidemorphology and
material movement traces, which is of great value for the study of
regional landslide failure mechanisms.

4.3 Landslide density statistics

In order to quantitatively analyze the spatial distribution of
landslides, landslide point density and area density are used to
characterize the distribution and aggregation of landslides. After
kernel density calculation with the search radius set to 2 km, the
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FIGURE 2
Spatial distribution map of landslide traces.

results are shown in Figure 4. High point density areas are primarily
concentrated in the northeastern part of the study area (Figure 4A),
with the maximum density reaching 5.69 km−2. This indicates that
landslides in these areas are numerically dominant. The maximum
landslide area density is 98.0% (Figure 4B). High area density areas
are different from high point density areas in distribution. For
instance, landslide area density is more significant relative to point
density in areas close to the Kanbula Town. This indicates that the
landslides in this area tend to be larger in scale.

5 Discussion

5.1 Landslide scale and the completeness
analysis

To explore the scale of landslides in Jianzha County, the
cumulative landslide number was plotted against the landslide area
in a double logarithmic coordinate system to show the relationship
between them (Figure 5). Where N represents the number of
landslides exceeding a given area, A. It can be observed that
the majority of landslides have a scale smaller than 1×106 m2,
with only 14 landslides exceeding 1×106 m2 in scale. The fitting
formula for all landslides is lgN(A) = −0.728 lgA+ 5.957, with
R2=0.882. For landslides with an area larger than 1×105 m2,
the fitting formula is lgN(A) = −1.210 lgA+ 8.552, with R2=0.99,

indicating that these data are relatively complete. For landslides
with an area smaller than 1×104 m2, the curve exhibits a
smoother trend, possibly due to the less distinct image change
characteristics in the exposed loess areas, making them difficult
to identify.

As shown in Figure 5, landslides with an area greater than
1×105 m2 are fitted as lgN(A) = −1.210 lgA+ 8.552. In previous
studies, this formula was often used in the statistics of coseismic
landslide inventories to evaluate the completeness. For example, in
the nearly complete coseismic landslide inventory established by
Xu et al. (2014a) after the Wenchuan earthquake, landslides within
a certain area are defined by the equation lgN(A) = −2.0745 lgA+ 13,
and the landslides exhibit a rolling trend. Similarly, coseismic
landslide inventories for the Minxian-Zhangxian earthquake
(Xu et al., 2014b) and Maerkang earthquake (Chen et al., 2023)
also show a similar trend, with the slopes and intercepts of the
corresponding fitting equations are −1.341 and 6.02 (Minxian-
Zhangxian earthquake) and −1.1052 and 5.7839 (Maerkang
earthquake), respectively. Although the scale of landslides may
vary due to different environmental conditions. However, it can be
observed that whether it is the landslide traces inventory of this
article or the coseismic landslide inventory, the landslides show a
similar trend of change. In particular, in the work of establishing
a landslide inventory with similar landslide scales, Li et al. (2022b)
constructed a landslide traces inventory containing 3,757 landslides
around the Baihetan Hydropower Station reservoir in China. The
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FIGURE 3
Display of seven typical landslide traces in the study area.

relationship between the cumulative number and area of landslides
with an area greater than 1×105 m2 is lgN(A) = −1.275 lgA+ 6.26.
Upon comparison, this is very close to the results of this article,
which also proves the completeness of our inventory to a certain
extent. By comparing the completeness of landslide inventories
in different categories, it is concluded that landslide inventories
of the same category have more reference value than those of
different categories.

5.2 Objective assessment of methods

A complete and detailed landslide inventory is of great
significance for regional landslide research and risk management.
The human-computer interaction visual interpretation method,
as one of the primary approaches for establishing regional
landslide inventory, possesses advantages that are irreplaceable
by field investigation and automatic identification techniques
(Guzzetti et al., 2012; Tian et al., 2019; Xu et al., 2020). While
this study primarily relied on such a method to construct a
relatively objective landslide traces inventory for Jianzha County,
there are still some limitations. For small-scale landslides, due
to the resolution limitations of satellite images, the coverage of
topographic and geomorphic features, and the subjective factors
from interpreters, it is inevitable that landslides with unclear
identification characteristics will bemissed. Comparedwith detailed
field investigation, the visual interpretation method consumes
less cost and time. Compared with automatic identification

method, it is superior in accuracy and is currently a widely
used method for identifying regional landslides (Cui et al., 2021;
Li et al., 2022a; Sun et al., 2024). This method sacrifices some
accuracy compared to field investigation, but greatly improves
efficiency. Balancing the efficiency of automatic identification
and the accuracy of field investigation is an exploratory and
challenging task.

5.3 The importance of the landslide
inventory

Landslide susceptibility refers to the probability of slope
failure in a specific geological environment without considering
triggering factors (Akgun, 2012; Nikoobakht et al., 2022). As a
fundamental component, landslide inventory plays an indispensable
role in landslide susceptibility assessment. It provides essential
information about landslides, including the number, scale,
location. Based on landslide inventory, one can select a single
assessment method and specific influencing factors for landslide
susceptibility assessment (Huangfu et al., 2021; Nanehkaran et al.,
2021; Cemiloglu et al., 2023). Alternatively, one can choose several
different assessment methods for comparative analysis to find
the optimal results (Azarafza et al., 2021; Nanehkaran et al., 2022;
Mao et al., 2024). With the development of landslide assessment,
machine learning has demonstrated outstanding performance
among many methods, gradually becoming the preferred approach
for assessment (Nanehkaran et al., 2023). Based on susceptibility
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FIGURE 4
Landslide density map. (A) point density map; (B) area density map.

FIGURE 5
Curve depicting correlation between the cumulative landslide number
and the landslide area.

assessment, triggering factors are added to evaluate landslide
hazard, while carrier indicators are added for vulnerability
assessment. Risk assessment is then performed by overlaying
hazard and vulnerability. However, regardless of which assessment
method is chosen and which landslide influencing factors are
considered, the susceptibility assessment, hazard assessment,
vulnerability assessment, and risk assessment all need to be based
on landslide data. The landslide inventory can not only be used
to validate the results obtained through predictive modeling,

but also provide an important reference for exploring factors
involved in the occurrence of new landslides. Many studies
have been carried out on incomplete landslide inventories and
updated the inventories, effectively enhancing the understanding
of subsequent landslide development and assessment research.
For example, the Hokkaido earthquake (Kasai and Yamada, 2019;
Cui et al., 2021), Wenchuan earthquake (Dai et al., 2011; Xu et al.,
2014a), and Jiuzhaigou earthquake (Tian et al., 2019; Sun et al.,
2024). The work of compiling a complete and detailed landslide
inventory is not only of great value and significance, but also has
important supporting value for subsequent research on landslide
failure mechanisms, landscape evolution, especially landslide
susceptibility assessment.

6 Conclusion

This study established a landslide traces inventory in Jianzha
County, Qinghai Province, China, and conducted a statistical
analysis of their number, area, and density. A total of 713 landslides
were identified, mainly loess landslides. The total area of landslides
is 134.46 km2, ranging in scale from 3556 m2 to 11.13 km2. The
landslides are primarily concentrated in the low-elevation regions
of the northeastern part of the study area. This inventory is
more similar in scale and completeness to other loess landslide
inventories. Furthermore, it is more complete and detailed than
previous landslide traces records in Jianzha County. The study
compiled the most complete and detailed landslide traces inventory
in Jianzha County so far, which is of great significance to landslide
scientific research. In future, relevant research on loess landslide
development characteristics, failure mechanisms, susceptibility
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assessment and risk zoning can be conducted based on this
landslide inventory.
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The spatial accessibility of emergency shelters, indicating the difficulty of
evacuation and rescue, is crucial for disaster mitigation and emergency
management. To analyze accessibility, an effective approach is to evaluate
the service capacity of emergency shelters. Multifaceted factors were
employed to enhance the quantitative accuracy of accessibility indicators.
However, scenario-specific analysis has not been emphasized. Considering
the devastating potential of great earthquake disasters, we cannot ignore the
impact of these scenarios on emergency shelter accessibility, especially in areas
with high seismic risk. In this study, we developed an earthquake scenario-
specific framework for spatial accessibility analysis (SAA), which integrates the
service capacity of emergency shelters and the impact of strong ground motion
and fault rupturing. We applied this framework to the urban area of Xichang
City in Sichuan Province, western China. Xichang City, located in the linked
area of the Anninghe fault and Zemuhe fault with many extreme historical
earthquake disaster records, is prone to high seismic risk. We firstly collected
emergency shelter and road network data in Xichang City. We then applied SAA
based on the road network, using the network analysis method. After that, we
analyzed the impact of strong ground motion on accessibility and generated
the setback zone of fault rupturing. We integrated the effect of strong ground
motion on accessibility within the setback zone of active faults. Finally, we
generated a comprehensive accessibility map, considering both the predicted
strong ground motion and potential fault rupturing. Our results show that
the accessibility level changed in several towns of urban Xichang City due to
strong ground motion and fault rupturing. The accessibility level decreased in
Lizhou, Xingsheng, and Anning Towns. For areas with mapped fault lines, the
accessibility level is Very-Low. Our results demonstrate the impact of earthquake
damage on the accessibility of emergency shelters and the complexity of
evacuation in earthquake scenarios. In general, we added earthquake rupturing
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and ground motion characteristics into the SAA framework. This framework will
help us enhance the reliability of SAA and the feasibility of seismic vulnerability
evaluation.

