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The field of computer science has undergone rapid expansion due to the
increasing interest in improving system performance. This has resulted in
the emergence of advanced techniques, such as neural networks, intelligent
systems, optimization algorithms, and optimization strategies. These innovations
have created novel opportunities and challenges in various domains. This
paper presents a thorough examination of three intelligent methods: neural
networks, intelligent systems, and optimization algorithms and strategies. It
discusses the fundamental principles and techniques employed in these fields,
as well as therecent advancements and future prospects. Additionally, this
paper analyzes the advantages and limitations of these intelligent approaches.
Ultimately, it serves as a comprehensive summary and overview of these
critical and rapidly evolving fields, offering an informative guide for novices and
researchers interested in these areas.

KEYWORDS

neural networks, intelligent systems, robotic, dynamic systems, optimization algorithms
and strategies

1. Introduction

In recent years, the fields of computer science and communication electronics have
undergone rapid growth and development, primarily due to the increasing interest in
techniques that can enhance the performance of systems. The advancement of technologies
such as neural networks, intelligent systems, optimization algorithms, and strategies has
resulted in significant progress and created new opportunities and challenges in the areas
of artificial intelligence, automation, and data science.

Neural networks, a potent machine learning algorithm, have garnered considerable
attention due to their ability to solve intricate problems in diverse fields, such as speech
recognition, image processing, and reinforcement learning. Inspired by the human brain’s
structure, neural networks consist of interconnected layers of nodes or “neurons” that
process input data and generate output predictions. The primary advantage of neural
networks stems from their self-learning capability, which enables them to assimilate
knowledge from vast amounts of data and make accurate predictions without explicit
programming. Consequently, they find extensive applications in domains where traditional
programming is arduous and cumbersome. Additionally, neural networks can handle non-
linear relationships between inputs and outputs, rendering them highly suitable for complex
non-linear problems that are challenging to solve with linear models. However, neural
networks also possess certain limitations, such as: (1) Black-box nature: Neural networks are
often regarded as black-box models due to the challenge in comprehending how they arrive
at their prediction outcomes. Consequently, diagnosing and rectifying errors in the model
can be difficult; (2) Overfitting: Neural networks are susceptible to overfitting, which implies
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that they may perform well on the training data but poorly
on new and unseen data. This can be mitigated by utilizing
regularization techniques, but it continues to pose a challenge.
(3) Training complexity: Neural networks are computationally
intensive and time-consuming to train, particularly for large and
complex datasets. In general, neural networks are potent tools in
the realm of machine learning and have demonstrated considerable
potential in solving intricate problems (Xiao et al., 2018b; Long
et al, 2022; Peng and Liao, 2022; Liao et al., 2023). With sustained
research efforts and continued development, they may offer even
greater utility across a broad range of applications.

Intelligent systems have evolved into a pervasive and
indispensable element of modern society. These systems utilize
artificial intelligence and electronic communication technology
to provide solutions for diverse applications, ranging from self-
driving cars to home automation systems (Khan et al., 2022¢). The
widespread implementation of intelligent systems can be attributed
to the steady advancement of technologies such as design,
recognition, detection, prediction, and evaluation. Furthermore,
the exceptional performance of intelligent system components,
including communication systems and oscillators, assumes a
crucial role. Communication systems are indispensable for
transmitting data and commands between distinct components of
the system (Zhang et al., 2022a), while oscillators provide accurate
timing and synchronization to ensure the proper operation of the
system (Jin et al., 2017a).

Optimization represents a fundamental challenge in multiple
domains, entailing the identification of the optimal solution to a
problem that complies with prescribed criteria and constraints.
Optimization algorithms and strategies seek to automate this
process and attain the optimal solution efficiently. Over time,
diverse optimization algorithms have been developed, which can
be broadly categorized into classical and metaheuristic approaches.
Classical methods rely on mathematical techniques such as linear
programming (Hu et al., 2019a), quadratic programming (Xiao,
20165 Xiao et al, 2019¢), and dynamic programming (Lv et al.,
2018; Liao et al, 2019), while metaheuristic methods are more
heuristic and often inspired by natural phenomena (Sun et al,
2016; Khan et al, 2020a; Qu et al.,, 2020; Zhang et al., 2022b).
Optimization methods and strategies play a critical role in the
efficacy and competitiveness of various fields (KKhan et al., 2021).
For instance, optimization technologies can be employed to
enhance the performance of machines or systems while reducing
costs. Furthermore, optimization methods can have a favorable
impact on society by improving the efficiency of public services and
infrastructure, and addressing societal challenges such as poverty,
inequality, and climate change. Overall, optimization methods and
strategies constitute a crucial aspect from all perspectives.

This paper aims to present a comprehensive survey of
three areas of research: neural networks, intelligent systems,
and optimization algorithms and strategies. The basic principles,
techniques, recent advances, and future directions of these
intelligent methods will be explored in depth. This paper will
provide a detailed examination of the models, algorithms, and
applications used in each of these research fields. Furthermore, the
advantages and limitations of these technologies will be thoroughly
analyzed and discussed to aid readers in understanding and
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Neuron

Inputs

Outputs

Note: Inputs can be the output of previous layer. Outputs can be
the input of next layer.

FIGURE 1

General structure of a single neuron in the most basic type of neural
networks, where x; denotes the ith input of the neuron, w; is the
corresponding weight, y; represents the ith output of the neuron,
and the activation functions (AFs) can be linear or non-linear.

evaluating these intelligent methods. The structure of this paper is
presented as follows. In Section 2, we categorize neural network
models into real-valued and complex-valued types, and examine
the activation function, robustness, and convergence of these
models. Moreover, this section illustrates the relevant application
domains of neural networks, including linear systems, non-linear
systems, and robotic and motion planning. Section 3 discusses
the pertinent technologies and components of intelligent systems,
comprising system design, recognition, and detection methods,
prediction and evaluation methods, and intelligent communication
systems and oscillators. In Section 4, we explore bio-inspired
optimization algorithms and optimization strategies and systems.
Finally, Section 5 provides concluding remarks.

2. Neural networks

2.1. Background

Neural networks are mathematical models that simulate
the processing of complex information by the human brain’s
nervous system, based on the principles of neural networks in
biology. These models abstract the structure of the brain and its
response mechanism to external stimuli, and are represented by
a large number of interconnected nodes (called neurons) with
specific output functions (called activation functions or AFs).
Connections between nodes represent weighted values (called
weights) for signal transmission, allowing neural networks to
simulate human memory. The networks output depends on its
structure, connections, weights, and activation functions, which
are typically approximations of algorithms, functions of nature, or
logical strategies. Figure 1 illustrates the structure of a single neuron
in the most basic type of neural network.

frontiersin.org
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The neural network model has gained significant attention
across various scientific domains due to its distinctive properties,
which are as follows:

e Self-learning and self-adaptive ability: The neural network
model is capable of adjusting its network structure parameters
automatically when exposed to changes in the external
environment (such as new training samples), to achieve the
desired output corresponding to a specific input. Compared
to traditional expert systems with fixed reasoning, neural
network models are more adaptable and mimic the thinking
style of the human brain.

e Non-linearity: Many real-world problems are viewed as
non-linear complex systems, while neural networks store
information in the number of neurons and connection
weights, allowing for various non-linear mappings.

e Fault-tolerance and robustness: The distributed nature of
information storage in neural network models ensures that
local damage to the model moderately weakens the operation
of the neural network without producing catastrophic errors.
Moreover, neural networks can handle incomplete or noisy
data, possess generalization function, and exhibit strong fault
tolerance.

e Computational parallelism and distributed storage: The
structural features of neural networks result in natural
parallelism. Each neuron can perform independent operations
and processing based on the received information and output
the result. Different neurons in the same layer can perform
operations simultaneously and then transmit to the next
layer for processing. As a result, neural networks can take
advantage of parallel computing to increase their operation
speed significantly. Neural networks use distributed storage
to represent information. By distributing the activation signals
on the network neurons in response to the input information,
the features are accurately remembered in the connection
weights of the network through training and learning,
enabling the neural network to make quick judgments when
the same patterns are input again.

In the preceding subsection, we have acquired an initial
comprehension of the fundamental architecture and characteristics
of neural network models. In the following analysis, we will
examine the models in greater detail from the standpoint of
their various categories, problem-solving approaches, and practical
applications.

2.2. Real-valued neural network model

Real-valued neural networks are a type of machine learning
model that can process continuous data, making them highly
versatile and effective in various domains, such as computer vision,
natural language processing, and signal processing. For example, in
image recognition, real-valued neural networks can take the pixel
values of a digital image as input and produce the corresponding
label as output. In stock price prediction, these networks can model
historical stock data and provide trend predictions for future stock
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prices. In voice recognition, acoustic signals can be transformed
into textual output through the use of real-valued neural networks.
The activation function (AF) is a crucial component of the neural
network architecture as it enables the transformation of the input
into an output. Without an AE the neural network can only
represent linear functions. The addition of a non-linear AF allows
the neural network model to achieve non-linear transformations
from input to output, thereby enhancing its expressive power.

2.2.1. Neural network model with linear AF

Let us first consider the neural network model with a linear
AF. In this case, the gradient, or derivative, of the neural network
remains constant for each iteration, making it difficult for the
model to capture complex information from the data. However,
linear AF is still suitable for simple tasks that require high
interpretability. In their study (Ding et al, 2014), the authors
proposed a class of static recurrent neural network (SRNN) models
with linear activation function and time-varying delays. To assess
the stability of the SRNN model, they introduced a new Lyapunov-
Krasovskii function and derived improved time delay-dependent
stability conditions in the form of linear inequalities. They then
provided numerical results that are consistent with the theoretical
findings by specifying the SRNN model parameters. In another
study (Zhang et al., 2019), the authors extended the original linearly
activated fixed-parameter neural network to a linearly activated
varying-parameter neural network model, where the parameter is
chosen as ¢(t) = a + a'. Subsequently, Xiao et al. proposed an
improved varying parameter neural network model (Xiao et al,
2020c). The parameter value of this model is

£ = o + 1%, f0<a <1,
a? 4+ 2ta + o2, ifa > 1,

which can better meet the needs of the model hardware
implementation.

The integration of various neural network approaches has
garnered significant interest in addition to the investigation of
individual neural network models. A novel strategy combining
gradient-based neural networks (GNNs) and zeroing neural
(2022) to
solve dynamic matrix inversion online. The proposed strategy

networks (ZNNs) was proposed in Dai et al

incorporates fuzzy adaptive control, which allows for adaptive
adjustment by regulating the fuzzy factors based on real-
time residual error values. The authors demonstrate the global
convergence and efficacy of this GNN-ZNN model based on fuzzy
control through theoretical analysis and numerical experiments.
Different papers have employed various neural network models
for the same problem, each with their own unique characteristics
(Zhang et al., 2019; Xiao et al., 2020c; Dai et al., 2022). Therefore,
exploring how to effectively combine the strengths of multiple
neural network models in different scenarios is an important area of
research. Fuzzy control theory, a mathematical theory dealing with
fuzziness, is based on the concept of fuzzy sets and has been widely
studied, including applications such as fuzzy inference (Zeng et al.,
2022) and fuzzy Petri nets (Zhou et al., 2015, 2018a,b, 2019). These
fuzzy control methods offer guidance for extending single neural
networks to multi-neural networks.
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2.2.2. Neural network model with non-linear AF

Non-linear AFs are a crucial element of neural networks,
contributing to their expressive power and learning capability,
leading to superior performance in handling complex tasks. Based
on convergence properties, non-linear AFs can be categorized into
two types: general AFs and finite-time convergent AFs.

(i) General AFs: In recent years, several studies have proposed
neural network models with non-linear activation functions for
solving a variety of problems. For example, in Jian et al
(2020), a class of neural network models was presented for
solving the time-varying Sylvester equation, where the authors
considered three different types of non-linear activation functions
and provided a detailed theoretical derivation to validate the
convergence performance of the proposed models. Similarly, Lei
et al. proposed an integral structured neural network model with
a coalescent activation function optimized for the solution of the
time-varying Sylvester equation (Lei et al., 2022). For non-convex
and non-linear optimization problems, an adaptive parameter
convergence-differential neural network (CDNN) model with non-
linear activation functions was proposed in Zhang et al. (2018d),
and the authors verified the global convergence and robustness
of the model by theoretical analysis and numerical experiments.
Non-linear activation functions are also widely used in many
fields, such as wheeled mobile robot control (Xiao et al., 2017b),
surgical endoscopic robot control (Li et al., 2022b), and distributed
collaborative networks (Zhang et al., 2018a).

(ii) Finite-time convergent AFs: Contrary to the general non-
linear activation functions with infinite time convergence, the
activation functions with finite time convergence facilitate fast
convergence of neural network models, with a time upper bound.
In Xiao et al. (2018a), the authors proposed a neural network model
for online solution of Lyapunov equations in non-linear systems.
The model’s fast convergence was achieved by incorporating non-
linear activation functions, and an upper bound on the model’s time
convergence was established via theoretical analysis as

ar + B
aipi(l —¢)

Timey, < max{lr_(O)I(l_g),|r+(0)|(1_§)],

where a1 and B are scale factors, ¢ € (0,1), r7(0) = max{R(0)},
and r~(0) = min{R(0)} with R(0) denotes the initial value of the
error function R(¢). Finally, the stability and finite-time properties
of the model were confirmed in an application involving the control
of a six-link robotic arm. In a similar vein, Xiao et al. developed an
accelerated convergence recurrent neural network (RNN) model
(Xiao, 2017a, 2019) for time-varying matrix square root finding
(Zhang et al., 2015), and provided a time upper bound for the
convergence of the model, which is expressed as

o : BrA(0) 2= V)/ea 4 3
n
Baaz —y) A

Timey, =

>

where f, and A are scale factors, @, > y and all are odd integers,
and A(0) is a random initial value of the error matrix. For dynamic
non-linear optimization problems (Liao et al., 2015; Xiao and Lu,
2019; Lu et al,, 2020), the authors proposed a sign-bi-power AF and
use it for dynamic neural network model design, and express the
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upper bound of the model convergence time mathematically as

|k3’|(1*"‘3)

|k0_|(1*°‘3) }
Bs(1 —a3)” B3(1 — a3)

Timeyp < max{

where a3 is the scale factor, 1 < B3 < 1, kO+ and k; represent
the maximum and minimum initial values of the error vector k,
respectively. In order to account for the effects of rounding errors
and external noise disturbances in practical problem solutions,
Xiao and colleagues proposed a neural network model in Xiao
et al. (2019d) with the capability to suppress noise and achieve
predefined time convergence. The authors provided detailed
theoretical proof of the robustness and finite-time convergence
of the model. They also verified through numerical experiments
that the model can still achieve finite-time convergence in the
presence of external noise. In Liao et al. (2022a), a predefined
time-convergent neural network model with harmonic-like noise
suppression was designed for adaptively solving time-varying
problems by leveraging the properties of harmonic signals. The
burgeoning demand for real-time performance has become a
critical requirement for many scientific, industrial, and commercial
applications, such as computational biology, weather forecasting,
autonomous vehicles, and financial analytics. This requirement
is largely driven by the rapid progress in computer technology,
including advances in hardware and software, which have
enabled the processing of vast quantities of data in real-time
(Tan and Dai, 2017; Dai et al, 2018; Tan, 2021; Li et al,
2022a). Real-time performance is essential for many time-sensitive
applications, where delays or inaccuracies in processing can
have severe consequences, such as in real-time monitoring of
critical physiological signals or detecting anomalies in sensor data.
Furthermore, real-time performance enables immediate feedback
and adaptive decision-making, leading to increased efficiency and
performance. In Zhang et al. (2022¢), the authors proposed a
unified GNN model for handling both static matrix inversion
and time-varying matrix inversion with finite-time convergence
and a simpler structure. As the authors conclude, compared with
the existing GNN model and ZNN model dedicated to time-
varying matrix inversion, the proposed unified GNN model has
advantages in convergence speed and robustness to noise. At
the same time, the authors further extend this GNN model for
finding the dynamic Moore-Penrose inverses in real-time (Zhang
et al, 2022d), and the paper concludes that this method does
not require the time derivatives of the relevant dynamic matrices
and has finite time convergence. In short, high-precision and low-
complexity real-time solutions are a highly active area of research,
with numerous open problems and opportunities for innovation in
both fundamental algorithms and system-level optimizations.

To facilitate the reader’s understanding, we present a list of the
linear and non-linear activation functions discussed in Section 2
and provide a detailed description of each function in Table 1.

(1) Linear activation function (LAF):

Ax) = x. (1)
(2) Power activation function (PAF):

A(x) = x* with i > 3 indicating an odd integer. (2)
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TABLE 1 Details of various linear and non-linear activation functions.

AFs Type References
LAF (1) Linear (Ding et al., 2014; Zhang et al.,
2019; Jian et al., 2020; Xiao
et al., 2020¢; Dai et al., 2022)
PAF (2) Non-linear (Jian et al., 2020)
BPAF (3) Non-linear (Zhang et al., 2018a; Lei et al.,
2022)
PSAF (4) Non-linear (Zhang et al., 2018d)
HSAF (5) Non-linear (Xiao et al., 2017b; Li et al.,
2022b)
SBPAF (6) Non-linear & (Xiao, 2017a, 2019; Xiao et al.,
Finite-time convergence 2018a, 2019d)
TSBPAF (7) Non-linear & (Liao et al., 2022a)
Finite-time convergence

(3) Bipolar sigmoid activation function (BPAF):
A(x) = (1 — exp(—ux))/(1 + exp(—px)) with u > 1. (3)

(4) Power-sigmoid activation function (PSAF):

xH, if x| > 1,
A(x) = { 1 — exp(—pux) ' 1+ exp(—u), otherwise. (4)
1+ exp(—px) 1 —exp(—p)
(5) Hyperbolic sine activation function (HSAF):
A(x) = (exp(ux) — exp(—pux))/2 with o > 1. (5)

(6) Sign-bi-power activation function (SBPAF) :

Ax) = (|x)* + |x|1/”)sgn(x)/2 with0 < u < 1, (6)

thereinto,
1, ifx >0,
sgn(x) =1 0, ifx=0,
-1, ifx < 0.

7) Tunable sign-bi-power activation function (TSBPAF):

1 1 1
AQ) = - prlalsgn(x) + 2 pox + Epzlxl”"sgn(x), 7)

where v € (0,1), p1, p2, and pj3 are greater than 1.

2.3. Complex-valued neural network model

In recent years, neural network-based machine learning
techniques have found broad application in practical settings.
Notably, the majority of current neural network models are
designed for real-valued inputs, outputs, and weights. However,
this raises the question of the existence and purpose of complex-
valued neural network models. What are complex-valued neural
network models, and why are they necessary? Complex-valued
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neural network models utilize complex numbers as inputs, outputs,
and weights and are inspired by the natural properties of complex
numbers and the existence of complex-valued neurons in biology.
They are employed in specific application scenarios where the input
and output data can be represented in complex form, and therefore,
complex-valued neural networks can better describe and process
these data. Compared to real-valued neural networks, complex-
valued neural networks offer several advantages:

e They can better represent complex-valued data in the real
world, such as sound waves and electromagnetic waves.

e They can achieve better results with a smaller network size due
to the effectiveness of complex-valued weights in expressing
correlations and symmetries in the data.

e They can better handle asymmetrical data by allowing for
expression rotation and scaling, which can map asymmetric
data into a more symmetric space.

e They can better handle phase information, which is important
for complex-valued data, as traditional real-valued neural
network models struggle to handle the phase information
effectively.

Complex-valued neural networks have been extensively

employed in image recognition, speech recognition, and
natural language processing, and are currently under thorough
investigation. In the following sections, we will delve into the
complex-valued neural network model and scrutinize it through

the lenses of noise-tolerance and finite-time convergence.

2.3.1. Noise-tolerance

The precision and robustness of neural network models can be
adversely affected by computational rounding errors and external
noise perturbations. Therefore, it is crucial for these models to
possess the dual capability of solving problems and suppressing
noise simultaneously.

In Xiao and Lu (2017), a complex-valued gradient neural
network model was proposed for solving complex-valued linear
matrix equations. This model has a simpler theoretical analysis
and lower computational complexity compared to the widely
used real-valued gradient-based neural network model. In Lei
et al. (2020), the authors proposed a neural network model for
computing the inverse of complex-valued time-varying matrices.
The model’s convergence in solving time-varying problems and
its robustness against external noise disturbances were analyzed
and validated. The effect of design parameters on the speed of
model solving was also elucidated based on experimental results.
Moreover, a complex-valued noise-resistant neural network model
based on an integral-type design formulation was presented in
Xiao et al. (2019f) for the same problem. The convergence
and robustness of the model were verified through detailed
analysis and proofs. The experiments considered various noise
types, including constant noise, linear noise, bounded linear
noise, harmonic noise, and exponential-type noise. The model
proposed in this work has a better noise suppression effect
compared to the traditional gradient-based neural network model.
To further improve the noise tolerance of the neural network
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model, a complex-valued noise-tolerant neural network model with
a double-integral structure was proposed in Liao et al. (2022b),
which was capable of simultaneously solving the problem and
suppressing the noise. The authors verified the robustness of the
model under constant noise, linear polynomial noise, and quadratic
polynomial noise via numerous theoretical analyses. According
to the numerical experimental results, this model can achieve
the effective suppression of constant noise, linear polynomial
noise, and quadratic polynomial noise. In Ding et al. (2019b),
Ding et al. proposed an improved complex-valued recurrent
neural network (ICVRNN) model for solving the complex-valued
time-varying Sylvester equation. This work gives a large number
of theoretical proofs and experimental cases to analyze the
effectiveness, convergence, and stability of the ICVRNN model.
Additionally, the authors further extend this ICVRNN model to the
solution of complex-valued linear equations (CVLEs) (Ding et al.,
2018). As the authors conclude, the ICVRNN model has better
performance for solving CVLEs compared to traditional neural
network models. In addition, noise-tolerant complex-valued neural
network models are widely used for solving many problems, such
as matrix pseudo-inverse solving (Lei et al., 2019), robotics (Liao
etal., 2022d), and non-linear optimization (Xiao et al., 2019a), etc.

2.3.2. Finite-time convergence

Finite-time convergence is a crucial characteristic of neural
network models as it allows for achieving the desired level of
performance in a shorter amount of time. Specifically, if a neural
network model can attain convergence within a finite time, the
parameter selection and tuning process can be expedited to obtain
the desired results more quickly. The non-linear activation function
used in complex-valued neural network models plays a pivotal role
in achieving finite-time convergence. This function is based on the
non-linear activation function in the real domain but generalized
to the complex domain. Unlike its counterpart in the real domain,
the complex-valued non-linear activation function operates on
complex inputs and outputs, which enables better handling of the
non-linear characteristics of complex-valued data.

In Liand Li (2013), Li et al. proposed two ways to generalize the
AF from the real domain to the complex domain, as follows.

i) Complex-valued AF Type I:

Fla+ib) = A(a) + i A(b),

where F(-) is a complex-valued AF defined in an element-wise
manner, and a and b denote the real and imaginary parts of the
complex number a + bi, respectively.

ii) Complex-valued AF Type II:

F(a+ib) = A(Y) ¢ exp(i®),

where the symbol ¢ denotes the multiplication of the corresponding
subelements of two vectors or matrices (i.e., ¢ o d = [c;d;] for real
vectors ¢ = [¢j] and d = [dj]), and T € R and ® € (-7, 7]
represent the modulus and argument of the complex number a+ bi,
respectively.

In Xiao et al. (2020b), the authors proposed two non-linear
equivalent models for solving complex-valued problems. One
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model focused on the real and imaginary parts of the complex
numbers, while the other was from the perspective of the modulus
of the complex numbers. The authors introduced a non-linear
activation function to ensure fast convergence and applied these
models to solve the complex-valued Sylvester equation. Both
models performed well, as reported by the authors. In Xiao
et al. (2022b), the authors designed an arctan-type variable-
parameter complex-valued neural network model with finite-
time convergence. This model takes into account the reality that
the convergence factor is time-varying in the actual hardware
environment. During the solution process, the model can adjust
its convergence scale parameters (CSPs). When the model achieves
convergence, the CSPs converge to a constant greater than zero.
The CSPs and finite-time upper bounds of this model are supported
by theoretical analysis, as the authors conclude. The excellent
performance of this model has been demonstrated in numerical
experiments. Furthermore, the authors extended this variable-
parameter neural network model to solve time-varying complex-
valued matrix equations (Ding et al., 2018; Xiao et al., 2021b).

In Zhou et al. (2022), the authors aimed to improve the
robustness and solution speed of complex-valued noise-resistant
neural network models for practical problem-solving, while
meeting the dual requirements of noise tolerance and real-time
performance. To this end, the authors introduced non-linear
activation to the model. In this work, the authors employed this
improved model to solve the problem of trajectory tracking for
manipulators, and the results demonstrate that this model can
effectively suppress noise while meeting real-time requirements
of the task. In another work (Xiao et al, 2021a), the authors
utilized a complex representation to convert the quaternion-valued
matrix into the corresponding time-varying complex-valued matrix
(TVCVM), and then proposed a complex-valued neural network
model to solve this TVCVM. The authors introduced a versatile
non-linear-sign activation function to achieve the predefined time
convergence of the model. According to the authors’ summarized
results, theoretical analysis provided an upper bound for the
convergence time of this model. Finally, the authors applied
this model to a mobile manipulator and demonstrated its good
performance.

2.4. Neural networks for linear system
solving

A linear system is characterized by the linear property, which
states that the system response is homogeneous and additive,
such that the output signal changes in proportion to the input
signal of the system. Solving linear systems with neural networks
is of significance as it enables fast processing via learning
and optimization, particularly for problems that are difficult
or computationally complex to solve by traditional methods.
Compared to traditional solution methods, using neural networks
to solve linear systems has the following advantages.

e Strong solving ability: It can handle large-scale, high-

dimensional linear systems, where traditional methods may be
computationally overloaded or numerically unstable.
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e Good adaptability: It can adaptively learn the mapping
relationship between input and output, this allows neural
networks for more complex linear system solving.

High accuracy in solving: It can improve the accuracy of
the model by increasing the number of layers and neurons
of the neural network, this makes the neural network
applicable to the solution of linear systems with high accuracy
requirements.

2.4.1. Linear equation

In many real-time applications, including control and signal
processing, precise analysis and control of linear systems are
crucial. To this end, various neural network models have been
proposed for the online solution of time-varying linear systems.
For instance, in Lu et al. (2019), the authors introduced a novel
recurrent neural network (RNN) model for solving time-varying
underdetermined linear systems while satisfying the constraints of
state variables and residual errors. This work presented extensive
theoretical analyses and numerical cases to demonstrate the
effectiveness and validity of the proposed RNN model, which was
further applied to control the PUMA560 robot under physical
constraints. In Xiao et al. (2019b), the authors developed a neural
network model for time-varying linear matrix equations and
provided a theoretical analysis of the upper bound on the time
convergence of the model. The study concluded that this model
demonstrated exceptional performance in solving time-varying
linear equations. Additionally, in Zhang et al. (2018b), the authors
proposed a varying-gain RNN model for solving the linear system
H()] ()K(1)

being characterized by time-varying properties. The finite-time

= L(t), with the design parameters of the model
convergence of this model was also verified by theoretical analysis.
In Xiao et al. (2019¢), two non-linear neural network models
were investigated for solving the dynamic Lyapunov equation
HY 0] + JOH®) —K(t), and the study noted that the
solution outcomes of these models were independent of the choice

of initial values. Similarly, in Xiang et al. (2018a), the authors
proposed a discrete Z-type neural network (DZTNN) model for
the same dynamic Lyapunov equation, which exhibited inherent
noise tolerance and exact solution attainment under various types
of noise. Additionally, various neural network models (Xiao, 2017b;
Jin et al., 2019; Xiao and He, 2021; Lei et al.,, 2022; Han et al,,
2023) have been put forward for solving the time-varying Sylvester
equations H(t)J(t) — J(t)H(t) = —K(1).

2.4.2. System of linear equations

The system of linear equations is a fundamental mathematical
concept used in various fields as a powerful tool to solve practical
problems due to its linearity, simultaneousness, infinite solutions,
and suitability for multiple methods. In Xiao et al. (2022a),
the authors proposed a neural network model with adjustable
parameters and demonstrated its fast convergence speed, low
upper limit of convergence time, and short parameter adjustment
time. The study also applied the model to achieve synchronous
control of chaotic systems and validated its effectiveness. The
authors concluded that this model performed excellently. In Xiao
et al. (2017a), a gradient-based dynamic model was proposed for
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the simultaneous solution of systems of linear equations. The
authors demonstrated that the model had a zero error bound at
convergence and provided an upper bound on the convergence
time. Additionally, this class of dynamic models was extended to
the online solution of complex-valued systems of linear equations
(Xiao, 2015; Xiao et al, 2021b). To meet the requirements of
high real-time and strong robustness in solving linear systems of
equations in engineering practice, in Xiao et al. (2020a), the authors
developed a dynamic control model with noise robustness for
online solution of systems of linear equations. The paper designed
a non-linear activation function with noise tolerance and added it
to the dynamic control model. The authors theoretically analyzed
the noise immunity, convergence, and robustness of the model.
Furthermore, the authors applied the dynamic control model to
the motion tracking of the robot, and the results demonstrated
good performance in the elliptical path tracking control of the
robot. In Katsikis et al. (2023), the authors proposed a dynamic
neural network model, based on neutrosophic numbers and a
neutrosophic logic engine, which exhibits superior performance
compared to the traditional ZNN design. The primary objective of
this model is to estimate the matrix pseudo-inverse and minimum-
norm least-squares solutions of time-varying linear systems. The
observed enhancement in efficiency and accuracy of the proposed
model over existing techniques is attributed to the advantages
of neutrosophic logic over fuzzy and intuitionistic fuzzy logic.
The authors utilized neutrosphication, de-fuzzification, and de-
neutrosophication instead of the conventional fuzzification and
de-fuzzification methods. The efficacy of the proposed model was
assessed through simulation examples and engineering applications
in the domains of localization problems and electrical networks.

2.5. Neural networks for non-linear system
solving

Non-linear systems present a significant challenge for
modeling, analysis, and control because their output cannot be
described simply by a linear relationship with the input, and
their dynamics may exhibit complex behaviors such as chaos or
periodicity. The study of non-linear systems is critical to many
fields, including control engineering (Xiao et al., 2017b; Zhou et al.,
2022), signal processing (Jin, 2014; Luo and Xie, 2017), dynamics
analysis (Tan and Dai, 2016; Tan et al., 2017, 2019a; Lu et al., 2020),
and communication systems (Jin and Yu, 2012; Jin and Fu, 2013;
Jin et al., 2015b; Zhao et al., 2020; Xiang et al., 2022), owing to the
following properties.

e Abundant kinetic behavior: Unlike linear systems, the kinetic
behavior of non-linear systems can be very abundant and
diverse. For example, they can generate chaotic phenomena,
periodic oscillations, and stable immobile points, etc.

Better modeling of complex phenomena in the real world:
Many natural and social phenomena are non-linear, such
as ecosystems, economies, and neural systems. Non-linear
systems can simulate these phenomena and provide relevant
behavioral information.

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1190977
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Hua et al.

e Available for control and optimization: Non-linear control
theory is an important tool for applying non-linear systems to
control and optimize problems. For example, in robotics and
industrial control, non-linear control enables highly accurate
and efficient solving of tasks.

In particular, non-linear systems can exhibit sensitivity to initial
conditions, bifurcations, and singularities, making them a rich
area of investigation for researchers. Furthermore, non-linear
systems are capable of representing a wide range of phenomena,
including self-organization, emergence, and adaptation, which are
not captured by linear models. Thus, developing effective methods
for modeling, analysis, and control of non-linear systems remains
an important area of research in many disciplines.

Neural network methods are a powerful tool for real-time
parallel processing that can be utilized to solve challenging non-
linear systems, particularly for situations in which an analytical
solution is elusive. These methods have found application in
various domains, including non-linear control problems (Xiao
etal.,, 2019¢g; Li et al., 2020c; Jia et al.,
equations (Zhang et al., 2017, 2018d; Liao et al,, 2021), and non-

2021), non-linear differential

linear optimization problems (Liu et al., 2016; Lan et al., 2017; Xiao
et al., 2019a; Zhang et al., 2020).

2.5.1. System of non-linear equations

Non-linear systems frequently appear in real-world
applications, and the online solution of systems of non-linear
equations has been a subject of extensive research. One popular
approach for solving such systems is through the use of neural
network methods, which can be particularly useful when the
analytical solution is difficult to obtain. In Xiao et al. (2019g),
the authors proposed a class of recurrent neural network (RNN)
models with finite-time convergence for solving systems of
non-linear equations. The effectiveness of this RNN model was
demonstrated through numerical simulations, and the model
was extended to solve more complex non-linear systems, such
as the motion tracking control of robotic manipulators. The
authors concluded that this RNN model is highly feasible and
applicable. Additionally, the authors constructed a discrete noise-
resistant recurrent neural network (DNTRNN) model (Li et al,
2020c) based on the five-step finite difference method for the
solution of non-linear systems of equations, and demonstrated
the effectiveness of the DNTRNN model. In Liu et al. (2016), the
authors proposed an RNN model for time-varying non-linear
optimization, providing both continuous and discrete forms of
the model. The paper concludes that both types of RNN models
have superior noise immunity and convergence performance.
In Zhang et al. (2018d), the authors designed and proposed a
differential neural network with varying parameters and non-linear
activation for solving non-convex optimization and non-linear
problems online. The global convergence of this neural network
model was proven through theoretical analysis, and the authors
concluded that this neural network model performs well for
solving non-convex and non-linear optimization problems in

various numerical experiments.
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2.5.2. Quadratic programming (QP)

The quadratic programming method is widely used in practice
and is a powerful tool for solving practical problems, which has the
following merits.

Can describe complex problems: QP can describe numerous
complex optimization problems, such as optimization
problems with non-convex functions.
Available for constraint handling: QP can handle
optimization problems with constraints, such as inequality
constraints, equation constraints, etc. This allows for a
broader application of quadratic planning.

Extensive solving methods: The solution methods of QP have
been relatively mature, such as the gradient descent method,
conjugate gradient method, and neural network method.
These methods can be used in practice and can handle large-
scale problems.

Global optimality: QP guarantees global optimality for
convex quadratic problems, which means that the solution
found is guaranteed to be the best possible solution.

Neural network methods offer certain advantages in solving
QP problems and are capable of solving large-scale QP problems.
Additionally, they avoid the need for mathematical modeling and
solving of problems in traditional algorithms. In Liao et al. (2021),
the authors introduced neuro-dynamic methods for QP solving
and pointed out the limitations of traditional neuro-dynamic
methods in the presence of noise. Consequently, they proposed
a predetermined time convergence neuro-dynamic method with
inherent noise suppression and concluded that this method can
achieve a fast and accurate solution to time-varying QP problems
in noisy environments. In Zhang et al. (2020), the authors studied
a power-type RNN (PT-RNN) model with varying parameters for
time-varying QP and quadratic minimization (QM) solving under
external perturbations. In this work, the authors provided a detailed
design process of this PT-RNN model and analyzed the robustness
and convergence of the model theoretically. Lastly, the authors
used this model for venture investment and robot tracking. As
the authors concluded, this PT-RNN model has great robustness
and wide applicability. In Jia et al. (2021), the authors proposed
a neural network approach based on an adaptive fuzzy control
strategy for time-dependent QP solving. As summarized in the
paper, this neural network method can automatically adjust the
convergence parameters according to the residual error, which
has better results compared with the traditional fixed-parameter
neural network method. Similar to QP, non-linear programming
(NLP) has also received much attention and is a powerful way
to describe complex problems. In Katsikis and Mourtas (2021),
the authors aimed to minimize portfolio insurance (PI) costs and
presented a multi-period minimum-cost PI (MPMCPI) problem,
which incorporates transaction costs, as a more practical version
of the classical minimum-cost PI problem. The MPMCPI problem
was formulated as a NLP problem, and the authors proposed an
approach using intelligent algorithms to solve it. The efficacy of
the proposed approach was evaluated using real-world data and
compared with other meta-heuristic and commercial methods. The
study results contribute to the optimization of portfolio insurance
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TABLE 2 Comparison of the properties of neural network models in solving various types of problems.

Problems

Linear system Linear equation

Properties of NNs

Finite-time convergence

References

(Xiang et al., 2018a; Zhang et al., 2018b; Lu et al., 2019; Xiao et al.,
2019b,e; Xiao and He, 2021)

Noise suppression

(Xiao, 2017b; Xiang et al., 2018a; Jin et al., 2019; Xiao et al., 2019b,e)

System of linear equations

Finite-time convergent

(Xiao, 2015; Xiao et al., 2017a, 2022a)

Noise suppression

(Xiao et al., 2020a)

Non-linear system System of non-linear equations

Finite-time convergent

(Zhang et al., 2018d; Xiao et al., 2019g; Li et al., 2020c)

Noise suppression

(Liu et al., 2016; Li et al., 2020c)

Quadratic programming

Finite-time convergent

(Jia et al., 2021; Liao et al., 2021)

Noise suppression

(Zhang et al., 2020; Liao et al., 2021)

NN in this table indicate neural networks.

costs using intelligent algorithms and provide insights into the
comparative performance of different approaches. Table 2 provides
a summary of the works on neural network models for solving
linear and non-linear systems.

2.6. Related applications

Neural networks are widely applied in various fields owing to
their parallel computing capability, adaptive learning, and non-
linearity. In this subsection, we provide a concise overview of the
research on neural networks for redundant robot manipulators.
A redundant robot manipulator is a robotic arm that has more
degrees of freedom than required. The additional degrees of
freedom are known as redundant degrees of freedom. Due to
these redundant degrees of freedom, the robotic arm can be more
flexibly adapted to different tasks and environments, as well as
avoid obstacles or enhance motion performance by adjusting its
posture. As a potent tool for real-time parallel processing, neural
network models can be used for precise and flexible control of
redundant robot manipulators (Xiao and Zhang, 2014; Zhang et al.,
2014, 2018¢; Liao and Liu, 2015; Jin et al., 2017b; Guo et al., 2018;
Tan et al., 2019b; Xiao et al.,, 2019¢g; Li et al., 2020d, 2022b; Tang
et al., 2022; Zhou et al.,, 2022). More specifically, neural networks
can be used in two ways.

o Inverse kinematic solving: The redundant robot manipulator
has additional degrees of freedom, and it can move the target
position in multiple ways, thus the inverse kinematics needs
to be solved to determine the best solution for the motion.
Traditional inverse kinematics methods are susceptible to
locally optimal solutions, while neural networks can obtain
more accurate inverse kinematics solutions by autonomously
adjusting the network structure and parameters.

Motion planning: Redundant robot manipulators can use
multiple postures to perform the same task, so the optimal
sequence of postures needs to be determined for the optimal
motion path. Adopting a neural network to solve the optimal
posture sequence of the robot manipulator can achieve higher
movement efficiency (Khan et al., 2022b).
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2.6.1. Inverse kinematic solving

In Xiao and Zhang (2014), a dynamic neural network
model is proposed for solving the inverse kinematics of mobile
robot manipulators. The authors provided a theoretical analysis
demonstrating the global convergence of the model to the inverse
kinematic solution of the mobile robot manipulator, which is
also supported by numerical experiments. The paper concludes
that this dynamic model outperforms traditional gradient-based
neural network models for the inverse kinematic solution of
mobile robot manipulators. Liao et al. propose a bi-criteria pseudo-
inverse minimization strategy for the redundancy problem of robot
manipulators at the joint acceleration level (Liao and Liu, 2015),
which can avoid high joint speeds of the manipulator. This method
has been validated on a 4-degree-of-freedom robot manipulator
and is found to perform well in solving the redundancy problem
of robotic manipulators. Tang et al. used an enhanced planning
scheme for redundant robot manipulator control (Tang et al,
2022), and a tuning strategy based on this scheme is found to
achieve good results in the limit case. Zhang et al. propose a
differential scheme with varying parameters for the joint-angle
drift (J-AD) problem of redundant robot manipulators (Zhang
et al., 2018¢). The J-AD problem is formulated as a standard QP
problem to be solved, and the authors validate this scheme through
computer simulations and physical experiments, concluding that
it performs well for solving the J-AD problem of redundant
robot manipulators. Figure 2 depicts the schematic structure of a
three-degree-of-freedom robot manipulator. In Zhang (2022), the
authors discussed the problem of redundancy of manipulators in
intelligent systems and designed a dynamic neural network with
triple projections, called a tri-projection neural network (TPNN),
which is developed for quadratic programs with a constraint on the
state evolution of the neuron states. This paper concludes that the
TPNN has advantages in fully employing the acceleration capability
of the manipulator.

2.6.2. Motion planning

In Guo et al. (2018), a bi-criteria minimization scheme was
proposed for motion planning of redundant robot manipulators,
which incorporates joint velocity, joint acceleration, and joint
angular constraints into the scheme. The authors design this
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FIGURE 2
Schematic structure of a three-degree-of-freedom planar robot
manipulator.

scheme based on the infinity norm acceleration minimization and
minimum weighted velocity criterion. The authors evaluated the
scheme through experimental simulations and physical validation,
concluding that it is both excellent and physically realizable for
redundant robot motion planning. In Jin et al. (2017b), the
authors solved the distributed cooperative motion of redundant
robot manipulators by reformulating it as a QP problem and
designing a neural network model with noise tolerance for
this QP problem. The authors validate this neural network
model for the problem of the distributed cooperative motion of
redundant robotic manipulators in noise-free and noise-containing
environments, demonstrating its effectiveness on the PUMA560
redundant robot. Similarly, Li et al. investigated a neural network
scheme with noise suppression and use it for redundant robot
repetitive motion planning (Li et al., 2020d). The authors verified
the effectiveness of this scheme on a four-link and a PA10 robot
manipulator, concluding that its performance was superior to
conventional motion planning schemes. In Zhang et al. (2014),
a QP-based feedback control and motion planning scheme was
designed and used for feedback control and motion planning
of a mobile robot manipulator. The effectiveness of this scheme
has been verified by dynamics analysis, and the authors conclude
that it is reliable and superior for feedback control and motion
planning of mobile robot manipulators. Figure 3 provides the
geometric and kinematic model of an omnidirectional mobile
wheeled robot.

2.7. Development directions and challenges

In recent years, neural networks have become a dominant
technology in machine learning and artificial intelligence. They
have achieved state-of-the-art results in various fields, such as
image recognition, natural language processing, and game playing.
However, neural networks still face several challenges, such as
overfitting, data efficiency, and hardware constraints:. In this
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FIGURE 3

Geometric and kinematic model of an omnidirectional mobile
wheeled robot, where (xce, Yce) denotes the geometric center of the
wheeled robot.

section, we will discuss the current state and future development
directions of neural networks, as well as the challenges that may be
faced in the future.

2.7.1. Development directions
Neural networks are expected to evolve in several directions in
the future. There are some of the most promising directions:

e Explainability: One of the main challenges of neural networks
is their lack of interpretability. It is often difficult to
understand why a neural network makes a particular decision.
Explainable AT (EAI) aims to address this issue by providing
human-understandable explanations of the decisions made by
neural networks. EAI is expected to become an essential aspect
of Al in the future, especially in fields such as healthcare,
finance, and autonomous systems.

Federated learning: Federated learning is a distributed
machine learning technique that allows multiple parties to
collaboratively train a model without sharing their data. It is
expected to become increasingly popular in the future due to
its privacy-preserving nature. Federated learning can be used
in various scenarios, such as personalized recommendation,
fraud detection, and predictive maintenance.

Quantum neural networks: Quantum neural networks
(QNNs) are a type of neural network that utilizes quantum
computation to process information. QNNs have the potential
to outperform classical neural networks in various tasks,
such as optimization, simulation, and cryptography. QNNs
are expected to become increasingly important as quantum
computing technology advances.
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2.7.2. Challenges

Despite the many advancements in neural networks, they still
face several challenges that need to be addressed in the future. There
are some of the main challenges:

e Overfitting: Overfitting occurs when a neural network learns
the noise in the training data instead of the underlying pattern.
This can lead to poor generalization performance on new data.
Data efficiency: Neural networks typically require a large
amount of labeled data to achieve good performance. This can
be a major bottleneck in real-world applications, especially
in domains where data is scarce or expensive to obtain. One
potential solution to this challenge is the development of
transfer learning techniques that allow pre-trained models to
be fine-tuned on smaller datasets.

Hardware constraints: Neural networks require large
amounts of computation and memory resources, which can
be challenging to deploy on resource-constrained devices such
as mobile phones and IoT devices. One potential solution is
the development of hardware optimized for neural network
computations, such as specialized processors and accelerators.

3. Intelligent systems

An intelligent system is an automated system that leverages
computer and artificial intelligence technology to enable intelligent
decision-making, control, and management. It facilitates automatic
control and optimization of various complex systems by collecting
sensor data, processing information, and executing operations.
Intelligent systems typically include the following components.

e Sensors and actuators: Used for sensing and controlling the
state and operation of physical systems.

Data collection and processing module: Used to collect,
process and store sensor data, extract features of the system,
and make decisions based on those features.

Decision and control algorithms: Using artificial intelligence
technology to analyze and process the data and achieve
intelligent control of the system by control algorithms.

Intelligent systems have numerous applications, including
industrial automation, intelligent medical care, intelligent home,
and intelligent transportation. The wide range of potential
applications suggests that the use of intelligent systems will become
more widespread in the future, driving innovation and progress in
numerous industries.

3.1. Design and control of intelligent
systems

The design process plays a crucial role in determining
the performance, reliability, maintainability, and scalability of
intelligent systems. In this section, we will provide an overview of
the current research on intelligent system design and control.

In Ding et al. (2021), the authors proposed an intelligent system
combining a pseudo-rigid body approach and a constant force
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FIGURE 4

Detailed design framework of micro-positioning stages (MPSs),
where the content in the red dotted box is the basic framework of
MPSs.

output mechanism for workpiece contact force control. In this
work, the intelligent system was constructed as a mathematical
model and provided a theoretical analysis to verify it. To obtain the
optimal parameters and structure, a particle swarm optimization
(PSO) method was used and experimentally verified by the authors.
As the paper concludes, this intelligent system is excellent and
generalizable. In Lan et al. (2016), the authors studied an observer
design method for fractional-order one-sided Lipschitz intelligent
systems. Also, the asymptotic stability of the full-order observer
error system has been ensured by using an indirect Lyapunov
method and an equivalent model. In Ding et al. (2019a), the authors
investigated a design scheme for a reconfigurable planar micro-
positioning stages (MPSs) based on different functional modules,
and details the flexibility and functionality of this scheme were
presented in the paper. Finally, the authors point out that the
system provides a new idea for the design of MPSs. Facing the
practical need for higher precision MPSs (Liao et al, 2022e),
the authors proposed a novel assembly concept (both planar and
spatial configurations) that further improves the flexibility and
functionality of intelligent systems. Figure 4 presents the detailed
design framework of MPSs.

In Ding et al. (2022), an intelligent system of constant force
mechanism based on the combination of negative and positive
stiffness was presented. In this work, the authors have modeled
and validated the system. The results of this paper indicate that
in numerical experiments, this intelligent system can achieve
the required constant force output and was consistent with the
theoretical results. In addition, a class of semi-interactive intelligent
systems has been proposed for the creation of robotic dance works
(Peng et al., 2015, 2016). The authors point out that this system
was capable of self-adaptive and self-learning capabilities and has
been validated on the NAO robot with good performance. Besides
the above instances, the intelligent system also has widespread
application scenarios, such as equipment processing control (Tang
et al,, 2015; Wu et al,, 2021), substation management (Hu et al,
2021), and UAV collaborative control (Xu et al., 2022).
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3.2. ldentification and detection in

intelligent systems

Recognition and detection technology, integrated with
computer vision technology and machine learning algorithms,
has become a critical component of intelligent systems. The
fundamental concept of this technology is to analyze, process,
and comprehend input images or videos to identify and detect
target objects or events. By accomplishing automatic recognition,
classification, localization, and tracking functions, recognition and
detection technology can augment the intelligence and automation
of intelligent systems. It has extensive applications, including but
not limited to, facial recognition, autonomous driving, and security
monitoring. The development of recognition and detection
technology relies on advancements in computer vision, machine
learning, and signal processing techniques, which are enabling
the creation of more efficient and accurate recognition and
detection algorithms. Ongoing research is focused on enhancing
the robustness, accuracy, and real-time performance of recognition
and detection technology, thereby expanding its applicability to a
diverse range of real-world scenarios (Qin et al., 2017; Hu et al,
2019b; Zhuo and Cao, 2021; Niu et al., 2022).

3.2.1. Identification methods

In Zhuo and Cao (2022), the authors presented a novel
approach for identifying damage in bolt connections of steel truss
structures using sound signals. The proposed method employed
support vector machine (SVM) classification, optimized with a
genetic algorithm, to accurately recognize signals associated with
bolt connection damage. The study demonstrated the effectiveness
of SVM classification for signal recognition in structural health
monitoring, specifically for detecting damage in bolt connections.
In Wu et al. (2022¢), a new scheme based on a low-strain
pile integrity test and convolutional neural network (CNN) was
proposed to identify concrete pile foundation defects with a
remarkable accuracy of 94.4%. The authors described this method
as more accurate, more reliable, and less destructive than traditional
methods. Similarly, in Wu et al. (2022a), the authors proposed
a method for the defect identification of foundation piles under
layered soil conditions. In Tang et al. (2020), a human action
recognition scheme was proposed, introducing and using the RGB-
D image feature approach, which is a current research hotspot for
effectively resisting the influence of external factors and improving
the generalization ability of the classifier. The proposed scheme
achieved excellent identification results on the public CAD60
and G3D datasets, utilizing three different patterns for human
action feature extraction: The RGB modal information, based the
histogram of oriented gradient (RGB-HOG), the depth modal
information, based on the space-time interest points (D-STIP),
and the skeleton modal information based on the joints’ relative
position feature (S-JRPF). In Xiang et al. (2018b), the authors
identified Markov chains on trees (MCoT) through derivative
constraints on the univariate distribution of sojourn time and/or
hitting time, concluding that all MCoT can be identified using this
method.
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3.2.2. Detection methods

In Luo et al. (2020), the authors investigated a novel chaotic
system and its associated signal detection method, demonstrating
high detection accuracy and noise immunity in experimental
studies. The effectiveness and feasibility of the proposed method
were verified through theoretical analysis, circuit simulation,
and FPGA implementation, highlighting its potential as a
reliable solution for signal detection in chaotic systems. In Wu
et al. (2022b), a deep learning-based system was proposed for
structural damage detection of engineering steel beams, where
the vibration signals were used to extract features and detected
by CNN. The experimental results show that the accuracy of
this detection method achieved 95.14%. The authors concluded
that this method has superior performance for structural damage
detection of engineering steel beams compared to the SVM
method. Furthermore, in Chen et al. (2022a), the authors provided
a comprehensive review of the techniques for detecting code
duplication in software development, analyzing the advantages and
disadvantages of each approach.

3.3. Prediction and evaluation in intelligent
systems

Prediction and evaluation are crucial elements in intelligent

systems, facilitating accurate  decision-making,  pattern
identification, model optimization, and goal attainment. These
components interact with other aspects of intelligent systems,
including learning algorithms and models, prediction and
planning, evaluation and optimization, and self-adaptation and
self-optimization, leading to enhanced system optimization and

development.

3.3.1. Prediction methods

Prediction is a crucial aspect of intelligent systems that can
enable more informed decision-making, facilitate the discovery of
regularities and patterns in data, optimize models, and support the
attainment of system goals. Prediction can be achieved through
the analysis of historical data to identify patterns and trends
using intelligent systems. For instance, in Huang et al. (2022), the
authors proposed a non-linear intelligent system for predicting the
anti-slide pile top displacement (APTD) and identified multiple
factors that affect the APTD. The proposed system was validated
using four prediction methods, namely ELMAN, long short-
term memory neural network (LSTM), support-vector regression
(SVR), and maximal information coefficient-SVR (MIC-SVR), with
results indicating superior performance in practical applications.
Additionally, an integrated model based on wavelet transformation
was introduced in Ding et al. (2013) for the prediction of both
steady-state and dynamic-state network traffic. Low-frequency
components were predicted using an improved gray theory,
while the high-frequency components were predicted using a BP
neural network algorithm, leading to increased prediction accuracy
and reduced uncertainty. Moreover, an intelligent algorithm was
introduced in Deng et al. (2019) for predicting the effective
wind speed in wind turbines by considering the rotor speed,
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aerodynamic characteristics, and extreme learning machine. The
authors reported that this algorithm is more efficient and accurate
compared to traditional Kalman filter-based methods. Finally, an
efficient search algorithm and optimization method were proposed
in Song et al. (2020) to predict wind speed and extract the
maximum wind energy.

3.3.2. Evaluation methods

Evaluation is a fundamental aspect of intelligent systems that
allows for the assessment of the accuracy and performance of data,
models, or decisions. During the evaluation process, the system
compares actual values with ideal values to determine the accuracy
and reliability of the model or decision. In the field of robotics,
various methods have been proposed for the aesthetic evaluation
of robotic dance movements. For instance, in Peng et al. (2022),
the authors presented a method for aesthetic evaluation of robotic
dance movements that employs key pose descriptors and integrated
classifiers to train machine learning models. This method has been
tested in a virtual environment and shown good performance.
In Peng et al. (2019a), a brain-like intelligent system resembling
the visual cognitive system of humans was proposed for the
aesthetic evaluation of robotic dance poses. The system extracted
features such as color, shape, and orientation and applied machine
learning methods for evaluation. A computational framework for
instantiating an intelligent evaluation method for robotic dance
poses was presented in Figure 5. Similarly, in Li et al. (2020b), an
automated method was proposed to evaluate the aesthetic level of
robot dance movements by integrating multi-modal information.
Features were extracted from visual and non-visual channels, and
ten machine-learning algorithms were employed for evaluation,
with the highest accuracy reaching 81.6%. Additionally, in Peng
et al. (2019b), a feature fusion method was proposed for the
automatic evaluation of robotic dance poses, which extracted four
types of features, including color block, contour feature, region
feature, and kinematic feature.

3.4. Intelligent communication systems

The
communication system that utilizes modern communication

intelligent communication system refers to a

technology and artificial intelligence algorithms to dynamically
based
communication needs, thereby achieving optimal communication

adjust its parameters and structure on varying
performance and resource utilization efficiency. In this paper, we
briefly describe three key aspects of the intelligent communication
transmission methods,

system: high-speed communication

up-conversion mixer design, and spectrum sensing methods.

3.4.1. High-speed communication transmission

In Sun et al. (2022), the authors proposed a method to enhance
the rate range and reduce power consumption in high-speed serial
links by utilizing an adaptive continuous time linear equalizer
(CTLE) and a half-rate decision feedback equalizer (DFE) with a
hybrid filter and a current-integrating summer. The system was
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tested using 10 Gb/s PRBS7 signals transmitted through an 18-
inch FR4 backplane, and the post-simulation results demonstrated
a rate range of 6.25-10 Gb/s with excellent performance. In Zhang
and Yang (2020), the authors proposed an adaptive CTLE based
on slope detection and a half-rate inferred DFE with intermediate
frequency compensation and a small amount of equalization for the
middle frequency range. The measurements showed an effective
equalization loss of 24 dB at Nyquist frequency with a clear eye
diagram at 36 Gb/s. Both works provide solutions to the challenges
of high-speed transmission and offer valuable insights into the
design of receiver equalizers for high-speed serial links.

3.4.2. Up-conversion mixer design

In Chen et al. (2013), a folded up-conversion mixer was
proposed by the authors, which employs a current reuse technique
and achieves a conversion gain of 9.5 dB at a 1 V supply voltage
while consuming only 258 uW of power. In Jin et al. (2014b),
the authors presented a sub-harmonic up-conversion mixer that
halves the required local oscillator frequency and achieves a
higher conversion gain of 14.4 dB, albeit at the cost of increased
power consumption of 1.65 mW at 1 V supply voltage. In Jin
and Yu (2013), a current-reuse current-mirror-switch mixer was
investigated by the authors, which features 8.5 dB conversion
gain, 1.16 mW power consumption, lower supply voltage, higher
linearity, and smaller chip area. All three works proposed novel
mixers for wireless applications using 0.18-micron radio-frequency
CMOS technology, with a focus on high performance, low power
consumption, and small chip area, albeit with differences in specific
technologies and performance metrics.

3.4.3. Spectrum sensing

In Yang et al. (2017), the authors investigated a multi-
band spectral sensing method based on eigenvalue ratios, which
employs random matrix theory to determine the distribution
of new statistics solely in the presence of noise. This approach
allows for the reliable establishment of theoretical thresholds and
exhibits superior performance in small sample scenarios. In Lei
et al. (2016), the authors introduced a blind broadband spectrum
sensing algorithm based on principal component analysis. This
algorithm transforms the wide-band spectrum sensing problem
into a sequential binary hypothesis test utilizing a generalized
likelihood ratio test, enabling simultaneous operation on all sub-
bands and overcoming noise uncertainty issues. Both studies
propose innovative approaches to addressing the multi-band
spectral perception challenge, without requiring prior knowledge.
The authors emphasized the practical significance of these methods
for applications such as radio spectrum allocation, spectrum
sharing, and dynamic spectrum access.

3.5. Intelligent oscillator systems

Intelligent oscillation systems are complex devices designed
to generate controlled vibration signals that exhibit adjustable
amplitude and frequency. Generally, these systems comprise
several essential components, including a vibration source (e.g.,
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a motor or piezoelectric device), a controller, sensors, and
feedback loops. With a diverse range of applications, these systems
have demonstrated their effectiveness in areas such as structural
vibration control, acoustic and mechanical system testing, and
medical devices.

3.5.1. Quadrature oscillator design

The quadrature oscillator is a passive oscillator that produces
a sinusoidal wave with frequency and impedance determined by
the inductor and capacitor values. This oscillator generates two
orthogonal signals, sine and cosine waves, making it widely used in
wireless communication systems. In Jin et al. (2015a), two variable
frequency third-order quadrature oscillators (TOQOs) were
proposed based on current differential transconductance amplifiers
(CDTA). These TOQOs were completely resistorless and provided
four quadrature current outputs at high output impedance
terminals. In Jin and Liang (2013), a new resistorless current-
mode quadrature oscillator based on CDTA was introduced, which
provided two well-defined quadrature outputs at high-impedance
terminals for easy cascading. Both works utilized CDTA for
building the quadrature oscillator with the resistorless circuit,
enabling monolithic integration, explicit orthogonal current
outputs, direct cascading with other current-mode circuits, and
controllable oscillation frequencies.

3.5.2. Quadrature voltage-controlled oscillator
design

The quadrature voltage-controlled oscillator (QVCO) is an
active oscillator that generates a sinusoidal wave, where the
oscillation frequency is determined by an external control voltage.
QVCO typically consists of two orthogonal oscillation circuits,
which can vary the oscillation frequency by altering the phase
difference between the two circuits. In Jin and Tan (2019), the
authors proposed a novel low-voltage and low-power QVCO that
is coupled by four P&N transistors, yielding a wide tuning range
and low phase noise while consuming a meager 2.31 mW. In
Jin (2018a), the authors introduced a novel QVCO architecture
that employs four capacitors to achieve enhanced phase noise
and reduced power dissipation compared to conventional designs.
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Furthermore, Jin et al. (2014a) developed a programmable current-
mode multi-phase voltage-controlled oscillator (MPVCO) using
cascaded first-order all-pass filters, which provides multiple
outputs. These studies have introduced significant advancements in
the design of voltage-controlled oscillators, resulting in enhanced
performance, compact size, and reduced power consumption.
These advancements are crucial for numerous applications in
wireless communication systems.

3.5.3. Chaotic oscillator design

The chaotic oscillator is a non-linear dynamical system that
exhibits complex, unpredictable behavior. It can be realized either
through mathematical equations or physical circuits. In Jin (2018b),
the authors proposed a novel digitally programmable multi-
directional chaos oscillator (DPMDCO), which employs MOS
switches for controlling the chaotic oscillation in three different
directions. The DPMDCO achieves a compact size and low power
consumption, making it suitable for practical applications. In
Ouyang et al. (2022), a fully integrated chaotic oscillator (FICO)
based on operational amplifiers and multipliers was presented.
This system integrates all necessary circuit elements into a single
chip, providing ease of implementation and compactness. Both
DPMDCO and FICO were evaluated using the Cadence IC design
tool, with DPMDCO consuming 99.5 mW at & 2.5 V supply voltage
and occupying 0.177 mm? of chip area, while FICO consumed
148 mW and had a larger chip area of 6.15 mm?. These works
demonstrate the potential for achieving compact and low-power
chaotic oscillators through digital programmability and circuit
integration.

3.6. Development directions and challenges

Intelligent systems are already being used in a wide range of
applications, from virtual assistants and chatbots to self-driving
cars and medical diagnoses. However, as these systems become
more prevalent, they also face significant challenges, both in
terms of technical limitations and ethical concerns. This section
will explore the future of intelligent systems and the challenges
they face.
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3.6.1. Development directions

Intelligent systems have been advancing at a rapid pace, and
they will continue to transform our lives in the coming years. There
are some of the most promising directions:

e Healthcare: Intelligent systems can help diagnose diseases,
monitor patient health, and provide personalized treatment
recommendations. In addition, intelligent systems can also be
used to develop new drugs and therapies.

Transportation: Self-driving cars are already being tested
on public roads, and they have the potential to improve
road safety and reduce traffic congestion. Intelligent systems
can also be used to optimize transportation routes, improve
logistics, and reduce carbon emissions.

3.6.2. Challenges

Intelligent systems have the potential to transform our lives
and revolutionize industries. However, they also face the following
challenges:

o Interpretability: It is essential for intelligent systems to
provide transparent and interpretable results, especially in
critical decision-making processes. However, many of the
state-of-the-art machine learning models are often considered
“black-boxes,” making it difficult to understand how they
arrived at their results. This lack of interpretability can hinder
trust in the system.

Cybersecurity and privacy: Intelligent systems collect, store,
and process a vast amount of data, which makes them
vulnerable to cyber attacks. There is also a risk of data breaches
that may compromise the privacy and security of individuals.

4. Optimization algorithms and
strategies

Optimization is a fundamental process of finding the optimal
solution within a given set of constraints. In computer science,
optimization algorithms constitute a class of algorithms employed
to obtain the optimal solution, and they can be categorized into two

types:

e Stochastic algorithms: The stochastic algorithms leverage
random properties to achieve better solutions through
corresponding probabilistic strategies. Such algorithms fall
into the category of optimization algorithms in computer
science. Examples of commonly used stochastic algorithms
include genetic algorithms, particle swarm algorithms, and
beetle antennae search algorithms (IKChan et al., 2022a). While
these algorithms can find near-optimal solutions in a relatively
short time, they are not guaranteed to obtain the optimal
solution.

Deterministic algorithms: The deterministic algorithms
always generate the same output for a given input.
Linear programming, integer programming, and dynamic
programming are some examples of deterministic algorithms.
These efficient solutions to

algorithms can provide
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their
power and time may be limited when dealing with complex

optimization problems. However, computational

optimization problems.

Subsequently, we will present an overview of bio-inspired
optimization algorithms and intelligent optimization strategies.

4.1. Bio-inspired optimization algorithms

Bio-inspired optimization algorithms are a type of stochastic
algorithms that draw inspiration from the principles of biological
evolution and swarm intelligence observed in nature. These
algorithms aim to mimic the behavior of individual organisms or
groups for solving complex optimization problems (KKhan et al.,
2020b, 2022¢; Chen et al., 2022b).

4.1.1. Particle swarm optimization (PSO)
algorithm

In a study by Peng et al. (2020), an enhanced chaotic quantum-
inspired particle swarm optimization (ICQPSO) algorithm was
introduced to address the issues associated with Takagi-Sugeno
fuzzy neural networks (TSFNNs), such as slow convergence
rate and extended computation time. The flow chart illustrating
the training and testing process of the ICQPSO algorithm for
optimizing TSFNNs can be found in Figure 6. In another study by
Yang et al. (2022), an improved particle swarm optimization (IPSO)
algorithm was proposed to identify the parameters of the Preisach
model, which is utilized to model hysteresis phenomena. The
authors demonstrated that the IPSO algorithm outperformed the
traditional PSO algorithm in terms of faster convergence, reduced
computation time, and improved accuracy.

4.1.2. Genetic algorithm (GA)

In Ou et al. (2022), a hybrid knowledge extraction framework
was developed by the authors, utilizing the combination of genetic
algorithms and back propagation neural networks (BPNNs). An
improved adaptive genetic algorithm (LAGA) was incorporated
in the optimization of BPNNs. The efficacy of the LAGA-
BPNNs approach was demonstrated through a case study
involving the Wisconsin breast cancer dataset. Meanwhile, in
Li et al. (2020a), the authors also investigated the applicability
of the harmonic search algorithm to this knowledge extraction
framework.

4.1.3. Cuckoo search (CS) algorithm

In Zhang et al. (2021), the authors presented an improved
cuckoo search (ICS) algorithm that addressed the limitations
of the original cuckoo search (CS) algorithm. The proposed
ICS algorithm incorporated non-linear inertial weight, which
enhances the local optimization capability, and the differential
evolution algorithm, which improves convergence accuracy. The
performance of the ICS algorithm was evaluated, and it was
found to outperform the original CS algorithm in terms of both
global search and robustness. In Ye et al. (2022), the authors
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FIGURE 6

Training and testing flow chart for optimizing Takagi-Sugeno fuzzy
neural networks (TSFNNs) by using an improved chaotic quantum
particle swarm optimization (ICQPSO) algorithm. Mean square error
(MSE) is a widely used metric to measure the average squared
difference between the actual and predicted values of a regression
problem. A lower MSE indicates that the predicted values are closer
to the actual values, while a higher MSE indicates that the
predictions are farther away from the actual values.

proposed an improved multi-objective cuckoo search (IMOCS)
algorithm to solve multi-objective optimization problems. The
IMOCS algorithm demonstrated good convergence performance
by dynamically adjusting the balance between development and
exploration, compared to existing CS algorithms. The proposed
algorithm provides an effective approach to deal with multi-
objective optimization problems, which often involve multiple
competing objectives.

4.1.4. Beetle antennae search (BAS) algorithm

In Khan et al. (2022d), a distributed beetle antennae search
(DBAS) algorithm was proposed to solve the multi-portfolio
selection problem, while ensuring privacy of investment portfolio
data. The DBAS algorithm was shown to be efficient and robust
in selecting the optimal investment portfolio. The paper also
presented a data exchange framework for multi-portfolio selection,
illustrated in Figure 7. In Liao et al. (2022¢), the authors proposed
a non-linearly activated beetle antenna search (NABAS) algorithm
for fraud detection of publicly traded firms. They compared
the performance of the NABAS algorithm to that of other
popular methods, including the SVM-FK algorithm and the logistic
regression model, and concluded that the proposed algorithm was
more efficient and accurate for fraud detection. In Katsikis et al.
(2021), a novel approach utilizing the BAS algorithm was proposed
for solving the problem of time-varying mean-variance portfolio
selection under transaction costs and cardinality constraints. This
approach is based on state-of-the-art meta-heuristic optimization
techniques and offers a more realistic solution to the problem
as compared to conventional methods. The effectiveness of the
proposed method was verified through numerical experiments
and computer simulations, which demonstrated its superiority
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Framework of data exchange in the distributed beetle antenna
search (DBAS) algorithm for solving multi-portfolio selection
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over traditional approaches. Overall, the study presents an online
solution that addresses the limitations of static methods for solving
time-varying financial problems.

4.2. Optimization strategies and systems

Optimization strategies and systems have become increasingly
important across various fields as they offer effective solutions
to complex problems by finding the best possible outcomes.
In this subsection, we will provide an overview of the related
research on optimization strategies and systems. Optimization
strategies refer to the methods and techniques that are used to
optimize a system or process. These strategies include but are
not limited to heuristic algorithms, mathematical programming,
and simulation-based optimization. Optimization systems, on the
other hand, are computer programs or platforms that employ
optimization strategies to solve complex problems. These systems
can be standalone applications or integrated with other software
tools. By exploring the latest research in optimization strategies
and systems, we can gain a better understanding of how these
techniques can be applied in different fields to improve efficiency,
productivity, and overall performance.

4.2.1. Optimization strategies

In Chen et al. (2014), the authors presented a cooperative
obstacle avoidance model and an improved obstacle avoidance
(OA) algorithm for mobile wireless sensor networks, aimed at
enhancing the adaptability and robustness of the network in
complex environments. The proposed strategies optimized path
planning and achieved higher obstacle avoidance efficiency by
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predicting the motion path of obstacles and defining the steering
direction. In Xiang et al. (2021), the authors proposed a new
approach for automatic skeleton design that utilizes physical
simulation and optimization algorithms to better adapt to various
application scenarios. The paper concludes that the proposed
optimization strategy outperforms other mainstream optimizers in
robot design and animation applications.

4.2.2. Optimization systems

The optimization system is a crucial tool to reduce the time
and effort needed to find the optimal solution while guaranteeing
its optimality. In Li and Zhang (2022), the authors presented
an optimization system for generating benchmark dynamic test
functions. The proposed system represents an advancement in
the field of benchmark dynamic test functions, which is currently
underdeveloped. In Deng et al. (2020), the authors proposed an
optimal torque control system for controlling variable-speed wind
turbines. As per the conclusion, this optimized system improved
the effective wind speed estimation accuracy by 2%-7% and the
efficiency of electrical energy generation by 0.35%. The proposed
system offers a promising approach to enhancing the performance
of wind turbines for electricity generation.

4.3. Development directions and challenges

Optimization algorithms and strategies have been widely
used in various fields, including engineering, finance, and
operations research, among others. The goal of optimization
is to find the best solution to a problem within a given
set of constraints. Optimization algorithms and strategies
are continually evolving to meet the increasing demands
of complex problems. This section will explore the future
development and challenges

of optimization algorithms

and strategies.

4.3.1. Development directions

Optimization algorithms and strategies are constantly evolving,
driven by advances in mathematics, computer science, and various
application domains. There are some potential directions that
optimization algorithms and strategies may be headed:

e Deep learning-based optimization: Deep learning techniques
such as neural networks have shown tremendous success in
various applications, including optimization. One potential
direction is to use deep learning techniques to optimize the
parameters of optimization algorithms, making them more
efficient and effective.

with

optimization problems involve uncertainty, such as noisy

o Optimization uncertainty: Many  real-world

measurements, incomplete information, or uncertain

parameters. One potential direction is to develop new

optimization algorithms that can handle uncertainty
explicitly, such as robust optimization or stochastic
optimization.
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4.3.2. Challenges

Despite the optimization algorithms and strategies have been
widely developed and used, there are also significant challenges that
need to be addressed:

e Big data: The growth of big data and the increasing
data
challenges for optimization algorithms and strategies.
with
heterogeneous

complexity  of structures  pose  significant

Dealing large-scale,
data
that  can

high-dimensional, and
requires  advanced
handle data

optimization

techniques efficiently
and effectively.

e Interdisciplinary

applications: Optimization problems

are increasingly being used in interdisciplinary

applications, such as healthcare, finance, energy, and
transportation. These applications require optimization

algorithms and strategies that can handle complex,
multi-disciplinary problems, and that can effectively
integrate domain knowledge, data analytics, and

decision-making.

5. Conclusion

In this paper, we have analyzed and outlined the work
related to neural networks, intelligent systems, and optimization
algorithms and strategies in the rapidly evolving intelligence
approach. Through an analysis and comparison of related
work, we have shown that these
rapidly
solution of practical

intelligent approaches
facilitated the
there are still

have evolved and have efficient

problems. However,
emerging challenges that need to be addressed. Overall, this
paper provides a valuable introduction and supplement to
these important and rapidly evolving areas, highlighting
their positive results and encouraging future research in

these fields.
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An advanced bionic knee joint
mechanism with neural network
controller

Changxian Xu, Zhongbo Sun*, Chen Wang, Xiujun Wu, Binglin Li
and Liming Zhao*

Department of Control Engineering, Changchun University of Technology, Changchun, China

In this article, a tensegrity-based knee mechanism is studied for developing a
high-efficiency rehabilitation knee exoskeleton. Moreover, the kinematics and
dynamics models of the knee mechanism are explored for bringing about further
improvement in controller design. In addition, to estimate the performance of the
bionic knee joint, based on the limit function of knee patella, the limit position
functionality of the bionic knee joint is developed for enhancing the bionic
property. Furthermore, to eliminate the noise item and other disturbances that are
constantly generated in the rehabilitation process, a noise-tolerant zeroing neural
network (NTZNN) algorithm is utilized to establish the controller. This indicates
that the controller shows an anti-noise performance; hence, it is quite unique from
other bionic knee mechanism controllers. Eventually, the anti-noise performance
and the calculation of the precision of the NTZNN controller are verified through
several simulation and contrast results.

KEYWORDS

tensegrity, bionic knee joint, kinematics, dynamics, noise-tolerant zeroing neural network
model

1. Introduction

Rigid-flexible coupling robot technology has broad application prospects in medical
diagnosis, pipeline fault detection, bionic structure manufacturing, and other fields. The
tensegrity structure is an important part of this technology because of its lightweight and
deployable characteristics. In the process of rehabilitation training, due to the symptoms
of hemiplegia caused by stroke or cerebral hemorrhage in the patient, the rehabilitation
training of the human knee joint becomes quite important. The knee joint can be regarded
as a strongly coupled structure that is composed of bones, muscles, and ligaments. Hence,
the components of a knee joint cannot be simply mapped to the traditional rigid linkage
structure. More importantly, the motion characteristics of the knee joint should be analyzed
when the movement takes place (Oshkour et al, 2011). Therefore, a bionic knee joint
structure based on the principle of bionics can be constructed using the rigid-flexible
coupling tensegrity structure.

The lower limb rehabilitation training of several rehabilitation robots has been analyzed
in Arsenault and Gosselin (2005, 2006a,b, 2009); Vasquez and Correa (2007); Murray et al.
(2015); Esquenazi and Talaty (2019); Nicholson-Smith et al. (2020), and Muralidharan and
Wenger (2021). Yet, these robots have not been analyzed from the perspective of bionics.
Since the tensegrity structure is considered to be a rigid-flexible coupling mechanism in
Jung et al. (2018) and Liu et al. (2020), the problem has been considered from the viewpoint
of bionics mechanism, but the dynamics analysis has not been carried out due to structural
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complexity. In Collins et al. (2015), Sankai and Sakurai (2018),
Fitzsimons et al. (2019), and Kim et al. (2020), the wearable
exoskeletons, which can be utilized for the patient rehabilitation
process with upper and lower limb disabilities, have been
established. Two bionic robots based on the ankle joint and the
knee joint have been studied in Sun et al. (2019) and Zhang
et al. (2020).
the ankle and knee joint tensegrity structures based on the human

These two bionic robots have been formatted as

body constitution. However, owing to structural complexity, the
dynamics models are not studied on a temporary basis. Therefore,
when faced with a complex environment, these two bionic
tensegrity structures may not meet the practical requirement. For
the purpose of implementing the actual rehabilitation training
scenario, the interference caused by external environments and
patients, such as the mechanical manufacturing errors and the
static friction between the rehabilitation robot with patients, cannot
be avoided. As a result, the bionic tensegrity structure based on
the dynamics analysis of human lower limb joints under noise
environment is of great significance for further research of bionic
human joints.

Considering the fact that during the human lower limb
rehabilitation process, the torque, which is produced by the knee
joint, cannot be ignored. In the different rehabilitation processes,
the knee joint produces different knee torques. These knee torques
should be considered in the design of dynamics models, which
can demonstrate the influence of human knee forces on the bionic
knee mechanism during the movement (Rifai et al., 2013, 2016).
In addition, noise is unavoidable in the process of a bionic knee
joint movement. In the field of anti-noise algorithm, the NTZNN
algorithm has shown its advantages in the parallelly distributed
computing and anti-noise fields (Hehne, 1990; Jin et al., 2017, 2018;
Sun et al., 2020; Shi et al., 2021; Wei et al,, 2021). In this article,
the error caused by the actual trajectory and the desired trajectory
can be seen as a non-linear objective function. Furthermore,
the kinematics and dynamics of the tensegrity mechanism are
studied. In addition, the limited function of the knee is realized
by the mechanical design, for the purpose of showing the bionic
performance of a knee joint tensegrity structure. The article is
formulated as follows. In Section 2, it describes the structure of
the human knee joint and the establishment process of the bionic
knee joint tensegrity structure mapping model. The kinematics of
the proposed structural mechanism are presented in Section 3. The
dynamics model and the description of the NTZNN controller are
proposed in Section 4. Simulation results in Section 5 prove that
the bionic knee joint tensegrity structure is effective under the noise
condition. Finally, in Section 6, the conclusion and future study are
discussed. At the end of this paragraph, the main contributions of
the article are summarized as follows.

1. A bionic knee joint tensegrity mechanism is proposed and
studied. Furthermore, the limit position functionality of the
knee joint is achieved through a mechanical design. In addition,
the NTZNN model has shown its efficiency in designing a
controller with the distractions of noise items.

2. A series of simulation and contrast results with the proportional
integral differential (PID) controller are presented to prove
the accuracy, computational efficiency, and the anti-noise
performance of the NTZNN controller.
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2. Establishment process of a bionic
knee joint

In this section, by analyzing the muscles, bones, and ligaments
of a knee joint, the tissues of a knee joint are simplified into one
component that has the same function during the movement. In
addition, a bionic knee joint structure based on the tensegrity
structure is established according to the characteristics of a human
lower limb. Based on the principle of bionics, the physical
characteristics of the bionic knee joint, such as the limit self-locking
function and muscle elasticity coefficient, are considered in the
design process of a bionic knee joint.

2.1. Structural description of the knee joint

To establish the bionic knee joint mapping model, there is
demand to investigate the structure of the human knee joint
in detail. Therefore, in this subsection, the human knee joint is
analyzed for further research. It is crucial to notice that only sagittal
motions are considered in this article. Hence, the use of a human
knee joint is mainly employed in the sagittal plane of the lower
limb movement, such as going up- and downstairs, squatting, and
jumping.

The knee includes four bones, the lower part of the femur,
the upper part of the tibia, the upper part of the fibula, and
the patella. Femur, tibia, and fibula act as weight bearing bones
and force transfer during the lower limb movement. In addition,
the patella plays a limiting role in preventing the lower limb
from overextending during movement, thus avoiding injury to the
human body. Therefore, the patella location-restricted self-locking
function is the key function of bionic joint tensegrity. Furthermore,
due to the knee bearing the responsibility of supporting the body
weight, its stiffness is higher. Thus, the skeleton of the knee joint can
be regarded as the strut of a tensegrity structure, which indicates
that the stiffness of a strut is infinite compared with the cable. The
muscles and ligaments of the human lower limb are responsible
for generating and transferring the load. Knee muscles can be
divided into four groups according to their role in the lower
limb movement. More importantly, the deformation of a muscle
relative to the external load is shown in Figure 1. The muscle
viscoelastic coefficient is similar to the spring damping coefficient,
which should be considered in the stage of elastic range. To a certain
degree, the bionics performance of the knee tensegrity mechanism
can be realized by considering the viscoelastic coefficient.

2.2. Establishment process of the human
knee joint mapping model

The knee joint mapping model and the bionic tensegrity
structure are constructed in this subsection. For reducing the
human tissue structure into a low-degree-of-freedom tensegrity
structure, the strategy is to simplify the knee with basically the
same function into the one structure. Under this strategy, the
hamstring and tibialis anterior muscles are reduced to one muscle.

The sartorius, semimembranosus, gracilis, and semitendinosus can
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FIGURE 1
The relationship between the knee joint deformation with an external load (Bahr and Maehlum, 2003)

be seen as one muscle. Furthermore, the quadriceps is simplified to
a muscle. In addition, the gastrocnemius could be thought of as a
muscle. As regards the bone and the bone-like tissue, the fibula and
tibia are decreased to a single bone for the reason of their similar
functionality. Due to their peculiar function, the patella and tissues
that perform the same function are simplified into two struts. The
bionic patellar groove, which can also be called as the pulley groove,
is established to implement the ultimate self-locking function of
the knee joint. A limiting device is constructed on the bionic
patella groove. It prevents the pulley from going off course as it
slides through the bionic patellar groove. The self-locking function
of the bionic knee joint is realized through the aforementioned
mechanism design ultimately. As regards the bionic knee joint
structure, the rotating pair and the first strut can be seen as the
simplified bionic patella structures. For the sake of simplifying the
complexity of a bionic patella mechanism, we should also ensure
that the bionic mechanism should realize the bionic purpose. The
rotation pair should be fixed for limiting the bionic knee extension
movement under the action of external forces.

3. Analyses of the bionic knee joint

3.1. Description of a bionic knee joint
mechanism

From the viewpoint of bionics, the patella and similar
functional tissues perform two main biological functions during
locomotion. In the first place, it distributes the pressure more
widely over the femur, with the strategy of increasing the contact
In the
second place, it helps in knee extension by creating a forward

range between the patellar tendon and the patella.

displacement of the quadriceps tendon throughout the range of
motion. However, the range of motion of the patella is fairly small,
relative to the overall motion of the knee joint from full flexion
to full extension (Hehne, 1990). Furthermore, when the knee joint

Frontiersin Neurorobotics

moves, the displacement of the patella leading edge is not obvious
when compared with the femur, fibula, and tibia. As a result, its
primary function is to protect the quadriceps femoral tendon. For
the sake of simplifying the complexity of the bionic knee structure,
which also reduces the degree of structural freedom, as a result, it
is convenient to analyze the dynamics model of the bionic knee
joint structure in the next step. Moreover, for achieving the self-
locking function of the patella and for the purpose of preventing
knee hyperextension, the revolute joint pair is fixed to the bionic
patella. The pulley is slid in the bionic patella groove, which is
aimed to finish the self-locking function of the knee joint during
the lower limb movement. The range of knee flexion angles for a
healthy adult is approximately 130° to 140°, but the stroke patients
cannot complete the entire motion range. However, the range of
motion of the affected limb is increased when the affected limb’s
physical condition is improved during the rehabilitation process.
Therefore, the length of a bionic patellar groove can be changed to
satisfy the different rehabilitation training stages.

3.2. Singular configuration

Singular configuration refers to the case where degeneracy
occurs between the input and output variables of the structure
(Arsenault and Gosselin, 2005). However, due to the limiting
properties provided by the strut CF, DE, and bionic patellar
groove, the bionic knee tensegrity structure may stop moving
before reaching the singular configuration. Thus, the singular
configuration is reached when the knee extension is the upper
working boundary of the tensegrity structure. However, when the
movement of the mechanism takes place, this situation should be
avoided. In this case, the tensegrity system is degenerated, which
may cause the tensegrity system to collapse. Furthermore, the
situation is similar to the undue knee joint movements that could
happen in real life rehabilitation.
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3.3. Working curve

In the design process of a tensegrity structure, it is very
important to study the working curve of the mechanism. In this
subsection, the working curves of nodes C and D are obtained
through the ADAMS software kinematic simulation, which can get
the working spaces of angles 6 and y. Since two sets of linkage
mechanisms are axially symmetric about the y axis, the operating
curves of the two nodes are identical. In the kinematic simulation,
the external forces are perpendicular to the x axis, which are
acting on the nodes C and D; hence, the operating curve goes
from the initial self-equilibrium state to the limit position when
0 is equal to 90°. It can be seen from the kinematic simulation
that the limiting mechanism based on the principle of bionics
can prevent the overextension of the bionic knee joint structure
under the action of external forces on nodes C and D. However,
the displacements of points A and B cannot be restricted through
the two-link mechanism alone. It reflects the significance for the
bionic patellar groove’s constraint functionality when facing the
movement at points A and B. Furthermore, the yc and yp decrease
when the force direction is opposite to the previous situation, the
circumstance corresponds to the knee flexion. The y¢ and yp will
decrease to zero eventually, yet the situation should be avoided in
the actual operating circumstance.

4. Dynamics model and controller

To exploit the efficiency of the bionic knee joint tensegrity
structure in the rehabilitation process, the dynamics model and the
NTZNN controller of the presented tensegrity bionic knee joint are
developed and studied in this section.

4.1. Dynamics model

4.1.1. Hypotheses
The following hypotheses are proposed to derive the dynamics
model of the tensegrity structure:

1. The gravitational potential energy is neglected for the purpose
of reducing the dynamics model’s complexity.

The springs are massless.

Each strut is a thin rod of w mass and the moment of inertia is
ﬁ wB2.

The spring is linearly damped with coeflicients a;, a, a3, and
a4, in which a; is equal to a;.

4.1.2. Equation form of the Lagrangian approach

As regards the tensegrity structure, it has two degrees of
freedom, therefore, the B and y are selected as the generalized
coordinates. The dynamics model is developed by utilizing the
Lagrangian approach, which is defined by

d 0K 0K
dtaq dq

oP
8q_

where P and K express the potential and kinetic energies of the

f, (1)

. T . .
tensegrity structure, f = [fl, fz] is the non-conservative force,
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and the q is equal to [B,y]1". To reflect the influence on the
dynamics model of viscoelasticity caused by muscle deformation,
the non-conservative forces are formed in this subsection. The
non-conservative forces correspond to the damping forces in the
springs. In the tensegrity mechanism, the kinetic energy of the
system is generated by the movement of the strut alone, thus the
kinetic energy can be formatted as

o1 o L
K =wB3B* + gwlB%(ﬂ + )% + wiBiBacosy B(B + y)+

1 .
7W2B%,32)

3 2

where w; and w, are the masses of struts B; and B,
individually.
In addition, the potential energy could be defined as:

P =k1(\/(B1 cosa — 2(Bs + B; cos ,8))2 + (B; sin /3)2 — z01)*+
1
5k3(2(33 + B, cos B) — z03)

+ %k4(2(31 cosa — (Bs + By cos B)) — zoa)%, (3)

where the subentry potential energy P; is equal to P,. The
201> 203> and zo4 are the initial lengths of the springs. The non-
conservative force caused by spring damping is expressed as

f 5 . 071 . 0z3 . 0zy4
= —20121 — — (323 —— — C4Z24——
1 1215 338;3 448ﬂ
.321 .323 _324
= —20121— — (323 — — C424—, 4
f llay 338]/ 448]/ (4)

where the z1, z3, and z4 are the presented lengths of the springs.
As shown in Figure 1, the coefficient of muscle elasticity in the
elastic range is similar to the coefficient of spring damping. The
muscles are similar to the springs in the bionic knee joint. When
muscles are deformed, the resistance produced by the friction
between muscle fibers sticks to the extension and contraction of
muscles. Consequently, the bionic performance of the bionic knee
joint structure can be achieved by considering the elastic damping
in the dynamics modeling process.

Hence, the dynamics model can be formatted as follows:

M4 +Hqy, + Gqy + Cq+T+u+ 1R =0, (5)
where qqh=[,32, ))Z]T, qqg:[ﬁ'y, ))/3']T, TR, and u are the knee
torque and control law, the matrix C has relations with the non-
[T}, T>]T is the matrix that is
associated with the potential energy.
Detailedly,

conservative force, and T

2 2
Wi = 2wlB% + gwlBg + ngB% +2wiB1Bycosy,  (6)

Wip = Wy = %wlB% + w1 BB, cos y, (7)
Was = %wle, ®)
moreover,
_ |: 0 . —w1B1By siny i| , )
w1B1B; sin y 0
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and,

(10)

G- —2w1B1Bysiny 0 .
0 0

4.2. NTZNN controller

A continuous-time NTZNN model is utilized to design
the control law in this subsection. In the process of the
operation of the mechanism, the noises, which may include
mechanical structure error, mechanical vibration, friction between
components, feedback signal noise, external static friction and
other factors, are inevitable items. In addition, the knee torque,
which is generated by the human knee during rehabilitation, should
be considered in the dynamics modeling process. In the human
lower limb recovery process, different lower limb rehabilitation
stages may cause different torques which are produced by the knee.
For example, in the early stage of rehabilitation training, lower limb
hemiplegia that is caused by stroke and other diseases may lead
to an uncoordinated movement of lower limbs, which make lower
limbs unable to move according to the patient’s real intention. The
actual lower limb movement trajectory may be in conflict with the
rehabilitation robot. In addition, there is a special rehabilitation
stage, which corresponds to be deprived of the nerve conduction
function between the patient’s central nervous system and the lower
limb skeletal muscles. It could also be considered as the passive
rehabilitation stage of a patient who has received a lower limb joint
surgery or a total knee replacement, and in these circumstances, the
knee torque Ty is very small when compared with other situations
(Cao and Huang, 2020). Therefore, in the modeling process, the
knee torque could not be overlooked, and the knee torque Tr
should be considered in the modeling process. The knee torque T
could be seen as a constant torque, for the reason that in the same
rehabilitation stage, the knee torque is roughly the same.

In this subsection, the problem is formatted as:

o)) =0 € R,p € [0,+00), (11)
furthermore,
d¢<dy;p>> _ 100 84;;)2;1;)) dZﬁf’) 00
R(y(p))dﬁ—if), (12)
where R(y(p)) is equal to 3¢ (y(p)) /3y(p).
An error function can be generalized as:
e(p) = 0— ¢(y(p). (13)

Hence, a noise-suppressing zeroing dynamics model is defined
(14)

t
é(p) = —Pe(p) — 1 /0 e(8)ds,
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where B and A are positive constants. § is the time interval.
Eventually, a continuous-time NTZNN model which is polluted by
noise is given as:

t
3(0) = —RT GO BSGP) + b, ((p) + /0 $((8)d5 + e(p)),
()

which e(p) is the noise item. In this subsection, considering the
influence of noises and knee joint torques on the bionic knee joint
control algorithm, an anti-noise ZNN model is established as the
control algorithm to control the bionic knee joint dynamics model.
To further study the NTZNN model, the theories are presented as
follows.

Theorem 1. The ¢(p) can be seen as a vector, which is to say that
the time-varying vector E(p) can be managed through utilization
of the NTZNN model global convergence from selecting the initial
states (Eg # 0 € R) to the theoretical solution @(p) randomly with
constant noise (R(p) = R eR).

Proof The noise-polluted NTZNN model could be transformed
based on the Laplace transformation, which can be formatted as
follows

() = 7(0) = —Ay(j) — §y<f> +R()).

As a result, the equation could be formed as

N ORR.0)

. 16
P A+ (16)

yG)

Furthermore, the transfer function of equation (16) should

be formatted as j/(j* + jA + ¢). In addition, the j; = (—A +

v A? —41)/2and j; = (—A—+/A? — 41)/2 are poles of the transfer

function. Moreover, on account of A > 0 and ¢ > 0, the poles

of the transfer function lie in the left half-plane, which can testify

that the time-varying problem, which is polluted with the constant

noise R(p), is stable. In addition, for the reason of the noise item is

constant, hence, R(j) = R/j. In summary, the following result can
be defined as

. o POo+T
Jm y(p) = lim jy(j) = Jlg% e 0.

The proof is thus complete.

Theorem 2. When ¢(p) can be seen as a vector, it is to say that
the time-varying vector E(p) can be managed through utilization
of the NTZNN model global convergence from selecting the initial
states (E9g # 0 € R) to the solution é(p) with linear noise
(R(p) = pR € R).

Proof For the reason of the Laplace transformation, the
NTZNN model with linear noise polluted (R(p) = tR) should be
defined as

o Lot R
JyG) = y(0) — Ay(j) — ny(.z) ta (17)
where R/j? is the Laplace transformation of R(p). Hence, the
following results could be formatted through investigation of the
final value theorem

Ao+ R R
t—00 =0 j4 4+ A+ L
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As aresult, a conclusion that lim,_, o y(p) — 0 with ¢ — oo could
be drawn. The proof is complete.

5. Experiments and analysis

In this section, through the experiments, the effectiveness of the
bionic knee joint is verified under the interference of noise items.

5.1. The performance of a bionic knee joint
tensegrity structure in different stages of
rehabilitation

The moment and fixed noise of the knee joint in different
rehabilitation stages are considered in the experiment to prove the
anti-noise performance of the NTZNN controller and the accuracy
of the bionic knee joint dynamics model. In the said experiments,
three kinds of knee torques are proposed to represent the forces that
are generated in different recovery stages. The three stages, namely,
resistance rehabilitation stage, auxiliary rehabilitation stage, and
passive rehabilitation stage, are distinguished by the knee joint
torques, which are —40, 150, and 0 N - m, respectively (Zhao and
Xu, 2011). Furthermore, to reflect the superiority of the NTZNN
algorithm in an anti-noise field, a kind of mixed noise, which
is formed by constant noise, linear noise, and random noise is
presented in this subsection. The fixed noise is defined by

et) =n+rt+ pn(t), (18)
in which 5 is the constant noise, k¢ is the linear noise, and u(¢)
is the random noise. 1, k, and u are the coefficients.

The desired trajectory of the bionic knee joint in the experiment
is acquired and fitted by ADAMS software. Therefore, the desired
trajectory can delegate the real motion trajectory of the bionic
knee joint in rehabilitation training. The motion trajectory can be
defined as follows

64 = 1.33 — 0.2186 x cos(0.03749¢) — 0.007953 x sin(0.03749¢),
(19)

¥4 = 3.159 — 0.4651 x c0s(0.03748¢t) — 0.01676 x sin(0.03748¢)
— 0.1284 x c0s(0.07496t) — 0.008771 x sin(0.07496t). (20)

5.1.1. Resistance rehabilitation stage

It is assumed that the patient is in the resistance rehabilitation
stage. Although the patient can move the affected limb, it
cannot carry out a series of rehabilitation activities completely
according to the patient’s real movement intention. The actual
movement trajectory of the affected limb may encounter human-
machine confrontation with the rehabilitation robot due to the
uncoordinated movement of the affected limb. In addition, a series
of rehabilitation training actions cannot be repeated for a long
time due to muscle atrophy of the affected limb and various other
reasons. Therefore, in the resistance rehabilitation stage, the knee
joint torque generated by the affected knee joint is defined as a
negative value, where the knee torque g is equal to -40 N - m.
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The desired trajectory is utilized to explore the performance of
the NTZNN controller. Figure 2 shows the position error between
the actual trajectory and the desired trajectory of the bionic knee
joint angle when using the NTZNN controller. The actual trajectory
can converge to the desired trajectory using the NTZNN controller
rapidly. The interference of internal and external noises to the
model is considered during the design process of the NTZNN
controller. The experimental results show that the fixed noise can
be suppressed using the NTZNN model, which proves that the
NTZNN algorithm has strong robustness and noise suppression
ability. Although at the initial stage, there is an oscillation between
the expected trajectory and the actual trajectory, nevertheless, with
the increase in iterations, the error between the desired trajectory
and the actual trajectory decreases and could reach the level of
1 x 10~* gradually.

5.1.2. Assistance rehabilitation stage

The physical condition of the affected limb will improve after a
period of rehabilitation training. In this process, the affected limb
of the patient moves smoothly, but the affected limb is generally
unable to produce enough torque to carry out rehabilitation
training in accordance with the requirements of rehabilitation
training. Hence, patients still need the bionic knee to provide
an additional torque to assist the affected limb to complete
rehabilitation training in the assistance rehabilitation phase. The
knee torque that a healthy adult can produce is around 170 N - m to
300 N - m. Although the affected limb can produce more torques in
the auxiliary rehabilitation stage, it is still smaller than the normal
torque. Thus, the knee joint torque is set as 150 N - m in the
assistance rehabilitation stage. As shown in Figure 3, the fixed noise
and knee torque 150 N - m are taken into account in the designing
process of the NTZNN controller. The experimental results show
that the NTZNN model could suppress the noise available, which
makes the controller to be provided with robustness and anti-
noise performances. In the assistance rehabilitation stage, the
main objective for the controller is to manage the bionic knee
movement under noise pollution. In addition, the purposes for
using a bionic knee are to enhance the muscle strength by assisting
with rehabilitation exercises and to facilitate the reconstruction
of the somatosensory stimuli according to rehabilitation goals.
The experiments have proved that under the noise pollution, the
NTZNN controller could suppress the fixed noise and control the
bionic knee to assist the patient to complete the rehabilitation goals,
which demonstrate the accuracy and effectiveness of the NTZNN
approach.

5.1.3. Passive rehabilitation stage

To verify the versatility of the bionic knee joint, that
is, rehabilitation training can be completed under various
circumstances, this subsection designs a passive rehabilitation
stage. This situation applies to patients who have undergone
knee surgery or total knee replacement surgery. Therefore, the
rehabilitation training action of the affected limb is completely
driven by the bionic knee joint. Compared with the torque
generated in other rehabilitation stages, the knee joint torque in the
passive rehabilitation stage is very small, so the knee joint torque is
approximately equal to zero. Since the knee joint torque is zero,
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the only interference in the dynamics model is the fixed noise
during passive rehabilitation. As shown in Figure 4, the dynamics
model can achieve a low error and the convergence speed is faster
than other rehabilitation stages under the control of the NTZNN
algorithm. It also verifies that the knee torque 7 should be seen as
a disturbance torque during the movement of the bionic knee joint,
which demonstrates the importance of the NTZNN controller’s
anti-noise performance.

5.2. Contrast experiments

To demonstrate the superiority of the NTZNN algorithm
in the field of noise suppression, the PID algorithm is used

Frontiersin Neurorobotics

32

as the controller to control the bionic knee joint dynamics
model in the contrast experiments under the noise condition.
In the actual rehabilitation training process, not only will the
external environment cause interference to the rehabilitation
training process, but the patients own health conditions will
also cause certain interference to the rehabilitation training
process, such as an involuntary spasm of the affected limb. The
experimental results show that, the position errors of bionic
knee joint angles @ and y will increase with the introduction of
It could be seen from
Figure 5 that, with the growing number of iterations, the position

fixed noise and knee torque gradually.
error between the desired trajectory and the actual trajectory

increases to the extent that it can affect the operation of the
bionic knee joint. The interferences of external environment and
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patients to the rehabilitation training process are inevitable in
the actual training situation under the interference of non-ideal
factors. If the interferences to a rehabilitation training process
are ignored when designing the control algorithm of a bionic
knee joint, it may cause secondary injury to the affected limb
during the rehabilitation process. Therefore, the NTZNN algorithm
with an anti-noise ability offers great advantages in the design
course of a bionic knee joint control algorithm. An NTZNN
algorithm is established as the controller of a bionic knee joint
dynamics model by analyzing the influence of the external noise
and the knee joint torque on the bionic knee joint control
algorithm in the actual rehabilitation training process. The
experiments of three different rehabilitation stages and comparison
experiments show that the NTZNN algorithm has significant
advantages in suppressing non-ideal factors in rehabilitation
training.

6. Conclusion

In this article, a bionic knee joint tensegrity structure in noise
environment has been developed and studied from the viewpoint
of principle of bionics. Moreover, the knee joint torques at different
rehabilitation stages have been considered in the controller design
process, so as to reflect the influence of the human knee force acting
on the bionic knee joint tensegrity structure. The dynamics model
of the bionic knee mechanism has been established by means of
analyzing the kinetic energy and potential energy of the system.
Eventually, the simulations and contrast results have shown that
the NTZNN controller has advantages in noise suppression and
computational efficiency. The main work in future would be
to undertake research on the bionic hip joint structure with a
remarkable bionic performance.
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Introduction: Global navigation satellite system (GNSS) signals can be lost in
viaducts, urban canyons, and tunnel environments. It has been a significant
challenge to achieve the accurate location of pedestrians during Global
Positioning System (GPS) signal outages. This paper proposes a location estimation
only with inertial measurements.

Methods: A method is designed based on deep network models with feature
mode matching. First, a framework is designed to extract the features of inertial
measurements and match them with deep networks. Second, feature extraction
and classification methods are investigated to achieve mode partitioning and
to lay the foundation for checking different deep networks. Third, typical deep
network models are analyzed to match various features. The selected models
can be trained for different modes of inertial measurements to obtain localization
information. The experiments are performed with the inertial mileage dataset from
Oxford University.

Results and discussion: The results demonstrate that the appropriate networks
based on different feature modes have more accurate position estimation, which
can improve the localization accuracy of pedestrians in GPS signal outages.

KEYWORDS

location estimation, feature extraction, mode classification, deep networks, location
system

1. Introduction

In the information age, navigation technology is constantly innovated in national defense
and the lives of people and society (Jin et al., 2023). Location estimation and positioning are
based on sensors, communication, and electronic control technology to connect resources
and information (Dong et al., 2021). Satellite navigation has been the mainstream of location
estimation and positioning. However, the navigation signal will be lost due to the special
locations, such as viaducts, cities, canyons, and tunnels. Then navigation and positioning
cannot be achieved. Other sensors must be used to collect location information, including
Wi-Fi, Bluetooth, ultra-wideband, inertial measurement unit (IMU) sensors, etc (Brena et al.,
2017). In the assisted positioning systems, the inertial navigation system (INS) has been
widely studied and applied due to the signal range, stability, and cost, in which the IMU
is the primary sensor (Liu et al., 2021).

The INS simultaneously measures the carrier motion’s angular velocity and linear
acceleration by gyroscope and accelerometer. Then it solves the real-time navigation
information such as 3D attitude, velocity, and carrier position (Poulose and Han, 2019;
Chen et al., 2021a). The INS has essential features such as comprehensive information, a
fully autonomous mechanism, and easy realization. The INS can work continuously and
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stably under various environmental disturbances (Soni and
Trapasiya, 2021). The INS first measures the angular velocity
information of the carrier by its gyroscope and further calculates
the attitude Then the attitude
information is used to support the decomposition of the

information of the airline.

accelerometer measurements. Finally, the detailed navigation
information of the carrier is obtained by the transformation of the
carrier coordinate system into the navigation coordinate system
and then performing the navigation calculation (Cheng et al., 2022).
However, the 3D attitude, velocity, and position solved in real-
time in INS are achieved by primary and secondary integration of
inertial data. The result of such operations will be the measurement
error and noise error at the initial operation time, which will be
amplified as the operation time increases, eventually leading to
an increase in the position error. For this reason, deep learning
methods can be considered to avoid generating cumulative errors.
Only inertial measurement data and real position information are
deemed for end-to-end network training. The accurate estimated
position information can be obtained based on the measurement.

With machine learning and deep learning development, various
networks are used for navigation and positioning. However, deep
networks have different structures and parameters, which treat
different data with different effects. Moreover, various situations
in life will generate temporal data with different characteristics
and differences in the characteristics of different data. Solving the
location estimation problem with only one type of deep network is
chanllenging. In order to reflect the data characteristics in various
modes, the sample entropy is chosen as the metric of the time
series complexity. It measures the time series complexity and the
probability of generating a new mode when the dimensionality
changes. The greater the generating probability, the higher the
complexity degree, and the greater the entropy value. The standard
deviation and sample entropy of various motion modes are
shown in Table 1. It shows that the data presents distinguishing
features in different modes. Therefore, this paper focuses on the
positioning problem with feature matching and deep learning.
We only use the motion data collected by the INS to estimate
the position information. Different deep networks are studied and
selected according to the data features to avoid the cumulative
error problem of traditional inertial navigation. Better positioning
accuracy can be achieved in various situations. Firstly, the inertial
measurement data are fed into wavelet and one-sided Fourier
transform for feature extraction. Secondly, the extracted data are
classified by dynamic time regularization and nearest neighbor
algorithm. Finally, according to the data class, the data are fed into
the matched deep network for position estimation.