KEYWORDS

earthquake disasters, spatial accessibility, emergency shelter, emergency management,
risk assessment, Xichang City

1 Introduction

Earthquake disasters rank as the most destructive natural
disasters in theworld (Albulescu, 2023).With the rapid development
of urbanization, the growing exposure of populations and structures
aggravates the seismic risk in urban areas (Zou et al., 2023).
Such unpromising circumstances necessitate the optimization of
earthquake disaster mitigation. The foundation of an optimal
formulation lies in knowledge about the location, capacity, and
spatial accessibility of critical emergency facilities (Albulescu, 2023).
Emergency shelters are one of the most essential emergency
facilities, providing temporary resettlement, medical services, and
emergency command centers for residents. The spatial accessibility
of emergency shelters depends on the complexity of evacuation in
an emergency and reflects the effectiveness of mitigation strategies
and emergency management. The SAA of emergency shelters can
also assist in formulating strategies to optimize disaster mitigation
for high seismic risk areas.

Once an earthquake occurs, taking shelter is the very first
instinct of residents, which demands mobility and accessibility
(Zou et al., 2023). Exploring the spatial distribution of emergency
shelters is an effective approach for identifying their accessibility
to refugees (Gall, 2004; Chang and Liao, 2015). A map of spatial
accessibility distribution could visualize the ease of reaching
emergency shelters and evaluate the rationality of their allocation.

The methods used for the SAA of urban facilities mainly
encompass typical spatial analysis methods such as buffer analysis
(Zhang, 2020) and network analysis (Hou and Jiang, 2014;
Albulescu, 2023; Yan, 2023). Methods are constantly developing,
with advanced methods combined with GIS technology. The gravity
model, which considers the relationship between supply- and
demand-sides, can be an essential companion to GIS spatial analysis
technology to distinguish the radiation coverage of different-sized
areas (Zhang, 2020). As a special form of the gravity model,
the two-step floating catchment area (2SFCA) method can assist
in the study of urban emergency facilities. For example, the
Gaussian two-step mobile search method, which is an improved
2SFCA method, introduces a Gaussian function with an excellent
fit for distance decay. This function can help obtain a more
accurate accessibility indicator (Tong et al., 2021; Jiang et al., 2023).
In addition, a 2SFCA method with a variable service radius and
evacuation radius was proposed to deal with the differences in
emergency shelter service capacities and population distribution
(Su, Chen, and Cheng, 2022a). Moreover, typical map applications
(e.g., Google Map and Baidu Map) also stimulate accessibility
evaluation. For instance, the application programming interface
(API) can provide automatic time cost calculations for real-time
travel (Wang et al., 2019) and navigation data (Shen et al., 2020).
As the accuracy of the accessibility index constantly improves, the

quantitative assessment of spatial accessibility continues to evolve.
However, qualitative analysis involving particular scenarios has

not been much emphasized, although multiple scenarios can affect
the accessibility of emergency shelters. For example, demographic
density, evacuation capacity across age groups, population spatial
temporal distribution, and even topographic factors can lead
to differences in evacuation time (Su, Chen, and Zhang, 2022b;
Zou et al., 2023). Moreover, the accessibility of emergency shelters
in disaster scenarios is of great concern (Zhang and Yun, 2019).
The accessibility might be undermined at different levels due
to severe damage. Earthquake damage can be distinguished into
direct damage (e.g., shaking or failure of over-bridges and roads)
and indirect damage (e.g., street blockages due to debris from
collapsed buildings) (Anastassiadis and Argyroudis, 2007). Strong
ground motion and fault rupturing can cause catastrophic damage
to buildings and road surfaces. During the 2008 M8 Wenchuan
earthquake, the buildings along the fault-ruptured area were all
significantly destroyed because of sudden fault rupturing (Xu et al.,
2009). Moreover, open space damage caused by shaking and
collapsed buildings can indirectly impede evacuation and rescue
in the immediate aftermath (Francini et al., 2020; Bernardini and
Ferreira, 2022). Dramatic destruction due to fault rupturing
and strong ground motion can significantly impede emergency
evacuations. In such situations, accessibility to emergency shelters
would be impaired. To better assist in emergency management,
we must explore the reasonable SAA of emergency shelters for
earthquake scenarios.

In this study, we developed an earthquake scenario-specific
framework for SAA. This framework integrated the service capacity
of urban facilities with the characteristics of earthquake scenarios.
Except for the spatial distribution of emergency shelters, we were
able to gain an insight into the fault rupturing and strong ground
motion caused by earthquake disasters. First, we operated the spatial
service area of emergency shelters through network analysis. Based
on the service area distribution, we generated the impact of strong
ground motion and fault rupturing on the level of accessibility.
Finally, we generated a comprehensive distribution map of the level
of accessibility to emergency shelters in earthquake scenarios.

We employed this framework in the urban area of Xichang
City in western China. After analyzing the impact of strong ground
motion and fault rupturing characteristics, we determined the
changes in the accessibility level in several towns of Xichang City.
We also identified the practical service area of emergency shelters in
earthquake scenarios. Our results are reasonable as we considered
the potential effects caused by earthquake disaster characteristics.

In the subsequent sections, we introduce the historical
earthquake records and the extent of the study area in Section 2.
Then, in Section 3, we illustrate the framework combined with
the case study in Xichang City. We display the results in Section 4
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FIGURE 1
Geological location of Xichang City.

and discuss them in Section 5. The last section draws conclusions
for this study.

2 Study area

Xichang City, located in southwestern Sichuan Province,
China, is the capital of the Liangshan Yi Autonomous Prefecture
(Figure 1). Xichang City's population has increased from 700,000
to 966,000 in the past 10 years. Infrastructure construction
there has expanded ∼ four times, with an urbanization rate
of 68.48% (http://www.xichang.gov.cn/zfxxgk/zfxxgknr/tjsj_
31356/202305/t20230526_2487868.html, last accessed in January
2024). The increased population and expanded inhabited
structures can raise issues of natural disaster prevention,
especially in high seismic risk zones. To cope with emergency
evacuation issues in earthquake-prone areas, the construction
of a reasonable SAA framework for emergency shelters is
particularly important.

XichangCity is in an areawith frequent earthquake occurrences.
Due to the collision between the Indian and Eurasian plates,
the eastern Tibetan plateau exhibits active crustal extrusion at a
rate of approximately 10 mm/yr, resulting in frequent historical
earthquakes. This pattern is particularly evident on large-scale
boundary faults such as the Xianshuihe fault, the Anninghe fault,
the Zemuhe fault and the Xiaojiang fault. Xichang City is located
at the link of the Anninghe fault and the Zemuhe fault (Figure 2),
both with high left-lateral strike–slip rates of∼6.5 mm/yr (Ren et al.,
1990; Xu et al., 2003; Shen et al., 2005; Cheng et al., 2012).

Historically, Xichang City has suffered significantly
from devastating earthquakes—the 814 M7 earthquake, the
1489 M6.8 earthquake, the 1536 M7.5 earthquake, the
1732 M6.8 earthquake, and the 1850 M7.8 earthquake

(Ren et al., 1993; Wen, 2000; Jia Cheng et al., 2021; Jia Cheng,
2023). These historical earthquakes and their damage (Liu,
1989; Zhang et al., 1998; Min et al., 2005) are illustrated in
Supplementary Table S1.

In the 1489 M6.8 earthquake, Xichang City was near the
assumedVIII or VIII+ intensity zone.The seismic intensity for cities
situated about 100 km fromXichang (e.g., Mianning and Yuexi) also
reachedVIII or VIII+. Cities located approximately 600 km–700 km
from Xichang (e.g., Suining, Yingshan, and Lingshui) are near
the IV-intensity zone (Supplementary Figure S1). In the 1536
M7.5 earthquake, Xichang City was in the Ⅸ intensity zone.
Cities situated approximately 400 km from Xichang (e.g., Dayi,
Chengdu, Chongqing, and Ziyang) were near the assumed Ⅵ
or Ⅵ+ intensity zone (Supplementary Figure S2A). In the 1732
M6.8 earthquake, Xichang City was in the Ⅸ intensity zone
(Supplementary Figure S2B). In the 1850M7.8 earthquake, Xichang
City was in the region where seismic intensity is assumed to be Ⅹ
(Supplementary Figure S2C).

Xichang City is still in a high-risk zone for earthquakes.
Recent studies have proposed a sizable seismic gap in the
Anninghe–Zemuhe–Daliangshan region, both from the lengthy
intervals between historical earthquakes and the scarcity of
ML2.5 earthquakes since 1980 (Yi et al., 2004; Wen et al., 2008;
Yi, Wen, and Su, 2008). The expansion of the population
and the number of high buildings make the evacuation
of residents difficult in large earthquake events. Hence,
we applied our SAA methodology to emergency shelters
in Xichang City.

Prompt evacuation and rescue are crucial for preventing
fatalities and severe injuries in residential buildings in an emergency
(Chen et al., 2023). Increasingly large populations in urban areas
also increase exposure to natural disasters. This situation should
be emphasized in disaster mitigation research (Huang et al., 2019;
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FIGURE 2
(A) Tectonic background in Fang et al. (2015). Red arrows show the present crustal deformation direction; AT-F: the Altyn Tagh fault; EK-F: eastern
Kunlun fault; MY-F: Manyi fault; XSH-F: Xianshuihe fault; LMS-F: Longmenshan fault; black lines show the boundaries of the tectonic blocks
(Zhang et al., 2003). Green lines are active faults. The blue rectangle marks the region of Figure 2B; (B) Active faults and historical earthquakes around
Xichang City (Cheng et al., 2015).

Elliott, 2020; Iglesias et al., 2021; Albulescu, 2023). In this case, we
employed SAA on emergency shelters in urban Xichang City, which
is in a high seismic risk area. Using its population density data
and remote sensing images, we extracted an area with an obviously
high population density in Xichang City. Here, we analyzed raster
data from Grid Population of the World Version 4 (GPW v4)
in 2020 (https://sedac.ciesin. Columbia. edu/data/collection/gpw_
v4, last accessed November 2023) and divided them into different
categories according to the attribute values of each raster. Finally, we
clipped out the areas with significant population density as the study
area (Figure 3).

3 Methodology

Here, we develop an earthquake scenario-specific SAA
framework for cities with high seismic risks, such as Xichang
City. Based on quantitative analysis with the network analysis
method, we focus on the characteristics of earthquake scenarios
(e.g., strong ground motion and fault rupturing). The procedure
in this framework contains three main steps. First, we analyzed
the accessibility of emergency shelters based on road network
data using network analysis. Next, we assessed the impact of

FIGURE 3
3D terrain model of Xichang City.

strong ground motion on accessibility. Finally, we calculated
the impact of fault rupturing on accessibility and generated a
comprehensive accessibility distribution map. We illustrate the
workflow in Figure 4.
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FIGURE 4
Workflow of the earthquake scenario-specific framework for SAA.

3.1 Data

In this study, datasets for analysis included emergency shelters,
the urban road network, predicted peak ground motion, and the
active faults. We illustrate the detailed information and source of
these data in Table 1.

Urban emergency shelters refer to sites with certain functional
facilities which can protect people from direct or indirect damage
in disasters and provide essential life support after disasters
(Qian, 2010). The local government makes some improvements
and modifications to extend emergency evacuation functions on
public open spaces (e.g., parks and squares). In the event of a
disaster, these improved facilities can supply temporary resettlement
and fundamental medical services for injuries (Li et al., 2023).

Evacuation efficiency relies on the reasonability of emergency shelter
spatial distribution. Here, we applied SAA to emergency shelters in
Xichang City to analyze the reasonability of their distribution.

We used remote sensing images from Google Earth
Pro to select proper sites as emergency shelters. In urban
areas with congregations of tall buildings, a qualified
emergency shelter requires the following conditions: flat terrain,
open areas, and no tall buildings around to ensure safety
(Amini Hosseini, Asadzadeh Tarebari, and Mirhakimi, 2022).
According to these conditions, we selected some spacious and flat
sites, such as playgrounds, parks, squares, sizeable open-air parking
lots, and stadiums (Figures 5A–E). Among the selected sites, we
found some large open spaces covered with green dust cloth on
remote sensing images (Figure 5F), which may be alternate building
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TABLE 1 Data source and details.

Dataset Source Details and processing

Emergency
shelters

Manual selection Reference for selection: GB
21734-2008 (General

Administration of Quality
Supervision, Inspection and

Quarantine of the People’s Republic
of China, 2008), GB/T 33744-2017
(General Administration of Quality

Supervision, Inspection and
Quarantine of the People’s Republic

of China, 2017), and GB/T
35624-2017 (General

Administration of Quality
Supervision, Inspection and

Quarantine of the People’s Republic
of China, 2017). General principles:
i. Being flat and spacious; ii. Away
from high buildings and structures.

Urban road
network

Open Street Map Extraction via Open Street Map.
Manual pre-procession via QGIS.

Predicted
Peak Ground
Acceleration

(PGA)

475-year PGA values
(Jia Cheng et al.,

2021)

Calculation of PGA values using a
compatible fault model from

geological slip rates and geodetic
slip rates inverted in an elastic

block model

Active faults Updated and
integrated active
faults dataset

(Wu et al., 2023)

Update and integration of the
dataset based on the most recent
20-year region-scale active fault
survey data (1:250,000–1:50,000),

including geophysical probing, drill
logging, offset landform measuring,

and sample dating, as well as
geometric and kinematic

parameters of exposed and blind
faults, paleo-earthquake sequences,

and recurrence intervals

sites. Although they meet the basic requirements of being flat with
no tall buildings around, we still excluded these sites due to the
possibility of construction in the short term.

Since every second in an earthquake emergency evacuation is
essential for minimizing casualties (Chen et al., 2023), we identified
accurate locations of selected emergency shelters for subsequent
calculations. Most emergency shelters are sizeable and open while
people’s running speed is limited, so we directly labeled the location
of entrances instead of the emergency shelter center in our SAA.
Residents from different directions can reach the shelters from
shorter distances through multiple entrances. Our approach used
the time to the entrances of available emergency shelters other
than the time to the center. This procedure makes our results more
reasonable.

We employed Open Street Map (OSM) data for the urban
road network data and preprocessed them through QGIS. After
extracting and clipping the road network vector data for the
urban areas of Xichang, we simplified the road network to ensure
the efficiency and rationality of subsequent analysis. We removed
the line elements unsuitable for emergency evacuation from the
attribute table, such as track, rail, river, stream, administrative, and

boundary. Moreover, we determined the anomalies in the road
network vector data, such as unreasonable dangles, pseudo-nodes,
and self-intersections. Dangles are not allowed in the road network
topology, except for dead ends (Liu et al., 2017). The pseudo-
nodes indicate that the complete lines are separated into discrete
segments by the unconnected nodes (Qin, 2010). We also examined
them using the error inspector and corrected them to ensure the
implementation of subsequent network analysis.

We used active fault data from the updated and integrated
database of Wu et al. (2023). In their database, region-scale active
fault survey data (1:250,000–1:50,000) for the past 20 years are used
to update and integrate the active fault data in the Seismotectonic
Map of China and its Adjacent Regions (1:4,000,000).

We used predicted PGA to represent strong ground motion. The
475-year PGA results are from Jia Cheng et al. (2021). Two sets of
the results were supplied in their work: a compatible fault model
from geological slip rates and geodetic slip rates inverted in an
elastic block model. Their results are reasonable, as they considered
both the fault slip rate and multi-segment rupture events in their
PGA results.

3.2 Spatial accessibility analysis based on
the road network

In this process, we operated the SAA via the Network Analysis
Tool. Network analysis allows for the optimal investigation of
network structure and resources by analyzing the network state.
This method can also simulate the resource flow and distribution
of the network (Liu et al., 2017). The positioning and allocation of
resources in the network system is one of the main application
scenarios of network analysis (Qin, 2010). The generation of a
service area includes the components of a road network located
within a specified impedance. The service area distribution of
facilities can represent the accessibility of urban facilities for
residents in different locations without a specific travel direction.
Therefore, network analysis is an effective method for facility SAA.

We used the following steps for SAA based on the road network.
First, we calculated the time cost and added it to the attribute
table of road network vector data. Next, we established a new
network dataset. We set the impedance to the value of the Time
Cost field and did not assign a specific direction of travel. We
chose these selected emergency shelters as the facilities in our
dataset. Then, we started to generate the service area based on
road network data. We created a new service area in the network
analysis tool and loaded the emergency shelter entrances into the
facility point layer. In analysis settings, we input the break value
of impedance. Here, we set the break value at 5-min intervals
for the former and 15-min intervals for the last two (0–5 min,
5–10 min, 10–15 min, 15–30 min, and ≥30 min). Finally, we chose
to merge by break value in multiple facilities options and set rings as
overlay types.