The rest of this paper is organized as follows. Section 2 describes
the existing methods for location estimation. Section 3 describes
the proposed location estimation method based on feature mode
matching with a deep network model in detail in this paper. Section
4 conducts related experiments on the Oxford inertial mileage

10.3389/fnbot.2023.1181864

dataset and discusses the results. Section 5 concludes the paper and
the directions for future research.

2. Related works

2.1. Traditional navigation and positioning
methods

Traditional navigation and positioning techniques are mainly
divided into two types: position determination and track
projection. Among them, the position determination method relies
on the external known position information for positionings,
such as satellite navigation, astronomical navigation, and matching
navigation. The voyage position projection method is a method
to project the following instantaneous position information by
measuring the bearing and distance information of the carrier
movement under the condition that the initial instaneous position
information is known, such as inertial navigation, magnetic
compass, and odometry (Duan, 2019). Satellite and inertial
navigation are still the most familiar navigation methods to the
public at this stage. They are the most widely used, studied, and
intensively researched navigation and positioning methods.

IMU sensors used as portable navigation applications in
navigation and positioning generally have the characteristics of
negligible mass, small size, low cost, and low power consumption
(Huang, 2012). However, IMUs have poor performance, and it will
be challenging to meet the navigation and positioning needs if they
are not limited. The IMU-based positioning technique includes two
solutions: the pedestrian dead reckoning (PDR) and the strap-down
inertial navigation system (SINS). The PDR is based on step length
estimation, which limits the propagation of inertial guidance errors
through constrained models such as zero velocity correction. In the
literature (Skog et al., 2013), the heading error of the PDR system is
effectively eliminated by installing the IMU-based PDR positioning
system on both feet. It uses the maximum distance between the
two feet to constrain the positioning result of the PDR system.
In the literature (Foxlinejicgs, 2005), an indoor pedestrian inertial
navigation and positioning system on foot has been proposed. The
inertial navigation algorithm divides the pedestrian’s gait into zero
velocity and motion phases. It reduces the positioning error by
estimating and suppressing the inertial sensor error in the zero-
velocity interval (Zheng et al., 2016). This algorithm has stability
and high accuracy advantages (Zhang et al., 2018). The two solution
methods have different principles and advantages.

2.2. Positioning methods with IMU

The current navigation method is multi-sensor fusion. A
combined GNSS/INS navigation and positioning method is

TABLE 1 Standard deviation and sample entropy of data in different motion modes.

Mode Handbag Handheld Pocket Running Slow walking Trolley
Standard deviation/m ‘ 0.9409 ‘ 1.1345 ‘ 1.0581 ‘ 0.9190 ‘ 1.2245 ‘ 1.1431
Sample entropy ‘ 2.0050 ‘ 1.9365 ‘ 2.0394 ‘ 2.1837 ‘ 2.1466 ‘ 2.1048
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proposed for pedestrian navigation with poor robustness of
positioning accuracy and discontinuous position coordinates in
indoor and outdoor environments (Wang, 2018; Zhu et al,, 2018).
In the literature (Liu et al., 2017), Wireless Sensor Networks (WSN)
were fused with INS using Kalman to correct the error of firefighters
in the forestry field. The advantages of the combined navigation
system are reflected in the autonomous inertial navigation when
there is no signal from GNSS to ensure the continuity of navigation
and the combined navigation when there is a GNSS signal to ensure
the navigation accuracy by GNSS constraining the error of INS.

Frontiersin Neurorobotics

Theoretical studies and experimental validation have been
carried out for the filtering methods of GNSS/IMU combined
navigation systems. More non-linear filtering algorithms have
been proposed successively. The extended Kalman filter algorithm
for model error prediction is applied to GNSS/INS combined
navigation (Jin et al., 2023). The trace-free Kalman filter algorithm
with constrained residuals fuses GPS and PDR positioning
information, effectively suppressing the cumulative heading
error drift (Niu and Lian, 2017). Particle filtering and robust
filtering algorithms can improve the combined navigation filtering
algorithm. The information from inertial navigation is fused using
particle filtering to improve indoor positioning accuracy (Masiero
et al, 2014). A volumetric Kalman filtering algorithm based on
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gated recurrent unit (GRU) networks has been proposed in the
literature (Wang et al., 2022a). The filter innovations, prediction
errors, and gains obtained from the filter are used as inputs to
the GRU network, and the filter error values are used as outputs
to train the network. End-to-end online learning is performed
using the designed fully connected network, and the current state
of the target is predicted. In Li et al. (2020), a hybrid algorithm
based on the GRU and a robust volume Kalman filter is proposed
to achieve a combined INS/GPS. It can provide high-accuracy
positioning results even when GPS is interrupted. In the literature
(Gao et al,, 2020), an adaptive Kalman filter navigation algorithm
is proposed that adaptively estimates the process noise covariance
matrix using reinforcement learning methods. A sideslip angle
estimation method combining a deep neural network and a non-
linear Kalman filter has been proposed in the literature (Kim et al.,
2020). The estimation of the deep neural network is used as a
new measure of the non-linear Kalman filter, and its uncertainty
is used to construct the adaptive measurement covariance matrix.
The effectiveness of the algorithm is verified by simulation and
experiment. According to the actual engineering requirements,
when one of the system’s subsystems does not work, this subsystem
is removed in the fusion process, which improves the system’s
stability and is fully applied in various practical projects. The
combined navigation technology mainly uses the positioning
characteristics of INS and GNSS to combine them effectively
and take advantage of their respective advantages to accomplish
navigation tasks (Wu et al., 2020).

However, when GNSS is affected by the external environment,
its poor anti-jamming capability makes it impossible to properly
combine GNSS and INS technologies for navigation, and only
INS technologies combined with depth networks can be relied
on for navigation and positioning to compensate for the lack of
GNSS. The literature (Yang, 2019) divides the positioning process
into offline and online. In the offline process, the DNN model
is trained using the signals from the signal towers, while in
the online phase, the positioning process is implemented using
the existing model. The literature (Wang, 2019) converts the
visual information into one-dimensional landmark features using
a convolutional neural network (CNN) based landmark detection
model. In contrast, the wireless signal features are extracted using
a weighted extraction model, and finally, the position coordinates
are estimated using a regression method. The literature (Cheng
et al., 2021) considers the continuity of wireless signals in the
time domain during localization. It uses long short-term memory
(LSTM) and temporal convolutional network (TCN) to extract
features from signal sequences and calculate the localized object’s
position. A new Al-assisted approach for integrating high-precision
INS/GNSS navigation systems is proposed in the literature (Zhao
et al., 2022). Position increments during GPS interruptions are
predicted by CNN-GRU, where CNN extracts multidimensional
sequence features rapidly, and GRU models the time series for
accurate positioning. In the literature (Liu et al., 2022), a GPS/INS
neural network (GI-NN) is proposed to assist INS. The GI-NN
combines CNN and GRU to extract spatial features from IMU
signals and track their temporal features to build a relational model
and perform a dynamic estimation of the vehicle using current
and past IMU data. This paper will focus on the different effects
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of different networks when dealing with different data sets, and
the adapted networks can improve the localization accuracy of the
corresponding data.

Accurate positioning is difficult to achieve in complex
environments, and the fusion of multiple technologies will solve
this challenge. Neural networks are begin to significantly impact
inertial navigation, where data feature analysis has been a vital issue.

3. Location estimation based on
feature mode matching with deep
network models

3.1. Estimation framework of feature
extraction and deep networks

The data feature should be extracted first for accurate location
prediction for various motion modes. We use the discrete wavelet,
and Fourier transforms for different data, then classify and identify
the extracted features, and finally select the deep network models
that are compatible with the features. The networks are selected
from the typical LSTM, bi-directional long short-term memory (Bi-
LSTM), GRU, bi-directional gated recurrent unit (Bi-GRU), and
deep echo state network (DeepEsn) networks. The structure of the
location adaptive estimation method for the automatic matching of
deep networks is shown in Figure 1.

3.2. Feature extraction and classification

Time-series data are recorded in chronological order over a
specified period. All data in the same data column are of the same
caliber and are comparable (Wang et al., 2021). Since time-series
data are usually accurate records of system information, they reflect
the trend of system changes over time by describing the state
of things or phenomena, which often implies the potential laws
and characteristics of the system (Kong, J. et al., 2023). Therefore,
uncovering and exploiting these laws and characteristics through
studying time series data is an effective means of bringing the value
of time series data into play (Kong, J.-L. et al., 2023). It is also
possible to classify the time series data by comparing the laws and
characteristics in the time series data. Different categories of time
series data will correspond to different data processing methods so
that the characteristics of the data can be used more effectively.

The data features are extracted by performing two sequential
processes on the data using the discrete wavelet transform and the
Fourier transform. The first feature extraction is a discrete wavelet
transform of the time-series data, and the second feature extraction
is a Fourier transform of the first extracted feature sequence. The
feature extraction process is shown in Figure 2.

The wavelet transform has the properties of local variation,
multiresolution, and decorrelation (Vidakovic and Lozoya, 1998).
It translates the data at different scales to obtain wavelet coeflicients.
The discrete wavelet transform (DWT) in wavelet transform
decomposes the data by high-pass and low-pass filters to produce
an approximate component of approximate (CA) and component
of detail (CD), respectively (Deng, 2021; Wang et al., 2022b).
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Data decomposition results for each motion mode: (A-D) are the unilateral Fourier variation of CA and CA after decomposition of the fifth-order
discrete wavelet transform, and the unilateral Fourier variation of CD and CD after decomposition of the fifth-order discrete wavelet
transform, respectively.

When performing a multi-order DW'T, the CD is processed using where OXO: Gikd () is approximate data (low-frequency).

a high-pass filter, while CA will continue to be decomposed. The k=—00

multi-order decomposition is used to correct the high-frequency Y dixdyx (1) is the detail data(high-frequency). dy (£) is the
information in the data and effectively extract the data features. k=——oo
The discrete wavelet transforms equation and the DWT algorithm ~ basic wavelet function. ¢ (t) is the scale function.

expressions are shown in equations (1) and (2), respectively.

Aif () = Ai1f (t) + Ditaf (1) (2)

j o0 )
f(t) = Z Z djdjx(D) + Z Gixd(®) (1) where Aif(t) is the low-frequency part of the wavelet
=0 | ke—oo 7 Ke—o0 ' decomposition of the first layer. Aj; 1f(t) and Diy f(t) are the
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TABLE 2 Network selection regarding the feature mode matching.

10.3389/fnbot.2023.1181864

Mode category Sample Decomposition results graph Deep network to  Remarks
entropy be selected
Handbag 2.005 Bi-LSTM The data has a clear cyclical
GRU trend, with a dense and small
magnitude of detailed trends.
Handheld 1.936 DeepEsn The data has a clear cyclical
’/W LSTM trend, and the detailed
features are intensive and
ﬂ w cyclical.
Pocket 2.309 DeepEsn The data has a clear cyclical
M trend, and the detailed
features are intensive and
n JM cyclical.
Running 2.183 LSTM The data has a clear cyclical
GRU trend and segmented period,
with intensive and detailed
M M features.
Slow walking 2.146 DeepEsn The data has a clear cyclical
‘NV\ ‘W Bi-GRU trend, and the detailed
features are intensive and
‘\ M cyclical.
Trolley 2.104 Bi-GRU The data has a clear and long
_/-\’/ ——W cyclical trend; sudden changes
dominate the detailed
w features.

low frequency part and high frequency part of the next layer of
decomposition, respectively.

The Fourier transform is a standard method for analyzing
signals. The process converts a continuous signal that is non-
periodic in the time domain into a continuous signal that is non-
periodic in the frequency domain. The same principle can be used
to analyze and process time-series data, and the Fourier transform
is shown in equation (3).

+0o0

f(t) e ldt (3)

F(w) =F(f(1) =/

—00

where F (w) is the image function of f(t). f(t) is the original
image function of F (w).

Classification of temporal data is mainly divided into
feature

benchmark methods, which use

determination. Traditional methods classify data by underlying

similarity as a

modes and features, and deep learning classification methods.
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TABLE 3 Data characteristics of each motion mode.

‘ Mode Pmean  Pvariance  Ppeakedness Pskewness
Handbag 0.4302 1.59 33.633 5.619
Handheld 0.7691 4.04 40.954 6.008
Pocket 0.8235 3.98 33.098 5.292
Running 0.5978 2.66 16.142 4.015
Slow walking 0.6053 3.99 22.027 4.672
Trolley 0.6772 4.99 34.816 5.727

Classification by deep learning methods performs very well on
image, audio, and text data and can quickly update data using batch
propagation (Jonathan et al., 2020). However, they are unsuitable
as general-purpose algorithms because they require large amounts
of data. Classical machine-learning problems are usually better
than tree collections. Moreover, they are computationally intensive
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during training and require more expertise to tune the parameters.
The Oxford Inertial Mileage dataset is characterized by various
types of time-series data and a small number of data sequences.
Compared to deep learning methods that require architecture and
hyperparameter tuning, traditional methods that determine the
similarity of classification features are more straightforward and
faster and can achieve good classification results.

It usually classifies features using Euclidean distance and
dynamic time warping (DTW). They are set as the similarity
measure by calculating the distance between the original or
temporal data after feature representation (Pimpalkhute et al,
2021). Then it uses the nearest neighbor classifier for classification.
This similarity metric-based method for classifying temporal data
is simple in principle and structure, easy to implement, and is
considered the benchmark method for classifying temporal data.
The K-Nearest Neighbors (KNN) algorithm has been the simple
and typical classification algorithm. In KNN, when a new value x
is predicted, the class to which x belongs is determined based on its
class from the nearest K points (Zhang, 2021). The KNN schematic
is shown in Figure 3, in which the green and red dots represent
the two categories, and the triangular points are the points to
be classified.

The distance calculation is usually chosen as the Euclidean
distance with the equation.

=yl =)+ b=y 4o (= ya)’

where x and y are coordinates in the two-dimensional plane,
and the subscripts are the ordinal numbers of the data points.

The dynamic time regularization algorithm is a proposed
metric between sequences for time-series data. The DTW algorithm
finds the best correspondence between two observed sequences
by regularizing the time dimension with certain constraints.
Therefore, DTW is suitable for classifying sequences with different
frequencies or phases. DTW uses the idea of dynamic programming
to calculate the optimal path between two sequences, where the
dynamic transfer equation is as follows.

D(i,j) = Dist(i,j) + min[D(i — 1,j), D(i — 1,j), D(i — 1,j)] (5)

where D (i,j) is the coordinate of the distance matrix,
Dist (i,j) is the calculated Euclidean distance, and D(i— l,j),
D (i,j— 1), and D (i — 1,j — 1) are the lower left 3 elements of
D (i), respectively.

3.3. Feature model matching with deep
networks

The data in different modes can be selected to fit the depth
network according to their different feature information. From
parts 3.1 and 3.2 of this paper, different mode features can be
extracted and distinguished effectively, then according to the
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different mode features to match the depth network that fits
with the features, which can better perform the performance
of network estimation. By mathematically analyzing the time-
series data features, the features can be characterized by the
mean, variance, skewness, and kurtosis of the data features. The
mean and variance can reflect the overall trend in the data
set, and the skewness and kurtosis can reflect the local details
in the data set. Equation (6) shows the overall form of the
evaluation data features, f, is the evaluation in a mode which
contains Pmean, Prariance> Ppeakedness and Pgkewness» representing
the mean, variance, kurtosis, and skewness of the feature
data, respectively.

fa=1 (Pmean’ Pvariance> Ppeakedness> Pskewness) (6)

The networks selected in this paper include LSTM, Bi-
LSTM, GRU, Bi-GRU, and DeepEsn. LSTM networks consist of
forgetting, input, and output gates, which can handle longer
data sequences and solve the problems of gradient disappearance
and gradient explosion problems. The GRU network is a
suitable variant of the LSTM network, and its structure is more
concise than the LSTM. The two-way network can correlate
the next-moment state information and the previous-moment
state information to estimate the output with the previous and
future states. Finally, as an improved ESN network, the DeepEsn
develops from a single reserve pool to a deep learning network
consisting of a multi-layer reserve pool structure in series. The
characteristics of leaky integral-type neurons in each reserve
pool will effectively improve the memory of network history
information. The networks are selected according to the trend
information and detailed information of the data features according
to the characteristics of the five deep network models selected
in this paper. The network selection of data modes is shown in
Table 2.

The basis for selecting networks for different modes is based
on different temporal complexity between data to reflect the data
characteristics of different modes to determine which network
should be selected. The temporal complexity can be judged based
on the size of the sample entropy to determine the network for
location estimation and achieve location estimation. The sample
entropy has a direct relationship with the complexity of the data.
The higher the sample entropy, the higher the complexity of
the data, and the more the deep network with higher processing
data is needed to process to achieve better results. The deep
networks selected in this paper contain LSTM, GRU, Bi-LSTM, Bi-
GRU, DeepESN networks. GRU is an improved network of LSTM
network, but the prediction ability of the network is similar, only in
the training speed of the model is improved; Bi-LSTM and Bi-GRU
networks as improved networks of LSTM, GRU, the network model
from only Bi-LSTM and Bi-GRU networks are improved networks
of LSTM and GRU. The network models use information from the
forward direction to the forward and backward movement, which
makes the network models process more complex data and improve
prediction accuracy; DeepESN networks have more complex layers
than other network models and can handle more complex data.
Therefore, the selection of the deep network is directly related to the
complexity of the data. The higher the complexity of the data, the
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higher the sample entropy, and the deep network should be more
complex. The flow chart of network selection for different modes is
shown in Figure 4.

Figure 4 shows the algorithm flow of selecting networks for
different data modes. The original data are first subjected to
the calculation of sample entropy. The corresponding network
is chosen according to the magnitude of the sample entropy,
and finally, the selected position estimation is achieved using the
selected depth network.
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4. Experiment and result

In this section, we use the Oxford Inertial Ranging Dataset
(OxIOD), classify the data based on its features, and select
compatible networks from LSTM, Bi-LSTM, GRU, Bi-GRU, and
DeepEsn network models based on various types of features.
The PDR is also set as the baseline model, which uses the
movement speed and forward direction to infer the positioning
process. Finally, extensive experiments are conducted to verify
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the appropriateness of the network selection from the estimated
network results.

4.1. Data sets and experiment setting

In this paper, we use the OxIOD dataset, in which ground truth
data for indoor walking is collected using the Vicon optical motion
capture system, which is known for its high accuracy (0.0l m in
position and 0.1 degrees in direction) in target localization and
tracking (Chen et al., 2020; Kim et al., 2021). The IMU sensors
on smartphones. It includes data from four off-the-shelf consumer
phones and five different users and data from different locations
and motion states of the same pedestrian, including handheld,
pocket, handbag, and stroller data in a normal walking motion, slow
walking, and running (Markus et al., 2008; Chen et al., 2021b). The
raw inertial measurements were segmented into sequences with a
window size of 200 frames (2s) and a step length of 10 frames.
OxIOD’s data is extensive and has highly accurate actual values,
making it suitable for deep learning methods. At the same time,
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the dataset contains a wide range of human movements that can
represent everyday conditions, providing greater diversity.

For each type of data, different divisions were performed.
The training set is 7 sequences for handbag data, 10 sequences
for pocket data, 20 sequences for handheld data, 6 sequences
for running data, 7 sequences for slow walking data, and 12
sequences for cart data. The test set is the rest of the sequences.
The input of each experiment below is 15 data items of
sensors in the dataset, and the output is 13 data items, namely,
changing displacement, heading angle, changing heading angle,
average speed, speed of heading angle, changing the speed of
heading angle, translation.x, translation.y, translation.z, rotation.x,
rotation.y, rotation.z, and rotation.w. This paper will focus on
the output position information translation.x and translation.y for
experimental study.

4.2. Feature extraction and classification

The data in various modes have different data characteristics.
We can qualitatively find the individual characteristics and assign
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and translation.z in slow walking mode, respectively.

Location estimation results of different deep networks in slow walking mode: (A-C) is the Location estimation results of translation.x, translation.y,

the appropriate deep network model through data decomposition
and feature extraction. Wavelet decomposition can decompose
signals at different scales, and the choice of different scales
can be determined according to different objectives. Wavelet
decomposition achieves feature extraction by decomposing the
low-frequency and high-frequency features of the data. In this
paper, the db5 wavelet, which is widely used and has a better
processing effect, is chosen as the wavelet base, and the number of
decomposition layers is chosen as 5. The decomposition results of
the data of various modes are shown in Figure 5.

The subplot in Figure5 represents the results of the
decomposition of handbag, handheld, pocket, running, slow
walking, and trolley mode data in each of the 6 rows of subplots
from top to bottom. The figure’s four subplots from left to right
are columns A, B, C, and D. The blue and black line subplots
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TABLE 4 Evaluation metric of EvaMe in the running and slow walking
mode data.

| Mode  PDR LSTM BIi-LSTM GRU Bi-GRU DeepEsn|
Running 0.89214 | 0.25351 0.28212 0.27012 | 0.30051 0.36852
Slow walking 2.12199 | 0.30596 0.30891 0.3048 0.29656 0.446

The bold values indicate the best evaluation metrics for the various methods in running and
slow walking mode, respectively.

in columns A and C of the figure show the CA and CD after
decomposition of the fifth-order discrete wavelet transform, which
has a data volume of 5,000, allowing differences in frequency,
amplitude, and other relevant information to be observed.
However, the results cannot be directly observed quantitatively.
The figure’s red and green line plots in columns B and D are the
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TABLE 5 Evaluation metrics for each network in the running and slow walking modes.

Mode PDR LSTM Bi-LSTM GRU Bi-GRU DeepEsn
Running translation.x RMSE 1.227133 0.365245 0.375894 0.369127 0.423125 0.333949
MSE 1.505855 0.133404 0.141296 0.136255 0.179035 0.111522
R 0.077798 0.955243 0.949109 0.950859 0.941615 0.941075
R2 —1.836009 0.857052 0.848594 0.853997 0.808156 0.880499
translation.y RMSE 2.003978 0.735532 0.822200 0.790001 0.849290 0.813939
MSE 4.015928 0.541007 0.676013 0.624102 0.721294 0.662496
R 0.086135 0.874320 0.840365 0.856647 0.829742 0.847130
R2 —1.339996 0.761948 0.702543 0.725385 0.682619 0.708490
translation.z RMSE 0.030548 0.023053 0.022737 0.023073 0.022583 0.040435
MSE 0.000933 0.000531 0.000517 0.000532 0.000510 0.001635
R 0.324380 0.803936 0.795007 0.811166 0.804379 0.709903
R2 —7.316397 0.503342 0.516893 0.502510 0.523396 —0.527917
Slow walking translation.x RMSE 1.770301 0.499401 0.511289 0.498108 0.449248 0.515972
MSE 3.133964 0.249401 0.261417 0.248111 0.201824 0.266228
R 0.011000 0.921557 0.925347 0.917857 0.928084 0.906085
R2 —0.268839 0.808397 0.799166 0.809388 0.844949 0.795470
translation.y RMSE 2.298411 1.000857 1.000378 0.990982 1.001029 1.178784
MSE 5.282694 1.001714 1.000756 0.982046 1.002059 1.389532
R 0.153591 0.861649 0.862975 0.863281 0.862232 0.807027
R2 —4.294373 0.726944 0.727205 0.732305 0.726850 0.621229
translation.z RMSE 0.018717 0.005231 0.005327 0.005518 0.005566 0.013099
MSE 0.000350 0.000027 0.000028 0.000030 0.000031 0.000172
R —0.130370 0.921210 0.917341 0.916645 0.913296 0.891483
R2 —287.7802 0.845402 0.839658 0.827948 0.824970 0.030516
ol .
6 .
]
44 .+
" ) i H
0] HL -
2 = _ - - = = -
4] i
" oref ' PDR ILST™M Bi-LSTM ' GRU Bi-GRU DeepEsn
FIGURE 10
Distribution of location estimation results for different networks in the running mode.

Frontiersin Neurorobotics

45

frontiersin.org



https://doi.org/10.3389/fnbot.2023.1181864
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Bai et al.

10.3389/fnbot.2023.1181864

10 1

2

ref | "PDR | 'LSTM'

FIGURE 11

Bi-LSTM

Distribution of location estimation results for different networks in the slow walking mode.

"GRU Bi-GRU

>

translation.x
absolute error
(m)

25

20

1.5

Il

0.5

o |||I||I||||| | |
0 20 40

WLttt LLLLLLDOOOORIO OOt
60 80

translation.y
absolute error
(m)
¥}

(=}

100

||||I|IIII|I||||I|I|I|||||||III|||||"| |
20 40

0

(9]

il
80

100

0.06 1

translation.z
absolute error
(m)
o
o
'S

(=]

Emm PDR-loss  mmm DeepEsn-loss
FIGURE 12

mode, respectively.

II|M|H“|II|II|II ”I I|||||||||||I|I ﬂlHnIII 'II
ol | (LR LT |
0 20 40

W Bi-GRU-loss

The absolute errors of different methods in running mode: (A-C) is the absolute errors of translation.x, translation.y, and translation.z in running

60

”|l||||
80

BN [STM-loss

100

BN Bi-LSTM-loss mm  GRU-loss

spectrum plots of CA and CD with unilateral Fourier variation,
respectively. Based on the spectrum plots of CA and CD, various
modes can be effectively distinguished, and the corresponding deep
network model. The Bi-LSTM network is selected for the data in
the handbag mode, while the Bi-LSTM network is selected for the
data in the handheld, pocket, running, or slow walking modes. The
DeepEsn, LSTM, and Bi-GRU networks are selected for position
estimation for the trolley mode. The number of reserve layer layers
in the DeepEsn network and the number of neurons in the reserve

Frontiersin Neurorobotics

layers in the DeepEsn network are chosen separately according to
the situation. The results of the data feature representation of each
mode are shown in Table 3.

Identifying data types for classification means that the input
temporal data is used to correctly distinguish which category of
the six modes mentioned in 4.1 is identified to correctly select
the appropriate network model. This paper chooses the KNN
algorithm of the dynamic time regularization (DTW) algorithm
for classification. However, the direct recognition and classification
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The absolute errors of different methods in slow walking mode: (A—C) is the absolute errors of translation.x, translation.y, and translation.z in slow
walking mode, respectively.

of the original data do not extract the hidden features in the data
well, and its classification results are poor, as shown in Figure 6.
Therefore, we need to identify and classify the sequences after
extracting the features to improve the accuracy. After decomposing
the features extracted by the 4.2 part of the data, the accuracy of the
classification results can reach 90%, and the classification results are
shown in Figure 7.0, 1, 2, 3, 4, and 5 in the horizontal and vertical
coordinates correspond to 6 types of mode data.

4.3. Location estimation in different modes

This paper uses the OxIOD dataset and attempts to better solve
the pedestrian inertial navigation problem using different deep
neural networks depending on the model. This paper uses LSTM,
Bi-LSTM, GRU, and Bi-GRU network models with two-layer
networks with 128 and 64-dimensional hidden states, respectively.
In contrast, DeepEsn networks use the best network structure
with the number of reserve layers ranging from 1 to 7 and the
number of neurons in the reserved layer ranging from 500 to 750.
The models were trained using detailed split training sets for the
four attachment categories mentioned above, namely, handheld (20
sequences), pocket (10 sequences), handbag (7 sequences), cart (12
sequences), running (6 sequences), and slow walking (7 sequences).
The different split types of datasets were put into the neural network
for training, and the input data remained IMU sensor data. The
output results were selected with the location based translation.x,
translation. y and translation.z data for viewing and comparison
with the baseline model; the results are shown in Figures 8, 9, and
Table 4. The detailed RMSE, MSE, R, and R2 evaluation metrics
are shown in Table 5. Figures 8, 9 show the estimation results of
the three-way location coordinates over time for the predictions of

Frontiersin Neurorobotics

TABLE 6 Evaluation metric of EvaMe for each method in different modes.

Mode PDR LSTM Bi-LSTM GRU Bi-GRU DeepEsn

Handbag |3.85124 | 0.22663 | 0.22525 | 0.22822 0.23919 0.23812
Handheld | 28.9174 | 1.13908 1.14954 | 1.10937 | 1.14782 0.9371
Pocket 49.0785 | 0.41175 0.4226 0.3961 | 0.39225 0.29352
Trolley 2.05988 1 0.33444 = 0.37399 | 0.36091 | 0.33257 0.38966

The bold values indicate the best evaluation metrics for each method in handbag, handheld,
pocket, and trolley modes, respectively.

different networks on running and slow walking data, respectively,
in terms of position information. The LSTM, Bi-LSTM, GRU,
and Bi-GRU networks in the article experiments are all 2-layer
structures, and the number of neurons per layer is 32. For the
DeepESN network, the number of reserve pool neurons ranges
from 400 to 600, and the number of layers ranges from 1 to 7, and
the optimal result is chosen as the final structure of DeepESN.

Subplots a, b, and ¢ in Figures 8, 9 represent the comparison
results of the position coordinates x, y, and z for different networks
of the corresponding modes, respectively.

The evaluation indexes used in the experiments were root
mean square error (RMSE), mean square error (MSE), correlation
coefficient (R), and coefficient of determination (R2), and
then the evaluation index EvaMe was obtained by a weighted
averaging method:

n

Z (o x Eloss)

EvaMe = ———— (7)
n

where 7 is the number of evaluation indicators, «;is the weight
coeflicient, Ej,,, is the evaluation indicator. Because the evaluation
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TABLE 7 Network structures are selected for different mode inputs.

10.3389/fnbot.2023.1181864

Mode Running Slow walking Handbag Handheld Pocket Trolley
Network Bi-GRU DeepEsn Bi-LSTM DeepEsn LSTM Bi-GRU
Layers 2 6 2 2 2 2
Number of neurons 32 500 32 500 32 32

indicators selected in this paper are the error, the smaller the error,
the higher the accuracy, and for the other two indicators used in
this paper correlation coefficient and coeflicient of determination
is the closer to 1, the higher the accuracy if we want to use
equation (7), will need to the correlation coeflicient and coefficient
of determination for error processing.

The structures selected for the DeepEsn networks in the
running and slow walking modes are a 5-layer reserve layer
with 600 neurons and a 6-layer reserve layer with 500 neurons,
respectively. The evaluation metric EvaMe shows that the best
prediction of position information is achieved by the LSTM
network under running mode data. In contrast, the Bi-GRU
network achieves the best prediction of location information
under slow walking mode data. The distribution of data results
predicted by each of its networks is shown in Figures 10, 11, and
similar location information data are translated.x, translation.y,
and translation.z from left to right.

The absolute error values of the predicted data results under
different networks with reference data under running and slow
walking mode data are shown in Figures 12, 13. The position
absolute error plots are drawn by selecting 100 sets from the test set
data, and the plots are translation.x, translation.y, and translation.z
absolute error data.

Similarly, different deep networks estimate the location of
handbag, handheld, pocket, and trolley mode data. The evaluation
metrics EvaMe of their estimation results are shown in Table 6. The
DeepEsn network structures in the table are the 5-layer 500 neuron
reserve layer, 2-layer 500 neuron reserve layer, 7-layer 500 neuron
reserve layer, and 5-layer 500 neuron reserve layer, respectively.

In Table 6, the estimation results indicate that the Bi-LSTM
network should be selected for handbag mode. DeepEsn network
of 2-layer and 500-neuron reserve should be selected for handheld
mode. DeepEsn network of 7-layer and 500-neuron reserve should
be selected for pocket mode. Bi-GRU network should be selected
for trolley mode.

5. Discussion and conclusion

This paper proposes a method based on mode features and deep
network matching to achieve location estimation. Firstly, feature
extraction is performed on different mode data. The datas trend
and detail features of the data are effectively extracted by discrete
wavelet transform. Fourier transforms, and the data selection
network is distinguished using mean, variance, kurtosis, and
skewness mathematical indicators. Then, the classification is then
performed by K-nearest neighbor and dynamic time regularization,
and the classification accuracy reaches 90 from 30%, which shows
the importance and necessity of data feature extraction methods.
Finally, the evaluation indices of location information estimation
under different modes prove the correctness and feasibility of
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the location estimation based on the matching method of mode
features and deep networks. In this paper, the network is selected
according to the decomposed mode features. The Bi-LSTM
network is selected for the handbag mode, which has the trend
cycle and small density amplitude. DeepEsn network is selected
for the handheld mode with trend and detail cycles. The LSTM
network is selected for the pocket mode with both the trend cycle
and the detail cycle. And the LSTM network is selected for the
running mode decomposition with a short trend cycle. The Bi-
GRU network is selected for the running mode with a short trend
period and dense detail. The DeepEsn network is selected after
the slow walking mode decomposition with a long trend period
and dense details. The Bi-GRU network is selected after the trolley
mode decomposition with a long trend period. The sample entropy
is used for the complexity of various mode types of data and the
model’s classification into categories. Many locational estimation
experiments verify the feasibility of the method. Table 7. shows
the network structure that should be selected for the different
mode inputs.

The existing positioning and navigation techniques mostly
use multiple positioning and navigation techniques to enhance
the accuracy and application range of navigation and positioning
through the fusion of advantages. At the same time, in this paper,
we choose different adaptive depth networks for a single navigation
technique with different input data modes to achieve positioning
accuracy and expand the application range. In this paper, we choose
different phase-adaptive depth networks to position and expand the
application range. LSTM, GRU, Bi-LSTM, Bi-GRU, and DeepESN
networks are more common deep networks with simple structures
and parameters and easy-to-implement prediction functions. The
end-to-end training approach relies on only one model and one
objective function, which can circumvent the inconsistency in
training multiple modules and the deviation of the objective
function. The generalization can be obtained with the learning
mode to solve the error accumulation problem in the traditional
location solution. The model is more general for relying only
on inertial data using a deep network model to estimate the
position information. Only six modes are classified in this paper,
and the mode types are limited. There is still a gap between the
application scope and accuracy of single-location navigation and
multi-positioning navigation techniques. Future work will solve
these problems by replacing the adapted depth networks with more
efficient and optimized neural networks and combining them with
multi-location navigation techniques to improve accuracy.
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Active fault-tolerant anti-input
saturation control of a
cross-domain robot based on a
human decision search algorithm
and RBFNN

Ke Wang, Yong Liu* and Chengwei Huang

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing,
China

This article presents a cross-domain robot (CDR) that experiences drive efficiency
degradation when operating on water surfaces, similar to drive faults. Moreover,
the CDR mathematical model has uncertain parameters and non-negligible
water resistance. To solve these problems, a radial basis function neural network
(RBFNN)-based active fault-tolerant control (AFTC) algorithm is proposed for
the robot both on land and water surfaces. The proposed algorithm consists
of a fast non-singular terminal sliding mode controller (NTSMC) and an RBFNN.
The RBFNN is used to estimate the impact of drive faults, water resistance, and
model parameter uncertainty on the robot and the output value compensates the
controller. Additionally, an anti-input saturation control algorithm is designed to
prevent driver saturation. To optimize the controller parameters, a human decision
search algorithm (HDSA) is proposed, which mimics the decision-making process
of a crowd. Simulation results demonstrate the effectiveness of the proposed
control methods.

KEYWORDS

cross-domain robot (CDR), radial basis function neural network (RBFNN), active fault-
tolerant control (AFTC), anti-input saturation, human decision search algorithm (HDSA)

1. Introduction

In recent years, there has been a growing interest in multi-environment robots as single-
environment robots are no longer sufficient to meet various practical needs (Cohen and
Zarrouk, 2020). Researchers have proposed different designs to achieve this, such as bionic
robots (Chen et al., 2021) and the legged amphibious robot (Xing et al., 2021). Furthermore,
with the advancements in rotorcraft unmanned aerial vehicle (UAV) technology, researchers
have started exploring the potential of integrating rotorcraft UAVs with wheeled mobile
robots (WMRs) (Wang et al., 2019a). To enhance the capabilities of robots, cross-domain
robots (CDRs) have been designed, which are capable of operating in multiple environments,
including water, land, and air (Guo et al., 2019; Zhong et al., 2021). The robot presented in
this paper is a CDR that combines a quadrotor UAV with a WMR equipped with webbed
plates. These webbed plates on the wheels enable the robot to generate power at the water
surface through their interaction with the water (Wang et al., 2022a,b).

The CDR presented in this study employs the same drive motors for ground and
water surface operations. Assuming proper functionality during ground motion, a driver
fault is considered to have occurred during the robot’s operation on the water surface.
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Fault-tolerant controls (FTCs) are control algorithms that
effectively deal with system faults (Najafi et al., 2022; Nan et al,
2022). Sliding-mode controllers (SMCs) are commonly employed
in passive fault-tolerant algorithms due to their robustness in
maintaining control performance when the maximum system fault
is known. However, the use of non-singular terminal sliding mode
control (NTSMC) and SMC results in jitter problems, and this
robust control approach is considered too conservative (Ali et al.,
2020; Hou and Ding, 2021; Guo et al, 2022). To address these
issues, FTCs frequently employ adaptive sliding mode control (Wu
et al., 2020) and integral sliding mode control (Yu et al., 2022).
Additionally, observers are commonly used to detect drive faults.
In Wang F. et al. (2022), a disturbance observer (DO) is used
to quickly compensate and correct unknown actuator faults of
unmanned surface vehicles (USVs). In the context of autonomous
underwater vehicles (AUVs), a sliding mode observer-based
fault-tolerant control algorithm has been proposed in the literature
(Liu et al,, 2018). However, the design of higher-order observers
requires complex mathematical proofs and the adjustment of many
parameters. Neural networks (NNs) are often used to estimate
system model parameters and uncertainty terms due to their
ability to approximate arbitrary non-linear functions. In Zhang
et al. (2022), NNs are used to rectify the model parameters of a
USYV, and an NN-based adaptive observer is developed to estimate
errors caused by drive faults. As demonstrated in Gao et al. (2022),
NNs can directly estimate system faults by approximating the
uncertainty terms in the system. Event-triggered fault-tolerant
control is a type of AFTC algorithm that has the potential to
reduce system hardware requirements. However, it requires
the development of trigger thresholds and corresponding fault
control algorithms, which increase the difficulty and complexity of
controller design (Huang et al., 2019; Wu et al,, 2021; Zhang et al.,
2021). Another important consideration in the FTC algorithm
is the control of input saturation. One efficient approach for
solving this issue is to introduce virtual states in the controller.
These virtual states regulate the input error of the controller,
thereby suppressing control input saturation (Wang and Deng,
2019). Additionally, designing adaptive laws is an effective way to
address control input saturation. In this approach, the adaptive
control input decreases as the actual control input approaches the
maximum physical constraint (Shen et al., 2018).

The controller design presented above does not involve
any optimization of the controller parameters. To address this
limitation, reinforcement learning techniques have been developed
to optimize control parameters. In Gheisarnejad and Khooban
(2020), a reinforcement learning algorithm is employed to optimize
the PID controller parameters. Another study (Zhao et al,
2020) trains the optimal trajectory following controller using
deep reinforcement learning. However, reinforcement learning
algorithms typically require a significant amount of data and
multiple iterations to achieve optimal results. Swarm intelligence
(SI) optimization algorithms are a promising approach in practical
applications, including data classification, path planning, and
controller optimization (Xue and Shen, 2020, 2022). Among the
various SI optimization algorithms, particle swarm optimization
(PSO) is a classical algorithm known for fast convergence and
few parameters (Song and Gu, 2004). However, traditional PSO
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algorithms tend to fall into local optima. Ant colony optimization
(ACO) is another common SI optimization algorithm. ACO can
jump out of local optima but has slower convergence (Dorigo et al.,
1996). In addition, the gray wolf optimizer (GWO) simulates the
predation process of wolves (Mirjalili et al., 2014) and the Harris
hawk optimizer (HHO) simulates the predation process of hawks
(Heidari et al., 2019). These algorithms have shown improvements
in convergence speed and accuracy compared with other animal
predation simulation algorithms. Other popular SI optimization
algorithms include the firefly algorithm (Fister et al., 2013) and the
sine/cosine search algorithm (Mirjalili, 2016). Each SI optimization
algorithm has its own strengths and weaknesses and no single
algorithm can effectively handle all optimization problems. The
goal is to achieve satisfactory results in terms of convergence speed,
accuracy, and robustness for a specific optimization problem.

Based on the previous discussion, an AFTC is proposed for
the CDR on the ground and on the water surface. This control
algorithm consists of three main parts:

a. To enhance the robustness of the robot control system, a fast

NTSMC is designed based on the concept of passive FTC.

Compared with traditional NTSMC and SMC, the proposed

NTSMC has reduced control input chatter. Additionally, to

reduce controller conservatism, an RBFNN is designed to detect

and compensate for drive faults. The adaptive weight control law
of the RBFNN is based on the Lyapunov function.

. To prevent drive saturation, an anti-input saturation control
algorithm based on the hyperbolic tangent (tanh) function is
employed. An adaptive rate is designed to prevent singularities
in this algorithm. This method does not require complex
mathematical proofs and requires fewer tuning parameters.

. A new SI optimization algorithm named HDSA is proposed
for the optimization of the weight update rate parameter of
RBFNNs. The proposed algorithm is compared with other SI
optimization algorithms, and the test results demonstrate its
faster convergence rate and higher accuracy.

2. Related work and mathematical
models

2.1. HDSA's related work

To demonstrate the advantages of the proposed HDSA
optimization algorithm, the results of the HDSA tests are shown
in this section. The theory of HDSA is discussed in detail in
the section entitled “RBFNN-Based Active Fault-Tolerant Control
Algorithm”. The effectiveness of the proposed optimization
algorithm was evaluated by comparing the test results of HDSA
with other popular optimization algorithms, such as particle
swarm optimization (PSO) (Song and Gu, 2004), the sine/cosine
algorithm (SCA) (Mirjalili, 2016), the gray wolf optimizer (GWO)
(Mirjalili et al, 2014), the firefly algorithm (FA) (Fister et al,
2013), and the Harris hawk optimizer (HHO) (Heidari et al,
2019). Twenty standard test functions were used for evaluation,
which are presented in Tables 5-7 (included in the Simulation
Results section).
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FIGURE 1
Single peak function test results. (A—G) represent the test results of the six algorithms in functions F1 to F7.

The number of populations was pop = 100 and the maximum
number of iterations was M = 100. The average fitness over
30 independent runs was considered as the optimization result.
The convergence characteristics of the six algorithms in the
single-peak function test are depicted in Figure I, while Figure 2
illustrates the convergence characteristics in the multi-peak
function test. Furthermore, Figure 3 demonstrates the convergence
characteristics of the six algorithms on fixed-dimensional multi-
peak functions. The test results of the six algorithms, based on
30 independent runs, are summarized in Tables 1, 2. In Tables 1,
2, purple indicates the optimal value of the test functions, pink
indicates the mean value of the test functions, and white indicates
the mean squared deviation of the test functions.

The results of the single-peak functions F1-F7 test results are
presented in Tables I, 2. In these tests, the mean and optimal
values obtained by HDSA in F1-F5 are both 0, indicating that
HDSA achieves the highest accuracy among the six algorithms.
Although the accuracy of HDSA is slightly inferior to HHO in the
F6-F7 test functions, it still outshines SCA, PSO, GWO, and FA.
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HDSA has a standard deviation of 0 in tests F1-F5, suggesting that
HDSA is the most stable algorithm. Although its stability is slightly
lower than HHO in tests F6-F7, it still outperforms the other four
methods. Convergence speed is depicted in Figure 2. HDSA has a
significantly faster convergence speed compared with the other five
algorithms, but its convergence accuracy in the F6-F7 tests is lower
than that of HHO.

The test results for the multi-peak functions F8-F13 are
presented in Tables 1, 2. In the tests from F9 to F13, HDSA exhibits
significantly better stability and convergence accuracy compared
with the other five algorithms. It achieves higher accuracy and the
smallest standard deviation. As depicted in Figure 3, except for the
F8 test function, HDSA showcases the fastest convergence speed
and highest convergence accuracy among the algorithms.

The results of the fixed dimensional multi-peak functions F14-
F20 test results are shown in Tables 1, 2. In the F14 test, SCA
has the best optimal and average accuracy, while HDSA exhibits
slightly lower average accuracy and stability compared with SCA,
PSO, and HHO. However, HDSA still manages to find the optimal
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Multi-peak function test results. (A—F) represent the test results of the six algorithms in functions F8 to F13

solution in 30 runs. In the F15-F18 test results, HDSA, SCA, GWO,
and HHO perform closely, with good stability and accuracy. In
the F19-F20 tests, HDSA outperforms the other five algorithms
significantly in terms of accuracy and stability. As shown in
Figure 3, HDSA exhibits the fastest convergence speed among the
other test functions, except for F15, F17, and F18. In the F15 test,
HDSA is only slightly slower than HHO, while in the F17 and F18
tests, HDSA converges slightly slower than FA.

2.2. Mathematical model of the CDR

Before discussing the mathematical model of the CDR, the
following assumptions are made: Assumption 1: The center of
gravity and the geometric center of the robot body coincide.
Assumption 2: The motor output torque meets the actual
performance requirements of the robot during ground and water
motion. Assumption 3: The robots vertical swing, horizontal
rocking, and longitudinal rocking during its movement on the
water surface are ignored. Assumption 4: The motion of the robot
on the ground is purely rolling, without any sliding motion.

The CDR designed in this study can be seen as a combination of
a quadrotor UAV and a WMR. Figure 4A shows the robot moves on
the ground. Figure 4B shows the robot moves on the water surface
by webbed plates. Figure 4C shows the robot moves on the water
surface by propllers. The robot moves in the air in a similar way
to the quadrotor UAV as shown in Figures 4D, E. Figure 4F shows
the structure of the robot, where webbed plates are mounted on the
wheels. These webbed plates generate traction and rotational torque
on the water surface by interacting with the water. However, as this

Frontiersin Neurorobotics

paper focuses primarily on the FTC algorithm of the robot on the
ground and on the water surface, the discussion does not explore
the robot’s aerial motion in detail.

The robot in the inertial frame and in the body frame is shown
in Figure 5.

In Figure 5, d is the distance from the geometric center of the
robot Oy to the mass center of the robot. b is the axis radius and
r is the wheel radius. wj, w, are the angular velocities of the left
and right wheels. ¥ is the angle between the robot body coordinate
system b and the inertial coordinate system A, and y is the yaw
angle of the robot. The kinematic model of the robot on the ground
and water surface can be represented as (Liu et al., 2020):

q=Rn 1)

where g = [x y ] represents the position and orientation of the

robot in the inertial frame, while n = | u v r | is used to denote
the longitudinal velocity, lateral velocity, and yaw angular velocity

in the body frame. The coordinate conversion matrix is denoted

cosyr siny 0
by R, where R=| —siny cosy 0 |.The dynamics model of the
0 0 1

robot’s motion on the ground can be expressed as
M(@)q + Cm(q,9)q + F(q) + 74 = B(g)T )

The matrices M are symmetric positive definite inertia matrices,
while C,, represents the centripetal and Coriolis matrix. The term
F(q) denotes mechanical friction, while 7, is used to represent
external disturbances. The input transformation matrices are
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FIGURE 3
Fixed dimensional multi-peak function results. (A—G) represent the test results of the six algorithms in functions F14 to F20.

denoted as B(q). Furthermore, the robot drive motors in the left 0. According to assumption 1, d = 0, so the matrix M(q) =

T . . .
and right wheel output torque are represented by v = [ T ] . diag| m m I |. Based on these assumptions, the dynamics model

of the robot on the ground can be rewritten as follows:
m 0 md sin
M(q) = 0 m —mdcosy |,
mdsinyr —md cos I

Mg+ Cq+ +F(g) + T, = Bt (3)

_ - _ _ T
where C=R™'CpuR, M = R"'MR, B= R~'B. F(§) = [fu 1, fr]

T
is the mechanical friction and 7; = | d,, d, d, | is the external
Cf)s v c9s 4 disturbance. Rewriting 3 into algebraic form can be expressed as:
B(g) = - | siny siny |,
Il -1

(Fu —fu—du) /m+ vw

i
{/:—ua)—(fv—i—dv)/m (4)
;

Cn(q,9) = [ mdyr® cos y mdy? sin 0 ]T

The mass of the robot is represented by m. The I is a scalar quantity
and represents the rotational inertia of the robot as it rotates in
the X-Y plane. The angular velocity of the robot is assumed to
vary smoothly, so that ¢/ & 0. According to assumption 1, the
Coriolis matrix can be assumed to be negligible, resulting in C, ~
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(T'r _fr - dr) /I

The traction force is represented by F,, while T, represents the
torque. To model the dynamics of the robot on the water surface,
we can refer to the USV dynamics model (Chen et al,, 2019), which
can be expressed as follows

My(@)7 + Cy (g:1) + Dy () n+Fy() + T =T (5)
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TABLE 1 Test results of HDSA SCA and PSO algorithms run independently 30 times.

0

0 0

0.001383925 0.001405319

5.11E—04 4.07E—04

—1.07E+04 1.97E+03

0 0

8.88E—16 0

0 0

1.57E—32 5.47E—48

1.84E—23 9.89E—-23

4.801561855 4696216357

4.82E—04 2.60E—04

—1.03162038 8.23E—06

0.397903308 1.88E—05

3.000013391 1.62E—-07

—3.862443601 2.78E—04

—3.277232199 0.056398698

55.2091773 36.42876978 8.976645307 46.32264983
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2.23E+04 5.86E+03 7.57E+02 2.15E+04
59.20677056 8.010506582 3.830868295 55.38478266
6.61E+05 8.02E+05 1.57E+03 6.59E+05

1.15E+02 1.15E+02 10.03538963 57.17359472
0.341143612 0.269446788 96.08387995 98.09394285
—4.37E+03 2.21E+02 —3.49E+03 9.36E+02
78.49328591 70.22545167 94.82695388 34.53524407
10.65598272 8.935131413 3.884021036 6.796254632
1.962336683 2.819722656 2.25E+02 2.24E+02
3.39E+05 8.56E+05 1.738034681 3.39E+05
2.10E+06 2.56E+06 1.796606655 2.10E+06
0.998323781 9.29E—04 1.163740602 0.405679435
8.05E—04 1.88E—04 0.003654847 0.007160687
—1.031626913 1.82E—06 —1.031069614 6.31E—04
0.397918592 3.12E-05 0.399283994 0.001760397
3.000055929 8.99E—-05 3.007764558 0.014062845
—3.861957813 0.00102005 —3.653030339 0.272064362
—3.22298511 0.922404083 —2.387193028 0.041529991

=

w is the inertia matrix. The traction force and torque of

T
the robot at the water surface are 1, = [Fu 0 T,]
T
Ay = [duw dyw drw] is the lumped disturbance and
Fw(n)z [fuw fvw frw

~

is the water resistance.

—_

0 0
0 my mys |,

miy

<

w

0 ms3y ma3

0 0
0 0

—Ci3(m) —C3(n)

Ci3 (m)
Ca(m |
0

Cw (1) =

dy 0 0
0 dy dy
0 dsp ds3

Dy (n) =

The disturbances are represented by t,,,. On the other hand,
D,, (n) represents the water resistance. The Coriolis force matrix
can also be neglected according to Assumption 1 and Assumption
3,50 Cy (q, n) ~ 0. The elements of the non-diagonal matrix in
matrix D,, (1) and matrix M,, are small and can be neglected. This
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2016; Wang et al., 2019b; Deng et al., 2020), where my; = m — X;,
my, = m — Yy, and m33 = I, — N; are the inertia parameters of the
three axes and Xj,, Y;, and N; are the additional inertia parameters
due to the wet water of the robot shell and the viscosity of the
water. The dynamics model of the robot on the water surface can
be expressed as:

oy o— M2 Xu X\M|” Fy dy
U= —= — ——UuU— — |Ulu
mi1 mlly m | | + mi + miy
— mi u [vlv )
= —— — —V— — V|V 6
ma2 mZZN m22]\|I | + mi1 T d ( )
myy—my) © lwle r r
= — — W — - —— |W® —_—
m33 ms33 m33 | | + ms33 + ms33

Xu> Xjuu» Yu> Yjvjv> and Ny, Njy|e are the resistance coefficients.
The resistance of the robot moving on the water surface can be
approximated as a quadratic function of the velocity and angular
velocity.

The mathematical model should be rewritten into a form that
better suits the needs of the subsequent controller design. The
dynamics model of the robot’s motion on the ground is rewritten
according to 4 as

it:Fu/m—(fu—{—du)/m—f—vw
[ S ——

dyg

r=T/1—(fr+d) /I
——

dg
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TABLE 2 Test results of GWO FA and HHO algorithms run independently 30 times.

2.59E—05 1.52E—05

8.55E—04 2.86E—04

16.15496494 16.17029995

0.190101216 0.067944463

28.03756308 0.956956464

0.996486127 0.498192351

0.004742428 0.001594265

—6.30E+03 1.05E+03

21.78763545 6.854472334

0.001208914 4.59E—04

0.020113329 0.01797284

2.091212922 0.039891925

0.90669375 0.26593137

2.149370759 1977247758

0.002524088 0.005948479

—1.031628406 8.86E—04

0.397888965 1.47E—06

3.000091041 9.87E—05

—3.861772215 0.00183244

—3.265460239 0.071106357

4.77E+04 9.85E+03 1.95E—-26 7.53E—-26
1.06E+02 18.47075013 2.26E—14 6.46E—14
6.69E+04 1.69E+04 4.03E—-18 2.17E—17
63.05292108 7.574286394 4.60E—14 1.18E—13
1.29E+08 3.79E+07 0.043168201 0.061375953
4.64E+04 7.31E+03 2.68E—04 3.23E-04
48.34775676 17.25308781 1.82E—04 1.50E—-04
—4.35E+03 6.34E+02 —1.25E+04 2.43E+02
0.860127299 34.00946589 0 0
19.96298677 0.1314286 1.33E—14 2.00E—14
4.93E+02 48.66049354 0 0
2.26E+08 1.13E+08 2.25E—05 2.25E—-05
4.74E+08 1.87E+08 3.13E—04 4.99E—04
9.85228046 7.376397236 1.592846754 1.007706592
0.009720032 0.008406408 4.19E—04 2.61E—04
—1.030900759 0.002366781 —1.031628451 1.05E—08
0.398122914 3.37E—-04 0.397893418 2.30E-05
3.027874998 0.065760186 3.000000968 4.43E—06
—3.830959144 0.086620017 —3.861362289 0.001672668
—2.894366935 0.195231925 —3.123254299 0.085277304

Where d, is the lumped disturbance and d,; < Elug, L_iug is the
upper limit of the total disturbances. dy, is the lumped disturbance
and dyy < dyg, dyg is the upper limit of the total disturbances. The

F, SuFuc Xu |ulu
= ﬁ — Y'ua — |u| u+ Ap
mi1 mi1 mii1
m22 _DMW
+ —vw + —
mi1 mii
uw (8)
T, Srﬂc Nw lelw
=T o T, 2y S 1 Ay
ms3 33 mss3
_DVW
myy — Mo d
uy + ——
ms3 mss3
drw

where F, is the desired tractive force and F,. = F, represents
[01)
force disturbance due to mass change. d, is a lumped disturbance,

no force loss. &, € is the force loss parameter. Ap is the

QU

iw < dusy. dyy is the upper bound of dy,. Dy, is the uncertainty
term when the robot moves on the water surface due to changes
in system parameters, water resistance, and driver faults. T, is the
desired torque and T,. = T, represents no force loss. &, € [ 01 )
is the power loss parameter. At is the torque disturbance due
to the change of inertia parameter. dy, is a lumped disturbance,
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dyy < dpy. dyyy is the upper bound of d,,. D, is the uncertainty
term due to changes in system parameters, water resistance, and
driver faults during robot rotation on the water surface.

3. Active fault tolerance control
algorithm and human decision search
algorithm

3.1. RBFNN-based active fault-tolerant
control algorithm

Both the yaw control and the linear velocity control of the robot
are essentially single-input single-output (SISO) second-order
non-linear affine systems. Without loss of generality, a second-
order non-linear affine SISO system with drive faults can be
expressed as:

5C1 = X
% =f(x)+gx)uc+D +d %)
y==x

u, is unconstrained control input, u, is the drive bias, & is the power
loss parameter, £ € [O 1), 0 represents no power loss, and 1
represents a complete loss of efficiency. D = —g(x)§u, + u, is the

uncertainty term due to the driver fault. The disturbance d has a
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FIGURE 4
(A) The robot moves on the ground. (B) The robot moves on the water surface by webbed plates. (C) The robot moves on the water surface by
propllers. (D) The robot takes off from water surface. (E) The robot flying in the air. (F) The structure of robot.

Umax 1is the physical constraint. To make the control input
smoother, the cutoff function is usually replaced by a saturation

YA A function, such as tanh.
Ucon = Umax tanh(“f/umax) (11)

where u,p is the constrained control input and uy is a function of
uc. Thus, the control objective is to design the constrained control
law ucon so that it satisfies the control requirements even in the
presence of drive faults and external disturbances in the controlled
object. The steps for designing an AFT controller are the following:

Step 1: Define the state error e; = x;4 — x). Establish the
Lyapunov function V| = %e%. Taking the derivative of V; with
respect to the time ¢ gives

Vl = €1é1=61(k1d —X2) (12)

Oa

FIGURE 5 Define the virtual state oty = kje; + x14 as the desired input of the
Robot in the inertial frame and the body frame. next step. If x; can follow oy, Vi = —kie?. So, the next step of the

control law must ensure that o, — x, = 0. «, is the next desired

state x,,.
Step 2: Define the state error e; = x,4 —x3, and the fast NTSMC

well-defined upper limit and ]d ] < d. x1, x, are system states. f(x) is designed as

is the system function and g(x) is the input function. Owing to the N
hvsi : . : : S=ey+ae; + Beg (13)
physical constraints of the controlled object, the control input is
subject to saturation:
where o and 8 are positive adjustable parameters and A is a positive
odd number. The sliding mode convergence law is
Umax, |Ue| > Umax (10)
U, Ue < Umax S= — kS — k3|SI" sgn(S) (14)

Ucon =
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where ki, k2, and y; are positive adjustable parameters. sgn is the
symbolic function. The derivation of 13 yields:

S:éz + ae; —|—)»,3e1)‘_1'61=—kZS—k3|S|ylsgn(S) (15)
where
e = Xyq — X2
=dy —f(x) —gx)uc.—d—D (16)

= —k2S — k3/S|" sgn(S)
The controller law can be designed as follows:

1
s — D+ kS + k3|S|" sgn(S) + aéy + ABer* 'ey)
g X

(17)

In 17, the uncertain term due to drive faults D is known.

(@x — f(x)

U=

Establishing the Lyapunov function V; = %Sz, the derivative of

V; yields
V, =S8
=S (e2+ae1+rBer* ter) (18)
=S (Otx — f(x) — g(®¥)ue — d — Dtae;+rBe e )
Bringing 17 into 18 yields
Vy =88
=S(—d — k2S — k3|S|"'sgn(S))
= — kS — k3| — 8d
< — kS — kIS 18| d (19)
= — koS? — k3| S|4 |8 d
= — k82— 8| (k3|5|yl - Zi)
When ks > d/|S|"!, k3|S|"' —d = &, & > 0, thus:
Vz < 2k, Vp, — ¢ S| < —2k, V) — \/iSVzl/z < —0[1V21/2 — ﬁl Vs,
(20)

where o] = 2ky, 0 < B1 < +/2¢.

LEMMA 1 [44] (Jiang and Lin, 2020): Consider a smooth
positive definite V(x), x € R,. Suppose that real numbers p; €
(0,1), @ > 0,and B > 0 exist such that V(x) < —aV(x)’' — BV (x).
Then, an area Uy € R, exists, such that any V(x) starting from
Up can reach V(x) = 0 in finite time T,, which is expressed as

V1P (xg) 4o )
Ty < prripyIn (F2e).
According to lemma 1, V, can converge to 0 in finite time.

In the above discussion, the uncertainty term D is assumed to be
known, but the actual uncertain term D is unknown. As RBFNN
can approximate arbitrary uncertain non-linear functions and does
not depend on a mathematical model, it is more suitable for
estimating stochastic uncertain terms. Therefore, optimal neural
network weights w* must exist such that D=co+w*Th, g is the
estimated residual and / is the neuron. W = w—w"*, wis an estimate
of w* and w* is a constant, so # = iv. Rewrite 9 as:

X1 =X
= f(x) + g()uc + d+eo+w*Th (21)
y=x1
Step 3: Establish the Lyapunov function V3 as
L
V3:ES +Etr(w '~ w) (22)
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The derivation of formula 22 yields

=SS+VVTF*1*
oy — f(x) — g(xX)ue —d — g9 — wTh + ae) + Alﬁe?“lél)
+fvTF— W

(23)
The control law is designed to
dm (e —F@) = AT hthaS+hsISsgn())  (29)
g(x)
Bringing formula 24 into 23 yields
Vs = —ka8? — ks S| H! — Sey 4w (Sh+T %) (25)

where ¢; = d + &p, the upper limit of the estimation error of the
neural network is &y . &9 > €0, d > d, sothate; < d+ 8 = & .
The update law of the RBFNN weights is designed as

W= —TSh (26)
Bringing 26 into 25 yields
V3 = —kyS? — k3| S| — Sey
< — kS — kIS 4181 & (27)
= —kaS* = I8] (ks|SI"* — &1)
when k3 > £/|S|", k3|S|"* — & = &, , where &, > 0, thus:
V3 < —2k2V2 —& |8 < —2k, V5 — \682‘/21/2 (28)

< Olle —ﬁ1V2 <0

According to lemma 1, V; can converge to 0 in finite time.

The control input u, in formula 24 is the unconstrained, to
prevent the control input saturation, define u; = u,., where uy is
the desired value in the next step, and the state error e3 = uy —
Ucon- Ucon Satisfies the constrained control input of the saturation
function tanh; therefore, parameter u must exist, such that 1, =
Umax tanh(us /umay), where tyqy is the maximum input.

ieon = (1 = tanb?(uy /i) ) ity (29)

Step 4: Establish the Lyapunov function V4 = % and derive V3

and bring it into 29 to obtain:
Vi = esés
= e3(ttg — teon)

(30)

iy is designed as

] (kies - tessgnten) + i) £ (1 tanh (g uman) ) 8 = A
Ur =
! [8e3|"2sgn(es) + i3/ (1 — tanhz(uf/umax)> 0 < A

(31)
where §= |uf| —2Umax, A is a smaller normal value. y, € (0, 1). The
convergence of the controller is discussed in the following cases.

When § > A, substituting 31 into 30 yields
V4 = —k46§ — |€3|y2+1 = —2k4V3 — 2(V2+1)/2V3(VZ+1)/2
<~V = gV, (32)
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where 0 < ay < 202TD/2 2fs = B, According to Lemma 1, V4
can converge to 0 in finite time. When § < A, substituting 31 into
30 yields

Vi == (1817 1ea*1) / (1 = tanh®(ue/smax))
=- (|5|V22<V2+1>/2/ (1 - tanhz(uc/umax))) Ve (33)

[P g4}
=—cV,

whereas = (y, + 1) /2, ¢ = |§]722021D/2) (1 — tanhz(uc/umax)),
and tanh(uc/umax) < 1, 50 ¢ > 0. According to Lemma 2, V4 can
converge in finite time.

LEMMA 2: Chu et al. (2022) Suppose that there is a positive
definite continuous Lyapunov function V(x, t) defined on U; x RT,
where Uy € U <€ Ry. R, is a neighborhood of the origin, and
V(x,t) < —cV¥x, t),Vx € Up\ {0}, wherec > 0,0 < @ < 1. Then,
the origin of the system is locally finite time stable. The settling time
T <V« (x(to), to) /(1 — «) satisfies for a given initial condition
x(tg) € Uy.

3.2. Human decision search algorithm

The human decision search algorithm (HDSA) is a swarm
optimization technique that mimics the decision-making process
of a human crowd. In many post-apocalyptic survival games or
films, the strong group consciousness of humans is often portrayed,
but the importance of individual consciousness is also emphasized.
In human groups, a small group of individuals called decision-
makers make the final decisions based on their experience and
personal status. However, the decision of the decision-maker is not
necessarily optimal. When the number of individuals in the group
is small, it is important to involve more people in the decision-
making process to guide the development of the group and to
avoid the excessive impact of individual decisions on the group.
However, when the number of individuals in the group is large, the
proportion of decision-makers should be reduced and only a few
elite individuals should be selected to determine the development
of the group. This is because too many people involved in the
decision-making process may take more time, and the experience
of ordinary people may not be as good as that of elite individuals.
Because people have emotions, they can think both rationally and
emotionally when dealing with problems, and these two opposing
ways of thinking must coexist.

Apart from the decision-makers, the rest of the human
population is referred to as the executors, consisting of individuals
who have no or less ability to make decisions. They carry out
the optimal decisions made by the decision-makers. However,
individuals among the executors who have some decision-making
ability should be encouraged to seek more humane decisions
based on the optimal decisions. These decisions should become
more adapted to the current environment over time. The number
of decision-makers is fixed, and elite individuals in the human
population will always be selected as decision-makers. Over time,
any individual has the potential to become a decision-maker, and
the current decision-maker may become an executor.

In a human population, there are always individuals who
question the current decision or believe they have a better
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one, including the decision-makers themselves. These individuals
are known as adventurers, and their numbers and identities
are random, making them a source of uncertainty within the
population. Although adventurers can lead people to a better life,
they can also lead them to disaster. Adventurers, on the other
hand, inherit the current optimal choices of the human population
and take them into account when making decisions. However,
more adventurous individuals will also seek out possible optimal
decisions based on their own state. To avoid harming the human
population, adventurers must consider whether the decisions they
make are more beneficial to their own survival. Additionally, there
is a chance that an adventurer will become a decision-maker if
they come up with a better or suboptimal decision. Based on the
above analysis, the proposed algorithm for optimizing the human
decision population consists of three main components: decision
updating for decision-makers, decision updating for executors, and
decision updating for adventurers.

3.2.1. Decision updates for decision makers

The number of decision-makers is fixed in proportion to
the total number of people, and the number of decision-makers
is 20-50% of the total number of people. The decision-makers
make their decisions based on individual experience as well as
individual characteristics. The sine and cosine functions are used
to distinguish between rational and emotional decisions by people,
and the individuals are randomly updated due to the random
adoption of rational and emotional decisions by people.
t ¢

t .
r1X; sin (rz ‘mxihest — X

),R<0.5
),Rzo.s

X = (34)

t —
ibest

rle cos (7‘2 ’1’336 xf
where x! denotes the y, iteration of the iy, human individual. r1 is a
non-linear term, r; = 2*(1 —i/(ay * d,,um)). dyum is the number of
decision-makers. o1 is a random number between (0, 1). 1, = @27
and «; is the random number between (0,1). r3 = 2«3, o3 is a
random number between (0, 1). r is the random number between
(0, 1). xfbest is the individual optimal solution for 1 to ¢ iterations.

3.2.2. Decision updates for executors

Except for the decision-maker, the rest of the individuals are
the executors. Among the executors, individuals with a fitness that
is higher than the intermediate fitness are ordinary executors that
must follow the optimal decision of the decision-maker. Individuals
with a fitness below the intermediate fitness are considered as
executors with some decision-making ability, and this group can
continue to explore the next optimal decision that may exist based
on the current optimal decision.

on St B =) 1 A0S £

’ 182) S < 1 o

t t t
sgn(x,)exp ‘xbest — X

where x| _ is the current global best individual and x},,,, is the

current global worst individual. x, = x| . — xi,,. f{ is the fitness
. . .. t . t t t .

of the iy, individual, f}, = (ff, + fhorst) /2> fiey is the current

best fitness, and f/, ., is the current worst fitness. B is the random
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number of normal distribution with mean 0 and variance 1. The
sgn function determines the direction of exploration of individuals.
Bo=t?/ flfest indicates that a more favorable decision result can be
obtained over time.

3.2.3. Decision updates for adventurers

The adventurers are random individuals and the number of
adventurers is also random. If the adventurer’s fitness is less than
the average fitness, the adventurer randomly explores based on
the current optimal solution. If the adventurer’s fitness is higher
than the average fitness, the adventurer will continue to explore
in the optimal direction according to the current state of the
individual.

’»fit > fatvr
OGS = Ly

t t t
Xpest +a ’xbest Xi

xf + (2¢c; — 1)

XEH —

(36)

t
xe

where ¢ is a normally distributed random number with mean
0. ¢, is a random number between (0, 1) with variance 1. ||fo” )
is the Euclidean norm of x, and f}, is the current mean
fitness.

Based on the above discussion, the proposed HDSA has three
steps. The first step performs a global random search using the
formula 34. In the second step, a local search is performed based
on the first step using the formula 35. The third step performs a
second global random search using the formula 36 on the basis
of the first and second steps. HDSA framework as Algorithm 1.

3.3. Yaw controller and linear velocity
controller

According to the control algorithm in the “RBFNN-Based
Active Fault-Tolerant Control Algorithm” section, the AFTC is
used to design controllers in this section to follow the desired yaw
angle ¥4 and desired linear velocity v4. The robot linear velocity
sliding mode surface is: S, = ey, + Bye,, where e, = vy —v. The
sliding mode convergence law is S, = — kS, — k3, |S|"vsgn(S,).

The proof of convergence for the velocity controller is similar
to that for the general-purpose controller in the “RBFNN-
Based Active Fault-Tolerant Control Algorithm" section. The
unconstrained control law is designed as

Fue=m (va = wlhy + kS, + ks, P*sgn(8)  (37)

The anti-input saturation controller of linear velocity is designed as

[ (kaver + lep|"*sgn(er) + Fu)

/ <1 - tanhz(Fuf/Fmax)) dat .86, = A,

F, =
o [ 18ver "2 sgn(er) + Fue/ (1 — tanhz(Fuf/Fmax)) dt
0y < Ay
Fucon = Frmax tanh(Fuf/Fmax)
(38)
Where eg = Fy,c — Fyeon.
The yaw angle controller is wy; = kyey + V4, where

ey, = Yq — Y. The yaw angle sliding mode surface is
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Input: i nput paraneters M, d,, pop, dim, I,, and u,

Output: oUt PUt  Xpesr,  finin

11nitialize individuals, constrain the upper and

| ower bounds of individuals, calculate the
individual fitness, initialize the global
optimal solution xpy; and the optinmal fitness
Smins

2 while t <M do

3 Find the current global optimal solution xpg
and the current individual optinal solution
Xipest T = rand(1l)

4 for i:d, do

5 Use 34 to update the decision-nmaker’s

deci sion and cal cul ate the individual
fitness
6 Find the current gl obal

optinmal sol ution xp

and the gl obal worst solution xu.,g, conmpute
the internediate solution and internediate
sol ution fitness.

7 | for d,+1:pop do

8 LUse 35 to update the executor’s decision and
cal cul ate the individual fitness

9 Cal cul ate the average fitness, randonmy sel ect
a, individuals

10 for 1:a, do

11 LUse 36 to update the adventurer’'s decision
and cal cul ate the individual fitness

12 Find the current global optinmal solution x.,

the individual optinmal solution xj., and the

optimal fitness fyin.

13 t=t+1

14 return xbestyfmin

Algorithm 1. HDSA.

Sw = ey +ayey + ,31/,611,)”/’

. The sliding mode convergence law is
So=— kaSa) - k3w|Sa)|y1ngn(sw)-
The unconstrained control law is designed as

Tre=1 (wd - ﬁ/ghw + k2wSw + k3o |Sw |7 Sgn(Sw)) (39)

The anti-input saturation controller of the yaw angle is
designed as

[ (kswer + ler|"2sgn(er) + Ti)
/(1= tanh® (T Toa) )t 180 = A

S 18werl7osgn(er) + Tre/ (1 = tanh® (T / Tmax) ) di,
S < Ay

Treon = Tmax tanh(Trf/Tmax)

Ty =

(40)
where ey = Ty — Trcon. The controller parameters are not described
in this section as they have been discussed in the “RBFNN-Based
Active Fault-Tolerant Control Algorithm" section.

The input to the angular velocity neural network is both the
yaw error and the angular velocity error, and the output is the
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Xi,X,

|

X
Backstepping NTSMC
control Formula(17)
Formula (12)

Active Fault Tolerant Control(AFTC)

Fault compensation u

Formula(26)

Z’lc
Anti-windup Controlled
control object
Formula(31) .

Optimize a 8 r/

Formula( 34~36)

[ Human Decision Search Algorithm(HDSA) ]

FIGURE 6
AFTC framework.

uncertainty term in the angular velocity control. The coordinate
vector matrix of the centroids of the Gaussian basis function
neurons in the angular velocity neural network is
_ | -1.6 -08 —04 —0.2 —0.1 0 0.1 0.2 0.4 0.8 1.6
V= -1.6 —0.8 —04 —0.2 —0.1 0 0.1 0.2 0.4 0.8 1.6
The width of the Gaussian basis function by, = 0.1,i =1- "L
The input to the linear velocity neural network is the velocity
error and the output is the linear velocity control uncertainty term.
The coordinate vector matrix of the centroids of the Gaussian basis
function of the neurons in the linear velocity neural network is
[ —-1.6 —0.8 —04 —0.2 —0.1 0 0.1 0.2 0.4 0.8 1.6 ]1 "
The width of the Gaussian basis function b, = 0.1,i=1--- 11.*
Based on the above discussion, the proposed framework for the
AFTC is shown in

Cy =

In the section entitled “HDSAs Related Work”, we have
demonstrated the advantages of the proposed HDSA; therefore, in
this section, the HDSA is used to optimize the sliding mode surface
parameters of the yaw controller and the linear velocity controller.
As the weight update parameters of the RBFNNs are related to
the sliding mode parameters, this also indirectly optimizes the
RBFNNS.

Frontiersin

The parameters to be optimized for yaw angle control are the
sliding mode surface coefficients &, , B, and the neural network
update coefficient I',. According to the idea of AFTC, the presence
of —3N.m of disturbance torque in the robot model simulates the
worst case. The initialized optimization algorithm parameters are
as follows: dimension is 3, the number of populations is 20, the
number of max iterations is 10, and the upper limit of parameters
is 20 and the lower limit is —20.

The evaluation function of the yaw controller is designed as
fobj = 0.8% |e¢, | + 0.1 |ey| 4 0.01 % |Ty|. For yaw control, we want
to reduce both the yaw error and the yaw velocity error with the
smallest control input. As the control objective is to eliminate the
yaw error, the yaw error is given the largest weight in the evaluation
function. To keep the control input and yaw error in the same order,
the control input weight is reduced. The optimization parameters
for the yaw controller are shown in .

, the optimized parameters converge
after eight iterations. The values of I',, = 20, o, = 7.4407, and
Bw = 2.9369 are obtained through the optimization process.

As shown in

The optimized parameters are substituted into the AFTC and
the control results are compared with the unoptimized AFTC,
NTSMC, and SMC. Before 10 s, the yaw angle is influenced by a
torque with a mean value of —1N.m and a mean square error of 0.1.
After 105, the yaw angle is influenced by a torque with a mean value
of —3N.m and a mean square error of 0.1. The control parameters
are given in
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Yaw control parameter optimization and fitness of the yaw controller objective function. (A) The optimized parameters of yaw controller. (B) The
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TABLE 3 Parameters of yaw angle controllers.

Controllers Parameters Value
Proposed AFTC kiy 2
Ao Bos b 1,2,3
ko, k3 Voo 1,505
kaw 5
Ty 10
NTSMC kiy P
s> Bos Ao 1,2,3
ko, k3w Voo 5,20, 0.5
SMC kiy )
kaws k3w 5,5

The results of the yaw angle controller are shown in Figure 8.

In Figure 8A, the optimized AFTC has a significantly faster
response speed (pink line). Despite being influenced by a —1 N.m
torque disturbance in the range of 0-10 s, the AFTC, NTSMC
(green line), and SMC (red line) maintain their robustness and
are not affected by the disturbance. After 10 s, the yaw angle is
subjected to a torque of —3N.m, in which case reliance on the
robustness of the controller can no longer guarantee yaw angle
control performance, as shown in the 10-11 s enlargement in
Figure 8A. The SMC is unable to follow the desired yaw angle
with a static error of ~0.05 rad, and the NTSMC also has a small
static difference.

As shown in Figure 8B, the proposed AFTC (pink line) and the
optimized AFTC (orange line) do not enter the driver saturation
state. The NTSMC (purple line) and the SMC (green line) enter
the driver saturation state. Compared with the conventional SMC
(green line) and NTSMC (purple line) control inputs, which have
high-frequency input chatter, the control input of the proposed
AFTC is more stable. This suggests that the robustness achieved
by the conventional SMC comes at the expense of control input
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performance. In Figure 8C, the output of the radial basis function
neural network (RBFNN) is displayed, showing a value of 1 before
10 s and 3 after 10 s. The RBFNN can estimate the unknown yaw
disturbances online. The RBFNN weights are updated accordingly,
as shown in Figure 8.

The parameters to be optimized for the velocity controller are
the sliding mode surface coefficients o, and B, and the neural
network update coefficients I',. The presence of —5N force in the
robot model simulates the worst case. The initialized optimization
algorithm parameters are as follows: the dimension is 3, the number
of populations is 20, the number of maximum iterations is 10, and
the upper limit of parameters 20 and the lower limit is 20.

The evaluation function is designed as f,;; = 0.8 * |e, | + 0.02 *
|Fucl. When controlling the linear velocity, we want to minimize
the linear velocity error with the smallest control input. Therefore,
the linear velocity error has the largest weight in the evaluation
function. The weight of the control input is reduced to keep the
control input and the linear velocity error at the same level. The
linear velocity controller optimization parameters are shown in
Figure 9.

As shown in Figure 9, the optimization parameters converge
after two iterations. The optimized parameters are I', = 15.6467,
@, = 16.1866, and f, = 20.

These parameters are used in the proposed AFTC, and the
control results are compared and analyzed with the unoptimized
AFTC, NTSMC, and SMC controllers. Before 10 s, the linear
velocity is affected by a force with a mean value of —2N and a mean
square error of 0.1. After 10 s, the velocity is influenced by a force
with a mean value of —5N and a mean square error of 0.1. The
velocity controller parameters are given in Table 4.

The control results of linear velocity controllers are shown in
Figure 10.

Similar to the performance of the yaw control, in Figure 10A,
the optimized AFTC (pink line) responds faster compared with the
proposed AFTC (purple line) and SMC (red line). Between 0 and
10 s, when the line speed is subjected to -2N force, AFTC (purple
line), NTSMC (green line), and SMC (red line) are not affected
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(A) The yaw angle control results. (B) Control input torque. (C) Yaw angle RBFNN output value. (D) Yaw angle RBFNN weight.
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Velocity control parameter optimization and fitness of the velocity controller objective function. (A) The optimized parameters of velocity controller.
(B) The objective function output value.

by the disturbances. After 10 s, the linear velocity is subjected to ~ ~0.05m/s for the NTSMC and ~0.6m/s for the SMC, as shown in
a force of —5N and the velocity control performance cannot be  the 9-12 s enlargement in Figure 10A. Both the proposed AFTC
guaranteed by the NTSMC and SMC. There is a static error of  and the optimized AFTC can follow the desired linear velocity,
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and the velocity controller is almost unaffected by the —5N force
using the optimized parameters. The proposed AFTC and the
optimized AFTC can effectively track the desired linear velocity,
with minimal impact from the —5N force disturbance. The velocity
controller of the AFTC is almost unaffected by the disturbance,
indicating its robustness and ability to maintain precise control
performance.

The previous discussion has highlighted the improved
responsiveness and robustness of the optimized AFTC. To further

TABLE 4 The parameters of velocity controllers.

10.3389/fnbot.2023.1219170

emphasize the advantages of the optimized AFTC, the output value
of the evaluation function is used as a criterion to evaluate the
performance of the four controllers. A smaller output value of
the evaluation function indicates better controller performance.
The output values of the evaluation functions for the four
controllers are depicted in Figure 11.

As shown by the green lines in Figures 12A, B, the optimized
AFTC controller exhibits the smallest value of the evaluation
function. This signifies that the optimized AFTC achieves the best
performance among the four controllers. As the linear velocity
and yaw angle are consistently subjected to external disturbances,
the output value of the evaluation function continually increases.
This is because of the fact that the control inputs are not equal

Controllers Parameters Value to zero. In the case of large external disturbances, the NTSMC
Proposed AFTC s Bor Ay 1,23 and SMC controllers can no longer eliminate the yaw angle error
ko, Koo U505 and the linear velocity error. Consequently, the output value of the
2v> R3vs Yy 525 Ul
evaluation function rapidly increases, as indicated by the red and
kay > blue lines.
r, 10 To further verify the effectiveness of the proposed algorithm,
NTSMC o o 12,3 the AFTC is used to design the yaw angle controller and the velocity
controller. The desired yaw angle and the desired linear velocity
o bov 1o 20,05 is planned by the LOS algorithm. The optimized parameters
SMC Koy, kay 55 are selected as the controller’s parameters. The LOS algorithm
A B
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FIGURE 10
Linear velocity control results. (A) Velocity control results. (B) Control input force. (C) Velocity RBFNN output value. (D) Velocity RBFNN weight.
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FIGURE 12
The robot tracks the desired trajectory. (A) Tracking the circle desired trajectory. (B) X-position control. (C) Yaw angle control. (D) Y-position control.

and the improved LOS algorithm can be found in the authors w, = 0.5rad/s, and linear velocity v, = 0.5m/s. The initial
previous work (Wang et al, 2022b). The desired trajectory is  position and pose of the robot is [0m,0.5m,Orad]. A drag force
a circular trajectory with radius R = 1m, angular velocity —of —2N and a torque of —1N.m are applied to the robot. The
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The control results of linear velocity and yaw angular velocity. (A) Linear velocity control. (B) Yaw angle velocity control.
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FIGURE 14
The linear velocity control input and yaw angular velocity control input. (A) Control input force. (B) Control input torque.
LOS algorithm is TABLE 5 The single-peak test functions.
Function Initial range Fmin
=Y, —«
wL wr -
a = arctan(e,/A) (41) =12 —100 < x; < 100 0
vi=v, + ke, 5 30
L&) =3 el + [T Ixil —10<x <10 0
i=1 i=1
where ¥, vy are the desired yaw angle and desired linear velocity 0 /i 0\
planned by the LOS algorithm. ey, e, is the position error in fil) = ,=Zl j;xj TH0 =X =100 0
Frenet-Serret (F-S) frame. A and k are the positive adjustable Fi) = max (x| 1 < i < 30) 100 < x; < 100 0
parameters. » i 5
The control results of the robot tracking the desired circle Sl = E[loo(xM —H) H D ] 0 =m=30 0
trajectory are shown as Figures 12-14. The robot position control folx) = % (1x; + 0.5]) ~100 < x; < 100 0
and yaw angle control are shown in Figure 12. = )
The robot can track the desired trajectory. The actual position flx) = ,:ZI i+ random [0, 1) Tl s =128 0

pose of the robot is consistent with the desired position pose. The
linear velocity control and angular velocity control are shown in
Figure 13.

In Figure 13A, the linear velocity can track the desired
linear velocity of 0.5m/s. In Figure 13B, the angular velocity
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can track the desired angular velocity of —0.5rad/s. Figure 14
shows the linear velocity control input and yaw angle velocity
control input.
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TABLE 6 The multi-peak test functions.

10.3389/fnbot.2023.1219170

Function Initial range Fmin ‘
30
fs(x) = =3 (xsin (VTxil)) —500 < x; < 500 —12569.5
i=1
30
fox) = Y [x? — 10cos 2mx; + 10) ] —512 < x <512 0
i=1
30 30
(—0.2‘/3‘—0 fo) (% Zcosan,)
fio(x) = —20exp VoS —exp\ ! +20+c¢ —100 < x; < 100 0
30 30
fn(x)zﬁ;xiz—__ﬂlcos(%)-&-l —600 < x; < 600 0
29
falx) =% {IOOsinZ (1) + ‘ (i — 1)2><
=R —50 < x; <50 0
[1+ 10sin? (zyira) ]+ (7n — 1)2] + > u(xi, 10,100, 4)
i=1

2!
fis(x) = 0.1 {sinz (w3x1) + 3 (i — 1)?* [sin® Grxi)] +

= —50 < x; <50 0
(tn — D [1 4+ sin® 2mxsp) | + X u (x> 5,100, 4)

i=1

TABLE 7 The fixed-dimensional multi-peak test functions.

Initial

Function

25
fu@=| gty —— —65.536 < !
=LA (imay) xi < 65.536
11
_ 2 x(bithin) .
fis(r) = g [ai - ppe) 5<x, <5 0.0003075
fio(x) = dx} —2.1x) — 1§ 4 xy0p — 4d + 4] —5=x<5 —1.0316

2

Sfir(x) = (xz - 4571236% + %xl - 6)

0.398
410 (1= &) cosx; + 10 0<x, <15
fis() = [1+ (1 + 22+ D? x
(19 — 14x; + 35} — 140, + 6x1x; + 323) | x
—2<x <2 3
[30 + (2x1 — 3x2)*x
(18 — 32x,+12xF + 48x, — 36x1x, + 27x3) |
4 n 2
fiox) ==Y exp | — X a(xj — py) 0<x <1 —3.86
i=1 j=1
4 n 2
o) ==Y exp| =X ay(x; — pij) 0<x <1 —3.32
i=1 j=1

In Figures 14A, B, the —2N force and —1N.m torque are applied
to the robot. So the control inputs are 2N and 1N.m to counteract
the effect of the external force and torque on the robot.

The test functions for swarm intelligence optimization
algorithms are shown in Tables 5-7.

5. Conclusion

This paper proposes an RBFNN-based anti-input saturation
AFTC to solve the problem of degraded control performance of the
CDR during movement on the water surface caused by drive faults,
uncertain water resistance, and uncertain model parameters. The
AFTC incorporates a fast NTSMC, which ensures the robustness
of the robot against external disturbances and the effects of
uncertain model parameters. The RBFNN is used to estimate drive
faults and compensate for the controller output. Additionally,
an anti-input saturation control algorithm is introduced to
prevent controller input saturation. Furthermore, the traditional

Frontiersin Neurorobotics

approach of manually tuning controller parameters based on the
designer’s experience and iterative debugging is replaced with
an optimization method called HDSA. The HDSA algorithm
optimizes the controller parameters to ensure the optimal control
performance of the robot.

In further work, adaptive algorithms are necessary for the
adjustment of the upper limit of the maximum control input to the
robot on the ground and on the water surface.
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Introduction: A hot cell is generally deployed with a teleoperation power
manipulator to complete tests, operations, and maintenance. The position and
pose of the manipulator are mostly acquired through radiation-resistant video
cameras arranged in the hot cell. In this paper, deep learning-based target
detection technology is used to establish an experimental platform to test
the methods for target detection and pose estimation of teleoperation power
manipulators using two cameras.

Methods: In view of the fact that a complex environment affects the precision
of manipulator pose estimation, the dilated-fully convolutional one-stage object
detection (dilated-FCOS) teleoperation power manipulator target detection
algorithm is proposed based on the scale of the teleoperation power manipulator.
Model pruning is used to improve the real-time performance of the dilated-
FCOS teleoperation power manipulator target detection model. To improve the
detection speed for the key points of the teleoperation power manipulator,
the keypoint detection precision and model inference speed of different
lightweight backbone networks were tested based on the SimpleBaseline
algorithm. MobileNetv1 was selected as the backbone network to perform channel
compression and pose distillation on the upsampling module so as to further
optimize the inference speed of the model.

Results and discussion: Compared with the original model, the proposed model
was experimentally proven to reach basically the same precision within a shorter
inference time (only 58% of that of the original model). The experimental results
show that the compressed model basically retains the precision of the original
model and that its inference time is 48% of that of the original model.

KEYWORDS

teleoperation power manipulator, camera, target detection, pose estimation, deep
learning

1. Introduction

Hot cells in nuclear power plants and high-energy physics devices are shielded from
radiation (Zheng et al., 2015; Zhang et al., 2022), and they play a crucial role in testing,
operation, and maintenance activities. To facilitate tasks such as inspection, assembly,
disassembly, transportation, and part repair, hot cells are equipped with either a master-slave
manipulator or a teleoperation power manipulator (Pezhman and Saced, 2011; Assem et al.,
20145 Zhang et al., 2021). These manipulators are necessary to mitigate the harmful effects of
radiation on humans. To assist the teleoperator, the teleoperation power manipulator relies
on sensing technologies, including visual sensing (Maruyama et al., 2014) and force sensing
(Oosterhout et al., 2012), to gather information about the operation area.
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In hot cells, where the radiation environment limits the use of
certain sensors, radiation-resistant cameras are commonly installed
to capture on-site images and transmit them to operators via the
network. To regularly replace single modules in a tokamak vessel,
Qiu et al. (2016) used a hand-eye coordination method to ensure
the consistency between the operator’s hand movement and the
manipulator’s end effector movement. Ribeiro et al. (2020) designed
a hand-eye camera system for the acquisition of key information
in the operating environment. Lionel et al. (2018) introduced
the virtual reality technology in the assembly and tooling design
of the tokamak diverter to assist teleoperators and successfully
achieved assembly with a gap of <l mm. Ferreira et al. (2012)
designed a localization system based on cameras to accurately
estimate the position and direction of CPRH by capturing
video streams for the implementation of an augmented reality
system. Liu et al. (2020) proposed the vision-based breakpoint
detection algorithm and successfully identified and captured tiles
that had fallen onto the diverter by employing the watershed
segmentation algorithm.

Most of the information about the teleoperation power
manipulator’s position and pose comes from radiation-resistant
cameras in the hot cell. The operator’s teleoperation efficiency
is impacted by the limited visual information provided by this
method of observation solely by human eyes through cameras.
The application of technologies such as virtual reality (VR) or
augmented reality (AR) can integrate the information of cameras
into the operation platform of VR or AR, which is conducive to
improving the operation efficiency (Qiu et al., 2016; Lionel et al,
2018; Ribeiro et al., 2020). However, obtaining the teleoperation
power manipulator’s position and pose from the photographs is one
of the issues that need to be resolved in the hot cell.

The deep learning-based pose estimation algorithm can quickly
distinguish poses from RGB images and achieve satisfactory
estimation results. Kehl et al. (2017) proposed a direct regression-
based 6D pose estimation method to achieve end-to-end 6D
pose estimation. DeePose (Toshev and Szegedy, 2014) applied a
convolutional neural network (CNN) to human pose estimation
for the first time and achieved higher precision than traditional
methods. Pose coordinate regression-based algorithms, on the
other hand, only constrain the pose coordinates with the mean
square error and ignore the supervision of the spatial information
of the key points, making it difficult to further improve their
regression precision. Wei et al. (2016) proposed a sequential
architecture composed of convolutional networks to predict the
locations of the key points and introduced the key points heatmap
as the input of the next stage, which provides rich spatial
information for the subsequent network layer and improves the
robustness of the algorithm. Sun et al. (2017) proposed HRNet,
which is composed of multi-resolution subnetworks connected in
parallel and achieved the best pose estimation results on the COCO
dataset in 2019. Miseikis et al. (2018a,b) proposed a multi-objective
CNN, which uses 2D images to estimate the 3D positions of the
key points and used transfer learning techniques to adapt the
CNN trained to estimate the poses of UR robots to Kuka robots.
Heindl etal. (2019) proposed a multi-robot pose estimation method
based on a recurrent neural network, which uses 2D images as
input and simultaneously infers the number of robots in the scene,
the joint locations, and the sparse depth maps around the joint

Frontiersin Neurorobotics

71

10.3389/fnbot.2023.1193823

locations, demonstrating high generalizability to the real-world
images. Ning et al. (2020) presents a real-time 3D face-alignment
method that uses an encoder-decoder network with an efficient
deconvolution layer which has low prediction errors with real-
time applicability. Wu et al. (2022) presents an age-compensated
makeup transformation framework based on homology continuity,
and the experimental results show that the framework outperforms
existing methods.

The technical conditions for the pose estimation of
the

aforementioned studies. In this paper, target detection and pose

teleoperation power manipulators are provided by
estimation of teleoperation power manipulators are designed based
on deep learning, obtaining the teleoperation power manipulator’s
position and pose by two cameras in the hot cell, which is few
studied in this field at present. A dilated-fully convolutional
one-stage object detection (dilated-FCOS)

algorithm for teleoperation power manipulators is suggested in

target detection

accordance with its scale. For teleoperation power manipulators,
a keypoint detection algorithm based on SimpleBaseline has
been developed. This algorithm reduces the model’s inference
time while maintaining model precision. Through teleoperation
power manipulator pose estimation experiments, an experimental
platform for teleoperation power manipulator operation is
established to confirm the methods’ viability and efficacy.

The following is the layout of the remainder of the paper:
the construction of the experimental platform and the production
of the experimental data are both covered in detail in Section 2;
the proposed dilated-FCOS teleoperation power manipulator target
detection method is presented in Sections 3; the keypoint detection
method is in the Section 4; experiments and discussion are the main
focus of Section 5; summary of this work and suggestions for future
research are presented in Section 6.

2. Experimental platform and
experimental data

2.1. Construction of the experimental
platform

The experimental platform (Figure 1) consists of several
components: a teleoperation power manipulator, a camera system
with two cameras, a motion capture system, an image processing
module, and a teleoperation power manipulator display module.
The camera system captures real-time operational images of the
teleoperation power manipulator, while the image processing
module detects targets and estimates the pose of the manipulator.
The updated pose information is then inputted into the
teleoperation power manipulator display module to adjust its
position accordingly.

(1) Teleoperation power manipulator. Figure 2C depicts the
teleoperation power manipulator for teleoperation. It is configured
with eight degrees of freedom, consisting of four rotational and four
translational degrees of freedom. The mobile platform, depicted
in Figure 2A in two dimensions, allows the teleoperation power
manipulator to move forwards and backwards to reach the desired
operational position. Figure 2B presents the 3D model of the
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FIGURE 1
Experimental platform.

FIGURE 2
Model of the teleoperation power manipulator. (A) Mobile platform model. (B) Manipulator model. (C) Real manipulator.

teleoperation power manipulator, which includes a base, a shoulder,  platform’s translational direction are both made easier by the
an upper arm, a forearm, a wrist, and an end effector. motion capture system. The OptiTrack system (Motive Optical

(2) Motion capture system. Camera calibration and the creation ~ motion capture software., 2023) is the motion capture system used
of a global coordinate system that is parallel to the mobile in this paper.
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TABLE 1 OPT-CC500-GM-04 camera parameters.

Parameter type Parameter value

Data interface GigE
Resolution 2,448(H)*2,048(V)
Chip size 2/3”
Maximum frame rate 30 fps

Pixel size 3.45 um
Exposure time 34 ps-1s
Optical interface C

Size 29 mm x 29 mm x 42 mm

(3) Camera system. The camera system consists of two
industrial cameras, which capture the operational status of the
teleoperation power manipulator from two different angles. Table 1
provides the specific parameters of the cameras, including a focal
length of 16 mm, a distortion rate of <0.2%, and a resolution of 5
million pixels.

(4) Image processing module. The function of the image
processing module is to locate the teleoperation power manipulator
in a complex environment through the target detection algorithm,
send the relevant information to the key points detection network
for pose estimation, and input the pose information into the
teleoperation power manipulator display module. The angles of
the rotation joints of the teleoperation power manipulator are
calculated based on the angles between the vectors formed by every
two key points (O'Donovan et al., 2006). The translational joints are
located by determining the translational distances of the key points
in the 3D space through multiview-based triangulation (Zeng et al.,
1999). The target detection and pose estimation methods of this
module are the main research contents of this paper.

(5) The teleoperation power manipulator display module.
The module was developed using Python and the V-REP
Robot Simulator (Liu et al., 2017). To accurately represent the
real teleoperation power manipulator, a model was created in
Solidworks and subsequently imported into V-REP. The multiview
teleoperation power manipulator pose estimation model is then
utilized to continuously update the virtual teleoperation power
manipulator’s translational distances and pose information.

2.2. Preparation of the training dataset

To build a teleoperation power manipulator target detection
model, the sample data for training the target detection model must
be prepared first. The sample data are prepared in the following
two steps:

(1) Acquisition of moving images of the teleoperation
power manipulator

The image data are acquired mainly through the continuous
acquisition of moving images of the teleoperation power
manipulator from different angles through two cameras. To
improve the robustness of the model, data were collected under
different lighting conditions.
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(2) Dataset labeling

The key points (namely, the base, the shoulder, the upper arm,
the forearm, and the wrist) of the teleoperation power manipulator
are shown in Figure 3. The labeling tool Labellmg and the Visual
Object Classes (VOC) Format are utilized in this paper. With
reference to the MPII human pose estimation dataset (Simon et al.,
2016), the files are labeled with the visibility and coordinates of
the five key points. In addition, to improve the ability of the
model to detect occluded key points, the slightly occluded key
points were labeled and set to be visible. The different positions
of the teleoperation power manipulator have different degrees of
illumination during the operation. Color dithering is used to boost
the robustness of the model to illumination, and random noise is
added to the data to boost the model’s robustness. The total number
of samples generated was 4,000. The numbers of samples in the
training set and the test set obtained after random allocation of the
total samples were 3,600 and 400, respectively.

3. Dilated-FCOS method

Fully Convolutional One-Stage Object Detection (FCOS)
(Coppelia Robotics GmbH, 2022) is a fully convolutional anchor-
free single-stage target detection algorithm. To suit the application
of teleoperation power manipulator, a dilated-FCOS teleoperation
power manipulator target detection method, is proposed. The
structure of dilated-FCOS is shown in Figure 4.

(1) The improved network structure of the FCOS. According
to the characteristics of the large target in teleoperation power
manipulator detection, the FCOS network structure is modified to
improve the detection precision, to reduce the time required for
feature extraction, and to increase the model inference speed.

(2) Channel pruning of the FCOS. The FCOS target
detection model’s backbone network (darknet19) was optimized
with the channel pruning algorithm to make it more precise
and effective due to its high parameter redundancy and high
computational overhead.

3.1. Method

3.1.1. FCOS network

The structure of the FCOS network is shown in Figure 5.
Darknet-19, the backbone network of FCOS (Andriluka et al.,
2014), outputs three scale outputs (C3, C4, C5), and the feature
pyramid outputs five scale outputs (P3, P4, P5, P6, P7). P3 is a high-
resolution feature map with rich spatial information. P4 focuses on
the detection of small targets. P5, P6, and P7 are low-resolution
feature maps with rich semantic information, which focus on the
detection of large and medium targets. The design concept of FCOS
is divided into the following points:

(1) Pixel by pixel for the detection. Anchor-based algorithms
often rely on artificially designing a significant number of
anchor frames to enhance the recall rate. However, this approach
introduces a challenge of imbalance between positive and negative
samples during training, as the majority of anchor frames
are negative samples. Additionally, the calculation complexity
increases due to the intersection ratio between all anchor frames
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FIGURE 3
Keypoint labeling. (A) Camera(View)1. (B) Camera(View)2.
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FIGURE 4
Dilated-FCOS method.

FIGURE 5
Network structure of the FCOS.
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and boundary boxes during training. In contrast, FCOS is an
anchor-free algorithm that avoids the use of anchor frames. Instead,
it maps each feature point on the feature map to the original
map and performs regression. By incorporating a larger number
of positive samples, FCOS facilitates improved model training and
leads to significant enhancements in the detector’s performance.

(2) Multi-scale training strategy

Deep network has rich semantic information, that is, the output
result is not affected by the position of the feature graph, which
is suitable for classification task; the shallow feature has rich
spatial information, that is, the output result changes according
to the change of the features, which is suitable for regression task.
Target detection requires both the regression of the target location
and the target classification. To solve these two contradictory
tasks simultaneously, FCOS adopts a feature pyramid structure
to fuse the feature maps at different scales, so that the semantic
information and spatial information between the different feature
maps can complement each other. The feature pyramid network

' '—» Predict

— Predict

FIGURE 6
Feature pyramid networks.

10.3389/fnbot.2023.1193823

structure is shown in the Figure 6. The first part of the network
is the path from the bottom, the backbone network, and the path
is the lack of spatial information, and the features, adding the
spatial information and semantic information of the feature map.
In the third part, the lateral connection path adjusts the number of
channels in the fusion to perform prediction and regression tasks.
Integrating the information of different scales, the feature pyramid
greatly improves the target detection accuracy of FCOS.

(3) Center confidence degree prediction

As shown in Figure 6, the central confidence degree is a branch
increased in the prediction of each test head. The calculation of
the central confidence is such as formulas (1). The detection box
away from the central point is optimized by the cross entropy loss
function. By combining the boundary box away from the object
with the non-maximum suppression, the detection performance is
significantly improved.

min(t*, b*)

max(t*, b*)

min(l*, r*)
centerness = X
max(l*, r*)

1)

where [*, ¥, and b* are the distance from the sampling point to the
four sides of the boundary box.

3.1.2. The improved network structure of the
FCOS

Figure 7 shows the improved network structure of the FCOS
with two major improvements.

(1) Improving the detection precision of the FCOS.
Teleoperation power manipulator detection is a form of large
target detection. Considering that the C5 feature layer has a
limited detection scale range, a dilated encoder (Tian et al., 2020)

FIGURE 7
The improved network structure of the FCOS.
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FIGURE 8
Dilated encoder.

is introduced to enrich the receptive field of the C5 feature layer
by stacking continuous dilated residual units, and P6 is retained
to improve the robustness of large target detection. The dilated
encoder is shown in Figure 8. The first part of the encoder reduces
the number of output channels through a 1 x 1 convolutional
layer and then extracts semantic feature information through a 3
x 3 convolutional layer. The second part enlarges the receptive
field through stacking continuous 3 x 3 dilated residual units with
different dilation rates.

(2) Improving the inference speed of the model. Detecting the
shallow features of small targets has very little effect on large targets
such as teleoperation power manipulators. The shallow feature
maps (P3, P4) are discarded here to improve the detection speed
of the FCOS, and the P7 feature layer is discarded to improve
the real-time performance of the network model. The improved
network only performs the final classification, position regression,
and central confidence interval prediction on the feature maps P5
and P6.

3.1.3. Channel pruning of the FCOS

Channel pruning (Redmon and Farhadi, 2017) is a method that
improves the real-time performance of a model by compressing
the model. Through sparse training on the channel scaling factor,
channel pruning leads to channel sparsification.

Adding a batch normalization (BN) layer (Chen et al., 2021)
after the convolutional layer can achieve rapid convergence and
better generalization performance. The calculation formulas of BN
are as follows:

JoTte 2)

where Z;, is the input tensor, Z,,; is the output tensor, u is the
vector of the mean value of the convolution result of each channel, o
is the vector of the variance of the convolution result, € is a constant,
y is the learnable scaling factor in the BN layer, and  represents the
learnable bias coefficient in the BN layer.