After all the setup work, we obtained the time cost distribution
circles as the accessibility to emergency shelters. Time cost indicates
the complexity of evacuation routes, so we set the accessibility level
based on different time circles (Table 2). Five accessibility levels were
used in our results: Very-High, High, Medium, Low, and Very-Low.
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FIGURE 5
Examples of selected emergency shelters and excluded sites: (A) playground; (B) park; (C) square; (D) sizeable open-air parking lots; (E) open-air
stadium; (F) space covered with green dust cloth which might be used for future engineering and construction.

TABLE 2 Relationship between time cost for evacuation and
corresponding accessibility level.

Time cost for evacuation (min) Accessibility level

≤5 Very-High

5–10 High

10–15 Medium

15–30 Low

≥30 Very-Low

3.3 Influence from strong ground motion

In an earthquake event, fault rupturing and its ground motion
will cause severe earthquake disasters, especially for cities with
large populations and high buildings. Strong ground motion can
cause violent shudders and ground shaking (Anastassiadis and
Argyroudis, 2007), which would severely affect the evacuation of
residents. In that case, people will change their routes, times, and
escape modes of evacuation (Nakanishi, Matsuo, and Black, 2013).
Therefore, we analyzed the influence from the predicted strong
ground motion data to improve the reliability of the SAA results.

The intensity of earthquakes (e.g., Modified Mercalli intensity
scale) is often used to measure the effects of an earthquake at given
locations. Here, we converted the predicted PGA data to seismic

intensity levels according to the statistical relationship between
peak ground acceleration and seismic intensity according to the
Chinese national standard China Seismic Intensity Scale (GB_T
17742-2020). The PGA data are those predicted as 10% in the next
50 years (Jia Cheng et al., 2021), based on the inverted geodetic
and geological fault slip rates. In the intensity maps both from the
geodetic and geological fault slip rates, the urban area of Xichang
City is located in the Ⅷ+ intensity zone (Figure 6). According to
the China Seismic Intensity Scale (GB_T 17742-2020), most people
will be shaken, bumped, and have difficulty walking in intensity
VIII areas. When the intensity reaches Ⅸ degrees, people walking
or running will fall. According to these conditions, we established
three sets of impact factors on the accessibility level. Here, we
employed different impact factor sets to identify themost suitable set
to represent the impacted accessibility distribution in the predicted
strong ground motion field (Table 3).

The accessibility level decreases when the time cost for
evacuation increases. Hence, we multiplied the time by the inverse
of the impact factors (Eq. (1)).

T2 = T1 ×
1
I
(1), (1)

where T2 is the time cost for evacuation impacted by strong
ground motion, T1 is the time cost for evacuation based on
road network analysis, and I refers to the impact factor on the
accessibility level.

After this, we obtained the distribution of time-cost circles under
each impact factor set. We employed the impact factor set with
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FIGURE 6
(A) Seismic intensity converted from predicted PGA data with the geodetic slip rate. (B) Seismic intensity converted from predicted PGA data with
geological slip rate (Jia Cheng et al., 2021; GB_T 17742-2020).

TABLE 3 Impact factors on accessibility in different seismic
intensity zones.

Seismic
intensity
degree

Impact factor on accessibility level (I)

a b c

Ⅷ (8) 0.5 0.6 0.7

Ⅸ (9) 0.3 0.4 0.5

clearest demonstration and generated the accessibility level based on
the time cost for evacuation (T2) (Table 2).

3.4 Influence from fault rupturing

Surface rupturing by strong earthquakes can destroy any
inhabited structure along the fault lines. On-site investigations and
experimental research show that buildings within a rupture zone
usually suffer the most severe damage, causing the heaviest disaster
(Xu et al., 2016; He et al., 2022). Therefore, we added the effect of
surface potential rupturing on the mapped surface lines of the
Anninghe fault and the Zemuhe fault from Wu et al. (2023).

The primary setback distance between buildings and the
boundary of the active fault rupture zone is set to 15 m (Xu et al.,
2016; He et al., 2022). The road surface and the surrounding
buildings or structures will probably be damaged within this region,
which would significantly impede the evacuation of residents. We
generated a buffer zone of linear features with a distance of 15 m
around the faults as the setback zone. We set the accessibility level in
this region toVery-Lowdue to the high probability of severe damage.

We then integrated the accessibility level in the setback zone
into that affected by the strong ground motion layer, obtaining a
comprehensive accessibility distribution map.

4 Results

In this section, we present the result of each procedure
(Figure 4).

For data collection, we selected 59 emergency shelter entrances
in the urban area of Xichang City (Table 4). Table 4 shows that
Xiaomiao Town, Xijiao Town, and Beicheng Block are the top
three regarding emergency shelter quantity. Regarding density,
emergency shelters are the most densely distributed in Beicheng,
Changning, and Changan Blocks. Figure 7A illustrates the spatial
distribution of selected emergency shelters and road networks. Our
results show that Xichang City has more emergency shelters in
the south but fewer in the north (Figure 7A). Emergency shelter
distribution is consistent with the spatial distribution of population
density. However, on both sides of the Dong River (the area linking
Xicheng Block and Dongcheng Block), the number of emergency
shelters is not proportional to the large population there. Lizhou
and Xisheng Towns, with sparse populations and undeveloped road
networks, have no proper emergency shelters according to the
remote sensing imagery.

Figure 7B shows the road network-based accessibility
distribution map. In this figure, we found that, in areas with dense
emergency shelters and well-developed road networks, residents
had faster access to emergency shelters (e.g., Beicheng, Xicheng,
Dongcheng, and Changning Blocks, eastern Sihe and southern
AnningTowns). In rural areas far from emergency shelters, residents
have to spend more time accessing emergency shelters (e.g., Lizhou,
Xingsheng, northern Anning, Xixiang, Chuanxing, and western
Sihe Towns). For example, people living in Xingsheng Town need
>20 min to access the nearest shelter, while people in Lizhou
and Chuanxing Towns will spend more than 30 min escaping to
selected emergency shelters. Figure 9A shows the accessibility level
distribution based on road network analysis. In Lizhou, Xingsheng,
western Anning, and Chuanxing Towns, the accessibility level is
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TABLE 4 Information about selected emergency shelters.

Towns/
blocks

Area (km2) Number of
emergency
shelters

Emergency
shelter

density (per
km2)

Ranking by
quantity

Ranking by
density

Xiaomiao Town 45.85 14 0.31 1 7

Xijiao Town 29.25 12 0.41 2 5

Beicheng Block 2.16 7 3.24 3 1

Anning Town 52.64 6 0.11 4 10

Xixiang Town 30.08 4 0.13 5 9

Gaoba Town 22.04 4 0.18 5 8

Xicheng Block 3.92 3 0.77 6 4

Changning Block 1.15 2 1.74 7 2

Changan Block 3.63 2 0.83 7 3

Chuanxing Town 67.17 2 0.03 7 12

Dongcheng Block 2.61 1 0.38 8 6

Sihe Town 80.59 1 0.01 8 13

Xincun Block 14.84 1 0.07 8 11

Xingsheng Town 37.07 0 0 9 14

Lizhou Town 35.32 0 0 9 14

at Very-Low and Low levels, while for towns or blocks with a
density of emergency shelters, accessibility presents Very-High and
High levels.

After analyzing the impact of strong ground motion based on
values of impact factors, we can see that the time cost escaping to
emergency shelters increased in general (Supplementary Figure S3).
In Figure 7B, we see five grades of classification based on the road
network with clear accessibility distribution for different levels. For
accessibility levels under the impact of ground motion, some of
the time circle distributions are not clearly demonstrated (Figure 8).
Figure 8C shows four grades of time-cost circle, while Figures 8A
and 8B only display three distinct grades. This phenomenon might
be caused by the increasing time cost in an earthquake scenario.
Hence, we chose set C for the impact factors to analyze the influences
from strong ground motion.

Based on the results in Figure 8C, we generated accessibility
level distribution under the effect of strong ground motion. Our
results show that the accessibility level in most areas changed after
analyzing the influence from the predicted strong ground motion.
Figure 9 shows the accessibility level distribution based on different
sources. Figure 9A shows different accessibility levels only based
on road networks, while Figures 9B and 9C show influence from
predicted ground motion data calculated from the geodetic slip
rates of the faults and those from geological fieldwork. Figure 9Bs
and 9C show the accessibility of Low-level areas diminished to

Very-Low (e.g., southern Lizhou, western Xingsheng, and central
Chuanxing Towns). We also noted that the accessibility of Medium-
and High-level areas in Figure 9A decreased to Low and Medium
levels, as given in Figures 9B and 9C, respectively, such as the area
in northeastern, northwestern, and southwestern Anning Town,
central Xixiang Town, and the linked area of northeastern Xiaomiao
Town, western Xijiao Town, and southwestern Sihe Town. For areas
with a Very-High level in Figure 9A, the accessibility level is almost
unchanged, such as the areas in Beicheng, Dongcheng, Xicheng,
Changning and, Changan Blocks, and northern Gaoba, eastern
Xiaomiao, and south-central Anning Towns. In Figures 9B and 9C,
the accessibility levels of some specific towns or blocks, such as
Anning and Xixiang Towns, cover four levels, including Very-High,
Medium, Low, and Very-Low. There are three accessibility levels in
Chuanxing Town: Very-High, Medium, and Very-Low. In the towns
above, the accessibility level decreases with increasing distance
from emergency shelters. While for the Beicheng Block, Dongcheng
Block, Xicheng Block, and Changan Block, the accessibility level
presents only the type of Very-High level. However, the accessibility
level of the entirety of Lizhou Town (within the scope of our study)
is only Very-Low.

Considering the fault rupturing effects in an earthquake, we
also added the fault surface lines and generated the setback
zone of regional mapped active faults. Two large-scale N–S
trending faults spread across the urban areas of Xichang City,
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FIGURE 7
(A) Spatial distribution of population density, selected emergency shelters, and simplified road network in the urban area of Xichang City. (B)
Accessibility to emergency shelters based on road network analysis. We used a network analysis tool, in which the facilities are emergency shelters and
the impedance is the time cost for evacuation. Gray lines show the boundary of the towns.

such as Anning, Xixiang, and Xiaomiao Towns (Figure 10). After
reassigning the raster value of the setback zone, the accessibility
level there is Very-Low. We found the apparent change in the
accessibility level in towns or blocks crossed by setback zones,
such as the Changan and Xicheng Blocks, at Very-High level
decreased to Very-Low.

5 Discussion

In this study, we developed an earthquake scenario-specific
framework for SAA. We applied this framework to analyze the
practical accessibility of emergency shelters in earthquakes for urban
Xichang City. We employed active fault data and predicted strong
ground motion data from geodetic and geological slip rates to
explore the impact of earthquake damage.

Our results show that the areas with high accessibility to
emergency shelters are in the middle of Xichang City, where
emergency facilities are densely distributed, such as Beicheng,
Dongcheng, Xicheng, Changan and Changning Blocks and Xijiao
Town. Low accessibility levels aremainly distributed on the outskirts
with few emergency shelters, such as in Lizhou, Xingsheng, central
Chuanxing and, and western Anning Towns. Our results show
that the spatial variation of accessibility level distribution decreases
gradually with increasing distance from emergency shelters. It is
worth noting that the accessibility level for Very-High areas almost
did not change after adding the effect of potentially strong ground
motion (see Figure 9), implying that people living in these areas can
escape to emergency shelters in 5 min, even under strong ground

motion from a sudden earthquake. We believed that the dense
emergency shelters in urban areas can help residents evacuate in
emergencies, even in earthquake scenarios.

Nevertheless, we also found that some areas with few emergency
shelters still had a Very-High accessibility level, such as west
Dongcheng Block and east Xicheng Block (Figure 11A). These
areas have few emergency shelters but large populations and dense
residential buildings. Our results show that their accessibility level
is Very-High instead of Low. We considered this a result of their
well-developed road networks. Thus, a developed road network
can improve the accessibility level even in an area with few
emergency shelters.

In contrast, an undeveloped road network can diminish
accessibility, such as the linked area of northeastern Xiaomiao,
western Xijiao, and southwestern Sihe Towns, which have plenty of
emergency shelters. Their accessibility level is still Medium rather
than Very High. In these areas, the hills (e.g., Panying, Wangjia,
Macao, and Majingzi Hills) result in undeveloped road networks
(Figure 11B), making evacuation more difficult. Hence, the role of
road networks is also crucial to SAA.

We also demonstrated that the impact of potentially strong
ground motion and fault rupturing on accessibility to emergency
shelters should not be ignored. After analyzing potentially strong
ground motion, the accessibility level in most areas declined due to
the increasing time cost to access emergency shelters. In areas with
mapped faults, the accessibility level decreased as far as Very-Low
due to impedance from ruptured surfaces and damaged inhabited
structures. These changes in the accessibility level to emergency
shelters indicate that SAA should also consider the significant
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FIGURE 8
Accessibility to emergency shelters under three sets of strong ground motion impact factor (Table 3). (A1, A2) Results from impact factor set a. (B1, B2)
Results from impact factor set b. (C1, C2) Results from impact factor set c. Pictures of the first and second row respectively show the results based on
geodetic and geological slip rates.

influence of extreme situations, such as strong earthquake scenarios.
To cope with such an pessimistic emergency relief situation, the
government should take action to refine emergency management.
For areas with decreased levels of emergency shelter accessibility, the
government should formulate an emergency evacuation plan and
guidebook targeted at earthquake scenarios. For townswithmultiple
accessibility levels, the government should customize emergency
evacuation work based on different accessibility levels (e.g., Anning,
Xixiang, and Chuanxing Towns).

Our results indicate that people living on urban outskirts
have difficulty escaping to emergency shelters. This does not
directly mean that residents living there are more vulnerable to an
earthquake. For these areas, we only analyzed the spatial accessibility
of emergency shelters using the 59 selected emergency shelters,
road network data, potential strong ground motion data, and active
fault data, but we neglected the role of spaces for shelters, such as
farmland and other open fields. In addition, it is easier for residents
to exit structures via the lower height of rural residences and in lower
populations than urban areas.

In summary, we developed an earthquake scenario-specific
framework in the regional SAA for emergency shelters from the
following aspects:

1. We developed an earthquake scenario-specific framework
to generate a reasonable SAA for emergency shelters. Our
framework is reasonable as it integrates the service capacity
of urban emergency facilities with earthquake characteristics
(strong ground motion and fault rupturing). We also added
insights into earthquake scenario characteristics, which
contribute to a reasonable simulation of emergency evacuation
in earthquakes.

2. We applied this framework in Xichang City. We operated
the analysis only in an urban area with an obviously high
population density rather than all of Xichang City to obtain
more targeted results. We directly labeled the location of
entrances instead of the center of emergency shelters to
improve the accuracy of accessibility analysis. We referred
to the national standard Chinese Seismic Intensity Scale in
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FIGURE 9
(A) Accessibility level based on road network analysis. (B) Accessibility level impacted by predicted strong ground motion based on the geodetic slip
rate. (C) Accessibility level impacted by predicted strong ground motion based on the geological slip rate.

FIGURE 10
Comprehensive accessibility distribution map. (A) The accessibility was calculated based on predicted PGA data from the geodetic slip rate; (B) The
accessibility was calculated based on predicted PGA data from the geological slip rate.
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FIGURE 11
(A) Linked area of Xicheng and Dongcheng Blocks with few emergency shelters but developed road network. (B) Western Sihe Town with hills (e.g.,
Panying, Wangjia, Macao, and Majingzi Hills).

analyzing the impact of strong ground motion to make the
result reliable.

3. Our results can help us understand evacuation to emergency
shelters, especially in earthquake scenarios. We identified
the practical service area of emergency shelters by analyzing
the impact of potentially strong ground motion and fault
rupturing. We identified the changes in the accessibility level
of emergency shelters in several towns of Xichang City.
These results are reasonable because we consider the potential
impedance caused by earthquakes in this study.

4. The framework and results of this study can provide a reference
for future planning of emergency shelters. Our analysis can
assist in the evaluation of seismic vulnerability in terms of
casualties and can further support research into the seismic
risk of Xichang City.

However, this framework still requires some improvements.
1) We did not consider the relationship between population density
and the capacity of emergency shelters. Among the 59 selected
emergency shelters, the area varies from 994 m2 to 2,789 m2.
Considering 2 m2 per person to avoid overcrowding (Bernardini
and Ferreira, 2022), the population capacity of emergency shelters
ranges from 497 to 1,394, with a difference of nearly three times as
significant.

2) We did not analyze the influence of the performance
of buildings. The resistance of buildings can affect emergency
evacuations. Building collapse will significantly impede emergency
evacuation and even threaten the safety of residents (Guo et al.,
2023; Magapu and Setia, 2023). The evacuation performance of
buildings (e.g., distribution of separate stairs, maximum density,
and vision time) is also related to evacuation efficiency (Chen et al.,
2023).

3) In emergency evacuations, various responses to the
surrounding environment can lead to multiple ways to avoid

damage. For example, in a tunnel emergency evacuation, people’s
behavior may be influenced by variables such as the best
location to install the board, variable message signs (VMS)
contents, and formats and how they interact (Ilkhani et al.,
2023).