In Formula (2), when y approaches 0, the effect of Z;, on
Zout is negligible. Here, y is used as the scaling factor, and the
parameter y is penalized to save computational overhead and to
avoid introducing unnecessary parameters.

The steps of channel pruning are as follows: (1) put all image
data samples into the optimal model for sparse training; (2) sort the
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scaling factor y of each BN layer; (3) prune the convolution layer
corresponding to the scaling factor that has little effect on model
performance; and (4) fine-tune the new model obtained by pruning
to improve the detection performance of the network.

3.2. Test of dilated-FCOS

3.2.1. Effectiveness test of the pre-trained model

Darknet19 is designed for ImageNet (Krizhevsky et al., 2012).
Compared with the ImageNet dataset, the teleoperation power
manipulator dataset is relatively small in size. Therefore, we first
load and pre-train darknet19 on ImageNet to obtain the network
weights to improve the network convergence speed. Two sets
of experiments are set up to verify the effectiveness of the pre-
trained model. Experiment 1 uses random weights to initialize
the network, while Experiment 2 uses pre-trained weights on
ImageNet to initialize the network. Both sets of experiments used
the same learning strategy and optimization method. After 100
iterations, the loss curve was obtained, as shown in Figure 9. The
results show that loading the pre-trained model can accelerate the
model convergence.

3.2.2. Performance test of target detection

FCOS, Faster-RCNN (Ren et al., 2016), and dilated-FCOS were
used for the target detection performance test. In the experiment,
the mean average precision (mAP) (Henderson and Ferrari, 2017)
was used to measure the target detection performance of the model,
and the inference time (ms) was used to measure the inference
speed of the model. The intersection over union (IoU) threshold
was set to 0.5, and a uniform image input size of 640 x 640 was used
in all three models. The test results shown in Table 2 indicate that
the dilated-FCOS is superior to the FCOS in both model precision
and inference time.

To further test the robustness of the network, two sets of
experiments were conducted in this study. In the first set, 640
x 640 images with color perturbations were used as inputs,
while in the second set, images with noise interference were fed
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into the network. The partial experimental results, as shown in
Figure 10, demonstrate that the network exhibits excellent anti-
interference ability.

3.2.3. Performance test of channel pruning

The first step of channel pruning is sparse training and
screening out the channel numbers that have little impact on
the output result. It is necessary to set the sparsity coefficient .

TABLE 2 Performance comparison of different models.

Model mAP (%) Inference time (ms)
FCOS 93.78 31.59
Faster-RCNN 96.38 63.52
Dilated-FCOS 95.24 23.86

10.3389/fnbot.2023.1193823

Figure 11 shows the distribution of the scaling factor y at different
. values. It can be seen that when A = 2, y is sparsified, but the
effect is not obvious; when \ = 5, y is close to 0, and the effect is
obvious. Since h = 5 is effective in screening the channel number,
h =5 1is selected to complete the sparse training.

Table 3 compares the performances of the model on the
teleoperation power manipulator test set under different pruning
rates. The original model has an mAP of 95.24%, a params
of 3596 M, and an inference time of 23.86s on RTX 2080Ti.
When the pruning rate is set to 0.1, the precision of the
model increases slightly. This indicates that a higher precision
can be achieved with fewer model parameters by removing
the number of redundant channels of the original model.
When the pruning rate is 0.1-0.6, the average precision of
the model generally shows a slow downward trend. When the
pruning rate is 0.6, the precision of the model reaches 92.78%.
When the pruning rate is 0.7, the precision is reduced to

FIGURE 10

Results of network robustness. (A) Increase in brightness. (B) Decrease in brightness. (C) Adding noise.
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TABLE 3 The results of channel pruning.

Pruning mAP (%) Params Compression Inference
ratio ratio time
(Ms)
0 95.24 3596 M 1 23.86
0.1 95.58 3220M 1.11 2293
0.2 94.46 28.84 M 1.24 21.14
0.3 94.12 25.85M 1.39 20.08
0.4 93.79 23.28M 1.54 19.46
0.5 93.51 21.10M 1.70 18.38
0.6 92.78 19.32M 1.86 17.22
0.7 86.79 17.94M 2.00 17.14
97 —e— mAP(%) #9295
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FIGURE 12
Different pruning rates of mAP and inference times.

86.79%. These results indicate that channel pruning can maintain
the precision of the model within a certain range and will
damage the precision of the model after exceeding a certain
threshold.

Figure 12 shows the variation trend of the model precision
and inference time on the teleoperation power manipulator
dataset at different pruning rates. The model precision shows
an upwards trend as the pruning rate increases from 0 to 0.1
and a gentle downward trend as the pruning rate increases
from 0.3 to 0.6, while the inference time shows a more obvious
downward trend as the pruning rate increases as the pruning
rate increases, which indicates high model precision and small
inference time delay at this time. When the pruning rate
reaches 0.7, the precision decreases drastically, which indicates
that pruning has severely damaged the precision of the model
and has little effect on the optimization of the inference time.
Therefore, the pruning rate is selected to be 0.5 in this paper
to simultaneously achieve high precision and high inference
speed.
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4. Keypoint detection method

SimpleBaseline (Xiao et al., 2018) is a simple and efficient 2D
human keypoint detection network composed of the backbone
network ResNet (Szegedy et al, 2016) and three transposed
convolutions that are responsible for upsampling to restore the
resolution. In this paper, a SimpleBaseline-lite-based keypoint
detection method for teleoperation power manipulators is
established through two main steps: replacing ResNet with
a lightweight backbone network to improve the real-time
performance of the model; compressing the channels of transposed
convolutions to improve the inference speed of the model.

4.1. Setting of model training parameters

In this test, the PyTorch framework is used for model training,
and the number of iterations is 140 epochs. The warmup strategy is
used to improve the convergence speed of the model. The learning
rate increases as the number of iterations increases and reaches the
initial learning rate. The initial learning rate of the optimizer Adam
is set to 0.001, and when the number of iterations reach 50 epochs,
its learning rate decreases by 10-fold. The loss function is shown in
Figure 13. The model can complete the convergence in 70 epochs.
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A

FIGURE 15

Visualization of prediction results on test sets. (A) Viewing angle 1. (B) Viewing angle 2.

In this paper, the Percentage of Correct key points (PCK) (Xiao
et al., 2018) is used to analyse the detection performance of the
SimpleBaseline network. PCK is the percentage of the predicted key
points with a normalized distance from the ground truth that falls
within the set threshold. PCK is calculated using formula (3).

1 8(v/o T 0 )

Pek= =1 3)
(o) = [ ot

where (x;, y;) are the 2D coordinates of a keypoint, (%;, ;) are the
2D coordinates of the keypoint predicted by the network, and ¢ is
the pixel threshold.

Figure 14 shows the PCK of the 2D key points of the
teleoperation power manipulator under different pixel thresholds.
The experimental results show that the PCK reaches 91.5% under
the pixel threshold of 40. Figure 15 shows the distribution of the
key points predicted by the network, which indicates that the
SimpleBaseline network has a good detection effect on the key
points of the teleoperation power manipulator.

4.2. Test and selection of lightweight
convolutional networks

The lightweight feature networks MobileNetv1 (Howard et al.,
2017), MobileNetv2 (Liu et al., 2018), MobileNetv3 (Howard et al.,
2020), and ShuffleNetv2 (Ma et al, 2018) are used to replace
ResNet50 as the feature extraction network and are tested on the
teleoperation power manipulator dataset. The results are shown in
Figure 16.

Figure 16 shows that among the four types of lightweight
networks, the sparsity coefficient N of MobileNetv2 and that
of MobileNetv3 have a relatively large decrease. Based on
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FIGURE 16

The PCK of different lightweight networks under different pixel
thresholds.

the analysis of the network structure, MobileNetv2 has many
depthwise separable convolutions compared with MobileNetv1 and
introduces an inverted residual structure to solve the problem of
the deactivation of depthwise separable convolutions. However,
compared with the traditional convolution, the depthwise separable
convolution extracts less effective feature information, resulting in
the lack of spatial localization information and affecting the model
precision.

The detection of the 2D key points of teleoperation power
manipulators requires the contextual information of the feature
map, which requires rich spatial information. For low-dimensional
feature maps, the greater the number of channels is, the more
abundant the spatial information. Resnet50, MobileNetvl, and
ShuffleNetv2 have many channels in the low-dimensional network
layer and can achieve good results in the detection of key points of
teleoperation power manipulators.
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Table 4 shows the test performances of different feature
extraction networks. The input image size for both training and
testing is 800 x 160. The params of MobileNetv1-SimpleBaseline
is only 27% of the original value, the computational complexity
is reduced to 55% of the original value, and the inference
time is reduced to 56% of the original value. In summary,
the MobileNetvl-SimpleBaseline network is selected in this

paper.

4.3. Pose distillation

The upsampling module of SimpleBaseline is composed of
three transposed convolutions with 256 channels. As the resolution
of the upsampling feature map increases, the computational
overheads of the transposed convolutions also increase. Compared
with ResNet50, MobileNetvl has an inferior feature extraction
performance and sparser input features of the transposed
convolutions. Keeping the number of channels in MobileNetvl the
same as that in ResNet may cause model redundancy and reduce
the inference speed.

In this paper, the model is optimized by compressing the
number of channels in the transposed convolutional layer. The
number of channels of the three transposed convolutions is set to
64n, 32n, and 16 n, respectively, i.e., 384, 192, and 96 (n is the
number of key points, which is set to 6). After compressing the
number of channels, the computational complexity is reduced to
1/3 of the original value, and the params is reduced to 2/3 of the
original value.

Table 5 compares the performance of the MobileNetvl-
SimpleBaseline after compression of the number of channels
(SimpleBaseline-a) with the performance of the uncompressed
network. After channel compression, the model redundancy
is reduced, and the parameters and computational complexity
are greatly reduced. Although the computational overhead is
greatly reduced, and the detection time is only 64% of that
of the original model, the detection precision has reached
94% of that of the original model. This result shows that
there are still redundant parameters in the upsampling

TABLE 4 The performance of the lightweight SimpleBaseline in the test set.

10.3389/fnbot.2023.1193823

module of SimpleBaseline-a. Based on this network, a model
with higher precision is designed through pose distillation in
this paper.

Pose distillation transfers the knowledge learned by a large
network with good performance to a small network that
is isomorphic or anti-isomorphic to the large network and
compresses the model without significantly reducing the precision
of the model (Hinton et al., 2014). The training process can be
divided into two stages: training a powerful keypoint detection
network as a teacher network and training a lightweight student
model that simultaneously has high precision and high speed. The
teacher model guides the student network to acquire high-level
semantic information and strengthens the learning of the overall
feature and spatial information by the student model.

Here, MobileNetvl-SimpleBaseline is selected as the teacher
model, and SimpleBaseline-a is selected as the student model. The
experiment is based on the PyTorch 1.5.1-GPU framework, the
experimental operating system is Ubuntu 18.04, and the CUDA
version is 10.2. The resolution of the network input image is 800
x 160, the initial learning rate is set to 0.001, the Adam optimizer is
used, the batch size is set to 16, the momentum is set to 0.9, and the
number of iterations is set to 140. The results are shown in Table 6.

Table 6 shows that the model precision of the student model
after pose distillation was improved by 2%, but the parameters,
computational complexity, and inference speed did not change.
The results show that pose distillation can improve the detection
precision of the key points of the teleoperation power manipulator.

The effectiveness of pose distillation is further illustrated by
the visualized images in this paragraph. Figure 17 shows the
predictions of the original student model (SimpleBaseline-a) and
the student model after pose distillation (SimpleBaseline-lite)
and the labeled visualized images. Occlusion and self-occlusion
will inevitably occur in the teleoperation power manipulator
(Figure 17A). Some occluded key points reduced the ability of the
student model to extract spatial feature information, so the student
model cannot fully learn the knowledge between channels of the
feature map and the knowledge between the feature maps, resulting
in a large deviation between the prediction result and the labels,
which is the main reason for the decrease in detection precision.
After the “tutoring” by the teacher model, as shown in Figure 17B,

Feature extraction network Parameter = Computational complexity Inference time (ms) PCK@40 pixel(%)
(GFLOPs)

ShuffleNetv2 7.54M 12.97 2273 90.3

MobileNetv1 950 M 14.07 18.17 90.9

MobileNetv2 9.56 M 13.92 21.2 83.4

MobileNetv3 557M 11.37 23.93 81.1

Resnet50 33.99M 25.18 30.21 915

TABLE 5 Comparison of the performances of SimpleBaseline-a and mobileNetv1-SimpleBaseline.

Network Parameter = Computational complexity (GFLOPs) Inference time (ms) PCK@40pixel(%)
SimpleBaseline-a 8.75M 6.49 14.73 87.4
MobileNetv1-SimpleBaseline 9.50 M 14.07 18.17 90.9
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TABLE 6 Comparison of model performance after distillation.

10.3389/fnbot.2023.1193823

Network Parameter = Computational complexity (GFLOPs) Inference time (ms) PCK@40pixel(%)
SimpleBaseline-lite 8.75M 6.49 14.78 89.4
SimpleBaseline-a 8.75M 6.49 14.73 87.4
MobileNetv1-SimpleBaseline 9.50 M 14.07 18.17 90.9

FIGURE 17

Visualization of model prediction results. (A) Before the "tutoring” by the teacher model. (B) After the "tutoring” by the teacher model.

the student model has an enhanced ability to extract difficult-to-
extract feature information because the teacher model can give the
student model extra supervision due to its excellent ability to extract
global spatial information. Pose distillation has improved the ability
of the student model to detect the key points of the teleoperation
power manipulator.

5. Experiment

In this section, we selected 10 arbitrary pose images
of the teleoperation power manipulator during its operation.
Simultaneously, we recorded the readings from the demonstrator of
the teleoperation power manipulator. These demonstrator readings
serve as the true values for our measurements. Our measurement
objectives encompass seven evaluation objects: the translational
distance along the x-axis, the translational distance along the y-
axis, the translational distance of the shoulder, the rotation angle
of the upper arm, the rotation angle of the forearm, the rotation
angle of the wrist, and the translational distance of the wrist.
To assess the accuracy of our measurements, we utilized the
errors associated with each evaluation object in every image as
our evaluation indicators. In Experiment 1, the improved dilated-
FCOS and SimpleBaseline-lite were used for pose estimation of the
teleoperation power manipulator. In Experiment 2, the FCOS and
SimpleBaseline were used to initialize the network with training
weights through the same optimization method.
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TABLE 7 Teleoperation power manipulator pose estimation experiment.

Model
Dilated-FCOS + FCOS +
SimpleBaseline-lite ~ SimpleBaseline
Translational 6.27 6.36
distance along the
X-axis/cm
Translational 6.31 6.25
distance along the
y-axis/cm
Translational 4.32 4.34
distance of the
shoulder/cm
Rotation angle of 0.63 0.67
the upper arm/°
Rotation angle of 0.53 0.52
the forearm/°
Rotation angle of 0.56 0.52
the wrist/°
Translational 4.31 4.35
distance of the
wrist/cm

The pose estimation performances of different algorithms are
shown in Table 7. The improved dilated-FCOS + SimpleBaseline-
lite algorithm is superior to the FCOS + SimpleBaseline algorithm
in some tasks, such as translation along the x-axis, translation of the
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shoulder, the rotation angle of the upper arm, and translation of
the wrist, because the improved dilated-FCOS achieves the stable
detection of the position of the teleoperation power manipulator
by introducing a dilated encoder based on the characteristics
of the teleoperation power manipulator and thus lays a good
foundation for the subsequent pose estimation task. Other tasks
show no significant differences between the two algorithms, which
indicates that model weight reduction and pose distillation of
SimpleBaseline have not significantly affected the model precision.
However, in terms of computational speed, the average frame rate
of the improved dilated-FCOS + SimpleBaseline-lite algorithm
reaches 5.8 fps, while that of the original FCOS + SimpleBaseline-
lite algorithm reaches ~4.3 fps, which is 74% of that of the
former. The results show that the pose estimation algorithm
proposed in this paper has better performance in the teleoperation
power manipulator pose estimation task than the FCOS +
SimpleBaseline algorithm.

6. Conclusion

In this paper, the camera-based methods for target detection
and pose estimation of teleoperation power manipulator is studied.
The dilated-FCOS algorithm is proposed based on the FCOS
algorithm and the scale of the teleoperation power manipulator.
The shallow feature maps (P3, P4) of FCOS are discarded
here to improve the detection speed of the FCOS, and the
P7 feature layer of FCOS is discarded to improve the real-
time performance of the network model. Model pruning is
used to improve the real-time performance of the dilated-FCOS
teleoperation power manipulator target detection model. To
improve the detection speed for the key points of the teleoperation
power manipulator, MobileNetvl was selected as the backbone
network based on the study of the SimpleBaseline algorithm
and the comparison between keypoint detection precision and
model inference speed of different lightweight backbone networks.
To further optimize the inference speed of the model, the
upsampling module was subjected to channel compression and
pose distillation.

Our future work is as follows:

(1) The paper employs a motion capture system that relies
on hand-eye calibration and an extrinsic calibration method for
industrial cameras to track the movement of a teleoperation power
manipulator. However, it is important to note that the current
motion capture system may not be easily applicable in general
scenarios. As a suggestion for future research, it would be beneficial
to explore calibration methods that provide better generality and
higher accuracy, addressing the limitations of the current approach.
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Deep neural networks (DNNs) have been shown to be susceptible to critical
vulnerabilities when attacked by adversarial samples. This has prompted the
development of attack and defense strategies similar to those used in cyberspace
security. The dependence of such strategies on attack and defense mechanisms
makes the associated algorithms on both sides appear as closely processes, with
the defense method being particularly passive in these processes. Inspired by
the dynamic defense approach proposed in cyberspace to address endless arm
races, this article defines ensemble quantity, network structure, and smoothing
parameters as variable ensemble attributes and proposes a stochastic ensemble
strategy based on heterogeneous and redundant sub-models. The proposed
method introduces the diversity and randomness characteristic of deep neural
networks to alter the fixed correspondence gradient between input and output.
The unpredictability and diversity of the gradients make it more difficult for
attackers to directly implement white-box attacks, helping to address the
extreme transferability and vulnerability of ensemble models under white-box
attacks. Experimental comparison of ASR-vs.-distortion curves with different
attack scenarios under CIFAR10 preliminarily demonstrates the effectiveness of
the proposed method that even the highest-capacity attacker cannot easily
outperform the attack success rate associated with the ensemble smoothed
model, especially for untargeted attacks.

KEYWORDS

deep neural network, adversarial robustness, stochastic ensemble, random smoothing,
cyberspace security

1. Introduction

Deep learning techniques have been successfully applied in various computer vision
applications, ranging from object detection (Ren et al., 2016) and image classification (Perez
and Wang, 2017) to facial recognition (Parkhi et al., 2015) and autonomous driving (Bojarski
etal, 2014) and even in medical computer-aided diagnosis (Hu et al., 2020; You et al., 2022).
In these application scenarios, deep learning can be used as an enhancement technique
for real data as an artificial intelligence generated content (AIGC) technique to improve
performance on the one hand, and as a tool to generate false data to degrade the performance
of the model on the other. However, with the increasing use of deep neural networks
(DNNGs) in various application areas, such as facial recognition technology, for encryption
applications, autonomous driving technology for road safety, and computer-aided diagnosis
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for life safety, there is an urgent need to principally ensure effective
defense against security threats, not just the good performance.

The studies on adversarial samples reveal the extreme
vulnerability of deep networks, making the study of their
robustness even more urgent for security applications. In, Szegedy
et al. (2014) discovered that the input-to-output mappings
learned by DNNs are generally discontinuous so that even
small perturbations in some network inputs can lead to high
misclassification errors, which are known as adversarial samples. As
a result, many adversarial learning methods similar to cyberspace
security games have been developed for both the attack and defense
sides. Research on attack and defense in DNN primarily focuses
on adversarial samples because of their proactive role in attack and
defense games (Akhtar and Mian, 2018; He et al., 2020).

The development of attack methods is constantly intertwined
with the proposal of defense methods. Both types of methods
act as opposing sides in a competitive game, developed in
a mutually promoting and closely reciprocal process. Certified
defense methods are supported by rigorous theoretical security
guarantees that obtain a robustness radius under the Lp distortion
constraint (Fischetti and Jo, 2017). Nevertheless, these certified
defense methods are still not widely used in DNN architectures
on big data through exact or conservative approaches. More
flexible and effective defense methods are empirical methods
based on assumptions and experimental results (Papernot et al,
2016; Lakshminarayanan et al, 2017; Kurakin et al., 2018).
Although empirical defense methods are convenient, they have
practical limitations in their applicability, which may result in
attackers generating more challenging adversarial samples to break
the defense.

The rapid development of attack algorithms and extensive
research on empirical defenses eventually led to the game of attack
and defensive in deep learning files. For example, the distillation
method (Papernot et al, 2016) which uses gradient shielding
to prevent white-box attacks, is not effective against the CW
attack (Carlini and Wagner, 2017). The model ensemble method
(Lakshminarayanan et al., 2017) was initially proposed as a defense
method but has been found to be ineffective (He et al., 2017)
and is now commonly used as an attack method to improve
the transferability of adversarial samples (Tramer et al, 2018).
The nature and wide applicability of empirical defense methods
have sparked intense competition with attack methods. However,
defense methods are primarily passive.

According to theoretical developments in cybersecurity, the
two sides in a competitive game without a strongly secure defense
method will eventually reach a Nash equilibrium (Attiah et al,
2018). To address this challenge, generalized robust-control defense
methods, such as moving target defense (MTD) (Jajodia et al,
2011) and dynamic defense model (DDM) (Wu et al., 2019; Wu,
2020), have been proposed with probabilistic formulations of the
network attributes. The inherent randomness and unpredictability
of the system make it more difficult for the attacker to detect,
highlighting the importance of the same defense approach applied
in DNNs. Recent research on adversarial robustness indicates that
adversarial examples are inevitable for DNNs. This article starts
from the premise of learning from the development experience of
cybersecurity under the current technical levels and treating the
classification problem based on deep neural networks as a whole
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system rather than a single model. In the case where effective
adversarial samples mostly depend on specific model information
while the adversarial transferability needs to be improved, this
article proposes an attribute-based stochastic ensemble model
using the DDM ideology to combine randomness with model
diversity. In the proposed method, the ensemble quantity, network
architecture, and smoothing parameters are used as ensemble
attributes to dynamically change it before each inference prediction
request. As shown in Figure I, these variable attributes of
the ensemble model represent a more active and generalized
defense approach to overcome the limitations of empirical and
deterministic defense at the current stage. In summary, the main
contributions of our study are as follows:

(1) Facing the endless arms race of adversarial attack and
defense, this article proposes an attribute-based stochastic
ensemble model using the DDM ideology to combine
randomness with model diversity. A more diverse collection
of heterogeneous and redundant models is created for the
ensemble, accounting for variations in ensemble attributes
and dynamically changing structures for each inference
prediction request at the model level, hoping to further
change the passive position of the defense at this stage.

(2) For the robustness evaluation of the proposed method,
this article considers the attack and defense game idea
as a starting point, assuming that the attacker knows the
defense strategy, and simulates a series of possible adversarial
game processes for a more comprehensive evaluation. The
different capabilities of the attack scenario are set up and the
potential defense risks are assessed using attack success rate
versus distortion (ASR-vs.-distortion curves) based on Monte
Carlo simulations.

(3) We analyze different robustness results under attack
scenarios and algorithms with various capabilities and
identify important conditions for the proposed method to
exert its advantages in practice. The experimental results
under CIFAR10 show that even the most capable attacker
is unable to outperform the best result under current
random-based methods, demonstrating the effectiveness of
the proposed method in attack and defense games.

2. Related work

2.1. Defense method based on input
randomization

Recently, theoretical guarantees for the robustness of
DNNs have been gradually combined with relevant aspects of
cybersecurity. Random smoothing was originally proposed based
on the intention of differential privacy (Lecuyer et al, 2019)
from cyberspace defense methods to prevent the attackers from
obtaining exact gradient information by adding random noise to
the input image during training and testing (Cohen et al., 2019;
Lecuyer et al, 2019; Li B. et al, 2019). Random self-ensemble
(RSE) (Liu et al, 2018) and Smoothed WEighted ENsemble
(SWEEN) (Liu et al., 2020) improve the adversarial robustness by
combining the randomness properties in the case of the ensemble.
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Unlike these previous studies, this study is inspired by the DDM
ideology in cyberspace security and sets the model parameters
on which the attack conditions directly depend as the objects of
randomization to further improve the adversarial robustness under
ensemble conditions.

2.2. Defense methods based on diversified
ensemble networks

In addition to the gradient shielding effect of the random
smoothing, the robustness provided by ensemble models also
depends on the diversity of the sub-model (Lakshminarayanan
et al,, 2017). Constraints on the gradient diversity of sub-models
mostly depend on empirical conclusions about the diversity
of model architecture (Kurakin et al, 2018) or the training
hyperparameters (Wenzel et al, 2020) and gradient diversity
between sub-models (Pang et al., 2019). Unlike the fixed ensemble
of diverse sub-models in these methods, this study uses the
empirical conclusions of model attributes to contrast the diverse
sub-models. By randomly selecting these attributes, this method
combines diversity and randomization characteristics to improve
adversarial robustness under the ensemble condition.

2.3. Adversarial samples and robustness
evaluation

Attack algorithms can be divided into white-box and black-
box methods based on their capabilities (Akhtar and Mian,
2018). White-box methods rely on full knowledge of the network
gradients. The fast gradient sign method (FGSM) (Goodfellow
et al, 2015) is a basic and effective method that generates
adversarial samples by adding the sign reverse of the gradient to the
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original images. Based on attack performance and transferability,
iteration-based approaches include the basic iterative method
(BIM) (Kurakin et al., 2016), momentum iterative method (MIM)
(Dong et al, 2018), and projected gradient descent method
(PGD) (Madry et al., 2018). In contrast, black-box attackers have
no knowledge of the network gradients that can be divided
into query-based and transfer-based methods. The query-based
method achieves gradient estimation by querying the output of
the target model including natural evolution strategies (NES) (Ilyas
et al., 2018), simultaneous perturbation stochastic approximation
(SPSA) (Uesato et al., 2018), and NATTACK (Li VY.
2019). The transfer-based method generates adversarial samples

et al.,

by constructing substitution models, usually using the ensemble
model constructed by normally trained sub-models (Tramer et al.,
2018) or shadow model (Zhang et al., 2022). In previous studies,
different adversarial sample generation algorithms can verify the
different performances of the defense method from different
perspectives. Unlike the previous single analysis of the defense
capability under optimal attack algorithms, this study considers the
game-like nature of the attackers and designs more diverse attack
and defense scenarios under random conditions to fully verify the
effectiveness of the proposed method.

3. Materials and methods

This study focuses on the image classification task of CIFAR10
(Krizhevsky and Hinton, 2009) for preliminary verification. Section
3.1 first introduces the basic method of random smoothing and
shows the relationship with the proposed stochastic ensemble
model to theoretically demonstrate that the proposed method
achieves a certified robust radius no less than the state-of-the-
art (Liu et al., 2020) under the random conditions. Furthermore,
the empirical diversity requirement between sub-models in
the ensemble is characterized by attribute-based heterogeneous
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redundant models to improve the robustness of the stochastic
ensemble model in Section 3.2. Finally, Section 3.3 outlines the
strategy for a stochastic ensemble approach with variable attributes.

3.1. Preliminaries of stochastic ensemble
modeling

Let the random smoothing model g be trained by a basic
classifier f by sampling, adding the noise § ~ N (0,02I) to the
input images and minimizing the corresponding classification
losses (Cohen et al., 2019; Lecuyer et al., 2019; Li B. et al., 2019).
For the model prediction in the training and testing process, the
output of random smoothing model g is defined as a mathematical
equation as follows:

£ = Es oy (o2 [f (x +9)] (1)

An ensemble model f,; containing K models obtains the
final prediction by summing the function outputs of the
individual candidate models. The mathematical representation of
the ensemble model can be written as follows:

K
fons (,0) =Y _f (x,6) (2)

k=1

The SWEEN approach creates an ensemble-smoothed model
with a weight parameter w for each model, which improves the
provable robustness radius (Liu et al, 2020). In terms of the
probability distribution of the input noise, the predicted output of
the SWEEN model is given by a mathematical expectation operator
as follows:

K K
SWEEN = E; [Z worf (x+8; ek)} = > wEs [f (x+8: 6]

k=1 k=1

K
= ) org (x; 6p) (3)

k=1

The constant weight parameters w of the candidate models are
independent of the SWEEN model output and can be optimized
as w". Unlike SWEEN, the ensemble attributes of the proposed
stochastic ensemble model (SEM) are randomly adjusted to
dynamically structure the ensemble model at each time inference
prediction request making the output of candidate models in
SEM have an additional mathematical expectation in terms of
probability of occurrence. However, the probability of occurrence
of a particular candidate model under the SEM is assumed to be

determined by the expectation E(f;) = wy and statistically

occurrence
independent of the prediction expectation. Therefore, as shown
in Equation (4), the stochastic ensemble and SWEEN models can
be equivalent in terms of output expectations. The theoretical
improvement of the robustness radius by the SWEEN model
(Liu et al, 2020) is a special case of the SEM. By controlling
the probability of the occurrence of sub-models, the SEM can
theoretically achieve well-certified robustness. However, more

importantly, such changes based on the model level improve the
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dynamic properties of the ensemble and achieve a more generalized
dynamic change of the model gradient in each inference prediction:

K K
SEM = E Z fk (x+8; 9k)i| = Z E(fk)apparence
k=1 k=1

X E[fk (x+5§9k)] (4)
K K
SEM= Y ofE [fi (x + 8; 60) |= Y wiE [fi (x + 85 61|
k=1 k=1
= SWEEN when w;, = oy

3.2. Attributes-based heterogeneous
redundant models

The application of random input to the sub-model parameters
in SWEEN (Liu et al., 2020) improves the certified robustness of
the ensemble. The analysis in Section 3.1 has shown that these
sub-models can also serve as a random condition, expanding
randomness at the model level without compromising the certified
robustness. According to previous empirical defense conclusions,
the diversity between sub-models enhances the robustness of
the ensemble condition (Pang et al., 2019; Wenzel et al., 2020).
Moreover, diversity is also the DDM property in cybersecurity
(Wu et al, 2019). Therefore, the first step for the proposed
variable attribute-based SEM is a collection of heterogeneous
redundant sub-models. In addition to the diversity of the model
architectures (Kurakin et al, 2018), different hyperparameters
for optimizing the sub-models can also have different effects on
the convergence of the gradient (Wenzel et al, 2020). Random
smoothing hyperparameters for a variety of noise parameters
in training further enhance model redundancy and diversity
within the same architecture. The proposed SEM uses network
architecture, depth, and width as well as smoothing parameters as
variable ensemble attributes. In Section 4.5, we present detailed
experimental results on the influence of model architecture and
other parameters.

The heterogeneous redundant model collection is obtained by
separately training a smoothed model on the CIFARIO dataset
(Krizhevsky and Hinton, 2009; Hendrycks et al., 2019). The variable
ensemble attributes in this study include architectures of different
depths and widths. Table I shows the approximated certified
accuracy (ACA) of the predictive performance of each sub-model.
The models marked in red did not meet performance requirements
and were excluded from subsequent experiments. Although some
simple models, such as AlexNet and shallow VGG, were unable
to achieve stable smoothed prediction, unsmoothed models were
used for the SEM. The experimental results in Section 4.5 further
demonstrate that the heterogeneity of the model collection plays a
crucial role in the robustness of the stochastic ensemble.

3.3. Stochastic ensemble with variable
attributes

In a model ensemble, temporal gradient variations result

from attribute-based gradient changes in each smoothed model.
This article proposes a stochastic ensemble strategy based on
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TABLE 1 Heterogeneous redundant model collection on CIFAR10.

Model architecture Model architecture

Smoothing parameter o

Smoothing parameter o

0.25 0.75 15 0.25 0.75 15

DenseNet (Gao et al., 2017) VGG (Simonyan and Zisserman, 2014)

DenseNet100 (95.5) 94.03 89.96 83.56 VGG11 (92.1) 9.99 80.11 20.88
DenseNet121 (94.1) 91.23 87.01 82.08 VGG13 (94.3) 65.67 10.0 61.18
DenseNet161 (94.2) 92.31 87.88 82.80 VGG16 (93.9) 9.99 9.99 9.99
DenseNet169 (94.0) 91.29 87.96 81.11 VGG19 (93.3) 91.83 87.50 81.74

WRN (Zagoruyko and Komodakis, 91.78 90.23 83.43 AlexNet (Krizhevsky et al., 2017) (77.2) 9.99 9.99 9.99

20162) (96.2)

ResNet (He et al., 2016) InceptionV3 (Szegedy et al., 2016) (93.8) 91.91 86.86 80.38
ResNet18 (93.3) 90.49 86.63 80.15 MobileNetV2 (Sandler et al., 2018) (94.2) 88.91 84.74 77.35
ResNet34 (92.9) 91.20 87.20 81.76 ResNext (Xic et al., 2017) (96.2) 93.12 88.70 80.62
ResNet50 (93.9) 91.16 86.29 80.28 GoogleNet (Szegedy et al., 2015) (92.7) 91.63 87.61 80.64

heterogeneous redundant models, where each prediction is made
by the stochastic selection of ensemble attributes. The randomness
of the model attributes reflects SEM randomness, which varies
in the frequency of the ensemble quantity, network architecture,
and smoothing parameters when multiple requests for gradient
or output information are made. The model randomly selects the
number of sub-models for the ensemble. Once the number of
ensemble models has been determined, the model stochastically
selects the model architecture from Table 1. Next, it randomly
selects various parameters of the selected model architecture, such
as network depth and smoothing parameters. Finally, the ensemble
model is determined based on these stochastic ensemble attributes.
Algorithm 1 provides a detailed explanation of the selection process
for this method.

Requi re: K- ensenbl e

quantity,

paraneter; fi(x+é)-nmodel

sof t max

outputensemple- SOf t MAX operation of ensenbl e nodel

1. Wile inference prediction request for one user
do

2. Randomly deternine the nodel

I'mage x for classification,

f-nodel architecture, §-smoothing

source output before

Ensur e:

quantity K for the
ensenbl e;

3. Randonly select the nunber of nodel

quantity K;

4. Randonmly sel ect different snoothing paraneters §

the

of ensenble is determned by f; finally;

architectures f according to nodel
for each nodel architecture,
sub- model
5. sourcesnsemple < 0

6. for each ke[1,K]do
7. sourceodel < fr (x+8)
8 source

9

ple < source, ble + SouUrce,odel

end for
10. OUtPpUt ppsemble <— SOftmax (Sourceqpsemple)
11. end while

Algorithm 1. Framework of the stochastic ensemble for the defense
system.
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Figure 2 shows a flowchart of the stochastic ensemble strategy.
By incorporating the model architecture into ensemble attributes,
each iteration of the ensemble incorporates gradient differences
based on changes in the network architecture. In addition, network
depth and smoothing parameters were used as ensemble attributes
to increase ensemble diversity. The number of sub-models in
each ensemble iteration is relatively small [set as (1-4) in this
article] compared to all of the model collections to ensure gradient
differentiation. On the one hand, a larger number of sub-models
sets in each ensemble iteration will reduce the ensemble diversity
and gradient variations. On the other hand, a large number of sub-
models sets in the ensemble will lead to improved transferability of
adversarial samples generated from a possible white-box attack for
a single ensemble iteration. For probabilistic ensembles, allowing a
single model in the stochastic state does not affect the mathematical
expectation of the prediction, but ensures a diversity gradient
change in each ensemble iteration. The attribute of the ensemble
quantity plays a key role and has an important impact on
robustness, which will be discussed in detail in Section 4.5.

The SEM introduces the dynamic nature of DNNs through
the stochastic selection of the ensemble attributes. The dynamic
changes reflect the random distribution of input noise and
probabilistic gradient information during each ensemble iteration.
Essentially, the randomness of ensemble attributes shields the
gradient information and increases the confusion under white-box
and query-based black-box attacks.

4. Experiments and results

Currently, most single static models rarely consider both white-
box and black-box attack robustness evaluation comprehensively
but consider white-box attack robustness as the evaluation metric.
The probabilistic gradient of the proposed SEM makes it difficult
for attackers to fully discover the model parameter of each
particular ensemble iteration. From the attackers’ point of view, the
more effective attack is no longer the white-box attack defined in
the original evaluation but is based on the attacker’s knowledge of
the model collection to achieve the black-box attack or approximate
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white-box attack. This section comprehensively designs different
knowledge of attacker against the SEM and comprehensively
illustrate the potential and drawbacks of the proposed method.
To define and evaluate the robustness under random conditions,
the attack success rate is further defined as a potential risk by
ASR-vs.-distortion curves (Dong et al, 2019) based on Monte
Carlo simulations. For the conclusion of robustness, this section
generally verified and evaluated adversarial robustness same as
the definition in cyberspace security: the most capable attacker
for SEM cannot easily outperform the best result under current
random-based methods.

4.1. Attack success evaluation metrics
based on empirical risk

The ASR-vs.-distortion curves are generated by an optimal
search of the adversarial perturbation budget (Dong et al., 2019).
Due to the random condition, the Monte Carlo simulation is used
for approximate evaluation as in random smoothing (Cohen et al.,
2019). Each adversarial sample x,4, is hard-predicted N times by
the SEM, and the most predicted category is considered the output
category with the highest probability. The baseline accuracy of the
clean sample through this simulation is 93.4%. Compared with
the according accuracy result of the single smoothing model in
Table 1, there is no damage but even improvement for clean-sample
prediction. The attack success rate with the adversarial sample x is
given as follows:

Succ (C, Agp)
N [ K
N (Z (Z i (Acp (x))) ) # y untargeted
= ; ; one_hot/ max (5)
N (Z (Z 8k (Acp () )) = y; targeted
n=1 \k=1 one_hot/ / max

The attack success probability is redefined as the proportion
of Monte Carlo simulations in which each k-th iteration model g
outputs the target category for the given adversarial sample A.
with a perturbation budget & under the [, norm. This probability is
estimated using class count statistics obtained by one-hot encoding
of the category probability vector, and then converting each
predicted value to its equivalent probability using a probability
conversion function. Such probabilities can be used in a two-sided
hypothesis test that the attack success rate conforms to the binomial
distribution ng,.. ~ Binomial (nsucc + Nnonsuce> ©) as follows:

Succ (C, Agp)
1 N K
N 2Z | X &k (Aep ) #yor
n=1 \k=1 one_hot
N K
M2 8k (Aep ) > o untargeted
n=1 \k=1
one_hot
= o (6)
1 N K
N(Z (ng Aep(x)> ) = y; or
=1 k=1 one_hot
N K
Nl 22 e (Aep ) > o targeted
=1 \k=1 one_hot
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The abstention threshold o is a parameter used to limit the
probability of returning an incorrect prediction in order to control
potential empirical model risk (Hung and Fithian, 2016). A value
of a directly affects the ASR-vs.-distortion curves. In this case, the
threshold o is set at 0.3 to evaluate the random smoothing model.

4.2. Attack scenarios

In this section, the attacker’s knowledge of the SEM attributes
is discussed in detail and the attack scenarios are designed to
fully characterize the robustness of the proposed method. By
comparing the robustness evaluation results of attackers with
different capabilities under the proposed method with the results
of the contrast models, the attack scenarios are designed to discuss
two aspects of robustness: first, under which attack capabilities
is the proposed method most vulnerable and which is the most
robust. This will help defenders to understand which attributes are
important for protection. Second, whether the proposed method is
robust enough such that even an attacker with the highest attack
capability cannot easily exceed the attack success rate associated
with the best contrast method (Athalye et al., 2018).

In the random condition, different attackers can have different
degrees of knowledge about the model collection, but no knowledge
about the current ensemble state. From an attack point of view,
the attacker should use a white-box attack under expectation, a
transfer-based attack under the substitution model, or a query-
based black-box attack. The attacker’s capabilities are determined
by the knowledge of the model collection and the ensemble
attributes, as outlined from high to low in Table 2. In the white-box
attack under expectation, attackers A and B have full knowledge
of model collection and are implemented as Expectation Over
Transformation (EOT) attack method (He et al., 2017; Croce
etal,, 2022) white-box attack according to the different expectation
estimation iteration. In the transfer-based attack under the
substitution model, attackers C and D have partial knowledge of the
model collection and are defined according to the different transfer
strategies. In addition, attacker E uses the query-based black-box
attack algorithm. The analysis of our experimental setup highlights
the varying ability of the A-D attackers to approximate the gradient
distribution expectation, which comprehensively illustrates the
robustness of our method under more complicated conditions.

4.3. Experimental settings of competitive
baseline methods

To verify the improvement of robustness, several ensemble
methods were selected as baselines for comparison, including
RSE (Liu et al,
and the adaptive diversity promoting (ADP) (Pang et al., 2019).

2018), random smoothing (Liu et al, 2020),

For the details of the experiment, both the random smoothing
ensemble and baseline ensemble method used three different
model architectures, namely, DenseNet100, ResNet50, and WRN,
as shown in Table 1, which perform better on clean datasets. The
parameters of the smoothed models were chosen as Gaussian
noise with § 0.25. Figure 3 shows that neither the ADP nor the
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A flowchart of the stochastic ensemble smoothing strategy.
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RSE methods outperform the ensemble-smoothed method. Among
the defenses based on randomness and ensemble diversity, the
ensemble smoothed model has SOTA results at this stage and
structure as the contrast method F in attack scenarios. In a follow-
up experiment, the random smoothing-related method with the
best robustness is used as a contrast method (corresponding to the
four curves of F, G, J, and K in the contrast methods as shown in
Table 2) to demonstrate the performance of the proposed method
for brief.

4.4. Robustness analysis based on the
attack scenario

A comprehensive evaluation of adversarial robustness can
be achieved by considering different combinations of attack
capabilities, methods, targets, and perturbation constraints. Further
attacks are carried out by the algorithm using three standard
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methods (BIM, MIM, and PGD) with attackers A, B, C, and D and
contrast methods E G, H, and I, respectively. In addition, NES and
SPSA attacks were used in conjunction with contrast methods E, G,
K, L, and M. For all ASR-vs.-distortion curves, the search step was
set to 10 while the binary search step was set to 20. For the white-
box attacks, the number of attack iterations of both the BIM and
MIM was set to 20, while for the query-based black-box attacks,
the maximum number of queries was set to 5000. The following
experiments aim to evaluate the proposed methods and analyze the
defense characteristics of dynamics under different attack scenarios
set in Section 4.2.

4.4.1. Transfer-based and white-box attack
analysis

Figure 4 shows the ASR-vs.-distortion curves for untargeted
transfer-based attacks. A, B, C, and D represent different attack
scenarios, while the contrast methods E G, H, and I are shown
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TABLE 2 The definition of the attacker’s ability from high to low and the contrast method.

10.3389/fnbot.2023.1205370

Attacker tag Definition Contrast method Definition
White-box Attacker A The attacker has full knowledge of the model collection Under Contrast The ensemble smoothed model
attack as EOT and can obtain ensemble attributes in real-time. White-box method F under a white-box attack
However, they lack the ability to predict these attributes | attack
for the next ensemble iteration, where their best
strategy is to implement the EOT attack on each
ensemble iteration for the expectation of gradient.
Contrast The single-smoothed model
method G under a white-box attack
Attacker B The attacker has full knowledge of the model collection Contrast The ensemble model under a
but cannot obtain ensemble attributes in real-time, method H white-box attack
where their one of the attack strategies is to implement
an EOT attack on periodic ensemble iteration.
Contrast The single model under a
method I white-box attack
Transfer-based | Attacker C The attacker has knowledge of half of the models in the Under Contrast The ensemble smoothed model
black-box collection for the experiment. Their best attack strategy Black-box method J under the black-box attack
attack is to structure the alternative SEM model on known attack
models as an EOT method for generalized adversarial
samples.
Contrast The smoothed model under the
method K black-box attack
Attacker D The attacker has knowledge of half of the models in the Contrast The ensemble model under the
collection. Their more direct attack strategy is to use all method L black-box attack
the known models as an ensemble model to generate
transfer adversarial samples.
Query-based Attacker E The attacker lacks any knowledge of the model Contrast The single model under the
black-box collection or gradients and can only query the model method M black-box attack
attack probability vector to implement a black-box attack.

as dashed curves. Compared to the baseline models, we can
observe that the ensemble model is highly vulnerable to white-
box attacks, even worse than the single models. The random
smoothing method improves the robustness of a single model, and
the ensemble-smoothed model further improves the robustness
and addresses the vulnerability of the ensemble under white-
box attacks. Among all attack methods, attacker B has the worst
attack performance, indicating that protecting the model from
frequent access to gradient information at each iteration is crucial
for SEM robustness. Attacker D, who has partial knowledge of
the model collection but ensemble attributes in each iteration,
can achieve transfer attacks through the ensemble and achieves
similar robustness performance (even better than PGD) compared
to attacker A. However, comparing the performance of attackers
C and D, the SEM does not improve the attack transferability
effect as a regularization method. This reveals the importance of
protecting the model collection for SEM robustness. When the
attacker has a higher transferability attack algorithm (for the MIM
and PGD), the benefits of transferability are only for attacker D
and are no longer attained by SEM. For the ensemble smoothed
model (F curves) that has the SOTA performance between
the contrasting baseline methods, the best attack performance
cannot easily exceed the attack success rate associated with
it.

Figure 5 shows the ASR-vs.-distortion curves for targeted
transfer-based white-box attacks. When comparing different attack
algorithms, the improved transferability of the PGD method does
not significantly improve the attack performance under SEM.
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However, its robustness is significantly improved against the
momentum-based attack, indicating that the randomness of the
gradient at the model level has some impact on the confusion
of the gradient direction. The variation in the attack knowledge
of model collection between A and C does not significantly
affect the robustness of SEM when against targeted attacks.
However, contrary to the conclusion drawn from untargeted
attacks, the robustness performance of SEM under A and C
does not consistently exceed that of the ensemble smoothed or
single smoothed model, demonstrating the lack of heterogeneity
of the model in the gradient direction. However, as the detailed
results in the second line of Figure5 shown, the proposed
method consistently demonstrates superior robustness under small
perturbations. When comparing attackers A, B, C, and D, the
weakest attack performance is exhibited by B (although this could
be reversed when attacker D uses the PGD algorithm). Combined
with the results of the untargeted attacks, we suggest that reducing
the frequency of ensemble changes is critical for SEM when the
model collection and ensemble attributes can be obtained by
an attacker.

4.4.2. Query-based black-box analysis

The results of an untargeted source-based black-box attack
are depicted in Figure 6A. The ensemble model exhibits weaker
robustness to both NES and SPSA attacks compared to the single
model, highlighting the vulnerability of the ensemble model to
black-box attacks. Both the SPSA and NES approaches assume
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The ASR-vs.-distortion curves for untargeted transfer-based white-box attacks: (A) BIM, (B) MIM, (C) PGD. The A-D solid lines show the
ASR-vs.-distortion curves under different attack capabilities while the dashed lines F-I show the curves under the contrast method. Compared to the
two curves, the stochastic ensemble has better robustness even under the strongest adversary.

that the gradient direction of adversarial samples follows a certain ~ the SEM under this expectation hypothesis is essentially a measure
probability distribution. This assumption is based on randomly  of the overlap between the gradient direction and the assumed
sampling the gradient direction under a probability distribution,  distribution direction under the probability. In the experiment, the
with the step size controlled by the loss value. The evaluation of =~ SEM does not demonstrate superior untargeted black-box defense
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effectiveness compared to the smoothed ensemble, suggesting
that the SEM based on different smoothing parameters may be
more susceptible to high variance noise expectations (set § as 1
for contrast method). We believe that this characteristic can be
attributed to the high ensemble probability of an unsmoothed
model or a smoothed model with low variance. As a result,
the defensive effectiveness of SEM is not as impressive as
that of the ensemble-smoothed model in terms of probability.
This result highlights the influence of the smoothing model
collection on the attack performance with respect to the smoothing
parameter distribution.

In comparison, the results for the targeted source-based black-
box attacks that show a decrease in overall accuracy are shown in
Figure 6B. Nevertheless, the same conclusion regarding robustness
can be drawn. The sensitivity of the model to specific noise
distributions was analyzed through experiments with black-box
attacks, and it was found that the smoothing model resulted in
improved defense performance against adversarial samples based
on specific noise distribution assumptions. However, the model’s
susceptibility to noise with varying parameters under different
smoothing parameters limits its defense capabilities. Such noise
assumptions are independent of the true gradient information of
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the model and rely primarily on changes in the model output and
the number of queries. Improvements in the selection of smoothing
parameters for the ensemble strategy are needed to further enhance
the defensive capabilities.

4.5. Robustness analysis based on the
stochastic ensemble strategy

This section examines the effect of ensemble quantity
and heterogeneity on the robustness of the proposed method.
Specifically, we compare ensembles with quantities of 1, 2, and
3 to those with quantities of 6, 7, and 8 (multi_ensemble).
In addition, we compare a stochastic ensemble consisting of a
single-architecture CNN with different smoothing parameters.
To ensure comparable prediction accuracies with our method,
we choose the WRN (Zagoruyko and and Komodakis, 2016b)
as the single-architecture neural network (single_architecture).
To expand the stochastic ensemble model collection space and
introduce model gradient variations, we smooth the WRN using
seven different smoothing parameters (0.12, 0.15, 0.25, 0.5, 0.75,
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lines J-M represent the curve under the contrast method.

The ASR-vs.-distortion curves for source-based black-box attacks: (A) untargeted attack; (B) targeted attack. The left side of each attack target
represents the NES, while the right side represents the SPSA. The solid line E shows the result of the SEM under a source-based attack. The dashed

under the contrast method for comparison.
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The ASR-vs.-distortion curves for untargeted white-box attacks under different attack methods and ensemble strategies: (A) BIM, (B) MIM, and (C)
PGD. The solid lines represent the ASR-vs.-distortion curves under different ensemble strategies, while the dashed lines represent the same curves

1.0, and 1.25) under Gaussian noise via stability training (Li B. et al,
2019), semi-supervised learning (Carmon et al., 2019), and pre-
training (Hendrycks et al., 2019). The resulting stochastic ensemble,
consisting of a single-architecture CNN, shows heterogeneity in its
smoothing attributes.

Figures 7, 8 show the results of our robustness evaluation using
different ensemble strategies. The negative impact of ensemble
quantity on robustness is evident, as shown by the red solid line.
As explained in Section 3.3, a larger ensemble quantity leads
to reduced gradient differences and increased transferability of
adversarial samples across ensemble iterations. The blue solid line
in Figure 7 indicates that architectural heterogeneity has a greater
impact on the adversarial robustness of the SEM. When there are
no architectural differences between the ensemble models, even
in the random smoothing case, the SEM can actually increase
vulnerability to adversarial samples.
that an SEM without
heterogeneity is even more vulnerable than an ensemble

Figure 8  confirms architectural
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model. Viewing the ensemble strategy of SEM as a form of
dropout operation (Baldi and Sadowski, 2013), we observe
that when the ensemble quantity is large and there is
insufficient architectural diversity, the SEM method becomes
regularization that the
capability of adversarial samples, especially under targeted
attack.

a technique conversely enhances

5. Conclusion

This study proposes a dynamic defense method for the
generalized robustness of deep neural networks based on random
smoothing. This dynamic nature based on the ensemble system
is a change from the perspective of the existing random method
from the model level to the system level. The ensemble attributes
are considered as the changeable factor and dynamically adjusted
during the inference prediction phase. The proposed method
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has the characteristics of diversity, randomness, and dynamics to
achieve the probabilistic attribute dynamic defense for adversarial
robustness without damaging the accuracy of clean samples.
Through an optimal search of perturbation values under different
attack capabilities, attack methods, and attack targets according
to the degree of the real-time ability of an attacker to obtain
knowledge of the model collection and gradients, a comprehensive
evaluation under CIFAR10 preliminarily demonstrates that when
the image distortion is small, even the attacker with the highest
attack capability cannot easily exceed the attack success rate
associated with the ensemble smoothed model, especially under
untargeted attacks.

The robustness of our proposed method relies heavily on the
heterogeneity and confidentiality of the model collection. Through
experimental setups under different attack scenarios, this study
also finds that the proposed SEM can achieve better robustness
by limiting the ability of the adversary. Therefore, based on these
findings, future studies will be conducted (1) to further improve
the robustness against white-box attacks, adaptive control of the
ensemble changes based on attack detection is a crucial research
direction; (2) under the query-based black-box analysis, the smooth
parameter selection probability of the ensemble strategy is a crucial
optimization direction for this study; (3) for practical applications,
both the number of parameters of the model and the forward
efficiency of the ensemble prediction should be considered. In this
study, the robustness is evaluated on the CIFAR10 dataset, but there
are practical application problems because of the large training cost.
Therefore, the light weight of the ensemble model is an important
research direction.
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Yanbo Li, Qing He* and Damin Zhang

College of Big Data and Information Engineering, Guizhou University, Guiyang, China

Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in natural language
processing (NLP) that aims to extract triplets from comments. Each triplet
comprises an aspect term, an opinion term, and the sentiment polarity of the
aspect term. The neural network model developed for this task can enable robots
to effectively identify and extract the most meaningful and relevant information
from comment sentences, ultimately leading to better products and services
for consumers. Most existing end-to-end models focus solely on learning the
interactions between the three elements in a triplet and contextual words,
ignoring the rich affective knowledge information contained in each word and
paying insufficient attention to the relationships between multiple triplets in
the same sentence. To address this gap, this study proposes a novel end-to-
end model called the Dual Graph Convolutional Networks Integrating Affective
Knowledge and Position Information (DGCNAP). This model jointly considers both
the contextual features and the affective knowledge information by introducing
the affective knowledge from SenticNet into the dependency graph construction
of two parallel channels. In addition, a novel multi-target position-aware function
is added to the graph convolutional network (GCN) to reduce the impact of
noise information and capture the relationships between potential triplets in
the same sentence by assigning greater positional weights to words that are in
proximity to aspect or opinion terms. The experiment results on the ASTE-Data-V2
datasets demonstrate that our model outperforms other state-of-the-art models
significantly, where the F1 scores on 14res, 14lap, 15res, and 16resare 70.72,57.57,
61.19, and 69.58.

KEYWORDS

aspect-based sentiment analysis, aspect sentiment triplet extraction, affective

knowledge, position-aware function, graph convolutional network (GCN)

1. Introduction

In recent years, significant advancements in deep learning have been attributed to the
development of more efficient algorithms, advancements in hardware capabilities, and the
availability of extensive datasets. These progressions have paved the way for the emergence
of diverse types of dynamic neural networks (DNN) tailored to address specific challenges
across various domains. For instance, deep learning has been instrumental in surface defect
recognition in the realm of computer vision (Shi et al., 2023), Artificial Intelligence (AI)
systems based on deep learning algorithms can effectively detect and analyze arc faults in
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electrical systems (Tian et al., 2023) and recurrent neural
networks (RNN) are designed to capture temporal dependencies
and sequential patterns, thus making them well suited for
tasks involving gesture recognition and classification. Moreover,
the utilization of graph structures for learning purposes has
demonstrated tremendous potential in various fields. For example,
in the domain of blockchain technology, graph structure learning
methods have been employed to enhance the analysis of transaction
networks and identify the characteristics of the transaction (Wang
et al, 2023). Additionally, improved graph structure learning
methods (Liu et al., 2023) based on the foundational graph neural
network (GNN) have been proposed in order to further enhance
the capabilities of graph-based learning.

In the field of natural language processing (NLP), comments of
consumers serve as a valuable resource for gathering information
that can aid in enhancing the performance of robots and their
associated products or services. With the proliferation of social
media communities, the availability of consumer-generated
content has expanded significantly, presenting an opportunity to
leverage this data for insights and improvements. By employing
methods designed for text information, robots can significantly
enhance their ability to understand the intent and meaning
behind a comment of consumer. These methods enable robots to
extract the most valuable information from user input, leading
to more accurate and meaningful interactions. Aspect Sentiment
Triplet Extraction (ASTE) (Peng et al.,, 2020) is concerned with
identifying the triplets from a given comment. Each triplet
includes an aspect term, corresponding opinion term, and the
sentiment polarity of this aspect term. For instance, in Figure 1,
this comment from restaurant domain comprises two triplets:
(menu, limited, negative) and (dishes, excellent, positive). Aspect
sentiment triplet extraction plays a crucial role in enabling a
more fine-grained understanding of text by capturing sentiments
toward specific aspects or features. This capability facilitates
context-aware analysis, supports decision-making processes,
analyzes customer feedback, and aids in brand monitoring and
reputation management.

Aspect Sentiment Triplet Extraction (ASTE) is a fine-grained
task of Aspect-based Sentiment Analysis (ABSA) (Pontiki et al,
2014). ABSA aims to extract aspect terms and identify the
corresponding sentiment polarity from a given sentence. It typically

I
. 1 PR
The menu is | limited | put almost all of the dishes
1 ]
1

{menu, limited, negative}
{dishes, excellent, positive}

FIGURE 1

An example of ASTE. The aspect terms are highlighted in red. The
terms in blue are opinion terms and the origin words that denote
their sentiment polarity. All triplets are shown in the yellow box
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includes subtasks such as Aspect Terms Extraction (ATE) (Yin
et al, 2016; Xin et al, 2018; Wu et al.,, 2020b), Opinion Terms
Extraction (OTE) (Jebbara and Cimiano, 2017; Jordhy et al., 2019;
Li et al, 2019), and Aspect-based Sentiment Classification (ASC)
(Tang et al., 2016; Ma et al., 2017; He et al., 2018). ASTE is the
combination of these subtasks and initially proposed in the study by
Peng et al. (2020) with a two-stage pipeline approach. This method
predicts all aspect terms, opinion terms, and sentiment polarities
in the first stage. In the second stage, aspect terms are paired
with their corresponding opinion terms to obtain triplets. However,
this approach is susceptible to error propagation. To overcome
this limitation, Xu et al. (2020) propose a position-aware tagging
scheme and develop a union model that uses sequence labeling
to extract triplets. This method is the first end-to-end model in
the ASTE task. Similarly, Wu et al. (2020a) present a grid tagging
scheme named GTS that uses a unified grid markup task to extract
triplets in an end-to-end manner.

During sentiment analysis, it is observed that every word in a
sentence possesses a unique emotional intensity. For instance, while
words such as “likable” and “charming” both convey a positive
sentiment polarity, their degrees of positivity differ. However, it has
been noted that current networks relying on graph convolutional
network tend to utilize solely syntactic dependencies for graph
construction, thereby ignoring the commonsense knowledge
information (Frik et al, 2009) associated with each word.
Furthermore, such models typically overlook the relationships
between multiple triplets present in the same sentence.

To overcome the aforementioned limitations of existing
models, this study presents a novel approach that takes into account
both affective knowledge information and the implicit relationship
between different potential triplets in the same sentence. The
proposed method employs a part-of-speech (POS) based approach
to identify potential aspect terms and opinion terms within
sentences, then formulates a fresh approach for generating an
adjacency matrix, which fuses the affective score of each word
from SenticNet (Ma et al., 2018) with the syntax dependency in
two parallel modules, leading to the generation of a potential
aspect terms enhanced adjacency matrix and a potential opinion
terms enhanced adjacency matrix. These adjacency matrices are,
then, input into a graph convolutional network (GCN) (Kipf
and Welling, 2016) to extract features separately. GCN is a
neural network architecture that has the ability to extract both
contextual and syntactic representations from the adjacency matrix
by aggregating the features of neighboring nodes. Additionally,
this study utilizes a multi-target position-aware function in each
GCN module, which assigns different weights to all words based
on the position of potential aspect words or opinion words.
This facilitates interaction between different potential triplets in
a sentence and reduces interference from other words on triplet
extraction. Finally, the hidden representations produced by the
encoder layer, and two GCN modules are used via GTS for triplet
extraction.

The main contributions of our study can be summarized as
follows:

e We propose an innovative Dual Graph Convolutional
Networks Integrating Affective Knowledge and Position

frontiersin.org
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Information (DGCNAP) for the ASTE task in an end-to-end
manner.

e We conceive a novel method to introduce affective knowledge
information into the adjacency matrix generated by sentences
in the ASTE task.

o We design a multi-target position-aware function in the GCN
layer to reduce interference and capture the associations
between different potential triplets in the same sentence.

e Our experimental results on four benchmark datasets
demonstrate the effectiveness of our model in the ASTE task.

2. Related work

Unlike traditional sentiment analysis that aims to identify the
sentiment polarity of the whole document or sentence, ABSA
aims to predict sentiment polarity of specific aspect terms. In
recent research, most models use attention mechanisms. Wu et al.
(2022) proposed a phrase dependency graph attention network
to aggregate directed dependency edges and phrase information.
Liang et al. (2022) adopted a graph convolutional network based
on affective knowledge to leverage the affective dependencies of
the sentence; thus, both the dependencies of contextual words and
aspect words and the affective information between opinion words
and the aspect are considered.

To establish a comprehensive solution for ABSA, ASTE aims
to complete multiple subtasks of ABSA simultaneously. In the
ASTE task, existing methods can be divided into two types: pipeline
methods and end-to-end methods. Peng et al. (2020) are the first
to propose a complete solution for the ASTE task, employing a
two-stage pipeline approach. However, models constructed using
this pipeline approach are rather simple and are easily affected
by error propagation. To avoid this problem, end-to-end models
have been proposed and can be summarized as follows. Xu et al.
(2020) first developed an end-to-end method named position-
aware tagging scheme. Similarly, Wu et al. (2020a) proposed grid
tagging scheme to extract triplets simultaneously. Considering
ASTE is the combination of all basic tasks of ABSA, Chen et al.
(2022) proposed an end-to-end approach which decomposes ASTE
into three subtasks, namely, target tagging, opinion tagging, and
sentiment tagging. Chen et al. (2021) proposed a novel method
which transforms ASTE task into a multi-turn machine reading
comprehension task and propose a bidirectional MRC framework
to address this challenge. Another end-to-end method (Dai et al.,
2022) proposed a sentiment-dependence detector based on a dual-
table structure that starts from two directions, aspect-to-opinion
and opinion-to-aspect, to generate two sentiment-dependence
tables dominated by two types of information. Shi et al. (2022)
proposed an interactive attention mechanism to jointly consider
both the contextual features and the syntactic dependencies in an
iterative interaction manner. Previous tag-based joint extraction
methods have been observed to struggle with effectively handling
one-to-many and many-to-one relationships between aspect terms
and opinion terms within sentences. This limitation has motivated
researchers to explore alternative approaches, such as those that
operate at the span level rather than relying on tagging schemes.
A tagging-free approach (Mukherjee et al., 2021) is proposed to
capture the span-level semantics while predicting the sentiment
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between an aspect-opinion pair. Li et al. (2022) proposed a
span-sharing joint extraction framework to extract aspect terms
and their corresponding opinion terms simultaneously in the
last step, thereby avoiding error propagation. Hu et al. (2023)
used a span GCN for syntactic constituency parsing tree and
a relational GCN (R-GCN) for commonsense knowledge graph
to build an end-to-end model for the ASTE task. Moreover,
a double-embedding mechanism-character-level and word-vector
embeddings are introduced for the first time. Zhang et al. (2022)
propose a dual convolutional neural network with a span-based
tagging scheme to extract multiple entities directly under the
supervision of span boundary detection.

3. Approach

Existing models have achieved good performance on the ASTE
task. However, a significant number of these methods disregard
the abundant affective knowledge present in individual words of
a sentence, as well as the interdependence of various triplets.
To address this limitation, we introduce affective knowledge
information in our framework while constructing the dependency
graph. Additionally, we utilize a multi-target position-aware
function to capture the interdependence of multiple triplets in the
same sentence, and it can also mitigate the adverse effects of noisy
words.

This section commences with a definition of the ASTE
task followed by an elaborate elucidation of our proposed
methodology, Dual Graph Convolutional Networks Integrating
Affective Knowledge and Position Information (DGCNAP), for the
ASTE task.

3.1. Definition of ASTE
Given an n-word sentence S = {wi,wy,..., w;,}, the ASTE

task aims at identifying all sentiment triplet sets 7 = f{at, ot, s},

where “at” denotes the aspect term, “ot” denotes the opinion term,

s” denotes the sentiment of the aspect term in this set, and s €
{ positive, negative, neutml}.

3.2. The DGCNAP framework

The overall architecture of DGCNAP model is shown in
Figure 2. The model takes two parallel channels to joint potential
aspect term and potential opinion term enhanced features
extraction, leveraging affective knowledge, graph convolutional
network, and multi-target position-aware function to improve
accuracy and capture the complex relationships between aspect and
opinion terms in sentences.

3.3. Embedding and encoding layers

In this study, we employ two types of encoders to learn hidden
representations: the first is the Bi-directional Long Short-Term
Memory (Bi-LSTM) (Hochreiter and Schmidhuber, 1997) network
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FIGURE 2

Architecture of DGCNAP.

and the second is the pre-trained language model BERT (Devlin
et al., 2019).

For the Bi-LSTM-based encoder, we utilize double embedding
to obtain the initial word representation and capture the contextual
meaning of words in a specific domain. The specific-domain
embedding was pre-trained based on the skip-gram model, where
each word is represented as a bag of character n-grams. A vector
representation is associated with each character n-gram; words are
represented as the sum of these representations. We concatenate
the 300-dimension general-domain embedding E,, € R"*% and
the 100-dimension specific-domain embedding Es € R"*% to form
the final word representation E € R?*@dwtds) where d,, and d;
denote the dimensions of word embedding. After that, we input the
embedding matrix into a Bi-LSTM to obtain the hidden contextual
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representations H = {hy, hy, ... h,} € R"™41 of the input sentence,
where d; denotes the hidden state dimension of Bi-LSTM:
H® = Bi — LSTM(E) (1)
For the BERT-based encoder, we first add the [CLS] token at the
beginning of the sentence and the [SEP] token at the end. Next, we
feed the sequence into BERT for context encoding by converting it
into a vector that sums its token embedding, segment embedding,
and position embedding. Finally, we input the vector v into the
transformer encoder (Vaswani et al., 2017), to obtain the hidden
contextual representation H® = {hy, hy, ..., h,} € R<dr

H® = BERT(v) (2)
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The menu is limited but almost all of the dishes are excellent
—~— —~ e N v v ~ —— e
DT NN VBZ JJ cc RB DT N DT NNS VBP 3
FIGURE 3
An example of part-of-speech tagging.

3.4. Generate enhanced graph

Part-of-speech (POS) is a linguistic concept that categorizes
words based on their grammatical roles and syntactic functions
within a sentence. Each word in a sentence is assigned a specific
part-of-speech tag, which provides information about its linguistic
characteristics and relationships with other words. As shown in
Figure 3, the aspect terms “menu” and “dishes” are both annotated
as nouns, and the opinion terms “limited” and “excellent” are
both annotated as adjectives. In the proposed approach, nouns are
considered as potential aspect terms, while adjectives are identified
as potential opinion terms.

Dependency graph is a useful way to represent the grammatical
relationships between words in a sentence. We use the dependency
tree of each input sentence to construct a unidirectional
dependency graph with self-loop. D € R"*" denotes the adjacency
matrix obtained from the graph:

1 if w; and w; contains dependency

Dj; = (3)

0 otherwise

Because the parent node is also affected by the child node,
Dj,i = D,',j.

To incorporate affective knowledge into the construction of
the dependency graph, we take the absolute value of the SenticNet
affective score and use it as a weight for the corresponding edge
in the adjacency matrix. By doing so, we can assign more weight
to words with stronger sentiment intensity when computing the
graph convolution operation, and our model can learn meaningful
information from words containing emotionally intense, thereby
contributing to increased accuracy in predicting sentiment polarity
corresponding to aspect terms:

Sij = |SenticNet(w;)| + |SenticNet(w;)| (4)

where SenticNet(w;) € [—1, 1] denotes the SenticNet affective score
of word w;. When SenticNet(w;) approaches -1, the word conveys a
strong negative sentiment. Conversely, as SenticNet(w;) approaches
1, the word expresses a strong positive sentiment. In cases where
SenticNet(w;) is equal to 0, the word w; is considered neutral or
is not included in the SenticNet database. We exploit SenticNet 6,
which contains 200,000 concepts. Some examples of SenticNet are
shown in Table 1.

To enhance the sentiment dependencies that exist between
potential aspect words and contextual words, as well as between
potential opinion words and contextual words, we incorporate
potential aspect word weights and potential opinion word weights
as the target score into the generation of the adjacency matrix:

a _ )1 if w; or wj is a potential aspect word
ij —

(5)

0 otherwise
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TABLE 1 Examples of SenticNet.

Word SenticNet(word)

Distrustful -0.93
Undesirable -0.35
Likable 0.301
Charming 0.885

o 1 if w; or wj is a potential opinion word

7] 0 otherwise (©)

To learn the syntactic information features enhanced by aspect
words and opinion words, respectively, we employ two parallel
channels. The first channel generates an adjacency matrix that
has been augmented by both aspect words and SenticNet affective
score, whereas the second channel generates an adjacency matrix
that has been enhanced by both opinion words and SenticNet
affective score. To effectively integrate the SenticNet affective score
with the aspect word weight or opinion word weight, we use the
following formula to generate the final enhanced adjacency matrix
Af; and A7;:

Wi = Dij + Sij + T} (7)
—2x W2

ac =17 U gossa )
) 1+€72XW’{;

Wi = Dij + Sij + T} )
—2x W?.

a0 =17 U 03 (10)

L] ]+672XWEJ :

When encountering a word that is neither a potential aspect
word nor a potential opinion word, and its corresponding
SenticNet affective score is 0, the utilization of the bias value of
0.23841 results in an output of 1, with consideration to the precision
of five decimal places.

3.5. Feature extraction layer

A two-layer GCN is utilized for contextual feature extraction
in each channel. The syntactic dependencies for the potential
aspect words or opinion words are captured by feeding the
enhanced adjacency matrix A* € R"*" and the hidden contextual
representations H® € R™ into the GCN module in the left
channel. Additionally, the enhanced adjacency matrix A° € R"*"
and the hidden contextual representations H® € R™ % are input
into the GCN module of another channel. Inspired by (Zhang et al.,
2019), prior to this convolution, we utilize the hidden contextual
representations H® € R™ % as input into the multi-target position-
aware function .#“ and .%° to augment the importance of context
words close to the potential aspect words or opinion words in two
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separate channels. Considering that there may be multiple potential
aspect terms and opinion terms in one sentence, the function is as

follows:
1— S 1icr 41
g=10 T+ 1<i<t +m (11)
1— y T +m <i<n
[Tt [V RETIOE ial 4
ﬂa(hé) _ ) *==57—"h; if w; is not a potential aspect wor
0 otherwise
(12)
IR TR . . .
FO(H) = A——%h; if w; is not a potential opinion word
' 0 otherwise

(13)
where qi € R is the position weight to i-th token for the t-
th potential aspect term or opinion term in the sentence in two
parallel channels, respectively. This function enables the model
to effectively avoid noise generated during dependency parsing,
resulting in improved performance and more accurate capture of
the relevant syntactic dependencies.

The process of GCN is as follows:

ht = ReLu(Ag W' + b)) (14)

g '=7mh (15)

where hf denotes the output of the 1-th GCN layer. The output
of potential aspect term-enhanced GCN layer is H* € R™9,
and the output of potential opinion term-enhanced GCN layer is
H® ¢ R"™4_ After that, the final output of Features Extraction
Layer H can be computed as follow:

H = H 4+ H* + H° = {hy, hy, oo, 11y} (16)

3.6. Triplet extraction layer

In previous research (Wu et al, 2020a), GTS has been
demonstrated to be a highly effective module for extracting triplets
from the ASTE task. Therefore, in this study, we have adopted GTS
as the decoding algorithm in our proposed model. The output of the
Features Extraction Layer is passed through a self-attention layer to
extract high-level features. The resulting output is, then, fed into
the GTS module. In the GTS module, the relation of two words of
the sentence is tagged by set {A, O, Pos, Neu, Neg, N } Specifically,
the symbols “A” and “O” indicate that the two terms belong to the
same triplet, and that they are an aspect term and an opinion term,
respectively. The tags “Pos,” “Neu,” and “Neg” denote the sentiment
polarity of the triplet. The symbol “N” represents that there is no
association between the two words.An example of the GTS tagging
scheme is shown in Figure 4. The following inference strategy is
used to predict probability distribution pij* of word pair (w;, w;) as
follows:

1

pﬁf = maxpooling(pfjl) (17)

t—1

P = maxpooling(p}:l) (18)
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g =la ey 19)
zj = Wq‘if'j_l + by (20)
pfj = softmux(Wszfj + by) (21)

where W, Wy, by, and by are learnable parameters, pﬁ_l represents
all predicted probability between the word w; and other words,
t denotes the t-th inference, and [.;.] represents the vector
concatenation operation. The first three equations are used to
observe the probability distribution characteristics of each word
pair itself and between word pairs. The initial predicted probability
pg and representation zg of word pair (w;, w;) are set as follows:

pij = softmax(Wirl; + by) (22)

Z) =1y (23)

y

where r; = [f{i; }Tj]. Finally, the prediction of the last round
is used to extract triplets. The decoding algorithm first predicts
aspect terms and opinion terms based on the tags on the main
diagonal. It, then, determines whether there are any terms among
them that can form a pair. Finally, the most predicted sentiment
tag is selected as the sentiment polarity of the pair, and the
resulting pair and sentiment polarity are combined to form

a triplet.

3.7. Loss function

We use the loss function which defined as cross entropy loss
between the real label and the predicted label of all word pairs, and
the training goal is to minimize it as follows:

(24)

L=~ Z Z Zl(yij = k)lf’g(Pfﬂk)

i=1 j=1 kec

4. Experiments
4.1. Datasets

In this study, we have conducted experiments on three
public benchmark datasets from the restaurant domain and a
public benchmark dataset from laptop domain named ASTE-
Data-V2 mentioned in the study by Xu et al. (2020), all of
which have been sourced from the SemEval Challenges and
contain 5,989 different comments. Additionally, we have also
carried out experiments on the ASTE-Data-V1 datasets mentioned
in the study by Wu et al. (2020a) and report the results of
these experiments. The details of these datasets are shown in

Tables 2, 3.
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The menu is limited but almost all of the dishes are excellent
N N N N N N N N N N N N The
A N Neg N N N N N N N N menu
N N N N N N N N N N is
o N N N N N N N N limited
N N N N N N N N but
N N N N N N N almost
N N N N N N all
N N N N N of
N N N N the
A N Pos dishes
N N are
o excellent
FIGURE 4
A tagging example with GTS.

TABLE 2 Statistics of the ASTE-Data-V1 datasets.

Datasets

Train
Sentences 1,259 315 493 899 225 332 603 151 325 863 216 328
Triplets 2,356 580 1,008 1,452 383 547 1,038 239 493 1,421 348 525

TABLE 3 Statistics of the ASTE-data-V2 datasets.

Datasets
Sentences 1,266 310 492 906 219 328 605 148 322 857 210 326
Triplets 2,338 577 994 1,460 346 543 1,013 249 485 1,394 339 514
4.2. Evaluation metrics Flo 2XPxR 27)
P+R

To ensure the accuracy of the model’s performance, Precision
(P), Recall (R), and F1 Score (F1) are selected as the evaluation  (yhere “TP” denotes the number of the positive cases correctly
metrics, consistent with prior research in this field: predicted, and “TN” represents the number of negative cases

correctly predicted. By contrary, “FP” represents the number of

P= _ (25)  negative cases incorrectly predicted, and “FN” refers to the number
TP+ FP of positive cases incorrectly predicted. Notably, the evaluation
of extracted triplets is contingent upon the correct prediction of
P these three components, and any incorrectness in any of these
R= TP+ EN (26) components will render the triplet as incorrect.
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4.3. Experiments settings

For the purpose of comparison with previous research, for
the Bi-LSTM contextual encoder, following the design of GTS,
we use a 300-dimension general-domain embedding from GloVe
(Pennington et al, 2014) with 840 billion tokens and a 100-
dimension specific-domain embedding from fastText (Bojanowski
etal., 2017) to initialize the word embeddings. The hidden state size
of the Bi-LSTM is 300, and the dimension is set to 50. The dropout
rate of embedding is set to 0.3. For the BERT-based encoder, the
bert-base-uncased is used as encoder, and it contains 12 attention
mechanism heads, 12 hidden layers, and 768 hidden units. For these
two types of encoders, we set Adam optimizer (Kingma and Ba,
2014) to optimize networks with an initial learning rate of 0.001
for the Bi-LSTM contextual encoder and 5e-5 for the BERT-based
encoder. The hidden state size of the GCN is set to 300, and the
depth of GCN layer is 2. The batch size is set to 32. We conducted 5
independent runs with randomized initialization and reported the
experimental results as the average of these five runs.

4.4. Baselines

To evaluate the effectiveness of DGCNAP in the ASTE task, we
present other state-of-the-art models in this task for comparison.
These models can be categorized into end-to-end models and
pipeline models.

Pipeline models

e CMLA+ (Peng et al., 2020) is a two-stage model based on
CMLA (Wang et al., 2017). In the first stage, it extracts aspect
terms, opinion terms, and sentiment polarities through a
multi-layer attention network. In the second stage, it generates
possible triplets based on the output of the first stage, then
utilizes a binary classifier to filter out invalid triplets.

e RINANTE+ (Peng et al., 2020) is a two-stage model based
on RINANTE (Dai and Song, 2019). The only difference
between RINANTE+ and CMLA+ is that RINANTE+ extract
aspect terms, opinion terms, and triplets through dependency
parsing.

e Li-Unified-R (Peng et al., 2020) is a two-stage framework
based on Li-Unified (Li et al., 2019). In the first stage, it uses
a customized multi-layer LSTM network to extract targets,
opinions, and sentiments. The second stage is similar to
CMLA+.

e Peng + PD (Peng et al., 2020) is a pipeline model. It first
predicts all possible triplets, then utilize a MLP classifier to
judge the rationality of each triplet.

e Peng + LOG (Wu et al.,, 2020a) is a pipeline model. The
author add a model proposed in the study by (Fan et al., 2019),
after the model proposed in the study by (Peng et al., 2020).

o IMN-IOG (Wu et al., 2020a) is the combination of the IMM
(Heetal,, 2019) and IOG (Fan et al., 2019) to generate triplets.

End-to-end models
e OTE-MTL (Zhang et al., 2020) is a model that splits the ASTE

task into multiple subtasks, then generate triplets through a
bi-affine scorer.
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e JET (Xu et al., 2020) is a unified framework based on the
position-aware tagging scheme to generate triplets through an
LSTM layer and a CRF layer.

e GTS (Wu et al., 2020a) is a model that generates triplets by
a unified tagging scheme, and the authors design an effective
inference strategy to exploit mutual indication between
different opinion factors for more accurate extractions.

e PASTE (Mulkherjee etal., 2021) is a tagging-free solution built
on an encoder—decoder architecture to produce all triplets.

e UniASTE (Chen et al, 2022) is a multi-task learning
framework which decompose ASTE into three subtasks.

o GCN-EGTS (Hu et al., 2023) is an end-to-end model
which is an enhanced Grid Tagging Scheme (GTS) for
ASTE, leveraging syntactic constituency parsing tree and a
commonsense knowledge graph based on GCN.

o DGEIAN (Shi et al., 2022) is a framework with an interactive
attention mechanism. In addition, the authors add different
part-of-speech categories in embedding layer.

4.5. Experimental results

The results of our proposed model in the ASTE task are
presented in Tables 4, 5. From the results, it is clear that DGCNAP
significantly outperforms all other models in terms of F1 score
on all datasets. The observations in Table 4 represent that our
DGCNAP also performs better than other baseline models on
ASTE-Data-V1 datasets. Our method outperforms DGEIAN on the
four datasets and acquires 2.36, 1.12, 0.54, and 2.05 improvements
in the F1, respectively. Additionally, we observe that the end-to-end
model achieves better performance than the pipeline model. For
the Bi-LSTM-based encoder, as shown in Table 5, when compared
with the best pipeline model, Peng + PD, DGCNAP achieves F1
scores that are more than 10 percentage points higher in three
out of the four datasets. On the other hand, in comparison with
the model, our proposed model outperforms it by 2.83, 3.7, 1.55,
and 3.62 F1 points on the respective datasets. For the BERT-based
encoder, DGCNAP also performs well. From the Table 4, it can
be observed that the DGCNAP outperforms by 0.06, 4.16, 0.82,
and 3.19 F1 points on four datasets when compared with GTS.
Our method outperforms the best BERT-based baseline model
UniASTE by 1.63, 1.06, 2.14, and 2.36 F1 points, as shown in
Table 5. The comparisons presented above demonstrate that our
model effectively leverages the affective knowledge information
of individual words, leading to improved model’s performance in
handling sentences with multiple triplets.

4.6. Ablation study

To investigate the effectiveness of the various components in
our proposed model, we conducted a series of ablation experiments
on the ASTE-data-V2 datasets using the Bi-LSTM encoder. The
results of the ablation experiments are presented in Table 6. “w/o
SN” refers to the adjacency matrix that is generated only by
sentence dependency syntax, without adding SenticNet affective
score to the adjacency matrix, and “w/o PA” indicates the model
without the multi-target position-aware function in the GCN layer.
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TABLE 4 Statistics of the ASTE-Data-V1 datasets.

Methods

Encoder

Bi-LSTM Peng + LOG" 58.89 60.41 59.64 48.62 45.52 47.02 51.70 46.04 48.71 59.25 58.09 58.67
IMN + IOG' 59.57 63.88 61.65 49.21 46.23 47.68 55.24 52.33 53.75 - - -
GTS-CNNT 70.79 61.70 65.95 55.93 47.52 51.38 60.09 53.57 56.64 62.63 66.98 64.73
GTS-BiLSTM' 67.28 61.91 64.49 59.42 45.13 51.30 63.26 50.71 56.29 66.07 65.05 65.56
GCN- 68.74 62.07 65.72 55.94 45.25 49.89 61.54 51.29 55.97 63.73 63.86 63.77
EGTS(CNN)
DGEIAN 71.03 62.63 66.55 60.74 45.56 51.72 64.87 52.75 57.11 69.07 65,64 67,30
DGCNAP 74.51 64.10 68.91 62.02 46.09 52.84 64.82 51.92 57.65 73.97 65.29 69.35
BERT GCN- 70.14 68.07 69.20 54.54 52.27 53.64 59.23 58.15 58.84 66.89 65.86 66.28
EGTSgerr
GTSpgrr 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58
DGCNAPggrr 71.83 68.77 70.26 63.91 54.34 58.74 62.03 57.18 59.49 69.39 72.20 70.77

The best results are in bold. The results with “1” are retrieved from the study by Shi et al. (2022), others are retrieved from the original studies.

TABLE 5 Statistics of the ASTE-Data-V2 datasets.

Methods

Encoder

Bi-LSTM CMLA T 39.18 47.13 42.97 30.39 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE +' 31.42 39.38 34.95 21.72 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R" 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
Peng + pD? 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL" 63.00 55.10 58.70 49.20 40.50 45.10 57.90 42.70 48.90 60.30 53.40 56.50
IET(M=6)Jr 61.50 55.13 58.14 53.03 33.89 41.35 64.37 44.33 52.50 70.94 57.00 63.21
PASTE-AF' 62.40 61.80 62.10 53.70 48.60 51.00 54.80 53.40 54.10 62.20 62.80 62.50
PASTE-OF' 63.40 61.90 62.60 59.70 48.10 50.00 54.80 52.60 53.70 62.30 63.60 62.90
UniASTE 70.23 56.82 62.73 55.64 40.91 47.11 63.09 48.37 54.73 66.34 59.26 62.58
DGEIAN 71.68 61.62 66.26 60.15 43.44 51.14 61.84 50.99 55.89 69.40 60.15 64.37
DGCNAP 74.43 64.49 69.09 64.32 47.84 54.84 66.73 50.43 57.44 72.37 64.13 67.99

BERT JET(M = 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
6)pERT
UniASTEggrr 72.14 66.30 69.09 62.24 51.77 56.51 64.83 54.31 59.05 69.06 65.53 67.22
DGCNAPggrr 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58

The best results are in bold. The results with “T” are retrieved from the study by (Shi et al., 2022), others are retrieved from the original studies.

“w/o AE” and “w/o OE” correspond to the models without the
aspect words-enhanced GCN channel and the opinion words-
enhanced GCN channel, respectively.

Based on the results of the ablation experiments presented
in Table 6, we can draw the following conclusion. First, the
SenticNet affective score is a crucial component in enhancing
the representation of the dependency graph. The utilization
of only the adjacency matrix generated from the dependency
syntax tree, without incorporating the SenticNet affective score
for enhancement, leads to a reduction in the model’s ability
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to predict sentiment polarity. Second, the multi-target position-
aware function is another critical module in our proposed
model. The removal of this function leads to a significant
decrease in the F1 score, the F1 score drops the most to 5.32
on the 1l4lap dataset, further highlighting the importance of
this function in our model. Finally, the ablation experiments
reveal that both the aspect terms-enhanced features and the
opinion terms-enhanced features are important for model learning.
The removal of either of these two channels leads to an
average decrease by 0.76 and 1.13 F1 points, emphasizing
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TABLE 6 Results of ablation study under the metric of F1.

Model 14res 14lap 15res 16res ‘
DGCNAP 69.09 54.84 57.44 67.99
w/o SN 68.17 52.07 56.98 66.76
w/o PA 64.59 49.52 56.03 64.73
wlo AE 68.59 53.84 57.02 66.89
w/o OE 68.35 53.49 56.57 66.43

TABLE 7 Results of the different usage of SenticNet effective score under
the metric of F1.

Model 14res 14lap 15res 16res
DGCNAP 69.09 54.84 57.44 67.99
w/o SN 68.17 52.07 56.98 66.76
DGCNAP- 67.70 51.80 55.96 65.51
ADD

their contribution to the overall performance of the DGCNAP
model.

4.7. Impact of SenticNet effective score

To investigate the impact of incorporating SenticNet affective
score, a series of experiments are conducted on all four ASTE-
data-V2 datasets using Bi-LSTM encoder. Specifically, the aim is
to explore the impact of using different strategies for incorporating
SenticNet effective score. Furthermore, “DGCNAP-ADD” denotes
that we generate the final weight of the enhanced graph which
is generated by adding the weight of the adjacency matrix to the
target score and the absolute value of the SenticNet affective score.
The results of the experiments are presented in Table 7, and the
corresponding F1 scores are plotted in Figure 5. The experimental
results reveal that direct addition of the three values without
proper processing during the generation of the final dependency
matrix lead to overemphasis of the target words and words with
strong emotions. Consequently, the model disregarded the impact
of syntactic dependencies and semantic information, leading to
undesirable side effects, and resulting in lower performance than
the result before adding target weight and SenticNet effective score.
Therefore, it is concluded that the incorporation of SenticNet
affective score should be carried out with caution as inappropriate
usage could have a negative impact on the performance of the
model.

4.8. Impact of position-aware function

To evaluate the effectiveness of the multi-target position-
aware function in sentences with multiple triplets, we conduct
experiments on sentences with varying numbers of aspect terms
on ASTE-data-V2 datasets using Bi-LSTM encoder. Since the
number of sentences with multiple aspect terms in the lapl4,
resl5, and resl6 datasets is limited, we conduct experiments on
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FIGURE 5
F1 scores for different use methods of SenticNet effective score on
ASTE-data-V2 datasets.

TABLE 8 Results of the impact of position-aware function study under
the metric of F1.

Number of aspect terms

2 3
DGCNAP 66.26 61.70 65.42 43.77
w/o PA 64.44 59.21 63.20 41.81
105
100 — DGCNAP w/o PA
95
@ 90
< 8
2
s 80
]
70
65
60
1 2 3 4
Number of aspect terms
FIGURE 6
The ratio of F1 value of sentences with multiple aspect words to F1
value of sentences with one aspect word.

the res14 dataset of ASTE-data-V2 using Bi-LSTM encoder. The
experimental results are presented in Table 8, and the ratios of
the F1 score value of sentences with multiple aspect terms to the
F1 score value of sentences with one aspect term are plotted in
Figure 6. The results indicate that the implementation of the multi-
target position-aware function has a positive impact on the model’s
ability to handle sentences with multiple triplets. Specifically, as the
number of aspect terms increases, the decline rate of the F1 score
value is observed to decrease slower than before implementing the
function.
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TABLE 9 Results of case study.

Example Golden DGCNAP
truth

Once we (Food, (Food, (food,

sailed, the top-notch, top-notch, top-notch,

top-notch food positive)(Live positive) positive) (live

and live entertainment, entertainment,

entertainment top-notch, top-notch,

sold us on a positive) positive)

unforgettable

evening.

If you're (Ambiance, (Ambiance, (Ambiance,

craving some cozy, cozy, cozy,

serious Indian positive)(Indian positive)(Indian positive)(Indian

food and food, serious, food, serious, food, serious,

desire a cozy positive) positive)(Indian positive)

ambiance, this food, craving,

is quiet and positive)

exquisite

choice.

One caveat: (Curried (Curried (Curried

Some of the casseroles, casseroles, casseroles,

curried neural) positive) neural)

casseroles can

be a trifle

harsh.

4.9. Case study

To show the advantages and disadvantages of DGCNAP, a
case study is conducted to compare its performance with that
of the GTS model. The results of the study are presented in
Table 9. The first sample of the study comprises two triplets, with
identical opinion terms. GTS accurately predict only one triplet,
while DGCNAP successfully identifies both triplets. The second
sample also contains two triplets, but GTS make an erroneous
identification of a verb as an opinion term, leading to the prediction
of an additional triplet based on the incorrect opinion term. In
contrast, DGCNAP accurately recognizes the number of aspect
terms and make correct predictions for all triplets. The third
sample comprises one triplet. However, due to the fact that GTS
does not consider contextual affective knowledge information, it
inaccurately determine the sentiment polarity of this triplet. In
contrast, DGCNAP accurately predict the sentiment polarity by
utilizing the affective knowledge information of each word.

5. Conclusion

This study proposes a novel Dual Graph Convolutional
Networks Integrating Affective Knowledge and Position
Information (DGCNAP) to the ASTE task, which leverages
the contextual features, the affective knowledge information
of a single word, and relationship between potential multiple
triplets in a same sentence. Specifically, our approach utilize two
parallel channels to learn relevant features of potential aspect
words and potential opinion words, respectively, by incorporating
the SenticNet effective score and the weight of potential aspect
words or opinion words when constructing the adjacency matrix.
Furthermore, a novel multi-target position-aware function is
utilized in the GCN Layer to significantly improve the effectiveness
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of the model in processing sentences with multiple triplets.
The experimental results on four benchmark datasets show the
effectiveness of DGCNAP, as it outperforms all other state-of-the-
art models significantly in terms of F1 on all datasets. Our analysis
on the impact of SenticNet Effective Score and Position-aware
Function has demonstrated that these improvements effectively
increase the model’s ability to identify triplets in sentences.
Furthermore, supporting the introduction of affective knowledge
can enhance the model’s ability to recognize sentiment polarity,
while introducing a novel multi-target position-aware function
can enhance the interaction between triplets and avoid the impact
of noise.

It is noteworthy that one aspect may be associated with
multiple opinions and vice versa, and our study has not made
improvements to address such situations. For future studies,
recognition approaches for handling overlapping triplets will be
considered. Additionally, an interactive module will be developed
to effectively combine enhancement features of both aspect terms
and opinion terms.
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Recognizing occluded facial expressions in the wild poses a significant challenge.
However, most previous approaches rely solely on either global or local feature-
based methods, leading to the loss of relevant expression features. To address
these issues, a feature fusion residual attention network (FFRA-Net) is proposed.
FFRA-Net consists of a multi-scale module, a local attention module, and a feature
fusion module. The multi-scale module divides the intermediate feature map
into several sub-feature maps in an equal manner along the channel dimension.
Then, a convolution operation is applied to each of these feature maps to obtain
diverse global features. The local attention module divides the intermediate feature
map into several sub-feature maps along the spatial dimension. Subsequently, a
convolution operation is applied to each of these feature maps, resulting in the
extraction of local key features through the attention mechanism. The feature
fusion module plays a crucial role in integrating global and local expression
features while also establishing residual links between inputs and outputs to
compensate for the loss of fine-grained features. Last, two occlusion expression
datasets (FM_RAF-DB and SG_RAF-DB) were constructed based on the RAF-
DB dataset. Extensive experiments demonstrate that the proposed FFRA-Net
achieves excellent results on four datasets: FM_RAF-DB, SG_RAF-DB, RAF-DB, and
FERPLUS, with accuracies of 77.87%, 79.50%, 88.66%, and 88.97%, respectively.
Thus, the approach presented in this paper demonstrates strong applicability in
the context of occluded facial expression recognition (FER).

KEYWORDS

occluded facial expression recognition, feature fusion network, multi-scale module, local
attention module, attention mechanism

1. Introduction

Facial expression recognition (FER) has emerged as a critical research direction in
the field of artificial intelligence due to the significant role facial expressions play in
daily interpersonal communication. FER holds potential applications across diverse fields,
including intelligent tutoring systems, service robots, and driver fatigue detection (Poulose
etal, 2021a,b). Asaresult, it has garnered increasing attention in the field of computer vision
in recent years.

FER methods can be categorized into two types depending on the scenario: studies
conducted in a controlled laboratory environment and studies conducted outside the
laboratory in an uncontrolled environment. In controlled environments, the small sample
size of the collected data affects the model’s feature learning. To overcome this, some
researchers propose a new encoder-decoder structure that generates various facial expression
images, effectively expanding the sample size (Zhang et al, 2018). Furthermore, Xue
et al. (2021) proposed the TransFER model, investigating the relationship between global
Transformer-extracted features and local CNN-extracted features. This enhances feature
learning and improves model performance. However, these approaches primarily rely on
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studies conducted on laboratory datasets, such as CK+ (Lucey
et al, 2010), MMI (Valstar and Pantic, 2010), and OULU-CASIA
(Zhao et al,, 2011). Despite achieving high accuracy on these
datasets, FER methods exhibit poor performance in uncontrolled
environments. To address this, some researchers have tackled
class imbalance and label noise issues in datasets by utilizing
techniques like data augmentation and auxiliary datasets (Wang
et al, 2018). Network interpretability studies demonstrate that
models can prioritize relevant facial expression features, resulting
in more accurate emotion detection (Kim et al., 2021). Additionally,
the noisy labeling problem in real-world datasets can be mitigated
by introducing a probabilistic transformation layer (Zeng et al,
2018). The above methods are investigated on expression datasets
in uncontrolled environments. However, FER still faces challenges
when the face is partially occluded by objects like sunglasses,
scarves, masks, or other random items that frequently occur in real
images or videos.

Addressing the facial occlusion problem is crucial for
improving the performance of FER models in real-world
environments. As shown in Figure 1, the occlusion problem leads
to a large spatial change in the appearance of the face. To
tackle this issue, certain researchers have suggested utilizing deep
CNN networks for solving the occlusion problem. Specifically,
two CNN networks are trained from a global perspective using
occluded and non-occluded face images. The non-occluded face
images are utilized as privileged information for fine-tuning the
occluded expression recognition network. This approach (Pan
et al, 2019) significantly reduces occlusion interference and
enhances network performance. However, the drawback of this
FER algorithm is its focus solely on global features, neglecting
the crucial local detail features that play a vital role in expression
discrimination. Therefore, regarding the occlusion FER problem,
certain researchers suggested a method based on local keypoint
localization (Wang K. et al., 2019), effectively capturing crucial
local facial features. However, choosing the appropriate local
regions remains a key issue. To address this, researchers employed
three local region generation schemes: fixed position selection,
random selection, and labeled keypoint selection. This approach
significantly enhances the performance of the occlusion FER
model. An alternative method for keypoint selection involves
choosing 24 facial keypoints to define 24 key local regions.
Subsequently, an attention network is employed to extract features
from each region, allowing better focus on important local
features. This approach (Li et al, 2018) offers a viable solution
to the occlusion FER problem. Nonetheless, the localization-based
approach has a drawback of neglecting global information, which
limits its overall ability in expression discrimination. Consequently,
the effective combination of global and local features is paramount
in addressing the occlusion FER problem.

To solve the above issues, a feature fusion residual attention
network aiming to enhance feature robustness is proposed.
In convolutional neural networks (CNNs), deep convolutions
exhibit a broader receptive domain and encompass richer
semantic features, whereas shallow convolutions have a narrower
receptive domain and capture rich profile features. However, deep
convolutions are susceptible to occlusion (Proverbio and Cerri,
2022). To address this, this paper employ multi-scale modules to
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extract features from diverse receptive domains, thereby enhancing
the diversity and robustness of global features. Additionally, this
paper design local attention modules to extract local features,
mitigating occlusion interference. To learn both global multi-scale
and local features, this paper employed a two-branch network.
The first branch utilized the multi-scale module, while the second
branch divided the extracted feature maps into multiple non-
overlapping local feature maps, which were then processed using
the attention mechanism. Finally, the processed features were
fused. The main contributions of this paper can be summarized as
follows:

1. Feature fusion residual attention network (FFRA-Net), a simple
and effective FER network, is proposed to address the challenge
of facial occlusion by enhancing the diversity of expression
features through feature fusion.

2. The multi-scale module extracts features at different scales
from the feature map, thereby reducing the sensitivity of deep
convolutions to occlusion. Additionally, the local attention
module focuses on local salient features and mitigates occlusion
interference.

The remainder of this paper is structured as follows. Section
2 provides a review of relevant literature. Subsequently, the
proposed approach is presented in Section 3. Section 4 presents
the experimental results for both obscured and non-obscured
expression datasets. Additionally, visualizations are provided to
further validate the proposed method. Section 5 summarizes the
findings.

2. Related work
2.1. Deep convolutional FER

In recent years, researchers have made significant progress
in FER by proposing numerous methods based on deep CNNs.
However, deep learning-based FER often disregards domain-
specific knowledge related to facial expressions. To tackle this
issue, Chen et al. (2019) introduced a framework for FER that
leverages prior knowledge by utilizing the distinctions between
neutral expressions and other expressions to train the network.
Moreover, head pose variation poses a common challenge in
expression recognition. To tackle this issue, Marrero-Ferndndez
et al. (2019) propose an end-to-end architecture with an attention
mechanism that rectifies facial images to improve expression
classification. Due to the subtle variations in expressions, the issue
of inter-class similarity in expression datasets becomes crucial.
To address this, Wen et al. (2021) proposed attention distraction
networks. The aforementioned methods primarily concentrate
on datasets obtained in controlled environments, where facial
images are predominantly frontal. Consequently, the model’s
performance suffers when it comes to recognizing facial expressions
in uncontrolled environments.

To differentiate between uncertain and blurred expression
images in uncontrolled environments, Pu et al. (2020) proposed
an expression recognition framework based on facial action
units. The framework incorporates an attention mechanism that
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FIGURE 1

occluded expression images.

Some examples of images from the RAF-DB dataset, where the first row comprises non-occluded expression images and the second row comprises

dynamically focuses on significant facial actions. To quantify these
uncertainties, Zhang et al. (2021) proposed a relative uncertainty
method that assigns weights based on uncertainties, fuses facial
features, and introduces a new uncertainty loss. She et al. (2021)
introduced a multi-branch learning network to address the label
ambiguity problem in FER. The method enhances the ability
to explore and capture the underlying distribution in the label
space. Furthermore, the expression dataset faces challenges posed
by pose variation and identity bias. To tackle these challenges,
Wang C. et al. (2019) proposed an adversarial feature learning
method. The gesture discriminator and identity discriminator
classify gestures and identities based on the extracted feature
representations, respectively. Similarly, Chen and Joo (2021)
presented a FER framework based on facial action units. The
framework integrates a triple loss into the objective function,
leading to improved expression classification accuracy. Despite
the impressive performance of the aforementioned methods on
uncontrolled environment data, the task of masking FER remains
challenging.

2.2. Occluded FER

Considering the limited availability of large-scale occluded
expression datasets, Xia and Wang (2020) proposed a stepwise
learning strategy for occluded FER models. The distribution density
in the feature space is first used to measure the complexity
of the non-occluded data, thus guiding the distribution of the
occluded expression features to converge to the distribution of
the non-occluded expression features. In a similar vein, Pan
et al. (2019) presented a novel method for occluded FER that
leverages non-obscured face image information. This approach
aims to align the distribution of learned occluded face image
features with the distribution of non-occluded face image features.
Nonetheless, the aforementioned methods rely on global features.
In occlusion expression recognition, global features are susceptible
to the influence of occlusion, leading to reduced accuracy in
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expression recognition. To overcome this challenge, Wang K. et al.
(2019) introduced a network based on local region attention.
Additionally, they proposed a region bias loss to assign weights
to local region attention. Xue et al. (2022) proposed a dedicated
attention mechanism for FER networks. The proposed model
selectively focuses on the most relevant expression features while
disregarding irrelevant features, thereby avoiding undue emphasis
on occlusion or other noisy regions. The aforementioned approach
based on local features effectively addresses the occlusion problem.
However, it overlooks global information and possesses limited
discriminative ability for expression as a whole.

Hence, it is crucial to consider both global and local features
for effective occluded expression recognition. Ding et al. (2020)
introduced an adaptive depth network for recognizing occluded
facial expressions. Initially, global features are extracted using
the ResNet-50 backbone network. Subsequently, the network is
partitioned into two branches. Each branch is further divided
into multiple sub-regions, with each sub-region independently
predicting expressions. Finally, strategy fusion is conducted to
obtain the final classification results. Zhao et al. (2021) presented
an expression recognition network capable of learning global and
local features. This network effectively mitigates the deep network’s
sensitivity to occlusion and autonomously attends to local key
information. Finally, the same policy fusion is employed to derive
the results. Nevertheless, the policy fusion approach is prone to
overfitting as the network deepens and shows poor performance
when trained on certain realistic occlusion data.

3. Proposed method

FFRA-Net is a feature fusion network designed to address the
recognition of obscured facial expressions. The method comprises
a multi-scale module, a local attention module, a feature fusion
module, and a residual link. The backbone network chosen for
this purpose is ResNet-18 (He et al., 2015). Figure 2 illustrates the
structure of FFRA-Net. Initially, the feature preextractor captures
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the intermediate facial expression features, which are obtained from
the first three convolutional stages of ResNet-18. Then, a two-
branch network is used to process the acquired intermediate feature
maps into the multiscale module and the local attention module,
respectively, allowing the model to obtain both global and local
expression features. Subsequently, the model enters the feature
fusion phase, where a weighted fusion approach is applied to assign
specific weights to the feature mappings from the two branches.
These weighted features are then directly summed. Meanwhile,
it is then added with the original intermediate feature map to
form a residual connection, and finally a global and local attention
feature map is obtained. Finally, this feature map proceeds to the
last convolutional stage of ResNet-18, followed by fully connected
layers for deriving the classification results.