6 Conclusion

In this study, we proposed an earthquake scenario-specific
framework to analyze spatial accessibility to emergency shelters.
We applied this framework in urban Xichang City and achieved
a comprehensive distribution of accessibility to emergency
shelters by adding the impact of strong ground motion and
fault rupturing.

Our results show that areas with dense emergency shelters
and developed road networks present high accessibility
levels (e.g., Beicheng, Dongcheng, and Xicheng Blocks). In
contrast, areas far from emergency shelters with undeveloped
road networks present low accessibility levels (e.g., Lizhou,
Xisheng, Chuanxing, and western Xixiang Towns). As
impacted by strong ground motion, the accessibility level
decreases in several particular towns (Lizhou, Xingsheng,
and Anning). For areas with mapped fault lines, residents
and buildings would suffer most damage in earthquakes.
The accessibility level to emergency shelters presents a
Very-Low level.

Therefore, the SAA of emergency shelters is crucial for efficient
evacuation, especially in complex earthquake scenarios. The blocks
and towns with few emergency shelters and low accessibility
levels must receive greatest attention. The seismic performance
of buildings within the setback zone of active faults needs to be
emphasized.

Frontiers in Earth Science 13 frontiersin.org125

https://doi.org/10.3389/feart.2024.1376900
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1376900

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

Author contributions

ZW: data curation, formal analysis, software, writing–original
draft, and writing–review and editing. JC: funding acquisition,
methodology, project administration, supervision, and
writing–review and editing. CX: methodology, supervision, and
writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
receives funds from the National Natural Science Foundation of
China (Grant Nos 42074064 and U2039201) and National Institute
of Natural Hazards, Ministry of Emergency Management of China
(Grant NO. ZDJ 2020-14).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that theywere an editorial boardmember
of Frontiers at the time of submission. This had no impact on the
peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at https://www.frontiersin.org/articles/10.3389/feart.2024.
1376900/full#supplementary-material

References

Albulescu, A.-C. (2023). Open source data-based solutions for identifying patterns of
urban earthquake systemic vulnerability in high-seismicity areas. Remote Sens. 15 (5),
1453. doi:10.3390/rs15051453

Amini Hosseini, K., Asadzadeh Tarebari, S., and Mirhakimi, S. A. (2022). A new
index-based model for site selection of emergency shelters after an earthquake for Iran.
Int. J. Disaster Risk Reduct. 77, 103110. July. doi:10.1016/j.ijdrr.2022.103110

Anastassiadis, A. J., and Argyroudis, S. A. (2007). Seismic vulnerability analysis in
urban systems and road networks. Application to the city of thessaloniki, Greece. Int. J.
Sustain. Dev. Plan. 2 (3), 287–301. doi:10.2495/SDP-V2-N3-287-301

Bernardini, G., and Ferreira, T. M. (2022). “Emergency and evacuation management
strategies in earthquakes: towards holistic and user-centered methodologies for their
design and evaluation,” in Seismic vulnerability assessment of civil engineering structures
at multiple scales (Elsevier), 275–321. doi:10.1016/B978-0-12-824071-7.00002-0

Chang, H.-S., and Liao, C.-H. (2015). Planning emergency shelter locations based on
evacuation behavior. Nat. Hazards 76 (3), 1551–1571. doi:10.1007/s11069-014-1557-x

Chen, Y., Wang, C., Du, X., Shen, Y., and Hu, B. (2023). An agent-based
simulation framework for developing the optimal rescue plan for older adults during
the emergency evacuation. Simul. Model. Pract. Theory 128, 102797. November.
doi:10.1016/j.simpat.2023.102797

Cheng, J., Wu, Z., Liu, J., Jiang, C., Xu, X., Fang, L., et al. (2015). Preliminary report
on the 3 august 2014, mw 6.2/ms 6.5 ludian, yunnan-sichuan border, southwest China,
earthquake. Seismol. Res. Lett. 86 (3), 750–763. doi:10.1785/0220140208

Cheng, J., Xu, C., Ma, J., Xu, X., and Zhu, P. (2023). From active fault segmentation
to risks of earthquake Hazards and property and life losses—a case study from
the xianshuihe-xiaojiang fault zone. Sci. China Earth Sci. 66 (6), 1345–1364.
doi:10.1007/s11430-022-1076-y

Cheng, J., Xu, X., Gan, W., Ma, W., Chen, W., and Zhang, Y. (2012). Block model
and dynamic implication from the earthquake activities and crustal motion in the
southeastern margin of Tibetan plateau. Chin. J. Geophys 55 (4), 1198–1212. (in
Chinese). doi:10.6038/j.issn.0001-5733.2012.04.016

Cheng, J., Xu, X., Qi, Y., Yang, X., and Chen, H. (2021). Seismic hazard of multi-
segment rupturing for the anninghe–zemuhe–daliangshan fault region, southeastern
Tibetan plateau: constraints from geological and geodetic slip rates. Nat. Hazards 107
(2), 1501–1525. doi:10.1007/s11069-021-04643-7

Elliott, J. R. (2020). Earth observation for the assessment of earthquake hazard, risk
and disaster management. Surv. Geophys. 41 (6), 1323–1354. doi:10.1007/s10712-020-
09606-4

Fang, L., Wu, J., Liu, J., Jia, C., Jiang, C., Han, L., et al. (2015). Preliminary report on
the 22 november 2014 M w 6.1/M s 6.3 kangding earthquake, western sichuan, China.
Seismol. Res. Lett. 86 (6), 1603–1613. doi:10.1785/0220150006

Francini, M., Gaudio, S., Palermo, A., and Viapiana, M. F. (2020). A performance-
based approach for innovative emergency planning. Sustain. Cities Soc. 53, 101906.
February. doi:10.1016/j.scs.2019.101906

Gall, M. (2004). Where to go? Strategic modelling of access to emergency shelters in
Mozambique. Disasters 28 (1), 82–97. doi:10.1111/j.0361-3666.2004.00244.x

General Administration of Quality Supervision, Inspection and Quarantine of the
People’s Republic of China (2008). GB 21734_2008. Emergency shelter for earthquake
disasters-Site and its facilities (in Chinese). Standardization Administration of the
People’s Republic of China (SAC): Beijing, China.

General Administration of Quality Supervision, Inspection and Quarantine of the
People’s Republic of China (2020). GB/T 17742-2020.TheChinese seismic intensity scale
(in Chinese). Standardization Administration of the People’s Republic of China (SAC):
Beijing, China.

General Administration of Quality Supervision, Inspection and Quarantine of the
People’s Republic of China (2017). GBT 33744_2017. Emergency shelter for earthquake
disasters-Guidelines on the operation and management (in Chinese). Standardization
Administration of the People’s Republic of China (SAC): Beijing, China.

General Administration of Quality Supervision, Inspection and Quarantine of the
People’s Republic of China (2017). GBT 35624_2017. General technical requirements of
urban emergency shelter (in Chinese). Standardization Administration of the People’s
Republic of China (SAC): Beijing, China.

Gui-Xi, Yi,Wen, X.-Ze, and Su, Y.-J. (2008). Study on the potential strong-earthquake
risk for the eastern boundary of the sichuan-yunnan active faulted-block, China. Chin.
J. Geophys. 51 (6), 1151–1158. doi:10.1002/cjg2.1311

Guo, L., Wang, J., Wang, W., and Wang, H. (2023). Performance-based
seismic design and vulnerability assessment of concrete frame retrofitted by
metallic dampers. Structures 57, 105073. November. doi:10.1016/j.istruc.2023.
105073

He, X., Xu, C., Xu, X., and Yang, Y. (2022). Advances on the avoidance zone and
buffer zone of active faults. Nat. Hazards Res. 2 (2), 62–74. doi:10.1016/j.nhres.2022.
05.001

Hou, S., and Jiang, H. (2014). An analysis on accessibility of hospitals in
Changchun based on urban public transportation. Geogr. Res. 33, 915–925.
doi:10.11821/dlyj201405010

Frontiers in Earth Science 14 frontiersin.org126

https://doi.org/10.3389/feart.2024.1376900
https://www.frontiersin.org/articles/10.3389/feart.2024.1376900/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2024.1376900/full#supplementary-material
https://doi.org/10.3390/rs15051453
https://doi.org/10.1016/j.ijdrr.2022.103110
https://doi.org/10.2495/SDP-V2-N3-287-301
https://doi.org/10.1016/B978-0-12-824071-7.00002-0
https://doi.org/10.1007/s11069-014-1557-x
https://doi.org/10.1016/j.simpat.2023.102797
https://doi.org/10.1785/0220140208
https://doi.org/10.1007/s11430-022-1076-y
https://doi.org/10.6038/j.issn.0001-5733.2012.04.016
https://doi.org/10.1007/s11069-021-04643-7
https://doi.org/10.1007/s10712-020-09606-4
https://doi.org/10.1007/s10712-020-09606-4
https://doi.org/10.1785/0220150006
https://doi.org/10.1016/j.scs.2019.101906
https://doi.org/10.1111/j.0361-3666.2004.00244.x
https://doi.org/10.1002/cjg2.1311
https://doi.org/10.1016/j.istruc.2023.105073
https://doi.org/10.1016/j.istruc.2023.105073
https://doi.org/10.1016/j.nhres.2022.05.001
https://doi.org/10.1016/j.nhres.2022.05.001
https://doi.org/10.11821/dlyj201405010
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wang et al. 10.3389/feart.2024.1376900