3.1. Multi-scale module

Multi-scale modules are widely used in computer vision
for processing visual information across different scales (Gao
et al, 2019; Ma and Zhang, 2023). It is widely used in
many tasks, including target detection and image segmentation.
Typically, the multi-scale module divides the feature map into
multiple subregions of different scales in the spatial dimension,
processing each subregion individually. However, this approach is
primarily applicable to visual tasks like target detection and image
segmentation. Occluded expression recognition is influenced by
occlusions, leading to the absence of certain semantic information.
To compensate for this deficiency, there is a need for more
comprehensive and diverse global features. To tackle this issue,
a novel multi-scale image classification module is proposed
(Figure 3A). The feature map is divided into multiple sub-feature
maps along the channel dimension, enabling the extraction of a
broader range of global expression information.

The objective of this method is to learn multi-scale features
within the feature map while ensuring that the feature subsets
encompass a wider range of scale information. Specifically, the
feature mapping X is obtained through feature pre-extraction.
Next, the module partition X into n feature map subsets along the
channel axis, denoted as X;, with i € {1,2,...,n} representing
the index. Each feature subset X; has the same spatial size as the
feature map X but contains only 1/n channels. Subsequently, a
3 x 3 convolution is applied to each X, yielding the output denoted
as P, while Y;™ represents the output after fusion of each sub-
feature. Therefore, the expression for each output Y™ can be
defined as follows:

ms
1

P i=1 0
P+ Y) 1<i<n

Equation 1 demonstrates that each output Y™ encompasses a
distinct number and scale of subset features. In order to obtain a
more diverse collection of global features, the module concatenate
all the Y{"S outputs along the channel dimension. However,
increasing the value of n results in features containing more
scale information, which in turn increases model complexity and
computational overhead. Taking these factors into consideration, n
is set to 4 in this module to optimize the performance of the model.
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The multi-scale convolution captures comprehensive and
detailed global information in the feature map, thereby reducing
the sensitivity of deep convolution to occlusion. Compared to the
traditional ResNet-18 network, this network selectively attends to
the facial regions related to expression while disregarding occluded
regions, thus effectively addressing the issue of facial occlusion.

3.2. Local attention module

The local attention module, commonly used in computer
vision, utilizes the attention mechanism to capture essential
information from images. The attention mechanism, similar to
human vision, assigns weights to channels or spatial domains
through automatic learning. This enables the neural network to
focus on important regions and disregard others. In occlusion-
based FER, a portion of the facial image is obscured by an occluder,
leading to a loss of discriminative ability in the occluded region’s
features. Based on this feature, a novel local attention module
(Figure 3B) is proposed. This module significantly enhances the
model’s perceptual capability.

Local features play a crucial role in occlusion FER. However,
previous methods often employ face tagging or random cropping
to divide faces into multiple local regions in order to extract
effective local features. but these methods may result in redundancy
of features and increase in computational overhead. To solve
this issue, the intermediate feature maps are divided into non-
overlapping local feature maps, aiming to enable each local feature
map to autonomously focus on local key features using attention
mechanism. Therefore, after 3 x 3 convolution of the feature maps
obtained by feature pre-extraction, the module divide the extracted
feature map S into several local feature maps S; along the spatial
axis, where i € {1,2,...,m}. Each S; undergoes a 3 x 3 convolution,
resulting in a feature map denoted as F € RHXWxC_ ghuffle
Attention (SA) mechanism was subsequently used as the attention
network (Zhang and Yang, 2021). The SA module divides the input
feature map into G sub-feature maps evenly across the channel
dimension, where G is set to 8. Subsequently, each sub-feature
map is evenly divided into two feature maps along the channel
dimension. Then, the SA module calculates the channel and spatial
attention weights for each of the two feature maps successively,
focusing on the channel and spatial dimensions, respectively.
Subsequently, the attention weights are multiplied with the original
feature maps to generate attention maps in both dimensions. As
shown in Equations 2 and 3, these two attention maps are then
combined, and the same process is repeated for the remaining sub-
feature maps. The interaction between each sub-feature graph is
achieved through the channel shuffle operation. Channel shuftle
involves randomly rearranging the original channel order of the
feature map before their combination. Finally, an attention graph
with the same shape as the input feature graph is generated. In
our network, each F; € RH*xWxC/G (where i € {1,2,...,G})
is further divided into Fij € RHXWxC/2G (where j € {1,2}),
and the attention network takes Fj; as input. It calculates a one-
dimensional channel attention weight map M. € R1*C and a
two-dimensional spatial attention weight map M, € REXWx1 for
element-level multiplication denoted by ®, and outputs the result
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The model structure employed in this paper. The method includes the bac!
attention module, and a weighted fusion module. Here, Input image from the RAF-DB dataset, A = 0.6 represents the weight assigned to local
features, FL indicates the tiling operation, and FC refers to the fully connected network.

kbone network ResNet-18, along with a multi-scale module, a local

as F, after stitching the sub-attention maps (F,). Therefore, the
attention network can be expressed as follows:

Fri = [(M; (Fy) ® Fy) , (M. (Fy) ® Fy)] @

F, [Frb' t :FrG] (3)

Let the output of the 3 x 3 convolutional and attentional
network be denoted as Pf“, and the output after feature fusion as
Y}“. Thus, each output can be expressed as follows:

Pl (S)
Pll-“ (Si +

i=1
1) 1<i<n

la _
la _

¥ (4)

1

Based on Equation 4, each output comprises varying numbers
and sizes of local features. To obtain a wider range of diverse local
features, the module concatenate all the outputs along the spatial
dimensions. In this study, m is set to 4, which aligns better with
the characteristics of masked expression images and guarantees
improved model performance.

3.3. Feature fusion module

In computer vision, a feature fusion module is employed to
integrate information from diverse feature types, enhancing the
performance of vision tasks. To maintain a balance between the
significance of multi-scale and local attention features, weights are
incorporated into the feature fusion module. Figure 3C illustrates
the integration of global and local information within this
module, resulting in improved model performance. Furthermore,
to enhance the network’s expressive capacity, the module establish
residual connections between the input and output features. This
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enables the network to more effectively capture image details
and contextual information. Here, the original input features are
denoted as X, the outputs of the multi-scale and local attention
modules as Y™ and Y}“, respectively, and the output of the final
feature fusion module as X. Therefore, it can be expressed as:

Y=AYR 41 —0)Y™ 4 X (5)

In Equation 5, A represents a hyperparameter that controls the
relative significance of the multi-scale and local attention modules.
It is demonstrating experimentally that the model achieves the best
performance when A is set to 0.6.

4. Experiment

This section describes the data set used and the data processing
procedures. And the details of the experimental setup are presented.
Then, the experimental results are presented, including the results
of the ablation experiments, the determination of the feature fusion
weights, the visualization of the CAM, and the results of the partial
confusion matrix. Last, the method of this paper is compared with
other methods, and the experimental results are comprehensively
analyzed.

4.1. Datasets

RAF-DB (Liand Deng, 2019): RAF-DB, a real-world expression
dataset, comprises 29,672 facial expression images. These images
were independently annotated by approximately 40 annotators.
The experiments in this paper utilized a single tag provided
by RAF-DB. The dataset consists of 15,339 expression images,
encompassing six basic expressions (happy, surprised, sad, angry,
disgusted, and fearful), as well as neutral expressions. Out of
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(C) Feature fusion.

FFRA-Net uses three types of modules. Multi-scale module, local attention module, and feature fusion module. (A) Multi-scale. (B) Local attention.

these, 12,271 images were allocated for training, while 3,068 were
allocated for testing.

FERPLUS (Barsoum 2016):  FERPLUS
extension of FER2013, a large-scale dataset collected using
the Google Image Search API. The dataset comprises 28,709
training 3,589 validation and 3,589 test
images. It was re-labeled by 10 annotation workers to

et al, is an

images, images,
include six basic expressions (happy, surprised, sad, angry,
disgusted, and fearful), as well as neutral and contemptuous
expressions.

FM_RAF-DB and SG_RAF-DB: To evaluate the performance
of our proposed FER model under realistic occlusion conditions,
two occlusion representation datasets were created based on
RAF-DB: FM_RAF-DB and SG_RAF-DB. Using face detection
(Deng et al., 2020), these datasets simulate both cases of faces
wearing masks and sunglasses. The masked face method used,
specifically, marks the key points of the face and selects the
key points around the eyes and mouth. The method then
uses a bionic matrix and a bionic transformation calculation
to place the mask image and the sunglasses image in their
respective positions (refer to Figure 4). These two datasets better
simulate the facial occlusion in real scenes, allowing a more
accurate evaluation of the performance of our proposed FER
model.
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4.2. Implementation details

For all datasets, official face-aligned samples are used. The
input images of RAF-DB and FERPLUS datasets were cropped to
a size of pixels, respectively. In this study, the ResNset-18 network
was chosen as the backbone network and the experimental code
was implemented using the PyTorch framework. The training was
conducted on an NVIDIA RTX-3090 GPU. In this study, a pre-
trained ResNet-18 model obtained by training on the MS-Celeb-1M
dataset was utilized. The optimizer used for training is the Adam
optimizer with a batch size of 128 and an initial learning rate of
0.0001. To achieve the best results, the model in this paper was
trained on all datasets for 200 epochs.

4.3. Ablation studies

In order to assess the effectiveness of FFRA-Net, this
section performed ablation experiments on the FM_RAF-
DB and SG_RAF-DB datasets.
encompass the selection of feature fusion strategy, the value
of the weight hyperparameter, the impacts of the multi-scale

The experimental results
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FIGURE 4
Some image examples of FM_RAF-DB and SG_RAF-DB dataset.

TABLE 1 Evaluating various fusion strategies on the SG_RAF-DB dataset.

Fusion strategies Acc.(%)

Concate feature fusion 76.69
Add feature fusion 77.87
Weighted feature fusion 79.50

module and local attention module on the model, as well as
CAM visualization.

4.3.1. Selection of the feature fusion strategy

In this subsection, different fusion strategies are experimented
on the SG_RAF-DB dataset. Table 1 presents the comparison
results of three feature fusion strategies: splicing fusion, summing
fusion, and weighted fusion. Splicing fusion involves concatenating
two feature maps along the channel dimensions and subsequently
fusing the information from all channels through convolution.
Additive fusion directly adds the feature maps obtained from
two branches to create a combined feature map. Weighted
fusion assigns specific weights to the feature maps of different
branches based on additive fusion and then adds them together.
In this study, the weight for the local attention module is
empirically set to 0.6, as verified in subsequent subsections.
The results demonstrate that weighted fusion is a more suitable
fusion method.

4.3.2. The value of the weight hyperparameter A

To balance the importance of multi-scale modules and local
attention modules, A is used as a hyperparameter. The local
attention weight is set to A, and the weight of the multiscale module
is set to 1 — A. This experiment investigate different values of A
ranging from 0.1 to 0.9 to examine its effect on FFRA-Net, and
the results are presented in Figure 5. When A is set to 0.6, the
weight of the local attention branch is slightly higher than that
of the multi-scale branch, leading to the model achieving the best
performance.
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Evaluation of different A values on the SG_RAF-DB dataset.

TABLE 2 Evaluation of multi-scale and local attention modules in
networks on the FM_RAF-DB and SG_RAF-DB datasets.

Multi-scale Local FM_RAF-DB SG_RAF-DB
attention

- - 75.98% 77.44%

v - 76.86% 78.62%

- v 77.74% 79.37%

v v 77.87% 79.50%

4.3.3. Effects of multi-scale modules and local
attention modules

An ablation analysis was conducted to verify the effectiveness
of the multi-scale module and the local attention module in FFRA-
Net. The results in Table 2 demonstrate that using either the multi-
scale module or the local attention module alone yields higher
accuracy compared to the baseline accuracy. Moreover, the local
attention module exhibits greater usefulness than the multi-scale
module. Ultimately, the model achieved the best performance by
employing both modules and integrating their features.

To provide a clearer understanding of the effect of the feature
fusion module, the study conducted CAM visualization (Zhou et al.,
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FIGURE 7

Confusion matrix results for baseline, multi-scale modules and FFRA-Net on the FM_RAF-DB test set.

FIGURE 8

The images were captured from the test set of the RAF-DB dataset, augmented with random occlusion.

2015) to validate its performance. Figure 6 displays the visualization
results of the baseline and feature fusion modules in the first
and second rows, respectively. In comparison to the traditional
ResNet-18, the CAM results obtained with feature fusion direct the
network’s attention toward locally significant regions. For the first
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four images where faces are covered by masks, even though the
mouth is the primary region of the mask, the model predominantly
focuses on the eye region. Similarly, for the last four images where
faces are covered by sunglasses, despite the eye being the main
region of the mask, the model primarily attends to the mouth
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region, which aligns with human perception. The results indicate
that methods in this paper effectively addresses the occlusion
problem.

4.4, Confusion matrix analysis

Confusion Matrix is a valuable tool for evaluating the
performance of a classification model. It displays the relationship
between the classification model’s predictions for different
categories and their corresponding true labels, with the table
numbers representing the number of predicted samples. The
subsection analyze the Confusion Matrix of the baseline, multi-
scale module, and FFRA method applied to the test set of the
FM_RAF-DB dataset. Figure 7 displays the Confusion Matrix.
FFRA Method significantly improves the recognition accuracy
of the neutral expression category. Neutral expressions, being
states without obvious emotional signals, may lack distinct facial
expression features compared to other expression categories.
However, FFRA Method can effectively focus on more accurate and
relevant features when recognizing neutral expressions, thereby
enabling the model to achieve higher recognition accuracy.

4.5. Assessment of the model's
performance in real-world scenarios

To further validate the performance of the FFRA model in real-
world environments, the test set of the RAF-DB dataset was added
with random occlusion, as depicted in Figure 8. The model achieves
an accuracy of 86.43% on this dataset, surpassing the performance
of other FER methods listed in Table 3. This demonstrates the
outstanding performance of the model in real-world scenarios.

4.6. Comparison with previous results

In this section, FFRA-Net is compared with other state-of-the-
art methods using the FM_RAF-DB and SG_RAF-DB datasets.
Specifically, VGG-16 (Simonyan and Zisserman, 2014), ResNet-
50 (He et al., 2015), and MobileNetv2 (Sandler et al., 2018) are
models with larger parameter counts, deeper networks, and lighter
weights, respectively, while SCN (Wang et al,, 2020) and MA-
Net (Zhao et al., 2021) are specifically designed for FER in the
wild. The experimental results in Table 4 demonstrate that FFRA-
Net outperforms the other FER models in terms of accuracy,
showcasing excellent performance.

FFRA method achieves an accuracy of 77.87% on the FM_RAF-
DB dataset and 79.50% on the SG_RAF-DB dataset. These
results surpass several existing mainstream methods and occluded
FER methods. The proposed FFRA-Net in this paper exhibits
outstanding performance in recognizing obscured expression
images.

The accuracy results of FFRA-Net and other FER models on the
RAF-DB and FERPLUS datasets are shown in Table 5. The FFRA
method achieves an accuracy of 88.66% on the RAF-DB dataset and
88.97% on the FERPLUS dataset. These results outperform several
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TABLE 3 Comparison of performance with previous FER methods on the
test set of the RAF-DB dataset after incorporating random occlusion.

Baseline 81.62
SCN (Wang et al., 2020) 85.78
MA-Net (Zhao et al., 2021) 86.23
FFRA-Net (Ours) 86.43

The bold values are outcomes from model runs described in this paper.

TABLE 4 Performance comparison (%) with previous methods on
FM_RAF-DB and SG_RAF-DB.

Methods FM_RAF-DB SG_RAF-DB
VGG-16 (Simonyan and 73.86 75.81
Zisserman, 2014)

ResNet-50 (He et al., 2015) 74.32 75.88
MobileNetv2 (Sandler et al., 73.14 75.46
2018)

SCN (Wang et al., 2020) 76.43 77.64
MA-Net (Zhao et al., 2021) 77.64 78.78
FFRA-Net(Ours) 77.87 79.50

The bold values are outcomes from model runs described in this paper.

TABLE 5 Performance comparison (%) with previous methods on RAF-DB
and FERPLUS.

Methods RAF-DB FERPLUS
gACNN (Li et al,, 2019) 85.07

RAN (Wang K. et al,, 2019) 86.90 88.55
SCN (Wang et al., 2020) 87.03 88.01
DACL (Farzaneh and Qi, 87.78

2021)

KTN (Li et al, 2021) 88.07

MA-Net (Zhao et al., 2021) 88.40

RUL (Zhang et al, 2021) 88.75
DMUE (She et al., 2021) 88.64
SeNet50 (Albanie et al., 2018) 88.80
FFRA-Net(Ours) 88.66 88.97

The bold values are outcomes from model runs described in this paper.

existing FER methods in the wild. The results demonstrate that
the proposed method in this paper exhibits strong generalization
ability.

FFRA method achieves an accuracy of 88.66% on the RAF-DB
dataset and 88.97% on the FERPLUS dataset. These results surpass
several existing expression recognition methods. The results show
that the method proposed in this paper has a strong generalization
ability.

5. Conclusion

To solve the problem of occluded FER, a new feature fusion
architecture, called FFRA-Net, is proposed, which can learn a rich
diversity of global and local features. First, a multi-scale module is
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proposed to provide diverse global features. Second, an attention-
based mechanism local attention module is proposed, which assigns
higher weights to important facial regions and smaller weights
to irrelevant facial regions. Finally, a feature fusion module is
proposed, which uses a weighted approach to fuse global and
local features. Extensive experiments on four FER datasets show
that this method outperforms the existing FER methods. However,
the model requires further optimization in terms of parameter
reduction to alleviate computational overhead. A primary area of
future research is the investigation of lightweight techniques for
occluded FER.
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Artificial Intelligence (Al) is driving advancements across various fields by
simulating and enhancing human intelligence. In Natural Language Processing
(NLP), transformer models like the Kerformer, a linear transformer based
on a kernel approach, have garnered success. However, traditional attention
mechanisms in these models have quadratic calculation costs linked to input
sequence lengths, hampering efficiency in tasks with extended orders. To tackle
this, Kerformer introduces a nonlinear reweighting mechanism, transforming
maximum attention into feature-based dot product attention. By exploiting the
non-negativity and non-linear weighting traits of softmax computation, separate
non-negativity operations for Query(Q) and Key(K) computations are performed.
The inclusion of the SE Block further enhances model performance. Kerformer
significantly reduces attention matrix time complexity from O(N2) to OI(N),
with N representing sequence length. This transformation results in remarkable
efficiency and scalability gains, especially for prolonged tasks. Experimental results
demonstrate Kerformer's superiority in terms of time and memory consumption,
yielding higher average accuracy (83.39%) in NLP and vision tasks. In tasks with
long sequences, Kerformer achieves an average accuracy of 58.94% and exhibits
superior efficiency and convergence speed in visual tasks. This model thus offers a
promising solution to the limitations posed by conventional attention mechanisms
in handling lengthy tasks.

KEYWORDS

linear attention, kernel method, transformer, SE Block, self-attention

1. Introduction

The Transformer model and its variants have emerged as state-of-the-art approaches
in various Artificial Intelligence (AI) tasks, including natural language processing (Devlin
et al., 2018), computer vision (Carion et al., 2020; Dosovitskiy et al., 2020), and audio
processing (Baevski et al., 2020), demonstrating impressive performance across a wide range
of benchmarks. As evident from the Transformer model and its variants, researchers are
continually exploring new methods and extensions to tackle challenges in different Al
tasks, leading to remarkable achievements. For instance, in the field of speech emotion
recognition, some works (Kakuba et al., 2022a,b) have made improvements to attention
mechanisms, highlighting the widespread application and significance of Transformers and
their extensions in diverse domains.
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The core component of the Transformer is its attention
mechanism, which efficiently encodes contextual information
between different

by modeling correlations positions in

the input sequence. However, the original self-attention
mechanism in the Transformer model, relying on dot product
similarity, has limitations in modeling complex and non-linear
relationships among tokens, and exhibits quadratic computational
complexity concerning sequence length. Consequently, traditional
Transformer models encounter challenges in handling long
sequence data, particularly in terms of computational complexity
and position information processing. Our approach aims to
address this by reducing the time complexity of the attention
matrix while maintaining accuracy in processing NLP tasks.

To overcome these challenges, researchers have proposed
various extensions, including low-rank approximations, sparse
patterns, and locality-sensitive hashing. Nevertheless, these
methods still rely on dot product similarity and may not adequately
capture diverse relationships among tokens. Recently, kernel
methods have been introduced to enhance Transformer efficiency,
allowing clever mathematical re-writing of the self-attention
mechanism to avoid explicit computation of the N x N matrix.

In this paper, we propose a novel self-attention mechanism
called Kerformer, which utilizes kernel functions to redefine the
attention mechanism and extract richer positional information
through reweighting. We conducted experiments on NLP and
CV tasks, showing that Kerformer outperforms the original self-
attention mechanism and other extensions in terms of accuracy and
computational efficiency. Additionally, we performed an ablation
study to analyze the impact of different kernel functions and
reweighting positions on Kerformer’s performance.

In comparison to state-of-the-art methods in self-attention and
transformer architectures, our proposed Kerformer introduces a
novel and efficient approach to self-attention computation. While
previous works, such as Linformer (Wang et al., 2020), Reformer
(Kitaev et al., 2020), DCT-Former (Scribano et al., 2023), LISA
(Wu et al, 2021), and Bernoulli sampling attention mechanism
(Zeng et al, 2021), have made significant strides in reducing
computational costs and improving efficiency, they still rely on dot
product similarity and may have limitations on sequence length and
global dependencies.

In contrast, Kerformer leverages kernel methods to redefine
the attention mechanism, enabling the capture of more complex
and non-linear relationships among input tokens. By applying a
kernel function and SE Block module to the concatenation of
query and key vectors, Kerformer computes attention weights using
the resulting kernel matrix, thereby modeling various types of
relationships with enhanced expressiveness.

Moreover, our Kerformer introduces reweighting mechanisms
that extract richer positional information, addressing challenges in
long sequence processing and enhancing computational efficiency.
This combination of kernel-based self-attention and reweighting
sets Kerformer apart from existing approaches, making it a
promising extension to the transformer architecture.

In the upcoming sections, we analyze existing self-attention
methods and their limitations. We introduce the Kerformer model,
discussing its novel kernel-based self-attention and reweighting
mechanisms. We present experimental results and compare
Kerformer with state-of-the-art methods on NLP and CV tasks.
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Finally, we discuss implications and conclusions in self-attention
modeling.

In summary, our study introduces a novel self-attention
mechanism, Kerformer, which utilizes compute kernels and
reweighting techniques to capture intricate and diverse token
interactions, while effectively addressing the computational
complexity associated with long sequence tasks. By reducing the
attention matrix complexity without compromising accuracy,
Kerformer demonstrates its efficacy in various NLP and CV
applications. Our research findings contribute to the advancement
of more expressive and efficient self-attention mechanisms.

2. Related work

Self-attention has become a fundamental building block of
modern neural architectures in natural language processing and
computer vision. The original transformer architecture introduced
by Vaswani et al. (2017) utilized self-attention as a key component
to compute the representation of each input token. Since then,
numerous variants of the transformer architecture have been
proposed to overcome various limitations, such as the lack of
position information and the quadratic complexity with respect to
the sequence length.

Efforts have been made to improve the efficiency of self-
attention, with several methods proposed to reduce computation
costs. These include the Linformer (Wang et al., 2020), which
approximates the self-attention matrix with a low-rank matrix,
and the Reformer (Kitaev et al., 2020), which introduces locality-
sensitive hashing to accelerate self-attention computation. DCT-
Former (Scribano et al., 2023) achieves efficient self attention
computation by introducing discrete cosine transform as a
frequency domain based conversion method. By calculating
attention weights in the frequency domain, DCT-Former can
significantly reduce computational complexity while maintaining
high performance, improving the efficiency and scalability
of the model. LISA (Wu et al, 2021) utilizes a codeword
histogram technique to achieve linear-time complexity for self-
attention computation. By representing tokens as codewords and
constructing histograms based on their frequencies, the model
efficiently captures token interactions and calculates attention
weights. This approach reduces the computational overhead
associated with traditional self-attention mechanisms, making
it suitable for large-scale recommendation tasks. A Bernoulli
sampling attention mechanism (Zeng et al, 2021) based on
locally sensitive hashing (LSH) approximates the calculation of
self attention weights through random sampling, thereby reducing
computational complexity to a linear level. The Bernoulli sampling
method can significantly reduce the time and space overhead of
self attention computation while maintaining good performance.
However, the above methods often have limitations on the length
of the sequence and limit the global dependencies of the sequence.

In addition, there are attempts to extend self-attention beyond
its original formulation. For example, the Sparse Transformer
(Child et al, 2019; Beltagy et al., 2020; Zaheer et al., 2020)
introduces sparsity patterns to reduce computational costs. The
Performer (Choromanski et al., 2020) uses an approximation of
the softmax function to compute self-attention more efficiently.
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Moreover, Katharopoulos et al. (2020) reformulated the attention
mechanism in the autoregressive Transformer model to use
sequential computation, thereby reducing computation time and
storage requirements. Nystromformer (Xiong etal., 2021) proposed
a method based on Nystrom approximation, which approximates
the calculation of self attention weight by decomposing the
self attention Matrix decomposition into the product of low
rank matrix. Nevertheless, these approaches may also exhibit
certain limitations, including elevated memory usage, potential
degradation of model accuracy, or approximation errors.

Recently, kernel-based methods have emerged as a promising
extension of self-attention. Kernel methods replaces the dot-
product similarity used in self-attention with a kernel function,
allowing it to capture more complex interactions between
input tokens and enabling the use of more powerful kernel
functions to model various types of relationships. This method
allows iterative implementation, which significantly accelerates
Transformer and reveals their relationship with recurrent neural
networks. The Kernel methods mechanism has been successfully
applied to various tasks, such as text classification and image
classification. Skyformer (Chen et al, 2021) proposes a novel
approach that employs a Gaussian kernel and the Nystrom method
to approximate self-attention, thereby reducing computational
complexity while maintaining accuracy. This work shows
promising results on several natural language processing tasks,
including text classification and machine translation. Kernel
self-attention (Rymarczyk et al., 2021) proposes a novel approach
for weakly-supervised image classification by combining kernel
self-attention with deep multiple instance learning. The method
uses a kernel function to capture complex interactions between
image regions and enable more powerful modeling of relationships.

Several modifications to attention have been proposed by
researchers, including the use of softmax to operate Q and K
matrices separately (Bhandare et al.,, 2019), and the decomposition
of attention into kernel functions, with Q and K matrices operated
on using the elu and relu functions, respectively (Katharopoulos
et al, 2020; Qin et al, 2022). These modifications reduce the
complexity of attention from O(N?) to O(N), which is beneficial
for large-scale models.

In comparison to the state-of-the-art methods in self-attention
and transformer architectures, our proposed Kerformer introduces
a novel and efficient approach to self-attention computation.
While previous works, such as Linformer, Reformer, DCT-Former,
LISA, and Bernoulli sampling attention mechanism, have made
significant strides in reducing computational costs and improving
efficiency, they still rely on dot product similarity and may
have limitations on sequence length and global dependencies.
In contrast, Kerformer leverages kernel methods to redefine the
attention mechanism, enabling the capture of more complex and
non-linear relationships among input tokens. By applying a kernel
function and SE Block module to the concatenation of query
and key vectors, Kerformer computes attention weights using
the resulting kernel matrix, thereby modeling various types of
relationships with enhanced expressiveness.

Moreover, our Kerformer introduces reweighting mechanisms
that extract richer positional information, addressing challenges in
long sequence processing and enhancing computational efficiency.
This combination of kernel-based self-attention and reweighting
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sets Kerformer apart from existing approaches, making it a
promising extension to the transformer architecture.

In conclusion, self-attention has undergone significant
developments since its introduction in the original transformer
architecture, with research focusing on improving its efficiency,
scalability, and expressiveness. Kernel methods is a recent extension
that shows promise in modeling complex relationships between
input tokens, and several modifications have been proposed to
enhance its performance. The Kerformer proposed in this study
addresses the existing research gap by introducing kernel functions
and reweighting mechanisms, effectively tackling challenges in
long sequence processing and enhancing computational efficiency.
The main idea of Kerformer is to change the order of operations of
matrices according to the union law of matrices, so as to linearize
the attention. When linearizing the attention, we first activate the
Q and K matrices through the activation function to ensure the
non-negativity of the attention matrix, and then reweight the K
matrix through the SE-K module to achieve the redistribution of
attention, so as to improve the performance of the model.

3. Methodology

In this section, we propose a novel linear Transformer model
called Kerformer. We introduce a decomposable linear attention
mechanism that replaces traditional softmax attention, resulting
in improved time and memory complexity. Our method is also
applicable to casual attention. The Kerformer model also employs
different activation functions for Q and K, and combined with SE
Block to reweight the activated K, which contributes to its faster
computing speed and better performance.

3.1. Transformer

Given an input sequence x of length N and feature dimension
d, we represent it as x € RN*? The Transformer model can be
formulated as Eq. 1.

T(x) = F((A(x) + x) (1)

In the Transformer model, the F implementation typically
corresponds to a feedforward neural network that transforms the
characteristics of each input. The attention function is denoted by
A, and its time and memory complexity scales quadratically with
respect to the input sequence length N.

The core idea of the attention mechanism is that the network
should give different importance to different parts of the input
data. When processing the input data, the network needs to assign
different weights to different parts of the input in order to better
capture the important information in the input data. This process
of weight assignment is the attention mechanism.

In implementing the attention mechanism, two key
components are usually used: query(Q), key(K), and value(V).
A query is a vector in the network that represents the network’s
attention to the input data. Keys and values are vectors in the
input data used to represent different parts of the input data.

The attention mechanism achieves attention to the input data
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by computing the similarity between the query and the key and
assigning weights to the values based on the similarity.

Regarding the attention function A, it consists of three essential
components, including query(Q), key(K), and value(V). These
components are computed from the input sequence x and three
learnable matrices Wq, Wk, and Wy, respectively, as follows: Q =
xWqo, K =xWg, V =xWy.

The final output A = V' is obtained through a softmax function
applied to QK™ line by line, which can be expressed as follows in Eq.
2.

: QK"
A(x) = V' = softmax( /D W (2)

We can interpret Eq. 2 as a specific instance of the attention
mechanism, where the softmax function is applied to calculate
QKT. In order to introduce a more generalized expression of
attention, we can use V; to represent the i-th row of a matrix V(V €
RN*d) The equation of the generalized attention mechanism is
shown below as Eq. 3. Similar derivations have been done in these
works (Qin et al., 2022).

sim(Qi, K;)

S sim(Qu k) ©

N
v;:Z

j=1

It should be noted that the function sim in Eq. 3 can be any
correlation function that satisfies certain requirements, which will
kT

be explained later. If we choose sim(Q,K) = e vd , then Eq. 3 is
equivalent to Eq. 2.

3.2. Linear attention

To maintain the linear computation budget, one feasible
solution is to expand the sim function in the form of a kernel
function, as shown in Eq. 4.

sim(qi, kj) = ¢(g) (k) (4)

In Eq. 3, ¢ and ¢ are kernel functions used for the nonlinear
mapping of queries and keys. We can rewrite Eq. 3 as a kernel
function, as shown in Eq. 5.

b T Q&)Y
YN (@Q)e(k)T)

(5)

Then, the attention operation under linear complexity can be
realized through the multiplication combination law of matrix, as
shown in Eq. 6.

Q)Y oK),

i= (6)
$(Q) 5L, o(K)T

Note that in Eq. 4, the functions ¢ and ¢ are applied row
by row to the matrices Q and K. By using the associative law of
multiplication, QK T e RN*N js calculated as o(K)TV € R4, The
result is then left multiplied by $(Q) € RN*?, which represents the
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attention weights. This computation mode achieves a complexity of
O(Nd?) for the attention mechanism. However, for long sequences
where d < N, the complexity can be considered as O(N), greatly
reducing the overhead. This is illustrated in Figure 1.

3.3. Kerformer

The softmax operation applied in the attention mechanism is
used to normalize the query and key matrices. However, there is no
clear explanation for why the softmax operation is effective, and
it is more of an empirical observation that leads to good model
performance. Our aim is to enhance the attention mechanism
by using the kernel form. Specifically, we want to generalize the
attention mechanism using the kernel function and provide a
theoretical foundation for the application of different operations
in the attention mechanism. This will help us better understand
the working principles of the attention mechanism and improve its
performance.

Cosformer (Qin et al.,, 2022) discussed that the choice of ¢ and
¢ functions is crucial for the performance of attention mechanisms
in kernel form. They proposed two empirical constraints that may
play a significant role in achieving better performance:

(i) Non-negative constraint on the attention matrix to ensure
that the attention weights are always positive and the attention is
focused only on relevant features.

(ii) A nonlinear weighted scheme to focus attention on specific
regions of the matrix distribution, which can capture more complex
and subtle patterns.

It is worth noting that similar kernel function methods have
been used to modify the attention mechanism in the works of
Angelos and Qin et al. These works always choose the same
activation function for both the ¢ and ¢ functions. We decided to
choose different ¢ and ¢ functions to enhance the model’s global
learning ability and generalization ability.

To ensure the two constraints mentioned above, we use sigmoid
activation function for ¢(Q) and softmax activation function for
@(K) instead of the original softmax(QK T in our work. Thus, we
define our functions as shown in Eq. 7 and Eq. 8.

¢(x) = sigmoid(x) (7)

@(x) = softmax(x) (8)
We substitute Eqs 7 and 8 into Eq. 6 to obtain Eq. 9, as follows:

sigmoid(Q;) Z]Iil softmax(Kj)TVj

— = ©)
sigmoid(Q;) 3_;L; softmax(Kj)T

The system block diagram of Kerformer is shown in Figure 2.

3.4. Interpretation of Kerformer
Previous works, such as Katharopoulos et al. (2020) and Qin

et al. (2022), have also rewritten self-attention in kernel form,
but they have used the same function to transform both the Q
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FIGURE 1

Illustration of the computations for Vanilla attention (left) and Linearized attention (right). For input, the input length is N and the feature dimension is
d. ¢ and ¢ represent the kernel function form for processing Q and K. Generally speaking, d <« N, Linearized attention can be approximately regarded

as the time and memory complexity of O(N).
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FIGURE 2

System block diagram of our approach Kerformer and workflow representation.

ke =
K | activation Reweighting

module

and K matrices. The possible reason for this is that if different
transformations are applied to the Q and K matrices, the relative
positional relationship between them may be disrupted. This could
lead to inaccurate score calculations and negatively affect the
performance of the model.

However, Efficient attention (Shen et al., 2021) provided a new
explanation for their proposed linear attention, which is different
from self attention. They explained that linear attention does not
generate attention maps for each position, and each (Kj)T is a global
attention map that does not correspond to any position. Based on
this explanation, we aim to introduce different functions for Q and
K without disturbing the attention mechanism as much as possible,
which may bring improvements to the model.

The explanation provided by Efficient attention (Shen et al,
2021) regarding linear attention inspired our work to introduce
different functions for Q and K matrices. This would allow us
to explore new explanations and extensions to the attention
mechanism.

Our approach includes introducing different nonlinear
mappings for Q and K matrices. We use the sigmoid operation on
Q to limit its range between 0 and 1, mapping each element to a
probability distribution. Similarly, we apply the softmax operation
on K to also map each element to a probability distribution. This
introduces more nonlinearity to the model, making it better suited
to fit the data.

Frontiersin Neurorobotics

Furthermore, the model is forced to learn different information
due to the effects of these operations. The sigmoid operation allows
the model to focus more on keys that are similar to the query, while
the softmax operation enables the model to focus more on elements
with higher probabilities in the values. This combination allows the
model to learn better in different directions.

Lastly, the use of the smooth sigmoid and softmax operations
makes the model more robust to data disturbance or noise,
reducing the risk of overfitting. Overall, our approach introduces
new insights into the attention mechanism and improves the
model’s performance.

3.5. Reweighting of attention

The above explanation highlights the difference between linear
attention and self-attention, with linear attention not generating
attention maps for each position. Given this difference, we aim to
introduce the SE module to perform re-weighting of the K matrix
along the N dimension. The goal is to extract different features
by using different functions for Q and K without disturbing the
attention mechanism as much as possible, which could lead to
improvements in the performance of the model. By using the SE
module, we can dynamically recalibrate the feature maps of K based
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Use the activation functions Sigmoid and Softmax to activate the Q and K matrices respectively.
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FIGURE 4

The structure of the SE-K module is shown, and the K’ matrix after
activation by Softmax is reweighted.

on their importance, thus improving the model’s ability to extract
meaningful information from the input data.

In order to adapt to the reweighting of the K matrix, we slightly
modified the SE module and referred to it as the SE-K module.
As mentioned earlier, the K matrix itself already possesses non-
negative values, we remove the ReLU activation function from the
SE module. The SE-K module is a modified version of the SE
module that takes into account the non-negativity of the K matrix.

In this section, we will describe how we incorporate the SE-K
module into the K matrix of the attention mechanism. Specifically,
we apply the SE-K module to the N dimension of the K matrix,
where K has a dimension of N x d.

The SE module is a simple yet effective mechanism that is
widely used to enhance the representational power of neural
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networks. It selectively recalibrates the feature map by using the
global information of the feature map. In our method, we use the
SE-K module to recalibrate the K matrix, thereby improving its
feature extraction ability.

To apply the SE-K module to the K matrix, we first perform a
global pooling operation on the K matrix along the N dimension,
resulting in a feature vector. This feature vector is then passed
through two fully connected layers, which are followed by a sigmoid
activation function. The output of the sigmoid function is a set of
N-dimensional attention weights, which are used to weight the K
matrix along the N dimension. Finally, the weighted K matrix is fed
into the attention mechanism. The operation to activate the Q and
K matrices is shown in Figure 3, and the network structure of the
SE-K module involved is shown in Figure 4.

For NLP tasks, Kerformer places more weight on neighboring
tokens, thus enhancing locality. The weight distribution is shown
in the Figure 5. By using the SE-K module, we can effectively learn
the importance of different features in the K matrix, which can
significantly improve the performance of the attention mechanism.
Additionally, the SE-K module has a relatively small computational
cost, which makes it easy to incorporate into existing neural
network architectures.

Overall, our method of applying the SE-K module to the K
matrix has shown promising results in various tasks, demonstrating
its effectiveness in improving the feature extraction ability of the
attention mechanism.

Our research method is based on the activation function and
the reweighting mechanism. The activation function is to perform
a non-negativity operation on the matrix to satisfy the requirement
of non-negativity of the attention matrix, while the reweighting
operation is to redistribute the attention weights to achieve the
effect that the local influence on the nearby attention is greater.
These two operations can better satisfy the attention relationship
between different parts to obtain the final attention matrix. For data
collection we use all the data sets that are now publicly available and
conduct our experiments on these publicly available datasets.

4. Simulation experiments

In this section, we present an evaluation of our proposed
method, Kerformer, through simulation experiments. The

simulation experiment focuses on a mathematical evaluation of
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Kerformer. We compare our model with four baselines, Vanilla
attention (Vaswani et al., 2017), Efficient attention (Shen et al.,
2021), Linear-Elu (Katharopoulos et al., 2020), and Performer
(Choromanski et al., 2020), to demonstrate the superiority of our
approach in terms of model running memory, running time. All
experiments were conducted using Matlab R2020a.

4.1. Comparison of time costs in simulation
experiments

This experiment fixes the number of input matrices as 1 and the
attention head dimension as 64, and compares the running time of
each method by changing the sequence length size N of input x. The
specific results can be seen in Table 1, with time units in seconds.

From the experimental results in Table I, we can see that
four other methods have a greater advantage over the Vanilla
attention method in terms of the time cost of attention matrix
computation, especially Vanilla attention has experienced memory
overflow when the input sequence length N is large. In addition, our
proposed method usually outperforms other methods with shorter
computation time when the length of the input sequence N is below
the million level. In practice, the model input length N is always
below the million level. That is, our proposed method outperforms
other methods in use.

From the experimental results in Table 2, it can be seen that four
other methods have time cost advantages over Vanilla attention to
different ranges of Q, K, and V values. Cosformer has more time
cost advantage in computing Attention when the value range is
[—10,10], while our method has a shorter running time compared
to the other three methods for the range of values of Q, K, and V
below [—10,10], which fully illustrates the advantage of our method
in terms of time cost.

4.2. Comparison of memory costs in
simulation experiments

The experimental results in Table 3 show that the other four
methods have a smaller memory consumption compared to the
Vanilla attention method in the computation of the attention
matrix. According to our empirical observation, the value range of
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Q, K, and V matrices input into the attention mechanism is mostly
between [—4,4]. Our method has a memory cost advantage in the
range of [—2,2] and [—4,4], which indicates that our method can
achieve alow memory cost in the normal range of values, which can
be attributed to the fact that our method uses different activation
functions for Q and K, which can improve the computational speed
and generalization ability of the model.

5. NLP task

We empirically validate the effectiveness of our proposed
Kerformer method in multiple aspects. Firstly, we examine its
generalization capability on downstream tasks by comparing it
with other existing transformer variants. Then, we conduct a
comparison with other Long-range arena benchmark transformer
variants to assess its ability to model long-range dependencies and
to perform a thorough analysis of model efficiency.

5.1. Downstream fine-tuning tasks

First, we performed the Kerformer model and the remaining
five models [Performer (Choromanski et al., 2020), Reformer
(Kitaev et al., 2020), and Liner Trans (Katharopoulos et al., 2020),
Longformer (Beltagy et al., 2020), RFA (Peng et al, 2021), and
Dct-former (Scribano et al., 2023)] were compared in terms of
accuracy. This was achieved by conducting comparative fine-tuning
experiments on five datasets, including GLUE (QQP, SST-2, MNLI)
(Wang et al,, 2018), IMDB (Maas et al., 2011), and Amazon (Ni
et al, 2019). In the experiments, pre-trained models are used
and fine-tuned in the downstream text classification task, and
the results are shown in Table 4. From Table 4, we can see that
Kerformer fetches the best accuracy in addition to the baseline
(Liu et al, 2019) on the QQP, SST-2 and IMDB downstream
text classification tasks. Although Dct-former and Longformer
achieved better classification accuracy than Kerformer on MNLI
and AMAZON tasks, respectively. It has higher computational
complexity compared to our method. This is related to Kerformer’s
activation of Q and K matrices with activation functions and
reweighting of K matrices respectively, where the activation
functions can extract features in the matrices and reweighting can
effectively reallocate attention to achieve the effect of expanding
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TABLE 1 Comparison of the time required to run the five methods for different methods in different dimensions of the input x, Q, K, and V in the case of
taking values in the range [-2,2].

Dimensional changes Vanilla attention  Efficient attention Linear-Elu  Performer Kerformer (ours)
1*1,000%64 4.001 s 1.000 s 1.000 s 0.882's 0200 s
1+10,000%64 302.072 s 31.015s 6.0121 s 6.112's 5.852's

1¥100,000*64 OOM 87.024's 51.014's 55.514's 44011 s
1¥1,000,000%64 OOM 967.22's 506.134 s 505.514 s 521.144 s

TABLE 2 Comparison of the time required to run the five methods with different ranges of values for Q, K, and V for different methods with the

dimension size of the input x of 1*10,000*64.

Range of values  Vanilla attention  Efficient attention  Linear-Elu  Performer Kerformer (ours)
[—1,1] 335.075 s 34.007 s 7.001 s 6.854 s 6.001 s
[—2,2] 302.072's 31.015's 6.012s 6.112s 5.852's
[—4,4] 1,003.233 5 35.008 s 5.025's 6.012s 5.006 s
[—6,6] 1,062.249 s 34.008 s 5.145's 5541 s 5.022's
[—88] 1,032,248 s 35.993 s 6.004 s 6.125s 5952 s
[~10,10] 1,103.246 s 55.013 s 8.001 s 7.854 s 8.004 s

TABLE 3 Comparison of the memory requirements of the five methods running with different ranges of values for Q, K, and V for the input x with
dimension size of 1*10,000*64.

Range of values  Vanilla attention  Efficient attention = Linear-Elu = Performer = Kerformer (ours)
[—1,1] 8,521 M 521 M 623 M 689 M 534 M
[—2,2] 11,001 M 585 M 678 M 702 M 578 M
[—4,4] 12,454 M 623 M 725 M 754 M 602 M
[—6,6] 14,845 M 685 M 775 M 801 M 692 M
[—8,8] 15,624 M 725 M 835 M 833 M 754 M
[—10,10] 16,104 M 785 M 877 M 892 M 802 M

local attention. The experimental result fully demonstrates the
effectiveness of our proposed Kerformer model.

5.2. Long sequence experiment results

To assess the generalization performance of our proposed
method Kerformer, we conducted training from scratch on the
Long-range Arena benchmark 2020b. This benchmark is tailored
for evaluating the performance of efficient transformers on long
input sequences, making it an appropriate test platform for
comparative analysis of different efficient transformer variants.
We evaluated our approach on various tasks, including long
sequence ListOps (Nangia and Bowman, 2018), byte-level text
classification (Maas et al., 2011), document retrieval using ACL
selection networks (Radev et al., 2013), and Pathfinder (Linsley
et al, 2018). While comparing with our Kerformer model with
Local Attention (Tay et al., 2020), Reformer (Kitaev et al., 2020),
Performer (Choromanski et al., 2020), Longformer (Choromanski
et al., 2020), Transformer (Vaswani et al., 2017), BigBird (Zaheer
et al., 2020), and Dct-former (Scribano et al, 2023) models,
the comparison results of the seven different models are shown
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in Table 5. As shown in Table 5, Kerformer obtained the best
performance in ListOps, Document Retrieval, while Kerformer also
achieved competitive results in the other two tasks, and finally
Kerformer achieved the next best score in overall task average
accuracy. This is a good indication of Kerformer’s strength in the
long-range arena.

5.3. Ablation experiments

To verify the effectiveness of our chosen activation function
in combination with the SE-K module, we conducted ablation
experiments on GLUE (QQP, SST-2) (Wang et al., 2018) and
IMDB (Maas et al., 2011) in downstream fine-tuning tasks, ListOps
(Nangia and Bowman, 2018) in Long sequence tasks, byte-level
text classification (Maas et al., 2011) and document retrieval using
ACL selection networks (Radev et al., 2013) were conducted for the
ablation experiments, and the results of the experiments are shown
in the following Table 6.

As shown in Table 6, Q + Softmax(K)+SE-K indicates that no
activation operation is performed on the Q matrix, Sigmoid(Q)
+ K + SE-K indicates that no activation operation is performed
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TABLE 4 Results of fine-tuning downstream tasks based on pretrained bidirectional models.

QQP ¢ SST-2 1 MNLI 1 IMDB 4 AMAZON 1 Avg ¢
Vanilla transformer 88.52 92.25 80.02 92.55 75.65 85.80
Performer 69.95 50.82 35.28 60.41 64.25 56.14
Reformer 63.12 50.66 35.35 49.88 64.32 52.67
Liner Trans 74.75 84.72 66.35 91.21 72.62 78.07
Longformer 85.55 88.56 77.27 91.07 73.52 83.13
RFA 75.32 76.44 57.71 78.86 68.08 71.28
Dct-former 85.56 86.89 77.48 89.68 72.12 80.19
Kerformer 85.68 90.21 76.32 91.50 73.24 83.39

Best results are shown in bold. Our proposed Kerformer shows superior performance compared to competing efficient transformers and is approaching vanilla transformers.

TABLE 5 Long-range arena benchmark test results.

Model ListOps 1 Text 1 Retrieval 4 Pathfinder 1 Avg 1
Local attention 15.67 52.87 53.40 66.59 47.13
Reformer 37.32 56.12 53.42 68.47 53.83
Performer 17.96 65.45 53.79 77.08 53.57
Longformer 35.65 62.79 56.83 69.69 56.24
Transformer 36.42 64.37 57.52 71.42 57.43
BigBird 36.11 64.08 59.31 74.79 58.57
Dct-former 36.55 65.15 59.55 75.56 59.20
Kerformer 36.95 64.32 59.98 74.52 58.94

The best results are shown in bold and the second best results are underlined. Kerformer obtained the best average score in four different tasks.

TABLE 6 Ablation experiments are performed for the SE Block in the downstream fine-tuning task and the long sequence task of the reweighting

module.
Model structure QQP SST-2 IMDB ListOps Text Retrieval
Q + Softmax(K) + SE-K 81.25 85.63 85.24 33.25 58.53 55.89
Sigmoid(Q) + K + SE-K 82.36 87.25 88.25 35.21 60.25 57.26
Sigmoid(Q) + Softmax(K) 81.26 85.09 85.18 3223 57.87 56.31
Kerformer 85.68 90.21 91.50 36.95 63.32 59.98

on the K matrix, and Sigmoid(Q) + Softmax(K) indicates that
no reweighting operation is performed. Based on the results of
the ablation experiments, it can be seen that the activation of
the Q and K matrices and the reweighting operation on the K
matrix can effectively improve the performance of the model in the
downstream fine-tuning task and the long-sequence task relative
to other methods, and the effectiveness of our method is also
demonstrated.

5.4. Efficiency comparison

In addition to comparing model performance, we also
compared the computational speed of the different models. We
compared the computational speed of Kerformer with other models
[standard Transformer (Vaswani et al, 2017), Local Attention
(Tay et al,, 2020), Reformer (Kitaev et al., 2020), BigBird (Zaheer
et al., 2020), Linear Trans (Katharopoulos et al., 2020), Performer
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(Choromanski et al,, 2020), Longformer (Beltagy et al., 2020),
and Dct-former (Scribano et al., 2023)], and the variable for
comparison was the length of the input sequence, and the results
of the experiments are shown in Table 7. We used byte-level text
classification benchmarks to measure the computational speed
of different models during training and inference for different
sequence lengths (1k-4k).

Our method Kerformer achieves good training and inference
speeds on sequence lengths 2K, 3K, and 4K, which illustrates
the advantage of our method for speed computation on long
sequence let tasks. This is because first the Q and K matrices
are activated, then the K matrices are reweighted separately, and
finally the order of computation of the self-attentive matrices
can be exchanged using the union law of matrices so that the
goal of linear complexity can be achieved. In conclusion, our
model Kerformer achieves better overall efficiency compared to
other linear variables, while maintaining excellent modeling and
generalization capabilities.
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TABLE 7 Speed comparison in training and inference for long-range arena benchmarks with different sequence lengths (1-4k).

e speed (steps per seco

Train speed (steps per sec

2K 3K 2K 3K
Transformer 2542 7.85 \ \ 6.91 2.19 \ \
Local attention 57.69 33.21 23.32 17.80 13.42 6.61 4.35 3.10
Reformer 44.23 21.60 12.75 8.35 11.60 5.01 2.96 1.97
BigBird 20.92 11.53 8.14 6.12 6.50 3.21 2.09 1.55
Linear Trans 67.81 38.22 26.30 19.92 11.88 5.56 3.54 2.49
Performer 74.20 42.35 29.53 22.43 14.23 6.50 4.13 2.93
Longformer 23.02 6.33 \ \ 4.42 1.31 \ \
Dect-former 56.21 34.21 22.85 20.51 11.58 5.95 3.92 2.32
Kerformer 57.42 33.15 21.45 17.13 11.34 5.58 3.57 2.55
If a method runs out of memory, we mark it with a backslash. The higher it is, the better it is.
6. Visual classification task
—s— Vanilla Attention
. . - . . . —e— Efficient Attenti
By incorporating distinct functions into the Q and K matrices, 2 Cinearcgty
. . . .. . 1.0 9 —v— Cosformer
Kerformer is specifically designed to facilitate feature extraction —— Kerforner (ours)
at different levels, which is highly advantageous for visual 6.5
classification tasks. The primary objective of our study is to
showcase the superior performance of Kerformer in such tasks. ,.087
To achieve this, we conducted comprehensive image classification 3
. . . . 50.7
experiments to rigorously evaluate the effectiveness and efficiency 8
of Kerformer. 0.6
2.
. . ()
In order to assess the performance of Kerformer in image =
classification tasks, we applied it to the widely-used ViT-B/16 0.5
(Dosovitskiy et al, 2020) model and compared its accuracy 5
with that of several baseline models, including Vanilla attention ’
(Vaswani et al, 2017), Efficient attention (Shen et al., 2021), 0.3 : : ; ;
Linear-Elu (Katharopoulos et al., 2020), and Cosformer (Qin et al., CIFAR-100 flover CIFAR-10 SNIST
2022). To this end, we evaluated the models on four datasets: FIGURE 6
. Experimental results of image classification accuracy measured b
MNIST, CIFAR-10, CIFAR-100, and the flower dataset provided by P N ge c i racy ! 4
models using five methods (Vanilla attention, Efficient attention,
TensorFlow. Linear-Elu, Cosformer, and Kerformer) on different datasets.
The MNIST dataset consists of handwritten digital images,

consisting of 60,000 training images and 10,000 test images, each

representing a gray number from 0 to 9. Cifar-10 is a widely-used

computer vision dataset for object recognition, comprising 60,000 with the following settings: the images were resized to 224 x 224

RGB color images with dimensions of 32 x 32 pixels, distributed pixels, Adam optimizer was employed, the learning rate was set to

across 10 different classes. CIFAR-100 dataset contains 100 classes,
grouped into 20 superclasses. Each image in CIFAR-100 is labeled
with a “fine" class (specific class) and a “coarse” class (superclass).
The flower dataset includes images of daisies and encompasses five

"o "o

flower types: “daisy," “dandelion," “rose," “sunflower," and “tulip."
Overall, our results suggest that Kerformer has strong feature
extraction ability and outperforms the baseline models in terms of

accuracy.

6.1. Test accuracy
In this section, we performed accuracy tests on the image

classification tasks using the aforementioned four datasets. For all
datasets except the flower dataset, the experiments were conducted
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0.0001, the loss function used was Cross Entropy, the batch size
was set to 32, and the training was carried out for 180 epochs.
The final test accuracy was computed by averaging the results of
10 test runs. Due to the limited size of the flower dataset, the
experimental configuration differed in terms of a smaller batch size
of 4, a reduced training epoch of 80, and the final test accuracy was
determined by averaging the results of 10 test runs.

Based on the experimental results shown in Figure 6, it is
evident that the Cosformer method can achieve the highest model
accuracy for image classification on the CIFAR-100 dataset, whereas
our proposed method can achieve the highest test accuracy for
image classification on the MNIST, CIFAR-10, and flower datasets.
In particular, our method can improve 3% points compared to
Vanilla attention method on CIFAR-10 dataset, which is a better
test for the model performance improvement of the original
model. Our results suggest that our proposed improvement can
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FIGURE 7
Comparison of convergence speed of ViT models using Vanilla
attention, Efficient attention, Linear Elu, Cosformer and Kerformer
when trained on the CIFAR-10 dataset.

significantly enhance the performance of the model. In particular,
this enhancement enables the model to more effectively utilize
feature information from various locations, thereby improving its
ability to extract essential features and ultimately increasing the
classification accuracy of the model. This is due to the use of
operations such as pooling in the SE-K module, which can perform
better in image tasks because it is not limited by the global nature.

6.2. Convergence speed

In addition to evaluating the model performance and running
cost, we also conducted experiments to measure the convergence
speed of the ViT model during training and validation on the
CIFAR-10 dataset using three methods: Vanilla attention (Vaswani
et al., 2017), Efficient attention (Shen et al,, 2021), Linear Elu
(Katharopoulos et al., 2020), Cosformer (Qin et al., 2022), and
our proposed Kerformer. The results of these experiments are
presented in Figures 7, 8.

The experimental results demonstrate that our proposed
method can achieve a faster convergence rate compared to the other
four methods, Vanilla attention, Efficient attention, Linear Elu and
Cosformer, in the training and validation of the ViT model on the
CIFAR-10 dataset. This result fully demonstrates the effectiveness
of our proposed method in reducing the training cost of the model.

Compared to traditional attention mechanisms, our proposed
improvement achieves better results with less computational cost,
indicating that our method can train better models in less
time. Therefore, our proposed method has better efficiency and
higher performance, making it an effective attention mechanism
improvement scheme.

Kerformer provides a good idea of linear complexity by
linearizing attention by the operation of activating the Q and
K matrices and reweighting the activated K matrices can
effectively maintain linear complexity with guaranteed effective
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FIGURE 8
Comparison of convergence speed of ViT models with Vanilla
attention, Efficient attention, Linear Elu, Cosformer and Kerformer
when validated on CIFAR-10 dataset.

attention. In the experimental results Kerformer did not perform
best on all tasks, which may be due to the specific nature
of the task or the fact that some tasks require a special
model structure resulting in poor performance of Kerformer
on that task. Also the characteristics of the dataset, the
experimental setup, and the choice of hyperparameters may
have affected the experimental results of Kerformer on this
task.

7. Conclusion

We propose a new Kerformer method to linearize the attention
mechanism by the kernel function method to first process the Q
and K matrices non-negatively, then reweight the non-negatively
processed K matrices by SE Block to amplify the localization
relation of the attention matrix, and finally change the order
of operations of the attention matrix by the combination law
of matrix operation to convert Transformer’s computation of
the complex attention mechanism into a linear computation
based on the sequence length N. We conducted experiments
on text classification, Long-range arena, the computational speed
of the model on long sequences, and on image classification,
respectively, and the experimental results show that Kerformer
performs well on these different tasks. This well demonstrates
that the Kerformer model can exhibit good model performance
and computational efficiency both on NLP tasks and on
image tasks, which can make Kerformer widely applicable
to different fields where attention mechanisms exist. Overall,
our approach can achieve high model performance with low
running cost, which allows the deployment of models with
attention mechanisms to some devices with low computational
power.

In the future, we hope that our proposed method
can be widely applied to the computational process of
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attention mechanism to reduce the running cost of the
method
so that it can be widely applied to different downstream
tasks.

model, and we will continue to optimize our
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Semantic segmentation, which is a fundamental task in computer vision. Every
pixel will have a specific semantic class assigned to it through semantic
segmentation methods. Embedded systems and mobile devices are difficult to
deploy high-accuracy segmentation algorithms. Despite the rapid development
of semantic segmentation, the balance between speed and accuracy must be
improved. As a solution to the above problems, we created a cross-scale fusion
attention mechanism network called CFANet, which fuses feature maps from
different scales. We first design a novel efficient residual module (ERM), which
applies both dilation convolution and factorized convolution. Our CFANet is
mainly constructed from ERM. Subsequently, we designed a new multi-branch
channel attention mechanism (MCAM) to refine the feature maps at different
levels. Experiment results show that CFANet achieved 70.6% mean intersection
over union (mloU) and 67.7% mloU on Cityscapes and CamVid datasets,
respectively, with inference speeds of 118 FPS and 105 FPS on NVIDIA RTX2080Ti
GPU cards with 0.84M parameters.

KEYWORDS

computer vision, semantic segmentation, channel attention mechanism, residual block,
dilation convolution, factorized convolution

Introduction

Semantic segmentation is a computer vision task that involves assigning a label to every
pixel for a given image based on its content. In the context of street scenes, this task involves
identifying and labeling various objects such as buildings, roads, vehicles, and pedestrians.

In the last 10 years, scene understanding has advanced quickly in the fields of computer
vision and photogrammetry, particularly the essential task of semantic segmentation (Yang
et al,, 2021). Semantic segmentation aims to assign a label for each pixel of the images. It
has a wide range of applications, including scene comprehension, autonomous vehicle and
driver assistance, and augmented reality (Lu et al., 2019). Enabling autonomous cars to be
environmentally aware so they can drive safely, and machines to intelligently analyze medical
images, reducing the workload for doctors and dramatically reducing the time it takes to run
diagnostic tests.

The cross-scale fusion attention mechanism network uses a combination of
convolutional neural networks (CNNs) and attention mechanisms to perform semantic
segmentation. CNNs are used to extract features from images at multiple scales, while
attention mechanisms are used to selectively focus on important regions of the image.
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The attention mechanism is an effective way to promote
accuracy by computing attention maps that indicate which
regions of the feature maps are most relevant for the
task. The
to weigh the features from different scales before they

segmentation attention maps are then used
are fused together. This helps to ensure that important
information from all scales is taken into account during the
segmentation process.

In recent years, convolutional neural networks
(DCNNs) their

for Image classification tasks. Since the FCN (Long et al,

deep

have demonstrated amazing capabilities
2015) was proposed, which is the pioneer for semantic
segmentation, DCNNs have shown their power in the task
of semantic segmentation. It has become the mainstream
of segmentation approaches. Compared to traditional
visual algorithms, DCNNs achieve good results with their
end-to-end approach.

Of course, the development of image segmentation technology
also has many shortcomings that need to be improved. With
the development trend of artificial intelligence, the network
model is getting deeper and bigger. As the network deepens,
training will become more and more difficult, mainly because
of the gradient explosion in the network training process
of gradient descent. Some methods have also been used
to improve the situation, such as changing weights and
normalization. However, with the deepening of the network
model, the training error increases rather than decreases.
The emergence of residual networks solves this problem
well, and its performance is greatly improved compared to a
traditional network.

Most of the prior networks (Long et al., 2015; Badrinarayanan
et al, 2017; Chen et al, 2017) neglected the segmentation
efficiency while generating outstanding results. They have several
disadvantages, including large storage overhead and low computing
efficiency. Specifically, they have high computational and storage
requirements. Therefore, creating lightweight and efficient
networks to solve the above problems is a major trend. The core
of our CFANet is ERM with dilated factorized convolution, which
can extract features while keeping the computation requirements
low. Our main contributions can be summarized as follows:

a) An ERM, which consists of convolutional decomposition
and channel shuffling operations, is designed to extract semantic
information while keeping the computational cost low.

b) MCAM is introduced to refine the feature maps at
different levels.

c) We achieve 70.6% mIoU and 67.7% mIoU on the Cityscapes
and CamVid datasets, respectively, along with the inference
speed of 118 FPS and 105 FPS on an NVIDIA RTX2080Ti
GPU card.

Overall, the cross-scale fusion attention mechanism network is
an effective approach the semantic segmentation of street scenes. It
has been shown to achieve state-of-the-art performance on several
benchmark datasets, demonstrating its potential for real-world

applications such as autonomous driving and urban planning.

Abbreviations: ERM, Efficient Residual Module; MCAM, Multi-branch Channel

Attention Mechanism.
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Materials and methods

In this section, the work related to dilated convolution,
factorized convolution and real-time semantic segmentation will
be discussed. The following is a general overview of the materials
and methods used in the cross-scale fusion attention mechanism
network for the semantic segmentation of street scenes:

a) Data Collection: A large dataset of street scenes was collected
for training and validation of the neural network. This dataset
typically includes high-resolution images and corresponding
segmentation masks that label each pixel of the image with the
corresponding object or class.

b) Pre-processing: The collected data is pre-processed to
prepare it for use in the neural network. This may include resizing
the images, normalizing the pixel values, and augmenting the data
through techniques such as rotation, flipping, and cropping to
increase the size and diversity of the dataset.

c¢) Network The
attention mechanism network architecture is designed and

Architecture: cross-scale  fusion
implemented based on the specific requirements of the semantic
segmentation task.

d) Training: The network is trained using the pre-processed
data through a process of backpropagation, where the weights
of the network are adjusted to minimize the loss function. The
training process involves multiple iterations or epochs, where
the network is trained on batches of images and corresponding
segmentation masks.

e) Evaluation: The performance of the network is evaluated
on a separate validation dataset to assess its accuracy and
mloU
accuracy are commonly used to evaluate the performance of

generalization ability. Metrics such as and pixel
the network.

f) Testing: The final step involves using the trained network
to perform semantic segmentation on new images in real-world
applications. This typically involves feeding the input image
through the network and generating a segmentation mask that
labels each pixel with the corresponding object or class.

Overall, the materials and methods used in the cross-scale
fusion attention mechanism network for semantic segmentation
of street scenes involve collecting and pre-processing data,
designing and implementing the neural network architecture,
training and evaluating the network, and finally testing it in real-
world applications.

Dilated convolution

Dilated convolution is a convolutional neural network
operation that enables the receptive field of a convolutional layer
to be expanded without increasing the number of parameters.
It is commonly used in semantic segmentation tasks where the
output needs to preserve fine-grained spatial details. In a traditional
convolutional layer, each filter kernel slides over the input feature
map with a stride of 1, resulting in a receptive field that grows
linearly with the kernel size. Dilated convolution, on the other
hand, inserts zeros between the kernel values, effectively increasing
the kernel’s spacing or dilation rate. This means that the receptive
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field of the dilated convolutional layer can be increased without
increasing the number of parameters.

Dilated convolution is commonly used in deep learning
architectures for image analysis, such as in semantic segmentation,
where it helps to capture multi-scale features and maintain spatial
resolution. It has been shown to improve the performance of neural
networks in a variety of computer vision tasks.

For segmented tasks, the feature resolution was decreased due
to the consecutive pooling operations or convolution striding. This
invariance may have a negative impact on detailed segmentation.
To overcome this problem, dilated convolution, which has been
proven as an effective way for semantic segmentation tasks.
For example, Deeplab (Chen et al., 2017) introduced an atrous
spatial pyramid pooling module that applied dilated convolution
and pyramid framework to enlarge the receptive field. LedNet
(Wang et al., 2019) used dilated convolution in the proposed
SS-nbt module to enlarge the efficiency and the accuracy of
the residual block. RELAXNet (Liu et al., 2022) applied dilated
convolution in the process of the depth separable convolution to
compress the module model. All of the above methods demonstrate
the effectiveness and lightness of dilated convolution in the
segmentation task.

Factorized convolution

In order to improve the inference speed and ensure the
segmentation accuracy, factorized convolution is often used
to construct lightweight segmentation networks. Factorized
convolution is a technique used in deep learning for reducing the
computational cost and memory requirements of CNNs. It involves
decomposing a standard convolutional operation into two or more
separate convolutions, each with a smaller kernel size.

The idea behind factorized convolution is that a large
convolutional kernel can be factorized into smaller kernels
that are applied sequentially. This reduces the number of
parameters in the network and can speed up computation without
sacrificing accuracy.

Factorized convolution has several advantages over standard
convolutional layers. First, it reduces the number of parameters
in the network, which can reduce overfitting and make training
faster. Second, it reduces the computational cost of the network
by breaking down the convolution into smaller operations. Finally,
factorized convolution can improve accuracy in certain cases by
allowing for more efficient and targeted feature extraction.

Factorized convolution is commonly used in mobile and
embedded deep learning applications where computational and
memory resources are limited. It has been shown to be effective in
a variety of computer vision tasks, including image classification,
object detection, and semantic segmentation.

There are two kinds of factorized methods often used
in lightweight networks. One is factorized the standard 3 x
3 convolution into a stacked 1 x 3 and 3 x 1 convolution,
and the other is depth separable convolution that factorized
the standard convolution into a depth-wise convolution
and point-wise convolution. These two factorized methods
can dramatically decrease the amount of the parameters.
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Many real-time semantic segmentation approaches, including
FASSD-Net (Rosas-Arias et al., 2021), MDRNet (Dai et al,
2021), and MSCFNet (Gao et al., 2021) use it to construct
efficient networks.

Attention mechanisms

Attention mechanisms are a technique used in deep learning
to selectively focus on certain parts of the input data during
the learning process. It was initially introduced in natural
language processing for machine translation, but has since
been applied to other domains, including computer vision and
speech recognition.

For humans, when we look at a picture, we consciously notice
the salient areas and ignore the less important ones. We ask
the computer to imitate our behavior, and motivated by this
observation, attention mechanisms are introduced into computer
vision in order to imitate this aspect of the human visual system.
This is the so-called attention mechanism, which is essentially a
mechanism for focusing local information. Attention mechanisms
have achieved great success in many visual tasks, including image
classification, object detection, semantic segmentation, etc.

The idea behind attention mechanisms is to selectively
emphasize different parts of the input data, based on their relevance
to the task at hand. This is achieved by assigning a weight to
each input element, which determines its relative importance. The
weights are learned through the training process, allowing the
model to adapt to different input patterns. Attention mechanisms
are commonly used in neural networks that process sequential
or spatial data, such as recurrent neural networks (RNNs) and
CNNs. In RNNs, the attention mechanism is typically used to
selectively weight different time steps of the input sequence, while
in CNNs, it is used to weight different spatial locations in the
feature maps. Attention mechanisms have been shown to improve
the performance of neural networks in a variety of tasks, including
image captioning, machine translation, and speech recognition. It
has become a standard component in many state-of-the-art deep
learning architectures.

The channel attention mechanism and the spatial attention
mechanism are two often used mechanisms. The purpose of using
the channel attention module is to make the input image more
meaningful. The importance of each channel of the input image
is calculated through the network. So as to achieve the purpose
of improving the feature representation ability. The attention
mechanism (Vaswani et al., 2017) was originally proposed in the
natural language field and it assigns each word a different weight.
Now, it has been widely used in computer vision tasks. SENet
(Hu et al,, 2018) generated the feature map weights by modeling
the relationship between channels. Besides the channel attention
mechanism, CBAM (Woo et al, 2018) used spatial attention
mechanisms to assign weights for pixels. The fusion of the high-
level and low-level features in the segmentation tasks is an efficient
way to improve the accuracy performance. SaNet (Fan and Ling,
2017) introduced a channel shuffle operation for the fusion of the
different level features. JPANet (Hu et al., 2022) presented a bilateral
path to fuse the feature from different levels.
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FIGURE 1
Illustration of the bottleneck (A), non-bottle-1d (B), Shufflenet module (C), and ERM (D) residual structure.
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FIGURE 2
The structure of the MCAM.

Methodology

In this section, we first introduce our ERM, which is used for
feature extraction.

Subsequently, MCAM is proposed by us. Next, we present the
MCAM module that includes the attention mechanism, which is
used to fuse features at different levels. At the end of this section,
we will discuss the overall architecture of our CFANet, which fuses
different levels of features.

Efficient residual module
We concentrate on enhancing the residual structure’s

effectiveness, which is frequently used in modern CNNs for
computer vision tasks. Recent years have seen numerous successful
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uses of lightweight residual structures, including bottleneck
(Figure 1A), non-bottle-1d (Lu et al, 2019) (Figure 1B), and
Shufflenet module (Long et al., 2015) (Figure 1C), motivated by
LedNet (Wang et al, 2019) and MSCFNet (Gao et al.,, 2021),
We devise an ERM to improve performance with the limitation
of computational capacity. Our ERM module is shown in
Figure 1D.

In Figurel, at the beginning of ERM, a standard 3
x 3 convolution is used to decrease the number of the
channel by half. The following is a two-branch structure with
depth-wise convolution. To be specific, a standard 3 x 3
is divided into consecutive 1 x 3 and 3 x 1 convolutions.
The other branch applies dilated depth-wise convolution,
which can help enlarge the receptive field. The two-branch
is refined by MCAM, which will be introduced in the
next subsection.
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Illustration of the initial convolution and down sampling unit
Multi-branch channel attention mechanism Where Fe RC x H x W denotes the input feature maps, C,

H, W represent the channel, height, and width of the feature map,

The attention mechanism can give varying weights to  respectively. o is sigmoid activation function. Conv**3 denotes
the traits to draw attention to the crucial ones and ignore  standard convolution with kernel 3 x 3. Add means the channel wise
the unimportant ones. In this paper, we present MCAM to  addition. AvgP is the average pooling operation.
generate different weights for the channels, which is shown in
Figure 2.

The convolution is chosen as the local channel context
aggregator, which utilizes point-level channel interactions only
for each spatial location. As Figure 2 shows, our MCAM module
uses global average pooling and 3 x 3 standard convolution
in the upper and bottom branches simultaneously. The
results from two branches are added element by element. the CFANet.

After that, the sigmoid function is used to generate different As can be seen from Figure 3, we first use three 3 x 3
weights for channels. This procedure can be expressed conservative standard convolutions with stride 2 to extract the
initial feature of the input images. After the initial convolution,
a down sampling unit is used to reduce the size of the feature
map and expand the reception domain. However, too many down

Network architecture design

Based on ERM, we design the architecture of CFANet as shown
in Figure 3. In this section, we will introduce the final model of
as follows:

sampling operations will cause the information, thus, we only
MCAM (F) = Fxo (Add (Ang (F) + Cony**3 (F))) (1)  employ three down sampling units in our method, thus, the final
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resolution of the feature map is 1/8 of the input. Our initial
convolution and down sampling unit are shown in Figure 4.
The pseudonym code of our CFANet is shown as follows:

I nput: | nage/
Qut put: The segmentation results
Step 1: Initial Convolution

initial _features = Convol ution(input_i mage,
filters)

Step 2: Fusion and Subsanpling

downsanpl ed_i nrage = downsanpl e(i nput _i mage,
scal e_fact or =2)

fusionl = Concatenate(initial_features,
downsanpl ed_i nage)

subsanpl i ngl = Subsanpl e(fusi onl,

scal e_fact or =2)

Step 3: CQutput to ERM Bl ockl

out put _ERM Bl ockl = ERM Bl ock1(subsanplingl)
Step 4: Fusion and Subsanpling

downsanpl ed_i nage2 =Downsanpl e(i nput _i mage,
scal e_fact or=4)

fusion2 = Concat enat e( out put _ERM Bl ock1,
downsanpl ed_i nage2)

subsanpl i ng2 = Subsanpl e(f usi on2,

scal e_fact or =2)

Step 5: MCAM Modul e

out put _MCAM Modul e = MCAM Modul e( subsanpl i ng2)
Step 6: Feature Fusion

fusi on3 =Concat enat e( out put _MCAM Modul e,

i nput _i nage)

Step 7: MCAM Feature Extraction

out put _MCAM Feat ur eExtracti on =

MCAM Feat ur eExt racti on(fusi on3)

Step 8:
adj usted_features =

Convol ution_1x1(output_MCAM Feat ur eExtracti on,
num _channel s)

1x1 Convol ution

Step 9: Upsanpling
out put _feature_map = Upsanpl e(adj ust ed_f eatures,

scal e_factor)

Algorithm 1. Cross-scale fusion attention net (CFA-Net).

Experiments

In this part, details and results of our experiments will be
presented on the popular semantic segmentation benchmarks
Cityscape (Cordts et al, 2016) and CamVid (Brostow et al,
2009). The network was trained on these two data sets, which
consisted of high-resolution street view images labeled with pixel-
level semantic labels. They used cross-entropy loss functions to
train the network and data enhancement techniques such as
random scaling and clipping to increase the diversity of the training
data. The performance of the proposed network is evaluated
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using several metrics, including mIoU and pixel accuracy. The
results show that the proposed network outperforms several state-
of-the-art semantic segmentation networks on the Cityscapes
dataset, demonstrating the effectiveness of the cross-scale fusion
attention mechanism.

Datasets

Cityscapes dataset

The Cityscapes dataset, contains 19 semantic classes and
includes 5,000 fine-labeled samples with the resolution 2,048 x
1,024. The total 5,000 images are divided into training, validation,
and test parts. The training parts contain 2,975 images, the
validation subset has 500 samples and the test sets have 1,525
images. The sample image and corresponding labels can be seen
in Figure 5.

CamVid dataset

The CamVid dataset is collected from a car video sequence,
which contains 11 semantic classes and includes 710 labeled images
(367 images for training, 101 images for validation, and 233 images
for testing). The sample image can be seen in Figure 6.

Data augmentations

In order to overcome the over fitting issue, data enhancement
was performed using a horizontal flip and random scale 126. The
random scale contains {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} Besides, we
also use color jitter to adjust the brightness, control, and saturation
of the training images and labels.

Training protocols

We train our network with Stochastic Gradient Descent
(Bottou, 2010) (SGD) optimizer on Cityscapes dataset with a
batch size of 8 on a single NVIDIA RTX2080Ti Card which
has 24 GB GPU memory. The learning rate is adjusted by
a polynomial policy in the training process. The polynomial

policy is computed by Ircur = init < wuscore > Ir X
epoch power soge . .

(1 — m) The initial learning rate is 4e-

2.

When performing training on the CamVid dataset, Adam
(Kingma and Ba, 2014) is used as the optimizer with a
batch size of 8 and an initial learning rate of le-3. We also
use a polynomial policy to adjust the learning rate of the
training process.

Ablation studies
In this section, the effectiveness of our proposed

MCAM was verified by ablation studies. All the ablation
experiments are performed on the CamVid dataset, which
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FIGURE 5
The corresponding images and labels of Cityscapes dataset.
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FIGURE 6
The corresponding images and labels of CamVid dataset.
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training is time-saving. We trained 1,000 epochs for all the
ablation experiments.

Ablation studies on MCAM
In order to prove the effectiveness of MCAM, we removed all

the MCAM in our CFANet. The experiment results can be seen in

Table 1.
From that the

removed.

mloU
The

can be observed
MCAM s

Table 1, it

decreases by 1%  when

Frontiersin Neurorobotics

140

TABLE 1 Ablation results on MCAM.

Methods MCAM  Paramets (M) mlou
CFANet v 0.84 ‘ 67.7
CFANet ‘ X ‘ 0.77 ‘ 66.7

parameters are reduced to 0.07 million. In other words,
ECAM with
negligible parameters.

our can  effectively increase  accuracy
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TABLE 2 The comprehensive comparisons on Cityscapes dataset.

10.3389/fnbot.2023.1204418

Method Input Backbone Parameters (M) FLOPs (G) mloU (%)
SegNet (Badrinarayanan et al., 2017) 640 x 380 VGG16 29.50 286 57.0
Enet (Paszke et al., 2016) 512 x 1,024 No 0.36 3.8 58.3
SQNet (Hu et al., 2018) 1,024 x 2,048 SqueezeNet - 270 59.8
ESPNet (Mehta et al., 2018) 512 x 1,024 ESPNet 0.36 113 60.3
CGNet (Wu et al., 2020) 360 x 640 No 0.5 - 64.8
ContextNet (Han et al., 2020) 1,024 x 2,048 No 0.85 - 66.1
EDANet (Yang and Gao, 2019) 512 x 1,024 No 0.68 81 67.3
ERFNet (Romera et al., 2017) 512 x 1,024 No 2.10 - 68.0
Fast-SCNN (Zhang et al., 2018) 1,024 x 2,048 No 1.11 - 68.0
BiseNet (Yu et al., 2018) 768 x 1,536 Xception39 5.80 14.8 68.4
ICNet (Zhao et al., 2017) 2,048 x 1,024 PSPNet 26.50 283 69.5
DFANet (Li et al., 2019a) 1,024 x 1,024 Xception 7.80 3.4 71.3
Ours 1,024 x 512 No 0.84 10.4 70.6

FIGURE 7

The visual results on Cityscapes validation set (from the most-left to right-most is: input, DFANet, and ours).
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Performance
In this subsection, Compare our algorithm with the o ool gl olnl = o olw
. 5 8 3T 8 B 8 8 R R &R
state-of-the-art model. We first report the comparison
results on Cityscapes and Camvid benchmarks, then
© N e ol ol A 6 = ] N5
analyze the speed of our model and compute the FPS of @ T 8 %5 g2 8 8 < gl g 2 4
other state-of-the-art methods under the same status for
. . - (=)} - - Lae} o~ =] Lae} e} A (=} —
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Performance on Cityscapes datasets
A quantitative and quantitative comparison of the - alololalalow|lalalsl <« -
urban landscape with other methods is shown. The & SIR|F| a8 ¥ 39 5 ¥ 8
comparison metrics consist of input size, backbone network,

1 d the mIoU, the results can b 2 2 282 28 82388
parameter amount, Flops, an e mloU, the results can be 5 s 5 9 Figlel F Fl4dls
seen in Table2.

It can be observed from Table 2, that the mIoU is comparable 3 5 = E g ; ; E E E a E
to the current state-of-the-art methods, but our CFANet is
more lightweight and efficient. The results on Cityscapes l\ *l e = el g o nl o wl ol w
. . S @ % ¥ R 8 5 a8 g 8
show that our approach achieves 71.5% mloU with only 0.84
million parameters. Compared to DFANet, our method has a o« O N = "N S (U o e I S R
a ®© (=3 < N n >~ Nl 15N fan) — <
similar accuracy but our method only has 0.84 M parameters. = AU R A N A B A A e N
Compared to DFANet, our method has a similar accuracy - el ol ol ol ol w| wlwvwlol al o
but our method only has 0.84 M parameters. In addition, in @ 08 R 8RB B 88 B B R
order to visualize the results of different methods in terms - <l alelalalalal=lalala
of segmentation effects, we provide visual comparisons on the S S 8|8 8 8 8| xR G|T S
Cityscapes validation set. The visual comparison results can be seen
from Figure 7. o "R 8 R ¥ T R EIR B
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Performance on camvid
To further verify the effectiveness of our o nlioloa| = ol ol o ~|a % x
= 8 &R F 2T E 28 C
CFANet, we also evaluated our CFANet on
the CamVid dataset. As shown in Table4, our ~ olw|n|la|laleo|alalw| |«
. . ) < ™~ © N o — o) o N ) IoN
CFANet  obtained  remarkable  performance  against ~ N R B B B B B
other methods. - clalalalelo|nleleleln
From a comprehensive, we select some methods and compared 3 SR IE R R B8R S| A
them from four perspectives: input size, backbone, parameter, and @
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mloU(on test set). As Table 4 shows, our CFANet achieves the £ 5 £ 2 2 T 2 5 5/ §s|g|F
best mIoU without backbone. Compared to BiseNet and ICNet, 4
our CFANet is 0.6% higher than ICNet. However, it should § % § § § 5 § § § g § E é
be noticed that ICNet has a huge parameter. We provide the 3
visual comparison results of these methods on the CamVid test 5 @ ol olal = o alunlw ol ol »

- (=3 (= N a o < (s (= <+ <+ —
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the time performance on an NVIDIA Jeston TX2 platform. The § kS 8 & 3E 8 &8 & & &8
experiment results are shown in Table 5. £
A clear comparison is made with other popular algorithms in &
[ - —~ — —
terms of FLPOS and memory. The results are shown in Table 6. o = _ 212 1 8
As shown in Table 6, the memory cost of our CFANet is similar % c = é = S S8 o) :Ej ;'
to the ERFNet, but the accuracy performance of our CFANet (in % g g < 8| = :37 Tlelg| = “
i g Sl 8| 5| £ sl 2| = =
terms of mlIoU) is 2.6% higher than it. When compared to the < E S| 2= 5 i El | 5| o k
. . . ; = l=| 8| =2| g| | 2| ®| 5] 2
EDANet, the FLOPs of our method are slightly higher than it, E 35 ;cg kS § ; 7;’ Sl el 8lalz é
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rogress. All the mentioned discussion can prove the effectiveness = [h %= 8 & & 25 8 ® 3
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of our proposed CFANet. =
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TABLE 4 Comparisons with some of state-of-art methods on CamVid test set.

Methods Input size Backbone Parameter mloU
ENet (Paszke et al., 2016) 360 x 480 No 036 M 51.3
SegNet (Badrinarayanan et al., 2017) 360 x 480 VGGl6 29.5 55.6
NDNet (Yang et al., 2020) 360 x 480 No 0.5 57.2
DFANet (Li et al., 2019a) 720 x 960 Xception 7.8 64.7
Dilation (Rosas-Arias et al., 2021) 720 x 960 VGGI16 140.8 65.3
CGNet (Wu et al.,, 2020) 360 x 480 No 0.5 65.6
BiseNet (Yu et al., 2018) 720 x 960 Xception39 5.8 65.6
DABNet (Li et al., 2019b) 360 x 480 No 0.76 66.4
FDDWNet (Liu et al., 2019) 360 x 480 No 0.80 66.9
ICNet (Zhao et al., 2017) 720 x 960 PSPNet50 26.5 67.1
Ours(CFANet) 360 x 480 No 0.84 67.7

A Input B Ground_truth C DABNet D Ours

FIGURE 8
The visual results on Camvid testing set. From the most-left to right-most is: Input (A), Ground-Truth (B), DABNet (C), and ours (D).
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TABLE 5 The time performance on NVIDIA Jeston TX2.

10.3389/fnbot.2023.1204418

Method Input Platform FPS Accuracy mloU (%) ‘
SegNet (Badrinarayanan et al., 2017) 640 x 480 TX2 5 58
Enet (Paszke et al., 2016) 640 x 480 TX2 26 58.3
EDANe (Yang and Gao, 2019) 640 x 480 TX2 42 67.3
ERFNet (Romera et al,, 2017) 640 x 480 TX2 39 68.0
Fast-SCNN (Zhang et al., 2018) 640 x 480 TX2 57 68.0
Ours(CFANet) 640 x 480 TX2 55 70.6
TABLE 6 The comparison results in terms of FLOPS and amount of memory.
Method Input Amount of the memory (MB) FLOPs (G) Accuracy mloU (%)
SegNet (Badrinarayanan et al., 2017) 512 x 1,024 1,830 326.26 58
Enet (Paszke et al., 2016) 512 x 1,024 0.36 3.8 58.3
SQNet (Hu et al., 2018) 512 x 1,024 895 270 59.8
ESPNet (Mehta et al., 2018) 512 x 1,024 85 32 60.3
CGNet (Wu et al,, 2020) 360 x 640 783 6.98 64.8
ContextNet (Han et al., 2020) 512 x 1,024 356 1.78 66.1
EDANet (Yang and Gao, 2019) 512 x 1,024 353 8.95 67.3
ERFNet (Romera et al., 2017) 512 x 1,024 806 25.8 68.0
Fast-SCNN (Zhang et al., 2018) 512 x 1,024 309 1.76 68.0
Ours (CFANet) 512 x 1,024 821 10.4 70.6

Conclusions

In this paper, A new semantic segmentation method, CFANet,
is proposed. Which fuses 1/2, 1/4, 1/8 feature maps of the input
images. Subsequently, we present a novel ERM consisting of
convolution decomposition and dilated convolution. We build our
core architecture by using ERM. Besides, we devise MCAM to refine
the feature map from different stages. Experiment results show that
our method achieves 70.6 and 67.7% mIoU along with 118 FPS and
108 FPS on a single NVIDIA 2080Ti GPU card.

In spite of this, we still have a lot of issues to resolve in the near
future. In existing lightweight segmentation models, much useful
information is lost in order to obtain the smallest possible model
size without compromising accuracy. There is still an unsatisfactory
level of segmentation accuracy. Furthermore, the inference speed
is not fast enough to process high-resolution images. Additionally,
while semantic segmentation networks are extremely important for
edge devices, their power consumption is not adequately addressed
in existing research. For this reason, we are exploring a novel
architecture for semantic segmentation to improve the trade-off
between inference speed, accuracy, and power consumption in
the future.
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Robust control for a tracked
mobile robot based on a
finite-time convergence zeroing
neural network

Yuxuan Cao*, Boyun Liu and Jinyun Pu

College of Power Engineering, Naval University of Engineering, Wuhan, China

Introduction: Since tracked mobile robot s a typical non-linear system, it has been
a challenge to achieve the trajectory tracking of tracked mobile robots. A zeroing
neural network is employed to control a tracked mobile robot to track the desired
trajectory.

Methods: A new fractional exponential activation function is designed in this
study, and the implicit derivative dynamic model of the tracked mobile robot is
presented, termed finite-time convergence zeroing neural network. The proposed
model is analyzed based on the Lyapunov stability theory, and the upper bound
of the convergence time is given. In addition, the robustness of the finite-time
convergence zeroing neural network model is investigated under different error
disturbances.

Results and discussion: Numerical experiments of tracking an eight-shaped
trajectory are conducted successfully, validating the proposed model for the
trajectory tracking problem of tracked mobile robots. Comparative results validate
the effectiveness and superiority of the proposed model for the kinematical
resolution of tracked mobile robots even in a disturbance environment.

KEYWORDS

tracked mobile robot, trajectory tracking, finite-time convergence, zeroing neural
network, robust

1. Introduction

At present, robots are being widely used in marine exploration (Fang et al., 2022; Wang
et al,, 2022), industrial manufacturing (Segota et al., 2021; Truong et al., 2021), military
applications (Bistron and Piotrowski, 2021; Rawat et al., 2021), and other fields. Tracked
mobile robots (TMRs) show their wide adaptability and traffic ability to complex terrain
(Gu et al,, 2021). The demand for their motion autonomy and intelligence is increasing.
Therefore, the control issue of trajectory tracking has been a research hotspot.

However, a TMR is a typical nonlinear system, and its model parameters change with its
motion. In addition, the model is vulnerable to various interferences. The superposition of
many factors poses a great challenge to the control algorithm. Therefore, a feasible solution
with outstanding convergence performance as well as robustness to handle the nonlinear
time-varying control issue of the TMR is imperative in practice. Numerous methodologies
and techniques for addressing the tracking control issues of robot systems have been
extensively studied and reported, including backstepping control (Ji et al., 2002; Gao et al,
20225 Sabiha et al., 2022), sliding mode control (Ahmed et al., 2021; Yin et al,, 2021), fuzzy
control (Lara-Molina and Dumur, 2021; Li et al., 2022), and neural network (Ding et al,,
2018; Jin and Qiu, 2022).
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Among various kinds of solutions, neural network approaches
have shown huge advantages in terms of parallelism and easy
implementation by hardware (Chen and Zhang, 2018). As
a powerful approach for solving time-varying problems, the
conventional zeroing neural network (CZNN) proposed in Zhang
et al. (2002) has been thoroughly investigated in recent years
(Miao et al., 2015; Xiao et al., 2017; Gerontitis et al., 2022; Sun
et al., 2022; Zhang and Zheng, 2022). Ma et al. (2021) proposed
a new ZNN model to solve the bound-constrained time-varying
nonlinear equation, which has been applied to the mobile robot
manipulator. Chen et al. proposed a multi-constrained ZNN. The
application on the mobile manipulator for nonlinear optimization
control demonstrated its physical effectiveness (Chen et al., 2021).
Although CZNN can converge to the analytical solution with time,
the convergence time is infinite in theory, which is impossible in
reality. For an actual situation, the convergence time should be
as short as possible. Moreover, CZNN is sensitive to noise and
other disturbances. However, the system is susceptible to external
disturbances and possible internal disturbances.

Many efforts have been made to address the shortcomings
of CZNN. Hu et al. (2020) developed a noise tolerance ZNN
model, which successfully tracked the desired path of the mobile
manipulator with high accuracy under perturbation. Chen and
Zhang (2018) proposed a robust ZNN model for solving the
inverse kinematics problem of mobile robot manipulators . Luo
et al. proposed a new hyperbolic tangent varying-parameter
ZNN. Furthermore, trajectory tracking tasks of the mobile robot
substantiate the outstanding convergence of hyperbolic tangent
variant-parameter robust ZNN (HTVPR-ZNN) schemes (Luo et al.,
2022). Chen et al. (2020) proposed a ZNN model with a super
twisting algorithm that realized finite-time convergence and anti-
disturbance, proving its effectiveness and superiority in the tracking
control of the mobile robot manipulator. Lin et al. utilized a new
design formula of noise resistance and finite-time convergence
to establish a new ZNN. Compared with CZNN, the presented
model was nonsensitive to various types of external disturbances
(Xiao et al, 2019). Yan et al. (2019) proposed several improved
ZNN models that allow nonconvex activation functions and have
accelerated finite-time convergence.

However, the models and approaches reviewed above might
potentially not be time-efficient and simultaneously robust for
direct applications to a tracking control problem of TMR due to the
requirement of timeliness as well as the influence of the disturbance
environment. Moreover, it is worth pointing out that the robustness
and finite convergence of ZNN models are related to the design
of appropriate activation functions. The sign-bi-power function
mentioned above endows ZNN with finite-time convergence, but
it also contains a sign function, which may lead to singularity and
discontinuity. Additionally, the performance under disturbance has
not been not fully studied. Therefore, it is necessary to design a
new activation function to obtain anti-interference and outstanding
convergence.

Under the framework of the ZNN, a finite-time convergence
ZNN, termed FCZNN, is proposed in this study. First, a
new fractional evolution formula is designed to accelerate the
convergence speed and enhance its robustness, which can converge
to the desired trajectory within a finite-time under four common
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disturbances. To better demonstrate the contribution of this study,
some existing models are introduced for comparison to highlight
the main differences, and the corresponding comparison results are
presented in Section 4.

The rest of this paper is organized into four sections. Section
2 presents a novel tracking control method based on FCZNN
models for TMR. Section 3 validates the finite convergence and
other properties. Section 4 illustrates the corresponding simulation
results of the proposed method and presents some existing models
for comparison. Section 5 concludes the entire paper.

Before ending this section, the main contributions of this study
are summarized as follows:

e A new fractional exponential activation function is proposed
in this study and investigated to solve the trajectory tracking
issue. Compared with the tunable activation function, the
singularity and sign function can be effectively avoided by
reasonably selecting the design parameters.

e The finite-time convergence and robustness of the proposed
FCZNN are validated theoretically based on the Lyapunov
stability theory.

e Simulation experiments are conducted to present the
verification and superiority of the FCZNN when compared
with some existing models. Additionally, the validity of the
theoretical analysis is confirmed based on the corresponding
results.

2. Preliminaries

Since the actual situation is complicated, it is difficult to reflect
it fully. Appropriate simplification is necessary. First, the main
application scenario of our TMR is in a structured environment,
such as indoors or on roads, and it can be analyzed on a
two-dimensional plane. Furthermore, the difference in grounding
pressure and the mass distribution of the TMR affect the kinematic
model of the TMR. To simplify the kinematics model, some
assumptions are declared for the TMR:

Assumption 1. The TMR moves on the flat terrain with even
tracking grounding pressure.

Assumption 2. The centroid of the TMR is located at the center of
the robot.

In the global XOY coordinate system, the schematic diagram
of the motion of the TMR is presented in Figure 1. Some notations
mentioned in Figure 1 are listed in Table 1.

First, we introduce a model-free tracking control method for
the TMR relying only on user-defined input and sensory output
without knowing any information about the model parameters of
the TMR. The kinematics model of the TMR is depicted as

q(8) = J(0)u(t) 1)

where q(t) = [x,7,0]7 is the generalized coordinates of
the TMR, 4(¢) is the time-derivative of q(t) , u(t) = [v, )T is the
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FIGURE 1
Schematic diagram of the motion of the TMR.

TABLE 1 Notations in Figure 1.

Notation Meaning

xoy The coordinate system attached to the TMR
q(x,y,0) The actual position

q(xq, ya> 0a) The desired position

0 The centroid of the TMR

0 The heading angle of the TMR

Vo The velocity of the TMR

o8 The angular velocity of the TMR

control input vector, and J(0) = [cos 6, 0; sin8,0; 0, 1] is the full-
rank velocity transformation matrix. To obtain the solution of the
matrix equation, the FCZNN model is presented to solve this kind
of a robot trajectory control issue.

A time-varying desired path equation g,4(t) is offered for
tracking using the TMR,

4a(t) = J(0q)uq(t) )

where g4(t) denotes the time derivate of qu(¢),
J(04) = [cos0,,0;sin6,,0;0,1] is the desired full-rank velocity
transformation matrix, and 1 (t) = [vg, wg]7 is the desired control
input vector. The mapping relation in real time ¢ is expressed
as q(t) — q4(t) . The mapping at the velocity level is shown as
46 — 4a(®)
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The following error function is defined in the global coordinate
system:

qe(t) = q(t) — qa(t) (3)

The error is generally defined in the coordinate system of then
TMR; then, one has

e(t) = Tqe(t) 4)

where  e(t) = lex, ey, el and T =
[cos,sin @, 0; sin @, — cos b, 0; 0,0, 1] is the
transformation matrix, which converts the tracking error defined

coordinate

under the inertial coordinate system to the body coordinate system.
In view of the design rules of the ZNN, the following formula is
given:

de(t) .
T =T d(e(t)) (5)

where ®(e(t)) denotes an activation function vector with
various type, linear type, power type, etc. Theoretically, any
monotonically increasing odd function can be the activation
function candidate. T" is a positive-definite matrix for scaling the
convergence rate of the solve process. Based on the related derivate
theory, T" should be set as large as possible within the tolerance
limit of the hardware. For ease of discussion, I" is set as a diagonal
matrix with the same element, that is, ' = yI, where I is
the identity matrix. Additionally, I" is a constant scalar-valued

parameter matrix. Then,
e(t) = —y d(e(t)) (6)

where y is the parameter that adjusts the convergence rate.
Moreover from (13), one promtly has

e(t) = Tqe(t) + Tqe(t) @)

3. Model design and theoretical
analysis

In this section, a finite-time and robust unified framework
synthesized by adopting a new activation function is proposed.
The relative theorems and proofs about the corresponding features,
namely, of finite-time convergence, global stability, and robustness
in the disturbance environment, are explored to demonstrate the
effectiveness of the proposed FCZNN model.

Considering (1), (6), and (7), one can obtain

TO)u(r) — Ga(0) + T(q(t) — qa()) = =y D(e(t))  (8)

Evidently, the neural dynamics Equation (8) makes full use
of the pose information and its derivate of the TMR, which
contributes to solving the trajectory tracking control problem.

To demonstrate the anti-interference performance of
the proposed FCZNN, some theorems about robustness are
investigated in this section. Generally, the synthesized error caused
by the disturbances is inevitable for any electronic system and

neural dynamics. The synthesized error caused by hardware
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implementation off-set errors can be treated as dynamic non-
disappearing noise in linear or sine form. The one caused by
the instantaneous decline of power sources or other external
disturbances can be regarded as dynamic disappearing noise in
exponential form. Then, the implicit dynamic Equation (8) with
the synthesized error is reformulated

TUO)u(r) = ga(0) + T(q(t) — qa()) = —y D(e(D)) + W) (9)

where W(t) € R® denotes the synthesized error (could be
constant or time-varying) with each entry w;(t) < wfori =1,2,3,
where w > 0 is an unknown constant.

3.1. Design of the FCZNN

As mentioned before, the choice of error evolution formula has
a crucial influence on the characteristics of the system. Inspired by
Xiao et al. (2017), a new fractional exponential activation function
is proposed for constructing the error evolution formula.

D(x) = i1 fPIP (x, 1) + K6of (%, 1) + i3 fP/P (x, 1) (10)

where f(x,t) is the set of increasing odd functions and
design parameters p and p; denote positive odd integer with p > py,
k1 > 0,k3 > 0, k3 > 0. Evidently, three terms of the activation
function are odd functions the sum of the three terms is still a
monotonically increasing odd function. For analysis, we define
f(x,t) = x. Then, the error evolution formula is given as

de(t)
dt

=~y (keP (1) + k2e(®) + e P(0) (1)

where y is defined as before. The Equation (9) can be
reformulated as

u(t) = J1(O) T =y D(e(t) — T(q(t) — qa(®)) + Tqa(t) + W(0)]
(12)
where JT(#) denotes the pseudo inverse of J(1).

10.3389/fnbot.2023.1242063

Initialize: TMR initial state vector combined velocity vector
4(0);
Choose: The tracking duration Ty and design parameters y
and kj=123;
Input: The desired position g,(t) of tracking task;
1. if t<Ty then
2: Calculate: The desired path as g,(t) ;
3: Read: The real tine TMR actual position g(t);
4: Calculate: The control -si gnal by using neuron

dynam ¢ equation
5:

u(t) = J1O)T [~y d(e(t)) — T(q(t) — qa(t)) + Tqa(t) + W(1)]

6: Update: The TMR position in the next nonent
7: Output: The actual trajectory g(t)
8. else
9: Stop: TMR trajectory tracking task finished.
10: endif

Algorithm 1. Tracking control of the TMR via the FCZNN.

The detailed algorithm description about the FCZNN model for
the TMR tracking control issue is presented in Algorithm 1. The
block diagram presented in Figure 2 demonstrates the principle of
the control strategy.

To illustrate the details of the proposed model, the ith (i
1,2,3) neuron of the FCZNN is given below.

. 3 . .
gi = —vy¢le) +wi — ijl (Tiej + Tijqqp) (13)

where g;, 44; denote the ith element of g, g4, respectively,
and T,-j, T,-j are the (4, j)th element of Tand T.

Disturbances W' (¢)
Input ¢,(1) E-d-q-d-(;)-i
U ar

TMR feedback ¢(f)

A

FIGURE 2

Block diagram of the FCZNN model with the possible disturbances for W(t) handling tracking control issue of the TMR.
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FIGURE 3

Neural topology of the proposed FCZNN model.

Based on (13), the neural topology structure of the proposed
FCZNN model is presented in Figure 3.

3.2. Convergence analysis

3.2.1. Global stability analysis

Theorem 1. Ifa monotonically increasing odd function ®(-) is taken
as the activation function, the output will globally converge to the
desired trajectory q,(t) of the model (9) with a random generated
initial state q(0).

Proof: To prove the global convergence of the model (9), the
following Lyapunov function candidate is presented as

le]5  eT(t)et)

L(t) = 5 : (14)

where |[|-||, denotes the two norm of a vector. Considering (6),
the derivate of the above function is

i(t) = eT (1) 40
= —yel () D(e(t) (15)

m

=-y ; eip(ei(t))

where e;(t) is the ith element of e(t), ¢(e;(¢)) is the ith element
of ®(e(t)), and m = 3 represents the number of model subsystems.

Frontiersin Neurorobotics

Since the activation function is an odd function, the following
relationship exists:

>0, if ef(t)#0

=0, lf ei(t) =0 ’ (16)

ei()g(ei(t)) = {

According to the Lyapunov stability theory, the system is
asymptotically stable at moment t with L(f) < 0 guaranteed.
Considering (16), we have

S e o _]=0 if ei(t)=0
L(t) = —y;eﬂﬁ(ez(t)) = { <0, if e®)£0° te[0, +o00)
(17)
O

Equation (17) demonstrates that L) is negative finite. Based
on the Lyapunov stability theory, the system will gradually
stabilize with time, the error equation will converge to 0, and the
corresponding input will converge to the analytical solution. The
proof of global convergence is thus completed.

Theorem 1 indicates that the system residual error converges to
0, which means that the TMR can track the desired position with
time. The evolution formula proposed in this study demonstrates
that the tracking task of a desired path can converge in the finite
time. Next, the finite-time convergence of the FCZNN is proved
below.
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3.2.2. Finite-time convergence analysis

Theorem 2. Considering the novel activation function (10) for the
error function e(t), e(t) can converge to 0 in finite time Ty. Ty satisfies
the following inequality:

L epp)
ln(]+%1.(0) 2
L) > 1

1 1 K1+K)
n +
(p+p1) _btp
ZV'Q( 2p1 _1) (kzL(O)1 K +k1>

(ptp1)
2p

2y (B0 1)

Ty < (18)

K 1-
In 1+éL(n)

—_———  L(t 1
2y (B2 1) <

Proof: Firstly, the maximum initial value element of the error
function is depicted as e™(0) = max;—; 53 { |e,-(0) |} . The following
relationship holds true: — ’e+(t)| < |ei(t)| < |e+(t)| for t > 0 and
i = 1,2,3, which reveals that e;(f) converges to 0 when e™(f) is
equivalent to 0. Moreover, & ()= —y ® (e*(1)).