Huang, Q., Meng, S., He, C., Dou, Y., and Zhang, Q. (2019). Rapid urban land
expansion in earthquake-prone areas of China. Int. J. Disaster Risk Sci. 10 (1), 43–56.
doi:10.1007/s13753-018-0207-4

Iglesias, V., Braswell, A. E., Rossi, M.W., Joseph,M. B., McShane, C., Cattau, M., et al.
(2021). Risky development: increasing exposure to natural Hazards in theUnited States.
Earth’s Future 9 (7), e2020EF001795. doi:10.1029/2020EF001795

Ilkhani, I., Yazdanpanah, M., and Ali, D. (2023). Analysis of drivers’ preferences
toward content and message format of variable message signs during tunnel emergency
evacuation: a case study of niayesh tunnel in tehran. Int. J. Disaster Risk Reduct. 93,
103744. July. doi:10.1016/j.ijdrr.2023.103744

Jiang, L., Sang, Q., Jian, W., and Kang, B. (2023). Research on accessibility of park
green space in Xicheng district of Beijing based on Gaussian two-step mobile search
method. J. Beijing Univ. Civ. Eng. Archit. 39, 41–47. (in Chinese). doi:10.19740/j.2096-
9872.2023.04.06

Li, W., Sun, J., Zhou, D., and Huang, L. (2023). Dynamics of a diffusion epidemic
SIRI system in heterogeneous environment. South China J. Seismol. 43 (2), 104–114. (in
Chinese). doi:10.1007/s00033-023-02002-z

Liu, C. (1989). Historical materials and preliminary analysis of the 1489 Xichang
earthquake. Sichuan Earthq. 1, 51–54. (in Chinese).

Liu, X., Wang, p., Guan, L., Lu, H., and Zhang, C. (2017). GIS spatial analysis. 3.
Beijing, China: Science Press, 89–107. ISBN 978-7-03-051643-5. (in Chinese).

Magapu, S., and Setia, S. (2023). Seismic vulnerability assessment of rc frame
structures subjected to seismic excitation: a review. Mater. Today Proc. 93, 196–200.
July, S2214785323039883. doi:10.1016/j.matpr.2023.07.118

Min, Z., Wu, G., Jiang, Z., Liu, C., and Yang, Y. (2005). The Catalogue of Chinese
historical strong earthquakes (B.C. 2300–A.D. 1911). Beijing, China: Seismological
Publishing House. (in Chinese).

Nakanishi, H., Matsuo, K., and Black, J. (2013). Transportation planning
methodologies for post-disaster recovery in regional communities: the east
Japan earthquake and tsunami 2011. J. Transp. Geogr. 31, 181–191. July.
doi:10.1016/j.jtrangeo.2013.07.005

Qian, H. (2010). Study of environmental assessmental theories and application in city
emergency shelters. Urgent Rescue 2 (19), 59–63. [in Chinese, with English abstract].

Qin, K. (2010). Theories and methods of spatial analysis in GIS. 2. Wuhan, China:
Wuhan University Press. ISBN 978-7-307-07576-4. (in Chinese).

Ren, J. (1990). Preliminary study on the recurrence period of strong earthquakes
on the fracture zone of Zemuhe, west of sichuan. Inland Earthq. 4, 107–115.
doi:10.16256/j.issn.1001-8956.1990.02.003

Ren, J., and Li, P. (1993). The characteristics of surface faulting of 1850 earthquake in
Xichang, sichuan. Seismol. Geol. 15, 97–108. [in Chinese, with English abstract].

Shen, C., Zhou, Z., Lai, S., Lu, Li, Dong, W., Su, M., et al. (2020). Measuring spatial
accessibility and within-province disparities in accessibility to county hospitals in
shaanxi Province of western China based on webmapping navigation data. Int. J. Equity
Health 19 (1), 99. doi:10.1186/s12939-020-01217-0

Shen, Z.-K., Jiangning, Lü, Wang, M., and Roland, B. (2005). Contemporary
crustal deformation around the southeast borderland of the Tibetan plateau: TIBET
SOUTHWEST BORDERLAND DEFORMATION. J. Geophys. Res. Solid Earth 110.
B11. doi:10.1029/2004JB003421

Su, H., Chen, W., and Cheng, M. (2022a). Using the variable two-step floating
catchment area method to measure the potential spatial accessibility of urban
emergency shelters. GeoJournal 87 (4), 2625–2639. doi:10.1007/s10708-021-10389-3

Su, H., Chen, W., and Zhang, C. (2022b). Evaluating the effectiveness of
emergency shelters by applying an age-integrated method. GeoJournal 88 (1), 951–969.
doi:10.1007/s10708-022-10669-6

Tong, De, Sun, Y., and Xie, M. (2021). Evaluation of green space accessibility
based on improved Gaussian two-step floating catchment area method: a case study
of Shenzhen City, China. Prog. Geogr. 40 (7), 1113–1126. doi:10.18306/dlkxjz.2021.
07.004

Wang, Li, Cao, X., Li, T., and Gao, X. (2019). Accessibility comparison
and spatial differentiation of xi’an scenic spots with different modes based
on Baidu real-time travel. Chin. Geogr. Sci. 29 (5), 848–860. doi:10.1007/
s11769-019-1073-8

Wen, X. (2000). Character of rupture segmentation of the xianshuihe-anninghe-
zemuhe fault zone, western sichuan. Seismol. Geol. 22, 239–249. [in Chinese, with
English abstract].

Wen, X.-ze, Ma, S.-li, Xu, X.-wei, and Yong-nian, He (2008). Historical pattern and
behavior of earthquake ruptures along the eastern boundary of the sichuan-yunnan
faulted-block, southwestern China. Phys. Earth Planet. Interiors 168 (1–2), 16–36.
doi:10.1016/j.pepi.2008.04.013

Wu, X., Xu, X., Yu, G., Ren, J., Yang, X., Chen, G., et al. (2023). China active faults
database and its web system. Prepr. ESSD – Land/Geology Geochem. doi:10.5194/essd-
2023-119

Xu, X., Guo, T., Liu, S., Yu, G., Chen, G., and Wu, X. (2016). Discussion
on issues associated with setback distance from active fault. Seismol. Geol. 38
(3), 477–502. [in Chinese, with English abstract]. doi:10.3969/j.issn.0253-4967.
2016.03.001

Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., et al. (2009).
Coseismic reverse- and oblique-slip surface faulting generated by the 2008
Mw 7.9 wenchuan earthquake, China. Geology 37 (6), 515–518. doi:10.1130/
G25462A.1

Xu, X., Wen, X., Zheng, R., Ma, W., Song, F., and Yu, G. (2003). Recent patterns of
tectonic deformation and dynamics sources of active blocks in the sichuan-yunnan area.
Sci. China 33, 151–162. (S1) (in Chinese).

Yan, Z. (2023). Analysis of regional traffic accessibility based on ArcGIS. Stand. Surv.
Mapp. 39, 120–123. doi:10.20007/j.cnki.61-1275/P.2023.02.25

Yi, G., Wen, X., Fan, J., and Wang, S. (2004). Assessing current faulting behaviors
and seismic risk of the anninghe-zemuhe fault zone from seismicity parameters. ACTA
Seismol. Sin. 26, 294–303. [in Chinese, with English abstract].

Zhang, C., Wang, X., and Pei, X. (1998). Strong earthquake in 1536 and newly found
surface rupture along Anninghe Fault. Sichuan Earthq. 4, 34–50. [in Chinese, with
English abstract].

Zhang, P., Deng,Q., Zhang, G., Jin,Ma,Gan,W.,Min,W., et al. (2003). Active tectonic
blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci. 46,
13–24. S2. doi:10.1360/03dz0002

Zhang, W., and Yun., Y. (2019). Multi-scale accessibility performance of
shelters types with diversity layout in coastal port cities: a case study in
nagoya city, Japan. Habitat Int. 83, 55–64. January. doi:10.1016/j.habitatint.
2018.11.002

Zhang, Y. (2020). Research on accessibility of urban parks based on GIS and gravity
model: taking the main city of zhengzhou as an example. Henan Sci. 38, 733–739. [in
Chinese, with English abstract].