L(t) = 2eT (et (1)
=2y ® (e" (1) et (1)
= -2y <K1L(t)(P+P1)/2P1 + oLt + K3L(t)(p1+p)/2p)

(19)

For simplicity, we define 2yk1 = B1, 2yky = B2, 2yk3 =
Bs,a = (p +p1)/2p1 ,and b = (p +p1)/2p. In view of the
precondition,a > 1,0 < b < 1. Then, L(t) = —(B1L(¢) +
BoL(t) + B3L(t)).

Inequality (18) is proved below. The following two situations
exist:

CASE I: When L(t) > 1,

L(t) = =p1L%() — B2L(1) (20)
Inequality (20) can be transformed as
) —dt (1)

7 <
B3LA(t) + BoL(t) —

Integrating both sides of (21) from 0 to t, we can obtain

L(t) =
[ < exp(— Ao (L0 + B — B exp((1 = @)a0) T if 0=t < 1(2)
=1, lf t=1t
where t; denotes the convergence time to 0 for
Ll_“(O):maxi:1,2,3 {eil_a(())} .
LetL(t) =1,
1
h = Pl R, (23)
(@a=1DB2  BL'7%0) + B
CASEIl: When L(t) < 1,
L(t) < =(B2L(t) + BsL°(1)). (24)
Inequality (24) can be converted to
dL,(t
2(1) < —dt. (25)

BaLa(t) + BL3(1) ~
Integrating the above differential inequality from 0 to t, we have
L(t) =

{ < ep(pa) (L0 + & — Bexpl1 - 0F0) L 0=t <t (26)
=0,if t=1

Frontiersin Neurorobotics

10.3389/fnbot.2023.1242063

Similarly, t, satisfies the following equality:

I (1 + %Ll—h(o))

T RG-D) @

where t, denotes the convergence time to 0 for L(t) < 1,
and Lb(0)=maxi:1,2,3 [ ef’(O)] .

In summary, the upper bound of convergence time 7 satisfies

ln(1+§—§L1-”(0))

Ty < a0 (o) i =1
In(1+21(0)
—Rh L(t) <1
(28)
Note that (28) can be rewritten in the form of (18). The proof is
thus completed. O

3.3. Robustness analysis

The CZNN has been proven to converge to the desired result
in the disturbance-free case. However, in the practical situation, the
disturbance cannot be avoided. The tracking error may arise in the
presence of the disturbance. In this section, the steady-state error is
given base on the Lyapunov theory.

Theorem 3. Consider tracking control issue (1) of the TMR. Suppose
that an FCZNN model is polluted by the additive bounded error w;(t)
with wi(t) < w (constant or time-varying disturbance), where w is
positive constant, starting from the arbitrary initial position q(0),
the steady-state tracking error of the FCZNN model (9) yields the
following equality:

w \P1/p
ﬁdeMb<¢%(—) . 29)
—+00 VK3

where all the parameters in the inequality have been defined
before.

Proof: Provided that the additive disturbances exist in the FCZNN
model, its ith dynamical subsystem corresponding to the error
function in the FCZNN model is given by

ei(t) = —ydlei(t) + w; (30)

Similar to Theorem 1, a Lyapunov function is defined first to
address the global convergence of the proposed FCZNN model.

)4
+p1

pite
L(t) = P

ei(t) (31)

Obviously, L(¢) is an even function, L(¢) > 0. Taking derivation
for L(t) , we have

L(t) = ei(0"" i)
= [—)’ (Klei(t)P/pl +r2ei(t) + K3€i(f)P1/p) + Wi] et

\2 2
=—Yk3 (ei(t)Pl/P - r;,v,’(s) + o=

2 2
(y/qei(t)(f’ )/ 4 szei(t)(pﬂn)/P)

(32)
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FIGURE 4
The tracking performance of the FCZNN without disturbance.
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TABLE 2 The disturbances forms.

No. Disturbance forms Expression
1 Constant form wi=1

2 Line form w; =0.01 %t

3 Sine form w; = sint

4 Exponential decay form w; = exp(—t)

rla

Suppose that e;(t) > (w/ y/c3) , the first two terms hold

<0.

2 2
—pi (e — 2 ) 4

Based on this, we obtain the following analysis about Equation
(32). There are two situations.

1) If solution error e;(t) > (w / y/c3)p /a holds true, one can
readily obtain that L(t) < 0. In the sense of the Lyapunov theory,
the system becomes stable gradually with time.

2) If solution error ¢;(t) < (w/ )/K3)P /P! holds true, the sign of
L(t) might be positive or negative. Even in the worst-case scenario,
we consider L(t) > 0, which indicates that e;(f) will increase;

(wi/yK3)P/P1 does not exceed the upper bound (W/VKS)P/PI
L(t) < 0 when e;(t) > (wi/yK3)P/Pl .
Recalling that [[e(t) |, = " | €2(t), one can readily draw the

i=1"%i

for

. . w \2i/p
conclusion that tinfoo [le(t) ||2 < \/ﬁ(m)

completed. O

. The proof is thus

It is worth pointing out that Theorem 2 presents that the
steady-state solution error can be arbitrarily small by increasing or
reducing the fractional value.

Theorem 4. In the case of e;(t) > (w,</yl<3)p/P1 , starting from any
initial value q(0) , the actual trajectory q(t) tracks the desired position
qa(t) in finite time Ty for the FCZNN model (9) with constant noises.
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T satisfies the following equality:

1 B1+ B
T, 1
I=@=0p " B0 + A

(33)

where the parameter in (33) is predefined in Theorem 2.

Proof: A Lyapunov function L(t) = (e*’(t))2 is defined; the

derivate of L(t) is demonstrated

L(t) = 2¢t(H)et (1)
=2 (—y<1> (e"'(t)) + w,-) et (1)
= (—2y;c1L(t)(P+p1>/2P1 — 2y16,L(t) — 2y K3 L(t) PP
2wiet (1))
(34)
Then, L(t) is rewritten as L(t) = —(B1L(t)+B2L(t)+B3LE (1) +
2wje™ (t) Considering Theorem 3, if e;(t) > (w / ]/K3)p /P holds true
(i.e., w; < /33e+(t)p1/1’/2), one can have

2wieT () < set (1) PP

= FaL() PP ©9)
Then, (34) is reformulated as
L(t) = —(BLL(t) + BaL(t) + B3LP(t) + weT (1))
< (=BILA(t) — BoL(t) — BsLP(t) + B3LO(1)) (36)
=— Bi1L%(t) — B2 L(t)
O

Based on the discussion in Theorem 2, Ty satisfies (33). Then,
the proof is completed.

4. Numerical experiments

The numerical experiments are conducted in this section to
demonstrate the finite-time convergence and robustness of the
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FCZNN model with disturbance considered. The CZNN is adopted

for comparison.

During the initialization of the algorithm, the initial position
vector is set to be g(0) = ¢4(0) + Ao . The vector Ao is the off-set
between an actual position and the desired position in the Cartesian

space. Ao

(0,1,0) is set in the simulation. The predefined

design parameter is set to be y = 10, and we keep «x; = 10 for
i=1,2,3. Moreover, p and p; are set to be 9 and 3 separately. In
the application, the TMR is applied to track an eight-shaped path.
The reference trajectory for TMR is given by

x4 = hy sin(hyt),
ya = hysin(hst),

te[0,T]

(37)

Remark 1.

10.3389/fnbot.2023.1242063

The scope of eight-shaped reference trajectory can
be adjusted by changing the value of hy , that is, (x4,Vq)

C

{(tarya) |=hy < xq <hi,—h < yg <h}.

hyhy cos(hat), y4 = hihs cos(hst),
—hlhg sin(hst), yg = —hlhg sin(hst),

[32 4 :2
x5+ vy

(38)

04 = arctan 2(xy, y4).

The path-tracking task duration is set to be 150s as the
initialization. Meanwhile, the general tracking error is expressed as
the two norm of the error vector.

_ _ 2 _ 2 _ 2
where [y, ha, h3] = [10,0.01,0.05]. Then, we have Bl = (=% + 0= yal +0 = 00> (39
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The tracking performance of the FCZNN model with disturbance w; = 1.
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The tracking performance of FCZNN with disturbance w; = 0.01 x t .
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The tracking performance of the FCZNN model with disturbance w; = exp(—t) .

4.1. Finite-time convergence validation
without disturbance

The simulative results of the FCZNN without disturbance are
shown in Figure 4. Figure 4 presents the tracking performance
for the TMR to track the eight-shaped path, which shows
that the actual trajectory moves toward the desired trajectory
and demonstrates the tracking error during the tracking task,
validating the finite-time convergence with global stability. The
tracking error decreases directly from the maximum value,
which indicates that the error is related to the setting of
the initial position because the error of the robot in the
initial position is the maximum, consistent with the theoretical
analysis.
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4.2. Robustness verification

In general, disturbances are unavoidable for any electronic
system and neural dynamics, mainly including internal and
external disturbances. Internal disturbances are caused by
hardware implementation off-set errors, which can be viewed
as dynamic disturbances in linear or sinusoidal form. External
disturbances are caused by instantaneous changes in power or
external shock among other reasons, which can be regarded as the
disturbance that disappears exponentially.

The disturbances considered in this study are shown in Table 2,
including four different common disturbances.

Th motion results of the TMR tracking an eight-shaped path
synthesized by the FCZNN model are shown in Figures 5-8.
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Figure 5 shows that under constant value perturbations, the
FCZNN model still has an excellent effect on the tracking error of
the trajectory, indicating that it has a better suppression effect on
constant value perturbations. Figures 6, 7 present that under linear
or sine-form perturbations, there is still room for improvement
in the suppression of the FCZNN model. Figure 7 illustrates that
perturbations in the exponential decay form have a larger impact on
the system at the moment they occur, unlike linear and sinusoidal
perturbations.

Combing in the above figures, in the disturbance environment,
the FCZNN model can still guarantee finite-time convergence.
That is, in a disturbance environment, the TMR can still track
the desired trajectory. Certainly, the convergence time is longer
than that in Figure 4. The previous analysis illustrates that the
tracking effect can be further enhanced by changing the parameters.
In addition, we notice that the convergence time in the case of

Frontiersin Neurorobotics

constant interference is longer than that in the case of time-varying
disturbance. The upper limit of the time-varying disturbance is
1, and the time-varying disturbance is 0 at the beginning of the
numerical experiment. Hence, the FCZNN model can track the
desired trajectory faster.

4.3. Comparison with existing models

To verify the efficacy and superiority of the FCZNN model,
comprehensive comparisons with existing neural network models
are presented in this section, including the CZNN (Miao et al,
2015; Xiao et al, 2017) and integration-enhanced ZNN (IZNN)
(Chen and Zhang, 2018; Xiao et al., 2019). Moreover, the classical

backstepping control Hao et al. (2017) is introduced for comparison
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aswell. Figures 9-12 show the comparison results of various models
with different disturbances. Clearly, all four methods are able to
complete the task of trajectory tracking, but the quality differs
considerably.

For solving the inverse kinematics problem of the mobile robot,
the CZNN model with the disturbances can be depicted as the
following dynamic equation:

A u(t) — qq(t) = —ye(t) + W(1) (40)

The convergence feature of the CZNN model without
disturbance has been investigated broadly and is neglected in this
study. Without loss of generality, parameters y and «; fori = 1,2,3
are kept the same.

The blue line in Figures 9-12 demonstrates the tracking
performance of the CZNN model and its tracking error, showing

Frontiersin Neurorobotics

that this model is sensitive to disturbances, especially the
that the
maximum tracking error of this model is much higher
than that of the FCZNN and IZNN models. Generally,
the tracking error of the CZNN model does not converge

three time-varying disturbances. Figure9 shows

to be 0 during the entire tracking duration. Therefore,
the CZNN model is not suitable for application in the
disturbance environment.

The IZNN model has been presented and investigated as an
alternative for solving the inverse kinematics problem of mobile
robot manipulators; this model with disturbances can be depicted
as the following dynamic equation:

A u(t) — qq(t) = —ye(t) — A/ De(t)dt + W(t) (41)
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Readily, the simulation results present that the performance
of the IZNN model is enhanced compared to that of the CZNN
model. Figures 9-11 present that the IZNN model is nonsensitive
to constant and exponential decay disturbances, but it cannot deal
with sine or linear disturbances effectively. It does not meet our
requirements.

Backstepping control is the classical method for solving the
inverse kinematics problem of the mobile robot. However, the
simulation results present its failure in achieving satisfactory results
in an interference environment. Specifically, its tracking trajectory
is not smooth, not to mention its tracking error. Details about
backstepping control will, therefore, not be discussed in the paper.

Figures 9-12 illustrate that the proposed FCZNN model
exhibits anti-disturbance performance with four common forms
of disturbances suppressed for solving the inverse kinematics
problem of the TMR compared with the existing two models and
backstepping control. In addition, comparisons with other models
or methods with the corresponding results shown in Figure 9
substantiate the robust property and finite convergence of the
proposed FCZNN model, which are absent in both the CZNN and
IZNN models.

Based on the above simulation results and analysis, we can draw
the conclusion that the proposed FCZNN model has excellent and
inherent noise and disturbance canceling ability accompanied by
finite-time convergence, which enables it to be more suitable for
practical applications of the TMR with noises and disturbances.

5. Conclusion

An FCZNN model was proposed in this study as a solution
to the TMR tracking control . Different from the CZNN model,
a new activation function was incorporated with the FCZNN
model. Some theorems of finite-time convergence and strong
robustness were mathematically validated. Simulation experiments
were conducted to verify the superiority and effectiveness of the
proposed FCZNN model in comparison with the CZNN, IZNN,
and backstepping control. Furthermore, the application to TMR
kinetic control presented its practical significance.

Future work lies in extending the kinematic analysis by
considering multiple physical constraints and developing a
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In this paper, we propose a monocular catadioptric panoramic depth estimation
algorithm based on an improved end-to-end neural network model. First, we
use an enhanced concentric circle approximation unfolding algorithm to unfold
the panoramic images captured by the catadioptric panoramic camera and
then extract the effective regions. In addition, the integration of the Non-local
attention mechanism is exploited to improve image understanding. Finally, a depth
smoothness loss strategy is implemented to further enhance the reliability and
precision of the estimated depths. Experimental results confirm that this refined
algorithm is capable of providing highly accurate estimates of object depth.

KEYWORDS

catadioptric panoramic camera, panoramic image, depth estimation, attention model,
depth smoothness loss

1. Introduction

Traditional camera systems are often limited by their narrow field of view, a problem
that is currently being alleviated by the introduction of panoramic cameras (Svoboda et al,
1998). There are four main types of panoramic vision cameras: pan-tilt rotating, fisheye lens,
multi-camera stitching, and catadioptric. In particular, a catadioptric panoramic camera uses
a special type of mirror, called a catadioptric mirror, to direct light from different angles onto
a single image sensor, thus capturing panoramic images (Jaramillo et al., 2016). Consisting
mainly of a convex reflecting mirror, an imaging lens, and a photosensitive component
(Baker and Nayar, 1998, 1999), the catadioptric panoramic camera avoids the complicated
designs associated with optical lens structures and solves the problem of image distortion
(Liu et al., 2016). Additionally, it eliminates the call for image stitching, thus affirming the
real-time capture of a 360° panoramic view.

The rapid growth of visual systems research has increasingly made panoramic vision
systems a critical point of interest for researchers in related fields. This technology finds
its extensive applications in areas such as robotic navigation, Internet of Things (IoT), and
autonomous driving (Yamazawa et al., 1995; Liu and Liang, 2013; Khurana and Armenakis,
2018). Panoramic vision systems are designed to capture a 360° view of the environment
(Nichols et al., 2010). In the field of depth estimation in panoramic vision, a depth value
is computed for each pixel in an image to facilitate the approximation of distances between
objects in the scene and the camera itself. Two main approaches have dominated the research
field of image depth estimation: supervised and unsupervised learning.

159 frontiersin.org


https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1278986
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1278986&domain=pdf&date_stamp=2023-09-25
mailto:mzliuyunqing@163.com
https://doi.org/10.3389/fnbot.2023.1278986
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1278986/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Yan et al.

Supervised learning is performed on datasets that are
comprehensively labeled with critical depth information, providing
an effective method for monocular depth estimation (Eigen
et al, 2014). A unique image reconstruction loss function is
incorporated to assess the disparity between the generated depth
map and the input image (Li et al, 2017), thereby supporting
the network’s learning of image depth information. In addition,
data augmentation techniques are used to amplify and transform
the training data, thus diversifying the network training samples
and effectively increasing the network’s generalization capacity
(Eldesokey et al, 2020; Kusupati et al, 2020). Despite their
proven ability to deliver high-quality depth estimation results, these
methods are highly dependent on the considerable time and skill
of the personnel responsible for the annotation process, making
the potential occurrence of annotation errors or inconsistencies
virtually unmanageable.

With  the
unsupervised end-to-end depth estimation methods have become

advancement of deep learning techniques,
one of the research hotspots. End-to-end neural network models
can complete the entire process from input to output without the
need for human intervention at intermediate steps. These models
fall into two categories: the first assimilates learning through stereo
matching techniques; the second exploits the displacement between
successive frames to infer the depth data associated with objects in
the scene (Garg et al., 2016). The use of unlabeled monocular video
sequences as network inputs to train convolutional neural networks
(CNNs) in an unsupervised approach has enabled depth estimation
models to be independent of labeled depth information datasets
(Zhou et al, 2017). This method has expanded the potential
application scenarios of depth estimation models. However, a
limitation of this method is the relatively lower precision of
depth estimation. Consequently, various methodologies have been
adopted to enhance the performance and robustness of depth
estimation. These include the employment of a reconstruction
image loss function to improve the consistency between left and
right disparity maps (Godard et al., 2017), and the integration of
three-dimensional geometric constraints to constrain unsupervised
learning of depth (Mahjourian et al., 2018). By using binary depth
classification during the training process, it is possible to quickly
predict nearby objects (Badki et al., 2020). In addition, even with
relatively coarse quantization of depth estimation, a high level
of accuracy can be maintained. To tackle the prevalent issue of
unsupervised scale, joint training of monocular depth estimation
and stereo visual odometry is executed through the utilization
of depth information derived from stereo images relative to the
motion between them (Zhan et al., 2018). Unsupervised learning
methods can automatically discover the depth structure within
images without the need for any manual intervention. However,
the complex phenomena in real outdoor scenes, such as lighting
variations, occlusions, etc., pose potential challenges to image
depth estimation. During image depth estimation, these factors
can potentially lead to issues such as the loss of fine details in the
predicted depth map and lower accuracy in the depth map, thereby
preventing the acquisition of accurate depth information.

This paper presents a novel approach to depth estimation in
panoramic images using a catadioptric panoramic camera. The
unique design of this camera facilitates real-time monitoring of
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Spherical Panorama Image

Unfolded Rectangular Panorama Image

FIGURE 1
Panorama expansion.

the environment in a 360° fashion and mitigates the challenges
of distortion and missing patches encountered by multiple camera
systems, ultimately reducing costs. The unsupervised end-to-end
depth estimation method proposed herein systematically addresses
the challenge of insufficiently accurate fine detail prediction often
seen in existing models. With this goal in mind, our approach
incorporates a Non-local attention mechanism to capture intricate
contextual dependencies within images. Additionally, we introduce
a depth smoothing loss to increase the accuracy and efficiency of
our depth estimation algorithm.

2. Proposed method

2.1. Catadioptric panoramic camera image
preprocessing

The imaging principles, manufacturing costs, and complexity
of various curved reflecting mirrors are all factors to consider
when selecting reflecting mirrors for a catadioptric panoramic
imaging system. A hyperbolic mirror can capture images within
a broader range and it offers the advantage of lower production
costs. Therefore, in this paper, hyperbolic mirrors are selected as
the reflecting elements for the catadioptric panoramic imaging
system. Due to the special characteristics of the imaging principle
of the catadioptric panoramic camera, the panoramic image
captured by the catadioptric panoramic camera has a large
distortion. To solve this problem, it is necessary to expand the
panoramic image into a two-dimensional rectangular image, so
that each pixel in the panoramic image corresponds to a position
in the expanded image. This is called panorama expansion.
As shown in Figure 1.

The traditional catadioptric panorama is usually expanded
by the concentric circle approximate expansion algorithm, but
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_ FIGURE 3
R1 " The principle of interpolation for catadioptric panoramic images.
X (A) is unfolding of the catadioptric panoramic image, and (B) is
unfolding image after interpolation.
FIGURE 2
The principle of the improved concentric circle approximation
unfolding algorithm.
shortest side has n pixels, then the shortest side needs to insert m-n

the distortion of the expanded image is obvious, which will
affect the subsequent processing of depth estimation. Aiming
at this problem, this paper improved the concentric circle
approximate expansion algorithm to reduce the distortion degree
of the expanded image. Figure2 shows the principle of the
improved algorithm.

A rectangular coordinate system with the center of the
catadioptric panorama as the origin O and the horizontal and
vertical directions as the X-axis and Y-axis. The dashed line in
the right plot of Figure 2 is shown. Let the ring represented by the
dotted line be its panorama expansion. Thus, after the panorama
expansion, the length and width of the 2D rectangle can be
obtained. As shown in the following formula:

W=I=2nrr,H=HW =r—Ry (1)

A ray passing through the center point O intersects a circular
ring represented by a dashed line at a point P(xj,y;). After
unfolding, the angle between the ray and the X-axis is denoted by
01, so:

1

O = —
1 R]

2)

Using ray OP as polar axis, rotate 360° around pole point O. By
calculation, all the pixel values on the circumference of the circle
can be obtained and arranged in a certain order. The calculation
formula is:

p=H+Rg
x = pcos(61) + ug (3)
y = psin(61) + vo

As shown in Figure 3, the interpolation process of the
panoramic image is depicted. In Figure 3A, the red dashed
lines represent the pixel values after unfolding the catadioptric
panoramic image. In Figure 3B, the black dots represent the
inserted pixel values. In Figure 3A, the longest side of the trapezoid
corresponds to the region farthest away from the center of the
catadioptric panoramic image. Based on this longest side, construct
a two-dimensional rectangle, ensuring that each row has the same
number of interpolated pixels as the length of the longest side. If
the longest side of the trapezoidal image has m pixels, and the
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pixels to ensure that each row in the two-dimensional rectangle has
the same number of pixels as the longest side. When performing
the interpolation process, the first pixel x;,i = 1,2,---m of the
shortest side of the trapezoidal image should be placed at the
first position of the corresponding side of the rectangle. Since we
need to insert m — n pixels on the shortest side, this means that
between adjacent pixels, we will need to insert (m — n)/n pixels to
maintain the required consistency in the interpolation process. By
using interpolation, we insert n interpolated pixel values between
adjacent pixels of the catadioptric panoramic image’s shortest side.
This process is performed consistently for each row, resulting in
the final rectangular unfolded image of the catadioptric panoramic
view. Finally, by using interpolation, we insert (m — n)/n pixel
values between adjacent pixels of the longest side of the catadioptric
panoramic image, resulting in the final rectangular unfolded image
of the catadioptric panoramic view.

As shown in Figure 4, the simulation results from both methods
indicate that the improved method exhibits significantly better real-
time performance compared to the traditional method. Comparing
the unfolded images in Figures 4B, C, the improved concentric
circle approximation unfolding algorithm shows less distortion and
more accurately reproduces the original scene.

The unfolded panoramic image contains complete 360°
panoramic information of the scene. In practice, only the part
of the image directly in front of the object is needed. Therefore,
it is necessary to extract the relevant region from the unfolded
panoramic image effectively. From the unfolded image in
Figure 4C, it can be observed that the frontal view of the vehicle
is located on the left side of the unfolded image, and the height
of the vehicle’s top part is approximately one-third of the entire
image height. Therefore, the effective region of interest lies
within the left-to-right half of the unfolded image and within the
top-to-bottom two-thirds of the unfolded image height. As shown
in Figure 5, this effective region is the crucial area for subsequent
depth estimation. In fact, this can reduce the computational
load, improve detection speed, and even eliminate some
false positives.

2.2. Improved unsupervised monocular
depth estimation model

To address the challenge of difficult annotation in supervised
learning methods, this paper adopts an unsupervised learning
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FIGURE 4

unfolded image using the improved method.

Unfolding of the catadioptric panoramic image. (A) is the panoramic image, (B) is the unfolded image using the traditional method, and (C) is the

FIGURE 5
Effective region extraction.

approach for image depth estimation. A common problem with
unsupervised end-to-end depth estimation methods is the lack of
accuracy in predicting fine details. Existing unsupervised image
depth estimation methods pay limited attention to the influence
of the spatial context of the image on the depth information.
Therefore, this paper proposes an improvement to a novel
unsupervised learning algorithm framework by incorporating the
Non-local attention mechanism module into the network structure
of the encoder and decoder. This helps the network to perform
adaptive contextual modeling for different regions in the image.
This method enables the network to better comprehend various
objects, backgrounds, and textures present in the image, thereby
enhancing its understanding and representation capabilities of the
image content.

As shown in Figure 6, this is the improved unsupervised
learning depth estimation network model. The network is based

Frontiersin Neurorobotics

on an end-to-end encoder-decoder framework, allowing it to
perform depth estimation on images at multiple scales. In order
to better capture contextual information in the image, a Non-
local operation attention mechanism module is incorporated
into the network framework. In each layer of the encoder, the
Non-local operation attention mechanism module is used as the
second operation and employs convolution with a stride of 2.
The network architecture consists of three parts: an encoder, a
decoder, and a Non-local operation module. The encoder is used for
feature extraction, responsible for converting the input image into
high-dimensional feature vectors. Convolutional neural networks
(CNNs) are commonly employed to implement the encoder part.
The decoder is used for depth estimation, and its main role is to
decode the feature vectors extracted by the encoder into a depth
map. The Non-local operation module is used to extract contextual
information from the image and enables global interaction in the
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Unsupervised learning-based image depth estimation model.
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spatial dimension of the input feature map. This allows for the
fusion of global contextual information, helping the model to better
understand the relationships between objects in the image, leading
to improved performance.

In this paper, the Disp Net framework (Mayer et al., 2016) is
used to design the structure of the encoder. And, by combining
the long-range skip connections and the Non-local operation,
the network’s expressive power is enhanced to obtain more
accurate depth maps. Convolutional layers are mainly used for
feature extraction in neural networks. Activation layers introduce
nonlinearity into the neural network, which is essential for the
network to learn complex and nonlinear patterns in the data.
Pooling layers play a crucial role in reducing the spatial dimensions
of the feature maps, which can help in reducing the computational
load and the number of parameters in the network. In this network
architecture, except for the output layer, ReLU activation functions
are used after all the convolutional layers. That’s because this
activation function has advantages such as fast computation, ease
of optimization, and avoidance of the vanishing gradient problem.
This design strategy helps to enhance the performance and stability
of the network, making the depth estimation model more reliable
and practical.

In the encoder, using convolutional operations with a stride
of 2 is intended to extract features more efficiently. This
convolutional operation helps to reduce the size of feature maps,
increase the receptive field, and decrease the number of channels,
thereby reducing computational complexity, lowering memory
consumption, and improving the computational efficiency of the
network. Increasing the receptive field helps the network to better
understand the contextual information in the input data, thereby
improving the prediction accuracy of the network. Reducing the
number of channels in the feature maps helps to lower the
dimensionality of the data, leading to reduced computational and
storage costs. By combining these operations in the encoder, the
performance and efficiency of the neural network can be effectively
optimized. Finally, the predicted depth values are constrained using

Frontiersin Neurorobotics

163

TABLE 1 The specific structure of the encoder network model.

Name Input Kernel Stride
size
convl image 7x7 1
convlb convl 7x7 2
conv2 convlb 5x5 1
conv2b conv2 5x5 2
conv3 conv2b 3x3 1
conv3b conv3 3x3 2
conv4 conv3b 3x3 1
conv4b conv4 3x3 2
conv5 conv4b 3x3 1
conv5b conv5 3x3 2
convé conv5b 3x3 1
convéb convé 3x3 2
conv7 convéb 3x3 1
conv7b conv7 3x3 2

the function 1/(« * sigmoid(x) + ), where « = 8 and g = 0.1. As
shown in Table 1, the encoder network model’s specific structure is
part of an end-to-end encoder-decoder architecture.

As shown in Table 1, the decoder of the end-to-end network
in this paper utilizes deconvolutional operations, taking the output
of the second operation in the last layer of the encoder as its
input. In the other layers of the decoder, a fusion concatenation
operation is employed with the output of the second operation
in the second-to-last layer of the encoder. This fusion allows
the decoder to access and incorporate more image features from
the encoder. The fusion concatenation operation in the other
layers of the decoder follows a similar principle. Specifically, each
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TABLE 2 Decoder network model specific structure.

Name Input Kernel size  Stride
upconv’ conv7b 3x3 2
iconv7 [upconv7, conveb] 3x3 1
upconvé iconv7 3x3 2
context Non-Local Block [upconvé, conv5b]

iconvé context 3x3 1
upconv5 iconvé 3x3 2
iconv5 [upconv5, conv4b] 3x3 1
upconv4 iconv5 3x3 2
iconv4 [upconv4, conv3b] 3x3 1
disp4 iconv4, sigmoid 3x3 1
disp4_up disp4, bilinear H/4, W/4
upconv3 iconv4 3x3 2
iconv3 [upconv3, conv2b, disp4_up] 3x3 1
disp3 iconv3, sigmoid 3x3 1
disp3_up disp3, bilinear H/2, W/2
upconv2 iconv3 3x3 2
iconv2 [upconv2, convlb, disp3_up] 3x3 1
disp2 iconv2, sigmoid 3x3 1
disp2_up disp2, bilinear H, W

upconvl iconv2, sigmoid 3x3 2
iconvl [upconvl, disp2_up] 3x3 1
displ iconvl, sigmoid 3x3 1
output [disp1, disp2, disp3, disp4]

layer in the decoder consists of two operations: deconvolution
and concatenation. The deconvolution process upsamples the
feature maps from the encoder to obtain higher resolution image
features. In the concatenation operation, the upsampled feature
maps obtained through deconvolution are combined with the
corresponding layer’s feature maps from the encoder. By combining
the deconvolution and concatenation operations in the decoder,
the network can obtain more detailed and contextually rich feature
maps. This allows the decoder to generate more accurate and
visually appealing image results.

During the deconvolution process, the lack of contextual
information may lead to the loss of some fine details in RGB
images, thereby affecting the results of image depth estimation. To
address this issue, this paper incorporates a Non-local operation
attention mechanism, which calculates the similarity of each pixel
to weight the context information of each pixel. By doing so,
the network can capture and utilize richer contextual information
during the deconvolution process, mitigating the loss of fine details
and enhancing the accuracy of image depth estimation.

The specific structure of the decoder network model for
the end-to-end network is shown in Table 2. The experimental
results show that incorporating a Non-local operation attention
mechanism between [upconvé, conv5b] yields the best performance.
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In image depth estimation, to obtain four different scales of depth
maps and upsample the first three scales, bilinear interpolation is
commonly used. The sampling rates for the first three scales are 1/4,
1/2, and 1, respectively, when performing bilinear interpolation.
Finally, by fusing the three scales of depth maps, the network
obtains the final set of four different scales of depth maps
[displ, disp2, disp3, disp4].

2.3. Non-local attention mechanism

In computer vision, incorporating attention mechanisms can
help models focus on more important areas of an image,
thereby reducing the influence of irrelevant background. Non-
local operation is a type of attention mechanism that uses global
information to capture long-range dependencies between pixels in
an image. Compared to local operations, Non-local operations have
a broader receptive field and stronger modeling capabilities. The
fundamental concept behind non-local operations is to compute
the similarity between each pixel and all other pixels in the image.
These similarities are then used to adaptively weight the entire
image, allowing the model to better understand the global structure
of the image.

Figure 7 shows the schematic diagram of the non-local
operation module. In this paper, both the Context Aggregation
Module and the Transformation Module have incorporated 1 x
1 convolutions, which can reduce the dimensionality of the
input feature map without losing information. The Context
Aggregation Module is the core component for implementing non-
local operations. Its main function is to measure the relationship
between two pixels by calculating metrics such as Euclidean
distance or cosine similarity. By computing these metrics, the
Context Aggregation Module can determine the similarity or
dissimilarity between pixels in the input feature map. This allows
the module to capture long-range dependencies and establish the
global context within the image, enabling the model to understand
the relationships between different pixels and extract important
contextual information. The Transformation Module is used to
convert the input feature map into a new feature map for further
processing. The output of the Transformation Module serves as the
input to the next layer, enabling communication and integration
of data across different layers. 1 x 1 convolutions have two main
purposes: first, to reduce dimensions and decrease the number of
channels; second, to introduce non-linear elements to enhance the
expressive capability of neural networks.

The mathematical definition of the non-local operation is as
follows:

e 3 s et )

In the above Equation: (1) x is feature map; (2) i represents
a spatial position of a point on the input x or output y; (3)
The response value at position i is represented by y;; (4) The
variable j iterates over the spatial coordinates of all points on the
input x or output y; (5) The variable x; represents the value at
position j on the input data; (6) The function f(x;, y;) calculates the
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similarity between position i and position j of the input data; (7)
The function g(x;) calculates a representation of the input data at
position j, which can be understood as a weight for the similarity
function f(x;, y;); and (8) The final response value y of the Non-
local operation at position i is obtained by summing the weighted
similarities f(x;,y;)g(x;) of each position j relative to the current
position i. This sum is then normalized using the normalization
factor C(x), which results in the weighted sum of features from all
positions being used as the response value at that specific position.

2.4. Deep smoothing loss function

To reduce errors and uncertainties of the results, smooth
constraints can be used in depth estimation. Smooth constraints
refer to the reduction of noise and discontinuities in the depth
map by limiting the differences between the depths of neighboring
pixels. This can be accomplished by adding a smoothing term to the
loss function of the depth estimation model. To further improve
the accuracy and effect of depth estimation, this paper improves
the loss function of the model and adopts a depth smoothing loss.
The smoothness error of this loss function can be obtained by
calculating the gradients of the depth map. To better represent
the variations in depth, the gradient computation is performed in
the logarithmic domain of the depth map. Based on experience,
discontinuous depth values in the depth map are typically found
at the edges of the image. Therefore, the edge of the image to be
estimated is used as a penalty factor to limit the smoothing loss.
The deep smoothing loss constructed in this paper includes the
following three aspects:

(1) Smoothing loss based on gradient computation of the
depth map. By computing the gradient of the depth map in
the logarithmic domain, we can obtain information about depth
variations, thereby enhancing the smoothness of the depth map.

8leigg:Z{;{g—z{;l,f’izo,l...w_1;]':0,1...[_1_1 (5)

alei)ojg=Z:gg_zfg;_1)i=0,l"'W—1;]':0’]...H_1 (6)

10.3389/fnbot.2023.1278986

VZlog = |8leog| + |ayZlog| (7)

In the above equation, VZj, represents the logarithmic
gradient of the depth map, dxZj,, denotes the gradients horizontal
component, and 9dyZj,, corresponds to the gradient’s vertical
component. The indices i and j represent the row and column
indices of the depth map, respectively, while W and H represent
the width and height of the depth map.

(2) Smoothing Loss based on Edge information. By utilizing the
edge information from the input image as a constraint, the depth
map can undergo a more accurate smoothing process.

Vlgmy = |8x1gmy| + |angray| ®)

In the equation, Iy, represents the grayscale image obtained
from the RGB image, where each pixel value lies in the range of 0 to
255. dxlgrqy denotes the horizontal gradient, and dylgr, represents
the vertical gradient.

(3) Final depth map smoothing loss. As shown in Equation (9):

1 P _ ij
Lsmoth = N Z (Vlegg € ngmy) 9)
ij

In the equation, N represents the total number of pixels in the
image.

TABLE 3 Experimental environment parameters.

Project Environment  Version Quantity
configuration

Operating system Windows10 21H2 -

Deep learning framework | PyTorch 1.12.0 -

GPU Nvidia GTX3090 1
Programming languages Python 3.10 -
Public datasets Kitti - 10,000
Self-built dataset - 1,000

Context Aggregation Module

softmax

Transformation
Module

CxHxW

FIGURE 7
Schematic diagram of the non-local operation module.

HxWxC
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3. Experiment

3.1. Experimental environment and process

In this study, the improved unsupervised depth estimation
network model was implemented and trained using the PyTorch
deep learning framework on an NVIDIA GTX3090 GPU. The
experiments were conducted to evaluate the model’s performance
in depth estimation. In addition to using the publicly available
KITTI dataset (Geiger et al, 2013), this study also utilized
a dataset collected from a catadioptric panoramic camera
for the experiments. During the experimental process, batch
normalization layers and the Adam optimizer were applied to all
layers except the input layer. In the Adam optimizer, set f; = 0.95,
B2 = 0.994, the learning rate to 0.001, and the mini-batch size to
3. Batch normalization layers are applied to every layer except for
the input layer, which helps accelerate the training of the network
and improve its accuracy. Moreover, a relatively small mini-batch
size was chosen to facilitate faster convergence of the network.
Table 3 shows the parameters of the experimental environment in
this chapter.

3.2. Evaluation index

This paper employs four evaluation metrics to assess the
model’s performance, namely Absolute Relative Error (AbsRel),
Squared Relative Error (SqRel), Root Mean Squared Error (RMS),
and Log Error (Log). The specific form is as follows:

AbsRel: The absolute relative error is a metric used to evaluate
the difference between the model’s predicted values and the ground
truth values. Its calculation formula is the absolute difference

10.3389/fnbot.2023.1278986

between the predicted value and the ground truth value, divided by
the ground truth value, reflecting the magnitude of the error relative
to the ground truth value.

N
|D; — Df|
Yy R (10)

i=1 1

1
AbsRel = —
N

SqRel: The squared relative error is computed by taking the
square of the difference between the predicted value and the ground
truth value, and then dividing it by the ground truth value.

1 |D; — D
SqRel = — ——— 11
q N D (1)
RMS: The root mean square error is a metric that calculates
the square root of the mean of the squared prediction errors. It
measures the average magnitude of the prediction errors and is
commonly used to evaluate the accuracy of a model’s predictions.

(12)

TABLE 4 Comparison with other methods.

Methods AbsRel SgRel RMS Log Dataset
Eigen 0.204 1.385 5.995 0.283 Kitti
Zhou 0.202 1.347 5.679 0.264 Kitti
In this paper 0.196 1.423 6.237 0.269 Kitti

FIGURE 8
Results of depth estimation.
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Log: The logarithmic error is a metric that first takes the
logarithm of the predicted values and the true values and then
calculates the error between these logarithms. This metric is useful
when dealing with data that has a large range or significant
differences between values.

N
1
Log = ﬁ;ugDi—lgD:‘l (13)
In the above expressions, N represents the total number of
valid pixels used for evaluation across all RGB images. D; denotes
the predicted depth of the i-th pixel in the RGB image, and D}
represents the true depth of the same pixel.

3.3. Results and analysis

The improved concentric circle approximate expansion
algorithm is used to process the panorama and extract the effective
area. Creating a dataset from these image segments and performing
depth estimation, which validates the robustness of the improved
algorithm proposed in this paper.

Figure 8 shows the result of depth estimation. In Figure 8, the
first column is the original image, the second column represents
the depth estimation results by Zhou et al. (2017), and the last
column shows the depth map obtained using the method proposed

10.3389/fnbot.2023.1278986

in this paper. The darker colors in the depth map indicate closer
distances, while lighter colors represent farther distances. Through
experiments on different scene images, the depth estimation results
of the original algorithm are fuzzy, and cannot get accurate results
in most cases. The method improved in this paper can generate
clearer depth maps. Especially in the case of edge segmentation of
objects, the effect of the proposed method is more obvious.

To validate the effectiveness of the improved depth estimation
algorithm proposed in this paper, experiments and analyses were
conducted on the Kitti dataset. The proposed depth estimation
model was evaluated by comparing it with the depth estimation
models introduced by Eigen et al. (2014) and Zhou et al. (2017).
The experimental results comparison is shown in Table 4.

As shown in Table 4, our proposed method exhibits lower
absolute relative error and log error compared to the supervised
approach by Eigen et al. (2014), with reductions of 0.8 and 1.4%,
respectively. Compared to the unsupervised learning method by
Zhou et al. (2017), our approach performs better in terms of
absolute relative error, with a reduction of 0.6%, but exhibits slightly
higher overall error. In conclusion, our improved method in this
paper exhibits better performance in terms of error, with higher
accuracy and the ability to address the blurriness issue in image
depth estimation.

To further validate the effectiveness of our algorithm, we
conducted tests on 200 images captured by the catadioptric
panoramic camera in various scenes. Figures 9, 10 show some of
the experimental results from different scenes.

FIGURE 9
Highway depth estimation results.
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FIGURE 10
Neighborhood street depth estimation results.

In Figures 9, 10, the first and third rows show the original
test images. The second and fourth rows display the depth
estimation results. The color of the pixels in the depth estimation
images represents the distance, where darker colors indicate closer
distances and lighter colors indicate farther distances.

From the experimental results, it can be observed that the
improved image depth estimation algorithm in this paper can
relatively accurately estimate the depth range of objects in
the images. Considering the distance analysis relative to the
vehicle during image capture, for objects such as vehicles and
pedestrians located within a distance of less than 2.5 meters, their
corresponding depth values in the depth map fall within the range
of 0 to 80, which shows the darkest colors in the depth map; for
objects with a distance of 2.5 to 4 meters, the gray values in the
depth map results fall within the range of 81 to 150; for objects with
a distance greater than 4 meters, the gray values in the depth map
results fall within the range of 151 to 255, which results in relatively
lighter colors in the depth map.

In conclusion, the research approach proposed in this paper,
based on the catadioptric panoramic camera, has demonstrated its
effectiveness in depth estimation.

4. Conclusion

This paper proposes a monocular depth estimation algorithm
based on the catadioptric panoramic camera. The paper proposes
an improved concentric circle approximation unwrapping
algorithm to process the panoramic images captured by the

Frontiersin Neurorobotics

catadioptric panoramic camera. This algorithm is used to unwrap
the distorted panoramic images into a more usable format for
further analysis and depth estimation. The proposed approach
enhances the quality and accuracy of the panoramic data. The
effective region is extracted according to the unfolded rectangular
panorama characteristics. Finally, this paper proposes a new
unsupervised end-to-end depth estimation network model. The
experimental results show that the depth estimation results of the
proposed algorithm are better than the existing algorithms.
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Vision-force-fused curriculum
learning for robotic contact-rich
assembly tasks

Piaopiao Jin!, Yinjie Lin?, Yaoxian Song?, Tiefeng Li** and
Wei Yang*

!Department of Engineering Mechanics, Center for X-Mechanics, Zhejiang University, Hangzhou, China,
2Hikvision Digital Technology Company, Ltd., Hangzhou, Zhejiang, China

Contact-rich robotic manipulation tasks such as assembly are widely studied
due to their close relevance with social and manufacturing industries. Although
the task is highly related to vision and force, current methods lack a unified
mechanism to effectively fuse the two sensors. We consider coordinating
multimodality from perception to control and propose a vision-force curriculum
policy learning scheme to effectively fuse the features and generate policy.
Experiments in simulations indicate the priorities of our method, which could
insert pegs with 0.1 mm clearance. Furthermore, the system is generalizable to
various initial configurations and unseen shapes, and it can be robustly transferred
from simulation to reality without fine-tuning, showing the effectiveness and
generalization of our proposed method. The experiment videos and code will be
available at https://sites.google.com/view/vf-assembly.

KEYWORDS

contact-rich manipulation, multimodal perception, sensor fusion, curriculum learning,
robotic assembly task

1. Introduction

In recent years, there has been a growing interest in developing advanced robotic systems
capable of performing complex assembly tasks (Sergey et al., 2015; Oikawa et al., 2021;
Spectorand Zacksenhouse, 2021). These tasks often involve intricate manipulation of objects
in contact-rich environments, requiring the robot to possess a high degree of dexterity and
adaptability. The success of contact-rich assembly tasks relies on a combination of accurate
perception, precise control, and intelligent decision-making. Robots must be equipped with
sensory capabilities that enable them to perceive and understand their environment, such as
vision systems that capture high-resolution images or depth maps (Morrison et al., 2019;
Andrychowicz et al,, 2020; Zeng et al., 2021). Additionally, force perception and control
mechanisms play a crucial role in managing the physical interaction between the robot and
the objects, ensuring gentle and accurate manipulation (Raibert and Craig, 1981; Whitney
et al., 1982; Hogan, 1984; Khatib, 1987).

While significant progress has been made in the utilization of unimodal approaches,
focusing solely on vision or force (Chhatpar and Branicky, 2001; Tang et al., 20165
Bogunowicz et al., 2020; Stevéi¢ et al,, 2020; Xie et al., 2023), the integration of these
modalities presents a compelling opportunity for robots to exploit the complementary
nature of vision and force information. By integrating these modalities, robots can enhance
their perception and control capabilities, enabling them to adapt effectively to uncertain
and dynamic environments. There are two primary approaches to integrating these two
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modalities: sensor-based controller integration and sensory data
fusion (Hosoda et al., 1996). Firstly, visual servoing control and
force control are designed separately to form a result scheme
capable of coordinating two sensors, and a hybrid structure of
sensor-based controllers is built accordingly. Gao and Tedrake
(2021) extract the key point representation of the object with
a visual detector and then command the robot to the desired
pose with the force controller. However, this decoupling method
of pose control and force perception ignores the fact that the
contact force aroused during the interaction helps to localize the
target pose and may enhance the performance of the control
scheme. Secondly, given the prioritization of external sensor-based
controller coordination over sensory data coordination during the
perception phase (Hosoda et al., 1996), this kind of method remains
underdeveloped until the emergence of data-driven methodology.
This methodology facilitates the fusion of modalities, irrespective of
their individual characteristics, and has sparked a surge of interest
in numerous studies focusing on robotics perception (Van Hoof
et al., 2016; Lee et al,, 2020a; Song et al., 2021; Zhao et al.,, 2021;
Spector et al., 2022).

To overcome the limitations of the aforementioned existing
methods, we consider a holistic approach to unifying the perception
and control modeling process for contact-rich assembly tasks.
Specifically, a novel robotic framework based on multimodal
fusion and curriculum learning is proposed to improve the
performance of contact-rich policy generation end-to-end. Firstly,
multimodal perception (i.e., vision and force) are considered to
extract multimodal fusion features. Next, we employ reinforcement
learning techniques (Sutton and Barto, 2018) to generate both
motion and force commands reactive to the multimodal features.
For efficient multimodal policy learning, our method includes a
two-step vision-force curriculum learning (CL) scheme (Bengio
et al, 2009), allowing agents to learn from a curriculum of tasks
that progress in complexity and difficulty. The acquired policy
is then implemented by a Cartesian motion/force controller, an
innovation from our prior work (Lin et al., 2022), designed to
guarantee compliant movements amidst uncertain contacts.

To acquire the multimodal policy, we propose a simulated
assembly environment based on MuJoCo (Todorov et al,, 2012),
where the multimodal fusion and policy generation mechanisms
are developed. After learning the multimodal policy in simulation,
we transfer the simulated system to its physical counterpart. Our
multimodal perception-control system could handle the imperfect
modeling of interactions in simulated contact-rich scenarios and
demonstrate the possibility of a direct sim-to-real transition
using a variety of domain randomization techniques (Peng et al,
2018; Chebotar et al.,, 2019). To evaluate the effectiveness of our
proposed framework, a comprehensive series of experiments are
conducted on both simulated and physical robots. The results
illustrate the remarkable capabilities of the vision-force perception
and control system in the simulated environment. It achieves an
impressive success rate of 95.3% on a challenging square assembly
task whose clearance is 0.1 mm. Furthermore, the algorithm
exhibits robust generalization across various spaces, sizes, and
even previously unseen shapes. Most notably, the simulated
system is seamlessly transferred to the physical environment,
achieving zero-shot capabilities and highlighting its potential for
real-world implementation.
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In summary, the contribution of this work could be
summarized as below:

e We propose a novel vision-force framework for contact-rich
assembly tasks, enabling multimodal perception and control
in challenging and precise operations.

e We introduce a vision-force-fused curriculum learning
approach, which progressively coordinates multimodal
features based on task difficulty. This innovative approach
enables effective vision-force fusion and policy learning
specifically tailored to precise assembly tasks.

e We conduct extensive experiments to validate the efficacy
of our proposed method. The vision-force perception
and control system demonstrates robust generalization
capabilities across varying poses and previously unseen shapes.
Moreover, we successfully transfer the control scheme to real-
world scenarios, ensuring its reliability and applicability in
practical settings.

2. Related work

2.1. Force and vision perception in the
assembly task

For unimodal perception and control, several methods develop
force controllers and map the contact force to misalignment
between the peg and the hole (Tang et al., 2016; Inoue et al,
2017). Unten et al. (2023) accurately estimate the relative position
between the peg and hole through the force/torque sensing from
the transient responses. However, the above methods require prior
knowledge of geometry and fail to generalize over new shapes.
Apart from the use of force, the utilization of vision to search for
holes has also been investigated (Schoettler et al., 2019; Nair et al.,
2023). Utilizing an in-hand RGB-D camera, Zhang et al. (2023)
develop a 6-DoF robotic assembly system for multiple pegs.

For multimodal perception and control, the complementary
nature of vision and force inspires a flurry of study on how
to utilize better visual and force sensory feedback. The normal
practice is to control the force along the constraint direction
while controlling motion via visual servoing along the remaining
directions (Haugaard et al,, 2021). The task geometry needs to
be known a priori in order to properly design the controller
through a selection matrix that ensures orthogonality between
vision and force control directions. The combination of visual
servoing control and impedance control is also actively proposed.
The position of the hole is estimated using two depth cameras,
followed by a spiral search for the hole using impedance control
in Triyonoputro et al. (2019). However, the aforementioned
algorithms only combine disparate sensors with their respective
controllers. This sensory data separation does not fully exploit
the complementarity of vision and force. To better coordinate
vision and force, several works have focused on combining visual
servoing control and force regulation to achieve a fusion of
visual and force perception. The External/Hybrid vision-force
control scheme is developed to reach visual and force references
simultaneously (Mezouar et al, 2007). The external wrench is
transformed into a displacement of the image’s feature reference.
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FIGURE 1

module using a Cartesian motion/force controller (green).

(A) Setup of the task: the experimental setup comprises a Franka Emika Panda robot arm equipped with two wrist-mounted RealSense D435 cameras
for vision perception and a six-axis ATI mini40 force/torque sensor for interaction forces capturing. (B) The overview of our framework includes
vision-force feature fusion (blue), followed by curriculum learning-based policy generation (orange), and ended with the motion vector execution
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And all directions of the task space are simultaneously controlled
by both vision and force. Oliva et al. (2021) further generalize the
control scheme by not specifying the visual features.

This paper takes a different approach by simultaneously
leveraging visual and force features to generate compliant motion
and force commands. The system’s capability to accommodate
environmental variations is greatly expanded as the accurate
interaction model is unnecessary in our approach.

2.2. Reinforcement learning-based
manipulation

Reinforcement learning (RL) endows robots the promise
to accommodate variations in environmental configurations.
Some previous works on impedance, admittance, and force
control are revisited under the RL scope (Luo et al, 2019
Zang et al, 2023). Oikawa et al. (2021) extend the traditional
impedance control using a non-diagonal stiffness matrix learned
over RL for precise assembly. Similarly, the use of RL in
the admittance control trains the deep neural network that
maps task specifications to corresponding parameters (Spector
and Zacksenhouse, 2021). Although these algorithms could
handle uncertainty and achieve the task, the validness of
the unimodal methods is restricted to the single modality’s
functioning ranges. The development of multimodal policy holds
the potential to further enhance manipulation ability (Luo
et al, 2021). Lee et al. (2020b) learn a representation model
that combines vision, haptics, and proprioceptive data. The
state representation is validated in peg-in-hole insertion tasks.

Frontiersin Neurorobotics

Nevertheless, the complicated multimodal features and tedious
fine-tuning may hinder practical applications. To simplify the
multimodal policy learning process, some strategies leverage
prior task knowledge or human demonstrations (Zhao et al,
20215 Spector et al., 2022). Despite their impressive performance
in physical insertion experiments, these approaches necessitate
human interventions, which are infeasible to acquire in hazardous
environments.

Despite the potential of acquiring general policies with RL, the
sample inefficiency of RL results in tedious policy training and ill-
posed real machine deployment. To overcome the disadvantage,
model-based methods (Luo et al, 2019) have been utilized by
several researchers to fill this gap, avoiding extensive interactions
and training. Curriculum learning (CL) which allows the agents
to learn from a curriculum of tasks that progressively increase
in complexity and difficulty, could facilitate learning efficiency
and improve manipulation performance. Dong et al. (2021) train
the insertion agent in progressively more complex environments
(wall—corner—U—hole). The result shows that the curriculum
training scheme improves the data efficiency of RL and made the
problem feasible to solve in a reasonable training time.

In this paper, we propose a novel framework for multimodal
curriculum policy learning which could not only explore the
compatibility of vision and force but also achieve effective
multimodal decision-making. The method is free of human
interventions and task priors that expand the scheme’s applicability.
To effectively deploy the method on the real machine, we train the
system in the simulation and then transfer the trained policy to
reality. The inconsistencies in perception and control in simulated
and real environments (called the reality gap) are bridged by
domain randomization (Peng et al., 2018).

frontiersin.org
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3. Problem statement

Our algorithm aims to develop a vision-force perception and
control system and validate the scheme in the assembly task. The
task is to insert the grasped square peg into the corresponding hole
whose clearance is up to 0.1 mm and depth up to 10 mm as shown in
Figure 1. Starting from a randomized robot arm configuration, the
robot must maneuver and rotate the peg to insert into the target
hole, which could be denoted as robotini; — holetarger. To reach
holeyarger, we formulate the task as a servoing problem and generate
the incremental motion vector AX at each timestep. The desired
robot pose Xigrger could be derived from the current robot pose
Xeur as:

erget = Xeur + AX,

(1)
AX =f(x1/: xf)>
where x, and x; represent raw vision and force observation
from robotic sensors, respectively. f is the function mapping
from the raw sensory data to the motion vector AX € R?
(i.e. [Ax, Ay, Az, AO]), where Ax represents the incremental
displacement along x-axis, and so does Ay and Az. A6 represents
incremental z-axis roll command. Absent any prior information
about the hole’s geometry and pose, the robot must rely solely
on sensory feedback to generate motion vector AX. Since the
robot exhibits distinct dynamic properties before and during
contact, some methods split the task into two stages: vision-based
hole searching in the free space and force-based insertion in the
constraint space. In contrast, our method proposes a single strategy
that unifies the two stages, eliminating the need for prior knowledge
of how to solve the task and simplifying the modeling process.
Nevertheless, unifying the two stages and devising a single
policy function f is quite challenging because visual and force
data exhibit different characteristics in the two stages. Therefore,
this paper explores the utilization of modality-specific encoders to
fuse vision and force and curriculum policy learning to generate
motion commands progressively. By leveraging modality-specific
encoders, visual and force features are extracted from x, and
xf, respectively. Through curriculum policy learning, the policy
function 7,,, automatically generates motion vector AX based
on the concatenation of visual and force features as shown in
Equation (2).

@y = Eyision(xy),
¢f = Eforce(xf): (2)
AX = T () ® 7).

where Eyision and Efy, represent the visual and force encoders,
respectively. ¢, and ¢y the extracted visual and force features, while
(¢ D ¢y) concatenation of visual and force features. To this end, the
initial servoing problem defined in Equation (1) is transformed into
investigating modality-specific encoders and a vision-force-fused
curriculum policy learning scheme to generate the incremental
motion vector. As such, the target motion vector is derived as in
Equation (3). The target motion vector Xtargr is then executed by
the Cartesian motion/force controller proposed in our previous
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work (Lin et al., 2022).

Xtarget = Xcur + 7Tmlp(¢v S ¢f) (3)

4. Method

As is shown in our control framework Figure 1, our method
begins by using modality-specific encoders to extract visual and
force features. These features are then combined to form the
multimodal features (Section 4.1). Next, the curriculum policy
learning mechanism is employed to train an assembly policy, which
hierarchically uses the multimodal features in an environment
that gradually increases in difficulty (Section 4.2). Lastly, to
execute the motion vector, we utilize the Cartesian motion/force
controller proposed in our previous work (Lin et al, 2022).
The implementation details are explained in Section 4.3. By
coordinating vision and force in the generation and execution
of the motions, our vision-force perception and control scheme
could fully utilize the multimodality and form a resultant robust
assembly system.

4.1. Vision-force feature fusion

The heterogeneous nature of visual and force sensory
feedback requires modality-specific encoders to capture the unique
characteristics of each modality. We design modality-specific
encoders and fusion modules to approximate Equation (2). For
the force encoder Efy ., we employ experience replay with a
sliding window of the most recent five frames to extract the force
feature. The aggregated force signals are later flattened to a 30-
dimensional force feature q)f. Compared to the instant F/T data,
the experienced force/torque (F/T) sensory data within the time
windows provides a more compact representation of the robot-
environment interactions. To further process the data, the raw force
data is normalized with the mean (f,,) and variance (f,2). The tanh
function further scales the data between —1 and 1.

For the visual encoder E,ison, We propose a self-supervised
algorithm to extract its RGB feature ¢,. As shown in Figure I,
two cameras are symmetrically placed to the gripper. From the
top-down view, the grasped peg and hole are observable from the
images. With these two images, the visual feature related to the
spatial relationship between the peg and hole can be extracted.
The spatial relationship between the grasped peg and hole could be
denoted by four parameters, E, Ey, B, and Ep, which individually
represent the translation error along the x, y, and z axes, as well as
the z-axis rotational error (Figure 2). To extract the visual feature,
the self-supervised neural network predicts three Booleans related
to Ey, Ey, and Ep, while E; is not observable due to the loss of depth
information. Rather than regressing to the values of E,, Ey, and Ey,
the outputs indicate whether they are positive or negative. More
precisely, a label of 0 is assigned when the value is negative, and a
label of 1 is assigned when the value is positive.

As illustrated in Figure 3, the first step is to crop two RGB
images to a size of 224 x 224. These images are then processed
individually using the ResNet50 backbone network (He et al,
2016) and reduced to a 128-dimensional feature space. The
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Task Plane

FIGURE 2

parameters, Ey, Ey, E;, and Ey.

(A) Frames of the hole and object in the simulator MuJoCo. (B) The transformation between the hole and object frames is denoted by four
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FIGURE 3
The neural network architecture of the self-supervised visual encoder.
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resulting visual feature is subsequently input to a three-layer
multi-layer-perceptron (MLP) to predict the spatial relationship
between the grasped peg and the hole. To train the self-
supervised visual neural network, the dataset comprising 60k
synthetic multi-view RGB images and labels is collected in
the simulation. While this simplifies the labor of performing
the operation on real machines, the reality gap of the images
hinders the direct transfer of the synthetic visual system to
the real robot. To bridge the reality gap, a series of domain
randomization techniques are applied, such as Gaussian blurring,
white noise, random shadows, and random crops. What’s more, in

Frontiersin Neurorobotics

simulation, the colors of the peg, hole, and background are also
randomly varied.

4.2. Curriculum policy learning

Our goal is to enable robots to perform precise assembly
tasks leveraging visual and force sensory feedback. To achieve
the goal, we utilize deep reinforcement learning to map the
visual and force sensory data to the robot’s motion vector and
guide the robot to the target pose following Equation (3). The
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input to the multimodal policy is the fusion of the visual and
force features (¢, @ ¢y) as defined in Equation (2). mpy is
the multi-layer-perceptron (MLP) function mapping the sensory
features to the incremental robot vector AX. To learn the policy,
the assembly task is formulated as a model-free reinforcement
learning problem. This approach avoids the need for an accurate
dynamics model that is typically hard to obtain due to the
presence of rich contacts. Furthermore, we apply curriculum
learning (CL) to structure the task difficulty in accordance with
the sensory data input so as to facilitate learning efficiency

Data: vi sual feedback x,, force feedback xfs
and stage S
Result: Vi sion-force nani pul ation policy Pmlp
initiate S« 1 > train the visual policy in
stage 1 with 0.5 nmm cl earance;
if S=1 then
v < Eyision(xv) ;
AX < Dinit_mip(dy) = visual policy ¢t i
set the observation and action as ¢, and AX
and update the PPO policy ¢ pp until it
conver ges;
end
initiate ¢up, Wth ¢y 4y S<2 > resune
vision-force training in stage 2 with 0.1 nmm
cl ear ance;
if S=2 then
@v < Eyision(xv) ;
¢f <~ Efon:e(xf) )
AX « ¢mlp(¢v @ ¢f) )
set the observation and action as (¢V@¢>f)
and AX and update the PPO policy ¢, until
it converges ;
end

o aoR W N —

N

®

10
11

12

13

Algorithm 1. Vision-force-fused curriculum policy learning.
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and enhance model performance. The algorithm is detailed in
Algorithm 1.

The CL approach divides the training process into two stages:
the pure visual policy learning stage and the continued vision-
force policy learning stage (shown in Figure 4 and Algorithm 1).
The observation space of the first stage contains only 128-
dimensional visual feature ¢, (Section 4.1), and the larger peg-
hole clearance makes this stage of the task easier to manipulate.
The difficulty of the second stage intensifies by narrowing
the peg-hole clearance to 0.1 mm. We extend the observation
space to 158 dimensions by combining the 30-dimensional force
feature ¢y (Section 4.1). The visual strategy learned in the first
stage provides a rough translational and rotational relationship
between the grasped peg and the hole. After mastering the
required skills in the first stage, the robot proceeds to train
in more challenging scenarios incorporating force data. The
training in the second stage is like fine-tuning the global visual
policy with the local contact force. The action space AX for
both stages is a 4-dimensional vector representing the desired
displacements along x, y, and z axes, and the z-axis rotation roll
in the object frame (AX [Ax, Ay, Az, AG]). Meanwhile, to
achieve compliance along the z-axis, we command the interaction

force along the z-axis to be zero. The Cartesian motion/force
controller proposed in Lin et al. (2022) executes the motion and
force commands.

Although complex reward functions are often devised for
reinforcement learning algorithm (Lee et al., 2020b), sparse rewards
are sufficient in our proposed method experimentally. Specifically,
the agent obtains the reward of 0.5 if the peg is aligned with the
hole and half inserted. The agent gets another reward of 0.5 if
the peg is entirely in the hole. Besides, if the peg falls off the
gripper, the agent will receive a penalty of —0.2. Since in our
setup, the peg is grasped and not fixed to the gripper. The peg
can easily fall off the gripper if a large contact force and undesired
movements occur.

\§ object \\\\\\ Q
N\ hole
& N \\\\\\
Jd Ll
d: 0.5 mm L d: 0.1 mm
easy hard

FIGURE 4

displacement along the x, y, and z axes and the z-axis rotation roll.

sliding
window

self-supervised
visual encoder

The curriculum policy learning procedure. (A) The clearance influences policy learning critically. (B) Firstly, the peg-hole clearance d is 0.5 mm and
the observation is a 128-dimensional visual feature ¢,. Secondly, the peg-hole clearance is narrowed to 0.1 mm and the observation space is
expanded with the incorporation of force feature ¢¢. The action space is a four-dimensional motion vector AX consisting of the desired

o
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motion vector
> —AX € R*
[Ax, Ay, Az, AG]
force
feature
¢f€ R30
-

Frontiersin Neurorobotics

175

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1280773
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Jin et al.

4.3. Implementation details

To train the self-supervised visual encoder E,jso, proposed in
Section 4.1, we use a binary-class cross-entropy loss to optimize the
network with Adam optimizer. We train the network for 20 epochs
with batch size 32 and learning rate 1e~* under PyTorch 1.11. To
achieve a more generalized and robust policy 7, (Section 4.2),
simulation training is conducted under diverse conditions. The
initial relative pose of the peg and hole is sampled from a uniform
distribution. Specifically, the pose error along the x and y axes is
randomly distributed between —10 mm and +10 mm, while the
z-axis positional error is distributed between 5 mm and 20 mm.
The z-axis rotational error is uniformly distributed between —10°
and +10°. It is assumed that the gripper has already grasped the
peg using a human-designed grasp pose. To introduce additional
positional randomness, errors along the x and z axes are uniformly
distributed between —2 and +2 mm. The training of the policy
employs Proximal Policy Optimization (PPO) (Schulman et al,
2017), implemented using the stable baselines library (Hill et al.,
2018). In training the PPO algorithm, the n_steps is chosen to be
64, and the batch_size is 32, and the gae_lambda to be 0.998.

5. Experiment

We conduct simulated and physical experiments to evaluate the
performance and effectiveness of our vision-force perception and
control system for the contact-rich assembly task. In particular, we
investigate the following four research questions (RQs):

e RQI. How does our proposed method outperform existing
work in contact-rich assembly tasks?

e RQ2.Is the multimodal-based policy robust to unseen shapes,
colors, and places?

e RQ3. How do modules of our proposed framework improve
the final performance?

e RQ4. Can our proposed method perform well in real-world
scenarios?

5.1. Evaluation metrics

We define a trial as successful if the robot effectively navigates
the peg, securing it within the hole to a depth of 10 mm. Conversely,
a trial is considered unsuccessful if the peg slips from the robot’s
grasp, preventing its insertion into the hole.

5.2. Simulation results analysis

For RQIl, we initially evaluate the performance of our
vision-force system in the square peg insertion task and then
compare the results with those of existing vision-force assembly
systems, enabling a comprehensive assessment of the proposed
approach. Experimental results indicate that our proposed method
outperforms existing baseline work broadly. As shown in Table 1,
comparing our method with the baseline from Lee et al. (2020b),
we achieve more than 15% improvement in success rate (78% —
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95.2%). Their method is consistent with ours in fusion vision
and force perception and adoption of an impedance controller
for incremental motion execution. Nevertheless, they utilize
naive RL for policy training while we take a CL approach and
split the task into two parts to learn the insertion strategy
progressively. Moreover, our Cartesian motion/force controller is
more advantageous when dealing with unknown contacts. These
two major aspects explain our model’s great outperformance. For
clearance, our method improves 50% relative to baseline from Gao
and Tedrake (2021) (0.2 mm — 0.1 mm). Their approach involves
a vision-based key point detector followed by a force controller.
Our approach differs in formulating the insertion task as a servoing
problem and making decisions leveraging both visual and force
data end-to-end, thereby achieving more precise manipulation.
Although our approach doesn’t achieve the high success rate as
the work in Spector et al. (2022), our method doesn’t require
human demonstrations and prior task information. Moreover, our
evaluation metrics are stricter by requiring a 10 mm insertion
depth while the work in Spector et al. (2022) only requires a 1 mm
insertion depth.

For RQ2, we first conduct a series of insertion tasks initiating
with a randomized peg-hole position error within [—15 mm, 15
mm] along both x and y axes. At each position, we conduct 50
trials to statistically evaluate the system’s performance. Next, we
test the system’s out-of-domain performance on three different
shapes that have never been exposed before, namely the pentagonal,
triangular, and circular pegs. Experimental results demonstrate
that our multimodal system is robust to varying in-domain initial
configurations and novel shapes. As shown in Figure 5A, our
method achieves an overall success rate of 95.2% across the varying
initial pose errors up to 3 c¢m, which is a reasonable setup in
factories and social industries. When the positional error is small
than 1.5 cm, the success rate even reaches nearly 100%. The
method’s robustness to varying positions owns the object-centric
design of the observation and action. Specifically, the observation
and action are centered on the object coordinate regardless of the
robot configurations and global positions. As long as the hole plane
can be observable from the in-hand cameras, the robot is able
to approach the hole. For novel shapes, the result in Figure 5B
indicates the method’s remarkable robustness to unseen shapes.
Although the novel shapes are never explored before, they share
similar task structures with the square pegs. Among the three new
shapes, the pentagonal peg is most similar to the square peg and
thus has better generalization ability than the other shapes. The
triangular peg insertion task is more challenging with a higher z-
axis roll requirement. Surprisingly, the model behaves poorly on the
circular peg, probably due to the small contact surface (line contact)
between the peg and the gripper. Although the hardware setup for
the circular peg easily causes slippage and tilt, it still maintains a
success rate of 60%.

5.3. Ablation study of proposed module

For RQ3, we contributions of the

design choices, namely the act of vision-force perception

investigate the

fusion and the curriculum vision-force fusion mechanism.
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This section conducts two comparisons: (1) we compare fusion efficiency and manipulation performance than the
whether the fusion of vision and force boost performance naive reinforcement learning (RL) fusion mechanism. To
over vision only. (2) we investigate whether the two-stage  verify the suppositions mentioned above, we design the
curriculum learning (CL) fusion mechanism could improve  following models:

TABLE 1 The performance of different multimodal models in the assembly task.

Clearance | Peg Modalities DoF Success Shape Human
rate 4 generalization demonstration
Gao and Tedrake (2021) 0.2 mm Unfixed | RGB/depth/force 3 74% No No
Lee et al. (2020b) 2 mm Fixed RGB/depth/force 4 78% Yes No
Spector et al. (2022) - Unfixed | RGB/force 6 97.5% No Yes
Ours 0.1 mm Unfixed | RGB/force 4 95.2% Yes No

The bold values represent the best performance among the comparisons.
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FIGURE 5

(A) Simulation experimental results with varied initial positions for peg-hole operations using a square object. Each individual value corresponds to
the insertion success rate at that region, thereby providing a comprehensive overview of the spatial distribution and variations in success rates of the
square peg insertion task. (B) The success rate of different peg-hole objects, in which square is used in training (in-domain) while others only are
used to test (out-of-domain).
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FIGURE 6

(A) Training curves of three models, including the Vision-only CL model, Vision-force CL model, and Naive RL model. (B) The insertion success rates
at different training stages of three models.
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e Vision-only CL model contains only vision perceptually and
curriculum learns the visual policy.

e Vision-force CL model curriculum learns the vision-force
multimodal policy.

e Naive RL model naively learns the vision-force policy with RL.

All of the above-mentioned models are trained and tested
in simulation. For a fair comparison, all the models except the
Naive RL model are initialized using a pure visual policy trained
with a larger clearance. Figures 6A, B visualize the learning curves
during the training and the test results for 250 trials with three
random seeds.

5.3.1. Vision-force vs. vision-only
The experiment results indicate the superior performance
of the Vision-force CL model over the Vision-only CL model,

10.3389/fnbot.2023.1280773

manifesting the necessity of vision-force fusion in contact-
rich precise manipulation tasks. As demonstrated in Figure 6,
comparing the Vision-force CL model with the Vision-only CL
model, the proposed method achieves more than 20% improvement
in success rate (70% — 95.2%). Although the ablative Vision-only
CL model doesn’t perform as well as Vision-force CL model, it
maintains a success rate of 70% which indicates that integrating
sensor-based controllers is a solution for contact-rich tasks.
Formulating the assembly task as a servoing problem and solving
it with curriculum policy learning end-to-end is a good fit
for the challenging precise insertion. Nonetheless, the fusion
of vision and force perception results in significantly improved
outcomes, as the contact-rich insertion task is sensitive to
both visual and force signals. Vision perception serves as the
main data stream to locate the target, and force perception is
a complementary data source when contacts are made and
interactions occur.

Pentagon

Triangle

Circle

@ _

FIGURE 7

Snapshots of the peg-hole insertion process during the physical robot experiments.
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TABLE 2 Performance on physical assembly task.

Shapes

Square Pentagon Triangle Circle

Models

Vision-only CL 3/10 8/10 3/10 2/10

Vision-force CL ‘ 6/10 ‘ 9/10 ‘ 5/10 ‘ 4/10

5.3.2. CL-based model vs. naive RL model

In terms of the results of the CL, the experiment results
indicate that the conduct of CL is decisive for multimodal
strategy generation in extremely challenging tasks. Comparing the
Vision-force CL model with the Naive RL model in Figure 6, the
proposed method could achieve a remarkable success rate of 95.2%.
In contrast, the ablative Naive RL model couldn’t succeed in the task
and has 0% success rate. The huge performance gap between the
two models comes from the different policy learning formulations.
The Naive RL model leverages visual and force data to insert the
square peg whose clearance is as low as 0.1 mm from scratch.
Nevertheless, it’s difficult for the agent to coordinate the motions
and insert the peg into the hole as a rash motion will cause the
slippery of the peg and finally lead to the local optima of the
algorithm. Different from the naive RL modeling, the CL-based
modeling first learns a visual policy on a larger clearance and is
followed by the fusion of force perception on a 0.1 mm clearance
task. The curriculum task difficulty organization provides a more
effective policy generation approach.

5.4. Physical robot experiments

For RQ4, we perform direct sim-to-real transfer and
generalization tests on the real machine. In the experiment, the
robot first grasps the object and then executes the assembly policy
to insert the peg into the hole. The insertion hole is rigidly fixed
so as not to add extra compliance to the system. Figure 7 shows
the four shapes utilized in our experiments, along with snapshots
captured during the insertion process. Specifically, the square,
pentagonal, triangular, and round peg-hole clearances are 0.37
mm, 0.44 mm, 1 mm, and 0.41 mm, respectively. Table 2 presents
the results obtained from the experiments on these four shapes
using two models: the Vision-only CL model and the Vision-force
CL model. Experiment results indicate that the simulated assembly
system can be transferred to the physical robot. Moreover,
the Vision-force CL model demonstrates stronger robustness
against the ablative Vision-only CL model. As shown in Table 2,
the Vision-force CL model achieves 20% success rate more than
the Vision-only CL model. Although the Vision-only CL model could
be transferred to the physical robot, the Vision-force CL model
even demonstrates better behavior. The performance gap between
the two models is consistent with that in the simulated system.
Although dynamics in the simulated and physical environment
differ, the domain randomization techniques applied to the
visual encoder and the compliant motion/force controller to
handle uncertain contacts minimize the reality gap. Furthermore,
consistent with the situation in simulations, the method could also
be generalized to unseen shapes in physical environments.
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6. Conclusion

This paper proposes a novel vision-force fusion scheme for
contact-rich precise assembly tasks. Our approach utilizes a
curriculum policy learning mechanism to effectively fuse multi-
view visual and force features and implement compliant motions.
By effectively fusing visual and force data from perception
to control, our method achieves higher precision and better
generalization to unseen shapes in the simulated environment. The
experiments on the physical environment validate the practicability
of our simulated system. Our vision-force system significantly
contributes to the advancement of multimodal contact-rich tasks.
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Using computers to replace pilot seats in air traffic control (ATC) simulators
is an effective way to improve controller training efficiency and reduce
training costs. To achieve this, we propose a deep reinforcement learning
model, RoBERTa-RL (ROBERTa with Reinforcement Learning), for generating pilot
repetitions. ROBERTa-RL is based on the pre-trained language model RoBERTa
and is optimized through transfer learning and reinforcement learning. Transfer
learning is used to address the issue of scarce data in the ATC domain, while
reinforcement learning algorithms are employed to optimize the ROBERTa model
and overcome the limitations in model generalization caused by transfer learning.
We selected a real-world area control dataset as the target task training and
testing dataset, and a tower control dataset generated based on civil aviation
radio land-air communication rules as the test dataset for evaluating model
generalization. In terms of the ROUGE evaluation metrics, RoBERTa-RL achieved
significant results on the area control dataset with ROUGE-1, ROUGE-2, and
ROUGE-L scores of 0.9962, 0.992, and 0.996, respectively. On the tower control
dataset, the scores were 0.982, 0.954, and 0.982, respectively. To overcome
the limitations of ROUGE in this field, we conducted a detailed evaluation
of the proposed model architecture using keyword-based evaluation criteria
for the generated repetition instructions. This evaluation criterion calculates
various keyword-based metrics based on the segmented results of the repetition
instruction text. In the keyword-based evaluation criteria, the constructed model
achieved an overall accuracy of 98.8% on the area control dataset and 81.8%
on the tower control dataset. In terms of generalization, ROBERTa-RL improved
accuracy by 56% compared to the model before improvement and achieved
a 47.5% improvement compared to various comparative models. These results
indicate that employing reinforcement learning strategies to enhance deep
learning algorithms can effectively mitigate the issue of poor generalization in text
generation tasks, and this approach holds promise for future application in other
related domains.

KEYWORDS

controller training, transfer reinforcement learning,

generalization

learning, text generation,

1. Introduction

In recent research projects (Holone and Nguyen, 2015) and as indicated by the
International Civil Aviation Organization (ICAO), it is projected that air traffic flow will
continue to grow at an annual rate of 3 to 6% after 2025. Consequently, the demand
for Air Traffic Controllers (ATCOs) will increase year by year. ATCOs communicate
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control instructions to pilots via Very High-Frequency (VHF)
radio to manage air traffic. According to safety and reliability
regulations in Air Traffic Control (ATC), pilots are required to
promptly and accurately repeat control instructions they receive
to ensure the correct understanding of instructions issued by
ATCOs (Lin et al, 2019). ATCOs undergo specific training,
including foundational courses and simulator training, to qualify
for working in actual ATC scenarios. Control training simulators
typically consist of two seats: one for the controller and the
other for the pilot. Completing controller training requires
dedicated personnel to control the pilot seat for the repetition
and response to control instructions, incurring additional training
costs, including equipment and personnel expenses, as illustrated
in Figure I (Zhang et al., 2022a). In recent years, artificial
intelligence (AI) technologies have been widely applied in the
ATC domain (Lin, 2015; Srinivasamurthy et al, 2017; Yang
et al,, 2019). To alleviate the workload of ATCOs, the European
Union (EU) has introduced Automatic Speech Recognition (ASR)
technology into ATC to reduce their workload (Helmke et al,
2016) and enhance work efficiency (Helmke et al., 2017). Projects
funded by Horizon 2020 have also constructed ATCO decision
support systems using Al technology to alleviate the workload
of ATCOs (Kleinert et al., 2017). These research endeavors aim
to assist controllers with intelligent systems to reduce error
rates and alleviate workload. Furthermore, enhancing the quality
of ATCO training is another approach to reducing potential
human errors (Yiu et al., 2021). Some scholars have explored
the use of intelligent systems to improve the training efficiency
and professionalism of ATCOs, fundamentally reducing human
errors. For example, Hoekstra and Ellerbroek (2016) developed
an ATC simulator called “BlueSky,” which significantly advanced
research in air traffic management (ATM) despite its lower level
of intelligence. Lin et al. (2021) proposed an Al-based pilot
framework for ATCO training, capable of replacing the pilot seat
with relatively high confidence. This framework covers several

10.3389/fnbot.2023.1285831

core technologies, including speech recognition, Controlling
Instruction Understanding (CIU), Information Extraction (IE),
Pilot Repetition Generation (PRG), Text-to-Speech (TTS), and
human-computer interaction technology, as illustrated in Figure 2.
Zuluaga-Gomez et al. integrated various state-of-the-art Al-based
tools to build an automatic captain system, expediting the training
process for air traffic controllers (ATCo) (Zuluaga-Gomez et al.,
2023). However, the above research primarily focuses on the
entire pilot system, with limited in-depth research on the PRG
module. Building upon the aforementioned research efforts, this
paper delves deeper into the task of PRG and presents novel
advancements.

In Figure 1, Area Control Centers (ACC) are responsible for
managing the airspace within a designated region, coordinating
aircraft flights, and ensuring the orderly flow of air traffic and
the tower primarily oversees the Terminal Control Area (TMA),
which encompasses the airspace including airports and their
surrounding regions. Due to the differences in the scope of
controlled airspace, there are significant variations in the content of
control instructions, leading to disparities in the data distributions
between the two.

The focus of this study is on the PRG, which belongs to the
field of Natural Language Processing (NLP) and falls under the
task of Natural Language Generation (NLG). We achieved PRG
by fine-tuning pre-trained language models based on Transformer
and Seq2Seq architectures. Furthermore, we employed the policy
gradient algorithm from reinforcement learning to further optimize
the model and overcome the issue of poor generalization in
transfer learning. The innovations of this paper are as follows:
(1) Addressing the characteristics of pilot repetition generation
tasks, we transformed the human-machine dialogue problem into
a text summarization problem, providing a new perspective for
related research. (2) By utilizing transfer learning strategies, we
overcame the limitations of insufficient training data in this
field, caused by the difficulty of data collection. (3) We used

Air traffic controller
training room

.

CCA102, climband
maintain 2400 meters.

|I|||||||I||

Climb and maintain 2400
meters, CCA102.

0

Control seat

FIGURE 1
ATCOs training process.
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the policy gradient algorithm to optimize the cross-entropy loss
function, overcoming the exposure bias issue associated with using
cross-entropy loss in text generation tasks and enhancing the
generalization of the transfer learning model. (4) We constructed a
control instruction text dictionary based on the structural features
of control instruction texts. This dictionary enables fine-grained
tokenization of control instruction texts, facilitating subsequent
metric evaluations. In addition, based on control instruction
tokenization, we introduced a keyword-based evaluation to
assess the quality of generated pilot repetitions. The introduced
keyword evaluation metrics provide an intuitive reflection of the
model’s performance.

2. Related work

The general characteristics of PRG are as follows: (1) The
length of the repetition instructions is generally shorter than
that of the control instructions, and for mandatory control
instructions, the repetition instructions should be consistent with
the meaning of the control instructions. (2) There are fewer
instances of ongoing dialogues (similar to single-turn dialogues
in human-machine conversations). Based on these characteristics,
PRG can be transformed from a human-machine dialogue
task to a text summarization task for processing. Currently,
text summarization techniques can be classified into extractive
summarization and abstractive summarization based on the
summarization method (Nazari and Mahdavi, 2019). Extractive
summarization extracts keywords based on their importance and
forms a summary. However, it only considers the word frequency
and does not take into account the semantic information of
sentences, resulting in poor coherence of the generated sentences.
On the other hand, abstractive summarization summarizes the
essential information of sentences through paraphrasing and
synonym replacement. Compared to extractive summarization,
abstractive summarization has better representation ability and can
understand the contextual semantics of sentences. In the task of
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automatic text summarization, since both the input and output
are text sequences, the model needs to pay more attention to
the relationship between the semantic information of generated
sentences and the coherence of sentences (Liu et al., 2021).

the
summarization has been slow due to the limitations of statistical-

Over the years, development of automatic text
based methods in text representation, understanding, and
generation capabilities (Zhang et al, 2019). Recently, with
the continuous improvement of neural network theory and
technology, deep learning has emerged as one of the most
promising approaches and has achieved state-of-the-art results in
many tasks (de Souza et al., 2018; Luo et al., 2019; Mane et al., 2020;
Miao et al., 2020). Among them, the introduction of automatic text
summarization models based on the encoder-decoder architecture
has brought new advancements to deep learning-based automatic
text summarization (Zhang et al., 2022b). In the current context,
with the advancement of sequence-to-sequence frameworks,
generative models tend to outperform extractive models (Alexandr
etal., 2021).

Most of the research on generative summarization focuses
on the encoder-decoder structure of sequence-to-sequence
models, addressing various issues in the summarization process
by incorporating attention mechanisms, pointer-generator
mechanisms, coverage mechanisms, or replacing recurrent neural
networks (RNNs) with convolutional neural networks. Rush et al.
(2015) were the first to use attention mechanisms on the seq2seq
model to address headline generation. To further improve model
performance, Nallapati et al. proposed the pointer generator
model (Nallapati et al., 2016b), which successfully handles out-
of-vocabulary (OOV) words due to limited vocabulary. This
model was later improved with the use of coverage mechanisms
(See et al.,, 2017). Since the encoder and decoder in the Seq2Seq
architecture are implemented using convolutional neural networks
or RNNs, their feature extraction capabilities are not as powerful
as the Transformer model. The emergence of the Transformer
model based on self-attention architecture has ushered in a new

era in NLP, ensuring that models can learn deeper language
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logic and semantic information of words. Examples of such
models include BERT (Devlin et al., 2018), GPT-2 (Radford et al,,
2019), Bart, and Roberta. BERT predicts words based on their
contextual information, while GPT-2 predicts words based on the
preceding context. Therefore, BERT is suitable for natural language
understanding (NLU) tasks, while GPT-2 is more suitable for NLG
tasks. Inspired by BERT and GPT-2, the Bart model combines
the strengths of both, making it more suitable for text generation
scenarios compared to BERT and achieving better results than
GPT-2 (Lewis et al., 2019). The RoBERTa model (Liu et al., 2019),
compared to BERT, GPT-2, and Bart, has advantages in terms
of pre-training methods, deeper network structure, larger batch
size, and unmasked training, especially for text summarization
tasks. These advantages enable RoBERTa to better understand
semantics, capture language features, and generate more accurate
and coherent text summaries. The proposed deep reinforcement
learning model in this paper is based on RoBERTa.

3. Challenges in PRG and our work
3.1. Challenges in PRG

(1) With the increase in the number of parameters in deep
learning models, training high-performance models in supervised
learning requires a large amount of data. In the field of ATC, data
acquisition is extremely challenging due to the confidentiality of
the data. Additionally, the obtained raw ATC voice data needs
to be professionally annotated, which incurs high annotation
costs. These factors pose significant challenges to the application
and development of deep learning techniques in this domain.
(2) Current NLG models often suffer from poor generalization,
and this issue becomes more pronounced in the case of small
datasets. Improving model generalization is a challenging task
that requires extensive research. (3) Since control instructions are
composed of a series of keywords (Pan et al., 2023), evaluating
the generated pilot repetition instructions using ROUGE-N and
ROUGE-L standards requires the segmentation of the control
instructions. This necessitates the construction of a dictionary,
adding extra workload. Furthermore, the specific nature of pilot
repetition instructions limits the effectiveness of using ROUGE-N
and ROUGE-L for evaluating the quality of generated instructions.
Therefore, a new evaluation metric is needed to assess the quality of
generated pilot repetition instructions.

3.2. Our work

We have conducted in-depth research on text generation.
We found that NLG involves three major tasks: neural machine
translation (NMT), text summarization, and dialogue response
generation (Nallapati et al., 2016a). These tasks share the common
characteristic of having text sequences as inputs and outputs,
but they also have differences. The difference between text
summarization and machine translation lies in the fact that
generated summaries are typically very short and not influenced
by the length of the source text, while the generated summary and
the source text need to be semantically consistent (Zhou, 2012).
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Furthermore, text summarization involves compressing the source
text in a lossy manner while retaining key information, which
contradicts the lossless requirement of machine translation (Hastie,
2012). The difference between dialogue response generation and
text summarization is that the generated text in dialogue response
has logical coherence with its preceding and following context.
Currently, there is no unified evaluation criterion for the quality
of dialogue generation results (Song et al., 2019). PRG is a special
NLG task that belongs to both dialogue response generation and
text generation tasks. For certain inquiry instructions (such as
“please respond when received"), the nature of their repetition
belongs to dialogue, with logical relationships between the
preceding and following text. However, most control instructions
are mandatory instructions, and the nature of their repetition
belongs to text summarization, where the meaning should remain
consistent throughout.

Based on the analysis of PRG tasks mentioned above, we
have adopted the following strategies from the perspective of
text summarization to address the challenges faced by repetition
generation. For challenge one, we use transfer learning by
pretraining the model on other domain data and fine-tuning it
on the target domain to achieve the generation of repetition
instructions. For challenge two, we employ the policy gradient
algorithm from reinforcement learning to optimize the cross-
entropy loss in the pre-trained model. The cross-entropy loss relies
on target labels in the training data for parameter optimization.
This leads to a significant decrease in model performance when
applying the fine-tuned model to similar datasets due to differences
in the training label distribution. The core of the policy gradient
algorithm is to optimize the parameters of the policy network by
evaluating the quality of generated summaries. This allows the
model to learn how to generate high-quality summaries rather
than generating text summaries similar to the training sample
labels, greatly improving the generalization performance of the
transfer learning model. Additionally, we compare the effects of
fine-tuning current mainstream pre-trained models to demonstrate
the effectiveness of our proposed model. For challenge three, to
enable a detailed evaluation of model performance and facilitate
model improvement, we use a new evaluation criterion to assess the
quality of generated repetition instructions. This criterion provides
a more accurate reflection of the model’s performance compared
to the ROUGE evaluation criterion. Furthermore, we construct a
control instruction text dictionary based on the control instruction
text dataset. Using the Jieba word segmentation tool, we split
the generated instruction text based on coarse-grained and fine-
grained information, allowing the calculation of various metrics
using computer programs.

4. Methodology

4.1. Proposed framework

Deep Reinforcement Learning (DRL) is a method that
combines deep learning and reinforcement learning to solve
decision-making problems with high-dimensional state and action
spaces. It uses deep neural networks (DNNs) as function
approximators to learn value functions or policy functions,

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1285831
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pan et al.

enabling end-to-end learning from raw input to action selection.
In text summarization tasks, DRL can be used to train models to
generate high-quality summaries (Keneshloo et al., 2019; Sun et al,,
2021). The application of DRL in text summarization generally
follows the basic framework of reinforcement learning. In this
framework, an agent learns the optimal policy by interacting
with the environment. In this case, the environment consists
of the original text and the generated summary, and the agent
observes the current text state and selects actions to generate
the next word. The reward function provides rewards to the
agent based on the quality evaluation of the generated text, with
higher rewards indicating higher-quality summaries. The key to
applying DRL in text summarization lies in designing appropriate
state representations, action spaces, reward functions, and policy
networks. State representation refers to transforming the original
text into continuous vector representations using word embeddings
or encoder networks to capture the semantic and contextual
information of the text. The action space defines the operations that
the agent can choose, typically selecting the next word to generate
from a vocabulary. The reward function is used to evaluate the
quality of the generated summary. Language model-based metrics
such as ROUGE evaluation can be used as the reward function
to measure the similarity between the generated summary and
the reference summary. The policy network is a DNN that selects
actions to generate the next word based on the current state. RNNs
or attention mechanisms can be used to capture the context of
the text and make sequential word decisions. By applying DRL to
text summarization, the model can learn to generate high-quality
summaries through interactions with the environment. During the
training process, the agent optimizes the parameters of the policy
network to maximize the cumulative reward while generating
summaries. This approach allows for end-to-end training on large-
scale datasets without the need for manual annotations, leveraging
deep learning techniques to extract features from raw input and
generate more accurate and fluent summaries.

In our proposed RoBERTa-RL model, we use Word Piece
embedding as the state representation of the environment. We
use ROUGE-1 as the reward function and RoBERTa as the
policy network. The action generation policy is implemented
using Beam Search, and parameter updates are performed using
the policy gradient algorithm. The architecture of our proposed
deep reinforcement learning model, RoBERTa-RL, is illustrated in
Figure 3.

4.2. Training process of ROBERTa-RL

Figure 3 provides a detailed description of the training process
of the proposed DRL model architecture. Let’s assume S =
{x1,%2, ..., X, } represents the original input text, where x1, x3, ..., X,
are input characters. Firstly, S undergoes RoBERTa encoding
to convert it into the state representation of the environment,
denoted as hy. This process is described by Equation (1), where
RoBERTaembedding() represents the encoding function:

hy = ROBERTaembedding (S) (1)
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The proposed DRL architecture.

The policy network generates the output text y; based on the
state representation h; of the input environment and the action
policy Beam search. The specific process is described by Equation
(2), where Beamsearch() represents the action policy function:

yt = Beamsearch (RoBERTa N ht) (2)

The ROUGE function calculates the reward value R; based on
the generated text y; and the reference summary Tyeference- LThe
specific formula is described by Equation (3), where ROUGE — 1()
represents the reward function.

R; = ROUGE — 1 ()’t) Treference ) (3)

The cost function COST is composed of the weighted sum of the
negative average reward value and the cross-entropy loss, where A
is the weight. The specific formula is described by Equation (4).

COST = —\ mean (R;) + (1 — A) CrossEntorpyLoss (y[, Treference)

(4)

The policy update is performed using the policy gradient

algorithm, which updates the policy network parameters 6 based on

the gradient of the cost function. The specific formula is described
by Equation (5), where o represents the learning rate.

0=0—ave (5)
4.3. Evaluation criteria
ROUGE (recall-oriented understudy for gisting evaluation)

measures the quality of summaries by calculating the overlap
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TABLE 1 Calculation results of ROUGE-1, ROUGE-2, and ROUGE-L for the example.

Evaluation metrics

Number of n-grams in the
reference instruction

Number of overlapping n-grams between
the repetition and the reference

Result

ROUGE-1 8 4 0.5
ROUGE-2 7 3 0.429
ROUGE-L 8 4 0.5

units (such as n-grams, word sequences, and word pairs) between
the generated summary and the reference summary (Lin and
Och, 2004; Elmadani et al.,, 2020). This evaluation criterion has
been widely used for evaluating automatic summarization tasks.
ROUGE-1 and ROUGE-2 are used to assess informativeness, while
ROUGE-L is used to assess fluency. N is typically set to 1 or 2.
The ROUGE-1 and ROUGE-2 scores have been shown to be the
most consistent with human judgments. The calculation method
for ROUGE-N is described by Equation (6).

> Y Countygen(gram,)
ROUGE — N — SERef gram, €S ©)
~ Y Y Count(gram,)

SERef gram, €S

In Equation (6), n represents the length of n-grams, Ref
is the set of reference summaries. Countp,h(gram,) is the
maximum number of n-grams that appear simultaneously in the
generated summary and the corresponding reference summary,
while Count(gram,) is the number of n-grams in the reference
summary. The calculation formula for ROUGE-L is described by
Equations (7-9).

LCS(C,S)
Rics = “en(S) (7)
_LCS(C,S)
LCS = “Ten(C) (8)

(14 B*)RicsPrcs

)
Rics + B2Pics

Fres =

In Equations (7-9), Rics represents recall, Pics represents
precision, and Fics denotes the ROUGE-L value. $ is a tunable
parameter, and in this paper, it is set to 0.5, indicating that Fics
gives equal importance to Ry cs and Pycs.

Due to the specificity of the ATC domain, repetition must
be completely accurate to be considered a valid repetition
instruction. Pilot repetition instructions require responding to
the control instructions based on ATC rules without losing
any crucial information. According to ATC rules (Drayton and
Coxhead, 2023), ATCO instructions must start with the aircraft
identification (ACID) to specify the communicating aircraft, while
pilot repetitions should end with their ACID to differentiate
them from ATCO instructions. Based on the characteristics of the
generated repetitions mentioned above, using only the ROUGE
evaluation metric cannot comprehensively assess the model’s
performance. For example, in the control instruction dataset, the
controller issues the Chinese control instruction “MU5424, yi jing
xiang Beijing shen qing, xian zan shi bao chi 75007, and the
reference repetition instruction is “Yi jing xiang Beijing shen qing,

Frontiersin Neurorobotics

xian zan shi bao chi 7500, MU5424”. After word segmentation,
the tokens are as follows: “Yi jing/xiang/Beijing/shen qing/zan
shi/bao chi/7500/MU5424”. When the model generates the result
“Zan shi/bao chi/7500/MU5424”, evaluating the result using the
ROUGE-N and ROUGE-L evaluation methods yields the results
shown in Table 1. However, from the perspective of repetition
generation rules, this repetition instruction is correct.

From the results in Table I, it can be seen that although
the ROUGE metrics can to a large extent reflect the quality
of the generated repetition instructions, there are times when
unreasonable situations may arise. Therefore, considering the
characteristics of ATC instructions and the repetition criteria,
we introduce a new evaluation metric specific to this domain,
based on keyword evaluation. The evaluation metrics include
Call Sign Accuracy (CSA), Action Instruction Accuracy (AIA),
and Parameter Accuracy (PA). Finally, the Total Accuracy (TA)
is calculated. Only when an instruction has all three sub-factors
correctly, it can be considered as a correct repetition instruction.
The definitions and calculation formulas of the specific metrics are
as follows: (1) Call sign is composed of the airline abbreviation
and flight number, and its accuracy is calculated using the
following formula.

N

CSA = % Z g

i=1

(10)

(2) Action instruction refers to the actions contained in the
ATC instruction, such as climb, descend, maintain, etc., and its
accuracy is calculated using the following formula.

N

AIA = % Z q(i)

i=1

(11)

(3) Parameter refers to the key supplementary information of
the instruction actions in the ATC instruction, including speed,
altitude, heading, waypoints, etc., and its accuracy is calculated
using the following formula.

N
1 .
PA=— ; h(i) (12)
In Equations (10-12), N represents the number of samples to
be tested, and g(i), q(i), and h(i) represent the feature functions
of call sign, action instruction, and parameter of the instruction,
respectively. The specific formulas is described by Equation (13).

1 if pred; = truth;

g(),q(i), h(i) = (13)

0 otherwise

(4) TA represents the total accuracy, which is the sentence-level
accuracy. A generated repetition is considered valid and correct
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TABLE 2 Examples of word entries in the dictionary.

Category Example

Airline abbreviations Air China, Eastern, CA, MU, Sichuan, 3U, etc.

Numbers 0 (“dong”), 1 (“yao”), 2 (“liang”), 7 (“guai’), etc.
Altitude 600, 900, 1,200, 1,500, . . ., 13,700

Speed 250 knots, 180 knots, etc.

Heading Direct flight, offset, flying heading, etc.
Waypoint Dawangzhuang, BUBDA, ANDIN, P23, etc.

Proper noun Indicated airspeed, field pressure, planned route,

instrument flight, etc.

only when the call sign, parameters, and action instructions in
the repetition match the ground truth. The specific formulas are
described by Equations (14, 15).

1 if g(i) = q(i) = h(i)

T@) = (14)
0 otherwise
LN
TA= =Y T() (15)

In Equation (15), N represents the number of samples to be
tested, T'(7) is the feature function for total accuracy.

4.4. ATC Corpus Segmentation Dictionary

To facilitate the ROUGE evaluation and keyword evaluation
of repetition instructions, we built a Chinese Air-Ground
Communication Segmentation Dictionary based on the training
data and reference the regulation “Radio Communication
Phraseology for Air Traffic Services” (MH/T 4014-2003), as well
as the abbreviation standards. We used the Jieba segmentation
tool to construct the dictionary, which includes aviation company
abbreviations, numbers, letters, altitude levels, speeds, headings,
waypoints, proper nouns, and other relevant terms. The dictionary
consists of a total of 14,756 vocabulary entries. A sample analysis
of the vocabulary is presented in Table 2.

5. Experiments and discussions
5.1. Dataset

The experiment consists of two datasets: the area control
dataset and the tower control dataset. The area control dataset
comprises real air-to-ground communication data in actual
ATC scenarios. The tower control dataset, on the other hand,
is generated by computer based on the standards, and its
User Interface (UI) is shown in Figure4. You can find this
algorithm in this link https://drive.google.com/drive/folders/
1RN6CEh]JXcoru6LyZB8u_Y3XBLjyvlQqd?usp=sharing. To
illustrate the distribution of these two datasets, we utilized Term
Frequency-Inverse Document Frequency (TF-IDF) for data
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§ ATC Instruction Generator - (m} X

Please select the number of generated instructions:

Altitude o
Heading 0
Speed 0
Handover 0
Taxi 1
Hold 0
Taxiing 1
Takeoff 0
Approach 0
Generate |
Instruction generation results:
EHR: ARSLESWIT9SER, FEREBECEIE.
KTR: W49 B, AEHEECEERRS LRSS
E#A: FNAEZAD, RIoHARERS.
KR RIS pRERE. FIARZAMD.
Copy all I
FIGURE 4

Ul Interface of the tower control instruction generator.

vectorization and employed Principal Component Analysis (PCA)
for dimensionality reduction to achieve data visualization. The
dataset distributions are depicted in Figure 5.

In Figure5, the distribution represented by red stars
corresponds to the area control dataset, while the distribution
denoted by blue stars corresponds to the tower control dataset.
It is evident that the tower control dataset encompasses a
significantly different set of instruction types compared to the
area control dataset, which can be used to assess the model’s
generalization capability.

The dataset for training the area control consists of 11,049 pairs,
with 8,949 pairs used for training, 995 pairs for validation, and
1,105 pairs for testing. The tower control dataset, used for transfer
learning generalization evaluation, contains a total of 1,074 pairs.
Table 3 displays some examples from the dataset.

5.2. Experiment configurations

The experiments were conducted on a Windows operating
system. The computer configuration is as follows: Intel Core
i5-8400 processor, 56 GB of RAM, NVIDIA RTX 4090 24 GB
graphics card, 250 GB SSD, and a 3.6 TB HDD. The deep

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1285831
https://drive.google.com/drive/folders/1RN6CEhJXcoru6LyZB8u_Y3XBLjyvlQqd?usp=sharing
https://drive.google.com/drive/folders/1RN6CEhJXcoru6LyZB8u_Y3XBLjyvlQqd?usp=sharing
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Pan et al. 10.3389/fnbot.2023.1285831
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FIGURE 5
Distribution of tower control dataset and area control dataset.

TABLE 3 Dataset example table. TABLE 4 Hyperparameters for the RoBERTa model.
Dataset = Control instructions  Pilot recitation ‘ Hyperparameter Setting ‘
name instructions

Dropout 0.1
Tower Jinxiu 7443, estimated Estimated departure time is
departure time 10 min. 10 min, Jinxiu 7443. Max sequence length 256
Hebei 8554, circling and Circling and waiting over Learning rate 0.0001
iti HG. HG, Hebei 4. R
waiting over JHG. JHG, Hebei 855 Batch size 0
Area Shandong 8896, Xiamen, Radar has identified, Number of h 20
radar has been identified. Shandong 8896. umber of epochs
Hainan 7064, cancel offset Cancel offset return route, Optimizer Adam
return route. Hainan 7064. Beamsearch size 3
Weight decay 0.001
s 0.5

learning framework used was PyTorch. The hyperparameters for
the RoBERTa-RL model are listed in Table 4.

According to Table 5, it can be observed that RoBERTa-

RL(A = 0), the unimproved RoBERTa model, achieves good

5.3. Ablation experiment performance on the area control dataset through transfer
learning. However, it performs poorly on the tower control

To demonstrate the effectiveness of the adopted strategies, we  dataset, indicating a problem of poor generalization when relying
conducted ablation experiments for validation, using ROUGE-N  solely on transfer learning. When A = 0.3, it can be seen
and ROUGE-L as evaluation metrics. The experimental results are  that the model has overcome the issue of poor generalization
shown in Table 5. and shows further improvement compared to A = 0. When
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TABLE 5 Experimental results based on ROUGE evaluation metrics.

ROUGE-1

ROUGE-2

10.3389/fnbot.2023.1285831

ROUGE-L

RoBERTa-RL (4 = 0) Area 0.995 0.990 0.994
Tower 0.885 0.704 0.885
RoBERTa-RL (4 = 0.3) Area 0.996 0.991 0.995
Tower 0.980 0.946 0.980
RoBERTa-RL (A = 0.5) Area 0.996 0.991 0.995
Tower 0.982 0.954 0.982
RoBERTa-RL (A = 1.0) Area 0 0 0
Tower 0 0 0
The meaning of the bold values is the optimal values achieved by the RoOBERTa-RL (A = 0.5) model across different datasets and metrics.
TABLE 6 Comparative experimental results based on ROUGE evaluation metrics.
Model Dataset ROUGE-1 ROUGE-2 ROUGE-L
GPT2 Area 0.981 0.973 0.981
Tower 0.779 0.61 0.776
BERT Area 0.991 0.984 0.991
Tower 0.846 0.662 0.846
BART Area 0.992 0.987 0.992
Tower 0.910 0.767 0.910
RoBERTa-RL (1 = 0) Area 0.995 0.990 0.994
Tower 0.885 0.704 0.885
RoBERTa-RL (A = 0.5) Area 0.996 0.991 0.996
Tower 0.982 0.954 0.982

The meaning of the bold values is the optimal values achieved by the RoBERTa-RL (4 = 0.5) model across different datasets and metrics.

A = 0.5, the model reaches optimal performance. This is
because choosing a reward weight of 0.3 emphasizes the cross-
entropy loss. On the other hand, a reward weight of 0.5
balances the contribution of the cross-entropy loss and the
reward function. This setting can to some extent balance the
quality and grammatical accuracy of the generated instructions,
leading to better performance. Setting the reward weight A
to 1, without considering the cross-entropy loss, means only
optimizing the similarity between the generated results and the
reference summaries, without considering grammatical accuracy
and the optimization of the generation strategy. This results in
the model disregarding grammar rules and sentence structure
during the generation process, leading to the generation of
unreasonable instructions.

5.4. Contrastive experiments

To perform a comprehensive analysis of the constructed
model’s performance, we adopted a comparative research approach
tailored to the application domain. Specifically, we evaluated the
performance of the constructed model as well as leading pre-
trained models in the field of text generation, namely GPT-2, BERT,
and BART, in the task of repetition instruction generation. Tests
were conducted separately on the area control dataset and the

Frontiersin Neurorobotics

tower control dataset, with evaluation metrics including ROUGE-
N, ROUGE-L, and keyword evaluation criteria. The experimental
results are presented in Tables 6, 7. Furthermore, to visualize the
improvements made by the model, we compiled statistics on the
length distribution of repetition instructions generated by the
model before and after enhancements on the tower control test
dataset. The visual results are illustrated in Figures 6-8.

From Table 6, it can be observed that all comparative models
performed well on the area control dataset. The proposed
RoBERTa-RL(A = 0.5) model only slightly outperformed the
comparative models. However, on the tower control dataset, all
comparative models showed poor generalization performance,
while our proposed model’s performance only slightly decreased.
Table 7 provides a detailed display of the performance of each
transfer learning model based on the Keyword Evaluation Metrics.
From Table 7, it is visually evident that the comparative models
performed poorly on the tower control dataset, indicating a
clear issue of poor generalization. Additionally, the GPT-2 model
performed the worst in the task, possibly due to its use of
masked attention mechanism during prediction, which failed
to incorporate useful information from the context. Finally,
our constructed ROBERTa-RL(A = 0.5) model achieved the best
performance on the tower control dataset, demonstrating that the
proposed improvement strategies greatly alleviate the issue of poor
generalization in transfer learning.
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TABLE 7 Comparative experimental results based on keyword evaluation metrics.

Model Dataset CSA (%) AlA (%) PA (%) TA (%)
GPT2 Area 99.1 98.0 98.5 96.8
Tower 89.3 81.4 24.5 23.3
BERT Area 99.6 98.8 98.8 97.4
Tower 100.0 99.8 25.6 25.6
BART Area 99.2 98.8 98.2 96.8
Tower 99.0 94.1 35.1 343
RoBERTa-RL (2 = 0) Area 99.7 98.2 99.4 97.6
Tower 98.7 94.5 25.8 25.8
RoBERTa-RL (A = 0.5) Area 100.0 99.1 99.5 98.8
Tower 99.7 98.7 82.5 81.8

The meaning of the bold values is the optimal values achieved by the RoOBERTa-RL (A = 0.5) model across different datasets and metrics.
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FIGURE 6
RoBERTa-RL (» = 0) PRG text length distribution.
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In Figures 6-8, the horizontal axis represents the string
length of repetition instructions, while the vertical axis denotes
the total count of repetition instructions of varying lengths.
The red curve illustrates the length distribution of repetition
instructions. By comparing Figures 6, 7, we observe that the
mean length of repetition instructions generated by RoBERTa-
RL (A = 0) is lower than the mean length of reference labels,
indicating a significant omission of words and poor generalization
for this model. However, by comparing Figures7, 8, we can
see that the RoBERTa-RL (A = 0.5) model generates repetition
instructions with a length similar to the mean length of reference
labels, effectively mitigating the omission issue and demonstrating
strong generalization.

Frontiersin Neurorobotics

In addition, we analyzed the reasons behind the model’s strong
generalization capability. Specifically, due to the disparities in data
distribution between the area control dataset and the tower control
dataset, the baseline model fine-tuned on the area control dataset
performed poorly on the tower control dataset. This generalization
issue is a common challenge faced by most fine-tuned models
at the current stage. However, the introduction of reinforcement
learning strategies effectively mitigates this problem. During the
training process, we incorporated a reward and penalty mechanism
to assess the quality of generated results and provide timely
feedback to the model. This mechanism encourages the model
to prioritize the quality of the generated text over similarity to
the target labels, thereby preventing overfitting to the training
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Reference label length distribution
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FIGURE 8
RoBERTa-RL (x=0.5) PRG text length distribution.

data distribution. Furthermore, the introduction of the reward instructions, and the other task is to learn how to generate
and penalty mechanism essentially transforms the model into a  high-quality instructions to maximize rewards. As a result, the
multitask learning problem, where one task is to generate repetition ~ model’s generated results exhibit strong performance on datasets
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with different distributions. Finally, setting the weights of both
the reinforcement learning loss and the original cross-entropy
loss to 0.5 ensures that the model does not overly rely on either
aspect during optimization but strikes a balance between the two
objectives, thereby enhancing the overall model performance. In
summary, reinforcement learning strategies are advantageous in
enabling the model to learn deep features of the dataset, allowing
the model to excel on similar yet differently distributed datasets.
This approach is highly effective and can be applied to many similar
problems to improve model generalization capabilities.

6. Conclusions

Our research focuses on addressing the problem of generating
high-quality pilot recitations in the ATC field based on small-scale
training data. To tackle this challenge, we propose a DRL model
that optimizes the cross-entropy loss using the policy gradient
algorithm to overcome exposure bias and poor generalization in
transfer learning. Through a series of experiments, we demonstrate
that our proposed model outperforms the comparison models on
the training dataset and maintains excellent performance on similar
distribution datasets. To expedite model training, we employ a
pretraining method based on cross-entropy loss and a training
strategy that combines the policy gradient algorithm with cross-
entropy loss. This strategy allows the model to converge faster
and reduces resource consumption. In addition to the commonly
used ROUGE evaluation metric, we introduce a keyword-based
evaluation metric to assess the model’s performance. The results
show that the keyword-based evaluation metric provides a more
accurate reflection of the model’s performance. On the tower
control dataset, our proposed model achieves an overall accuracy
of 81.8%, which is a 56% improvement compared to the pre-
improved model and a 47.5% improvement compared to the other
comparable models.

However, it is essential to consider some potential safety
implications that the model may introduce in practical applications.
At the current stage, since the model’s input is limited to textual
information alone, it lacks sufficient contextual information to
assess the reasonableness of the control instructions it receives.
As a result, it cannot generate queries or doubts about control
instructions that could lead to flight conflicts. To facilitate the
deployment of the model in real-world scenarios, it is imperative
that the model, in addition to processing text data, can also
incorporate navigation and monitoring data. In our future work,
we will integrate these multimodal data sources as inputs to the
repetition generation model, enabling it to scrutinize and question
conflicting or unreasonable control instructions, thereby further
mitigating safety risks.
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Navigating safely and efficiently in dense crowds remains a challenging problem
for mobile robots. The interaction mechanisms involved in collision avoidance
require robots to exhibit active and foresighted behaviors while understanding
the crowd dynamics. Deep reinforcement learning methods have shown superior
performance compared to model-based approaches. However, existing methods
lack an intuitive and quantitative safety evaluation for agents, and they may
potentially trap agents in local optima during training, hindering their ability to
learn optimal strategies. In addition, sparse reward problems further compound
these limitations. To address these challenges, we propose SafeCrowdNayv, a
comprehensive crowd navigation algorithm that emphasizes obstacle avoidance
in complex environments. Our approach incorporates a safety evaluation function
to quantitatively assess the current safety score and an intrinsic exploration reward
to balance exploration and exploitation based on scene constraints. By combining
prioritized experience replay and hindsight experience replay techniques, our
model effectively learns the optimal navigation policy in crowded environments.
Experimental outcomes reveal that our approach enables robots to improve crowd
comprehension during navigation, resulting in reduced collision probabilities and
shorter navigation times compared to state-of-the-art algorithms. Our code is
available at https://github.com/Janet-xujing-1216/SafeCrowdNav.
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1. Introduction

Mobile robots have been extensively studied and widely applied in recent decades as
an essential branch of robotics research. They can accomplish tasks that are difficult or
impossible for humans, reduce the workload of human workers, and improve people’s
quality of life. Our daily lives increasingly depend on mobile robots, which share living
and social spaces with humans and interact with them to varying degrees. The crucial
factor determining the successful autonomous movement of mobile robots across diverse
environments is their possession of adaptable and autonomous navigation capabilities.

The key to achieving efficient autonomous navigation of mobile robots in various
environments lies in key elements such as safety, autonomy, effectiveness, and user-
friendliness. Among these, obstacle avoidance (Duguleana and Mogan, 2016; Pandey et al,
2017), serving as a primary means to ensure safety, poses a challenging research problem
in robot navigation. It has been studied for decades and finds applications in critical real-
world scenarios such as autonomous driving (Kistner et al., 2021) and cargo logistics. For
instance, in the context of mobile robots, scenarios like autonomous navigation within
unmanned supermarkets or warehouses, where robots navigate among shoppers or workers
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while avoiding obstacles, have garnered significant attention.
At the same time, the operating environments for mobile
robots have become increasingly complex, with various static
and dynamic obstacles coexisting, including obstacles such as
barriers, pedestrians, vehicles, or other robots. These scenarios
add a layer of complexity, as robots must safely maneuver in
dynamic environments alongside pedestrians and other obstacles,
showcasing the versatility and practicality of mobile robotics.
While classical planning methods (Cai et al., 2023) can effectively
handle static environments, reliable obstacle avoidance in dynamic
environments remains a significant challenge. Safe and reliable
navigation in these highly dynamic environments is still a
crucial challenge.

The illustration of our work is showing in Figure I and the
paper presents the following key contributions:

e We design a novel framework «called SafeCrowdNayv,
which hindsight
prioritized experience replay to address the challenge of

integrates experience replay and
sparse-reward navigation.

e We firstly propose novel safety evaluation reward functions
to estimate the safety weights of the robot in its current
state, enabling more accurate obstacle avoidance during the
navigation process.

e We firstly propose a novel intrinsic exploration reward
function with visited count state that helps the robot avoid
getting stuck in place and reduces unnatural robot behavior.

2. Related works

2.1. React-based collision avoidance

Over the past decade, extensive research has focused on
robotic navigation in dynamic obstacle environments within
the field of robotics. Numerous works have been dedicated to
classical navigation techniques, with the earliest attempts being
reactive rules-based methods, such as Optimal Reciprocal Collision
Avoidance (ORCA) (Van den Berg et al., 2008), Reciprocal Velocity
Obstacle (RVO) (Van Den Berg et al, 2011), and Social Force
(SF) (Helbing and Molnar, 1995). These methods employ one-step
interaction rules to determine the robot’s optimal actions. However,
despite considering interactions among agents, ORCA and SF
simplify the crowd behavior model, leading to limitations such as
shortsightedness, lack of safety, and unnatural movement patterns.

2.2. Trajectory-based collision avoidance

As a result, researchers have started exploring trajectory-
based methods (Kothari et al.,, 2021) and considered visual-inertial
initialization (Huang et al., 2021; Liu et al., 2022) to address crowd
avoidance problems. Nevertheless, trajectory-based approaches
suffer from high computational costs, inability to perform real-
time updates in the presence of increasing crowd sizes and
difficulties in finding safe paths (Trautman and Krause, 2010; Alahi
et al., 2016; Sathyamoorthy et al., 2020). These limitations restrict
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the application and effectiveness of these methods in large-scale
crowd scenarios.

2.3. Learning-based collision avoidance

To overcome the above challenges, recent research has
modeled the crowd navigation problem as a Markov Decision
Process (MDP) and introduced deep reinforcement learning
called Collision Avoidance with Deep Reinforcement Learning
(CADRL). Chen et al. (2019) propose the Socially Attentive
Reinforcement Learning (SARL), which combines human-robot
interaction features with self-attention mechanisms to infer the
relative importance of neighboring humans with respect to their
future states. They also develop the simulation environment
CrowdNav (Chen et al,, 2019), which has been widely used for
comparing CADRL approaches. In CrowdNayv, the information
regarding the agent’s position, velocity, and radius is considered
as input, and the robot responds accordingly based on this input.
To address the computational cost associated with learning-based
methods, Zhou et al. (2022) propose SG-D3QN, which utilizes
graph convolutional networks to predict social attention weights
and refines coarse Q-values through online planning of potential
future trajectories. The latest paper (Martinez-Baselga et al., 2023)
claims to be the first work in this field that applies intrinsic rewards
and has achieved the state-of-the-art performance.

2.4. Safety evaluation

However, reinforcement learning algorithms suffer from a
fatal drawback: the need for trial and error exploration of the
environment to learn optimal policies. In real-world settings, safety
is a crucial concern, and trial and error that may cause harm to
humans during the exploration process is unacceptable. Although
current practices often train reinforcement learning agents in
simulation environments with low safety risks, the complexity of
transitioning from simulated environments to the real world poses
a series of unacceptable safety issues (Ray et al., 2019). Therefore,
safety evaluation should be a key focus area in reinforcement
learning research. In this regard, this paper is dedicated to
addressing safety concerns and proposes a robot crowd navigation
system that enables the evaluation of an agent’s safety performance.

3. Problem formulation

3.1. Crowd navigation modeling

The problem of crowd navigation for robots refers to guiding
a robot to its target location in the shortest possible time while
avoiding collisions with a variable number of intelligent agents
behaving like a crowd in the environment. These agents can
encompass various types of obstacles, and in this study, we utilize
the CrowdNav simulation environment widely adopted in previous
works (Chen et al., 2019, 2020; Everett et al., 2021).

The observable state of all agents w is represented by their
positions p = [px, pyl, velocities v = [vx,v,], and radii r. The
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FIGURE 1

Illustration of our work: the robot utilizes heterogeneous attention weights and safety evaluation scores obtained from observations to selectively
aggregate pedestrian information, enabling more anticipatory decision-making.
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observable state indicates the information that other visible agents
in the environment can perceive. Additionally, the state of the robot
includes its preferred velocity (v,), heading angle (6), and target
coordinates (§ = [gx,gy]). At a given time step ¢, the input joint
state of the robot s’ is defined as:

o = [wh, wh]
t to ottt ottt t gt
W, = I:px’py’vx’ Vys T ’gx’g)ﬂvp’e ] )
1

w = [whowhs o wh]

TR PR R R B .
w; = [px,py, Vi Vs r] ,1> 0,

where w£ is the state of the robot r, wﬁ is the state of human agent i
and wy, is the collective state of all human agents.

3.2. Reinforcement learning based on the
Q-value

In our work, the crowd navigation problem is formulated as a
Markov Decision Process, and we adopt the double dueling deep
Q-network as the fundamental method for solving this task. The
objective is to estimate the optimal policy 7*, which selects the
optimal action a’ for state s’ at a specific time step t. The optimal
policy maximizes the expected return, given by:

7" (s") = argmax (Q* (s',a')) ()

at
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where Q* is the optimal action-value function, recursively defined
with the Bellman equation as:

Q*(sha')=E [rt +y 2% max Q" (SHI’QM)] ’ ©

aH»l

where s'*1 is the successor state and 7/ is immediate reward. y €
(0,1) is the discount factor that balances the current and future
rewards, normalized by the preferred velocity v, and the time step
size At.

3.3. Reward shaping

While tackling the challenge of sparse reward tasks in crowd
navigation without expert demonstrations, the most intuitive
approach is to shape the reward function. However, previous works
(Chen et al, 2017, 2019) have not given due attention to this
aspect and instead applied sparse reward functions designed for
non-communicative dyadic collision avoidance problems. In crowd
navigation, such mismatched rewards can lead to poor training
convergence (Chen et al, 2020). In contrast to existing reward
functions (Chen et al., 2019; Zhou et al., 2022), which commonly
rely solely on external or intrinsic rewards, our approach not
only integrates and refines these two reward functions, but also
introduces an additional safety evaluation function. We divide the
overall reward r' into three parts and innovate each: externally
provided rewards r’,, safety evaluation function rﬁafe, and intrinsic

! defined as follows:

exploration rewards Tips

=1l + rstafe +rt, (4)
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where we first introduce innovations in the externally-provided
reward function !, offered by the environment to incentivize
the robot to navigate toward the goal while avoiding collisions.
Additionally, we introduced safety evaluation functions rstafe and
intrinsic rewards !, to encourage the robot to explore and exploit

the environment while improving its safety and reliability.

4. Method

This paper focuses on the safety evaluation of crowd navigation
using deep reinforcement learning. Building upon SG-D3QN
(Zhou et al., 2022), we firstly model the social relationship
graph (Liu et al,, 2023), a heterogeneous spatio-temporal graph
as input to the SG-D3QN planner to generate optimal actions.
The simulated environment provides external reward function,
safety evaluation scores and intrinsic exploration reward function
based on the current state, which are then fed back to the
reinforcement learning policy. The trajectory sampling process
combines hindsight experience replay and prioritized experience
replay to handle the data in the experience replay buffer. The overall
framework of our algorithm is illustrated in Figure 2.

4.1. External reward function

We redesign the external reward function 7., offered by the

. P T g s t t t t
environment, dividing it into Teoal Teollision> Tshaping’ "pred four
components. r;oal is used to reward the robot for reaching the goal,
rt .. penalizes collisions, r!, . guides the robot toward the
collision shaping

t . . . . s .

goal, and Tored provides penalties for potential collisions in future
time steps. Our external reward function is defined as follows:

to_ ot ¢ t ¢
Tex = rgoal + Toollision + rshaping + rpred' ()

. P t t t t
The individual components Tooal Tcollision® "shaping® Tpred T

defined as follows:

¢ JTarr
rgoa.l - 0
if collision

Tcol
¢ co
L %
collision { 0 otherwise

if target is reached
(6)

otherwise

rghaping =Wp- (||pt71 _Pg“ - ||Pt —Pg ”) (8)

t . it . . t+k Tcol
r = min r = min min (1.7"— )|, 9
pred T of o pred Ty |:k:1 K( book &

t
where " shaping

the endpoint at time t — 1 and ¢. p’ and pg respectively represent the

represents the difference between the distance from

robot’s position and the goal at time £, and w), is a hyper-parameter.
Prediction reward function r}‘)re 4 presents the maximum penalty for
collisions occurring among » humans in future K time steps. Ilf+k
indicates whether the robot collides with the predicted position of
the human i at time ¢+ k. The role of 2 is to assign different weights
to collisions at different predicted time steps, with lower penalty

weights given to collisions predicted farther into the future.
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4.2. Safety evaluation function

The safety evaluation function rﬁafe assesses the current
safety level of the robot based on the surrounding environment
information and adjusts the robot’s behavior accordingly to guide
it toward safer navigation. Specifically, if the safety evaluation
function r! . provides a higher safety score, it indicates a lower risk
and likelihood of collisions in the current environment, allowing
the robot to choose a relatively higher speed to complete the
navigation task more quickly. Conversely, if the safety evaluation
function 7! . provides a lower safety score, it indicates a higher risk
and likelihood of collisions in the current environment, requiring
the robot to lower its speed or even stop to avoid potential danger.
The factors considered in the safety evaluation function include:
(1) Collision probability rzbsmcle between the robot and obstacles:
It considers the movement speed and direction of obstacles,
the distance between the robot and obstacles, and the obstacle
type together. A global collision probability map is used here,
where closer obstacles to the robot have a higher collision
probability peoltision -

(2) Robot’s velocity rfobot: Ensuring smooth and natural motion
is vital in dynamic and crowded settings, enhancing comfort and
safety for passengers and bystanders. Abrupt velocity changes can
cause discomfort and confusion among humans and destabilize
navigation, leading to collisions. Thus, we quantify motion
smoothness by assessing continuity in velocity changes, calculated
from the cosine of the angle between current v and previous v/~!
robot actions.

(3) Safety distance r;iswmfm between obstacles and the robot: To
ensure the safety and comfort of humans during robot navigation,
we additionally impose a penalty when the distance between
obstacles and the robot falls below the predefined safety threshold.
Actually, collision probability !, . can partially achieve this goal,
but only use it fail to discourage situations that may potentially
cause discomfort to humans.

The composition of the safety score is as follows:

t I 5 t t
rmfe = Tobstacle + Trobot + rdiscomfart (10)
t
Tobstacle — B * Peollision (11)
t—1 t
14 -V
t —
Trobot = &~ - (12)
vtfl | Vt |
N
t _ t
rdiscomfort - Zf (di’ds)
- (13)

d—d
t _ i S
£l d) = { .

ifd! <02

else

where B is a hyper-parameter, peolision 1S our collision probability
and V' represents the velocity of the robot at the current time
step t. Discomfort reward function r%, fore €COUTAgES the robot
to maintain a safe distance from all pedestrians, where d; is the
minimum safe distance that the robot needs to maintain with
pedestrians at any time. In this paper, d; is set to 0.2 m, d}
represents the actual minimum distance between the robot and the
i-th pedestrian within the time step.
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ines hindsight experience replay and prioritized experience replay.

Inspired by Wang et al. (2022), our collision probability

Pcollision 18:

i=1,...,n

Peollision = Y &ilxy), (14)

(%) €Phuman

where @huyman represents the range of human perception,
determined by the velocities of the robot and humans and the unit
of time. g;(x, y) denotes the collision probability of the robot relative
to human i. “Arrive” refers to the distance between the agent and
its target position being less than 0.1 m. At time ¢, g;(x, y) can be
computed as follows:

N
g (<)) = D NGwx) - N(yy) - NGp,0)  (15)

i=1

N(8,a) = \/iine*% (16)

v/ Y =%
90 = arctan [ - #! = arctan ( : ) , (17)
i (le xl —xf

where N is the number of obstacles, and 8y, 8y and 8, are hyper-

parameters representing variances. (x7, y7) represents the position
of obstacle i, and 6 denotes the heading angle of obstacle i. 6" is
the angle between the line from the robots position (x',y’) to the
obstacle is position (x7, y7) and the x-axis.

Finally, the safety scores are introduced to assess the safety
of the current environment. Based on these scores, the robot’s
behavior is modified to navigate and avoid collisions with the
crowd. This approach aims to reduce the risk of collision by
providing real-time analysis and guidance in response to the
assessed safety levels.
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4.3. Intrinsic reward function

The intrinsic reward encourages the robot to explore new states
or reduce the uncertainty of predicted action outcomes (Badia et al.,
2020). In this work, the intrinsic reward incentivizes the agent to
visit unknown or unpredictable states until they are adequately
explored and exploited, particularly in the vicinity of humans and
the goal. Incorporating intrinsic exploration is beneficial in this
context. Our approach is based on the Intrinsic Curiosity Module
(ICM) (Pathak et al., 2017).

First, the states s and next states s, are encoded as inputs to
the feature encoder network ¢, resulting in feature representations
in the feature space ¢(s;) and ¢(s;+1). This step aims to transform
the agent-level states into state representations defined by feature
vectors as outputs of the feature encoder network. Then, the states
in the feature space are used to predict the actions taken, denoted
as dy. Simultaneously, the actual actions a and the feature space
states ¢(s;) are used to predict the next states in the feature space
dA) (St+1). We adopt the same feature encoder network as (Martinez-
Baselga et al., 2023), and the intrinsic reward is calculated as the
mean squared error (MSE) between ¢ (s¢41) and (,{3 (St+1), where
higher MSE indicates that the agent is accessing unknown or
unpredictable states.

To tackle the challenge of inefficient navigation resulting
from excessive exploration, such as repetitive behavior within
the same area, we have incorporated a state visitation record
mechanism. This enhancement optimizes the exploration strategy
and effectively curbs trajectory loops. The intrinsic reward r;, is
formulated as follows:

MSE (¢ (5110 (541))

Tin = W > (18)
AV C (st41)

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1276519
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Xu et al.

where 1 is a hyper-parameter and C(s¢) represents the visited
count of states at time step t, indicating the number of times the
robot has observed state s;. The visited count is used to drive the
robot out of already visited areas to avoid trajectory loops in the
same region. The visited count state is computed on a per-episode
basis, Cep(s) = C(sy).

4.4. Experience replay

Traditional experience replay algorithms only store the
experiences generated by the interaction between the agent
and the environment (i.e., state, action, reward, and next
state) and randomly sample them for training the agent.
However, these approaches overlook valuable information, such
as the agents erroneous decisions and the significance of
experiences. Errors in decision-making provide valuable learning
opportunities for agents to improve their future actions, while
the significance of experiences helps prioritize the replay of
important events, allowing agents to learn more efficiently
from crucial interactions. Therefore, we propose combining
the prioritized experience replay and hindsight experience
replay algorithms.

The key advantage of Prioritized Experience Replay (PER)
(Schaul et al, 2015) lies in its ability to prioritize and sample
important experiences, thereby enabling more effective utilization
of the agent’s training data. PER introduces a priority queue that
efficiently sorts experiences based on their importance for training
the agent, giving higher priority to experiences that are more
beneficial for training. The sampling probability, denoted as P(i),
is monotonic with respect to the priority of the transition, ensuring
a non-zero probability even for transitions with the lowest priority.
In our approach, we adopt the rank-based prioritization sampling
method p(i) in order to enhance robustness and reduce sensitivity
to outliers:

. P
P(i) = 19
() S (19)
1
pi = m; (20)

where « is a hyper-parameter that determines the degree of
prioritization in the sampling and controls the exponentiation of
the priorities p; in the calculation of the sampling probabilities P(3).
Higher values of « emphasize experiences with higher priorities,
enabling a more focused exploration of important experiences
during replay.

Hindsight Replay (HER)
et al, 2017) addresses the specific case of failed experiences.
While
valuable information gained from failed experiences, HER

Experience (Andrychowicz

traditional experience replay algorithms overlook
can transform failed experiences into successful ones and
add them to the experience replay buffer, thus effectively
leveraging the knowledge from unsuccessful attempts. The key
idea is to treat the final state as an additional goal, allowing
the agent to learn useful information from failed simulated
trajectories as if the agent had intended to reach that state from

the beginning.
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We present enhancements to the proposed algorithm (Li et al.,
2021) tailored to suit our specific task better. Specifically, when
a collision occurs or the agent reaches the goal in each episode,
we store the trajectory in the experience replay buffer. If the
agent’s final state exceeds the global time limit (“Timeout”) without
causing discomfort to humans (i.e., the shortest distance is less
than the safety distance), we relabel the final state as reaching
the goal and assign the last reward as half of the success reward.
The modified trajectory is then stored in the replay buffer. The
HER method is a straightforward approach without complex
reward engineering, contributing to improved sample efficiency
in reinforcement learning. The details of the HER algorithm are
outlined in Algorithm 1.

Output: experience replay nenory E
Initialize value network V and target val ue
network ¥

Initialize experience replay nenory E

for episode =1toM do
Sanple an initial

goal ¢
for t=1t0T—1 do
al < 7* (st) = argmax (Q* (s’,a’)) =
al
E[r + y2% maxger QF (s, at41)]

Execute the action 4’ and observe a new

state sp with the original

state s'*!

Record information info of the last state s
if info = ReachGoal or Collision then

for t=1toT—1 do

| Store the transition (sa',r,s') in E

T

elseif info = Timeout then
Rel abel the final

addi tional goal: ¢ <« pT

for t=1toT—1 do
otain the goals s, and s&fL with the new
goal g¢’;
if p'=¢ then rl,, =1,

agent position as the

R
else r,, =1,

Store the transition (s,,.a,r,,.si&) in E
for t=0toN do
Sanple a minibatch B fromE with prioritized

sanpl i ng
Cal cul ate i nmportance sanpling weights

= (N;r)ﬂ

Normal i ze the inportance sanpling weights

Wi
max(w)

Conpute TD errors §

Update priorities in E based on the TD
errors

Set target y;=r"+y" maxn QF (s, alt1)
Updat e val ue network V by gradi ent descent

wp =

L with the weighted | oss

if episode % target update interval = 0 then
| Update target network V < V'

Algorithm 1. D3QN with HER and PER algorithm.
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TABLE 1 Quantitative results: “Success:” the rate of the robot reaching its goal without a collision. “Collision:” the rate of the robot colliding with other
humans. “Nav. Time:" the robot’s navigation time to reach its goal in seconds. “Avg. Return:” discounted cumulative reward in a navigation task.

Method Successst Collision|, Nav. Time Avg. Returnt
OCRA (Van den Berg et al., 2008) 0.736 0.252 13.865 0.3234
AEMCARL (Wang et al., 2022) 0.920 0.045 12.859 0.5392
Intrinsic-SGD3QN (Martinez-Baselga et al., 2023) 0.966 0.034 9.793 0.6964
Hindsight & prioritized experience reply (ours) 0.948 0.052 11.753 0.6194
Intrinsic-Ntimes (ours) 0.977 0.023 10.036 0.7028
Experience reply & intrinsic-Ntimes (ours) 0.980 0.019 10.282 0.6953
SafeCrowdNav(ours) 0.986 0.014 9.984 0.7070

Bold values indicate the best performance of four metric.

5. Experiments

5.1. Implementation details

This paper uses Open-Gym to create a simulation environment
for modeling crowd behavior and conducting path planning.
Specifically, we build upon the commonly used CrowdNav
simulation environment (Chen et al., 2019), which simulates crowd
behavior in indoor scenarios. It incorporates factors such as crowd
density and movement directions, enabling us to better study
crowd behavior and path planning problems, as well as facilitating
algorithm comparison.

Within each scene of the CrowdNav environment, we set up
five dynamic obstacles within a circular area, requiring them to
pass through the center of the circle. In more complex scenarios,
we add five randomly placed individuals who must traverse the
room. They navigate using the ORCA (Van den Berg et al., 2008)
algorithm to avoid collisions with each other. The robot is invisible
to them, meaning pedestrians in the simulation will never yield
to it. This necessitates the robot to have a more proactive and
anticipatory collision avoidance strategy, requiring it to execute
complete obstacle avoidance maneuvers. When one person reaches
a specified goal, another goal is randomly assigned to prevent them
from stopping.

A total of 10,000 randomly generated episodes (agents with
random positions and trajectories) are trained in this study. Each
algorithm starts with the same randomly initialized weights to
ensure a fair comparison. The training hardware is a computer with
an AMD Ryzen 5600X CPU and an Nvidia GeForce RTX 3090 GPU,
which can simultaneously train four tasks overall in three days.

5.2. Quantitative evaluation

The baseline of our approach is intrinsic-SGD3QN (Martinez-
Baselga et al., 2023), which innovatively introduces intrinsic
exploration rewards on top of the related work SG-D3QN (Zhou
etal.,, 2022). Building upon the CrowdNav simulation environment,
this work introduces the innovative concept of intrinsic exploration
reward. In addition, we incorporate prioritized experience replay,
hindsight experience replay, the intrinsic curiosity module with
visit count of states, and safety evaluation for exploration. We
explore different hyper-parameters and select the best ones in each
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case. To validate and compare these methods, each method is tested
in 10,000 randomly generated episodes in circular scenes. Table 1
compares state-of-the-art methods and our approach, highlighting
success rate, collision rate, navigation time, and average return as
performance metrics.

The results in the table indicate that our method SafeCrowdNav
significantly improves the original results and outperforms other
methods. The utilization of prioritized experience replay and
hindsight experience replay enhances the efficiency of the agent
in utilizing past experiences. Our approach’s additional safety
evaluation function achieves a success rate of 98.6%, which is
a 2% improvement compared to the baseline. Our method also
demonstrates the ability to find near-optimal solutions quickly
and reduces collision probability by 2%, thereby improving the
robustness of navigation.

5.3. Qualitative evaluation

In the simple scenario, the training curve is depicted in
Figure 3. The metrics of our method SafeCrowdNav are plotted in
orange, AEMCARL (Wang et al., 2022) in blue, Intrinsic-SGD3QN
(Martinez-Baselga et al., 2023) in purple and the remaining colors
are the metrics of our ablation experiments. It obvious reveals that
our method outperforms Intrinsic-SGD3QN (Martinez-Baselga
et al., 2023) on four metrics. At the beginning of training, with
a randomly initialized model, it is challenging for the agent to
accomplish the crowd navigation task, and most of the termination
states result in “Timeout” or “Collision.” As training progresses, the
robot quickly learns to maintain a safe distance from pedestrians.
It gradually comprehends the crowds behavior and plans its
path based on its predictions of pedestrian trajectories. The
robot’s performance becomes relatively stable toward the end of
the training.

Through learning-based strategies, the robot is able to reach
the target location safely and quickly in both simple and complex
scenarios, as depicted in Figures 4A, B. In the complex scenario, the
robot needs to pay more attention to avoid pedestrians, resulting
in rougher trajectories, and longer navigation times. In both
simple and complex scenarios, the robot exhibits proactive, and
anticipatory collision avoidance behavior. The robot can recognize
and avoid interaction centers where pedestrians approach each
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FIGURE 3
Navigation performance about success rate, collision rate, time to reach the goal, and cumulative discounted reward over 10,000 training episodes.
(A) Success rate. (B) Collision rate. (C) Time to reach the goal. (D) Cumulative discounted reward.

other. For instance, in the simple scenario, the robot suddenly turns
right at around 4.0 seconds to avoid a potential encirclement at 5.0
seconds. Additionally, in complex scenarios, even when the robot is
surrounded by pedestrians, it possesses the ability to safely escape
the environment. In this particular instance, the encirclement by
three pedestrians starts at 1.0 seconds and lasts for approximately
3.0 seconds.

The safety evaluation in the tested crowd scenarios is shown
in Figure 5, where the real-time safety evaluation score of the
robot for the current scene is dynamically displayed. A higher
score indicates better safety in the current situation, guiding the
robot to navigate faster, while a lower score indicates higher risk,
prompting the robot to reduce speed and pay more attention to
pedestrians moving toward it or potentially interacting with it. In
Figure 5A, the robot’s score is 0.46, indicating a lower score due
to multiple pedestrians and a complex environment. The lower
safety evaluation score guides the robot to reduce speed and allocate
different attention weights to surrounding pedestrians, prioritizing
obstacle avoidance. In Figure 5B, the robot’s score is 0.96, indicating
fewer pedestrians in the vicinity and guiding the robot to accelerate
its movement, focusing more on navigation tasks. The setting of
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the safety evaluation score also helps the robot better balance
navigation tasks and obstacle avoidance behavior.

6. Conclusion

This paper aims to address safety, autonomy, effectiveness,
and user-friendliness in evaluating intelligent robot behaviors.
We propose SafeCrowdNav, an innovative approach based
on Deep Reinforcement Learning to enhance navigation in
crowded environments. Our approach includes heterogeneous
spatial-temporal environmental

maps for comprehensive

representation. We introduce a novel safety evaluation

framework based on task
difficulty. Additionally, we enhance the intrinsic reward by

environment complexity and

introducing constraints
scenes, effectively avoiding repetitive and inefficient exploration

based on previously encountered

behavior by the agent. To facilitate efficient and safe navigation
in dense crowds, we also integrate prioritized and hindsight
experience replay techniques. Extensive evaluations in the
CrowdNav simulator demonstrate that SafeCrowdNav achieves
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FIGURE 4

Trajectory maps for a simple and a complex scene. In these maps, the circles represent agents, with the black circle representing the robot and other
colors representing pedestrians. The numbers near the circles indicate the corresponding time steps. The time interval between two consecutive
circles is 1.0 seconds. The maps mark humans'’ starting positions, turning points, and final goal positions with triangles, squares, and pentagrams,
respectively. (A) Trajectories in a simple scenario. (B) Trajectories in a complex scenario.
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FIGURE 5

Visualization of safety evaluation scores: the solid circle represent the robot, the hollow circles represent humans, and the numbers inside the circles
indicate the safety evaluation scores of the robot. (A) Low safety evaluation score: 0.46. (B) High safety evaluation score: 0.96.
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shorter trajectories and higher success rates compared to
state-of-the-art algorithms.
future works
This
datasets  to

However, still have many shortcomings

to overcome. includes the need for real-world

scenario enhance

performance in  real

environments, incorporating more realistic human

reactions, and exploring the

from virtual to

generalization performance
Adjusting  the
conditions  and

real-world  scenarios.

robot’s shape based on real-world
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conducting real-world observations will

provide
valuable insights.
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Introduction: The emergence of cross-modal perception and deep learning
technologies has had a profound impact on modern robotics. This study focuses
on the application of these technologies in the field of robot control, specifically in
the context of volleyball tasks. The primary objective is to achieve precise control
of robots in volleyball tasks by effectively integrating information from different
sensors using a cross-modal self-attention mechanism.

Methods: Our approach involves the utilization of a cross-modal self-attention
mechanism to integrate information from various sensors, providing robots with
a more comprehensive scene perception in volleyball scenarios. To enhance
the diversity and practicality of robot training, we employ Generative Adversarial
Networks (GANs) to synthesize realistic volleyball scenarios. Furthermore, we
leverage transfer learning to incorporate knowledge from other sports datasets,
enriching the process of skill acquisition for robots.

Results: To validate the feasibility of our approach, we conducted experiments
where we simulated robot volleyball scenarios using multiple volleyball-
related datasets. We measured various quantitative metrics, including accuracy,
recall, precision, and F1 score. The experimental results indicate a significant
enhancement in the performance of our approach in robot volleyball tasks.

Discussion: The outcomes of this study offer valuable insights into the application
of multi-modal perception and deep learning in the field of sports robotics.
By effectively integrating information from different sensors and incorporating
synthetic data through GANs and transfer learning, our approach demonstrates
improved robot performance in volleyball tasks. These findings not only advance
the field of robotics but also open up new possibilities for human-robot
collaboration in sports and athletic performance improvement. This research
paves the way for further exploration of advanced technologies in sports robotics,
benefiting both the scientific community and athletes seeking performance
enhancement through robotic assistance.

KEYWORDS

multimodal perception, volleyball robot, spiking skill, cross-modal self-attention
mechanism, adversarial network, transfer learning

1. Introduction

With the rapid advancement of technology, robotics is gradually permeating various
fields, including sports. This study aims to enhance robotic skills in volleyball through
deep learning and multimodal sensing technology, injecting innovation, and vitality into
the realm of sports (Hong et al., 2021).

High-level sports demand athletes to possess outstanding perceptual, reaction
speed, and motor control abilities. The development of modern technology has
created opportunities for the application of robotics (Siedentop and Van der
Mars, 2022). Robots can serve as ideal practice partners for athletes, enriching

205 frontiersin.org


https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2023.1288463
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2023.1288463&domain=pdf&date_stamp=2023-11-10
mailto:liangzhange520@163.com
https://doi.org/10.3389/fnbot.2023.1288463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2023.1288463/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang and Liang

the levels and enjoyment of competitions, and offering audiences
novel viewing experiences (Siegel and Morris, 2020).

This research is focused on volleyball, a sport characterized
by intense teamwork, demanding athletes to make precise
decisions and immediate reactions in rapidly changing game
scenarios (Oliveira et al,, 2020; Weiss et al., 2021). Despite the
increasing utilization of robots in sports, there is still room for
improvement in robot spiking skills in volleyball. Therefore, this
study focuses on improving the skill level of robots in volleyball
matches by integrating multimodal perception and deep learning
methods, aiming to enable their practical use in real competitions.

In recent years, there has been significant interest and
research in the application of robotics technology in the field
of sports (Thuruthel et al., 2019; Chen et al., 2020; Oliff et al,,
2020). However, despite the extensive research in various sports
disciplines, the exploration and study of robotics in volleyball
have been relatively limited. Current research primarily focuses on
aspects such as robot design, perception, and interaction (Ji et al.,
2022; Hu et al.,, 2023). Nevertheless, there is still a need for further
investigation into the application of multimodal perception and
deep learning in this context (Olaniyan et al., 2022).

In recent years, there has been a growing interest and research
focus on the application of robotics technology in the field of
sports (Thuruthel et al., 2019; Chen et al., 2020; Oliff et al., 2020).
However, despite extensive research across various disciplines in
sports, exploration and research in volleyball robot technology have
remained relatively limited. Current research primarily centers
around aspects such as robot design, perception, and interaction (Ji
et al, 2022; Hu et al, 2023). Jinho So and his colleagues (So
etal, 2021) investigated the precise estimation of soft manipulator
shape using stretchable shape sensors, while Li and Peng (2022)
introduced a monocular visual-tactile sensor to enhance the
robustness of robot manipulation. Nevertheless, there is still a need
for further research on the application of multimodal sensing and
deep learning in this domain (Olaniyan et al., 2022).

The contributions of this paper can be summarized in the
following three aspects:

1. This
mechanism designed to holistically address the amalgamation

study introduces a cross-modal self-attention
of diverse multimodal data collected by disparate sensors,
including images and action sequences. Leveraging self-
attention, we seamlessly integrate information from distinct
modalities, enabling robots to comprehensively perceive
cyclic motion scenarios. This innovative approach empowers
robots to execute various operations with heightened accuracy
in repetitive tasks, such as assessing ball velocity, trajectory,
and opponent position in volleyball spiking, thus significantly
elevating spiking proficiency.

2. The successful application of generative adversarial networks
(GANs) to synthesize immersive cyclic motion scenarios
is showcased. Through the generative and discriminative
processes of GANSs, we fabricate authentically textured virtual
environments, imbuing robot skill training with heightened
challenge and practicality. This augmentation not only fosters
skill adaptability but also furnishes an expanded pool of
training data, further propelling the prowess of robots.

3. The study maximizes the philosophy of transfer learning,
funneling insights gleaned from alternate cyclic motion
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This
knowledge infusion expedites the robot’s mastery of cyclic

datasets into the enhancement of robotic skills.
motion domains, facilitating swift adaptation to competitive
settings and accelerated skill growth. This method not only
introduces fresh paradigms for robot training but also widens
the horizons of transfer learning’s applicability in the realm
of robotics.

The logical structure of this article is as follows. In Section 2,
methods, the technical methods used in this study are introduced in
detail, including cross-modal self-attention mechanism, adversarial
network, and transfer learning. In Section 3, experiments, the
experimental environment and data are described, and the
evaluation indicators are introduced. At the same time, the
experimental results were analyzed in detail, the performance
of different methods and data sets were compared, and the
effectiveness of the technical method was verified. In Section 4,
discussion and conclusion, the research results are summarized,
the significance and contribution of the research are evaluated, the
limitations of the research are pointed out, and prospects for future
work are proposed.

2. Methodology

In the method part of Chapter 3, we will introduce the overall
algorithm flow of this research in detail, and show how to improve
the spiking skills of volleyball robots through key technologies
such as cross-modal self-attention mechanism, adversarial network,
and transfer learning. This comprehensive algorithm process will
provide the basis for subsequent experiments and comparative
analysis, and also present the overall framework of this study for
readers. The overall algorithm flow chart is shown in Figure 1.

2.1. Cross-modal self-attention mechanism

When dealing with multimodal data, attention mechanisms are
powerful tools that allow the model to focus on the most relevant
information from different modalities. We leverage a cross-modal
self-attention mechanism to effectively integrate data from various
sensors for enhancing the skills of our volleyball robot (Wang et al.,
2021). Attention mechanisms are widely used in deep learning,
enabling models to selectively attend to important parts of the
data while disregarding irrelevant portions. There are two types
of attention mechanisms: self-attention and cross-attention (Niu
et al., 2021). Self-attention involves interactions and fusion of
information within the same modality. For example, in a language
model, self-attention allows each word to adjust its representation
based on the context. Cross-attention involves interactions and
fusion of information between different modalities. For instance,
in visual question-answering tasks, cross-attention can establish
correspondences between questions and images. The cross-modal
self-attention mechanism is illustrated in Figure 2.

The key to the self-attention mechanism is to calculate the
attention weight. One of the classic methods is to use Scaled
Dot-Product Attention. Given a set of query vectors (Q), key
vectors (K), and value vectors (V), it can compute attention weights
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objective

by the following formula:

T

NR

where di is the dimension of the query and key vectors. The

Attention (Q, K, V) = softmax )%

(1)

dot product operation in this formula expresses the similarity
between the query and the key, and then normalizes using the
softmax function to get the attention weights. Finally, the weighted

Frontiersin Neurorobotics

values are obtained by multiplying the attention weights with the
value vector.

In our study, we further apply the attention mechanism
to multimodal data. To synthesize information from different
sensors, we introduce a cross-modal self-attention mechanism.
In this approach, we take the feature representations of
different modalities as queries, keys and values, so that
the model can automatically learn the correlation between
different modalities.
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Formally, suppose we have two modalities M; and M, with
corresponding queries, keys, and values Q1,K;,V; and Q2,K3,V>,
respectively. We can compute the cross-modal self-attention
weights as follows:

. QiK;
Cross-Modal Attention (Qy, K3, V) = softmax 1%

Ve
2)

Similarly, we can calculate the attention weight of modality M,
to modality M;.

In practical applications, we also need to consider optimization
methods such as loss function and gradient descent to train
our model. A commonly used optimization function is the
cross-entropy loss function, which has good results in multi-
classification tasks. For neural network training, we usually use
the backpropagation algorithm to calculate gradients and perform
parameter updates. Its formula is as follows:

CrossEntropy (p,q) = — Zpi log(q;:) (3)

where p is the actual probability distribution, g is the probability
distribution predicted by the model, and i represents the index
of the category. By minimizing the cross-entropy loss, the model
can better fit the training data, thus improving the accuracy
of predictions.

During the training process of the neural network, we use the
backpropagation algorithm to calculate the gradient (Zhang, 2019),
and use optimization methods such as gradient descent to update
the model parameters. Backpropagation calculates the gradient of
each parameter to the loss function through the chain rule, and
then uses gradient descent to update the parameters to gradually
optimize the model.

Through the cross-modal self-attention mechanism, we can
extract key information from different sensor data, realizing
the organic fusion and collaboration of multi-modal data. This
provides a more solid foundation for our subsequent Generative
Adversarial Network and transfer learning. Next, we will detail how
to further improve the skills of volleyball robots with the help of
Generative Adversarial Network.

2.2. Generative adversarial networks

Generative Adversarial Networks (GANs) are a deep learning
framework that consists of two neural networks called a generator
and a discriminator (Mi et al., 2020). The goal of a generator
is to generate data, such as images, audio, etc., from a random
noise vector that has a distribution similar to real data. The
goal of the discriminator is to distinguish the data generated by
the generator from the real data and give a probability value
indicating its authenticity. There is an adversarial relationship
between the generator and the discriminator, that is, the generator
tries to deceive the discriminator, and the discriminator tries to see
through the generator. By alternately training the two networks,
the generator is finally able to generate high-quality data, while
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the discriminator cannot distinguish between real and fake. The
confrontation network is shown in Figure 3.
The basic objective function of GAN can be expressed as:

mén mgx V(D, G) = Ex~p () logD(x)]

FEo~p,(9[log(1 — D(G(2)))] (4)

In this study, we use this method to enhance the spiking
skills of a volleyball robot. Our method can effectively utilize the
idea of adversarial learning, enabling the generator to learn useful
knowledge from other sports game data and transfer it to volleyball
games. Our method consists of the following three steps:

1. Data preprocessing. We used a video feature extraction tool to
extract the features of each frame in the volleyball video and save
it as a feature vector. This tool can use a variety of pre-trained
models (such as I3D, I3D-non-local, SlowFast, etc.) to extract
powerful video features. We divide each video into segments and
label each segment indicating whether the segment contains a
smashing action. We regard the clips containing the smashing
action as positive samples and the clips not containing the
smashing action as negative samples.

2. GANs are trained. We used a Conditional Generative
Adversarial Networks to train our model (Xu et al, 2019).
Conditional Generative Adversarial Networks is a method
of introducing additional information into GANSs, such as
category labels, text descriptions, etc. The objective function
of Conditional Generative Adversarial Networks can be
expressed as:

minmaxG VD, G) = Exvpyyo)y~panat 108DCK)]
FEp(2) y~paaay) [10g(1 — D(G(z[))]  (5)

Among them, V(D,G) is the objective function of
GANs,D(x) is the probability that the discriminator gives the
input x is real data, G(z) is the data generated by the generator
from the noise vector z, pj,, (x) is the real data distribution, and
Pz(z) is the noise vector distribution. y is extra information, such
as category labels. In our method, we use a textual description
as additional information, indicating the requirement of the
smashing action, such as “the smashing angle is 45 degrees, and
the force is 80%”. The training process of GANs can be regarded
as a zero-sum game, that is, the discriminator and the generator
compete with each other so that the objective function reaches
the Nash equilibrium, namely:

G* = argminmaxV (D, G) (6)
G

3. GANs application. We use a decoder to restore the sequence
of feature vectors of the video clips produced by the generator
to a sequence of images, which are stitched into a single video.
We compare the generated videos with real volleyball match
videos to evaluate their quality and authenticity. We also use
the generated videos as training data for the volleyball robot
to improve its spiking skills. The output of the decoder can be
expressed as:

J%t = fdec(ht) (7)
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Among them, X; is the image generated at the t-th moment,
Jaec is the decoder function, and #; is the feature vector output
by the generator at the t-th moment.

During training, the generator and discriminator are
optimized through adversarial learning, specifically, the
generator tries to minimize V(D, G), while the discriminator
tries to maximize V(D, G). This leads to a dynamic balancing
process at which the samples generated by the generator
are realistic enough that the discriminator cannot effectively
distinguish real samples from generated samples. In terms of
optimization functions, for the generator G, we can use the
following optimization functions to update the parameters of
the generator:

mci;n V(D,G) = E;p () [log(1 — D(G(2)))] (8)

In practical applications, through methods such as
backpropagation and gradient descent, the parameters of
the generator and discriminator can be gradually optimized to

achieve the goal of training GANS.

By introducing GANs, we can further improve the skills of
volleyball robots and generate more realistic and diverse game
scenes, thus laying a more solid foundation for the improvement of
robot skills. Next, we explore how transfer learning can be applied
to skill improvement for volleyball robots.

2.3. Transfer learning

We use a transfer learning method called domain adaptation
(Zhuang et al, 2020). In this approach, we improve the
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generalization of the model on the target domain by minimizing the
domain difference between the source and target domains. Transfer
learning is shown in the Figure 4.

Assuming we have source domain data Dspyuree and target
domain data Drgrger, our goal is to transfer the knowledge on
the source domain to the target domain. We can achieve this
by minimizing the distribution difference between the source
and target domains. A common method is Maximum Mean
Difference (MMD):

1 Nsource )
i
MMD (Dsource > Dtarget) = § ® (xsource)
Msource i1
1 Ntarget 2

3" P tlarged) )
j=1

Ntarget

i i :
source Ad Xiyroo¢ denote samples in the source

domain and target domain, respectively, and ¢(.) is a mapping

Among them, x

function that maps samples into a latent space. By minimizing
MMD, we can reduce the distribution difference between source
and target domains, thus enabling transfer learning.

Another common approach is Domain Adversarial Neural
Network (DANN) (Ajakan et al., 2014). In DANN, we introduce
a domain classifier whose goal is to distinguish samples in the
source and target domains. At the same time, we train a feature
extractor to generate features that are indistinguishable to domain
classifiers. This can be achieved by minimizing the loss function of
the domain classifier:

1 n
Laomain = —— ) 1og D(f(x) (10)
i=1
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Among them, D(.) is the domain classifier, f(.) is the feature
extractor, and E is the sample. By minimizing Lgymain, We
can make features more consistent across domains, enabling
transfer learning.

In addition, there is a common method of transfer learning
by training an initial model on the source domain, then using the
parameters of this model as the initial parameters of the target
domain model, and then fine-tuning the model parameters on the
target domain. This can be achieved by minimizing a loss function
over the target domain:
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Etarget (ftarget > Dtarget) = E(x,y)'vagﬂ [E (ftarget (%), }’)] (11)

Among them, fi4ge is the model on the target domain, Dygyger
is the data distribution of the target domain, (x, y) is the sample of
the target domain, and ¢ represents the loss function.

Optimization methods for transfer learning usually consist
of two steps: feature extraction and fine-tuning. In the feature
extraction stage, we can extract general feature representations
from the source domain through pre-trained models. Then, in the
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fine-tuning stage, we train the extracted feature representations
together with data from the target domain to further adapt to the
target domain. Specifically, the fine-tuning optimization function
can be expressed as:

‘Ctarget (ftarget: Dtarget) +Ar- [:source (ftargeb Dsource) ( 12)

Among them, Ly, represents the loss function on the source
domain, and X is a hyperparameter that weighs the two losses.

Through transfer learning, we can make full use of the
knowledge of the existing modality in the task of volleyball
robot and improve the performance of the model in the
new modality.

In the Section 2 of this chapter, we propose a method
that comprehensively applies attention mechanisms, GANs, and
transfer learning to improve the skills of volleyball robots.
First, we introduce a cross-modal self-attention mechanism,
which effectively integrates multi-modal sensor data, enabling the
model to automatically learn the correlation between different
modalities. By calculating attention weights, we are able to
extract key information from different sensor data, laying a solid
foundation for the subsequent steps. Then, we introduced the
application of GAN. Through domain adaptation and domain
confrontation neural network, the knowledge transfer between
the source domain and the target domain is realized, thereby
improving the generalization ability of the model in the target
domain. Finally, we explore how to train the initial model on
the source domain and fine-tune the parameters on the target
domain to fit the data distribution of the target domain through
transfer learning. The comprehensive application of these methods
provides strong support for our experimental part. In the next
chapter, we will introduce the experimental design and result
analysis in detail to verify the effectiveness and performance
improvement of our proposed method in improving the skills of
volleyball robots.

3. Experiment

The experimental process of this paper is shown in Figure 5.

3.1. Experimental environment

e Hardware Environment

In this research, we rely on an advanced computing
platform as the hardware environment, which is equipped
with a high-performance AMD Ryzen 7 5800X processor,
equipped with 64GB ultra-high-speed DDR4 memory, and
configured with 2 NVIDIA GeForce RTX 3080 10GB graphics
card. This excellent hardware configuration endows us
with powerful computing and storage capabilities, especially
suitable for training and inference of deep learning tasks.
In addition, we also use multi-channel SSD hard disk to
ensure the high efficiency of data reading and storage. Such
a hardware environment provides strong support for the
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smooth progress of the experiment, making the training
process of the model more efficient, stable, and reliable.
Software Environment

In this study, we used Python and PyTorch to implement
a method for improving the spiking skills of volleyball robots
based on deep learning. As the main deep learning framework,
PyTorch provides us with powerful model building and
training tools, allowing us to flexibly design and optimize
our spiking skill model. In the experiment, we made full
use of PyTorch’s efficient computing power and automatic
differentiation function to speed up the model training
process, so that our model can converge faster and achieve
better results.

3.2. Experimental data

e Volleyball Dataset

Volleyball Dataset is a video action recognition dataset
proposed by Ibrahim et al. of Simon Fraser University in
Canada in 2016. The data set consists of 55 volleyball game
videos, in which 4830 key frames mark the player’s position,
individual action and group behavior. Single action includes
9 categories, such as smash, block, pass, etc. Group behavior
includes 8 categories, such as passing the ball to the left,
scoring from the right, and both sides scrimmage. This
dataset aims to provide a challenging scenario for studying the
recognition and understanding of human actions and group
activities in videos. It can be used for a variety of video analysis
tasks, such as action recognition, group activity recognition,
person tracking, etc. This dataset has been used and cited by
several research papers, demonstrating its value and influence
in the field of video analysis.
VREN: Volleyball Rally Dataset
Notation Language

with  Expression

VREN is a video volleyball game dataset proposed by
Xia et al. at the University of California, Santa Barbara in
2022. This dataset contains video clips from professional
and NCAA Div-I indoor volleyball matches, where each
round is annotated with a volleyball description language.
This language can completely describe the player’s action,
position, and volleyball trajectory in the volleyball game. This
dataset aims to provide a rich and high-level benchmark for
studying the skills of robots in volleyball games. Based on
the language, this dataset proposes three tasks for automated
volleyball action and tactical analysis: (1) volleyball round
prediction, which aims to predict the outcome of rounds and
help players and coaches improve decision-making in practice;
(2) setter type and Smash type prediction, helping athletes, and
coaches to prepare for the game more effectively; (3) Volleyball
tactics and offensive zone statistics, providing advanced
volleyball statistics to help coaches better understand the
game and opponents tactics. The authors conduct a
case study showing how experimental results can provide
insight to the volleyball analysis community. Furthermore,
experimental evaluations on real data establish a baseline
for future research and applications. The research bridges
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e UCF101

The UCF101 dataset is a video action recognition dataset
proposed by Soomro et al. at the University of Central
Florida in 2012. The dataset consists of 13,320 real action
videos from YouTube, covering 101 action categories. These
action categories can be divided into five types: human-object
interaction, body movement, human-human interaction,
playing musical instruments, and sports, some of which are
related to volleyball, such as smashing, blocking, passing, etc.
This dataset is an extension of the UCF50 dataset, which has
only 50 action categories. The UCF101 dataset is highly diverse
and challenging because there are a large number of changes
in camera motion, object appearance and pose, object scale,
viewing angle, background clutter, and lighting conditions in
the video. This dataset aims to facilitate further research in
the field of action recognition by learning and exploring new
categories of real actions.
MultiSports dataset

The MultiSports dataset is a video multiplayer sports
action detection dataset, which was proposed by Li et al.
of Nanjing University in 2021. The dataset consists of 3200
video clips of sports games from YouTube, covering 4
sports categories: aerobics, basketball, football, and volleyball.
The dataset annotates 37,701 action instances and 902k
bounding boxes, and each action instance has a fine-grained
action category label, such as smashing, blocking, passing,
etc. This dataset aims to provide a rich and challenging
benchmark for studying multi-person video action detection.
The dataset has the characteristics of high diversity, high
density, and high quality, and can reflect real sports
competition scenes.

Frontiersin Neurorobotics

212

3.3. Evaluation index

In the assessment process of this research, in order to
comprehensively and objectively measure the effectiveness and
performance of the proposed sports teaching method, a series of
key evaluation metrics were employed. These metrics not only
facilitate a quantitative evaluation of the model’s performance
across various tasks but also provide us with in-depth insights to
better comprehend the strengths and limitations of the method. In
the following section, we will provide a detailed introduction and
analysis of the following key metrics: accuracy, recall, precision, and
F1 score. These metrics will assist us in objectively evaluating the
efficacy of the proposed method in the context of sports teaching,
thereby providing robust support for the reliability of the research
and the feasibility of its practical application.

e Hit rate

In the skill improvement task of the volleyball robot, the
hitting rate is a critical evaluation metric used to measure
the performance of the proposed method. The hitting rate is
defined as the ratio between the number of events correctly
predicted by the model and the total number of samples.
It provides an intuitive reflection of the model’s prediction
accuracy, aiding in the assessment of its performance. The
hitting rate can be calculated using the following formula:

TP+ TN
TP + TN + FP + FN

In the context of skill enhancement tasks for the volleyball

Hit Rate = x 100% (13)

robot, the hitting rate is a pivotal evaluation metric used to
gauge the performance of the proposed method. The hitting
rate is defined as the ratio between the number of correctly
predicted positive samples (True Positives, TP), indicating the
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number of instances where skill improvement was accurately
identified, and the total number of samples. Similarly, the
correctly predicted negative samples (True Negatives, TN)
represent instances where the absence of skill improvement
was accurately recognized. Conversely, the false positives
(FP) correspond to instances where the model erroneously
predicted positive samples when they were, in fact, negative.
The false negatives (FN) denote cases where the model
inaccurately predicted negative samples as positive.

By calculating the hitting rate, we gain insights into the
model’s accuracy in predicting skill levels, thereby evaluating
the practicality and effectiveness of this approach in real-world
sports teaching scenarios. In our research, the hitting rate will
serve as a critical evaluation metric, assisting us in conducting
a thorough analysis of model performance and providing
robust support for subsequent experimental findings.

Recall

In the skill enhancement task of the volleyball robot, recall
is a critical evaluation metric used to assess the effectiveness
of the proposed attention-based mechanism in capturing the
skill level of volleyball players. Recall measures the model’s
ability to correctly identify actual positive samples, i.e., the
proportion of samples that the model correctly predicts
out of all actual positive samples. This is of significant
importance for evaluating the model’s overall performance
in sports education. Recall can be calculated using the
following formula:

TP
Recall = ——— x 100% (14)
TP + FN

In the context of skill enhancement tasks for the volleyball
robot, recall is a crucial evaluation metric used to assess
the model’s ability to correctly identify positive samples.
Specifically, it measures the proportion of samples that the
model accurately predicts as skill level improvements out of
all actual positive samples in the volleyball skill enhancement
task. Conversely, false negatives (FN) represent the positive
samples that the model fails to predict accurately, indicating
instances where skill level improvements were missed.

By computing the recall rate, we gain insights into
the model’s capacity to recognize positive samples, thus
evaluating the effectiveness of the attention-based mechanism
in enhancing the volleyball robot’s skills. In our research,
recall will serve as a vital evaluation metric, enabling us to
conduct an in-depth analysis of model performance, providing
a comprehensive assessment, and supporting subsequent
experimental results.

Precision

In the context of skill enhancement tasks for the volleyball
robot, precision is a critical evaluation metric used to measure
the accuracy of the attention-based method in predicting
the skill level of volleyball players. Precision assesses the
proportion of samples that the model predicts as positive
samples, which are indeed positive samples in reality. This
is of paramount importance for evaluating the reliability and
accuracy of the model in sports education. Precision can be
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calculated using the following formula:

Precision = L x 100% (15)
TP + FP

TP (True Positives): The number of positive samples
correctly predicted by the model, indicating the instances
where skill level improvement was accurately identified. FP
(False Positives): The number of positive samples incorrectly
predicted by the model, signifying the instances where the
model erroneously predicted negative samples as positive.

By calculating precision, we gain insights into the model’s
accuracy when predicting positive samples, thereby evaluating
the effectiveness of the attention-based method in the
volleyball robots skill enhancement task. In our research,
precision will serve as a crucial evaluation metric, aiding
us in analyzing model performance, providing a dependable
assessment, and supporting our experimental results.

e F1 Score

In our study of skill enhancement in volleyball robots, the
F1 score serves as a critical evaluation metric employed for
the comprehensive assessment of the method’s performance
in skill improvement. This score takes into account both
precision and recall, thus facilitating the equilibrium between
the model’s accuracy and comprehensiveness in identifying
skill improvement instances. Consequently, it provides a
more comprehensive performance measurement metric. The
formula for calculating the F1 score is as follows:

2 x Precision x Recall
F1= - x 100% (16)
Precision + Recall

In this formula, we introduce previously discussed
precision and recall as parameters. Precision measures the
accuracy of the model in identifying positive samples
as positive samples, while recall gauges the models
comprehensive recognition capability of positive samples.

The Fl1 score combines the accuracy and
comprehensiveness of the model in skill improvement
cases, making it a crucial evaluation metric in the volleyball
skill enhancement study. By calculating the F1 score, we can
gain a more comprehensive understanding of the method’s
performance, ensuring that the model achieves accurate and
comprehensive results in skill improvement.

Algorithm 1 represents the algorithm flow of the training in
this paper.

3.4. Experimental comparison and analysis

In the preceding sections, we provided a comprehensive
introduction to the design and implementation of the multimodal
perception-based deep learning approach for enhancing volleyball
robot spiking skills. In this chapter, our focus shifts toward
a comparative analysis of experimental results, aiming to
comprehensively evaluate the effectiveness and superiority of
the proposed methods. By conducting experiments on multiple
datasets, our goal is to delve into the contributions of different
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1: Input: Volleyball Dataset, VREN Dataset, UCF101
Dat aset, Milti Sports Dataset

2. Initialize Trans-GAN Net paraneters: 6

3: Initialize discrimnator paraneters: D

4: Define cross-nodal self-attention nechani sm

Attention(X)

5. for each epoch do

6: for each dataset in [Volleyball, VREN, UCF101,
Ml ti Sports] do

7: Load batch of data: X

8: Conmput e attention weights: W = Attention(X)

9: Conpute transforned features: X' =W x X

10: Generate fake data: Xg, = TransGAN(X')

11: Conpute discrininator loss: Lp = —log(D(X))
— log(1 — D(X))

12: Conpute generator loss: Lg = —log(D(Xjk))

13: Backpropagat e and update 6 and D using Lp
and Lg

14: end for

15: if epoch %transfer interval == 0 then

16: Performtransfer |earning by copying

features to next
17: end if
18: Conput e eval uation netrics on validation set:

| ayers

19: Ht Rate: Zimloi=iv
v
20:  Recal|: Zi=lU=hiandy=n
YL 10i=1)

N -
21: Preci si on: Ly Wi=pi and yi=) (y,’\y Ji and yi )
1(yi=1)

. . Pr ecii si onxRecal |
22: F1 Score: 2 X pregisiontRecall

23: if F1 Score > best score then
24: Save best nodel

25: end if

26: end for

Algorithm 1. Training of Trans-GAN Net.

models and their combinations in enhancing volleyball robot skills,
as well as to validate the applicability of our approach across
various scenarios. This process of experimental comparison and
analysis not only directly showcases the practical effectiveness
of our approach but also provides deeper insights, guiding us
toward optimizing and advancing the technological trajectory of
sports robots.

Through comparing experimental results across different
datasets, we will uncover the performance of the multimodal
perception-based deep learning approach in varying contexts.
Simultaneously, we will integrate the evaluation metrics
introduced earlier, such as hit rate, recall rate, precision, and
F1 score, to conduct a comprehensive assessment of the overall
model performance. We will also analyze the introduction of
different modules, exploring the specific roles of cross-modal
self-attention mechanisms, GANs, transfer learning, and other
methods in enhancing volleyball robot skills. In-depth analysis of
the experimental results will allow us to understand the interplay
between different modules and their impact on enhancing
robot skills.

Furthermore, we will compare the experimental results with

those of the baseline models to quantify and illustrate the
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superiority of our approach. Through comparative analysis, we can
accurately evaluate the performance improvement brought about
by the multimodal perception-based deep learning approach in
enhancing volleyball robot skills. These comparative and analytical
results will further validate the feasibility and practicality of our
approach, providing robust support and references for research and
applications in the field of sports robotics.

Next, we will meticulously dissect the experimental results,
comprehensively showcasing the performance of our model
across different datasets and metrics, providing readers with a
comprehensive understanding of the model’s capabilities and its
potential value in real-world applications.

From the data in Table 1 above, it can be seen that our method
outperforms other research works on both the Volleyball dataset
and the VREN dataset. Specifically, on the Volleyvall data set,
after removing our method, compared with the research method
of Salim et al.,, who achieved the highest hit rate of 91.66% and
the F1 score of 90.77%, our hit rate It has increased by 4.45%,
and the F1 score has also increased by 3.98%. At the same time,
our precision and recall rate have also reached the optimal value
of all methods, reaching 95.41 and 94.57%, respectively, and the
performance on the VREN data set is also better than other
methods, our hit rate and The F1 score is 8.33 and 6.31% higher
than the research method of Kautz et al,, and 7.03 and 4.28%
higher than the method of Liang et al. In general, from the
evaluation results on these two classic volleyball datasets, it can
be seen that our new deep learning method with multi-modal
information learning and deep generative network as the backbone
is effective in identifying and predicting volleyball. There is a
significant advantage in action. It can better learn and mine the
visual and motion features in volleyball, so it has higher precision
and recall. This shows that the method has great potential in
improving the motion control skills of volleyball robots. Finally,
we compared and visualized the results in Table 1, as shown in
Figure 6.

According to the comparative data of Hit Rate, Recall,
Precision, and F1 Score of different methods on the two
datasets in Table 2 above, it can be seen that our method has
significant advantages over other methods. On UCF101 dataset
and MultiSports dataset, compared with the work of Kautz et al.
using the same dataset, our proposed method achieves 9.57%
higher hit rate and 7.79% higher recall rate on UCF101 dataset,
F1 The score is 8.48% higher; the hit rate is 7.85% higher in the
MultiSports dataset, the recall rate is 6.78% higher, and the F1
score is 7.46% higher. At the same time, excluding our method,
compared with Salim et al’s study on UCF101 which obtained
the highest recall rate of 90.81%, our recall rate improved by
3.86%. Compared with Tang et al. who obtained F1 score of
88.20% in the MultiSports dataset, our F1 score increased by
6.88%. Furthermore, we exceed the main evaluation metrics of
other methods such as Liang et al. and Wenninger et al. on
these two action datasets. This shows that the method shows
stronger generalization ability in learning joint motion and action
features, and can better identify and classify different types of
sports actions. Overall, its excellent performance on two large-
scale general-purpose motion datasets once again confirms the
advantages of this method in the field of action recognition.
We compared and visualized the results in Table 2, as shown in
Figure 7.
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TABLE 1 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators based on different methods under Volleyball and VREN datasets.

Datasets
VREN dataset

Volleyball dataset

Hitrate  Recall (%) Precision F1 Score Hit rate Recall (%) Precision  F1 Score
(%) (%) (%) (%) (%) (%)
Kautz et al. (2017) 87.28 87.41 88.87 88.13 86.69 87.23 88.37 87.8
Li and Tian (2023) 88.24 87.75 87.93 87.84 86.54 88.73 88.15 88.44
Tang (2021) 89.02 88.88 88.47 88.67 87.82 89.74 89.46 89.6
Liang and Liang (2022) 89.47 89.57 88.59 89.08 87.99 89.79 89.88 89.83
Wenninger et al. (2020) 89.98 90.68 88.96 89.81 89.81 89.89 91.76 90.82
Salim et al. (2019) 91.66 90.95 90.59 90.77 90.02 89.99 92.31 91.14
Ours 96.11 95.41 94.57 94.99 95.02 92.02 96.29 94.11
Hit Rate Comparison Recall Comparison
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FIGURE 6
Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators based on different methods under Volleyball and VREN datasets.

According to the data in Table 3 above, with the improvement
of the model structure, the performance of our proposed method
on the two classic volleyball data sets has been significantly
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improved. Specifically, compared with the baseline model, after
adding the self-attention mechanism, the hit rate on the Volleyball
dataset increased by 6.78%, the recall rate increased by 11.76%,
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TABLE 2 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators based on different methods under UCF101 and MultiSports datasets.

DEIEN
UCF101 dataset MultiSports dataset
Hit rate Recall (%) Precision F1 Score Hit rate Recall (%) Precision F1 Score
(%) (%) (%) (%) (%) (%)
Kautz et al. (2017) 86.71 86.88 87.84 87.36 88.83 86.75 88.51 87.62
Li and Tian (2023) 85.87 87.32 88.11 87.71 89.3 86.67 87.98 87.32
Tang (2021) 86.89 88.41 89.35 88.88 90.49 87.56 88.84 88.2
Liang and Liang (2022) 87.36 89.69 90.3 89.99 91.19 88.83 90.05 89.44
Wenninger et al. (2020) 89.54 90.29 91.04 90.66 91.74 89.7 91.27 90.02
Salim et al. (2019) 90.6 90.81 91.58 91.19 92.06 90.22 91.34 90.78
Ours 96.28 94.67 97.03 95.84 96.68 93.53 96.68 95.08
Hit Rate Comparison Recall Comparison
100.0 100.0
m Volleyball Dataset m Volleyball Dataset
© VREN Dataset © VREN Dataset
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8 =
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Model Model
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FIGURE 7
Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators based on different methods under UCF101 and MultiSports
datasets.

and the F1 score increased by 7.15%; the corresponding increase ~ model, the indicators of the two data sets have been further
in the VREN dataset They are 7.49, 5.27, and 6.41%, respectively. ~ improved. Among them, the hit rate and F1 score of the
After adding the generative adversarial network to the attention ~ Volleyball data set have increased by about 9.73 and 7.5%,
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TABLE 3 Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators of different modules based on Volleyball and VREN datasets.

Dataset
Volleyball dataset VREN dataset
Hit rate (%) Recall (%) Precision F1 Score Hitrate  Recall (%) Precision F1 Score
(%) (%) (%) (%) (%)
baseline 65.49 64.34 67.57 65.92 66.52 67.09 67.39 67.24
+satt 72.27 76.10 70.28 73.07 74.01 72.36 74.99 73.65
+gan 82.00 78.58 82.67 80.57 80.12 84.36 77.02 80.52
+satt gan(our) 95.81 93.72 95.71 94.70 96.15 94.85 96.15 95.49
“satt” is the self-attention mechanism, and “gan” is the generative adversarial network.
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FIGURE 8
Comparison and visualization of Hit Rate, Recall, Precision, and F1 Score indicators of different modules based on Volleyball and VREN datasets.

TABLE 4 Comparison of Hit Rate, Recall, Precision, and F1 Score indicators of different modules based on UCF101 and MultiSports datasets.

Module Dataset
UCF101 dataset MultiSports dataset
Hit rate Recall (%) Precision F1 Score Hit rate Recall (%) Precision F1 Score

(%) (%) VA (VA (VA (%)
baseline 6321 66.84 67.32 67.07 66.81 68.0 69.24 68.61
+satt 68.22 70.31 72.65 71.46 68.81 70.62 78.24 74.23
+gan 75.41 80.73 82.94 81.82 77.33 76.29 85.39 80.58
+satt gan(our) 96.18 95.91 96.32 96.11 94.5 95.68 96.28 95.98

“satt” is the self-attention mechanism, and “gan” is the generative adversarial network.

respectively; Indicators increased by 6 to 7%. In the end, these
two key modules were applied in series, not only achieved
the highest hit rate of more than 95% on the two data sets,
the precision index also exceeded 95 and 96%, and the recall
rate was increased to 93.72 and 94.85% of the top level. This
fully confirms the important role of attention mechanism and
adversarial learning in improving the ability of deep network
action recognition, and also highlights the advantages of our
improved method in mining multi-modal features. At the same

Frontiersin Neurorobotics

217

time, we compared and visualized the results in Table 3, as shown
in Figure 8.

From the data in Table 4 above, it can be seen that with the
continuous optimization of the model structure in our proposed
method, the action recognition ability on these two large-scale
general-purpose action datasets UCf101 and MultiSports has been
greatly improved. Specifically, in comparison with the baseline
module, after only adding the self-attention module, the three
core evaluation indicators on the MultiSports dataset, namely hit

frontiersin.org



https://doi.org/10.3389/fnbot.2023.1288463
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wang and Liang

10.3389/fnbot.2023.1288463

UCF101 Dataset MultiSports Dataset
100 100

—&— Hit Rate —— Hit Rate
95 | -0- Recallll 95 4 -0~ Recalll'

—®- Precision 55 —®- Precision

--@- F1 Score #5 --®- F1 Score
90 4 90 A
85 A 85 A
80 A 80
751 759
704 704
65 A 65 4
60 T T T T 60 T T T T

e X N S @ & o N

& & <5 & & & 5 g
& 2 & 2
x x

FIGURE 9
Comparison and visualization of Hit Rate, Recall, Precision and F1 Score indicators of different modules based on UCF101 and MultiSports datasets.

rate, recall rate and F1 score, have been improved by more than
2%, respectively; UCf101 dataset The corresponding improvements
on the above are even greater, reaching 6.78, 11.76, and 7.15%,
respectively, which has verified the role of the attention mechanism
in extracting cross-modal correlation features. After adding deep
adversarial training on this basis, the improvement of evaluation
indicators on the two data sets continues to expand. Among
them, the three indicators of the UCf101 dataset all improved
within the range of 2 to 9%; the corresponding indicators of
the MultiSports dataset increased the most, reaching 10.52, 8.29,
and 11.97%, respectively, which further verified how adversarial
learning can effectively improve model generalization ability.
Finally, the optimization model that integrates attention and
confrontation mechanism is adopted, not only makes multiple
indicators on UCf101 and MultiSports data sets break through the
high level of about 94% for the first time, but also has a recall rate
of more than 95.68% on the MultiSports data set; this shows the
effectiveness of our method. The optimization effect has achieved
generalizability on different types of large-scale action recognition
tasks. We compared and visualized the results in Table 4, as shown
in Figure 9.

In conclusion, the multimodal deep learning-based robot
action recognition method proposed in this study demonstrates
significant advantages in experiments conducted on multiple
classic volleyball datasets and a large-scale diverse action dataset.
By leveraging attention mechanisms to integrate visual and
motion features, along with the incorporation of deep adversarial
mechanisms to enhance model generalization, the accuracy and
recall rate of action recognition have both been notably improved.
Particularly, with the integration of the optimized model structure,
our method achieves impressive recognition performance across all
tested datasets, thus fully validating the reliability and potential of
this approach in action recognition tasks.

Through detailed data comparison and analysis, we can clearly
witness how the seamless integration of various modules within
the model’s structure drives the continuous enhancement of
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recognition capabilities. This not only underscores the correctness
of the deep learning architectural approach but also confirms
the vital roles of attention mechanisms and adversarial learning
in multimodal feature learning. While rooted in the context of
volleyball robot requirements, experimental results indicate its
promising applicability to other action recognition tasks, further
showcasing the method’s versatility.

In summary, this work successfully designs and implements a
deep multimodal learning algorithm to optimize action recognition
capabilities, laying down a methodological foundation for the
advancement of robotic sports skills.

4. Conclusion

In preceding chapters, we provided an extensive account
of the application of multimodal deep learning methods to
enhance robotic cyclic motion skills. In this chapter, we
delve into a comprehensive discussion of research outcomes,
summarizing key findings from experiments, exploring the
significance and contributions of this study, analyzing the strengths
and limitations of our approach, and outlining potential avenues for
future research.

Through meticulous experimentation and analysis, we
observed substantial accomplishments in enhancing robotic skills
via multimodal deep learning. The introduction of the cross-modal
self-attention mechanism proficiently fuses information from
distinct sensors, culminating in comprehensive scene perception.
Leveraging Generative Adversarial Networks (GANs) imbues the
model with superior data generation and training capabilities,
enriching the diversity and practicality of skill training. The
implementation of transfer learning further expedites skill
augmentation, minimizing the temporal cost of relearning in
new environments. The confluence of these modules facilitates
remarkable skill enhancement across several pivotal metrics,
presenting a positive contribution to the realm of sports robotics.
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The significance of this study resides in its insightful and
empirical contribution to the progression of cyclic motion robotics.
The seamless integration of multimodal perception and deep
learning not only elevates robotic prowess in volleyball matches but
also ushers in novel prospects for intelligent sports competition and
human-robot collaboration. Our research not only theoretically
validates this approach but also substantiates its practical efficacy,
offering a valuable reference for researchers in related domains.

Throughout this study, we harnessed the inherent advantages
of multimodal perception, synergizing information from diverse
sensors. This multimodal data processing strategy not only
heightens model performance but also enhances robot scene
awareness. Simultaneously, our research introduces pivotal
technologies such as self-attention mechanisms, GANs, and
transfer learning, fully harnessing the potential of deep learning
and providing diverse tools and avenues for skill augmentation.
However, we acknowledge certain limitations, such as potential
model generalization issues stemming from experimental data
distribution and the possible challenges and constraints in
real-world applications.

Future research directions could encompass the expansion
of our approach to diverse sports domains, unraveling the
broader potential of multimodal perception and deep learning.
Concurrently, optimizing model architectures and algorithms
could enhance the efficacy and swiftness of skill augmentation.
Furthermore, applying our approach to real volleyball match
scenarios could authenticate its viability and efficacy in actual
competition. Ultimately, we anticipate our continued research and
practical efforts will contribute significantly to the advancement of
sports robotics and intelligent sports competition.
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multidimensional evaluations for
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The field of human-computer interaction is expanding, especially within the
domain of intelligent technologies. Scene understanding, which entails the
generation of advanced semantic descriptions from scene content, is crucial for
effective interaction. Despite its importance, it remains a significant challenge. This
study introduces RGBD2Cap, an innovative method that uses RGBD images for
scene semantic description. We utilize a multimodal fusion module to integrate
RGB and Depth information for extracting multi-level features. And the method
also incorporates target detection and region proposal network and a top-down
attention LSTM network to generate semantic descriptions. The experimental data
are derived from the ScanRefer indoor scene dataset, with RGB and depth images
rendered from ScanNet's 3D scene serving as the model’s input. The method
outperforms the DenseCap network in several metrics, including BLEU, CIDEr, and
METEOR. Ablation studies have confirmed the essential role of the RGBD fusion
module in the method's success. Furthermore, the practical applicability of our
method was verified within the AI2-THOR embodied intelligence experimental
environment, showcasing its reliability.

KEYWORDS

indoor robotic scene, dense captioning, RGBD fusion, multidimensional evaluation, top-
down attention

1 Introduction

As artificial intelligence technology continues to evolve, mobile robots are taking on
increasingly pivotal roles across a multitude of fields (Rubio et al, 2019; Huang et al,
20205 Liu et al., 2022). To enable these robots to more effectively comprehend and adapt
to complex, ever-changing indoor environments, it becomes essential to provide a detailed
description of the scene (Johnson et al., 2016; Chen et al., 2021). This involves extracting
semantic information—such as objects, attributes, and relationships within the scene—and
articulating it in natural language. By doing so, we can significantly enhance a robot’s
perceptual and interactive capabilities, thereby elevating its level of intelligence and the
overall user experience (Sheridan, 2016). The task of providing semantic descriptions of
scenes is of paramount importance, as it is key to facilitating effective interaction between
robots and humans, and crucial to a robot’s understanding of human needs.
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Scene description refers to the ability of machines to generate
high-level natural language descriptions based on given scene
images. Several Scene Description methods have been developed
for indoor scenes, with a recent focus on Dense Captioning based
on 3D point clouds. In 2021, Chen et al. (2021) proposed an
end-to-end method called Scan2Cap, which effectively locates and
describes 3D objects in the ScanRefer dataset and extracts spatial
relationships within the scene. Yuan et al. (2022) introduced a
cross-modal Transformer model, X-Trans2Cap, which integrates
features from auxiliary 2D modalities into point clouds through
knowledge distillation, achieving great performance improvement
in this task. Jiao et al. (2022) proposed a multi-level relationship
mining model called MORE, aiming to improve 3D Dense
Captioning by capturing and utilizing complex relationships within
3D scenes.

The task of providing dense scene captioning presents
numerous challenges (Cai et al., 2022). To begin with, in the context
of 2D scene captioning, the input from a single modality is often
insufficient, making it difficult to discern when objects are occluded
or when the viewpoint within the scene changes. Additionally,
while 3D scene captioning can capture comprehensive scene
information, the computational cost of performing convolution
and attention operations on point cloud data is high, and there
is an abundance of sparse, irrelevant information. Ultimately, the
existing methods of RGBD input have not effectively utilized
the information available in depth images, which serves as the
motivation for this research. We want to implement a method that
could reduce the amount of computation while expressing spatial
relationships better, so we came up with RGBD2Cap.

The main contribution of this paper includes the following
three aspects: Firstly, we propose a feature extraction method
based on RGB+D image multimodal fusion. This method, which
is grounded in the transformation between 3D point clouds and 2D
images, is combined with a semantic captioning generation module
to form RGBD2Cap. Secondly, we design and implement a multi-
dimensional evaluation method for scene semantic captioning.
This includes both manual and automatic evaluations, and utilizes
simulation scenes to assess the model within an embodied
intelligence experimental environment. Lastly, the model presented
in this article has achieved the highest accuracy according to our
evaluation metrics.

2 Related work

2.1 2D image and scene captioning

Since its introduction by Johnson et al. (2016), dense captioning
has emerged as a subfield of image captioning, with the encoder-
decoder architecture becoming the prevailing solution (Cho et al.,
2014).

Initial approaches (Mao et al., 2014) to dense image captioning
using the encoder-decoder architecture combined Convolutional
Neural Networks (CNNs) (LeCun et al., 2015) and Long Short-
Term Memory (LSTM) networks (Xu et al., 2015). These methods
used the image feature vector extracted by the CNN as the LSTM’s
initial state and generated descriptive statements word by word.
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With the rise of attention mechanisms in natural language
processing, methods (Xu et al, 2015; Anderson et al, 2018)
combining CNNs and attention mechanisms have emerged. These
methods dynamically select the most relevant region feature vectors
at each time step based on the current generation state, combining
them with global feature vectors as input to subsequent language
generation models such as LSTM or Transformer.

(2017) introduced a method that combines
joint inference and contextual information fusion to address

Yang et al.

two significant challenges in the current image-intensive
description task. This approach generates improved descriptions
by emphasizing visual cues from surrounding salient image regions
as contextual features. Kim et al. (2019) introduced a new task,
“Relation Captioning,” which generates multiple captions for
relational information between objects in an image. They utilized
a multi-task triple stream network (MTTSNet) that captures the
relational information between detected objects, providing precise

concepts and rich representations.

2.2 3D scene captioning

3D vision has become increasingly popular in recent years (Qi
et al, 2017; Li et al., 2022; Shao et al, 2022), and 3D detection
methods performed on point clouds are becoming more common
in 3D vision research.

Chen et al. (2021) pioneered the task of dense captioning in
RGB-D scans, a field that has yet to fully explore the discriminative
description of objects in complex 3D environments. Yuan et al.
(2022) furthered this research by investigating a cross-modal
knowledge transfer using a Transformer for 3D dense captioning.
Their model, X-Trans2Cap, leverages a teacher-student framework
for knowledge distillation to enhance the performance of single-
modal 3D captioning.

In the spirit of neural machine translation, Wang et al.
(2022) proposed SpaCap3D. This model features a spatiality-guided
encoder and an object-centric decoder, both of which contribute to
the generation of precise and spatially-enhanced object captions.

However, existing methods often overlooking contextual
details
environments within point clouds. To address this, Zhong

information such as non-object and background
et al. (2022) utilized point cloud clustering features as contextual
information, incorporating non-object details and background
environments into the 3D dense captioning task.

Jiao et al. (2022) aimed to improve 3D dense captioning by
capturing and utilizing complex relations within the 3D scene.
They proposed MORE, a Multi-Order RElation mining model,
to generate more descriptive and comprehensive captions. Chen
et al. (2022) introduced UniT3D, a fully unified transformer-based
architecture for jointly solving 3D visual grounding and dense
captioning.

Although the representation of 3D point cloud scenes
has achieved considerable performance to some extent, its
computational overhead remains excessively large. This is primarily
due to the sparsity of the 3D point cloud information, which
impedes the efficient utilization of features. This paper proposes
a method based on RGBD static images, effectively integrating
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RGB and Depth features. While reducing computational load,
this approach also ensures the model’s acquisition of spatial
information, thereby enhancing the accuracy of the generated
descriptions.

3 Proposed method

The research of this paper is to train a deep learning model
based on the RGBD images corresponding to indoor 3D scenes,
so that it can automatically generate the corresponding linguistic
descriptions. In order to accomplish these goals, this paper
accomplish the following specific tasks. First, we need to pre-
process the original point cloud data to obtain 2D and depth images
corresponding to different objects in the scene. Then, we design a
RGB and Depth multimodal feature extraction network to extract
and fuse the features of RGB and depth images. In addition, we need
a target detection network to detect the objects in the scene images
so that the subsequent Top-down Attention LSTM model can
accurately understand the objects in the images. Finally, the features
extracted by the neural network are fed into the text generation
network to generate text for the purpose of understanding the high-
level semantic information of the scene. The overall structure of the
proposed method is shown in Figure 1.

3.1 Rendering of 3D scenes

This study employs the ScanRefer (Chen et al., 2020) dataset
for model training, which is an extension of the ScanNet dataset
with added high-level semantic descriptions. ScanNet provides a
rich array of indoor 3D scene meshes, semantic labels, and 2D video
frame images with corresponding depth maps. However, we refrain
from using ScanNet’s 2D image data directly for training due to the
blurriness of most images, which hampers effective capture of the
scene’s visual information. Instead, we use the viewpoints provided
by the ScanRefer dataset to render the 3D data, yielding clearer
2D data.

The rendering process of the 3D scene adheres to the principle
of camera projection (Kannala and Brandt, 2006). It begins with
transforming the scene points in the world coordinate system using
the camera’s external parameter matrix, yielding their coordinates
in the camera’s coordinate system. These points are then converted
to the image coordinate system using the cameras internal
parameter matrix.

The initial step involves the transformation from the world
coordinate system to the camera coordinate system, a rigid
transformation composed of translation and rotation. In this study,
a right-hand coordinate system is used for world coordinates. If a
point in the scene has coordinates (x, y, z) in the world coordinate
system. We aim to obtain its coordinates (x', y/, z in the camera
coordinate system, this can be achieved through the following
matrix transformation:

X
X Ri1 Rz Ryz |ty y
y/ = | Ry1 Ry Ry3 ty 2| (1)
Z R31 R3z R33 ¢, 1
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where t represents the translation vector of the point coordinates,
and the orthogonal matrix R represents the rotation matrix of the
point’s coordinates in space. The values of both are determined by
the position of the camera in the world coordinate system and the
direction of the optical axis. The external parameter matrix of the
camera is composed of the rotation matrix R and the translation
vector t, represented as [R|t] € R34,

Next is the transformation from the camera coordinate system
to the normalized device coordinate system, which is usually
achieved through perspective projection. For a point (x', ¥, 2z’ in
the camera coordinate system, the following matrix transformation
can be used to describe this process:

~

X fooo]|”
y |=]0fo0o0 z, , @)
Z’ 0010 .

where f represents the focal length of the camera, and (x”, ", 2"
are the coordinates of the point in the normalized device coordinate
system. This transformation maps the 3D points in the camera
coordinate system to a 2D, while preserving the depth information
of each point.

Finally, there is the transformation from the normalized device
coordinate system to the image coordinate system, which can
be achieved through the simple scaling and offset. For a point
",y 2 ) in the normalized device coordinate system, we want to
obtain its coordinates (u, v) in the image coordinate system, which
can be achieved through the following formula:

u| w/2 0 0o w/2
|:v:|_|: 0 h/z}[xy]Jr[h/z}’ 3

where w and h represent the width and height of the
image, respectively. This transformation maps the points in the
normalized device coordinate system to the image coordinate
system, generating the final 2D image.

The above is the whole process we used to convert the point
cloud in the scene, from the world coordinate system to the image
coordinate system. The whole process is linear and can be achieved
by a series of matrix multiplications. This allows us to obtain a
mapping of the 3D point cloud data onto the 2D image, which
can then be processed and analyzed using 2D image processing
techniques.

3.2 RGB and depth multimodal fusion
networks

The network accepts an RGB image and a depth image as
inputs. Its architecture is grounded in ResNet101 (He et al., 2015), a
deep residual network of 101 convolutional neural network layers.
This network addresses the issues of vanishing and exploding
gradients, common in deep neural network training, through
residual learning.

The feature fusion approach employed in this network is a
third-branch multilevel fusion, as shown in Figure 2. Specifically,
we start with the feature map generated by the third convolutional
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RGB and Depth multimodal fusion networks.
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layer of ResNetl01. The RGB and depth feature maps from this
convolutional layer are summed and fused separately to form
the networK’s third branch. The same convolutional operation is
performed on this third branch, and the feature maps obtained
from subsequent convolutional layers are continuously added to
yield the final RGBD multimodal features.

Our feature extraction network is bifurcated into two branches:
the RGB branch and the depth branch. The RGB image and the
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depth image are processed through their respective convolution
layers to extract features and generate their individual feature
maps. These two feature maps are then fused using the feature
fusion method to obtain RGBD multimodal features, which serve
as the third branch for multilevel fusion. This network omits
the final fully-connected and softmax layers of ResNet, bypassing
classification result output and directly utilizing its feature maps for
subsequent tasks.
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Top-down attention LSTM network.

3.3 Target detection and region proposal
network

The Bottom-Up and Top-Down Attention model (Anderson
etal., 2018) comprises two components: a bottom-up image feature
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extractor and a top-down language generator. The bottom-up
image feature extractor employs a Faster-RCNN (Ren et al., 2015)
detector to identify a set of potential visual regions, generating a
fixed-length feature vector for each region.

As shown in Figure 3, this study employs a Faster-RCNN-
based object detection and region proposal network, utilizing
the previously mentioned multimodal fusion ResNetl01 as its
backbone, augmented with an RPN network and an Rol Pooling
layer. The RPN network, which is fully convolutional, generates
candidate bounding boxes. It takes the output feature map of the
backbone network as input and produces a series of candidate
bounding boxes along with their corresponding scores. A 3 x 3
convolution generates scores for each position, and non-maximum
suppression is applied to eliminate overlapping candidate boxes.
The Rol Pooling layer takes the output feature map of the backbone
network and a series of candidate boxes as input, outputting a
fixed-size feature vector after pooling. The final pooling results are
concatenated to form the ultimate feature vector.

3.4 Top-down attention LSTM network

The top-down language generator in the Bottom-Up and Top-
Down Attention model employs an attention mechanism as shown
in Figure 4. This mechanism uses the currently generated word as
a query, calculates its similarity with the bottom-up feature vector,
and produces a set of attention weights. These weights are then used
to compute a weighted average of each feature vector, which is used
to generate the next word.

The top-down attention mechanism is the heart of the model.
The model uses the currently generated word as a query at each
time step, calculates its similarity with the bottom-up feature vector,
and produces a set of attention weights. These weights are then used
to compute a weighted average of each feature vector, which is used
to generate the next word. This attention mechanism can be viewed
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FIGURE 5

(A) Visualization of point cloud data. (B) Visualization of the labels of point cloud data.

as a top-down interpretation of the image, integrating the generated
language with the underlying image representation to produce a
more precise image description.

In this module, the global features, object features, and context
features obtained from the previous networks are fused, and to
utilize these three features effectively, we use the following method
for fusion. Firstly, the global and target features with the same
dimension are spliced and fused, then a fully connected network
with an activation function is used to scale the fused features to
the same dimension as the contextual features, and then they are
spliced twice to get the final fused features, which can effectively
utilize the extracted contextual features.

4 Experiments
4.1 Dataset

Generating scene descriptions for robots necessitates a
computer vision approach that can convert environmental data
into natural language descriptions. Several datasets have been
developed to provide high-level language descriptions for various
scenes, including the ScanRefer dataset.

ScanRefer (Chen et al., 2020) is a dataset designed explicitly for
dense scene descriptions, primarily used in robotic indoor scene
understanding tasks. It provides semantic scene description
their
surroundings. The dataset comprises 800 annotated scenes,

information, facilitating robots’ comprehension of
11,046 stereo location frames of objects, and 51,583 corresponding
textual descriptions. It offers not only a wealth of scene description
data but also high-quality 3D scene data. By employing 3D
projection, we can map the objects in the scene onto a 2D plane,
making it suitable for the RGBD2Cap model presented.

ScanRefer builds upon the ScanNet (Dai et al., 2017) dataset
by adding natural language descriptions. As shown in Figures 5A,
B, ScanNet provides 3D point clouds and their corresponding

semantic labels, resulting from high-quality scene reconstruction.
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In this study, we utilize the 3D data from the dataset and select
viewpoints provided by ScanRefer to render the point cloud
scenes. The authors of ScanRefer provide viewpoint information
for different camera locations in each scene in the Annotated
viewpoints file. This information includes the camera location,
rotation angle, and look at (the point the camera is currently aimed
at), which we use to set the camera pose.

4.2 Rendering of 2D images

The rendering of the 3D scene using Pytorch3D (Ravi et al.,
2020) is shown in Figure 6. From left to right, the RGB color image
of a viewpoint, the rendered image with labels, and the depth image
are shown.

4.3 Configuration of the training model

This study utilized the Python programming language and the
PyTorch deep learning framework to implement the algorithm. The
hardware setup for the experiment included a NIVIDA Tesla P100
GPU (16GB), 80GB of RAM, and 70GB of available disk space. The
software environment was configured with Ubuntu 18.04, Python
3.8, Cuda 11.1, and PyTorch 1.8.1.

The experimental procedure began with the fusion of the
ScanRefer dataset with RGBD images to extract image features.
The primary architecture used in the training process was a
convolutional neural network and a long short-term memory
network. The model was trained using the Adam optimizer, with
a batch size of 14 and 100 epochs. The initial learning rate was set at
0.0005, and a weight decay parameter of 0.0001 was used to control
model complexity. Intersection over Union (IOU) thresholds were
set at 0, 0.25, and 0.5. The number of sampled point clouds was
40,000, with 562 scenes in the training set and 141 in the validation
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FIGURE 6
Multi-view image based on pytorch3d rendering. (A) RGB image. (B) Labeled image. (C) Depth image.

set. After rendering, the training set comprised 36,665 samples, and
the validation set included 9,508 samples.

The loss of the RGBD2Cap network is a multi-task loss,
including target detection loss and semantic description loss.
The loss for target detection includes classification loss and
bounding box regression loss, while the text generation part can
directly use the cross-entropy loss of text prediction probability.
The final multi-task loss value at the end of model training
was 0.26.

4.4 Scene dense captioning and evaluation
methods

4.4.1 Metrics-based evaluation

The objective of the dense captioning task is to identify and
articulate all objects and events of interest within an image. This
task merges two subtasks: object detection and image captioning.
Consequently, its evaluation metrics are a fusion of the metrics used
for these two subtasks.

Firstly, the Mean Average Precision (mAP) is typically
used as the evaluation metric for object detection. The mAP
represents the Area Under Curve (AUC) of the average
precision-recall curve across all categories. For each category,
detections are ranked based on their predicted confidence,
followed by the calculation of precision and recall. The
precision-recall curve is then plotted, and the area under it
is calculated to obtain that categorys Average Precision (AP).

Frontiersin Neurorobotics

The final mAP is obtained by averaging the AP across all
categories.

Secondly, image captioning is evaluated using metrics
such as BLEU, CIDEr, Meteor, and Rouge. BLEU (Bilingual
Evaluation Understudy) (Papineni et al, 2002) assesses the
similarity between generated and reference descriptions primarily
through #n-gram accuracy. CIDEr (Consensus-based Image
Description Evaluation) (Vedantam et al, 2015) gauges the
quality of descriptions by calculating the TF-IDF-weighted
cosine similarity between generated descriptions and a set
of reference descriptions. Meteor (Metric for Evaluation of
Translation with Explicit ORdering) (Banerjee and Lavie, 2005)
and Rouge (Recall-Oriented Understudy for Gisting Evaluation)
(Lin, 2004) evaluate description quality by computing the
longest common subsequence between generated and reference
descriptions.

In dense captioning tasks, these evaluation metrics for object
detection and image captioning are typically used in conjunction.
Specifically, mAP is used to assess the model’s performance on the
object detection task, while BLEU, CIDEr, Meteor, and Rouge are
used to evaluate the model’s performance on the image captioning
task. Finally, these evaluation metrics can be combined in a
weighted manner to derive a comprehensive evaluation metric for
assessing the model’s overall performance on the dense captioning
task.

In this paper, we evaluate the completed training model and
obtain several evaluation metrics data, including (BLEU1-4, cider,
mAP@0.5, meteor, rouge, and many other evaluation metrics). The
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TABLE 1 Algorithm comparison and ablation study on RGBD2Cap
components.

BLEU- CIDEr ROUGE- METEOR
4 L

RGB (DenseCap) 20.1 32.7 38.2 21.0
(Johnson et al.,
2016)
RGB (without 20.7 34.5 41.6 229
fusion)
Show and tell 18.3 335 46.9 21.09
(without attention)
RGB+D fusion 21.5 35.1 38.8 23.3
(ours)

Bold values indicate the optimal value of each method for a given evaluate metric.

TABLE 2 Comparison of time and accuracy between 2D and 3D methods.

BLEU- CIDEr ROUGE- METEOR Train
4 L time
(h)
RGBD2Cap 21.5 35.1 38.8 23.3 8
(ours)
Scan2Cap 23.32 39.08 44.78 21.97 71
(Chen et al.,
2021)

Bold values indicate the optimal value of each method for a given evaluate metric.

IOU thresholds k in the data table are all taken as 0.5. The results
are shown in Table 1.

Since no experimental studies are based on RGBD fusion so far,
the proposed model is compared with the algorithm without RGBD
fusion.

The RGB(DenseCap) row in Table I uses the rendered RGB
image as input, and the Dense Captioning of the scene is obtained
by using the method in paper[]. The RGB(Without Fusion) line
also takes the same image as input and uses the RGBD2Cap
network without the Depth branch and the third branches to get
the DenseCap. The last row in Table 1 is our complete proposed
RGBD2Cap method. Based on the data in the table, it can be seen
that the performance of the proposed model is optimal in the three
indexes of BLEU-4, CIDEr, and METEOR, which can verify the
effectiveness of the RGBD fusion module.

Furthermore, ablation experiments were conducted to ascertain
the effectiveness of the Top-down Attention and FasterRCNN
modules. As depicted in Table 1, the model’s performance across all
three metrics declines when the Attention module is not utilized,
indicating the module’s crucial role in feature extraction during
semantic description generation.

In addition, we compare the proposed method RGBD2Cap
with the 3D method Scan2Cap (Chen et al., 2021), and the obtained
results are shown in Table 2. Both methods are trained on the
ScanRefer dataset, the difference is that RGBD2Cap uses a rendered
RGBD image as the input to the model, while Scan2Cap directly
uses a 3D point cloud as the input. Both models are trained on
a 2080Ti GPU for 50 epochs to ensure fairness. Based on the
experimental results, it can be learned that although the 3D model
outperforms our method in the three metrics, its training time
is 9 times longer than that of RGBD2Cap, greatly shortening the
training time while reducing the performance loss.
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TABLE 3 Performance of using Faster-RCNN as a target detector vs. real
bounding box to generate description results.

BLEU- CIDEr ROUGE- METEOR
4 L
Faster-RCNN 21.5 35.1 38.8 233
Ground truth 24.3 35.7 39.3 23.5

Bold values indicate the optimal value of each method for a given evaluate metric.

Lastly, we verify the impact of the Faster-RCNN module’s
detection capabilities on the
contrasting it with the actual bounding box, as shown in
Table 3. The features extracted using the real bounding box of the

description performance by

object are more precise, hence the semantic description based on it
will also yield more accurate descriptions. Following experimental
verification, it was found that the model exhibits a slight decrease in
the four indicators. Still, the decrease is minimal, thus affirming the
feasibility of the end-to-end model. The target features produced
using Faster-RCNN as the target detector and feature box extractor
serve as a solid foundation for semantic description.

4.4.2 Manual evaluation

Because the high-level semantics are more difficult to describe
formalistically, manual evaluation is essential, and this paper next
evaluates a manual sample of training results.