Zhao, X., Zheng, Q., Liu, X., and Jin, M. (2018). Study on the planning and
allocation of urban park green space based on 2SFCA improved model—a case study
of futian district, shenzhen. Chin. Landsc. Archit. 34, 95–99. [in Chinese, with English
abstract].

Zou, F., Jiang, H., Che, E., Wang, J., and Wu, X. (2023). Quantitative
evaluation of emergency shelters in mountainous areas among multiple scenarios:
evidence from biancheng, China. Int. J. Disaster Risk Reduct. 90, 103665. May.
doi:10.1016/j.ijdrr.2023.103665

Frontiers in Earth Science 15 frontiersin.org127

https://doi.org/10.3389/feart.2024.1376900
https://doi.org/10.1007/s13753-018-0207-4
https://doi.org/10.1029/2020EF001795
https://doi.org/10.1016/j.ijdrr.2023.103744
https://doi.org/10.19740/j.2096-9872.2023.04.06
https://doi.org/10.19740/j.2096-9872.2023.04.06
https://doi.org/10.1007/s00033-023-02002-z
https://doi.org/10.1016/j.matpr.2023.07.118
https://doi.org/10.1016/j.jtrangeo.2013.07.005
https://doi.org/10.16256/j.issn.1001-8956.1990.02.003
https://doi.org/10.1186/s12939-020-01217-0
https://doi.org/10.1029/2004JB003421
https://doi.org/10.1007/s10708-021-10389-3
https://doi.org/10.1007/s10708-022-10669-6
https://doi.org/10.18306/dlkxjz.2021.07.004
https://doi.org/10.18306/dlkxjz.2021.07.004
https://doi.org/10.1007/s11769-019-1073-8
https://doi.org/10.1007/s11769-019-1073-8
https://doi.org/10.1016/j.pepi.2008.04.013
https://doi.org/10.5194/essd-2023-119
https://doi.org/10.5194/essd-2023-119
https://doi.org/10.3969/j.issn.0253-4967.2016.03.001
https://doi.org/10.3969/j.issn.0253-4967.2016.03.001
https://doi.org/10.1130/G25462A.1
https://doi.org/10.1130/G25462A.1
https://doi.org/10.20007/j.cnki.61-1275/P.2023.02.25
https://doi.org/10.1360/03dz0002
https://doi.org/10.1016/j.habitatint.2018.11.002
https://doi.org/10.1016/j.habitatint.2018.11.002
https://doi.org/10.1016/j.ijdrr.2023.103665
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates the processes operating within the 

major spheres of our planet

Advances our understanding across the earth 

sciences, providing a theoretical background for 

better use of our planet’s resources and equipping 

us to face major environmental challenges.

Discover the latest 
Research Topics

See more 

Frontiers in
Earth Science

https://www.frontiersin.org/journals/earth-science/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Prevention, mitigation, and relief of compound and chained natural hazards

	Table of contents

	Editorial: Prevention, mitigation, and relief of compound and chained natural hazards

	Introduction
	The monitoring of earthquakes and disaster assessment
	Slope geological hazards such as landslides and debris flows
	Conclusions and prospects
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	GIS-based landslide susceptibility modeling using data mining techniques
	1 Introduction
	2 The study area
	3 Data preparation
	4 Modeling approach
	4.1 Selection of landslide conditioning factors
	4.2 Certainty factors
	4.3 Naive bayes
	4.4 J48 decision tree
	4.5 Multilayer perceptron
	4.6 Receiver operating characteristic (ROC) curve

	5 Results and analysis
	5.1 Selection of landslide conditioning factors
	5.2 Correlation analysis using CF model
	5.3 Application of models
	5.4 Validation and comparison of models

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Assessing network-based earthquake early warning systems in low-seismicity areas
	1 Introduction
	2 Criteria and methods
	2.1 Alert criteria and EEW service
	2.2 Disaster communications to the public
	2.3 Assessment survey and design
	2.3.1 Aspect-based assessment parameter selection
	2.3.2 Assessment criteria preparation
	2.3.3 Assessment parameter scoring
	2.3.4 Pairwise analysis and assessment parameter weight


	3 Results
	3.1 Assessment preparation
	3.2 Performance assessment case

	4 Limitation
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Automatic landslide identification by Dual Graph Convolutional Network and GoogLeNet model-a case study for Xinjiang provin ...
	1 Introduction
	2 Geological background and data selection
	3 Model introduction
	3.1 ResNet network model
	3.2 DGCNet model framework
	3.2.1.1 Input graph data
	3.2.1.3 Dual graph convolution layers
	3.2.1.4 Feature propagation
	3.2.1.5 Pooling layers
	3.2.1.6 Fully connected layers
	3.2.1.7 Activation functions
	3.2.2 Model structure

	3.3 GoogLeNet model
	3.3.1 Inception structure
	3.3.2 Auxiliary classification structure


	4 Training process and recognition results
	4.1 Recognition result of landslide by DGCNet model
	4.2 Recognition result of landslide by GoogLeNet model

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	Energetic impact of reconstructed debris flow on the intensity and duration of growth disturbances in tree rings
	1 Introduction
	2 Materials and methods
	2.1 Study area and field investigation
	2.2 Geospatial data processing and analysis
	2.3 Width measurement of core samples
	2.4 Numerical simulation of debris flow

	3 Results
	3.1 Age of debris flow
	3.2 Index values of growth disturbance in tree rings by the 1982 debris flow
	3.3 Effect of precipitation in triggering the 1982 debris flow
	3.4 Kinematic energy of debris flow impacting the sampled trees
	3.4.1 Parameters obtained by back analysis of the debris flow before 1970
	3.4.2 Kinematic energy of the 1982 debris flow impacting the sampled trees


	4 Discussion
	4.1 Relationship between impact energy and recovery time of disturbed tree rings
	4.2 Uncertainty analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Detailed investigation and analysis of the dynamic evolutionary process of rainstorm debris flows in mountain settlements:  ...
	1 Introduction
	2 Background
	2.1 Geological environment
	2.2 Historical development

	3 Methods
	3.1 Detailed investigation of field engineering geology
	3.2 Numerical analysis

	4 Research results
	4.1 Flushing and siltation characteristics
	4.2 Compositional analysis of the particles in the deposit
	4.3 Water source conditions
	4.4 Dynamic numerical simulation
	4.4.1 Process of flow movement at depth
	4.4.2 Flow speed effects along the channel


	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Impact of precipitation on Beishan landslide deformation from 1986 to 2023
	1 Introduction
	1.1 Studying the impacts of climate change on landslide activities is challenging
	1.2 Synthetic use of optical feature tracking and interferometric synthetic aperture radar (InSAR) has been rarely applied  ...

	2 Study area
	3 Materials and methods
	3.1 Rainfall data for 1986 to 2022 and the Mann–Kendall test
	3.2 Surface deformation by SBAS-InSAR
	3.3 Deformation derived by pixel offset tracking and time-series inversion
	3.4 Landslide simulation by MassFlow

	4 Results
	4.1 Deformation results derived from optical POT and SBAS-InSAR
	4.2 Relations between precipitation and deformations of the Beishan landslide
	4.3 Potential risks of the Beishan landslide

	5 Discussion
	5.1 What are the differences between SBAS-InSAR and optical POT in measuring landslide deformation?
	5.2 How dangerous is the Beishan landslide?
	5.3 What is the relationship between landslide deformation and precipitation?

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Seismic landslide hazard assessment using improved seismic motion parameters of the 2017 Ms 7.0 Jiuzhaigou earthquake, Tibetan Plateau

	Introduction
	Study area
	Data and methods
	Data
	Methods

	Seismic landslide characteristics
	Results and analysis
	Result calculation
	Static safety factor
	Critical acceleration
	Seismic motion parameters
	Seismic landslide hazard
	Result validation
	Result analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

	The landslide traces inventory in the transition zone between the Qinghai-Tibet Plateau and the Loess Plateau: a case study of Jianzha County, China

	1 Introduction
	2 Study area
	3 Methods
	4 Results and analysis
	4.1 Landslide traces inventory
	4.2 Typical landslide display
	4.3 Landslide density statistics

	5 Discussion
	5.1 Landslide scale and the completeness analysis
	5.2 Objective assessment of methods
	5.3 The importance of the landslide inventory

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Earthquake scenario-specific framework for spatial accessibility analysis (SAA) of emergency shelters: a case study in Xichang City, Sichuan Province, China

	1 Introduction
	2 Study area
	3 Methodology
	3.1 Data
	3.2 Spatial accessibility analysis based on the road network
	3.3 Influence from strong ground motion
	3.4 Influence from fault rupturing

	4 Results
	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

	Back Cover