A randomly selected sample from the validation set was used
for inference prediction, and the results are presented in Figure 7.
The captioning of the red box is “The chair is brown. It is to the
left of the desk”, in which the object’s color information and spatial
location are accurately displayed; the captioning of the white box is
“The monitor is on the desk on the right side. It is the monitor that
is closest to the window”, although the real label of the computer
on the desktop is “laptop”, the object vocabulary “monitor” given
in the description is similar; this description shows very detailed
spatial location information; the captioning of the green box is “The
desk is on the right side of the room. There is a chair in front of the
desk.” This description shows the position of the desk object in the
room and accurately expresses its spatial relationship with the chair
in front of it.

However, not all scenes are accurately described, and Figure 8
shows another randomly selected sample from the validation set.
The captioning of the red box in the figure is “This is a white pillow.
It is on a gray couch.” Although the objects color is accurately
described as white, the white bed sheet is mistakenly identified as
a pillow and the bed below as a sofa, which is a misjudgment. The
text of the blue box is “This is a brown nightstand. It is next to a
bed”, which accurately shows that the object is a brown nightstand;
italso points out that its orientation is next to the bed; the text of the
pink box is “this is a radiator. It sets along the wall.” This sentence
incorrectly identifies the object as a radiator, probably because the
picture shows an incomplete object, but it correctly conveys that the
object is against the wall.

From the results, it can be seen that the current field still
faces many challenges, and future research directions could be
more fine-grained feature extraction to achieve a more accurate
description.
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FIGURE 7
Example 1 of dense captioning results in the validation set.

FIGURE 8
Example 2 of dense captioning results in the validation set.

FIGURE 9
RGB, Labeled, and Depth images of scenes in AI2-THOR environment.
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4.5 Simulation tests in AI2-THOR

4.5.1 AI2-THOR

AI2-THOR is an embodied AI experimental environment
designed to simulate real-world environments to train and test Al
systems (Kolve et al., 2017; Deitke et al., 2020). This simulation
environment contains a variety of detailed indoor scenarios such
as kitchen, bedroom, bathroom, and living room. In AI2-THOR,
AT intelligence can explore and interact with the environment
through a series of actions, such as moving, viewing, grasping, and
manipulating objects. This design allows the intelligent body to
learn and understand the properties and relationships of objects in
the environment and how they affect the execution of tasks as it
performs them.

A key feature of AI2-THOR is its support for scene
semantics, for which objects are provided with labels with semantic
information. In this paper, RGBD2Cap is further evaluated by
controlling the actions of the intelligence in AI2-THOR, acquiring
single frames of images in the scene and their depth images as input
samples for the model, and observing the correlation between the
model’s output and the images.

4.5.2 Operation details

The operation of AI2-THOR is facilitated through Python,
with the research team providing a Python API for public
Initially, the AI2-THOR
environment is installed and initialized, typically involving

experimentation. experimental
the selection of a scene (e.g., kitchen, bedroom, etc.) and
establishing the Al agent’s initial position and orientation. Once
the environment is initialized, the agent is primed to commence
action execution.

The system’s “move” and “rotate” actions can be utilized
to capture a single frame from varying scene perspectives. For
instance, the Al agent can be maneuvered forward, backward, or
rotated left or right. Each execution of these actions provides the
agent with a new viewpoint for frame acquisition. To procure a
depth image, the “Get Depth Image” function of the AI2-THOR
environment is employed, returning a depth image that represents
the scene’s depth from the AI system’s current viewpoint. The depth
image is a two-dimensional array, with each element representing
the depth value of the corresponding pixel. These depth values
serve to comprehend the position and shape of objects within the
scene.

The paper randomly selects a scene in the experimental
environment, and after initializing the intelligent body in the scene,
the movement method and the final location and angle were
arbitrarily set, and the RGB, Depth and instance labeled images
of the scene were captured. The effect of the model was verified,
and the results are shown in Figure 9. The text corresponding
to the three detection boxes are “This is a white door in the
front. it is at the far end of the wall.”, “This is a brown box
on the desk. It is near the wall. It is near the wall.”, “This is
a door near the wall. It is a white door.” It can be seen that
these description results are relatively accurate, and the model
has excellent performance in the test results in the simulation
environment.
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5 Conclusion

In this paper, the problem of scene semantic description
for indoor mobile robots is studied. The ScanNet scene data is
processed to obtain its RGBD image, and then the corresponding
semantic description is obtained based on the RGBD image. After
experiments, we know that the proposed algorithm can effectively
describe the indoor scene semantically. The use of multimodal
information can help the model understand the scene better and
improve the accuracy of the model. Compared with direct RGB
image recognition, the proposed model obtains better results in
three indexes, such as BLEU, CIDEr, and METEOR, and gets better
test performance in the AI2-THOR experimental environment.
Overall, the proposed method has high practicality and promotion
value and can provide more accurate and advanced semantic
information for the perception of indoor mobile robots.
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This study introduces an intelligent learning model for classification tasks, termed
the voting-based Double Pseudo-inverse Extreme Learning Machine (V-DPELM)
model. Because the traditional method is affected by the weight of input layer
and the bias of hidden layer, the number of hidden layer neurons is too large
and the model performance is unstable. The V-DPELM model proposed in
this paper can greatly alleviate the limitations of traditional models because
of its direct determination of weight structure and voting mechanism strategy.
Through extensive simulations on various real-world classification datasets, we
observe a marked improvement in classification accuracy when comparing
the V-DPELM algorithm to traditional V-ELM methods. Notably, when used
for machine recognition classification of breast tumors, the V-DPELM method
demonstrates superior classification accuracy, positioning it as a valuable tool in
machine-assisted breast tumor diagnosis models.

KEYWORDS

intelligent learning model, neural network, machine recognition classification, weights
determination, machine-assisted diagnosis

1 Introduction

Extreme Learning Machine (ELM) (Huang et al., 2004) is a powerful machine learning
algorithm that has emerged as a popular alternative to traditional neural networks [such
as Back-Propagation (Haykin, 1998) algorithm (BP) and Levenberg Marquardt (Levenberg,
19445 Marquardt, 1963) algorithm] due to its speed, simplicity, and high performance. ELM
is a single-layer feedforward neural network that uses random weight initialization and least-
squares optimization to learn from input data (Huang et al., 2006). The algorithm has shown
remarkable results in a wide range of applications, from image recognition (Tang et al., 2015)
and speech processing (Han et al., 2014) to financial forecasting (Fernandez et al., 2019) and
anomaly detection (Huang et al., 2015).

One drawback of the ELM algorithm is that the learning parameters of the hidden
nodes are randomly assigned and remain unchanged during training, which may lead to
a significant impact on its predictive performance and algorithm stability (Gao and Jiang,
20125 Lu et al,, 2014). ELM might misclassify certain samples, particularly those near the
classification boundaries. In an attempt to address this issue, Cao et al. (2012) proposed a
voting-based variant of ELM, referred to as V-ELM. The main idea behind V-ELM is to
perform multiple independent ELM trainings instead of a single training, and then make
the final decision based on majority voting. However, this approach does not fundamentally
resolve the problem of random determination of ELM’s various parameters.
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Zhang et al. (2014) have highlighted that the performance of
Extreme Learning Machine (ELM) is not always optimal when
the input weights and hidden layer biases are chosen entirely at
random. This randomness is also a significant factor contributing
to the redundancy of neurons in the hidden layer of the ELM
algorithm (Zhu et al., 2005). In response, scholars have proposed
the use of swarm intelligence optimization (Lahoz et al., 2013;
Figueiredo and Ludermir, 2014; Zhang et al, 2016), pruning
methods (Miche et al, 2009, 2011), and adaptive algorithms
(Pratama et al., 2016; Zhao et al,, 2017) to optimize the ELM
algorithm and enhance its overall performance. However, in
practical applications, although these algorithms do succeed in
optimizing the number of hidden layer neurons, they introduce
a plethora of hyperparameters that typically require iterative
optimization, thereby increasing the computational complexity of
the algorithm and rendering it challenging to address real-time
problems with high time constraints. To tackle this issue, this
paper presents an improved algorithm known as Voting based
double Pseudo-inverse weights determination Extreme Learning
Machine (V-DPELM). The core concept of V-DPELM lies in the
stochastic determination of output weights, while input weights
are obtained through pseudoinverse calculations. Subsequently, the
pseudo-inverse method is employed again to determine optimal
output weights, ensuring that both input and output weights are
optimal. The obtained DPELM algorithm is subjected to multiple
independent trainings, and the final decision is made based on
majority voting.

In the 21st century, breast cancer is increasingly recognized
as a significant factor negatively impacting the overall quality of
life for women worldwide. According to statistics from the World
Health Organization (WHO), approximately 1.5 million women
suffer greatly from the torment of breast cancer, with approximately
500,000 losing their lives to this disease (Fahad Ullah, 2019).
The incidence and mortality rates of breast cancer exhibit a clear
and alarming upward trend each year. Research has demonstrated
the paramount importance of timely detection, diagnosis, and
initiation of treatment in achieving favorable therapeutic outcomes
for breast cancer (Lee et al, 2019; Aldhaeebi et al., 2020).
Ten crucial features, including symmetry and fractal dimension
of breast tumor lesions, play a vital role in determining the
nature of the tumor, whether benign or malignant (Wang et al,
2016, 2019). Therefore, it is possible to extract relevant features
closely associated with tumor characteristics from acquired patient
samples. By employing the proposed V-DPELM algorithm for
parameter optimization and subsequent breast tumor classification,
the obtained classification and identification results can provide
valuable references, assisting physicians in making diagnostic
decisions and offering more accurate and rational assessments of
patients’ conditions.

2 V-DPELM algorithm design

In the section, we first review the basic concept of the traditional
ELM algorithm in Section 2.1. Then, we analyzed the DPELM
algorithm in Section 2.2. Finally, the new proposed V-DPELM
algorithm will be presented in Section 2.3.
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FIGURE 1
ELM network structure.

2.1 Brief review of ELM

Extreme Learning Machine (ELM) is suitable for generalized
Single Hidden Layer Feedforward Networks (SLEN). The structure
of traditional ELM is similar to SLEN, consisting of three layers:
input layer, hidden layer, and output layer. The essence of ELM
is that it does not require tuning the hidden layer of SLFN. The
structure of ELM is shown in Figure 1.

In the context of N arbitrary training samples {(xi,ti)}il,
where each sample x; = (xi1, Xy Xin)T € RY t; =
(i1, tias oo Eim) T € R™, the resulting output of the ELM with L
hidden nodes can be expressed as follows:

L
ti= ) Bih(wj b, x;),i=1,2,..,N 1)
j=1
Here, wj = (a)jl,a)jz, ...,wj,,) represents the weight vector of

the jth neuron in the input layer, and b; is the bias associated with
the jth neuron. A(.) indicates the activation function. Furthermore,
B;j denotes the linked weights between the jth hidden neurons and
output neurons, Bj = (Bj1, Bj2 --» Bjm)-

For all N samples, the equivalent canonical form of linear
equation (1) can be expressed as:

HB =T, (2)

In Equation (2), T represents the desired output matrix for the
training samples, and

h(®y, b1,%1) ... h(wr, br,x1)

H=

h(w1,b1,xN) ... h(or, b, xN)

is the randomized matrix mapping. It is worth noting that the
parameters (@j,b;) of the hidden layer neurons are randomly
generated and remain fixed throughout the entire training process
of ELM.

The ELM algorithm can be summarized as three steps as
follow.
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e Step 1: Randomly generate parameters for the hidden layer
nodes.

e Step 2: Calculate the output matrix H of the hidden layer.

e Step 3: Calculate the output weight using 8 = HTT, {

represents the pseudo-inverse of the matrix.

2.2 DPELM learning algorithm

Due to the random determination of input weights in
traditional ELM, it has resulted in low classification accuracy
and an issue of too many hidden layer nodes. Therefore, this
section introduces a new method for determining ELM’s weights,
referred to as the double pseudo-inverse weights determination
ELM (DPELM), aiming to enhance its classification accuracy and
achieve a more stable structure. DPELM is similar to the traditional
ELM network structure, which consists of input layer, hidden
layer and output layer. Upon a more comprehensive analysis of
the traditional ELM principle, Equation 1 can be reformulated as
follows:

T = Bh(Q2X — B), (3)

where T = [ty,ts,..,ty] € RN X — [x1,%X2,...XN] € RM<N,
B = [by,by,...,by] € RLxN, B and Q represent the output weight
matrix and the input weight matrix, respectively. Where

P Pz ... P

Ba1 P2 ... Pa ol

B=| . . . . |eR™H
_lgml .BmZ o .BmL
w1l W12 ... Wip
w1 W ... Wiy

Q= e Rbxm,
_a)Ll Wi ... WLy

Derivation process: Assuming the bias B and output weight
B are randomly generated within the interval [al, a2], and the
activation function h(-) is strictly monotonous, the ideal €2 should
be equal to Q = (h_l(BTT) +B)XxT.

Since B and B are randomly generated, multiplying both sides
of Equation 3 by ﬂT results in:

BT = BT BH(QX — B) = h(2X — B). (4)

By finding the inverse function of the activation function h(-),
we can obtain:

YBIT) = QX - B,
The above equation can be rewritten as:

QX =h"1(B'T) +B. (5)
Finally, multiplying equation 5 by X' simultaneously results in

oxxt = 1(ATY) + @)xT,
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namely,
Q= h' BT + B)X'.

This concludes the proof.
Once the optimal € has been determined, the formula [3 =
T(h(QX — B)) can be employed to compute the value of B.

2.3 V-DPELM model training process

Based on theoretical principles, the specific training process for
V-DPELM model is outlined as follows:

e Step 1: Given a sample dataset 8 = {(x;,t;)|x; € R",t; €
Rm}fi 1> where x;, t;, N represent the input vector, target
vector, and the total number of samples, respectively. This step
introduces essential parameters, including the hidden node
output function h(w, b, x), the count of hidden nodes L, and
the number of independent training repetitions K.

e Step 2: Randomly initialize output weights 8 and hidden layer
biases B within the interval [al, a2].

e Step 3: In the case where the training sample is determined,
the optimal input weights €2 are computed using the formula
Q= 1(B'T) + B)XT.

e Step 4: Subsequently, upon obtaining the optimal input
weights €, the optimal output weights B are determined as
B = T(h(QX — B))T.

e Step 5: Repeat steps 2 to 4 for a total of K times to get K
independent DPELMs model. Then, perform test tasks on
these DPELMs, and the final result is obtained by aggregating
the test results using a voting strategy.

The network structure of V-DPELM model is shown in Figure 2.
Algorithm 1 provides a specific introduction to the pseudo code of
the V-DPELM method.

3 Experimental results and analysis

This section randomly selects 12 datasets from the UCI
database to assess the classification performance of the improved
Extreme Learning Machine algorithm. All experiments in this
paper were conducted using Matlab 2016(a) on a regular PC with an
Intel(R) Core(TM) i5-12500H CPU running at 3.60GHz and 16GB
of memory.

3.1 Experimental description

The present text conducts a series of experiments to evaluate the
performance of the algorithm from various perspectives, including
the efficacy of its categorization, the precision of its predictions, the
requisite count of neurons within its hidden layers, and the stability
of its resultant outputs. The datasets utilized in this research were
sourced from the UCI (University of California, Irvine) repository,
encompassing both binary classification and multi-classification
datasets. It is important to note that the training and test data
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FIGURE 2
V-DPELM network structure.

Input: R ={(x;t)x; € R",t; € Rm}fll, hi dden active function

h(w,b,x), hidden nodes L, independent training

repetitions K, zero valued vector Sk eR™;
Qut put :  TestingAccuracy;
1: Set k=1;

2: while k<K do
3:  Randomly assign the |earning paranmeters (8565 of
the kt h DPELM

4: Calculate the input weight of;

5.  Calculate the hidden |ayer output matrix H¥;

6: Calculate the output weight g5 B =THhOX-B);

7: k=k+1,

8: end while

9. c=a+b

10: for all testing sanplex® do

11: Set k=1;

12:  while k<K do

13: using the kth trained basic DPELM with | eaning
paranmeters (85 bF0f) to predict the label of the
testing sanple x*,

14: Each generated prediction result is then
stored in Sg;

15: k=k+1;

16: end while

17:  The final class |abel of testing sanple x*' is

oSt = argmaxjeqy.m) {Skest ()}
18: end for

Algorithm 1. V-DPELM.

within each dataset were randomly shuffled for each simulation
experiment, ensuring unbiased evaluations. Detailed specifications
of these 12 datasets are presented in Table 1.
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TABLE 1 Specifications of classification datasets.

Datasets Attributes Classes Samples Testing
data

SL 35 19 215 92
Iris 4 3 100 50
Wine 13 3 100 78
Liver disorders 6 2 240 105
(LD)
Pima Indians 8 2 537 231
diabetes (PID)
Innosphere 34 2 220 95
Diabetes 8 2 576 191
Balance 4 3 400 225
Ecoli 7 8 100 236
Waveform 21 3 3000 2000
Live 6 2 200 145

3.2 Experimental results and analytical
discussion

In this subsection, we begin by employing the Iris dataset,
the features of which are displayed in Table I, to ascertain the
efficacy of the V-DPELM algorithm. The corresponding outcomes
are illustrated through Figures 3-5 and Table 2. Figures 3, 4 depict
the graphs of the confusion matrix. Within these figures, the values
along the diagonal of the matrix signify the correctly classified
samples, whereas those located elsewhere indicate the misclassified
samples.
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It is evident that V-DPELM exhibits noteworthy proficiency
in performing classification tasks, both in testing and training
scenarios. Furthermore, as evident from Figure 5, the optimal
classification accuracy reaches approximately 99.5% during testing

True Class

1 2 3
Predicted Class

FIGURE 3
Training confusion matrix of Iris dataset.

True Class
N

1 2 3
Predicted Class

FIGURE 4
Test confusion matrix of Iris dataset.

10.3389/fnbot.2023.1322645

and 98% during training. Notably, Figure 5 unveils a significant
observation: the generalization performance of V-DPELM remains
stable even with a modest number of hidden-layer neurons.

100
el WNVMWW
Q
<
g
=
5]
& 99
g —— V-DPELM-Train
| —— V-DPELM-Test
S 9851
2
s
T ggl
975 . . . . . . . . . )
0 10 20 30 40 50 60 70 80 9 100
Number of hidden neurons
FIGURE 5
V-DPELM classification accuracy for Iris dataset.

TABLE 2 Classification performance of V-DPELM with different hidden
layer neuron numbers in the Iris Dataset.

V-DPELM Accuracy rate (%) Neurons
Training Testing
98.09 99.40 1
98.02 99.36 2
98.13 99.42 3
98.12 99.52 4
98.10 99.30 5
98.11 99.46 10
98.07 99.56 20
98.15 99.42 50
98.17 99.52 100

TABLE 3 Comparisons of classification accuracy and number of hidden layer neurons of different algorithms.

DETENH Testing (%) Hidden layer neurons
V-ELM V-DPELM V-ELM V-DPELM

SL 90.25 92.30 83 63
Iris 98.42 99.56 15 9
Wine 99.38 99.93 30 10
Liver Disorders (LD) 73.24 73.33 24 7
Pima Indians Diabetes (PID) 81.07 83.37 35 30
Innosphere 91.35 92.88 47 5
Diabetes 70.96 81.23 40 5
Zoo 96.61 98.22 20 10
Balance 90.49 92.08 40 30
Ecoli 85.23 89.15 20 10
Waveform 76.37 78.31 80 30
Liver 71.56 73.79 20 10

Bold values indicate the maximum value.
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This finding is corroborated by Table 2. Specifically, when the

count of hidden-layer neurons is set to 3, optimal and consistent

classification accuracy is achieved. This phenomenon holds true for

other cases as well.

Average classification accuracy/%

SL data set comparison experiment results. (A) Changes in
classification accuracy. (B) Changes in range. (C) Changes in
variance.
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Regarding Table 2, there is an additional aspect that requires

elucidation. In the context of assessing the presented growth
methodology, the number of hidden-layer neurons in V-DPELM
is tuned either manually, with an increment of 1, or automatically
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Diabetes data set comparison experiment results. (A) Changes in
classification accuracy. (B) Changes in range. (C) Changes in

variance.
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through the growth method. As demonstrated in the table, the
proposed growth method effectively identifies the optimal structure
for V-DPELM. Consequently, the effectiveness of V-DPELM in
pattern classification is preliminarily affirmed.

The impact of the number of neurons in the hidden layer
on the predictive performance of both the traditional V-ELM
and the algorithm proposed in this study is investigated through
experimental comparisons. Initially, a subset of samples from each
dataset is selected as training and testing data, with the division
between them fixed throughout the experiment. The growing
method is employed to determine the number of neurons in the
hidden layer, where the accuracy is observed after each addition
of one neuron. The corresponding algorithm is considered to have
the best network structure when the accuracy remains unchanged
or the change falls below a predefined threshold. Subsequently,
the ELM algorithm and the algorithm proposed in this paper
are executed 100 times within the optimized network structure,
and the average classification accuracy is computed using the
test dataset. In this experiment, the tangent function (tan) is
chosen as the activation function, with its inverse function being
the arctangent function (arctan). The comparative analysis of
classification accuracy for different algorithms and the required
number of neurons in the hidden layer to achieve the highest
classification accuracy are presented in Table 3.

From Table 3, it can be observed that the algorithm proposed
in this paper outperforms the traditional V-ELM algorithm
in terms of classification performance, both in binary datasets
The
achieves higher classification accuracy with fewer neurons in

and multi-classification datasets. proposed algorithm
the hidden layer, resulting in a simpler network structure.
This indicates that the analytical weight initialization method
employed in this paper yields superior results compared to the
random weight initialization method. Furthermore, to further
analyze the impact of algorithm parameters on classification
performance and algorithm stability, this study selects one dataset
each from binary and multi-class problems for performance
comparison.

The SL dataset, a multi-class dataset, and the Diabetes
dataset, a binary classification dataset, are selected for this
study. The training and testing sets for both datasets are fixed
and unchanged throughout the experiments. The number of
neurons in the hidden layer is set to increment from 1 to
100. For each additional neuron, the ELM algorithm and the
algorithm proposed in this paper are executed 100 times. The
experimental results are analyzed in terms of the mean, variance,

TABLE 4 Performance comparison of multiple algorithms.

10.3389/fnbot.2023.1322645

and range, as depicted in Figures6, 7. In these figures, the
positions indicated by black pentagons and triangles represent the
locations where each algorithm achieves the highest classification
accuracy.

Observing Figures 6A, 7A, it becomes evident that the increase
in the number of neurons in the hidden layer leads to an
initial rapid rise in prediction accuracy for both the traditional
V-ELM algorithm and the algorithm proposed in this paper.
However, after reaching a certain point, the accuracy levels off
or slightly declines. By considering the experimental findings
and the Theorem presented in Huang et al. (2006), it can be
deduced that the algorithm proposed in this study shares similar
characteristics with the traditional V-ELM algorithm. Specifically,
as the number of neurons in the hidden layer increases, the
algorithm’s fitting performance improves. Nevertheless, beyond
a critical threshold, further augmenting the number of hidden
neurons may cause overfitting on the training samples, resulting
in a slower or even decreasing classification accuracy on the test
samples.

Furthermore, a thorough examination of Figures6, 7
reveals that, in both the multi-class SL dataset and the binary
Diabetes dataset, the proposed algorithm demonstrates a
faster rate of average classification accuracy improvement
compared to the conventional V-ELM algorithm. Remarkably,
achieving this progress requires a smaller number of
neurons in the hidden layer. Additionally, the analysis of
variance and range reveals that the proposed algorithm
exhibits lower values for both metrics compared to the
V-ELM and Diabetes

datasets. This finding suggests that the proposed algorithm

traditional algorithm on the SL
possesses superior stability in comparison to the traditional
V-ELM algorithm.

4 Application of V-DPELM in the
diagnosis of breast tumors

In order to further validate the accuracy of voting based
double pseudo-inverse weights determination extreme learning
machine algorithm, this study applies it to the classification and
recognition of breast tumor diagnosis. Multiple distinct algorithms
are employed to train and recognize the same breast tumor training
and testing sets, which are then compared against the performance
of the method proposed in this paper.

Algorithm Average classification accuracy (%) Benign diagnosis rate (%) Malignant diagnosis rate (%)
V-DPELM 98.32 98.67 97.73
V-ELM 97.47 99.93 93.29
ELM 96.47 96.22 90.13
AFSA-ELM 96.59 96.38 90.61
LvQ 91.57 94.82 85.08
BP 85.88 84.87 88.93

Bold values indicate the maximum value.
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4.1 Experimental data

Data in this study were collected from an open data set
published by the University of Wisconsin School of Medicine,
including 569 cases of breast tumors, 357 benign and 212
malignant. In this paper, 450 groups of tumor data (282 benign
cases, 168 malignant cases) were randomly selected as the training
set, and the remaining 119 groups of tumor data (75 benign cases,
44 malignant cases) were selected as the test set. Each sample
was composed of 30 data, including the mean, standard deviation
and maximum value of 10 characteristic values extracted from the
breast tumor sample data.

4.2 Experimental results and analysis

For the purpose of comparing algorithmic performance, three
performance metrics were considered: the mean diagnostic rate for
benign tumors (referred to as benign diagnosis rate), the mean
diagnostic rate for malignant tumors (referred to as malignant
diagnosis rate), and the average diagnostic accuracy rate. To
ensure robustness of the comparison, independent experiments
were conducted 20 times for each algorithm, including the
proposed algorithm, V-ELM, Artificial Fish Swarm Algorithm-
Extreme Learning Machine (AFSA-ELM), ELM, Learning Vector
Quantization (LVQ), and Backpropagation Algorithm (BP). The
average values of the benign diagnosis rate, malignant diagnosis
rate, and overall accuracy rate were calculated and compared. It
should be noted that the experimental results for V-ELM, AFSA-
ELM, ELM, LVQ, and BP algorithms were sourced from Zhou and
Yuan (2017). The comparative findings are summarized in Table 4.

From the findings presented in Table 4, it is apparent that the
average accuracy rate achieved by the proposed algorithm surpasses
that of the other algorithms. Although the benign diagnosis rate
is slightly lower than that of the V-ELM algorithm, the malignant
tumor diagnosis rate is considerably higher. These results highlight
the efficacy of the proposed algorithm in rapidly and accurately
identifying malignant tumors, thus mitigating the risks associated
with delayed treatment and potential impacts on treatment efficacy
resulting from misdiagnosis.

5 Conclusions

In the 12 randomly selected UCI datasets, the algorithm

proposed in this paper, voting based double pseudo-
inverse weights determination extreme learning machine
algorithm, exhibits varying degrees of improvement in

classification performance compared to the traditional V-
ELM algorithm. Among these datasets, the Diabetes dataset
shows the greatest increase in classification accuracy, with
a significant enhancement of 10.27%. On the other hand,
the LD dataset
with a marginal increase of only 0.09% in classification

demonstrates the smallest improvement,

accuracy.
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Moreover, the improved algorithm achieves optimal
classification accuracy with fewer hidden layer neurons compared
to the traditional ELM algorithm, resulting in a simpler network
structure.

Additionally, the improved algorithm exhibits reduced
variance and range in both the SL and Diabetes dataset
experiments, indicating enhanced stability. Furthermore, in
the breast tumor classification and recognition experiments, the
diagnostic performance of the proposed algorithm surpasses
that of V-ELM, AFSA-ELM, ELM, LVQ, and BP methods. This
observation highlights the advantage of the proposed algorithm
in achieving high classification accuracy in breast tumor auxiliary
diagnosis. Thus, the application of this method for breast tumor
auxiliary diagnosis is deemed feasible. In addition, it is worth
pointing out that processing multi-dimensional data can be a

research direction for future work.
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Introduction: Vehicle re-identification is a crucial task in intelligent
transportation systems, presenting enduring challenges. The primary challenge
involves the inefficiency of vehicle re-identification, necessitating substantial
time for recognition within extensive datasets. A secondary challenge arises
from notable image variations of the same vehicle due to differing shooting
angles, lighting conditions, and diverse camera equipment, leading to reduced
accuracy. This paper aims to enhance vehicle re-identification performance by
proficiently extracting color and category information using a multi-attribute
dense connection network, complemented by a distance control module.

Methods: We propose an integrated vehicle re-identification approach
that combines a multi-attribute dense connection network with a distance
control module. By merging a multi-attribute dense connection network
that encompasses vehicle HSV color attributes and type attributes, we
improve classification rates. The integration of the distance control module
widens inter-class distances, diminishes intra-class distances, and boosts
vehicle re-identification accuracy.

Results: To validate the feasibility of our approach, we conducted
experiments using multiple vehicle re-identification datasets. We measured
various quantitative metrics, including accuracy, mean average precision,
and rank-n. Experimental results indicate a significant enhancement in the
performance of our method in vehicle re-identification tasks.

Discussion: The findings of this study provide valuable insights into the
application of multi-attribute neural networks and deep learning in the field
of vehicle re-identification. By effectively extracting color information from
the HSV color space and vehicle category information using a multi-attribute
dense connection network, coupled with the utilization of a distance
control module to process vehicle features, our approach demonstrates
improved performance in vehicle re-identification tasks, contributing to the
advancement of smart city systems.

KEYWORDS

vehicle re-identification, multi-attributes, HSV color space, dense connection
network, distance control module
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1 Introduction

To strengthen road traffic management, the coverage rate of urban
road traffic monitoring is increasing, resulting in the daily generation
of more video image data. As the volume of video data reaches a
certain threshold, the deployment of personnel for monitoring and
control becomes inadequate. Consequently, vehicle recognition
technology has been introduced. Vehicle re-identification aims to
identify the same vehicle in different locations and at different times
based on the vehicle information collected by a fixed-position sensor.

As early as 1998, Coifman B recalculated features, such as the
effective vehicle length between two continuous metric stations on the
highway (Coifman, 1998). This method is too limited; it represents an
early form of vehicle re-identification. Abdulhai and Tabib (2018)
attempted to improve the accuracy of vehicle re-identification at
continuous loop detection stations by enhancing the mode proximity
distance metric in the pattern recognition process. Relevant experiments
were not completed but showed the potential to enhance the accuracy.
Liuetal. (2016a) created a vehicle re-identification (VeRi) dataset based
on real urban surveillance scenes. Since then, research in
re-identification has progressed rapidly. Zhu et al. (2018) proposed a
joint deep learning method (JFSDL) for vehicle re-identification. The
Siamese Deep Network is used to extract the features of the input
vehicle image pairs, and the similarity score between the input vehicle
image pairs is obtained based on the hybrid similarity learning function.
Lou et al. (2019a) created a new super large vehicle re-identification
dataset VERI-wild, which contains more than 400,000 images of 40,000
vehicles. Zheng et al. (2021) used four public vehicle datasets to create
a unique large vehicle dataset called VehicleNet and developed a
two-step progressive approach to learn more robust visual
representations from VehicleNet. Qian et al. (2020) proposed a deep
convolutional neural network (SAN) based on dual branching and
attribute perception to learn effective feature embedding for vehicle
recognition tasks. Ratnesh et al. (2020) used triplet embedding to solve
the problem of vehicle re-identification in camera networks. Peng et al.
(2020) proposed an adaptive vehicle re-identification domain adaptive
framework (DAVR) that uses the tag data from the source domain to
adapt to the target domain, reducing cross-domain bias. Teng et al.
(2020) proposed a multiview branch network, where each branch learns
a view-specific feature and introduces a spatial attention model into
each feature-learning branch to strengthen the ability to discriminate
local differences. Jin et al. (2021) proposed a multicentric metric
learning method for vehicle re-identification in multiple views. Zhang
etal. (2022) proposed a double attention granularity network (DAG-
Net) for vehicle re-identification. The dual-branch neural network was
used to extract coarse-grained and fine-grained features, and a self-
attention model was added to each branch to enable DAG-Net to
recognize different regions of interest (ROISs) at coarse and fine levels for
coarse-grained and fine-grained identification. Subsequently, Guo et al.
(2019) proposed a novel two-stage attention network supervised by the
Top-k Accuracy Multiple Granularity Ranking Loss (TAMR), aiming to
learn effective feature embedding for the vehicle re-identification task.
Hou et al. (2019) introduced the Deep Quadruplet-wise Adaptive
Learning method (DQAL), which introduces the concept of quadruplets
and generates four sets of inputs. By combining the proposed quadruplet
network loss and softmax loss, they developed a quadruplet network to
learn more discriminative vehicle recognition features. Zhang et al.
(2019) introduced the Partial Guidance Attention Network (PGAN),
effectively integrating global and partial information for discriminative
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feature learning. Bashir et al. (2019) took the pioneering approach of
addressing vehicle re-identification in an unsupervised manner,
utilizing a progressive two-step cascaded framework to formulate the
entire vehicle re-identification problem as an unsupervised learning
paradigm. PAMAL (Tumrani et al., 2020) utilized multi-attribute
features, i.e., color and type, and vehicle key points to solve the
re-identification task. MSCL (Yuefeng et al, 2022) achieves
unsupervised vehicle re-identification through the integration of the
Discrete Sample Separation module and Mixed Sample Contrastive
Learning. VAAG (Tumrani et al,, 2023) addresses the re-identification
task by learning robust discriminative features encompassing camera
views, vehicle types, and vehicle colors.

In summary, an algorithm for classifying the color features of
vehicles based on the HSV color space is proposed. The image is
transformed into the HSV color space, and saturation (S) and
brightness (V) are introduced, which are sensitive to the reflection
coeflicient of the object surface. The color features in the HSV color
space are extracted by a feature extraction network for accurate color
attribute classification. Second, based on the concepts of the YOLO
model and DenseNet network, an improved densely connected vehicle
classification network is designed by integrating the extracted color
features in the HSV color space. The improved network model is used
to obtain different dimensional features for the image of the target
vehicle, reducing the amount of computation and improving the
feature usage rate. The results of the different dimensional features are
weighted and fused to improve the accuracy of vehicle classification.
It is combined with the vehicle re-identification network to quickly
propose class-independent images for the re-identification network.
Based on the traditional vehicle recognition network, a new distance
control block (DC module) is developed in this study. According to
the feature extraction network, the features extracted from the image
are processed by similarity DC or difference DC to shorten the feature
distance within the image class and increase the feature distance
between image classes. Finally, the performance of this algorithm is
verified by experiments.

2 Methods
2.1 Multi-attribute dense link classification

In this section, a vehicle classification method based on a dense
network with multiple attributes is proposed. The test images are
filtered, and the images that are similar to the target vehicle are
re-recognized to eliminate the images that do not match the target
vehicle class. There are many vehicle attributes, such as model, color,
detail features, and volume. In this section, the classification of the
dense connection of several attributes is continued, and the most
characteristic model and color are selected as the research objects.
This method uses a dense connectivity structure to reduce the
computational overhead in the network. It combines the color features
in the HSV space to minimize the impact of the external environment
on vehicle color recognition. The flowchart is shown in Figure 1 A. The
individual steps are as follows.

2.1.1 Color feature extraction

There are various colors of vehicles. In this study, the colors of
vehicles are classified into 10 categories: yellow, orange, green, gray,
red, blue, white, gold, brown, and black.
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(1) Convert the RGB image to an HSV image, as shown in
Formula (1).

max (i,f) = max[ Ig (i)l (i) 5 (i) ]
min (i,/) = min[ Ig (i).1G (i) 5 (i) ] 1)
A =max (i,j)—min(i,)

Where Iy (i,j), Ig (i,j), and /p (i,j) represent the values of the R
component, G component, and B component corresponding to the
pixel coordinate (i,/) points, max (i, ) represents the maximum value
among the R, G, and B components, min (i,j ) represents the minimum
value among the R, G, and B components, and & takes the difference
between the two, representing the span of the three components.

The values of the H component, S component, and V component
are calculated according to Formula 2. The calculation involves
determining the values of the H component, S component, and V
component in the HSV color space.

Ul )) = 15N/ Ax 60, max(i,j) =1, (i, /)
H(i, ) =120+ [1, G, /)~ L (i, )]/ A x 60,max(i, /) = 1, (i, /)
240 +[1 (i, j) = 15, )]/ A x 60,max (i, j) = 1,(i, j)
V@, j) = max(i, /)
8(i. /)= Afmax(i, j) )

Where H(i,j), S(i,j), and V(i,j) represent the values of H
component, S component, and V component corresponding to the
pixel with coordinate (i,/) converted to HSV color space;
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(2) Color feature extraction

The structure of the feature extraction network consists of three
TCBR blocks. As shown in Figure 1B, each TCBR block is composed
of two CBR blocks, and each CBR block is made up of a convolution
layer, a BN layer, and a ReLU layer. The TCBR block is a Twice
Convolution Batch Normalization ReLU block structure. In the TCBR
block, all outputs are summed before the input of the second CBR
block, and the features of the input, the first output, and the double
output are summed as the input of the next layer, i.e., the dense
connections. The outputs of each output node are directly summed,
ensuring consistent dimensions for the results of each output node.
This reduces the computation of the network, and the dimension
conversion is achieved by adding a convolutional layer between two
TCBR blocks, making the network more flexible.

The feature extraction network is shown in Figure 1A. Each TCBR
block performs a dimensional transformation through the
convolutional layer and the pooling layer, extracting features of
different dimensions to obtain high-dimensional features of the image.

The extracted high-dimensional features are fed into the fully
connected layer, mapping the features to the sample space.
Subsequently, the color feature vector C corresponding to the HSV
features is obtained through regression.

2.1.2 Extraction of the category characteristics

In this study, vehicles are classified into eight categories. The
category designations from 1 to 8 are sedan, SUV, van, hatchback,
MPYV, pickup, bus, and truck. Figure 2 shows schematic representations
of these eight vehicle types.
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mpv pickup

FIGURE 2

Example images of eight vehicle types. (A) sedan; (B) SUV; (C) van; (D) hatchback; (E) mpv; (F) pickup; (G) bus; (H) truck.

bus

(1) Multidimensional Feature Extraction
In multi-dimensional feature extraction, the TCBR module
mentioned above is utilized to extract multi-dimensional features. To
better eliminate various features of the vehicle, the feature extraction
network is correspondingly improved, as shown in Figure 1. Three
different dimensions of features are extracted, namely, /D -1, ID -2,
and ID - 3.

(2) Multi-dimension feature fusion
According to Formula 3, the three eigenvectors (/D —1,/D -2,
and ID —3) are:

N =(papBLCs--PH)
S2=(pB-LapCs--PH) (3)
f3=(pcPapBs--PH)

where p 4 (A — H corresponds to eight vehicle types) is the maximum
value in f}, indicating that the probability of the picture being type 4 is
the highest. Similarly, pp is the maximum value in f>, signifying that the
image has the highest probability of being type B; pc is the maximum
value in f3, indicating that the image has the highest probability of being
class C. The classes A, B, and C are distinguished for better comprehension.
In practice, these classes (A, B, and C) can be the same.

Then, the scores are calculated. For type A, as shown in Formula (4).

fi(pa)
fi(pa)+ f2(pa)+ f3(pa)

(4)

wql =

Where w4 is the weight coefficient of p 4 in the weight value of type
A in the vector f}. Similarly, w4, and w43 can be obtained. As shown
in Formula (5):

gy = f2(pa)
fi(pa)+ f2(pa)+ f3(pa)
Wi = f3(pa) ®
BT R () £ (pa)+ 55(pa)

Frontiers in Neurorobotics

Finally, the score S 4 of type A is as shown in Formula (6).
Sq= |:WAl*fl (pa)+wa2" fo(pa)+was 3(pa )] (6)

As a result, the values Sp and S¢ of type B and type C are
determined in the same way. One compares three values and takes the
highest corresponding type as the classification result.

2.1.3 Multi-attribute dense connection
classification

The output of the feature classification network is a
one-dimensional vector, as shown in Formula (7).

output =[C,ID] 7)

where C represents the color feature information in the HSV space of
the vehicle in the image, which is a one — hot (10) vector, representing
the normalized value of the ratings corresponding to the 10 color
categories; ID represents the class feature information of the vehicle
in the image, which is a one—hot(8) vector, representing the
normalized value of the ratings corresponding to the eight
vehicle categories.

2.1.4 Loss function

The network receives the color feature information and the
vehicle category feature information simultaneously, so the loss
function also has two parts, namely, the color feature loss and the
vehicle category feature loss. The loss function is developed based
on the cross-entropy loss. The loss function for color features is
shown in Formula (8).

L= —iq(i)log( p(i)) (®)

where n represents the number of color categories and assigns the
color attribute to the color attribute category. p(i) represents the
probability that the image belongs to category i, ¢(i) is a symbolic
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function. If category i is a basic category, the value is 1, and if category ~ with the size of the fusion kernel b, the number of fusion kernels
i is not a real category, the value is 0. 50, and the step size 1 is introduced to perform the

The loss function Ljp of vehicle category characteristic lossisas ~ pre-convolution. Then, the first TCBR module is instructed to
shown in Formula (9). perform dense convolution with multiple inputs in 50 dimensions.

Moreover, a convolution layer with the size of the convolution
m

Lip ==Y q(j)log(p(/)) ©)

J=1

kernel 3 x 3, the number of convolution kernels 100, and the step
size 1 is introduced to perform the dimension transformation. As
the last step, the second TCBR module is instructed to perform
the convolution of features with multiple inputs in 100
where m is the number of categories of vehicle, which was given  dimensions, and then the feature map is output.

before. There are eight types, p(j) denotes the probability that the

image belongs to type j, and g( /) is also a symbolic function. If the ~ 2.2.2 Feature set production

category j is an objective type, the value is 1, and if the category j is not The feature set corresponds to the training set used, and one
an objective type, the value is 0. image is selected from each category. Assuming that the total number
The final network loss function loss is shown in Formula (10): of classes is the same, the feature extraction network from the previous

section is used to extract the features, and the extracted features are
loss =Lc +Lip (10) integrated into the feature set. The feature set is the feature vector

cluster with the category number.

2.2.3 DC module processing
2.2 Vehicle re-identification Introduction of DC module: the DC module is divided into two

types, one is the similarity module DC, which is based on the target

After classifying the dense connection of multiple attributes, the  image and uses the comparison image for similarity pooling; the other

system algorithm has filtered out the vehicles with the same colorand s the difference module DC, which is based on the target image and
category as the query vehicle. Then, the final process of re-identifying  performs difference pooling of the contrast image. Each point in the
the vehicle is performed. As shown in Figure 3, the network first ~ high-dimensional feature space represents the corresponding
extracts features from the input image and obtains high-dimensional ~ semantic features of that part. That is, in a sense, they are the domain
features A. Then, based on the features of the same category in the  features. For the similarity module DC, the image after processing
feature set, the feature A is processed by a similarity DC module and  attenuates the influence of the prominent features (e.g., the lamp and
a differential DC module, and the two features are merged into anew  window position features are identical to the target image).
feature A'. In contrast, after processing in the DC module, the image may

enhance the influence of secondary features (such as body and other
2.2.1 Feature extraction parts). For the positive sample (i.e., the image belonging to the same

The function of the feature extraction network is to extract  vehicle as the target image), the influence of secondary features is

the high-dimensional features of the input images. To reduce the  greater than in the negative sample. After two DC modules, the
computational cost, the TCBR module proposed in Chapter 3 is  distance between the target image and the positive example is “close”
used. As shown in Figure 3, it can be observed that the network  For negative examples, the secondary feature itself is smaller than in
consists of two cascaded TCBR modules, and the convolutional  positive examples. After processing two DC modules, the influence of
layer in the middle is used for dimension conversion. The shape  secondary features, “pulling away” and distance of the target image,
of the input image is set to 224 x 224. First, the convolution layer  is increased.

A

TriHard
% -9

Feature set . BN . FCN full connection

FIGURE 3
Vehicle re-identification model based on DC module.
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(1) Similarity DC module schematic diagram is as follows:

As shown in Figure 4, the schematic diagram of a similar DC
module is presented. It can be observed from Figure 4 that the core
size of the module is 3 x 3. After extracting the input sample pair, the
feature map is traversed by a window of size 3 x 3, with a step size of
2. The difference value of the corresponding pixels in the window is
calculated, and the pixel value corresponding to the minimum
difference value is selected to replace the pixel value of the points in
the window. The image is divided into a small window of size 3 x 3.
A (i =1,2,3,.. .,9) is used to represent the values of 9 points in the
target image A window, and B; (i =123,.. .,9) is used to describe the
values of 9 points in the contrasting image B window. The distance
D; (i =123,.. .,9) between the corresponding points is calculated, as
shown in Formula (11).

D; =|4; - Bi|(i=123,....9) (11)

The minimum value Dy, in D; is obtained as shown in
Formula (12).

Diin =min{D1,D2,D3,...,D9} (12)

The corresponding pixel index value m for Dy, is shown in
Formula (13).

m=%1(i) (i=123,..9) (13)

The m value obtained by Formula (13) is the index value of the
nearest point in the corresponding window between the target
image A and the contrast image B, and the /(i) definitions are as
shown in Formula (14).

D; = Din
Dj # Dmin

7 (i) {; (14)

10.3389/fnbot.2023.1294211

Then, the value of all points is replaced in the contrast image B
window with the value By, corresponding to point m, as shown in
Formula (15).

Bi =By, (i=123,...9) (15)
(2) The schematic diagram of the different DC modules is
as follows:

As shown in Figure 5, this is the schematic representation of the
various DC modules. Similarly, it traverses the feature map with a
window size of 3 x 3, and the step length is 2. The differences between
the corresponding pixels in the window are calculated. The pixel value
corresponding to the point with the greatest difference is replaced by
the pixel value of the entire window.

The preceding part is similar to the aforementioned DC module. The
image is divided into a small window of 3x3. 4; (i = 1,2,3,...,9)
represents the values of nine points in the A window of the target image,
and B} (i = 1,2,3,...,9) represents the values of nine points in the B’
window of the contrast image. The distances D} (i =12,3,.. .,9) between
the corresponding points are then calculated, as shown in Formula (16).

D; =|4 - B (i=123,...9) 16)

' '
The maximum value Dy, in D; is obtained as shown in
Formula (17).

Do :max{D{,D'z,Dg,...,Dé} 17)

The corresponding pixel index value m’ for Dinay is shown in
Formula (18).

m=%f(i) (i=123,....9) (18)

The value of m' obtained in Formula (18) represents the index
corresponding to the farthest point within the window between the

The pixel difference calculated by
corresponding elements is worth D,

Comparing image B

FIGURE 4
The principle of the similarity DC module.

Get the value of Min(D,) B | B, | B
corresponding to i
— B
B'
By
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B, !
B,
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The principle of the difference DC module.

target image A and the contrast image B'. Here, f (i) is defined as
shown in Formula (19).

A Dtl = Dr'nax
/() ={’ (19)

0, D; # Dinax

Then, the values of all points in the window of contrast image
B' is replaced with the value B, corresponding to the point ', as
shown in Formula (20).

Bi =By, (i=123,...9) (20)

After the sample pairs are processed, the corresponding similarity
values are calculated, and the average value of the two is output as the
final similarity coefficient.

For the similarity DC module, all eigenvalues in the window
are replaced by the eigenvalues with the smallest distance
between features in the feature map A. Similarly, for the
differential module DC, all eigenvalues in the window are
replaced by the eigenvalues with the widest distance between
features in the feature map A. The average value of the
corresponding elements in the two obtained features is then
calculated to obtain the final feature A4’.

2.2.4 Loss function

We train the model using a training set divided into batches.
Each batch contains images P x K, where P is the number of
categories, and each category contains K images. First, three
images are selected from the batches to feed the model, and a
represents the current data, P is the image of the same
category as 4, and n is the image of a different type. Assuming
that the sample is x and the total number of examples in the
training set is N, the loss function TriHard loss is formulated in
Formula (21).
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: &
TriHard loss = N{Z[d(a,p)max - d(a,n)min + alr}

d(ap)=1(x)- f(xf)z (21)
d(a,n)zf(x,-“)—f(xlp)

2
2

where f(x) represents the mapping function of the model; max
represents the maximum value; ‘min’ represents the minimum value;
o represents the distance interval; the loss function makes the
difference between d (a,p) and d (a,n) better than .

3 Similarity metric

The core of vehicle re-identification tasks is to find and sort
vehicle images. The ideal vehicle re-identification network model can
make the distance metric between images of the exact vehicle smaller
and more significant. In this study, the vehicle re-identification
distance metric model is trained by vehicle models. As shown in
Figure 6, in this study, according to the principle of metric learning
based on the triple loss function, the distance metric between the
anchor and the positive sample point becomes smaller and that
between the anchor and the negative sample point becomes larger by
training. This way, the recognition performance of re-identification of
a vehicle with a positive sample is realized. The overall flow chart of
this algorithm is shown in Figure 7.

4 Experimental results and analysis
4.1 Image dataset

The image data in this article comes from the VeRi776 datasets
(Liu et al., 2016a) and VeRi-Wild datasets (Lou et al., 2019b). The
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FIGURE 6
Metric learning method of triad loss function.
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Characteristic
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Query vehicle retry

— Similarity measure jg——

Output image

FIGURE 7
The overall flow chart of this algorithm.

VeRi776 dataset contains 50,000 images of 776 vehicles captured by  illuminations, occlusions, and resolutions. Each vehicle image is
20 cameras without restrictions on traffic. Images of each vehicle are  tagged with vehicle ID and vehicle type information, with vehicle
captured by 2 to 18 cameras with different viewing angles, category information divided into nine categories. The dataset
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includes both a training set and a test set. The training set contains
37,782 images of 576 vehicles; the test set contains 13,257 images of
200 vehicles. To evaluate the results, the test dataset is further divided
into a vehicle image library and test vehicle images. The vehicle image
library contains 11,579 images of 200 vehicles, and the test vehicle
image contains 1,678 images of 200 vehicles.

The imaging background and environmental variations of the
VeRi-Wild dataset are more complex, and more camera models are
used. The vehicle images in the dataset are captured by a 174-camera
surveillance system covering more than 200 square kilometers. The
total acquisition cost is 1 month. In total, more than 400,000 images
0f 40,000 vehicles were acquired (an average of 10 images per vehicle).
In addition, the image angles included for the same vehicle vary
widely. The dataset only annotates the vehicle ID without other
information. This is the first dataset for vehicle re-identification
without constraints. The sample images from the VeRi776 and VeRi-
Wild datasets are shown in Figure 8.

4.2 Implementation details

We utilized the PyTorch framework to develop the network. The
platform for training and testing is the Ubuntu 18.04 system, with a GTX
1070 Ti graphics card and 10GB of video memory. The hardware
configuration for the experiments is presented in Table 1. This article
uses the Adam optimizer with a learning rate of 0.001 and a momentum
of 0.9. Since the neural network is very unstable at the beginning of
training, a corresponding training strategy, cosine annealing learning, is
added to reduce the risk of overfitting so that the model has strong
robustness and good convergence to occlusion. In the cosine annealing
strategy, the learning rate is reduced in the form of a cosine function,
which ensures a smoother learning rate reduction and prevents the
model from failing to converge because the learning rate is dropping too
fast. The minimum learning rate is 0.00001.

10.3389/fnbot.2023.1294211

The batch size is set to 32. We trained the network for 100 epochs.
The experimental computer hardware configuration is shown in
Table 1.

4.3 Experimental metric standard

In this experiment, rank — n, CMC curves, and mAP were used as
experimental indexes to measure the model effect.
(1) Accuracy:
Accuracy is shown in Formula (22).

p
Accuracy = — 22
Y=y (22)

where p is the number of correctly identified samples, and N is the
total number of samples.
(2) Classification rate v:
Using classification rate v to measure the speed of classification,
the formula is shown in Formula (23).

v=nl/s (23)
where 7 is the number of classified samples, and s is the time needed
to classify these pieces.

(3) rank —nand CMC curve:

The result of vehicle re-identification is output as n images with
the highest similarity between the test set and the query image.
rank — n represents the probability that the output of the first image,

after model determination, contains the correct image. For
example, rank —1 represents the probability that the image with the
highest similarity output, after model determination, is the correct
image. rank — 5 represents the probability that the first five image
outputs, after model determination, contain the correct image.

VeRi776 dataset

FIGURE 8

Wild dataset.

VeRi-Wild dataset

Some example images from both VeRi776 and VeRi-Wild datasets. (A) Example images from the VeRi776 dataset, (B) Example images from the VeRi-
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The CMC curve takes n value of rank —n as abscissa, and the
corresponding probability that the correct images are included, which
is denoted by 8.

(4) mAP (Average precision rate):

The problem of vehicle re-identification is considered a two-class
problem. The actual category of the requested image is considered as
a positive category, and the false category is considered as a negative
category. The identification results of the network are also divided into
positive and negative categories.

precision is calculated as shown in Formula (24).

TP

— (24)
TP+ FP

precision =

The precision represents the proportion of samples identified as
positive classes in which the actual type is positive.
AP (Average Precision) represents average precision.

1 n

AP==>"p;

izl

(25)

In Formula (25), n denotes the number of right images returned,
pi denotes the corresponding precision of the first correct image.

When there are multiple re-identification objects, we average
multiple AP values to mAP;

1 N
mAP = —Z(AP). (26)
Ni:l '

In Formula (26), N denotes the number of re-identified objects.
(AP)l. means the AP value of the i re-identification object.

TABLE 1 Hardware equipment of practical environment.

Laboratory equipment Experimental configuration

System Ubantul8.04
Deep learning framework Pytorch
Programming language Python
Compiler PyCharm
Running memory 32G

CPU InterRcore™ 17 ~8750H,2.20GH:=

GPU GTX1070Ti

TABLE 2 Experimental results of the vehicle classification method.

10.3389/fnbot.2023.1294211

4.4 Ablation experiment

In this section, we investigate the effectiveness of critical
components in the mixed sample contrastive learning framework by
conducting ablation studies on two different datasets. We introduced
HSV features, type features, and the DC module into the network
separately. Our proposed methodology aimed to enhance the
differentiation between vehicles based on color and type, prompting
the model to distinguish vehicles. Additionally, the DC module was
utilized to shorten feature distances within image classes and expand
feature distances between image classes. The experimental results
demonstrated the significant effectiveness of multi-attribute features
and the DC module in the context of vehicle re-identification tasks.
The accuracy of the multi-attribute features composed of HSV color
features and type features, along with the DC module, is presented in
Table 2.

First, we incorporated the extraction of HSV color features for
vehicle recognition into the network. Color is considered as a pivotal
attribute for vehicles, enhancing the effectiveness of vehicle
re-identification tasks. HSV color features serve to diminish the
influence of image brightness on vehicle color recognition while also
filtering out high saturation image elements such as windows and
backgrounds that could otherwise interfere with color feature
identification. Leveraging these color attributes, our model achieved
an accuracy of 52.43% on VeRi-776 and 63.51% and 59.47% on VeRi-
Wild (3000) and VeRi-Wild (5000), respectively.

Subsequently, vehicle-type features were introduced into the
network. Type features assist in distinguishing visually similar
vehicles. By leveraging type attributes, our model achieved an
accuracy of 44.67% on VeRi-776 and 55.47 and 53.92% on VeRi-Wild
(3000) and VeRi-Wild (5000), respectively.

Finally, we incorporated the distance control (DC) module into
the network to assess its impact on accuracy. In networks featuring
both HSV color and type features, the inclusion of the DC module
resulted in our model achieving accuracies of 60.61% and 58.49% for
VeRi-776, 67.34% and 63.97% for VeRi-Wild (3000), and 62.73% and
61.35% for VeRi-Wild (5000). The results in the seventh row show that
the combined application of HSV color features, type features, and the
DC module yields the highest mAP.

4.5 Experimental results and analysis
As shown in Table 3, the accuracy of CNN, VGG16, ResNet50,

dense network, HSV + CNN, HSV + VGG16, HSV + ResNet50, and
HSV +dense network is 83.17%, 86.47%, 91.78%, 90.63%, 88.76%,

Algorithm VeRi776-mAP VeRi-Wild (3000)-mAP VeRi-Wild (5000)-mAP
Backbone 42.54 50.16 49.72
Backbone + HSV 52.43 63.51 59.47
Backbone + type 44.67 55.47 53.92
Backbone + HSV+DC 60.61 67.34 63.97
Backbone + type + DC 58.49 62.73 61.35
Final 68.83 71.39 68.42
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92.84%, 95.06%, and 94.24%, respectively. The classification efficiency
is50n/s,45n/s,63n/s,102n/s,47n/s,40n/s,55n/ s,and 94n / s
, respectively. In comparison, the accuracy of our algorithm ranks
second, but compared with the first algorithm, the difference is only
0.82%, and the classification efficiency of this algorithm is higher than
391/ s, so our algorithm is better than HSV+ ResNet50. As for the
classification rate, our algorithm, although second, is only 87 / slower
than the first one (dense connection network), yet the accuracy is
3.61% higher. The optimal accuracy and classification rate in
comparative experiments, along with the results of the proposed
method in this paper, have been bolded in Table 3. Therefore, in
overall consideration, the accuracy and classification efficiency of the
proposed algorithm are relatively optimal.

TABLE 3 Experimental results of the vehicle classification method.

Algorithm Accuracy (%) Classification
efficiency(n/s)

CNN 83.17 50
VGGl16 86.47 45
ResNet50 91.78 63
Densely connected

90.63 102
network
HSV+CNN 88.76 47
HSV +VGG16 92.84 40
HSV + ResNet50 95.06 55
HSV + Densely

94.24 94
connected network

TABLE 4 Experimental comparison of the VeRi776 dataset.

10.3389/fnbot.2023.1294211

Table 4 shows the comparison between the proposed algorithm
model and the mainstream re-identification network on the VeRi776
dataset. Table 5 shows the comparison between the proposed
algorithm and the mainstream algorithm on the VeRi-Wild dataset,
using measures rank —n and mAP.

From Table 4, it can be observed that, mAP, rank — 1, and rank — n
of this algorithm achieve 68.83, 92.94, and 96.88%, respectively, and
each index is the best. As for the second index, the mAP index is
higher than the second by 0.18%, rank — lis higher by 2.84%, rank — 5
is higher by 0.15%. As we can observe, this algorithm has the best
performance among the above algorithms using VeRi776 dataset as
the benchmark. As shown in Figure 9, the probability of classifying
the first image output as the correct image is the highest compared
with the other images. The advantage of this algorithm is that the hit
rate of the model used in this study is relatively high compared with
other algorithms.

Table 5 shows the experimental results of six different algorithms
on the VeRi-Wild (3000) dataset and the VeRi-Wild (5000) dataset. It
is obvious that due to the complex background and the angle of the
vehicle images in the VeRi-Wild dataset, the overall performance of
the index is lower than that of the VeRi776 dataset.

On the VeRi-Wild (3000) dataset, compared with the second-best
CTCAL, the proposed algorithm outperforms by 1.04% in mAP,
2.73% in rank —1, and 1.76% in rank — 5. In comparison to VAAG,
which also utilizes multiple vehicle attributes for vehicle
re-identification, the proposed algorithm demonstrates superiority by
2.14% in mAP, 3.10% in rank —1, and 0.92% in rank — 5.

On the VeRi-Wild (5000) dataset, the proposed algorithm
outperforms the second-best CTCAL by 2.69% in the mAP metric,
2.84% in the rank—1 metric, and 2.18% in the rank—5 metric.

Models mAP (%) rank—1 (%) rank—5 (%)
LOMO (Liao etal., 2015) 9.64 2533 46.48
DGD (Xiao et al., 2016) 17.92 50.70 67.52
GoogLeNet (Yang et al., 2015) 17.81 52.12 66.79
FACT (Liu et al., 2016b) 18.73 51.85 67.16
Siamese Visual (Shen et al., 2017) 29.48 41.12 60.31
PAMAL (Tumrani et al., 2020) 45.06 - -
MSCL (Yuefeng et al., 2022) 45.90 81.20 -
OIFE (Wang et al., 2017) 48.00 65.92 87.66
VAMI (Zhu et al., 2017) 50.13 77.03 90.82
QD-DEL (Zhu et al., 2020) 51.83 88.50 94.46
VRSDnet (Zhu et al., 2019) 53.45 83.49 92.55
FDA-Net (Lou et al., 2019a) 53.46 84.27 92.43
MV-GAN (Zhang et al., 2021) 61.16 91.06 95.77
VAAG (Tumrani et al., 2023) 63.01 92.20 96.64
VPEN (Meng et al., 2020) 67.98 90.36 94.84
VehicleNet (Zheng et al., 2021) 67.48 90.58 95.47
UFC (Wang et al., 2021) 68.24 91.84 96.73
CTCAL (Yuetal, 2021) 68.65 90.46 95.97
Ours 68.83 92.94 96.88
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TABLE 5 Experimental comparison of the VeRi-Wild dataset.

Algorithm

MAP (%)

VeRi-Wild (3000)
rank—1 (%)

10.3389/fnbot.2023.1294211

VeRi-Wild (5000)

rank—5 (%) MAP (%) rank—1 (%)  rank—5 (%)

GoogLeNet (Liao et al., 2015) 24.27 57.16 75.13 24.15 53.16 71.11
HDC (Yuan et al., 2017) 29.14 57.13 78.93 24.76 49.64 72.28
Unlabled GAN (Zhu et al., 2017) 29.86 58.06 79.60 24.71 51.58 74.42
FDA-Net (Lou et al., 2019a) 35.11 64.03 82.81 29.80 57.82 78.34
FDA-Net (Resnet50) 61.57 73.62 91.23 52.69 64.29 85.39
CTCAL (Yuetal, 2021) 70.35 83.64 92.63 65.73 80.31 90.75
Ours 71.39 86.37 94.39 68.42 83.15 92.93

—e—LOMO
—=—DGD
GoogleNet
«—FACT
—*— Siamese Visual
—e— OIFE
—+— VAMI
——FDA-Net
——— VPEN
VehicleNet
UFC
CTCAL
Ours

FIGURE 9
CMC curve on the VeRi776 dataset.

As shown in Figure 10, the algorithm in this study outperforms
other algorithms in the metricrank —1. With the increase of n value in
the metric rank — n, the metric decreases gradually. Together with the
experimental data in Table 4, it is proved that the algorithm in this
study can distinguish the images with high similarity in the output
images (the images in the foreground of the results) and improve the
similarity between the classes.

The query images and ranking lists obtained by the final model
on the VeRi776 dataset and VeRi-Wild are visually presented in
Figures 11, 12. It can be observed that vehicles exhibit different
appearances when subjected to varying perspectives, lighting
conditions, and occlusions. Even during nighttime driving with
illumination and reflection interference, the model can still
recognize target images (Figure 12, last row). Overall, the
experimental results indicate that the proposed method
outperforms existing state-of-the-art multi-attribute-based vehicle
re-identification methods.

Frontiers in Neurorobotics

5 Conclusion

In this study, we propose a vehicle re-identification method that
integrates a multi-attribute dense connection network with a
distance control (DC) module. This model introduces a multi-
attribute dense connection mechanism based on HSV color
attributes and category attributes in the feature extraction segment
of the network, reducing computational complexity. Feature
extraction is achieved through multi-dimensional feature-weighted
fusion, enhancing both feature extraction and classification
accuracy. Furthermore, a method controlling inter-category
distances is introduced, employing a DC module as an image
distance control module. This module comprises both similar and
different DC modules. Based on the target image, features of input
images are processed through both similarity and difference DC
modules, and the resulting features are then merged into the
subsequent network for similarity determination. This module

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1294211
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Sun et al. 10.3389/fnbot.2023.1294211

Ao B 100 -
80 80 -
260 £ 2060 L
XY GoogLeNet X GooglLeNet
ks T 3
b —e—HDC b —e—HDC
P40 - —=— Unlabled GAN 240 - —=— Unlabled GAN
——FDA-Net ——FDA-Net
20 F FDA-Net(Resnet50) 20 F FDA-Net(Resnet50)
CTCAL CTCAL
Ours Ours
0 . 0 .
1 S 10 1 S 10
rank rank

VeRi-Wild(3000) VeRi-Wild(5000)

FIGURE 10

CMC comparison on the VeRi-Wild dataset. (A) CMC comparison on the VeRi-Wild (3000); (B) CMC comparison on the VeRi-Wild (5000).

FIGURE 11

The proposed model results on the VeRi776 dataset. The green numbers and red numbers illustrate the correct and wrong matches.

FIGURE 12

The proposed model results on the VeRi-Wild dataset. The green numbers and red numbers illustrate the correct and wrong matches.
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effectively reduces feature distances within image categories while
increasing distances between image categories, thereby elevating
the accuracy of vehicle re-identification. Experiments for vehicle
re-identification are conducted using the VeRi776 dataset, yielding
precision and recall values of 68.83 and 92.94%, respectively,
surpassing values obtained by other comparative algorithms.
Further experiments using the VeRi-Wild (3000) and VeRi-Wild
(5000) datasets for vehicle re-identification demonstrate precision
values of 71.39% and 68.42% and recall values of 86.37% and
83.15%, respectively, outperforming other algorithms. Experimental
results affirm the efficacy of the proposed method in enhancing the
accuracy of vehicle re-identification.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: the production personnel of this dataset ask for your
information only to make sure the dataset is used for non-commercial
purposes. They will not give it to any third party or publish it publicly
anywhere. Requests to access these datasets should be directed to
VeRi776 datasets, https://vehiclereid.github.io/VeRi/ and VeRi-Wild
datasets, https://github.com/PKU-IMRE/VERI-Wild.

Author contributions

XS: Methodology, Software, Writing — review & editing. YC:
Methodology, Software, Writing - original draft. YD: Methodology,
Software, Writing - original draft. YW: Methodology, Software,
Writing - original draft. JZ: Methodology, Software, Writing - original

References

Abdulhai, B., and Tabib, S. M. (2003). Spatio-temporal inductance-pattern recognition
for vehicle re-identification. Transport Res Part C Emerg Technol 11, 223-239. doi:
10.1016/50968-090X(03)00024-X

Bashir, R. M. S., Shahzad, M., and Fraz, M. M. (2019). Vr-proud: vehicle re-
identification using progressive unsupervised deep architecture. Pattern Recogn 90,
52-65. doi: 10.1016/j.patcog.2019.01.008

Coifman, B. (1998). Vehicle re-identification and travel time measurement in real-
time on freeways using existing loop detector infrastructure. Transp Res Rec 1643,
181-191. doi: 10.3141/1643-22

Guo, H., Zhu, K., Tang, M., and Wang, J. (2019). Two-level attention network with
multi-grain ranking loss for vehicle re-identification [J]. IEEE Trans. Image Process. 28,
4328-4338. doi: 10.1109/TIP.2019.2910408

Hou, J., Zeng, H., Zhu, J., Hou, J., Chen, J., and Ma, K. K. (2019). Deep quadruplet
appearance learning for vehicle re-identification. IEEE Trans Veh Technol 68, 8512-8522.
doi: 10.1109/TVT.2019.2927353

Jin, Y., Li, C,, Li, Y., Peng, P,, and Giannopoulos, G. A. (2021). Model latent views with
multi-center metric learning for vehicle re-identification. IEEE Trans Intell Transp Syst
22,1919-1931. doi: 10.1109/TITS.2020.3042558

Liao, S., Hu, Y., Zhu, X, and Li, S. (2015). “Person re-identification by local maximal
occurrence representation and metric learning”, In: Proceedings IEEE Conference
Computing Vision and Pattern Recognition. 2197-2206. arXiv [Preprint].
arXiv:1406.4216v2]

Liu, X,, Liu, W,, Ma, H., and Fu, H. (2016a). “Large-scale vehicle re-identification in
urban surveillance videos”, ICME, 1-6.

Liu, X., Liu, W,, Mei, T., and Ma, H. (2016b). “A deep learning-based approach to
progressive vehicle re-identification for urban surveillance”, In: European conference on
computer vision. Springer, Cham, 9906, 869-884.

Lou, Y., Bai, Y, Liu, J., Wang, S., and Duan, L. (2019a). Veri-wild: a large dataset and

a new method for vehicle re-identification in the wild. CVPR 2019a, 3235-3243. doi:
10.1109/CVPR.2019.00335

Frontiers in Neurorobotics

10.3389/fnbot.2023.1294211

draft. BS: Supervision, Writing - review & editing. LL: Supervision,
Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research
was Supported by the Scientific Research Startup Fund for Shenzhen
High-Caliber Personnel of SZPT (6023330002K), General Higher
Education Project of Guangdong Provincial Education Department
(2023KCXTDO077), Guangdong Provincial General University
Innovation Team Project (2020KCXTD047), college start-up fund of
ShenZhen PolyTechnic University (6022312031K).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Lou, Y., Bai, Y, Liu, J., Wang, S., and Duan, L. (2019b) Veri-wild: A large dataset and
a new method for vehicle re-identification in the wild. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 3235-3243.

Meng, D,, Liang, L., Liu, X., Li, Y,, Yang, S., Zha, Z., et al. (2020). “Parsing-based view-
aware embedding network for vehicle re-identification”, arXiv [Preprint]. arXiv:
2004.05021.

Peng, J., Wang, H., Xu, E, and Fu, X. (2020). Cross domain knowledge learning with
dual-branch adversarial network for vehicle re-identification. Neurocomputing 401,
133-144. doi: 10.1016/j.neucom.2020.02.112

Qian, J., Jiang, W., Luo, H., and Yu, H. (2020). Stripe-based and attribute-aware
network: a two-branch deep model for vehicle re-identification. J Phys E Sci Instr
31:095401. doi: 10.1088/1361-6501/ab8b81

Ratnesh, K., Edwin, W,, Farzin, A., and Parthasarathy, S. (2020). A strong and efficient
baseline for vehicle re-identification using deep triplet embedding. J Artif Intell Soft
Comput Res 10, 27-45. doi: 10.2478/jaiscr-2020-0003

Shen, Y, Xiao, T., Li, H.,, Yi, S., and Wang, X. (2017). “Learning deep neural networks
for vehicle re-id with visual-spatio-temporal path proposals”, In: Proceedings of the IEEE
International Conference on Computer Vision. 1900-1909.

Teng, S., Zhang, S., Huang, Q., and Sebe, N. (2020). Multi-view spatial attention
embedding for vehicle re-identification. IEEE Trans Circuits Syst Video Technol 31,
816-827. doi: 10.1109/TCSVT.2020.2980283

Tumrani, S., Ali, W, Kumar, R., Khan, A. A., and Dharejo, F. A. (2023). View-aware
attribute-guided network for vehicle re-identification. Multimedia Syst 29, 1853-1863.
doi: 10.1007/s00530-023-01077-y

Tumrani, S., Deng, Z., Lin, H., and Shao, J. (2020). Partial attention and multi-attribute
learning for vehicle re-identifcation. Pattern Recogn. Lett. 138, 290-297. doi: 10.1016/j.
patrec.2020.07.034

Wang, P, Ding, C., Tan, W,, Gong, M., Jia, K., and Tao, D. (2021) “Uncertainty-aware
clustering for unsupervised domain adaptive object re-identification”, arXiv [Preprint].
arXiv: 2108.09682.

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1294211
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://vehiclereid.github.io/VeRi/
https://github.com/PKU-IMRE/VERI-Wild
https://doi.org/10.1016/S0968-090X(03)00024-X
https://doi.org/10.1016/j.patcog.2019.01.008
https://doi.org/10.3141/1643-22
https://doi.org/10.1109/TIP.2019.2910408
https://doi.org/10.1109/TVT.2019.2927353
https://doi.org/10.1109/TITS.2020.3042558
https://doi.org/10.1109/CVPR.2019.00335
https://doi.org/10.1016/j.neucom.2020.02.112
https://doi.org/10.1088/1361-6501/ab8b81
https://doi.org/10.2478/jaiscr-2020-0003
https://doi.org/10.1109/TCSVT.2020.2980283
https://doi.org/10.1007/s00530-023-01077-y
https://doi.org/10.1016/j.patrec.2020.07.034
https://doi.org/10.1016/j.patrec.2020.07.034

Sun et al.

Wang, Z., Tang, L., Liu, X., Yao, Z., Yi, S., Shao, J., et al. (2017) “Orientation invariant
feature embedding and spatial temporal regularization for vehicle re-identification”,
Proceedings of the IEEE International Conference on Computer Vision, 379-387.

Xiao, T., Li, H., Ouyang, W.,, and Wang, X. (2016). “Learning deep feature
representations with domain guided dropout for person re-identification’, In:
Proceedings IEEE Conference Computing Vision and Pattern Recognition. 1249-1258.

Yang, L., Luo, P, Loy, C., and Tang, X. (2015). “A large-scale car dataset for fine-
grained categorization and verification”, In: Proceedings IEEE Conference Computing
Vision and Pattern Recognition. 3973-3981. arXiv [Preprint]

Yu, J., Kim, J., Kim, M., and Oh, K (2021) “Camera-Tracklet-aware contrastive
learning for unsupervised vehicle re-identification”, arXiv [Preprint] arXiv: 2109.06401

Yuan, Y., Yang, K., and Zhang, C. (2017). “Hard-aware deeply cascaded embedding’,
Proceedings of the IEEE International Conference on Computer Vision, 814-823.

Yuefeng, W., Ying, W,, Ruipeng, M., and Lin, W. (2022). Unsupervised vehicle re-
identifcation based on mixed sample contrastive learning. Signal Image Video Process
16, 2083-2091. doi: 10.1007/s11760-022-02170-x

Zhang, J., Chen, J., Cao, J., Liu, R., Bian, L., and Chen, S. (2022). Dual attention
granularity network for vehicle re-identification. Neural Comput. Applic. 34, 2953-2964.
doi: 10.1007/500521-021-06559-6

Frontiers in Neurorobotics

255

10.3389/fnbot.2023.1294211

Zhang, F, Ma, Y., Yuan, G., Zhang, H., and Ren, J. (2021). Multiview image generation
for vehicle reidentifcation. Appl Intell 51, 5665-5682. doi: 10.1007/s10489-020-02171-8

Zhang, X., Zhang, R., Cao, J., Gong, D., You, M., and Shen, C. (2019). Part-guided
attention learning for vehicle re-identification]. arXiv [Preprint], arXiv: 1909.06023.

Zheng, Z., Ruan, T., Wei, Y., Yang, Y., and Mei, T. (2021). VehicleNet: learning robust
visual representation for vehicle re-identification. IEEE Trans. Multimed. 23, 2683-2693.
doi: 10.1109/TMM.2020.3014488

Zhu, J., Du, Y., Hu, Y., Zheng, L., and Cai, C. (2019). Vrsdnet: vehicle reidentifcation
with a shortly and densely connected convolutional neural network. Multimed. Tools
Appl. 78, 29043-29057. doi: 10.1007/511042-018-6270-4

Zhu, J. Y., Park, T., Isola, P, and Efros, A.. (2017). “Unpaired image-to-image
translation using cycle-consistent adversarial networks”, In: Proceedings of the IEEE
International Conference on Computer Vision, 2223-2232.

Zhu, J., Zeng, H., du, Y, Lei, Z., Zheng, L., and Cai, C. (2018). Joint feature and
similarity deep learning for vehicle re-identification. IEEE Access 6, 43724-43731. doi:
10.1109/ACCESS.2018.2862382

Zhu, J., Zeng, H., Huang, J., Liao, S., Lei, Z., Cai, C., et al. (2020). Vehicle re-
identifcation using quadruple directional deep learning features. IEEE Trans Intell
Transp Syst 21, 410-420. doi: 10.1109/TITS.2019.2901312

frontiersin.org


https://doi.org/10.3389/fnbot.2023.1294211
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://doi.org/10.1007/s11760-022-02170-x
https://doi.org/10.1007/s00521-021-06559-6
https://doi.org/10.1007/s10489-020-02171-8
https://doi.org/10.1109/TMM.2020.3014488
https://doi.org/10.1007/s11042-018-6270-4
https://doi.org/10.1109/ACCESS.2018.2862382
https://doi.org/10.1109/TITS.2019.2901312

? frontiers ‘ Frontiers in Neurorobotics

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Long Jin,
Lanzhou University, China

REVIEWED BY

Zhenghua Huang,

Wuhan Institute of Technology, China
Tianwen Zhang,

University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Chenke Yue
yueck0928@nuaa.edu.cn

Chao Li
19b921033@stu.hit.edu.cn

RECEIVED 14 September 2023
ACCEPTED 03 January 2024
PUBLISHED 16 January 2024

CITATION

Li C, Yue C, Li H and Wang Z (2024)
Context-aware SAR image ship detection and
recognition network.

Front. Neurorobot. 18:1293992.

doi: 10.3389/fnbot.2024.1293992

COPYRIGHT

© 2024 Li, Yue, Li and Wang. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Neurorobotics

Type Original Research
PUBLISHED 16 January 2024
pol 10.3389/fnbot.2024.1293992

Context-aware SAR image ship
detection and recognition
network

Chao Li**, Chenke Yue?**, Hanfu Li* and Zhile Wang*

!School of Astronautics, Harbin Institute of Technology, Harbin, Heilongjiang, China, *Key Laboratory
of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics),
Ministry of Industry and Information Technology, Nanjing, Jiangsu, China, *Nanjing University of
Aeronautics and Astronautics, College of Astronautics, Nanjing, Jiangsu, China

With the development of deep learning, synthetic aperture radar (SAR) ship
detection and recognition based on deep learning have gained widespread
application and advancement. However, there are still challenging issues,
manifesting in two primary facets: firstly, the imaging mechanism of SAR results
in significant noise interference, making it difficult to separate background
noise from ship target features in complex backgrounds such as ports and
urban areas; secondly, the heterogeneous scales of ship target features result
in the susceptibility of smaller targets to information loss, rendering them
elusive to detection. In this article, we propose a context-aware one-stage
ship detection network that exhibits heightened sensitivity to scale variations
and robust resistance to noise interference. Then we introduce a Local feature
refinement module (LFRM), which utilizes multiple receptive fields of different
sizes to extract local multi-scale information, followed by a two-branch channel-
wise attention approach to obtain local cross-channel interactions. To minimize
the effect of a complex background on the target, we design the global context
aggregation module (GCAM) to enhance the feature representation of the target
and suppress the interference of noise by acquiring long-range dependencies.
Finally, we validate the effectiveness of our method on three publicly available
SAR ship detection datasets, SAR-Ship-Dataset, high-resolution SAR images
dataset (HRSID), and SAR ship detection dataset (SSDD). The experimental results
show that our method is more competitive, with AP50s of 96.3, 93.3, and 96.2%
on the three publicly available datasets, respectively.

KEYWORDS

ship detection, synthetic aperture radar (SAR), channel-wise attention, context-aware,
aggregation

1 Introduction

SAR is an active microwave imaging sensor, which can obtain high-resolution radar
images under low visibility weather conditions, and it is widely used in the field of ship
monitoring (Yang et al., 2018), geological exploration (Ghosh et al., 2021), and climate
forecasting (Mateus et al., 2012). Distinguished from other remote sensing modalities, SAR
stands out due to its ability to operate day and night, under all weather conditions, and its
high resolution. So it makes SAR a crucial tool for object detection and marine monitoring.
Recently, scholars have shown significant interest in utilizing SAR for ship detection in
ports and on the open sea, and its applications have proven vital in both military and
civilian domains.
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In the past decades, a series of traditional SAR ship detection
methods have emerged as the research related to SAR imaging
technology and surface ship detection has been continuously
and vigorously developed. The most representative types of
traditional methods, such as the global threshold-based method
that determines a global threshold through statistical decision-
making and then searches for bright spot targets in the whole
SAR image ( ), adaptive threshold methods that
utilize the statistical distribution of sea clutter to determine an
adaptive threshold with a constant false alarm probability (

) and generalized likelihood ratio methods that take into
account the distributional properties of both the background
clutter and the ship’s target ( ). However,
these traditional methods are based on interpretable theoretical
justifications and well-established a priori knowledge to analyze
ship features in SAR images, relying on manual feature extraction.
When facing complex backgrounds and SAR images with a
small proportion of target pixel values, the use of manually
predefined features proves challenging in extracting effective target
information and eliminating background noise interference. This
results in a high false negative rate in target detection, preventing
the accurate identification of ship targets. With the development
of convolutional neural network (CNN) and the emergence of
extensive SAR image ship detection datasets, such as SAR-Ship-
Dataset ( ), HRSID ( ), and SSDD
( ), which has led to the rapid development of remote
sensing image-based SAR target detection techniques for ships,
especially in the feature extraction of targets.

Initially, driven by a substantial quantity of publicly SAR
ship datasets, several deep learning-based multi-target detectors
were directly used in SAR ship detection tasks. Such as two-stage
detectors, region extraction-based convolutional neural networks

(RCNN; ), FastRCNN ( ) and the
FasterRCNN, which is representative ( ). Another
example is single-stage detectors such as RetinaNet (

), SSD ( ), CenterNet ( ), and

YOLO series ( ; R

). The above algorithms can automatically mine the effective
features of the target and no longer rely on manual extraction,
but they are ineffective, those who were initially designed for use
as a general-purpose object detector in visible light. Subsequently,
many scholars began to consider the design of deep networks for
the task of ship target detection in SAR images. For example,

( ) proposed a ship target detection method based on
attention mechanism and key point estimation. The method uses
residual link and hierarchical features to extract multi-scale targets,
then uses an attention mechanism to focus on target features and
detect key points to solve the dense arrangement problem. As for
multi-scale problem, ( ) expanded the scope of
image perception region by acquiring multiple scale slices with
different region sizes. In addition, they addressed the issue of
false positives by calculating the distinctiveness between targets
and background, and by employing a multi-ensemble reasoning
mechanism to merge confidence scores from multiple bounding
boxes, which enhanced the extraction of target features.

Quad-FPN (
four distinct feature pyramid network (FPN; ),

) sequentially concatenated

progressively enhancing detection performance. ( )
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FIGURE 1

Examples of SAR images with complex backgrounds and different
scales in the SAR ship dataset. The blue boxed lines show ships of
different scale sizes, and the red boxed lines show the complex
background noise interference that their ships may be subjected to
around them.

designed the Coordinate Attention Module (CoAM), embedding
positional information into channels, thereby enhancing sensitivity
to spatial details and strengthening the localization of ship targets.
Then, they designed the receptive field increased module (RFIM),
which employs multiple parallel convolutions to construct a spatial
pyramid structure, to acquire multi-scale target information.
However, in practical applications, numerous challenging
issues exist, as illustrated in . On one hand, due to
the coherent imaging principles in SAR images, adjacent pixel
values undergo random variations, leading to speckle noise in the
image. In scenarios such as coastal ports, islands, and regions
with sea clutter, SAR ship images may struggle to extract valid
information, resulting in instances of both missed detections and
false positives. On the other hand, the multiscaling problem poses
another challenge. The varying resolutions and morphological sizes
of ship targets necessitate higher demands for multiscale feature
extraction from the network model, given that the pixel range
occupied by ship targets can vary from a few to several hundred.
Firstly, to address the issue of significant scale variations in
ship targets, we designed a LFRM, which improves upon atrous
). Apart from the
first layer, a residual link is employed for each atrous convolution

spatial pyramid pooling (ASPP;

layer to receive and fuse the output from the previous layer,
concatenating it with the current layers output. This effectively
integrates information from different scales. Finally, by combining
a dual-branch channel attention mechanism using global average
pooling (GAP) and global max pooling (GMP), we achieve local
cross-channel interactions. The overall network architecture of
our proposed method employs a multi-level design with multiple
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detection heads to detect targets of different sizes, making it more
suitable for multiscale targets.

Secondly, to mitigate the impact of noise from a complex
background on the target, we introduce the GCAM, which expands
the network’s sensory domain by adaptively weighting features
in different spaces. It leverages estimation-based long-range
dependencies to obtain global semantic features, concentrating on
the target’s intrinsic characteristics to weaken background noise
interference. Finally, we sequentially link and embed these two
modules into the Feature Pyramid Network (FPN; Lin et al., 2017b)
structure with a backbone network, enabling multi-level, wide-
angle perception of context. The main contributions of this paper
are as follows:

e We propose a context-aware SAR image ship detection
and recognition network (CANet) that effectively detects
multiscale targets through both bottom-up and top-down
pathways, equipped with multiple detection heads.

e A Local Feature Refinement Module (LFRM) is designed
to acquire target features of varying receptive field sizes,
enabling local cross-channel interactions to enhance the
model’s performance.

e We introduce a GCAM to capture long-range dependencies,
perceive global context, strengthen target representation, and
suppress noise.

e To validate the effectiveness of our approach, extensive
experiments were conducted on several authoritative SAR
ship detection datasets, including SAR-Ship-Dataset (Wang

2019), HRSID (Wei et al, 2020), and SSDD

(Li et al, 2017). Our method demonstrated outstanding

et al,

performance with detection accuracies reaching 96.3, 93.3,
and 96.2%, respectively.

2 Related work

SAR image ship target detection methods are mainly
categorized into traditional methods and deep learning-based
methods. The former defines ship target features manually, and
then search for feature-matched ship targets in SAR images
based on the predefined features, which can be categorized into
three main groups: based on transform domain (Schwegmann
et al,, 2016), threshold-based algorithms (Renga et al., 2018) and
statistical feature distribution algorithms (Wang et al, 2013).
Within, the most representative one is the constant false alarm-
based (CFAR-based) method. It is based on the statistical model
of sea clutter, which is affected by the ocean area, the wind field
conditions of the ocean, and the radar backscattering intensity
varies in different wind field regions, thus forming a more complex
clutter edge environment at the junction of different regions.
Therefore, it is challenging to establish an accurate statistical
model for a wide range of complex sea clutter. In addition, clutter
modeling often requires complex mathematical theory support
and time-consuming manual involvement, which also reduces the
flexibility of the model and makes it difficult to effectively detect
ship targets.

In recent years, convolutional neural networks (CNNS) have
made great achievements in the field of natural image object
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detection, and their detection performance has been significantly
improved compared with traditional methods. At present, natural
image object detection methods based on deep learning are mainly
divided into two categories: single-level object detectors and two-
level object detectors. Girshick et al. (2014) proposed the first two-
stage target detection model, R-CNN, which employs a traditional
selective search algorithm to generate about 2,000 candidate frames,
which are then fed into the CNN to extract features and categorize
the candidate frames, and finally obtain the detection results.
Subsequently, inspired by SPPNet (He et al., 2015), Fast R-CNN
(Girshick, 2015) was proposed to solve the problem of slow
detection speed of RCNN, which extracts the ROI features on
the network feature map to avoid the repeated computation of
features. It improved the detection speed. They used the Fully
Connected (FC) layer instead of the original SVM classifier to
further improve the classification performance. Ren et al. (2015),
who proposed the faster FasterRCNN, designed the RPN network
to replace the traditional candidate region generation algorithm
selective search (Uijlings et al., 2013), which uses the convolutional
network to extract the features and generate the position of the pre-
selected frame. It reduces the time burden caused by the selective
search algorithm and can almost reach the standard of real-time
detection. More recently, faster R-CNN (Ren et al., 2015) is still the
mainstream representative of two-stage detectors, and its mature
design scheme has been widely used by numerous scholars.

As more demanding real-time target detection tasks are
proposed, single-stage target detection is developing rapidly. As
the pioneers of single-level target detectors, the YOLO series
(Redmon et al., 2016; Redmon and Farhadi, 2017, 2018), by directly
treating the object detection problem as the regression problem
of the target region position and target category prediction, can
output the positions and categories of target bounding boxes using
only convolutional networks, meeting the requirement of real-time
detection. Subsequently, YOLOv4 (Bochkovskiy et al., 2020) and
YOLOV5 were proposed to achieve a new balance between the
accuracy and speed of this series of algorithms, which were applied
to more detection and recognition tasks. Another improvement of
YOLO, TPH-YOLO (Zhu et al.,, 2021), to improve the detection
accuracy of tiny targets, a tiny target detection head is added based
on YOLOV5, and a total of four Prediction heads can mitigate the
effects of large changes in the size of the target scale. Meanwhile, it
replaces some convolutional blocks with transformer encoder ones
to capture global information and sufficient background semantic
information. SSD (Liu et al., 2016) and RetinaNet (Lin et al.,
2017a) are two other common single-stage detectors. The former
directly utilizes convolutional layers to extract detection results
from different feature maps. It employs prior boxes with varying
scales and aspect ratios to better match the shapes of targets,
distinguishing it from YOLO, which uses fully connected layers
for detection. While the latter proposes a new loss function that
can be used as a more efficient alternative to previous methods
for dealing with class imbalance. This class imbalance problem is
solved by reshaping the standard cross-entropy loss to reduce the
loss assigned to well-categorized examples.

With the blooming of deep learning in the field of images,
CNN-based ship detection is increasingly subject to becoming
popular. Dense Attention Pyramid Network (DAPN; Cui et al,
2019) embedded a convolutional block attention module (CBAM)
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into each level of the pyramid structure from the bottom up to
enrich the semantic information on different level scale features
and amplify the significance of features. CBAM is used to fuse
the features at all levels, and the adaptive selection focuses on the
scale features to further strengthen the detection and recognition of
multi-scale targets. Also improved based on FPN (Lin et al., 2017b),
Zhao et al. presented a novel network called attention receptive
pyramid network (ARPN; Zhao et al, 2020), by fine-tuning
the pyramid structure, to generate candidate boxes at different
levels of the pyramid. Then, asymmetric convolution and atrous
convolution are used to obtain convolution features in different
directions to enhance the global context features of the local region.
Then channel attention and space attention are combined to re-
weight the extracted features, improving the significance of the
target features and suppressing the interference of noise, and finally
connect them to each layer of the pyramid laterally. Chaudhary
etal. (2021) tried to directly apply YOLOvV3 (Redmon and Farhadi,
2018) to ship detection and achieved some good results. Inspired
by YOLO, Zhang and Zhang (2019) divided the original image
into grid regions, and each grid was independently responsible
for detecting the target in the region. Then, the image features
are extracted through the backbone network for detection. In
particular, backbone networks use separable convolution to reduce
network burden.

PPA-Net (Tang et al., 2023) took into consideration that the
designs of attention mechanisms such as CBAM are tailored
for natural images, overlooking the impact of speckle noise in
SAR images on attention weight generation. The target salience
information is introduced into the attention mechanism to obtain
the attention weight suitable for the SAR image. First, three pooled
operations of different region sizes are constructed to obtain
parallel multi-scale branches, and then activation functions are
used to obtain the final channel attention weights. Meanwhile,
considering the mutual exclusivity between semantic and location
information and avoiding simple feature cascade operations, the
authors use two self-attention weights to adaptively regulate the
fusion feature ratio. To enhance the practical value of SAR
ship detection applications, Zhang et al. (2019) constructed a
lightweight SAR ship detection network based on the depthwise
separable convolution neural network (DS-CNN). They replaced
traditional convolutions with DS-CNN, significantly improving
detection speed with fewer parameters, making it applicable
for real-time detection tasks. Similarly, to improve detection
speed, Lite-yolov5 (Xu et al., 2022a) designed a lightweight stride
module and pruned the model to create a lightweight detector.
To ensure detection accuracy, histogram and clustering methods
were applied to enhance detection performance. Additionally,
there are instance segmentation methods based on SAR ships,
such as the attention interaction and scale enhancement network
(MAI-SE-Net; Zhang and Zhang, 2022a). This method models
long-range dependencies to enhance global perception and
uses feature recombination to generate high-resolution feature
maps, improving the detection capabilities for small targets.
Zhang and Zhang (2022b) employed a dense sampling strategy,
fusing features extracted by FPN at each layer and adding
contextual information to the region of interest (ROI) to enhance
information gain.
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To address the issue of multiscale object detection, HyperLi-
Net (Zhang et al., 2020a) utilized five improved internal modules
to enhance the accuracy of multiscale object detection. These
modules include multiple receptive fields, dilated convolution,
attention mechanisms, and a feature pyramid to extract multiscale
contextual information. Xu et al. (2022b) utilized the polarimetric
characteristics of SAR to enhance feature expression and fused
multiscale polarimetric features to obtain scale information. Zhang
and Zhang (2020) proposed a lightweight one-stage SAR ship
detection method, ShipDeNet-20. Because it uses depth-separable
convolution with fewer layers and parameters instead of traditional
convolution, its detection speed and model size are superior to
other detection methods. Meanwhile, to ensure that the detection
accuracy is not lost, features of different depths are fused to
enhance the contextual semantics of features, and feature maps
of the same size are superimposed to improve the expression
ability of features, to improve the detection accuracy. Zhu et al.
(2022) used the gradient density parameter g to construct the loss
function of the network in order to solve the sparse problem of
ship targets unbalanced with positive and negative ship samples. To
prevent positive samples from having a decisive influence on the
global gradient, the weight of the gradient proportion of multiple
samples is neutralized. The author also studies the effect of the
imbalance of feature levels on multi-scale ship detection. In order
to ensure that semantic information is not lost during multi-
layer transmission, the method of horizontal link integration of
multilevel features is adopted to accelerate the flow of information
so that the detailed features and semantic features can achieve
balance, avoiding the semantic information and detailed features
caused by the loss of other resolutions only by focusing on adjacent
resolution information.

To mitigate the impact of background noise on the target,
the Balance Scene Learning Mechanism (BSLM; Zhang et al,
2020b) employs a generative adversarial network (GAN) to
extract complex scene information from SAR. This is followed
by a clustering method to differentiate between nearshore and
offshore backgrounds, thus enhancing the background. Similar
balancing strategies are employed in various methods (Zhang et al.,
2020¢, 2021b). Additionally, some approaches utilize pixel-level
processing to reduce background noise. Sun et al. (2023) used
superpixels to reduce the impact of noise on the target. Firstly, the
image is segmented by pixel blocks of different sizes to obtain target
features of different sizes and image understanding of different
semantic levels. After that, the surrounding contrast feature region
is dynamically selected by dividing the size of the superpixel so
that the smaller superpixel can have a larger contrast region while
the larger superpixel can choose the features around itself for
comparison. Finally, the superpixel features at different levels are
fused for detection. Previous studies focused on extracting the
features of ship targets in the spatial domain, but Li et al. (2021)
believed that the spatial features of ship targets could not meet
the requirements of high-precision detection, so they used the
frequency domain to make up for the shortcomings in the spatial
domain. Like most methods, the multi-scale spatial information
of the ship target space domain is obtained through hierarchical
learning, and then the invariance features of the target in the
frequency domain are obtained by using the Fourier transform

frontiersin.org


https://doi.org/10.3389/fnbot.2024.1293992
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Lietal.

in polar coordinates. Finally, the features in the two-dimensional
domains are compactically fused to obtain the multi-dimensional
representation of the target features. In order to better adapt to the
differences brought by SAR images collected by different sensors,
Zhao et al. (2022) proposed an adaptive learning strategy based
on the adversarial domain. Considering the different polarization
modes and scattering intensity of SAR images, in order to realize
the alignment of instance-level objects and pixel-level features
between different domains (different sensor images), the concept of
entropy is introduced as a feature weight coefficient to distinguish
regions with different entropy. Since the entropy of the uniform
region in SAR images is lower than that of the non-uniform
region, adding entropy-based adversarial domain adaptive learning
to different layers of the backbone network can effectively deal with
the relationship between entropy and different receptive fields so
that different domains can be aligned at the feature level as much
as possible. At the same time, assigning different weights to regions
with different entropy can help to distinguish the alignment results
better. With the aim of distinguishing different instance-level target
characteristics and make better alignment, the domain alignment
compensation loss is constructed. In order to extract more precise
feature information so that more uniquely representative example
features can be accessed, the result of the highest score in the
clustering is used to calculate the weight of the class. Zhou et al.
(2023) added an edge semantic branch to solve problems such
as confusion in edge detection caused by overlapping targets and
used convolution of deeper and larger convolution kerns to expand
the learning of context edge semantics and decouple the learned
rich features, which is conducive to accurate localization of ship
targets and prediction of detection frames. In addition, considering
that the size of the receptive field extracted by CNN is limited,
it is impossible to analyze the context from a global perspective.
Therefore, a transformer framework is introduced to acquire global
context features by using a multi-head attention mechanism, thus
enhancing the remote analysis capability and achieving better
detection and recognition effects for large-scale targets.

3 Context-Aware Network

In this section, we detail the overall architecture of the network
and some other design-specific concepts and corresponding
examples. The overall architecture of our approach is shown in
Figure 2. Specifically, features are first extracted initially using
CSPDarkNet53 as the backbone network. For the backbone
network, our input goes through two convolutional layers to
downsample the data to 1/4 of the input, where the activation
function used in the convolutional layer is chosen to be the SiLU
function. The SiLU function has a smoother curve as it approaches
0, controlling the output structure between 0 and 1 and achieving
better results than ReLU in some applications. Then, the feature
extraction method of YOLOv5 was adopted to obtain three effective
feature layers with different resolutions and channel numbers
through multiple C3 modules, and the three feature layers were
input into the FPN network structure composed of LFRM and
GCAM in series in parallel. The C3 module consists of three
standard convolutional layers as well as multiple CSP Bottlenecks.
The CSP Bottleneck mainly uses a residual structure, with one 1X1
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convolution and one 3X3 convolution in the trunk, after which the
residuals are left untouched and the inputs and outputs of the trunk
are directly combined. The C3 module uses the CSPNet (Wang C.
Y. etal., 2020) network structure, which still employs the residuals.

We capture multi-scale features through LFRM to better adapt
to different scales of ship object information, thus obtaining a more
representative feature map. Then, the long-range dependencies
are captured by GCAM to enhance the feature representation of
the target and suppress the interference of noise. The following
subsections present detailed information.

3.1 LFRM

Since ship targets in SAR images in real applications may have
different scales, some ships may be very large while others may
be relatively small, making the detection process complicated. To
address this problem, we designed the LFRM module as shown in
Figure 3. The deep features x = {xj...... x;} obtained from the
backbone network are computed in parallel by a 11 convolutional
layer and three atrous convolutions with rates of 3, 6, and 12 to
obtain convolutional features on multiple scales.

b; = Atrous(x;)

ci = Conviy (xi)

After that, the feature maps b; of each layer except the first one
is sequentially fused with the feature maps b;_; of the previous layer

and activated by convolution to obtain new feature maps bi, which
allows each layer to obtain a diversity of resceptive fields.

l;,- = Conv(b;)

To better fuse the different scales of information, the four
obtained feature maps are finally superimposed in the channel
dimension using the Concat operation and then fed into the
convolutional layer to obtain a new multi-scale feature map s;.

s;i = Conv (Concat (l;i, Ci))

For the purpose of enhancing the generalization ability of the
network, we improve ECA-Net (Wang Q. et al., 2020) by learning
the correlation between channels and adaptively adjusting the
weights of the channels to improve the performance of the network.
As shown in the lower part of Figure 3, we first perform global
maximum pooling and global average pooling operations on the
feature map x;to obtain two global feature descriptors, respectively,
me RVIXC ge RIXIXC ) Cindicates the number of channels.

m = GAP (x)
a = GMP(x)

The cross-channel information interaction is accomplished
by two one-dimensional convolutions, respectively, and then the
weight coefficients for each channel are calculated by SoftMax
normalization. Where wjis the result of channel interactions, Wi
denotes the weights of the channel features, and y; denotes the

neighboring feature channels in a one-dimensional space. K is the
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FIGURE 2
General framework of our method, where LFRM and GCAM are the proposed modules. The input image is first sent to the backbone to extract
features, then passes through the FPN network structure consisting of LFRM and GCAM in series, and finally the detection results are output through
the header. Where BCE loss is used for classification and objectivity and GloU loss is used for regression.

LFRM — Gcam — conv H—m—s l
Y -— \___ |

result computed by the given formula, and i denotes the number of
channels, je RK,

K
o= | 2w | Jieaf

=1

Where the convolutional kernel size K is self-adapted by a
function that allows layers with a larger number of channels to
interact across channels more often. The adaptive convolutional
kernel size is calculated as,

log, (C) + ﬁ
Y 14

K =

odd

Whichy =2, b= 1, |t],4g is the nearest odd number to ¢t and
C is the number of channel.

Finally, the results of the two different pooling branches
are superimposed according to the channel dimension, and the
weight coefficients for each channel are obtained using SoftMax
normalization, andx; is attentively weighted according to the
channel dimension.

p =0 (Concat (h,a)) - x

o is SoftMax function, - is the element-wise product.

Finally, the multiscale feature s is overlaid with the feature
map p after local cross-channel interaction to obtain the final
LFRM output.

Since using only GAP to extract global features does not capture
the detail information well, GM is added to enhance the grasp of
details, and the two pooling branches complement each other to
enhance the extraction of local semantic features.

3.2 GCAM

To obtain remote dependent features and thus global context
information to enhance the ontological target characteristics and to
remove the interference of complex background noise on the target,
we design the GCAM module as shown in Figure 4, where we
take the multi-scale information obtained from the LFRM module

Frontiersin Neurorobotics

as an input to obtain the remote context information about the
local features.

As shown in Figure 4, it given the output of the LFRMP =
{Py...... P; } as input, Pie R'*C is the feature vector at pixel
i with C channel. The global context featuref; is obtained by
estimating the relationship between the current pixel and all pixels.
After that, the weight coefficients are matrix multiplied with the
local features to aggregate the contextual information (matrix
multiplication is employed on the weight and local feature to
aggregate contextual information).

Hxw e"(Pi)
- _ .
f= 2 S ot P
j=1 m=1

Where n(p;) = Wypj and n(p,,) = Wipy, represent linear
transform matrices, and Wy implements the 1 x 1 convolution.

With the aim of further extracting the channel dependencies
while reducing the number of parameters and computational
complexity, the acquisition of spatially distant effective features will
be augmented by transformations, so we draw on the Non-local
(Wang et al., 2018) method.

fi=6%SiLU (LN (¢ - f}))

Both ¢ and 6 are realized by a 1 x 1 convolution. And the
normalization (LN) and SiLU activation layers are added after
the first convolution to improve the generalization of the model.
Finally, the transformed feature ﬁ is element-wise added to the
multi-scale local features, yielding the GCAM output fl which
aggregates global contextual features at each pixel.

ﬁ=ﬁ+Pi

The GCAM module selectively acquires distant features for
each pixel based on the correlation between spatially distant pixels,
which enhances the modeling capability of feature representation
and reduces background noise interference. Meanwhile, the
module can be easily inserted into various network models to
obtain global context information.
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FIGURE 3
Illustration of the proposed LFRM. The upper half shows the extraction of multi-scale features using atrous convolution and the lower half shows the
two-branch pooling channel attention mechanism.

HXxWx1 HxWx1

@ Add @ Element—wise product

Cix1 ¢ x1 € x1
transpose C; X H X W ] N [ v ] ]
N .

W RELU B
b,

>
e

MXHXD
Y
o

FIGURE 4
Illustration of the proposed GCAM.
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4 Experimental results and analysis

In order to fully verify the validity of our proposed methods,
we test them on three authoritative public data sets and compare
them with several other advanced ones. In addition, to demonstrate
the effectiveness of proposed LFRM and GCAM, we design
ablation experiments to evaluate the validation. Finally, we
provide a comprehensive analysis of the experimental results and
time complexity.

4.1 Training configurations and datasets

All of our experiments are conducted on a GPU workstation
equipped with NVIDIA RTX 3090 with 24 GB of video memory,
and the operating systems are ubuntu21.0, CUDA (10.0) and
cuDNN?7.0. The language and framework used to build the model
are python3.7 and pytorchl.1.0, respectively. For achieving fast
convergence during training, with AdamW optimizer, we set the
initial learning rate to le-3 and employ a cosine annealing strategy
to adjust. Also, to ensure experimental fairness and consistency,
all the methods involved in the experiments are trained and
validated under the same data benchmark. The batch setting is
16 and the maximum number of iterations is 300 to find the best
model parameters.

The loss function, which used for model training, consists of
classification loss, confidence loss and regression localization loss.
The former two chose the classical Cross Entropy (CE), while the
latter adapts Complete-IoU (CIoU) Loss.

The Cross-Entropy Loss Lcg function expression is shown
below, where p (x;) is the probability distribution of the true value,
q (x;)is the probability distribution of the predicted value, and C
denotes the total number of categories.

C
Lee ==Y p(x)In(q(x))

i=1

The CIOU loss Lcjou function expression is shown below,
where p?(b, b8') represents the square of the distance between the
center point of the prediction box and the center point of the
real box. ¢ represents the diagonal length of the smallest outer
rectangle of the two rectangular boxes. « is the parameter used
to do trade-offs, and v is the parameter used to measure aspect
ratio consistency.

2 b bgt
CloU = IoU — (L’z) +av)
c
4 ! W,
v = p(arctan o arctan ﬁ)
v
¢0=—
(1—1IoU)+v

LCIoU =1-—CloU

The CIOU loss was chosen to normalize the coordinate scales
to take advantage of the IOU and initially address the case where
the IOU is zero.

To more fully evaluate the superiority of our methods, AP50
is used as the main evaluation metric, compared with currently
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popular methods. Specifically, PR curve is a curve drawn with
precision P as the vertical coordinate and recall rate R as the
horizontal coordinate. The higher the accuracy of the model, the
higher the recall rate, the better the model performance, and the
larger the area under the PR curve. AP50 Indicates the AP value
when the ToU confidence score is 0.5. In addition, we use accuracy,
recall, and F1 scores for a confidence threshold of 0.4. We also use
FLOPs as an auxiliary evaluation metrics to test the efficiency of the
model. The formula for calculating indicators is as follows:

. TP
Precision = ———
TP + FP

TP
Recall = ———
TP + FN

2 X Precision x Recall
Fl =

Precision + Recall

1
AP = f P(R)dR
0

4.2 Datasets

We evaluate our proposed methods on several public SAR
ship datasets, including the SAR-Ship-Dataset (Wang et al., 2019),
HRSID (Wei et al., 2020), and SSDD (Li et al., 2017) datasets.
All of these datasets contain real scene images of various complex
scenes ship targets of different sizes and dimensions. The SAR-
Ship-Dataset (Wang et al., 2019) annotated by SAR experts, which
uses 102 SAR images taken by the Gaofen-3 satellite and 108 SAR
images taken by the Sentinel-1 satellite, containing 43,819 slices
and 50,885 ship targets. The pixels in distance and orientation
are 256. Finally, the data set is randomly divided into training
set, verification set, and test set, with an image ratio of 7:2:1.
HRSID (Wei et al, 2020) is a public data set used for the ship
detection, semantic segmentation, and instance segmentation in
high-resolution SAR images. It contains 5,604 high-resolution SAR
ship images and 16,951 ship instances. The construction process
draws on the COCO dataset and includes SAR images of different
resolutions, polarization modes, sea states, sea areas, and ports.
Its spatial resolution is 0.5-3m. We follow the original dataset
paper’s delineation method. For the SSDD (Li et al., 2017) dataset
is obtained by downloading publicly available SAR images from
the Internet and cropping the target area into 1,160 pixels of size
around 500 x 500 and manually labeling the ship target positions.
We select images with image index suffixes 1 and 9 as the test set.

4.3 Results and analysis

4.3.1 SAR-ship-dataset

As shown in Table 1, our algorithms are experimentally
compared with general-purpose object detection methods
including Faster R-CNN (Ren et al., 2015), RetinaNet (Lin et al,
2017a), CenterNet (Zhou et al., 2019), YOLOv4 (Bochkovskiy et al.,
2020), and YOLOV5, as well as SAR-specific ship detectors DAPN
(Cui et al.,, 2019), COAM+RFIM (Yang et al.,, 2021), and PPA-Net
(Tang et al., 2023) on the SAR ship dataset (Wang et al., 2019).
From the Table 1, it can be observed that our method exhibits
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TABLE 1 Comparison of evaluation metrics of different methods on the
SAR-SHIP dataset.

10.3389/fnbot.2024.1293992

TABLE 3 Comparison of evaluation metrics of different methods on SSDD
dataset.

Method Precision Recall F1 (%) AP5 Method Precision Recall 74 APso
(%) (%) (%) (%) (%) (%)

Faster R-CNN (Ren 90.3 91.4 90.8 91.0 Faster R-CNN (Ren 90.9 87.6 89.2 88.3

et al., 2015) etal., 2015)

RetinaNet (Lin et al., 84.5 93.3 88.7 93.8 RetinaNet (Lin et al., 81.6 92.3 86.6 89.6

2017a) 2017a)

CenterNet (Zhou et al., 84.6 93.5 88.8 95.0 CenterNet (Zhou et al., 93.3 94.5 93.9 93.5

2019) 2019)

DAPN (Cuietal, 2019) 89.9 90.7 90.3 90.6 DAPN (Cui et al,, 2019) 87.6 91.4 89.4 90.1

YOLOV4 (Bochkovskiy 85.7 92.7 89.1 93.2 YOLOV4 (Bochkovskiy 93.6 94.0 93.8 96.1

et al., 2020) et al., 2020)

YOLOV5 93.5 95.0 94.9 95.8 YOLOV5 94.0 92.4 92.7 95.3

CoAM+RFIM (Yang 93.7 95.3 94.5 96.0 CoAM-+RFIM (Yang 94.4 92.1 93.2 95.6

etal., 2021) etal., 2021)

PPA-Net (Tang et al., 93.5 95.5 94.7 96.1 PPA-Net (Tang et al., 94.8 94.5 93.3 96.0

2023) 2023)

Our 93.8 96.1 94.4 96.3 Our 94.2 93.9 94.5 96.2

The best results are highlighted in bold.

TABLE 2 Comparison of evaluation metrics of different methods on the
HRSID dataset.

Method Precision Recall F1 (%) APs5g
(%) (%) (%)

Faster R-CNN (Ren 88.8 77.5 82.8 78.2

etal., 2015)

RetinaNet (Lin et al., 69.8 83.8 76.2 82.5

2017a)

CenterNet (Zhou et al., 81.8 87.4 84.5 86.3

2019)

DAPN (Cui et al.,, 2019) 88.9 77.6 82.9 79.8

YOLOV4 (Bochkovskiy 90.6 84.0 87.2 90.1

et al., 2020)

YOLOvV5 92.4 89.3 91.2 92.9

CoAM+RFIM (Yang 92.7 88.1 90.3 92.7

etal., 2021)

PPA-Net (Tang etal, 93.4 89.8 92.1 92.9

2023)

Our 93.6 90.4 92.4 93.3

The best results are highlighted in bold.

strong competitiveness. Our approaches achieve precision, recall,
F1, and AP50 accuracy of 93.8, 96.1, 94.4, and 96.3%, respectively.
Regarding AP50 accuracy, it outperforms the two-stage detector
Faster R-CNN (Ren et al., 2015) in general object detection by 5.3%,
and exceeds YOLOv4 (Bochkovskiy et al., 2020) and YOLOvV5
(both are single-stage detectors) by 3.1 and 0.5%, respectively.

In addition, in comparison with SAR ship detection method
DAPN (Cui et al, 2019), which primarily focuses on the
scale issue of ship targets but neglects the interference and
impact of noise in small targets within complex backgrounds,
resulting in an AP50 accuracy of 90.6%, significantly lower than
ours and other advanced SAR ship detection methods. Our
approach also outperforms another anchor-free popular algorithm,

Frontiersin Neurorobotics

The best results are highlighted in bold.

CoAM+RFIM (Yang et al,, 2021), by 0.3% in the AP50 metric.
Despite the consideration of noise impact and the use of attention
mechanisms to reduce noise effects, the latest SAR ship detection
method PPA-Net (Tang et al., 2023) falls short due to relying solely
on pooling operations to address multi-scale information, leading
to significant information loss.

4.3.2 HRSID

The HRSID dataset exhibits a more complex image background
and includes a greater number of densely packed small ship targets,
posing higher challenges for algorithms and allowing for a better
validation of our method’s effectiveness in complex background
and small target detection. As shown in Table 2, our method
shows an improvement of ~0.4-15.1% compared to state-of-the-
art methods, benefiting from the proposed LFRM and GCAM.
LFRM first extracts local multiscale information using multiple
differently-sized receptive fields and then employs a dual-branch
channel attention mechanism to facilitate local cross-channel
information interaction between different scale features, alleviating
the detection impact of scale variations.

Furthermore, GCAM, by capturing long-range dependencies,
enhances target feature representation and suppresses noise
interference, enabling effective target detection in SAR ship images
with different complex backgrounds. Even when compared to the
latest SAR ship detection algorithms CoAM+RFIM (Yang et al.,
2021) and PPA-Net (Tang et al., 2023), our method outperforms
them by 0.9, 2.3, 2.1, and 0.2% for Precision (%), Recall (%),
F1 (%), and AP50 (%), respectively. Similarly, across all four
detection accuracy metrics, our method surpasses other general
object detection methods and achieves optimal results. In terms
of AP50 (%), it outperforms Faster R-CNN (Ren et al., 2015),
RetinaNet (Lin et al., 2017a), CenterNet (Zhou et al, 2019),
YOLOvV4 (Bochkovskiy et al., 2020), and YOLOv5 by 15.1, 10.8,
13.5, 3.2, and 0.4%, respectively.
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Ours

Ground Truth

FIGURE 5

We have chosen to compare the detection results of different methods for complex backgrounds and multi-scale targets (especially small targets)
The red box indicates the ground truth, and false alarms and missed detections are circled using yellow and green circles, respectively.

CenterNet YOLOv5

4.3.3 SSDD

As shown in , the experimental results on this dataset
indicate that our method is competitive, although the Precision
and Recall accuracies are slightly lower than YOLOV4 (

), COAM+RFIM ( ), and PPA-Net

( ). Furthermore, our algorithm outperforms other
classical methods, including Faster R-CNN ( ),
RetinaNet ( ), CenterNet ( ), DAPN
( ), and YOLOV5. In summary, our method achieves

significant detection accuracy. Additionally, the detection results

Frontiersin

on multiple datasets validate the fine generalization capability of
this method.

4.3.4 Visual results

To directly showcase the advanced detection results of our
method, we visualize the detection outcomes on three different
datasets. As illustrated in -7, it is evident that our
method performs exceptionally well in both complex background

and various-sized ship targets, surpassing other approaches.
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HRSID

SAR-Ship-Dataset

FIGURE 6

Plot of detection results for selected ships with complex backgrounds from HRSID, SSDD, and SAR-Ship-Dataset datasets for our method.

HRSID

SSDD

SAR-Ship—Dataset

FIGURE 7

Our approach plots a selection of detection results with small targets and densely arranged ships in the HRSID, SSDD, and SAR-Ship-Dataset datasets.

Specifically,
and other approaches in SAR images with complex backgrounds

displays the detection results of our method

and multiple-scale targets. It is noticeable that other methods
exhibit instances of missed detections or false positives, while
ours demonstrates good detection accuracy in both scenarios.

presents the detection results of our method for ships with
complex backgrounds. illustrates the results of detecting
small target ships, consistent with our expectations that the LFRM

module can effectively utilize multiple receptive fields of different

Frontiersin

sizes to extract local multiscale information, making the network
more sensitive to small targets.

In summary, the visualization results intuitively reflect that our
proposed method can accurately detect and identify ship targets
in SAR images with complex backgrounds and various target
sizes. Moreover, it demonstrates effective target detection across
different datasets and diverse scenarios, offering better practical
utility. However, our method exhibits some instances of missed
detections and false positives in dense target detection, as shown
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in Figure 5, where our method displays a few missed detections in
SAR images with densely packed ships, marked with green circles.
This is attributed to our method solely considering the influences
of multiscale targets and backgrounds, without accounting for
potential feature overlap and misalignment that may arise when
targets are densely arranged. Our current approach does not
perform feature subdivision for overlapping targets, and we plan
to address this in future work.

TABLE 4 Ablation experiments on the HRSID dataset.

LFRM GCAM  APsy (%) Runtime (ms)

91.1 9.1

v 92.3 243
v 93.0 26.9

v v 93.3 28.1

We validate the effectiveness of each component step by step. It displays the AP50 (%)
and the Runtime (ms). The optimal metrics have been bolded. All scores are expressed in
percentage (%).

TABLE 5 Ablation experiments on the HRSID dataset for the size selection
of the convolutional region K in two-branch channel attention.

The coverage of K ‘ APsg (%) ‘ Runtime (ms)

3 93.0 19.7
4 93.3 20.1
5 93.1 204
6 92.8 20.9

The bold values indicate the best results.

10.3389/fnbot.2024.1293992

4.3.5 Ablation study

To evaluate the effectiveness of the components in our
proposed Context-Aware Network, we conduct extensive ablation
experiments on the HRSID (Wei et al., 2020) dataset. For LFRM,
the results are shown in Table 4, where our proposed LFRM module
improves the accuracy of AP50 from 91.1 to 92.3% compared
to the benchmark level. As shown in Table 5, consistent with
what we envisioned, LFRM uses multi-level atrous convolution to
extract feature information at different scales hierarchically, and
adopts residual linking to diversify the feature receptive field at
each layer, better fusing the scale features. Combined with the
dual-branch channel attention mechanism to realize local cross-
channel interaction, it can enhance the ability to characterize
the target and efficiently filter complex semantic information.
The ablation experiments also demonstrate that LFRM is not
only sensitive to scale information but also can mitigate complex
background noise.

For GCAM, our proposed GCAM module improves the
accuracy of AP50 from 91.1 to 93.0% compared to the
benchmark level. Essentially, GCAM expands the sensory
domain of the network by adaptively weighting features in
different spaces and suppresses background noise interference
by obtaining global contextual information based on the
estimated long-range dependency. As shown in Figure 8, to
show the effectiveness of our proposed module more directly,
we visualize it by outputting a visual graph of the intermediate
results. Finally, by combining our two modules in series, their
AP50 accuracy can reach 93.3%, which shows that the LFRM
and GCAM can effectively improve the SAR ship detection
performance, and the interaction can further improve our
network performance.

CSPDarknet53

FIGURE 8
Visualization of the outputs of the different modules of the intermediate process tested by our method on the HRSID dataset.

LFRM

GCAM
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To mitigate the impact of Batch Size on experimental
results and determine the optimal Batch Size for training, we
conduct ablation experiments with different Batch Size values. The
experimental results are presented in Table 6. Notably, when the
Batch Size reaches 16 and 32, the detection accuracy (AP50) both
achieve the highest value of 93.3%. However, with a Batch Size
of 8, the larger randomness introduced by the smaller Batch Size
makes it challenging to converge, resulting in a lower classification
accuracy of only 92.8%. When the Batch Size exceeds 32, there is
a possibility of encountering local optima, leading to a decrease
in accuracy to 92.9%. We exhaustively explored a range of Batch
Size values in the ablation experiments to identify the most optimal
Batch Size.

4.3.6 The complexity and speed of the network

We conduct a complexity analysis of the model, and the results
are presented in Table 7. Ours has metrics of 28.1, 60.4, and
126.9 for Runtime, Params, and FLOPs, and although it is more
complex to model with some other state-of-the-art methods such
as YOLOv5, COAM+RFIM (Yang et al., 2021) and PAA-Net (Tang
et al., 2023), our method exhibits outstanding performance on the
SAR-Ship-Dataset (Wang et al., 2019), HRSID (Wei et al., 2020),
and SSDD (Li et al,, 2017) datasets, delivering exceptional results
while maintaining acceptable model sizes. The reason for the more
complex model is that we use a more complex backbone network
and GCAM in by calculating the correlation between each pixel
and the other pixels, which imposes some network burden, but our
method achieves a good balance for accuracy and speed.

5 Conclusion

To address the two challenges of various complex background
interferences and multi-scale ship targets in SAR image ship
detection tasks, we propose a context-aware one-stage SAR ship
detection algorithm. To solve the problem of multi-scale ship
target detection, we propose the LFRM module, which uses
dilated convolutions with different ratios to obtain multi-scale
features, and then uses average and maximum global pooling to
interact the extracted information of different scales, enhancing
its representation ability and sensitivity to scale, and achieving
multi-scale ship detection. Furthermore, we also design the GCAM
module to enhance the analysis of global context information
and further suppress the interference of noise from complex
backgrounds on targets. Extensive experiments have demonstrated
that our method outperforms the latest methods in comprehensive
performance. The method proposed in this paper can effectively
cope with the interference of complex background noise and
detect ship targets of different scales. However, there are still some
missed detection issues for densely arranged targets. In future work,
we will pay more attention to the detection of densely arranged
small targets.
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TABLE 6 Ablation experiments were performed on HRSID data sets with
different batch sizes.

Batch size APsg (%)

8 92.8
16 93.3
24 93.0
32 93.3
36 92.9

The bold values indicate the best results.

TABLE 7 Comparison of Runtime, Params size, and FLOPs for different
models.

Method Runtime Params FLOPs
(ms) (M) (G)
Faster R-CNN (Ren et al., 2015) 56.1 60.1 181.9
RetinaNet (Lin et al., 20172a) 55.0 55.1 175.4
CenterNet (Zhou et al., 2019) 55.0 20.2 63.3
DAPN (Cui et al,, 2019) 74.9 63.8 266.1
YOLOV4 (Bochkovskiy et al., 2020) 224 64.3 110.5
YOLOvV5 19.7 27.6 60.3
CoAM-+RFIM (Yang et al., 2021) 37.3 65.8 123.5
PPA-Net (Tang et al., 2023) 40.2 73,9 144.5
Our 28.1 70.4 126.9

The bold values indicate the best results.
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The research on acceleration-level visual servoing of manipulators is crucial yet
insufficient, which restricts the potential application range of visual servoing.
To address this issue, this paper proposes a quadratic programming-based
acceleration-level image-based visual servoing (AIVS) scheme, which considers
joint constraints. Besides, aiming to address the unknown problems in visual
servoing systems, a data-driven learning algorithm is proposed to facilitate
estimating structural information. Building upon this foundation, a data-driven
acceleration-level image-based visual servoing (DAIVS) scheme is proposed,
integrating learning and control capabilities. Subsequently, a recurrent neural
network (RNN) is developed to tackle the DAIVS scheme, followed by theoretical
analyses substantiating its stability. Afterwards, simulations and experiments on
a Franka Emika Panda manipulator with eye-in-hand structure and comparisons
among the existing methods are provided. The obtained results demonstrate the
feasibility and practicality of the proposed schemes and highlight the superior
learning and control ability of the proposed RNN. This method is particularly well-
suited for visual servoing applications of manipulators with unknown structure.

KEYWORDS

recurrent neural network (RNN), image-based visual servoing (IBVS), data-driven
technology, acceleration level, learning and control

1 Introduction

Robots can accurately perform complex tasks and have become a vital driving force in
industrial production (Agarwal and Akella, 2024). Among industrial robots, redundant
robots, equipped with multiple degrees of freedom (DOFs), have gained significant
recognition and favor due to their exceptional flexibility and automation capabilities
(Tang and Zhang, 2022; Zheng et al., 2024). Therefore, numerous control schemes are
designed to extend the application range of redundant robots, such as medical services
(Zeng et al, 2024) and visual navigation (Wang et al, 2023). Furthermore, in these
application scenarios, information on the external environment and the robot’s status is
acquired from various sensors, especially for the image capture of visual information (Jin
et al., 2023). Therefore, unknown situations inevitably exist caused by sensor limitations,
environmental variability, and robot modification, which hinder the evolution of robot
applications. To address this issue, intelligent algorithms based on data-driven technology
are exploited to process the acquired information and convert it into knowledge to drive
the regular operation of the robot system (Na et al., 2021; Xie et al., 2022). Yang et al.
(2019) construct a robot learning system by improving the adaptive ability of a robot with
the information interaction between the robot and environment, which enhances the safety
and reliability of robot applications in reality Peng et al. (2023). Li et al. (2019) investigate a
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model-free control method to cope with the unknown Jacobian
problems inside the robot system. On this basis, the dynamic
estimation method of robot parameters is researched in the study
by Xie and Jin (2023). However, the aforementioned methods
primarily operate at the joint velocity level and cannot directly
applicable to robots driven by joint acceleration.

As a crucial robot application, visual servoing simulates the
bionic system of human eyes, which can obtain information about
real objects through optical devices, thus dynamically responding
to a visible object. The fundamental task of visual servoing is to
impose the error between the corresponding image feature and
the desired static reference to approach zero (Zhu et al.,, 2022).
According to the spatial position or image characteristics of the
robot, the visual servoing system can be categorized into two types:
position-based visual servoing (PBVS) system (Park et al., 2012),
which utilizes 3-D position and orientation information to adjust
the robot’s state, and image-based visual servoing (IBVS) system,
which utilizes 2-D image information for guidance (Van et al,
2018). Recently, the research on visual servoing has achieved many
unexpected results (Hashimoto et al., 1991; Malis et al., 2010; Zhang
et al, 2017; Liang et al., 2018). For instance, visual servoing is
applied to bioinspired soft robots in the underwater environment
with an adaptive control method, which extends the scope of visual
servoing (Xu et al., 2019). Based on the neural network method, a
resolution scheme for IBVS is developed at the velocity level. This
enables the manipulator to accurately track fixed desired pixels,
resulting in fast convergence (Zhang and Li, 2018). However, the
aforementioned methods are difficult to deal with the emergence of
unknown conditions, such as focal length change, robot abrasion,
or parameter variation. This is because these methods rely on
accurate structural information of the robot vision system. To
tackle this challenge, this study focuses on data-driven control of
visual servoing for robots with an unknown Jacobian matrix.

Neural networks have gained significant recognition as
powerful tools for solving challenging problems, such as automatic
drive (Jin et al., 2024), mechanism control (Xu et al., 2023), and
mathematical calculation (Zeng et al., 2003; Stanimirovic et al,
2015). In robot redundancy analysis, neural networks have shown
superior performance. In recent decades, numerous control laws
based on neural networks have been developed to harness the
potential of redundant manipulators (Zhang and Li, 2023). One
specific application of the neural network approach addresses the
IBVS problem. In this context, the IBVS problem is formulated as
a quadratic programming scheme and tackled using a recurrent
neural network (RNN). The RNN drives the robot vision system’s
feature to rapidly converge toward the desired point (Zhang et al.,
2017). Additionally, Li et al. (2020) investigate an inverse-free
neural network technique to deal with the IBVS task, ensuring that
the error approaches zero within a finite time while considering the
manipulator’s physical constraints.

Most control schemes accomplish the given task at the velocity
level, especially for visual servoing applications (Hashimoto et al.,
1991; Malis et al., 2010; Zhang et al., 2017; Liang et al., 2018;
Van et al., 2018; Zhang and Li, 2018; Xu et al,, 2019; Li et al,,
2020). These velocity-level schemes control redundant robots via
joint velocities. However, when confronted with acceleration or
torque-driven robots, the velocity-level schemes exhibit limitations
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and cannot provide precise control. Furthermore, the velocity-level
scheme may yield abrupt joint velocities that are impractical in
real-world applications. Consequently, research on acceleration-
level visual servoing for robot manipulators has become crucial
(Keshmiri et al., 20145 Anwar et al., 2019). Motivated by the issues
above, this study investigates the application of visual servoing in
robots at the acceleration level. The technical route of this study is
shown in Figure 1. As illustrated, the contributions of this study are
shown as follows:

e An acceleration-level image-based visual servoing (AIVS)
scheme is designed, taking into account multiple joint
constraints.

e Considering potential unknown factors in the visual
servoing system, a data-driven acceleration-level image-based
visual servoing (DAIVS) scheme is developed, enabling
simultaneous learning and control.

e RNNs are proposed to solve the AIVS scheme and DAIVS
scheme, enabling visual servoing control of the manipulator.
Theoretical analyses guarantee the stability of the RNNs.

In addition, the feasibility of the proposed schemes is
demonstrated through simulative and experimental results
conducted on a Franka Emika Panda manipulator with an
eye-in-hand structure.

Before concluding this section, the remaining sections of
the study are shown as follows. Section 2 presents the robot
kinematics of visual servoing and introduces the data-driven
learning algorithm, formulating the problem at the acceleration
level. Section 3 constructs an AIVS scheme with the relevant
RNN. Subsequently, considering the unknown factors, a DAIVS
scheme and corresponding RNN are proposed, and theoretical
analyses proved the learning and control ability of the RNN,
as shown in Section 4. Section 5 provides abundant simulations
and performance comparisons, embodying the proposed method’s
validity and superiority. Section 6 displays physical experiments on
a real manipulator. Finally, Section 7 briefly concludes this study.

2 Preliminaries

In this section, the robot visual servoing kinematics and data-
driven learning algorithm are introduced as the preliminaries. Note
that this study specifically tackles the problem at the acceleration
level.

2.1 Robot visual servoing kinematics
The forward kinematics, which contains the transformation
between the joint angle ¢(t) € R of a robot and the end-effector

position and posture s(t) € R®, can be expressed as follows:

F(@(0) = s(0), (1

where f(-) is the non-linear mapping related to the structure of the
robot. In view of strongly non-linear and redundant characteristics
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FIGURE 1
Technical route of this study.

of f(-)

from the desired end-effector information s4(¢), i.e., s(t) =

, it is difficult to obtain the desired angle information directly
sq(1).
By taking the time derivative of both sides of Equation (1), one can
deduce

Tro®(t) = $(0), )

where ¢(t) denotes the joint velocity; $(t) covers the joint
velocity and translational velocity of the end-effector; Jyo
f (@) /dp(t) € RO*™ stands for the robot Jacobian matrix.
Owing to the physical properties of manipulators, output control

signals based on design formulas and intelligent calculations may
not be suitable for the normal operation of real robots. Therefore, to
ensure the protection of the robot, it is crucial to take into account
the following joint restrictions:

¢ <p<o"
- <p <"
¢~ <p<¢t,

where ¢~, ¢, and ¢~
joint velocity, and joint acceleration, respectively; ¢+, ¢ and

signify the lower bounds of joint angle,

¢t denote the upper bounds of joint angle, joint velocity, and
joint acceleration, respectively. Utilizing the special conversion
2022), the joint
restrictions would be integrated into the acceleration level as ¢ € y,
= {g € R",
with ¥~ and ¥t denoting the lower bound and upper bound of y,

techniques (Zhang and Zhang, 2012; Xie et al,

where y Y~ < g < yT}is the safe range of joints

respectively. In detail, the i-th elements of y ~ and y T are designed
as

= max{u(p; +6; — ¢, v(d; — ¢i). b; }
—0i — ¢i)) U(d)f - ¢i)> ¢l+}’

V,‘_
¥t = min{u(¢;"

wherei =1,2,3,---
feasible region for different levels; 0; is the margin to ensure that the

,m; > 0and v > 0 are designed to select the
acceleration has a sufficiently large feasible region (Xie et al., 2022).

Then, a brief introduction to the visual servoing system is presented
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as follows. Regarding visual servoing tasks, the number of features
determines the complexity of a visual servoing system. Simply
considering a visual servoing system with one feature, a miniature
camera is mounted on the end-effector of the manipulator and
moves with the end-effector. Figure 2 illustrates the geometric
transformation in different coordinate systems. Three-dimensional
space with O, as the original point and [X, Y, Z] as the coordinate
axis is called the camera system with the internal coordinate point
q=I[xy z]T. Relatively, with Ojn, as the center point, the image
system is the two-dimensional space with the projection pixel point
of q being [px,p),]T and the pixel coordinate being p = [p,, py]" €
R2. According to the similar triangle, it can be readily obtained in
the study by Zhang et al. (2017) and Zhang and Li (2018):

I'|x
Y= 3)
and
Pu = up + axpx (4)
PV =0 + aypy,

with [ standing for the focal length of the camera; 1y and v
denoting the pixel coordinate of principle point; and [ay, ay]T
standing for the conversion scale. Based on Equations (3, 4), the
image Jacobian matrix Jim(p,z) € R2%6 is defined using the
following relationship (Liang et al., 2018):

©)

where p stands for the movement velocity of the pixel coordinate

Jim(p»2)$ = P,

and
! Ipx  Pxby  _pitP
— Lt 0 3 s —Ex p
Iim(p,z)zH{ ‘ e ! y},
1 py Pyt pxp
0 =2 % =17 — 71 P
with
Pu— uo Pv— o a, 0
px: - 5 py: Y 5 H= x .
ay ay 0 ay
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FIGURE 2
Geometric schematic of the camera system.

For the sake of convenience, Equations (2, 5) can be combined
as follows:

T =p, (6)

with 7 = Jin(p,2)Jro € R¥*™ defined as the visual Jacobian
matrix. The relationship between joint space and image space is
established directly by Equation (6) at the velocity level. Taking the
time derivatives of both sides of Equation (6) generates

T+ Tp = p, 7)

where 7is the time derivative of .7 ¢ denotes the joint acceleration;
and p stands for the movement acceleration of the pixel coordinate.
When it comes to a complicated situation with more features, the
above analyses still hold under the requirements of appropriate
dimensions. It is worth noting that a single feature is analyzed as
an example for simple illustration. When the number of features
increases, the principle of coordinate transformation remains
unchanged along with the increase in dimension.

2.2 Data-driven learning algorithm

However, unknown conditions may exist in the robot
visual servoing system, such as focal length changes or robot
modifications. In this regard, it could not control the robot
accurately to execute the IBVS task based on J. Hence, motivated
by this issue, a data-driven learning algorithm is designed as
follows. To begin with, a virtual IBVS system is established,
incorporating the virtual visual Jacobian matrix 7 € R?*" and the
following relationship:

Jp =p,
where p € R? is the virtual pixel velocity determined by the
virtual robot and ¢ is the joint velocity measured in real time from
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the robot. Beyond dispute, the goal of the data-driven learning
algorithm is to guarantee that p can rapidly converge to the real
pixel velocity p. Thereout, an error function is devised as £ =
Ilp—pl |§/2, where || - ||, is the Euclidean norm of a vector. On the
basis of the gradient descent method (Stanimirovic et al., 2015) to
minimize the error function along the negative gradient direction,
one can get

T= 2% = —8(Th - ", ®)

aJ

where 7 is the time derivation of J; § > 0 denptes the coefficient
that controls the convergence rate. Hereinafter, Jand J are used to
replace the calibrated parameter Jand Jto deal with the unknown
situations. This method directly explores the relationship between
joint space and image space without the utilization of 7 and J.
It is worth highlighting that Equation (8) does not involve real
structural information and estimates structural information from
the joint velocity ¢ and velocity of the pixel coordinate p measured
by sensors, which belongs to the core idea of the data-driven
learning algorithm.

3 Acceleration-level IBVS solution

In this section, an AIVS scheme is proposed with joint
constraints considered. Subsequently, we propose a corresponding
RNN and provide theoretical analyses. Note that the presented
method requires an accurate visual Jacobian matrix.

3.1 AIVS scheme

It is worth pointing out that there are few acceleration-level
robot control schemes for dealing with IBVS problems. None
of the existing acceleration-level solutions take joint constraints
into account (Keshmiri et al.,, 2014; Anwar et al., 2019). In this
regard, considering joint constraints, acceleration control, and
visual servoing kinematics, the AIVS scheme is constructed as a
quadratic programming problem, taking the following form:

minimize %d)Td) (92)
subjectto P = Jb + Jb (9b)
P="Pd (90)

pey, (9d)

where py denotes the desired pixel coordinate. As a result, the
goal of AIVS scheme (9) is to make the end-effector track the
desired pixel point. In addition, according to robot Jacobian matrix
Jro and the image Jacobian matrix Jim, the visual Jacobian matrix
J and its time derivative 7 are determined by the structure and
parameters of the robot and the parameter settings inside the
camera. Hence, if there are any changes in the internal parameters
or structures, leading to an unknown state, the accuracy of J
and J may be compromised, potentially leading to a decline in
performance. In contrast to velocity-level visual servoing schemes
(Hashimoto et al., 1991; Malis et al., 2010; Zhang et al., 2017;
Liang et al., 2018; Van et al., 2018; Zhang and Li, 2018; Xu et al,,
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2019; Li et al,, 2020), the proposed AIVS scheme (9) offers two
advantages. First, it utilizes joint acceleration as the control signal,
resulting in continuous joint velocities. This helps mitigate the
issues associated with excessive and discontinuous joint velocities.
Second, AIVS scheme (9) takes into account the equality and
inequality constraints at the acceleration level. This allows for a
more comprehensive consideration of constraints, expanding the
range of applications.

3.2 RNN solution and theoretical analysis

For the AIVS scheme (9), the pseudoinverse method is applied
to generate the relevant RNN solution (Cigliano etal., 2015; Lietal.,
2020). Primarily, as reported in the study by Zhang and Zhang
(2012) and Xie et al. (2022), one can readily extend pixel coordinate
error p — pq into the acceleration level by neural dynamics method
(Liufu et al., 2024) as

P —pa = —a(p—pa) — Bp — pa) (10)
where the design parameter « > 0 and 8 > 0; pg and pqg
are the desired velocity and the desired acceleration of the pixel
coordinates, respectively. It is worth pointing out that the desired
pixel coordinates pq is a constant, thus pg = pq = 0. As a result,
Equation (10) can be rearranged as

p=—ap—B(p—pa) (11)

Substituting Equation (11) into Equation (9b), it could be obtained:
T$ + T = —ap — B(p — pa)-

In light of the pseudoinverse method, the joint acceleration can
be minimized with the following formula:
¢ =T (~ap— Blp — pa) — TP), (12)
where superscript T denotes the pseudoinverse operation of
a matrix with JT = jT(jjT)_l. It is deserved to note that
Equation (12) is employed in the study by Keshmiri et al. (2014)
and Anwar et al. (2019) to generate the acceleration command for
a manipulator. However, the research in the study by Keshmiri
et al. (2014) and Anwar et al. (2019) does not consider joint
constraints of the manipulator. To address this problem, the RNN
corresponding to the AIVS scheme (9) is derived as

b =Py (T (—ap — Bp — pa) — TP)), (13)

where projection function Py,(c) = argmin, | b — .
Furthermore, theoretical analyses regarding the convergence of
RNN (13) are presented as follows.
Theorem 1: The pixel error § = p — pq driven by AIVS scheme
(9) assisted with RNN (13) globally converges to a zero vector.
Proof: According to Equations (7, 13), one has

p=JTb+Tp=TP, (T (—ap— Blp —pa) — Td)) + Tp.
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Due to the fact that pq is a fixed feature, error function & can be
readily derived as

£ = TP, (T (—aé — B& — T)) + T

By considering the projection function, a substitution matrix
is designed to replace P, (-), leading to

E = INT (—aé — & — T§) + T, (14)
of which
hy 0 - 0
0 hy 0
Y= . c RMxm
00 --- hy
and

o (P (cab =B —p) = T8N, _
(T ap— B —p0 - ),

By matrix decomposition, structural analyses of matrix
THT = [a11,a12; a1, a2y € R2*2 are given as follows:

THI = JLL" 7Y (FT") 7,

where L = /7. In this regard, matrix j’HjT can be viewed as
the product of two positive definite matrices. It is evident that the
eigenvalues of j’HJT are greater than zero and det(j’Hf ) =
det(JLLT 7V)det(77")™") > 0 with det(-), denoting the
determinant of a matrix. According to the properties of the diagonal
elements of the matrix, it can be concluded that the diagonal
elements of JHJ' are greater than zero (a;; > 0, ax» > 0).
Furthermore, Equation (12) can be rewritten as

%1 _ | an —aé}—ﬁafl—(7¢)1 4 ({74:5)1
& ay ax || —ab — B& — (JP): (Tp)2 |’

and further we get

&+ anaér + anpé = — an(aér + P& + (J9)2)
+ (1 — a1) (T

and

& + anaky + anfé = — an(aéy + P& + (TP)h)
+ (1 — a22)(T$)2s

which can be regarded as a perturbed second-order constant
coeflicient differential equation with respect to &. In conclusion,
pixel error £ is able to converge exponentially. To illustrate
the steady state of the system (Equation 14), further derivations
continue to be given. As the pixel error decreases, all joint
properties return to the interior of joint constraints. In this sense,
joint properties, i.e., &, ¢ and ¢, are all inside the joint limits with
hi = 1. Therefore, Equation (14) can be reorganized as

E(t) +af(t) + BE() = 0. (15)
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It is worth mentioning that Equation (15) can be regarded as a
second-order constant coefficient differential equation with regard
to &. Moreover, the solutions of Equation (15) can be segmented
into three subcases on account of different settings of « and g, given
the original state £(0) = p — pq.

Subcase I: As for a% — 4B > 0, the characteristic roots could
be obtained simply as Ry = (—a + a? —48)/2 and R, =
(—a — /a? — 4B)/2 with real number R; # R,. Therefore, one
can readily deduce

§(t) = £(0)(Drexp(R11) + Daexp(Ra1)),

with D) = a/(2\/a? —4B)+1/2and D, = 1/2 —a/(2y/a? — 4B)
Subcase II: As to a? — 4B = 0, calculating characteristic roots
generates R = Ry = —a/2. Hence, it can be readily obtained:

§(t) = £(0)exp(—a/2t)(1 + a/21).

Subcase III: As to «® — 48 < 0, we get two complex number
roots as Ry = ¢ + in and Ry = ¢ — in. Accordingly, it is evident
that

&(t) = &(0)exp(—¢t)(cos(nt) — ¢sin(nt)/n).

The above three subcases indicate that the pixel error £ = p — pqg
converges to zero over time globally. The proof is complete.

4 DAIVS solution

The existing IBVS schemes, including the AIVS scheme (9),
often require a detailed knowledge of the robot visual servoing
system. However, in a non-ideal state, many unknown cases
often exist, which can disturb the precise control of the robot,
thus resulting in large errors. Recalling the data-driven learning
algorithm (Equation 8), virtual visual Jacobian matrix Jis exploited
to solve this issue.

4.1 DAIVS scheme and RNN solution

Based on the virtual visual Jacobian matrix, a DAIVS scheme
(8) would be designed as

o Loge
minimize 5¢ )
subjectto p = T+ ._7¢

P="Pd
dey.

It is a remarkable fact that the DAIVS scheme does not
involve the visual structure of the real robot. Instead, the virtual
visual Jacobian matrix ._7 conveys the transformation relationship
between the joint space and image space to deal with possible
unknowns in the structure of the robot system. Compared with
acceleration-level visual servoing schemes (Keshmiri et al,, 2014;
Anwar et al., 2019), the proposed DAIVS scheme offers two distinct
advantages. First, it prioritizes the safety aspect by considering
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joint limits. Second, the DAIVS scheme takes into account the
uncertainty of the robot vision system and employs the virtual
visual Jacobian matrix for robot control, enhancing the fault
tolerance ability. The existing acceleration-level visual servoing
schemes (Keshmiri et al., 2014; Anwar et al., 2019) cannot
accurately implement visual servoing tasks when the Jacobian
matrix lacks precision. Furthermore, combining Equations (8, 13)
generates

(16a)
(16b)

$ =P, (T (—ap — B(p — pa) — TB))

T=—8(Tp—p)é".

It is worth pointing out that the RNN (16) is divided into
the inner cycle and outer cycle, ie., the learning cycle and
control cycle. Subsystem (Equation 16a), which can be viewed
as the outer cycle, mainly generates the control signal to adjust
the joint properties via virtual visual Jacobian matrix J. In
return, inner cycle (Equation 16b) with learning ability can
explore the relationship between end-effector motion and joint
motion, thus producing virtual visual Jacobian matrix T to
simulate the movement process of real robots. From a control
point of view, the inner cycle (Equation 16b) must converge
faster than the outer cycle (Equation 16a). In this sense, § >
o is a necessary condition for the normal operation of the
system.

Note that both RNN (13) and RNN (16) involve the use of
pseudo-inverse operations. As a result, various existing methods
can be employed to mitigate singularity issues, such as the damped
least squares method. Specifically, JT can be calculated via jT =
JT(JJT + hZ)~! with h being a tiny constant and Z being an
identity matrix. The additional item hZ ensures that all eigenvalues
of JJ* + hT are never zero during the inversion process, thereby
preventing singular issues. In addition, RNN (16) relies on the
virtual visual Jacobian matrix and estimates the real Jacobian matrix
using Equation (16b). This enables a robust handling of the visual
system’s uncertainty. However, RNN (13) relies on the real visual
Jacobian matrix, leading to potential inaccuracies in the robot
control process.

4.2 Stability analyses of RNN

The learning and control performance of the proposed DAIVS
scheme aided with RNN (16) are proved by the following
theorem.

Theorem 2: The Jacobian matrix error E = J — J and pixel
error § = p — pq produced by RNN (16) converges to zero, given a
large enough §.

Proof: The proof is segmented into two parts: (1) proving
learning convergence; (2) proving control convergence.

Part 1: Proving learning convergence. Design the i-th system
of Jacobian matrix error as E; = J; — J; (i = 1,2) where J; and
J; denote the i-th row of 7and 7 and set the Lyapunov candidate
Vi = (Ji— T)NTi—T)". Calculating the time derivative of V; leads
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to

Vi=(Ti— INTi— )"

—8(Tip — p)" (Ti — )" — Ti(Ti — T)*

= 8T — T$)o" (T — TN" — Ti(Ti — T)"

< =8T(d " NTi — TNTi — )" — Ti(T: — T,

A

where p; represents the i-th element of p, and [1(¢¢") denotes the
least eigenvalue of matrix ¢¢" . When the manipulator is tracking
the feature, the value of T1(¢$7) is always greater than zero. In this
case, we substitute E; = ._7, — J; into the above equation, resulting
in the following expression:

V;

IA

—8T(¢$"EE! — TiE]
< —8TH(@SOIIE I3 + |1 TilI21|Eill2
HEil 2117312 — ST IIEil12).

A

For further analysis, we consider three cases based on the above
equation:

o If||Eill2 > ||Till2/8T1(¢$T), we observe V; < 0and V; > 0.
This indicates that in this case, E; converges until ||E||; =
1 7il12/8T1(§").

o If||Eill> = ||7i]]2/8T1(¢p$T), we find V; < 0 and V; > 0. This
implies that E; will continue to converge or remain at the state
with [|Eill2 = [|7il12/8TI(@¢").

o If ||Ell2 < ITill2/8T1(¢pgT), we have two possibilities:
either V; > Oand Vi > 0, or V; < 0 and Vi >
0. In the former possibility, the error will increase until
[|Eill2= [|7il|2/8T1(¢$"). In the latter possibility, the error will
continue to converge or remain constant.

Combining the above three cases, it can be summarized that
||$||2/5H(¢¢T). Furthermore, it can be
deduced that the Jacobian matrix error E = J — J produced by

lims 100 ||Eill2 <
RNN (162) globally approach zero, given a sufficiently large value
of 8.

Part 2: Proving control convergence.

According to the proof in Part I, we take advantage of the
LaSalle’s invariant principle (Khalil, 2001) again to conduct the
convergence proof on Equation (16b). In other words, the following
formula is provided by replacing Jand Jwith Jand J:

¢ =Py (T (~ap — p — pa) — D)), (17)
which is equivalent to Equation (13). In consequence, the proof
on the convergence of the pixel error p — pq in Equation (17) has
been discussed in Theorem 1 and thus omitted here. The proof is
complete.

5 Simulation verifications

In this section, simulations are conducted on a Franka Emika
Panda manipulator with 7 DOFs for completing a visual servoing
task, which are synthesized by the proposed AIVS scheme (9) and
the proposed DAIVS scheme. Note that the AIVS scheme (9) is able
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to drive the redundant manipulator to perform the visual servoing
task with a given visual Jacobian matrix, and that, the DAIVS
scheme can deal with the unknown situation in the robot system
dynamically in the absence of the visual Jacobian matrix. For the
simulations, this study utilizes a computer with an Intel Core i7-
12700 processor and 32 GB RAM. The simulations are performed
using MATLAB/Simulink software version R2022a.

First, some necessary information and parameter settings about
the manipulator and camera structure are given below. The Franka
Emika Panda manipulator is a 7-DOF redundant manipulator
(Gaz et al.,, 2019), with a camera mounted on its end-effector. In
addition, we set | = 8 x 1073 m, uy = vy = 256 pixel, a, =
a, = 8 x 10* pixel/m, and design © = v = 20 with z = 2,
task execution time T = 20 s and pg = [256,256]T pixel. In
addition, the joint limits are set as dt = —¢p= = [2]yx1 rad/s?,
¢t = —¢~ = [0.6]7x) radfs, 9T = —¢p~ = [2.5]75; rad and
0 = [0.076]7x; rad. It is noteworthy that the parameters can be
divided into two categories: structural parameters and convergence
parameters. Structural parameters, such as [, ug, vo, dy, and ay, are
dependent on the configuration of the visual servo system. On the
other hand, the convergence parameters, namely, u, v, o, 8, and §,
play a vital role in adjusting the convergence behavior of RNN (16).
These convergence parameters are set to values greater than zero,
and their specific values can be determined through the trial and
error method.

5.1 Simulation of AIVS scheme

In this subsection, in order to prove the feasibility of the AIVS
scheme (9), four simulations with different initial position states
of the Franka Emika Panda manipulator are conducted to trace
one desired feature with results shown in Figure 3. Simply design
10 and B =
Figure 3A that four test examples from four different directions are

a = 10. It would be readily discovered from
straightforward to successfully pursue the desired pixel. With test
4 as an example, detailed joint data and pixel errors are shown in
Figure 3B through Figure 3F, which illustrate that the joint angle,
joint velocity, and joint acceleration are all kept inside the joint limit
and that the pixel error can converge to zero within 5 s. The above
descriptions well verify the validity of the proposed AIVS scheme
(9) in the case of the known visual servoing Jacobian matrix to solve
the visual servoing problem at the acceleration level.

5.2 Simulation of DAIVS scheme

This subsection indicates the feasibility and capability of the
pixel error convergence of the DAIVS scheme aided with the
RNN (16) by providing simulation results, as shown in Figure 4.
Furthermore, we choose § = 2 x 10%, « = 10 and B = 40. Notably,
the virtual visual Jacobian matrix is exploited with random initial
values, instead of the real visual Jacobian matrix to facilitate system
operation. The end-effector of the robotic arm is oriented toward
the object, as shown in Figure 4A. In addition, the joint acceleration
is shown in Figure 4B, which is confined to the joint limit and
maintain the normal operation. As shown in Figure 4C, the Franka
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FIGURE 3
Simulations on a Franka Emika Panda manipulator carrying out IBVS task synthesized by the AIVS scheme (9) assisted by RNN (13) with four test
examples. (A) Profiles of feature trajectories and desired pixel point in four tests. (B) Profiles of joint acceleration in test 4. (C) Profiles of joint velocity
in test 4. (D) Profiles of joint angle in test 4. (E) Profiles of pixel error in test 4. (F) Profiles of Euclidean norm of pixel error in test 4.
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FIGURE 4
Simulation results on a Franka Emika Panda manipulator with unknown structure carrying out the IBVS task synthesized by the DAIVS scheme

assisted with RNN (16). (A) Profiles of the movement process. (B) Profiles of the joint acceleration. (C) Profiles of the pixel error. (D) Profiles of the

Euclidean norm of learning error.

Frontiersin Neurorobotics 278 frontiersin.org


https://doi.org/10.3389/fnbot.2024.1380430
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Wen and Xie 10.3389/fnbot.2024.1380430
Z (m) B, -
127 0. rad/s’ —h —
1 <— Final state 2 -~ 92l
0.6 ?3 b3
0.8 ¢ —=gq ]
0.4 —ds qBr
0.6 - b Ps5
0.2 A - |
oad o A N P
: o<— Object 0 é1
0.2 02t )
0 L (s) ’ t(s)
v ’ 0 0.4 : : -0.02 : :
0Y (m)g2 04 0.62 X (m) 0 5 10 15 20 0 5 10 15 20
D E 7 (m F 20
pixel _ ? 10 rad/s? —
o " & e
4 <— Final state I )3
/ B 0 —
sof | o . 0
i , —_—
I 0.6 1 10 20 _ _@5
! Al 0
100 f! 0.4+ 0 e B .
1 ) © <— Object -20 20 | I
' 0.2
1 24 R
-150 1 © % 0 005 01 £ )
t(s il E (S
0 5 10 15 20 00 Y (m) 1X (Ig) “% 5 10 15 20
0.2 0.4 0.62
G H 50
15+ Tad/s — 1| pixel —&
-6 o &
1 (2.53
05 =Py
—¢s -50
0 femgh —
~ Pe
0.5 22— |eeees ¢7 1 100
1 0 |l._"."
15 » H— -150
) 0 005 0.1 t(s) t(s)
0 5 10 15 20 0 5 10 15 20
FIGURE 5
Simulation results on a Franka Emika Panda manipulator with accurate structure information carrying out IBVS task. (A) Profiles of motion process
assisted with RNN (13). (B) Profiles of joint acceleration assisted with RNN (13). (C) Profiles of joint velocity assisted with RNN (13). (D) Profiles of pixel
error assisted with RNN (13). (E) Profiles of motion process assisted with RNN (18). (F) Profiles of joint acceleration assisted with RNN (18). (G) Profiles
of joint velocity assisted with RNN (18). (H) Profiles of pixel error assisted with RNN (18).

Emika Panda manipulator successfully traces the desired feature
with pixel error converging to zero and maintaining the order of
1072 pixel. As for the learning ability, Figure 4D illustrates that the
virtual robot manipulator can learn the movement of the real robot
manipulator with the learning error approaching to zero in 0.05 s
and maintaining the order of 1074 pixel/s. In short, the simulation
results in Figure 4 highlight the simultaneous learning and control
ability of RNN (16).

5.3 Comparisons of proposed schemes

This subsection offers simulation comparison results between
the proposed schemes aided with the corresponding RNNs and the
IBVS method presented in the study by Zhang and Li (2018). In

this regard, the RNN provided in the study by Zhang and Li (2018)
is shown as

t
=Py~ T (B pa) — k2Tt /0 (- pad,  (18)
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where parameters x; > 0 and x, > 0 determine the rate of
error convergence. It is worth pointing out that the IBVS method
in the study by Zhang and Li (2018) assisted with RNN (18) is
constructed from the viewpoint of the velocity level, and that,
RNN (18) requires exact structural information 7 to maintain the
normal operation.

In the first place, simulations are conducted on the Franka
Emika Panda manipulator for IBVS task with Figures 5A-D
synthesized by RNN (13) and Figures 5E-H synthesized by RNN
(18). Notably, the results in Figure 5 are carried out on the premise
of known structural information 7 with parameters k; = k, = 2,
a = 10, and B = 10. As shown in Figures 5A, E, the manipulator’s
end-effector is controlled to point toward the object. In Figure 5B,
the joint acceleration generated by RNN (13) is safely confined
within the joint limits, while the joint acceleration generated by
RNN (18) exists a sudden change of ~38 rad/s® in Figure 5F,
which may cause damage to the robot. Furthermore, in contrast
to Figure 5G, the joint velocity shown in Figure 5C is smaller and
exhibits smoother changes, making it more suitable for real-world
scenarios. Figures 5D, H demonstrate that both RNN (13) and RNN
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FIGURE 6
Simulation results on a Franka Emika Panda manipulator carrying out IBVS task with unknown structure. (A) Profiles of joint velocity assisted with RNN
(16). (B) Profiles of pixel error assisted with RNN (16). (C) Profiles of joint velocity assisted with RNN (18). (D) Profiles of pixel error assisted with RNN
(18).

TABLE 1 Comparisons among different approaches for visual servoing of robot manipulators.

Visual Velocity Acceleration Structure Jacobian matrix
servoing constraints  constraints  information learning
RNN (13) Yes Acceleration Yes Yes Unnecessary Yes
RNN (16) Yes Acceleration Yes Yes Necessary No
Van et al. (2018) Yes Velocity No No Necessary No
Hashimoto et al. (1991) Yes Velocity No No Necessary No
Zhang et al. (2017) Yes Velocity Yes No Necessary No
Zhang and Li (2018) Yes Velocity Yes No Necessary No
Li et al. (2020) Yes Velocity Yes No Necessary No
Keshmiri et al. (2014) Yes Acceleration No No Necessary No
Anwar et al. (2019) Yes Acceleration No No Necessary No
Zhu et al. (2022) Yes Torque No No Necessary No
(18) are able to quickly propel pixel errors to zero. Therefore, itis B = 40, and § = 2 x 10% To simulate the unknown visual

concluded from the above results that AIVS scheme (9) aided by
RNN (13) is able to guarantee a better safety performance when
controlling the manipulator.

Beyond that, in the case of the unknown visual system,
corresponding comparison simulations are driven by the DAIVS
scheme aided with the RNN (16) and the IBVS method in the
study by Zhang and Li (2018) assisted with RNN (18). The results
10,

are shown in Figure 6 with parameters k1 = k2 = 2, ¢ =
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system, J in Equation (16) and J in Equation (18) are random
matrices of constants with the absolute value of each element <
100. Figures 6A, B well embody that, when encountering unknown
structural information, the DAIVS scheme assisted with RNN
(16) controls the Franka Emika Panda manipulator to preferably
complete IBVS task with the pixel error converging to zero.
Nevertheless, the generated joint velocity in Figure 6C changes
dramatically within the joint limit in a mess. Even worse, the

frontiersin.org


https://doi.org/10.3389/fnbot.2024.1380430
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

10.3389/fnbot.2024.1380430

Wen and Xie
servo the robot, right click to quit,
345 ms
C
0.4r . . : ;
) rad/s®
02
[ i
: 0
d 1A
.‘*f&’5‘1‘
0 el Bigniitny
1 Y
i o
i \
0.2}
!
? t(s) t(s)
-0.4 : -0.4
0 0:2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
FIGURE 7
Physical experiments on a Franka Emika Panda manipulator assisted with RNN (16) for carrying out IBVS task with a fixed target. (A) Initial states of the
manipulator and camera. (B) Final states of the manipulator and camera. (C) Profiles of joint acceleration. (D) Profiles of tracking error.

pixel error driven by RNN (18) does not converge and maintain
a diffused state, which indicates the failure of the IBVS task. In
conclusion, the proposed DAIVS scheme is able to deal with the
unknown structural information in the robot system and fulfill
the visual servo control with simultaneous learning and control
performance.

Furthermore, comparison results among different existing
approaches (Hashimoto et al., 1991; Keshmiri et al., 2014; Zhang
et al., 2017; Van et al.,, 2018; Zhang and Li, 2018; Anwar et al,
2019 Li et al., 2020; Zhu et al., 2022) for visual servoing of robot
manipulators are presented in Table I. It is worth emphasizing
that, compared with the prior art, the proposed RNN (13) and
RNN (16) are the first acceleration-level work, considering the
multiple levels of joint constraints, and RNN (16) is the first
study to dispose the unknown situations in the robot visual
system with simultaneous learning and control ability. As a
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result, the above two points are the innovative contributions of
this study.

6 Experiments on real manipulators

To verify the effectiveness and practicability of the proposed
DAIVS scheme, physical experiments on a real manipulator are
conducted in this section, which are driven by the DAIVS scheme
aided with RNN (16). Specifically, the experiments essentially rely
on C++ and the visual servoing platform (ViSP) for embedding
algorithms and control (Marchand et al., 2005), which are built on
ubuntu 16.04 LTS operating system. In addition, the experiment
platform consists of a Franka Emika Panda manipulator, an Intel
RealSense Camera D435i, a personal computer, and an AprilTag
(target). It is worth mentioning that the acceleration control
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FIGURE 8

Physical experiments on a Franka Emika Panda manipulator assisted with RNN (16) for carrying out IBVS task with a moving target.

commands generated by the proposed RNN (16) are transmitted
in a discrete form with a frequency of 1,000 Hz, and parameter
settings of RNN (16) are designed as follows. We choose o =

10,8 = 10,8 = 105 u = v = 20, ¢T = —¢= =
[15, 7.5, 10, 12.5, 15, 20, 20]T rad/s?, ¢ —p- =
[2.1,2.1,2.1,2.1,2.6,2.6,2.6]T rad/s, T = [2.8, 1.7, 2.8, —

0.1, 2.9, 37, 2.8]T rad, ¢~ = [-2.8, — 1.7, — 2.8, — 3.0, —
28, —0, — 2.8]T rad, and J(0) = J0). As for the parameter
settings of the camera and pixel coordinates, they can be directly
referenced to ViSP (Marchand et al., 2005). Different from the
previous simulations, the physics experiments set the target as
an AprilTag containing four features. As a result, the physical
parameters associated with the features are expanded to 8 instead
of 2.

Experiment results on the Franka Emika Panda manipulator
tracking the fixed target are shown in Figures 7, 8 with pg =
[-0.06, — 0.06, 0.06, — 0.06, 0.06, 0.06, — 0.06, 0.06]T m
for the given task in the camera system. It is worth mentioning
that the robot manipulator adjusts the joint state to recognize and
approach the target, and when the pixel error reaches the order of
107> pixel, the task automatically completes. It is important that
the whole process of learning and control does not involve the real
Jacobian matrix to simulate the situation of the unknown structure.
In Figures 7A, B, the initial and final states of the manipulator and
camera indicate that the visual servoing task is successfully realized
by the DAIVS scheme with execution time of 1.25 s. Specifically,
the joint acceleration in Figure 7C varies normally within the
joint constraints. In the meantime, the tracking errors & of four
features are presented in Figure 7D, which illustrate the precise
control ability of the DAIVS scheme with global convergence
to zero.

Beyond that, experiments on the Franka Emika Panda
manipulator tracking the moving target are conducted to
demonstrate the feasibility of the DAIVS scheme. In Figure 8, the
AprilTag is moved artificially by the hand toward the left and right
and simultaneously the manipulator constantly adjusts joint states
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to achieve the characteristics of real-time visual tracking. More
vividly, the experiment videos corresponding to Figures 7, 8 are
available at https://youtu.be/6uw35bidVew.

7 Conclusion

This study has proposed an AIVS scheme for robot
manipulators, taking into account joint limits at multiple
levels. On this basis, incorporating data-driven techniques, a
DAIVS scheme has been proposed to handle potential unknown
situations in the robot visual system. Furthermore, RNNs have
been exploited to generate the online solution corresponding to
the proposed schemes with theoretical analyses, demonstrating the
simultaneous learning and control ability of the proposed DAIVS
scheme. Then, numerous simulations and experiments have
been carried out on a Franka Emika Panda manipulator to track
the desired feature. The results validate the theoretical analyses,
demonstrate the feasibility of the AIVS scheme, and showcase the
fast convergence and robustness of the DAIVS scheme. Compared
with the method in the study by Zhang and Li (2018), the DAIVS
scheme exhibits superior learning capability and achieves visual
servoing control with the unknown Jacobian matrix.

In summary, this study provides a data-driven approach for the
precise manipulation of robots in IBVS tasks, addressing unknown
situations that could affect the robot’s Jacobian matrix. In the future,
we aim to expand our research to incorporate dynamic factors,
utilizing joint torque as control signals and considering dynamic
uncertainties.
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The combination of lifelong learning algorithms with autonomous intelligent
systems (AlS) is gaining popularity due to its ability to enhance AlS performance,
but the existing summaries in related fields are insufficient. Therefore, it is
necessary to systematically analyze the research on lifelong learning algorithms
with autonomous intelligent systems, aiming to gain a better understanding
of the current progress in this field. This paper presents a thorough review
and analysis of the relevant work on the integration of lifelong learning
algorithms and autonomous intelligent systems. Specifically, we investigate
the diverse applications of lifelong learning algorithms in AlS’s domains such as
autonomous driving, anomaly detection, robots, and emergency management,
while assessing their impact on enhancing AlS performance and reliability. The
challenging problems encountered in lifelong learning for AlS are summarized
based on a profound understanding in literature review. The advanced and
innovative development of lifelong learning algorithms for autonomous
intelligent systems are discussed for offering valuable insights and guidance to
researchers in this rapidly evolving field.

KEYWORDS

artificial intelligence, lifelong learning, algorithm, autonomous intelligent systems,
future perspectives

1 Introduction

Autonomous intelligent systems (AIS), including intelligent robots, autonomous vehicles,
and similar technologies, have emerged as a frontier direction in the field of artificial
intelligence. These systems possess the ability to interact with humans and the environment,
enabling them to execute tasks such as perception, planning, decision-making, and control.
With the advancement of artificial intelligence, the algorithms employed by AIS for different
tasks have transitioned from being model-driven to data-driven approaches. End-to-end Al
algorithms based on deep learning, reinforcement learning, and other techniques have gained
significant research attention.

However, as the data-driven algorithms rely on the type, scale, and quality of training data,
the coherence, generality, and adaptability of the algorithms across different tasks and
environments are great challenges. The challenge for AIS concerned in this paper is the ability
to remember previous tasks when learning new ones, known as catastrophic forgetting (Shi
etal., 2021). Catastrophic forgetting refers to the phenomenon where a neural network loses
previously learned information after training on subsequent tasks, resulting in a drastic
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performance drop on previous tasks (Serra et al., 2018). Therefore, it
is crucial to improve the capability of AIS for lifelong learning, which
aims to enhance knowledge retention and transfer, thereby addressing
the problem of catastrophic forgetting.

Lifelong learning algorithms have made significant progress in
dealing with the core problems faced by AIS and mitigating the impact
of catastrophic forgetting. Lifelong learning algorithms aim to
sequentially acquire proficiency in multiple tasks while pursuing two
primary objectives: ensuring that the acquisition of new tasks does not
lead to catastrophic forgetting of previously learned knowledge (Zhou
and Cao, 2021a), and leveraging prior task knowledge to facilitate the
acquisition of novel tasks. Despite numerous achievements in lifelong
learning in recent years, there are still evident shortcomings. Firstly,
lifelong learning still heavily relies on labeling, which can be costly,
troublesome, prone to errors, and impractical for providing persistent
human labeling for all future tasks (He et al., 2021). Secondly, adapting
to drift in adaptation spaces poses a challenge for lifelong learning.
Drift in adaptation spaces arises from uncertainties that impact the
quality properties of adaptation options, potentially leading to no
adaptation option satisfying the initial set of adaptation goals, thereby
damaging system quality (Gheibi and Weyns, 2023). Additionally, the
big data problem presents another major challenge. AIS with lifelong
learning algorithms must handle the continuous influx of changing
data and adapt to learning problems effectively (Yang, 2013).

In this paper, we aim to provide a comprehensive overview of
lifelong learning algorithms for autonomous intelligent systems,
covering the recent development, related applications, and existing
challenges that need to be addressed. Furthermore, we will discuss the
future outlook of lifelong learning with autonomous intelligent
systems. The main contributions of this paper are as follows:

(1) The thoroughly review and analysis of AIS and lifelong
learning, along with the rationale for combining these two
fields, are introduced.

(2) Relevant applications of lifelong learning algorithms with AIS
are presented to showcase their significant role in different
industry applications.

(3) Remaining problems are analyzed, and academic insights into
the future trends of AIS Lifelong learning are expounded.

The rest of the paper is organized as follows. Section II elucidates
the background information on the emergence and historical
milestones of AIS and lifelong learning. Section III presents various
applications of lifelong learning algorithms with AIS, highlighting the
research status and latest progress. In Section IV, A comprehensive
review of issues and challenges in lifelong learning for AIS and the
outlook and future trends are discussed. Finally, the main conclusions
are given in Section V.

2 The developing lifelong learning and
autonomous intelligent systems
2.1 Autonomous intelligent systems

In recent decades, remarkable progress has been made in the

development of unmanned systems, ranging from robots to
unmanned aerial vehicles (UAVs), unmanned ground vehicles
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(UGVs), and unmanned marine vehicles (UMVs). What once were
programming-based systems have now transformed into automatic
unmanned systems and are further advancing toward autonomous
intelligent systems (AIS). AIS represents the forefront of artificial
intelligence development, characterized by exceptional levels of
autonomy and intelligence. By harnessing advanced technologies such
as artificial intelligence (AI), big data, and robotics, AIS enables the
execution of complex tasks and adaptive decision-making. This
section explores the potential applications of AIS across
various domains.

2.1.1 Intelligent transportation and autonomous
driving

The development of the automobile industry has driven an
increased demand for safety and stability in modern transportation.
As a result, autonomous driving technology has gained significant
traction and is being widely deployed in the market (Xiao, 2022). This
technology is revolutionizing intelligent transportation and smart city
systems by enhancing the efficiency and safety of transportation
networks. It's worth noting that although autonomous driving has
recently garnered more attention, the concept of autonomous vehicles
dates back several decades, with various activities in this field taking
place even further in the past (KKhan, 2022).

The first autonomous car was introduced by Tsugawa at the
Mechanical Engineering Laboratory in Tsukuba, Japan in the 1970s
(OM Group of Companies, 2020). Subsequently, there have been
numerous developments and initiatives worldwide. Notably, Ernst
Dickmann’s vision guided Mercedes Benz in 1980 to achieve speeds
of up to 39mph in a controlled environment (Delcker, 2020). With the
integration of autonomous driving algorithms, vehicles possess self-
navigating capabilities, real-time traffic monitoring, and adaptive
route planning based on changing environmental conditions.
Furthermore, autonomous driving vehicle enables the efficient
management of traffic, congestion control, and the integration of
advanced communication and information technologies, thereby
facilitating intelligent infrastructure.

However, the utilization of autonomous driving faces significant
challenges in complex traffic environments characterized by dynamic
and variable scenarios. A key issue lies in perception algorithms
encountering the long-tail problem, where rare or unforeseen events
pose difficulties for standard algorithms to handle. This challenge
becomes even more pronounced in mixed traffic scenarios involving
both human-driven and autonomous vehicles. In such settings,
algorithms must continually iterate and improve to adapt to the
varying and unpredictable nature of the environment (Zhu et al., 2021;
Zhouetal,, 2022; Li et al., 2023). Therefore, lifelong learning is critical
for the development of reliable and safe autonomous systems capable
of operating effectively in real-world environments.

2.1.2 Medical healthcare and service robotics
Service robots are typical AIS designed to assist humans,
enhancing customer experiences across various industries such as
hospitality, logistics, retail, and healthcare (Rajan and Cruz, 2022).
With the advancements in Al and IoT technologies, service robots are
continuously evolving and becoming more intelligent (Pan et al.,
2010). The integration of healthcare and service robotics holds
immense promise for improving patient care and enhancing efficiency.
Intelligent service robots have the capability to assist in a range of
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tasks, including patient monitoring, medication dispensing, and
patient support, thereby relieving healthcare professionals from
repetitive and time-consuming responsibilities. Additionally,
intelligent service robots can analyze medical data, provide
personalized treatment recommendations, and contribute to remote
healthcare services, leading to improved accessibility and quality of
care. By leveraging the power of AIS, service robots in healthcare
settings can not only streamline processes but also contribute to better
patient outcomes. They serve as valuable tools in alleviating the
burden on healthcare professionals, enabling them to focus on more
complex and critical aspects of patient care. Moreover, AIS-driven
analysis of medical data helps generate valuable insights that can
inform decision-making and improve treatment strategies (Qu
etal., 2021).

However, the integration of intelligent service robots in the field
of healthcare also presents certain challenges. One significant
challenge is ensuring the safety and reliability of these robots in critical
medical environments. As they interact closely with patients, it is
essential to address concerns regarding privacy, data security, and
potential errors in their operations. Additionally, there is a need for
standardized regulations and guidelines to govern the use of service
robots in healthcare settings.

Moreover, the complexity and diversity of healthcare scenarios
pose challenges for intelligent service robots. Medical environments
can be unpredictable, requiring robots to adapt to various situations,
handle unexpected events, and effectively communicate with both
patients and healthcare professionals. Achieving seamless human-
robot interaction and maintaining an appropriate balance between
automation and human intervention is crucial in providing high-
quality and patient-centric care.

2.1.3 Urban security and UAV

UAYV has garnered considerable attention in various military and
civilian applications due to their improved stability and endurance
(Mohsan et al., 2022). Over the past decade, UAVs have been
employed in a wide range of fields, including target detection and
tracking, public safety, traffic monitoring, military operations,
hazardous area exploration, indoor and outdoor navigation,
atmospheric sensing, post-disaster operations, health care, data-
sharing, infrastructure management, emergency and crisis
management, freight transport, wildfire monitoring and logistics
(Hassija et al,, 2019). For example, DARPA’s “Collaborative Operations
in Denied Environment” (CODE) program seeks to enhance the
mission capabilities of unmanned aerial vehicles (UAVs) by increasing
autonomy and inter-platform collaboration. The United States military
has integrated autonomous intelligent unmanned systems into combat
through the Project Maven initiative, which employs artificial
intelligence algorithms to identify relevant targets in Iraq and Syria.
In the domain of urban security, UAV plays a critical role by leveraging
AlSs advanced surveillance and analytical capabilities. These
intelligent drones enable efficient monitoring of public spaces, early
detection of potential threats, and prompt response to emergencies.
Moreover, AIS-driven drones enhance search and rescue operations,
disaster management, and protection of critical infrastructure while
minimizing human risk.

However, several crucial factors hinder the performance of UAV's
in urban security. These factors include diverse scenes, stringent man-
machine safety requirements, limited availability of training data, and
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small sample sizes (Carrio et al., 2017; Teixeira et al., 2023). Addressing
these challenges is essential to ensure the optimal functioning of UAV's
in urban security scenarios. Efforts should be made to develop robust
and adaptable Al algorithms that can handle diverse environmental
conditions encountered in urban settings. Additionally, ensuring the
safety of UAV operations requires stringent regulations and standards
for both hardware and software components. Acquiring more
extensive and representative training datasets is also necessary to
improve the accuracy and reliability of AI models used in UAV
systems. Lastly, efforts should be made to address the limitations
posed by small sample sizes by leveraging transfer learning techniques
and collaborative data sharing initiatives.

2.1.4 Ocean exploration and UMV

AIS contributes significantly to ocean exploration and research
through the development of UMV equipped with advanced sensing
and navigation capabilities. UM Vs integrated with Al algorithms can
be used for tasks such as scientific exploration, hydrological surveys,
emergency search and rescue, and security patrols (Kingston et al.,
2008; Wang et al., 2016). The Monterey Bay Aquarium Research
Institute (MBARI) has significantly reduced the human resources
required for data analysis by 81% and simultaneously increased the
labeling rate tenfold through its Ocean Vision Al program, which
trains a vast underwater image database. The autonomous underwater
robot, CUREE, developed in collaboration with WHOI, can
autonomously track and monitor marine animals, facilitating effective
marine management. These wide-ranging applications have
contributed to the development of motion control techniques and
have produced many interesting results in the literature, such as
heading control (Kahveci and loannou, 2013), trajectory tracking
control (Katayama and Aoki, 2014; Ding et al., 2017), formation
control (Li et al., 2018; Liao et al., 2024), and path-following problems
(Shen et al., 2019).

The ocean environment presents complex and variable challenges
that demand adaptive capabilities from UMV. In the deep-sea
environment, UMV encounter various challenges, including changes
in underwater terrain, marine biodiversity, and ocean currents. These
changes can result in variations in sensor data and diverse appearances
of targets. By employing lifelong learning algorithms, unmanned
systems can adapt and learn in real-time, enhancing their performance
and robustness (Wibisono et al, 2023). Furthermore, deep-sea
environments pose limitations in communication bandwidth, latency,
and mission execution times. Traditional machine learning algorithms
often struggle to adapt to new environments and tasks, as they are
typically trained for specific purposes. Lifelong learning algorithms
offer a solution by reducing reliance on external resources and human
intervention. UMV equipped with these algorithms can autonomously
learn and make decisions, increasing their independence and
reliability (Wang et al., 2019).

2.1.5 Deep space exploration and spacecraft
Intelligent or autonomous control of an unmanned spacecraft is a
promising technology (Soeder et al., 2014). And the ground-based
mission control center will no longer be able to help the astronauts
diagnose and fix spacecraft issues in real-time due to the longer
connection durations associated with deep space exploration, using
lifelong learning algorithms, unmanned systems can accumulate
experience and knowledge during task execution and reduce reliance
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on frequent interactions and updates, enhancing their autonomy and
adaptability (Jeremy and et.al, 2013). Also, the deep space environment
is extremely complex and full of unknown and uncertain factors, such
as the landform of the planets surface, the relationship between
celestial bodies, and the atmosphere of the planet. Traditional machine
learning algorithms are difficult to pre-train to adapt to all possible
situations. Lifelong learning algorithms enable unmanned systems to
constantly learn and adapt to new environments and tasks as they
explore (Bird et al., 2020). What is more, in deep space exploration
missions, unmanned systems typically need to process huge data
streams from various sensors and extract useful information from
them. Lifelong learning algorithms can help systems automatically
discover and learn new features and patterns, thereby improving their
perception and understanding (Choudhary et al., 2022). As a result,
each vehicle core subsystem will contain inbuilt intelligence to allow
autonomous operation for both normal and emergency operations
including defect identification and remediation. This extends previous
work on creating an autonomous power control (Soeder et al., 2014)
which involves the development of control architectures for deep
space vehicles (Dever etal., 2014; May et al., 2014) and using software
agents (May and Loparo, 2014). As a result, the application of AIS in
deep space exploration and spacecraft missions opens up new frontiers
for scientific discovery. Intelligent spacecraft equipped with AIS can
autonomously navigate, perform complex maneuvers, and adapt to
dynamic space environments. Advanced Al-based algorithms enable
real-time analysis of vast amounts of space data, autonomous
targeting, and intelligent resource allocation, facilitating enhanced
mission efficiency and enabling breakthrough discoveries.

In conclusion, the development of unmanned systems has evolved
from programming-based to AIS. AIS leverages advanced technologies
such as Al big data, and robotics to enable complex tasks and adaptive
decision-making. Across domains including intelligent transportation,
healthcare, urban security, ocean exploration, and space missions, AIS
demonstrates immense potential for revolutionizing various industries
and pushing the boundaries of technological advancements. However,
Autonomous intelligent systems require continuous learning to enable
their applications in various domains. With the advancements in
technologies such as deep learning, reinforcement learning, and large-
scale Al models like AIGC (Artificial Intelligence General Cognitive),
AISs are moving toward achieving general task learning and lifelong
evolution. Establishing a lifelong learning paradigm is crucial for the
future development of these autonomous systems. Embracing this
paradigm will pave the way for remarkable advancements in the field
of autonomous intelligent systems.

Besides the technical perspective, there are actually other angles
people should take into consideration to enrich and improve the
connotation of autonomous intelligent systems. For one thing, the
ethical and social perspective cannot be ignored. Ethically and socially,
the deployment of autonomous intelligence systems raises significant
questions around accountability, privacy, job displacement, and
fairness. The decision-making processes of AIS need to be transparent,
explainable, and align with societal values to ensure trust and
acceptance. Addressing these concerns involves interdisciplinary
research, incorporating insights from ethics, law, and social sciences
into the development and governance of AIS. For another thing,
autonomous intelligent systems are also closely linked to the
Sustainable Development Goals. They have the potential to help
address global challenges in environmental protection, health,
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education and more, such as protecting the environment through
intelligent monitoring and management of resources, or improving
the quality and accessibility of education through personalized
education systems. However, this also requires environmental impact,
resource consumption and long-term sustainability to be taken into
account when designing and applying autonomous intelligent systems.

2.2 Lifelong learning

Lifelong learning, alternatively known as continuous learning or
incremental learning, traces its roots back to the mid-20th century.
Early computer scientists and artificial intelligence researchers
contemplated ways to enable computer systems to continuously learn
and adapt to new knowledge. The adage “one is never too old to learn”
holds true and applies equally to AIS.

In 1957, Frank Rosenblatt’s perceptron emerged as an early neural
network model that introduced the idea of machines improving their
ideas and performance gradually through repeated training (Block
et al., 1962). The era of artificial intelligence algorithms based on
neural networks was begun. But for a long time, neural networks
could not handle multiple tasks, nor could they handle dynamic tasks
of time series. During the 1990s, the concept and research of transfer
learning started to develop, positively influencing the notion of
lifelong learning. Transfer learning focused on leveraging previously
acquired knowledge for new tasks (Pan et al., 2010). In the 2000s,
incremental learning began to emerge in lifelong learning research,
enabling Al systems to learn new tasks without sacrificing previously
acquired knowledge (Zhou et al., 2022). This approach helps in
continuously improving the Al systems performance, adapting to
changes in the data distribution, and avoiding catastrophic forgetting.
Incremental learning is particularly useful in dynamic environments
where new data arrives regularly and the model needs to
be continuously updated to maintain its accuracy and relevance. In
our dynamically changing world, where new classes appear frequently,
fresh users in the authentication system and a machine learning model
ought to identify new classes while not forgetting the memory of
previous ones (Zhou et al., 2022). If the dataset of old classes is no
longer available, directly fine-tuning a deployed model with new
classes might bring about the so-called catastrophic forgetting
problem in which information about past classes is quickly forgotten
(Hinton et al., 2015; Kirkpatrick et al., 2017; Shin et al., 2017). Hence,
incremental learning, a framework that enables online learning
without forgetting, has been actively investigated (Kang et al., 2022).
From the 2000s to 2020s, Researchers have proposed various
incremental learning algorithms and techniques to address the
challenges associated with learning from evolving data. These
algorithms focus on updating the model efficiently (Lv et al., 2019;
Tianetal, 2019; Zhao etal., 2021; Ding et al., 2024), handling concept
drift (Schwarzerova and Bajger, 2021), managing memory constraints
(Smith et al, 2021), and balancing stability and plasticity in the
learned knowledge (Wu et al., 2021; Lin et al., 2022; Kim and Han,
2023). Additionally, incremental learning has been explored in
different domains, including image classification (Meng et al., 2022;
Nguyen et al., 2022; Zhao et al., 2022), natural language processing
(Jan Moolman Buys University College University of Oxford, 2017;
Kahardipraja et al., 2023), recommender systems (Ouyang et al., 2021;
Wang et al., 2021; Ahrabian et al,, 2021a), and data stream mining
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(Eisa et al., 2022). Researchers have investigated different strategies
such as incremental decision trees (Barddal and Fabr'icio Enembreck.,
2020; Choyon et al, 2020; Han et al,, 2023), online clustering
(Bansiwala et al., 2021), ensemble methods (Lovinger and Valova,
2020; Zhang J. et al., 2023), and deep learning approaches to tackle
incremental learning problems (Ali et al., 2022). Incremental learning
enables lifelong learning to constantly learn new data new data while
leveraging prior knowledge that continues to be an active research
topic (Figure 1).

Lifelong learning plays a crucial role in enhancing the
performance of Artificial Intelligence Systems (AIS) due to its
powerful capabilities. It enables AIS to continuously update their
knowledge and skills, allowing them to effectively handle consecutive
tasks in dynamic and evolving environments.

There are three main research methods used in lifelong learning:

o Regularization-based Approach: This method consolidates past
knowledge by incorporating additional loss terms that reduce the
rate of learning for important weights used in previously learned
tasks. By doing so, it minimizes the risk of new task information
significantly altering the previously acquired weights (Shaheen
et al, 2022). An example of this approach is Elastic Weight
Consolidation (EWC), which penalizes weight changes based on
task importance, regularizing model parameters and preventing
catastrophic forgetting of previous experiences (Febrinanto
etal., 2022).

Rehearsal-based Approach: This method focuses on preserving

knowledge by leveraging generative models to replay tasks
whenever the model is modified or by storing samples from
previously learned tasks in a memory buffer (Faber et al., 2023).
One notable approach is Prototype Augmentation and Self-
Supervision for Incremental Learning (PASS) (Zhu et al., 2021).
Model-based Approach: To prevent forgetting, models can
be expanded to improve performance, or different models can
be assigned to each task. Examples of this approach include
Packnet (Mallya and Lazebnik, 2018a) and Dynamically
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Expandable Representation for Class Incremental Learning
(DER) (Yan et al,, 2021).

These research methods offer distinct strategies for addressing
the challenges associated with lifelong learning in the context of
handling consecutive tasks in dynamic and evolving environments.
The choice of the most suitable approach depends on specific
requirements and circumstances. Ongoing research in the field of
lifelong learning continues to explore innovative techniques and
approaches to further enhance the performance and adaptability
of AIS.

However, the combination of lifelong learning and autonomous
intelligent systems poses several challenges due to perceptual
cognitive algorithms (Nicolas, 2018; Hadsell et al., 2020), varying
tasks (Kirkpatrick et al., 2017; Aljundi et al., 2021), changing
environments (Zenke et al., 2017a), and limitations in computing
chips (Mallya and Lazebnik, 2018b), control systems (Kober et al.,
2013; Andrei et al., 2017), and the diverse range of system types
(Kemker and Kanan, 2017; Parisi et al., 2017). Currently, research
on this integration is insufficient, and numerous difficulties remain
to be addressed. Among these challenges, catastrophic forgetting is
a prominent problem wherein previously learned tasks may
be forgotten when AIS learns new ones. Consequently, solving this
problem holds immense significance and remains a core objective
of lifelong learning.

There are three main dimensions to handle catastrophic forgetting:

2.2.1 Knowledge retention

If there is only one model continuously learning different tasks,
we naturally expect it not to forget knowledge previously learned
when it learns new tasks. In addition, the model is supposed to
prevent stopping learning just in order to retain what has been
learned at the same time. There are several methods such as Elastic
Weight Consolidation (EWC) (Aich, 2021), Synaptic Intelligence
(SI) (Zenke et al., 2017b), Memory Aware Synapses (MAS) (Aljundi
etal., 2018).
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2.2.2 Knowledge transfer

It is expected that models are able to utilize what they have learned
to help handle new problems. Related method is Gradient Episodic
Memory (GEM) (Lopez-Paz and Ranzato, 2022).

2.2.3 Model expansion

Sometimes, models may be too simple to handle complicated
tasks, so it is expected that these models could expand themselves to
more complicated ones according to the complexity of problems.
Some related methods are Progressive Neural Networks (Rusu et al.,
2022), Expert Gate (Aljundi et al., 2017), Net2Net (Chen et al., 2016;
Sodhani et al., 2019).

3 Representative applications of
lifelong learning for AlS

Nowadays, it is an increasingly popular trend to use lifelong
learning algorithms for AIS, which could better improve the
performance of these systems. There have been plenty of domains
making use of lifelong learning algorithms, here we highlight some
representative and contemporary examples below (Figure 2).

3.1 Autonomous driving

The development of autonomous vehicles has advanced quickly
in recent years (Han et al., 2023). Modern vehicles are becoming
more and more automated and intelligent due to advancements in
lifelong learning algorithms, mechanical, and computing
technologies (Su et al., 2012). The Institute of Electrical and
Electronics Engineers (IEEE) alone produced around 43,000
conference papers and 8,000 journal (including magazine) articles
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on the subject of autonomous driving in the 5 years between 2016
and 2021 (Chen et al,, 2022). Many IT and automotive companies
have been attracted to this promising field, such as Baidu Apollo,
Google Waymo. And by 2021, Waymo’s autonomous vehicles have
driven more than 20 million miles on the road, demonstrating the
reliability and safety of the technology of autonomous driving. As
a result, in the near future, different types of AVs are expected to
be fully commercialized, with a significant impact on all aspects of
our lives (Su et al., 2012).

The most challenging problem autonomous driving currently
faces is to adapt to novel driving scenarios, especially in complex and
mixed traffic environments, and react properly and rapidly in time. As
a result, autonomous driving is particularly in need of the combination
of lifelong learning algorithms. So in the section below, different
frames of lifelong learning in some crucial fields of autonomous
driving are explained.

3.1.1 Lane changing

Lane changing is one of the largest challenges in the high-level
decision-making of autonomous vehicles (AVs), especially in mixed
and dynamic traffic scenarios, where lane changing has a significant
impact on traffic safety and efficiency. In recent years, the application
of lifelong learning to lane-changing decision-making in AV's has been
widely explored with encouraging results. However, most of these
studies have focused on single-vehicle environments, and lane-
changing in situations where multiple AV's coexist with human-driven
vehicles has received little attention (Zhou et al., 2022), which should
be paid more attention. In this regard, Ref. (Zhou et al., 2022) proposes
a multi-agent advantage actor-critic method which uses a novel local
reward design and parameter sharing scheme to formulate the lane
changing decision of multiple AVs in a mixed traffic highway
environment as a multi-agent lifelong learning problem using a
lifetime learning algorithm.
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3.1.2 Automated valet parking

Automated valet parking (AVP) allows human drivers to park
their cars in a drop-off zone (e.g., a parking garage entrance). These
cars can independently perform autonomous driving tasks from the
parking area to a designated parking space. AVP can greatly improve
driver convenience, and is seen as an entry point for the promotion of
AVs. And high-precision indoor positioning service is unavoidable in
AVP. However, existing wireless indoor positioning technologies,
including Wi-Fi, Bluetooth, and ultra-wideband (UWB), have a
tendency to degrade significantly with the increase of working time
and the change of building environments (Zhao et al., 2023). To
handle this problem, a data-driven and map-assisted indoor
positioning correction model has been proposed to improve the
positioning accuracy for the infrastructure-enabled AVP system
recently by a research team from Tongji University, Shanghai, China
(for details refer to Ref. (Zhao et al., 2023)). In order to sustain the
lifelong performance, the model is updated in an adversarial manner
using crowdsourced data from the on-board sensors of fully
instrumented autonomous vehicles (Zhao et al., 2023).

3.1.3 Trajectory prediction

Accurate trajectory prediction of vehicles is the key to reliable
autonomous driving. Adapting to changing traffic environments and
implementing lifelong trajectory prediction models are crucial in
order to maintain consistent vehicle performance across different
cities. In real applications, intelligent vehicles equipped with
autonomous driving systems should travel on different roadways,
cities and even countries. The system needs to properly forecast the
future trajectories of the surrounding vehicles and adapt to the diverse
distribution of their motion and interaction pattern in order to safely
guide the vehicle. In order to achieve this, the system must constantly
acquire new information about developing traffic conditions while
retaining its previous understanding. Furthermore, the system cannot
afford to store a significant amount of trajectory data due to its
restricted storage resources (Bao et al., 2021). So, in order to perform
well on all processed tasks, it is necessary to keep lifelong learning
with restricted storage resource. As a consequence, in a bid to achieve
lifelong trajectory prediction, a new framework based on conditional
generative replay is proposed by the research team from the University
of Science and Technology of China (USTC), which handles the
problem of catastrophic forgetting due to different types of traffic
environments and improve the precision and efficiency of vehicle
trajectory prediction (Bao et al., 2021).

At the moment, autonomous vehicles are not perfect in their
operation (Chen et al., 2022), as evidenced by some accidents caused
by autonomous driving vehicles in recent years, in which safety drivers
were unable to prevent the accidents from occurring, resulting in the
loss of multiple lives, thus bringing about these mournful aftermaths
which could have been prevented. Obviously, in terms of performance,
autonomous vehicle systems are still far from the visual systems of
humans or animals (Chen et al., 2020). It is necessary to find novel
solutions, such as bio-inspired visual sensing, multi-agent
collaborative perception, and control capabilities that emulate
biological systems™ operational principles (Tang et al., 2021). It is
predicted that after reaching increasing degrees of robotic autonomy
and vehicle intelligence, autonomous driving will become sufficiently
safe and dependable by 2030 to replace the majority of human driving
(Litman, 2021).
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3.2 Anomaly detection

Anomaly detection is the task of finding anomalous data
instances, which therefore represents deviations from the normal
conditions of a process (Aggarwal, 2017). In many fields and real-
world applications, such as network traffic invasions (Faber et al.,
2021), aberrant behavior in cyber-physical systems like smart grids
(Corizzo et al,, 2021), or flaws in manufacturing processes (Alfeo
etal,, 2020), the ability to identify abnormal behavior is crucial.

Examples of relevant techniques for detecting anomalies in
one-class learning are: (i) Autoencoder, a model based on neural
network reconstruction; (ii) One-Class Support Vector Machine,
which provides anomaly scores by contrasting new data with the
decision boundary based on hyperplanes.; (iii) Local Outlier Factor,
which provides an anomaly score that is derived from the ratio of the
new data samples’ local density to the average local density of its
closest neighbors; (iv) Isolation Forest, which offers tree ensembles
and calculates the new samples’ anomaly score by measuring the
distance from the root to the leaf; (v) Copula-based anomaly
detection, which draws conclusions about the level of “extremeness”
of data samples by using tail probabilities (Goldstein and Uchida,
2016; Li et al., 2020; Lesouple et al., 2021).

However, although these methods have been established and
perform well in many scenarios, due to the catastrophic forgetting, the
performance of the anomaly detection system is affected negatively
when previous circumstances reoccur. For this reason, lifelong
anomaly detection is supposed to be applied to balance between
knowledge transferring and knowledge retention. Since many real-
world domains are characterized by both recurrent conditions and
dynamic, rapidly evolving situations, lifelong anomaly detection may
out to be quite advantageous in these kinds of environments. This
feature necessitates model characteristics that promote concurrent
learning and adaptability (Faber et al., 2023). And several recent
research efforts have begun to address the problem of lifelong anomaly
detection. Examples include using meta-learning to estimate
parameters for numerous tasks in one-class image classification
(Frikha etal., 2021), transfer learning for anomaly detection in videos
(Doshi and Yilmaz, 2020), and change-point detection in conjunction
with memory arrangement (Corizzo et al., 2022). Particularly, in the
field of autonomous driving, an effective collaborative anomaly
detection methodology known as ADS-Lead was proposed to
safeguard the lane-following mechanism of ADSs. It has a unique
transformer-based one-class classification algorithm to detect
adversarial image examples (traffic sign and lane identification threats)
as well as time series anomalies (GPS spoofing threat) (Han et al.,
2023). In addition, to enhance the anomaly detection performance of
models, an active lifetime anomaly detection framework was provided
for class-incremental scenarios that supports any memory-based
experience replay mechanism, any query strategy, and any anomaly
detection model (Faber et al., 2022).

Figure 3 illustrates a typical scenario comparing conventional
anomaly detection with model updating with lifelong anomaly
detection. In contrast to conventional anomaly detection, which
continuously updates the model and causes detection delays, or false
predictions, until the new task is incorporated into the model, lifetime
anomaly detection in the second iteration does not require model
updates following a recurrence of each work. Furthermore, in a
100-iteration scenario, only 4 model updates would be needed for
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Conventional Anomaly Detection with Model Update

Iteration 1

Iteration 2

Iteration 1

Iteration 2

Model has knowledge of this task D Model has no knowledge of this task

} Delay deriving from model update Current task

O Model is being updated

FIGURE 3
A scenario with four recurring tasks (Comparisons between conventional and lifelong anomaly detection).

The core process of lifelong anomaly detection involves several
key steps, as depicted in Figure 4. These steps include data collection,

Data
Collection

initial anomaly detection, lifelong learning, model adaptation,

continuous monitoring, model update, and the repetition of the

Initial
Anomaly
Detection

process. The first step is data collection, wherein data is gathered from
multiple sources, such as network traffic, smart grids, and
manufacturing processes. Following data collection, initial anomaly
detection techniques, such as Autoencoders, Support Vector
Machines, Local Outlier Factor, and Isolation Forests, are employed
to conduct preliminary anomaly detection. Subsequently, lifelong

Continuous
Monitoring

learning takes place, whereby new data is integrated into the model
while existing knowledge is updated and retained. Model adaptation
is then performed based on the new data, which may involve applying
techniques like meta-learning, transfer learning, or change point
detection with memory organization. Continuous monitoring of the

FIGURE 4 data for anomalies is carried out to ensure timely detection. To

The core process of lifelong anomaly detection. maintain the model’s effectiveness, periodic model updates are

performed by refreshing it with new data and employing advanced

techniques. This entire process is repeated cyclically, encompassing
both data collection and model updating stages.
lifetime anomaly detection, as opposed to 400 model updates for
traditional anomaly detection, which results in detection delays. It
could be used to map a wide range of recurring real-world scenarios, 3.3 Service robots

such as human activity sequences, geophysical phenomena like

weather patterns, and cyber-physical system operating conditions
(Faber et al., 2023; Figure 3).
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Depending on the continuous learning mechanism for a variety
of various robotic tasks, lifelong machine learning has drawn
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intriguing academic interests in the field of robotics (Dong et al.,
2022). And past research has identified lifelong learning as a critical
capability for service robots. Creating an artificial “lifelong learning”
agent that can construct a cultivated understanding of the world from
the current scene and their prior knowledge through an autonomous
lifelong system is one of the big ambitions of robotics (She et al,
2020). According to a report by Allied Market Research, the global
service robot market is valued at $21.084billion in 2020 and is
expected to reach $293.087 billion by 2032, with a CAGR of 24.3%
from 2023 to 2032. Moreover, the number of new startups named
after service robots accounts for 29% of all U.S. robotics companies.
Those data, among other similar figures, remark the development in
the service robots area (Gonzalez-Aguirre et al., 2021). Service robots
are mostly tasked with helping humans in the home environment,
and they must handle a wide variety of objects. These objects are
dependent on the particular environment (e.g., bedroom, toilet,
balcony), the human being supported (e.g., kids, elderly people,
disabled people). It is practically impossible to prepare all possible
objects at the time of or prior to the deployment of the robot.
Therefore, the robots will need to adjust to new objects and different
ways of perceiving things throughout their lives (Niemueller, 2013).
Despite these challenges, we want these robots to notice us and show
adaptive behavior when they are on a mission. When a robot is given
negative feedback when vacuuming while someone is watching TV,
it should be able to recognize this as a new context and adjust its
behavior accordingly in similar spatial or social contexts. For
example, when people are reading books, the robot should be able to
connect this scenario to the one it has previously encountered and
cease vacuuming (Irfan et al., 2021). Another example is when service
robots engage in language teaching, they may encounter variations in
language environments and user learning needs. In such cases, it is
imperative for service robots to achieve self-learning and
improvement by monitoring user feedback, autonomously exploring
language environments, and utilizing natural language processing
techniques. Only through these means can they better provide
personalized language learning support and practical opportunities
for users, thus enhancing teaching proficiency and efficiency (Kanero
etal., 2022).

Another aspect of lifelong learning applied to robots is the ability
to function independently for lengthy periods of time in dynamic,
constantly-changing surroundings. For example, in a domestic scene,
where most objects are likely to be movable and interchangeable, the
visual character of the same place may differ markedly over successive
days. To deal with this situation, a term lifelong SLAM has been in use
to address SLAM problems in environments that have been changing
over time, improving the robustness and accuracy of pose estimation
of robots (Shi et al., 2020). Lifelong SLAM takes into account a robot’s
long-term operations, which involve repeatedly visiting previously
mapped places in dynamic surroundings. In lifetime SLAM, we make
the assumption that a region is constantly mapped over an extended
period of time, rather than only once (Kurz et al., 2021). Compared to
classical SLAM methods, however, there exist a lot of challenges (Shi
et al., 2020):

 Changed viewpoints - the robot may look at the same scene or
items from several angles.

« Changed things - the objects may have been changed when
reentering a place that was previously observed by the robot.
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o Changed illumination - there could be a significant change
in illumination.

« Dynamic objects - There could be objects in the scene that are
moving or changing.

 Degraded sensors - unpredictable sensor noises and calibration
errors could result from a variety of factors, including mechanical
strain, temperature changes, dirty or damp lenses, etc.

To address these challenges, the operational flow of the lifetime
service robot is shown in Figure 5.

3.4 Emergency management

In recent years, machine learning algorithms have made great
strides in enabling autonomous agents to learn through observation
and sensor feedback how to carry out tasks in complex online
environments. In particular, recent developments in deep neural
network-based lifelong learning have demonstrated encouraging
outcomes in the creation of autonomous agents that can interact with
their surroundings in a variety of application domains (Arulkumaran
etal., 2017), including learning to play games (Brown and Sandholm,
2017; Xiang et al., 2021), generating optimal control policies for robots
(Jin et al, 2017; Pan et al., 2017), natural language processing and
speech recognition (Bengio et al.,, 2015), body emotion understanding
(Sun and Wu, 2023), as well as choosing the best trades in light of the
shifting market conditions (Deng et al., 2017). The agent gradually
learns the best course of action for the assigned task by seeing how its
actions result in rewards from these encounters.

These methods are effective when it can be presumed that every
event that occurs during deployment is a result of the same
distribution that the agent was trained on. However, agents that must
operate for extended periods of time in complex, real-world
environments may be subject to unforeseen circumstances beyond the
distribution for which they were designed or trained, due to changes
in the environment. For instance, a construction site worker may
unintentionally place a foreign object—like their hand-inside the
workspace of a vision-guided robot arm, which must then react to
prevent harm or damage. Similarly, an autonomous driving car may
come across significantly distorted lane markings that it has never
encountered before and must decide how to continue driving safely.
In such unexpected and novel situations, the agent’s strategy will not
apply, leading to the possibility of the agent taking unsafe actions. And
that is what makes emergency management crucial.

The purpose of emergency management is to provide autonomous
agents with the ability to respond to unforeseen situations that are
different from what they are trained or designed to handle. Therefore,
a lifelong data-driven response-generation system must be developed
to tackle this problem. It enables an agent to handle new scenarios
without depending on the reliability of pre-existing models, safe states,
and recovery strategies created offline or from prior experiences, or
on their accuracy. The main finding is that, when needed, uncertainty
in environmental observations may be used to inform the creation of
quick, online reactions that effectively avoid threats and allow the
agent to carry on operating and learning in its surroundings (Maguire
etal., 2022). As is shown in Figure 6, the core process of emergency
management has a close relationship with lifelong learning algorithms,
it keeps learning and adapting.
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FIGURE 5
The operational flow of the lifetime service robot.
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FIGURE 6

The emergency management process based on lifelong learning.
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4 QOutlook

Lifelong learning with AIS has made significant progress in recent
decades. And graph lifelong learning is emerging as an important area
in AT research and applications. Graph lifelong learning involves
applying lifelong learning principles to graph-based data structures
and algorithms. This approach aims to enable systems to continuously
learn and adapt from a stream of graph data over time. There are many
kinds of graph lifelong learning algorithms, and there exist several
differences between these methods, which suit different situations.
Each method may have its own approach and principle to cope with
problems, as can be seen in Table 1.

The key challenge in graph lifelong learning is to efficiently update
and refine the model as new data arrives, without forgetting previously
learned information (Galke et al., 2023). In addition, dynamic nature
of graphs also brings problems for the reasons that graph data is often
dynamic, such as social networks or knowledge graphs. Models need
to adapt to these changes while maintaining the validity of past
learning (Galke et al., 2023). Graph lifelong learning is a rapidly
growing field that proposes new solutions for how intelligent systems
can continuously learn and adapt to changing environments. With
further research, this field is expected to solve existing challenges and
provide strong support for the continued development and application
of intelligent systems.

Besides the development of graph lifelong learning, several trends
and directions can be observed in the relationship between lifelong
learning algorithms and AIS. Firstly, multi-modal learning will play a
crucial role as autonomous systems learn from diverse sensors and
data sources, including visual, auditory, textual, and sensor data. This
integration will greatly enhance the system’s perception and
understanding capabilities. Secondly, an important aspect is self-
improvement learning, where the system autonomously assesses its
performance, identifies weaknesses, and automatically adjusts and
improves its algorithms and models to enhance efficiency and
accuracy. Furthermore, cross-domain transfer of knowledge and
experience becomes a possibility. The system will be able to transfer

TABLE 1 Graph lifelong learning method comparison.

10.3389/fnbot.2024.1385778

learned knowledge from one domain to another, thereby enhancing
its problem-solving abilities across different domains. What is more,
lifelong learning with AIS can also be developed and applied in the
area of education, especially in English teaching and learning.
According to Grand View Research, the AI market in education is
expected to reach $13.3billion by 2025. Its diversity is able to change
the form of language education to a certain extent, making it
continuously transform from the original, traditional, and
monotonous form to a dimensional, dynamic, and multi-spatial form,
providing a personalized learning experience based on individual
needs and preferences (Hwang et al., 2020). Although there has been
little research on how lifelong learning can enhance English teaching
and learning through AIS so far, it can benefit this area without doubt
(Gao, 2021; Pikhart, 2021; Klimova et al., 2022).

Concerning lifelong learning algorithms themselves, incremental
learning should receive more attention. Improving the efficiency and
stability of incremental learning becomes crucial, enabling the system
to retain previous knowledge while learning new tasks. Additionally,
self-supervised learning methods will gain prominence. These
techniques allow systems to learn from unlabeled data, reducing
reliance on extensive labeled data and opening up opportunities for
continuous learning. Overall, these trends and directions highlight the
importance of multi-modal learning, self-improvement learning,
cross-domain transfer, efficient incremental learning, and self-
supervised learning in advancing the field of lifelong learning
algorithms for AIS.

5 Conclusion

In this paper, we have extensively discussed the relationship
between lifelong learning algorithms and autonomous intelligent
systems. We have demonstrated the specific applications of lifelong
learning algorithms in various domains such as autonomous driving,
anomaly detection, service robotics, and emergency management. It
is found that current research has made certain progress in addressing

Methods Approach
Architectural Rehearsal Regularization Reference
Feature Graph Networks Yes No No Sarlin et al. (2020) and Zhou et al. (2022)
Hierarchical Prototype Networks Yes No No Li et al. (2023) and Zhang et al. (2023a)
Ahrabian et al. (2021a) and Zhou and Cao
Experience Replay GNN Frame work No Yes No
(2021b)

Lifelong Open-world Node Classification No Yes No Galke et al. (2021) and Zhang et al. (2022)
Disentangle-based Continual Graph

No No Yes Kou et al. (2020) and Zhang et al. (2023b)
Representation Learning
Graph Pseudo Incremental Learning No No Yes Tan et al. (2022) and Su et al. (2023)
Topology-aware Weight Preserving No No Yes Natali et al. (2020) and Liu et al. (2021)
Translation-based Knowledge Graph

No No Yes Yoon et al. (2016) and Li et al. (2023)
Embedding
Continual GNN No Yes Yes Han et al. (2020) and Wang et al. (2020)
Lifelong Dynamic Attributed Network Li et al., 2017, Yoon et al. (2017), and Liu

Yes Yes Yes
Embedding etal. (2021)
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the catastrophic forgetting problem of complex scenarios and
multitasking under long time sequences. However, challenges such as
activation drift, inter-task confusion, and excessive neural resources
still persist. In light of this, we particularly emphasize the significance
and potential of advancing lifelong learning through graphical
approaches, while pointing out that multimodal learning and methods
like cross-domain transfer are pivotal references for future
advancements in AIS lifelong learning algorithms. Among these, the
integration of robot vision and tactile perception is recognized as a key
challenge to enhance robot performance and efficiency. To conclude,
lifelong learning proves to be a reliable and efficient method for
advancing autonomous intelligent systems. Future research efforts
should focus on developing fully autonomous and secure learning
frameworks that offer superior performance while reducing the need
for excessive supervision, training time, and resources.
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